
HAL Id: tel-01937278
https://theses.hal.science/tel-01937278

Submitted on 28 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impact of mobility on QoE in wireless networks
Imen Triki

To cite this version:
Imen Triki. Impact of mobility on QoE in wireless networks. Mobile Computing. Université d’Avignon,
2018. English. �NNT : 2018AVIG0227�. �tel-01937278�

https://theses.hal.science/tel-01937278
https://hal.archives-ouvertes.fr


ACADÉMIE D’AIX-MARSEILLE
UNIVERSITÉ D’AVIGNON ET DES PAYS DE VAUCLUSE

THÈSE

présentée à l’Université d’Avignon et des Pays de Vaucluse
pour obtenir le diplôme de DOCTORAT

SPÉCIALITÉ : Informatique

École Doctorale 536 «Agrosciences et Sciences»
Laboratoire d’Informatique (EA 4128)

Rôle du vidéo streaming mobile qui dépend
du contexte dans l’amélioration de la qualité

d’experience

Présentée par Imen TRIKI

Soutenue le .. / .. / ..., devant le jury composé de :

M. André-Luc Beylot Professeur, Université de Toulouse Rapporteur
M. Gerardo Rubino Directeur de Recherche, IRISA/INRIA Rapporteur
M. Rachid El-Azouzi Professeur, Université d’Avignon Directeur de Thèse
M. Majed Haddad Maître de Conférences, Université d’Avignon co-Encadrant de Thèse

Laboratoire d’Informatique d’Avignon - CERI
Centre d’Enseignement et de Recherche en Informatique





ACADÉMIE D’AIX-MARSEILLE
UNIVERSITÉ D’AVIGNON ET DES PAYS DE VAUCLUSE

THESIS

A thesis submitted in partial fulfillment for the degree of Doctor of
Philosophy

In Computer Science

Doctoral School 536 «Agrosciences et Sciences»
Laboratoire d’Informatique (EA 4128)

The role of context dependent mobile video
streaming in QoE enhancement

Presented by Imen TRIKI

Defended on .. / .. / .... , before the jury members:

M. Andre-Luc Beylot Professor, University of Toulouse Reviewer
M. Gerardo Rubino Research Director, IRISA/INRIA Reviewer
M. Rachid El-Azouzi Professor, University of Avignon Advisor
M. Majed Haddad Professor, University of Avignon co-Advisor

Laboratoire d’Informatique d’Avignon - CERI
Centre d’Enseignement et de Recherche en Informatique





Résumé

iii





Abstract

The strong emergence of smartphones on human daily life as well as the high
broadband access supplied by operators have triggered pervasive demand on video
streaming mobile services, requiring the exploration of novel approaches on video
content delivery. To afford video streaming services at sustainable quality, the idea
of adjusting the streaming to the time-varying users’ contexts has been actively in-
vestigated during the recent years. Since the users’ perceptions on the video quality
directly impact their engagement in video streaming sessions, many interests have
been accorded to the user’s Quality of Experience (QoE).

Today streaming solutions mostly rely on the user’s contextual information such
as his link capacity or his available bandwidth to provide an acceptable final QoE.
Such contextual information can be easily acquired thanks to the existence of wireless
sensors and dedicated smart applications on today mobile devices. At the core, lies
the idea of exploiting the strong correlation between users’ locations and contexts. To
that end, radio maps with historical average signal strength have been geographically
mapped. Various studies on users’ mobility patterns also showed that people daily
routes exhibit a high degree of spatial and temporal regularity, especially on public
transportation or on road ways to/from frequently visited places. Coupled with radio
maps, these mobility patterns can give high accuracy on context predictability along
users’ trips.

In this thesis, we analyse the impact of adapting video streaming to the user’s
context on the final QoE. We start by proposing CAMS (Context Aware Mode Switch-
ing), a context-aware resource allocation mechanism, for real (i.e, non adaptive) video
streaming delivery to reduce the number of video stalling. CAMS is designed to be
applied in a particular network topology under a particular mobility of users. Then,
we explore the impact of knowing the future throughput variations on video qual-
ity adaptation and delivery cost in adaptive video streaming. We propose NEWCAST
(aNticipating qoE With threshold sCheme And aScending biTrate levels) as a proac-
tive algorithm for cost adjustment and quality adaptation under the assumption of a
perfect throughput estimation. We then extend the study to the case where through-
put prediction errors may exist and propose a bench of adaptive algorithms inspired
from NEWCAST. To explore the feasibility of implementing these algorithms in real
world streaming, we conduct some experiments with the DASH-If Reference player
in an emulated environment. Finally, we explore the impact of knowing the future
throughput variations when exploited with machine learning on the global QoE en-
hancement in adaptive video streaming. We propose a closed-loop framework based
on users’ feedbacks to progressively learn their QoE profiles and to fittingly optimize
video deliveries. This framework is in particular suited for heterogenous populations
where the QoE profiles of users are quite different and unknown in advance.

KEY-WORDS: Real Video Streaming, Adaptive Video Streaming, Quality of Expe-
rience (QoE), Mobile Network, User-Context, Resource Allocation, Throughput Pre-
diction, Machine Learning.
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1.1 Context

With the development of smartphones, tablets and laptops from one side, and the
emergence of new opportunities in media productions such as digital video and social
networking from the other side, video streaming has become one of the most promi-
nent internet services. According to recent statistics, video traffic represents today a
significant fraction of internet traffic and is expected to reach 82% by 2020 [1]. This has
led the operators to rethink the way their resources are managed and their networks
are dimensioned.

Unlike videos delivered using a deterministic channel with constant delay and
rate, and very limited data drops (such as digital TV broadcasting), videos delivered
over Internet Protocol (IP) and mobile networks are much more problematic since they
are supported by a non-Guaranteed Bit-Rate (GBR) resource type due to intermittent
usage of network resources [2, 3]. Note that a non-GBR bearer does not have dedicated
bandwidth and is used for best-effort traffic such as file downloads. During a video
streaming, the radio channel conditions can change consistently (e.g., due to mobility),
which may degrade considerably the user’s viewing experience and thus the user
engagement. As it is hard to determine the user’s real perception of a video streaming
service through a direct Quality of Service (QoS) analysis , research interests have
been steered toward end-user Quality of Experience (QoE) which differs from one
user to another depending on a set of factors. These factors may be linked to the
network conditions, to the content characteristics, to the user preferences or to the
device capabilities.

To improve the user’s QoE in mobile video streaming, many approaches have been
proposed for both real (i.e., non adaptive) and adaptive streaming at different system
levels (e.g., application and network levels). Today approaches mostly rely on the
context of the user as the current technologies allow to acquire it. User context is
usually related to the user’s location, but it can refer to other features such that the

1



Chapter 1. Introduction

user’s daily move-trajectory and travel time. It can be provided manually by the user
himself or automatically through communication with the user’s device sensors and
applications. Users’ geographical positions and mobility patterns may give further
contextual information related to the network conditions such as channel quality and
link capacity. These information can be used to improve video delivery in a reactive or
a proactive manner.

Recent studies performed by Alcatel-Lucents’s Bell Labs [4] showed that the long-
term predictions of the users’ mobility and streaming requests may be used in inter-
cell resource allocation to improve the overall network efficiency without degrading
the QoE. Together with the German service provider Net Mobile, Alcatel has devel-
oped context-aware video streaming to reduce the probability of poor video deliv-
ery on the move. Context-aware video streaming mainly relies on the smart use of
location-based information which allows to predict upcoming network performance.
The acquisition of the context is realized by using road and network coverage maps
and further radio performance data. Based on this prediction, the streaming is steered
to download more video seconds to the user’s device in areas of good coverage before
reaching poor coverage areas. This results in a highly improved QoE in terms of video
stalling.

This thesis deals with video streaming services in mobile networks and exploits
user context to improve some of the QoE metrics. The contextual information used
are mainly linked to the users’ s positions and mobility patterns, namely the variabil-
ity of the channel conditions and the link capacity (throughput). Both real (i.e., non
adaptive) and adaptive video streaming over HyperText Transfer Protocol (HTTP) are
studied with further focuses on the network performance. More details about our
objectives are detailed in the next section.

1.2 Objectives

Video streaming has two main properties that other internet services do not have:
First, the durations of the media streams are known in advance, and second, the
streamed data are buffered at the receiver before they are displayed to the user. In
this thesis, we exploit these properties for both real (i.e., non adaptive) and adaptive
streaming, to improve the end user’s QoE while taking into account his context. Our
main purpose is to know how and when video data should be buffered at the receiver
side to ensure a smooth video playback.

Our first study is presented in Chapter 3. It is performed on real (i.e., non adaptive)
video streaming under the assumption of a specific network topology and a specific
mobility of users. The network is assumed to comprise small sites distributed all along
a highway, and the users are assumed to move on that highway at a constant speed.
Under such a high user mobility, we propose to design a cross-layer that captures the
users’ channel states and interacts with the network scheduler to improve the QoE
and the overall spectral efficiency. Our purpose is to take advantage from the high
mobility of users rather than considering it an obstacle in video streaming services.

Our second study is presented in Chapter 4. It deals with adaptive video stream-
ing and exploits the knowledge of the user’s future throughput. The prediction of the
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throughput is assumed to be perfectly performed over a large horizon window (3 min-
utes and more). Under such assumption, we propose to design a streaming model to
make a tradeoff between the operator’s system utilization cost and the user’s QoE.
This streaming model will determine the way the user will be served and the video
bitrates will be distributed over the future horizon window.

Our third study is presented in Chapter 5. It also hinges on the assumption of
knowing the user’s future throughput with the difference that, here we assume pre-
diction errors. We keep the same optimization problem of Chapter 4, but we propose
new streaming strategies more robust and more adapted to inaccurate throughput
prediction.

To explore the performance of our strategies in real world video streaming, we
propose in Chapter 6 to conduct real experiments with a real video player. Due to the
lack of material, we emulate the user’s future throughput in a Linux environment.

Finally, based on the same throughput prediction as in Chapter 4, we address in
Chapter 7 a QoE optimization problem in which we propose to maximize the global
QoE in an heterogeneous population where the users’ preferences and QoE profiles
are unknown and different.

We review in the next section all our contributions in respect to these objectives.

1.3 Contributions

The contributions of this thesis are organized in Chapters:

In Chapter 2, we give an overview on Long Term Evolution (LTE) networks, video
streaming services and neural networks. We review some standards and some spe-
cific features to understand the basis of this work. In the LTE section, we present
the network components, the network physical resources, how the data is transmit-
ted to/from the user and how the physical resources are scheduled to users. Then,
in video streaming section, we present some of digital video characteristics to under-
stand the signification of the video parameters used in this thesis. To differentiate be-
tween real and adaptive streaming, we state all the existing streaming methods with a
brief explanation on each of them. As we mostly work with adaptive streaming (Chap-
ter 4, 5, 6 and 7), we relate more details on Dynamic Adaptive Streaming over Http
(DASH). The QoE concept in video streaming is reviewed as well with a focus on the
QoE metrics. In the last section, we present neural networks with a short description
of the gradient descent algorithm used in Chapter 7.

In Chapter 3, we propose a resource allocation mechanism for real (i.e., non adap-
tive) video streaming in LTE networks under the assumption of a specific mobility
pattern. More specifically, we consider a road (highway) network topology with con-
secutive adjacent small cells and users moving at a constant speed along the road.
By exploiting the high variability of the users’ channel conditions and the prefetching
(buffering) property of video streaming, we propose to restrict the list of users to serve
to only users having high channel conditions. This will make them download as much
data as their channels allow before falling in low coverage areas. Due to their high mo-
bility and the network topology, all the users will pass across high and low coverage
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areas, which guarantees a good fairness level among them all. We call our resource al-
location mechanism Context-Aware Mode Switching (CAMS). CAMS is based on the
development of a cross-layer at the level of the network resource allocator (eNodeB) to
filter the list of users to serve before it is passed to the scheduler. According to our sim-
ulations performed with a standard compliant LTE simulator, CAMS insures a higher
QoE in terms of stalling number by comparison with the conventional scheduler; up
to 87% improvement in the probability of no stalls when users move at 40 kmph. It
also achieves a higher spectral efficiency; 1 bit per second per Hertz gain compared
to the conventional scheduler. The contribution of this Chapter was published in our
conference paper [5].

In Chapter 4, we develop and solve an optimization problem that balances user’s
QoE and system utilization cost by assuming a perfect knowledge of the user’s future
throughput variations. We define a balancing parameter to make the tradeoff between
the operator’s preferences and the user’s preferences; a high QoE usually comes at a
high system utilization cost and a low cost usually returns a low QoE. We prove the ex-
istence and the properties of the optimal solution: First (i), the transmission schedule
is of a threshold type, and second (ii), the video bitrates are distributed in an ascending
order. We optimally solve the problem by proposing an algorithmic approach based
on graph-theory. Then, to solve it in a faster way, we propose an heuristic named
aNticipating qoE With threshold sCheme And aScending biTrate levels (NEWCAST).
NEWCAST is based on two sub-heuristics, one for setting the transmission threshold
and one for setting the bitrate distribution. We evaluate the performance of NEW-
CAST under different values of the balancing parameter and different throughput real
traces. Finally, by performing a comparison with baseline adaptive video streaming
algorithms, we show that NEWCAST can achieve higher performance under a wise
calibration of the tradeoff parameter. Some of the contributions of this Chapter were
published in our conference paper [6].

In Chapter 5, we extend our study to the case where the throughput prediction is
not perfect. We propose four algorithms: Short-TERm Newcast (STERN), Adaptive
Short-TERm Newcast (A-STERN), shoRt-tErm Conservative newcAST (RECAST) and
Short TeRm Enslaved nEwcasT (STREET) to make the approach of NEWCAST more
robust to prediction errors. Each algorithm exploits the prediction of the throughput
over successive short horizons. Based on our simulation results, we show that all
our algorithms outperform NEWCAST in terms of video stalling mainly when the
system utilization cost is prioritized. STERN and A-STERN achieve the lowest average
numbers of stalls but give in return high numbers of quality switching. RECAST is
the most stable in terms of quality switching. STREET is the closest to NEWCAST and
gives near performances in terms of video average quality and bitrate distribution.
Some of the content of this Chapter was published in our conference paper [7].

In Chapter 6, we implement both of NEWCAST and its derivative algorithms
(STERN, A-STERN, RECAST and STREET) with the DASH-If-Reference player. For
lack of material, we conduct our experiments in an emulated environment using the
Linux bandwidth shaping tool to emulate the user’s predicted throughput. We show
and explain in a first time why the approach of NEWCAST, as defined in Chapter 4,
is not suitable for real world streaming. We propose for that to adjust it, as well as
STERN, A-STERN, RECAST and STREET, to finalize the experimental study. By dis-
tinguishing throughput under-estimation and throughput over-estimation cases, we
evaluate the performance of each algorithm by repeating the same experiment many
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times under different values of the balancing parameter. Our results show that, un-
der overestimated throughput, all the derivative versions of NEWCAST achieve lower
numbers of video stalls than NEWCAST. STREET being the most efficient one. Un-
der underestimated throughput, however, NEWCAST globally achieves the highest
performance.

In chapter 7, we develop a multi-user QoE optimization problem in which we max-
imize the users’ global QoE assuming the knowledge of their future throughput vari-
ations but not their QoE preferences. To solve this problem, we define a single-user
QoE problem that assumes the knowledge of the user’s future throughput variations
and his QoE preferences as well. We solve the single-user problem by proving the
properties of the optimal solution then by proposing an heuristic inspired from the
approach of NEWCAST. To solve the multi-user problem, we propose a closed-loop
framework based on the single-user problem, users feedbacks and machine learn-
ing. This framework optimizes the QoE as well as feedbacks on previously optimized
videos are collected. It acquires a progressive knowledge on the users’ major profiles
and accordantly adapts the video qualities for coming users. By using a single-layer
neural network for machine learning, we show through simulations that our closed-
loop framework achieves a high performance in terms of convergence and QoE maxi-
mization. The contribution of this Chapter was published in our conference paper [8].

1.4 Publications

The list of publications including international conferences and workshops are fol-
lowing:

International Conferences:

[C1 ]: Imen Triki, Majed Haddad, Rachid El-Azouzi, Afef Feki and Marouen Gachaoui.
“Context Aware mobility Resource Allocation for QoE-Driven Streaming Ser-
vices”, Wireless Communications and Networking Conference. WCNC, April 2016,
Doha, Qatar.

[C2 ]: Imen Triki, Rachid El-Azouzi and Majed Haddad. “NEWCAST: Anticipat-
ing Resource Management and QOE Provisioning for Mobile Video Streaming”,
World of Wireless, Mobile and Multimedia Networks (WoWMoM), IEEE 17th Inter-
national Symposium on A, June 2016, Coimbra, Portugal.

[C3 ]: Imen Triki, Rachid El-Azouzi and Majed Haddad. “Anticipating Resource
Management and QoE for Mobile Video Streaming under Imperfect Prediction”,
Multimedia (ISM), IEEE International Symposium on, Dec. 2016, San Jose, CA,
USA.

[C4 ]: Imen Triki, Rachid El-Azouzi, Majed Haddad, Quanyan Zhu and Zhiheng
Xu. “Learning from Experience: A Dynamic Closed-loop QoE Optimization for
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Video Adaptation and Delivery”, To be published in The 28th Annual IEEE Inter-
national Symposium on Personal, Indoor and Mobile Radio Communications , PIMRC,
October 2017, Montreal, Quebec, Canada.

[C5 ]: Sudheer Poojary, Rachid El-Azouzi, Eitan Altman, Albert Sunny, Imen Triki,
Majed Haddad, Tania Jimenez, Stefan Valentin and Dimitrios Tsilimantos. “Anal-
ysis of QoE for Adaptive Video Streaming over Wireless Networks”, To be pub-
lished in The 16th International Symposium on Modeling and Optimization in Mobile,
Ad Hoc and Wireless Networks, WiOpt May 2018, Shanghai, China.

Workshop:

[W5 ]: Imen TRIKI, Rachid El-Azouzi, Majed Haddad. “Anticipating Resource Man-
agement and QoE Provisioning for Video Streaming.” 11ème Atelier en Evaluation
de Performances, March 2016, Toulouse, France.
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2.1 Introduction

Before starting the contribution works of this thesis, it is important to present some
backgrounds about the state of the art and the different features of fields we are inter-
ested in, such as the resource allocation in 4G networks, the specifications of adaptive
video streaming, the QoE concept in multimedia services and the basis of artificial
neural networks. We organize this chapter in three major sections. In Section 2.2, we
present the LTE standard and its main specifications that are related to our work. Then
in Section 2.3, we review some important features of video streaming services, such as
video characteristics, DASH standard and the QoE. Finally, in Section 2.4, we give a
short overview on neural networks.
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2.2 Overview on LTE mobile network

2.2.1 Architecture

LTE and LTE-advanced are standards for mobile communication technologies that
appeared under the fourth generation of cellular networks. As we show in Figure 2.1,
a typical LTE network is composed of the Evolved Packet System (EPS) and is directly
connected to outer Packet Data Network (PDN) e.g., the Internet.

The EPS is comprised of the Evolved Packet Core (EPC) and the Evolved Univer-
sal Terrestrial Radio Access Network (E-UTRAN). The EPC is charged of taking the
overall control of the User Equipment (UE), the E-UTRAN, however, is charged of
controlling the radio functions as it contains the network Evolved Node Bs (eNodeBs)
and the UEs. The EPC is connected to the PDN via the Packet data network Gate-
Way (PGW), which is responsible for allocating the IP addresses to the UEs, the QoS
enforcement, and further tasks such as packet filtering and policy enforcement.

The PGW is linked to the Serving GateWay (SGW) and the Policy Control and
Charging Rules Function (PCRF). The major function of the SGW is packet routing
and forwarding, but it has further tasks such as collecting the information for charging
and acting as a mobility anchor for inter-eNodeB handover. The PCRF, however, is
responsible for the QoS and the charging policy control.

The Mobility Management (MME) and the Home Subscriber Server (HSS) are other
elements of the EPC. The MME supports the user authentication and the roaming with
in addition the control and the process of the signaling between the EPC and the UE.
The HSS, however, contains a database for the users’ subscriptions.

Figure 2.1: Architecture of an LTE network.
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2.2.2 Physical resources

In LTE, the smallest element of resource allocation unit that can be assigned by the
eNodeB schedular to the UEs is called Physical Resource Block (PRB). As detailed in
Figure 2.2, a PRB is defined as a group of 12 consecutive subcarriers over one Time
Slot (TS). In Orthogonal Frequency Division Multiple Access (OFDMA), each subcar-
rier brings 6 or 7 Orthogonal Frequency Division Multiplexing (OFDM) symbols (the
modulated data) depending on the Cyclic Prefix (CP) type (either extended or normal)
for a duration of 1 TS. Each single sub-carrier per one symbol period is called Resource
Element (RE). LTE supports different cell bandwidths (1.4, 3, 5 10 15 and 20 Mhz). To
each bandwidth is associated a number of PRBs. All the PRBs form over time what
we call a Resource Grid (RG). This RG is shared between the UEs depending on the
specifications of the norm and other scheduling metrics. For Multiple Input Multiple
Output (MIMO) transmission there is one RG for each antenna.

Figure 2.2: LTE resources.

In LTE, the PRBs are assigned per pair to the UEs, i.e., each user will have, if sched-
uled, one or multiple pairs of PRBs covering with that 1 Transmission Time Interval
(TTI) of 1 ms duration. Each TTI represents in LTE one sub-frame of two TSs, and each
10 sub-frames represent one frame of 10 ms.

2.2.3 Data transmission

Modulation and Coding Scheme (MCS)

Each symbol of LTE RE is carried on a predefined number of bits depending on
the type of modulation used by the system. As per Release 8 (R8) [9], LTE sup-
ports Quadrature Phase-Shift Keying (QPSK), 16 Quadrature Amplitude Modulation
(QAM) and 64 QAM for downlink and QPSK, 16 QAM for uplink. Each modulation
defines the capacity in bits (also called modulation order) for bringing the symbols.

9



Chapter 2. Background

Specifically, a QPSK symbol can be carried over 2 bits, a 16 QAM symbol can be car-
ried over 4 bits and a 64 QAM symbol can be carried over 6 bits.

Accordingly, the higher the modulation order, the higher the number of bits trans-
mitted per unit of time, but this does not imply a higher efficient throughput. In fact,
along with the modulation scheme, there exists the modulation coding rate that de-
fines the efficiency of the modulation. Hence, a 16 QAM modulation with a coding
rate of 0.5 has 2 bits for carrying useful data and 2 bits for carrying redundant data.
High coding rates are usually used with very good channel conditions.

In LTE, the combination of modulation and coding rate is called Modulation and
Coding Scheme (MCS). As per R8, LTE supports 29 MCS in downlink (indexed from
0 to 28) and 23 MCS in uplink (indexed form 0 to 22). The MCS index (IMCS), along
with other LTE metrics, will determine for each user the amount of data to send or to
receive over the following TTI. This amount of data is defined as the user Transport
Block (TB).

Transport Block Size (TBS)

In LTE downlink/uplink, each user is assigned a TB (in bits) for receiving/sending
the data over the system physical layer. Each TB is transmitted over 1 TTI as a part of
a downlink/uplink system sub-frame. The size of a user TB, referred to as Transport
Block Size (TBS), is decided upon the IMCS assigned to the user and the number of
PRBs (NPRB) allocated to him by the network scheduler. In LTE, the TBS is indexed
from 0 to 26. Each TBS index (ITBS) is mapped to 1 or 2 IMCSs as defined in the LTE
Technical Specification 136.213 [10] (Section 7.1.7.1 for downlink and Section 8.6.1 for
uplink). From the NPRB and the ITBS , the TBS is determined through the look up
Table of [10] defined in Section 7.1.7.2 for downlink and uplink.

2.2.4 Link adaptation and scheduling

CQI reporting

The Channel Quality Indicator (CQI) is an indicator sent from the UE to the net-
work eNodeB to inform about how the communication channel is good or bad for
downlink/uplink transmission. CQI is a 4 bits integer (ranging from 0 to 15) based on
the channel Signal-to-Interference-plus-Noise Ratio (SINR) value observed at the UE.
It is used by the eNodeB to ensure two important functionalities: the link adaptation
and the scheduling.

CQI reporting can be either periodic or aperiodic. Periodic CQIs are reported by
the UE in periodic time intervals over the Physical Uplink Control CHannel (PUCCH)
or the Physical Uplink Shared CHannel (PUSCH), whereas aperiodic CQIs are re-
ported on the PUSCH and are triggered when the eNodeB wishes channel quality
information e.g., in case of handover or loss of synchronization.

Report granularity of CQI can be one of three levels: wideband level, UE selected
subband level, and higher layer configured subband level [11, 10]. The wideband
report provides one CQI value for the entire system bandwidth. The UE selected
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subband CQI report divides the entire bandwidth into multiple subbands, selects the
best set of subbands for the UE, then reports one CQI value for the wideband and
one averaged CQI value for the set of subbands. Note that, a subband is a set of k
contiguous PRBs. The higher layer configured subband report provides the highest
frequency granularity. It divides the entire bandwidth into multiple subbands, then
reports one CQI for the wideband and multiple differential CQI values, one for each
subband.

Link adaptation

Link adaptation is a method used to make efficient the use of the channel capacity.
It is based on the Adaptive Modulation and Coding (AMC) technique [11], which
adapts the modulation scheme and the code rate in the following way: if the CQI is
good, higher-order modulation schemes with higher spectral efficiency are used like
64 QAM. In case of bad CQI, lower-order modulation scheme like QPSK are used,
which are more robust to transmission errors but have lower spectral efficiency. The
coding rate is also adjusted in function of the channel quality; high code rates come
at high CQI values and low code rates come at bad CQI values. Overall, in LTE, the
AMC technique has to ensure to the user a BLock Error Rate (BLER) value smaller
than 10%. In Figure 2.3, we put a fraction of the CQI look up Table defined in the LTE
Technical Specification [10].

Figure 2.3: 4-bits CQI table [10].

Scheduling

Packet scheduling in LTE is performed in both: Time Domain (TD) and Frequency
Domain (FD). The purpose of TD packet scheduling is to select among all the users
the ones to be scheduled at each TTI. This selection is based on calculated priority
metrics based for example on previous throughput calculation or on current channel
condition. Note that TD scheduling uses wideband CQIs as it is not concerned with
PRBs allocation. The purpose of FD scheduling, however, is to allocate the PRBs to
the candidate users selected by TD scheduler, but it doesn’t guarantee that all the
users will be allocated frequency resources. In FD scheduling, there exist some specific
priority metric algorithms for PRBs allocation, such as Round-Robin, Alpha-Fair and
Best-CQI algorithms. The main purpose of scheduling algorithms is to make a tradeoff
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between the hole system spectral efficiency (i.e., the system throughput) and fairness
among users. Here are some brief specifications of some scheduling algorithms:

➠ Round-Robin (RR): Round-Robin is a channel independent scheduling algorithm.
It allocates the PRBs cyclically to the users (one after the other) without seeing
their CQI feedbacks. Hence, it provides the highest fairness, but it may provide
poor performance in terms of spectral efficiency [12].

➠ Proportional-Fair (PF): Proportional-Fair scheduler tries to maximize the total
throughput while providing each user with at least a minimal level of service.
This is done by giving each user a scheduling priority that is inversely propor-
tional to its anticipated resource consumption [12].

➠ Best-CQI: Best CQI is a channel dependent scheduling algorithm. Based on the
users’ CQI reports, each PRB is allocated to the user having on it the highest
CQI. Which ensures the highest spectral efficiency [12].

➠ α-Fair: α-Fair scheduler defines a unifying mathematical formulation to fair
throughput assignment [13]. The degree of fairness is expressed by the mean
of a parameter α defined in [0,∞[. α-Fair scheduler controls the tradeoff be-
tween efficiency and fairness. In particular, the case α = 0 corresponds to the
throughput maximization, the case α = 1 corresponds to the proportional fair
assignment and the case α −→ ∞ corresponds to the max-min fairness.

2.3 Overview on video streaming services

2.3.1 Digital video characteristics

Container and format

A digital video is a file that contains video frames, audio and meta-data, all com-
pressed and encapsulated in a video container. Video containers usually have their
names in extension, which designs the video format they contain, e.g., the video for-
mat of the Audio Video Interleave (AVI) container, published by Microsoft, is .avi.
Video containers are understandable by operating systems, and are mainly used for
video transmission and storage, as the uncompressed native video files are huge-
sized. In addition to the compressed video file, a video container may include some
meta-data about the video such as its title, its resume, its duration, etc, and includes
with that the list of video codecs (coder/decoder) that can be used for uncompression
(decoding), e.g., an .mp4 video format can be decoded with an H.264 codec. Below in
Table 2.1, we list some of the most popular video containers, their extensions and their
publishers [14]. Then in Figure 2.4, we put a schematic of a typical video life stages.

Youtube actually uses 3 types of containers: FLV, MP4 and WebML. In order to pro-
vide compatibility with all browsers, devices, bandwidths and quality requirements, it
converts all its uploaded videos into various formats using different codecs and stores
them into video servers within its supported containers.
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Container Extension Publisher

3GP .3gp, .3g2 3GPP
AVI .avi Microsoft
ASF .asf, . wma, .wmv Microsoft
FLV .flv Adobe
MP4 .mp4, .mp4a, .mp4b,

.mp4r, .mp4v, mp4p
Moving Picture Experts
Group

MPEG .mpg ,.mpeg Moving Picture Experts
Group

Quicktime .mov, .qt Apple
WebM .webm WebM project (Open

source)

Table 2.1: Some of the most popular video containers.

Figure 2.4: Life stages of a typical video file.

Codec

A video codec (coder/decoder) is a software used for coding and decoding audio-
visual data. Its typical job is to compress the video file so that it can be stored or trans-
mitted with a smaller size, then to decompress it when playing it back. Each codec
has its own peculiarities, its own strengths and its own weaknesses, which makes the
decision on the right codec to use a little bit complex. The most popular video codecs
used in the web are DivX, FFmpeg MPEG-4, MPEG-4 (or H.264), Theora VP9, x.264
and Xvid.

Video compression is governed by two important factors: (i) Spatial redundancy
and (ii) temporal redundancy. Spatial redundancy is the redundancy of information
within a single video frame and is called intra-frame redundancy, e.g., repeated or
similar pixel values in a large area of blue sky. Temporal redundancy, however, is the
redundancy of information between a set of video frames, and is called inter-frame
redundancy, e.g., in a video sequence where actors are only speaking, the scene back-
ground remains the same, which means redundant pixel values when moving from
one frame to another.

The goal of using redundancy in video compression is to avoid encoding the sim-
ilar or the near-similar pixel values that have already been encoded. In MPEG [15],
inter-frame redundancy coding is used to create difference images, which are then
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compressed spatially as shown in Figure 2.5.

Figure 2.5: Difference images in MPEG coding [15].

Resolution, scan and aspect ratio

Video resolution is technically defined as the number of bits per unit of area per
video frame, which also represents the density of pixels per video frame. In digital
videos, the resolution is expressed only by the number of horizontal pixel lines, which
is the video height in pixels, e.g., 1080p and 1080i are two video resolutions that define
video heights of 1080 pixels. The number of vertical pixel lines, however, is deduced
from the video resolution aspect ratio, which is the ratio between the width and the
height of the video, e.g., 16:9.

Throughout history, video aspect ratio has evolved from 4:3 with digital TV and
earlier computer displays, to 16:10 with widescreen computer displays then later to
16:9, which is the high-definition standard aspect ratio.

The letters "p" and "i" used at the end of the resolution names above are for indi-
cating the type of video scan (display): "p" stands for progressive scan and "i" stands
for interlaced scan. An interlaced scan paints all the odd lines first, then all the even
lines of each video frame as in Figure 2.7. A progressive scan, however, paints all the
lines of each video frame in sequence as in Figure 2.6.

Youtube supports many video resolutions including the Low Definition (LD) (240p
and 360p) Standard Definition (SD) (480p), the High Definition (HD) (720p), the Full
High Definition (FHD) (1080p) and the Ultra High Definition (UHD) (4K and 8K). It
adapts the video resolution to the user bandwidth. Figure 2.8 contains a snapshot of a
Youtube player with all the supported Youtube resolutions.

Figure 2.6: Snapshot of a video progressive scan. Figure 2.7: Snapshot of a video interlaced scan.

14



Chapter 2. Background

Figure 2.8: Youtube supported video resolutions.

Frame rate

Video frame rate is the frequency at which consecutive video frames are displayed
and is expressed in frames per second or fps. At the beginning edge of cinema, frame
rate of films was set between 16fps and 24fps then was standardized to 24fps, which
is defined as the minimum acceptable frame rate for acceptable video motion. With
television broadcast, video frame rate increased to be matching the local frequency
used for Alternating-Current (AC), hence, appeared the 30fps in US and Japan (as
they use 60Hz AC) and the 25fps in Europe and Asia (as they use 50Hz AC). These
frame rates have then been widely used for online videos. With the appearance of
HD streaming and later, video frame rate moved to 60fps, producing with that crystal
clear imagery with smoother motion.

Bitrate

Video bitrate is the unit of measure for video encoding and is expressed in bits per
second. It represents the rate at which video bits are processed for display. In general,
the higher the resolution the higher the birate used for encoding, since, as mentioned
before, video encoding is perceived to make the video size match the channel/media
support.

Video bitrate actually exists in two types: Constant BitRate (CBR) and Variable
BitRate (VBR). With CBR, the entire video clip is encoded at a quasi-same bitrate re-
gardless of its variable complexity (e.g., variable amount of motion), which makes the
video perceived quality variable in time. With VBR, however, the video is encoded
at different bitrates depending on the complexity of its sequences, which provides a
constant perceived quality over time. VBR encoding actually produces better image
quality than CBR even though it requires more processing time. CBR is particularly
used in case of live event streaming or in case of satellite television broadcast where
different channels are multiplexed into one limited bandwidth.
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2.3.2 Video delivery methods

Web server vs. streaming server

For understanding video delivery methods, it is important to know the difference
between a Web Server and a Streaming Server [16].
A web server is a computer system designed to host web sites and to serve web sites’
content (web pages and files) to the clients upon requests using the HTTP. HTTP is
actually the basic application protocol used to distribute information on the World
Wide Web. It works over the Transmission Control Protocol (TCP) and typically uses
port 80.

A Streaming server however, is a computer system solely designed to store video
files for streaming delivery. It serves either compliant and directly connected-to play-
ers , or web browsers with compliant players and plugins. Streaming servers use for
video delivery several real time protocols such as the Real Time Messaging Protocol
(RTMP) and the Real Time Streaming Protocol (RTSP). They support User Datagram
Protocol (UDP) as well as TCP.

Download method

In video download, the video file is stored in a web server and is assigned an Unic
Resource Identifier (URI) to be referenced by the server web pages. When the client
requests the video through his browser, he must wait for the entire video to be down-
loaded before starting the playback. At the end of download, a kind of meta-data are
sent to the player to know how to display the video. As in typical file download, the
video file is entirely stored (cached) at the user’s device memory, which is an advan-
tage and a drawback at the same time; it ensures a good display experience since the
video is locally accessed by the player and can be played offline, but this may expose
the user to content security issues. Overall, video download may not be the best solu-
tion for the user and may lead to the loss of bandwidth in case the user interrupts the
download or doesn’t like the content of the video.

Progressive-download method

Progressive download is in some references called pseudo-streaming. It acts the
same way as video download with the difference of making the playback simultane-
ous to download upon starting the video. At the first request, the server sends to the
player a meta-data about the video to know the range of prefetching before starting
the playback. The whole remaining part of the video file is buffered as fast as the
user’s connection speed, which may cause some playback interruptions in case of low
bandwidth. Progressive download enables the user to jump to different points in the
video timeline even if the video data has not yet been downloaded. This is allowed by
leveraging HTTP 206’s Byte Range Requests and Partial OK Responses by the server
upstream.
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Streaming method

Video streaming is very close to progressive download in terms of the user’s ex-
perience, nevertheless, instead of using a web server, it uses a streaming server for
storing and streaming the video. With true streaming, the video file is splitted into
chunks and is buffered to the user as soon as these chunks are requested. Unlike in
progressive download, video chunks are transferred and instantly consumed by the
player without being cached to the user’s local memory, which looks safer. Just like
progressive download, true streaming allows the user to seek to not yet downloaded
parts of the video. As it is based on stateful connected protocols, the server can de-
tect any environment changes and makes decisions on the video transfer data rate to
improve the user’s experience. At the beginning of streaming, initial bursts of video
content are sent in a trick mode to the user to make the playback start immediately.

Adaptive streaming method

In adaptive streaming, the video can be streamed under multiple encoding bitrates
depending on the user’s link capacity and some quality adaptation metrics used by
the media player. When the video is put on the streaming server, it is divided into
multiple segments, each one encoded at different bitrates and indexed and referenced
in a manifest file, this file contains meta-data about the video and is transferred to
the player at the beginning of the streaming session. In adaptive streaming, the video
is streamed over HTTP through an ordinary web server acting as an orchestrator to
manage the player requests and the video segments transfer. Prior to each segment
download, the player decides upon the most adequate segment-bitrate and sends it
to the streaming server via HTTP requests. As soon as video data arrive, they are
instantly consumed by the player but they are not cached to the user’s device mem-
ory. Adaptive streaming, is assumed today to be the most efficient streaming technol-
ogy and starts becoming widespread on video-sharing websites such as Youtube and
Netflix. The norm specifications were standardized by the Moving Picture Experts
Group (MPEG) under the name of Dynamic Adaptive Streaming Over HTTP (DASH
or MPEGMPEG-DASH). Many proprietary solutions supporting adaptive streaming
exist today such as Adobe’s HTTP Dynamic Streaming, Apple’s HTTP Live Streaming
and Microsoft’s Smooth Streaming.

2.3.3 DASH: Dynamic Adaptive Streaming over HTTP

History

Since its inception by Move Networks [17] in 2007, HTTP adaptive streaming tech-
nology has been widely used by vendors and service providers. Many companies
such as Microsoft, Apple and Adobe have quickly introduced their proprietary solu-
tions; Microsoft released its Smooth Streaming (MSS) [18] in 2008, Apple introduced
its HTTP Live Streaming (HLS) [19] for use on iOS devices in 2009 then Adobe released
its HTTP Dynamic Streaming (HDS) [20] in 2010 with Flash player.
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The idea of standardizing this technology was issued by MPEG with a Call for Pro-
posal for an HTTP streaming standard in April 2009. It is then in that year that MPEG
started collaborating with experts and other standard groups such as the 3rd Gener-
ation Partnership Project (3GPP) to develop the specification of the norm. More than
50 companies were involved in the standardization work such as Microsoft, Netflix,
and Adobe, and the effort was coordinated with other industry organizations such as
the World Wide Web Consortium (W3C). Two years later (2011), that MPEG ratified
its draft standard for DASH [21] by unanimous positive votes from 24 national bodies.
In April 2012, DASH was published as ISO/IEC 23009-1:2012 [22].

In the same spirit of cooperation, the DASH Industry Form (DASH-IF) [23] was
formed by the leading streaming companies to promote the adoption of MPEG-DASH
and help transitioning it from a specification into a real business. DASH-IF was for-
mally incorporated in September 2012 and accounts today 67 members spread through-
out the world (Microsoft, Netflix, Google, Ericsson, Samsung, Adobe, etc.). "Dash.js"
was therefore announced as the official player of DASH-IF Reference and Production.

Today, DASH becomes the standard choice for live events’ streaming and on de-
mand services like those provided by Amazon, LoveFilm and Netflix.

Typical system

In a typical DASH system, the video file is encoded at different bitrates called
representations. Each representation is split into video segments of equal durations,
e.g. 2 seconds. The video is then stored into a web server and streamed to the client via
subsequent HTTP requests. DASH specifications include in the standard the definition
of a Media Presentation Description (MPD) file to provide the player with meta-data
about the video: how it is encoded, the temporal and structural relationships between
the segments, the types of included streams (audio, video) and further.

The formats of MPD files and segments are defined in the standard via profiles.
Each profile has its own specifications and inquires about the use of features to process
the Media Presentation (MPD file and segments), for instance in the onDemand profile
the video is streamed via byte-range requests and the representations are of single
video files, in the live profile, however, each representation is split into segments and
the video is streamed via segments’ requests.

MPD files are XML documents written in a hierarchical data models as shown in
the example of Figure 2.9. They are organized in periods. Each period describes a
part of the content with a start time and duration and is organized in one or multiple
adaptation sets. Commonly, each adaptation set stands for a type of content, e.g., one
adaptation set for video streams, and many adaptation sets for audio streams (one
for each language). Adaptation sets can also comprise subtitles or arbitrary meta-
data. Video and audio adaptation sets are then organized in representations, each
representation contains media segments with the same characteristics, either with the
same encoding rate or the same resolution or the same codec etc. Further information
about the segments’ locations can be provided in the MPD file using a unique baseURL
per representation, or using the entire list of segments or using a segment template. In
some MPD files, representations may be organized in sub-representations to provide
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further meta-data about the streams, and the media segments can be split into smaller
sub-segments.

Figure 2.9: Example of an MPD file hierarchical data model.

DASH doesn’t include specifications on how the bitrate adaptation should be per-
formed, rather, it delegates to the client the task of defining its own adaptation strat-
egy. As in general, the adaptation logic tends to provide the highest possible video
quality. In the literature, many algorithms of bitrate adaptation have been developed
for DASH streaming but research is still ongoing there. In the next section we review
some of the referenced Adaptive BitRate (ABR) algorithms.

Adaptive Bitrate (ABR) algorithms

The difference between existing ABR algorithms mainly lies in the input informa-
tion they use for bitrate selection, which may leverage on the network characteristics,
the application-layer parameters or both of them. Each ABR algorithm behaves in a
way to improve the end user experience, either in a reactive manner or in a proactive
manner also called predictive.

With reactive ABR algorithms, the action is taken as soon as the event is detected.
For instance, at the drop of the available bandwidth, the video bitrate is reduced to
avoid buffer underflows in the future. These algorithms may mitigate some encoun-
tered streaming issues but they never give an insurance on how the system will behave
after the problem. In counterpart, with proactive algorithms, the problem is identified
in advance by predictive mechanisms through past observations and handled just be-
fore it comes out. For instance, if the bandwidth drop time is known in advance by
the player, the video bitrate can be reduced long before it happens, which guarantees
a freeze-less playback experience.

Apart from this classification which may look a bit general, ABR algorithms can
be classified in three main classes depending on the input information they use for
bitrate selection. These information give insight on how the network conditions are
between the client and the server, they may be related to the bandwidth-rate, or to
the playback buffer level or to the distribution of video segments download times.
Although some algorithms may exploit a combination of these factors, usually one
of them is dominant. Therefore, and according to the latest researches [24, 25], ABR
algorithms can be classified Throughput Based ABR (TB-ABR), Buffer Based ABR (BB-
ABR) or Time Based ABR (TmB-ABR).
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➠ Throughput-based algorithms: TB-ABR algorithms are typically based on through-
put estimation. Their commonly adopted rule in bitrate adaptation is to never
chose a bitrate larger than the estimated throughput unless it is the lowest bi-
trate. According to [24, 25], a very common TB-ABR scheme [26, 27] follows a
four-step adaptation model; First (i), the network bandwidth is estimated. Sec-
ond (ii), the estimated throughput is smoothed using noise filters to avoid esti-
mation errors due to bandwidth variation. Third, (iii) the bitrate is selected in
function of the previously smoothed throughput. Finally (iv), the next segment
request is scheduled upon estimating the next inter-request time. Almost all of
today commercial adaptive-streaming players implement the estimation and the
request scheduling parts in a similar way, though, they may differ in the way of
smoothing the throughput and selecting the bitrate [28, 29, 26].

According to [28], throughput estimate is either instant or smoothed; The instant
throughput of a segment i+1 is the throughput measured during the download
of segment i, whereas the smoothed throughput is the weighted sum of the n

previous throughputs measured during the download of the n latest segments,
n > 1 [30]. The main drawback of using the instant throughput is that it makes
the bitrate selection react quickly to sudden throughput variations, which may
impair the user experience.

As for the bitrate selection, it was mentioned in [29] that it may be aggressive
or conservative; With the aggressive method, the bitrate can jump from one level
to another without caring about the jump size, whereas with the conservative
method, the bitrate is increased/decreased progressively to not bother the user’s
perception.

In conventional TB-ABR algorithms, the inter-request time is determined using
a bi-modal scheduler which stipulates that the next segment request should be
scheduled with a constant timer delay if the buffer is full or immediately if not.
A very recent algorithm, PANDA [27], was conceived with a more sophisticated
scheduler that drives the buffer occupancy towards the maximum buffer level,
while matching, at the same time, the inter-request time to the necessary dura-
tion for current segment download.

In Chapter 4, we chose a TB-ABR algorithm similar to that defined in "Microsoft’s
Smooth Streaming" to serve as a baseline algorithm for comparison with NEW-
CAST, our proposed bitrate adaptation method.

➠ Buffer-based algorithms: BB-ABR methods potentially adapt the bitrate based
on the current buffer occupancy and the rate of buffer changes. Some of them
use rate map functions that maps the bitrate to the buffer occupancy [31, 32].
Rate maps often define non-decreasing functions. Some others divide the buffer
into ranges by introducing thresholds, then depending on the buffer occupancy
they select the bitrate in order to keep the buffer evolve in bounded region [33,
34, 35]. This group usually use control loop feedback mechanisms, such as the
Proportional-Integral-Derivative (PID) controller, to guide the bitrate adaptation
[33, 34].

In [32], a baseline BB-ABR algorithm was designed with a rate map function stip-
ulating that : (i) If the buffer level is lower than a predefined minimum threshold,
then the lowest bitrate is selected. (ii) If it is higher than a predefined maximum
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threshold, then the highest bitrate is picked, and (iii) if it is in the bounded re-
gion, then the bitrate is selected according to a linear function. Two improved
versions of this algorithm were later proposed by authors. In the first version,
the buffer level minimum threshold is dynamically set and a segment size map
is used rather than a rate map. In the second version, the same updates were
maintained with in addition a throughput-based bitrate selection in the startup
phase.

In [34], authors proposed a control loop feedback mechanism called Smooth
Video Adaptation Algorithm (SVAA) that uses buffered video time in order to
guide the bitrate adaptation. The basis of the SVAA is to pick the bitrate that
matches the estimated TCP throughput multiplied by a buffer-based adjustment
factor. This adjustment factor is itself a product of three sub-factors: the buffer
size adjustment, the buffer trend adjustment, and the video segment size ad-
justment. The buffer size and the buffer trend adjustments are used to rectify the
difference between the observed and the target buffer occupancy. The video seg-
ment size adjustment, however, is used to enable fast rate increase and compen-
sate for the TCP’s slow start phase in case of non-persistent HTTP connections.

SVAA strikes the balance between responsiveness and smoothness in adaptive
streaming over HTTP. As shown by authors, due to the inherent TCP through-
put variations, the buffer size smoothness and the video bitrate smoothness
become conflictual. Globally, SVAA smoothly increases the birate when the
available bandwidth increases and promptly reduces it in response to sudden
TCP-congestion. The smoothness of the bitrate is realized by seeing the current
buffer occupancy and the past m consecutive segments’ bitrates. Although it
uses throughput estimate, [24] classifies it as a BB-ABR algorithm as it tends to
keep the buffer occupancy in a bounded region around a target level.

Authors of [36] conducted a comparison between some existent buffer-based
algorithms that leverage on buffer ranging [37, 35, 38, 39]. According to their
studies, the most stable approach is the one addressed in [39] since the criterion
to maintain the bitrate depends only a range of buffer levels defined by two
thresholds B2 and B3. In Chapter 4, we use this algorithm as a baseline BB-ABR
for comparison with NEWCAST, our proposed bitrate adaptation method.

➠ Time-based algorithms: The TmB-ABR algorithms aim at synchronizing the
video Segment Download Time (SDT) to the segment playout time Γ by select-
ing the most suitable video bitrate. SDT is determined by the time interval that
separates the time of sending the request and the time of completely receiving
the segment, which mainly depends on the segment bitrate (i.e., the segment
size) and the bandwidth variation.

In [40], authors proposed a TmB-ABR approach based on the calculation of the
ratio between Γ and SDT for each segment. They defined for the bitrate adap-
tation two thresholds Tdown and Tup. If the ratio is higher that Tup, then the
next higher bitrate is selected, and if the ratio is lower than Tdown, the highest
lower bitrate is selected. The purpose being to make the ratio vary in between
the thresholds. This approach achieves conservative switch-up and aggressive
switch-down, but may lead to unnecessarily bitrate oscillations when the down-
load rate varies significantly.
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Authors in [41] proposed therefore an approach called ABMA based on the es-
timated SDT distribution and an introduced analytical model of the playback
buffer to sustain the probability of video rebuffering under a predefined negligi-
ble threshold while at the same time optimizing the video bitrate adaptation. An
improved version of this algorithm, ABMA+, was proposed in [24]. It consists of
using, in addition, a pre-computed playback buffer map to select the maximum
video bitrate that guarantees a smooth content playback. It takes into account
VBR aspect as well.

2.3.4 QoE concept in video streaming services

2.3.4.1 QoE definition

Since the late 90’s, the QoE concept has emerged in the field of communication
services as a complement to the QoS concept to have more global views on the systems
performance and their impact on the users’ experience. Many definitions have been
proposed for the QoE notion. In 2013, the European Network on Quality of Experience
in Multimedia Systems and Services QUALINET, defined the QoE as [42]

"The degree of delight or annoyance of the user of an application or service.
It results from the fulfillment of his or her expectations with respect to the
utility and/or enjoyment of the application or service in the light of the
user’s personality and current state."

This definition got a wide acceptance from community, and was afterwards adopted
in 2016 by the International Telecommunication Union (ITU) [43].

QoE concept actually focuses on the entire user experience and is relevant to the
User eXperience (UX). However, the UX is only limited to the use of a system or a
service, whereas the QoE encompasses other features related to the content itself.

QoE is even different than the QoS but is most of the times related to. According
to the ITU-T E.800 [44], the QoS is defined as

"The totality of characteristics of a telecommunications service that bear on
its ability to satisfy stated and implied needs of the user of the service."

This definition of the QoS diverges from what the QoE is. QoS mostly deals with phys-
ical and measurable networks and delivery performance factors such as packet loss,
jitter, throughput and delay, and, may address, in some cases, application-level fac-
tors such as encodings–in video streaming services–and their effect on the underlying
network’s performance.

A good QoS does not necessarily imply a good QoE, since the QoE depends on
many complex features related to the user himself such as his mood, his expectations
and his culture. A good QoE however requires a minimum goodness of QoS, but may
not improve at higher QoS levels, since the service quality improvement may not be
naturally perceived by the user.
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2.3.4.2 QoE metrics

Quantifying the QoE is a very hard task as it encompasses many features that may
be subjectively determined by the user. However, objective QoE features may some-
times be sufficient to reflect some of the user’s experience. In video streaming services
many objective key QoE metrics were defined to rate the quality of the streaming and
to accordantly approximate the user’s satisfaction. In this thesis we only focus on five
objective QoE metrics: the startup delay, the video average quality, the video stalls
ratio, the rebuffering delay ratio and the rate of bitrate-switching in case of adaptive
video streaming.

➠ The startup delay: It is the initial waiting time before starting playing the video.
The startup delay is measured in seconds and corresponds to the downloading
time of a predefined number of video frames, also called startup threshold.

➠ The video average quality: In CBR streaming it defines the encoding birate of
the hole video. In VBR streaming or adaptive VBR streaming, it defines the
average per chunk (segment) video bitrate. It is measured in kilo bits per second.

➠ Video stalls ratio: A video stall is defined by the interruption of the video play-
back due to a lack of video frames in the playback buffer. A video stall is also
called starvation or rebuffering event. Video stalls ratio is defined as the number
of video stalls per video length in second.

➠ Rebuffering delay ratio: Rebuffering delay is the duration is second of a video
stall. The ratio is defined by the quotient of all rubeffering delays over the video
length in second.

➠ Rate of bitrate-switching: Bitrate-switching, also referred to as quality-switching,
is the number of times the video quality changes during a streaming session.
The rate is defined as the quotient of the total number of switches over the total
number of video segments.

In the literature, subjective QoE metrics are often presented through the Mean
Opinion Score (MOS) [45] or the user engagement [46].

MOS is commonly used for rating the quality of media services. It was originally
set to evaluate the quality of audio delivery in telephony industry but was then gen-
eralized to evaluate video and audio-visual content. MOS is an arithmetic average of
the users’ subjective evaluation on a given system quality. Users’ evaluation consists
of assigning integer scores to their personal opinions typically ranging from 1 to 5,
where 1 is for the lowest perceived quality and 5 is for the highest perceived quality.

The Absolute Category Rating (ACR) is one of the most commonly used method in
media quality evaluation, it maps the quality rating from Bad to Excellent to numbers
from 1 and 5, as seen in table 2.2. Other standardized MOS ranges exist and may be
differently used for evaluation in function of the underlying purposes of tests. Most
of them are defined in the ITU-T recommendations P.800 [45] and P.910 [47].

In Chapter 7 we use the MOS in the design of a QoE optimization framework that
expresses the QoE in function of the aforementioned objective QoE metrics.
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Rating Label

5 Excellent
4 Good
3 Fair
2 Poor
1 Bad

Table 2.2: Absolute Category Rating (ACR).

2.3.4.3 QoE estimation

In the literature, different studies are performed to model the user’s QoE as an
explicit function of measurable and quantitative metrics. Usually, the models are pro-
posed then evaluated through the computation of MOS. Some works claim that the
QoE can be directly mapped to the QoS metrics such as the throughput, the jitter and
the packet loss [48, 49, 50]. In [48], a machine learning technique was proposed to build
models in an online fashion from customer feedback. These models map the network
parameters (NQoS) and the application-level parameters (AQoS) with the users QoE.
In the same direction, authors in [49], investigated the correlation between QoS and
QoE through subjective measurements of the users experience under different net-
work conditions. They showed how Machine Learning methods such as Naive Bayes,
Support Vector Machines, k-Nearest Neighbors, Decision Tree, Random Forest and
Neural Networks can help in building accurate and objective QoE models that corre-
lates low-level parameters (delay, packet-loss and jitter) to high-level quality features.
Since Machine Learning techniques require a large number of datasets and are ex-
tremely time and process consuming, authors in [50] proposed in their QoE modeling
to use the Factor Analysis technique which is a statistical method that allows parsing
a large set of variables (generally uncorrelated) into a small set of uncorrelated fac-
tors required for extracting the model. To explore the QoE function, the authors were
based on various parameters relevant the QoS, the bitstream and to video quality.

Other recent works found that the QoE could be expressed through some appli-
cation metrics such as the frequency of video freezing (stalls), the startup delay, the
average video quality and the dynamic of the quality changing during the streaming
session [51, 52]. In [51], authors were seeking for expressing the user engagement as
function of the video quality metrics, where the user engagement can be the video
playtime or the number of visits to a website. They argued that the hidden inter-
dependencies between the metrics and the confounding effects of the user personal
features may make the task complex but can be handled by choosing a suitable Ma-
chine Learning approach and by carefully incorporating the features into the learning
process. In [52], the QoE was modeled as a linear function of four objective met-
rics: The average quality, the startup delay, the rebuffering and the average quality
variation. Further studies in [53] revealed that the HTTP Adaptive Streaming (HAS)
profile–defined as the sequence of segments quality levels–is quite sufficient and more
accurate than the radio scenario parameters to predict the QoE. Whereas in [54], the
QoE was modeled by exploiting a psychological phenomenon known as "Primacy Ef-
fect and Recency Effect" which says that people are more affected in their short-term
memory by the initial and the most recent information. The impact of video bitrate
distribution was quantified based on that. A more sophisticated QoE evaluation was
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then realized by mapping the real-time bitrate and the video content type into the QoE
model.

In Chapter 4, we design an approach for bitrate distribution that takes into ac-
count the recency effect and some of the QoE objective metrics. A similar approach is
proposed in chapter 7 with, in addition, the incorporation of neural networks.

2.4 Overview on Artificial Neural Networks for Machine Learn-

ing

2.4.1 Overview on Machine Learning

Machine Learning is nowadays one of the most used methods in artificial intelli-
gence that gives computers the ability to learn tasks based on raw data without being
explicitly programmed. It is applied in a wide range of applications such as data min-
ing, natural language processing and image recognition.

Machine Learning tasks can be typically categorized in three major classes: su-
pervised [55] and unsupervised [56], depending on wether the learning is performed
through incoming signals or feedbacks. Halfway between these classes, a mixture
class known as semi-supervised [57] class may be distinguished.

In supervised learning, the system is given a predefined set of labeled training
samples comprised of input data and their outputs. The goal of the program is to learn
the general rule that maps inputs to outputs to be then able to accurately estimate the
output when given new input data. The mapping rule is generally called Hypothesis
and is approximated by training the data samples using a learning algorithm. Among
supervised Machine Learning methods we may cite the Support Vector Machines [58],
used for classification, regression and outliers detection, the Gaussian Processes [59],
used for regression and probabilistic classification and the Naive Bayes methods [60],
used for classification.

In unsupervised machine learning, only unlabeled input data are provided to the
system and it is up to the program to find patterns and relationships between them.
Among unsupervised learning methods we may cite the Dimensionality Reduction
[61] and the k-Means Clustering [62].

Artificial Neural Networks (ANNs) [63] are also part of Machine Learning meth-
ods and may be used with both supervised and unsupervised learning. They are used
for clustering, classification, pattern recognition, and further applications.

2.4.2 Concept of Artificial Neural Networks

Analogy with Biological Networks

ANNs are computing systems inspired from Biological Neural Networks (BNNs)
that constitute the brain. They are similar to BNNs in two major points: First, both of
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them acquire knowledge through learning, and, second their acquired knowledge is
stored within synaptic weights that constitute inter-neuron connection strengths.

In Figure 2.10, we put a schematic representation of the human biological neuron
structure (on the left) and its mathematical model (on the right).

Figure 2.10: Biological neuron structure and mathematical model [64].

As depicted in the figure, a biological neuron is composed of dendrites, a soma
(cell body) and an axon. The dendrites are responsible for carrying signals received
from other neurons. At the cell body, the incoming signals are summed up to form
the neuron own signal, if the formed signal intensity reaches a threshold value, the
neuron fires the signal to the next connected neurons through the axon. The neurons
are interconnected with each other via synapses. The strengths of the synapses, called
synaptic weights, are responsible for weakening or strengthening the signals before
transmission. Therefore, in the mathematical presentation model each dendrite is as-
similated to a weighted input wixi where xi is the signal input received from other
neuron and wi is its corresponding weight.

Artificial neurons are also presented with the same mathematical model. However,
to scale up the neuron response, a bias may be added to the neuron weighted inputs,
and, to get the output at non-binary values, other Activation Functions may be used,
such as linear and sigmoidal functions. In Figure 2.11 we put a general representation
of an artificial neuron. Some of the commonly used Activation Functions are listed in
Figure 2.12.

Figure 2.11: Artificial neuron representation.
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Figure 2.12: Activation Functions in Artificial Neuron Networks.

Structures of ANNs

A typical ANN is comprised of one or more interconnected neurons, thus can be
viewed as a weighted directed graph in which the neurons represent the nodes and
the connections between the nodes represent the weighted edges. there exists many
types of neural networks, each type is characterised by its structure and its Activation
Function(s). Feed-Forward Networks [65], for instance, have the simplest structure as
they don’t implement cycles/loops in their graphs. They move the data forward from
input nodes to output nodes in only one direction. Recurrent Networks [66], however,
process memory and implement cycles in their graphs, which makes them able to
exhibit dynamic temporal behavior.

The most commonly used ANNs are structured in layers: input, hidden (if exist)
and output layers. Each layer comprises one or multiple nodes. As in Feed-Forward
Networks (Figure 2.13), the input layer is the first layer and comprises passive nodes
where each node receives single input data from outside world and duplicates it to
the following nodes without processing. The output layer is the last layer and com-
prises the last active nodes of the graph. In between these layers, one or more hidden
(intermediate) layers may exist. They comprise active nodes where each node receives
information from previous layer nodes and forwards it after processing to next layer
nodes.

To compute the depth of an ANN, only hidden layers are taken into account. A
network with more than 3 hidden layers is often called Deep Neural Network. In chap-
ter 7 we deploy a single-layer neural network (without hidden layers) with a single
output node that uses a linear Activation Function (the Identity function).

Learning in supervised ANN

Supervised ANNs learn by adjusting their weights and biases iteratively to yield
desired outputs; the input data are trained using a specific set of rules known as a
learning algorithm. Many learning algorithms exist for supervised training models in
ANNs. Among the simplest and the most popular ones we cite the Gradient Descent
[67] which trains the ANN by supervising the error between the network output and
the desired output. The weights in the Gradient Descent approach are updated in a
way to minimize the error by moving oppositely to its Gradient vector. The Gradient
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Figure 2.13: Example of a Feed-Forward ANN with one hidden layer.

Delta rule is the basic version the Gradient Descent and is used in case of single-layer
networks. For multi-layer networks, an extended version, called the Back Propagation
rule, can be used. It adjusts the weights of the nodes’ connections by propagating the
error backward from output layer to input layer.

There are two general approaches for supervised training in ANNs (also for un-
supervised training), usually called batch (offline) learning and online learning [68]. A
mixture of these two approaches is in some references called mini-batch learning [69].
In batch learning, the adjustment of the weights and biases is done only if all the train-
ing dataset is presented to the network (Figure 2.14.a), which may be very consuming
in processing time and memory when the training dataset is big sized. In online learn-
ing, the adjustment of the weights and biases is done at the presence of each training
sample to the network (Figure 2.14.c), which was proven to yield better models with
the Back-Propagation rule. In the mini-batch learning, the adjustment of the weights
and biases is performed as soon as m training samples are presented to the network
(Figure 2.14.b), m is defined as the mini-batch size.

In Chapter 7 we implement the Gradient Delta Rule with the mini-batch training
approach to learn the QoE function within an optimization QoE problem.

2.4.3 Learning with the Gradient Descent Delta rule

Consider a training dataset {(X(i), y(i))}1<i<m of m samples where each training
sample i is a couple of input vector X(i) = (x

(i)
1 , . . . , x

(i)
n ) and a desired scalar out-

put y(i), and let hW,b be the Hypothesis function of the single-layer neural network
described in Figure 2.15 such that

hW,b(X
(i)) = f(

n
�

k=1

wkx
(i)
k + b) = f(W TX(i) + b) (2.1)

where W = (w1, . . . , wn) is the network vector of weights and f is a derivable
Activation Function of the network.
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Figure 2.14: Batch, mini-batch and online learning.

Figure 2.15: Single-layer ANN.

hW,b(X
(i)) actually denotes the ith estimated output of the network and should be

driven to follow the desired output y(i).
For each training sample (X(i), y(i)), we define the ith sample squared-error cost func-
tion as:

J(W, b;X(i), y(i)) =
1

2
(hW,b(X

(i) − y(i))2

Overall the m training samples, the global cost function is defined as:

J(W, b) =
1

m

m
�

i=1

J(W, b;X(i), y(i))

In case of batch Gradient Descent, the weights and bias are iteratively updated in a
way to reduce J(W, b), i.e, they move oppositely to the direction of the cost function
Gradient vector ∇J(W, b):

wk = wk − α
∂

∂wk

J(W, b)

b = b− α
∂

∂b
J(W, b)

α here denotes the learning rate. A large α may lead the weights to oscillate infinitely
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without converging to the desired values, and a small α may lead the learning to
converge slowly. Therefore, it should be wisely set before starting the training.
As in general, the weights and the bias should be initialized to very small values.

2.5 Conclusion

In this Chapter, we have reviewed some backgrounds of this thesis namely the
resource allocation in LTE networks, the specifications of DASH standard, the QoE
concept in video streaming services and the basis of neural networks. By looking
through the literature, we have distinguished three classes of adaptive bitrate algo-
rithms where the most prominent ones are the throughput based and the buffer based
algorithms. We have further related some existing works on QoE modelling and have
shown that objective QoE metrics are as important as subjective metrics in QoE estima-
tion and quantification. However, to the best of out knowledge, no explicit function
has been proposed as an exact formula to quantify the QoE, and researches are still
ongoing there. The QoE models used in this thesis are partially inspired from state of
the art QoE modelling and analysis.

In the next Chapter, we present our first contribution which studies the QoE through
some objective QoE metrics in real (i.e., non adaptive) video streaming under the as-
sumption of a specific network topology and a specific mobility of users.
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3.1 Introduction

Most of the existing works on scheduling algorithms in mobile networks are only
valid for slow varying fading scenarios. Nevertheless, in mobile environments, such
an assumption generally fails especially with high speed users, as the Channel State
Information (CSI) varies over a faster time scale.

In this Chapter, we propose a fast and efficient resource allocation mechanism for
real (i.e., non adaptive) video streaming that considers the high mobility of users as an
opportunity rather than an obstacle [70, 71]. This mechanism, which we call CAMS,
profits from the users’ mobility context along with the packet prefetching process of
the streaming video player to improve the overall spectral efficiency and the QoE. In
particular, we deploy an Heterogeneous Network (HetNet) topology with Macro Base
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Stationss (MBSs) and Small Base Stationss (SBSs) [72] distributed all along a highway,
and assume that the users move at a constant speed over that highway.

The key idea of CAMS is to exploit the diversity of the users channel states by
making them switch from active to inactive states and vice-versa during their stream-
ing sessions. Active users will be allocated resources to prefetch video packets as
much as their channel states allow, whereas inactive users will only play their already
prefetched video data. To do so, we set a threshold of SINR value and serve only users
with higher SINR.

A similar idea to CAMS has been adopted in HetNet for intelligent cell selection.
The concept consists of dynamically distributing the users between macro and small
cells depending on their signal strengths and the network load level in order to en-
hance their throughput and their experiences [73, 74]. While this concept globally
increases the network capacity, CAMS improves the spectral efficiency and the users’
QoE.

We organize the Chapter as follows: In Section 3.2, we describe the system model,
namely the network topology, the mobility of users and the video streaming model.
In Section 3.3, we present the approach of CAMS, its brought and how it can be imple-
mented in a Base Station. Then in Section 3.4, we review the simulations setting and
the numerical results. Section 3.5 concludes the Chapter.

3.2 The system model

3.2.1 The network topology

In this work, we adopt an HetNet topology with MBSs and SBSs covering a high-
way. We assume the MBSs to be very spaced and very distant from the highway and
the SBSs to be very close and distributed one after the other along the highway. We
set the SBSs to have the same configuration (same transmission power, same anten-
nas, same scheduler etc ..) and to be equally distant from each other to form similar
coverage areas as depicted in Figure 3.1.

3.2.2 The mobility of users

We adopt a high vehicular mobility model in which K users move along the high-
way in the same direction at a constant speed. We assume the users to be initially
distributed over 3 equidistant lines as depicted in Figure 3.2. During their streaming
sessions, all the users undergo multiple handover processes to switch from one cell to
another. We adopt the Event A3 handover based on the measurement of the Reference
Signal Received Power (RSRP)1. If the RSRP received from a neighboring cell exceeds
the RSRP measured on the serving cell by a predefined offset, then the handover event
is triggered [75].

1RSRP is a measure of the received signal strength of a cell at a UE and it is measured based on the
strength of predefined reference signals that cells broadcast.
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Figure 3.1: The highway network topology.

Figure 3.2: The Users’ mobility.

3.2.3 The video streaming traffic

We consider real (i.e., non adaptive) video streaming where video files are stored
in video streaming servers at unique resolutions (e.g., 720p [76]). We assume that each
video file is divided into chunks of equal durations. Each chunk is comprised of video
frames and each frame is divided into slices (or packets) of equal sizes.

When a client requests for a video file to a streaming server, the video slices are
streamed one by one from server to the client’s serving SBS, then from the SBS to the
client. The transmission rate of the video on the client’s radio link will depend on the
link conditions.

At the arrival of video slices, video frames are reconstructed by the player then
displayed after a threshold number x0 of frames (hereinafter called startup threshold)
is prefetched. During the playback, the client continues streaming the video till the
end of download. When the transmission rate declines and the playback buffer falls
empty of frames, a video stall (also called starvation) occurs and a prefetching stage is
introduced till having again x0 frames in buffer. The playback is resumed afterward.

In Figure 3.3, we illustrate the streaming process from server to end-user.
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Figure 3.3: The video streaming traffic.

3.3 CAMS: Context-Aware Mode Switching for real video stream-

ing

3.3.1 Concept of CAMS

The mode switching approach has been already widely used by a variety of ser-
vices and mobile applications, including elastic services such as e-mail and instant
messaging. Instant messaging is for instance only occasionally available when the re-
ceiver is in a covered zone, otherwise, the message holds offline till being effectively
sent the next time the receiver is covered.

The mode switching approach we propose in CAMS is designed to make users
alternate from active to inactive states and vice versa depending on their radio channel
conditions. We call active zone each area of the network where the radio conditions
are similar or better than a predefined state. In contrast, an inactive zone corresponds
to an area of worse radio conditions. We define the limit between active and inactive
zones as a threshold number of SINR value. A user is then assumed to be in active
state when his latest measured SINR value is above this threshold, and in inactive
state otherwise. In Figure 3.4, we illustrate the switching mode approach of CAMS
under the highway network topology and the perpetual mobility of users.

When the user is active, he is admitted in the list of users to schedule the next TTI,
otherwise he is removed from the scheduling list to not receive data the next TTI. As
the users are in permanent motion across the cells, they end up all passing through
active and inactive zones. This is due to the fact that the channel conditions of mobile
devices are time-varying and location-dependent.

3.3.2 Brought of CAMS

The merit of CAMS approach lies in the fact that high SINR users will be given
more chance to store as much video data as their channel conditions allow since worse
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Figure 3.4: Active and inactive zones as defined in CAMS.

SINR users will be omitted from the scheduler. Note that, when the channel conditions
are bad, the packet loss rate is high and the spectral efficiency is low, which makes
video prefetching more interesting in areas of good channel conditions.

We resume the brought of CAMS mechanism in three major points:

➠ It increases the overall spectral efficiency since low SINR users will release their
Resource Blocs (RBs) to be more efficiently used by higher SINR users. The spec-
tral efficiency will depend on the setting of the SINR threshold.

➠ It gives high SINR users more chance to be allocated resources than with conven-
tional schedulers. This will allow them to quickly finish streaming their videos,
giving the chance to other users in the queue to be scheduled afterward.

➠ CAMS will not condemn users with low SINR values, this is because all the users
are in perpetual motion. Given the network topology, all the users will be given
the chance to go across active zones. Moreover, by virtue of video buffering
mechanism, users can remain inactive for some time without degrading their
QoE.

To conclude, the approach of CAMS allows for better radio resource management,
provides improved overall mobile-broadband performance, and allows operators to
maintain a more seamless user experience.

3.3.3 Implementation of CAMS

CAMS can be deployed with few modifications in the existing network architec-
tures. A simple way to do this consists of adding a kind of cross layer behind the
conventional schedulers to capture the users latest SINR values and to restrict the list
of users to serve each TTI. By doing so, users with SINR values under the threshold
will be prevented from being allocated resources. However, the efficiency of CAMS
will depend on the threshold setting, the conventional scheduling metrics and the
strategy of the scheduler.
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3.4 Simulations and numerical results

3.4.1 Simulation tool

For the simulation part, we use the LTE Vienna simulator, implemented with Mat-
lab and published under an academic non-commercial use license by the TU Vienna
Institute of Telecommunications [77]. This simulator implements a set of 3GPP LTE
standard specifications. It uses simplified models and capture the essential charac-
teristics of the standard with high accuracy and low computational complexity. The
simulator is available under uplink and two downlink versions. For real video stream-
ing we use the downlink system level version. The main event of a simulation is the
transmission of a subframe from eNodeB to end-users, which corresponds to a TTI in
the LTE standard.

3.4.2 Simulations setting

We consider an HetNet with MBSs and SBSs covering a highway as shown in Fig-
ure 3.5 and detailed in Table 3.1. We set the number of users to 12 and distribute them
initially over 3 lines. We fix the inter-distance between users to 20 meters and the
speed of vehicles to 40 kmph then to 120 kmph.

We configure the video streaming as detailed in Section 3.2. Each video is 2 min-
utes of length and defines an HD quality with a frame rate equal to 60 fps (HD 720p60).
For analysis purposes, we do not consider transmission coding errors. Thus, we dis-
able the Hybrid Automatic Repeat reQuest (HARQ) algorithm defined at the user
Medium Access Control (MAC) layer. Further details on the video traffic configu-
ration are put in Table 3.2.

We apply CAMS with the conventional Alpha-Fair scheduler at the level of both
MBSs and SBSs.

Parameters Macro sites Small sites

Number of sites 7 16
Inter-sites-distance 1000 m 400 m
Tx-Power 40 watts 1 watt
Scheduler Alpha-Fair: α=0.6
Bandwidth 20 Mhz
Frequency 2.14 GHz
RB bandwidth 180 KHz
Path-loss TS36942 / urban model
Shadowing "Claussen" model

Table 3.1: Network configuration.
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Figure 3.5: HetNet map topology with Vienna simulator.

Parameters values

Video quality HD 720p60
Frames/video 10800
Slices/frame 8
Slices/TTI 900
Slice size 1302 bytes
HARQ disabeled

Table 3.2: Video traffic configuration.

3.4.3 Simulations results

We evaluate the performance of CAMS by reviewing the network performance and
some objective key QoE metrics. The setting of the SINR threshold is performed based
on empirical observations and not on analytical studies. For the sake of clarity and
consistency, we only show results of SINR thresholds with significant performance
gain.

Spectral efficiency

We define the spectral efficiency of a given user in a given TTI as the total number
of bits allocated by the network to that user in that TTI divided by the user’s allocated
bandwidth (RBs length in Hz). Thus, we compute the average spectral efficiency of
each user by dividing the sum of all his spectral efficiency values over the simulation
length in TTIs.

In Figure 3.6, we show the variation of the average spectral efficiency per user in
function of the SINR threshold for the two aforementioned speeds: 40 kmph and 120
kmph.
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As a first observation, we notice that the variation of the SINR threshold does not
impact the spectral efficiency in the same way for the two speeds in question. Re-
sults show that the spectral efficiency varies more significantly from one threshold to
another with the lowest speed. This can be explained by the fact that, when a user
moves slower, he spends longer time in active zones which makes him capture dif-
ferent spectral efficiency values. This highlights the impact of varying the threshold.

A maximum spectral efficiency is interestingly noticed for an SINR threshold equal
to 12 dB at 40 kmph with almost 1 bps/Hz more than the reference model (without
CAMS). Which corresponds to a gain of 23%. This can be justified by the fact that the
RBs used by low SINR users in the reference model have been released with CAMS to
be more efficiently used by higher SINR users.

When the threshold increases and goes beyond 12 dB, CAMS becomes very selec-
tive and the users spend much time in inactive states. Wich explains the degradation
of the average spectral efficiency.
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Figure 3.6: Spectral efficiency.

Fairness

Along with the spectral efficiency, we examine the fairness degree among all users.
A commonly used metric is the Jain’s fairness index [78] which is given by:

J(r1, r2, . . . , rK) =
(
�K

k=1 rk)
2

(K ·
�K

k=1 r
2
k)
, (3.1)

where K is the number of users and rk is the throughput of user k divided by the
number of the RBs assigned to him.

Figure reffig:fairness illustrates the Jain’s fairness index computed with the refer-
ence conventional scheduler (without CAMS) and with CAMS at low and high speeds
and different SINR thresholds. With the conventional scheduler, we obtain a fairness
index very close to 1. When we apply CAMS, the fairness index slightly decreases
proportionally to the threshold value. The impact of varying the threshold is rather
obvious with low speed than with high speed, but globally, the fairness index remains
relatively high and very close to 1. We mainly notice a Jain’s index equal to 0.952 and
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0.960 at low and high speeds, respectively, with a threshold of 12 dB, versus 0.994 and
0.995 with the conventional scheduler.
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Figure 3.7: Jain’s fairness index.

Startup delay

The startup delay is defined as the waiting time required by the player to initially
prefetch x0 frames before starting displaying the video.

In Figure 3.8, we show the variation of the startup delay with speed and SINR
threshold for two different values of x0 (10 and 30). In both figures, we remark that
the startup delay decreases with the speed. This is even more significant when the
threshold is high. In fact, if we observe through a same period of time, we find that
users moving at high speed will visit more active zones than users moving at low
speed, inducing with that shorter startup delays.

With CAMS, the startup delay is larger than with the conventional scheduler and
increases proportionally to the SINR threshold. As we previously explained, the im-
pact of varying the threshold becomes more significant with low speed than with high
speed.

When we compare the two plots of Figure 3.8, we observe that the startup delay
becomes larger when x0 is higher. This is mainly noticed when low SINR thresholds
are used with CAMS or when the conventional scheduler is used.

To not greatly degrade the QoE in terms of the startup delay, it is better to use
CAMS with high values of x0 and high speeds.

Probability of starvations

In Figures 3.9 and 3.10, we show the empirical Cumulative Distribution Function
(CDF) of the number of starvations experienced with different SINR thresholds and
different startup thresholds. Each of the four graphs below corresponds to a given x0
and a given speed.

As a first observation, we remark that the performances are approximately the
same for low and high speeds. Figure 3.9.a and Figure 3.9.b show that when users
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Figure 3.8: The startup delay.

move slower, they are more likely to experience high number of starvations. Another
noteworthy observation that emerges from the results is that, when CAMS is used, the
probability of having no starvation increases. In particular, we notice a gain of 87% at
40 kmph and a gain of 70% at 120 kmph with an SINR threshold of 17 dB compared to
the conventional scheduler. The same interpretations hold for x0 = 30 (Figure 3.10.a
and Figure 3.10.b).

From the results, we also notice that the probability of having low numbers of
starvations slightly increases when x0 increases. This becomes more visible when the
conventional scheduler is used.

Rebuffering delay

To proceed further with the QoE analysis, we plot the average duration of the nth

starvation for n = {1, 2, 3, 4}. Figure 3.11 and Figure 3.12 refer to x0 = 10 frames and
x0 = 30 frames respectively.

Figure 3.11 shows that when users move faster, the waiting time for rebuffering
becomes shorter. The same interpretation holds as for the startup delay variation. By
comparing Figure 3.11 to Figure 3.12, we notice that the waiting time becomes more
important when the value of x0 increases. This is even more obvious when low SINR
thresholds are used with CAMS or when the conventional scheduler is used.

To not greatly degrade the QoE in terms of rebuffering delay, we suggest to use
CAMS with high values of x0 and with high speeds.
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Figure 3.9: Empirical CDF of starvation with x0 = 10 frames.
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Figure 3.10: Empirical CDF of starvation with x0 = 30 frames.
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Figure 3.11: Rebuffering delay with x0 = 10 frames.
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Figure 3.12: Rebuffering delay with x0 = 30 frames.
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3.5 Conclusion

In this Chapter, we have designed CAMS, a context-aware resource allocation
mechanism for real (i.e., non adaptive) video streaming that exploits the prefetching
property of the application layer and the multi-user diversity at the physical layer to
improve the network performance and the users’ QoE. CAMS not only enables the
wireless network to achieve high spectral efficiency but also guarantees a high fair-
ness among users. We have evaluated the QoE based on three objective metrics: the
startup delay, the probability of starvations and the rebuffering delay.

Our simulation results have shown that, in order to globally improve the users’
QoE, CAMS should be rather used with high vehicular speeds provided a wise set-
ting of the SINR threshold. As it adapts the resource allocation to the users’ previous
contexts, we classify it within reactive approaches.

In the next Chapter, we explore an other delivery method for adaptive video stream-
ing that depends on the user’s future context. Unlike the approach of CAMS, we clas-
sify this delivery method within proactive approaches.
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4.1 Introduction

The knowledge of future throughput variations in mobile networks becomes more
and more possible today thanks to the rich contextual information provided by mo-
bile applications and services, and smartphone sensors. Recent studies on contextual
information have revealed a promising possibility of accurately predicting the future
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available resources over a medium horizon. This rises the opportunity to efficiently
design video streaming by exploiting the knowledge of future capacity variations .

Although there is a rich literature on methods used for optimizing the QoE in
video streaming services, very few papers have exploited the knowledge of future
throughput variations [79, 80, 81]. The main idea of this Chapter is inspired from
[80], where authors designed a QoE-driven optimization framework that exploits the
knowledge of future throughput variations to minimize the system utilization cost
while avoiding rebuffering events. The main shortcoming of their approach is that
it is only suited for real (i.e., non adaptive) video streaming as it ignores important
visual quality metrics related to adaptive streaming.

In this Chapter, we assume a perfect knowledge of the user’s future throughput
variations and provide a general optimization framework for adaptive video stream-
ing that accounts for the user’s QoE and the operator’s preferences. Under the con-
straint of no rebuffering events, we formally obtain an optimal solution where the
transmission schedule is of a threshold type and the bitrate distribution is of an as-
cending order. We propose an efficient heuristic, which we call NEWCAST, that per-
forms close to the optimal approach. We evaluate the performance of NEWCAST
through simulations using Matlab. Under the constraint of no rebuffering events, we
study the characteristics of NEWCAST in terms of robustness (using real traces) and
complexity, then we compare it to baseline adaptive bitrate algorithms.

We organize the Chapter as follows: In Section 4.2, we introduce the system model
and formulate the optimization problem. In Section 4.3, we discuss the properties of
the optimal solution. Then in Section 4.4, we propose optimal approaches and heuris-
tic algorithms for the problem resolution. Section 4.5 is dedicated for both simulations
and numerical results, and Section 4.6 concludes the Chapter.

4.2 Problem formulation

We consider a video file stored in a video streaming server and divided into N seg-
ments of equal length in second. Each segment is composed of S frames and encoded
at L different bitrates {b1, · · · , bL}, such that bi < bj for i < j. To stream the video, the
client requests the segments to the server one by one and indicates at each request the
video quality (bitrate) needed for the streaming. Denote by b(t) the video bitrate being
streamed at time t, and by γ(t) the quotient bL

b(t) where bL is the highest video bitrate.
We assume that, at the client side, the video frames are played at a rate of λ frames per
second (fps), and that, before starting the video, a prefetching stage is introduced till
having Q0 frames in the playback buffer. To avoid buffer overflows, we assume that
the playback buffer is very large.

In our problem modelling, we exploit the knowledge of the user’s future available
throughput (hereinafter called network capacity) to optimize the system usage cost
and the QoE. Let c(t) be the network future capacity at time t and r(t) be the transmis-
sion bit-rate of the user at that time, note that 0 ≤ r(t) ≤ c(t). Inspired from [80], we
define the system utilization cost as

σ =
1

T

� T

0

r(t)

c(t)
dt, (4.1)
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where r(t)
c(t) is the proportion of resources that will be allocated to the user at time t

(can be interpreted as the proportion of time the user will be occupying the network
if we discretize the time ), and T defines the video length in second.

We compute the number of frames that will be streamed with quality level j during
the streaming session as

� T

0

δ{b(t)=bj}r(t)λ

b(t)
dt =

� T

0

γj(t)r(t)λ

bL
dt, (4.2)

where

γj(t) =

�

γ(t) if b(t) = bj j ∈ [1 . . . L]
0 otherwise.

(4.3)

Assume that the user’s perception on the video quality levels can be expressed
by the mean of weights {w1, · · · , wL} such that wj corresponds to quality level j and
wi < wj for i < j. Hence, we define the weighted average quality of the video as

ρ =

�j=L
j=1 wj

� T

0 γj(t)r(t)λdt

bL × (N × S)
=

�j=L
j=1 wj

� T

0 γj(t)r(t)dt

SL

, (4.4)

where SL represents the video total size in bits when it is encoded with the highest
bitrate level bL, i.e.,

SL =
bL ×N × S

λ
.

Normally, a high video quality comes at a high cost, and a reduced system usage
returns a low quality. However, it may happen that the user’s preferences in terms
of the QoE and the operator’s preferences in terms of the system usage mismatch. To
cover such situations, we define a positive balancing parameter π to make the tradeoff
between system utilization cost and video quality. Therefore, we define our optimiza-
tion cost function as

F = σ − π × ρ.

Let u(t) be the cumulative number of arrival frames at time t and l(t) be the cumu-
lative number of frames being already played at that time. Therefore, we define the
buffer underflow constraint as u(t) ≥ l(t) ∀t ≤ T . Given the transmission bit-rate r(t)

and the corresponding video bitrate b(t), we express the network frame rate as λ r(t)
b(t) .

Denote by (r, γ) the video transmission strategy during the streaming session,
where r defines the transmission schedule and γ characterizes the distribution of
video bitrates. We start with the case where no rebuffering events will happen during
the streaming session.

Hence, we summarize our optimization problem, as follows
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min
(r,γ)

F(r, γ) =
1

T

� T

0

r(t)

c(t)
dt− π ×

�j=L
j=1 wj

� T

0 γj(t)r(t)dt

SL

(4.5)

s.t































� t

0
λ c(t)γ1

bL
≥ l(t) ∀t ≤ T

� t

0

�j=L
j=1

λ r(t)γj(t)
bL

≥ l(t) ∀t ≤ T

� T

0

�j=L
j=1

λ r(t)γj(t)
bL

= l(T ),

where the first constraint ensures the existence of at least one solution which is a
mono-quality streaming using the lowest video bitrate and the whole resources. At
the end of Section 4.5, we study the case where only one rebuffering event is tolerated
during the streaming session.

4.3 Properties of optimal solution under no rebuffering events

4.3.1 The threshold scheme for transmission schedule

Definition 1. Giving the network capacity c, we define the threshold transmission schedule

by

rth(t) =

�

c(t) if c(t) ≥ α

0 otherwise.
(4.6)

Proposition 1. Assume that there exists a feasible solution that satisfies the constraints in

(4.5), then there exists an optimal strategy (rth, γrth) of optimization problem (4.5), where rth

is a threshold transmission schedule.

This property has been actually inspired from [80]. However, authors in [80] as-
sumed a real (i.e., non adaptive) video streaming, whereas we assume adaptive video
streaming with multiple encoding rates. This makes our optimization problem differ-
ent and the threshold proof too (see 8.2).

In practice, the setting of the transmission threshold α doesn’t follow the data shift-
ing process of the proof, since if not, it becomes complicated to generate such a thresh-
old scheme. In Section 4.4, we design a rapid approach to build a threshold strategy
for the transmission schedule.

4.3.2 Ascending bitrate level strategy

In this Section we study the properties of the bitrate level strategy under a thresh-
old based transmission schedule. Precisely, we analyze the impact of the video quality
levels’ order on the setting of α.
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Definition 2. We say a bitrate level strategy is ascending if the quality levels of the video

segments increases during the session, i.e., for all 0 ≤ t ≤ t� ≤ T

b(t) ≤ b(t�) i.e., γ(t) ≥ γ(t�).

Proposition 2. Assume that there exists a threshold-based solution (rth, γ) that satisfies the

constraints in (4.5), then there exists a threshold-based ascending bitrate level solution (r�th, γ
�)

that optimizes problem (4.5).

We put the details of the proof in 8.2.

4.4 Algorithmic approaches

In this Section we solve optimization problem (4.5) through algorithmic approaches
based on the properties discussed in the previous Section. We give the optimal ap-
proach then we propose our heuristic under the assumption of no rebuffering events
during the session. Afterwards, we extend the study to the case where the network
capacity is insufficient to avoid video stalls with the lowest video quality.

4.4.1 Approaches under no rebuffering events

4.4.1.1 Approach for an optimal solution

Global algorithm: We summarize our global optimal approach in three main steps
as illustrated in Figure 4.1:

1. We look for all the possible values of α ∈ [αmin,αmax] that satisfy the constraints
in (4.5) and associate to each one the birate levels strategy that gives the highest
possible weighted average quality.

2. For each couple of threshold and bitrate strategy, we compute the resulting cost
function F .

3. We pick the optimal strategy which corresponds to the minimum value of F .

Computing the thresholds: To find the optimal thresholds α with the lowest com-
plexity, we propose to sort the future capacity in an ascending way, then try its ascen-
dent values as thresholds till reaching the one that causes video stalls. This approach
will determine all the possible thresholds [αmin,αmax]. Figure 4.6 illustrates the exam-
ple used in the simulation Section.
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Figure 4.1: Global algorithm for an optimal threshold-based solution with ascending bitrates.

Generating the bitrates: Our approach to generate an optimal ascending bitrate
level strategy consists of using a tree of choice of N levels as depicted in Figure 4.2,
where each level corresponds to a video segment. The nodes of a tree level i corre-
spond to all possible quality levels that can be assigned to segment i. The parent of a
node (if it exists) has either a worse or equal quality. The children (if they exist) have
either a better or equal quality. We construct the tree level by level to form the path
that gives the optimal sequence of bitrates. At each level, we compute all the possible
values that may take the weighted average quality, then we remove the nodes whose
paths will cause a constraint violation. The optimal sequence of bitrates corresponds
to the path that maximizes the weighted average quality at the bottom of the tree. The
complexity of this algorithm may reach up to O((L + 1)N ), which makes it unsuited
for real world streaming.

Figure 4.2: Tree of choice for optimal ascending bitrate.

50



Chapter 4. NEWCAST: Context-Aware Delivery of Adaptive Video Streaming Under Perfect Throughput
Prediction

4.4.1.2 Heuristic for a sub-optimal solution

Global algorithm: aNticipating qoE With threshold sCheme And aScending biTrate
levels (NEWCAST): Our heuristic follows the same principle as the optimal global
approach, but it uses two heuristics INcrease with VariablE foot STep (INVEST) and
Anticipating qoe With Ascending bitRate lEvels (AWARE) for respectively computing
the thresholds and generating the sequence of bitrates. Let γα and Fα be the ascending
bitrate level strategy and the cost function under rα-based transmission schedule. The
main steps of this heuristic are described in Algorithm 1.

Computing the thresholds: INcrease with VariablE foot STep (INVEST): This heuris-
tic also follows the same principle as the optimal approach. However, instead of
trying all the sorted capacity values as thresholds till violating the contraints, it de-
fines a variable foot step to increase the threshold initially set to cmin. The values
taken by this foot step will depend on the dynamic of the network capacity; Let
{α1, · · · ,αM} ⊂ [αmin,αmax] such that αi+1 > αi. To compute αi+1 knowing αi, we
set the number of bits that we want to abandon through increasing the threshold (de-
note it by Q), then we select the capacity value (threshold) that allows doing that as
described in Figure 4.3. αi+1 − αi will define the ith foot step. (See Algorithm 2 ).

Figure 4.3: INVEST: INcrease with VariablE foot STep.

Generating the bitrates: Anticipating qoe With Ascending bitRate lEvels (AWARE):
This heuristic has a polynomial complexity and is quite faster than the optimal ap-
proach. Our simulation results show that its outcoming solution approaches the op-
timal solution at almost 98% in terms of the video average quality. We summarize its
steps in the few following points:
At the beginning, we assign the lowest bitrate to all video segments. Then, starting
from the end of the video (latest segment) back to the beginning, we increase the bi-
trate of each segment by one level as long as the stall constraints are satisfied. We
repeat this step many times till reaching the highest available bitrate (See Figure 4.4).
By following this approach, the number of times the bitrate will be increased is at most
equal to L − 1 (see Algorithm 3). To reduce the startup delay, which is a prominent
key QoE factor (but not included in our optimization problem), we set the startup-
segments to the lowest bitrate and stream them using a greedy1 transmission rather
than a threshold-based transmission. As shown in Figure 4.5, an inherent advantage
of this algorithm is that it ensures a progressive increase of the bitrate instead of an

1A greedy transmission uses all the available network capacities.
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aggressive increase as given by the optimal approach, which is quite more appreciated
by the users.

Figure 4.4: Sketch of proof of the ascending strategy.
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Figure 4.5: Comparative example between optimal approach and AWARE.

Algorithm 1: NEWSCAST: aNticipating qoE With threshold sCheme And aS-
cending biTrate levels

Data: c, VideoProperties, L, w, Q;
22 α=cmin; i=1;
44 [PossibleTransmission, rα, γα]=AWARE(c,α, videoProperties, L);
66 while PossibleTransmission do
88 Fα=computeObjFunction (c,rα,γα,w);

1010 i=i+1;
1212 α = INVEST(c,i,Q);
1414 [PossibleTransmission, rα, γα]=AWARE(c,α, videoProperties, L);
15 end
1717 F∗

α∗=min{Fα};
1919 αth=α∗;
2121 return (αth,γαth

)

Algorithm 2: INVEST: INcrease with VariablE foot STep
Data: c,i,Q

22 SortedC=sort(c);
44 CumSortedC=CumulativeSum(SortedC);
66 ind = max(find (CumSortedC ≤ i × Q));
88 return SortedC(ind)
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Algorithm 3: AWARE: Anticipating QoE With Ascending bitRate lEvels
Data: c,α, videoProperties, b1 · · · bL;

22 s=1; SegmentsBitrates[1:N]=bs;
44 while s < L do
66 s=s+1;
88 Start=FirstSegmentOfBitrate(bs−1);

1010 End=N;
1212 middle = (End-Start) div2 +1;
1414 while middle ≥ 1 and End ≥ Start and middle ≤ End ) do
1616 init=SegmentsBitrates;
1818 SegmentsBitrates[middle:End]=bs ;
2020 SegmentsBitrates[1:StartupSegments]=b1 ;
2222 Test = ExistViolation(SegmentsBitrates,c,α,videoProperties);
2424 if Test then
2626 SegmentsBitrates[middle:End] = init[middle:End];
2828 middle=middle+(End-middle) div2 +1;
29 else
3131 End=middle-1;
3333 middle=Start+(End-Start) div2 +1;
34 end
35 end
36 end
3838 [rα,γα]=TransmitVideo(c,α, VideoProperties, SegmentsBitrates);
4040 Test = ExistViolation(SegmentsBitrates,c,α,VideoProperties);
4242 return ( ¯Test,rα,γα)

4.4.2 Approaches under rebuffering events

So far, we have assumed no rebuffing events during the streaming session, mean-
ing that the future capacity has been assumed quite sufficient to allow streaming the
hole video at the lowest bitrate. In extreme cases, the capacity may not be sufficient
and may cause the player to have video stalls even with the lowest quality level. To
go further with the analysis, we adapt our approach to a similar case where K stalls
will inevitably occur during the streaming session. This is how we proceed: First, we
spot the K segments at the level of which the stalls will take place. Then, we divide
the video into K + 1 independent parts in-between the stalls. On each part, we run
NEWCAST as if we had a new streaming session. By doing this, we will optimize the
streaming approach, specifically at the last part of the video.
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4.5 Simulations and numerical results

4.5.1 Simulation tools and setup

We perform all our simulations using Matlab server R2015b on a Dell PowerEdge
T420 Intel Xeon running Ubuntu 14.04. The streaming session is configured based on
some DASH and Youtube parameters [76, 82] and the network capacity is randomly
generated around an average throughput value. We put all our parameter settings in
Table 4.1

To the best of our knowledge, no explicit way really exists to compute the weights
that can be accorded to the video bitrates. In [54], authors explored a QoE estimation
model in which they assigned to each video segment a QoE metric that varies logarith-
mically in function of the bitrate and the motion factor. In [83], however, authors used
a per quality MOS factor to reflect the user’s satisfaction toward each quality level.

In this work, we assign the weights proportionally to the bitrate values as follow-
ing

wi =
bi
L
�

i=1
bi

,

where bi is the ith bitrate level and wi is its corresponding weight. All the parameters
are listed in Table 4.1. For accuracy, we explore the values of the threshold α using the
optimal approach. Our heuristic (INVEST) will be later discussed in Section 4.5.4.

Parameters values

Window size 3 min 10 s
Average throughput 2 Mbps
Capacity time slot 1 s
Video length 3 min
Segment length 1s
Video frame rate 30 fps
Startup threshold 4s
Video bitrates (Mbps) [0.4 0.75 1 2.5 4.5]
Levels weights [0.09 0.17 0.22 0.55 1]

Table 4.1: Parameters of Matlab simulations.

4.5.2 Framework performance

Figure 4.6 outlines the dynamic of the capacity used in the simulation Section as
well as its corresponding values of the threshold α. Note that, when α exceeds its
maximum value, a stall constraint will be violated.

By the sequel, we define our benchmark as the case where all the future capacity
is used and the highest possible video quality is delivered, i.e., α = cmin.
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Figure 4.6: Network capacity and threshold α.

By executing NEWCAST under the aforementioned configuration using different
values of π, we noticed that the system performance only varies for π ranging from
4.50 to 4.70. Beyond the limits of this interval, the performance remains constant.
In the following analysis, we will focus on only three values of π: low, medium and
high. Denote by απ the threshold returned by NEWCAST after execution using the
balancing parameter π.

In Figure 4.7 we show the variation of απ in function of π; a small value of π results
in a high απ as it prioritizes the system utilization cost. A big value of π, however, re-
sults in a low threshold as it accords more importance to the average quality. Whereas
a medium π leads to an in-between threshold that balances QoE and system cost.
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Figure 4.7: Variation of απ as function of π.

In Figure 4.8 we plot the playback buffer state evolution over time and its cor-
responding sequence of bitrates for the three aforementioned values of π. When π

is small, many silent times are noticed and the buffer state evolves with high slopes
(mainly at the beginning and at the middle of the video). This is actually due to the
low quality of the segments being streamed. Note that the player streams as much
frames as the bitrate is low. For the medium value of π, more flexibility is noticed
with shorter silent times and better quality. As for the big value of π, no silent times
are noticed since almost all the network resources are used. The buffer state evolves
gradually with low slopes, given the fact that segments of high-order quality are being
streamed.
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Figure 4.8: Playback buffer state evolution and corresponding sequence of bitrates for different values
of π.

Now we explore the idea of enforcing a stall during the streaming session. Let
For be the original cost function before enforcing a stall, and Fst be the resulting cost
function after enforcing a stall.

In Figure 4.9, we plot again the playback buffer state evolution over time for the
three values of π, and plot below the variation of Fst in function of the stall emplace-
ment (1st segment, 2nd segment, · · · ). As depicted in the figure, for π = 4.5, Fst expe-
riences high fluctuations around For mainly when the stalls are enforced at the begin-
ning of the video. The lowest values of Fst are noticed when the stalls are enforced at
the moments where the original buffer state is critical, i.e., a low quality with no much
flexibility toward the stall constraint.

Note that, the critical states of the buffer at these moments were preventing NEW-
CAST from setting a higher threshold. When a stall is enforced there, the video is
divided into two independent parts and the streaming strategy is optimized before
and after the stall, leading to two different thresholds that reduce the overall system
utilization cost.

Now, by increasing π, we observe a quasi-constant but lower Fst; a stall enforce-
ment certainly enhances the quality at the beginning part of the video, but it condemns
the flexibility and the average quality at the rest of the video. The degradation in the
global quality induces a reduction in the global system cost that outweighs the result-
ing Fst.

To sum it up, a stall enforcement may be only interesting when the value of π is
low since it may further reduce the system cost. A judicious choice of its emplacement
should correspond to the moments where the original buffer state is critical.
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Figure 4.9: System performance with buffer stall enforcement.

4.5.3 Robustness under prediction errors

Figure 4.10: Experimental spatial variations of the capacity for the tramway Ljabru-Jernbanetorget
trajectory.

The key limitation of our framework is that there is still no explicit approach that
can accurately predict the network capacity over more than ten seconds in the fu-
ture. In order to evaluate the robustness of NEWCAST, we use the real throughput
traces available online in the High Speed Downlink Packet Access (HSDPA) dataset
[84]. This dataset consists of 30 minutes of continuous throughput measurements of a
moving device in Telenor’s 3rd Generation (3G)/HSDPA wireless mobile network.

We use the traces of the Ljabru-Jernbanetorget trajectory as they present the small-
est variance in the throughput spatial variation (see Figure 4.10). From this spatial
variation, we compute the temporal variation of the throughput by supposing the
user moving at a speed of 50 Kmph.

Under the same video configuration of Table 4.1, we compute the performance
Pav of NEWCAST by using the average throughput of all throughput realizations.
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Then, by using each throughput realization apart, we compute its performance Preal

(P stands for system cost or video average quality).

We evaluate the robustness of the framework by computing the performance error
rate using each throughput realization as

Perror =

�

�

�

�

Preal − Pav

Pav

�

�

�

�

.

In Figure 4.11, we plot the average error rate of the system cost and the average
error rate of the video average quality in function of π. A noteworthy observation here
is that the average error rate does not exceed 15% for both metrics. Results even show
a low sensitivity of the system cost to prediction errors when π is small, and a low
sensitivity of the average quality to prediction errors when π is high.

In general, we can claim that our scheme performs well under the presence of real
prediction errors.
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Figure 4.11: Average error rate of the system performance under real throughput prediction errors.

4.5.4 Complexity

Framework performance under bigger time slots

In Figure 4.12, we compute the mean execution time of NEWCAST (using optimal
thresholds) by averaging results over 100 (randomly generated) capacities and using
different time slots (from 1s to 5s). It takes almost 4s to compute the final strategy with
a time slot equal to 1s. As expected, using bigger time slots takes much shorter time.
However, this comes at the expand of the final result accuracy depending on the value
of π. In the same figure, we show the system response (through F) for each time slot
by averaging results over the 100 capacities. We compute an accuracy rate factor (≤ 1)
by comparing the obtained results with the results of 1s time slot.

In our model, we assume that in a time slot only one bitrate level can be streamed,
which may condemn the QoE under bigger time slots. For high values of π, we notice
a very slight degradation of the accuracy of F , since the system tends to use all the
network resources. However, for low values of π, we observe a high degradation of
the accuracy since the system tends to use less network resources. With the constraint
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of using one bitrate per time slot, the QoE is highly degraded and, by the sequel, the
system cost is highly reduced.
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Figure 4.13: Accuracy and complexity variations under different values of Q.

Here, we set the time slot to 1s and run NEWCAST using different values of Q
(between 1Mbit and 5Mbits) by averaging results over the same 100 capacities. Results
in Figure 4.13 show that setting Q to the average throughput (2Mbps) leads to a high
accuracy rate (≈ 1) with an execution time of 4s (as for optimal thresholds). Setting
lower values of Q, increases the execution time and keeps almost the same accuracy
on F . For higher Q, the complexity is notably reduced, but slight degradations are
noticed on the accuracy rate (less than 16%). A judicious choice of Q should then be
made depending on the operator’s preferences: a high Q gives a high QoE and a very
low complexity, whereas, a low Q gives a low system cost and a higher complexity.

4.5.5 Comparison with baseline ABR algorithms

In this Section, we compare NEWCAST to two baseline ABR algorithms: one is
TB-ABR, the other is BB-ABR. We develop each algorithm on Matlab and simulate its
behaviour on different video streaming sessions. We keep all the parameter settings
of Table 4.1.
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TB-ABR and BB-ABR configuration: criteria of choice for comparison with NEW-

CAST

The main characteristic of NEWCAST is that it increases the quality of segments
progressively to avoid bothering the user with sudden quality jumping. For this reason,
we configure the TB-ABR and the BB-ABR algorithms to be both conservative. For TB-
ABR we use the smoothed throughput estimation such that

T̂ (i+ 1) =
i

�

k=i−3

pkT (k); (4.7)

p1 = 0.5, p2 = 0.3, p2 = 0.15 and p2 = 0.05,

where T (i) designs the throughput measured after downloading segment i, and
T̂ (i+1) is the throughput estimate of segment i+1. As for the bitrate selection, we use
a method close to that defined in "Microsoft’s Smooth Streaming" (see Algorithm 4).
For BB-ABR, we use the most stable method cited in [85]. We define three thresholds
Blow, Bmin, and Bhigh (respectively equal to 4, 8 and 12 segments), and define mul-
tiple strategies of bitrate adaptation depending on the range of the buffer level (see
Algorithm 5).

Capacity samples

To be as close as possible to real world throughput variations, we generate the ca-
pacity samples by using the standard-complaint Ns3 simulator; We conduct extensive
simulations of an LTE-network by varying the mobility or/and the number of users
each time. All the throughput samples resulting from these simulations are used for
the evaluation of both NEWCAST and the ABR algorithms. Table 4.2 summarizes the
parameters used for the configuration of the simulated LTE-network.

Main comparison points

From the execution of NEWCAST and the two aforementioned ABR algorithms
using all the throughput samples, we notice that in 0.3% of cases, the TB-ABR algo-
rithm encounters video stalls (at least one stall), and that in 7.8% of cases, the BB-ABR
algorithm encounters video stalls. NEWCAST, however, succeeds at achieving zero
stall during all the streaming sessions. Hence, we find it more judicious to perform
the comparison by distinguishing the cases where the number of stalls encountered by
each ABR algorithm is also equal to zero. Our analysis is driven by the three metrics
that mostly characterize NEWCAST: The system cost, the average per segment video
quality, and the average number of quality switching. In Figure 4.14, we plot each of
these metrics in function of π; π ranging from 0.2 to 26.
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Parameters values

Number of macro cells 1
Number of UEs per cell 25 - 30 - 35 - 40 - 45
Number of simulations 1000

eNb Tx Power 46 dBm
eNb noise figure 5 dB
UE noise figure 9 dB
Pathloss model COST 231
MAC scheduler Proportional fair 100 RBs
Fading model Pedestrian

Transmission model MIMO Transmit diversity
Mobility model RandomWalk2dMobilityModel
Velocity of users Uniform [5,16] m/s

EPS bearer NGBR-VIDEO-TCP-DEFAULT
Simulation length 190 s

Table 4.2: Ns3 simulation setting parameters.

TB-ABR vs NEWCAST : According to Figure 4.14, the main advantage of NEW-
CAST is that it can achieve the same quality as TB-ABR with a system utilization cost
reduced by at least 30%, and that it can achieve the same system cost with an average
quality enhanced by up to 19%. This is mainly due to the smart threshold-based-
strategy of NEWCAST that uses the less expensive resources depending on the value
of π. It is then up to the operator to make the tradeoff and to wisely calibrate the value
of π to outperform the TB-ABR algorithm. A further important observation lies in
the very reduced number of quality switching achieved by NEWCAST (at most 2.5)
compared to that achieved by TB-ABR (around 11).

BB-ABR vs NEWCAST : We notice from Figure 4.14 that BB-ABR is very greedy
toward the resource usage compared to TB-ABR, which makes it give near perfor-
mance to NEWCAST when applied with high values of π. Actually, for some values
of π, NEWCAST outperforms BB-ABR, but this outperformance is marginal. In fact,
the same average quality can be achieved with a system cost reduced by 12%, and
the same system cost can be achieved giving an average quality increased by 4%. The
greedy character of BB-ABR can be either emphasised or de-emphasised depending on
the thresholds set for the playback buffer (Bmin, Blow and Bhigh), so it may happen that
BB-ABR uses all the resources and gives a higher average quality than NEWCAST, but
this outperformance won’t exceed 2% since the heuristic used by NEWCAST approxi-
mates the optimal quality arrangement by 98%. All things considered, the most worth
citing advantage of NEWCAST, is that it gives a far less number of quality switching
(at most 2.5 against 19 with BB-ABR), which is quite better for the users’ perception.

In conclusion, when the knowledge of the future throughput is perfect, NEWCAST
can perform better than the baseline TB-ABR and BB-ABR algorithms. By mean of a
wise calibration of the value of π, the tradeoff between system utilization cost and
QoE can be steered to either save more resources or increase the average quality. In
all cases, the number of quality switching remains the most suitable for the end user’s
perception.
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Algorithm 4: TB-ABR : Throughput-Based ABR

22 for segments of startup phase do
44 set the quality to the lowest bitrate b1

5 end
77 for segments of post-startup phase do
99 estimate the throughput based on the three previous downloaded segments

1111 if the throughput ≤ b1 then
12 set the quality to b1
13 else
1515 if the throughput ≤ the previous bitrate then
1717 set the quality to the highest bitrate below the throughput
18 else
2020 if the next higher bitrate ≤ the throughput then
21 increase the bitrate by one level
22 else
23 Keep the same quality
24 end
25 end
26 end
27 end

Algorithm 5: BB-ABR : Buffer-Based ABR

22 for segments of startup phase do
44 set the quality to the lowest bitrate b1

5 end
77 for segments of post-startup phase do
99 if 0 ≤ BufferState ≤ Bmin then

1111 set the quality to the lowest bitrate b1

12 end
1414 if Bmin < BufferState ≤ Blow then
1616 if the BufferState is increasing then
1818 keep the same quality
19 else
2121 decrease the bitrate by one level if possible, or keep it the same
22 end
23 end
2525 if Blow < BufferState ≤ Bhigh then
2727 keep the same quality
28 end
3030 if Bhigh > BufferState then
3232 increase the bitrate by one level if possible or keep it the same
33 end
34 end
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Figure 4.14: TB-ABR vs NEWCAST and BB-ABR vs NEWCAST (without stalls).

4.6 Conclusion

In this Chapter, we have developed a new framework, which we called NEW-
CAST, to optimize the delivery of video streaming content under the knowledge of
the user’s future throughput variations. We have designed the framework to make a
tradeoff between system utilization cost and video quality by leveraging on some key
QoE metrics such as the average per segment video quality and the rebuffering events
(video stalls).

Our numerical results have revealed the possibility of using NEWCAST as an on-
line algorithm for DASH delivery. By comparison with baseline adaptive algorithms,
we have found that NEWCAST outperforms the basic streaming approaches in terms
of the tradeoff made between system cost and QoE. It even shows a lower complex-
ity since it adapts the quality of all video segments at once at the beginning of the
streaming session.

In the next Chapter, we extend NEWCAST to other versions in order to make it
more robust to eventual throughput prediction errors.
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5.1 Introduction

In the previous Chapter, we proposed a framework for adaptive video streaming
delivery to strike a balance between network utilization cost and user’s QoE. In partic-
ular, we designed NEWCAST, a proactive video content delivery algorithm, that ad-
justs the video quality over a long-term future horizon, assuming a perfect throughput
prediction.

However, from a practical point of view, perfect throughput prediction is not al-
ways possible [86], which presents a key limitation to NEWCAST. In this Chapter, we

65



Chapter 5. NEWCAST Derivative Versions for Context-Aware Adaptive Video Delivery Under Unperfect
Throughput Prediction

take a step further in the analysis of NEWCAST performance under throughput pre-
diction errors. We propose four algorithms STERN, A-STERN, RECAST and STREET
as derivative versions from NEWCAST to mitigate the problem of inaccurate through-
put prediction.

The first two algorithms STERN and A-STERN are a direct application of NEW-
CAST over successive short-term future horizons and aim at reducing the number of
video stalls. Whereas the two other algorithms RECAST and STREET aim at reducing
the number of quality-switching. Our numerical results lead us to believe that these
algorithms can be efficient and robust in realistic environments even if the prediction
of the capacity variation is not accurate.

We organize the Chapter as follows: In Section 5.2, we highlight the shortcoming
of NEWCAST under throughput prediction errors. In Section 5.3 we present STERN
and A-STERN and evaluate their performances. We compare STERN to NEWCAST
and A-STERN to STERN. Then in Section 5.4, we present RECAST and compare its
performance to A-STERN. Finally in Section 5.5, we present STREET and compare it
to RECAST. A recapitulation of the five above algorithms is afterwards reviewed in
Section 5.6. Section 5.7 concludes the Chapter.

5.2 NEWCAST under unperfect prediction over a long future

horizon

5.2.1 The usage of NEWCAST in real environments

In real environments, NEWCAST should be implemented at the client side as an
independent framework. It should be able to communicate the threshold α∗ to the
network scheduler and the set of video bitrates γ∗ to the media player as described in
Figure 5.1. We can imagine for sending α∗ a kind of a cross layer that also allows to
apply the threshold-based transmission scheme. The set of video bitrates γ∗, however,
can be directly sent to the player just at the beginning of the streaming session. These
bitrates will then be consecutively requested by the player to the streaming server.
Note that, in our analytical model, the variable γ∗ is set to describe the variation of the
video bitrate in function of time. In real implementation, the player will not use it that
way, it will rather use the bitrate variation in function of the segments’ orders, which can
be directly returned by NEWCAST.

5.2.2 Prediction error model

As claimed in [87], a perfect prediction of the capacity may not be feasible over a
large horizon window. However, it is plausible that the prediction becomes accurate
over a short horizon window. In the literature, we find that prediction accuracy de-
pends on three major factors: (i) the accuracy on the user’s mobility model, (ii) the
space mapping of the users’ average throughput, and (iii) the variation of the real
throughput around the user’s space-mapped average throughput [86].
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Figure 5.1: Illustration of NEWCAST’s interactions with the network scheduler and the media player.

Accordingly, in this Chapter, we assume that the prediction error increases as long
as we move forward in time. Thus, we model the real capacity creal as a Gaussian
white noise with, as mean, the predicted capacity c̃, namely

∀ t in [0, T ], creal(t) = N (c̃(t),SDerr(t)) ,

where SDerr(t) = SDerr · log(t) is the error standard deviation at time t.

5.2.3 NEWCAST robustness to video stalls

As in the previous Chapter, we evaluate the robustness of NEWCAST through sim-
ulations using Matlab and the parameter settings of Table 4.1. We maintain the same
predicted capacity c̃ and generate around many samples of possible real throughput
variations creal according to our adopted prediction error model. We use for that dif-
ferent values of SDerr.

We run NEWCAST under the knowledge of c̃ and set the future streaming strategy
(α∗,γ∗). Then, using each real capacity creal, we apply this strategy and compute the
real system utilization cost and the number of stalls during the streaming session.

In our simulations, we set π to a small value (π = 3) to prioritize the system cost
and make the system more sensitive to prediction errors. As depicted in Figure 5.2, we
evaluate the robustness of NEWCAST by representing the distribution of video stalls
during the streaming session in function of SDerr.

First, we observe that the probability of having zero stalls is relatively low and
decreases as the error on the predicted capacity increases: From 0.49 with SDerr=10−4

to 0.17 with SDerr =10−2. Second, we notice that the average number of video stalls
increases: From 1.53 to 1.89 with the same values of SDerr. Thus, when the prediction
of the capacity is imperfect over a long future horizon, the approach of NEWCAST
fails to guarantee a good QoE. This leads us to consider short future horizons in order
to obtain more accurate throughput prediction.
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Figure 5.2: NEWCAST: Distribution of video stalls as function of SDerr.

5.3 NEWCAST short-term versions for better stall avoidance

Both algorithms we propose in this section leverage on NEWCAST strategy over
long and short future horizons.

5.3.1 Short-TERm Newcast (STERN)

Algorithm

STERN is a modified version of NEWCAST that considers short-term throughput
prediction over successive short future horizons. It takes as input the evolution of the
buffer occupancy initially computed by NEWCAST over the long future horizon (us-
ing the long-term predicted capacity c̃) in order to adjust the number of segments to
stream at each short horizon. Let ũ(t) be the number of cumulative received frames
computed by NEWCAST for future time t, t ∈ [0, T ], and ureal be the real cumulative
received frames function. At the beginning of each short horizon, STERN computes
through the variation of ũ the number of segments to stream over that horizon to make
the playback buffer evolve as was initially scheduled by NEWCAST, i.e., to make ureal
follow ũ. To reduce the number of video quality-switching when moving from one
short horizon to another, STERN ignores the startup phase mode of NEWCAST that
enforces the first segments to be streamed at the lowest video bitrate under a greedy
transmission mode.

Let Hi, i > 0, be the ith short future horizon, c̃Hi
the short-term predicted capac-

ity over that horizon, and XHi
the number of segments to stream over it. Figure 5.3

depicts the interactions of STERN with NEWCAST, the network scheduler and the
media player. Algorithm 6 and Figure 5.4 describe its main steps.
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Figure 5.3: Illustration of STERN interactions with NEWCAST, the network scheduler and the
media player.

Algorithm 6: short-term Newcast (STERN)

1 Input: H1 = [t0, t1], ũ, XH1
= ũ(t1)

SegmentSize , i = 1;

33 while Still segments to stream do
55 Predict c̃Hi

;
77 Check if it is possible to stream XHi

segments using c̃Hi
, otherwise, reduce XHi

;
99 [α∗

Hi
, γ∗Hi

]=NEWCAST(c̃Hi
, XHi

,πSTERN , BufferState);
1111 QualityV ectHi

= DeduceQualityVector(γ∗Hi
);

1313 [ureal, tfin]=StreamVideo(creal[ti−1 : end],α
∗
Hi
, QualityV ectHi

)
1515 ti = tfin + 1;
1717 ti+1 = ti + length(Hi);
1919 Hi+1 = [ti, ti+1];

2121 XHi+1
=

ũ(ti+1)−ureal(tfin)
SegmentSize ;

2323 i = i+ 1;

24 end
2626 return ({α∗

Hi
}, {γ∗Hi

})
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Performance

In our simulations, we set πSTERN to be one time equal to πNEWCAST (πSTERN =
3) and one time greater than πNEWCAST (πSTERN = 6).

In Figure 5.5 we plot the distribution of video stalls in function of SDerr using
NEWCAST then using STERN with the tow values of πSTERN . As a general observa-
tion, STERN succeeds at making the system more robust to video stalls compared to
NEWCAST. Indeed, for πSTERN = 3, the probability of having zero stalls increased
from 0.17 (using NEWCAST) to 0.24, and for πSTERN = 6 it increased to 0.95 at the
highest prediction error. Which induced a reduction in the average number of video
stalls: From 1.90 (using NEWCAST) to 1.02 and 0.05 for πSTERN = 3 and πSTERN = 6
respectively.

In Figure 5.6, we plot the average number of video quality-switching during the
streaming session using NEWCAST then using STERN for the same values of SDerr.
By comparison with NEWCAST, the number of quality-switching induced by STERN
is notably high: We count 18 and 20 switching for πSTERN = 3 and πSTERN = 6
respectively, versus only 3 switching with NEWCAST. For the sake of illustration, we
put in Figure 5.7 two snapshots of the video quality variation using STERN under a
randomly generated real throughput creal.

As for the system performance, we notice from Figure 5.8 that STERN is a bit
greedier than NEWCAST; at the highest prediction error, it increased the system cost
from 32% (using NEWCAST) to 46% and 66% for πSTERN = 3 and πSTERN = 6 re-
spectively. Which induced a rise in the average video quality.

All things considered, we can claim that STERN succeeds at ameliorating the over-
all video quality mainly by reducing the average number of video stalls compared to
NEWCAST, which was our first motivation. Nevertheless, it produces higher num-
bers of quality-switching and higher system utilization costs.
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Figure 5.5: STERN vs. NEWCAST: Probability of having stalls in function of SDerr and πSTERN

for a short horizon length of 10s.

71



Chapter 5. NEWCAST Derivative Versions for Context-Aware Adaptive Video Delivery Under Unperfect
Throughput Prediction

0

5

10

15

20

25

30

A
v
e

ra
g

e
 s

w
it
c
h

in
g

 n
u

m
b

e
r

 

 

NEWCAST

STERN:SD
err

=1e−4

STERN:SD
err

=1e−3

STERN:SD
err

=1e−2

π=3 π=3π=3 π=6
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Figure 5.7: STERN vs. NEWCAST: Snapshots of video quality variation in function of πSTERN for
SDerr = 10−2 Mbits and a short horizon length of 10s.
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Figure 5.8: STERN vs. NEWCAST: System utilization cost and normalized average video quality in
function of πSTERN for SDerr = 10−2 Mbits and a short horizon length of 10s .
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5.3.2 Adaptive Short-TERm Newcast (A-STERN)

Algorithm

A-STERN is the dynamic adaptive version of STERN; a supervision on the real
playback buffer state is continuously performed to see whether the real cumulative
number of received frames matches the predicted function ũ or not.
If |ureal(t) − ũ(t)| ≥ � , t ∈ Hi, i > 0 where � is a predefined constant, then we
update the streaming strategy; we stop streaming the video and build a new strategy
over a new short horizon Hi+1 using the approach of STERN (see Algorithm 7 and
Figure 5.9).

Algorithm 7: Adaptive Short-TERm Newcast (A-STERN)

1 Input: H1 = [t0, t1], XH1
= ũ(t1)

SegmentSize , i = 1;

33 while Still segments to stream do
55 t = ti−1;
77 Predict c̃Hi

;
99 Check if it is possible to stream XHi

segments over c̃Hi
, otherwise, reduce XHi

;
1111 [α∗

Hi
, γ∗Hi

]=NEWCAST(c̃Hi
, XHi

,πA−STERN , BufferState);
1313 QualityV ectHi

=DeduceQualityVector(γ∗Hi
) ;

1515 [ureal, tfin]=StreamVideo(creal[ti−1 : end],α
∗
Hi
, QualityV ectHi

);
1717 ***** Do simulataneously to streaming
1919 while t ∈ [ti−1, ti[ do
2121 if |ureal(t)−ũ(t)|

SegmentSize
≥ � then

2323 Update the streaming strategy:
2525 ti = t+ 1;
2727 ti+1 = ti + length(Hi);
2929 Hi+1 = [ti, ti+1];

3131 XHi+1
= ũ(ti+1)−ureal(t)

SegmentSize
;

3333 i = i+ 1;
3535 t = 0;

36 else
3838 t = t+ 1;

39 end
40

41 end
4343 *****
4545 if theXHi

segments have been completely received then
4747 ti = tfin + 1;
4949 ti+1 = ti + length(Hi);
5151 Hi+1 = [ti, ti+1];

5353 XHi+1
=

ũ(ti+1)−ureal(tfin)
SegmentSize ;

5555 i = i+ 1;

56 end
57 end
5959 return ({α∗

Hi
}, {γ∗Hi

})
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Performance

In Figure 5.10, we compare A-STERN to STERN by computing the distribution
of the number of stalls during the streaming session. From the plots, we notice that
A-STERN increases the probability of having zero stalls compared to STERN: From
0.24 to 0.64 and from 0.95 to 0.97 for πSTERN = πA−STERN = 3 and πSTERN =
πA−STERN = 6 respectively, at the highest prediction error. This mainly induced a
decrease in the average number of stalls: From 1.02 to 0.38 and from 0.05 to 0.03 at the
same values of π and at the same prediction error. A noteworthy observation here is
that this improvement is mainly prominent at the lowest value of π, since there, the
system is very sensitive to prediction errors. Which implies that the updates made on
the playback buffer become more useful at the lowest values of π.

As for the number of switching and the system performance, we make from Fig-
ure 5.11 and Figure 5.13 several interesting observations: First, when π is low, the
system utilization cost and the number of quality-switching are both reduced with A-
STERN by comparison with STERN, which is quite interesting for the operator and
the end user. Second, when π is high, the video average quality holds the same with
A-STERN as with STERN, whereas the number of quality-switching increases, which
is not quite appreciated for the user’s perception. Overall, whatever is the value of π
the quality-switching rate is considered to be relatively high, the reason for which we
propose the two following algorithms RECAST and STREET.
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Figure 5.10: A-STERN vs. STERN: Probability of stalls as function of SDerr and π for a short
horizon length of 10s and �= 3 segments.
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Figure 5.11: A-STERN vs. STERN: Average quality-levels’ switching number as function of SDerr

and π for a short horizon length of 10s and �= 3 segments.
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Figure 5.13: A-STERN vs. STERN and NEWCAST: System utilization cost and normalized average
quality as function of π for SDerror = 10−2 Mbits and a short horizon length of 10s.

5.4 shoRt-tErm Conservative newcAST for smoother quality

variation: (RECAST)

Algorithm

Our previous numerical results clearly showed that short-term NEWCAST ver-
sions (STERN and A-STERN) succeed at decreasing the probability of stalls compared
to NEWCAST. However, this comes at the expense of an increased number of quality-
switching. In this Section, we propose to focus more on the quality-switching rate
rather than the number of stalls. To do so, we define RECAST as a modified version
of STERN. While STERN uses the same ascending bitrate strategy as NEWCAST over
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each short horizon Hi, i > 0, RECAST enforces the bitrate strategy to be constant. The
final quality γHi

and the final threshold αHi
are accordantly set depending on the

value of πRECAST (see Figure 5.14).
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Figure 5.14: Flowchart of RECAST algorithm.
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Figure 5.15 plots the average number of quality-switching induced by RECAST
compared to the previous algorithm A-STERN. It is shown from the results that the
number of quality-switching is decreased from 16.39 to 9.86 and from 25.27 to 12.29
for πA−STERN = πRECAST = 3 and πA−STERN = πRECAST = 6, respectively, at the
highest prediction error. Which is what we intended to do by setting the constant
bitrate strategies. However, this comes at the expense of the probability of stalls and
the video average quality; according to Figure 5.17 and Figure 5.18, the number of
stalls is increased from 0.38 to 0.67 at the lowest value of π (where the system is the
most sensitive to prediction errors) whereas the video average quality is decreased
from 0.67 Mbps to 0.479 Mbps at the highest value of π (where the QoE part should
be the most prioritized). No big amelioration is noticed for the system utilization cost,
except a slight reduction when π is high.

3 6
0

5

10

15

20

25

30

π

A
v
e

ra
g

e
 s

w
it
c
h

in
g

 n
u

m
b

e
r

 

 

A−STERN:SD
err

=1e−4

A−STERN:SD
err

=1e−3

A−STERN:SD
err

=1e−2

RECAST:SD
err

=1e−4

RECAST:SD
err

=1e−3

RECAST:SD
err

=1e−2

Figure 5.15: RECAST vs. A-STERN: Average number of quality-switching in function of SDerr

and π for a short horizon length of 10s.
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Figure 5.17: RECAST vs. A-STERN: Probability of stalls as function of SDerr and π for a short
horizon length of 10s and �= 3 segments.
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Figure 5.18: RECAST vs. A-STERN and NEWCAST: System utilization cost and normalized
average quality as function of π for SDerr = 10−2 Mbits and a short horizon length of 10s .

5.5 Short-TeRm Enslaved nEwcasT (STREET)

Algorithm

Unlike the previous algorithms that set their bitrate strategies independently of
the set of bitrates generated by NEWCAST (using the long-term predicted capacity
c̃), STREET algorithm attempts to follow the same set of bitrates as NEWCAST in the
hope of giving similar performance with a reduced number of stalls. Here is how it
performs: At the beginning of each short horizon Hi, i>0, it computes the number of
segments XHi

to stream by seeing ũ. If it is possible to perform the streaming with
the same set of bitrates as NEWCAST, it sets up the highest possible threshold αHi

to
reduce as possible the system utilization cost over Hi. Otherwise it reduces the quality
of the segments by following the approach of STERN algorithm. Detailed steps are
described in Algorithm 8 and Figure 5.19.
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Algorithm 8: short-term Enslaved nEwcasT (STREET)

Data: H1 = [t0, t1], XH1
= ũ(t1)

SegmentSize , i = 1, Start=1 ;

22 while Still segments to stream do
44 Predict c̃Hi

;
66 QualityV ectHi

= NEWCASTQuality[Start:Start+XHi
− 1] ;

88 if It is possible to stream XHi
segments under QualityV ectHi

, over predicted c̃Hi

then
1010 find the best threshold α∗

Hi
;

11 else
1313 Check if it is possible to stream XHi

segments over c̃Hi
, otherwise, reduce XHi

;
1515 [α∗

Hi
, γ∗Hi

]=NEWCAST(c̃Hi
, XHi

,πSTREET , BufferState);
1717 QualityV ectHi

= DeduceQualityVector(γ∗Hi
);

18 end
2020 [ureal, tfin]=StreamVideo(creal[ti−1 : end],α

∗
Hi
, QualityV ectHi

);
2222 ti = tfin + 1;
2424 ti+1 = ti + length(Hi);
2626 Hi+1 = [ti, ti+1];

2828 XHi+1
=

ũ(ti+1)−ureal(tfin)
SegmentSize ;

3030 i = i+ 1;

3232 start=
ureal(tfin)
SegmentSize + 1;

33 end
3535 return ({α∗

Hi
}, {γ∗Hi

})

Performance

Figure 5.20 and Figure 5.21 show the performance of STREET in terms of video
quality-switching by comparison with NEWCAST and the previous algorithm RE-
CAST. We notice from the results that STREET succeeds at following a near trend of
bitrate variation as NEWCAST with a near number of quality-switching (around 3.03
for both values of πSTREET ). The performance in terms of system utilization cost
and video average quality is evenly near to NEWCAST’s performance (around 0.39
and 0.48 Mbps for both values of πSTREET ). As for the distribution of the number of
stalls, it is depicted from Fig .5.23 that the probability of having zero stalls decreased
compared to RECAST from 0.97 to almost 0.32 for πSTREET = 6, under the highest
prediction error. As a result, the average number of stalls increased from 0.03 to 0.71
but remained relatively low compared to NEWCAST. Overall, we consider STREET
as the best algorithm that mostly achieves the same performance as NEWCAST (in
terms of system cost, average quality and quality-switching), while reducing the risk
of video stalls by around 75%.
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Figure 5.19: Flowchart of STREET algorithm.
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Figure 5.20: STREET vs. RECAST: Average number of quality-switching in function of SDerr and
π for a short horizon length of 10s.
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Figure 5.23: STREET vs. RECAST: Probability of stalls in function of SDerr and π for a short
horizon length of 10s.

5.6 Summary of numerical results

In order to gain insights into the performance of the five proposed algorithms,
we summarize in Table 5.1 the average system utilization cost, the average number
of stalls, the video average quality and the average number of quality-switching for
SDerr = 10−3 Mbits and for short horizons of 10s. The performances of all the al-
gorithms are obtained by averaging results over 1000 simulations using different ran-
domly generated capacities creal and one long-term predicted capacity c̃. A-STERN is
evaluated for � = 3 segments.

Here is a summary of the most worthy observations we make:

➠ NEWCAST achieves the lowest system utilization cost but gives the highest
number of video stalls.

➠ STERN and A-STERN are the most costly in terms of system usage but are the
most resistant to video stalls mainly for low values of π. A-STERN is the best
one in reducing the average number of stalls: it produces 0.38 and 0.03 stalls
in average against 1.02 and 0.05 stalls with STERN. The video average quality
increases sensibly with STERN and A-STERN compared to NEWCAST, whereas
the number of quality-switching increases tremendously.

➠ Compared to STERN and A-STERN, RECAST performs better in terms of quality-
switching, but it produces more video stalls when π is small.

➠ STREET performs the best in terms of quality-switching and achieves almost the
same performance as NEWCAST while it reduces the average number of stalls
by almost 75%.
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System
utilization

cost

Average
number of

stalls

Average
quality
(Mbps)

Average
number of
switches

π = 3 π = 6 π = 3 π = 6 π = 3 π = 6 π = 3 π = 6

STERN 0.46 0.66 1.02 0.05 0.51 0.72 17.91 19.86
A-STERN 0.43 0.71 0.38 0.03 0.44 0.73 16.39 25.27
RECAST 0.45 0.62 0.69 0.03 0.49 0.67 9.86 12.29
STREET 0.39 0.39 0.71 0.71 0.48 0.48 3.03 3.03
NEWCAST π = 3 0.32 1.90 0.48 3

Table 5.1: Performance summary of the five algorithms for SDerr = 10−3, a short horizon length of
10s, and �=3 segments.

To clearly see the broughts and the drawbacks of STERN, A-STERN, RECAST and
STREET by comparison with NEWCAST, we add a colored map of performance in
Figure 5.24.

As depicted in the figure, each algorithm achieves its own tradeoff, thus, we can-
not judge which one is the best unless we know the preferences of the user and the
operator as well.
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5.7 Conclusion

In this Chapter, we have proposed four derivative versions of NEWCAST to make
its streaming approach more robust to throughput prediction errors. STERN, A-STERN,
RECAST and STREET are the names of our proposed algorithms. Each algorithm
leverages on the short-term throughput prediction over successive short horizons and
the playback buffer evolution initially computed by NEWCAST over the long future
horizon.

We have proposed the first two algorithms STERN and A-STERN to reduce the
average number of video stalls returned by NEWCAST. We unfortunately have found
that they produce high numbers of quality-switching. Which has led us to rethink the
way the video bitrates are distributed. Thus, we have proposed RECAST and STREET
with the purpose of making smoother quality variations.

Our numerical results, obtained through extensive Matlab simulations, have re-
vealed the efficiency of all our proposed solutions. In the next Chapter, we implement
NEWCAST and all its derivative versions with a real DASH player to explore to what
extend can they be used in realistic environments.
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6.1 Introduction

In the two previous Chapters we proposed NEWCAST and its derivative versions
as frameworks for adaptive video delivery assuming the knowledge of the user’s fu-
ture throughput. In a first step, we assumed that the throughput prediction is accu-
rately performed over long-term future horizons. Based on adaptive streaming prop-
erties, we developed our analytical streaming model, then accordingly, we designed
the framework of NEWCAST to strike a balance between system utilization and QoE.
In a second step, we assumed the presence of throughput prediction errors. Based on
the same analytical model, we designed STERN, A-STERN, RECAST and STREET as
derivative versions from NEWCAST to mitigate the problem of inaccurate throughput
prediction.

In our analytical model, we made some key assumptions to make it easy design
the frameworks. These assumptions are mainly related to the video segments’ bitrates
and the HTTP requests’ durations. In this Chapter, we show through experiments how
these assumptions will impact the performance of NEWCAST, and subsequently its
derivative versions, in a realistic streaming environment. We propose some changes
inside the frameworks and evaluate their performances as we did in the simulation
Sections.

We organize the Chapter as follows: In Section 6.2, we describe throw sequence
diagrams how each framework should be deployed in realistic environments. Then
in Section 6.3, we review our experimental environment and how it is configured. We
detail the changes we propose inside NEWCAST as well. In Section 6.4, we analyze
the performance of each framework. Finally, in Section 6.5, we conclude the Chapter.

6.2 Interactions within realistic environments

6.2.1 Entities involved in standard mobile video streaming

In a standard mobile video streaming, the main entities that are directly involved
in the streaming process are potentially the client (player) and the video server. In
adaptive video streaming, the client requests video segments one after the other to the
server through independent HTTP requests. It indicates at each time the bitrate of the
segment being requested. Disposing of all video representations, the server replies by
streaming the requested segments at their requested bitrates. In a mobile environment,
video segments are transmitted to the client through the operator’s network resources.

6.2.2 NEWCAST deployment in mobile video streaming

To integrate NEWCAST in a user’s mobile device and allow the exchange of the
future capacity c and the threshold α∗, two cross layers should be implemented: One at
the level of the user’s device and the other at the level the operator’s resource allocator
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(e.g., eNodeB in LTE). In Figure 6.1 we design the main interactions that may take
place between NEWCAST and the real streaming entities:

As soon as the streaming session is opened, the player notifies NEWCAST to com-
pute the list of segments’ qualities before starting the streaming. Consequently, NEW-
CAST requests to the operator the user’s future available throughput, then starts com-
puting the adequate streaming strategy. After processing, NEWCAST sends the list of
segments’ qualities back to the player and the transmission threshold α∗ to the opera-
tor’s scheduler. While the scheduler applies the threshold-based transmission scheme,
the player requests the segments one after the other to the server respecting in that the
list of qualities computed by NEWCAST.

The most challenging point of this scenario is the way to apply the threshold-based
transmission scheme. In a cellular network where multiple users with different net-
work conditions are computing for the resources, it is hard to determine beforehand
the exact amount of data to serve to a specific user. This problem will be handled
in a future research work. At this level, we may propose a simple way to apply the
threshold-based transmission scheme: At each scheduling time slot, if the amount of
data (TBS in LTE) allocated to the user is above the threshold, then the user will be
served. Otherwise, the resources are released to be allocated to other users.

Figure 6.1: Sequence diagram of a video streaming session using NEWCAST.
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6.2.3 NEWCAST’s derivative versions deployment is mobile video stream-
ing

The same type of interactions holds for NEWCAST’s derivative versions except
few differences. In the following, we show the sequence diagrams of the four pro-
posed algorithms (STERN, A-STERN, RECAST and STREET).

STERN and RECAST

Figure 6.2 depicts the main interactions we conceive between NEWCAST, STERN
(or RECAST) and the other streaming entities. The role of NEWCAST relies in gen-
erating the path 1 for STERN (or RECAST) to know in advance the number of seg-
ments to stream during each short horizon. The process of computing the streaming
strategy is repeated by STERN (or RECAST) at the beginning of each short horizon.
In accordance to each strategy, the operator’s scheduler applies the threshold-based
transmission scheme and the player requests the segments at their indicated bitrates.

A-STERN

With A-STERN, the interactions hold the same as with STERN and RECAST, nev-
ertheless, a supervision process on the real time playback buffer evolution is sched-
uled upon each segment arrival. If the difference between the path ũ and the real
cumulative number of received frames ureal is greater than �, then A-STERN starts a
new short horizon even if the current horizon has not yet finished (see Figure 6.3).

Remark 1. In the simulation part of the previous Chapter, we conceived the supervision to

be performed at each time slot. In the experiments, we perform the supervision only at the

moments where video segments are received. This will return a lower complexity and a lower

power consumption at the user device.

STREET

STREET interacts with the streaming entities in the same way as STERN and RE-
CAST. Nevertheless, when asking for the path from NEWCAST, it asks for the cor-
responding set of segments’ qualities, since, as explained in the previous Chapter, it
attempts to follow the same strategy as NEWCAST (in terms of bitrate distribution).
We mark this with red stars in Figure 6.4.

1The path is the cumulative number of received frames function ũ defined in the previous Chapter.
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Figure 6.2: Sequence diagram of a video streaming session using STERN/RECAST.
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Figure 6.3: Sequence diagram of a video streaming session using A-STERN.
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Figure 6.4: Sequence diagram of a video streaming session using STREET.
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6.3 Implementation tools and configurations

6.3.1 Environment and tools

For the implementation, we use two virtual machines with Linux distributions:
One is used as a DASH server and the other is used as a DASH client. In the DASH
server, we install the HTTP Apache server and put inside the Dashjs framework [23]
with the Envivio video segments (encoded at different quality levels) and their cor-
responding .mpd file [88]. In the DASH client, we just install google chrome browser.

We configure the two virtual machines to be able to communicate through their
Ethernet interfaces. To emulate the network schedule and make the bandwidth be-
tween the two machines follow a predefined variation (considered as the predicted
capacity), we use the Linux tc-tool for traffic shaping as shown in Figure 6.5.

To implement NEWCAST and make it interact with the Dashjs player, we use
Javascript and other basic web languages. We put NEWCAST with the player call
function in a same .php file that the DASH client requests to start the video streaming
session.

In Table 6.1 we put more details on the hardware/software tools used for the im-
plementation.

Figure 6.5: Architecture of the system used for experiments.

6.3.2 Client and server configurations

We create the virtual machines by the mean of the LinuX Containers (LXC) tool.
Actually, the installation of the LXC package on the host machine creates by default a
host-shared-bridge lxcbr0 that is linked to the host machine’s physical interface eth0.
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Host machine Optiplex 7010 Intel Core i7-3770 CPU 3.40Ghz
Distribution Ubuntu 14.04.5 LTS

Virtual machines Linux Container Lxc 1.0.9
Apache 2.4.7
Dashjs 2.4.0

Google Chrome 55.0.2883.87

Table 6.1: Details on the software/hardware tools used for real implementation.

This bridge has by default the first ip address in the network 10.0.3.0/24. Upon cre-
ation, each container will have one of its Ethernet interfaces connected to that bridge
with an IP address automatically generated in the same network. This configuration
will permit to the containers to be connected to the internet through the host machine
and, thus, will permit to install on them all the required dependencies for the experi-
ments. In Figure 6.6, we depict the general IP configuration of our system.

Figure 6.6: General IP configuration of the system used for experiments.

6.3.3 Player configuration

To make NEWCAST interact with the DASH player, we make some changes inside
the Dashjs framework:

➠ We add a new event "FRAGMENT_VIDEO_LOADING_COMPLETED" to the player
class to detect the moments where a segment of type ”video” is completely
loaded to the playback buffer.

➠ The size of the playback buffer is by default limited to 42 seconds. As soon as
this threshold is reached, the player keeps on delaying the requests of coming
segments till having the buffer level reduced, which may disturb the continu-
ous streaming aspect assumed by NEWCAST. In the "MediaPlayerModel.js" file,
we change this restriction to fit the infinite buffer size and to eventually avoid
delaying the requests of video segments.

➠ The size of the playback cache is by default limited to 30 seconds. As soon as this
threshold is reached, the player keeps on removing the earliest played segments
till having the cache level reduced. To avoid removing the segments and keep
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track on the real time cumulative number of received frames ureal, we raise this
threshold in the "MediaPlayerModel.js" file.

➠ By default, a video stall occurs when the playback buffer level is less than a pre-
defined threshold (slightly bigger than zero). The rebuffering stage after a stall
occurs stops when the buffer level becomes higher than this same threshold. As
we assume independent thresholds in NEWCAST for both the stall occurrence
and the rebuffering duration, we define in the "check-IfSufficientBuffer()"
function a new independent threshold for the prefetching stage.

➠ Since we are only interested in the "video traffic", we delete the "audio traffic"
from the .mpd file to not be requested by the player.

6.3.4 Throughput emulation

Bandwidth shaping using tc-tool

The Linux tc-tool is a user-space utility program used to configure the "Traffic Con-
trol" in the Linux kernel. It allows to (i) shape the traffic on egress, (ii) schedule the
transmission of packets, (iii) police the traffic on ingress and (iv) drop the exceeding
traffic. When a traffic is shaped, its rate of transmission is under control; that may
include lowering the available bandwidth or smoothing out the bursts.

Traffic processing is controlled by three kinds of objects: qdiscs (for queueing disci-
pline), classes (defined under some qdiscs) and filters (used by classful qdiscs).

To emulate the user throughput and make the bandwidth follow a predefined vari-
ation over time, we perform the traffic shaping at each time slot (each second) using
the Hierarchy Token Bucket (HTB), which is a classful qdisc.

Here in Figure 6.7, we put the key commands used to develop the shell script file
"shape.sh" for shaping the bandwidth:

Figure 6.7: The key tc-tool commands for bandwidth shaping.

Where (1) limits the bandwidth rate of the Ethernet interface eth0 to "$value"

kbits, (2) applies the shaping on the outbound traffic going to the client and (3) deletes
the qdisc being already created for eth0.

By following the throughput traces stored at the capacity log file, we execute these
commands repeatedly in a way to set the bandwidth rate to the throughput trace at
the considered time slot.
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Bandwidth shaping performance with continuous traffic (FTP)

To make sure that the throughput emulation using the Linux tc-tool and the capac-
ity log file performs well, we conduct some experiments of a progressive file transfer
between the client and the server (using File Transfer Protocol (FTP)). We then com-
pare between the throughput log traces and the real throughput measurements ob-
tained through the Linux real time statistics applied on the server’s Ethernet interface
eth0 (under the file /sys/class/net/eth0/statistics/tx-bytes ).

In the first plot of Figure 6.8, we show a snapshot of the real throughput variations
as well as the predicted throughput variations of the capacity log file. According to our
results, the real throughput obtained through the tc-tool shaping is on average equal
to 76.3% of the predicted throughput, i.e., if we multiply the predicted throughput
values by a factor of 0.763, hereinafter called the Shaping-Factor, we almost obtain the
same values as the real throughput.

In the second plot of Figure 6.8, we show a snapshot of the real throughput varia-
tions, as well as the variations of the predicted throughput multiplied by the Shaping-
Factor. Through the plot, we notice a quasi-perfect superposition of the two curves,
which implies that our bandwidth shaping performs well with continuous traffic by
considering this Shaping-Factor.
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Figure 6.8: Bandwidth shaping performance with continuous FTP traffic.

6.3.4.1 Bandwidth shaping performance with DASH traffic

DASH traffic is different than FTP traffic because of the regular HTTP requests sent
in between segments download. In this Section, we test the throughput emulation
with some DASH traffics to evaluate its performance.
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We conduct the experiments with three DASH traffics, each traffic corresponds to
a constant bitrate delivery of the Envivio video. We set the bitrates to three values:
5.3 Mbps (high), 0.750 Mbps (medium) and 0.480 Mbps (low).

In Figure 6.10, we show four snapshots of the real throughput variations (we plot
the predicted throughput multiplied by the Shaping-Factor as well). The first snapshot
corresponds to an FTP traffic and the last three snapshots correspond to the predefined
DASH traffics.

Through the curves, we notice a mismatching between the real throughput vari-
ations and the predicted throughput variations with all DASH traffics, unlike with
FTP. This mismatching increases as the video bitrate decreases. We explain this by the
following interpretation:

During a time slot (1s in our experiements), the lower is the bitrate, the higher is
the number of segments the client downloads and the higher is the number of HTTP
requests. In contrast, the higher is the bitrate, the lower is the number of segments and
the lower is the number of HTTP requests. From the client side, each HTTP request
duration is assimilated to a silent time where the dedicated bandwidth is not used.
Thus, the real throughput measurement on a given time slot gives a lower value when
the bitrate is low and a higher value when the bitrate is high. Which explains the
fact that when the bitrate increases, the shaping using DASH traffic approaches the
shaping using FTP. In Figure 6.9, we give an illustration of this interpretation.

Figure 6.9: Influence of DASH HTTP requests in the performance of the bandwidth shaping.
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Figure 6.10: Bandwidth shaping performance with FTP and different constant-bitrate DASH traffics.

6.3.5 Changes inside NEWCAST

To adapt NEWCAST to realistic video streaming environments, we perform these
few changes:

➠ As explained in the previous analysis, the real throughput of a user running
NEWCAST over DASH will not be the same as the throughput "r" modelled by
NEWCAST. This is principally due to the existence of the regular HTTP requests
in between video segments. In our first design of NEWCAST, we have neglected
the durations of all HTTP requests, which is not really valid.

According to our measurements with the Wireshark traffic analyzer, the average
duration of an HTTP request is approximately equal to 0.06 seconds. To take it
into account in the real implementation of NEWCAST, we assimilate each HTTP
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request to a virtual file of size 0.06 × c(t), where c(t) is the predicted capacity
multiplied by the Shaping-Factor at the request time slot t (see Figure 6.11).

In Figure 6.12, we show the variation of the new throughput "r" modelled by
NEWCAST after changes using a small and a high value of π. We plot the pre-
dicted throughput multiplied by the Shaping-Factor as well.

➠ When the resulting threshold α∗ is high, video stalls with long durations may
occur. To shorten the rebuffering stages, we disable the threshold transmission
schedule during prefetching by pushing the system to use all the available band-
width (as if α∗ was equal to zero).

➠ To keep up with marginal throughput prediction errors, we add a security-marge
of 1 second to the stall constraints, i.e.,

u(t) ≥ l(t) + λ× 1 ∀ t ∈ [0, T ]

Figure 6.11: Illustrative example of how "r" is computed with NEWCAST after changes.

time (s)
0 20 40 60 80 100 120 140 160 180 200

M
b

it
s

0

0.5

1

1.5

2

2.5

3

3.5

c
r ( π=0.1)
r ( π=1.6)

Figure 6.12: Variation of "r" in function of π after changes inside NEWCAST.

6.3.6 Required player APIs for interactions

To make the player use the segments quality list set by NEWCAST, we potentially
use three main Application Programming Interfaces (APIs) of the Dashjs framework:
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➠ The setAutoSwitchQuality() API: We use this API to disable the Dashjs’s
adaptive algorithm and its quality auto-switch mode.

➠ The setQualityFor()API: We use this API to enforce the quality of each com-
ing segment as soon as the previous segment is loaded to the playback buffer.

➠ The on() API: We use this API to detect the moments where video segments are
completely loaded to the playback buffer.

6.4 Streaming performance using NEWCAST and its deriva-

tive versions

6.4.1 Parameter settings

As mentioned in the previous Sections, we use for the experiments the Envivio
video file available online in [88]. We set the predicted capacity "c" to one of the
throughput traces of the HSDPA dataset [84]. In table 6.2 we put all our parameter
settings.

Parameters values

Window Size 3 min 14 s
Capacity Time Slot 1 s
Video Length 3 min 14 s
Segment Length 2s
Video frame rate 30 fps
Startup threshold 4s
Video bitrates (Mbps) [0.2 0.3 0.48 0.75 1.2 1.85 2.85 4.3 5.3]
Levels weights [0.011 0.017 0.27 0.44 0.070 0.107 0.165 0.250 0.308]

Table 6.2: Parameters of the experiments.

6.4.2 Graphical interfaces for real time supervision

To make sure that our frameworks work correctly, we develop two graphical in-
terfaces for real time supervision. One for NEWCAST and the other for its derivative
versions: STERN, A-STERN, RECAST and STREET.

Figure 6.13 depicts a snapshot of NEWCAST’s graphical interface. In this inter-
face, we include some metrics of the real time streaming such as the number of stalls,
the average per segment video quality, the number of quality switching (at the left
corner) and some metrics of the bandwidth shaping such as the throughput predic-
tion error (at the right corner). To compare between the model set by NEWCAST and
the real streaming performance, we include some plots for the throughput variations,
the playback buffer evolution and the distribution of video bitrates. As depicted in
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Figure 6.13, the first line of the plots is dedicated for the model set by NEWCAST,
whereas the second line is dedicated for the real time streaming. The real time trans-
mission mode (threshold based or greedy) is indicated at the bottom of the interface
with the running time in second.

In Figure 6.14, we show a snapshot of STERN’s graphical interface 2. In this in-
terface, we include the same metrics and plots as in NEWCAST’s interface. How-
ever, to survey how the strategies are computed over the successive short-horizons,
we include additional metrics at the bottom of the interface such as the total number
of downloaded segments, the target number of segments to stream over the current
short-horizon and the beginning time of the following short-horizon.

6.4.3 NEWCAST performance under material induced prediction errors

We first evaluate NEWCAST without introducing throughput prediction errors
(only material induced errors interfere in the performance of the streaming). We do
this to check whether the bandwidth shaping is trustworthy or not.

We repeat the same experiment many times using different values of π (around
100 times per value of π). Results shown by Figure. 6.15 depict a high instability of
the system performance when the value of π is small (between 0.1 and 0.7), i.e., when
the threshold απ is high. This instability has provoked high numbers of video stalls.
However, when the value of π is high (between 0.8 and 1.6), we notice more stability
in the performance.

Through the plots, we also observe a close similarity between the system perfor-
mance and what was modeled by NEWCAST: A difference of 5.2% in the system uti-
lization cost and a difference of 0.53% in the average number of video stalls.

Although we repeat the same experiment for each value of π, we observe a strict
positive variance of the system utilization cost and of the average number of stalls . We
potentially link this to the casual errors of the bandwidth shaping and the variation of
the HTTP requests’ durations.

Overall, these results offer hope that, under high values of π, the exploitation of
NEWCAST in real environments becomes feasible, unless an accurate throughput pre-
diction is available. Under low values of π, however, the quality of the streaming risks
to be degraded since the system becomes sensitive to the tiniest prediction error.

In the next Section, we restrict our studies to the cases where π is higher than 0.8

2the same interface is used for A-STERN, RECAST and STREET
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Figure 6.13: Snapshot of NEWCAST’s graphical interface for real time supervision.
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Figure 6.14: Snapshot of STERN’s graphical interface for real time supervision.
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Figure 6.15: Experiments results: NEWCAST performance without introduced prediction errors.

6.4.4 NEWCAST and its derivative versions performance under introduced
prediction errors

6.4.4.1 Prediction error model

Unlike in the simulation Sections, each experiment lasts at most 5 minutes (by con-
sidering eventual video stalls). Thus, conducting a lot of experiments per each value
of π would be very time consuming, one of the reasons for which we do not adopt our
previous prediction error model defined in 5.2.2; the latter model is random-based
and acquires extensive experiments to compute the average system performance.

One more reason for which we do not adopt our previous error model, is that
when the bitrate is low, the system does not exhibit a stable performance. Thus, we
need a deterministic throughput variation rather than a random-based variation. To
counter each instability of the system, we consider a same throughput traces for all
the experiments. We mainly distinguish between two types of throughput estimation:
Throughput over-estimation with a constant over-estimation marge of 300 Kbits per
time slot and throughput under-estimation with a constant under-estimation marge
of 300 Kbits per time slot. Which respectively translates:

c̃(t) = creal(t) + 300 Kbits , ∀t

c̃(t) = creal(t)− 300 Kbits , ∀t
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6.4.4.2 Case of overestimated throughput

Here, we set πNEWCAST to 0.8 since in the previous study (with no introduced
prediction errors), the system showed a quasi-stable performance for π higher than
0.8. For STERN, A-STERN, RECAST and STREET we set the value of π to be equal to
0.8 then to be higher than 0.8.

In Figure 6.16, we show the performance of each algorithm in terms of real sys-
tem utilization cost, real average quality, real number of switching and real number of
video stalls. A noteworthy observation that arises from these results is that NEWCAST
ensures the highest number of video stalls (� 13) by comparison to the other algo-
rithms, and that the number of stalls induced by each short-term algorithm decreases
as the value of π increases. However, this comes at the expense of other performance
metrics. Here are some characteristics of each algorithm:

➠ NEWCAST: NEWCAST is the leader of all its derivative versions. It gives the
highest average quality (+), the lowest quality switching number (+) but the
highest number of stalls (-).

➠ STERN: STERN succeeds at reducing the average number of stalls (+), but in
return, it decreases both of the average quality and the system cost (-) and in-
creases the number of quality switching (-). As π increases, STERN gets closer
to the performance of NEWCAST in terms of the system cost and the average
quality (+) but it brings about a far higher number of quality switching (� 16)
(-).

➠ A-STERN: A-STERN performs closely to STERN mainly when π is small, but
it seems to be slightly greedier when π is high; it increases both of the average
quality and the system cost (+), but gives in return a higher number of quality
switching (� 18) (-).

➠ RECAST: RECAST is the best in terms of ensuring the lowest number of quality
switching (+), but this comes at the expense of the average quality (-), which
gives a low system cost (+). Compared to the other short-term algorithms, it
brings about the highest number of stalls (-) and seems to be the second least
sensitive to the variation of π (-).

➠ STREET: We proposed STREET to potentially follow the same strategy as NEW-
CAST in terms of the bitrate distribution. Unlike in the simulation part, when
the short-term predicted throughput is insufficient to stream the quality set by
NEWCAST, STREET uses all the available throughput and simply runs AWARE
without setting a threshold for the transmission schedule3, which makes it in-
sensitive to the value of π. Accordingly, it succeeds at giving the closest per-
formance to NEWCAST in terms of the system cost and the average quality (+),
with even a far lower number of stalls (� 1) (+), but it gives in return a very high
number of stalls (� 18) (-).

In Figure 6.17, we show some snapshots of video bitrate distribution with all the
proposed algorithms. Mainly we show how the average quality and the number

3Otherwise, STREET will be similar to STERN since the throughput is all the time overestimated
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of quality switching increase when the value of π becomes higher with STERN, A-
STERN and RECAST. By comparison with these algorithms, we show how STREET is
the best one in achieving the closest bitrate distribution to that of NEWCAST.

To make the performance analysis of STERN, A-STERN, RECAST and STREET
clearer, and to obviously distinguish their broughts from their drawbacks, we put in
Figure 6.20 a colored map in which we include the percentage of gain/loss of each
metric by comparison with NEWCAST. Each green color is interpreted as a brought
(good), and each red color is interpreted as a drawback (bad) from the point of view
operator and/or client.
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Figure 6.16: Experiments results: Global performance of the streaming using NEWCAST and its
derivative versions under overestimated throughput.
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Figure 6.17: Experiments results: Snapshots of video bitrate distribution using NEWCAST and its
derivative versions under overestimated throughput.

6.4.4.3 Case of underestimated throughput

Here, we set the values of π as in the previous case. Since the number of stalls is
evidently equal to zero, we do not include it in the analysis.

In Figure 6.18, we show the performance of all the algorithms in terms of the sys-
tem utilization cost, the average quality and the average number of quality switching.
Here are some important observations we can make according to the results:

First, all the short-term algorithms reduce the average video quality compared to
NEWCAST at the exception of A-STERN, which is the only algorithm that reacts to
the throughput under-estimation by increasing the average quality (+) and the num-
ber of switching (-). Second, NEWCAST is the best one in achieving a global good
performance (+). When π is high, STERN performs very close to NEWCAST in terms
of average quality and system cost (+), but gives a very high number of quality switch-
ing (-). RECAST condemns the video average quality (-) as it follows a constant bitrate
strategy per short-term horizon. And finally, STREET is the best one in following a
global performance close to that of NEWCAST (+).

As in the previous case, we show in Figure 6.19 some snapshots of bitrate dis-
tribution for all the algorithms. We hold the same analysis as with over-estimated
throughput.

For more clarity, we put in Figure 6.21 a colored map in which we highlight the
broughts and the drawbacks of each algorithm by comparison with NEWCAST.
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Figure 6.18: Experiments results: Global performance of the streaming using NEWCAST and its
derivative versions, under underestimated throughput.
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Figure 6.19: Experiments results: Snapshots of video bitrate distribution using NEWCAST and its
derivative versions under underestimated throughput.
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Figure 6.20: Colored map of NEWCAST’s derivative versions’ broughts and drawbacks by
comparison with NEWCAST, under underestimated throughput.
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Figure 6.21: Colored map of NEWCAST’s derivative versions’ broughts and drawbacks by
comparison with NEWCAST under overestimated throughput.
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6.5 Conclusion

In this Chapter, we have discussed step by step the implementation of NEWCAST
and its derivative versions in a realistic video streaming environment. For lack of
material resources to predict the future throughput of commonly used mobile devices,
we have proceeded with the throughput emulation by using the Linux tc-tool to shape
the bandwidth between the client and the server.

Our experimental results have shown the efficiency of the four proposed algo-
rithms STERN, A-STERN, RECAST and STREET in terms of reducing the number
of stalls when the throughput is overestimated. Nevertheless, by comparing with
the simulation results, all the short-term versions induce higher numbers of quality
switching.

The evaluation of our algorithms has been objectively made in terms of our pre-
defined QoE metrics and the system cost. Thus, we cannot judge which algorithm is
the best one. A subjective QoE evaluation should then be more judicious. In the next
Chapter, we develop a QoE problem in which the users’ perceptions on video qualities
are a key prominent factor for resolution.
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7.1 Introduction

The QoE is known to be subjective and context-dependent. Identifying and calcu-
lating the factors that affect the QoE is indeed a difficult task. Recently, a lot of effort
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has been devoted to estimate the users’ QoE in order to improve video delivery. In the
literature, most of the QoE-driven optimization schemes that realize tradeoffs among
different quality metrics have been addressed under the assumption of homogenous
populations. Nevertheless, people perceptions on a given video quality may not be
the same, which makes the QoE optimization harder. The study of this chapter aims
at taking a step further in order to address this limitation and to meet the users’ pro-
files within heterogeneous populations. To do so, we propose a closed-loop control
framework based on the users’ (subjective) feedbacks to learn the QoE function and to
optimize it at the same time. We suggest for this framework that all the users’ future
throughputs are known over long-horizon windows.

Our contribution in this chapter is twofold: First, (i) we exploit the knowledge of
future throughput variations in order to solve the optimization problem addressed
in [52] in a smoother and faster manner based on similar mathematical analysis than
in [6]. Second, (ii) we design a closed-loop framework based on client-server inter-
actions to learn the overall users’ perceptions and to fittingly optimize the quality of
the streaming. The performance of our proposed framework is obtained using Matlab
and Ns3 simulations under multi-user scenario.

We organize the chapter as follows: In Section 7.2, we formulate the single-user
QoE-optimization problem. Then, in Section 7.3, we discuss the strategy of the opti-
mal solution and propose an heuristic that performs close to the optimal solution. In
Section 7.4, we address the multi-user case and propose a closed-loop based frame-
work using neural networks. Finally, in Section 7.5, we evaluate the performance of
this framework through some numerical results.

7.2 Single-user QoE problem formulation

7.2.1 The video streaming model

We model a video as a set of S segments (or chunks) of equal durations in sec-
ond. Each segment is composed of N frames and is stored on the streaming server at
different quality representations. Each representation designs a video encoding rate
(hereinafter called bitrate). Denote by b1, b2, . . . , bL the available video bitrates where
bi < bj for i < j. We suppose that all the video frames are played with a deterministic
rate λ, e.g., 30 frames per second (fps).

Prior to each segment download, the player indicates to the server the quality
needed to stream it. Let b(s) be the bitrate associated to segment s and B = {b(1), . . . , b(S)}
be the set of bitrates associated to all video segments. We assume that the video play-
back buffer is big enough to avoid eventual buffer overflow events. We denote by
B(tk) the number of segments that the playback buffer contains at time tk. At the
beginning of the streaming session, a prefetching stage is introduced to avoid future
buffer underflows; T0 seconds of video (corresponding to x0 segments) have to be
completely loaded to the buffer before starting playing the video. When there are no
segments in the playback buffer, the video stops and a new prefetching stage is intro-
duced to load again T0 seconds of video before pursuing the lecture. This event is,
hereinafter, referred to as video stall.
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In this study, we exploit the knowledge of the user’s future throughput over a
given horizon window H=[t1 . . . tT ]. Before starting the streaming, we propose to set
all the video segments’ bitrates to be optimally streamed over that horizon. We de-
note by r(tk) the user’s estimated throughput at time tk, k ∈ [1 . . . T ] and by btk the
video bitrate scheduled to be streamed at that time. Note that btk only depends on the
throughput variation and the set of segments’ bitrates B. From now on, we denote it
by btk(B, r).

To model the dynamic of the playback buffer, we define two phases:

• The start-up/rebuffering phase: referred to as BaW-phase (for Buffer and Wait),
where the media player only downloads the video without playing it.

• The playback phase: referred to as BaP-phase (for Buffer and Play), where the
player downloads and plays the video at the same time.

Depending on the state of the buffer at each time of observation tk, we define two
variables SBaP (tk) and τBaW (tk) such that:

1. If the player is on a BaP-phase, SBaP (tk) defines the time at which that phase has
started,

2. If the player is on a BaW-phase, SBaP (tk) defines the time at which the next BaP-
phase will start,

3. If the buffer is empty, τBaW (tk) determines the duration of the resulting BaW-
phase,

4. If the buffer is not empty, τBaW (tk) is set to zero.

This translates mathematically as

SBaP (tk) = max{SBaP (tk−1) , δ(B(tk) = 0) · (tk + τBaW (tk))}, (7.1)

τBaW (tk) = δ(B(tk) = 0) · {τ ;

tk+τ
�

t=tk

λ · r(t)

N · bt(B, r)
= x0}, (7.2)

where

δ(X)











1 if X = is true

0 otherwise.

Hence, the dynamic of the playback buffer can be written as

B(tk) = {B(tk−1) +
λ · r(tk)

N · btk(B, r)
−

λ

N
· δ(tk ≥ SBaP (tk))}

+, (7.3)

where {x}+ = max{x, 0} is used to ensure that the playback buffer occupancy
cannot be negative.
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Figure 7.1: Illustration of the playback buffer BaW-BaP cycles.

7.2.2 The QoE-optimization problem

The goal of bitrate adaptation in video streaming services is to improve the users’
perceived quality of the video. However, it is too challenging to quantitatively define
the QoE as it encompasses many complex factors such as the user’s mood, the time
and the way he watches the video, the video context, etc. In this work, we use five of
the most common key QoE metrics to express our objective QoE function.

1. The average video quality (denoted by φ1), which is the average per-segment
quality over all segments given by

φ1(B) =
1

S

S
�

s=1

b(s). (7.4)

2. The startup delay ratio (denoted by φ2), which is the proportion of time that
takes the first BaW-phase before starting the video:

φ2(B) =
τBaW (t0)

T
, (7.5)

where T is the video length in seconds.

3. The average number of video quality switching (denoted by φ3) given by

φ3(B) =
1

S − 1

S
�

s=2

δ{b(s) �= b(s−1)}. (7.6)

4. The number of video stalls (denoted by φ4) given by

φ4(B) =
T
�

k=1

δ{B(tk) = 0}. (7.7)
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5. The rebuffering delay ratio (denoted by φ5), which is the proportion of time that
take all the rebuffering events, namely

φ5(B) =
1

T

T
�

k=1

δ{B(tk) = 0} · τBaW (tk). (7.8)

As the user’s preference on each of these QoE metrics may not be the same, we
assign to each metric φi a weighting parameter ωi to adjust its impact on the global
QoE variation. As done in a previous work [52], we model our global QoE as a linear
function of the weighted five aforementioned QoE metrics, namely

Q(B) =
5

�

i=1

ωiφi(B), (7.9)

where ω1 ≥ 0 and ωi ≤ 0, ∀i ∈ 2, . . . , 5.

Let W = (ω1, . . . ,ω5)
� be the vector of weights and Φ(B) = (φ1(B), . . . ,φ5(B))

� be
the vector of QoE metrics. If we assume that the user tolerates at most p stalls during
the hole session, we end up formulating our single-user QoE optimization problem as
follows

max
B

Q(B) = W�
Φ(B) (7.10)

s.t.











�N
k=0

λ·r(tk)
N ·btk (B,r)

= S

φ4(B) ≤ p ; p ∈ N,

where the first constraint ensures that the whole video will be streamed by the end
of the future horizon.

7.3 Proposed solution for single-user QoE optimization

The QoE optimization problem defined in (7.10) is a combinatorial problem with a
very high complexity (NP hard). In [52], authors addressed a similar problem, but they
assumed an inaccurate throughput estimation, which justifies their choice to adopt
the Model Predictive Control (MPC) to solve their QoE optimization problem. In our
study, we characterize an important property of the optimal strategy and propose for
resolution an heuristic algorithm that performs close to the optimal approach.

7.3.1 property of optimal solution: Ascending bitrate strategy per BaW-BaP
cycle

Definition 3. A bitrate strategy is said to be ascending per BaW-BaP cycle, if the quality level

of the segments increases during each BaW-BaP cycle of the streaming session.
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Proposition 3. Assume that there exists a solution B that satisfies the constraints in (7.10).

Then, there exists an ascending bitrate per BaW-BaP cycle solution Bas that optimizes the

problem in (7.10).

We put the details of the proof in 8.2.

7.3.2 Algorithm for optimal solution

In this section, we describe the main steps for building an optimal solution of at
most p stalls during the streaming session. The key idea of our algorithm is stall en-
forcement: As we assume knowing the future throughput, we are able to enforce video
stalls at any moments of the streaming session. Once we locate the stalls’ positions (at
the level of witch segment each stall will happen), we divide the session into multi-
ple BaW-BaP cycles then we look for the optimal ascending bitrate strategy over each
cycle. We obtain the optimal number of stalls through an exhaustive research. We
start computing the optimal strategy with zero stalls, then with one stall up to p stalls.
The distribution of stalls is also obtained through an exhaustive research. Here are the
steps to obtain an optimal ascending bitrate strategy over one BaW-BaP cycle:

1. Find all the possible ascending bitrate combinations of the BaW-phase that allow
to build an ascending bitrate strategy over the hole BaW-BaP cycle (step A and
B in Figure 7.2).

2. For each BaW-phase combination, find all the possible ascending strategies that
satisfy the constraints of (7.10) (steps 1, 2 and 3 in Figure 7.2).

3. For each strategy, compute the resulting QoE metrics then apply the vector of
weights W to find the best solution.

In order to find all the possible ascending bitrate strategies, we can use a tree of
choice similar to that described in Figure 4.2.

Figure 7.2: Steps for building an increasing bitrate strategy over a BaW-BaP cycle.
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7.3.3 Heuristic for a sub-optimal solution

Our heuristic differs from the optimal approach in two major points: First, (i) the
way we build the ascending bitrate strategy on each BaW-BaP cycle, and second, (ii)
the way we set the number of stalls. Here are some explanatory details:

• Once we set the bitrates’ combination of the BaW-phase, we progressively in-
crease the bitrates of the BaP-phase starting from the last segment back to the
beginning. We stop increasing the bitrate when we reach the point (segment) at
the level of which a stall happens if we keep increasing the bitrate (5th segment
in step A-2 and 7th segment in step A-3 of Figure 7.2). Given that the number of
segments of the BaW-phase is small in general, it does not take much time to find
all the possible ascending BaW-phase combinations, which makes our heuristic
converge fast (see Algorithm 9).

• Instead of doing an exhaustive research on the number of stalls, we proceed
as follows: We start by finding the optimal strategy with zero stalls. Then, we
check if the global QoE will increase with one stall enforcement. If it does, we
try to enforce a second stall. If not, we stop and return the latest strategy. We
keep increasing the number of stalls that way till reaching p stalls or till the
QoE function decreases. We put more details in Algorithm 10, where Ki, i ≤ p

denotes the position of the ith stall.

7.4 Multi-user QoE optimization problem

7.4.1 Problem formulation

In this section, we extend the QoE optimization problem to the multi-user case.
We propose to find the vector of weights W∗ that maximizes the QoE among all users.
The main objective is to maximize the users’ feedbacks on the video delivery using a
synthetic QoE dataset. The QoE problem of the multi-user case can be mathematically
expressed as

W∗ ∈ argmax
W

�

U
�

u=1

�ru{Fru(W)},

�

(7.11)

where ru is the throughput of user u and Fru(W) is his feedback on the quality
delivered after QoE optimization (7.10) using vector W .
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Algorithm 9: MAESTRO: MAximizing qoE with aScending biTRate strategy over
One-cycle

Data: {bl}l≤L, c , S , W ;
22 M = [ ] , b(s) = b1 ∀s ∈ 1, . . . , x0 ;
44 for l1 = 1 : L do
66 {b

(s)
Previous}1≤s≤S = {b(s)}1≤s≤S ;

88 b(s) = bl1∀ s ∈ x0 + 1, . . . , S ;
1010 check if it is possible to stream {b(s)}1≤s≤S without stalls ;
1212 if no stall happens then
1414 s = x0 ;
1616 while s ≥ 1 and No stall happens do
1818 b(s) = bl1 ;
2020 s = s− 1;
2222 check if it is possible to stream {b(s)}1≤s≤S without stalls ;
23 end
2525 if a stall happens then
2727 b(s) = b

(s)
Previous;

28 end
3030 Il1,l1 = {b(s)}1≤s≤S ;
3232 Compute Φl1,l1 = (φ1,φ2,φ3) ;
3434 for l2 = l1 + 1 : L do
3636 {b

(s)
Previous}1≤s≤S = {b(s)}1≤s≤S ;

3838 s = S ;
4040 while s > x0 and No stall happens do
4242 b(s) = bl2 ;
4444 s = s− 1;
4646 check whether it is possible to stream {b(s)}1≤s≤S without stalls ;
47 end
4949 if a stall happens then
5151 b(s) = b

(s)
Previous;

52 end
5454 Il1,l2 = {b(s)}1≤s≤S ;
5656 Compute Φl1,l2 = (φ1,φ2,φ3) ;
5858 M = [M ;Φl1,l2 ];
59 end
60 end
61 end
6363 return ( Φ∗ = Argmax

M(i,:),i≥1

(M [w1, w2, w3]
T ))
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Algorithm 10: CASTLE: asCending bitrAte STrategy over muLti-cycle sEssion
Data: {bs}s≤L, c , x0, S, p, W ;

22 BoundInf = x0 , BoundSup = S , i=1;
44 Previous QoE= QoE without stalls;
66 Previous Φ = Φ without stalls;
88 for i ≤ p do

1010 for Ki ∈ {x0 + 1, .., S − x0} do
1212 if there are some stalls already positioned then
1414 BoundInf = max{Kj ;Kj < Ki}j≤i or x0;
1616 BoundSup = min{Kj ;Kj > Ki}j≤i or S;
17 end
1919 BaW-BaPPreStall = {BoundInf ..Ki − 1};
2121 BaW-BaPPostStall = {Ki..BoundSup};
2323 MAESTRO([w1, w2, w3]

T ,BaW-BaPPreStall);
2525 MAESTRO([w1, w2, w5]

T ,BaW-BaPPostStall);
2727 compute ΦKi

= (φ1,φ2,φ3, i,φ5);
2929 M = [M ;ΦKi

];
30 end
3232 if max{{MW T }j≥1} > Previous QoE then
3434 Ki=argmax

j≥1

{{MW T }j≥1};

3636 Previous QoE= Resulting QoE;
3838 Previous Φ = ΦKi

;
4040 i=i+1;
41 else
4343 return ( Φ∗ = Previous Φ)
44 end
45 end
4747 return ( Φ∗ = Previous Φ)

7.4.2 Practical solution: Closed-loop- based framework with users’ feed-
backs

Framework design

The multi-user QoE optimization problem requires to solve problem (7.10) for each
user u ∈ {1, . . . , U}, knowing the exact value of vector W∗ that meets all the users’
preferences. The challenge is then to combine single user QoE optimization with a
QoE training mechanism in a closed-loop manner to progressively learn the value
of W∗. To do so, we develop two sub-frameworks and make them interact together
within a closed-loop based framework: One is for single user QoE optimization (as
described in (7.10)) and the other one is for QoE training (see Figure 7.3).
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Figure 7.3: Closed-loop based framework for multi-user QoE-optimization.

QoE training tool

To compute W∗, we use a simple neural network [89], where the training sam-
ples are couples of QoE metrics and user feedback. We define the training dataset as
{(Φ∗

ru ,Fru)}1≤u≤U , where Φ
∗
ru is the vector of QoE metrics delivered by (7.10) under

throughput ru and vector W . Fru being the corresponding feedback.
We define the Hypothesis function of the neural network as a linear function

hW(Φ) = W�
Φ,

where Φ is the input vector and W is the vector of weights to learn (See Figure 7.4).

Figure 7.4: Architecture of the QoE trainer.

For the learning, we use a mini-batch algorithm based on the gradient descent. The
goal of using the gradient descent is to minimize the average error rate between Fru

and the network output hW(Φ∗
ru), u ∈ {1 · · ·U}.

Let Loss(W ,Φ∗
ru ,Fru) be the half squared error corresponding to the uth training

sample and Loss(W ,m) be the averaged error among m training samples, namely

Loss(W ,Φ∗
ru ,Fru) =

1

2
|hW(Φ∗

ru)− Fru |
2 (7.12)

and

Loss(W ,m) =
1

m

m
�

u=1

Loss(W ,Φ∗
ru ,Fru). (7.13)
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To reduce the average loss, the gradient descent updates the vector of weights W
in a way that it moves oppositely to the direction of the gradient vector ∇Loss(W ,m).
The algorithm stops when a predefined minimum loss � is reached or when the num-
ber of updating steps is above a given threshold Trs (See Algorithm 11).

The partial derivatives of Loss(W ,m) in function of the weights ωk, k ≤ 5 are given
by

∂Loss(W ,m)

∂ωk

=
∂

∂ωk

1

m

m
�

u=1

Loss(W ,Φ∗
ru ,Fru) (7.14)

=
1

m

m
�

u=1

Φ
∗
ru,k(W

�
Φ
∗
ru − Fru)

Algorithm 11: The mini-batch Gradient descent

22 Input:{(Φr1
∗,Fr1), .., (Φrm

∗,Frm)}, �, µ, Trs, [αmin,αmax];
44 GoodConvergence =0 ; SlowConvergence =0 ; Divergence = 0; Set α in [αmin,αmax] ; Set

W very small;
5 repeat
6 repeat
88 W = W − α.∇Loss(W ,m);
9 until GoodConvergence or (αmax − αmin) ≤ µ

10 if Loss(W ,m) ≤ � then
1212 GoodConvergence =1;
13 else
1515 if Loss(W ,m) is decreasing then
1717 SlowConvergence = 1;
1919 increase (αmin);
2121 Set α in [αmin,αmax];
22 else
2424 Divergence =1;
2626 decrease(αmax);
2828 Set α in [αmin,αmax];
29 end
30 end
31 until Loss(W ,m) ≤ � or Trs iterations are done
3333 return W∗ = W ;

7.5 Numerical results

7.5.1 Simulation environment

To evaluate the performance of our proposed framework we conduct several simu-
lations using Ns3 and Matlab. We use Ns3 mainly to generate standard-compliant cor-
related throughput samples; we run several simulations of an LTE network by varying
the mobility of users each time. In Table 7.1, we put the parameter settings of all Ns3
simulations.
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The QoE optimization sub-framework and the QoE trainer were both developed
with Matlab. As in real world, we consider users’ feedbacks as scores rated from 1 to
5. When a quality Φr

∗ is delivered to a user, we look through the predefined synthetic
dataset to find the score it may give.

In the dataset, we have put all the possible values of vector Φr
∗ in a specific priority

order verifying

|wsatll| >> |wrebuffering| >> |waverage-quality| >> |wstartup| >> |wswitching|.

Then, we have grouped them in classes. To each class we have associated a MOS
and a specific distribution of scores.

As soon as a vector Φr
∗ is delivered, we determine through the QoE dataset the

class to which it belongs. Then, according to that class we randomly generate a score
based on its corresponding distribution of scores. In Figure 7.5 we give insight on
the form of our QoE dataset. The distribution of MOS in function of the class rank is
plotted in Figure 7.6.

Note that the throughput samples used at the level of the QoE optimization sub-
framework are randomly selected (according to a Uniform distribution) among 1000
throughput samples generated with Ns3.

All Matlab parameter settings are listed in Table 7.2.

Figure 7.5: Synthetic-dataset for scores’ generation.
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Figure 7.6: Synthetic MOS as function of the QoE class rank.

Number of macro cells 1
Number of UEs per cell 10
eNb Tx Power 46 dBm
eNb noise figure 5 dB
UE noise figure 9 dB
Pathloss model COST 231
MAC scheduler Proportional fair 50 RBs
Fading model Pedestrian
Transmission model MIMO Transmit diversity
Mobility model RandomWalk2dMobilityModel
Velocity of users Uniform [5,16] m/s
EPS bearer NGBR-VIDEO-TCP-DEFAULT
Fading model Pedestrian
Simulation length 70 s

Table 7.1: Ns3 simulation setting parameters.

Window Size 70 s
Throughput Time Slot 1 s
Video Length 30 s
Segment Length 1s
Video frame rate 30 fps
Playback cache 5s
bitrate levels Mbps [0.4 0.75 1 2.5 4.5]
Maximum number of stalls (p) 1

Table 7.2: Matlab simulation setting parameters.

7.5.2 Performance results

According to our simulation results, two noteworthy observations can be made
regarding the performance of our closed-loop based framework: First, the learning
process ultimately converges to a steady state where the output vector W∗ has a quasi-
constant value, and second, this vector W∗ achieves the highest QoE in terms of MOS
compared to the other vectors computed throughout the learning process.
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In Figure 7.7, we show the evolution of the mean square variation of vector W
during the learning process for different mini-batch sizes (5, 10, 50 and 100 scores).
According to the results, this variation tends to zero whatever the mini-batch size, al-
though the decrease is slow in some cases (case of 5 and 50 scores). A fast convergence
is however noticed in the case of 10 scores. The difference in the convergence time is
actually due to the randomness of the throughput selection and the scores generation.
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Figure 7.7: The mean square variation of vector W during the learning process.

A comparison between the final outputs W∗ of the four mini-batch sizes shows
that they are not exactly the same. To go further in the analysis, we compare between
all the updated values of vector W for each mini-batch size. We perform the com-
parison by evaluating the MOS given by each vector W when the QoE-optimization
sub-framework is separately run under 1000 randomly selected throughput samples.

Figure 7.8 shows that for the four mini-batch sizes, the MOS experiences some
fluctuations with the first values of W . Then, when it tends to the values obtained
at the steady state, it converges to the highest MOS value (around 4.8 for the four
cases). These results offer hope that the proposed closed-loop based framework can
be designed around QoE optimization for video adaptation and delivery in real world
environment.
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Figure 7.8: The MOS of the QoE-optimization sub-framework using the updated values of vector W .

7.6 Conclusion

In this Chapter, we have addressed a QoE optimization problem in which the
users’ profiles are the key prominent factor for resolution. We have proposed a closed-
loop framework based on the users’ feedbacks to learn the QoE objective function and
to proceed to the QoE optimization. By using a synthetic QoE dataset, we have proven
the efficiency of the proposed framework. Indeed, the QoE function learned at the
steady state ensures a high quality delivery for the majority of users. These promising
results allow us to gain insight on how QoE optimization problems can be handled in
heterogeneous populations where the users’ preferences and profiles are different.

To go further with this study, and explore the robustness of our closed-loop system,
a real QoE dataset needs to be constructed. Thus, real scores on real video streaming
sessions should be collected. To optimize the framework performance, the Hypothesis
function of the neural network should be carefully reviewed, which is the subject of
our future works.
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8.1 Conculsions

Video streaming services become more and more present in human daily life thanks
to the high broadband access afforded by operators and the technological advances in
multimedia services.

In this thesis, we have addressed some problems related to video streaming de-
livery. We have mainly focused on two major properties of the service that common
internet services do not have: First, the duration of a video file is known in advance,
and second, video data can be buffered (prefetched) at the user’s local device before it
is displayed without degrading the QoE. We have exploited these two properties with
some of the user’s contextual information to improve the final QoE. Both real (i.e., non
adaptive) streaming and adaptive streaming have been addressed, with a more focus
on the DASH standard. To quantify the QoE, we have been based on some key QoE
metrics that mostly affect the users such as video stalling, startup delay, rebuffering
and bitrate switching in case of adaptive video streaming.

Our works have been based on the assumption that the user’s context (channel
quality or link capacity) can be easily acquired by the network resource allocator (e.g,
eNodeB) or/and the application layer of the user device. Our proposed streaming ap-
proaches have mainly focused on the way and time video data should be transmitted
to the consumer to afford a minimum acceptable QoE or higher. We have proposed
to adapt the video delivery in a reactive manner (Chapter 3) or in a proactive manner
(chapter 4, 5, 6 and 7) depending on the user’s context.

Through our first study, we have shown that the high mobility of users, usually
seen as an obstacle, can be exploited as a profit to improve the overall spectral ef-
ficiency and the global QoE in mobile video streaming. We have shown that exist-
ing scheduling algorithms for resource allocation can perform better when the users’
contexts are acquired and utilized in restricting the access to the scheduler. We have
designed a cross-layer to prevent low SINR users from being scheduled by defining
a threshold of SINR value. Under the high mobility of users and the assumed road
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network topology, we have shown that the number of video stalling has decreased by
comparison with the conventional scheduler. The idea behind implementing such a
cross-layer is to allow users with high SINR values to download as much data as their
channel conditions allow before going across low coverage areas. We have classified
our approach as reactive since the scheduling is performed in function of the users’
latest channel states.

In our following study, we have proposed proactive streaming approaches by as-
suming the knowledge of the user’s future context. We have shown that the prediction
of the long term throughput variations allows to avoid future video stalling and use-
less video bitrate switching by wisely setting the strategy of the streaming long before
the end of the session. In our proposed approaches, we have taken into account the
user’s QoE as well as the operator’s preferences in terms of reducing the network uti-
lization cost. We have shown that the knowledge of the future throughput variations
can be profitable for both of the user and the network owner. The key idea of our ap-
proaches is to allow downloading as much data as the user’s link capacity allows from
the beginning times of the streaming session. This is ensured by assigning low video
bitrates to the first video segments. As well as time goes forward, the video bitrate is
increased in a progressive manner, which returns a low number of quality switching.
This idea has been applied under the assumption of a perfect throughput prediction
with NEWCAST (Chapter 4), then under the assumption of unperfect throughput pre-
diction with STERN, A-STERN, RECAST and STREET (Chapter 5). We have shown
through our simulations that the latter algorithms are more robust to prediction errors
than NEWCAST. Which offers hope to deploy them in realistic environments.

The idea of NEWCAST and its derivative algorithms requires the implementation
of a cross-layer at the level of the network resource allocator to allow predicting the
future throughput variations and to apply the user’s scheduling scheme. According
to our proof, to reduce the network utilization cost, the scheduling of the user should
be of a threshold type. The value of the threshold is determined in function of the
preferences of the user and/or the operator.

Our experiments have shown that NEWCAST can interact with real video players
as an additional framework to the application layer, but they have revealed its sensi-
tivity to throughput prediction errors. STERN, A-STERN, RECAST and STREET have
exhibited, however, a better robustness in terms of video stalling. Which offers hope
again to deploy our solutions in realistic environments.

In our last study, we have proposed another proactive streaming approach based
on the knowledge of the users’ future throughput variations and machine learning.
We have defined and solved a QoE optimization problem for heterogenous popula-
tions with unknown and different QoE profiles. We have shown that using machine
learning in combination with the users’ s long term future contexts can be profitable
for maximizing the global QoE. In one hand, knowing the future throughput of each
user allows maximizing his QoE as shown previously with NEWCAST. In another
hand, training the feedbacks of users on previously optimized video qualities allows
learning the real QoE profiles of users. We have designed a closed-loop framework
based on single-user QoE optimization and feedbacks training, and have shown its
high efficiency in terms of convergence and maximizing the QoE.
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8.2 Perspectives

The resource allocation with CAMS

Many interesting perspectives can be suggested for our resource allocation mech-
anism CAMS. First, by always considering a constant speed for all users, the SINR
threshold can be analytically determined by defining a mathematical model in which
the users’ speed will be mapped to the global QoE. We may optimize a QoE objective
function under some constraints related to the stalling number or frequency or even
duration. Second, by varying the speed of users, we may design a smart cross-layer
that defines the SINR threshold per user context. Which may give higher QoE and
higher network performance. The cross-layer may even communicate with the appli-
cation layer to have feedbacks on the user’s QoE and to accordingly adjust his SINR
threshold. Third, applying CAMS with DASH and reactive adaptive algorithms may
degrade the users’ QoE since the users will switch perpetually from active to inactive
states. A cross-layer optimization taking into account the application layer and the
user state may be envisioned to ensure a smooth video bitrate switching and a low
number of stalls.

NEWCAST and its derivative versions

We deigned NEWCAST to tradeoff QoE and system utilization cost for a single
user. In a real network where different users of different network conditions are com-
peting for the resources, the threshold-based transmission schedule would be a good
alternative to fairly serve the users and to ensure a seamless QoE among them. As
a perspective, we suggest to adapt our first optimization problem to the multi-user
case. We may envisage a same threshold-based schedule for all the streaming users or
a threshold-based schedule per user context. The purpose being to reduce the overall
system utilization cost and to improve the overall QoE. NEWCAST derivative ver-
sions may also be tested in a multi-user environment to explore wether they improve
or degrade the users’ global QoE with the presence of prediction errors.

In the analysis of NEWCAST performance, we conducted a comparison with throughput-
based and buffer-based baseline adaptive algorithms. As a perspective, we propose
to do the comparison again with up-to-date algorithms such as BOLA, FESTIVE and
PANDA. It would be even more interesting to perform the comparison with real ex-
periments.

The deployment of NEWCAST and its derivative versions in real systems requires
the implementation of a cross-layer at the level of the network resource allocator. This
cross-layer should allow predicting the user’s future throughput variations and ap-
plying the threshold transmission scheme. As a future work, we propose to design
the interactions between this cross-layer and the network scheduler.
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Chapter 8. Conclusions and Perspectives

The QoE optimization with the closed-loop based framework

The idea of implementing the closed-loop based framework for video QoE opti-
mization is quite original mainly in heterogenous populations. Nevertheless, the way
we implemented it lacks some authenticity as we were based on our own synthetic
QoE dataset. As a future work, we propose to collect real data from real video stream-
ing users to obtain more authentic results. We may even fashion the video playbacks
in our way to ensure a high number of QoE classes in our QoE dataset. One other chal-
lenging point, consists of defining a more suitable Hypothesis function than the iden-
tity function for the training sub-framework. We may use deep neural networks for
that. As another perspective, we may define an additional resource allocation prob-
lem to manage the network resources between simultaneous streaming users. The
purpose being to improve the overall QoE by always considering heterogenous pop-
ulations with different QoE profiles.
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A.1 Proof of Proposition 3

Let c and r be the network capacity and the user transmission bit-rate on a given
interval of time [0, �]. Without loss of generality 1 and for the sake of illustration, we
choose an interval of time where c is monotonically decreasing as shown in Figure 1.

Figure 1: Sketch of proof of the threshold strategy.

As we have r(t) ≤ c(t) ∀ t ∈ [0, �], then ∃ (δ,β) ∈ [0, �
2 ]× [0, 1] such that ∀ t ∈ [0, δ]

c(t) ≥ c(t+ �− δ) (1)

and
� δ

0

r(t) + βr(t+ �− δ)

c(t)
dt ≤ δ, (2)

where inequality (1) derives from the decreasing pace of c, and relation (2) derives
from the fact that some data at the end can be transmitted beforehand. (According to
the figure above, the hatched area on the right can be entirely shifted to the left, which
gives a value of β equal to 1). On the other hand, we have

� �

0

r(t)

c(t)
dt =

� δ

0

r(t) + βr(t+ �− δ)

c(t)
dt+

� �−δ

δ

r(t)

c(t)
dt

+

� �

�−δ

r(t)

c(t)
dt−

� δ

0

βr(t+ �− δ)

c(t)
dt. (3)

Using inequality (1), we obtain

1The proof still holds for a monotonically increasing c.
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� �

0

r(t)

c(t)
dt ≥

� δ

0

r(t) + βr(t+ �− δ)

c(t)
dt+

� �−δ

δ

r(t)

c(t)
dt

+

� �

�−δ

r(t)

c(t)
dt)−

� �

�−δ

βr(t)

c(t)
dt. (4)

Obviously, if

� δ

0

r(t) + βr(t+ �− δ)

c(t)
dt = δ,

then all the given capacities in [0, δ] will be used, i.e., all the white surface in Figure 1
will be filled. In that case, we define a new transmission schedule r� such that

r�(t) =







c(t) t ∈ [0, δ]
r(t) t ∈]δ, �− δ[

(1− β)r(t) t ∈ [�− δ, �],
(5)

which gives
� �

0

r(t)

c(t)
dt ≥

� �

0

r�(t)

c(t)
dt.

Otherwise, if
� δ

0

r(t) + βr(t+ �− δ)

c(t)
dt < δ, (6)

then β will be equal to 1 since our objective is to shift as much data as possible from
the times where the capacity is low to the times where the capacity is high. Therefore,
to completely use the highest capacities, we must repeat the same shifting operation
on [0, �− δ] considering a new transmission function r� verifying







� δ

0

r�(t)

c(t)
dt =

� δ

0

r(t) + βr(t+ �− δ)

c(t)
dt

r�(t) = r(t) ∀ t ∈ [δ, �− δ].

(7)

In both cases, inequality (4) holds correct, which means that the highest capacities
are less expensive than the lowest capacities in terms of network utilization cost if they
are used for transmitting data. If we keep repeating the shifting operation on all the
future horizon, we end up having all the highest capacities entirely used and all the
lowest one unused, which is clearly a threshold transmission schedule as defined in
Definition 1.

Now we assume that, knowing c, there exists a feasible solution (r, γ) that satisfies
the constraints in (4.5). To perform the data shifting operation on the transmission
schedule, three main conditions should be verified:

• The shifted data must have the same video bitrate as the bitrate used in the
shifted-to time,

• data shifting should not interrupt a segment transmission schedule,

• data shifting should not violate the stall constraints.
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Actually, shifting the data transmission can be either done to the left (earlier) or to
the right (later). As we assume a very large playback buffer, sending the video data
at earlier times will not cause packets rejection and, thus, will not cause video stalls.
Meaning that any data shifting to earlier times of higher capacities will be performed
without violating the stall constraints. However, when the higher capacities come
later, the data shifting must be checked whether it violates the stall constraints or not.
As we only shift the data transmission without changing their corresponding video bi-
trates, we end up having a new bitrate level strategy γrth that gives the same weighted
average quality as given by γ. Thereby, the resulting strategy (rth, γrth) outperforms
strategy (r, γ), which completes the proof.

A.2 Proof of Proposition 2

Pick a suite of N segments with a non ascending quality levels’ order, in a way
that it can be streamed without video stalls over the future horizon. Then, according
to this quality order, set a threshold-based solution (rth, γ) with threshold α such that,
beyond this threshold, the first constraint violation will occur at time t = sn.

Suppose that, under this solution, two bitrate levels b1 and b2 will be respectively
streamed over [τ, τ + δ] and [τ �, τ � + δ�] as depicted in Figure 2, such that

τ + δ < sn, τ � > sn, b1 > b2

and
� τ+δ

τ

rth(t)dt =

� τ �+δ�

τ �
rth(t)dt

Figure 2: Sketch of proof of the scending bitrate strategy.

Let frth(t) be the network frame rate at time t. As we have b1 > b2, then the number
of frames that will be streamed during [τ �, τ �+ δ�] is greater than the number of frames
that will be streamed during [τ, τ + δ]. Therefore, ∃ β > 0 such that

� τ �+δ�

τ �
frth(t)dt =

� τ+δ

τ

frth(t)dt+ β. (8)
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Suppose that we switch between b1 and b2 over these two intervals of time. Then,
the number of cumulative received frames at sn will be increased by β. Let u and u�

be the cumulative number of arrival frames functions before and after switching the
bitrates. Therefore,

u�(sn) = u(sn) + β. (9)

Figure 3: Impact of bitrates switching on the cumulative number of arrival frames u.

Actually, if u�(sn) is large enough and allows increasing the threshold beyond α

without violating the stall constraint at t = sn and later, then the cost function will be
reduced. Otherwise, the threshold remains the same without changing the system per-
formance. In fact, as explained in the previous section, streaming the data beforehand
will only add more flexibility toward the stall constraints since the buffer is assumed
to be very large. We show by the sequel that, even if we switch between the two bitrate
levels, the streaming will remain without video stalls since u� ≥ u(t) ∀t ∈ [0, T ] (see
Figure 3).

Let fr�th be the network frame rate function after switching. Then, we have

fr�th(t) > frth(t) ∀t ∈ [τ, τ + δ[ (10)

fr�th(t) < frth(t) ∀t ∈ [τ �, τ � + δ�[ (11)
� τ+δ

τ

fr�th(t)− frth(t) dt =

� τ �+δ�

τ �
frth(t)− fr�th(t) dt = β. (12)

We further define u� as

u�(t) =







































u(t) t < τ

u(τ) +

� t

τ

fr�th(s) ds t ∈ [τ, τ + δ[

u(t) + β t ∈ [τ + δ, τ �[

u(τ �) + β +

� t

τ �
fr�th(s) ds t ∈ [τ �, τ � + δ�[

u(t) t ≥ τ + δ�.

(13)
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Actually, the cumulative watched frames function l will remain the same as the
playback frame rate λ holds the same for all bitrate levels. Now, we see clearly that ∀
t �∈ [τ �, τ � + δ�[ , u�(t) ≥ u(t). However, for t ∈ [τ �, τ � + δ�[, we have

u�(t)− u(t) = β −

� t

τ �
frth(s)− fr�th(s) ds, (14)

which is positive according to (11) and (12).

To conclude, putting the segments in an ascending bitrates’ order may allow a
higher transmission threshold which further reduces the cost function without de-
grading the average quality of the video.

A.3 Proof of Proposition 3

We shall show that for any feasible strategy B that satisfies the constrains in (7.10),
there exists an ascending bitrate per BaW-BaP cycle strategy Bas such that

Q(Bas) ≥ Q(B).

Here, we distinguish two cases: (i) Case where the session is composed of one BaW-

BaP cycle, i.e., no stall during the session, and (ii) case where the session is composed
of more than one BaW-BaP cycle, i.e., one or more stalls during the session.

• Case (i) : Without loss of generality, and for the sake of illustration, we assume
that we can stream and play the video in a smooth way under a non-ascending
bitrate strategy B. Then, there ∃ m ≤ n such that b(m) ≥ b(n). Let tp and tq be the
requesting times of b(m) and b(n), respectively, as illustrated in Figure 4.

Figure 4: Impact of bitrate switching on the buffer state evolution.

If we switch between qualities of segments m and n, then the buffer state will
be more relaxed toward the stall constraint since segment m will be streamed
in a shorter time and, then, the following segments will be loaded sooner to
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the buffer, which will not induce buffer stalls. That said, if we reorder B in an
ascendant way, the video will not experience any stall. Let Bas be the resulting
set after reordering B in an ascending way, then we have

φ4(Bas) = φ4(B) = 0 and φ5(Bas) = φ5(B) = 0.

As we keep the same selected bitrates in Bas as in B, the average per segment
bitrate will not change, which gives

φ1(Bas) = φ1(B).

Since Bas is an ascending strategy, the video session will start with the lowest
qualities defined in B. Hence, the startup delay will be reduced when using Bas

compared to B. Therefore,

φ2(Bas) ≤ φ2(B).

Now, let L be the number of qualities defined in B. Thus, the number of quality
switching under strategy B will be at least equal to L. On the other hand, strat-
egy Bas will experience exactly L − 1 quality switching since the video bitrate
increases during the session. Therefore, we have

φ3(Bas) ≤ φ3(B).

All things considered, we have

Q(Bas) ≥ Q(B).

• Case (ii) : Here, we assume that, for a given horizon window, we can stream
the video under a non-ascending bitrate strategy B with φ4 stall events over the
session (φ4 ≥ 1).

Undoubtedly, reordering all the segments’ bitrates in an ascending way will add
more protection to the buffer against the stall constraint, which may reduce the
number of stalls φ4. However, this does not mean that the global QoE will in-
crease, because the stalls’ durations will change depending on their new occur-
rence moments, the new variation of the bitrate and the dynamic of the user’s
throughput. For these reasons, our ascending bitrate strategy will not work per
a hole session.

In an other hand, when a stall happens, the buffer state becomes independent of
its previous states prior the stall, which makes all the BaW-BaP cycles indepen-
dent from each other. Let’s write B = {B1, · · · ,Bφ4+1}, where Bi denotes the set
of bitrates used in the ith BaW-BaP cycle. If we apply our previous ascending
strategy on each of the (φ4 + 1) BaW-BaP cycles, we end up reducing the dura-
tion of all the BaW-phases (including the startup and the rebuffering delays) and
the global number of quality switching, while maintaining the same number of
stalls and the same average quality.
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Let Bas = {B1as, · · · ,Bφ4+1as}, be the set of bitrates derived from B, where Bias

is the ascending bitrate form of Bi, then we have

Q(Bas) ≥ Q(B).

This concludes the proof.
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