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Abstract

Understanding the mechanisms that lead to glass formation is one of the open problems
for the condensed ma�er research. Numerous questions remain unanswered, because
the tremendous increase of relaxation times during the cooling process prevents the
exploration of equilibrium properties of supercooled liquids at very low temperature.
Computer simulations of glass-forming liquids are nowadays able to reach equilibrium
at temperatures comparable to the Mode-Coupling crossover temperature, which is well
above the experimental glass transition temperature. As a consequence, simulations lag
eight orders of magnitude behind experiments in terms of equilibration times. Progress
to close this gap has been slow, and stems mostly from hardware improvements.

In this thesis we make an important step to close this gap. We combine the use
of a Monte Carlo algorithm, known as the swap algorithm, with the design of novel
glass-forming models. We systematically test numerous models using both discrete
mixtures and polydisperse systems. We discuss the role that polydispersity and particle
so�ness play in avoiding crystallization and in e�ciently reaching previously unex-
plored regimes. We study the dynamical processes taking place during swap Monte
Carlo simulations. We demonstrate that in some cases our technique is able to produce
thermalized con�gurations at temperatures inaccessible even by experiments.

In this newly accessible regime, we investigate some open questions concerning
the glass transition. We show that a hard sphere �uid can be equilibrated at, and even
beyond, the jamming packing fraction. We measure the con�gurational entropy in
extremely supercooled liquid, �nding a strong dimensional dependence that supports,
on the one hand, the existence of an ideal glass transition at a �nite temperature in
three dimensions and, on the other hand, its absence in two dimensions. We detect the
increase of amorphous order quanti�ed through a static point-to-set length throughout
the glass formation. We measure the critical exponents introduced in the mean-�eld
theory of glasses much closer to the supposed ideal glass transition. Finally, we reveal
the absence of a sharp geometric transition in the potential energy landscape across the
Mode-Coupling crossover.

�e models and the algorithms developed in this thesis shi� the computational studies
of glass-forming liquids to an entirely new territory, which should help to close the gap
between theory and experiments, and get us closer to solve the long-standing problem
of the glass transition.





Résumé

La compréhension du mécanisme de la formation du verre est l’un des importants
problèmes ouverts en recherche sur la matir̀e condensée. De nombreuses questions restent
sans réponse, en raison d’une énorme augmentation des temps de relaxation pendant le
processus de refroidissement qui ne permet pas l’exploration des propriétés d’équilibre
des liquides surfondus à très basses températures. Les simulations numériques des
liquides surfondus sont actuellement en mesure d’a�eindre l’équilibre à des températures
comparables à la température du crossover de la théorie de couplages de modes, qui est
bien supérieure à la température de transition vitreuse expérimentale. En conséquence,
les simulations plus lentes que les expériences pour équilibrer un liquide surfondu par un
facteur d’environ huit ordres de grandeur. Les progrès ralisés pour combler cet ècart ont
été lents et résultent essentiellement d’améliorations de l’architecture des ordinateurs.

Dans ce�e thèse, nous résolvons en partie le problème de la thermalisation à basse
température de liquides surfondus dans des simulations numèriques. Nous combinons
l’utilisation d’un algorithme Monte Carlo, connu sous le nom d’algorithme de swap,
avec la conception de nouveaux modèles de formateurs de verre. Nous examinons
systématiquement des nombreux systèmes, à la fois des mélanges discrets de particules,
ainsi que des systèmes a polydispersité continue. Nous discutons le rôle que la polydis-
persité et la forme du potentiel entre particules jouent pour éviter la cristallisation et
parvenir e�cacement à des régimes de température inexplorés. De plus, nous étudions
les processus dynamiques à l’oeuvre pendant une simulation de swap Monte Carlo. Nous
démontrons que, dans certains cas, notre technique permet de produire des con�gurations
équilibrées à des températures inaccessibles même dans des expériences.

Dans ce régime de température complètement nouveau, nous examinons plusieurs
questions ouvertes concernant la physique de la transition vitreuse. Nous montrons
qu’un �uide de sphères dures peut être équilibré jusqu’à la densité critique du jamming,
et même au-delà. Nous mesurons l’entropie con�gurationelle dans un liquide refroidi à
très basse température. Nous me�ons en evidence une forte dépendance dimensionnelle,
qui suggère l’existence d’une transition vitreuse idéale à une température �nie en trois
dimensions et à son absence en deux dimensions. Nous détectons l’augmentation de
l’ordre amorphe quanti�é par une longueur statique point-to-set pendant la formation du
verre. Nous mesurons les exposants critiques introduits dans la théorie de champ moyen
des verres beaucoup plus proche de la température critique prédite dans la théorie. En�n,
nous révélons l’absence de transition géométrique caractérisant le paysage d’energie
potentiel au travers de la température du crossover de la théorie de couplages de modes.

Les modéles et les algorithmes développés dans ce�e thèse déplacent les études des
liquides surfoundus vers un territoire entièrement nouveau, en réduisant l’écart entre la
théorie et les expériences, ce qui nous amène plus proche de la solution du problème de
la transition vitreuse.
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Chapter 1

Introduction

1.1 Experimental facts

Liquids are in a state of ma�er characterized by a high degree of structural disorder
and short-ranged spatial correlations. Relaxations happen quickly as compared to ob-
servational timescales and the typical relaxation time is in the range of 10−13 − 10−11s.
�eir behaviour can be explained in terms of excluded volume forces that plays a major
role in determining static and dynamic properties of the system. �e liquid state can be
studied with theoretical tools from thermodynamics and equilibrium statistical mechan-
ics [1]. Since human observational timescales are orders of magnitude longer compared
to relaxation times, theoretical predictions have a prompt experimental test, the only
issue being the design and the implementation of the experiments. Now imagine to
cool down a liquid below its melting temperature Tm by placing it in contact with a
thermal reservoir. Using a slow cooling rate there will be some regions of the liquid
that rearrange such that their free energy is lower than the rest. A crystalline phase is
nucleating and it is characterized by a typical timescale. Because of local free energy
�uctuations, crystal droplets are able to expand and invade the whole system which
enters in the ordered crystalline phase. However, if the cooling is fast enough local
free energy �uctuations are suppressed and small crystal droplets vanish in the liquid
phase. �e system enters a regime, called supercooled, for which its ground state is the
crystal. Dynamic processes slow down by decreasing temperature although, contrary
to crystals, relaxation processes are still present and correlations of the local density
�uctuations decay to zero on experimental timescales. By further lowering the temper-
ature, the relaxation processes become more and more sluggish until they are so slow
that the experimental system falls out of equilibrium. �is is called the experimental
glass transition temperature Tg, below which the system is a disordered solid or a glass.

In the following we will discuss three major experimental properties that supercooled
liquids share together. �ese are essential experimental properties that motivate this
thesis and will be summarized in three �gures.

Figure 1.1 shows the viscosity as a function of the inverse temperature for many

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1 – Viscosity η as a function of inverse temperature 1/T for many glass forming liquids.
�e temperature is rescaled by the laboratory glass transition temperature Tg de�ned such as
η(Tg) = 1013poise. By a moderate change of the temperature the viscosity increases of numerous
orders of magnitude. From this plot two classes of liquids can be de�ned. Strong liquids present
an Arrhenius behaviour, fragile liquids are Super-Arrhenius. �e image is taken from Ref. [2].

supercooled liquids. Temperature is rescaled by the glass transition temperature Tg . �e
onset temperature of the slow dynamics is called onset temperature T0. �e typical value
of the viscosity at T0 is η ∼ 1 poise whereas the viscosity at the glass transition is set
to be η ∼ 1013 poise. One observes that the viscosity increases by around 15 orders of
magnitude compared to the high temperature liquid and 13 orders compared to the onset
of the supercooled regime T0. We notice here that the experimental glass transition is an
arbitrary limit given by human limitations on the typical observational time window.
�is plot suggests an exponential relation between the viscosity and the temperature of
the form

η ∝ exp

(
∆(T )

kBT

)
, (1.1)

where ∆(T ) is an e�ective activation energy.
From this �gure one can recognize two extreme cases. A strong behaviour, char-

acterized by an Arrhenius T -dependence of the viscosity, indicating that energy barri-
ers are constant as a function of the temperature, and a fragile behaviour, showing a
super-Arrhenius T -dependence of viscosity, indicating increasing energy barriers with
decreasing temperature. �e physical and theoretical reason behind this di�erence is
not completely established and some explanations will be discussed in the following.

�e second crucial experimental feature of glass-forming liquids is of thermodynamic
nature. It is experimentally known that the entropy of a liquid is higher compared to
the crystal due to a higher speci�c heat [4]. With the aim of comparing the entropy
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Figure 1.2 – Excess entropy ∆S normalized by its value at melting temperature Tm as a function
of temperature T/Tm for many glass forming liquids (full lines). Excess entropy is de�ne as
the liquids entropy minus the crystal entropy and it decreases with lowering the temperature.
Do�ed lines are out of equilibrium extension of the of the full lines. Dashed lines are by eye
extrapolation of the equilibrium behaviour of the entropy. Image is taken from Ref. [3].

of the metastable liquid and the crystal, in 1948 Kauzmann proposed the following
argument [3]. He de�ned an excess entropy of a supercooled liquid by subtracting the
entropy measured in the crystalline phase to the supercooled liquid entropy and then
he plo�ed this quantity as a function of temperature. �e result is shown in Fig. 1.2 for
various materials. �e excess entropy decreases as T drops, as it was expected from
the calorimetric properties of liquids. By further lowering the temperature, the system
undergoes the glass transition and falls out of equilibrium, which re�ects in a bending
of the excess entropy curve. Linear extrapolation of the excess entropy towards lower
temperatures gives a vanishing value at a temperature called the Kauzmann transition
temperature TK . Whether a Kauzmann transition exists or not is being ma�er of debate
since 1948. Its existence would mean that the entropy of a liquid could be equal than
that of the corresponding crystal. A situation which is hard to imagine since the liquid is
disordered, however this is theoretically possible and it is actually the case in the mean
�eld theories of glasses that will be introduced later. Another theoretical possibility
is that the entropy would bend and would always remain larger than the crystal one.
�is means that no Kauzmann transition would exist at a �nite temperature. �e main
problem for the investigation of the existence of a Kauzmann transition is given from
the experimental kinetic arrest which always prevents the exploration of temperatures
lower than Tg, such that, experimentally, the Kauzmann transition is una�ainable. In
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the context of the search for a theory of the glass formation mechanism, the excess
entropy is usually called con�gurational entropy and is related to the logarithm of the
number of accessible glassy states. �e de�nition of this quantity within some theoretical
approaches will be discussed in the following.

Figure 1.3 – Intermediate sca�ering function as a function of time measured with neutron
sca�ering experiments of glycerol. Particle positions are completely correlated (uncorrelated)
when this quantity is equal to 1 (0). Lowering the temperature we observe a separation of
timescales between short time (β-relaxations) and the long time (α-relaxations) decays with the
appearance of a plateau consequence of the cage e�ect. �e �gure is taken from Ref. [5].

�e third fundamental piece of information for this dissertation concerns the static
and dynamical properties of supercooled liquids. Interestingly, the structure of liquids
not change signi�cantly down to and across Tg does. In particular two point static
correlation functions show very mild changes [6]. However, as we will discuss later,
static quantities can be used to predict the dynamical arrest, which means that even small
changes in the local arrangements may have considerable consequences for the dynamics.
On the other hand, the dynamical properties of supercooled liquids do change remarkably
with respect to the liquid phase. �e most remarkable feature is the emergence of a
separation of dynamical timescales. Namely, particles vibrate around their initial position
exploring a limited portion of space at short timescales. �ese vibrations are localized
in space by the presence of neighbouring particles. �is phenomenon is o�en called
cage e�ect, however the true nature of the cage is blurry since the e�ect is intrinsically
collective, each particle being caged and taking part of cages for other particles. On
longer timescales particles escape from the cage and are able to travel a long path from
their initial position and the system completely looses memory of its initial con�guration.
�ese two processes are called respectively β and α relaxations and are amongst the
most relevant dynamical features of supercooled liquids. �is behaviour is observed for
instance experimentally through dielectric measurements of neutron sca�ering. Neutron
experiments give access to the intermediate sca�ering function [7] that measures density
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relaxations by quantifying the degree of correlation of particle positions between an
initial time 0 and an observational time t. �e intermediate sca�ering function assumes
values between 1 for perfect correlation and 0 in case of completely uncorrelated situation
with respect to the initial time. Fig. 1.3 presents the results for the collective part of
the intermediate sca�ering function measured in glycerol. It can be seen that there is a
�rst decorrelation at short time t < 0.003 ns (β-relaxation) due to vibrations inside the
cage. �en a plateau value is a�ained as a consequence of the cage e�ect. Finally, the
function decays to zero at long time (α-relaxation). One can de�ne the self part of the
intermediate sca�ering function (see Eq. 2.8), Fs(k, t), and extract the typical decay time
for α-relaxation as τα. �is quantity indicates the time needed for each particle in the
system to travel on average a distance r ≈ 2π/q where q is the wave vector at which
correlations are tested.

�e relaxation time can be directly related to the viscosity using shear properties
within the Maxwell model [8] through the relation η ∝ G∞τM , where G∞ is the high
frequency shear modulus and τM is a characteristic relaxation time which is de�ned
within the model. �is model allows to reconsider all the phenomenology shown in
Fig. 1.1 for the viscosity in terms of relaxation times.

Finally, we notice that an analogous glass transition can be observed by increasing the
density instead of reducing the temperature. �is is the case, for instance, in experiments
of colloidal systems [9] or in simulations of hard spheres [10]. In the following we
will refer to glass formation either due to a decreasing temperature of to an increasing
packing fraction interchangeably.

�e glassy phenomenology presented here rises many theoretical questions, about
the nature of the dynamical transition, the microscopic mechanism leading to the slowing
down and the possibile existence of a Kauzmann transition. In the next section we will
introduce some theoretical approaches that deal with these problems formally and make
predictions that can be tested in experiments and simulations.

1.2 �ermodynamic theories of the glass formation

Glass formation is characterized by a dramatic change in the viscosity leading to a
kinetic arrest and to the formation of an amorphous solid. From an experimental point of
view, a solid has a non-zero static shear modulus G∞. However, for the glass state, this is
hard to justify from a theoretical point of view. As it was noticed by Anderson [11], indeed,
the shear modulus can be computed as an equilibrium thermodynamic average and is
zero on an ergodic ensemble. In the case of glasses, one could be tempted to compute
it on the same ensemble as a high temperature equilibrium liquid (remember that the
structure does not change signi�cantly during glass formation) and would �nd no rigidity,
contrary to any experimental observation. �is fact makes the glass transition, using the
word of Anderson ”the deepest and most interesting unsolved problem in solid state theory”.
A lot of theories have been proposed during the last seventy years to explain the nature
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of supercooled liquids and the glass transition, among them: Adam-Gibbs-DiMarzio
theory [12, 13, 14], Mode Coupling �eory [15], Potential Energy Landscape [16], Random
First Order Transition theory [17, 18], Frustration-Limited Domains [19], Dynamical
Facilitation [20]. Some of them present con�icting explanations, some of them are
extension and re�nements of others. In the next paragraphs we concentrate mainly
on four of them. First we will introduce the Potential Energy Landscape framework,
which gives a good and largely accepted thermodynamic description of supercooled
liquid and glasses. �en we will brie�y sketch the Adam-Gibbs-DiMarzio theory and the
Mode-Coupling theory and �nally discuss the Random First Order Transition and the
mean �eld theory of hard spheres.

1.2.1 Potential Energy Landscape

�e separation of dynamical timescales discussed in Fig. 1.3 inspired a thermody-
namic construction able to describe the supercooled regime called the Potential Energy
Landscape (PEL) formalism. Already Goldstein at the end of the 60s [21] observed that the
two step relaxation in supercooled liquids can be explained by assuming that the liquid
anharmonically vibrates around a minimum point of its potential energy (corresponding
to the β relaxation) and very rarely it jumps between two di�erent minima leading to
large rearrangements of the particle positions (corresponding to α relaxations).

A solid formulation of this argument was se�led in the 80s with the work of Stillinger
and Weber [22, 23, 24]. �eir formalism is built on the notion of the Potential Energy
Landscape that is a 3N dimensional hypersurface in the con�gurational space, where N
is the number of particles in the system and a speci�c con�guration corresponds to a
point on the hypersurface. Stillinger and Weber o�ered a description of the supercooled
regime based on the partitioning of the con�gurational space into basins of a�raction
for equilibrium con�gurations and minima underlying each basin called inherent struc-
tures. �is structure allows to separate the partition function in two contributions, one
quanti�es the portion of con�gurational space related to short time vibrations inside a
basin of a�raction and the other quanti�es the multiplicity of the basins of a�raction
and concerns slow relaxation processes between di�erent basins. �e partition function
in the (N, V, T ) ensemble can be wri�en as:

Z(T, V ) =
∑
eIS

Ω(eIS)e−βf(eIS ,T,V ). (1.2)

�e vibrational contribution to the partition function of a basin of a�raction with
corresponding inherent structures energy eIS is given by f(eIS, T, V ) . Here it has to be
noted the explicit dependence on the energy of the inherent structure, the volume and
the temperature. �is value needs to be multiplied by the number of inherent structures
at that speci�c energy Ω(eIS) and summed over di�erent inherent structure energies. In
the PEL framework one identi�es inherent structures and thermodynamic glassy states,
although this assumption is theoretically weak as it will be discussed later. However,
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based on this assumption one can also de�ne a con�gurational entropy as:

sc(eIS) = kB ln [Ω(eIS)] . (1.3)

�e study of this quantity and, in general, of the properties of the PEL, were found to be
successful in computational studies of the supercooled state as it will be discussed in the
following.

�e PEL framework is strongly justi�ed by experimental and computational studies
and it represents a fundamental construction to describe supercooled liquids. However, in
this theory, some questions remain unanswered: How does the microscopic mechanism
for relaxation look like? Which is the nature of energy barriers and how do they change
with changing temperature? Is there a thermodynamic explanation for the dynamical
slowing down? All these questions have been addressed by other theories that will be
brie�y reviewed in the next sections.

1.2.2 �e Adam-Gibbs-Di Marzio theory

As anticipated in Sec. 1.1, the prominent increase of relaxation times can be expressed
by:

τα = τ0 exp

[
∆(T )

kBT

]
, (1.4)

where ∆(T ) indicates the activation energy, generically dependent on temperature.
Strong glass-formers are well described by an Arrhenius law and the activation energy
o�en corresponds to the energy to break an intermolecular bond. More generally it
indicates a geometrical, system speci�c and temperature independent energetic price to
be paid for relaxation. On the other hand, in the case of fragile glass formers, a super-
Arrhenius behaviour of relaxation times indicates that energy barriers are changing with
temperature. Explaining the microscopic reason why this is happening is one of the
main purposes of the three theories that will be sketched in the following.

One of the �rst a�empts to formulate a theory for rearrangements in supercooled
liquids is due to Adam, Gibbs and Di Marzio [12, 13, 14]. �is theory builds on the
notion of Cooperatively Rearranging Region (CRR), namely independent and equivalent
subsystems composed of a certain number of correlated particles n(T ). �e presence of
these regions intrinsically bears the notion of a spatial correlation

ξ(T ) ∝ n(T )
1
D , (1.5)

where D is the spatial dimension. Each CRR can take a certain amount of di�erent states
Ω. �is is a �nite number independent of the temperature and the CRRs size. �ermal
�uctuations push the CRR to rearrange into a new locally stable state. �en one can
de�ne a con�gurational entropy sc as the logarithmic density of the number of stable
states

sc(T ) =
1

N
ln[Ω

N
n(T ) ], (1.6)
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where N is the number of particles in the system. Interestingly sc is inversely propor-
tional to the average size of a CRR. Supposing that the global energy barrier that the
system has to overcome in order to perform a rearrangement ∆(T ) is proportional to
n(T ), one can �nd a relation between the con�gurational entropy and ∆(T ) such that

∆(T ) ∝ 1

sc(T )
. (1.7)

Plugging this relation into Eq. 1.4 one �nds a link between entropy and relaxation times
expressed by the Adam Gibbs relation

τα = τ0 exp

[
A

TSc(T )

]
, (1.8)

where A is a constant. �is theory gives a simple explanation of the mechanism for
relaxation in glass systems, but it relies on two weak assumptions. Namely, accessible
states Ω are independent on temperature and CRR size and di�erent CRR do not interact,
given the absence of a surface tension. We will see in the following how these issues can
be solved without loosing the thermodynamic foundation of the theory.

1.2.3 Mode-Coupling theory

Another theory dealing with the explanation of the dynamical arrest is the Mode
Coupling �eory (MCT) [15]. �e main idea in MCT is to use structural quantities as an
input variable (namely the structure factor S(k) [1]) and, exploiting the Zwanzig-Mori
formalism, to write self-consistent equations for the dynamics of density �uctuations [15].
�e theory gives remarkably good quantitative predictions of the β-relaxation and the
plateau of Fs(k, t) (see Fig. 1.3). On the other hand it predicts a dynamical arrest at a
temperature TMCT describing self density relaxation times τα with the following law:

τα ∝
1

(T − TMCT )γ
, (1.9)

where γ is a universal exponent that can be exactly computed in the theory. Below
TMCT ergodicity is broken and the plateau of Fs(k, t) does not decorrelate to zero, which
corresponds to a glass transition. Yet in experimental and computational systems a
power law �t of relaxation times is only possible in a mildly supercooled regime covering
three or four orders of magnitude from the onset temperature. �is is a much narrower
range compared to the observed 13 orders of magnitude of glassy slowdown. �e lack of
a reliable description of the slowing down is the main failure of MCT. �is failure has
been usually explained by the absence of activation processes in the MCT formalism and
the fact that the theoretical derivation itself relies on some uncontrolled approximations.

Overall, the theory gives good predictions of the dynamical slowing down and
it inspired the search for a growing dynamical lengthscale characterizing the glassy
slowdown [25]. However, MCT presents the drawback that good predictions are either
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limited in a temperature region close and above TMCT , such that T−TMCT

TMCT
� 1, or they

are limited to β relaxation. Moreover, the nature of energy barriers, the mechanism of
relaxation lowering the temperature and the possible growing of static lengthscales are
questions that remain unanswered within this theory.

1.2.4 Mean-Field theories and growing static lengths

�e quest for a theory that at the same time explains the dynamical and thermo-
dynamic behaviour of supercooled liquids and glasses led to the introduction of the
Random First Order Transition theory (RFOT) by Kirkpatrick, �irumalai and Wolynes
in the 80s [26, 27, 28]. At that time they noticed that a class of spin systems, namely
p-spin models, undergo a similar dynamical transition as glass-forming liquids. �ese
models can be theoretically de�ned by the following Hamiltonian

H = −
N∑

k1,,k2,...,kp

Jk1,k2,...,kpσk1σk2 ...σkp , (1.10)

where σs are spin values and Jk1,k2,...,kp are random distributed coupling that enforce a
quenched disorder in the system. �e problem de�ned by this Hamiltonian was solved
in the ’80 using replica symmetry breaking techniques in which the free energy of the
system is replicated and takes into account all the possible realizations of the disorder [29].
�e interesting fact is that the solution of this problem has two features closely recalling
the glass formation in systems of particles. By lowering the temperature �rst there is
a transition at Td from an ergodic liquid at high temperature and a non-ergodic liquid
at low temperature characterized by an exponentially large number of (meta)stable
states living for an in�nite time. Remarkably the dynamical equation describing this
behaviour has the same structure of the Mode-Coupling theory and in this context
Td can be identi�ed with TMCT [18]. At the same time it resembles the dynamical
behaviour of experimental supercooled liquids even though in real systems metastable
states have a �nite lifetime, and they will at a certain point turn into stable crystalline
states. �en at a lower temperature TK there is a Kauzmann transition, with a sub-
exponential number of glassy states and a vanishing con�gurational entropy. �ese deep
analogies pushed some theoreticians to explain the structural glass formation mechanism
using mean-�eld systems. However one has to notice that the spin system introduced
previously is quite di�erent from structural glasses both because it has a quenched
disorder, not present in the liquid case, and because there is no reference to particles
in real space. �ese two drawbacks have been solved recently with the formulation of
mean-�eld theory for hard spheres valid in in�nite dimensions [30, 31, 32, 18]. First
the theory deals with particles, namely hard spheres, which represent the simplest
description of a liquid [1]. Secondly, quenched disorder is replaced by imposing an
external �eld that selects an amorphous state, solving the problem by means of replica
methods and continuing the solution in the case at zero �eld. �us, the unphysical
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presence of quenched disorder is removed. Interestingly the results concerning the
dynamical arrest and the Kauzmann transition are equivalent to the ones of the spin
models. �e main problem le� in this theory is its in�nite dimensions formulation,
which entails the absence of relaxation mechanisms and estimations of �nite energy
barriers for rearrangements. To solve this problem one has to introduce a nucleation
argument readjusted in the language of glassy physics. Before doing this, let us �rst
take a step back and introduce a theorem which helps in understanding the following
discussion. At the basis of any modern theoretical introduction of the glass-transition
problem, it is important to recall a theorem formulated by Montanari and Semerjian in
2006 which states that any increase of relaxation timescales in glassy systems τ has to
be accompanied by an increasing static correlation length ξ [33]. In particular, they were
able to �nd an upper and a lower bound for the relaxation times:

C1ξ ≤ τ ≤ exp(C2ξ
D) (1.11)

Here C1,2 are constant and D is the spatial dimension. �e physical reasoning behind
these two equalities is the following. �e relaxation time is bounded from below from the
fact that the propagation of the relaxation cannot be faster than ballistic in the system. It
is also bounded from above because the system could be divided into boxes of size ξ and
within each box the relaxation time cannot be larger than an exponential of the volume.
�e nature of the length ξ has been clari�ed in the context of the nucleation argument
for the RFOT theory [17], which relies on entropic considerations and is analogous to
the one used in �rst order transitions, such as crystallization. Let us take a supercooled
liquid in a metastable state and a dynamical process causing a local rearrangement of
a sub-system of size R. Since the number of states is exponentially large, no speci�c
local arrangement is preferred and local energy �uctuations can bring the sub-system
in a new state with a total gain in free-energy proportional to con�gurational entropy:
∆Fbulk = −TSc(T )RD where D is the system dimensionality. On the other hand the
rearrangement would cause a mismatch at the interface between the subsystem and the
rest of the system quanti�ed as ∆Fsurface = Υ(T )Rθ where Υ(T ) is a surface tension
which has an entropic nature and θ is an exponent satisfying θ ≤ D − 1. �e critical
size at which the rearrangement is energetically favourable and above which the new
state would invade the whole system is given by:

ξ =

(
Υ(T )

TSc(T )

) 1
D−θ

(1.12)

From these considerations one can extract an energetic barrier height to insert into
Eq. 1.4 for the relaxation times, �nding:

τα = τ0exp
(

∆0(T )ξψ

T

)
= τ0exp

[
∆0(T )

T

(
Υ(T )

TSc(T )

) ψ
D−θ
]

(1.13)
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As one can see, here we regain an Adam-Gibbs like relation between con�gurational
entropy (thermodynamics) and relaxation times (dynamics). �e dependence of relax-
ation times on the static correlation length is accounted for by the exponent ψ. �e
length ξ is one of the key ingredients of the RFOT theory. It is a point-to-set correlation,
which brings about the notion of amorphous order. Its de�nition and estimation was
de�ned in Ref. [34]. �e idea is the following: imagine taking a con�guration at a given
temperature and to freeze all the particles except the ones in a cavity of radius R. If
a static correlation ξ is present in the system then particles inside the cavity will feel
an amorphous order which pins them from outside in their initial position, and they
will not decorrelate in a shell of radius ξ from the cavity edge. �en if the cavity is
small enough R < ξ particles inside will be frozen otherwise if R > ξ the center of the
cavity is free to �nd another local arrangement. �e growth of ξ is accompanied by a
rarefaction of accessible thermodynamic states. If we image the cavity to be in one of the
available states, in a �nite dimensional system, it will escape in a �nite time depending
on �uctuation driven by entropy. At this point it is important to discuss more clearly the
notion of con�gurational entropy within the replica approach, this will be done in the
next subsection.

1.2.5 Franz-Parisi approach and the con�gurational entropy

One relevant aspect of the mean �eld theory of glasses concerns a be�er character-
ization of the thermodynamic states and the notion of con�gurational entropy. A big
step forward was done within an approach �rst introduced by Franz and Parisi [36, 37].
�e idea is to extend the p-spin model to a framework presenting a coupling �eld ε
between pairs of replicas (x, y) of the system. It was found that from this procedure a
�rst-order transition line emerges at equilibrium in the phase diagram (ε, T ), terminating
in a second order critical point. �ere are two possible approaches for the theoretical
construction. In one case the two coupled replicas are both free to explore the phase
space. �is is usually called annealed coupling. On the other hand, it is also possible that
one of the two replicas is frozen at a temperature T ′ and the other explores the phase
space at temperature T in presence of the coupling �eld ε. �is last se�ing goes under
the name of quenched coupling. In the following we will be dealing with the quenched
case since it will be employed later in our simulations. Here we also set T = T ′ although
other choices are possible [37]. �e starting point of the construction is to de�ne a
coupled Hamiltonian between two replicas

Hε(x, y) = H(x)− εQ(x, y), (1.14)

where ε is the coupling �eld and H(x) is the bare Hamiltonian of the replica x. Q(x, y)

is called the overlap and it is a conjugate variable to the �eld ε accounting for the
degree of similarity between the two replicas which is de�ned to be 1 if the two replicas
coincides and 0 if they completely di�er. Here the presence of the coupling term forces
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(a) Free energy as a function of the overlap for
di�erent temperature. �e overlap is the order
parameter of the phase transition and quan-
ti�es the similarity between replicas. Within
the glass phase T < Td, the free energy
present a secondary minimum which gives
an estimation of the con�gurational entropy.
At the Kauzmann transition the two minima
are at the same free energy level. For lower
temperature the high overlap phase is thermo-
dynamically preferred. Figure is taken from
Ref. [35].

(b) �e phase diagram in the (ε,Q) plane. �e
central line indicates a �rst order transition
between a low-Q and a high-Q state. �e
upper and the lower lines indicates spinodal
curve for the transition. �e three lines culmi-
nates in a second order critical point. Figure
is taken from Ref. [36].

Figure 1.4 –

the con�guration of the replica x to be similar to the one of replica y. �e free energy of
the replica x in presence of a speci�c replica y can be de�ned as [37]:

F (T, ε, y) =
1

Nβ
ln

[∫
dx exp (−βH(x) + βεQ(x, y))

]
. (1.15)

Taking the average over the probability distribution of the y con�guration

F (T, ε) =

∫
dy exp(−βH(y))F (T, ε, y)∫

dy exp(−βH(y))
. (1.16)

�e Legendre transform of this function is called the Franz-Parisi potential

Vε(Q, T ) = min
ε
F (T, ε) + εQ, (1.17)

which shows interesting properties when varying the temperature for ε > 0. At tem-
perature higher than a transition temperature T εc the probability to have a non zero
overlap is exponentially small and Vε(Q, T ) has a unique global minimum for Q = 0. By
reducing the temperature below the transition temperature T < T εc , Vε(Q, T ) develops
a secondary local minimum for a �nite value of the overlap Q∗ indicating an increasing
probability to �nd the two replicas in the same thermodynamic state. �is is a �rst order
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transition characterized by a discontinuous jump of the overlap between a low-Q regime
to a high-Q regime. �e situation is illustrated in Fig. 1.4a where a sketch of the free
energy Vε(Q, T ) is plo�ed as a function of Q for various temperatures. By varying ε, a
�rst-order transition line is revealed in the (ε, T ) phase diagram as shown in Fig. 1.4b.
At high �eld it terminates in a second order critical point (Tc, εc) whereas, by extension
to zero �eld, it reveals a Kauzmann transition at �nite temperature TK .

In this framework one can give a robust de�nition of the con�gurational entropy.
Given that the secondary minimum atQ∗ is a local one, the system has to spend a certain
amount of free energy to remain con�ned in the same state as the reference replica.
�e amount of free energy is quanti�ed by the height of this secondary minimum with
respect to the global minimum Vε=0(Q∗) and it is related to the number of available states.
For this reason an explicit relation exists between the Franz-Parisi potential computed at
Q∗ and the con�gurational entropy [38]:

Vε=0(Q∗) ≈ Tsc(T ). (1.18)

By further lowering the temperature below TK a Kauzmann transition is reached at
which the two minima have the same height and the con�gurational entropy becomes
zero.

Although initially developed in the context of the in mean-�eld glassy models, the
Franz-Parisi construction turned out to be very useful in simulations of glass-forming
liquids both in giving a mean �eld like de�nition of the con�gurational entropy and in
helping the investigation of the Kauzmann transition using higher temperature regimes.
�is has been done in a series of articles [39, 38] as it will be further discussed in following
chapters.

1.3 Simulations of glass-forming liquids

1.3.1 �e dynamical arrest in simulations

Computer simulations of liquids have existed for more than half a century [43, 44].
�e main advantage of this approach is that one can compute physical properties of
systems for which an analytical approach can be highly nontrivial and, on the other hand,
one can easily access single particle positions and velocities which could be di�cult to
retrieve in an experiment involving more than few particles. In their book on molecular
dynamics simulations [44], Frenkel and Smit discuss the notion of computer experiments.
�is must be understood as a framework that allows to de�ne a computer model and
calculate some physical properties, to later compare the result both with experiments
and with analytic theories. �e former comparison is done to test the ability of the
computer model to reproduce experimental �ndings. �e la�er one is a theory testing
procedure which can help to validate or falsify them.
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Figure 1.5 – Self density relaxation times as a function of the inverse temperature for many
di�erent experimental glass forming liquids. �e x-axis is rescaled by the glass transition
temperature Tg , the y-axis is rescaled by the onset value of relaxation times. Data are taken from
Ref. [6]. �e three vertical lines give an estimation of the upper limit for the accessible regime
in simulations in Ref. [40, 41, 42] from bo�om to top. Nowadays, computer simulations cover
at maximum �ve orders of magnitude of relaxation times at equilibrium, that is, they are eight
orders of magnitude slower than experiments in equilibrating.

Computer simulations of supercooled liquids and glasses have been employed since
a long time [43, 45]. We will focus here on the cases in which the system is treated
as classical, where two particle interactions in most of the cases depend only on the
distance between two particles. All three or many body interactions are neglected
and the potential has a very simple form, such as inverse power law or Lennard-Jones.
Once the model is set up, a dynamical rule must be chosen either for the evolution in
time or in the phase space . �ere are two main possibilities to study the statistical
mechanics of the system: Molecular Dynamics (MD) simulations or Monte Carlo (MC)
simulations. In the �rst case a system of di�erential equations for particle positions and
velocities is assigned (e.g. Newtonian or Langevin) and solved controlling the system
thermodynamic state from outside via external thermostats or barostats. Positions and
velocities are updated at each time step given by the shortest typical timescale of the
system, which in a liquid is around 1 fs. Another possibility is to perform Monte Carlo
simulations. In this case the main aim is to set up a stochastic method to sample the
phase space. �e general strategy in this case is to assign a transition probability to
move from a con�guration C to another C ′ and an updating rule to generate the new
con�guration. One of the most common transition probability is given by the Metropolis
Monte Carlo algorithm [46] where the transition probability is given by the ratio of the
Boltzmann factor of the two con�gurations. Within this approach the standard updating
rule consists in displacing the particle in a random direction to create a new con�guration.
�e algorithm will be discussed in details in the following chapters. �e interesting
aspect of Monte Carlo simulations of supercooled liquids is that their dynamics, even
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though unphysical, behaves in a very similar way to a Brownian motion and it can also
be used to give a dynamical description of the supercooled state [47].

�e main problems in simulations of glass-forming liquids are the number of particles
that can be simulated and the accessible timescales. �irty years ago, simulations were
able to probe a supercooled liquid at equilibrium in a very narrow regime of relaxation
times. In Ref. [40] for instance a binary mixture of repulsive spheres was simulated for
around one order of magnitude of relaxation times in the supercooled regime. In 1994,
Kob and Andersen introduced one of the most employed models of glass-forming liquids,
the Kob-Andersen Lennard-Jones binary mixture [48]. At that time, they were able to
simulate 3 orders of magnitude of relaxation times in the supercooled regime. More
recently, very long simulations of glass-forming liquids were performed in 2009 [42].
In this case a binary mixture of hard sphere was simulated over roughly 5 orders of
magnitude of relaxation times. �ese improvements throughout the years are mainly
due to hardware performance advancement and the speed of this process has been quite
slow with a rate of one or two order of magnitudes gained every 10 years. Recently
introduced hardware tools to push the computation to higher e�ciency consist in
the use of graphic cards or large scale parallelization [49]. �is strategy can be very
e�ective for increasing the system size, although it does not allow a huge increase of
accessible timescales. Nowadays, a typical single core simulation of a system of O(1000)

particles lasts for around 109 steps, which correspond to 1 µs. �is value is eight
orders of magnitude smaller that the experimental glass transition, which takes place for
relaxation times of 102 s. �e situation is shown in Fig. 1.5, where relaxation times of
experimental glass-formers are shown as a function of the inverse temperature. �e x-
axis is rescaled by Tg and the �gure is the equivalent to Fig. 3.3 where relaxation times are
used instead of viscosities. Experiments of glass-forming liquids fall out of equilibrium
at Tg. �e horizontal lines give an indication of the evolution of accessible timescale in
simulations during the last thirty years taken from Ref. [40, 41, 42]. We observe that
computer simulations of glass-forming liquids still lag eight orders of magnitude behind
experiments. Assuming a constant progress rate for hardware performances, this gap
will be closed in about a century by standard simulations.

1.3.2 Algorithms to speed up thermalization

Since a brute force approach to increase simulation timescales will not achieve a
remarkable improvement, during the last decades some alternative algorithmic solutions
were proposed. �ey mainly consist in clever methods to explore the phase space at
lower temperatures at a faster pace.

A class of algorithms was inspired by successful spin algorithms �rst introduced in [50,
51], which consist in performing collective moves of clusters of spins to facilitate the
study of phase transitions. �e idea was generalized to o�-la�ice systems by performing
rotations or displacements of chain or clusters of particles [52]. �anks to this method it
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was found that polydisperse hard disks can be equilibrated across the Mode-Coupling
packing fraction φMCT showing that no Mode-Coupling like divergence of relaxation
times is present [53]. �e algorithm used at that time was based on the re�ection of the
position of particles inside clusters of particle with respect to a randomly chosen pivot
point. More recently, another algorithm belonging to the same class was introduced for
hard spheres and hard disks [54] and generalized to the case of continuous potential
interactions [55]. �is goes under the name of Event-Chain Monte Carlo algorithm
and the basic move consists in displacements of chain of particles in a given direction.
�is algorithm does not satisfy detailed balance, although it satis�es a maximal global
balance condition su�cient to converge to the stationary distribution. Some important
results have been obtained thanks to this technique, for instance the existence of a
�rst-order liquid-hexatic transition in two dimensional hard spheres [56]. Also, the three
dimensional hard-sphere equation of state has been computed with higher precision [57].
In a dense hard spheres �uid the dynamical speedup given by this algorithm has been
estimated of about a factor 40.

Another technique to accelerate thermalization employs the notion of parallel tem-
pering. Inspired by algorithms previously employed by the spin glass community [58, 59],
Yamamoto and Kob [60] introduced a replica exchange method. �is consists in per-
forming several parallel simulations of independent replicas of the system at di�erent
temperatures and then try to swap two con�gurations at contiguous temperatures based
on a Metropolis acceptance rule. �is method enhances the sampling of low temperature
distributions by performing a more e�cient exploration of the free energy landscape
and it speeds up the equilibration of about two orders of magnitude [60, 61]. However,
it presents two drawbacks: �rst, the method mainly works with systems of small sizes
(few hundreds of particles) [61] and second, because of the exchange of di�erent con�g-
urations, single particle dynamics cannot be followed anymore in time. Nonetheless, the
technique found many successful applications for the glass science, especially in studies
of equilibrium phase transition in small systems [62, 63, 64, 39]

A sequential Monte Carlo scheme, the Population Annealing, was also recently
applied in simulations of supercooled liquids [65]. �e method is particularly suitable for
simulations of systems with rough free energy landscape and it was employed to simulate
a binary hard sphere mixture. �e idea is to exploit rare �uctuations at temperatures
where the system can be equilibrated with standard molecular dynamics to reconstruct
the Gibbs measure at lower temperatures. �e method consists in a single annealing
that populates the free energy landscape using con�gurations produced at a higher
temperature. Also in this case the dynamical gain with respect to standard simulations
can be quanti�ed in around 2 orders of magnitude.

Interestingly, despite the numerous techniques introduced to accelerate the dynamics
of dense supercooled systems, the maximal obtained dynamical gain is globally of a
couple of orders of magnitude and none of the algorithms discussed before is particularly
preferable to the others. In the following paragraph we will give a historical review of
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one further simulation strategy that will be used largely in this thesis.

1.3.3 �e swap Monte Carlo algorithm

�e idea of swapping particles between two systems or insert particles taken from
a thermal bath has been widely employed in computational physics of polymers and
colloids [44], with the main aim of e�ciently sample the phase space or compute ther-
modynamic potentials. A particle-swapping Monte Carlo method was �rst introduced in
Ref. [66, 67]. In that case the aim was to compute partial molar quantities by performing
exchanges of particles with di�erent identities between two boxes.

Some years later, a Monte Carlo method employing particle swap moves of particle
within the simulations box was implemented by Gazzillo and Pastore [68] to determine
the equation of state of a non-additive hard sphere �uid and compare with analytical
�ndings. �is method consists in combining two di�erent kinds of Monte Carlo updating
rules. During the simulation one performs both standard Monte Carlo moves, in which
particles are displaced randomly, and some additional moves, which consisting in taking
two particles at random and try to exchange their positions. �e algorithm will be
explicitly explained in Sec. 3.4.

Parisi and Grigera [69] �rst applied the swap technique to a glass-forming mixture.
�ey �rst named it swap Monte Carlo algorithm as we also do. �e system was a
binary mixture of particles interacting via an inverse power law potential [40]. �e
authors observed a peak in the speci�c heat that was interpreted with the presence of a
thermodynamic transition to an ideal glass phase. �e result was questioned by Brumer
and Reichman [70] who performed new swap Monte Carlo simulations of the same system
and observed that the system easily crystallizes at low temperatures. Even though prone
to crystallize, this system was largely employed in swap simulations and many results
concerning glass physics were claimed to be realized below the Mode-Coupling transition
temperature. Namely, a phononic interpretation of the boson peak was given in [71].
�e presence of amorphous order was detected both in cavity geometry [72, 73] and in
sandwich geometry [74]. A speci�c heat behaviour was found to be consistent with an
entropy crisis in [75] and anomalous across the Mode-Coupling crossover in a cavity
geometry in [76]. Finally, con�rmation for a geometric transition in the Potential Energy
Landscape in supercooled liquids was found [77].

In 2001 swap simulations were employed also in systems made of continuously
polydisperse particles [78]. In this case hard disks were used to con�rm the absence of a
thermodynamic transition crossing the Mode-Coupling transition density ρMCT , a result
already found by means of a cluster move algorithm [53] as discussed previously. �ey
were also able to sketch the phase diagram of the system as a function of polydispersity
and density. �e use of swap Monte Carlo in polydisperse systems was later revisited
in Ref. [70]. First the authors tested the 2D system of Refs. [53, 78], �nding similar
results regarding the absence of a thermodynamic transition across ρMCT . �e idea of
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using swap MC simulations to enhance sampling of the phase space for polydisperse
so� spheres was used systematically in Ref. [79]. �e authors were able to �nd three
di�erent phases at varying density and polydispersity consisting in a disorder �uid, a
crystal, and a demixed phase.

More recently swap simulations were used by the group of Procaccia [80]. �ey had
the idea of introducing a ternary mixture to facilitate the swap moves. �ey claimed
to be able to equilibrate at very low temperature compared to standard simulations,
achieving a maximum speed up of relaxation times of 15 orders of magnitude. Using this
method they observed the growth of a static lengthscale in low temperature supercooled
liquids. �is static lengthscale was �rst introduced in Ref [81] and it was predicted to
increase at low temperatures and to be related to the point-to-set static order measured
by ξPTS [82].

All these previous results on swap Monte Carlo simulations have been inspiring for
our research and some of them will be reproduced, discussed or revisited in the following
chapters.

1.3.4 Potential Energy Landscape in simulations

In Sec. 1.2.1 we brie�y discussed the notion of the Potential Energy Landscape (PEL), a
theoretical construction able to describe the thermodynamic properties of glass-forming
liquids. �e PEL has been widely employed in simulations, where some speci�c features
can be directly measured and were used to validate and expand the theory. �e literature
concerning the subject is huge (see for instance [16]). �e goal of the computational
study of the PEL is the observation of its statistical properties, such as the number of
inherent structures visited at a certain temperature or the height of the energy barrier
for rearrangements using PEL topology.

We recall that in the PEL framework an inherent structure is de�ned as the mini-
mum of the basin of a�raction of many equilibrium con�gurations. Starting from an
equilibrium con�guration at a given temperature T , to �nd the corresponding inherent
structure one has to perform a minimization of the potential energy. �is can be done
using common minimization algorithms, such as steepest descent or conjugate gradient.
A�er the minimization one can extract the energy of the con�guration, namely the
inherent structure energy eIS and study the properties of the minima of the PEL.

It was found that, depending on the temperature of the starting con�guration, two
regimes can be distinguished in relation to the dynamical properties of the system [83, 84].
At high temperature the liquid visit basins with similar properties and average inherent
structure energy 〈eIS〉 is only mildly dependent on the sampling temperature. With
cooling, the system enters a landscape-in�uenced regime at a temperature corresponding
to the onset of the supercooled dynamics T0. In this regime the energy of inherent
structure decreases considerably by decreasing T since the system explores zone of the
landscape corresponding to deeper and deeper basins. Time correlation functions for
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density degrees of freedom present a two step decay in time and the permanence in
a given basin increases by reducing the temperature. At even lower temperature the
system enters the so-called landscape-dominated regime, where dynamics starts to be
extremely slow, rearrangements are rare and the system remains con�ned in a basin.
�is roughly coincides with the computational kinetic transition and with TMCT . Based
on these properties of the PEL, the relation between 〈eIS〉 and T it was shown to hold
and to be bijective [83, 85] already at moderate supercooling.

�is allowed to retrieve the temperature dependence of the con�gurational entropy
introduced in Eq. 1.3 using a standard thermodynamic relation [86]

dsc(T )

d〈eIS〉
=

1

T
, (1.19)

and integrating the T dependence of d〈eIS〉/T . �is can be achieved by separately
computing the T dependence of the total entropy and the vibrational entropy in the
PEL formalism. �en, sc(T ) is obtained by subtraction of the vibrational entropy to the
total entropy, using an analogous procedure to the one followed in experiments. �is
procedure will be employed and discussed in details in Ch. 4. �e con�gurational entropy
obtained within the PEL formalism was measured in many glass-forming liquids as a
function of temperature [86, 87, 84, 88, 89]. In many cases, a continuously decreasing
value with lowering the temperature was found. However, all these results were obtained
for mildly supercooled liquids since the dynamic arrest prevents equilibration at low
temperature. Moreover, the con�gurational entropy measured using the PEL framework
is a quantity that relies on the identi�cation between thermodynamic states and inherent
structures. �is identi�cation does not hold theoretically [38] as it will be discussed later
in Ch. 4.

Another information that can be obtained by computational studies of the PEL
concerns its topological properties and the connection with the relaxation dynamics. So
far we have been discussing short time vibrations as periods of permanence in the basin
of a�raction and long time relaxations as jumps between one basin to another. How this
relaxation happens, however, is unclear. It was suggested that the knowledge of saddles
of the PEL could clarify this point [90]. Minima are stationary points characterized by a
positive curvature of the 3N -dimensional manifold in all the possible directions. Saddles
are also stationary points, but they are distinguished by a negative curvature of the
landscape in some directions and positive in the remaining ones. Consequently, the
system is in unstable equilibrium if perturbed in one of the directions with negative
curvature.

To explain the role of saddles in structural glass-formers, let us step back on the
analogy between the p-spin models and the structural glasses introduced in Sec. 1.2.4.
Interestingly, it was found in mean-�eld models that the exploration of stationary points
of their energy landscape has a remarkable evolution with temperature [91, 92, 90, 93, 94].
Namely, for temperatures above the ergodic/non-ergodic transition temperature Td the
systems explores both minima and saddles of the landscape. By further reducing the
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temperature, saddle points cannot be visited by the system below the ergodic/non-
ergodic transition temperature Td and the behaviour of the system for TK < T < Td is
completely determined by the minima of the landscape. �e transition from a saddle-
dominated regime to a minima-dominated regime was named geometric transition and
in case of mean �eld models its existence was con�rmed by analytic calculations.

Figure 1.6 – Saddle order ns, that quanti�es the number of unstable directions of the stationary
point, as a function of the temperature for many glass-forming liquids. �e extrapolations are
based on a power law �t and a Random Energy model �t. Temperature is rescaled by Mode-
Coupling temperature TMCT . Image is taken from Ref. [95].

Following the analogy between mean-�eld models and structural glasses it was
suggested [90] that saddles could also explain relaxations in realistic glass-forming
models. Computational studies of the landscape were performed to analyze the statistics
of saddle points with changing temperatures [96, 97, 98, 99, 100, 101, 95]. �e main
�nding was that the exploration of saddle points depends on the temperature of the
system.

By employing numerous glass forming liquids saddles order ns (that quanti�es the
number of unstable directions) and saddle energy were measured for di�erent sampling
temperatures and it was claimed that the system does not visit saddles for temperature
below TMCT .

�e situation is shown in Fig. 1.6 where ns is plo�ed as a function of the temperature
rescaled by TMCT for di�erent glass-forming liquids. We observe that the number of
negative directions of the stationary points decreases with decreasing temperature. A
power law extrapolation suggests that ns vanishes at T = TMCT . �is result is in
agreement with the presence of a geometric transition and also with the identi�cation
Tc ∼ TMCT . However, it is based on extrapolation from higher temperatures as compared
to TMCT , and not by studying the systems exactly at the putative transition temperature.
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1.3.5 Glassy dynamics in two dimensions

Until now we dealt with results of experiments and simulations for the three di-
mensional systems. For a long time, the traditional assumption has been that the glass
transition has similar characteristics in two or three dimensions. �oting a sentence by
P. Harrowell ” In Flatland, glasses reproduce all the behaviour of their three-dimensional
relatives” [102]. �is is also re�ected by the fact that most of the glass transition theories
do not predict changes in two or three dimensions [6].

Figure 1.7 – Self-intermediate sca�ering function Fs(q, t) in a two dimensional model of glass-
forming liquids. As in Fig.1.3, particle positions are completely correlated (uncorrelated) when
this quantity is equal to 1 (0). Lowering the temperature we observe a slowing down characterized
by a single stretched exponential decay. �e inset shows the single particle trajectory where
sudden jumps are absent and replaced by a continuous displacement. �e �gure is taken from
Ref. [103].

In recent years, however, the situation has changed and there is increasing evidence
that glasses in 2D are very di�erent from their 3D version. �e situation started to change
in 2015, when Flenner and Szamel published a paper [103], in which they simulated two
dimensional systems with sizes ranging from few hundreds up to millions of particles.
�ey found a remarkable system size dependence in the dynamics as compared to the
three dimensional case, namely, increasing the system size, relaxation times decrease
and the transient localization (cage e�ect) disappears. �is is shown in Fig. 1.7, where
the self-intermediate sca�ering function is measured for a system made of millions
of particles in two dimensions. �e behaviour is qualitatively di�erent from the one
observed in Fig. 1.3 for 3D systems. In that case the presence of a plateau was evident and
the idea of particles being caged by the neighbours could �nd an observational validation.
On the contrary, in the two-dimensional system the plateau disappears and the slowing
down of the dynamics is indicated by the presence of a stretched exponential. A be�er
analysis reveals that particles move long distances together with their neighbours and
do not change the local environment on the timescale of single particle displacements.
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Measuring two time correlation functions that account for the orientational changes of
neighbouring particles, such as the bond orientational correlation function [104], one
�nds that the relaxation happens at longer timescales, the plateau in the shape of the
correlation function is reestablished and the cage e�ect reemerges. Similar �ndings were
con�rmed in simulations by another group [105], where also a phononic interpretation
to the two dimensional behaviour was given. �e absence of caging was ascribed to
the presence of long wavelength �uctuations, which are present in two dimensional
solids [106].

Recently, two experimental papers were also able to give a dynamical investigation
of glassy behaviour in two dimensions [107, 108]. �is was possible by using colloidal
systems, where particles are orders of magnitude larger compared with molecular glass
formers and the single particle dynamics can be directly observed using confocal mi-
croscopy. Interestingly, the authors con�rmed all the simulation results about the absence
of transitional localization and, on the other hand, they observed a glassy slowing down
in the dynamical quantities that take into account the local environment.

�is recent progress in understanding the supercooled behaviour in two dimensions
systems started a discussion in the glass community about the di�erence of the glass
transition varying the dimensionality.

While some researchers agree to consider the nature of the glass transition funda-
mentally di�erent in two and three dimensions [103], some others try to reconcile the
dimensionality dependence by considering neighbour relative observables [107, 108, 109].
�is recent debate, however, is still far to be se�led and it lacks coherent theoretical
predictions.

1.4 Motivation of the thesis

In this introduction chapter, we deal with several topics related to the glass formation
that provide the research context of this thesis. In this section we brie�y focus on some
of them that have been the main source of motivation for this work.

In Sec. 1.2.5 we have been discussing coupled systems in mean �eld theory. We
saw that the introduction of a coupling �eld between two replicas of the system lead to
the emergence of a �rst order transition whose order parameter is given by an overlap
which measures the similarity between the two replicas. �e probability distribution of
this quantity is directly related to the Franz-Parisi potential and to the con�gurational
entropy. In the �rst few months of this thesis we have been used computer simulations to
investigate the static and dynamic properties of coupled liquids, in particular concerning
the overlap behaviour with reducing the temperature, in the a�empt to reveal the
presence of the transition in a structural glass formers.

We anticipated in Sec. 1.3.1 that a fundamental issue in computational studies of
supercooled liquids comes from the fact that only four or �ve orders of magnitude of
relaxation times are accessible in equilibrium, compared with the 13 orders of magnitude
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that experiment can probe at equilibrium. Some techniques have been introduced to
equilibrate supercooled liquids at lower temperature. Overall they were proved to
accelerate the equilibration of around two orders of magnitude (Sec. 1.3.2). Only in the
case of Ref. [80] it was claimed that speed up of more than ten orders of magnitude is
possible using the swap Monte Carlo algorithm (Sec. 1.3.3). One of the main purposes of
this thesis is to design and implement models and methods to accelerate thermalization
and extend the simulation regime to timescales comparable with the experimental
accessible ones. We are particular careful to ensure that our systems reach a proper
equilibration and that remain disordered �uids. Having succeeding in our purpose, we
are able to study supercooled liquids and glasses in an unexplored regime.

�e third part of the thesis is dedicated to the investigation of supercooled liquids in
this novel regime. Among the open questions discussed previously, we will address the
followings.

Measurements of the con�gurational entropy using the Potential Energy Landscape
framework, discussed in Secs. 1.2.1 and 1.3.4, revealed a decrease of this quantity with
decreasing temperature in numerous supercooled liquids. However, these results were
always obtained for temperature higher than the dynamic slowdown of simulations. �e
large majority of the results were obtained in three dimensions and a li�le is known about
the thermodynamic behaviour of two dimensional system, although from a dynamical
point of view the glass transition was found to be di�erent in two and three dimensions
(Sec. 1.3.5). In this thesis we address two problems at the same time. On the one hand,
we measure con�gurational entropy in a completely unexplored regime and, on the
other hand, we directly compare between a two dimensional and a three dimensional
realization of a system. �is study will give us a be�er insight on the precence of a �nite
T Kauzmann transition and the role of thermodynamics in the glass formation.

In supercooled liquids, it is still unclear what is the relation between thermodynamic
and dynamic, namely between relaxation times and con�gurational entropy. Some the-
oretical approach, such as the Adam-Gibbs-DiMarzio (Sec. 1.2.2) or RFOT (Sec. 1.2.4),
support a direct relation between these two quantity. Testing these theories is a di�cult
task both for experiments and simulations. In the former case, statical quantities charac-
teristic of theoretical frameworks are inaccessible to experimental measurements. In the
la�er case, accessible temperature regime is bounded by the presence of a computational
dynamical slowdown. We address the two problems at once by employing simulation
results obtained at extremely low temperature, both for the con�gurational entropy
and for a static point-to-set length, to directly test these theories and measure critical
exponent of the RFOT.

Some years ago, it was claimed the existence of a geometric transition in the land-
scape of glass-forming liquids previously found in mean �eld models (Sec. 1.3.4). �e
computational result, however, was obtained for temperature above the putative tran-
sition. We investigate the presence of this transition performing studies of the energy
landscape in the novel regime accessible with swap simulations, this gives us a privileged
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viewpoint on its existence.
�e work of the thesis lead to four publications [110, 111, 112, 113]. Two of them are

a direct output of this thesis [110, 112]. �e other two result from broad collaboration
and include some results and analysis developed in this thesis [111, 113]. �ree other
publications are in preparation. One concerns the results on con�gurational entropy
and point-to-set length in a two dimensional system and the possible absence of a
�nite temperature ideal glass transition. One deals with the relation between relaxation
times and the con�gurational entropy and the measurement of critical exponent of the
RFOT close to the transition. �e last regards the absence of a geometric transition in
computational models of glass-forming liquids.



Chapter 2

Structure and dynamics of coupled
viscous liquids

�is chapter includes results from Ref. [110]

2.1 An introduction to coupled viscous liquids

�e concept of replicating systems to study their phase properties had a great success
in the study of disordered systems since the �rst introduction of the Replica theory
in the late ’70 and the Replica Symmetry Breaking solution in the ’80 [114, 115]. �e
theory had �rst been developed in the context of spin systems and since then theoretical,
computational and experimental applications have been developed for a huge number of
systems ranging from neural networks, agent based models, random lasers, Bose glasses,
noise analysis and information theory [29]. �e general idea at the basis of this approach
is the fact that due to the implicit disorder of the system, thermodynamic phase transition
cannot be easily revealed using traditional order parameter and an additional order
parameter accounting for the similarity between statistically independent realizations of
the quenched disorder must be introduced to reveal a �nite temperature thermodynamic
transition. Approaches based or inspired by replica theory have been employed in
theory and simulations of structural glasses as well [6]. �e origin of these studies has
its root already in the �rst formulation of the Random First Order Transition theory
(RFOT) [27]. From that moment, the idea of considering molecular glass-formers in the
same universality class of some spin glasses found deeper foundations both in the modern
version of RFOT [17] and in the mean �eld theory of hard spheres [18]. Predictions
of these theories for the behaviour of structural glass-forming liquids have been only
partially con�rmed so far and they need be�er clari�cation from a computational and
experimental point of view. In computations it is possible to probe the RFOT scheme for

25
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the thermodynamic glass transition in a temperature regime more easily accessible by
using extended phase diagrams. In these cases a thermodynamic glass-liquid transition at
equilibrium can be directly induced by the introduction of additional �elds constraining
the system. Some of these external constraints are based on the idea of pinning some
of the particles of the system [34, 33], in various geometries as cavity [72, 73, 116],
walls [117, 118] or random pinning [119, 64, 120].

Another possibility is to duplicate the system and introduce a coupling �eld ε between
the two copies as a conjugate variable of the degree of similarity between them, the
overlapQ. �is scenario has been carefully studied in mean �eld models and two di�erent
possible realizations were proposed [36, 37]. An annealed case and a quenched case.
In this chapter we will be dealing with simulations in the quenched framework, for
which the phase diagram in (ε, T ) has been carefully studied in mean �eld and partially
con�rmed using numerical simulations. �is point was discussed in the introduction and
the result is reported in Fig. 1.4b. A �rst-order transition line has been found at varying
the coupling �eld ε that separates a low-Q phase at low �eld, in which particles in the
two replicas of the system are uncorrelated, with a high-Q phase at high �eld, in which
particles are localized in space by the presence of the coupling replica. �e �rst-order
line culminates in a second order critical point which is in the same universality class as
the Random Field Ising model [121, 122].

In this section we simulate coupled replicas of a known glass forming liquid in the
quenched framework. �e main aim is to study the statics and dynamics of the system
in detail, at temperature regimes accessible by standard equilibrium simulations. We
observe that directly testing the �rst order transition line in standard simulations is
unachievable, therefore we concentrate in a temperature region above the second order
critical point to reveal the existence of what in standard phase transition is called a
Widom line, across which some observables, and particularly susceptibilities, present
vestiges of the existence of the transition. Our observations are not entirely conclusive,
but they strongly support the presence of a transition at lower temperature.

In the following, �rst we introduce the model and the methods employed (Sec. 2.2).
�en we go through our results both concerning the static (Sec. 2.3.1) and the dynamics
(Sec. 2.3.2) of the coupled systems. Finally we discuss our results and compare with
literature �ndings (Sec. 2.4).

2.2 Model and methods

We perform Monte Carlo simulations of a three dimensional 80:20 mixture of so�
spheres which has a well known glass-forming behaviour, �rst introduced by Kob and
Andersen in Ref. [48]. �e two particle interaction is described by

v(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+ cLJ , (2.1)
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where εAA = 1.0, εAB = 1.5, εBB = 0.5, σAA = 1.0, σAB = 0.8, σBB = 0.88. Here we
cut o� and shi� the pair potential at the cuto� distance rcut = 2.5σij . We use εAA and
σAA as energy and length unit respectively and the Boltzmann constant is set to one
kB = 1. We study a system of N = 1000 particles at a number density ρ = 1.2. �e
Monte Carlo dynamics consists in drawing a random displacement between zero and
∆rMAX = 0.06 in the three spatial direction and a�empt to perform a move based on a
Metropolis acceptance rule. �e time unit consists in N Monte Carlo a�empts.

�e degree of similarity between two coupled con�guration {r1}, {r2} is given by
the overlap

Q12 =
1

N

∑
i,j

θ(a− |r1,i − r2,j|). (2.2)

Here θ(x) is the Heavyside function, a = 0.3 is a cut-o� distance which is comparable
with the size of the cage in the unconstrained system and rα,i denotes the position of
particle i in the con�guration α.

We produce a set of equilibrium con�gurations {r1} at a certain temperature T1 and
{r2} at T2. �e �rst ones are used as reference con�gurations and the second are let to
evolve with a biased Hamiltonian

H{r1}({r2}) = HLJ({r2})− εQ12, (2.3)

where

HLJ({r2}) =
1

2

N∑
i,j

v(rij) (2.4)

is the bare Hamiltonian of a single copy {r2}. Here the �eld ε > 0 is the coupling
�eld and favours high values of overlap. We study systems such that T1 = T2 = T .
�is is due to the quenched disorder present in the Hamiltonian H{r1} given from a
speci�c con�guration {r1}. In order to obtain meaningful result one has to perform two
di�erent averages in this system. First, given a single con�guration {r1} an average
for independent realizations of the mobile system {r2} is needed . �en a disorder
average has to be done for independent disorder realizations of {r1}. �e number of
con�gurations needed to average using systems of this size is restricted to a small value
(around ten) for a system of our size.

For this system the onset temperature is T0 = 1 and the Mode-Coupling temperature
is TMCT ≈ 0.435. �is is roughly the temperature interval that can be accessed at
equilibrium with standard simulations. In the context of coupled replicas, the situation
becomes more di�cult and the exploration of the (ε, T ) diagram is not easy at low
temperature or high values of the coupling �eld. We are able to equilibrate easily
the system at temperature around T = 0.7 and we include the point at T = 0.6 in
the analysis which also reached stationarity, although being more di�cult to simulate
using our protocols. As a test of equilibration we look at the absence of dri� in the
instantaneous value of the overlap over a time period of 105 steps. Moreover we require
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that particles have travelled for a distance of around 3 particle diameters. �ese somehow
empirical tests are enough for our analysis here. However we believe that strong tests
of equilibration are essential in Monte Carlo simulations of supercooled liquids and we
will discuss largely this point in the next chapter. Overall we have not been able to get
very close to the meaningful portion of the phase diagram due to the limitation of the
standard simulations.

2.3 Results

2.3.1 Static properties

In this section we report both static and dynamic results of our simulations at varying
the values of (ε, T ).

It is reasonable to expect that at a given temperature, bigger values of the coupling
�eld give rise to higher values of the overlap. �is is actually the case as is shown in
Fig. 2.1 where the distribution probabilities of the overlap are shown for di�erent values
of ε at temperature T = 0.8, which is slightly below the onset temperature T0 = 1. As
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Figure 2.1 – Probability distribution of the overlap P (Q) at several ε vales along the isotherm
T = 0.8. �e shape is broader near ε∗ ≈ 0.7

expected, probability distributions are narrow for high and low values of the �eld and
centered respectively at high and low values of the overlap. Interestingly they become
broader for intermediate values of the �eld (ε ≈ 0.7). �is corresponds to large amplitude
�uctuations of the overlap. We observe this feature in the time series of the overlap
(not reported) together with the fact that exploration of the equilibrium properties of
the system is more di�cult in this regimes where long simulations are needed. On
the other hand at low and high values of the �eld, overlap �uctuations and long time
correlation are suppressed and the system is either uncorrelated from its pinning replica
or strongly coupled. �is situation is in agreement with the presence of critical slowing
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down due to the vicinity of a second order critical point at a lower temperature. At even
lower temperatures a �rst order phase transition would manifest itself with a bimodal
probability distribution. All these thermodynamic features are not directly observable in
our simulations which last for about 107 steps, a time period four orders of magnitude
longer than the relaxation time of the unconstrained system τ ≈ 2×103. �is also shows
the computational di�culty introduced by the presence of the coupling and quenched
disorder.

To be�er study the properties of the transition, let us now introduce the moments of
the distribution of the overlap

〈Qn〉 =

∫ 1

0

dQP (Q)Qn. (2.5)

In Fig. 2.2a we show the average of the overlap 〈Q〉 as a function of ε for the di�erent
studied temperatures. We �nd that the overlap value increases continuously with increas-
ing �eld. �e steepness of the curve increases with reducing temperature and the �eld
values necessary to obtain the same degree of localization are smaller by cooling. �ese
two features imply that the thermodynamic driving force to escape from a randomly
chosen con�guration is smaller with decreasing temperature and the crossover becomes
more sharply pronounced and similar to a real thermodynamic transition, in agreement
with a prediction made in the RFOT theory framework [27].

In order to detect the crossover value from a low-Q to a high-Q regime we de�ne
the overlap susceptibility

χ = N
[〈
Q2
〉
− 〈Q〉2

]
. (2.6)

We report the results in Fig. 2.2b for each studied temperature. �is quantity has a peak
at a given value of the �eld corresponding to the crossover observed in the overlap
average. �e peak increases in intensity, becomes sharper at lower temperature and is
expected to diverge at a second order critical point.

All these evidences support a RFOT description of the problem, although an alterna-
tive view is also possible in which the observed features remains a crossover lowering
the temperature and it do not become a real thermodynamic transition even going at
T = 0 [123, 124]. �e accessed temperature range in this work, however, does not allow
to tell which of the two scenarios is correct.

Increasing values of the coupling �eld ε provokes increasing overlap between copies
of the system. At a single particle level this means that particles in the mobile replica
tend to be in similar position as the particle in the frozen replica. More speci�cally
situations in which a particle in {r2} is within a range of a = 0.3 from the position
of the center of a particle in {r1} are energetically preferred. We call this geometry a
dimer. To quantitatively evaluate the presence of dimers in our system we de�ne a radial
distribution function between the quenched and the liquid replica

gαβ(r) =
1

V NαNβ

Nα∑
i=1

Nβ∑
j=1

δ(r − |r2,i − r1,j) (2.7)
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Figure 2.2 –

Here α, β are species indices. �e behaviour of this function varies with ε and T . We
show the result for dimers between particles of species A in Fig. 2.3a for a reference
temperature T = 0.8. It shows a peak for values r ≈ 0 that increases with higher values
of the �eld ε. �is means that a localization of particles and dimers formation increases
going at stronger couplings. �e e�ect could have been guessed by the increasing value
of the overlap 〈Q〉 since this can be directly related to the area below the curve of the
radial distribution function between r = 0 and r = a. �e abrupt drop at r = a is
connected to the choice of a step function in the de�nition of the overlap. �e use of
a smoother function would result in a continuously decreasing behaviour of the radial
distribution.

We also measure gAB(r) and gBB(r). �e case of gBB(r) (not shown) is very similar
to the one of gAA(r) with an increasing number of dimers of B particles at increasing
coupling �eld. �e case of gAB(r) between particles of di�erent species, however, is
di�erent. As shown in Fig. 2.3b the overall values of the peak at r = 0 in this case are
smaller and they always remains below 3. Interestingly in this case the peak shows a
non monotonic behaviour going at higher values of the coupling. �e maximum value of
the peak is reached close to ε∗ = 0.7 which coincides with the maximum of the overlap
susceptibility for this temperature (see Fig. 2.2b). �is means that the system, close to
the Widom line, tends to develop dimers made of particles of di�erent species, such
that the geometrical heterogeneity in the coupling has a non monotonic behaviour as
well. By increasing the �eld beyond ε∗, the AB dimers are suppressed and the systems
shows mostly dimers composed of particles of the same species. �is geometrical and
static behaviour must be be�er analyzed using dynamical observables as we do in the
following.
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2.3.2 Dynamical properties

From a structural point of view we saw that increasing the �eld ε the amplitude of
overlap �uctuations �rst increases, reaches a maximum for intermediate values of the
coupling and �nally decreases again. We a�ributed this behaviour to the presence of a
Widom line, adding di�erent static supporting evidences. How does this crossover re�ect
in the dynamical behaviour of the system? How does localization a�ect the available
relaxation pathways for the system?

Let us �rst concentrate on local density relaxation. To this aim we study the self
intermediate sca�ering function

Fs(k, t) =
1

N

〈∑
i

exp[ik · (ri(t)− ri(0))]

〉
. (2.8)

�e value of k corresponds to the wave vector of the �rst peak of the structure factor.
�e results for big A particles is shown in Fig. 2.3a for a reference temperature T = 0.8.
For ε = 0 relaxation is exponential and very fast. With increasing value of the coupling
the system slows down and the exponential becomes stretched. For very high values
of the �eld Fs(k, t) shows a two step relaxation with the presence of plateau. �is is
in agreement with the localization e�ect that we revealed in the static properties. A
comparison between quantities for A and B particles (not shown here) indicates that
the slowing down e�ect is less pronounced for small particles. A similar decoupling in
the dynamic properties is also observed in the bulk system at low temperature [125].

We extract the structural relaxation times using the common de�nition F (k, τα) =

e−1. �e result is reported in Fig. 2.4b. We observe that at a given temperature the
dynamics has a dramatic slowing down for values of the coupling �eld comparable with



32 CHAPTER 2. STRUCTURE AND DYNAMICS OF COUPLED VISCOUS LIQUIDS

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

t

0

0.2

0.4

0.6

0.8

1
F
s
(k
,t
)

ε=0.0

0.4
0.6
0.7
0.75
0.8
0.9
1.0
1.2

(a)

(a) Self intermediate sca�ering function
Fs(k, t) evaluated at k = 7.4 along the
isotherm T = 0.8 varying the coupling ε. �e
single particle dynamics slows down mono-
tonically by increasing ε, a clear indication of
the particle localization e�ect.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
ε

10
2

10
3

10
4

10
5

10
6

10
7

τ
α

T=0.6
0.7
0.8
1.0
1.2

(a)

(b) Evolution of the structural relaxation
times τα as a function of ε at various temper-
atures. �e dynamics slows down abruptly
when the crossover �eld ε∗(T ) is crossed. ε∗

is de�ned through overlap susceptibility and
indicated with a black arrow.

Figure 2.4 –

ε∗, the crossover �eld de�ned using the overlap susceptibility (see Eq. (2.6) and Fig. 2.2b).
Going at lower temperature the curve develops a kink that becomes more and more
pronounced.

We also compute the di�usion coe�cient using the mean-squared displacement
δr2(t) = 1

N
〈
∑

i |ri(t)− ri(0)|2〉 and the di�usion coe�cient D using the Einstein rela-
tion limt→∞ δr

2(t) = 6Dt. For this quantity we observe a qualitative similar behaviour
as for the relaxation times. However the change with coupling ε is quantitatively smaller
in the case of di�usion properties. �is is shown in Fig. 2.5. Here we plot the product
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decoupling of the two quantities by increasing the �eld ε arises at the crossover ε∗(T ), indicated
with a black arrow.
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Dτα between the di�usion constant and the structural relaxation time. �is quantity
is constant for small values of the coupling �eld ε and undergoes a sudden change, in-
creasing remarkably at the crossover between a low-Q regime and a high-Q regime, for
corresponding values of the �eld ε∗(T ). We remember that the Stokes-Einstein relation
can be wri�en in term of relaxation times Dτα ≈ Dη ∼ cst [7]. Deviations from this
relation have been found in supercooled liquids at low temperature and are usually
ascribed to the presence of dynamical heterogeneities [126] although other sources of
the decoupling were also found in liquids [127]. �e usual reasoning for this to happen
in supercooled liquids in given by the fact that relaxation times are mostly dominated by
slow particles of the system, whereas di�usion coe�cients are dominated by the fast ones.
However, here we detect a deviation of the Stokes-Einstein relation which is suddenly
happening at the crossover and that is quantitatively bigger than the one noted in the
unconstrained system. �is suggests that the reason for the decoupling could be di�erent
for bulk or coupled supercooled liquids. To elucidate the origin of this decoupling, as a
�rst test, we quantify the degrees of spatial dynamical correlation present in the system.
In order to do that we evaluate a four-point dynamic susceptibility [128]

χ4(t) = N
[〈
fs(k, t)

2
〉
− 〈fs(k, t)〉2

]
, (2.9)

where fs(k, t) = 1
N

∑
i exp[ik · (ri(t)− ri(0))] represents the non averaged value of the

self-intermediate sca�ering function. In unconstrained supercooled liquids the behaviour
of this quantity as a function of time is well known [129, 130]. It has a single peak located
around t = τα, whose height χ∗4 gives a rough measure of the volume of the dynamically
correlated region in the system [25]. We found similar peaks for χ4(t) measured in the
constrained system and we report the value of the peaks with varying ε for various
temperatures in Fig. 2.6a

First we notice that at high temperature this quantity remains �at even for high
values of the �eld ε. However when the temperature is reduced below the onset tem-
perature T < 1.0 its behaviour changes and it varies non-monotonically starting for
low values in the low-Q regime, reaching a maximum corresponding to the crossover
ε∗ and then decreasing again in the localization regime. �is gives two pieces of infor-
mation. First, the spatial correlation of the dynamics are a consequence of the spatial
�uctuations of the overlap already observed in the statics. Secondly, in the high �eld
regime, dynamic correlation decrease again and this can be interpreted as a consequence
of a localization. However the violation of the Stokes Einstein equation, which keeps
increasing with ε, cannot be explained in term of spatial correlations in the dynamics
in this regime. It has also to be noticed that the value of χ∗4(ε → 0) increases with
decreasing temperature, revealing the existence of correlated regions already in the bulk
system, as already observed numerous times in the previous literature [129]. �is is
di�erent from the situation for static overlap �uctuations that remain always small in
the unconstrained system. A distinct temperature dependence for static and dynamic
�uctuations has already noted before in moderately supercooled liquids [127, 117]. As
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concluded previously, the decoupling between di�usivity and structural relaxation in the
system at high coupling ε noted in Fig. 2.5 cannot be explained using spatial correlation in
the dynamics, consequently the single particle dynamics must be resolved and inspected.
To this aim we introduce the self-part of the Van-Hove correlation function

Gs(r, t) =

〈∑
i

δ(r − |ri(t)− ri(0)|)

〉
. (2.10)

In an isotropic system, one can consider only the dependence on the modulus of r and
thus an integration on the angular degrees of freedom can be carried out. Doing so
this observable can be renormalized with its value for the ideal gas case Gs(r, t) =

4πr2Gs(r, t), obtaining the probability distribution of single particle displacements.
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In Fig. 2.6b we show the result for particles in theA species at di�erent coupling �elds.
�e time t for the measurement have been chosen such that Fs(k, t) = 0.2, meaning that
particles have travelled enough to be�er reveal the structure of the Van-Hove function.
We notice that for zero or small values of the coupling, the distribution has a Gaussian
shape. �is indicates homogeneous and di�usive behaviour of particles. Increasing
the coupling �eld above a certain threshold given by ε∗(T ), the distribution broadens
considerably suggesting the presence of slow and fast particles in the system. �is
feature alone is enough to explain the decoupling between relaxation time and di�usion
coe�cient [131]. Interestingly, here a dynamical heterogeneity arises in absence of
increasing dynamical correlation length, being a purely local phenomena. Looking more
carefully at Fig. 2.6b we observe that for high values of the coupling �eld distributions
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not only are broader but they also present a very non-Gaussian shape, characterized
by the emergence of one or two secondary peaks. �is indicates that particles perform
slow and intermi�ent jump dynamics, hopping from one site to another, where the site
are given by the underlining quenched replica. �is is consistent with the localization
already observed in static quantities before.

2.4 Discussion
�e work presented in this chapter was performed at the beginning of this thesis. We

used it as a preparation for the bulk of the thesis that will be presented in the next chapters.
Here we studied the static and dynamic properties of a coupled supercooled liquids. We
were able to �nd evidences of the presence of a Widom line [132] that could indicate an
underlining second order critical point. However, strictly speaking, we are far from the
transition. �is is due to the marked slowing down appearing in coupled systems, which
has two main sources. On the one hand, by reducing the temperature, the system presents
the usual slowing down of supercooled liquids that has been discussed in the introduction
(Sec. 1.3.1). On the other hand, the coupling with a quenched con�guration further slows
down the dynamics, especially in the high �eld region were individual particles show
high overlaps with the pinned particle of the coupled con�guration. Some techniques
can be employed to solve these drawbacks. In Ref. [63] umbrella sampling and replica
exchange methods were employed in the same model glass forming, although in that case
the maximum system size was N = 256. �anks to those advanced methods stronger
evidences of a critical point were observed, involving, for instance, bimodal distributions
of the overlap probability or system size dependencies in the overlap susceptibility.
Strong support to the existence of a coupling driven phase transition was also found
for plaque�e models [124]. Interestingly these models do not present any Kauzmann
phase transition at �nite temperature. Consequently this work has shown that the two
transitions may be independent from one another, contrary to what has been predicted
in the mean-�eld theory [37]. �e main limitation of the results presented in this chapter
concerns the inability to equilibrate at signi�cantly low temperatures. For this reason the
next chapter will be dedicated to solve this issue by implementing models and algorithms
to reach equilibrium at extreme supercooling.
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Chapter 3

Equilibrating supercooled liquids at
low temperatures

3.1 Introduction and main results

In Sec. 1.3.1 we discussed the state of art of computer simulations of glass-forming
liquids. Similarly to experiments, simulations need to overcome two main problems
at once: the possible formation of ordered regions in the system and the remarkable
increase of relaxation times leading to the dynamical arrest. However, experiments
seem to stand in a be�er place on the two fronts. Good experimental molecular glass
formers, not presenting evidence of crystalline droplets, are known since decades [2, 133]
and their statics and dynamics can be studied at equilibrium over 12 − 13 orders of
magnitude of relaxation times in the supercooled regime. In the case of colloids the range
decreases to 4− 5 orders of magnitude, with the advantage that nowadays microscopy
is able to resolve colloidal particles in real space [9]. Simulation performances are worse
than molecular experiments. Even though the single particle motion can be followed
in time and any physically relevant observable can be computed using in silico models,
ordering and dynamical slowdown are unresolved issues [6]. Computational models
of glass-forming liquids usually fall out of equilibrium at temperatures comparable
with the Mode Coupling temperature. From a dynamical viewpoint this means that
the range of relaxation times currently accessible at equilibrium is around 4− 5 orders
of magnitude [42], similar to what can be achieved with colloidal glass formers and
around 8 orders of magnitude less than molecular systems. On the other hand, with the
increase of hardware performance, simulations become faster, even though at a mild
pace. As discussed in the introduction, this results in around one new accessible order of
magnitude of relaxation time every 10 years. At this rate, simulations will be able to reach
experimental studies in about a century. �is also entails a new problem: by accessing
lower temperature and longer relaxation times many historical model of glass-forming
liquids, which have been considered very robust with respect to crystallization for a
long time , are progressively experiencing ordering e�ect [70, 134, 135] and they must

37
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Figure 3.1 – Summary of the results obtained for some models considered in this chapter. �e
top row is a sketch of the particle size distribution. �e second and the third line speci�es the pair
potential and its additivity. In the main �gure we use blue points to indicate equilibrium disorder
�uid regime and red points to indicate instability towards crystalline or demixed states. �e
vertical axis report the temperature rescaled by the location of the mode-coupling crossover. �e
bo�om line indicates the estimated range of equilibrium relaxation τα that can be studied in stable
equilibrium condition for each model. Here τ0 is the relaxation time at the onset temperature.
Many of the implemented models can be equilibrated below TMCT and some of allow to penetrate
at temperatures below the experimental glass transition, conventionally de�ned as τα/τ0 = 1012.

be replaced with more robust versions or new models.
In this chapter we tackle the two problems at once. First, to address the dynamical

slowdown we employ a non local Monte Carlo algorithm [68, 69]. In the introduction
we sketched many di�erent approaches to bypass the huge increase of relaxation times:
cluster algorithms, replica-exchange, population annealing, and the swap algorithm. We
decide to employ the la�er one encouraged by the strong claim of Ref. [80]. Our �nal
aim is to bring Monte Carlo swap simulation to a new level by both carefully studying its
dynamics and optimization and by testing its performances on numerous glass-forming
liquids. At the same time, we carefully check for ordering e�ects by computing sev-
eral di�erent observables to exactly distinguish between a stable supercooled �uid and
a system undergoing a change of phase and to understand which speci�c properties
enhance glass-forming ability. We both study mixtures of di�erent species and continu-
ous polydisperse models. We vary polydispersity, so�ness and introduce non-additive
interactions in order to understand which is the best combination of parameter that
helps resolving the two puzzles by giving at the same time a considerable speed up in
equilibration and remaining stable in the supercooled regime.

In Fig. 3.1 we quanti�ed both the speed up as compared to standard simulations and
the stability for some glass forming liquids under investigation. Blue points indicate
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temperatures for which the system remains a �uid, whereas red diamonds correspond
to temperatures where the system presents ordering during the simulations. �e exact
protocol as well as the methods employed to distinguish between the two conditions
will be introduced later in this chapter. All temperatures are rescaled by TMCT of the
speci�c model. We observe that many systems can be equilibrated below TMCT , some of
them at extremely low values of the temperature. �e last line of the �gure reports an
estimation of the accessible dynamical regime at which swap simulations can equilibrate
in terms of orders of magnitude of relaxation times for each system. It can be seen that
for some systems the accessible range is even larger than 12 orders of magnitude. �is
means that for some models we have been able to create in silico con�gurations in a
regime never achieved before, which was exactly our aim: at the same time, we close
the gap between experiments and simulations and we identify properties that suppress
stability. We notice that swap Monte Carlo simulations do not provide information
on the physical dynamics of the system. However, the statics is accessible now in a
completely new regime. Moreover by using con�gurations prepared with swap dynamics
as starting points for standard dynamics simulations, one can also investigate the short
time equilibrium dynamics of glass-formers.

�is chapter is organized as follows. In Sec. 3.2 we introduce all the characteristics of
our models. Sec. 3.3 is dedicated to the methods and the physical observables employed.
�e details of the algorithm and its optimization are discussed respectively in Sec. 3.4
and 3.5. �e following six sections report the results for the various models at test and
for the physics behind the algorithm. First we perform new simulations of a well-studied
binary mixture (Sec. 3.6.1) and ternary mixture (Sec. 3.6.2). �en we introduce continuous
polydisperse models in Sec. 3.7: we discuss their phase behaviour (Sec. 3.7.1) and the
results in the so� (Sec. 3.7.2) and in the hard sphere cases (Sec. 3.7.4). In Sec. 3.7.3 an
estimation of the dynamical acceleration is given. Sec. 3.8 gives some physical insights on
the dynamics during swap simulations. In Sec. 3.9 we introduce two models designed to
be e�cient in swap Monte Carlo simulations. �e �rst combines properties of mixtures
and continuous polydisperse models (Sec. 3.9.1). �e second is an extension of a well
known historical model, the Kob-Andersen Lennard Jones (Sec. 3.9.2). In Sec. 3.10 we
study the implementation of our method in a two dimensional system.

3.2 Models

Performing computer simulations to investigate the physical nature of a system is
a delicate ma�er when it comes to comparison with experimental results. Although
there is a in�nite amount of possibilities to design a computer simulation, on very
general basis, two di�erent guidelines can be followed, depending on the ultimate aim
of the study. Either one wants to validate or falsify theoretical results or one wants to
quantitatively predict experimental results. In this thesis we mostly concentrate on the
�rst strategy, speci�cally we do not try to perform computations that have an exact
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quantitative comparison with experiments. Instead, we set up and simulate models that
have a glass-forming behaviour and then we compute physical quantities, inspired by
mean �eld theories of the dynamical arrest. Our purpose is to �nd general properties
of the behaviour of glass-forming liquids testing theories directly. At the same time we
produce results comparable from a qualitative and roughly quantitative point of view
with experiments.

In the following we introduce three main classes of systems and we justify some of
our choices on the basis of experimental grounds. �e three classes of systems can be
distinguished by the form of their size dispersion. �e �rst class is given by mixtures of
species made of particles with di�erent diameter. �is is reminiscent of metallic glasses,
that is, alloys of di�erent metallic chemical components [136]. In recent years the study
of glassy behaviour has also been achieved in colloids: systems made of suspensions,
emulsions, foams and aerosol that are polydisperse in nature [9]. �e colloidal glass
transition has the big advantage that particles can be followed with single particle
tracking in real space through microscopy techniques. �e second class of systems that
we introduce are made of particles continuously polydisperse and �nd an experimental
equivalent of colloids. �e third class of systems is a combination of the previous two,
namely, it is made of systems having the structure of a mixture and presenting some
degree of continuous polydispersity. �ese last have no direct experimental analog, at
least up to now.

In case of mixtures of particles, the size dispersion can be wri�en as

P (σ) =
∑
α

γαδ(σ − σα), (3.1)

where α ∈ A,B, ....Z and γα indicates the fractional composition of each species with a
corresponding diameter σα.

For continuous polydisperse systems the size dispersion scales as:

P (σ) =
A

σ3
, with σ ∈ [σmin, σmax]. (3.2)

Here A is a normalizing constant, σmin and σmax are the minimum and the maximum
values that the diameter can assume respectively. We employ this functional form
because it ensures that the volume fraction occupied by particles with diameter in a
interval δσ is similar. Recently, this scaling property was found to enhance glass-forming
ability in discrete mixtures [137], however we do not systematically test this hypothesis
for these continuously polydisperse systems. We avoid sample-to-sample �uctuations
by assigning particle diameters with the following rule:

σi =
σmin√

1− 1
N

[
1−

(
σmin
σmax

)2
] , with i ∈ (0,N) (3.3)

for a N particles system.
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�e third class is made of systems that are a combination of the two previously
introduced classes. In this case, the size dispersion can be wri�en as:

P (σ) =
∑
α

γαθ(bα − |σ − σα|). (3.4)

Here γα is as before and θ(x) is a step function. Note that, in contrast to discrete mixtures,
the presence of a step function gives a �nite width bα of the diameter probability density
associated to species α .

�e degree of polydispersity in all the systems employed is quanti�ed by the normal-
ized root mean square deviation of the diameter:

δ =

√
〈σ2〉 − 〈σ〉2
〈σ〉

. (3.5)

We use 〈σ〉 =
∫
P (σ)σdσ as unit length everywhere, where the integral is over the

value assumed by σ .
�e two particle interaction potential of the majority of the systems we studied with

swap simulations can be expressed via an inverse power law of the form:

v(rij) =

(
σij
rij

)n
+ F (rij), (3.6)

Where the coe�cient n indicates the so�ness of the model and the function F (rij)

smooths the potential at a cut o� distance rc = rij/σij beyond which the potential is set
to zero. We employ this form to mimic so� interacting particles for which we are able to
change the steepness of the interaction, namely the particle so�ness. Unless otherwise
speci�ed we use

F (rij) = c0 + c2

(
rij
σij

)2

+ c4

(
rij
σij

)4

. (3.7)

Where the coe�cient c0, c2, c4 ensure the continuity of the potential up to the second
derivative at the cut o� distance rc = rij/σij = 1.25. �is functional form is preferred
since it allows easy minimization of the total potential in studies of landscape [16],
vibrational modes [138, 80] and athermal shearing [139]. We also studied models with
particles interacting through a Lennard Jones potential

v(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+ cLJ . (3.8)

In this case, we cut o� and shi� the pair potential at the cuto� distance rcut = 2.5σij
and εij represents the energy scale of interactions. We use this interaction in two cases.
In the �rst model the size dispersion is given by Eq. (3.4). �e second case represents
an extension of the historical Kob-Andersen Lennard Jones mixture (See Ref. [48] and
Ch. 2) to which we add some additional particles as explained below.
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Finally, we also employ a hard sphere system presenting the usual two particle
interaction

v(rij)

{
∞ if rij ≤ σij

0 if rij > σij.
(3.9)

Most of our systems present an interaction rule for the cross-diameter σij given by

σij =
σi + σj

2
(1− ε|σi − σj|). (3.10)

Models characterized by ε = 0 are additive, whereas models using a ε 6= 0 are named
non-additive. Besides, we introduce an extension of the historical Kob Andersen mixture
where some particles are added to the original two component systems. �ese particles
have both non-additivity in size and in energy which can be generally described by

xAi = ωixAA + (1− ωi)xAB
xBi = ωixAB + (1− ωi)xBB

xij = ωijxAA + (1− ωij)xBB.
(3.11)

Here xij = σij, εij indicate diameter and energy scale respectively, (A,B) are the species
of the starting binary mixture, (i, j) are indices of the additional particles and ω ∈ (0, 1).
Note that when ω = 1 we obtain an A particle, whereas for ω = 0 we regain a particle of
the B species. �ese additional particles are introduced to enhance the e�cency of the
swap Monte Carlo algorithm. �e reason for this to work, the concentration of additional
particles and the other details will be given in Sec. 3.9.2.

3.3 Methods

In this section we introduce the most frequently used physical observables and
the methods in this chapter. Dealing with the supercooled regime we always want to
carefully check the absence of crystalline local order in the system. As a very simple test
we look at the radial distribution function [1]

g(r) =
N∑

i,j;i 6=j

δ(r − |ri − rj|). (3.12)

We recall that in an isotropic system the quantity ρg(r)dr gives the density probability
to �nd a particle in a spherical shell of thickness dr at a distance r from the origin, given
the presence of a particle in the origin. We also monitor density �uctuations using the
structure factor [1]

S(k) =
1

N
< ρkρ−k >=

1

N

〈
N∑
i

e−ikri
N∑
i

eikri

〉
, (3.13)
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where the quantity ρk is the k component of the Fourier transform of the density
of the system. Both for radial distributions and for structure factors one can de�ne
species-speci�c versions in which only particles in given species of the system are
taken into account in the sum, i.e. gαβ(r), Sαβ(r). Here α and β represent a species
of the mixtures or a subset of particles in the continuously polydisperse systems. �e
behaviour of the structure factor gives information about density �uctuations at di�erent
wavelength λ = 2π/k. �is means that the low k values give information about long
wavelength �uctuations in the system. In a totally monodisperse system, this can be
directly related to the system compressibility using Fluctuation-Dissipation relations [1].
In the multicomponent or polydisperse system, employed in this thesis, however one
should invert aM×M matrix, whereM is the number of components [140]. We decided
not to perform this further analysis and to simply focus on changes of the low k values
with temperature. In supercooled liquids two point static correlation functions such as
the radial distribution or the structure factor do not vary signi�cantly with lowering
the temperature [6]. �e presence of crystalline or disordered states can be observed by
detecting abrupt changes in this quantity as compared to the high temperature liquid
phase. Particularly useful to this aim is the low-k behaviour of the species-speci�c
structure factor Sαα that gives information on phase separation or demixing, showing a
pathological increase at low-k when particles of the same species cluster together.

Another observable that detects crystalline order is the 6-fold bond-orientational
order [104, 141]

Q6 =

〈
1

N

N∑
i=1

√√√√√4π

13

6∑
m=−6

∣∣∣∣∣∣ 1

Nb(i)

Nb(i)∑
j=1

Y6m(rij)

∣∣∣∣∣∣
2〉

, (3.14)

where Y6m(rij) are spherical harmonics of degree n = 6. �is observable measures the
concentration of icosahedral order in the system, being one when all the particles belong
to icosahedra and zero in the opposite case. �e inner sumNb(i) runs over the number of
neighbours de�ned as particle closer than a cut-o� value corresponding to the minimum
of the rescaled radial-distribution function g(rij/σij). Usually orientational correlators
are computed using neighbours de�ned through Voronoi tessellation, however there
is increasing evidence that the results remain unchanged if the neighbours are de�ned
instead as particles within a distance less than a cut-o� value corresponding to the �rst
minimum of the radial distribution function [103]. Since we use polydisperse mixture
both in the computation of this radial distribution and in the evaluation of the distances
we always normalize by the two particle cross-diameter σij . �e two dimensional 6-fold
bond orientational order can be analogously de�ned as [104, 141]

ψ6 =

〈
1

N

N∑
i=1

1

Nb(i)

Nb(i)∑
j=1

∣∣exp(i6θij)
∣∣〉 . (3.15)

Here θim is the angle formed between particlem and i. �is quantity measures the degree
of orientational hexagonal order in the system, since local order in two dimensions is
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usually hexagonal, and it is one for perfect triangular la�ice [56]. In standard Monte-
Carlo simulations we can monitor the self and collective dynamics by measuring particle
displacements or time dependent density correlation functions [47]

Fs(k, t) =< fs(k, t) >=

〈
1

N

∑
j

eik·[rj(t)−rj(0)]

〉
. (3.16)

Here we chose the wavenumber k as the value corresponding to the maximum of the
total structure factor S(k). �e structural relaxation time can be de�ned as the time
at which this function assume the value Fs(k, t) = e−1. �e same functional form can
be also employed in swap simulations provided that one considers that the exchanges
involve diameters of particles instead of their positions, such that a meaningful single
particle dynamics is preserved. In mixtures and continuous polydisperse systems the
dynamical properties may vary in a non trivial way depending on the diameter of the
particles. In standard simulations one can divide the system into subsets and evaluate the
dynamics for particles of di�erent sizes. In swap simulations this is not possible, since
particles change their sizes over time and consequently we always compute dynamical
observables over all the particles in the system. Moreover we are forced to make the
same choice for standard dynamics, since our �nal aim is to compare between the two
dynamics.

We also compute collective relaxation of density degrees of freedom by using the
time-dependent collective overlap function which has the form:

Fo(t) =

〈
1

N

∑
i,j

θ(a− |ri(t)− rj(0)|)

〉
, (3.17)

using a cuto� distance a = 0.3 which is comparable with the size of the typical cage. �is
quantity gives similar information as the coherent intermediate sca�ering function at
wavevector k = 2π/a [142], on the other hand it is computationally more advantageous
since it presents much smaller statistical �uctuations. From this function, one can de�ne
a relaxation time τo for the decorrelation of collective density �uctuations, at the time at
which Fo(τo) = e−1.

Since we are interested in accelerating equilibration, we want to compare the stan-
dard dynamics and the swap dynamics. In order to do this we start from studying the
dynamical arrest present in the standard dynamics using α-relaxation. For each system
we �t standard dynamics using an MCT like equation introduced in Eq. (1.9) form which
we extract TMCT . As discussed in Sec. 1.3.1 this temperature roughly coincides with
the in silico dynamical arrest. We also employ three other functional forms. One is
the famous Vogel-Fulcher-Talmann (VFT) law which has been extensively used in glass
science [133]

τα ∝ exp

(
A

T − T0

)
, (3.18)
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here T0 is a ��ing parameter and indicates the temperature of the divergence of relaxation
times, in agreement with a Kauzmann scenario. �is function, although widely employed
to �t relaxation times, was questioned using experimental results in Ref. [143], where it
was shown that other functional forms, not predicting a divergence of relaxation times
at �nite temperature are be�er estimator for dynamical data over the whole accessible
experimental dynamical range. Another article questioning the VFT functional form was
published in 2009 by Elmatad, Chandler and Garrahan [144]. �ey agree on the absence
of a divergence of relaxation times at �nite temperature and introduce a functional
form to describe relaxation times with an increase proportional to an exponential of the
inverse squared temperature

τα ∝ exp

[
A′
(

1

T
− 1

T1

)2
]
. (3.19)

here A′ and T1 are ��ing parameters that control respectively the speed and the location
of the dynamical arrest. Finally, we also employ an Arrhenius law

τα ∝ exp

(
A′′

T

)
, (3.20)

�is typically describes relaxation times in a strong glass former [2]. Even though in
this chapter we only deal with glass-forming liquids presenting a fragile behaviour we
will employ this law, along with the others, to extrapolate relaxation times at lower
temperatures, where the real dynamics cannot be followed up to the α-relaxation time.
�e procedure will be be�er explained in Sec. 3.7.3. In general, in the following, we will
refer to dynamical gain performing the following procedure: �rst we �t the standard
dynamics with the parabolic law (Eq. 3.19). �en we plug in this equation the lowest
temperature T ∗ at which swap simulation are able to equilibrate. Doing so we are
able to estimate the corresponding relaxation times of standard simulations τα(T ∗).
�e dynamical gain is the number of orders of magnitude gained performing swap
simulations as compared to standard simulations:

dynamical gain = log10

τ standard
α (T∗)

τ standard
α (TMCT)

. (3.21)

We also de�ne the speed up as the number of order of magnitude gained in equilibration
at the kinetic slowing down in simulations:

speed up = log10

τ standard
α (TMCT)

τ swap
α (TMCT)

. (3.22)

3.4 Equilibrium �uid
Equilibrium is a necessary condition to ensure a correct sampling in a Monte Carlo

simulation [52]. �erefore this section will be dedicated to the introduction of the
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simulation method and to all the criteria we followed to guarantee that the system
is truly at equilibrium. Let us start by introducing the algorithm and deal with its
optimization. Our simulations are based on Metropolis Monte Carlo [46, 44]. �e time
evolution consists in considering a con�guration C at step t and a�empt to generate
a new con�guration C ′ at step t+ ∆t. �e probability for the new con�guration to be
accepted is given by a Metropolis acceptance rule

p(C → C ′) = min{1, exp[β(EC′ − EC)]}, (3.23)

where EC′ , EC are the total potential energy of the system in con�gurations C ′, C . �is
algorithm respects detailed balance and from a mathematical point of view it is a Markov
chain that, once stationarity as been reached, gives the correct sampling of the Gibbs
distribution [52]. Any rule to generate the new con�guration is theoretically accepted
and in general Metropolis Monte Carlo methods are widely employed to study statistical
properties of systems presenting rough free energy landscapes and they can e�ciently
sample distributions and �nd critical points.

In the last 10 years, Metropolis Monte Carlo was also used to obtain dynamical
quantities in supercooled liquids a�er the technique was �rst employed in Ref [47]. �e
technique consists in using what we call standard Monte Carlo dynamics, a well known
simulation technique [44], in which the rule to create the new con�guration consists
in randomly choosing a particle in the system and performing a displacement of ∆r.
�e direction and the length are chosen at random: the �rst on the entire solid angle
and the second in an interval between 0 and ∆rmax. If this last value is too large, large
jumps are a�empted and the new con�gurations are very rarely accepted. If it is too
small moves are almost always accepted but the timescale of the simulations increases
uselessly. In our work, we always set a ∆rMAX which corresponds to acceptance rates
of the order of 30 − 50%. Unless otherwise indicated, we will work in the canonical
ensemble such that the number of particle N , the volume V and the temperature T
are �xed. Even though from a strict theoretical point of view a Monte Carlo dynamics
cannot be related to a physical dynamics, there are computational evidences [47] that
the Monte Carlo dynamics presents the same relaxation behaviour as Stochastic and
Brownian dynamics, where with Stochastic dynamics we mean a dynamics in which a
friction term and a random noise are added to the Newton’s equations of motion and
with Brownian dynamics we mean that the evolution of the particle position is described
using a Langevin equation. Moreover, as far as supercooled liquids are concerned, even
though the vibrational behaviour on short timescales di�ers, all the dynamics mentioned
so far have comparable long timescales behaviour and the same form for α-relaxation as
Newtonian dynamics.

On top of these standard moves, during the simulation we introduce some additional
moves consisting in taking two particles at random and trying to exchange their diameters
based on the same Metropolis acceptance method of Eq. (3.23). �is means that the
method directly inherits all the properties of the standard Monte Carlo method, that is,
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it is able to reconstruct the Gibbs distribution at equilibrium. We refer to this dynamics
presenting both standard displacements and diameter exchanges as swap Monte Carlo
dynamics.

What is exactly equilibrium in a simulation of supercooled liquids? One could see
that using time correlation in the system: imagine to introduce a general two time
correlation function C(t, t′), which depends implicitly on the two time t and t′ and on
the state point of the system at two di�erent times r(t) and r(t′), then the following
condition is necessary and su�cient for stationarity:

C(t, t′) = C(|t− t′|). (3.24)

�is means that correlation function depend only on the absolute value of di�erence
of time and not on the single time values. In others words, this tells us that the system
does not present aging. Once we are sure that the system is at equilibrium by computing
correlation functions we can prepare a set of con�guration sampling the Boltzmann
distribution with the �nal aim to compute averages of mechanical statistical quantities.

Now, the second question that could be asked is: how many con�gurations do we
need and how do we choose them? �e �rst part of the question is easy to answer, one can
estimate statistical error from fundamental statistics such as standard deviations or using
well known techniques for computational studies as Jackknife or Bootstrap methods,
depending on the observable at test [145]. �e second part of the question is subtle. �e
answer being that there is not a unique solution and the right choices must be evaluated
from case to case. For instance in order to observe logarithmic decays, one should store
con�gurations logarithmically in time. On the other hand if only static properties are at
test one could just employ a set of independent con�gurations. Overall the only essential
piece of information which one has to be able to retrieve is to distinguish between
con�gurations that are statistically independent or not. De�ning independency in swap
simulations is a tricky point. If we exchange two particles far enough and we exchange
their position, the new con�guration will be statistically independent on the starting one
or not? We �rmly believe that this is not always the case for reasons that have mainly to
do with the roughness of the free energy in a glassy system.

Let us take two di�erent con�gurations {r(t)}, {r’(t)}. Even though the particle
positions are not the same, it has been understood [38, 146] that they could belong to the
same free energy basin and consequently to the same thermodynamic state if they are not
di�erent enough. �is could be for instance the case of continuously polydisperse systems
in which only the diameter of two particles with similar sizes has been exchanged, as
clari�ed in Ref [146]. For these reasons, in order to de�ne statistically independent
con�gurations, we rely on density decorrelations. As said before, if we think of a swap
move as an exchange of two particle diameters and not as an exchange of position, we
are able to follow the single particle dynamics. We can compute the self-intermediate
sca�ering function of Eq. 3.16 and de�ne a τα relaxation time for swap simulations.
We use the α-relaxation time as the time period to create a con�guration statistical
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independent form the starting one. We notice here that the swap dynamics has no
physical equivalent and consequently we mainly use dynamical observables in a totally
technical way.
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Figure 3.2 – Results for swap dynamics computed respectively on the �rst (full black line) and
the second (dashed red line) half of the simulation run. In both panels temperatures are T =

0.25, 0.175, 0.0.125, 0.092, 0.075, 0.065, 0.062, 0.058, 0.0555. Results for standard dynamics at
the lowest temperature are shown with a blue do�ed line.�e system is studied in Sec. 3.7.2 and
is made of non-additive so� repulsive particles with ε = 0.2.

At the basis of our equilibration techniques we use long time relaxations in particle
dynamics. We illustrate this point in Fig. 3.2. First we computed the self-intermediate
sca�ering function during swap simulations over the �rst half and the second half of
the simulation. �is are shown in Fig. 3.2a respectively with black continuous curves
and red do�ed curves. As one could observe there is no mismatch between the two
measurements beyond the statistical error and the two families of curves decorrelate to
zero. �is is showing clearly that there is no aging in the system and the equilibrium
condition holds strongly. In the same plot we also show with a blue do�ed line the same
quantity computed on a standard simulation performed by starting from a con�guration
equilibrated with swap dynamics at the lowest accessible temperature. In this case
the curve a�ains a plateau value and it does not relax to zero in standard simulation
timescales. �is means that this dynamics can only explore vibrations in the system
and the temperature is so low that the system remains con�ned in visiting the same
potential energy basin. Fig. 3.2b shows a similar analysis. Here we plot the overlap
function (see Eq. (3.17)). Also in this case we observe the absence of aging in the system
and the quantities computed in the �rst half and in the second half of the simulation
decorrelate together to the same value for long times. �is value depends on the system
density and it is equal to ρV0 where V0 = 4/3πa3 is the spherical volume over which
the overlap is computed. �is result ensures that all the centers of mass of the particles
decorrelate with respect to their initial positions. Moreover we also compute correlation
functions for standard dynamics using as starting point both a con�gurations obtained
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using only standard simulations and a con�guration equilibrated with swap simulations
at the same temperature. �e results (not shown) perfectly match, con�rming that
swap simulations are trustfully reproducing the Boltzmann distribution. As further
checks we also monitored the instantaneous value e(t) and the average value 〈e〉 of the
potential energy in order to detect the absence of aging in time and the departure from
the equation of state, evaluated with standard simulations. However we will later see
how the potential energy could be a misleading observable to look at in swap simulations.

3.5 Optimizing the algorithm
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Figure 3.3 – �e relaxation time τα as a function of the swap a�empt probability p, normalized
by τα∗, its value for standard Monte Carlo simulations when p = 0. A broad minimum is present
around p ≈ 0.2 indicating that this value optimizes the e�ciency of the swap algorithm. �e
inset shows the probability distribution of the swap acceptance as a function of the diameter
di�erence ∆σ = |σ1 − σ2| between the particles for which the swap move is a�empted. �e
system is studied in Sec. 3.7.2 and is made of non-additive so� repulsive particles with ε = 0.2.

�ere are two possible optimizations of swap moves. First, one can adjust the
probability p that a Monte Carlo move is a swap a�empt to maximize the speed up. �e
complementary 1− p indicates the probability that a move is a standard displacement
a�empt. �e optimal value of p can be found by performing standard simulations at one
of the lowest temperatures where it is possible to equilibrate and measure the relaxation
times and then switch on swap moves progressively, performing independent simulations
at di�erent values of p. In Fig. 3.3 we show the value of the relaxation time τα divided by
the relaxation time of the standard simulations as a function of p. �is �gure shows that
even for small p the relaxation time has a huge drop (axes are in logarithmic scale) and it
reaches a minimum for values of p ≈ 0.2. �is minimum is broad enough to assume that
this optimization holds also at di�erent (and lower) temperatures. Another optimization
that can be performed deals with particle diameters. As anticipated, we simulate both
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mixtures and systems that are continuously polydisperse, namely characterized by a size
dispersion described by a continuous function. Naively, one could expect that trying
to exchange the position of two particles can be energetically very unfavourable if the
particles have very di�erent sizes. If we imagine a swap move as one particle that swells
in one place and at the same time a particle that de�ates independently elsewhere, we
end up in a totally local description. �is means that, locally, a particle will easily de�ate
while, on the contrary, the swelling could be very expensive energetically. �is is what
causes swap Monte Carlo moves between particles with a very di�erent sizes to be
almost never accepted. �is hand-waving argument can be quanti�ed by measuring
the number of accepted swaps as a function of particle diameter di�erence ∆σ. As one
observes in the inset of Fig. 3.3, the acceptance decreases considerably as a function of
∆σ and consequently we decide not to try swaps between particles having diameters that
di�er more then a cut-o� value of ∆σMAX = 0.2 (this value being somehow arbitrarily
chosen). �e case of mixtures is easier. �ere, we do allow swap a�empts only between
species that have contiguous values of the diameter. �e complete MC sweep in a system
of N particles in pseudo code is the following:

1)extract a random number r1 ∈ [0, 1]

2)if r1 > p

attempt a standard MC displacement
else if r1 < p

draw r2, r3 ∈ [0, N ] while |σr2 − σr3 | < ∆σMAX

attempt a swap between particles r2 and r3

3)repeat N times from 1).

Here, one has to be careful with two details. �e �rst is that we extract r2 and r3 and if
their diameters do not respect the cut-o� condition we extract both of them again. �is
is done so that the con�guration is not counted twice in the sampling of the Boltzmann
distribution and the cut-o� condition on the diameter di�erence does not explicitly enter
the Metropolis acceptance rule. Moreover we extract again both of them. �is is done so
that any particle will have the same probability to be selected for a swap a�empt and
detailed balance condition is respected.

For all the models reported in Fig 3.1, we have studied crystallization and ordering
extensively, using always the same protocol. We perform �ve independent simulations
running for at least 200τα at each di�erent temperatures. If at least one of these simula-
tions presented instability, we classify the system as a bad glass-forming liquid at that
temperature. For the remaining systems we mainly equilibrated the system and explore
equilibrium in simulations lasting for hundreds of relaxation times, although we have
not carried out a strict protocol for each temperature. Overall our simulations are even
longer than what is strictly necessary to produce equilibrium con�gurations. Anyway
we think that computer simulations of supercooled liquids must respect stringent rules
of equilibration and persistence in the metastable state before anything can be said about
their physical properties.
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3.6 Mixtures

3.6.1 Binary mixture
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Figure 3.4 – Relaxation times τα of standard (black empty points) and swap (red full squares)
simulations for the binary mixture of so� repulsive spheres. �e speedup given by swap simula-
tions in equilibrating is obvious, but the system is unstable towards crystallization at T = 0.202.
Temperature below Mode Coupling temperature TMCT = 0.199 cannot be studied. �e inset
shows a time series of the potential energy for standard (black) and swap (red) simulations at
T = 0.2. Crystallization is easily observed when swap moves are introduced.

�e aim of this section is to revise and reassess some previous literature results on
swap simulations. �is has both an pedagogical aim and it will also give new results to be
compared to the previous literature �ndings. �e �rst system we study is the historical
50:50 binary mixture of so� particles interacting via an inverse power law. �e two
particle interaction is de�ned by Eq (3.6) and (3.10), with ε = 0 and F (rij) = cαβ where
α, β = A,B are species indices. �e size ratio is σA/σB = 1.2 and the polydispersity
is δ = 9.1%. We perform simulation of N = 1024 at density ρ = 1.. �is system
was employed in many articles using swap simulations [69, 70, 71, 75, 147, 76]. First it
was claimed that swap simulations could equilibrate the system below TMCT and that it
showed a peak in the constant volume speci�c heat indicating the presence of a Kauzmann
transition [69]. Two years later, the Reichman group repeated the simulations [70],
discovering that the system crystallizes using swap simulations already for moderately
low temperatures. �is allowed to reinterpret the �ndings of the previous paper and
also it indicates that in using this system one has to beware of ordering and indeed
sometimes a particular a�ention to crystallization was used [76]. Here we perform swap
simulations of the system again. We found the acceptance of swap moves to be around
a ∼ 10−2, as was previously found in literature. We con�rm that the system presents
crystallization and this is indicated both by a drop in the potential energy time series and
by bond-orientational order analysis. Moreover, because of crystallization, the lowest
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temperature at which the system can be equilibrated is around TMCT and the system
presents ordering already in standard simulations. Fig. 3.4 shows α-relaxation times
for standard simulations in black and swap simulations in red. �e speed up (Eq. 3.22)
reaches a maximum of two orders of magnitude at the lowest temperature and it increases
lowering the temperature, contrary to old simulations where it was claimed a constant
gain of a factor 180 [75]. We �t relaxation times of standard simulation to Eq. (1.9) to
extract TMCT ≈ 0.199. �ere was an old and higher estimation of this value relying on
the Van-Hove self correlation function TMCT ≈ 0.226 [99]. We believe that our ��ing
of dynamical data gives a be�er estimation of this value. Overall swap simulations for
this system do not give a huge improvement since crystallization intervenes at a rather
high temperature and the Mode Coupling crossover cannot be crossed.
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Figure 3.5 – Potential energy distribution P (U/N, T0 = 0.30). �e curve is obtained by his-
togram reweighting of the data for T=0.20,…,0.40 as shown in the legend. (a) is taken from
Ref. [80] for a system of N = 1474 particles. �e inset shows a zoom on low temperature values.
(b) the equivalent results obtained in our simulations. Here the system has N = 1500 particles.
�e temperature range is the same as in previous literature and the agreement to the Boltzmann
distribution seems to old down to T ≥ 0.20. �e inset shows the mean squared displacement ∆r

for T = 0.22, 0.24 where it can be observed that particles have globally travel of distance ∼ 10

for T = 0.24 and ∼ 2 for T = 0.22 respectively. �is values are small for a correct exploration
of equilibrium.

3.6.2 Ternary mixture

�e second literature model under investigation was recently introduced by the
Procaccia group [80]. �is is a ternary mixture of so� particles interacting via potential
of Eq. (3.6) and (3.10), where n = 12, ε = 0. and F (rij) is de�ned by Eq. (3.7). Following
Ref. [80] we perform simulations of N = 1500 particles at a density ρ = 1.1. �e size
ratio between species is σA

σB
= σB

σC
= 1.25 and the size dispersion is described by Eq. (3.1)

where the fractional compositions are xA = 0.15, xB = 0.30 and xC = 0.55 respectively
for species A,B,C , this results in a polydispersity of δ ≈ 17% and in the fact that each
species occupies roughly the same volume. For this system we a�empt swap moves only
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(a) (b)

Figure 3.6 – Speci�c heat of swap simulations computed both using derivatives cV = ∂〈U〉/∂T
(squares) and standard deviations cV = (〈U2〉 − 〈U〉2)/kT 2 (circles) of the potential energy. (a)
results are reproduced from Ref. [80]. (b) equivalent results obtained in our simulations. �e
peak in our case is more evident and coincide with phase separation in the system.

for particles in contiguous species and we found an acceptance of a ∼ 10−5, which is
consistent with previous literature results. �e acceptance is lower than in the binary
system, due to the higher size ratio. We repeated the simulations of the previous paper
adding more state points.

�e �rst issue we concentrate on is equilibration. In Ref. [80] it was claimed that
equilibration was achieved at extremely low temperatures as compared to TMCT =

0.28 showing two tests. �e �rst test is a histogram reweighting [145] to collapse the
probability distribution of the potential energy P (U, T ) for di�erent temperatures on
the probability distribution at a high temperature T0 = 0.30 following [60]:

PT0(U, T ) =
P (U, T ) exp

[(
1
T
− 1

T0

)
U
]

∫
dU ′P (U ′, T ) exp

[(
1
T
− 1

T0

)
U ′
] . (3.25)

Here T0 has not to be confused with the onset temperature and U indicates the total
potential energy. �e result is shown in Fig. 3.5a. As one sees, apart from data computed at
T = 0.20, all the other data lie on a Boltzmann shaped distribution. �e authors claimed
that they where able to equilibrate at T = 0.22 and that only the lowest temperature is
out of equilibrium. As a further proof of equilibrium they plot the speci�c heat computed
from derivatives (cV = ∂〈U〉/∂T ) and from standard deviation of the potential energy
(cV = (〈U2〉−〈U〉2)/kT 2). �ese estimations coincide when the system is at equilibrium.
�e result is shown in Fig. 3.6a. �e two sets of values coincide down to T = 0.30, then
deviations are present and one also can observe a peak at T = 0.26.

We repeat the two equilibration tests and the results are shown in Figs. 3.5b and 3.6b.
Regarding the potential energy histogram reweighting we were able to obtain the canon-
ical distribution as in the literature. However for temperatures T ≤ 0.24 we use, on
purpose, simulations runs short enough that particles have barely moved. �is is shown in
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Figure 3.7 – Partial structure factor SCC(q) for small particles in the ternary mixture. It is
featureless at high enough temperatures, T = 0.350, displays strong composition �uctuations at
low q in the �uid at T = 0.267, that may eventually lead to a demixed state at long times. For
T ≤ 0.26, the system is demixed, as shown for T = 0.256. �e inset shows a representative
snapshot of a demixed and partially crystallized system at T = 0.256.

the inset of Fig. 3.5b where the mean squared displacement is reported for T = 0.22, 0.24.
We believe that this histogram reweighting technique is a poor test of equilibration due
to the extremely wide scale on the y-axis, where are reported more than 100 orders of
magnitude. �is easily hides defects of the shape of the distribution, which are only
evident for T = 0.20. �e second test concerns the speci�c heat, in this case, repeating
the analysis of Ref. [80] we found similar results. �e consistency seems to hold down
to T = 0.30, then some �uctuations are presents which become bigger lowering the
temperature and also we found a bigger peak at T = 0.26. Also in this case we believe
that the test is not strong enough to certify that equilibrium is properly explored and clear
results for T < 0.30 are di�cult to obtain unless one performs very long simulations
and achieves very high statistics. Moreover there is another danger in the system which
comes from ordering. Indeed we will show that the presence of a peak in the speci�c
heat for T = 0.26 is due to strong compositional �uctuations in the system.

Let us �rst concentrate on this last point and later discuss equilibration in the system.
In our simulations of this model we experienced that the monitoring of energy and
speci�c heat is not enough to detect ordering. To this aim, one of the best observables
is the species-speci�c structure factor Sαα de�ned in Sec. 3.3. We report the results
for the species C of the smallest particles in Fig.3.7. �is �gure shows that at high
temperature the shape is the standard one for a liquid, with oscillations that account
for density �uctuations at �nite wevelength and a �xed and non vanishing low-q. At
a lower temperature (T = 0.267 ≤ TMCT ) this low-q value remains small in short
simulations, whereas it increases at longer times. Finally at very low temperature it
assumes large values clearly indicating the presence of huge compositional �uctuations
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Figure 3.8 – Relaxation times τα of standard (black empty points) and swap (red full squares)
simulations for the ternary mixture of so� repulsive spheres. �e speedup o�ered by the swap
moves is obvious, but the system is unstable below T = 0.26 ≈ 0.9TMCT where it demixes and
crystallizes. Disconnected squares are a rough estimate of τα obtained using short simulations in
the unstable region. Stable and equilibrated states can be accessed down to T ≈ 0.26 < TMCT =

0.288, extending the dynamic range by about 2 orders of magnitude as compared to standard
simulations.

in the system. �is has also been con�rmed by the observation of some screenshots
where both demixing and crystallization can be observed by eyes (see inset of Fig. 3.7).

Bewaring of ordering e�ects, we can now evaluate the acceleration given by swap
simulations. We do this as previously using α-relaxation times. We report τα as a
function of temperature for standard and swap simulations in Fig. 3.8. Despite the
low acceptance rate, we notice that the acceleration given by swap simulations can
be remarkable. At the lowest temperature at which we perform standard relaxation
T = 0.29, the relaxation time is reduced of more than two orders of magnitude. We
found that the lowest temperature for which the system is �rmly an equilibrium �uid is
T = 0.267. Beyond this point we were able to measure relaxation times (disconnected
red points) by performing simulations shorter than 200τα. Extrapolating the relaxation
times for swap simulations, one �nds that τα becomes too large at T ≤ 0.24 to be
accurately measured and in our simulations at T = 0.22, lasting more than 108 Monte
Carlo steps particles barely moved. In view of this result we believe that previous claims
where too optimistic about the equilibration range. In Ref. [80] based on dynamical
scaling arguments the authors quanti�ed the relaxation time at T = 0.22 of the order of
τα/τo = 1015 where τo is the value of the relaxation time at the onset temperature To.
�ey quantify the additional equilibration range corresponding to a dynamical gain of
around 10 orders of magnitude beyond TMCT . We performed this analysis again and
we found that the lowest stable temperature T = 0.267 correspond to a dynamical gain
of two orders of magnitude. Overall this system represents a progress compared to the
binary mixture, since it can be equilibrated easily below TMCT . However it presents
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serious issues concerning ordering and the actual accessible temperature regime. For
this reason we decided to introduce new classes of models that can improve the swap
performance.

3.6.3 Pentary mixtures

�e main message of the previous subsections is that e�ciency of swap simulations
strongly depend on the glass-former under investigation. We already saw that the
introduction of a third species increases the swap performances allowing equilibration
below TMCT . To push this idea even further, we introduce two di�erent �ve-component
mixtures. We adjust the concentrations such that each species occupy roughly the same
volume and we choose a size ratio small enough to enhance swap acceptance. �e �rst
system has diameters linearly spaced between σmin = 0.847 and σmax = 1.333 for a
polydispersity δ = 16%, the second between σmin = 0.826 and σmax = 1.771 for a
polydispersity δ = 23%. Interaction potential is the same as the ternary mixture one.
Swap Monte Carlo acceptance in these models increases considerably in comparison
to the previously studied binary and ternary mixture to values around a ≈ 10− 20%

depending on the temperature. �e main drawback of these models is the presence of
phase separation, which prevents equilibration below TMCT . Clearly these two a�empts
do not exhaust all the possible multi-component models that could be designed and a
more careful exploration of the parameter space would be needed.

3.7 Continuously polydisperse systems

3.7.1 Phase behaviour

To maximize the dynamical gain of swap Monte Carlo simulations, we consider
systems having a continuous polydispersity, that is, the diameter of the particles contin-
uously interpolate between a lower and a higher bound.

We have been inspired by the work done in Ref [79], where particles with continuous
polydispersity were simulated using swap Monte Carlo dynamics. In that case, the
aim of the authors was to compute the phase diagram of a system presenting a �at
size-dispersion using the enhanced exploration of the energy landscape enhanced by
swap simulations. In the model of Ref. [79] particles interact via an inverse power law
potential with exponent n = 12 and the phase diagram was computed as a function
of the control parameter Γ = ρT−1/4 and polydispersity δ. We recall that, in systems
of so�-spheres, Γ is the only independent thermodynamic parameter [1] and δ is the
polydispersity de�ned as in Eq. 3.5. Γ is the also the only control parameter that drives
the glass transition. �e literature result is reproduced in Fig. 3.9a, taken from Ref. [79].
�e authors identi�ed three di�erent regimes. �e �uid regime, the crystal and the
I-phase. At low polydispersity, 0 ≤ δ ≤ 0.2, the system is either a liquid, at low Γ, or a
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single crystal, at high Γ. Increasing the polydispersity the system can a�ain a regime that
the authors called I-phase, characterized by large density �uctuations. �is corresponds
to an ordered phase where particles with similar sizes phase separate and later crystallize.
�is e�ect in polydisperse so�-spheres, is known as fractionation and was widely studied
by the Sollich group [148, 149, 150], by means of semi-grand canonical simulations and
perturbative expansion theory.

Our main aim here is to reassess the validity of the phase diagram discussed before
and to understand its relevance beyond the model simulated in Ref. [79]. We perform
simulations of particles interacting via the two particle potential of Eqs. (3.6) and (3.10)
where n = 36, ε = 0 and F (ij) is set to a constant. �e size dispersion is described by
Eq. 3.2. We test many di�erent realizations of the system varying the polydispersity
in the interval δ ∈ (0, 0.33). �is model presents two di�erences compared to the one
simulated in Ref. [79]. First, in that case, the interaction parameter was so�er (n = 12).
Moreover the size dispersion was �at, whereas in this case we opted for a size dispersion
that goes as the inverse of the volume of the particle, chosen in order to enhance glass-
forming ability [137]. In our system, since the interaction is very steep, the particle
interpenetration at low temperature/high density is small and therefore we can de�ne a
packing fraction through the equation φ = π

6L
〈σ3〉. We report the phase diagram as a

function of density and polydispersity in Fig. 3.9b where, with black circles, we indicate
state points at which the system remains a stable �uid during simulations and with red
squares state point at which it present ordering. All simulations last for t ∼ 107 MC
steps.

(a) Phase diagram of polydisperse so�-
spheres obtained with swap simulations taken
from Ref. [79]. �e so�ness parameter is
n = 12. On x-axis the thermodynamic pa-
rameter Γ = ρT−1/4. On the y-axis the parti-
cle polydispersity δ. Authors identi�ed three
phases: a high temperature �uid, a crystal,
and a inhomogeneous solid I. �e vertical line
in the �uid phase represent the kinetic glass
transition.
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(b) Phase diagram of polydisperse so�-sphere
in our swap simulations. �e so�ness parame-
ter is n = 36 which makes the system close to
a hard sphere system. On the x-axis we plot
the packing fraction and on the y-axis the
polydispersity. Black circles indicate stable
�uid phase and red squares indicate presence
of order and long-range density �uctuations.
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Even though the two systems have di�erent so�ness exponents and di�erent shapes
of the size dispersion, their phase diagram look similar. �ey both show increasing
resistance to ordering by increasing polydispersity and the literature result also presents
a reentrant behaviour for polydispersity δ ≥ 0.3, where the fractionated phase can be
reached for smaller values of Γ.

We note in passing that the two phase diagrams have been derived with very di�erent
purposes. In our case, we want to simulate supercooled liquids and we would like to
enhance sampling of the metastable state and at the same time to suppress ordering
e�ect. In Ref. [79], instead, swap simulations were intentionally used to faster explore
the phase diagram and induce thermodynamic transitions. �anks to this promising
preliminary study, we were able to start studying continuous polydisperse models in
depth. In the following we set δ = 23% for every system realization, given that lower
and higher value imply easier demixing or fractionation.

3.7.2 Additive and Non additive so� spheres

In this section we study two classes of polydisperse systems of so� spheres, char-
acterized by the value of the non-additivity parameter ε in the interaction rule for the
cross-diameter (Eq.(3.10)). �e main aim is to explore the space of parameters in order
to �nd the best combination that improves resistance to ordering in the system. �e
size dispersion is described in Eq. (3.2) with σmax/σmin = 2.219 giving a polydispersity
of δ ≈ 23%. Particles interact through Eqs. (3.6),(3.7) and (3.10) where n and ε assume
di�erent values. We perform simulations of N = 1500 at ρ = 1.0186. �e acceptance of
swap moves in this model is a ∼ 20%− 30% and it does not depend considerably on
temperature. Also the acceptance of the standard displacement is a ∼ 30%− 50% and it
depends only mildly on particle diameter. Without even considering the real dynamical
speed up, this high value of the acceptance already indicates that swap moves are much
more e�cient compared to the mixture case. �is is explained by the fact that for each
particle one can �nd numerous other particles in the system with a similar diameter,
such that swap moves will be easier to be performed. �is does not mean that the system
would necessarily relax in time, indeed one could imagine swaps that always exchange
the same particles between them and these particles would always vibrate around their
initial positions. A high value of the acceptance could be misleading and not having
big implication of the dynamics. We will be�er discuss about the physical mechanism
behind swap simulations in Sec. 3.8. For this class of systems we show in the following
that swap Monte Carlo simulations accelerate the dynamics tremendously.

Since this system is highly polydisperse there might be a dynamical decoupling
between small and big particles already in the standard dynamics, especially at low
temperature and close to the dynamical slowdown. To clarify this point, we performed
two checks using standard simulations. First we measured the Van Hove function (de�ned
in Eq.(2.10)) to detect the presence of particles whose positions do not relax with respect to
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Figure 3.10 – Self part of the Van-Hove correlation function 4πr2Gs(r, t) for standard simu-
lations (see Eq. (2.10) for a de�nition). �e quantity is computed over all the particles at three
di�erent times τα/2(black),τα(red), 2τα(green). �e temperature is one of the lowest accessible
one, T = 0.100. �e system is the non-additive system with n = 12 and ε = 0.2. At short time
the cage e�ect is remarkable, however for longer times all the particles decorrelate completely.

the initial positions. We show the result in Fig.3.10 for three di�erent times, respectively
τα/2, τα, 2τα at one of the lowest accessible temperature with standard simulations. As
one can observe, a�er a period of time shorter or equal than the total relaxation time τα
there is a fraction of particles that have not completely decorrelated with respect to their
initial position. However, at longer times all the particles completely decorrelate. �en
we also measured the relaxation time over the N/5 smaller τSα and bigger τBα particles of
the system as a function of temperature. We found that this quantity is almost constant
on �ve orders of magnitude of slowing down its value being τSα /τBα ∼ 10. �e fact that it
is constant in temperature guarantees that the dynamical slowdown for the two groups
of particle does not change in nature. �ese two observations allow us to assert that
even though there is a di�erence in timescales depending on particle size, we do not
observe a real decoupling and the dynamics follow a similar arrest both for small and
big particles.

Mindful of the analysis already carried on for the ternary system (Sec. 3.6.2), here we
also carefully inspect ordering in the system, and we found that this system presents
phase separation at lower temperature in swap simulations. �is can be observed by
looking at the structure factor at low-q. In this system there is no precise distinction
between di�erent species, anyway we can look to statical properties of particles with
similar diameters. To do so we group the particles with similar diameters in �ve di�erent
species, each containing N/5 particles. �en we compute the species-speci�c structure
factor and we use this to detect compositional �uctuations in the system. We observe a
tendency, in many di�erent system realizations, to phase separate. In the typical phase
separated sample, the small particles present large �uctuations on shorter timescales as
compared to the big ones.
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Figure 3.11 – Relaxation times τα for continuously polydisperse systems of repulsive so�
spheres with di�erent so�ness exponents n = 8, 12, 18, 24. Temperatures are rescaled by
TMCT = 0.143, 0.267, 0.468, 0.662, respectively. Open symbols represent the standard Monte
Carlo dynamics, closed symbols the swap dynamics, for which unconnected symbols represent
structurally unstable points where only a rough estimate of τα is obtained in short simulations.
A larger n yields be�er e�ciency and structural stability.

So far, we have clari�ed di�erent aspects which are common to all these continuously
polydisperse models and we can therefore start to test their behaviour in swap simulations.
�e �rst class of tested models is the additive one, where we �x ε = 0 and use di�erent
values for the so�ness of the potential n = 8, 12, 18, 24. As before, to distinguish
between temperatures where the system is stable or not, we used the protocol introduced
in Sec. 3.4, and for this class of systems we distinguish between the two phases based on
low-q values of the structure factor. Relaxation times for swap and standard simulations
are reported in Fig.3.11 as a function of the temperature. Temperature is rescaled by
TMCT of each model in order to compare them.

Looking at the standard dynamics, we �rst notice that a change in the so�ness of
the potential causes a change in fragility, this being higher for smaller so�ness. �is
contradicts previous results [151] obtained for a so� binary mixture where the fragility
was found to be invariant with changing so�ness. Even an opposite behaviour was found
experimentally in Ref. [152], even though the microgel nature of the system employed
in that case makes unclear the relation with our �ndings, which could be more easily
related to colloids.

For this class of systems swap gives a huge speed up and the relaxation times are
around three orders of magnitude smaller as compared to standard simulations at the
Mode Coupling crossover. At very low temperatures the system presents phase separation
and the disconnected points stand for temperatures at which the system leave the
metastable equilibrium during the simulations and relaxation times can be measured
on short simulations as it was done previously for the ternary system. We notice that
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resistance to phase separation increases with increasing n, that is, by reducing so�ness.
�is result also suggests that the system with n → ∞ (i.e. hard spheres) represents
the best glass former in this class of systems with respect to ordering issues. Overall
this class of systems allows thermalization below TMCT . For the system with n = 24

we achieve equilibrium and stability for temperatures T ≈ 0.5TMCT . However we still
observe huge density �uctuations at very low temperature in swap simulations, similarly
to the results obtained for the ternary mixture.
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Figure 3.12 – Relaxation times for systems with continuously polydispersity, n = 12 and di�erent
non-additivity parameter ε. Temperatures are scaled byTMCT to allow direct comparison between
models , with TMCT = 0.267, 0.176, 0.104, and 0.0534, respectively. Open symbols represent
the standard Monte Carlo dynamics, closed symbols the swap algorithm, for which unconnected
symbols represent structurally unstable state points where only a rough estimate of τα is obtained
in short simulations. A well-chosen amount of non-additivity, ε ≈ 0.1-0.2, considerably improves
the e�ciency of thermalization and the structural stability.

To solve phase separation issues we decide to test another class of model, se�ing
n = 12 constant and varying the non-additive parameter ε = 0.1, 0.2, 0.3. �is was
done in order to reduce the excluded volume between particles with large diameter
di�erences with the aim to suppress phase separation. �is e�ect is known to stabilize
the metallic alloys [137, 48] and the opposite e�ect (i.e. enhancing phase separation)
was exploited already for a hard sphere �uid [153, 154]. We already presented some
result for the ε = 0.2 system previously. We report our result for relaxation times at
di�erent ε in Fig. 3.12. We plot again the results for ε = 0.0 in order to compare with the
non-additive case. Standard dynamics is rescaled by TMCT and in this case we observe no
change in the fragility of the system. From a dynamical point of view, the introduction
of non-additivity yields a large speed up of the swap relaxation times compared to the
additive case (in black), which seems to be constant at di�erent non-additivity. �e
physical reason for this behaviour is unclear at this point.

�e non-additivity improves remarkably the glass-forming ability of this system as
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(a) (b) (c)

Figure 3.13 – Snapshots illustrating the di�erent phases present in continuously polydisperse
systems. Big particles are lighter and small particles are darker. (a) System with ε = 0.0 and
n = 12. It phase separate for long simulations at low temperature. (b) System with ε = 0.1 and
n = 12. It never present ordering and it always remains an equilibrium �uid. (c) System with
ε = 0.3 and n = 12. Non-additivity is so high that the system crystallize using swap simulations.

well. Indeed we do not observe any phase separation by looking at the structure factors.
However for long simulations also these systems present ordering, revealed by a drop
of the potential energy that can be explained by looking at the structure factor where
some Bragg peaks indicate crystallization. �is was the case for ε = 0.2, 0.3 and in
particular for ε = 0.3 crystallization happens on very short timescales for relatively
modest degree of supercooling. In the case ε = 0.2 we indicate again with disconnected
points relaxation times measured before ordering intervenes during simulations.

�e tendency to crystallization for large values of ε can be explained by the fact that
now it is energetically suitable for particles very di�erent in size to be close each other,
and this creates crystals in which one small particle is surrounded by large particles and
conversely. We give a sketch of the behaviour of the system for di�erent additivity in
Fig. 3.13 where we show three di�erent screenshots taken for ε = 0.0, 0.1, 0.3 respectively
Figs. 3.13a, 3.13b, 3.13c. Particles have a di�erent intensity of red depending on their
size, brighter red indicating larger particles and darker red indicating smaller particles.
In the le� case the system is additive and particles tend to phase separate. Indeed we
observe a brighter zone in the right bo�om corner and a darker zone in the le� upper
corner. At right there is the crystal phase of the system having large values of the
non-additivity. In this case small and big particles are disposed in crystalline parallel
planes. �e disorder case is shown in the middle image for a small value of non-additivity
were particles remain all mixed up. �is is due to a competition e�ect between the two
extreme cases that creates frustration and enhance glass-forming ability. Results obtained
with this class of systems represents some of the main results of this chapter, allowing
equilibration at extremely low temperatures. In particular, in the case ε = 0.1, the system
has never shown ordering and we were able to equilibrate down to T ≈ 0.46TMCT .
In the following, we will address quantitatively the question of how really low is this
temperature with respect to previous simulations and experiments.
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3.7.3 Closing the gap with experimental timescales

In this section we discuss in detail how to quantify the dynamical gain of swap
simulations with respect to standard simulations. As anticipated in Sec. 3.3, this can
be done by ��ing relaxation times of standard simulations and extrapolate them at
lower temperatures. �is procedure is particularly reliable when the new accessible
regime is not very deep compared to standard simulations and the extrapolation is
performed over few orders of magnitude. In our case, extrapolations must be carried out
carefully and the uncertainty given by the �ts must be taken into consideration. With
this aim we �t standard relaxation times, which are usually accessible over four orders
of magnitude with respect to the location of the onset (τα/τo ≈ 104). Here we recall that
in experiments, the accessible regime is 8 orders of magnitude broader, the experimental
glass transition happens at τα/τo ≈ 1012. To quantify how close our simulation scheme
can equilibrate with respect to the laboratory transition we �t the standard dynamics
using three di�erent laws: VFT, parabolic and Arrhenius function, described respectively
by Eqs. (3.18), (3.19), (3.20). �ese three functional forms have di�erent theoretical
foundations and a di�erent behaviour. �e �rst predicts a divergence of relaxation time
at �nite temperature, whereas the last two diverge at T = 0. �e three di�erent �ts
allow us to extrapolate three di�erent laboratory glass transition temperatures. We use
the one from the VFT functional form T V FTg as an upper limit and the one from the
Arrhenius equation TArrheniusg as a lower limit for the real glass transition of the system
to happen. �e extrapolated value from the parabolic law T parabolicg is in between them.

We illustrate our procedure for one system in Fig. 3.14a, where relaxation times
are shown as a function of the inverse temperature. �e three vertical lines indicate
the location of the glass transition temperature from the three di�erent extrapolations.
As can be noticed the model can be equilibrated at extremely low temperatures, even
beyond Tg extrapolated using the Arrhenius law. Fig. 3.14b illustrates the results for
many di�erent models. Interestingly, the di�erence of the three di�erent extrapolated
temperature remains under control in all the systems under investigation, with a typical
interval:

∆Tg
Tg

=
T V FTg − TArrheniusg

2T parabolicg

≈ 12%. (3.26)

�is value is small enough to give signi�cance to the extrapolation. α-relaxation times
at the glass transition remain always �nite and small, of the order of τα/τo ≈ 102 − 103,
the most important problem in equilibration being the appearance of ordered phase in
the system. �e analysis carried out here has three consequences:

— �e speed up at the glass transition is about 10(±1) orders of magnitude, allowing
simulations to perform equilibrium studies of the laboratory glass transition.

— �e maximal speed up for certain models is even larger than this and the quanti�-
cation is a delicate ma�er relying on extrapolations.

— Swap Monte Carlo allows to produce con�gurations equilibrated at lower temper-
ature than their experimental analogs.
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(a) Relaxation times for the non-additive
model with n = 12 and ε = 0.2 for standard
and swap Monte Carlo dynamics. �e stan-
dard dynamics is ��ed with the VFT, parabolic
and Arrhenius laws, as shown with lines,
which are used to estimate the location of the
experimental glass temperature Tg , as shown
with vertical dashed lines. For this system, the
swap dynamics is able to provide stable and
thermalized con�gurations at temperature be-
low Tg .
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(b) Relaxation times obtained from standard
(open symbols) and swap (�lled symbols) dy-
namics for various size polydisperse models of
various so�ness (n) and non-additivity (ε) are
shown in an Arrhenius form with rescaled
temperature Tg/T , where Tg is estimated
as in (a). For all models the thermalization
speedup near Tg is of about 10 orders of mag-
nitude, some models being structurally stable
down to temperatures below Tg .

�e analysis performed in this subsection shows that we are now able to close the
gap of equilibration between simulations and experiments. �is represents an important
improvement of simulations of supercooled liquids and it could give answers and clari�-
cations about many aspects of the glass transition.

3.7.4 Hard spheres

Simulations and analysis reported in this paragraph
were performed by L. Berthier and D. Coslovich

Hard spheres have a high density behaviour in many respects similar to the low
temperature one of thermal systems [10]. �e natural control parameters for this system
are the packing fraction φ = π

6L
〈σ3〉 and the reduced pressure Z = P

ρkBT
. Note that

this last quantity directly relates the pressure and the temperature of the system. In
a monodisperse system, by increasing the packing fraction φ the system slows down
and a melting point is reached above which particles start to crystallize. By further
compression, a maximal packing fraction is reached φ ≈ 0.74 with the system in a FCC
packing. �is is the highest possible packing and the system is in a pure crystalline
state [155]. If polydispersity is introduced, the increase of density does not coincide
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with crystallization and the system may remain disordered up to the point where it
does not relax anymore and it goes out of equilibrium. A kinetic slowing down can
be also observed in hard spheres by increasing density or pressure [6] and one can
�nd the following analogy between the glassiness of hard sphere systems and thermal
glasses [10]

T ↔ 1

Z
, e↔ 1

φ
. (3.27)

Analogously to the so�-sphere systems, standard simulations can usually equilibrate
hard spheres at packing fractions comparable to the Mode Coupling crossover [10, 42].
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For this reason, one of the �rst model we investigate using swap simulations was
made of hard spheres. We will show that a huge dynamical gain can be obtained also for
this model. In order to do this, we use a hard sphere version of the model introduced
in Sec. 3.7.2. �e two particle interaction potential is described by (3.9) and (3.10) with
ε = 0 which corresponds to an additive model. We perform constant volume standard
Monte Carlo simulations in which only standard displacements are allowed. Pressure can
be measured using the contact value of the pair correlation function [156]. Measuring α-
relaxation times as a function of the pressure allows one to locate the in silico dynamical
transition, τα/τ0 ∼ 105. Next we introduce swap moves in the simulation, using the same
procedure as before. By doing this we allow thermalization of the system at remarkably
higher density compared to the standard dynamical transition. �e situation is reported
in Fig. 3.15, where relaxation times are plo�ed as function of the reduced pressure
Z . Grey points indicate results from standard simulations and red point are for swap
simulations. �e blue box indicates possible location of the glass transition as de�ned
in the previous paragraph. We observe that thermalization is achieved for pressures
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beyond the experimental glass transition. �e model is very stable compared to the other
additive cases studied and the dynamical gain can be estimated in more than 12 orders
of magnitude.

3.8 Microscopic insight into the swap dynamics
So far we have shown how swap simulations could dramatically accelerate the

dynamics. Yet the physical reason behind this dynamical speed up remains unclear.
Some years ago it was proposed that swap simulations where able to break the particle
cages characteristic of supercooled liquids [69], however this has a vague meaning, since
the concept of cage is itself ambiguous as discussed in the introduction. To clarify this
point and make some quantitative statements, here we study the microscopic dynamics
during swap simulations. First we follow the displacement ∆r(t) and the diameter σ of
the same particle as a function of time. Fig. 3.16 shows the results for two chosen particles.
�e system is the non-additive model of Sec. 3.7.2 with ε = 0.2 at T = 0.0555. It can be

0 0.5 1 1.5 2 2.5
t/τ

α

0

1

2

3

∆
r(

t)

1

1.5

σ
(t

)

0

1

2

3

∆
r(

t)

1

1.5

σ
(t

)

Figure 3.16 – Time-series of individual displacement ∆r(t) and diameter value σ(t) for two
tagged particles in the non-additive model of Sec. 3.7.2 with ε = 0.2 at T = 0.0555. Intermi�ent
di�usion in real and diameter space is observed, with strong correlations between ∆r(t) and σ(t)

highlighted with dashed lines, but we also observe many events in one observable that have no
counterpart in the other indicating that the correlation between the two observables is non-local.

seen that the mean squared displacements follow the usual behaviour in supercooled
liquids simulations already shown in Ref. [157]. Particles �rst vibrate around their
initial position and then they suddenly perform a jump in real space changing position
markedly and starting to vibrate around another position. �e behaviour of particle
diameters is surprisingly similar. �ey �rst assume values around the starting diameter
and then they suddenly decorrelate and change their size by a signi�cant value. One
can notice that, sometimes, relaxation in diameters coincides with relaxation in position.
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Besides, many changes in diameter or position do not happen concurrently on the same
particle indicating that all these phenomena should be considered as collective. Namely, a
diameter relaxation could also induce relaxation of position or diameter of neighbouring
particles. �is is why an analysis based on the caging idea is not enough to explain the
reason for relaxation in the system. However these qualitative observations led us to
introduce a diameter self-correlation function:

Cσ(t) = 〈cσ(t)〉 =

〈∑
i δσi(t)δσi(0)∑

i δσ
2
i (0)

〉
. (3.28)

�is quantity is normalized to one at time t = 0 and becomes zero when the diameters
of all the particles are decorrelated with respect to their initial value.
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Figure 3.17 – Non-additive model of Sec. 3.7.2 with ε = 0.2. (a) Time auto-correlation of
particle diameters Cσ(t) measured during the swap dynamics for temperatures as in Fig. 1.3. (b)
Relaxation times τα, τσ and τo as a function of temperature, with τσ and τo rescaled to coincide
with τα at T = 0.175 (shown with horizontal bar). �e three timescales obviously have the same
temperature dependence.

�e result is shown in Fig. 3.17a, where we plot Cσ(t) for di�erent temperatures.
While at high temperature decorrelations are exponentially fast, by lowering the temper-
ature Cσ(t) develops a plateau. �is is a consequence of the jump dynamics observed in
the diameter time series and is related to the average amplitude of �uctuations around
the starting diameters. At longer time, it decorrelates to zero indicating that diameters
have lost memory of the starting values. From this correlation function one can extract
a relaxation time τσ de�ned through the relation Cσ(τσ) = e−1. Interestingly this relax-
ation happens on a time scale comparable to the α-relaxation. In Fig. 3.17b we compare
relaxation times from the self-intermediate sca�ering function, the collective overlap
function and the diameter self-correlation function. All the values are rescaled by τα at
T = 0.175 in order to compare these quantities with each other. It can be seen that all
the relaxation times have the same behaviour as a function of T and can be rescaled on
a single curve. �is shows quantitatively that positional and diameter correlations are
profoundly interconnected in swap simulations.
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To further inspect the swap dynamics we also quantify dynamical heterogeneities
both in real and in diameter space. Dynamical heterogeneity is one of the most remarkable
features of supercooled dynamics and a huge amount of work has been dedicated to
elucidate this property [157]. �e main observation is that by lowering the temperature
and entering the supercooled regime, the system presents fast and slow regions which
relax over di�erent timescales. From this behaviour it is possible to extract a dynamical
lengthscale ξdyn whose de�nition and the computation was deeply discussed in the last
decade [25, 142] and it was found to increase by lowering the temperature. �e role
of this lengthscale is clear from a dynamical viewpoint, since it gives the size of the
dynamical correlated regions.

One way to quantify dynamical heterogeneities is the use of a dynamical susceptibility,
which is a time-dependent four point quantity de�ned as [128]

χO4 (t) = N
[
〈O2(t)〉 − 〈O(t)〉2

]
(3.29)

where O(t) is a generic observable. �is susceptibility quanti�es the amount of spatial
correlations associated to the observable O(t) at a given time t. It starts from zero, the
correlation being zero at initial time, then it increases to a maximal value, at a time
comparable with the relaxation time of the two point correlation function of observable
O(t) and �nally it decreases and reaches a constant value. �e peak value at intermediate
times quanti�es the volume of the dynamically correlated regions. In particular, in three
dimensional NV T simulations, the cube root of the peak value was found to be a
lower bound for the dynamical correlation length ξdyn [25]. We measure susceptibilities
associated to self density �uctuations, χd4(t) with O(t) = fs(k, t) (see Eq. (3.16)), and to
diameter �uctuations, χσ4 (t) with O(t) = cσ(t) (see Eq. (3.28)).
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In Fig. 3.18 we report the peak value of this dynamical susceptibilities for standard and
swap simulations. In the same �gure we also plot relaxation times for comparison. �e
peak values are for positional χd∗4 and diameter χσ∗4 degrees of freedom, these are lower
bound for the dynamical correlation lengths in real and diameter space. �e standard
simulations present the usual behaviour. �e extent of dynamically correlated regions
increases by lowering the temperature in a regime corresponding to the dynamical
slowdown. In swap simulations, the value remains low across the TMCT regime and it
increases in the temperature regime corresponding to the dynamical slowdown. Also
the extent of dynamical correlations in diameter space increases of the same amount and
at the same temperatures. Two pieces of information can be extracted from this �gure.
First, we con�rm that in swap simulations position and size relax on the same timescales.
Second, in swap simulations dynamical heterogeneity is suppressed as compared to
standard simulations at the same temperature and it can be re-established at lower
temperatures.
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Figure 3.19 – Relaxation time evolution in function of the inverse average cage size u2 both
for standard (black point) and swap (red squares) simulations. At equal times swap simulations
always present smaller cages.

Still, two questions remain unanswered: how does swap simulations kill dynamical
correlations? And why is there another dynamical arrest at lower temperature which is
so similar to the one of standard simulations? One possible way to understand be�er the
swap dynamics is to look at the relation between short time vibrations and long time α
relaxations. �ere is a theoretical scheme, proposed by Dyre [158, 159, 160] that goes
under the name of shoving model, in which the non-Arrhenius behaviour of relaxation
times is ascribed to the changes in T of the high frequency shear modulus G∞. On the
other hand thermal �uctuations can also be understood in terms of shear properties. In
particular the shear modulus can be directly related to the average size of the cage u2 in
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the supercooled regime and the following relation can be obtained

ln
τα
τ0

= A
a2

u2
(3.30)

Here τα is the self relaxation time, τ0 is a macroscopic time (see Eq. 1.4),A is a temperature
independent constant and a is the average interatomic distance. One way to measure
u2 is through the value of the plateau in the mean squared displacement 〈δr2〉 which is
related to the presence of a caging e�ect. We de�ne u2 as the value of the mean squared
displacement at the center of the �a�en region enclosed by the di�usive behaviour at
short and long times (see inset of Fig. 3.19). Having in mind this model, we compared
〈δr2〉 both in standard and in swap simulations �nding that at a given temperature the
plateau is always higher in swap simulations. An example for a single temperature is
shown in the inset of Fig. 3.19 and similar curves can be found at other temperatures
as well. Bearing in mind the shoving model, we can interpret the huge dynamical
acceleration of swap simulations in terms of larger cages and the relation between the
two features has been found also in other glass forming liquids [161, 162, 163].

However this reasoning does not completely explain the relation between vibrations
and relaxation in swap simulations. In main panel of Fig. 3.19 we report τα versus the
inverse of u2. Interestingly, comparing the value of u2 at the same relaxation time, we
notice that this is always smaller in swap simulations, indicating that there are vibrational
degrees of freedom which are not taken into account by the mean square displacement
and that are related to �uctuations of the diameters. Our analysis, at this point cannot
explain or quantify exactly these additional vibrations. Overall we believe that a deeper
understanding of swap simulations and of the enhanced thermalization could add some
useful information to the glass puzzle [164].

3.9 Designing new models for swap Monte Carlo sim-
ulations

3.9.1 Binary mixtures, polydispersity and attractive forces

Many computational models of glass-forming liquids are made of two component
mixtures [40, 48]. However we saw before that in swap simulations pure mixtures have
two big drawbacks, they both have a small acceptance and they easily present crystal
nuclei or compositional �uctuations. Of course trying to increase the acceptance by
lowering the size ratio would enhance ordering and, on the contrary, increasing size
ratio would reduce swap bene�ts. On the other hand, we observe that in continuously
polydisperse systems acceptance increases by orders of magnitude and this can be
explained by the fact that particles can slowly change their size by assuming many
intermediate values. In the following we introduce a class of systems that includes both
the main features of binary mixtures and the presence of continuous polydispersity.
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�e starting point is made of two groups of particles (A,B) presenting a continuous
�at polydispersity around two average value whose size ratio is σB

σA
= 1.6 and each of

them having the same number of particles. �en we introduce another �at polydisperse
species C with particles having diameter values in between the species (A,B). �e idea
here is to create a channel in diameter space to allow particles to tunnel between species
A and B. �e situation is well represented in the top right panel of Fig. 3.1. �e system
can be described by the size dispersion of Eq.3.4 with parameters γA = 0.33, γB = 0.34,
γC = 0.33, σA = 0.76, σB = 1.23, σC = 1.00, bA = 0.04, bB = 0.04, bC = 0.26, the
resulting polydispersity is δ ≈ 20%. We perform simulations of N = 1000 particles
at ρ = 1.3. �e two particle interaction potential is given by Eqs. (3.6) and (3.7) with
n = 12 and a cut-o� distance of rcut = 1.3σij . Results for the relaxation times are
reported in Fig. 3.20 both for standard and swap simulations. �e acceptance here is
a ≈ 20%. In the �gure disconnected points represent temperatures at which relaxation
times are computed on simulations shorter than 200τα, as long as the system remains
an equilibrium �uid. �e main ordering danger in this system is again represented by
long wavelength �uctuations, which can be observed by looking at the low-q values
of the partial structure factor as already done for the other continuously polydisperse
systems. When compared to the binary mixture, we see that the dynamical gain here is
high, since the lower temperature at which the system can be equilibrated is T ≈ 0.075

corresponding to 0.6TMCT .
Until now we always dealt with purely repulsive interactions. To be�er understand

the role of a�ractive forces in swap simulations we modify this last model by introducing
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another form of two particle interactions. In this new model, we leave everything
unchanged with respect to the previous one, apart for the potential form that is now
described by Eqs. (3.8) and (3.10), where εij = 1/4 and ε = 0.0. We �nd an acceptance
comparable to the previous one, a ≈ 20%, and also the dynamical properties of this
system do not change dramatically. In Fig. 3.20 we report relaxation times for this system.
As one can notice the introduction of a�ractive interactions has the main e�ect of
modifying the temperature scale whereas many properties are similar, such as the shape
and location of the dynamical arrest both in standard and swap simulations and also the
main ordering processes which is characterized by phase separation. In the traditional
view [1], the physical properties of simple liquids are to a large extent determined by the
repulsive forces. �is was challenged recently by Berthier and Tarjus in Ref. [165] where
they show that adding a�ractive interactions would leave the statics almost unmodi�ed
while the dynamical properties may change a lot. �e issue was also further inspected
in Ref. [166] where it was claimed that the most important role in determining physical
properties of liquids is given by the �rst coordination shell. Here we do not perform a
detailed study of this issue, yet our results tends to reconcile with the traditional view
in which repulsion makes the most of the work in simple liquids. For this model we
observe that swap simulations are able to equilibrate down to a very low temperature
T ≈ 0.7TMCT telling us that this Monte Carlo method can be used also in presence
of a�raction. �is opens up the possibility to use swap simulations for more complex
systems such as models of metallic glasses [137]. �e results shown in this subsection
bring about the following questions: can swap simulations be used in other historical
glass-forming liquids presenting a�ractive interaction? How much would it be the
dynamical gain? How low could we go in temperature? In the next subsection these
questions will be systematically addressed for a well known glass-forming liquid.

3.9.2 Extending the Kob-Andersen Lennard-Jones model

In this section we introduce an extension of the Kob-Andersen Lennard-Jones (KA)
system with the aim of creating a model for which swap simulations are e�ective and
lead to considerable dynamical acceleration. �e original system was �rst introduced
in 1994 [48], it was inspired by the metallic glass Ni80P20 and in the last decades has
been an archetype for simulations of supercooled liquids. In the traditional version of
the system, there are two species of particles (A,B) that interact via a potential given
by Eq. (3.8) where εAA = 1.0, εAB = 1.5, εBB = 0.5, σAA = 1.0, σAB = 0.8, σBB = 0.88.
�is non additivity, both in energy and size, gives to the system a prominent resistance
to ordering even though, in recent years, the increasing performances of computational
resources led to the observation of ordering e�ects [167, 168]. Given the relative larger
size ratio, performing swap of this system is highly ine�cient and the speed up would
be essentially inexistent. We then decided to exploit the idea of allowing the tunneling
of particles between species A and B by adding few particles in between them. �is
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is very similar to the procedure introduced in the previous section, however, here we
always employ a small number of additional particles, in order to consider them as a
perturbation to the original system. To this aim we introduce Nω additional particles in
the traditional mixture interacting with the other through Eq. (3.8) in which interaction
energy and cross-diameter are described by (3.11) where ωi = i

Nω+1
assumes discrete

values between zero and one (i ∈ [1, Nω]). We start by performing standard Monte
Carlo simulations of a system with N = 1000 and ρ = 1.2 at various temperatures and
we compare results for potential energy and relaxation times with previous literature.
We then simulate three di�erent systems by adding Nω = 10, 50, 100 particles to the
original mixture and keeping the number density constant. In the following we call them
respectively KA1, KA2, KA3. For these systems we both perform standard and swap
simulations. We detect an acceptance of the swap moves between 5% and 10%. We then
compared the relaxation times for the standard and swap simulations. We notice that
the introduction of additional particles causes a shi� of the dynamic slowing down at
lower temperatures. However by multiplying the temperature with a constant value,
the relaxation times as a function of the temperature for standard simulations can be
rescaled in a single curve. �e results are shown in Fig. 3.21. We will discuss the physical
meaning of the temperature rescaling in the following.
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Figure 3.21 – Relaxation times for the modi�ed Kob-Andersen model. Empty and full symbols
indicate respectively standard and swap simulations. Circles are for the original KA model. �e
modi�ed models are indicated with squares (KA1), triangle (KA2), diamond (KA3). Temperatures
of the modi�ed models are rescaled by a factor λ = 1.01, 1.08, 1.15 such that T ∗ = T/λ in order
to collapse the curves for standard simulations in the curve for the original KA.

Fig. 3.21 also shows that by increasing the number of ω particles the dynamical gain
increases signi�cantly. For the system with 100 additional ω particles we are able to
equilibrate down to a rescaled temperature T ∗ ≈ 0.35, which is much lower compared to
the Mode-Coupling temperature that for this system is located at TMCT ≈ 0.435 [125].

�e validity of our temperature rescaling can be interpreted in the context of a
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framework developed some years ago indicating the presence of isomorphs for strongly
correlated liquids [169, 170, 171]. It was found that liquids presenting strong correlations
between potential energy e and virial w equilibrium �uctuations obey speci�c rescaling
relations. In particular changing the density or the temperature of the system, static and
dynamic properties such as radial distribution functions or the intermediate sca�ering
function remains unchanged if the ratio ργ

T
is kept constant. �e exponent 〈w〉 ≈ γ〈e〉

can be measured using energy and virial �uctuations. Here we measure γ for our systems
�nding γ = 5.115, 5.154, 5.218 respectively for the KA1, KA2, KA3 which are very
similar to γ = 0.493 found previously for the KA system at the same density [169]. We
conclude that the introduction of the additional particles, keeping the number density
constant, can be mostly thought as a change in the density and consequently by a
temperature rescaling we bring back the system to its initial state point following the
isomorph.
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Figure 3.22 – �e radial distribution function for the particles in the species A in four models.
KA indicates the original binary mixture. KA1, KA2, KA3 indicate the three modi�ed systems.
(a) results are given for temperature T = 0.44. (b) results are given for the rescaled temperature
T ∗ = 0.44.

As for the other changes, they could have a structural nature. To be�er understand to
which extent the perturbation introduced by the tunneling particles modi�es the statics
of the original system, we compare a structural quantity, the radial distribution function.
As we already said, changes in two point static functions do not drastically depend on the
degree of supercooling or on the density. In a typical glass-forming liquid [125] reducing
the temperature produces an increase of the �rst peak of the g(r), while reducing the
density leads to a horizontal shi�. We also detect similar shi�s comparing systems with
di�erent amount of additional α-particles. �e results for the g(r) computed only on
particles in the species A are reported in Fig. 3.22. Here we compare this quantity for the
four di�erent realization of the system at the same bare temperature T = 0.44 (Fig. 3.22a)
and at the same rescaled temperature T ∗ = 0.44 (Fig. 3.22b). We observe that in both
cases changes with respect to the original system are minimal. In Fig. 3.22a we observe
a reduced intensity of the �rst peak for measurements at the same bare temperature.
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�is could be again explained, within the isomorph framework, as a change to lower
e�ective temperatures that leads to a reduced packing of the �rst shell of neighbours.
�e comparison made at the same rescaled temperature T ∗ as in Fig. 3.22b gives a be�er
information on the changes introduced by the new particles. In this case we observe
a small shi� of the �rst peak to bigger values of r which is the typical consequence of
reducing the density. �en we are prone to think that the main modi�cation given by
the ω-particles is a change in the e�ective density.

In recent years the increased computational power made feasible longer simulations
such that the Kob-Andersen model has shown crystal nucleation [167, 168]. Since we
perform long simulations at low temperature and having experienced that swap enhances
phase space exploration, we decided to monitor ordering in this system as well. However,
previous literature �ndings [167, 168] revealed that crystal nucleation in this system
can unlikely be observed looking only at potential energy, radial distribution functions,
structure factors or bond-orientational order. It was also found that in this system the
best tool to detect ordering is the common neighbour analysis parameter CNA-142 [172],
which measures the concentration of two neighbouring particles having four mutual
neighbours such that these last share two bonds each other. When all the neighbouring
particles are involved in such a structure, this observable assumes values close to one,
while when none is involved it is equal to zero. Essentially, it measures the concentration
of crystalline structures and it increases in presence of high fcc and hpc crystalline
order [172, 168].

�e de�nition of the neighbour is given by a cut-o� value cαα which depends on the
species and can be de�ned by looking at the �rst minimum in the gAA(r). Following
previous literature [168] we use cAA = 1.41, cAB = 1.30, cBB = 1.09. We do not include
the ω-particles in our analysis, to be�er compare with the results for the original system.
We set up a CNA analysis tool that �rst detects couple of neighbouring particles, then
counts the number of mutual neighbours and �nally counts how many bonds these last
particles share each other. In the supercooled regime, usual values for the CNA-142 give
concentrations around 9− 10% for the original binary mixture[167, 168].

We con�rm this value in our simulation of KA and we detect a roughly constant
behaviour in temperature which is a good marker of the fact that the system structure
does not change drastically reducing the temperature. We recall here that previous
simulations [167] found that values around 14% are already indicating the presence of
crystal nuclei. �en we compute the same quantity using the modi�ed system. We found
that increasing the number of tunneling particles the system present systematically larger
values of crystalline structures, with values ranging around ∼ 10% for the KA1 system
to∼ 12.5% for the KA3 system. �is e�ect could be explained by the fact that we count
less mutual neighbours between original particles in the modi�ed system. Nonetheless we
observe comparable values for this quantity at di�erent temperatures. �is indicates that
the system structure does not change noticeably with changing temperature and crystal
nucleation cannot be observed. �is could be due to the fact that our simulations, which
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last for up to 300τα, are not long enough to induce ordering in the system. Interestingly
the modi�ed system does not present structural anomalies and its glass-forming ability is
comparable with the original system. However longer simulations and a more systematic
study would be needed to understand the consequences for ordering processes given by
additional ω-particles and swap simulations.

Overall this model represents a huge improvement in terms of equilibration regime
compared to the original binary mixture. Since this last was largely employed in simula-
tions of supercooled liquids and many physically relevant results were obtained using
this system, it is now possible to investigate the conclusions previously obtained in a
new temperature regime.

3.10 Swap Monte Carlo in 2D

It is well known that the formation of ordered solids in two and three dimensions is
fundamentally di�erent. First it was theoretically understood that the presence of �uctu-
ations determines the absence of the breaking of continuous symmetries for dimensions
equal or lower than two [173, 106]. �ese �uctuations, named a�er Mermin and Wagner,
rule out the presence of a single crystal at �nite temperature. Yet, the presence of a solid
phase is still possible. �is is characterized by positional correlation decaying to zero
as a power law, and orientational correlations that are long-ranged. Between these two
phases, the presence of a hexatic phase was detected in hard spheres [56], distinguished
by quasi-long-range orientational order, thus con�rming the existence of the predicted
Kosterlitz and �ouless scenario [174].

As discussed in Sec. 1.3.5 of the introduction, the situation for two dimensional
amorphous solids is much less clear than crystal. For a long time it was believed that
the two and three dimensional glass transitions have no substantial di�erence [102].
However results from the last three years have shaken up this popular view. Nowadays,
thanks to computational [103, 105] and experimental [107, 108] investigations, it is clear
that two dimensional glass forming liquids present dynamical features absent in their
three dimensional analogous. Using large enough computational systems or colloidal
particles, it was shown that long wavelength �uctuations are present in amorphous
solids as well [107, 108]. �eir main observed consequence has a dynamical nature: on
the one hand caging is absent in the translational degrees of freedom, on the other hand
relaxations of the local environment present a timescale separation between short time
vibrations and long time relaxations. �is can be explained by the fact that the size of
single particle density �uctuations increases with system size and particles can travel a
long path together with their neighbours.

�e main aim of this paragraph is to have an insight on the two dimensional glass
formation both with standard and swap Monte Carlo. We study the nature of �uctuations
and their size dependence for one glass-forming liquid. We decided to employ one of the
most successful systems in three dimensions: a non-additive continuous polydisperse
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system. �e size dispersion is described by Eq. (3.2). �is expression, with a cube of the
diameter at denominator, was set up for three dimensional systems. Here we leave it
unchanged in order to be�er compare these results with the previous three dimensional
version. �e two particles interaction is given by Eqs. (3.6) and (3.10) with n = 12 and
ε = 0.2. We perform simulations of N = 300, 1000, 20000 particles at ρ = 1.0131. As
was shown in Ref. [103] the dynamics of two dimensional glass-forming liquids changes
with varying the system size. In particular, for small system of few hundreds of particles,
a caging e�ect is present characterized by the existence of a plateau in the self-incoherent
sca�ering function which disappears by increasing the system size to some thousands of
particles. For this reason we decided to simulate di�erent system sizes in two dimensions.

We perform both standard and swap simulations as previously. We carefully check
structural quantities such as radial distribution function and structure factor to detect
possible deviations from the metastable equilibrium and we �nd a non pathological
behaviour at all temperatures, with results that are qualitatively similar to the 3D re-
alization of the system. Also in two dimensions we perform simulations of hundreds
of relaxation times and we do not �nd indications of phase separation and crystalliza-
tion, meaning that in 2D the system becomes even a more robust supercooled liquid
as compared to the three dimensional version. Particular a�ention is needed in two
dimensional systems to the formation of orientational order [104, 141]. In previous
works it was shown that both monodisperse [56] and polydisperse [175, 116] hard disks
are prone to form hexagonal order. For this reason we compute the bond-orientational
order parameter given by Eq. 3.15 as main indicator of ordering. �is quantity measures
average hexagonal order, being one for perfect triangular la�ice. We found very small
values (|Ψ| ∼ 0.02) indicating the amorphous nature of the system. To compute this
quantity we de�ned the neighbour shell including all the particles up to a cut-o� value
rij/σij = 1.33, corresponding to the �rst minimum in the rescaled radial distribution
function g(rij/σij).

�e dynamical behaviour presents similar features as the previous two dimensional
simulations concerning the presence of cages. We report results for the self-intermediate
sca�ering function in Figs. 3.23a and 3.23b respectively forN = 300 andN = 20000. For
N = 300 we detect the presence of a well de�ned plateau. Increasing the system size to
N = 20000 this plateau disappears and relaxation happens with stretched exponentials.
It is likely that the e�ect could be magni�ed by using larger systems, as in Ref. [103]
size dependencies have been found for systems up to four millions of particles, while
our biggest system are two orders of magnitude smaller. As the slow degrees of freedom
in two dimension are expected to be orientational, we measure the time correlation
function of the bond-orientational parameter de�ned as

CΨ(t) =
〈
∑

i ψ
i
6(t)[ψi6(0)]∗〉

〈
∑

i |ψi6(0)|2〉
(3.31)

Where ψi6 is de�ned in Eq. (3.15). �is time correlation function is normalized to one at
zero time and it does not quantify the degree of hexagonal order in the system. Instead it
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Figure 3.23 – Self-density relaxation times for standard Monte Carlo simulations in two dimen-
sions for a system of N=300 (a) and N=20000 (b) particles. We notice the absence of well de�ned
plateau increasing the system size. �e results are obtained at T=0.300, 0.250, 0.200, 0.0.170, 0.160,
0.150, 0.145, 0.140.

detects changes in time of the position of the particles in the nearest neighbour shell. �is
allows to de�ne a bond-orientational relaxation time as CΨ(τΨ) = e−1 that corresponds
to the timescale for relaxation of the local environment. We report the result in Fig. 3.24a
both for N = 300 with full black lines and for N = 20000 with red dashed lines. Here
we observe that a two step decay is present for both system sizes, con�rming previous
literature results [103]. Relaxation are slightly faster in the bigger system and this might
be an e�ect caused by long wavelength �uctuations.

Next we introduce swap moves using the same se�ing as before. For this system
swap acceptance is high (a ∼ 20%). We notice that the nature of density �uctuations
in presence of swap dynamics changes remarkably. At temperature above and close to
TMCT the glassy dynamics disappears and density relaxations happens exponentially
without caging. �is was already observed in three dimensional system (see Fig. 3.2a).
However, in that case, by lowering the temperature in swap Monte Carlo simulations,
Fs(k, t) developed a plateau reminiscent of the standard supercooled dynamics. In
the two dimensional system the situation deeply changes. By cooling, the vibrational
dynamics is always localized and short-ranged, while timescales for relaxation grow.
However the decay of density correlation function remains purely exponential. �is can
be observed in Fig. 3.24b where Fs(k, t) is shown as a function of time for the big system
(N = 20000).

Finally, we extract relaxation times from correlation functions for both translational
and orientational degrees of freedom in standard and swap simulations . We report the
result in Fig. 3.25. As usual we show with empty (full) symbols results from standard
(swap) simulations. �e standard kinetic arrest presents features already accounted for
by the previous discussion. Density relaxations show system size dependence, the small
systems being slower to relax due to the presence of transient localization. �e decoupling
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(a) Bond-orientational time correlation func-
tion for standard simulations. Black full
lines are for N=300, red dashed lines are for
N=20000. Small system size dependent are de-
tected. Results are for the same temperatures
as in Fig. 3.23.
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(b) Self-intermediate sca�ering function for
swap simulations of the N=3000 system. No
short time relaxation is present and the de-
crease of temperature has the main e�ect of
stretch times for short ranged vibrations. Re-
sults are T=0.200, 0.120, 0.092, 0.070, 0.0555,
0.047, 0.035, 0.030, 0.028, 0.026.

Figure 3.24 –

between relaxation time of the smaller (N = 300) and the biggest (N = 20000) system
can be quanti�ed with a maximum factor of 50. On the other hand relaxation times
from orientational degrees of freedom τΨ superimpose on the same curve using di�erent
sizes. Performing a power law �t (see Eq. 1.9) on τα for the small system we found
TMCT = 0.140. As for swap simulations, in Fig. 3.25 we observe that the system can be
equilibrated at extremely low temperatures, well below TMCT , with a maximal speed
up observed around TMCT of almost four orders of magnitude. We detect small system
size dependency for translational relaxations, with an α-relaxation time slightly smaller
increasing the system size. �is may be due to the fact that reducing the temperature
the e�ect given by long wavelength �uctuation becomes weaker [105]. Interestingly, we
found that swap relaxation times at low temperatures are well described by an Arrhenius
law. At this point we are not able to give an exact interpretation of this behaviour, which
adds a tile in the 2D puzzle. Although this suggests that swap dynamics in�uences
deeply the elastic behaviour of the system. Overall we con�rm the fact that standard
Monte Carlo dynamics reproduces, at least qualitatively, results found with Brownian
dynamics [103]. Moreover the nature of glass transition in swap Monte Carlo simulations
is fundamentally di�erent from the three dimensional analogous, with the disappearance
of caging, exponential decays and Arrhenius relaxation times. �e results presented in
this section suggest that the glass formation in two dimensions could be fundamentally
di�erent from the three dimensional case, although an investigation of thermodynamic
properties would be needed to be�er elucidate this point. �is problem will be addressed
in the next chapter.
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Figure 3.25 – Relaxation time as a function of the temperature for standard (empty symbols) and
swap (full symbols) simulations for two system sizes N=300, N=20000. In standard simulations
density relaxations decouples for di�erent system sizes whereas orientational degrees of freedom
have same relaxation timescales. In swap simulations orientational and translational relaxation
have the same timescales to happen and smaller size e�ects are observed.



Chapter 4

�ermodynamic properties at deep
supercooling

Supercooled liquids show a sudden dynamical arrest decreasing the temperature [133].
�e reason for this behaviour has no universally accepted theoretical explanation and
some competing theories have been proposed through the years [6]. Some of them
present arguments that rely on thermodynamics and static observables to explain the
change in the dynamical properties, such as the Adam-Gibbs theory (AG) [14], Random
First Order Transition (RFOT) theory [17] and Frustation Limited Domain theory [19].
On the other hand, there are theories that explain the glass formation using purely
kinetic concepts such as Dynamical Facilitation theory [176]. All these theories have
never been tested in a real glass-forming systems beyond the kinetic glass transition, the
slowness of the system being the main obstacle for conclusive statement on the glass
transition. In the previous chapter we show that using speci�c models and techniques it
is possible to equilibrate beyond both the computational and the experimental kinetic
slowing down. �is allows measuring static and thermodynamic quantities in a regime
una�ainable so far in standard simulations and even in experiments. �is chapter will
be dedicated to revisit some open problems of the glass transition in this novel region
and in the next �ve sections we address �ve di�erent open problems.

In Sec. 4.1 we discuss the relation between the jamming and the glass transition.
�anks to extremely well equilibrated hard spheres we are able to show that the equilib-
rium �uid phase can be found at, and even beyond, the jamming density, and we will
discuss the implications that this result has for the theoretical explanations of jamming.

Sec. 4.2 is dedicated to study the existence of a Kauzmann transition lowering the
temperature and its dependence on dimensionality. �e new temperature regime allows
us to understand that the thermodynamic point of view of the glass transition is relevant
and must be taken into consideration in a theory of the glass formation. Moreover,
performing simulations in two and three dimensions, we �nd out that the glass formation
and the existence of a �nite Kauzmann temperature TK may strongly depend on the
dimensionality of the system.

81
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In Sec. 4.3 we investigate the growth of amorphous order and of a static correlation
length throughout the cooling process. We �nd that a point-to-set correlation length
increases monotonically both in two and in three dimensional systems beyond the
experimental glass transition. At the same time we measure the con�gurational entropy
using four di�erent possible de�nitions for this quantity.

�e connection between the dynamical slowing down and the thermodynamic prop-
erties is investigated in Sec. 4.4. Here we explicitly test the dependence of relaxation
times on con�gurational entropy and on the static correlation lengthscale in this new
simulation range, and we will see how simulation timescales can a�ect the link between
statics and dynamics.

�e last section (Sec. 4.5) is dedicated to the relation between the topology of the
potential energy landscape and the dynamics. Here we show the absence of a geometric
transition across the Mode-Coupling crossover.

4.1 Equilibration of a hard sphere �uid at and beyond
the jamming density

Simulations and analysis of this section were performed by L. Berthier, D. Coslovich and M. Ozawa.
Results are published in Ref. [111].

We discussed before (Sec. 3.7.4) the analogy between glassy behaviour of so� and
hard spheres. We saw that a polydisperse hard sphere liquid can enter a supercooled
regime by compression up to the point where a kinetic transition steps in at φg. By
further compression the system reaches the packing fraction φJ at which it is said to be
jammed [177]. �is jamming transition is characterized by isostaticity, which means that
every particle has on average 2D contacts with the neighbours. �e reason for this is
given by the Maxwell argument [178]. In recent years a huge research e�ort has been
devoted to the investigation of the relation between the glass and the jamming transition.
�e debate became particularly intense a�er Liu and Nagel proposed to reunify the
two phenomena in a single phase diagram using as state variables the temperature, the
external loading and the volume fraction [179]. In the following years two possible
theoretical scenarios were proposed. One [180, 181] predicts that increasing the density
the system would �rst encounter a dynamical glass transition point characterized by
a dynamical arrest. �en, by further compression, it would arrive at the end point
of the equilibrium �uid branch which would correspond to the jamming transition
point. Another scenario [182, 183] predicts the existence of a thermodynamic glass
transition point by increasing the density above the dynamical glass transition regime.
�e Kauzmann point would coincide with the end point of the �uid branch and the
jamming transition would appear for larger densities.
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On the computational side, giving an answer to this problem is not easy. �is is
mainly due to the intervention of the glassy slowing down around φ ∼ φMCT , at which
the system stops to be an equilibrium �uid, happening for densities well below the
jamming densities. Consequently, the only way to relate glass and jamming phases
is relying on extrapolation from the accessible equilibrium regime and compare with
jamming densities. However, this procedure give inconclusive results.
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Figure 4.1 – Equilibrium equation of state obtained with swap simulations of continuously
polydisperse hard spheres for di�erent system sizes. Our equilibrium data go beyond the shaded
area, which represents the determined range of jamming densities. �e dashed line is the
Carnahan-Stirling empirical expression [184].

For this reason we want to exploit the huge dynamical gain obtained in swap simu-
lations (Sec. 3.7.4) to address the problem in a completely new density region. Details
of the system were explained before, and we recall here that we have been able to
thermalize this system at extremely high packing fractions, beyond the experimental
glass transition. �e equilibration issue has then been partially resolved. �e next step
is to locate the jamming density. To this end we start from dilute hard spheres, and
we follow two methods. In the �rst one uses constant pressure simulations, imposes
a very high pressure, and measures the long time limit of the volume fraction [10].
�e second approach starts from low packing fraction, converts the hard spheres into
harmonic spheres and compress and expand the system iteratively until isostaticity has
been reached [185]. �ese two protocols give similar values of the volume fraction and
allow the de�nition of φJ , a range of density at which jamming is happening.

It turns out that equilibration of the hard sphere �uid is possible at the jamming
transition densities and even beyond. �is is shown in Fig. 4.1 where the equation
of state is reported as a function of the inverse pressure Z and the packing fraction
φ. Standard simulations fall out of equilibrium around φMCT . On the contrary, swap
simulations can obtain equilibrium values at higher packing fractions even beyond the
shaded area that indicates jamming densities measured through independent protocols.
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�is result questions both the theoretical predictions discussed before and asks for a
third theoretical explanation. �e �rst hypothesis that jamming would occur at the end
of the �uid equilibrium line becomes impossible, since jammed state and equilibrium can
coexist at the same densities. On the other hand, the second theoretical prediction, that
jamming would occur for densities above a Kauzmann transition density is not completely
ruled out, since jamming and thermodynamic glass transition could be disconnected
phenomena, the �rst happening out of equilibrium and the second at equilibrium. Further
details about simulations and result can be found in Ref. [111]. �is result represents
the �rst case in which we use swap simulations to provide elucidations of longstanding
problems, those being possible since a totally new regime is now accessible.

4.2 Con�gurational entropy in extremely supercooled
liquids: assessing the role of dimensionality

Results of this section were produced in collaboration with M. Ozawa

4.2.1 Why measuring con�gurational entropy?

One of their key features of liquids is a larger speci�c heat as compared to the crystal
that implies a faster entropy decrease as compared to the crystalline entropy [133, 2].
For this reason Kauzmann introduced the con�gurational entropy which is experimen-
tally de�ned as the total liquid entropy minus the crystalline entropy and accounts for
the number of allowed states that the system can assume at a given temperature [3].
Extrapolating linearly its behaviour at temperature below the experimental transition,
this quantity becomes zero at a �nite temperature TK , for which the crystal and the
supercooled liquid have the same entropy: this is called a Kauzmann transition. �e
existence of a �nite TK is a longstanding problem of the glass transition studies and,
as anticipated in the introduction, this debate assumed the status of one of the most
interesting open problems of condensed ma�er physics. �ereupon two theoretical
positions exist. In one case the presence of a �nite transition temperature is rejected
and thermodynamics does not play any role in the glass formation. In the other case
the transition is believed to exist and the dynamical slowing down is explained using a
thermodynamic point of view.

Equilibration of supercooled liquids at low temperatures represents an improvement
in the solution of this problem, ge�ing closer to the putative transition point and, in
the best case scenario, allowing a conclusive statement on the transition. For instance,
computational studies clari�ed the fate of the Kauzmann transition in silica [87]. Equili-
brating a computational model of silica at very low temperatures it was found a fragile
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to strong crossover through the bending of the con�gurational entropy corresponding
in a peak in the speci�c heat. �is allowed to be�er understand the strong behaviour
of silica usually observed in experiments and to con�rm computationally the absence
of a Kauzmann transition for �nite temperatures. �e situation for many others fragile
glass formers remains unclear. �e main problem is that these systems cannot be equili-
brated at temperatures low enough that something remarkable can be said regarding the
existence of a �nite TK .

Con�gurational entropy has been measured in many fragile glass formers such
as hard spheres [89], repulsive so� spheres [88] or binary mixtures of Lennard-Jones
particles [86, 84]. All these literature results showed a decreasing con�gurational entropy
with lowering the temperature. However, these simulations were not able to access very
low temperatures (or high density for hard spheres) and they fell out of equilibrium 8
orders of magnitude of relaxation times far from the laboratory glass transition. Most
of the studies were performed for three dimensional glass formers, but evidences of a
decreasing con�gurational entropy were also found in two and four dimensions[186, 187].
�e dependence on dimensionality should not be underestimated since the mean �eld
theory of glasses has been developed at in�nite dimension [18] and all the thermodynamic
transitions and properties found in that framework have an unknown fate when varying
the dimension.

�e �rst method to compute con�gurational entropy in a simulation was introduced
more than a decade ago [86]. It relies on potential energy landscape (PEL) calculations and
thermodynamic integration. Namely, one computes the total liquid entropy accessible at
a certain temperature and then subtracts the vibrational entropy. �is technique was
largely used in many glass-forming liquids over the last 15 years.

In this section we address two problems at the same time. First, thank to the thermal-
ization technique developed in chapter 3 we are now able to compute the con�gurational
entropy in a regime comparable with experiments, going much further than previous sim-
ulations and closing the gap with laboratory results. Secondly, we test the dimensional
dependence of the entropy, employing both a two and a three dimensional systems.

Our models are the non-additive continuous polydisperse model of Secs. 3.7 and 3.10
with n = 12 and ε = 0.2. We use systems of N = 1000 and N = 1500 particles
respectively for the 2D and 3D case. Here D is the dimension. In the following we will
always report �rst results for the two dimensional case and then for the three dimensional
case. Equilibrium con�gurations are produced with swap Monte Carlo simulations by
quenches to the target temperature. �e equilibrium and the absence of ordering in
the system is ensured by using the protocol and the analysis detailed in chapter 3. We
obtained equilibrium con�gurations across TMCT and below the experimental glass
transition temperature Tg, de�ned through the method discussed in Sec.3.7.3.
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4.2.2 Total entropy

Following a largely employed procedure [16], we �rst obtain the total entropy through
thermodynamic integration. We use the inverse of the temperature β and we integrate
the total entropy stot(β) in D dimensions from the ideal gas limit 1/T = β′ = 0 to the
target temperature:

stot(β) = stot(0) +

∫ β

0

dβ′
∂stot

∂β′
=

1

N

[
(β〈H〉)β=0 − (βF )β=0 +

∫ β

0

dβ′β′
∂〈H〉
∂β′

]
(4.1)

=
D

2
+ 1− ln ρ−D ln Λ + βe(β)−

∫ β

0

dβ′e(β′) + smix.(4.2)

In the �rst line, F (β) is the free energy, H is the Hamiltonian and the angle brackets
indicate the average on the canonical ensemble. In the second line, e(β) is the potential
energy, smix the mixing entropy, and Λ =

√
2πβ~2/m the De Broglie thermal wave.

We notice that the integral in expression (4.2) diverges in the high temperature limit.
To compute it, we divided the integration interval in two parts: a high temperature
regime β′ ∈ [0, β0] and an intermediate to low temperature regime β′ ∈ (β0, β], so that
the last integral in Eq. 4.2 can be decomposed as

I =

∫ β

0

dβ′e(β′) =

∫ β0

0

dβ′e(β′) +

∫ β

β0

dβ′e(β′) = IF + IN. (4.3)

We set β0 = 6.65 × 10−5 and β0 = 1.68 × 10−3. �e integral IN can be obtained by
straightforward numerical integration.

For the integral IF , instead, we perform a polynomial �t on the high temperature
values of the potential energy, and we obtain an analytic expression that we employ
instead of using the numerical integration of e(β → 0), which is divergent. In a general
D dimensional system of particle interacting through a potential v(rij) ∝ r−nij one can
obtain the high temperature expansion of the potential energy using Mayer cluster
expansion [1]

e(β) = Aβ(D/n)−1 +Bβ(2D/n)−1 + Cβ(3D/n)−1 + · · · , (4.4)

where A, B and C are constant that can be obtained by polynomial �t. �en the integral
IF can be rewri�en as

IF =
n

D
Aβ

D/n
0 +

n

2D
Bβ

2D/n
0 +

n

3D
Cβ

3D/n
0 + · · · . (4.5)

We use up to the second order of the expansion to perform the �t in both two and three
dimensions.

�e result for stot − smix from the integration are reported in Fig. 4.2. Points are for
the measured data and curves are low temperature extrapolations. �is la�er is possible
using the Rosenfeld-Tarazona expression that is based on density functional theory and
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(a) (b)

Figure 4.2 – stot−smix as a function of T . �e dashed curve is the Rosenfeld-Tarazona expression:
(a) stot − smix + 2 ln Λ ∝ T−2/7, (b) stot − smix + 3 ln Λ ∝ T−2/5. Shaded areas indicate the
location of the laboratory glass transition.

the free energy expansion [188] and gives an expression for the potential energy at low
T in general dimension:

e(T ) ∝ T
2

3D+1 . (4.6)

We con�rm the reliability of this extrapolation in our range of simulations.

4.2.3 Mixing entropy

To compute the mixing entropy smix special care should be used. �e usual expression
of the mixing entropy of a general system of N particles grouped in M di�erent species
each containing Ni particles goes as [189]

smix(M) = −N
M∑
i=1

Ni

N
ln
Ni

N
. (4.7)

�is expression is well de�ned in case of mixtures of particles for which it gives a �nite
value. On the other hand in the case of continuously polydisperse system, when M = N ,
the expression gives an in�nite value in the thermodynamic limit. �is problem was
tackled in Ref. [146] where it is shown how the mixing entropy can be computed by
mapping the system onto an e�ective description in term of a mixture of M∗-component
for which a �nite mixing entropy can be computed. �e details for computing the value
of M∗ are reported in Ref. [146].

Here we only show the �nal result for the mixing entropy in the two and three
dimensional cases in Fig. 4.3. We perform �ts to a polynomial of order three (Fig. 4.3a)
and to a straight line (Fig. 4.3b) of the raw data, and we �nd an analytical expression for
smix.
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(a) (b)

Figure 4.3 – �e e�ective mixing entropy s∗mix. �e dashed line is an empirical �t (a) to a
polynomial of order three and (b) to straight line. Shaded areas indicate the location of the
laboratory glass transition.

4.2.4 Vibrational entropy

To compute the con�gurational entropy, we need to compute the vibrational entropy.
Experimentally this quantity is usually identi�ed as the vibrational entropy of the
crystalline state [133]. In simulations, it can be directly measured by looking at vibrations
around an amorphous con�guration in the PEL framework, where it represents the
average volume in con�gurational space of vibrational contribution to the partition
function. �e free energy per particle in the PEL formalism can be wri�en as:

f(T, V ) = Tsc + fbasin. (4.8)

Here the fbasin is the free energy of a system constrained to be in one basin and
Tsc, where sc is the con�gurational entropy, counts the number of basin explored at
temperature T . To compute the vibrational entropy inside a basin one can start from an
inherent structure and measures vibrations around the lowest energy point. Close to a
local minimum of the PEL, the total potential energy in the inherent structure can be
expanded such that:

V ({r}) = eIS +
∑
i,j,α,β

∂2V (r)

∂rαi ∂r
β
j

∣∣∣∣∣
IS

δrαi δr
β
j + . . . (4.9)

= eIS +
∑
i,j,α,β

(Hess V (r))i,j,α,βδr
α
i δr

β
j + . . . (4.10)

where the �rst part accounts for the energy of the inherent structure and the second is a
second order expansion of the potential. Here Hess V {r} is the ND ×ND Hessian of
the potential, with D the dimension and N the number of particles. �e corresponding
expression for the basin free energy becomes:

fbasin(eIS, T, V ) = eIS +
T

N

〈
DN∑
a=1

ln β~ωa

〉
. (4.11)



4.2. CONFIGURATIONAL ENTROPY IN EXTREMELY SUPERCOOLED LIQUIDS 89

Here the Hessian has been diagonalized and the ωα represents its DN eigenvalues. �is
equation leads to the following expression for the vibrational entropy

sharm(β) =
1

N

〈
DN∑
a=1

{1− ln(β~ωa)}

〉
IS

, (4.12)

that represents the harmonic contribution to the vibrational entropy in the PEL for-
malism. In order to compute this quantity, we start from equilibrium con�gurations
at a �nite temperature, and we minimize them at T = 0 through a conjugate gradient
algorithm [190]. �is brings the system from a generic point in the con�gurational space
to the underlying minimum of the basin of a�raction, that is, the inherent structure.
�en in order to obtain the ND eigenvalues we perform a direct diagonalization of
the hessian matrix Hess V {r} using a parallel version of the LAPACK package imple-
mented in the Intel MKL library [191]. �e result for sharm are reported in Fig. 4.4

(a) (b)

Figure 4.4 – �e harmonic vibrational entropy sharm and anharmonic correction sanh. �e
dashed curves are obtained by a quadratic �t for (1/N)

∑3N
a=1{1− ln(ωa)}. (a) 2D system, (b)

3D system. Shaded areas indicate the location of the laboratory glass transition.

where we also show the result of an empirical quadratic �t that allows extrapolation to
lower temperature. We notice that this quantity increases with annealing temperature,
which corresponds to the physical situation in which by increasing the temperature
vibrations start to be large and the harmonic approximation gives a worse description of
the vibrational entropy since some anharmonic e�ects take place. �is is why we also
take into consideration the anharmonic component to the vibrational entropy.

�e anharmonic energy eanh(T ) can be quanti�ed as [16]

eanh(T ) = e(T )− eIS(T )− D

2
T, (4.13)

using the equipartition theorem. Assuming both that the anharmonicity is independent
on the basin depth and that it does not contribute to the speci�c heat at T = 0 then
Eq. 4.13 can be wri�en as a polynomial expansion in temperature of order i ≥ 2:

eanh(T ) =
∑
k=2

akT
k, (4.14)
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where ak are temperature independent coe�cients. �en we can obtain the anharmonic
entropy by thermodynamic integration of this quantity

sanh(T ) =
∑
k=2

k

k − 1
akT

k−1 (4.15)

Values of the anharmonic entropy in this system are very small and represent a small
correction to the total vibrational entropy svib = sharm + sanh that is shown in Fig. 4.4.

4.2.5 Con�gurational entropy

Figure 4.5 – �e con�gurational entropy of the so� spheres, sc = stot − svib, in two and three
dimensions as a function of temperature rescaled by TMCT . �e location of the laboratory glass
transition is indicated with shaded regions, T/TMCT = 0.539 − 0.748 (red) and T/TMCT =

0.71287− 0.80891 (blue) respectively in 2D and in 3D, obtained with the method discussed in
Sec.3.7.3. �e dashed curve is an extrapolation based on �ts of the individual terms.

Pu�ing the various pieces together we obtain the con�gurational entropy reported in
Fig. 4.5. Overall this quantity shows a decrease with temperature, however two di�erent
behaviours are observed changing the dimensionality. In three dimensions, it has a
strong decrease and it can be extrapolated using a Rosenfeld-Tarazona expression [188]
to a �nite temperature T ≈ 0.038. In two dimensions, instead, the decrease is less
evident and the extrapolation by a polynomial �t leads to T = 0. In this case we
prefer a polynomial �t since the Rosenfeld-Tarazona expression is unable to describe
the potential energy for a vanishing temperature. We observe that, in both cases, the
lowest accessible temperature, thanks to the technique developed in Ch. 3, has now
decreased from TMCT to a temperature that is below the laboratory glass transition.
�is establishes an important methodological improvement in the measurement of the
con�gurational entropy and this result can be directly compared with experiments.
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�e two dimensional behaviour is di�cult to compare with previous results, since,
to our knowledge, the only revious measurements of con�gurational entropy in low
dimensions were performed for temperature T > TMCT in Refs. [186, 187], where sc as
a function of temperature does not show remarkable di�erences changing the dimension.
Interestingly, in that case, the authors found a deviation from the Adam Gibbs relation
in the two dimensional system [186]. Whether this deviation is related to our results,
it cannot be clari�ed here. Our extrapolation suggests that the Kauzmann transition
does not exist or that it is pushed to T = 0 in this two dimensional system. We will be
discussing in the next section this result and its possible consequences.

Comparing the three dimensional case with previous literature results, we notice
a clear decrease, by a factor 2.5, of the entropy compared to its value at TMCT . Previ-
ous computational results have also found decreasing con�gurational entropy, as for
instance in Ref. [89] where a decreasing of a factor 2− 2.5 was found in a hard sphere
system. However, this was in a simulation region between the onset temperature T0

and TMCT , which is very di�erent from our case. Moreover, in that case, the measured
con�gurational entropy at the Mode-Coupling temperature sc(TMCT ) ≈ 1 while in our
case sc(TMCT ) ≈ 2. �is di�erence in absolute values can be explained by the fact
that the literature model was a binary mixture of hard spheres, whereas in our case
we use so� particles which are polydisperse. �is polydisperse nature of the system
increases the mixing entropy, and results in a di�erent value of the con�gurational
entropy. Overall, direct comparison with previous computational �ndings is di�cult
because of the di�erence in model and in simulation ranges. As for experiments, a
decreasing con�gurational entropy in three dimensional glass-forming liquids is known
since a long time. As shown in Fig. 1.2 the relative decrease of con�gurational entropy
strongly depends on the system and our 2.5 factor is comparable with the results for
glycerol [133]. Our �ndings for the three dimensional systems agrees with the existence
of a �nite Kauzamann transition temperature TK = 0.38TMCT .

�e results shown in these section suggest that a thermodynamic perspective of the
glass formation process is needed. However, a decrease of con�gurational entropy alone
is not enough to validate or disprove theoretical viewpoint of the glass transition, not
completely explaining the mechanism, both energetical and microscopical, behind the
glass formation. Many questions are let unanswered: Is the decrease of con�gurational
entropy accompanied by the growth of a static correlation length? How is the con�gu-
rational entropy measured by thermodynamic integration related to the complexity of
the mean �eld theory of glasses? How are this thermodynamic properties related to the
dynamical slowdown? We try to partially answer some of these questions in the next
sections.
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4.3 A static correlation length grows throughout the
glass formation

�is section presents results obtained in collaboration with L. Berthier, P. Charbonneau,
D. Coslovich, M. Ozawa, S. Yaida. Point-to-set length was measured by P. Charbonneau and
S. Yaida. Con�gurational entropy in the Franz-Parisi framework was measured by L. Berthier
and D. Coslovich.

4.3.1 Counting metastable states: 4 di�erent methods

A debated problem about con�gurational entropy concerns its de�nition. Within the
replica theory con�gurational entropy is de�ned as an entropic contribution to the total
entropy that counts the number of accessible metastable states [192]. �is idea is very far
from the experimental de�nition of con�gurational entropy that relies on subtraction of
the crystalline entropy to the total liquid entropy [3, 133]. �is is a practice that cannot
be completely justi�ed from a theoretical point of view, since one would really compute
a quantity that gives the number of accessible states in the liquid phase rather than
comparing the liquid phase with the crystalline one. However, this is an experimental
limitation that cannot be overcome for the moment.

�e commonly used method to compute con�gurational entropy in simulations is
based on the Potential Energy Landscape (PEL) and it relies on an identi�cation between
inherent structure, i.e. minima of the PEL, and thermodynamic states that we employed
in the previous section. However, this is not the only way to estimate the number of
accessible states in a supercooled liquid. In the following we will introduce three other
possible de�nitions of con�gurational entropy, more directly related to the mean �eld
complexity.

�e thermodynamic integration method was recently questioned in Ref. [38] since
it relies on the identi�cation of inherent structures with thermodynamic states, which is
unsafe from a theoretical point of view. In the same article another method was proposed
to compute con�gurational entropy in supercooled liquids that is closer to the mean-�eld
theoretical tools and is based on the Franz-Parisi theoretical construction [193]. In this
case the con�gurational entropy can be directly related to a �rst-order phase transition
happening in liquids coupled through a �eld ε. �e situation is computationally very
similar to the one discussed in chapter 2. First an overlap Q is de�ned to quantify
the degree of similarity between two con�gurations as in Eq. 2.2. �e equilibrium
probability of the overlap can be de�ned as Pε(Q) =< δ(Q−Q12) > from which the
free energy can be rewri�en in a constrained equilibrium form as Vε(Q) = − T

N
lnP (Q).

In unconstrained system this function is convex as a consequence of the gaussianity of
the overlap. By introducing a coupling �eld ε conjugated variable of the overlap Q one
can induce a �rst order phase transition between a low overlap phase Qlow and a high



4.3. A STATIC CORRELATION LENGTH 93

overlap phase Qhigh for temperature lower than a critical temperature Tc which is close
to TMCT . �e presence of these two phases changes the shape of the free energy Vε(Q)

which develops a secondary minimum. �e behaviour for the unconstrained system
can be obtained by performing biased simulations with a coupling �eld ε and then get
back to unbiased simulation through a histogram reweighting technique, resulting in
the appearance of linear tails in Vε→0(Q). �e con�gurational entropy can be de�ned
as the free energy price that the system has to pay to remain localized in con�guration
space, consequently it is equal to the di�erence in free-energy in the high-Q phase and
the low-Q phases in the zero �eld case:

sc = lim
ε→0

(Vε(Qhigh)− Vε(Qlow)) = V (Qhigh)− V (Qlow). (4.16)

Using the reweighting method one could also �nd the value of the �eld ε∗ corresponding
to a phase coexistence between a high and a low Q [63]. �is is characterized by an
overlap probability distribution P (Q, ε∗) presenting two peaks with equal amplitude.
�is ε∗ value must be interpreted as the �eld value needed to tilt the potential Vε∗(Q)

towards coexistence. Since the relation Vε∗(Q) ≈ ε∗Q holds to a good approximation,
one can measure sc by using

sc = ε∗(Qhigh −Qlow) (4.17)

In previous simulations the con�gurational entropy measured by Eq. (4.16) was found
to decrease with decreasing temperature and to be smaller than the con�gurational
entropy computed by thermodynamic integration. �is is consistent with the fact that it
is more closely related to the number of metastable states of the system rather than to
the number of energy minima.

Even though of relevant in characterizing the thermodynamic properties of glass-
forming liquids, any measure of the con�gurational entropy will always leave unan-
swered the question about the microscopic mechanism of glass formation. Some theories
as the Adam Gibbs or the Random First Order Transition theory (RFOT) try to explain
glass formation using the notion of correlated regions in the system. �is correlation has
mainly an entropic nature and the system can be thought of as a mosaic made of tiles in
di�erent thermodynamic state whose size increases with decreasing temperature. In the
RFOT theory [17] the typical size of correlated tiles is given by a correlation length ξPTS
that has been introduced more than ten years ago in [34]. In computations, ξPTS can
be studied by �rst pinning the particle in an equilibrium con�guration. �en only the
particles inside a cavity of radius R are le� able to explore the phase space in presence
of the constraint given by particles outside the cavity [72, 116]. Once the phase space
has been properly sampled, the new con�gurations can be compared with the starting
one and a degree of similarity can be de�ned through an overlap function integrated
in a small region around the center of the cavity. From the behaviour of this overlap
function at di�erent cavity sizes R a point-to-set length can be extracted at a given
temperature. Repeating the measurement at di�erent temperatures allow to measure
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ξPTS(T ). Nowadays the presence of an increasing correlation length is well established
in literature [72, 116, 194]. However, the amount of increase measured has always been
small, less than a factor 2 with respect to onset temperature value, and correlations have
always involved a few particles. In addition to a measurement for the size of correlated
regions, also an estimate of the con�gurational entropy can be directly made by using
the point-to-set length. Within RFOT the connection between sc and ξPTS is given by
sc ∝ ξ

−(D−θ)
PTS where the exponent is θ ≤ D − 1. �e minimal assumption is θ = D − 1

that was also found in mean �eld computations [193], then con�gurational entropy can
be simply extracted using sc ∝ ξ−1

PTS .
So far we discussed four possible de�nitions of the con�gurational entropy. �e

aim of this section is to test all these di�erent de�nitions in the completely new regime
reached with swap simulations. We do this by performing measurement of con�gura-
tional entropy using overlap �uctuations and static correlation length ξPTS . Whether the
di�erent de�nitions are comparable to each other and their behaviour at very low tem-
perature have never being investigated. �is will give useful and compelling information
about the Kauzmann transition from observables that have a mean �eld origin and, at
the same time, allow to make a direct comparison with the thermodynamic integration
method. As a byproduct we also want to observe the behaviour of ξPTS in this totally
new regime to observe whether it keeps increasing and quantify the size of correlated
regions reducing the temperature. �is will give precise indication of the presence of a
local growing amorphous order lowering the temperature. As in the previous section we
analyze the di�erences induced by changing dimensionality, comparing the two and the
three dimensions case. Following the presentation order used in the previous section, we
�rst discuss results in two dimension and later we introduce the three dimensional case.

4.3.2 �e two dimensional case

For the two dimensional case we employ the same system as in Sec.3.10 and 4.2,
made of continuously polydisperse so� spheres with a polydispersity δ = 0.2. For this
system we already measured sc by thermodynamic integration �nding a mild decrease
with lowering the temperature, consistent with a TK = 0. Here we measure point-to-
set correlation length using the cavity technique discussed previously. Fig. 4.6 reports
the result for both con�gurational entropy and the inverse of the static point-to-set
length as a function of temperature normalized by its value at the onset temperature
ξMCT = ξPTS(TMCT ). We observe that the two quantities are consistently decreasing
with decreasing temperature. However, they both seem to vanish for temperature T = 0,
discarding the possibility of an entropy crisis at a �nite temperature. Measurements
have been obtained beyond the laboratory glass transition at temperatures extremely
low as compared to equilibrium regime of standard simulations. �is result raises many
questions on the nature of glass formation depending on the dimension. We think that
there are two important issues. First, in the mean �eld in�nite dimension theory the
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Figure 4.6 – Red squares indicate con�gurational entropy by thermodynamic integration. Green
triangles indicate the inverse of the point-to-set length normalized by its value at the Mode-
Coupling temperature ξMCT = 2.57. �e shaded area indicate the location of the laboratory
glass transition.

existence of a Kauzmann transition was con�rmed. However, the presence of �uctuations
at �nite dimensions could completely change this result [18]. What is then the fate of
the Kauzmann transition varying the dimension? Is it possible that it exists in three
dimensional systems and it is not present in two dimensional systems? Secondly, as
we discussed 1.3.5, the dynamical anomalies in two dimensions with respect to three
dimensional case are now established [103]. Here we claim that also a thermodynamic
di�erence is present between two and three dimensions. What is then the relation
between dynamics and thermodynamics in two dimensions? To our knowledge, this
question has never been asked in real models of glass-forming liquids, with the only
exception of Refs. [186, 187].

Generally, in statistical physics, thermodynamic transition can be suppressed varying
the dimensionality. In renormalization group analysis of phase transitions, two critical
dimensions can be de�ned as the dimension at which the nature of the phase transition
in the system changes [195]. Below the lower critical dimension Dc there is no phase
transition and above the upper critical dimension the critical exponents of the theory
can be identi�ed with the one of the mean �eld theory. In case of some spin systems
the lower critical dimensions have been computed. For instance in the Ising model the
system has a discrete symmetry breaking depending on the temperature for dimensions
above Dc = 1 [196]. Another well established result is given by the Mermin-Wagner
theorem that states that no continuous symmetry can be spontaneously broken for
dimension equal or lower than Dc = 2 [106]. �is also led to the suppression of single
crystalline states in two dimensional systems.

More related to disordered systems, there is a theoretical proposal to describe the
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behaviour of supercooled liquids and structural glasses in term of the Random Field
Ising Model [197, 122], a spin system presenting disorder and exposed to a �eld. For this
model the lower critical dimension is Dc = 2 below which there is no replica-symmetry
breaking. For this reason the dimension two could be criticality-free also in real space
systems and the self-induced disorder of the spin system could have an equivalent in the
Mermim-Wagner �uctuations discussed in Sec. 3.10 and Ref. [103, 198, 107, 108]. Overall,
there are few theoretical predictions in two dimensions and it is unclear what one should
expect.

Another piece of information useful to understand these two dimensional peculiarities
was recently discussed in Ref. [199]. In this article by analyzing vibrational spectra of
amorphous solids it was discovered that the nature of low frequency vibrations is di�erent
between two and three dimensions. In 3D are both present modes which can be explained
using the continuum approximation within the Debye model and modes related to the
amorphous nature of the system. �ese last disappear in two dimension where the low
frequency behaviour of the density of state can be completely explained using the Debye
theory. Pu�ing all this information together we believe that there is a fundamental
di�erence between glass formation in two or three dimensions and that many questions
have still to �nd an answer.

4.3.3 �e three dimensional case

Results shown in this subsection have been included in Ref. [113]

For the three dimensional case we perform a complete analysis using the four def-
initions of the con�guration entropy. We recall that the �rst one use thermodynamic
integration, the second and the third ones are based on the Franz-Parisi theoretical
construction and the fourth is realized computing the point-to-set lengthscale ξPTS . We
both compare these four independent methods to each other, and we do this in a totally
new regime beyond standard simulations. �e system employed in this case is the hard
sphere model already used in Secs. 3.7.4 and 4.1 and it is made of continuously polydis-
perse and additive hard spheres. We both employ systems of N = 300 and N = 8000

particles. �e large systems were used within the �rst and the fourth method to compute
con�gurational entropy. �e small systems are needed to perform the measurement of
overlap �uctuations, since large systems give prohibitive computational times.

Also for this model we measured the con�gurational entropy by thermodynamic
integration. �e various pieces are as before: the total entropy, the vibrational entropy
and mixing entropy. Total entropy can be integrated in a similar way as reported
previously, with the main di�erence that now the integration must be performed using
the packing fraction φ as a variable instead of the temperature T . In a hard sphere system
it is not possible to de�ne a hessian matrix without divergences, consequently vibrational
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entropy cannot be measured with the method discussed previously. In exchange, one can
use a thermodynamic integration known as Frenkel-Ladd method based on performing
dynamical simulations of a constrained system [200]. Mixing entropy can be computed
in a totally equivalent way as discussed before and reported in Ref. [146]. All the pieces
together gives a con�gurational entropy by thermodynamic integration sc = stot − svib
reported in Fig. 4.7. �is plot shows the con�gurational entropy in y-axis as a function
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Figure 4.7 – Four di�erent measurements of con�gurational entropy as a function of the inverse
pressure. �e four curves are consistent with an extrapolation to the same pressure Zk ≈ 45.
�e blue region locates experimental glass transition pressures. Zc and Zo are respectively the
Mode-Coupling crossover and the onset pressures. �e inset shows the typical overlap pro�les
inside a cavity for three di�erent pressures. �e colour code indicates the overlap value from
low(white) to high(blue).

of the inverse pressure in the x-axis. In hard spheres one can map the usual temperature
driven glass transition in a reduced pressure driven phenomenon, as discussed in Sec. 4.1.
�e result is an equivalent representation to the one used before for so� spheres where
the pressure of the onset of glassy behaviour is indicated with Zo and the pressure of
the Mode-Coupling dynamical transition is Zc. We observe that the behaviour of the
con�gurational entropy is equivalent to the one previously found in so� spheres. It
decreases by more than a factor 2 as compared to its value at Zc. Also in this case we
are able to obtain a measurement of the con�gurational entropy in a regime previously
una�ained neither with experiments or simulations, equilibrating the system across the
experimental glass transition that is indicated with a blue box. �is temperature regime
is de�ned through a ��ing procedure similar to the one of Sec. 3.7.3 and it was found to
be in the pressure interval Zg = (32−34). �e second and the third methods to compute
con�gurational entropy rely on measurements of overlap �uctuations as discussed before.
We both measured di�erences in the high and low-Q value of the free-energy (Eq. 4.16)
and the critical �eld value to induce the phase transition (Eq. 4.17). Results are reported
in Fig. 4.7. �e two methods give a similar value for the con�gurational entropy, and they
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both can be used in the high pressure regime Z > Zc. At low pressures only the third
method can be de�ned, since P (Q) does not develop evident tails. We observe that the
value of the con�gurational entropy measured with this two methods is similar, however
they both show lower values as compared to the one measured by thermodynamic
integration. �is discrepancy was already observed in Ref. [38], and it is mainly due to
the fact that the thermodynamic integration method overcounts the states by identifying
inherent structures with states, whereas the Franz-Parisi method is a computational
implementation of a replica theory tool and gives a be�er estimation of the real number
of the metastable states.

Finally, for the fourth method, we �rst compute ξPTS at di�erent pressures, and then
we estimate the con�gurational entropy using the fact that the la�er is inversely propor-
tional to the increase of amorphous order in the system. We measured an increase of
ξPTS of more than a factor two with respect to the onset value, this means an amorphous
order involving around 200 particles. �e result is reported in Fig. 4.7 that shows the
inverse of point-to-set length ξPTS normalized for its value at the onset pressure ξo as a
function of the inverse pressure. �is is consistent with the method used in the previous
subsection in the two dimensional case.

Interestingly, the four methods result in a similar behaviour for the con�gurational
entropy that decreases with increasing pressure and can be extrapolated by eye at a
similar �nite value of the pressure Zk ≈ 45. �is three dimensional result solves two
open questions. First di�erent methods of measuring the con�gurational entropy give
similar and consistent values. �is is very good news for the de�nition of this quantity.
In simulations, as well as in experiments, it is not possible to introduce a quantity
completely equal to the one introduce in replica theories. All the methods presented
here, as well as the experimental methodology, represent approximations with a di�erent
degree of similarity to the theoretical observable. Despite these di�erences, they all
have the same behaviour meaning that the problem of a rarefaction of metastable states
increasing the degree of supercooling is well de�ned. Secondly these measurements
have been made in a supercooling regime completely unknown to previous simulations,
closing the gap between experimental and computational observations. Although we
are still far from the de�nitive solution of the existence of a Kauzmann transition, the
methodological improvement discussed here represents a huge step forward. Overall we
observe that the four de�nitions of con�gurational entropy follow the same behaviour
across many orders of magnitude of relaxation time of the dynamics, and the importance
of a thermodynamic perspective of the glass transition is undeniable.

Yet, so far we have not discussed of the explicit relation between relaxation times
and thermodynamic observables. �is problem will be addressed in the next section.
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4.4 Critical exponents of RFOT theory close to the ideal
glass transition

�is work has been done in collaboration with M. Ozawa

4.4.1 Relating relaxation times and con�gurational entropy

In the previous section we made a point about the role of thermodynamics in glass for-
mation. However the observation of a decreasing con�gurational entropy accompanying
the increase of the relaxation time is not enough to explain the slowing down.

What would be needed is a theory that gives a quantitative evaluation of the relation
between the thermodynamic quantities and the dynamical ones. At the moment there are
two theories available that explicitly relate the relaxation times and the con�gurational
entropy, the Adam-Gibbs-Di Marzio theory (AGD) and the Random First Order Transition
theory (RFOT). We both discussed them in the introduction (Secs. 1.2.2 and 1.2.4).

�e AGD theory has been the �rst theoretical step to connect dynamics and ther-
modynamics. �is theory relies on the existence of a Kauzmann transition at a �nite
temperature TK and in the original formulation it was predicted a second order nature
for this transition. Using the notion of Cooperative Rearranging Regions one can directly
relate relaxation times with a decreasing con�gurational entropy (see Eq. 1.8). �e
transition would then correspond to a divergence of relaxation times with a vanishing
con�gurational entropy. On the other hand it is a common practice [201] to assume that
relaxation times from experiments can be described using a VFT law (see Eq. 3.18). In
this case their divergence happens for a �nite temperature T0. One then is apt to identify
the two temperatures T0 ' TK as it was empirically established in [201]. �is argument
allows to merge Eqs. 1.8 and 3.18 in

τα = τ0 exp

(
A

T − T0

)
= τ0 exp

(
B

Tsc(T )

)
. (4.18)

More recently, this relation was criticized in Ref. [202], where systematic deviations
of the ratio Tk/T0 from unity were found in many experimental glass-forming liquids.
�is also questioned the existence of a Kauzmann transition at �nite temperature and
whether the thermodynamic singularity is the cause of the dynamical arrest. Moreover,
reinforcing this objection, relaxation times were shown to equally well obey functional
forms that do not provide for a dynamical criticality [143, 144].

A deeper explanation of the dynamical arrest was given in the context of RFOT where
the presence of a surface tension term and a non trivial relation between a growing static
correlation length ξ and the con�gurational entropy were introduced. �e fundamental
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equation of the theory is given by Eq. 1.13. We write it here again since it will be
discussed in more details in the following

τα = τ0exp
(

∆0(T )ξψ

T

)
= τ0exp

[
∆0(T )

T

(
Υ(T )

Sc(T )

) ψ
d−θ
]
. (4.19)

�is equation presents two critical exponents (θ, ψ) and three unknown terms (Υ(T ),∆0(T ), τ0).
We recall here that in the current formulation of RFOT the barriers to overcome for
the rearrangement of a region of size R are given by ∆0R

ψ whereas a surface tension
Υ(T )TRθ quanti�es the degree of energy that must be payed to allow the mismatch
between regions [17]. Critical exponents could not be directly measured in experiments
so far, the static correlation ξ being inaccessible, and estimations of growing spatial
correlations relied on dynamical measurements [203, 204]. In simulations, on the other
hand, a static point-to-set correlation can be measured using cavity geometry, although
accessible timescales have been limited by the computational glass transition. �e need of
such a complete theory is not universally accepted and many experimental works make
use exclusively of AGD concepts [133]. Finally, di�erent mechanism may contribute
to the dynamical arrest, each being the relevant one in a di�erent temperature regime.
Some studies proposed that the �rst three or four orders of magnitude are controlled by
dynamical equations of Mode-Coupling theory, whereas, at lower temperatures, activa-
tion processes sets in [205]. However, standard simulations fall out of equilibrium close
to this putative crossover.

�e introduction of models and algorithms that allows equilibration at temperature
below Tg have boosted computer simulations to explore previously una�ained regimes.
In this section we tackle some of the open questions discussed before in light of the
results presented in previous paragraphs. We concentrate on the three dimensional case.

First we show that AGD theory fails to describe consistently computational results in
all temperature regimes and consequently we interpret the dynamical results within the
RFOT framework. �en we use computational results to extract RFOT critical exponents
and to compare with previous �ndings. Finally we support our results with an analysis
of experimental data.

4.4.2 Failure of the Adam-Gibbs equation

RFOT theory predicts a criticality at a very low temperature, the Kauzmann tem-
perature, with a divergence of relaxation times and of a static length. However both
in experiments and in simulations, the system falls out of equilibrium well before the
critical point. �e improvements given by swap Monte Carlo simulations of polydisperse
systems de�nitely help in ge�ing closer to the putative transition point, although the
critical point, with a vanishing con�gurational entropy, could not be reached. In this
subsection we show that the newly accessed regime allows for reconsidering the relation
between relaxation times and con�gurational entropy under a new light. We use both
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results for the so� and the hard sphere systems in 3D that have been reported in Secs. 4.2
and 4.3.3.
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Figure 4.8 – Adam-Gibbs plot of the logarithm of relaxation times as a function of the inverse
con�gurational entropy sc for a hard (squares) and a so� (circles) sphere system over 12 orders
of magnitude. Con�gurational entropy is either divided by reduced pressure in hard spheres or
multiplied to temperature in so� spheres. Full points are simulation results. Empty points are
extrapolations (see text for more details). Full lines indicate the �t to the GAG equation ((4.20))
in experimental timescale, with α = 0.8, 0.75 for so� and hard spheres respectively. �e x-axis
is rescaled by a constant.

We recall that swap Monte Carlo simulations do not allow to measure relaxation
dynamics at temperature lower than TMCT . �en, to extract values of τα at experimental
timescales, we have to rely on extrapolations of values obtained at higher temperature.
In Sec. 3.7.3 we found that the most reasonable extrapolation of relaxation times at low
temperature is given by a parabolic �t of Eq. (3.19), this was also shown in Ref. [144] where
relaxation times of many experimental glass-forming liquids were found to be correctly
described by this equation. Moreover we observe that other common functional forms,
as VFT of Eq. 3.18, strongly depends on the ��ing regime and are not good predictor
of relaxation times at experimental timescales if ��ed on computational timescales.
�e con�gurational entropy, on the other hand, can be directly measured using the
thermodynamic integration method and we also showed previously that extrapolation
curves describe very well data in the interval of measurement. For this reason we use
the ��ing curves of Figs. 4.5 and 4.7 to obtain a continuous expression of con�gurational
entropy as a function of temperature or pressure. Moreover we notice that values of the
con�gurational entropy using other techniques reported in Fig. 4.3.3 can be obtained by
a trivial rescaling by a constant factor, such that our conclusion holds generally.

Combining this last expression with the parabolic extrapolation in a parametric
�gure we obtain the Adam-Gibbs plot for so� and hard spheres that is shown in Fig. 4.8.
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We notice that the overall agreement with a linear behaviour is poor. �is failure of AGD
theory in describing experimental data lead us to introduce a Generalized Adam Gibbs
(GAG) relation of the form

τ = τ0 exp

[
A

Tsαc

]
. (4.20)

Here the factor α accounts for the observed deviations from a linear behaviour and in
the case of α = 1 we obtain the Adam Gibbs relation. To �t this function we de�ne
two di�erent ranges of relaxation times: experimental timescale (τα = 108 − 1016)
and a simulation timescale (τα = 104 − 108), which correspond respectively to the
timescales only accessible in experiments and timescale usually accessed by simulations.
In Fig. 4.8 we report the ��ing result for experimental timescales and we observe a good
agreement between data and the ��ing curve. We do not show the �ts on simulations
timescales since they present large deviation from the ��ed curve, in particular in the
deep supercooling region. In case of both so� and hard spheres we found values of the
exponent α ≤ 1 for experimental and α ∼ 2 for simulation timescale. �ese results give
two pieces of information. On the one hand the prediction for exponents does strongly
depend on the ��ing range and standard simulations, because limited in timescale and
very far from the putative criticality, should not be used to extract exponents. On the
other hand α values at experimental regimes are in general smaller than one. �is
supports the need of introducing a more detailed theory then AGD.

4.4.3 A RFOT theory interpretation

In the previous subsection we found values of α < 1 ��ing relaxation times in the
experimental regime. We also observe a temperature dependence of the exponents. Both
these ideas can be explained within RFOT.

�e di�erence observed between exponents using long and short timescale suggests
the presence of a Mode-Coupling regime at mild supercooling and of an activated regime
closer to the glass transition. Let us now consider again Eq. 4.19 and disregard the e�ect
of the unknown terms such as activation barrier ∆0 or surface tension Υ(T ). We obtain
two equations, one is connecting the relaxation times and the static length:

log

(
τα
τ0

)
∝
(
ξψ

T

)
. (4.21)

�e other relates the static length and the con�gurational entropy:

ξ ∝
(

1

sc

) 1
D−θ

. (4.22)

Merging these two equations we end up with a simpli�ed relation connecting the relax-
ation times with the con�gurational entropy:

log

(
τα
τ0

)
∝ 1

Ts
ψ

D−θ
c

. (4.23)
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Interestingly this equation has the same form as the GAG equation introduced previously
(see Eq. 4.20) and consequently we are allowed to identify the exponents:

α =
ψ

D − θ
. (4.24)

Here we see that the previous �ndings on experimental data can be interpret using RFOT
where the presence of an exponent α less then one can derive from various combinations
of exponents ψ and θ.

�e original AGD argument predicts ψ = D and θ = 0 by construction, since
the correlated regions are compact and their volume is inversely proportional to the
con�gurational entropy. Moreover the role of the e�ective surface tension and the energy
barrier were not directly taken into account. �is leads to the value α = 1 that has been
extensively used. However other combinations of exponents can lead to the same results.

Within the framework of RFOT theory there are various predictions of the unknown
terms in Eq. 4.19. In the following we will try to sum up previous literature �ndings in
theory, computer simulations and experiments. On the basis of spin glass theory, one
could expect that the barrier to overcome should be bigger or equal then barrier equal to
excess energy of �nal state ψ ≥ θ or ψ = θ and ∆0 ≥ Γ0 [206]. We will see however
that this is not the case for many theoretical and computational �ndings. In the �rst
formulation of RFOT, scaling arguments gives ψ = θ = d/2 [27]. In the same articles
the authors also proposed ∆0 = Υ0 = κT where κ is a constant mildly dependent on
molecular details. �is last equality come from a nucleation argument in which the
droplet of another state nucleates inside the original state. Another prediction comes
from the Kac limit: θ = D − 1 [193]. Some other theoretical consideration may lead to
think that ∆0 should be increasing for lower free-energy state, that is, increasing with
temperature [17]. �is energy barrier could also be thought as directly related to the
high frequency shear modulus G∞ and be explained as the energy necessary to create a
void in the bulk system to make space for some particle to rearrange. �is point could
o�er a connection between the RFOT theory and the shoving model brie�y discussed
before (see Sec. 3.9.2 and Refs. [169, 170, 171]).

On the computational side, measurements of RFOT exponents were given in Refs. [147,
207]. Here, based on a computational method for the study of amorphous excitations,
it was found ψ = 1, θ = 2, and a surface temperature increasing with decreasing
temperature. In other simulation based on point-to-set measurements was also found
ψ = 1 [208]. Random pinning studies found ψ = 1 and θ = 2 as well [120]. Using
dynamical correlation it was found ψ ≈ 1.3 and θ = 0.3 to 0.7 in models of glass forming
polymer melt assuming Υ(T ) ∝ T [209].

As far as experiments were involved, dynamical correlation have been used to deter-
mine the exponents, since static lengths are not directly observable in real glass-formers.
In particular Capaccioli at al. found ψ = 0.3 − 1.5 assuming Υ0 = const. [203] and
Brun et al. found ψ = 1 with ∆0 = const. and ψ = 1.5 with ∆0 = κT [210].
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Overall both the computational and the experimental results were found by mea-
suring observables very far from the RFOT theoretical formulation, such as dynamical
quantities [203, 210, 209], short time excitations [147, 207] or static length in pinning
geometry [208, 120]. We notice that some of these results are coherent or not with our
determination of α. However, a li�le can be said by using our α value without knowing
individually the exponents of RFOT (θ, ψ). �e aim of the next subsection is to determine
the θ exponents using the computational results obtained in Secs. 4.3.

4.4.4 Measuring θ

Figure 4.9 – Point-to-set length ξPTS as a function of the con�gurational entropy in a log-log
scale. �e predicted RFOT behaviour is ��ed and we found a value of θ = 2.005. �e grey box
indicates the location of the laboratory glass transition. ZMCT and Zonset are respectively the
Mode-Coupling pressure and the onset pressure.

We are now in the position to give a realistic estimation of the value of exponents
in RFOT, that would reduce the number of free parameters in Eq. (4.24). To do so one
has to directly analyze the relation between growing static length and con�gurational
entropy, so as to retrieve the exponent θ. In Sec. 4.3.3 we showed results for sc and ξPTS
independently obtained for the hard sphere system. Our aim here is to use this result to
�t Eq. (4.22) and get the θ exponent. For this reason we plot ξPTS versus sc in log-log
scale in Fig. 4.9 with red points. We both indicate the onset pressure with Zonset and the
Mode-Coupling crossover with ZMCT . Here the laboratory glass transition is denoted by
a blue shaded region. �e black dashed line indicates a �t to Eq. (4.22) that give the value
θ = 2.005 in three dimension. �is result is consistent with the theoretical prediction of
Ref. [193] (θ = D − 1) and with computational �ndings of Ref. [147, 207]. Moreover it
strongly disagrees with the AGD prediction of θ = 0 con�rming once again that this
theory is not enough to explain the behaviour of glass-formers.
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4.4.5 Agreement with experimental data

So far we have dealt with computer simulations and in some case we employed
extrapolations. Our aim now is to use experimental data to validate our previous �ndings.
For this reason we directly test the validity of Adam-Gibbs relation between relaxation
times and con�gurational entropy using experimental data.

First we extract data from for six glass forming liquids: 2MTHF, OPT, PC, Propanol,
Salol, Toluene. Relaxation times measured by dielectric spectroscopy and dynamic light
sca�ering are taken from Refs. [133, 211]. Con�gurational entropy from calorimetric
measurements is taken from Refs. [133, 212].
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(a) Relaxation times from dielectric spec-
troscopy and dynamic light sca�ering for six
molecular glass formers. Data for Toluene,
PC, OTP, Salol are taken from Ref. [211], for
Propanol and 2MTHF are from Ref. [133].
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(b) Con�gurational entropy times tempera-
ture plo�ed as a function of temperature from
calorimetric measurements. Data for Toluene
and PC are from Ref. [212], for Propanol,
2MTHF, OTP, Salol are from Ref. [133].

Figure 4.10 –

Raw data are shown in Fig. 4.10. Relaxation times as a function of temperature
are shown in Fig. 4.10a, the horizontal do�ed line indicates the onset of supercooled
behaviour set up to be τα = 10−10s. Con�gurational entropy times temperature is
shown as a function of temperature in Fig. 4.10b. �is plot was done to reveal the linear
behaviour of this quantity at low temperature. We perform a linear �t indicated by
dashed lines.

Raw data of relaxation times and linear �t of con�gurational entropy were used to
build an Adam Gibbs like plot reported in Fig. 4.11a. Temperatures are rescaled by a
constant factor such that the data collapse on a single point at τα = 10−6. We notice that
the agreement with an Adam Gibbs relation is very poor for �ve out of six molecular
liquids. Only 2MTHF shows a linear behavior, whereas the other systems show a bending
both at low and at high temperatures. As before we de�ne simulation and experiment
timescales and we �t with a GAG expression both using experimental (τα = 10−6 − 102)
and simulation (τα = 10−10 − 10−6s) timescales. Here we assume that time in Monte
Carlo steps can be compared to time is seconds using 1step ≈ 10−14s.
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(a) Adam-Gibbs plot of common logarithm
of relaxation times as a function of inverse
con�gurational entropy times temperatures
for experimental data. Only 2MTHF shows
a linear agreement with the Standard Adam
Gibbs relation. Lines are from �t of the Gener-
alized Adam Gibbs performed at experimental
timescales.

30 40 50 60 70 80 90 100
m

0

1

2

3

α

Sim. timescale
Exp. timescale

Propanol

2MTHF

Salol

PC

OTP Toluene
Hard
Spheres

Soft
Spheres

(b) Value of the coe�cient α from the GAG
equation (Eq. 4.20) for six experimental and
two computational glass-forming liquids as a
function of the fragility parameter m both in
experimental and computational timescales.

Figure 4.11 –

�e resulting α obtained by ��ing in these two di�erent regions is shown in Fig. 4.11b
as a function of the fragility index:

m =
∂ log10 τα(T )

∂(Tg/T )

∣∣∣∣
T=Tg

. (4.25)

We notice that experimental timescales give similar values for α in most of the cases,
which is less than unity, α ∼ 0.5 − 1.1. Contrary to Ref. [202] we do not �nd any
systematic behaviour as a function of the fragility. On the other hand, values given by
��ing simulations time scales are always larger than one and strongly sca�ered between
1.25 < α < 3.5. �e dependency on the ��ing region may be due to the presence
of more compact correlated regions with lowering the temperature. �ese results are
consistent with the �nding on computational glass formers (also reported in Fig. 4.11b).
Going back to Eq. (4.24) and using our estimation of θ ∼ 2, we are now able to state
ψ ≈ α. �erefore, we found 0.45 < ψ < 1.1 and on average ψ ' 0.7. Remarkably, these
values are consistent with previous experimental �nding using dynamic correlation of
Ref. [203] 0.3 < ψ < 1.5.

In conclusion, we study the Adam-Gibbs relation for experimental and computational
glass-forming liquids over 12 orders of magnitude �nding systematic deviation from the
prediction of AGD theory and calling for its generalization to a more complete form that
includes physical e�ects predicted within RFOT theory. We use computational measure-
ments of the con�gurational entropy and of static correlations obtained at extremely
low temperatures using swap Monte Carlo simulations to determine values of the expo-
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nents of RFOT and we found consistent values for the exponents with previous results
obtained in simulations of mildly supercooled liquids and using dynamical correlation
from experiments.

�e temperature of divergence of relaxation times using a VFT equation T0 and the
temperature of a vanishing con�gurational entropy TK were found to be di�erent for
many glass-formers and a trend with fragility was observed as well [202]. �ese facts,
together with a be�er description of the kinetic arrest given by singularity-free functional
forms, has been used to challenge the existence of an ideal glass transition [143, 144].

Here we show that the original versions of VFT and Adam-Gibbs relations are
insu�cient to describe glass formation and the di�erence between T0 and TK could be
an artifact of the employed functional forms. Using more carefully theoretical indication
from RFOT theory one �nds that an ideal glass transition is not ruled out by the current
knowledge we have about glass-forming liquids. On the other hand there are very few
available information about activation energy ∆0 and surface tension Υ(T ). Additional
work to estimate these terms would be needed to obtain more conclusive results.

4.5 Absence of a geometric transition across the Mode-
Coupling crossover

4.5.1 Transition points in mean �eld and structural glasses

So far we have made a large use of the PEL and we mainly referred to the properties of
the inherent structures. However the rough energy landscape distinctive of supercooled
liquids possesses many other features, generically called topological features, that depend
on the energy level of the exploration. �ese properties, even though independent of
temperature, may have an in�uence on the dynamical slowdown of the system. Indeed,
changing the temperature, the system probes di�erent regions of the landscape at
di�erent energetic levels.

One of these topological features was �rst predicted in mean �eld models of spin
glasses and goes under the name of geometric transition [91, 92, 90, 93, 94]. �is consists
in a change in the properties of the landscape at a given energy. At low temperature T <

Td the system is constrained in a minimum and its dynamics is mainly vibrational. �is
also means that time correlation functions do not relax to zero and have a �nite non zero
value at in�nite time. In other words, the system remains in a single thermodynamic state.
In this condition of broken ergodicity one could study in an exact way the topological
properties of the minimum.

In particular one can compute its height in the landscape, given by the bare energy
em, without the contribution of kinetic energy. Moreover, the spectrum of the Hessian
matrix can be computed and it consists in the eigenvalues λ, which are positive being
in a minimum, and corresponding eigenvectors eλ. Each eigenvalue λ describes the
curvature of the minimum along the direction of the corresponding eigenvector eλ. �is
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means that a positive amount of energy is needed for a system in a minimum to displace
in the landscape in any direction. Since the properties of the landscape vary if tested at
di�erent heights, we can de�ne a density of state as a function of the energy level of the
minima em:

ρ(λ, em) =
1

N

N∑
i=1

δ(λ− λi). (4.26)

Let us now imagine to start from a very low energy at which the minima are stable,
eigenvalues have a large value and basins are very steep. If we increase the sampling
energy other minima will be explored characterized by some smaller eigenvalues as well
as more gradual slopes around the basins. It exists a given energy eTH at which some
of the eigenvalues become zero. �ese states are called marginal and are characterized
by the fact that the system can move in the direction of the corresponding eigenvector
without paying an energetical price. Going at higher energy some eigenvalues become
negative. �ese points are called saddles and are topologically di�erent from minima
since the system has some preferential directions in which relaxations are enhanced. �e
transition between a region at high energy e > eTH and a region at low energy e < eTH
was named geometric transition [92]. Even though the properties of the landscape do
not change by changing the temperature, the system explores very di�erent zones at
di�erent temperatures. Indeed the threshold energy eTH is sampled at the threshold
temperature TTH . Speci�cally, at temperature above T > TTH the system explores
landscape regions having a bare energy e > eTH and the dynamics is a nonactivated
MCT like. Moreover it was also shown that in this region the closest stationary point
of the landscape is a saddle and not a minimum [93]. Whereas for T < TTH a dynamical
transition sets in and the system remains con�ned in a minimum of the landscape. �ese
results allowed the identi�cation between the dynamical transition temperature Td and
the geometrical transition temperature TTH .

Some years ago there has been a proposal to employ all this information from mean
�eld theory to explain the relaxation behaviour of glass-forming liquids [90]. In the
original formulation of the problem for structural glasses, two mechanism for relaxation
were assumed to exist above TTH [90]. Mechanism A: the system starts from a minimum,
converts some kinetic energy into potential energy, climbs up a potential energy barrier,
passes through a saddle point of the potential and falls again in a minimum. Mechanism
B: the system starts from a saddle point, �nds a direction downhill converting some
potential energy into kinetic energy, goes through a minimum and �nally it climbs again
to a saddle. �ese arguments were used to explain the di�erent behaviour observed in
fragile and strong glass-formers. At the geometrical transition the system stops visiting
saddles and consequently Mechanism B is suppressed and only activation process of
Mechanism A are allowed. Strong glass formers already use activation processes at high
temperatures such that the suppression of the B channel does not change dramatically
their dynamics. On the contrary, the main relaxation channel for fragile glasses is B,
therefore at temperature lower than TTH ∼ TMCT the dynamics slows down remarkably



4.5. ABSENCE OF A GEOMETRIC TRANSITION 109

and the activation processes are rare or completely suppressed.

4.5.2 Statistical properties of saddles in simulations

�e possible existence of a geometric transition in structural glasses was extensively
investigated some years ago [96, 97, 98, 99, 100, 101, 95]. In supercooled liquids starting
from an equilibrium con�guration at a certain temperature one would like to �nd the
closest stationary point. However this is not as easy as �nding minima of the PEL. Indeed
for each con�guration it is possible to associate a given minimum using an algorithm
that descends along the curvature of the basin, and this is a well de�ned object with a
well de�ned region of a�raction.

�e situation for saddles is di�erent and the point found numerically depends on the
path followed in the landscape, more speci�cally, on the algorithm employed. Mainly two
di�erent algorithms were proposed able to associate a saddle to a starting equilibrium
con�guration. �e �rst method was employed in Ref.[97]. It relies on the idea of using a
minimization algorithm of the force, by de�ning a pseudo-potential:

W = |∇V |2, (4.27)

where V is the total potential energy of the system. �is de�nes a secondary landscape
characterized by minima corresponding to stationary points in the original potential
energy landscape of the system. Saddles can be classi�ed on the basis of the number of
the negative eigenvalues Nλ<0 de�ning a saddle index:

ns =
Nλ<0

3N
. (4.28)

�is method was questioned in Ref [98] where Doye and Wales argued that the
algorithm does not �nd only true saddles in the PEL, that is, absolute minima of W ,
instead it also �nds relative minima of W which correspond to in�ection points of V .
�e frequency of this last possibility was quanti�ed to be the 95% on the cases [100].
Consequently the stationary point revealed with this technique were called quasi saddles.
Interestingly, it was shown in Ref. [100] that the properties of quasi saddles are consistent
to the true saddles and the number of in�ection directions remains small, con�rming the
relevance of the minima ofW to analyze the topological properties of the PEL. In Ref. [98]
Doye and Wales also introduced another method, which establishes an alternative to the
previous one. �is is called eigenvector following technique and consists in starting from
an equilibrium con�guration and dividing the spectrum of the eigenvalues in two groups.
�e �rst group is made of the Nλ smaller eigenvalues together with their corresponding
eigenvectors where Nλ � N and the second group is made of the remaining 3N −Nλ

modes. �e algorithm consists in a Newton method that maximizes the potential energy
V along the Nλ smallest eigenvectors and minimizes along the remaining directions.
�is algorithm has the advantage to converge exactly to a saddle point of chosen order ns,
however this comes with a high computational cost and an exploration of the landscape
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somehow unnatural, the distance between the original con�guration and the �nal one
being large [77]. By direct comparison of the two algorithms, it was found that they give
consistent results, con�rming the validity of the previous studies [77].

�e presence of a geometric transition was investigated in several glass forming
systems, presenting purely repulsive or Lennard-Jones interactions, various so�ness of
the potential, and monodisperse or bidisperse in size [97, 95]. �e main �nding was that
a large number of models have properties consistent with the presence of geometric
transition. Two questions were asked, both inspired by the mean �eld �ndings. First,
whether exploration of the saddle stops at a given temperature eTH , and second, whether
this temperature coincides with the Mode Coupling temperature TMCT . �ere have been
an overall agreement amongst many researcher that the two questions have a positive
answer. Moreover it was claimed for a universality of topological landscape properties of
glass-forming liquids [95]. �is results supported the presence of a geometric transition
also in structural glasses, elucidating an important point regarding the thermodynamic
properties underlying the dynamical properties. However it has to be noted that this
topological analysis was always con�ned to temperature T ≤ TMCT , and the detection of
the geometric transition relied on extrapolation strategies. What happens at temperature
lower than TMCT , however, remained unclear.

4.5.3 �e geometric crossover

With the aim of investigate the presence of a geometric transition across the Mode-
Coupling temperature, we decided to perform an analysis of the topology of the landscape
of some of the systems that we are able to equilibrate below the Mode-Coupling tem-
perature. To do so we analyze two continuously polydisperse systems of repulsive so�
spheres, the additive n = 18 and ε = 0 and the non-additive n = 12 and ε = 0.2 both
introduced in Sec.3.7. We employ, 50 and 200 con�gurations of N = 250 and N = 500

particles respectively for the two models. Here we decided to use a gradient descendent
algorithm and minimize the force W following [97]. �e reasons behind this choice are
mainly historical, since we want to directly compare to previous literature results. More-
over this method, as discussed before, gives results in agreement with the eigenvector
following technique [77]. Finally it is computationally lighter and can be easily applied
to large systems to verify the presence of �nite size e�ects.

In order to compare with previous results we also employ two other models. One of
the two is a 80:20 binary mixture of so� particles interacting with the potential

v(rij) = 4εij

(
σij
rij

)12

+ cLJ , (4.29)

where εAA = 1.0, εAB = 1.5, εBB = 0.5, σAA = 1.0, σAB = 0.8, σBB = 0.88. Here
we cuto� and shi� the pair potential at the cuto� distance rcut = 2.5σij . Here we
employ a system with N = 1000 particles. �is potential is the same as the historical
Kob Andersen mixture already employed in Ch. 2 and Sec. 3.9.2 without the a�ractive
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part, it was employed, using di�erent so�nesses, in Ref. [151] to study the dynamics
and in Ref. [95] to detect topological properties. We performed standard Monte Carlo
simulations for this system, comparing both statical and dynamical quantities with the
previous literature, as a consistency check. We obtained 20 equilibrated con�gurations
at the same temperatures as in Refs. [151, 95]. We also want to understand how the
fragility of the system in�uences the presence of saddles in its landscape to compare with
the theoretical conjectures discussed before (Sec. 4.5.1) and in Ref. [90]. For this reason
we employ data of the landscape analysis of a tetrahedral network glass-former from
Ref. [213]. �e fragility index de�ned by Eq. (4.25) of the various model are: m = 83

for the polydisperse n = 12 system, m = 78 for the polydisperse n = 18 system and
m = 108 for the binary mixture.

Starting from an equilibrium con�guration we perform a minimization of the pseudo-
potential W using a conjugate gradient algorithm [190]. Once the minimization of the
force is performed and the stationary points are found, there are two possible approaches
to represent the data and reveal the geometric transition. In some cases [96, 100, 101, 95]
the saddle index ns was represented as a function of sampling temperature and it was
observed a vanishing power law behaviour at a �nite temperature identi�ed with the
Mode Coupling temperature TMCT . Another possibility exists for representing the data,
more related to the topological features of the landscape. Following [97, 99] one can
plot the average saddle energy eSP as a function of the saddle index ns. �is gives a
parametric plot in which points are placed on a curve determined only from the landscape
topology. �e usual analysis performed on this curve is a linear extrapolation of the
form:

eSP = Ans + eTH , (4.30)

where A is a constant. �is allows to de�ne the threshold energy eTH as the energy at
which the saddle order ns goes to zero and all the eigenvalues becomes positive, that is
an energy at which the landscape do not present saddles anymore, but only minima.

�e procedure is illustrated in Fig. 4.12 where eTH is measured for the four models.
�e ��ing procedure varies depending on the model. For models only accessible with
standard simulations (Figs. 4.12c and 4.12d), we �t on the entire range of data, as in
previous works. For models that can be equilibrated below the Mode Coupling temper-
ature (Figs. 4.12a and 4.12b), we only �t in regions accessible to standard simulations,
which corresponds to T > TMCT . For all the curves we observe that a linear behaviour
correctly describes the data at high ns while deviations are systematically found at low
ns. In the case of previous studied models these deviations are small and involve few
points close to ns = 0, larger deviations were found in presence of constraints such as
in pinning geometries [64].

�e new systems sampled at extremely low temperatures, on the other hand, present
large deviations from a linear behavior and a strong bending to low energy ge�ing
closer to ns = 0. It was claimed that this bending, already mildly observed in previous
literature, could be a consequence of the fact that the algorithm at low ns �nds mainly
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Figure 4.12 – Saddle energy eSP as a function of saddle index nS for four di�erent supercooled
liquids: (a) polydisperse non-additive model with n=12, (b) polydisperse additive model with n=18,
(c) binary mixture, (d) strong glass-former. Straight lines are �ts on the standard simulations
region, arrows roughly indicate the correspondent location of the Mode-Coupling. Figure (a)
include also the sca�er plot of the data, di�erent colors are for di�erent sampling temperatures.

minima and the averaging operation, depending on the sampling temperature, would
bias the data towards lower values of the energy [214]. For this reason we report a sca�er
plot of the raw data in Fig. 4.12a. Di�erent colors correspond to di�erent sampling
temperatures. We observe that also at very small ns the raw data go continuously to
lower energies and there is no evidence of a jump between values of the energy of the
minima ns = 0 and values of the energy of saddles. To be sure of this point we also
performed an average grouping raw data with respect to the saddle index regardless of
the sampling temperature and we con�rm that deviations of the linear behaviour are a
robust properties of the topology of the landscape.

�e extrapolated energy eTH can be used to locate a corresponding temperature TTH .
�is procedure comes from the mean �eld theoretical approach and consists in using the
curve of the energy of the inherent structure as a function of temperature se�ing the
condition:

eIS(TTH) = eTH . (4.31)
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Polydisperse n=12 Polydisperse n=18 Binary Mixture Strong
TTH 0.100 0.493 0.829 0.328
TMCT 0.101 0.468 0.747 0.318
TTH
TMCT

0.99 1.05 1.11 1.03

Table 4.1 – �reshold temperature, Mode-Coupling temperature, and their ratio. Values for this
last are always around 1.

In table 4.1 we compare the crossover temperature TMCT obtained by directly ��ing
the relaxation times with Eq.1.9 and the threshold temperature de�ned using the notion of
geometric transition TTH . We observe a good agreement between the two temperatures.
However, this �nding con�icts with the bending detected before, meaning that the
description is incomplete at lower temperatures. �e bending do not rule out other
interpretation of the behaviour of saddles with varying temperature, such as the ones
discussed in the context of kinetically constrained models [215].
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Figure 4.13 – Saddle index nS as a function of the temperature rescaled by TMCT for four
models. �e behaviour is non-universal and models able to be equilibrated below TMCT present
a non-vanishing number of saddle.

To understand the behaviour of the four models close and below TMCT we report
the saddle index nS as a function of the sampling temperature in Fig. 4.13. We notice
that this plot is algorithm dependent since it contains explicitely the temperature. First
we observe that, for the literature binary mixture, results are consistent with previous
�nding, with a curve that could vanish at a �nite temperature. �e strong glass-former
presents overall values of the saddle index higher as compared to other models. Our
result is in contrast with the prediction of Ref. [90] where it was claimed that saddles
should be less important in the relaxation process in systems with low fragility.

Finally, for the two systems equilibrated beyond TMCT , we observe that the saddle
index decreases monotonously and and it does not vanish for temperature well beyond
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the standard regime. Interestingly the Mode-Coupling crossover is not captured by the
saddle index and this quantity is insensitive to the kinetic slowing down. In other words,
the expected geometrical transition, in these systems is at best a crossover, from a high
to a low index regime. However these results show that the relation between topology
and Mode-Coupling crossover is rather weak.
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Figure 4.14 – Di�erence in energy between saddles and corresponding minima as a function of
the saddle index for four di�erent models. �e y-axis is rescaled by TMCT to compare. Linear
�ts are performed in regions accessible by standard simulations.

�e next aim is to quantify the height of the saddles with respect to minima, this
will give an indication of the energetical price to pay to perform a relaxation. For this
reason we report in Fig. 4.14 the energy of the saddles eSP minus the energy of minima
eIS as a function of the saddle index ns. Since we are interested in barrier height at the
dynamical crossover we divide the y-axis by TMCT . We employ the average inherent
structure energy and saddle energy sampled at the corresponding temperature. Another
possibility would be to subtract the raw values of inherent structure energy to the saddle
energy for each con�guration and then compute the average. We con�rmed that the
two approaches are equivalent.

Previous simulation results claimed to �nd a linear functional form for many di�erent
glass-forming liquids [99, 95]. �is result was explained in terms of a �xed amount of
energy needed to increase the saddles order of 1. �is also implies an independence
between processes that are responsible for this increase. Our results show that a linear
regime exists between 0.05 ≤ nS ≤ 0.25, which corresponds to mildly supercooled liq-
uids. However, going at very small saddles orders the curve bends towards 0, suggesting
that at low saddle index relaxation processes may be correlated. We �t the intermediate
regime with a linear functional form

eSP − eIS
TMCT

= A′nS +B′. (4.32)
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in order to extract the height of the energy barrier at the Mode-Coupling transition
∆eMCT . One can show that the slope A′ can be related to ∆eMCT using the relation
A′/3 = ∆eMCT , where the factor three is given by normalization in Eq.(4.28). In previous
literature, it was found a system independent values ∆eMCT ∼ 10kBTMCT , a result
that we con�rm for the Binary Mixture. However other model present a very di�erent
behaviour. �e polydisperse systems, for instance, have lower barriers ∆eMCT ∼ 7−
7.5kBTMCT and in the case of the strong glass former we �nd ∆eMCT ∼ 14kBTMCT .

�ese results are in disagreement with previous �ndings. On the one hand, di�erent
fragile glass forming liquids have di�erent energy barriers, contrary to the idea that
the topology is system independent [99, 100, 95]. On the other hand the height of the
barriers follows a nonmonotonous trend with fragility.

�e largest barrier value is the one of the strong system. �en, the barrier of the most
fragile system, the binary mixture, assumes intermediate value. Finally the barrier for the
polydisperse models are the smallest. �is is contrary to the prediction of Ref. [90]. Finally
at low ns, in systems sampled beyond the dynamical transition, we found deviations
from a linearity of the behaviour of the energy barriers, with values of the barrier very
small eSP − eIS ∼ 0.01. �is result gives further information about the regions of
the landscape sampled at very low temperature. indicating that the energy needed to
increase the saddle order of 1 is not constant in this regime. �is means that structural
rearrangements in real space correspondent to a given saddle may not be independent.
However, a more detailed analysis of the real space behaviour is needed to clarify this
point.

In conclusion, in this section we observed that the mean-�eld geometric transition
may survive at best as a crossover in �nite dimensional glass-forming liquids. Moreover
the topology of the landscape varies signi�cantly in di�erent models, contrary to the
expectation of universality of previous works.
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Chapter 5

Summary of the work

�is chapter is dedicated to a summary of the thesis work presented in the previous
three chapters.

Chapter 2 presents a study of coupled liquids. Taking two copies of a three dimen-
sional glass-forming liquid, we de�ne an overlap between them that quanti�es their
degree of similarity, and we de�ne a coupling �eld as a conjugate variable of the overlap.
�e situation is similar to the theoretical one described in Sec. 1.2.5. In the mean �eld
theory the system is supposed to undergo a �rst order transition between a low overlap
and high overlap regime by decreasing the temperature or increasing the coupling. �e
�rst order critical line in the (ε, T ) phase diagram culminates in a second order critical
point. We have been able to systematically describe the high temperature behaviour
above the second order critical point revealing the existence of a Widom line, which
support the presence of a thermodynamic transition at lower temperatures. We study
statical and dynamical properties of the system. In the high coupling regime we detect
the presence of a jump dynamics, dynamical heterogeneities and the violation of the
Stokes Einstein relation that appears in an exotic form as compared to the original system.
�ese results are not conclusive about the existence of a thermodynamic transition, and
they mainly su�er from the intervention of the slowing down.

Results from this chapter led to the publication of one article, Ref. [110].

Chapter 3 represents the bulk of our study. In this chapter we address the problem
of equilibrating supercooled liquids below the computational glass transition T ≈
TMCT . To this aim we employ Monte Carlo simulations based on the swap algorithm
discussed in Sec. 1.3.3. We simulate both systems already previously employed in the
literature and systems introduced on purpose. For many systems we have been able to
reach thermalization beyond the computational glass transition and for some of them

117



118 CHAPTER 5. SUMMARY OF THE WORK

we produce equilibrium con�gurations at temperatures comparable to the laboratory
systems. �ere are two main drawbacks in performing swap simulations. �e �rst is
the fact that, since it allows the equilibration at prohibitive temperatures for standard
simulations, one needs to be certain of equilibration. �e second issue is the fact that
an enhanced exploration of phase diagram also boosts ordering, the ground state of
supercooled liquids being the crystalline state. For many of our systems we observe
ordering e�ects during the simulations that either lead to crystals or to phase separation.
To solve these issues we set up a protocol that carefully deals both with equilibration and
ordering. We quantify the orders of magnitude of speed up obtained in swap simulations
using an extrapolation technique that is able to locate the laboratory glass transition
Tg. We detect the presence of a kinetic slowing down in swap simulations at lower
temperature as compared to standard dynamics, the nature of which is still unclear. We
perform an analysis of the physical mechanism behind swap simulations �nding that
the three dimensional dynamics is characterized by two time correlation functions that
decay in two-steps both for translational and for diameter degrees of freedom. Moreover,
we observe that dynamical heterogeneity disappears across the Mode-Coupling regime
and it is re-established for lower temperatures, concurrently with the kinetic slowing
down.

In the following we sum up results found for each system under investigation.

We simulate a binary mixture and a ternary mixture that were previously employed
in swap Monte Carlo simulations. �e binary mixture was largely used in the literature,
however, we �nd a very poor stability reducing the temperature, and the system cannot
be equilibrated below TMCT . �e ternary mixture was introduced two years ago in
Ref. [80]. We repeat and extend previous simulations, and we �nd that the accessible
temperature regime using swap simulations is considerably narrower compared to the
one previously claimed since the system easily presents phase separation. �is model,
however, can be equilibrated slightly below TMCT .

We introduce a class of polydisperse models in which particle diameters vary con-
tinuously from a lower to an upper bound. We tune polydispersity in order to suppress
ordering in the system, and we perform simulations varying potential so�ness and using
both additive and non additive interactions. We conclude that both reducing the so�ness
and introducing non additivity suppress ordering and enhance the ability to equilibrate
at very low temperatures. For this class of systems we also test a two dimensional
realization obtaining equilibration at extremely low temperatures also in this case. For
many of these systems we are able to equilibrate below TMCT and for some of them we
get an equilibrium �uid below Tg.

We introduce two classes of systems to be considered polydisperse extensions of
binary mixtures. �e strategy is to introduce some additional particles in between
the two original species to allow particles to progressively change their diameter and
improve swap performances. In one case, we modify the binary mixture of so� spheres,
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we both tested a purely repulsive case and a system with Lennard-Jones interactions.
We �nd comparable results in the two cases, equilibration the systems at extremely low
temperatures. We introduce an extension of the well known Kob-Andersen Lennard
Jones mixture in which few particles interpolates between the two species. We tested
di�erent realizations of the system in which the number of additional particles introduced
is between 1% and 10%, such that they can be considered as a perturbation to the original
system. We notice that e�ciency of swap simulations depends continuously on the
number of additional particles introduced and in the best case we have been able to
equilibrate the modi�ed system at a temperature remarkably below the one reached by
using any other computational method.

Results presented in this chapter led to one publication [112]. Another paper is in
preparation concerning the extension of the Kob-Andersen binary mixture.

In chapter 4 we employ the ability developed to equilibrate glass-forming liquids at
previously una�ained temperature to address four open problems of the glass transition.

�e �rst study involves the relation between the glass and the jammed state. Since the
introduction of a uni�ed phase diagram for the glass and the jamming transitions [179],
di�erent theoretical scenarios have been proposed to clarify the relation between these
two phenomena. One of them predicts that the jamming transition represents the
endpoint of the equilibrium �uid line in the phase diagram [180]. In another possible
scenario, by compression at equilibrium, the system �rst enters an ideal glass state φK
and subsequently it goes out of equilibrium and hits a jamming point [182]. We employ
a system of continuously polydisperse hard spheres that can be equilibrated at packing
fractions higher than the laboratory glass transition φg. We independently locate the
jamming packing fraction compressing the system out-of-equilibrium. We �nd that
the system can be found at some high packing fractions both in equilibrium and in the
jammed phase. Showing that the jamming transition cannot be the endpoint of the �uid
branch, our result rules out the �rst theoretical scenario and demands a modi�cation
of the second scenario. Moreover, it adds some novel information about the relation
between the glass and the jammed states, showing that they might be less related than
what has been suggested for a long time.

�is work led to one publication [111].

�e second open problem regards the thermodynamic behaviour of supercooled
liquids reducing the temperature. Some theories explain the slowing down through a
rarefaction of the metastable states that can be directly quanti�ed by measuring the
con�gurational entropy. Some other theories do not assign any role to thermodynamics
in the explanation of the glass formation and rely on purely dynamical considerations.
�e debate is hard to be se�led since liquids fall out of equilibrium at the dynamical
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glass transition. In fragile systems a monotonic decrease of con�gurational entropy
was found both in experimental and in computational glass-forming liquids. However
computational results were con�ned to the standard simulation regime. Moreover, li�le
information is available about the dependence of this feature on dimensionality of the
system. We employ a model of polydisperse so� sphere both in two and three dimensions
to compute con�gurational entropy by thermodynamic integration for temperatures
below the laboratory glass transition Tg . We found a monotonic decrease of this quantity
over the whole range of temperature. �e three dimensional results are consistent with
the presence of a Kauzmann transition at a �nite temperature, extending experimental
�ndings in a deep supercooled regime. In two dimensions the situation is remarkably
di�erent and the result is more consistent with a vanishing Kauzmann temperature.
�eoretical interpretation of this result is missing in the current state of glass theory. Also,
it is unclear the relation of this thermodynamic behaviour with the recent observation of
long wavelength �uctuations in two dimensional amorphous solids, both in experiments
and simulations. Overall these results indicate the prominent role of the thermodynamic
point of view in explaining the glass formation. We also feature a measurement of a
point-to-set length that directly tests the extent of amorphous order accompanying a
rarefaction of metastable states, �nding coherent results with the ones obtained for the
con�gurational entropy.

Results for the three dimensional model are included in Ref. [113], and another
publication is in preparation concerning the �ndings in two dimensions.

�e third question we address concerns the relation between relaxation times and
the con�gurational entropy. Di�erent theoretical predictions within the Adam-Gibbs-
DiMarzio (AGD) theory and the Random First Order Transition (RFOT) theory connects
these two quantities in order to quantitatively explain the glassy slowdown, and they
also require the presence of growing amorphous order in the system.

Using thermodynamic and dynamic observables one can extract two critical tem-
peratures, that coincide in AGD and RFOT frameworks, and represent temperature of
divergence of relaxation times. It has been proposed a counterargument to the validity
of critical theories based on the fact that extrapolated values of these two temperature
were found to be di�erent in some experimental systems and the increase of relaxation
times could also be described with divergence-free functional forms. We employ the
measurements previously obtained of con�gurational entropy, point-to-set length and
relaxation times to test theoretical predictions in a novel regime. We found that the AGD
framework makes poor predictions of data, and we introduce an empirical functional
form that can be directly connected to the scaling prediction of the RFOT theory. We
measure two critical exponents characteristic of RFOT, the �rst, θ, relating the typical
size of correlated amorphous regions to con�gurational entropy, and the second, ψ,
linking thermodynamic and dynamic properties. For the estimation of θ, we use purely
thermodynamic quantities in a bare system and compare with result previously obtained
either using dynamical correlation or constrained systems. Finally, we employ exper-
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imental data to provide strong basis to our claim, �nding a good agreement with our
predictions. We found that the introduction of a surface tension term, provided in RFOT,
is a necessary ingredient to a correct description of the slowing down and thanks to this
additional re�nement the observed deviations between thermodynamic and dynamical
critical temperatures can be explained also within RFOT theory.

A paper featuring these results is in preparation.

Finally, we want to inspect the topological properties of the Potential Energy Land-
scape(PEL) beyond the Mode-Coupling crossover temperature TMCT . Some years ago it
was found, both in mean-�eld theory and in computational glass formers, a so-called
geometric transition. �is is a topology change of the landscape between a saddle-
dominated region at high energy and a minima-dominated region at low energy that
has consequences for the system dynamics. Namely, at high temperature T > TMCT

the system explores zone of the landscape dominated by the presence of the saddle
points, and complete relaxations are allowed, whereas at low temperatures T < TMCT

the system do not relax and it remains con�ned in minima of the landscape. It was also
claimed that the PEL presents some universal characteristic in structural glass-forming
liquids concerning saddle points. We compare the topological properties of four di�erent
supercooled liquids. Two of them, a fragile and strong glass-former, were previously em-
ployed in the literature. Two other, made of polydisperse so� particles, were introduced
in this thesis and equilibrated below TMCT . We found that the previous conclusion about
the presence of a geometric transition is computational glass models does not hold for
our systems. Measuring topological properties in regions explored at temperatures below
TMCT we found the presence of saddle points together with minima. �erefore, the
transition should be regarded at best as a crossover in our systems. We detect di�erences
in landscape properties among the models under investigation that represent deviations
from the claimed universality.

A paper featuring these results is in preparation.



122 CHAPTER 5. SUMMARY OF THE WORK



Chapter 6

Discussion and Perspectives

�e main result of this thesis is the equilibration of supercooled liquids in a completely
novel temperature regime. �is opens up a huge number of perspectives and the limited
time of a doctoral thesis does not allow to cover all of them. In the following we will
be dealing with perspectives and ongoing works. Some of these works involved us in
person and some other involved other researchers and other groups.

One of the main questions that is le� unanswered by this thesis is the reason of
the remarkable dynamical speed up. Recently [164] this acceleration was motivated by
enhanced relaxation at local scale. �e rationale for this goes as follows. �e starting
point is the assumption that the glassy slowing down has two main sources. One is due
to the local environment, for instance to growing energy barrier for local rearrangements.
�e other involves collective degrees of freedom and can be quanti�ed with a static
length. Since e�ciency of the swap algorithm does not change whether exchanges
moves are performed locally or on the whole system scale, the authors conclude that
swap simulations are able to relax local degrees of freedom. Consequently, the kinetic
slowdown should be ascribed to the presence of increasing local sti�ness. �e presence
of a growing static length is not completely ruled out, although, in this reasoning, it
would explain only 2-3 orders of magnitude of the 13 decades that characterize the
slowing down. �is argument is in good agreement with theoretical explanations for
the glass transition that involve the shear modulus [160, 216]. However, it does not
completely explain the role of the RFOT theoretical approach, where both an increasing
shear modulus and static correlation length participate in the kinetic slowing down
(see [17] Sec.VI). �e situation may be se�led by performing quantitative analysis of
the role that local and collective phenomena play in the standard and swap dynamics,
although so far it is unclear to us what precise quantity should be measured.

Related to the previous question is the nature of the observed slowing down in the
swap Monte Carlo dynamics at lower temperature. We think that there are many possible
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explanations for this to happen. It may be exclusively driven by growing static amorphous
order, as suggested in [164]. Or it could have a Mode-Coupling like nature where the
diameters are considered as dynamical variables. Finally, it can be a combination of the
two framework or even something else. �eoretical work is in progress in this sense.
Using the Mari-Kurchan model, a dynamical model able to interpolate between the
in�nite dimension mean-�eld limit and a �nite dimension D, it was found that swap
dynamics presents a Mode-Coupling like transition at lower temperatures [217]. �is
does not disagree with our results in three dimensional systems. Yet the two dimensional
swap dynamics is very di�erent, presenting relaxation times that are well described by
an Arrhenius growth. �e reason for this is currently under investigation.

Some criticism was address about our results, especially in oral discussions at confer-
ences and meetings. �e stronger argument is based on the fact that we created a model
which is intentionally designed to work with swap simulations although it might not
well describe the glass formation in general. �e results presented in this thesis address
this concern in many aspects. �roughout the whole manuscript we describe glassy
properties of our systems featuring static, dynamical and thermodynamic properties, and
we �nd numerous analogies with previous computational glass-forming models. Our
next aim, is to dispel any doubt le� by using the extension of the Kob-Andersen mixture
introduced in chapter 3. By performing a further inspection of this model, continuously
varying the amount of additional polydisperse particles from zero to a large value, we will
show that high polydispersity do not invalidate our results and the good glass-forming
ability of our models.

Another perspective for our work concerns the study of transition points in the
Potential Energy Landscape. In the last chapter we describe the topological nature across
TMCT for two of our models. We plan to complete this investigation looking more
carefully at the saddle points found below the standard simulation regime to understand
whether they present a local or collective nature. �is will be carried out using standard
tools employed in the study of the low frequency vibrations of amorphous solids such as
participation ratio and so� modes analysis.

Recently the possibility to create glasses presenting high kinetic stability was intro-
duced by using a vapor deposition technique [218]. �is ulstrastable glasses represent
a huge step forward in equilibration ability of experimental glassy material. �e com-
putational study of the properties of these material is however very limited if one uses
standard simulations. Using swap simulations it was possible to recreate similar per-
formances in equilibration in Ref. [219]. �is helped in understanding the role of an
enhanced surface di�usion in the creation of ultrastable glasses. Moreover, as a byprod-
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uct, this also gave a hint of the extremely high stability of glassy samples produced using
swap simulations. Work to quantify this stability is currently in progress [220].

Very low temperature in silico con�gurations, presenting high stability, can also
be employed to study short time relaxations using Newtonian dynamics. Anomalies
in low temperature glasses are a well established experimental property. Recently the
presence of a Gardner transition in glasses was found in the mean �eld theory of hard
spheres. �is transition, happening inside the glass state, is characterized by growing
timescales and lengthscales in vibrational properties. Interestingly, it was suggested
that this may explain the low temperature anomalous behaviour of glasses [18]. �ere
have been an increasing experimental and computational interest around this transition.
Some evidence of a critical behaviour of vibrations was found in hard spheres using
con�guration prepared with a swap protocol [221]. On the contrary, results suggesting
the absence of a Gardner transition have been found in one of the so� sphere system
introduced in this thesis [222]. For this model no growing lengthscale and timescale was
detected observing the low temperature vibrational properties.

In recent years a debated question about the glass behaviour concerned its response
to mechanical deformation. In amorphous solids the stress increases as a function of
an applied strain until the point at which a mechanical breakdown exhibits. �is is
called the yielding point. A theoretical scenario, together with some computational
con�rmation, was proposed in which the �rst order nature of this transition is revealed
using as order parameter an overlap function between two glassy replicas [223]. In this
framework the yielding transition is considered a spinodal with disorder [224]. Another
approach, both computational and experimental, is keen on assigning a percolative
nature to the transition [225]. �e possibility to create very well annealed glasses o�ers
a direct opportunity to study the nature of this transition with a high level of accuracy.
Work is in progress in this direction [226].
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Chapter 8

Résumé en français

8.1 Motivations

Dans le chapitre d’introduction, nous traitons de nombreux sujets liés à la formation
de verre qui fournissent le contexte de recherche de ce�e thèse. Dans ce�e section, nous
nous concentrons brièvement sur certains d’entre eux qui ont été la principale source de
motivation de ce travail.

Dans la Sec. 1.2.5, nous avons discuté des systèmes couplés dans la théorie des
champs moyens. Nous avons vu que l’introduction d’un champ de couplage entre deux
répliques du système conduisait à l’émergence d’une transition de premier ordre dont le
paramètre d’ordre est donné par un chevauchement qui mesure la similitude entre les
deux répliques. La distribution de probabilité de ce�e quantité est directement liée au
potentiel de Franz-Parisi et à l’entropie con�gurationnelle. Au cours des premiers mois
de ce�e thèse, nous avons utilisé des simulations numériques pour étudier les propriétés
statiques et dynamiques des liquides couplés, en particulier concernant le comportement
du chevauchement avec la réduction de la température.

Nous avons discuté dans la Sec. 1.3.1 qu’un problème fondamental dans les études
numériques des liquides surfondus provient du fait que seulement quatre ou cinq ordres
de grandeur des temps de relaxation sont accessibles en équilibre, par rapport aux
13 ordres de grandeur que les expériences peuvent examiner à l’équilibre. Certaines
techniques ont été introduites pour équilibrer les liquides surfondus à une température
plus basse. Dans l’ensemble, ils ont été prouvés pour accélérer l’équilibration d’environ
deux ordres de grandeur (Sec. 1.3.2). Seul dans le cas de Ref. [80], il a été a�rmé que une
accélération de plus de dix ordres de grandeur est possible en utilisant l’algorithme swap
Monte Carlo (Sec. 1.3.3). L’un des principaux objectifs de ce�e thèse est de concevoir
et me�re en œuvre des modèles et des méthodes pour accélérer la thermalisation et
étendre le régime de simulation à des échelles de temps comparables à celles accessibles
expérimentalement. Nous veillons particulièrement à ce que notre système a�eigne une
bonne équilibration et reste un �uide désordonné. Ce résultat ouvre la voie à l’étude des
liquides surfondus et des verres dans des régimes inexplorés.
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La troisième partie de la thèse est consacrée à l’étude des liquides surfondus dans
ce nouveau régime. Parmi les questions ouvertes traitées précédemment (Ch. 1), nous
abordons les éléments suivants.

Des mesures de l’entropie con�gurationnelle dans le cadre du paysage énergétique
potentiel, ont été discutées dans les sections 1.2.1 et 1.3.4, Ils révèlent une diminution de
ce�e quantité avec une température décroissante dans des nombreux liquides surfondus.
Cependant, ces résultats ont toujours été obtenus pour de température supérieure au
ralentissement dynamique des simulations. La grande majorité des résultats ont été
obtenus en trois dimensions et on connaı̂t peu du comportement thermodynamique des
systèmes bidimensionnels, bien que du point de vue dynamique, la transition vitreuse s’est
avéré di�érente en deux et trois dimensions (Sec. 1.3.5). Dans ce�e thèse, nous abordons
deux problèmes en même temps. D’une part, nous mesurons l’entropie con�gurationnelle
dans un régime complètement inexploré et, d’autre part, nous comparons directement
entre une réalisation bidimensionnelle et une réalisation tridimensionnelle d’un système.

Dans les liquides surfondus, il n’est toujours pas clair quelle est la relation entre la
thermodynamique et la dynamique, à savoir, entre les temps de relaxation et l’entropie
con�gurationnelle. Des approches théoriques, telle que ces donnés par Adam-Gibbs
(Sec.1.2.2) ou RFOT (Sec.1.2.4), soutiennent une relation directe entre ces deux quantités.
Nous employons des résultats de simulation obtenus à une température extrêmement
basse pour tester ces théories et mesurer l’exposant critique de la théorie RFOT.

Il y a quelques années, on prétendait l’existence d’une transition géométrique dans le
paysage énergétique des liquides formateurs de verre (Sec. 1.3.4). Le résultat numérique,
cependant, a été obtenu pour une température supérieure à la transition putative. Nous
étudions la présence de ce�e transition e�ectuant des études du paysage énergétique
dans le nouveau régime accessible avec des simulations de swap.

Le travail de la thèse a mené à quatre publications [110, 111, 112, 113]. Deux d’entre
eux sont une production directe de ce�e thèse [110, 112]. Les deux autres résultent
d’une plus large collaboration et incluent des résultats et des analyses développés dans
ce�e thèse [111, 113]. Trois autres publications sont en préparation. L’un concerne les
résultats sur l’entropie con�gurationnelle et la longueur point-to-set dans un système
bidimensionnel et l’absence d’une transition de verre idéale à une température �nie. Une
autre caractéristique de la relation entre les temps de relaxation et l’entropie con�gu-
rationnelle et la mesure de l’exposant critique de la RFOT proche de la transition. Le
dernier considère l’absence de transition géométrique dans les modèles numériques des
liquides formateurs de verre.

8.2 Résultats

Ce�e section est dédiée à un résumé du travail de thèse présenté dans le chapitre
précédent.
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Le chapitre 2 présente une étude des liquides couplés. Prenant deux copies d’un
liquide formateur un verre tridimensionnel, nous dé�nissons un chevauchement entre
eux qui quanti�e leur degré de similarité et nous dé�nissons un champ de couplage
comme variable conjuguée du chevauchement. La situation est similaire à celle théorique
décrite dans la Sec. 1.2.5. Dans la théorie du champ moyen, le système subit une transition
de premier ordre entre un régime de chevauchement faible et un de chevauchement
élevé en diminuant la température ou en augmentant le couplage. La ligne critique de
premier ordre dans le diagramme de phase (ε, T ) culmine dans un point critique de
deuxième ordre. Nous avons pu décrire systématiquement le comportement à haute
température au-dessus du point critique du second ordre révélant l’existence d’une
ligne de Widom, qui soutiennent la présence d’une transition thermodynamique à des
températures plus basses. Nous étudions les propriétés statiques et dynamiques du
système. Dans le régime de couplage élevé, nous détectons la présence d’une dynamique
de saut, d’hétérogénéités dynamiques et de violation de la relation de Stokes Einstein
Apparat sous une forme exotique par rapport au système d’origine. Ces résultats ne sont
pas concluants quant à l’existence d’une transition thermodynamique et ils sou�rent
principalement de l’intervention du ralentissement.

Les résultats de ce chapitre ont conduit à la publication d’un article, Ref. [110].

Le chapitre 3 représente la majeure partie de notre étude. Dans ce chapitre, nous
abordons le problème de l’équilibration des liquides surfondus en dessous de la transition
vitreuse numérique T ≈ TMCT . Dans ce but, nous utilisons des simulations Monte
Carlo basées sur l’algorithme de swap décrit dans Sec. 1.3.3. Nous simulons les deux
systèmes précédemment employés dans la li�érature et introduisons d’autres nouveaux
systèmes. Pour des nombreux systèmes, nous avons pu a�eindre la thermisation au-delà
de la transition vitreuse numérique et pour certains d’entre eux nous avons produit des
con�gurations d’équilibre à des températures comparables aux systèmes expérimentales.
Il existe deux inconvénients principaux dans l’exécution de simulations de swap. Le
premier est le fait que, puisqu’il permet l’équilibration à des températures prohibitives
pour les simulations standard, il faut s’assurer d’être vraiment à l’équilibre. Le deuxième
problème est le fait que l’amélioration de l’exploration du diagramme de phase aug-
mente également la possibilité de présence d’ordre, étant donné que l’état fondamental
des liquides surfondus est l’état cristallin. Pour beaucoup de nos systèmes, nous ob-
servons des e�ets d’ordre pendant les simulations qui conduisent soit à des cristaux,
soit à des phases séparées. Pour résoudre ces problèmes, nous avons mis en place un
protocole qui traite soigneusement l’équilibration et l’ordre. Nous quanti�ons les ordres
de grandeur d’accélération obtenus dans les simulations de swap à l’aide d’une technique
d’extrapolation qui est capable de localiser la transition vitreuse expérimentale Tg . Nous
détectons la présence d’un ralentissement cinétique dans les simulations de swap à basse
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température par rapport à la dynamique standard dont la nature est encore incertaine.
Nous e�ectuons une analyse du mécanisme physique derrière les simulations de swap
constatant que la dynamique est caractérisée par des relaxations qui se décomposent en
deux étapes: d’abord une partie vibrationnelle et ensuite une partie structurelle, à la fois
pour des degrés de libération et pour des degrés de liberté de diamètre. De plus nous
observons que l’hétérogénéité dynamique disparaı̂t à travers le régime de crossover de la
théorie de couplage de mode et est rétablie pour des températures plus basses, en même
temps que le ralentissement cinétique.

Dans ce qui suit, nous résumons les résultats obtenus pour chaque système.

Nous simulons un mélange binaire et un mélange ternaire qui ont déjà été employés
dans des simulations Monte Carlo. Le mélange binaire a été largement utilisé dans la
li�érature, mais nous avons trouvé une très mauvaise stabilité en réduisant la température
et le système ne peut être équilibré en dessous de TMCT . Le mélange ternaire a été
introduit il y a deux ans dans la Ref. [80]. Nous répétons et étendons les simulations
précédentes et nous avons constaté que le régime de température accessible utilisant
des simulations de swap est considérablement plus étroit par rapport à celui revendiqué
précédemment puisque le système présente facilement une séparation de phase. Ce
modèle, cependant, peut être équilibré légèrement en dessous de TMCT .

Nous présentons une classe de modèles polydispersés dans lesquels les diamètres des
particules varient continuellement entre une limite inférieure à une limite supérieure.
Nous réglons la polydispersité a�n de supprimer l’ordre dans le système et nous ef-
fectuons des simulations variant la souplesse du potentiel et en utilisant à la fois des
interactions additive et non additive. Nous concluons que la réduction de la souplesse et
l’introduction de la non-additivité supprime l’ordre et améliore la capacité à équilibrer à
des températures très basses, le meilleur cas donné par un �uide de sphère dure. Pour
ce�e classe de systèmes, nous testons également une réalisation bidimensionnelle ob-
tenant l’équilibre à des températures extrêmement basses dans ce cas également. Pour
beaucoup de ces systèmes, nous pouvons équilibrer dessous TMCT et pour certains
d’entre eux, dessous Tg.

Nous présentons deux classes de systèmes que peuvent être considérés comme des
extensions polydisperses de mélanges binaires. La stratégie consiste à introduire des
particules entre les deux espèces pour perme�re aux particules de changer progres-
sivement leur diamètre et d’améliorer les performances de swap. Dans un cas, nous
modi�ons la mélange binaire de sphères molles, nous avons testé à la fois un cas purement
répulsif ainsi que un système avec des interactions Lennard-Jones. Nous avons trouvé
des résultats comparables dans les deux cas, ce qui a permis d’équilibrer également ce
système à des températures extrêmement basses. Nous introduisons une extension du
mélange de Kob-Andersen Lennard Jones dans lequel un petit nombre de particules in-
terpole entre les deux espèces. Nous avons testé di�érentes réalisations du système dans
lequel le nombre de particules introduites est entre 1% et 10% tel qu’ils peuvent être con-
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sidérés comme une perturbation du système original. Nous constatons que l’e�cacité des
simulations de swap dépend continuellement du nombre de particules supplémentaires
introduites et dans le meilleur des cas nous avons été capable d’équilibrer le système
à une température remarquablement inférieure à celle a�einte en utilisant des autres
méthodes numériques.

Les résultats présentés dans ce chapitre ont conduit à une publication [112]. Un autre
article est en préparation concernant l’extension du mélange binaire Kob-Andersen.

Dans le chapitre 4, nous employons la capacité développée pour équilibrer les liquides
formateurs de verre à une température précédemment non a�einte pour résoudre quatre
problèmes ouverts de la transition vitreuse.

La première étude implique la relation entre la transition vitreuse et le jamming.
Depuis l’introduction d’un diagramme de phase uni�é pour le verre et la transition
de jamming [179], des di�érents scénarios théoriques ont été proposés pour clari�er
la relation entre ces deux phénomènes. L’un d’entre eux prédit que la transition de
jamming se produit comme point �nal de la ligne de �uide d’équilibre dans le diagramme
de phase [180]. Dans un autre scénario possible, par compression depuis l’équilibre, le
système entre d’abord dans un état de verre idéal φk et par la suite il sort de l’équilibre et
frappe un point de jamming [182]. Nous employons un système á polydispersité continu
de sphère dure qui peut être équilibré aux fractions d’emballage plus haut que celle
de la transition vitreuse expérimentale φg. Nous localisons de manière indépendante
la fraction d’emballage de jamming en comprimant le système hors d’équilibre. Nous
trouvons que le système peut être trouvé à des fractions d’emballage élevées à la fois en
équilibre et en phase bloquée. Ce résultat exclut le premier scénario théorique et plaide
pour une modi�cation de la deuxième possibilité, montrant que la transition de jamming
ne peut pas être le point �nal de la branche de �uide. En outre, il ajoute des informations
nouvelles sur la relation entre le verre et les états bloqués, montrant qu’ils pourraient
être moins lié à par rapport á ce qui a été suggéré depuis longtemps.

Ces résultats ont mené à une publication [111].

Le deuxième problème ouvert concerne le comportement thermodynamique des
liquides surfondus réduisant la température. Certaines théories expliquent le ralentisse-
ment par une raréfaction des états métastables qui peux être quanti�é directement en
mesurant l’entropie con�gurationnelle. Certaines autres théories n’a�ribuent aucun
rôle à la thermodynamique dans l’explication de la formation du verre et reposent sur
des considérations purement dynamiques. Le débat est di�cile à régler, car les liquides
tombent hors d’équilibre lors de la transition vitreuse dynamique. Dans les systèmes
fragiles, une diminution monotone de l’entropie con�gurationnelle a été trouvée à la
fois dans les expériences et dans les simulations des liquides formateurs de verre. Cepen-
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dant, les résultats numériques ont été con�nés au régime de simulation standard. En
outre, peu d’informations sont disponibles sur la dépendance de ce�e fonction de la
dimensionnalité du système. Nous employons un modèle de sphère molle polydispersée
à la fois en deux et trois dimensions pour calculer l’entropie con�gurationnelle par
intégration thermodynamique pour des températures inférieures à la transition vitreuse
expérimentale Tg. Nous avons constaté une diminution monotone de ce�e quantité sur
toute la gamme de température a�einte. Les résultats tridimensionnels sont compatibles
avec la présence d’une transition de Kauzmann à une température �nie. Dans deux
dimensions, la situation est remarquablement di�érente et le résultat est plus conforme à
une température de Kauzmann qui disparaı̂t. L’interprétation théorique de ces résultats
est manquante dans l’état actuel de la théorie du verre. En outre, il n’est pas clair la rela-
tion de ce comportement thermodynamique avec l’observation récente de �uctuations à
grande longueur d’onde dans les solides amorphes, à la fois dans des expériences et des
simulations. Dans l’ensemble, ces résultats indiquent le rôle prépondérant du point de
vue thermodynamique en expliquant la formation du verre. Nous disposons également
d’une mesure d’une longueur ponctuelle qui teste directement l’extension de l’ordre
amorphe accompagnant une raréfaction d’états métastables, en trouvant un scénario
cohérent avec l’entropie con�gurationnelle.

Les résultats pour le modèle tridimensionnel sont inclus dans Ref. [113] et une autre
publication est en préparation concernant les résultats en deux dimensions.

La troisième question à l’examen concerne la relation entre les temps de relaxation
et l’entropie con�gurationnelle. Di�érentes prédictions théoriques, au sein de la théorie
Adam-Gibbs-DiMarzio (AGD) et de la théorie Random First Order Transition (RFOT),
utilisent ces deux quantités a�n d’expliquer quantitativement l’arrestation cinétique
et ils exigent également la présence d’un ordre amorphe croissant dans le système.
En réalisant indépendamment des ajustements dans la région accessible des données
thermodynamiques et dynamiques, on peut extraire deux températures critiques pour la
divergence des temps de relaxation, qui coı̈ncident dans certains cadres théoriques. Il a
été proposé un contre-argument à la validité des théories critiques en fonction du fait
que ces extrapolations ont été trouvées di�érent dans certains systèmes expérimentaux
et l’augmentation des temps de relaxation pourrait également être décrite avec des
formes fonctionnelles sans divergences. Nous employons les mesures précédemment
obtenues d’entropie con�gurationnelle, de longueur point-to-set et de temps de relaxation
pour me�re à l’épreuve les prédictions théoriques dans un nouveau régime. Nous avons
constaté que le cadre AGD fait de mauvaises prédictions des données et nous introduisons
une fonction qui peut être directement reliée aux prédictions de la théorie RFOT. Suivant
ce�e analogie, nous mesurons deux exposants critiques de la théorie, le premier reliant
la taille typique des régions amorphes corrélées à l’entropie con�gurationnelle et la
deuxième reliant les propriétés thermodynamiques et dynamiques. Dans le premier
cas, nous faisons cela en utilisant des quantités purement thermodynamiques dans un
système non contraint et on compare avec les précédents obtenus soit en utilisant une
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corrélation dynamique si bien que des systèmes contraints. En�n, nous utilisons des
données expérimentales pour fournir une base solide à notre résultat, en trouvant un bon
accord avec nos prévisions. Nous avons constaté que le traitement du terme de tension
de surface donné par RFOT est un ingrédient nécessaire à une description correcte du
ralentissement et grâce à ce ra�nement supplémentaire, les écarts observés entre les
facteurs thermodynamiques et des températures de transition dynamiques peuvent être
expliquées.

Un article présentant ces résultats est en préparation.

En�n, nous voulons inspecter les propriétés topologiques du paysage énergétique
potentiel au-delà de la température de crossover de la théorie de couplages de modes
TMCT . Il y a quelques années, il a été trouvé une transition dite géométrique, tant dans
la théorie des champs moyens que dans les formateurs de verre numériques. Il s’agit
d’un changement de topologie du paysage entre une région dominée par les selles à
haute énergie et une région dominée par les minima à faible énergie qui se re�ète dans
la dynamique du système et on prétendait être universel dans les liquides formateurs
de verre numériques. À savoir, à haute température T > TMCT le système explore la
zone du paysage dominée par la présence des points de selle, et les relaxations complètes
sont autorisées, alors qu’à basse température T < TMCT le système ne décorrèle pas et il
reste con�né dans les minima du paysage. Nous comparons les propriétés topologiques
de quatre liquides surfondus di�érents. Deux d’entre eux, un verre fragile et un verre
fort, étaient précédemment employés dans la li�érature. Deux autres, constitués de
particules molles polydispersées, ont été introduits dans ce�e thèse et équilibrés au-
dessous de TMCT . Nous avons constaté que la conclusion précédente concernant la
présence d’une transition géométrique dans les modèles numériques ne se tiennent pas
pour nos systèmes. En mesurant les propriétés topologiques dans les régions explorées à
des températures inférieures à TMCT nous avons trouvé toujours la présence de points de
selle. Par conséquent, la transition devrait être considérée au mieux comme un crossover
dans nos systèmes. Nous détectons aussi des di�érences dans les propriétés du paysage
énergétique parmi les modèles qui représentent des écarts par rapport à l’universalité
revendiquée précédemment.

Un article présentant ces résultats est en préparation.

8.3 Discussion et Perspectives

Le résultat principal de ce�e thèse est l’équilibration des liquides surfondus dans
un régime de température complètement nouveau. Cela ouvre un grand nombre de
perspectives et le temps limité d’une thèse de doctorat ne permet pas de couvrir tous
ceux-ci. Dans ce qui suit, nous aborderons les perspectives et les travaux en cours.
Certains de ces travaux nous ont impliqué en personne et d’autres ont été réalisés par
d’autres chercheurs et d’autres groupes.



136 CHAPTER 8. RÉSUMÉ EN FRANÇAIS

L’une des principales questions qui restent sans réponse dans par ce�e thèse est la
raison de vitesse dynamique remarquable. Récemment [164], ce�e accélération a été
motivée par une relaxation accrue à l’échelle locale. La raison d’être est la suivante. Le
point de départ est l’hypothèse que le ralentissement vitreux comporte deux sources
principales. L’un est dû à l’environnement local, par exemple à la barrière énergétique
croissante pour les réarrangements locaux. L’autre implique des degrés de liberté collec-
tifs et peut être quanti�é avec une longueur statique. Puisque l’e�cacité de l’algorithme
de swap ne change pas si les mouvements d’échanges sont e�ectués localement ou
sur l’ensemble de l’échelle du système, les auteurs concluent que les simulations de
swap perme�ent de relcher les degrés de liberté locaux. Par conséquent, le ralentisse-
ment cinétique devrait être a�ribué à la présence d’une rigidité locale croissante. La
présence d’une longueur statique croissante n’est pas complètement exclue, bien que,
dans ce raisonnement, il explique seulement 2-3 ordres de grandeur des 13 ordres qui car-
actérisent le ralentissement. Cet argument est en accord avec les explications théoriques
de la transition vitreuse qu’implique le module de cisaillement [160, 216]. Cependant,
il n’explique pas complètement le rôle de l’approche théorique RFOT, où un module
de cisaillement croissant et la longueur de corrélation statique participe ensemble au
ralentissement cinétique (voir [17] Sec.VI). La situation peut être réglée en e�ectuant
une analyse quantitative du rôle que jouent les phénomènes locaux et collectifs jouer
dans la dynamique standard et de swap, bien qu’il ne nous soit pas clair jusqu’ici quelle
quantité précise doit être mesurée.

Une autre question, aussi reliée à la question précédente, regarde la nature du ralen-
tissement observé dans la dynamique swap Monte Carlo à basse température. Nous
pensons qu’il existe de nombreuses explications possibles pour que cela se produise. Il
peut être exclusivement conduit par un ordre amorphe statique croissant, comme suggéré
dans [164]. Ou il pourrait être expliqué par une théorie de couplages de modes où les
diamètres sont considérés comme des variables dynamiques. En�n, il peut s’agir d’une
combinaison des deux frameworks ou même d’une autre chose. Le travail théorique est
en cours dans ce sens [217]. En utilisant le modèle Mari-Kurchan, un modèle dynamique
capable d’interpoler entre La limite de champ moyen de dimension in�nie et une dimen-
sion �nie D, on a constaté que la dynamique de swap présente une transition de théorie
de couplages de modes á températures plus basses par rapport au system où les swap
sont interdits. Ceci n’est pas en désaccord avec nos résultats dans les systèmes tridi-
mensionnels. Pourtant, la dynamique bidimensionnelle des échanges est très di�érents,
présentant des temps de relaxation bien décrits par une croissance d’Arrhenius la raison
pour cela est actuellement à l’étude.

Certaines critiques ont été portés sur nos résultats, en particulier dans les discussions
orales lors de conférences et réunions. L’argument le plus fort est basé sur le fait que
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nous avons créé un modèle qui est intentionnellement réalisé pour fonctionner avec des
simulations de swap bien que cela ne décrit pas bien la formation de verre en général.
Les résultats présentés dans ce�e thèse abordent ce�e préoccupation dans de nombreux
aspects. Tout au long du manuscrit, nous décrivons les propriétés vitreuses de nos
systèmes présentant des caractéristiques statiques, dynamiques et thermodynamiques
et nous trouvons de nombreuses analogies avec les précédents modèles de formation
de verre. Notre prochain objectif sur ce front est de dissiper tout doute en utilisant
l’extension du mélange Kob-Andersen introduit dans Chapitre 3. En e�ectuant une
inspection supplémentaire de ce modèle, en variant en manière continu la quantité de
particules polydisperses supplémentaires de zéro à une grande valeur, nous montrerons
que la haute polydispersité n’invalide pas nos résultats et la bonne capacité de formation
du verre de nos modèles.

Une autre perspective pour notre travail concerne l’étude des points de transition dans
le paysage énergétique potentiel. Dans le dernier chapitre, nous décrivons la topologie
du paysage énergétique á travers TMCT pour deux de nos modèles. Nous prévoyons
compléter ce�e enquête en examinant plus a�entivement les points de selle trouvés
dessous du régime de simulation standard pour comprendre s’ils présentent une nature
locale ou collective. Cela sera réalisé à l’aide d’outils standard utilisés dans l’étude des
vibrations á basse fréquence des solides amorphes tels que le taux de participation et
l’analyse des modes doux.

Récemment, la possibilité de créer des verres présentant une grande stabilité cinétique
a été introduite en utilisant une technique de dépôt en phase vapeur [218]. Ces verres
ultra-stables représentent un énorme pas en avant dans la capacité d’équilibration du
matériau vitreux expérimental. L’étude de calcul des propriétés de ces matériaux est
toutefois très limitée si l’on utilise des simulations standard. En utilisant des simulations
de swap, il a été possible de recréer des performances similaires en équilibration dans Ref.
[219]. Cela a permis de comprendre le rôle de la di�usion de surface dans la création
de verres ultra-stables. En outre, en tant que sous-produit, cela a également donné un
soupon de la stabilité extrêmement élevée des échantillons vitreux produits en utilisant
des simulations de swap. Des études pour quanti�er ce�e stabilité sont actuellement en
cours [220].

Des con�gurations numérique à très basse température, présentant une stabilité
élevée, peuvent également être utilisées pour étudier des relaxations à court terme à
l’aide de la dynamique newtonienne. Les anomalies dans les verres à basse température
sont une propriété expérimentale bien établie. Récemment, la présence d’une transition de
Gardner a été trouvée dans la théorie de champ moyen des sphères dures. Ce�e transition,
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se produisant à l’intérieur de l’état du verre, se caractérise par l’augmentation du temps et
des longueurs des vibrations. Fait intéressant, il a été suggéré que cela pourrait expliquer
le comportement anormal des verres [18]. Il y a eu un intérêt expérimental et numérique
croissant autour de ce�e transition. �elques preuves d’un comportement critique des
vibrations ont été trouvées dans la sphère dure en utilisant des con�gurations préparées
avec un protocole de swap [221]. Au contraire, des résultats suggérant l’absence d’une
transition de Gardner ont été trouvés dans Ref. [222] où aucune croissance de la longueur
de corrélation où des échelles de temps n’a été détectée en observant les propriétés
vibrationelles de sphère molles à basse température.

Au cours des dernières années, une question déba�ue à l’égard du comportement du
verre a concerné sa réponse à la déformation mécanique. Dans les solides amorphes, la
déformation augmente en fonction du contraint appliqué jusqu’au point de déformation
plastique. C’est ce qu’on appelle le limite d’élasticité. Un scénario théorique, accompagné
d’une con�rmation numérique, a été proposé dans lequel la nature du premier ordre
de ce�e transition est révélée en utilisant comme paramètre d’ordre une fonction de
chevauchement entre deux répliques cristallines [223]. Dans ce cadre, la transition est
considérée comme une spinodale avec désordre [224]. Une autre approche, à la fois
computationnelle et expérimentale, est désireuse d’a�ecter un caractère percolatif à la
transition [225]. La possibilité de créer des verres très bien recuit o�re une opportunité
directe d’étudier la nature de ce�e transition avec un haut niveau de précision. Des
travaux sont en cours dans ce�e direction [226].



Bibliography

[1] J. P. Hansen and I. R. McDonald, �eory of simple liquids : with applications to so� ma�er.
Amsterdam Boston: Academic Press, 2013.

[2] C. Angell, “Structural instability and relaxation in liquid and glassy phases near the fragile
liquid limit,” Journal of Non-Crystalline Solids, vol. 102, pp. 205–221, jun 1988.

[3] W. Kauzmann, “�e nature of the glassy state and the behavior of liquids at low tempera-
tures.,” Chemical Reviews, vol. 43, pp. 219–256, oct 1948.

[4] M. D. Ediger, C. A. Angell, and S. R. Nagel, “Supercooled liquids and glasses,” J. Phys. Chem.,
vol. 100, p. 13200, 1996.

[5] J. Wu�ke, W. Petry, and S. Pouget, “Structural relaxation in viscous glycerol: Coherent
neutron sca�ering,” �e Journal of Chemical Physics, vol. 105, pp. 5177–5182, sep 1996.

[6] L. Berthier and G. Biroli, “�eoretical perspective on the glass transition and amorphous
materials,” Rev. Mod. Phys., vol. 83, pp. 587–645, Jun 2011.

[7] J. P. Boon and S. Yip, Molecular hydrodynamics. New York: Dover Publications, 1991.

[8] M. E. Cates, Course 3: Structural Relaxation and Rheology of So� Condensed Ma�er, pp. 75–
129. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.

[9] G. L. Hunter and E. R. Weeks, “�e physics of the colloidal glass transition,” Reports on
Progress in Physics, vol. 75, p. 066501, may 2012.

[10] L. Berthier and T. A. Wi�en, “Glass transition of dense �uids of hard and compressible
spheres,” Physical Review E, vol. 80, aug 2009.

[11] P. W. Anderson, “�rough the glass lightly,” Science, vol. 267, no. 5204, pp. 1615–1616, 1995.

[12] J. H. Gibbs, “Nature of the glass transition in polymers,” �e Journal of Chemical Physics,
vol. 25, pp. 185–186, jul 1956.

[13] J. H. Gibbs and E. A. DiMarzio, “Nature of the glass transition and the glassy state,” �e
Journal of Chemical Physics, vol. 28, pp. 373–383, mar 1958.

[14] G. Adam and J. H. Gibbs, “On the temperature dependence of cooperative relaxation
properties in glass-forming liquids,” �e Journal of Chemical Physics, vol. 43, no. 1, pp. 139–
146, 1965.

[15] W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling �eory (Interna-
tional Series of Monographs on Physics). Oxford University Press, 2009.

[16] F. Sciortino, “Potential energy landscape description of supercooled liquids and glasses,”
Journal of Statistical Mechanics: �eory and Experiment, vol. 2005, p. P05015, may 2005.

139



140 BIBLIOGRAPHY

[17] G. Biroli and J.-P. Bouchaud, �e Random First-Order Transition �eory of Glasses: A Critical
Assessment, pp. 31–113. John Wiley and Sons, Inc., 2012.

[18] P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi, “Glass and jamming tran-
sitions: From exact results to �nite-dimensional descriptions,” Annual Review of Condensed
Ma�er Physics, vol. 8, pp. 265–288, mar 2017.

[19] G. Tarjus, S. A. Kivelson, Z. Nussinov, and P. Viot, “�e frustration-based approach of
supercooled liquids and the glass transition: a review and critical assessment,” Journal of
Physics: Condensed Ma�er, vol. 17, pp. R1143–R1182, dec 2005.

[20] J. P. Garrahan and D. Chandler, “Coarse-grained microscopic model of glass formers,”
Proceedings of the National Academy of Sciences, vol. 100, pp. 9710–9714, aug 2003.

[21] M. Goldstein, “Viscous liquids and the glass transition: A potential energy barrier picture,”
�e Journal of Chemical Physics, vol. 51, pp. 3728–3739, nov 1969.

[22] F. H. Stillinger and T. A. Weber, “Hidden structure in liquids,” Phys. Rev. A, vol. 25, pp. 978–
989, Feb. 1982.

[23] F. H. Stillinger and T. A. Weber, “Packing structures and transitions in liquids and solids,”
Science, vol. 225, pp. 983–989, sep 1984.

[24] F. H. Stillinger, “A topographic view of supercooled liquids and glass formation,” Science,
vol. 267, no. 5206, pp. 1935–1939, 1995.

[25] L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelle�i, D. E. Masri, D. L’Hôte, F. Ladieu, and
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[210] C. Brun, F. Ladieu, D. L’Hôte, G. Biroli, and J.-P. Bouchaud, “Evidence of growing spatial
correlations during the aging of glassy glycerol,” Physical Review Le�ers, vol. 109, oct 2012.

[211] B. Schmidtke, N. Petzold, R. Kahlau, M. Hofmann, and E. A. Rössler, “From boiling point
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Abstract
Understanding the mechanisms that lead to
glass formation is one of the open problems for
the condensed ma�er research. Numerous ques-
tions remain unanswered, because the tremen-
dous increase of relaxation times during the cool-
ing process prevents the exploration of equilib-
rium properties of supercooled liquids at very
low temperature. Computer simulations of glass-
forming liquids are nowadays able to reach equi-
librium at temperatures comparable to the Mode-
Coupling crossover temperature, which is well
above the experimental glass transition tempera-
ture. As a consequence, simulations lag eight or-
ders of magnitude behind experiments in terms
of equilibration times. Progress to close this gap
has been slow, and stems mostly from hardware
improvements.
In this thesis we make an important step to close
this gap. We combine the use of a Monte Carlo
algorithm, known as the swap algorithm, with
the design of novel glass-forming models. We
systematically test numerous models using both
discrete mixtures and polydisperse systems. We
discuss the role that polydispersity and parti-
cle so�ness play in avoiding crystallization and
in e�ciently reaching previously unexplored
regimes. We study the dynamical processes tak-
ing place during swap Monte Carlo simulations.
We demonstrate that in some cases our tech-
nique is able to produce thermalized con�gura-
tions at temperatures inaccessible even by ex-
periments.
In this newly accessible regime, we investigate
some open questions concerning the glass tran-
sition. We show that a hard sphere �uid can be
equilibrated at, and even beyond, the jamming
packing fraction. We measure the con�gura-
tional entropy in extremely supercooled liquid,
�nding a strong dimensional dependence that
supports, on the one hand, the existence of an
ideal glass transition at a �nite temperature in
three dimensions and, on the other hand, its ab-
sence in two dimensions. We detect the increase
of amorphous order quanti�ed through a static
point-to-set length throughout the glass forma-
tion. We measure the critical exponents intro-
duced in the mean-�eld theory of glasses much
closer to the supposed ideal glass transition. Fi-
nally, we reveal the absence of a sharp geomet-
ric transition in the potential energy landscape
across the Mode-Coupling crossover.
�e models and the algorithms developed in
this thesis shi� the computational studies of
glass-forming liquids to an entirely new terri-
tory, which should help to close the gap between
theory and experiments, and get us closer to
solve the long-standing problem of the glass
transition.

Résumé
La compréhension du mécanisme de la forma-
tion du verre est l’un des importants problèmes
ouverts en recherche sur la matir̀e condensée.
De nombreuses questions restent sans réponse,
en raison d’une énorme augmentation des temps
de relaxation pendant le processus de refroi-
dissement qui ne permet pas l’exploration des
propriétés d’équilibre des liquides surfondus
à très basses températures. Les simulations
numériques des liquides surfondus sont actuel-
lement en mesure d’a�eindre l’équilibre à des
températures comparables à la température du
crossover de la théorie de couplages de modes,
qui est bien supérieure à la température de tran-
sition vitreuse expérimentale. En conséquence,
les simulations plus lentes que les expériences
pour équilibrer un liquide surfondu par un
facteur d’environ huit ordres de grandeur.
Les progrès ralisés pour combler cet ècart
ont été lents et résultent essentiellement
d’améliorations de l’architecture des ordina-
teurs.
Dans ce�e thèse, nous résolvons en par-
tie le problème de la thermalisation à basse
température de liquides surfondus dans des si-
mulations numèriques. Nous combinons l’utili-
sation d’un algorithme Monte Carlo, connu sous
le nom d’algorithme de swap, avec la conception
de nouveaux modèles de formateurs de verre.
Nous examinons systématiquement des nom-
breux systèmes, à la fois des mélanges discrets
de particules, ainsi que des systèmes a polydis-
persité continue. Nous discutons le rôle que la
polydispersité et la forme du potentiel entre par-
ticules jouent pour éviter la cristallisation et par-
venir e�cacement à des régimes de température
inexplorés. De plus, nous étudions les proces-
sus dynamiques à l’oeuvre pendant une simu-
lation de swap Monte Carlo. Nous démontrons
que, dans certains cas, notre technique permet
de produire des con�gurations équilibrées à
des températures inaccessibles même dans des
expériences.
Dans ce régime de température complètement
nouveau, nous examinons plusieurs questions
ouvertes concernant la physique de la transition
vitreuse. Nous montrons qu’un �uide de sphères
dures peut être équilibré jusqu’à la densité cri-
tique du jamming, et même au-delà. Nous mesu-
rons l’entropie con�gurationelle dans un liquide
refroidi à très basse température. Nous me�ons
en evidence une forte dépendance dimension-
nelle, qui suggère l’existence d’une transition
vitreuse idéale à une température �nie en trois
dimensions et à son absence en deux dimen-
sions. Nous détectons l’augmentation de l’ordre
amorphe quanti�é par une longueur statique
point-to-set pendant la formation du verre. Nous
mesurons les exposants critiques introduits dans
la théorie de champ moyen des verres beaucoup
plus proche de la température critique prédite
dans la théorie. En�n, nous révélons l’absence de
transition géométrique caractérisant le paysage
d’energie potentiel au travers de la température
du crossover de la théorie de couplages de modes.

Les modéles et les algorithmes développés dans
ce�e thèse déplacent les études des liquides
surfoundus vers un territoire entièrement nou-
veau, en réduisant l’écart entre la théorie et les
expériences, ce qui nous amène plus proche de
la solution du problème de la transition vitreuse.
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