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Résumé 

Le vin en tant qu’écosystème complexe est un modèle particulièrement intéressant pour l’étudie des 

interactions entre les microorganismes. L’interaction sans contact celluaire (interaction indirecte) entre 

la levure Saccharomyces cerevisae et la bactérie lactique Oenococcus oeni a un effect direct sur 

l’induction et l'achèvement de la fermentation malolactique (FML), une fermentation très importante 

pour la qualité du vin. Une souche levurienne peut être classée FML+ si elle stimule la croissance 

bactérienne et FML- si elle a un effet inhibiteur. Les métabolites connus qui inhibent ou stimulent la 

FML ne permettent pas toujours d’expliquer cette distinction phénotypique. Dans ce travail de thèse, 

nous avon développé un workflow multidisciplinaire qui combine l’approche métabolomique non ciblée, 

l’analyse classique ciblée, les statistiques et les réseaux. L’objectif premier était de dévoiler des 

métabolites levuriens impliqués dans l’interaction entre levures et bactéries par une comparaison directe 

des exométabolome des deux phénotypes. 

À cet effet et pour la première fois dans l’éude d’interactions inter-espèces, la Spectrométrie de Masse à 

Résonance Cyclotronique des Ions et à Transformée de Fourier (FT-ICR-MS) et la Chromatographie 

Liquide couplée à la Spectrométrie de Masses (UPLC-Q-TOF-MS) ont été combinées. Pour mieux 

visualiser les données à haut débit générées par les deux plate-formes, une méthode statistique non 

supervisée MetICA a été developpée et validée. Par rapport à l’analyse en composantes principales 

(ACP), cette nouvelle méthode peut réduire la dimension des données d'une façon plus robuste et fiable. 

Afin d’extraire des métabolites impliquées dans la distinction phénotypique, nous avons comparé 

différentes methodes de classification et choisi la meilleure pour chaque jeu de données. Les structures 

putatives de ces biomarqueurs ont été validés par la spectrométrie de masse MS/MS et leurs rôles 

physiologiques sur la croissance bactérienne ont été confirmées in vitro. La découverte de biomarqueurs 
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a été complétée par l’analyse ciblée réalisées par Chromatographie en Phase Liquide à Haute 

Performance (HPLC). La complémentarité entre les différentes techniques métabolomiques a conduit à 

l’identification de nouveaux biomarqueurs de familles distinctes, comme des composés phénoliques, des 

sucres, des nucléotides, des acides aminés et des peptides. En outre , l'analyse des réseaux métaboliques 

a révélé des liens entre les biomarqueurs de levure et a suggéré des voies bactériennes influencés par 

l’exo-métabolome de levure. 

Notre workflow multidisciplinaire a révélé une réelle capacité à identifier des signatures moléculaires 

nouvelles et inattendues de l’interaction levure-bactérie. 

Mot clés: Interaction microbienne, Levure, Bactérie lactique, Vin, Métabolomique, FT-ICR-MS, UPLC-

Q-TOF-MS, Peptides, Apprentissage automatique 
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Abstract 

As a complex microbial ecosystem, wine is a particularly interesting model for studying interactions 

between microorganisms. Contact-independent interactions (indirect interactions) between the yeast 

Saccharomyces cerevisae and the lactic acid bacterium Oenococcus oeni have a direct effect on 

malolactic fermentation (MLF), induction and completion, which is an important factor in wine quality. 

Yeast strains could be classified as MLF+ phenotype if it usually stimulates the bacterial growth or 

MLF- in the opposite case. The known metabolites that stimulate or inhibit the MLF cannot always 

explain the phenotypic distinction. In this work, a multidisciplinary workflow combining non-targeted 

metabolomics, targeted analysis, statistics and network was developed. The main objective was to 

unravel diverse yeast metabolites involved in yeast-bacteria interaction via a direct comparison of exo-

metabolomes of MLF+ and MLF- phenotypes. 

To that purpose, and for the first time in the research of interspecies microbial interactions, two 

metabolomics platforms, Fourier Transform Ion Cyclotron Resonance -Mass Spectrometry (FT-ICR-MS) 

and Liquid Chromatography coupled with Mass Spectrometry (UPLC-Q-TOF-MS) were used in 

combination. To better visualize the high-throughput data generated from the two platforms, a novel 

unsupervised statistical method, the MetICA was developed and validated. Compared to classical 

principal component analysis (PCA), the new method reduced the data dimension in a more robust and 

reliable way. To extract metabolic features involved in the phenotypic distinction, we have compared 

different statistical classifiers and selected the best one for each dataset. Putative structures of these 

biomarkers were validated via MS/MS fragmentation analysis and their physiological roles to bacteria 

were confirmed in vitro. The discovery of biomarkers was complemented by targeted HPLC (high 

performance liquid chromatography) analysis. The complementarities between different analytical 
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techniques led to new biomarkers of distinct chemical families, such as phenolic compounds, 

carbohydrates, nucleotides, amino acids and peptides. Furthermore, metabolic network analysis has 

revealed connections between yeast biomarkers and suggested bacterial pathways influenced by yeast 

exo-metabolome. 

Our multidisciplinary workflow has shown its ability to find new and unexpected molecular evidence of 

wine yeast-bacteria interaction.  

Key words: Microbial interaction, Yeast, Lactic acid bacteria, Wine, Metabolomics, FT-ICR-MS, 

UPLC-Q-TOF-MS, Peptides, Machine learning 
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Historically, the classical separation of microbiological research between bacteriologists, mycologists, 

virologists, ecologists, chemists and molecular biologists has led to the study of a single microorganism 

in response to known environmental factors [1]. This compartmentalization has overlooked the fact that 

many microbes coexist in most environments and that the interaction between them have a complex 

physical, biochemical and ecological nature. For instance, in the research field of food and brewer 

products, results obtained in a pure culture or at pilot scale cannot always be extrapolated to complex 

microbial communities, which occurred during the bioprocess. Therefore a strategy integrating different 

research fields could unravel the nature of interactions and better predict their consequences. However, 

bridging the gap between researchers who work in different areas and building a multidisciplinary 

workflow can be sometimes challenging. The aim of the thesis was to develop a robust strategy to 

characterize as completely as possible  a microbial interaction.  

As a complex microbial ecosystem, wine is a particularly interesting model for studying interactions 

between microorganisms. Firstly, different types of interactions between filamentous fungi, yeast and 

bacteria occur in vineyard, on the surfaces of grape berries, and continue throughout the fermentation 

process until bottling and aging. Besides, from a chemical point of view, there is a high molecular 

diversity in the wine matrix with the presence of water, alcohol, acids, sugars, polyphenols, minerals, 

vitamins, peptides, proteins, terpenes and many other compounds [2-5]. Recent studies show that nearly 

90% of organic molecules in wine still remain unknown [3, 6]. The molecular diversity increases along 

the winemaking process: in addition to compounds initially present in the berry, we find metabolites 

transformed or added by yeast or bacteria metabolism. Since the wine constitutes the extracellular 

medium of these microbes, some of the compounds present are involved in the contact-independent 

interactions (or indirect interactions) between species [7, 8]. For instance, indirect interactions between 

the yeast Saccharomyces cerevisae (S. cerevisae) and the lactic acid bacterium Oenococcus oeni (O. 
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oeni) have a direct effect on malolactic fermentation (MLF), induction and completion, which is an 

important factor in wine quality. However, the precise nature of this interaction is unknown and few 

molecules involved were identified so far. Developping a robust workflow for studying such interaction 

could not only generate useful information for the process improvement but also inspire the research on 

other types of interactions. 

Our strategy was inspired by the fact that the effect of the cellular metabolism of a specific yeast strain 

on its environment results in a unique set and concentration of metabolites [9]. The complete set of these 

extracellular metabolites are also called ‘metabolite footprints’ or ‘exo-metabolomes’. In fact, the grape 

juice after the yeast-driven alcoholic fermentation (AF) constitutes the growth environment of 

malolactic bacteria. This environment, characterized by the exo-metabolome of a specific yeast strain, 

might change the bacteria metabolism thus the MLF process in different ways. According to previous 

studies, MLF is completed more easily or not affected when AF has been performed using certain yeast 

strains and could be inhibited by other strains, despite the matrix and winery effect [10].  

Combining these informations, we assumed that the precise nature of yeast-bacteria interaction in wine 

will be better elucidated if following questions are resolved. A multidisciplinary workflow (Figure 1) 

was created to answer successively these questions. All experimental details (e.g. number of strains) 

presented in this workflow can be found also in Materials and Methods.  

i) What information can yeast exo-metabolome at the end of AF generally bring? (Figure 1A) 
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Figure 1A First question raised 

The yeast exo-metabolome is defined as the complete set of low-molecular-weight metabolites present 

in extracellular medium. Since many of these metabolites were consumed from or secreted into the 

growth medium by yeast culture, exo-metabolome could reflect a particular physiological state of yeast 

cell [11]. The object of our study is the exo-metabolome of yeast when AF is completed. Metabolic 

profile at this state, if comprehensively characterized, should reveal metabolic traits of yeast genome and 

fermentation activity. In order to verify this hypothesis, we have captured ultrahigh-resolution snapshots 

of 16 strains using MS-based non-targeted metabolomics. By comparing these metabolic profiles, the 

connection between yeast metabotype, genotype and phenotype will be discussed. The potential value of 

yeast exo-metabolome study will be assessed in an unsupervised way. 

ii) What is the molecular evidence of a phenotypic distinction ? (Figure 1B) 
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Figure 1B Second question raised 

Knowing the potential value of yeast exo-metabolomic study, now we are looking at a more complex 

phenotypic information: yeast malolactic compatibility. Yeast strains are classified into MLF+ if they 

always stimulate the subsequent MLF and O. oeni growth, or MLF- if they have a negative impact on 

bacteria growth and malolactic activity. If yeast exo-metabolome also reflects distinct signatures 

between MLF+ and MLF- phenotypes, is there a way to eclucidate the molecular evidence behind? Our 

strategy here was to fully identify or characterize the biomarkers (mass features) that statistically 

discriminate two phenotypes. Since O. oeni grows later in yeast extracellular medium, these biomarkers 

could have an actual physiological role. In other words, the molecular evidence found might explain the 

yeast positive/negative interaction on bacteria. Our objective was to confirm all assumptions raised here.   

iii) What can metabolomics further bring for the study of interactom? (Figure 1C) 
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Figure 1C Last question raised 

Yeast-bacteria interaction in wine is much more complex than the physiological roles of several yeast 

compounds. We further characterize the ‘interactom’ in two aspects: i) targeted studies for a family of 

yeast-derived compounds; ii) relate biomarkers discovered to yeast/bacteria metabolic pathways.  

In this manuscript, we will start with a litterature review of all elements of microbial interactions and 

metabolomics. Some elements will be beyond yeast-bacteria interaction in wine in order to expand the 

field of vision. In the Material and Methods part, we will pick up the workflow in Figure 1 and re-divide 

it in smaller parts to explain the methodological aspects. In the Results and Discussion part, we will 

present all thinking process of building such a workflow and provide detailed answers to the three 

questions raised. The development of the workflow would inspire other studies related to interspecies 

interactions, which will be described in the last part of the manuscript.  
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Figure 1 The interdisciplinary workflow to study yeast-bacterial interactions in wine 
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1. Microbial interactions 

Microbial interactions exist in nearly every niche on this planet, ranging from the intestine and skin of 

humans, to the soil in a tropical rainforest [1] and to the marginal ice zone of South Pole [2]. The major 

types of interactions include the parasitism, such that one organism benefits while the other is harmed; 

the mutualism, such that both organisms benefit; and the commensalism, such that one organism 

benefits while one is neutrally affected. Regardless of the outcome, all types of interactions occur 

through the transfer of diverse genetic and molecular information in response to environmental stimuli. 

So-called metabolic exchange controls the behavior, survival and differentiation of members of the 

community. The mechanisms of metabolic exhange extensively studied include (Figure 2, taken from 

[3]) (i) pili: long filamentous structures formed by bacterial pilus proteins that function often as host cell 

adhesins [4] (ii) nanotubes: electrically conductive nanowires that are produced in direct response to 

electron-acceptor limitation of bacteria [5]; (iii) secretion systems: diverse systems for delivering DNA 

or protein effectors to host cells [6]; (iv) cell surface recognition via macromolecules [7] (v) vesicles: 

«shuttle buses» trafficking hydrophobic signalling molecules between cells [8] (vi) aerosols: production 

of volatile compounds [9] (vii) small signaling molecules such as peptides, lipids and nuclueotides [10-

12] (viii) extrusion of antibodies and toxins via efflux pumps or diffusion [13] (ix)  production of 

virulence factors by phages or viruses [14] (x) Bacteria form extracellular matrices such as biofilms that 

allow interdependent structured community of multiple species, capable of coordinated and collective 

behavior [15]. In an ecological point of view, apart from the metabolic exchange, we should not neglect 

interactions via modulation of the physiochemical environment, such as pH modulation [16] and trophic 

competition [17].  
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Figure 2 Microbial interactions via metabolic exchanges. Each of these ten types of interaction provides the basis 

for microbial survival. Among them, contact-independent metabolic exchange (3, 5, 6, 7, 9 and 10) is 

advantageous because the signals are dispersed, enabling them to reach many neighbouring cells and communities 

as opposed to only one cell at a time. The figure was taken directly from Phelan et al., 2012. 

Thanks to all these mechanisms, microorganisms are able to grow and metabolize in stable mixed 

communities by establishing a homeostasis between microbial neighbors and local environments. 

Pratical relevancies of microbial interactions have been reported in diverse variety of fields, including 

modern health care, agriculture, forestry, food processing and environmental protection. Several 

applications of microbial interactions are presented:  

1.1 Bioremediation of polluants 

Polycyclic aromatic hydrocarbons (PAHs) are a large group of polluants resulting from the incomplete 

combustion of carbon-containing fuels. Most PAHs would bind to sediments due to their hydrophobicity 

and would accumulate in food chains [18]. In practice, mixed bacterial-bacterial or bacterial-fungal co-
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cultures, rather than a single microorganism, is capable to mineralize PAHs with multiple benzene rings 

[19]. Morphologically, fungi such as Phythium ultimum were able to develop hyphal structures called 

«fungal highway» in soil. PAHs-degrading strain, such as the bacterium Psendomonas putida would 

speed up the remediation of contaminants in soil by moving across this hyphal structure [20].  

1.2 Biosynthesis of health products and synthetic biology 

Many therapeutic products are secondary metabolites of microorganism, which are also a subset of 

metabolic exchange factors [3]. In fact, microbial interactions could activate secondary metabolite gene 

clusters that are not or weakly expressed under monoculture conditions. For instance, the biosynthesis of 

antibiotic pestalone by marine fungus Pestalotia is triggered by the co-cultivation with 

alphaproteobacterium CNJ-328 [21]. Co-cultures also lead to specific therapeutic products: two bacterial 

strains, each expressing a half-antibody, allow producing bispecific antibodies from any two existing 

antibodies [22]. If a co-culture is undesirable for the bioprocess design, genetic engineering allows the 

transfer of specific genes from one partner to another. In the end, the process would have the same 

results as under co-culture conditions [23]. Additionally, stable co-culture could be applied on metabolic 

engineered microorganisms, each of which contains a part of the biosynthesis pathway that functions 

optimally under the culture conditions [24]. 

1.3 Cheese ripening  

Mixed microbial communities play a key role in determining the taste, quality and safety of a wide range 

of food products. In general, food process involves complex microbial ecosystems where diverse 

microflora are present naturally or by adding. During the first days of cheese ripening, the surface of 

smear-ripened cheese is mainly colonized by yeast species Debaryomyces hansenii and Geotrichum 

candidum [25]. Since the lactate is metabolized by yeast and the surface is deacidified, less acid tolerant 

bacterial communities are able to established. In fact, yeast appeared to be a key role in bacterial 
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diversity. Firstly, bacterial species have different sensitivity levels to low pH and a rapid deacidification 

could always bring higher diversity. Then again, the growth of certain species, such as Brevibacterium 

linens and Leucobacter sp. relies significantly on the yeast G. candidum [26, 27]. It is possible that G. 

candidum detoxified the environment and released substrates that promoted the growth of these bacteria. 

In the research of cheese ripening, results obtained in pure culture on agar-based media cannot be 

extrapolated to more-complex media and multispecies ecosystems [27]. Similarly, early innoculated 

bacteria commercial strains do not always colonize the cheese surface due to the diverse adventitious 

microbiota from the production environment [25]. Despite the complexity and unpredictibility of such 

ecosystems, unravelling the nature of interaction between multiple species would have strong benefits 

on food flavor, food safty [28] and productivity.   

1.4 Winemaking 

Another food process, the winemaking, also involves complex interactions between filamentous fungi, 

yeast and bacteria. In addition, different types of interactions occur in the vineyard, on the surface of 

grape berries, and continue throughout the fermentation process until packaging and aging. Therefore 

wine constitutes a particularly interesting model to study interactions between microorganisms. 

Molecular and biochemical basis of diverse interactions are summarized in the published article «Wine 

microbiome, a dynamic world of microbial interactions » in the Critical Reviews in Food Science and 

Nutrition journal (DOI: 10.1080/10408398.2014.983591). We also presented inside some strategies and 

methodologies that were used or may help to unravel microbe interactions in wine.  
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Summary 

Most fermented products are generated by a mixture of microbes. These microbial consortia possess 

various biological activities responsible for the nutritional, hygienic, and aromatic qualities of the 

product. Wine is no exception. Substantial yeast and bacterial biodiversity is observed on grapes, and in 

both must and wine. The diverse microorganisms present interact throughout the winemaking process. 

The interactions modulate the hygienic and sensorial properties of the wine. Many studies have been 

conducted to elucidate the nature of these interactions, with the aim of establishing better control of the 

two fermentations occurring during wine processing. However, wine is a very complex medium making 

such studies difficult. In this review, we present the current state of research on microbial interactions in 

wines. We consider the different kinds of interactions between different microorganisms together with 

the consequences of these interactions. We underline the major challenges to obtaining a better 

understanding of how microbes interact. Finally, strategies and methodologies that may help unravel 

microbe interactions in wine are suggested. 

Keywords wine, yeast, bacteria, interactions, fermentation, co-culture 
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1. Introduction 

Microbes coexist and interact in many environments, and this is of practical relevance in various fields 

(Ivey et al., 2013). Indeed, microbial interactions occur in bioremediation of pollutants, agriculture, 

forestry, environmental protection, food processing, biotechnology, medicine, and dentistry (Frey-Klett 

et al., 2011). There have been numerous studies documenting the range of effects exhibited during 

microbial interactions; however, knowledge of the molecular mechanisms responsible for these effects is 

scant. Wine constitutes a particularly interesting model to study interactions between microorganisms. 

The first relevant complex interactions between microorganisms are on the surface of the grapes in the 

vineyard. Interactions continue throughout the alcoholic fermentation (AF) by yeast (Ciani et al., 2010) 

and the malolactic fermentation (MLF) by lactic acid bacteria (LAB) (Alexandre et al., 2004). 

Grape must and wine thus constitute a complex microbial ecosystem containing a mixture of different 

species and strains (Barata et al., 2012a). Consequently, individual microorganisms interact, and the 

types of interaction found in mixed populations of microorganisms are generally classified as direct or 

indirect (Ivey et al., 2013). Competition, commensalism, mutualism, amensalism (or antagonism) and 

neutralism are considered to be indirect interactions; direct interactions, for example parasitism, may 

also occur during fermentation. This paper presents current knowledge of microbial interactions in wine. 

These interactions have a tremendous impact on the quality and other characteristics of wines. Indeed, 

hygienic and organoleptic qualities of wines are results of the metabolic activity of a succession of 

different microorganisms. Metabolite production by microorganisms can be substantially modified 

depending on the presence or absence of other microbes. Also, many microbes use extracellular signals 

to transmit information about population density and environmental conditions, and thereby interact. A 

particular aim of this review is to provide an overview of what is known about cell-signalling and 

quorum-sensing molecules in wine. Interaction studies are difficult to conduct. Indeed, the dynamics of 

the biochemical activities, growth, survival and death of microorganisms during AF are the results of 

interactions between microorganisms of the microbial consortium and between microbes and their 

environment: this environment clearly changes during the fermentation process. Although microbial 

growth dynamics during natural fermentations have received extensive attention (Zott et al., 2011; 

Barata et al., 2012), the reports are mainly descriptive and do not give very much insight into the 

mechanisms of interaction. This lack of information is a major hindrance for progress with, and control 

of, natural fermentations or fermentations conducted using multi-starter cultures. The growth of 
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indigenous yeasts or bacteria can prevent the development of starter cultures and thus limit the impact of 

the selected yeasts or bacteria, and thereby affect the functionality of the product (Smid & 

Lacroix, 2013). Determining the aromatic profile of a wine using selected mixed-starter cultures of yeast 

or bacteria cannot be effective without understanding how microbes interact with each other. 

In this review we will also consider various strategies that could be used to unravel the molecular details 

of the mechanisms underlying interactions between microbes in the wine environment. 

2. Microbial ecology of grapes and must 

What is the best way to define the microbiome present on grape berries? Microbial ecosystems initially 

depend on the health quality of the harvest, and many biotic and abiotic factors. In addition, the 

analytical techniques used to inventory microbial consortia have significant consequences for the 

description obtained for these communities. Indeed, traditional microbiological methods involving 

isolation coupled with enumeration of microorganisms in selective nutritive media can lead to biased 

results. Minority colonies constituting less than 1% of the total population cannot be detected (Fleet 

et al., 2002, David et al., 2014), and these methods fail to detect viable but non-culturable organisms 

(Davey & Kell, 1996; Quiros et al.,2009; Salma et al., 2013). The development of molecular methods 

(Doaré-Lebrun et al., 2006; Renouf et al., 2007; Laforgue et al., 2009; Zott et al., 2010), independent of 

the microbial species cultivability and gene expression, associated with selective flow cytometric 

methods of enumeration currently allow a more comprehensive vision of microbial biodiversity. These 

methods are also powerful tools for monitoring microbial consortia from grape harvest to wine storage. 

2.1 Yeast community 

Bunches of grapes are the main natural reservoir of indigenous wine yeasts. Yeasts are spatially 

distributed over the grape berries and grape bunches. Ninety-three different yeast species belonging to 

30 different genera, isolated from 49 different grape varieties growing in 22 countries have been 

reported in the literature (Barata et al., 2008; 2012a; Bisson & Joseph,2009). Renouf 

et al. (2007) identified 47 yeast species belonging to 22 different genera using PCR-DGGE (Polymerase 

Chain Reaction-Denaturing Gradient Gel Electrophoresis): Aureobasidium, Auriculibuller, 

Brettanomyces, Bulleromyces, Candida, Cryptococcus, Debaryomyces, Hanseniaspora, Issatchenkia, 

Kluyveromyces, Lipomyces, Metschnikowia, Pichia, Rhodosporidium, Rhodotorula, Saccharomyces, 

http://www.tandfonline.com/doi/full/10.1080/10408398.2014.983591#cit0213
http://www.tandfonline.com/doi/full/10.1080/10408398.2014.983591#cit0080
http://www.tandfonline.com/doi/full/10.1080/10408398.2014.983591#cit0056
http://www.tandfonline.com/doi/full/10.1080/10408398.2014.983591#cit0172
http://www.tandfonline.com/doi/full/10.1080/10408398.2014.983591#cit0202
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http://www.tandfonline.com/doi/full/10.1080/10408398.2014.983591#cit0185
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Sporidiobolus, Sporobolomyces, Torulaspora, Yarrowia, Zygoascus, andZygosaccharomyces. These 

yeasts were isolated from the surface of grape berries of six different varieties. 

Although large numbers of yeast species are identified on grape berries, the population densities are low. 

Indeed, yeast populations on immature grapes are low (10
1
 to 10

3
 CFU/g) but increase (to 10

3
-

10
6
 UFC/g) at harvest time (Jolly et al., 2003; Prakitchaiwattana et al., 2004; Combina et al., 2005; 

Renouf et al., 2005; Raspor et al., 2006; Barata et al., 2012b; Setati et al.,2012). The population 

dynamics of yeasts may be related to the increased surface area of each berry and to the availability of 

nutrients: during maturation, the berries grow larger, more nutrients are available on the surface of the 

berries, the sugar concentration increases and the acidity decreases (Combina et al., 2005; Cadez 

et al., 2010). 

Other factors can modify the species balance directly or indirectly by affecting grape skin integrity. 

Several studies report that yeast diversity is dependent on climatic and microclimatic conditions, but the 

detailed results are contradictory. Higher yeast counts have been described for vintages with high 

rainfall (Longo et al., 1991; De la Torre et al., 1999; Combina et al., 2005; Cadez et al., 2010), probably 

due to substantial fungal proliferation. However, the opposite is reported by Rementeria et al.(2003). 

Other studies, and particularly for large scale investigations, do not provide evidence for any 

relationship between climatic conditions and yeast biodiversity (Barata et al., 2012a). Vineyard factors 

such as grape variety and berry color are often described as factors influencing diversity (Guerzoni & 

Marchetti, 1987; De La Torre et al., 1999; Sabate et al., 2002; Renouf et al., 2005; Nisiotou et al., 2007). 

For example, in similar soil and climatic conditions, Cryptococcus was the genera most frequently 

isolated (90% of all isolates) from Grenache grapes whereas Hanseniaspora was the genus most 

frequently isolated from Carignan (75%) (Sabate et al., 2002). 

The health status of berries can also affect the diversity of yeasts. For example, the Botrytis cinerea, 

being able to penetrate the surface and release nutrients, may influence the microbial flora present on the 

grape surface (Nisiotou & Nychas, 2007; Barata et al., 2008). Indeed, Sipiczki (2006) reported the 

development of the genus Metchnikowia on berries affected byBotrytis cinerea. Members of the 

genus Metschnikowia seems to have an inhibitory effect on other yeasts, filamentous fungi and bacteria, 

through a mechanism of iron sequestration (Sipiczki, 2006). The relationship between yeast and some 

animals may also contribute to the variability of yeast populations on berries: there is some evidence 

from vineyards indicating associations between yeasts and insects, particularly bees, social waps 
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and Drosophila (Stevic et al., 1962; Fermaud et al.,2000; Stefanini et al., 2012). Francesca 

et al. (2010) suggest that migratory birds may serve as vectors of S. cerevisiae cells. 

Differences in yeast populations associated with grapes obtained from organic and conventional 

vineyards have been reported (Comitini & Ciani, 2008; Cadez et al., 2010; Tofalo et al., 2011; Cordero-

Bueso et al., 2011; Schmid et al., 2011;Tello et al., 2012; Milanovic et al., 2013; Martins et al., 2014). 

These various studies were carried out in different vineyards in different countries (Austria, France, Italy, 

Spain and Slovenia) subject to different climates and pesticides, and different regulatory constraints: 

these differences may explain the contradictory results. 

Generally, many of these variables (for example climatic conditions or cultivar) are not independent and 

may be clustered into broad groups of effects. Bokulich et al. (2013) concluded that grape-associated 

microbial biogeography is non-randomly associated with regional, varietal and climatic factors across 

multiscale viticultural zones. According to Setati et al. (2012), yeast species distribution is subject to 

significant intra-vineyard spatial fluctuations; also, the frequently reported heterogeneity of grape 

samples harvested from single vineyards at the same stage of ripeness might therefore, at least in part, be 

due to differing microbiota in different sections of the vineyard. 

The various biotic and abiotic factors have influences on the diversity of yeasts present on berries. In 

addition, the interactions between resident populations may also affect this diversity. Few data are 

available clearly to describe these interactions. Castoria et al. (2001) have suggested that the yeast-like 

fungus Aureobasidium pullulans is able to reduce basidiomycete diversity. More generally, further 

studies are required. 

2.2 Bacterial community 

The review by Barata et al. (2012a) lists over 50 bacterial species that have been identified on grape 

berries. The species isolated mostly belong to two groups: Firmicutes and Proteobacteria. Firmicutes 

present include the gram-positive Lactobacillaceae (Lactobacillus and Pediococcus), Leuconostocaceae 

(Leuconostoc, Weiseilla and Oenococcus), Bacillaceae (Bacillus) and Enterococcaceae (Enterococcus 

faecium, E. durans, E.avium, E. hermaniensis). Except for Bacillus andEnterococcus spp., these species 

belong to the technological group of lactic acid bacteria (LAB), characterized by a low GC-content and 

a tolerance to acidity. Lactobacilli are divided into facultative (Lactobacillus plantarum, L. casei) and 

obligatory (L. hilgardii, L. brevis, L. fructivorans, L. sanfranciscensis) heterofermentative species 
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(Lonvaud, 1999; Renouf et al., 2007). Group I Lactobacilli (homofermentative species including L. 

mali or L. acidophilus) were rarely detected on grapes (Renouf et al.,2007; Kačániová et al., 2012). By 

contrast, there are numerous reports of the homofermentative cocci Pediococcus damnosus, P. 

pentosaceus, P. parvulus and P. acidilactici on grapes or in musts. Similarly, the heterofermentative 

cocci Leuconostoc mesenteroides, Weisella parameenteroides and Oenococcus oeni (O. oeni) are 

frequently found. Gram-negative Proteobacteria, in particular β-Proteobacteria (Pseudomonas jesseni, 

Burkholderia vietnamiensis) and γ-Proteobacteria (Serratia rubidae, Serratia marcescens, Enterobacter 

gergovia, Enterobacter ludwigii, Klebsiella oxytoca, Citrobacter freundii) are not often listed among 

oenological microbial flora (Renouf et al., 2007; Nisiotou et al., 2011). However, α-Proteobacteria 

(Acetobacter spp., Gluconobacter oxydans, Gl. cerinus, Gl. hansenii, Gl. saccharivorans, Gl. 

intermedius and Asaia krungthepensis) are frequently included among oenological flora (Barata 

et al., 2012ab; Ultee et al., 2012). These strictly aerobic bacteria are also known as acetic acid bacteria 

(AAB). 

While literature is well documented on the factors affecting the biodiversity of yeasts on grapes, only 

few data are available concerning the influence of environmental factors on the bacterial community. 

Analyses of grape berry bacterial microbiota revealed changes in the size and structure of the population 

during the berry ripening process, with levels rising gradually and reaching their highest value when the 

berries were overripe. As the season progressed to maturity, gram-negative bacterial communities 

declined whereas gram-positive communities increased (Martins et al., 2012). Moreover, the farming 

system can impact the bacterial community structure. For example, a negative correlation between 

copper concentrations and bacterial cell densities has been observed (Martins et al., 2012). At harvest 

time, averages of the different microbial populations were around 10
3
 CFU/berry for gram-negative 

aerobic or anaerobic bacteria and 10
4
 CFU/berry for gram-positive anaerobic bacteria (Renouf 

et al., 2005). Levels of the different bacterial populations of grapes are also dependent on the health 

quality of the harvest (Renouf et al., 2005; Kačániová et al., 2012). 

According to Barata et al. (2012a), most LAB (mostly Lactobacillus spp. and Pediococcus spp.) are 

detected on sound grapes, with maximal populations around 10
2
 CFU/g. These observations agreed with 

those of Lonvaud (1999) which were that LAB densities in crushed grapes were about 10
2
 CFU/mL to 

10
4
 CFU/mL, depending on climatic conditions during the final days of grape maturation, and inversely 

correlating with must acidity. It can be also underlined that botrytized grapes can constitute rich 
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reservoirs for LAB (Barbe et al., 2001). The frequency of detection of O. oeni on grapes is much lower 

and requires adequate methods to promote the development and allow detection of minority populations 

(Renouf et al., 2005; 2007). The microbial species identified included LAB, some of which, like P. 

parvulus (Llaubères et al., 1990), L. sanfranciscensis (Korakli et al., 2003), Leuconostoc 

mesenteroides (Richard et al., 2005) and the gram-negative bacterium Burkholderia vietnamiensis(Gaur 

& Wilkinson, 1996), produce large amounts of exopolysaccharides. These macromolecules can 

constitute a biofilm able to protect bacterial cells against environmental aggression and allowing 

anaerobic bacteria to survive on the grape berry surface (Renouf et al., 2005). It has been suggested that 

there is a link between the application of anti-fungal treatments on the vineyard (use of sulfur- and 

copper-based products) and the induction of biofilm formation. 

AAB, frequently Gluconobacter spp., are often detected on healthy grapes (Renouf et al., 2005; 2007; 

Ultee et al., 2013). AAB populations are stimulated by berry damage, and grow to around 10
6
 CFU/g on 

rotten grapes (Barbe et al., 2001; Barata et al.,2012b). The conditions of winemaking result in loss of 

these strictly aerobic bacteria, although they can survive in the absence of oxygen (Bartowsky & 

Henschke, 2008). An illustration is the case of Gluconobacter cerinus detected on Riesling must and 

isolated throughout the fermentation period (Ultee et al., 2013). The populations of the other gram-

negative bacteria also decline or disappear during the first days of AF, presumably because these species 

are not acidophilic. 

2. 3 Other microorganisms 

The microbial community on grapes contains other microorganisms, generally considered to act as 

spoilage agents. They include filamentous fungi of the genera Aspergillus and Penicillium, which may 

greatly influence the hygienic characteristics or sensory quality of wine through the production of 

mycotoxins (aflatoxins, ochratoxin A and others) or off-flavors (such as geosmin, IPMP and 2-MIB), 

respectively (Steel et al., 2013; Rousseaux et al., 2014). Other microorganisms may also be present and 

responsible for diseases, such as downy mildew (Plasmopara viticola), powdery mildew (Erysiphe 

necator) and gray mold (Botrytis cinerea, which also generates off-flavors) (Kassemeyer & 

Berkelmann-Löhnertz, 2009; Steel et al., 2013). 

3. Interactions in wine 
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Wine is a complex microbial ecosystem containing mixtures of diverse microorganisms favoring 

interactions: there are presumably yeast-yeast interactions, bacteria-yeast interactions, bacteria-bacteria 

interactions and filamentous fungi-yeast interactions. Physical contact between microorganisms, quorum 

sensing, predation, parasitism, symbiosis and inhibition are all direct interactions; indirect interactions 

are due to the presence of extracellular metabolites and include neutralism, mutualism, commensalism, 

amensalism and competition (Verachtert et al., 1990; Nissen et al., 2003) (Figure 1). There may also be 

horizontal gene transfer and DNA exchange between two microbes may benefit one of the two partners. 

Figure 1: Schematic representation summarizing indirect interactions during the wine-making 

 

Filamentous fungi are present in the consortia and can interact with each other or with other 

microorganisms; however, they grow poorly during the fermentation process, and consequently, we will 

not discuss filamentous fungi-yeast interactions. Note that various strains of yeast have been reported to 

produce compounds inhibiting filamentous fungi (Fleet, 2003; Bleve et al., 2006; Ponsone et al., 2011; 

Cubaiu et al., 2012; Kapetanakou et al., 2012). 

3.1 Yeast-yeast interactions 

Fermentations involving added or natural complex yeast consortia exhibit numerous kinds of 

interactions (Frey-Klett et al.,2011). Some yeasts develop simultaneously during AF, and physiological 

and metabolic interactions are established in most cases. For winemaking, the effects of these 

interactions are characterized as being positive, negative or neutral (Sieuwerts et al., 2008). 
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3.1.1 Negative interactions 

Ethanol produced notably by S. cerevisiae is the major compound that influences diversity of yeasts 

during AF, especially non-Saccharomyces species (Heard & Fleet, 1988). Indeed, several studies have 

demonstrated that the accumulation of ethanol during AF leads to a biodiversity declin (Constanti 

et al., 1997; Beltran et al., 2002; Combina et al., 2005). This decrease is owing to a low ethanol 

tolerance of most of the non-Saccharomyces yeast (Fleet et al., 1984; Heard & Fleet, 1985; Fleet, 1990; 

Pina et al., 2004; Jolly et al., 2005). Even if ethanol tolerance within a specific species could vary 

greatly (Caridi & Ramondino,1999), most of indigenous yeast species (Hanseniaspora, Candida, Pichia, 

Kluyveromyces, Metschnikowia and Issatchenkia) usually do not survive above ethanol concentration 

ranging from 3 to 10% (v/v) (Jolly et al., 2014). However, some non-Saccharomyces species can survive 

until the end of the AF due to their high resistance to ethanol (Pina et al., 2004; Combina 

et al., 2005): Torulaspora delbrueckii, Candida zemplinina, Zygosaccharomyces bailii, 

Schizosaccharomyces pombe and Pichiaspp. (Ciani & Ferraro, 1998; Santos et al., 2008; Jolly 

et al., 2014). 

One of the most famous examples of negative interaction is the amensalism (the growth of one strain is 

restrained by the coexistence of another and by the secretion of metabolites). The most extreme 

amensalism described is the killer phenomenon, discovered 50 years ago (Bevan & Makover, 1963): the 

production of specific extracellular proteins and glycoproteins by certain yeast strains (killer yeasts) that 

kill other strains (sensitive yeasts). There is an extensive literature describing this phenomenon for S. 

cerevisiae strains and detailing the nature of these proteins (Young, 1987; van Vuuren & Jacobs, 1992; 

Shimizu, 1993; Musmanno et al., 1999; Gutierrez et al., 2001). The killer phenomenon contributes to the 

succession of different yeast strains during fermentation. Perez et al. (2001) observed that, added to 

sterile filtered must, an initial proportion of 2–6% of killer yeasts was responsible for protracted 

fermentation and suppression of isogenic sensitive strains. Pommier et al. (2005) reported the 

interactions between two strains of S. cerevisiae (a killer strain and a sensitive strain) in co-cultures 

using a specific membrane bioreactor. Killer strains of S. cerevisiae sometimes predominate at the 

completion of fermentation, suggesting that they have asserted their killer property and taken over the 

fermentation (Fleet,2003). However, it has been difficult to assess if the killer phenomenon was 

involved in the premature disappearance of non-Saccharomyces yeasts during the early stages of 

fermentation because the killer toxins produced by S. cerevisiae are active only against strains of the 
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same species. Recently, however, Albergaria et al. (2010) found that the 2–10kDa protein fraction of S. 

cerevisiae CCMI 885 supernatants expresses a fungistatic effect on Kluyveromyces marxianus, K. 

thermotolerans, Torulaspora delbrueckii and Hanseniaspora guilliermondii and a fungicidal effect on K. 

marxianus. Branco et al. (2014) using mass spectrometry identified peptides derived from the glycolytic 

enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in this fraction. 

Some non-Saccharomyces yeasts have been reported to present a killer character. For example, K. 

phaffii produces a killer toxin (zymocin KpKt) against yeasts including those of 

genus Hanseniaspora (Ciani & Fatichenti, 2001). Comitini et al. (2004) found that Pichia 

anomala and K. wickerhamii can secrete two toxins (mycocins) KwKt and PIKT, active against spoilage 

yeast of the Brettanomyces genus. Santos et al. (2009) described a toxin (PMKT2) produced by Pichia 

membranifaciens active against B. bruxellensis. Farris et al. (1991) and Lopes & Sangorrin (2010) found 

that Metschnikowia pulcherrima exhibited killer activity. Thus, killer interactions may determine species 

and strain populations during fermentation. 

Other compounds formed during fermentation may also affect cell growth or death. Short fatty acids, 

medium-chain fatty acids, acetic acid (including acetic, hexanoic, octanoic and decanoic acids) and 

acetaldehyde produced by different yeast species have all been shown to play antagonistic roles against 

each other (Bisson, 1999; Fleet, 2003; Giannattasio et al., 2005; Ivey et al., 2013). 

An antimicrobial activity of strains of Metschnikowia pulcherrima against various non-

Saccharomyces yeasts has been demonstrated. These strains expressed a broad and effective 

antimicrobial action against undesired wild spoilage yeasts, including those of 

the Brettanomyces/Dekkera, Hanseniaspora and Pichia genera (Oro et al., 2014). The antimicrobial 

activity of Metschnikowia pulcherrima seems to come from the pulcherriminic acid (the precursor of 

pulcherrimin pigment), which depletes the medium of iron, making it unavailable to the other yeasts 

(Sipiczki, 2006; Türkel & Ener, 2009; Oro et al., 2014). 

Competition for nutrients and other compounds can modulate the population of yeast during 

fermentation. Some non-Saccharomyces yeasts found in grape must and during fermentation are 

described as being aerobic such as Pichia spp.,Debaryomyces spp., Rhodotorula spp., Candida spp. 

and Cryptococcus albidus (Combina et al., 2005; Jolly et al., 2014). In winemaking conditions, low 

available oxygen levels during fermentation promotes the growth of species that grow in anaerobic 

conditions, such as S. cerevisiae (Holm Hansen et al., 2001). The removal of residual oxygen from 
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fermenting must can contribute to the early death of non-Saccharomyces species. Non-

Saccharomyces yeasts with an oxidative and weakly fermentative metabolism appear to be less tolerant 

to low oxygen availability than S. cerevisiae (Holm Hansen et al., 2001). 

In fermenting wine musts, assimilable nitrogen and vitamins may be rapidly depleted if the initial 

nutrient content of the grape juice is poor. Competition for assimilable nitrogen is a determinant factor 

for the behavior of strains during fermentation. Taillandier et al. (2014) reported that S. cerevisiae was 

not able to develop because of nitrogen exhaustion byTorulaspora delbrueckii growth during the first 

48h, leading to sluggish fermentation. In wine fermentations where the initial microflora is mainly 

composed of non-Saccharomyces species, amino acid and vitamin consumption during the first days of 

fermentation can severely impede the subsequent growth of S. cerevisiae strains (Fleet, 2003). Medina 

et al. (2012) reported that the competitive advantage usually observed for S. cerevisiae in mixed cultures 

is limited by reduced nutrient (nitrogen, vitamins) availability caused by their retention or removal from 

the medium by non-Saccharomyces strains (Hanseniaspora vineae and Metschkowia pulcherrima). 

Mortimer (2000) observed that the growth of S. cerevisiae is affected by thiamine limitation due to the 

presence of a Kloeckera apiculata strain. 

3.1.2 Positive interactions 

Most of the synergistic interactions between yeasts observed are between non-Saccharomyces and S. 

cerevisiae. For example, in a Kloecker aapiculata /S. cerevisiae co-culture, the apiculate cells remained 

viable for longer than in pure culture (Mendoza et al., 2007). 

Commensalism between non-Saccharomyces and S. cerevisiae has been also evidenced. The high 

extracellular proteolytic activity of some non-Saccharomyces yeasts (Charoenchai et al., 1997; Dizy & 

Bisson, 2000) causes the release of amino acids from proteins present in the medium, and these amino 

acids are then used by S. cerevisiae (Fleet, 2003). The early death of non-Saccharomyces yeasts after the 

early stages of AF can also provide nutrients for S. cerevisiae thanks to the passive release of amino 

acids and autolysis. Conversely, S. cerevisiae autolysis after AF may be a significant source of 

micronutrients for the growth of spoilage species, especially those of Dekkera/Brettanomyces (Guilloux-

Benatier et al., 2001). Among the non-Saccharomyces yeast species, B. bruxellensis is better adapted 

than other wild yeasts to persist during AF thanks to its ethanol tolerance (Renouf et al., 2007). 
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Some metabolites produced by one yeast species can benefit other species. Cheraiti et al. (2005) showed 

that the maximum population of a mixed culture of S. cerevisiae and a S. cerevisiae x S. uvarum hybrid 

strain was much higher than the sum of the maximum populations of the two strains grown in pure 

cultures. They found that the mixed culture during fermentation produces large quantities of 

acetaldehyde that S. cerevisiae strain can use. S. uvarum produces much more acetaldehyde than S. 

cerevisiae in the resulting wine (Ciani et al., 1994; Castellari et al., 2002). The acetaldehyde produced 

by the S. cerevisiae x S. uvarum strain causes a shift towards lower cellular NAD(P)H levels in the S. 

cerevisiae cells. This change in redox potential is related to increases in both biomass and specific 

fermentation rate. 

3.2 Yeast-bacteria Interactions 

The interactions between bacteria and yeast during AF and MLF have a direct effect on induction and 

completion of MLF, which is an important factor for wine quality. Various studies have addressed this 

interaction using different yeast/bacteria pairs, summarized in a comprehensive earlier review 

(Alexandre et al., 2004). These studies reported in the review demonstrate that the type of interaction is 

highly dependent on the pair of strains involved. One bacterium could be inhibited and another 

stimulated by the same yeast strain (Nehme et al., 2008). One explanation might be that yeast strains 

produce different amounts of inhibitory and/or stimulatory compounds while the sensitivity of bacteria 

towards these compounds is strain-dependent (Hennick-Kling, 1993; Arnink & Hennick-Kling, 2005; 

Rosi et al., 2003; Comitini et al., 2005; Guilloux-Benatier et al., 2006; Osborne & Edwards, 2006). Here, 

we summarize the major elements of the earlier review of (Alexandre et al.,2004) and describe progress 

over the last ten years in more detail. The following types of indirect interactions will be considered with 

a focus on biochemical issues: antagonism, amensalism, competition and commensalism. 

3.2.1 Amensalism/Antagonism 

The ability of some wine yeasts to inhibit malolactic bacteria has been the most extensievely studied 

(Ribereau-Gayon & Peynaud, 1961; Lafon-Lafourcade, 1973; Wibowo et al., 1988; Osborne & 

Edwards, 2006). The inhibition is mediated by several bioactive yeast compounds and often involving 

combinatory effects. 

Ethanol 
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The alcohol concentration after yeast fermentation is between 10% and 16%. All O. oeni strains are able 

to survive and proliferate at 10% v/v ethanol at pH 4.7 (Britz & Tracey, 1990). G-Alegria 

et al. (2004) reported that O. oeni and L. plantarumstrains grow at 13% v/v ethanol at their optimal 

temperature (18–20°C) and Henick-Kling (1993) stated that ethanol concentrations between 10 and 14% 

v/v inhibit completely the growth of O. oeni at 25°C. Ethanol may increase cell permeability by 

fluidizing membrane lipids, thereby enhancing passive proton influx and leakage of cell metabolites (da 

Silveira et al., 2003; Chu-Ky et al., 2005). Generally, the toxicity of ethanol increased with decreasing 

pH (Chu-Ky et al., 2005). 

Sulfur compounds 

At typical wine pH, SO2 exists in both free forms including molecular SO2, bisulfite (HSO3
−
) and sulfite 

(SO3
2−

), and as bound forms. S. cerevisae can produce sulfite during the sulfate reduction pathway in 

which sulfate is reduced to sulfite and then incorporated into sulfur-containing amino-acids (Duan 

et al., 2004). Sulfite efflux via the SSU1 pump is considered to be a detoxification pathway for yeast 

cells (Park & Bakalinsky, 2000). The sulfite released turns into bisulfite and molecular SO2 in the acid 

wine environment. Generally there is more bisulfite at wine pH; however molecular SO2has a higher 

antimicrobial activity probably due to its ability to diffuse through cell membranes (Quirós et al., 2012). 

After entering LAB cells, molecular SO2 is converted to bisulfite and sulfite thereby releasing protons 

and acidifying the medium (Figure 2). SO2can react with various cell components, such as ATPase and 

cofactor NAD
+
 (Carreté et al., 2002), and thereby inhibit LAB growth. Its molecular mechanism of 

action may involve rupturing disulfide bridges in proteins (Bauer & Dicks, 2004) (Figure 2). The 

antimicrobial activity of molecular SO2 can also affect malolactic activity (Henick-Kling, 1993; 

Lonvaud-Funel, 1999) 

Henick-Kling & Park (1994) suggest that the SO2 added to grape juice, combined with that produced by 

yeast, determine the success of MLF induction. In practice the amount of SO2depends on the yeast strain 

and the medium composition. Some strains are reported to produce more than 100 mg/L although most 

currently used commercial yeast strains produce only up to 20 mg/L (Rankine & Pocock, 1969; Suzzi 

et al., 1985). Low pH medium enhances the inhibition since more SO2can diffuse through the membrane 

(Wells & Osborne, 2011). 
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Figure 2: Effect on bacteria of SO2 produced by yeast. 

It has been reported that the antimicrobial actions of sulfur-binding compounds are more important than 

previously believed (Larsen et al., 2003). Bisulfite can react with carbonyl groups, and such structures 

are commonly present in wine (de Azevedo et al., 2007). For example, there is substantial acetaldehyde 

production during exponential phase of yeast and this can quickly bind HSO3
−
 to form hydroxysulfonic 

acid (Wells & Osborne, 2011). O. oeni consumes acetaldehyde, thereby releasing free SO2and 

conseuqnelty inhibiting bacterial growth and ML activity (hypothetical pathway in Figure 2) (Osborne 

et al., 2000). Other SO2-binding compounds, such as ketonic acids, sugars, quinones and anthocyanins, 

are present at only lower concentrations in wine compared to acetaldehyde and have been less well 

studied. In fact, sulfur compounds constitute a specific signature of the wine metabolome (Roullier-Gall 

et al., 2014) but their origins and roles are still unknown. 

Medium-chain fatty acids 

Medium-chain fatty acids (MCFAs) in yeast cells are precursors of long-chain membrane phospholipids 

and volatile esters (Saerens et al., 2010). They can be released into the extracellular environment by 

simple diffusion and impair both bacterial growth and malolactic activity (Alexandre et al., 2004). In 

LAB cells, MCFA molecules deprotonate, causing intracellular acidification and the dissipation of 

transmembrane gradient, thereby inhibiting ATPase, an enzyme closely associated with malolactic 
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activity (Tourdot-Marechal et al., 1999). The inhibition acts synergistically with low pH and with 

ethanol (Capucho & San Romao, 1994). It is significant that this inhibition is concentration-dependent. 

According to Capucho & San Romao (1994), a decanoic concentration above 12.5 mg/L and dodecanoic 

concentration above 2.5 mg/L cause inhibition. Below these concentrations, these compounds seem to 

be beneficial for bacterial growth. Additionally, the combined effect of hexanoic and decanoic acids, 

together with ethanol, is more inhibitory than individual MCFAs (Lonvaud-Funel et al., 1988). 

Proteins and Peptides 

Dick et al. (1992) first characterized an antibacterial factor produced by yeast as a cationic protein. 

Comitini et al. (2005)inferred that a MLF inhibitory compound was a protein: it was heat and protease 

sensitive. Nehme et al. (2010) confirmed the existence of a yeast-derived peptide fraction that was 

partially responsible for MLF inhibition. Recent studies have focused on active antimicrobial peptides 

(AMPs < 10 kDa). A SO2-dependent AMP was found by Osborne & Edward (2007) and its mechanism 

may involve disruption of the cell membrane. Branco et al. (2014; cf. 3.1.1) using mixed cultures with 

TDH1-3 (GAPDH genes)-deleted S. cerevisiae mutants confirmed that AMP derived from GAPDH 

contribute to bacterial inhibition. Possible mechanisms of this inhibition include binding to bacterial 

DNA/RNA, thereby suppressing the DNA replication and protein synthesis (Brogden, 2005). 

Small Metabolites 

Other yeast metabolites have been found to be involved in yeast-bacteria interaction phenomena. For 

example, succinic acid production and malic acid consumption by yeast can modify the pH of the 

medium, an important determinant of bacterial growth and ML activity (Henick-Kling, 1993). 2-

Phenylethanol (2-PE) can be synthesized from L-phenylalanine via the yeastEhrlich pathway. The 

antimicrobial properties of 2-PE include inhibition of sugar and amino acid transport systems on the cell 

membrane (Etschmann et al., 2003) and possibly the inhibition of macromolecule synthesis by bacteria 

(Lucchini et al., 1993). 

Bacteria Antagonising Yeast 

It has been reported that contamination by Lactobacillus spp. (biomass at 4.5*10
8
 CFU/mL at 30h of AF) 

of yeast culture can cause a stuck AF via various mechanisms (Narendranath et al., 1997). First, the 

short-chain carboxylic acid produced from LAB metabolism, such as acetic acid, may acidify the yeast 

intracellular environment and accelerate yeast death (Bayrock & Ingledew, 2004). The existence of 
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extracellular β-1, 3-glucanase activity implies that LAB may potentially be able to degrade yeast cell 

walls (Guilloux-Benatier et al., 2000). Bacteriocin-like compounds are also candidates for inhibiting 

yeast growth (Yurdugul, 2002; Halil et al., 2014). 

B. bruxellensis spoilage is a serious problem for the wine industry: it confers off-odors to the wine and 

changes its aromatic quality. The wine after AF and before MLF is extremely apt for the growth of B. 

bruxellensis due to its microbiological instability. In practice, the use of malolactic leaven with a high O. 

oeni population density can restrict B. bruxellensisdevelopment, implying that this bacterium expresses 

antogonism towards spoilage yeast (Renouf & Murat, 2008). 

3.2.2 Competition for Nutrition 

LAB have been described as 'fastidious' with regards to their nutritional requirements due to their 

limited biosynthetic capabilities (Terrade & Mira, 2009). Therefore, delayed growth is possible if yeast 

strains have high nutrient demand during AF or a longer death phase. LAB are auxotrophic for various 

amino acids (e.g., glutamate, arginine and tryptophan) (Remize et al.,2006) and vitamins (e.g., biotin 

and pantothenic acid) (LeBlanc et al., 2011), a yeast-bacterial co-culture will have difficulty launching 

MLF if the yeast rapidly depletes these nutrients during AF and until the end of dead phase (Arnink & 

Henick-Kling, 2005). However, some studies demonstrate that the extended yeast death phase does not 

necessarily explain the observed inhibition of O. oeni (Patynowski, 2002). LAB may use up trace 

nutrients and survival factors (probably protein in nature) in continuous fermentation, resulting in 

acceleration of death and sluggish fermentation (Bayrock & Ingledew, 2004). The biochemical basis of 

competition between yeast and LAB is still not fully understood. 

3.2.3 Commensalism  

Nitrogen compounds 

Stimulation of malolactic bacteria by yeast has been studied in less detail. In practice, the antagonistic 

effects of yeast on malolactic bacteria usually decrease when wine is left in contact with lees after AF. 

The bacteria probably benefit from the release of nutrients, especially nitrogen compounds, during yeast 

autolysis. Among the nitrogenous fractions of yeast autolysate, the smallest (<1kDa) is the most 

effective for stimulating bacterial growth (Feuillat et al., 1977). This fraction contains important amino 

acids, such as arginine, isoleucine, glutamic acid and tryptophan (Guilloux-Benatier & Chasagne,2003). 

Bigger fractions containing macromolecules, such as cell wall polysaccharides and proteins, may 
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shorten the lag phase and stimulate the growth of O. oeni (Guilloux-Benatier et al., 1995). Yeast 

macromolecules in the medium can induce aminopeptidase activity in O. oeni (Guilloux-Benatier 

et al., 1993). The protease activity of the strain X2L has been studied under starved conditions (Faria & 

Manca, 2000). These bacterial proteases are responsible for the hydrolysis of yeast proteins into 

essential amino acids and peptides, and thereby enrich the medium in nitrogenous nutrients. 

Studies on the yeast side have focused on the cell wall glycoproteins, such as mannoproteins, produced 

during AF and autolysis (Fleet, 1991). These proteins can adsorb toxic MCFAs (Guilloux-Benatier & 

Feuillat, 1991) and phenolic compounds from the grape must (Vasserot et al., 1997), some of which 

have an inhibitory effect on LAB growth (Reguant et al., 2000). O. oeni possesses α-glucosidase, β-

glucosidase, N-acetyl β-glucosamidase and peptidase activity and can thus release sugars and amino 

acids from these macromolecules (Cavin, 1988). The proteolytic activity expresses by yeast also has a 

direct effect on the nitrogen composition of the medium (Guilloux-Benatier et al., 2006). 

Smaller Metabolites 

Activities of various glycosidases produced by O. oeni suggest that LAB may be able to release free 

sugars as carbohydrate source from yeast-derived polysaccharides and glycoconjugated compounds 

(Grimaldi et al., 2005). Other yeast metabolites, such as vitamins, nucleotides and long chain fatty acids, 

may have stimulatory effects on malolactic bacteria growth and activities. However, this issue has not 

been extensively studied. 

Yeast-bacteria interaction is a complex field of study. Various factors, such as pH and ethanol, act in 

synergy with others. Many yeast compounds involved in LAB stimulation/inhibition are still 

unidentified or uncharacterized. The future studies, thanks to new tools or methodologies, will reveal 

how and even whether these factors can be exploited for wine-marking, by chosing/engineering of 

strains, or adapting medium composition and fermentation conditions, to ensure successful MLF. 

3.3 Bacteria-bacteria interactions 

MLF generally occurs naturally after AF, usually due to O. oeni. However, members of other LAB 

genera, notably Pediococcus, Lactobacillus and Leuconostoc, are also present in must and wine and may 

have positive or deleterious effects on wine quality (Osborne & Edwards, 2006). Despite the importance 

of these bacteria, very little is known about how they interact. 
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Bacteria are auxotrophs for certain amino acids and secreted proteolytic activity to the extracellular 

medium to generate the amino acids necessary to sustain their growth (Remize et al., 2006; Ritt 

et al., 2008). It is thus likely that the amino acids released by extracellular protease from one strain 

promotes the growth of others. Unfortunately, this type of interaction has never been studied. The amino 

acids released by extracellular proteases are also precursors for Biogenic Amines (BA) production, 

affecting the hygienic and sensorial quality of the wine (Spano et al., 2010). Aredes-Fernandez 

et al. (2010) report that co-culturing of O. oeni and L. hilgardii strains diminished the growth yield of O. 

oeni but this decrease was not due to inhibitory substances or low pH. The competitive interaction 

between the two microorganisms appears to involve the consumption of arginine, a stimulant for the 

growth of O. oeni (Aredez-Fernandez et al., 2010). 

An example of mutualism between Pediococcus and Oenococcus has also been reported: a mutualistic 

growth response due to the proteolytic system of O. oeni was observed (Fernandez & Nadra, 2006). An 

analysis of BA production indicated that L. hilgardii produced more histamine in mixed cultures with O. 

oeni than in pure culture (Aredez-Fernandez et al., 2010). 

Wine LAB in presence of oxygen produce H2O2, which oxidizes thiol groups. A consequence of this 

reaction is the denaturation of various enzymes (Byczkowski & Gessner, 1988). H2O2 also leads to 

membrane lipid peroxidation and could serve as the precursor for the formation of superoxide and 

hydroxyl radicals that damage DNA (Byczkowski & Gessner, 1988). Hydrogen peroxide production 

by L. hilgardii has been shown to restrict O. oeni growth (Rodriguez & Manca de Nadra, 1995). 

Other compounds that have received great attention are bacteriocins. Bacteriocins produced by LAB are 

involved in antagonistic reactions between bacteria. Some LAB of oenological origin, such as L. 

plantarum and P. pentosaceus, produce bacteriocins (Rojo-Bezares et al., 2007; Knoll et al., 2008). 

Most bacteriocins act by forming pores and destabilizing the cell membrane. Exogenous added 

bacteriocins affect LAB in wine (Lonvaud & Joyeux, 1993; Rojo-Bezares et al., 2007; Diez et al.,2012). 

Pediocin PD-1 can successfully remove O. oeni biofilms from stainless steel surfaces in contact with 

Chardonnay must (Bauer et al., 2003). Diez et al. (2012) reported for the first time that a non-enological 

bacterium produces a well-known bacteriocin (pediocin PA-1) under enological conditions or in the 

presence of ethanol and grape juice. However, production of bacteriocin in wine by enological LAB has 

never been demonstrated. Consequently, it is still unknown if this family of compounds plays a role in 

the interactions between bacteria in wine. 
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Although it is not a bacteria-bacteria interaction, interactions between bacteria and phage are pertinent. 

This is the sole example of parasitism known for bacteria in wine. Phages have been found in the wine-

related species Lactobacillus (L. casei, L. fermentum, L. plantarum), Leuconostoc (Leuconostoc 

mesenteroides) and Oenococcus (O. oeni) (Neve & Josephsen, 2004). They can cause stuck MLF 

(Poblet-Icart et al., 1998). A high prevalence of lysogeny in the O. oeni species and the existence of four 

distinct groups of temperate bacteriophages was reported (Jaomanjaka et al., 2013). These recent 

findings illustrating the diversity of phages infecting O. oeni suggest that it would be valuable to 

reassess their impact on winemaking. 

3.4 Signaling based interactions and cell-cell contact 

Quorum sensing (QS) is a term used to describe cell-to-cell communication. This sensing mechanism is 

based on the production, secretion, and detection of small signalling molecules, whose concentration 

correlates with the abundance of secreting microorganisms in the medium (Choudhary & Schmidt-

Dannert, 2010). Perception of the signal leads to various responses, such as the secretion of virulence 

factors, initiation of biofilm formation, sporulation, competence, mating, root nodulation, 

bioluminescence and production of secondary metabolites. Several classes of signaling molecules of 

microbial origin have now been identified, including N-acyl homoserine lactones (AHLs), furanosyl 

borate diester, and autoinducing peptides which are the best studied such molecules in bacteria (Cataldi 

et al., 2013). For yeast, bicarbonate, acetaldehyde, ammonia, farnesol, tryptophol and phenylethanol 

have been identified as QS molecules (Ivey et al., 2013). There is no evidence for a role in wine of 

tyrosol, tryptophol, or 2-phenylethanol as QS molecules during AF by S. cerevisiae. However, during 

AF, QS molecules are secreted during the shift from exponential to stationary phase, which is the 

moment when starvation mechanisms initiate (Zupan et al., 2013). It has been suggested that these QS 

molecules could be involved in yeast-yeast interactions and responsible for early growth arrest of non-

Saccharomyces yeasts in co-culture with S. cerevisiae(Nissen et al., 2003). The same authors propose 

that the early growth arrests of K. thermotolerans and Torulaspora delbrueckii in co-culture with S. 

cerevisiae are not due to a QS effect, but rather, that the yeasts possess a cell-cell contact mechanism 

regulating their growth in mixed cultures. However, such cell-cell contact is not the sole mechanism 

responsible for the observed effect. Indeed, in another study, Nissen et al. (2004) reported that glucose 

uptake and oxygen availability regulated Torulaspora delbrueckii and S. cerevisiae interactions. 

Evidence of a cell contact mechanism regulating Torulaspora delbrueckii cell density in co-culture 
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with S. cerevisiae has been reported: Renault et al. (2013) observed a much higher viability 

of Torulaspora delbrueckii when physically separated from S. cerevisiae (co-cultures of the two yeasts 

in double fermenters) than in standard mixed co-culture. Acetaldehyde has been identified as playing a 

role in cell-cell communication: it affects biomass, by-product formation, and fermentation kinetics (cf. 

3.1.2). 

A major cell-cell contact mechanism is flocculation, defined as cells adhering in clumps that are rapidly 

separated from the medium by sedimentation. Efficient yeast flocculation after AF can lead to 

compacted sediments and facilitate the clarification process (Govender et al., 2011). Interestingly, 

strains which do not flocculate alone can co-flocculate when mixed together (Nishihara & 

Imamura, 2000). Sosa et al. (2008) showed that flocculent K. apiculata interacts with a non-flocculent 

strain of S. cerevisiae in mixed fermentations, inducing co-flocculation of both strains. S. cerevisiae, 

Dekkera spp. and K. apiculata have been found to co-flocculate with several bacteria (Peng et al., 2001). 

All types of co-flocculation seem to be mediated by a lectin-carbohydrate binding system (Nishihara & 

Imamura, 2000; Peng et al., 2001; Sosa et al., 2008). 

There has been no study of bacteria cells in wine conditions regarding the existence of either cell-cell 

contact or QS mechanisms, so it is not known whether either phenomenon operates in fermentation 

conditions. Double fermentors are useful tools for investigating the cell-cell contact mechanisms and QS 

for both yeast and bacteria. Another approach likely to be informative is the use of microfluidic devices 

that allow the study of interactions at the level of the cell. 

3.5 Horizontal gene transfer 

The potential of microbes to exchange genetic information through horizontal gene transfer (HGT) is a 

major factor in their genetic adaptation and evolution. Generally, successful HGT events between 

microbes are those leading to increased fitness for the receiving microorganism. The transfer of genes 

between bacteria is well documented, although research studies have focused on horizontal (or lateral) 

gene transfer between pathogens, particularly the spread of multi-drug resistance (Ochman et al., 2000). 

Diverse bacteria and yeast species are in close contact on grapes, and during AF and MLF, and this 

might promote HGT. The S. cerevisiae EC1118 genome sequence contains three gene clusters resulting 

from horizontal transfers (Novo et al., 2009). Genes in these clusters encode key functions linked to the 

winemaking process, such as carbon and nitrogen metabolism, cellular transport and the stress response. 

These observations strongly suggest that HGT is one of the mechanisms by which wine yeast strains 
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adapted to their high-sugar, low-nitrogen environment. The donor of some of the genes 

is Zygosaccharomyces bailii, a major wine spoilage microorganism, consistent with the idea that the 

coexistence of microbes in wine facilitates genetic exchange. Sequencing the genome of the commercial 

wine yeast strain EC1118 revealed a gene encoding a protein very similar to that encoded by the S. 

pastorianus-specific fructose symporter gene FSY1. This gene encodes a high-affinity fructose/H+ 

symporter (Galeote et al., 2010). The presence of a high-affinity fructose symporter in S. cerevisiae, not 

previously suspected, might confer an adaptive advantage during the fermentation of grape must 

(Galeote et al., 2011). 

There is also evidence of HGT between wine bacteria. Indeed, some L. plantarum strains such as 

WCFS1 and ATCC 14917 do not carry the tyrDC and tyrP genes involved in BA production, however, 

recently, Bonnin-Jusserand et al., (2012) demonstrated that other L. plantarum such as IR BL0076 can 

produce the BA tyramine thanks to the presence of tyrDC and tyrP genes in its genome. It seems that 

this ability to produce tyramine was acquired by HGT. Indeed, the phylogenetic tree based on the 

sequence divergence of TyrDC and TyrP reveals that L. plantarum TyrDC and TyrP are closely related 

to those of L. brevisproteins and that these two species form a clearly separated cluster. From a 

physiological point of view, BA production may help LAB to survive in acidic conditions by the 

production of metabolic energy. Evidence of HGT is also available for O. oeni: genes possibly acquired 

from L. plantarum are associated with fitness and are stress responsive in wine (Bon et al., 2009). 

4. Influence of microbial interactions on sensorial properties of wine 

The nature of the interactions in wine is determinant for the sensorial and hygiene properties of the wine 

(cf. 3.1.2). Depending on the type of interactions, different species will have their growth stimulated, or 

alternatively inhibited. Different yeast species have different aromatic properties, so the nature of the 

species present, those microbes that successfully outcompete the other microorganisms, condition the 

final quality of the wine. Various microbes are present on grapes, in the must and during AF and MLF. 

Non-Saccharomyces yeast species are not considered as good candidates for high quality wine when 

present in pure culture, they may be of biotechnological value in mixed culture (Ciani et al., 2010; 

Sadoudi et al., 2012). Many studies involving controlled co-cultures have demonstrated the impact of 

interactions between yeast species on the wine composition, as reviewed by Ciani et al. (2010) and Jolly 

et al. (2014). To summarize, the presence of non-Saccharomycesyeast together with S. cerevisiae can 

result in a lower alcohol concentration, and increased concentrations of terpenoids, esters, higher 
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alcohols, glycerol, acetaldehyde, acetic acid and succinic acid. The presence of specific enzymes in non-

Saccharomyces yeast, such as glycosidase not encoded by S. cerevisiae, has consequences for flavor 

compounds (Rosi et al.,1994; Fernandez-Gonzalez et al., 2003). This enzyme releases volatile 

compounds from non-volatile precursors (Jolly et al.,2014). Other non-Saccharomyces extracellular 

enzymatic activities, such as proteolytic and pectinolytic polygalacturonase enzymes, contribute to the 

differences observed between results with pure cultures of S. cerevisiae and mixed culture with non-

Saccharomyces. The literature on the organoleptic effects of such co-cultures (co-fermentation) is very 

rich, however, links between these organoleptic features and yeast-yeast interactions have not been 

reported. 

At the end of the AF, the abundance of each aroma compound depends on several factors: the properties 

and biomass of each yeast species present, the survival time of each yeast species, the fermentation rate 

and of course the mechanisms of interaction between yeast species. Sadoudi et al. (2012) have shown 

recently that when aroma compound concentrations are normalized to total biomass, the biomass effect 

can be distinguished from interaction effects. The authors then demonstrate the existence of a synergistic 

effect (positive interaction) between M. pulcherrima and S. cerevisiae leading to the concentrations of 

aromatic compounds being higher than the sum of those for the same aromatic compounds in each 

mono-culture, independent of biomass. Torulaspora delbrueckii/S. cerevisiae co-culture is a model of 

passive interaction: the aromatic profile generally corresponds to the mono-culture profiles. The lower 

concentration of aromatic compounds in Candida zemplinina/S. cerevisiae co-culture than Candida 

zemplinina mono-culture suggests a negative interaction between these two yeasts. Some interaction 

mechanisms are known, such as competition for nutrients and oxygen, however, the molecular 

mechanisms underlying the higher production of aroma compound or lower production of acetic acid 

independently from the biomass have not been discovered. 

The consequences of yeast co-culture for the aroma profile has been extensively studied, the influence of 

LAB and especiallyO. oeni on yeast has received less attention. For successful MLF, various strategies 

can be used. MLF could be completed by indigenous LAB either during AF or after AF. Another 

possibility is to inoculate must (co-inoculation with yeast) or wine (sequential inoculation after 

completion of AF) with LAB, generally O. oeni. Simultaneous inoculation can be an effective 

alternative to overcome potential inhibition of LAB by various factors as described above. The sensorial 

profile of the wine will differ depending on the choice of strategy. However, contradictory results have 
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been reported. Some studies indicate that yeast-bacteria co-inoculation can lead to stuck or sluggish 

fermentation due to antagonistic interactions, resulting in wines with high acetic acid concentrations and 

production of off-odors (Henick-Kling & Park, 1994; Edwards et al., 1999). On the other hand, several 

reports describe improvement of wine quality due to co-inoculation of yeast and bacteria (Mendoza et al., 

2011). Izquierdo et al. (2012) report that total acidity and lactic acid content were higher in wines 

following co-inoculation than sequential inoculation for two different grape varieties (Tempranillo and 

Merlot). The co-inoculated wines contained less furfuryl alcohol and tyramine and more ethyl lactate 

than wines obtained by sequential inoculation. Differences between co-inoculation and sequential 

inoculation have also been confirmed from a sensorial point of view (Izquierdo et al., 2012); this study 

also revealed that concentrations of some BAs like cadaverine and tyramine were lower in wines 

produced by co-inoculation. The origin of these differences is not known and needs to be investigated. 

5. Future perspectives 

Genomics, transcriptomics, proteomics, metabolomics and other omics techniques provide static or 

dynamic representations how a single cell reacts in a microbial community and how microbial species 

interact with each other, and with the environment. These techniques have been used for investigations 

in waste water ecology (Werner et al., 2011), plant-soil ecology (Charles, 2010), the food industry 

(Mounier et al., 2008) and health-related host-microbiome ecology (Faith et al.,2011), where they have 

provided a clearer understanding and better prediction of the interaction mechanisms. 

5.1 Omics approaches 

A central goal of studies of these systems is to understand the population dynamics of different species. 

In the past 20 years, technologies for profiling microorganisms have developed, largely due to the 

availability of relatively inexpensive and efficient sequencing techniques; these technique have provided 

insight into microbial community composition and their temporal changes in response to environmental 

perturbation. The classical approach begins with isolation of a single species from a community, 

followed by culture and DNA/RNA extraction. The DNA/RNA is used for both individual biomass 

determination (Diguta et al., 2010) and functional studies to discover genes related to interactions with 

other species (Araújo et al., 2001; Shelburne et al., 2010). However this approach is time-intensive for 

understanding community composition and interaction-related genes. More importantly, only small 

fraction of microorganisms are successfully isolated and cultured (Hugenholtz,2002). Consequently, 

currently strategies are shifting towards community analysis based on the total DNA/RNA extracted, 
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hopefully from all microorganisms. A common isolation-free technique involves sequencing the 16S 

rRNA gene (18S rRNA for eukaryotes), because it contains conserved primer-binding sites and 

signature sequences for different bacterial species (Schmidt et al., 1991). This technique captures a rapid 

image of the composition of a microbial population at particular stage (Junicke et al., 2014). More 

recently, genome-wide sequencing approaches, notably whole-metagenome shotgun (WMS) sequencing 

and RNA-Seq (Whole Transcriptome Shotgun Sequencing), in which the whole genome of 

microorganism is explored instead of single rRNA gene, have added information about gene functions 

and expression levels. These metagenomic approaches could provide insight into the roles of different 

microbes within communities (Streit & Schmitz,2004) and predict the metabolic potential of 

communities (Larsen et al., 2011). Examples of applications include analyses of gut microbiome 

interactions with respect to the host (Qin et al., 2010; Rosenthal et al., 2011), plant-microbe interactions 

(Charles, 2010) and bacteria-fungi interactions in mixed-culture fermentations (Sieuwerts et al., 2008). 

The popularity and effectiveness of these techniques has increased substantially with the development of 

next generation sequencing and related bioinformatics tools. To detect microbial interactions through 

meta-omics profiles, several similarity metrics have been developed to identify combinations of 

microorganisms that reveal co-presence or mutual exclusion patterns according to samples from 

different locations or time points. Such bioinformatics tools include correlation networks (Friedman 

et al.,2012; Chaffron et al., 2010; Eiler et al., 2012) and multivariate statistics (Rudi et al., 2007; Raes 

et al., 2011). This type of approach could also be used to assess differentially abundant pathways within 

the community (Segeta et al., 2013). The main impediments to bioinformatics in this field are the 

compositionality bias after abundance normalization and the sparsity of data matrix (Aitchison, 2003). 

Proteomics and metabolomics approaches have been developed to enhance gene function annotations, 

and improve the catalogs of inter-microbial small molecule and peptide signaling mechanisms. Protein 

biomarkers identified by proteomics approaches provide a clearer and more reliable picture of metabolic 

function of a microbial species than was previously possible (Wilmes & Bond, 2006). High throughput 

mass spectrometry has been used in an interesting meta-proteomics approach to study community 

proteomics in a natural acid mine drainage (AMD) microbial biofilm (Ram et al., 2005). Once the 

community protein is sequenced, it can be aligned to corresponding genomic sequences, thereby linking 

metabolic functions to individual microbial species (Rastogi et al., 2011). By looking at the functions of 

proteins, the various roles of community members can be elucidated. The study also predicts the 

function of unknown proteins based on their localization in the cell, their abundance and protein-protein 
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interactions. In more complex systems, like the human gut, the human microbiome project (HMP) has 

discovered previously unknown proteins and thereby microbial pathways, highlighting novel 

interactions within gut microbiome (Turnbaugh et al., 2007). 

The metabolome, the complete set of metabolites produced by a microbe, presumably reflects its 

metabolic pathways and thereby provides an accurate snapshot of its physiological state (Garcia 

et al., 2008; Mashego et al., 2007). Untargeted meta-metabolomics reveals synergistic relationships, 

exchanges of metabolites and cell-to-cell signaling between species within a community (Raes 

et al., 2008; Jansson et al., 2009). Thanks to unprecedented ultra-high precision of mass measurements, 

meta-metabolomics combined with microbiome analysis further allows the identification of yet 

unknown metabolite markers through networks-based approaches (Walker et al., 2014). 

5.2 Post-omics modeling 

Thanks to advanced high-throughput technologies, a large number of omics projects arise. It is now 

possible to consider combining data from all the diverse omics approaches and thereby to interpret all 

the pathways of individual microbial species and even of entire microbial ecosystems (Witting & 

Schmitt-Kopplin, 2014). One possibility is to develop an interaction model composed of strains that 

have sequenced genomes in which products exchanged between strains are inferred biochemically and 

genetically (Stolyar, 2007). The idea generates genome-scale metabolic models (GEM) for each species 

which allows working directly with metabolic networks instead of pathways (Marcotte, 2001). The 

reconstruction of GEM requires not only network-wide omics data, such as annotated whole genomes, 

but also detailed information about microorganisms and biochemical reactions (Feist et al., 2008; 

Borodina & Nielsen, 2005). 

Once the reconstructed network is converted into a mathematical representation, it should allow the use 

of computational tools to study the properties of the network. Constraint-based analysis, such as flux 

balance analysis (FBA), is preferred for studying microbial interactions in this type of model due to its 

ability to predict a solution space for metabolic flux at steady-state of metabolite concentration using 

solely stoichiometric constraints. The advantage of this approach to investigations over pathway kinetic 

analysis is the ability to maintain prediction accuracy even in a complex network (Price et al., 2003; 

Feist & Palsson, 2008). Stolyar (2007) presented the first multispecies stoichiometric model to study the 

syntrophic growth of two microorganisms: Desulfovibrio vulgaris and Methanococcus maripaludis. The 

concept is to create a system of three compartments: the central metabolism of each organism is 
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described by one compartment, and the third describes metabolite transfer in culture medium. The 

solution space was optimized by maximization of total biomass, with a priority on the dominant 

species Desulfovibrio vulgaris. The model confirms the fact that hydrogen transfer was essential for 

syntrophic growth. Zhuang (2011) extended dynamic FBA (Mahadevan et al., 2002) to dynamic multi-

species metabolic modeling (DMMM). This method, unlike Stolyar's, could also be applied to non-

interdependent relations, such as competition, because a separate FBA model is used for each microbial 

species in community and the solution space is optimized for maximum growth of each species. DMMM 

is able to predict the population dynamics and changes of extracellular metabolite concentrations 

(Figure 3). Zomorrodi & Maranas (2012) further developed a multilevel optimization framework called 

OptCom. The inner problems, such as the biomass maximization of one species, are linked to the 

community-level /outer-stage problems through both flow constraints in the shared metabolite pool and 

community objective realization, such as maximization of total biomass in cases of mutualism. The 

framework integrates both species- and community-level fitness criteria and measures trade-offs 

between selfish and altruistic driving forces in a microbial ecosystem (Figure 3). The framework has 

been applied and adapted for a yeast co-culture model (Hanley & Henson, 2013) where it successfully 

predicts the inoculum concentration and aeration level that improves batch ethanol productivity. The 

model further suggests molecular engineering of the xylose transport system would allow similar 

improvements. 

5.3 Future wine omics 

The focus of studies on microbial interactions is shifting from compositional to functional, from targeted 

to untargeted, from static to dynamic and from descriptive to predictive, thanks to the exploitation of 

diverse omics data (Kau et al., 2011). The study of interactions between wine microbes is a major 

beneficiary of these developments (Cocolin et al., 2000; Mendes et al.,2013; Rossouw et al., 2014). 

Although GEM models of S. cerevisae are one of earliest reconstructed models (Förster et al.,2003), 

high-quality GEM models for other wine microorganisms are lacking (Mills et al., 2005). Although wine 

composition has a huge variability, further development in this field might lead to partial dynamic wine 

microbial modeling. It is expected that such models would help to predict the population dynamics and 

biochemical activities of microbes and give informations regarding the aromatic profile of wine over the 

whole winemaking process; this would allows a better control of yeast and bacteria mixed-starter culture 

processes. Synthetic communities obtained by genetic engineering of one member or by 
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removal/addition of one species in the mixed-starter culture could be used to improve wine sensory 

properties (Dunham,2007). 

 

Figure 3: Goals of different multispecies FBA models. 

6. Conclusion 

This review presents the state of the art in research on microbial interactions in wines and highlights the 

existing gaps in our understanding of the mechanisms underlying interactions between microbes. 

As stated in introduction, a better control of natural fermentation or fermentation by multi-starters 

requires a better understanding of the interaction mechanisms. There are still many questions to answer. 

It is clearly established that when two yeasts co-ferment, the aromatic compound profile is affected, but 

we still do not know why. We do not know why apart from ethanol and some other known compounds, 

non-Saccharomyces yeast dies early during co-culture with S. cerevisiae, and very little is known about 

the existence or effects of cell-cell contact or QS between yeast or bacteria in wine. A multidisciplinary 

approach is needed to find the answers to these and other questions. Here, we suggest various strategies 

that we believe should help unravel some of mechanisms that govern interactions among microbe in 

wine. 

We are convinced that research in the field of wine microbiome would have tremendous consequences 

for monitoring wine fermentations. Interaction studies in wine would also constitute a model that could 
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benefit other fields like dairy, brewing, and bakery. In particular, we believe that the economic spinoff 

would be very substantial. 
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2. Metabolomics in Microbiology 

As mentioned in the review article, living cells represent an integrated and interacting network of genes, 

transcripts, proteins, small signaling molecules, and metabolites that define cellular phenotype and 

function (Figure 3). Therefore genomics, transcriptomics, proteomics, fluxomics, metabolomics and 

other omics techniques provide static or dynamic representations how a single cell reacts in a microbial 

community and how microbial species interact with each other, and with the environment. In the case of 

indirect interaction via extracellular metabolites, the cell function of interest is majorly defined by its 

particular extracellular signatures, referred as “metabolic footprints” or “exo-metabolome” [29, 30]. The 

study of metabolome (here extracellular), namely metabolomics refers to the comprehensive quantitative 

detection and identification of the complete set of metabolites in a given sample (here a sample who 

represents the microbial growth environment) [31].  

 

Figure 3 The “cell factory” which 

brings cell functions from its genes is 

composed by an integrated and 

interacting network. Omics studies 

would highlight the different links of 

this network. Exo-metabolome that 

defines indirect microbe interactions 

is at the downstream of this “cell 

factory”. The figure was adapted 

from the publication of Nemutlu et al. 

(2012) [32]. 
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By sample pretreatment (extraction), analysis, identification and quantification of metabolites 

(molecular weight < 1 kDa), metabolomics provides a high-definition snapshot of the cell physiological 

state. This snapshot could be used to predict the action of a microbial species to another organism [33, 

34]. We could either capture a targeted snapshot when the study aims at a specific class of compounds 

(e. g. all known sugars), or non-targeted snapshot if the goal is to study the widest range of compounds 

possible. Non-targeted approach seems to be more adapted to microbial interaction studies due to the 

high diversity of compound involved. Since the metabolites could range from 50 Da to 1500 Da of mass, 

from low picomolar concentrations to molar concentrations, from volatile to non-volatile and from very 

apolar (e. g. long-chain fatty acids) to extremely polar (e.g. sugars), in addition with the stereochemistry, 

integration of different analytical platforms is usually required to maximize the range of analyte 

detection and identification [31, 35]. In combination with appropriate sample preparation and 

bioinformatics tools (spectra post-processing, annotation of peaks, statistics…), we would obtain a clean, 

accurate, high-resolution snapshot of microbial exo-metabolome. The analytical platforms commonly 

used in non-targeted metabolomics research involve the use of Nuclear magnetic resonance (NMR) 

spectroscopy, direct-infusion Fourier transform ion cyclotron resonance mass spectrometry (DI-FT-ICR-

MS), Liquid chromatography-Mass spectrometry (LC-MS) and Gas chromatography-Mass spectrometry 

(GC-MS). Metabolomics are briefly divided into NMR-based and MS-based during the introduction.  

2.1 NMR-based metabolomics 

Spectroscopy is the study how energy affects the matter. NMR spectroscopy [36] is based on the 

phenomenon of resonance, in which nuclei affected by a strong magnetic field could absorb and re-emit 

eletromagnetic radiation at a specific resonance frequency (Figure 4A). This absorption only takes place 

for nuclei with odd number of protons and/or neutrons (e.g., 
1
H, 

13
C, 

15
N, 

31
P…) that present an intrinsic 

magnetic moment, in other words a nonzero spin. NMR technique provides information on the 
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molecular structure of a molecule, since a specific nucleus has a chemical shift (parts per million or ppm) 

depending on its local chemical environment, and the peak-splitting (J-coupling) identifies chemically 

bonded nuclei (Figure 4B). The metabolite identification is possible by matching against a database [37]. 

Besides, the exact quantification is achieved without a chromatographic separation since the peak 

intensity is directly proportional to the metabolite’s concentration. 

Although NMR provides accurate structure information and concentration determination, NMR-based 

metabolomics was rarely applied in microbial ecology [38]. Possible reasons can be i) Low sensitivity: 

NMR only detects abundant metabolites that are present at concentrations greater than 1 to 5 µM; 

whereas signaling molecules involved in microbial interaction can be present at much lower abundance 

[39]; ii) Low specificity: in a 1D NMR spectrum acquired for metabolic profiling, the metabolite 

identification is extremely challenging due to the presence of large number of peaks, common chemical 

shifts of diverse metabolites and overlapped peaks (Figure 4B); although 2D NMR or intergration with 

other platforms could improve the specificity of metabolite assignment, structure dermination can be 

time-consuming unless automation is achieved; iii) The lack of useful database for microbial 

metabolism [40]; iv) pH adjustment is needed to obtain consistent chemical shifts, which however 

introduces bias. Other possible applications of NMR in microbial interactions include the 
13

C-labelling 

revealing pathway dynamics (fluxomics) [41] and the solid state NMR for the study of cell-cell contacts 

in biofilms [41].  
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Figure 4 NMR spectrometer and spectrum A) The basic arrangement of NMR spectrometer: sample excited by 

radio frequency input circuit, the magnetic fields H0 induce the output signal. Fourier analysis of the output signal 

will generate the actual spectrum in B). The figure was directly taken from Carey (2000) [42]. B) is a 
1
H 1D NMR 

spectrum taken from Zhang and Powers (2012) [38]. It represents the intracellular metabolic profile of MCF-7 

cells. A metabolite is defined by one or several peaks and peak annotation was achieved by matching against a 

database.  

2.2 MS-based metabolomics 

Mass spectrometry is another compound detection technique that provides enough sensitivity, resolution 

and accuracy for non-targeted metabolomics. MS technique is based on measuring the mass-to-charge 

ratio (m/z) and the abundances of ionized compounds/fragments in a sample. An instantaneous 

representation of a metabolome is described by a mass spectrum (Figure 5C), where x-axis represents 

the accurate masses (m/z) of metabolites detected, thus their elemental compositions. In addition to this 

qualitative description, y-axis offers a measure for semi-quantity (Intensity) by counting the relative ion 

abundance of each mass. MS-based metabolomics aims to detect, semi-quantify and identify (e.g. 

matching formula to database) all metabolites in a sample simultaneously.  

2.2.1 Mass spectrometers 

A mass spectrometer consists of an ion source and a mass analyzer [43]. The ion source transforms 

neutral compounds in a sample into gas phase ions, either positively charged (positive mode) or 
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negatively charged (negative mode). The most common technique is the Electrospray ionization (ESI), a 

“soft-ionization” that allows very little fragmentation and a ‘clean’ metabolic profile spectrum [31]. The 

lack of structure information can be overcome by coupling ESI with tandem mass spectrometry (ESI-

MS/MS) [44]. The mass analyzer controls the motion of ions by applying magnetic and/or electric fields, 

thus separates and detects ions according to m/z. The major categories of high-resolution mass 

spectrometers depending on the mass analyzer include i) FT-ICR-MS: most powerful in terms of mass 

accuracy and resolution (Figure 5C); based on the circular oscillation that charged ion Q exhibites in a 

homogenous magnetic field B (Figure 5A); the m/z of the ion has the relation m/z = B/2πf with the 

cyclotron frequency f ; f  is resolved from overlapped signals (due to the presence of different ions) via 

Fourier transform ii) TOF-MS: measures the time T that ion Q would take to travel across a field-free 

flight tube with length L after getting accelerated in an electric field (Figure 5B);  the m/z of the ion 

depends also on the voltage U of the electric field by m/z = 2T
2
U/L

2
 iii) Orbitrap: based on the harmonic 

oscillations of ions in an electrostatic field [45]. 

2.2.2 Performance of mass spectrometers 

The three types of mass spectrometers were commonly applied in metabolomics. Following parameters 

of performance were usually evaluated in order to choose the most suitable technique (Figure 5C):  
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Figure 5 Mass spectrometer and mass spectrum A) B) Mass analyzers of FT-ICR-MS and TOF-MS C) A 

negative-mode FT-ICR-MS spectrum overlapped with a TOF-MS spectrum at a certain retention time. FT-ICR-

MS shows higher resolving power (R) and better mass accuracy (smaller error) for the two mass signals studied.  

i) Mass resolving power (m/Δm50% or FWHM) is defined as the observed mass centroid divided by the 

mass peak width at 50% height for a single mass spectral peak; it refers to the ability of separating two 

neighbouring peaks  

ii) Mass accuracy is defined as the difference between the experimental and theoretical mass of a given 

elemental formula. It can be calculated by          –              in Da or in ppm by 

          –             

            
     

iii) m/z shift is the shift of mass measurement during one batch of analysis and illustrates the 

reproducibility of instrument. It should be noted that high mass accuracy achieved by the instrumental 

calibration could be maintained only if the instrument is reproducible 
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iv) Absolute sensitivity is defined as the minimal concentration of a compound detectable by the mass 

spectrometer  

v) Relative sensitivity or Signal to noise ratio (S/N) is the ratio between the signal intensity of an m/z 

peak over the standard deviation of the noise amplitude 

vi) Scan rate is the number of duty cycles (from ion produced to m/z detected) performed in one second 

[Hz]. Here is a table comparing the performance of major mass spectrometers: 

Table 1 Performances of mass spectrometers, modified from Oresic et Vidal-Puig (2013) [46] 

Analyzer Resolving power 

by FWHM 

Mass accuracy 

[ppm] 

Scan rate 

[Hz] 

TOF 10 000  2 - 5 20 

1. QTOF [47] 
10 000 – 50 000 3 - 5 20 

Orbitrap 100 000 0.5 - 1 0.5 - 2 

FT-ICR 1 000 000 0.1 - 1 0.3 - 1 

 

2.2.3 Direct infusion and hyphenated techniques 

Mass spectrometers can be used either in direct infusion (DI) or coupled with separation techniques, 

such as chromatography or electrophoresis [31]. We will now present different analytical platforms in 

MS-based metabolomics. 

From Table 1 we can see that FT-ICR-MS offers unsurpassed resolution and mass accuracy. However it 

has a low scan rate therefore long scanning times are needed to maintain its performance. Indeed, FT-

ICR-MS is usually used in DI with a long sample analysis time [48]. Thanks to its high mass accuracy, 

DI-FT-ICR-MS was used in the study of virus-phytoplankton interaction for elemental formula 
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confirmation of infection-related biomarkers [49]. Thanks to its high resolution and sensitivity, the 

meta-metabolomics profiles in mammal gut/liver obtained from DI-FT-ICR-MS unraveled biomarkers 

as evidence of microbial functions [30, 50]. 

TOF-MS and QTOF-MS instruments have a limited resolving power and mass accuracy. However, 

thanks to the fast scan rate, they are the most suited for the time requirements when coupled to liquid 

chromatography (LC-TOF-MS). In general, chromatography separates a sample into its constituent parts 

thanks to the difference in the relative affinities of different molecules for the mobile phase and the 

stationary phase used. In LC, the mobile phase is a liquid and the solid stationary phase defines the type 

of separation. Reversed-phase chromatography (RPC) uses a hydrophobic stationary phase and separates 

mainly moderately-polar to nonpolar compounds, while Hydrophilic interaction chromatography (HILIC) 

provides an effective separation of polar compounds on polar stationary phase [51]. Both stationary 

phases were applied in metabolomics. LC separation, applied before MS analysis, brings three major 

benefits for metabolic profiling compared to DI techniques [31]: i) the separation of metabolites based 

on retention times (RT) introduces an additional analytic dimension ii) RT separation allows the 

detection of isomeric compounds iii) separation prior to ionization reduces the ion competition effect 

and improves the quantification accuracy, allowing also better performance of mass isolation and 

tandem MS experiments. LC-TOF-MS(MS/MS) was often used to confirm the structure of microbiome-

related biomarkers, such as quorum-sensing molecules [52], plant-derived antifungal peptides (Mandal) 

and bacteria-mediated metabolites in plasma [53].  

Single quadrupole, triple quadrupole-MS as well as TOF-MS coupled to Gas chromatography (GC) 

offer high analytic performances for the analysis of volatile and semi-volatile compounds. In GC, 

different chemical constituents of a sample pass in a carrier gas (mobile phase) at different rates 

depending on their various physicochemical properties (such as boiling point) and their interaction with 
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a specific column filling (stationary phase in a narrow tube). These constituents are separated and then 

detected by the MS. The use of electron ionization (EI) makes GC-MS a reproducible and robust method 

in terms of MS detection. In fact, EI does not suffer from ion suppression compared to ESI and it causes 

reproducible mass spectral fragmentation patterns. Accordingly, numerous online libraries are available, 

allowing a rapid spectra matching and compound identification [54]. The possibility to identify 

“unknowns” has made GC-MS a popular tool for non-targeted metabolic profiling. The main 

disadvantage of GC-MS is the time-consuming sample pretreatment that leads to biases and artifacts. 

For instance, solid-phase microextraction (SPME) is often needed to concentrate trace compounds for 

the detection [55]. Addtionally non-volatile compounds need to be chemically modified (i.e. 

derivatization, alkylation and sylation) to allow for the elution [56], even though such protocol is not 

always available. Additionaly, the loss of parent ion in EI could sometime confuse the compound 

annotation. GC-MS played an important role in characterizing microbial and plant-bacterial interaction 

mediated by volatile compounds in soil [57, 58]. Lipids and acyl homoserine lactone as cell-cell 

signaling molecules are also identified by GC-MS [59, 60]. In the research of wine, GC-MS is used to 

quantify pesticides and aromatic compounds [61, 62].   

2.3 Bioinformatics challenges in non-targeted metabolomics 

Non-targeted metabolomics, aiming at comprehensive and quantitative investigation of metabolites, can 

produce large amounts of data. The way to handle such complex datasets has a big impact on the 

statistical and chemical meaning of features identified, thus the ultimate biological interpretation of 

results. Different software/algorithms have been developped to handle various bioinformatics challenges 

in MS-based metabolomics. The first step is usually to convert spectra/chromatograms into machine-

readable 2D matrix (two dimensions = samples + aligned features). This conversion is achieved through 

data format conversion, noise substraction, mass internal recalibration, peak extraction and spectra 
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combination (alignment of all detected MS and/or shifted chromatographic peaks) [63]. Different 

software products were applied according to the platforms used for metabolic profiling. Products 

handling well the mass shift and retention time shift for LC-MS or GC-MS include mzMine, metalign, 

MarkerLynx, Genedata Expressionist and R-package XCMS [64-66]. Based on this data matrix, further 

steps aim at extracting biological information. Following problematics were extensively discussed: 

2.3.1 Compound identification 

Non-targeted metabolic profiling often results in hundreds to thousands of aligned mass features. Most 

of them in complex biological samples represent unidentified metabolites even contaminants. Before 

giving any biological meaning, these features should undergo structural elucidation, starting from the 

elemental composition. For a monoisotopic mass given, multiple possible elemental composition can be 

attributed within an allowed tolerance window, especially when the MS has a low resolving power. 

Chemical rules thus are applied to rank these possibilities and remove unreliable assignments [67]. In 

particular, isotope patterns can be induced as search constraints, allowing calculation of elemental 

composition even in lower-resolution MS. Recently, a new graph-based formula annotation method has 

been developped for high-resolution FT-ICR-MS data [68]. The algorithm provides reliable annotations 

by looking at mass-mass differences between all peaks in spectra. Two masses are connected if their 

difference could be translated to a known biochemical transformation or a functional group. For instance, 

from the chemical equation of acetylation R-OH + Acetate → R-Ac – H2O we know that between R-Ac 

and R-OH there’s a exact mass difference of C2H4O2 – H2O = C2H2O = 42.01057. This exact value 

reveals a potential biochemical relation between two masses no matter what R represents. In the 

network-scale, since an unknown mass (node in the network) can be connected to multiple pre-annotated 

ones via biologically/chemically-meaningful mass differences (edges in the network), its elemental 

composition is not only annotated but also repeatly confirmed.  
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Valid elemental formula could be used for compound identification via databases. Online metabolite 

databases include KEGG (http://www.genome.jp/kegg/compound/), YMDB [69] and HMDB 

(http://www.hmdb.ca/). KEGG is not organism-specific, it contains today 17 448 compounds; YMDB is 

a manually curated database of currently 2 027 metabolites found in or produced by S. cerevisiae ; while 

HMDB contains 171 metabolites of microbial origin in human fluid. Since elemental formula assigned 

from a non-targeted analysis for a biological sample is on the order of 5 000 - 10 000 [70], none of the 

databases is able to reach the scope of compounds detected. In order to extend the range of identification, 

we could create in-house databases by combining multiple open access databases and constantly 

updating with new metabolites discovered in-house or presented in scientific journals [71]. For the 

«unknowns», some studies even went beyond the biological scope and looked for compounds in more 

comprehensive chemical databases, such as PubChem and Chemspider [72]. Such studies were usually 

performed in combination with tandem MS experiments : i) Searching the experimental fragments in 

spectral libraries of chemical standards (e.g. MassBank & Metlin for ESI, NIST for EI) [73]; ii) In silico 

fragmentation of all compounds in chemical & biological databases using cleavage rules (e. g. ACD 

fragmenter and MassFrontier) [74]; iii) In silico fragmentation of all compounds in chemical & 

biological databases by systematic bond disconnection (e. g. Metfrag) [75]. In strategies ii) and iii), 

experimental fragments were searched against in silico –predicted ones and possible structures were 

ranked according to their reliability. However, it seems that all three ways are constraint by the intergrity 

of database and dependent to the time-consuming tandem MS experiments. 

2.3.2 Statistical learning 

We recall that the intensity information of metabolites is stored in the n * m matrix (n : observations, m : 

chemical signals) after spectra alignment. The key objective of statistical learning is to isolate chemical 

signals relevant to biological information, such as phenotype groups [76], a treatment [77] or a trend 

http://www.genome.jp/kegg/compound/
http://www.hmdb.ca/
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[78]. The bioinformatics problem is called feature selection/classification [79], a process aiming at 

finding the best feature subset that correctly predict biological information. The selected features will be 

further identified and interpreted. In the context of non-targeted metabolomics, different statistical 

models (classifiers) would have different prediction powers with respect to a specific dataset. In fact, 

following characteristics could influence the performance of classifiers: i) binary or multiple classes: 

binary classifiers (only two different sample labels) are more reliable and easier to interpret than 

multiclass classifiers [80];  ii) the curse of dimensionality problem arises when datasets contain too 

many sparse variables (over 2 000) and very few samples (less than 100) [81]; building any multivariate 

statistical model in this case could result in loss of predictive power (i.e., overfitting) ; certain classifiers 

are computationally more adapted to the high dimension and suffers less from overfitting, such as PLS-

DA and SVM [82];  iii) linearity: datasets containing nonlinear noises should be studied by nonlinear 

classifiers, however, their reliability is questionable in high dimension cases [83]. In any case, applying 

statistical learning requires intensive method selection and validation work [82]. Recent studies show 

that univariate statistic filters can be used to rank the features before building multivariate models [84]. 

This strategy could significantly reduce the risk of overfitting and the computational complexity.  

If the purpose of statistical analysis is just to unravel naturally-occured clusters of samples, unsupervised 

statistical learning should be chosen. The validation of corresponding statistical models is more 

challenging. Litteratures about this subject can be found in the published paper  « MetICA: Independent 

component analysis for high-resolution mass-spectrometry based non-targeted metabolomics ».  

2.3.3 Pathway interpretation 

Metabolomics provides a static snapshot of extracellular or intracellular environnment of a 

microoganism. No matter how many biomarkers are identified, it is generally believed that 

metabolomics alone is inadequate to understand cellular metabolic activity. Flux measurement and 
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proteomic, genetic, and biochemical approaches need to be combined to provide pathway information 

[85]. However, dynamics of metabolome also suggested affected microbial pathways ([78, 86]). These 

studies attempted to associate identified biomarkers with known metabolic pathways (available on 

servers such as Kegg, MetaCyc, BioCyc, YMDB, QIAGEN…) followed by visualization, enrichment 

analysis and functional interpretation [87]. 

3. Conclusion of litterature review 

Microbial interactions is a popular topic in ecology. Current research is looking at the “interactom”, that 

is, all mechanisms involved in interspecies or community-scale interactions. Wine is a particuliar 

interesting model to study “interactom” for its high microbial diversity, complex chemical composition 

and dynamics of microbial population. A better understanding of this “interactom” would help a better 

control of winemaking processes. Metabolomics is a suited tool to unravel the complete set of 

metabolites involved in complex microbial interaction, such as between wine microorganims. 

Challenges of metabolomics in such studies include the design of experiments, the choice of analytical 

platform, statistical learning of huge generated dataset, identification of potential biomarkers and 

association of these biomarkers to pathways.      
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1. Materials 

1.1 Fermentation matrices 

Chardonnay grape Musts A and B were collected respectively in the french Languedoc-Rousillon region 

and the Loire region. They were both sterile-filtered, stocked at -20 °C and thawed gently at 4 °C to 

preserve their chemical composition. Some of their basic physicochemical parameters were measured by 

Fourier transform infrared spectroscopy (FTIR, Zaegel oenologie, Morey Saint Denis, France):  

Table 2 Basic parameters of grape musts A and B 

Must Vintage Total acid
* 

(g/l C
4

H
6

O
6

) 

Malic acid
* 

(g/l)
 

pH
 

YAN 

(mg/l N)
 

Sugar
* 

(g/l)
 

ABV
# 

(% vol) 

A 2012 5.2 2.7 3.4 250 230 13.95 

B 2013 8.3 6.6 3.1 226 163 9.90 

*
 Parameters measured by FTIR 

# 
Predicted alcohol volume percent after AF 

Inappropriate physicochemical conditions of must will cause subsequent stuck MLF. For instance, the 

YAN in the must would decide the organic nitrogen availability after AF [1] and sugar will be 

transformed completely to alcohol, the major stress factor for bacteria. These two parameters were 

adjusted before AF in 5L musts. Since the potential ABV of Must A is little higher than the ethanol 

tolerance (12.5 %) of O. oeni [2], we had to dilute to reach a sugar concentration of 206 g/L. Meanwhile, 

both Musts A and B have relatively low YAN for yeast growth. Therefore instead of adding water, we 

added VH2O = 0.58 L 3.35 g/L DAP ((NH4)2HPO4) solution in both musts. YAN in Must A and B 

became respectively 298 mg/L N and 276 mg/L N.  

Must B contains low concentration of sugar thus low potential ABV. Although further metabolomics 

studies will be mainly based on Must A, Must B was a reserve for matrix effect evaluation and result 



98 
 

validation. So it was adjusted to the same sugar concentration as in Must A. Glucose added in Must B to 

reach 206 g/L is 334.5 g. Must B was refiltered after supplementation. Must A was supplemented under 

sterile conditions.  

1.2 Microorganims 

Active dry yeast and bacterial strains were all provided by Lallemand Inc. They were stored in sterile 

pouches under -20 °C and were brought to room temperature 30 min before experimentation. 16 Yeast 

strains used in our study belonged to S. cerevisae or S. bayanus family. Their MLF-compatibility scores 

based on winemaking experiments at the laboratory, pilot and large scales were evenly distributed from 

1 to 5 (Table 3). This 5-level gradient will be simplified to binary classes, MLF+ (Stimulatory 

phenotype) or MLF- (Inhibitory phenotype), for statistical analysis.   

Table 3 16 Yeast strains used during our study 

Strains S1-S3, S71 S4-S6 S7-S10 S11-S12 S13-S15 

MLF compatibility
* 5 4 3 2 1 

MLF phenotype MLF+ MLF- 

* Compatibility score : 5 means the most MLF-friendly and 1 means the least compatible 

LAB Lalvin VP41
TM

 (MBR
®
) was the LAB strain used during our study.  MBR

® 
form of malolactic 

bacteria represents a Lallemand acclimatization process that subjects the bacteria cells to various 

biophysical stresses, making them better able to withstand the rigors of direct addition to wine. 

1.3 Chemical and reagents  

Because of the high sensitivity and selectivity of analytical platforms, all chemicals used for biological 

and analytical experiments were without impurity. All glasswares (test tube, volumetric flask, 

Erlenmeyer, sample vials …) were cleaned with methanol then rinced with water before experiments. 
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Table 4 List of chemicals and reagents  

Methanol Fluka LC-MS Chromasolv, 34966 1L 

Acetonitrile Fluka LC-MS Chromasolv, 34967 1L 

Isopropanol Fluka LC-MS Chromasolv, 34965 1L 

Ammonium acetate Biosolve ULC-MS grade, 01244156 

Formic acid Fluka MS, 94318 50 mL 

Water Merck Millipore 
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2. Alcoholic fermentation and metabolic profiling 

 

Figure 6 Alcoholic fermentation and metabolic profiling 

2.1 Alcoholic fermentation 

16 strains were fermented in triplicate for Must A and in duplicate for Must B (80 yeast cultures in total). 

Each rehydrated yeast strain was sterilely inoculated at 2 * 10
6
 cells ml

-1
 in 300 mL medium. AF was 

performed at 20°C without agitation in a cotton-closed Erlenmeyer. The weight loss of the Erlenmeyer 

was due to CO2 production and reflected fermentative activity. Therefore the stabilization of cumulated 

weight loss indicated the completion of AF. Considering the high sensitivity of further metabolomics 

studies, the 80 yeast cultures started at 5 different dates (5 batches, each 16 cultures, new fermentation 

media prepared for every batch) and strains were randomly distributed in these batches in order to avoid 
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systematic errors brought by experimental operation. The fermentation conditions were strictly 

consistent between strains, musts and replicates for the same consideration. Residual sugar was 

measured by DNS method to confirm the completion of AF when the weight of Erlenmeyers became 

stable : 

The DNS method involves the oxidation of aldehyde group present in reduced sugar and the reduction of 

DNS to 3-amino-5-nitro salicylic acid under alkaline conditions. After 1 mol of sugar reacts with DNS, 

yellow color is developped by producing 1 mol of 3-amino-5-nitro salicylic acid. The sugar 

concentration is thus correlated with the intensity of color, measured under spectrophotometry thanks to 

a calibration curve. Experimental procedures are as follows : 

i) Prepare 1 mL sample (wine or diluted wine or standard glucose solution) in 15mL-test tube 

ii) Add 1 mL DNS solution (10 g/L in 1.6% NaOH and 300 g/L KNaC4H4O6·4H2O) and vortex 

iii) Heat the mixture in 100 °C water bath for 5 min and dilute with 10 mL water 

iv) Measure the absorbance against water at 540 nm wavelength with 1 cm optical path length.  

v) Make the calibration curve or calculate the concentration.  

Calibration curve was made before measuring the samples and the slope obtained was used to calculate 

the sugar concentration in fermented media. An example of calibration curve with 0, 0.5, 1, 2, 2.5 g/L 

glucose solution in water is given in Figure 7. Samples with sugar concentration significantly out of this 

range should be diluted. Yeast cultures from each batch were collected only when the sugar 

concentration was below 2.5 g/L for all strains and replicates. For the sampling, yeast cultures were 

centrifuged at 8 000 rpm for 20 min to remove cells, then the supernatants were stored in 2-mL glass 

vials at 4°C (fully filled to avoid oxidation) for non-targeted analysis. Remaining supernatants from both 

musts were inerted with argon and stored at 4°C for classical analyses & FTIR experiments (Zaegel 
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oenologie), as well as for MLF media. Basic physicochemical parameters, such as ABV, pH, malic acid, 

total acidity, volatile acidity and residual sugar were measured for each fermented medium. 

 

Figure 7 DNS method A) Reaction mechanism of DNS method B) Calibration curve of DNS method by glucose 

standard. Sugar concentration C of a sample (g/L) calculated from absorbance A is : C = A * 3.26.   

2.2 Metabolic profiling by FT-ICR-MS 

Non-targeted metabolomics studies on FT-ICR-MS platform were performed for the 48 samples (16 

strains * triplicates) fermented from Must A. High-field mass spectra were acquired on a Bruker 

solariX FT-ICR-MS platform (Bruker Daltonics, Bremen, Germany) equipped with a 12 Tesla 

superconducting magnet (Magnex Scientific Inc., Yarnton, UK) and an APOLO II electrospray 

ionization (ESI) source (BrukerDaltonics GmbH, Bremen, Germany) in both positive (+)ESI and 

negative (-)ESI modes. The ion accumulation time was set to 0.3 s and time of flight was 1.2 ms. 

Capillary voltage and spray shield voltage of mass spectrometer were (+/-) 3600 V and (+/-) 500 V, 

respectively. Drying gas flow rate and temperature was set to 4 L/min and 180 °C and nebulizer gas 

flow rate was set to 2 bar. Broad band detection mode was applied with a time domain of 4 mega words 

over a mass range m/z = 100-1  000  Da .  The MS was calibrated externally on clusters of arginine (10 

mg l
-1

 in methanol), reaching a calibration error below 0.1 ppm. The number of scans, 200 for (+) ESI 

and 400 for (-) ESI, was optimized in Tune mode to observe the best signal enrichment within the 
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shortest analysis time per sample (5.25 min and 10.46 min respectively). The resolving power was 400 

000 at m/z = 400. 

A batch of samples (one batch for each ionization mode) was analyzed by automatic injection once the 

instrument was correctly calibrated, tuned and cleaned. 48 fermented media were 1:5 diluted in 

methanol and re-centrifuged at 14 000 rpm to remove potential cell debris, particles and salts. We tested 

different dilution rates and decided the best one based on the signal abundance/oversaturation in Tune 

mode. Samples were infused at a flow rate of 120 µL/h in a randomized order. The automation was 

achieved by Gilson autosampler (sample changer 223, Gilson Inc., Middleton, USA), which additionally 

ensured a low storage temperature of 8 °C. The randomization could remove instrument-related 

systematic errors. Mass spectrum of each sample run was automatically saved under Brucker .baf format.  

2.3 FT-ICR-MS spectra treatment 

Individual spectra were processed by the DataAnalysis version 4.1 (Bruker Daltonik GmbH, 

Bremen, Germany). For the peak detection, the FTMS peak finder was applied with two 

criteria: absolute intensity (AIT) > 25 000 and S/N > 4 (Figure 8A). Then the whole spectrum 

was calibrated internally according to key metabolites in wine (Example for (-)ESI given in Annex 1). 

The mass accuracy has improved after the internal calibration (Figure 8B). Each spectrum was 

exported as an ASCII file containing m/z and intensities of extracted mass signals. 48 ASCII files from 

each ionization mode were aligned within a 1 ppm window by the in-house software Matrix Generator 

[3]. Mass peaks found in less than 4 out of 48 samples were removed and signal intensities were scaled 

to unit variance (R). Metabolic profiling of 48 fermented media resulted in two data matrices: X+ for 

(+)ESI and X- for (-)ESI. 
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Figure 8 Examples of mass peaks A) Example of the mass peak m/z = 149.0092 detected in (-) ESI spetrum of a 

sample. The AIT, S/N and resolving power of this peak are displayed. The mass peak was accompagned with 

noise signals, so-called satellite peaks. B) The mass peak m/z = 149.0092 has a big chance to be the typical wine 

compound « tartaric acid » ([C4H5O6]
-
, m/z = 149.0016). The mass error was 0.3 ppm in this case. After internal 

calibration, the mass spectrum was corrected and this error was almost removed.  

2.4 Metabolic profiling by UPLC-MS 

48 fermented yeast media were analysed in parallel with UPLC-MS (ACQUITIY UPLC system Waters, 

Milford, MA coupled to TOF-MS Synapt HDMS ao-Q-TOF, Waters, Milford, MA). Due to the time 

limit of this work, only RP separation in (-) ESI was performed. The capillary voltage of MS was set to 

2.3 kV, source temperature to 120 °C, desolvatation temperature and flow rate to 300 °C and 800 L/h, 

respectively, and mass detection range from 50 Da to 1 000 Da. Prior to acquisition, the q-TOF-MS was 

externally calibrated with 0.01 M HCOONa solution. The mass accuracy reached was between 3-4 ppm 

for the adducts of HCOONa.  

In the UPLC part, The Grace C18HL (1.5 μm, 2*150 mm) column was pre-equilibrated with ACN at 0.1 

mL/min and equilibrated with 50% ACN and 50% H2O at 0.1 mL/min, then with 20% ACN and 80% 

H2O at 0.2 mL/min, finally with 100% H2O at 0.3 mL/min. For all analyses, a water-ACN method was 
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applied: solvent A consisted of 5% acetonitrile in water, and solvent B 100% ACN. Both solvents 

contained 0.1% formic acid. The gradient started at 100% A, holding for 1.12 min, and increased to 37.1% 

B at 9 min, holding for 3 min with 37.1% B then returned to initial conditions in 0.07 min with re-

equilibration for 3 min. The column temperature was 40 °C and flow rate was set at 0.3 mL/min. Since 

this UPLC method has been developped in-house to study all biological samples [4], a 5 ppm mixture of 

5 common standards (in 10% methanol) was tested to validate the LC-MS system (system pressure, 

column performance, eluent, mass detection…). All five standards were detected and RTs of them were 

consistent with previous studies (Annex 2).  

Additionally, a quality control (QC) sample was made by pooling all 48 samples studied. The QC was 

first used to test the effect of flow splitting. Indeed, smaller flow rate into MS might prevent ionization 

suppression and improve signal detection [5]. We reduced the flow rate into MS from 0.3 mL/min to  

0.1 mL/min. However, no improvement has been observed in QC (Figure 9). Therefore we went on 

without flow splitting. Samples were studied by automatic injection. A sample batch started with 5 QCs 

in order to stabilize and condition the column with the matrix. Afterwards, 48 re-centrifuged (14 000 

rpm) and non-diluted samples were randomly appended to the sequence. The randomization could also 

remove instrument-related systematic errors. QCs and standard mixtures were inserted into the sequence 

every 5 samples in order to monitor the RT shift, m/z shift and the sensitivity of MS. Samples were 

studied in duplicates : we performed a second analytical batch of the 48 samples with a different order. 

Throughout the measurements, we infused a 5 ppm Leucine-Enkephalin (Waters, Milford, MA) solution 

(50% Methanol, 50% H2O and 0.1% Formic acid) into the mass source at at 25 µL/min. Mass spectra 

will be corrected instantly according to this lock mass (m/z = 554.262). 
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Figure 9 Liquid chromatogram of the QC sample before and after flow splitting   

2.5 UPLC-MS spectra treatment 

The spectra were treated by MarkerLynx software (MassLynx, waters) using ApexTrack peak 

intergration tool to detect chromatographic peaks.  Spectra were aligned within a mass range of 0.02 Da 

and RT window of 0.1 minutes. Analytical duplicates were averaged. LC-MS features found in less 

than 4 out of 48 samples were removed and areas were scaled to unit variance (R). The procedure 

generated the data matrix L- .LC-MS features in this matrix was presented by a RT - m/z tuple.  
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3. Biomarker extraction and identification 

 

Figure 10 From metabolic profiles to potential MLF biomarkers 

3.1 Supervised statistics 

The key objective of supervised learning here is to isolate chemical signals relevant to yeast phenotype 

separation, so-called discriminant features. We developped a new strategy of classification for this 

purpose (R script in Annex 3).  

i) Label each of 48 samples with the MLF compability score (1 to 5) of the corresponding yeast strain 

(Table 3). Calculate the spearman's correlation between each feature (each column of the data matrix) and the 

label vector (a vector containing labels of 48 samples).  

ii) Rank all features based on the absolute correlation coefficients: higher ranked features describe better the 

MLF compability and should be prioritized for the classification. 
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iii)  Label 48 samples with the two simplified phenotype groups: MLF+ and MLF- (Table 3). For a data 

matrix containing top n selected features, apply following linear binary classifiers: KNN, PLS-DA, SVM, 

Naive Bayesian, LDA after PCA reduction (R
2
 = 95%) and decision tree.  

iv)  For each classifier, calculate its prediction error for whole data (5-fold CV error). 

v)  Increase n from 2, 10, 20...100, 200 until the total number of features and repete iii) & iv) each time.  

vi)  Monitor the prediction power of each classifier as a function of different subsets of features (Figure 11). 

Choose the classifier that globally holds the lowest prediction error. Choose also the subset of features that 

allows the best prediction with the corresponding classifier. Re-rank the features with the classifier chosen. 

For instance, for SVM classifier, we applied Recursive Feature Extraction (SVM-RFE) Algorithm. 

 

Figure 11 The classification of X- with randomly-ranked features. Six different binary classifiers were compared 

and evaluated for prediction error and 5-fold CV error. The low prediction error obtained for more than 30% 

features indicate the model overfitting. From the perspective of CV error, SVM has globally the best prediction 

power no matter how many features are taken. LDA after PCA seems unstable: the prediction power is strongly 

influenced by certain features.  

The classic feature selection method in non-targeted metabolomics is the OPLS-DA algorithm, an 

extension of PLS-DA which integrates an orthogonal signal correction filter in order to distinguish the 

variations in the data that are useful for the prediction from the variations that are orthogonal to the 
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prediction [6]. In the Results and Discussions part, we will compare output of this method with the 

strategy presented previously. OPLS-DA was performed in SIMCA-P 9 (Umetrics, Umea, Sweden) for 

binary classification. For the model validation, the software suggests R
2 

(how exact the label vector is 

described) and Q
2
 (how exact the label vector is predicted) of each component (Figure 12A). In addition, 

we could permutate randomly the label vector and observe whether the performance of model decreases 

as expected (Figure 12B). For the biomarker selection, we selected important mass signals for the model 

building, measured in the software by the variable importance in projection (VIP). "VIP > 1" indicates a 

discriminant feature.   

 

Figure 12 OPLS-DA model validation for X-: A) cumulated R
2
 and Q

2 
for the three components of the model; B) 

a permutation test here shows the original model has better description (R
2
) and

 
prediction (Q

2
) power than 

permutated models, therefore the orignal model is statistically reliable.  

3.2 Network-based formula annotation  

The in-house developped software Netcalc allows the elemental formula annotation via mass difference 

network [7]. First of all, a network is built so that each node represents an exact experimental mass and 

each edge represents a selected mass difference taken from a predefined list of potential transformations. 

Secondly, an efficient Breadth-First Search (BFS) algorithm uses a node of known elemental 

composition as a seed (key metabolites in wine) and calculates by inference the compositions of all other 
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nodes within the same graph (Figure 13). This process could generate false annotation (e. g. assign a 

noise signal as elemental formula) like other algorithms. Netcalc suggests two types of filtering: i) m/z 

preprocessing which deletes satellite peaks, isotope peaks and masses holding unusual mass defects [8] 

ii) during the inference process, following embedded rules would decide whether an assignment is valid : 

annotation error < tolerance (e. g. 5 ppm in Figure 13); H/C>3 ; O/C≥1 ; H/N<2 ; S/C>3 ; N/C>1 and 

the nitrogen rule [9]. During the annotation process, a mass is repeatedly annotated until a reliable 

formula is assigned. Therefore the algorithm gradually increases the number of m/z assigned until a 

maximal value.  

 

Figure 13 Interface of the in-house developped Netcalc software. The software has studied the m/z features for 

data matrix X- and is displaying the zero-centered error distribution of annotated features along the experimental 

m/z. On the right of the interface is the visualization of the network built.  
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Outputs of the software are elemental neutral formula (containing H, C, O, N, S, P and Na only in (+) 

ESI), theoretical exact mass and network structure (edge list). We could search the neutral formulas in 

the wine database and extract "known" metabolites.  

3.3 Biomarker identification by tandem LC-MS
2
 

Discriminant exact masses from X-, X+ and L- were combined and targeted for identification. MS/MS 

experiments were also performed with the Synapt UPLC-MS system. The settings of the platform were 

nearly the same as for metabolic profiling. On the MS part, we added the (+) ESI mode for the 

discriminant masses extracted from X+. The calibration error by HCOONa was below 1.5 ppm and the 

capillary voltage was fixed at 3.1 kV for positive ionization. On the UPLC part, we added the orthogonal 

HILIC separation for polar biomarkers using a Waters ACQUITY UPLC BEH Amide column (2.7 µm, 

2.1*150 mm). The column was equilibrated by 60% ACN, 40% Water at 0.1 mL/min then 95% ACN, 5% 

water at 0.3 mL/min before use. In the HILIC method, buffer A consisted of 95% ACN, 5% water, 10 

mM ammonium acetate and 0.1% FA. Buffer B consisted of 50% ACN, 50% water, 10 mM ammonium 

acetate and 0.1% FA. The gradient started at 100% A, holding for 2 min, after which there was a linear 

increase to 100% B at 15 min, with 100% B held for 4.5 min and then returned to initial conditions in 

0.5 min with re-equilibration for 3.5 min. Both HILIC and RP separations were performed at 40°C with 

a flow rate of 0.3 mL/min. 

The sample used for MS/MS experiments was a 4-times-concentrated QC. It was prepared by drying 4 

mL aliquots in a SpeedVac vaccum (SAVANT SPD 121 P, Thermo Scientific) and re-dissolving in 1 

mL solvent (10% methanol, 90% water). Targeted discriminant masses were imported in an automatic 

method that could automatically isolate and fragment them with preset collision energy levels (0: only 

isolation, 5, 10 , 15 eV). We noted that a candidate mass could be isolated even when fragmented at 

different retention times due to the presence of isomers. Contrariwise no fragments are displayed if the 
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precursor cannot be isolated due to its low abundance. Structure determination via fragments was 

achieved by the Metlin server [10]. The example of structure confirmation for a 5 ppm cholic acid 

standard (in 10% Methanol) is given in Figure 14. The standard was studied in RP negative ion mode. 

With the most abundant fragments obtained at 15 eV,  Metlin suggests 'Cholic acid' by spectra matching. 

However, it also suggests 'Allocholic acid'. Afterwards all structures suggested by Metlin were 

compared to database annotation. 

 

Figure 14 The use of Metlin for biomarker identifcation. An example was given here for the identification of a 

standard compounds from LC-MS
2
 fragmentation pattern.  

3.4 Biomarker identification by full scan FT-ICR-MS
2
 

On the Bruker solariX FT-ICR-MS platform, we have performed full scan MS/ MS for a QC sample 

(1:5 diluted in methanol) only in (-) ESI mode. This experiment is related to unknown compound 

identification that will be described in the « Conclusion and perspectives » part. Full scan tandem MS 

aims at fragmenting all compounds in a mass range given and detecting all fragments generated (Figure 

15). In order to obtain MS/MS spectra in four mass ranges : m/z = 200 – 300, 300 – 400, 400 – 500 and 
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500 – 600, we have isolated respectively m/z = 250 (Figure 15B), 350, 450 and 550 with an isolation 

window of 100. The mass detection range was fixed at 50 – 1000 and collision energy levels 0, 5, 10 & 

15 eV were applied. Mass spectra were treated in the same way as for metabolic profiling. They were 

aligned with all mass signals in data matrix X- within a window of 2 ppm.  

 

Figure 15 An example of full scan FT-ICR-MS/MS. We have targeted the range m/z = 200 – 300 and applied four 

energy levels 0, 5, 10 & 15 eV (A, B, C and D respectively). From A to C, we observed the intensity decrease of 

mass signals in the targeted range (fragmented) and appearance of new mass signals in the smaller m/z range 

(fragment detected). In D, a global loss of signal abundance was observed, in other words, nearly all compounds 

were fragmented. Therefore 15 eV was the maximal collision energy applied.   
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4. Global analysis of biomarkers and targeted studies 

 

Figure 16 Global analysis of biomarkers and targeted studies 

4.1 Van Krevelen diagram 

The VKD assigns to each elemental formula a coordinate based on O/C, H/C, P/C, m/z... Patterns on the 

2-dimensional diagram correspond to different chemical classes of compounds. For instance, the VKD 

with O/C on the y-axis and H/C on the x-axis identifies regions specific to chemical families according 

to wine standard compounds (Figure 17A), e. g., amino acids/oligopeptides (chain length until 5) were 

concentrated in the region 1 ≤ H/C ≤ 2.2, 0.1 ≤ O/C ≤ 0.7 (Figure 17B).  
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Figure 17 VKD of wine databases A) Compounds in an in-house wine database [6] B) All elemental formulas of 

oligopeptides of length 1- 5 are displayed in the VKD region 1 ≤ H/C ≤ 2.2, 0.1 ≤ O/C ≤ 0.7. 

4.2 Quantification of free/total amino acids by HPLC 

The first targeted study of nitrogen compounds in wine was the quantification of free and total (released 

from peptides) amino acids. Media fermented from Must B were analyzed. Free amino acids were 

analysed by reverse-phase HPLC after precolumn derivatization with 6-aminoquinolyl-N-hydroxy-

succinimidyl carbamate (AQC). The AQC reagent reacts with primary and secondary amino acids to 

yield stable derivatives that fluoresce at 395 nm. Samples were prepared according to the specifications 

of the Waters AccQ-Tag
TM

 method. Here is the preparation protocol for the quantification of standard 

mixture, free amino acids and total amino acids of the 48 yeast-fermented media. Details of all reactants 

are found in Annex 4. 

i) Standard solution of 20 amino acids was prepared by adding L-Asparagine, GABA (γ-Aminobutyric 

acid) and L-glutamine into the commercial solution WAT088122 (Waters, Guyancourt, France). We 

made non-diluted (cysteine 0.5 mmol/L and all other amino acids 1mmol/L), 1:2, 1;4 and 1:20 diluted 

solutions in duplicates for the calibration curve.  

ii) All fermented media were re-filtered (0.2 µm) and 1:5 diluted with water. For all samples and 

standard solution, the internal standard (IS) α-Aminobutyric acid (AABA) was spiked to make a final 
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concentration of 0.104 mmol/L (40 µL IS in 960 µL diluted sample). AABA was not present in wine 

so it was used to control the sensitivity of the method. Samples were ready for derivatization unless 

for total amino acids. 

iii) Total amino acids were determined only after hydrolysis of samples prepared from ii). The hydrolysis 

under acidic conditions could release amino acids from peptides and proteins by cutting the peptide 

links. For 500 µL samples in glass tubes, we added 500 µL HCl (6 M). The tube was sealed and 

heated overnight at 110 °C. The mixture was then totally evaporated under a stream of gaseous 

nitrogen (60 °C, Reactivap) and reconstructed in 1 mL water.  

iv) The derivatization kit AccQ-Tag
TM

 (Ref. 186003836) was purchased from Waters, Guyancourt, 

France. 70 µL of borate buffer (reactant R1, pH = 8.8), 10 µL of sample and 20 µL AQC (R2A) were 

mixed rigorously and heated for 10 min at 55 °C. Derivatized samples were ready for HPLC analysis. 

The LaChrom Elite HPLC system (VWR-Hitachi, Fontenay-sous-Bois, France) was equipped with a 

pump, an autosampler (4 °C), a column oven and a fluorescence detector. Separation was performed 

using an AccQ-Tag C18 column (Ultra Column, 4 μm, 3.9*150 mm, Waters, Milford, MA, USA). The 

injected volume was 4 µL/sample for free amino acid analysis, 1 µL for total amino acid and standard 

mixture. The buffer A was a sodium acetate buffer (adjusted to pH = 5.83 by 10 % H3PO4) containing 

0.096% (v/v) TEA and 1% (v/v) EDTA. The buffer B and C were respectively 100% acetonitrile and 

100% water. The gradient was presented in Figure 18A. The flow rate was set at 1 mL/min and column 

temperature at 37 °C.  The excitation and emission wavelengths of the fluorescence detector were fixed 

at 250 nm and 395 nm respectively. The chromatograms obtained were exported from the EZChromElite 

software in ASCII format and further displayed & integrated in CHROMuLAN v0.91 

(http://www.chromulan.org/). The RTs of amino acids were deduced according to their elution order in a 

standard mixture. Peak intergration was achieved after a baseline was drawn for each peak  (Figure 18C). 

We note that neither glutamine nor asparagine was detected in the fermented media. In fact, the amide 
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group (-CONH) of glutamine/asparagine can be easily hydrolyzed to amino group (-NH4) and carboxyl 

group (-COOH) then form glutamic acid/aspartic acid [11]. Finally only 18 amino acids were studied. 

Calibration curve of each amino acid was obtained after intergrating all (diluted) samples of the standard 

mixture. The ratio between the area of an amino acid i and the area of IS (Ai/AIS) was regressed on the 

corresponding concentration ratio (Ci/ CIS) (Figure 18B). If the slope of the linear regression is K, the 

areas of i and IS in a new sample are respectively A'i and A'IS and the dilution factor is Fd
1
, then the 

concentration of i in the new sample is: 

    
   
    

  
   

 
    

If C'i represents the free amino acid concentration and C
T

i (mol/L) total amino acid, then the amino acid 

in peptides/protein is C
T

i - C'i. The concentration of nitrogen (mg/L) if i contains n nitrogen is: 

         
               

The total nitrogen concentration by adding up all amino acids would be: 

              

 

 

                                                           
1
 Dilution during sample preparation and injection volume should be both considered here. For instance, injection 

volume = 4 µL means the sample is 4 times concentrated.  
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Figure 18 Amino acid quantification A) The gradient for Waters AccQ-Tag
TM

 method B) The calibration curve 

for L-aspartic acid. C) The chromatogram for non-diluted standrad mixture. 18 amino acids were annotated with 

RTs. The y-axis represents the fluorescence intensity. The zoomed region shows how peaks were intergrated.   

4.3 Enantioseparation of amino acids by LC-MS 

Beside targeted studies on L-amino acids, we have developed a derivatisation-free LC-MS method for 

amino acid enantioseparation on a teicoplanin (a macrocyclic glycopepide)-based chiral stationary phase 

(CSP). The aim was to adapt a direct separation method to the wine matrix [12]. The platform used was 

also the Synapt UPLC-MS system. The samples used for method development were the media 

fermented from Must A. The separation was performed with an Astec CHIROBIOTIC T column 

(Sigma). The column temperature was set at 25 °C and flow rate at 0.3 mL/min. An isocratic gradient of 

25% buffer A (H2O + 0.1% formic aid) and 75% buffer B (ACN + 0.1% formic acid) was applied. Mass 
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spectra were aquired in (+) ESI mode with a post column infusion of formic acid. In order to build a 

retention time library, amino acid standards (Sigma), including alanine, arginine, aspartate, asparagine, 

cystein, glycine, glutamine, glutamate, histidine, leucine, isoleucine, lysine, methionine, phenylalanine, 

proline, threonine, trytophan, tyrosine, serine, valine, ornithine and citrulline were either in pur L & D 

form or a racemic mixture. We recorded not only the retention time of each amino acid standard (5 ppm) 

in a 10% methanol solution but also when it is spiked into a wine QC (a mixture of samples, 10 µL 1000 

ppm standard for 190 µL QC). The quantification of L & D amino acids in wine was achieved by a 

calibration curve. It was made by spiking different concentration of 10 µL standards into 190 µL QC. 

The chromatographic peak intergration was performed with TargetLynx (MassLynx, waters). Some 

results will be described in « Conclusion and Perspectives ». 

4.4 Study of oligopeptides 

All potential oligopeptide mass features were extracted from X+  using a peptide-specific database. This 

database was built by calculating elemental formulas of exhaustive combination of 1 to 5 proteinogenic 

amino acid(s) with R script (an example of creating tripeptides in Annex 6). Based on these annotated 

oligopeptides, we could calculate and compare the amino acid reserve in each sample. The oligopeptides 

involved in phenotype discrimination were identified via LC-MS
2 

as previously described. we tried also 

to find some particular molecular traits of these oligopeptides, such as molecular weight, length, O/C, 

H/C and common amino acid patterns. 
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5. Malolactic fermentation and metabolic profiling 

 

Figure 19 MLF kinetics and exo-metabolome changes 

5.1 Malolactic fermentation 

For the evaluation of experimental phenotypes, MLF was carried out with Lalvin VP41
TM

 in media 

fermented from Must A and B. Replicate samples of the same yeast strain from the same must were 

pooled, resulting in 16 * 2 = 32 different media. Bacterial culture was performed in several replicates.  

For the evaluation of biomarker roles, chemical standard of each identified biomarker (gluconic, 

trehalose and citric acid, Sigma) was spiked into a mixture of randomly-selected media. The ratio 

between standard water solution and the mixture was 1:37 and the final concentration was 0.5 g/L 

confirmed by enzymatic kits (OENOSENTEC, Toulouse, France). The medium for the control 

experiment was the mixture supplemented with water. MLF for each chemical standard was performed 

in duplicates and for the control in triplicates.  
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The O. oeni strain Lalvin VP41TM (packet of 1 g active dry bacteria) was rehydrated in 50 mL sterile 

NS (20°C, 15 min) then innoculated in 15 mL medium at a density of 10
6
 CFU/mL. Bacterial culture 

was grown at 20°C in 15-mL plastic tube (fully-filled to avoid oxidation). MLF was monitored every 2-

3 days by malic acid degradation analyzed with an enzymatic assay
2
 (OENOSENTEC). MLF was 

considered accomplished when the malic acid concentration was below 0.2 g/L. For the evaluation of 

experimental phenotypes, we have taken additional samples for cell analysis.  

A BD Accuri™ C6 flow cytometer (BD Bioscience, Le Pont de Claix, France) was used in combination 

with BOX/PI dyes (Life Technologies SAS, Saint Aubin, France) to monitor the bacterial population. 

100 µl cell culture was stained with 1 µL 1:10 diluted PI (in H2O) and 3 µL 1:10 diluted BOX (in 

DMSO). BOX is a lipophilic green fluorescent (525-nm emission) stain that binds to the cytoplasmic 

membranes only if membrane is depolarized. PI is a vital red fluorescent probe (635-nm emission) that 

binds to DNA only when the membrane is permeabilized. The double staining discriminates the cells 

into four  quandrants (Figure 20B). The corresponding physiological states were revealed after 

comparison with the non-stained cells (Figure 20A): Q1) represents PI-negative (not stained by PI) and 

BOX-negative cells or stress-free intact cells; Q2) represents PI-positive and BOX-negative situation, 

thus the background noise; Q3) represents PI-positive and BOX-positive cells or dead cells; Q4) 

represents PI-negative and BOX-positive cells or intact cells under stress. The sum of populations in Q1 

and Q4 is considered as the amount of viable cells. For instance, Figure 20B shows that 38.7% of cells 

are currently under stress and that the death rate is 0.1%.  

                                                           
2
 The protocols of quantification of gluconic, trehalose, citric acid and malic acid using enzymatic kits can be found at 

http://www.biosentec.fr/en/products/research_biotech_.../analysis_kits.html#enzymatic_kits 
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Figure 20 Outputs of BD Accuri C6 software for flow cytometry analysis of O. oeni cells grown in medium A 

fermented by yeast S8 at day 11. BOX fluorescence intensity is shown on the x-axis and PI on the y-axis. Dot plot 

A) shows the fluorescence of cells before staining. Dot plot B) shows the fluorescence of cells after the double 

staining.  

5.2 Metabolic profiling  

While we performed phenotype evaluation experiments for S3 and S12 in Must A, time-dependent 

samples were taken at day 0, 3, 5, 7, 10, 13, 15, 17 and 18 for metabolomics studies. Duplicate cultures 

(from 2 different tubes) were centrifuged at 14 000 rpm for 10 min to remove cells and were stored in 2-

mL glass vials at 4°C (fully filled to avoid oxidation). Metabolic profiling was performed in (-) ESI on 

the Bruker solariX FT-ICR-MS platform and in (+) ESI on the UPLC-MS system (ACQUITY UPLC 

Waters, Milford, USA, maXis
TM

, Bruker, Bremen, Germany).  

The FT-ICR-MS procedure was the same as previously described. The output datamatrix was K- 

containing 18 observations (9 kinetics points per growth media, biological duplicate averaged) and 9460 

mass signals. The ToF-MS of maXis
TM

 UPLC-MS platform has higher sensitivity and better mass 

accuracy compared to the previous Synapt platform, therefore it was more suitable to capture the minor 

exo-metabolome changes during MLF. The same RP method and MS settings was optimized by 
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instrument tuning. Prior to each analytical run, the MS was calibrated with 5 ppm of arginine solution 

reaching a mass error < 0.004 Da. All samples were acquired in duplicates. Automated data pre-

processing of UPLC-MS runs were performed using the Genedata Expressionist for MS 8.0 software 

(Genedata AG, Basel, Switzerland). The complete pre-processing consisted of chemical noise 

subtraction, RT alignment, mass recalibration and peak picking. Internal recalibration was based on 1:4 

diluted low concentration tune mix (Agilent, Waldbronn, Germany), which was injected prior to each 

run using a 6-port valve mounted to the MS. The output was a data matrix KL+ that contained 18 rows 

and 978 columns (LC-MS features, combinations of RT and m/z). Statistical analysis on K- and KL+  

could reveal the exo-metabolome evolution. Statistical analysis in combination with Netcalc & database 

annotation highlighted up-regulated (increase during MLF) and down-regulated (decrease) metabolites. 

6. Metabolic pathway analysis 

 

Figure 21 Metabolic pathway analysis 
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We used potential biomarkers from X+, X- and L-, as well as up/down-regulated metabolite features from 

K-  and KL+ for a pathway-related interpretation. The assumption of this approach was that the cell exo-

metabolome reflects its intracellular metabolism [13]. No matter the structure was elucidated or not, 

theoritical m/z of these features were matched to KEGG metabolic databases and a KEGG ID was 

associated (Figure 22A). The MassTRIX server would allow this conversion [14]. Since each node in 

the KEGG metabolic network represents a metabolite with a unique ID, we could easily map the 

annotated KEGG IDs to the whole metabolic network. By choosing the desired organism (S. cerevisae 

or O. oeni), the nodes were associated with edges representing genes and enzymes. We could visualize a 

specific pathway module, together with mapped nodes, to see how the module was enriched (Figure 

22B). If we are interested in the whole network, Cytoscape in combination with KEGGscape will be 

chosen to visualize local pathway enrichment (Figure 22C). Both types of visualization allow to answer 

which part of metabolic pathway is more relevant to extracted metabolites of interest. Limits of KEGG-

based pathway mapping are: i) No ID is assigned if the KEGG server doesn't contain the requested 

compound; ii) multiple IDs are assigned to a theoritic mass if isomers are present. Therefore conclusions 

from such studies should be made with some reserve.   
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Figure 22 From m/z to metabolic pathways: A) The MassTRIX server (http://masstrix3.helmholtz-muenchen.de/) 

converts each mass to a KEGG ID B) In the yeast metabolic module 'Nucleotide sugar biosynthesis', one KEGG 

ID was mapped (http://www.genome.jp/kegg/tool/map_module2.html) C) The whole yeast metabolic was 

imported and visualized in Cytoscape 3.1.1 and mapped IDs were colored in red. We observed a 'local enrichment 

in' the zoomed region. 
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CHAPTER 1: Assessing the potential value of yeast exo-metabolome  

 

Fig 1A What information can yeast exo-metabolome at the end of AF generally bring? 

Samples used for yeast exo-metabolome study were the extracellular media fermented by different 

strains. Our workflow started with AF driven by 16 yeast strains. In order to detect and quantify the 

complete set of metabolites, including unknowns, non-targeted metabolomics was chosen for its ability 

to detect and quantify a wide range of metabolites at the same time [1,2]. We applied only MS-based 

non-targeted metabolomics from two parallel platforms for the high resolution, high sensitivity, high 

accuracy and for the avaibility of tools from other wine-related studies [3-5]. The FT-ICR-MS offers 

ultrahigh resolution and high mass accuracy, allowing exact formula assignment, while UPLC-MS could 

bring complementary information about RT, isomer presence and quantity of metabolites. Volatile 

compounds were not considered in the current study. We recall that all samples studied were fermented 

from Must A, so the impact of basic matrix on the exo-metabolomic profile is not discussed in this work. 

Metabolic profiling on FT-ICR-MS (positive and negative mode) and UPLC-MS (negative mode) have 

generated three data matrice X+, X- and L-, repectively (Table 5).  
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Table 5 Data matrices for metabolic profiling 

Data matrix Platform Ionization Observations Features  

X+ FT-ICR-MS (+) ESI 48 20777 

X- FT-ICR-MS (-) ESI 48 10203 

L-  UPLC-MS (-) ESI 48 10101 

 

Each of data matrices contain a huge number of features measured on 48 observations (16 strains * 3 

replicates). In order to reveal all information inside each of yeast exo-metabolomic dataset, we decided 

to perform a series of exploratory data analysis, that is, discovering similarities (e.g. subgroups) or 

differences between observations in an unsupervised way. The question raised became: how much yeast 

genotype/phenotype information can be explained by these similarities/differences? Genotype 

information available for testing included varieties and geographic origin of the strains. Phenotype 

information was based on  experimental data, such as AF kinetics and basic physicochemical parameters 

of fermented media (acidity, total sugar, YAN...).  

Considering the high amount of features and potential data complexity, we have applied simultaneously 

different clustering and blind signal separation algorithms on each dataset [6]. Since each unsupervised 

method would have advantage and weakness at the same time, valid information was collected and 

combined for interpretation. In addition, we have highlighted the non-Gaussianity inside an exo-

metabolomics dataset and developped a new ICA method. Details of the method development will be 

found in the published paper « MetICA: Independent component analysis for high-resolution mass-

spectrometry based non-targeted metabolomics ». The paper suggests a comprehensive workflow for 

component extraction and validation. The dataset tested in this paper was X-. 
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Abstract 

Background: Interpreting the biological nature of non-targeted metabolomics data remains a 

challenging task. Signals from non-targeted metabolomics studies stem from a combination of biological 

causes, complex interactions between them and experimental bias/noise. The resulting data matrix 

usually contain huge number of variables and only few samples, and classical techniques using 

nonlinear mapping could result in computational complexity and overfitting. Independent Component 

Analysis (ICA) as a linear method could potentially bring more meaningful results than Principal 

Component Analysis (PCA). However, a major problem with most ICA algorithms is the output 

variations between different runs and the result of a single ICA run should be interpreted with reserve.  

Results: ICA was applied to simulated and experimental mass spectrometry (MS)-based non-targeted 

metabolomics data, under the hypothesis that underlying sources are mutually independent. In order to 

address the stochasticity of ICA and to the complex nature of our data, a MetICA procedure inspired 

from the Icasso algorithm was developped.  Like the original Icasso algorithm, MetICA evaluated the 

algorithmic and statistical reliability of ICA runs. In addition, MetICA suggests two ways to select the 

optimal number of model components and gives an order of interpretation for the components obtained. 

Conclusions: Correlating the components obtained with prior biological knowledge allows 

understanding how non-targeted metabolomics data reflect biological nature and technical phenomena. 

We could also extract mass signals related to this information. This novel approach provides meaningful 

components due to their independent nature. Furthermore, it provides an innovative concept on which to 

base model selection: that of optimizing the number of reliable components instead of trying to fit the 

data.  
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Background 

Metabolomics is a newly established Omics-discipline widely used in systems biology. By targeting 

metabolites as substrates, intermediates and products of metabolic pathways, it has been 

successfully applied to explain observed phenotypes [1-3] and to monitor changes in cells in response 

to stimuli [4-5]. While targeted metabolomics focuses on a chosen entity of metabolites [6-7], non-

targeted studies aim at the simultaneous and relative quantification of the complete set of metabolites 

in the system investigated [2, 8-11]. The latter approach demands multi-parallel analytical technology, 

including ultrahigh resolution mass spectrometry (MS) in direct infusion (DI) and/or linked to 

chromatography or electrophoresis, as well as nuclear magnetic resonance (NMR), in order to 

achieve complete experimental coverage [12-13]. The spectra obtained from the different samples 

generated from each of these platforms are usually aligned in an intensity matrix whose rows 

correspond to samples and columns of overlapping chemical signals. This matrix allows the 

simultaneous study of mass spectra. 

Previous studies have used various statistical learning methods on such data matrices to reveal 

differences between classes of samples and to isolate chemical signals specific to a certain class or 

trend [9, 13-14]. In the context of non-targeted metabolomics, the reliability of these multivariate 

methods might suffer from the curse of the dimensionality problem [15]. This problem arises when 

datasets contain too many sparse variables (over 2000, most contain more than 10% missing values) 

and very few samples (less than 100). Making a statistical model conform closely to such datasets 

with a  limited number of training samples could result in loss of predictive power (i.e., overfitting). 

From another angle, since non-targeted techniques capture important chemical noise and experimental 

bias, it may be difficult for a mathematical model to properly isolate the structure of interest [16]. 

Therefore applying statistical learning requires intensive method selection and validation work [8, 17-

19]. 

Indeed, it is recommended to apply various learning algorithms in the same study to improve the 

reliability of the information extracted [13, 20-21]. One common way of doing this is to use 

unsupervised learning (e.g., clustering, component analysis) prior to supervised methods (e.g., 

discriminant analysis, random forest, support vector machine), since basic data structure is revealed 

through simple dimension reduction, unbiased by the target information. The goal of such a non-

hypothesis driven technique is to detect underlying structures relevant to the information expected, or 
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to unnoticed subgroups, bias and noise [22]. It allows better understanding of how the non-targeted 

approach reflects each link of a biological experiment. 

In our study, an unsupervised learning algorithm, i . e .  independent component analysis (ICA), is 

applied to enlarge the feature discovery in comparison to classical principal component analysis 

(PCA). Currently, the concept of ICA is widely used in high-dimensional data analysis such as signal 

processing of biomedical imaging [23-24] and transcriptomic research [25-26]. Recently several 

applications in targeted [27-28] and low-resolution non-targeted metabolomics have achieved the goal 

of feature extraction [29-31] and functional investigation [7, 32]. To apply ICA we assume that the 

data observed X (n rows, p columns) are linear combinations of unknown fundamental factors or 

sources S, independent of each other (Figure 1). Matrix A describes the linear combination. The 

sources are estimated by searching statistical components that are as independent as possible. 

Compared to PCA, ICA as a linear method could provide three potential benefits for non-targeted 

metabolomics: 

• More meaningful components would be extracted by optimizing independence condition instead of 

variance maximization in PCA [31]. 

• Independence conditions detected by ICA involve both orthogonality (linear independence) and 

higher-order independence (e.g., exponential, polynomial), while classical PCA only ensures 

orthogonality between components. Therefore ICA could potentially extract additional information 

from the dataset. 

• Since non-targeted metabolomics data usually contain huge numbers of variables and only a few 

samples, certain techniques using nonlinear mapping could result in computational complexity and 

overfitting [33]. Another drawback of such techniques is the difficulty of mapping the extracted 

component back in the data space. As a method based on simple linear hypothesis, ICA not only 

reduces the risk of overfitting but also allows the reconstruction of data in the original space. 

However, major concern with ICA algorithms is stochasticity. Most ICA algorithms try to solve 

gradient-descent-based optimization problems such as the maximization of the non-Gaussianity of 

source S (e.g., approximated negentropy maximization in FastICA, [34]), minimization of mutual 

information [35-36] and maximum likelihood estimation [37]. The randomness due to the fact that 

the objective function can only be optimized (maximized or minimized) locally depending on the 
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starting point of the search (algorithm input). Thus, outputs will not be same in different runs of 

algorithms if the algorithm input is randomized. The curse of dimensionality makes the situation 

more complicated in the case of high-dimensional signal space as in non-targeted metabolomics data: 

it is extremely unlikely that the local minima obtained from one algorithm run will be the desired 

global minima and they should be interpreted with great caution. 

A parameter free, Bayesian, noisy ICA algorithm has recently been developed to model the 

stochasticity in targeted metabolomics [7]. By applying prior distributions to A, S and noise Γ, 

Bayesian ICA estimates the posterior distribution of S iteratively through a mean-field-based approach 

[38], then A & Γ using a maximum a posteriori (MAP) estimator. The algorithm also suggests an 

optimal component selection strategy based on the Bayesian information criterion (BIC). However, 

tests of this algorithm on non-targeted datasets present several uncertainties: firstly, it is hard to 

decide on the types of priors for A and Γ in a non-targeted study since the dataset reflects the 

complexity of the study and has multiple manifolds; besides, the performance of the mean-field-based 

approach is doubtful if it cannot be compared with a full Monte Carlo sampling (too time-consuming); 

in addition, BIC maximization is usually impossible for high dimensional datasets with a reasonable 

amount of components. 

Therefore we developed a heuristic method based on the FastICA algorithm and hierarchical clustering. 

The method, named MetICA is based on the Icasso algorithm used in medical imaging studies [39-

40] and was named MetICA. We start with data pre-processing, including centering and dimension 

reduction, for which a classical PCA was used [22].  The FastICA algorithm is run many times on the 

PCA score matrix with m different inputs, generating many estimated components. Close estimates 

give birth to a cluster. The reliability of the FastICA algorithm can be reflected by the quality of 

clustering. Moreover, as with any statistical method, it is necessary to analyze the statistical reliability 

(significance) of the components obtained. In fact, a relatively small sample size can easily induce 

estimation errors [41]. Bootstrapping original datasets and examining the spread of the sources 

estimated might identify these uncertainties. Both reliability studies would help to decide the optimal 

number of components. In addition to the adaptation of the Icasso algorithm in non-targeted 

metabolomics, the novelty in the present study is the dual evaluation of algorithmic and statistical 

reliability for model validation. Another novelty is the automatic ordering of extracted ICs based on 
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statistical reliability instead of only on kurtosis, as is done in other studies [7, 31]. Finally, our 

MetICA could be used for routine validation and interpretation of ICA in non-targeted metabolomics. 

 

Methods 

Metabolomics data acquisition and pre-treatment 

Non-targeted metabolomics data were obtained from a DI-MS platform: a Bruker solariX Ion 

Cyclotron Resonance Fourier Transform Mass Spectrometer (ICR/FT-MS, Bruker Daltonics GmbH, 

Germany) equipped with a 12 Tesla superconducting magnet (Magnex Scientific Inc., UK) and an 

APOLO II ESI source (BrukerDaltonics GmbH, Germany) in negative ionization mode. Mass spectra 

of each sample were acquired with a time domain of 4 mega words over a mass range of m/z 100 to 

1000 (Figure 1A). The technique has ultrahigh resolution (R=400 000 at m/z = 400) and high mass 

accuracy (0.1 ppm). Peaks were calibrated internally according to endogenous abundant metabolites 

in DataAnalysis 4.1 (Bruker Daltonics GmbH, Germany, https://www.bruker.com/) and extracted at a 

signal-to-noise ratio (S/N) of 4. The peaks extracted were aligned within a 1 ppm window with an in-

house software Matrix Generator [59] and generated a data matrix. Each row represents the intensity 

of one mass signal in each sample (Figure 1B). Masses found in less than 10% of samples were not 

considered during further data analysis and other absent masses were set at zero intensity in the sample 

concerned. We applied the software Netcalc developed in-house to remove potential spectral noise and 

isotope peaks. This software also unambiguously annotates the elemental formula assigned to the 

aligned m/z based on a mass difference network [42]. The annotation process is considered as an 

unsupervised filtration that reduces data size and reveals an underlying biochemical network structure 

inside the data set. Our ICA algorithm is applied on this filtered data matrix. 
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Figure 1. Matrix decomposition in non-targeted metabolomics A) X is an aligned data matrix from mass spectra of all the 

samples studied. The goal of ICA is to decompose X to a matrix S which contains independent sources and matrix A describes 

the linear mixture of theses source. B) One row of X: the mass spectrum of one studied sample. C) One column of X: aligned 

mass peaks for an annotated compound. D) One independent source is plotted against another. The distribution of samples 

can be seen in the space described by these two sources. E) represents the contribution of metabolites to these sources 

(loadings of metabolites). 

Biological studies 

We applied the non-targeted approach followed by the ICA algorithm in a comparative study of 

metabolic footprinting of randomly-selected yeast strains. The goal is to detect underlying yeast 

phenotype subgroups based solely on their exo-metabolome in wine [43-44]. To reach this goal, 

fifteen commercial Saccharomyces strains (S1 to S15, Lallemand Inc., France) were chosen to 

perform alcoholic fermentation (AF) triplicates in the same Chardonnay grape must. The strains 

chosen were different in species (either S. cerevisae or S. bayanus) and in origin (selected in different 

countries for different styles of wine or obtained by adaptive evolution) to ensure phenotype diversity. 

We kept the fermentation conditions consistent (e.g., volume, medium composition, temperature, 

etc ...) between strains and replicates. At the end of AF (sugar depleted), methanolic extracts of 45 

samples were studied on the ICR/FT-MS platform with the method described in section 2.1. We 
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randomized the order of strains for the fermentation experiment and for the non-targeted study. The 

resulting data matrix Yeast-Experimental had n = 45 rows (samples) and p = 2700 columns (filtered 

mass signals). MetICA was able to extract from the data reliable components that described partitions 

of samples and strains. Some components revealed phenotype separation, consistent with our prior 

knowledge of strains from the yeast producer, including all basic genetic traits, fermentation 

behaviors and wine characteristics. Other components described experimental bias, noise and 

unknown phenotypes. Our results prove that ICA can extract different kinds of information from a 

single metabolomics study.  

 

Figure 2. Each step of MetICA 

Application of MetICA Algorithm 

We provide a concise overview of MetICA for non-targeted metabolomics (Figure 2). The algorithm 

was mainly implemented in R version 3.1.2.  

PCA-denoising  

PCA is done by a singular value decomposition (SVD) of the centered data matrix     The denoised 

matrix    is obtained by       , where K is the k first PCs of loading matrix, obtained from the 

prcomp function in fastICA2.R (Annex 9). Working on    preserves 90% of the relevant information 

and reduces the potential noise given by 10% of variance. 
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FastICA algorithm 

The functions ica.R.def ('deflation' method) and ica.R.par ('parallel' method) from the R package 

fastICA, version 1.2-0 (http://cran.r-project.org/web/packages/fastICA), were applied to the denoised 

matrix    (Figure 2). The goal of the FastICA algorithm is to very rapidly estimate W or the demixing 

matrix. Based on a fixed-point iteration schema [34],    is estimated to maximize the approximated 

negentropy under the constraint of orthogonormality. The estimated source is calculated by    =        . 

Several rules concerning input parameters are followed while running the algorithms multiple times on 

   : 

• The number of ICs is set to be the same as the number of PCs chosen for denoising. 

• The hyperbolic logcosh function is fixed for negentropy approximation as a good general purpose 

contrast function [34]. 

• The function fastICA2 (Annex 9) contains two methods of extracting more than one IC: ica.R.def 

('deflation' or one at a time) and ica.R.par ('parallel'). 'Deflation' avoids potential local minima [45], 

while 'parallel' has the power to minimize mutual information between sources [46]. Therefore each 

method is responsible for half of the runs. 

• The matrix   , which is the initial point of each run, is arbitrarily sampled from a Gaussian 

distribution (mean=0, variance=1, no constraints on covariance). Other random distributions were 

tested and no big changes were observed for extracted components.  

Dissimilarity matrix 

The pipeline presented in Figure 2 is achieved in metICA.R (Annex 9). Each run of FastICA generates 

an estimated source matrix   
  containing k components. These k components can be similar to a certain 

extent. If we combine these   
  in a large estimated matrix    (n rows, k*m columns, from function 

MetICA_source_generator), the similarity between the components from different runs can be described 

by Spearman’s correlation coefficient. In order to perform further clustering analysis, each coefficient 

    is transformed into distance or dissimilarity by                according to [47] (function 

MetICA_cluster_generator). 

Hierarchical clustering 
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An agglomerative hierarchical clustering analysis (HCA) is performed on the dissimilarity matrix D 

with R function hclust (in function MetICA_cluster_generator). The results display a tree-like 

dendrogram (Figure 2) for the hierarchical data structure: more similar components agglomerate to 

form a cluster and multiple clusters form a larger as a function of inter-cluster distance [48]. An 

average-link (AL) agglomeration method was chosen as in the original algorithm, Icasso [39]. Based 

on the hierarchical data structure, it is possible to obtain a reasonable number of clusters by cutting 

the dendogram at certain dissimilarity levels (cutree function in R). In this way, all k*m components 

are partitioned into a certain number of groups. Compact and well-separated clusters reveal the 

convergence of the FastICA algorithm. The representative points or 'centrotype' of each cluster is the 

point that has the minimum sum of distances to other points in the cluster (function 

MetICA_cluster_center). These points are considered as convergence points of FastICA and deserve 

further study. Therefore it is crucial to decide on the number of partitions providing the highest-

quality clusters in terms of algorithmic convergence and statistical significance. Some validation 

strategies will be presented in the results and discussion section.  

Production of simulated data 

To confirm the power of the MetICA algorithm, a simulated data SX was generated to mimic the real 

non-targeted metabolomics data. The visual illustration of this process is in Figure S1 and the function 

used was MetICA_simulated_generator (Annex 9). From the centered yeast metabolic footprinting data 

  , a multivariate Gaussian background noise N was created to have the same covariance as   . In 

parallel, we performed a simple PCA and used non-Gaussian PCs (measured by kurtosis) to 

reconstruct a matrix, RX. The simulated SX is the sum of I N and RX, wherein I is a real number 

controlling the level of noise. The simulated data for I = 0.1 was stored in Yeast-Simulated.txt. 
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Figure S1. Generation of simulated data The simulated data SX was generated by adding the background noise N 

(multivariate Gaussian distribution derived from original data) to a matrix reconstructed by two selected non-Gaussian PCs 

(PC11 & 15). The blue intensity here represents signal intensity. 

 

Results and discussion 

Diagnostics of simulated and experimental data 

The FastICA algorithm is based on the maximization of negentropy, an exact measure of non-

Gaussianity. It is equivalent to the minimization of mutual information, or searching independent 

components [34]. The algorithm only works when the dataset is derived from non-Gaussian sources 

and thus contains non-Gaussian features. Therefore we measured the non-Gaussianity of each mass 

using kurtosis (Figure S3). The distribution of kurtosis for the experimental data showed a significant 

amount of super-Gaussian (kurtosis >1) and sub-Gaussian (kurtosis <-1) variables, while the 

background matrix N mainly contained Gaussian variables (kurtosis between -1 and 1). The simulated 

matrix SX contained a large number of super-Gaussian variables, knowing that two super-Gaussian PCs 

(PC11, kurtosis=1.9 and PC15, kurtosis=2.1) were used for generation (Figure S1). Since both 
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experimental and simulated datasets displayed non-Gaussian features, we were able to apply MetICA 

to these datasets.  

 

 

Figure S2. Hierarchical clusters in 2D space Distribution of estimated MetICA sources from simulated data when projected 

on a 2D CCA space. Sources belonging to the same hierarchical cluster have the same color. The splitting of the black cluster 

into black, blue, dark blue clusters was seen when we increased the cluster number NC from 2 to 4. It splits again when NC 

increased to 5. The quality index is the ratio between the average within-cluster distance (R1, the distance between the 

estimate and the cluster center it belongs to) and the average between-cluster distance (R2, the distance between each cluster 

center to the global center of all estimates). 

 

 

Figure S3. Kurtosis distribution of all variables (masses) Three histograms represent kurtosis distributions for 

experimental data X_exp, simulated background noise N and simulated data SX (I=0.01), respectively. 

Performance of MetICA on simulated data 

The MetICA was first tested on simulated data. The performance was evaluated based on whether the 

algorithm was able to retrieve the signals (PCs) used for generation. Different combinations of non-
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Gaussian PCs were used to generate the simulated data and evaluate the algorithm. The following is a 

simple example from different SXs generated by PC5 (   = 1.3%, kurtosis = 1.9) and PC11 (   = 

0.8%, kurtosis = 2.1) with three levels of noise (I = 0.01, 0.05 and 0.1). We applied MetICA to SX 

in the way described in the previous section. The objective here was to find the optimal number of 

partitions for MetICA estimated sources. With this number, we expected to obtain high-quality 

clusters from HCA, with two of them representing the PCs used for generation. Our strategy started 

with the visualization of all the estimated sources (from different algorithm inputs) after projection 

onto a 2D space. A reliable projection should preserve the distance between estimated sources and 

hierarchical clusters should only contain neighboring points. According to our tests, Curvilinear 

Component Analysis (CCA, Matlab SOM Toolbox 2.0, [49]) outperformed multidimensional scaling 

(MDS, [48]) and the Self-Organizing Map (SOM, [50]) for this purpose. In fact, CCA preserved the 

distance better and gave more explicit visual separations between clusters. In order to examine the 

HCA results in the 2D space, the matlab script metICA_CCA.m (Annex 9) assigned randomly 

different colors to the sources belonging to different clusters. We could monitor cluster splitting by 

increasing the number of clusters (Figure S3) until we obtained compact, well-separated clusters 

(Figure 3A-C, minimal partitions necessary for different level of noise). Apart from visual 

monitoring, we applied a quality measure to decide the optimal number of partitions. The index is 

simply the ratio between the average within-clusters distance and the between-clusters distance (Figure 

S2). The smaller the index is, the more compact and better separated the clusters seem to be on the 

2D space. At the beginning this index decreases as a function of the number of clusters. From a 

certain point, it tends to be stable or increases, meaning that adding another cluster does not much 

improve the data modeling. The decision regarding the optimal number of clusters via this index is 

consistent with visual monitoring (Figure 3A-C). 

After the decision was made, the centrotype of each cluster was compared to PC11 and PC15. Even 

though MetICA gives more dispersed simulation results when the noise level increases (Figure 3A-C), 

the centrotypes of two clusters (red and blue) reflect the same sample rankings as PC11 and PC15 

(Figure 3D-E). In other words,  MetICA was able to retrieve both PCs from the simulated data for any 

noise level tested. However, we needed 6 clusters at noise level I = 0.1 instead of 4 clusters at I = 0.05, 

proving that MetICA could start to extract sources from the background noise. 
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In brief, the performance of MetICA on simulated data confirmed that we could effectively study the 

FastICA convergence via HCA, CCA and the cluster quality index. More clusters were needed to 

extract underlying components when the data contained stronger noise.  

 

Figure 3. Feature extraction from simulated data A) B) C) Distribution of estimated MetICA sources (for three 

background noise levels) when projected on a 2D CCA space. Sources belonging to the same hierarchical cluster have the 

same color.  D) The sample distribution on PC11 and PC15 used for SX generation:  samples (top of edges) corresponding to 

fermentation triplicates of the same strain are connected to their gravity center (rectangle).  E)  The sample distribution of the 

centrotypes of the red cluster and blue cluster. For any background noise level tested, the centrotypes of these two clusters 

carry the same strain rankings as PC11 and PC15. 

Algorithmic reliability of MetICA on experimental data 

The same validation strategy was applied to the experimental data as to the simulated data. We 

evaluated the algorithm convergence from 15 ICs (   = 90.5%) estimated in each of m = 800 

FastICA runs. Our quality index decreased until the number of clusters reached c = 13 and it 

increased afterwards. The optimal number c = 13 was confirmed visually (Figure 4). The matrix OC 

(45 * 13) contained the centrotypes of all the clusters.  
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Figure 4. Selection of optimal cluster number A) The evolution of the geometric index average inner/between cluster 

distance as a function of number of clusters. The index is smallest at c=13, meaning the most compact and well-separated 

clusters. B)  The distribution of clusters (one color = one cluster) on the 2D space of CCA. It provides a visual confirmation 

for c. 

Statistical reliability of MetICA on experimental data 

MetICA revealed the convergence of FastICA on non-targeted metabolomics data. However, some of 

the convergences observed might only haven been due to a few particular samples. Therefore it is 

important to evaluate the statistical significance of each centrotype obtained. However, as an 

unsupervised method, ICA could not be validated via prediction error since no target information 

could be used. Once again, as an optimization-based component analysis, cross-validation (CV) 

methods widely used in PCA validation [51] are inappropriate or too time-consuming. In fact, to 

start each CV run, datasets must be divided into two groups and the whole MetICA procedure has to 

be run on one of them (training subset). Accordingly it is necessary to validate the convergence for 

each CV run. 

Therefore we instead applied a sophisticated bootstrapping validation. Bootstrapping means random 

sampling with replacement. In general, bootstrapping is considered as a slight modification of the 

dataset without changing its size. Bootstrapping validation is widely used for model selection in 

Machine Learning problems [52-54], especially when strict mathematical formulations are not 
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available. In our case, the statistical significance of MetICA components was barely evaluated 

mathematically. Therefore we tried to find a score that described the stability of MetICA components 

subjected to bootstrapping. It was expected that components distorted by particular samples would be 

very sensitive to these slight modifications, while statistically significant components were expected 

to remain stable. The validation was implemented in function MetICA_bootstrap (Annex 9) for yeast 

exo-metabolome data as follows: from the original X (45 * 2700) we generated B = 100 

bootstrapped data:   ,     ...     by replacing 5 rows of X each time. Then, we fixed the algorithm 

input, the demixing matrix    and ran FastICA once on 50 bootstrapped datasets with ’parallel’ 

extraction and the other 50 with 'deflation' extraction. We extracted from each bootstrapped dataset k 

estimated sources (    ,     …     ) to ensure    > 90%  and we did likewise in each FastICA run for 

the original data (to ensure    > 90%). 

The 13 centrotypes    ,    ...      from the original dataset were compared with these k estimated 

sources. The most correlated source       was considered to be aligned to centrotype    . The 

absolute Spearman’s correlation coefficient    between     and        was the score of     for the 

particular bootstrapped data. The higher the score was, the closer the estimated source was to the 

centrotype. The sum of scores       from all the bootstrapped data was our final similarity 

score for centrotype    . It measured how similar MetICA centrotypes were to estimated sources of 

bootstrapped data, in other words, the stability of centrotypes after bootstrapping. The math input 

is as follows: 

      
     

              

 

   

 

The H score implies the statistical reliability of centrotypes given a fixed demixing matrix   . 

However, such a  score might depend on the FastICA input. Therefore the scoring is repeated with 

fixed bootstrapped datasets but 50 randomized   . Finally, for each centrotype, we obtained a 

distribution of H. We used the median    of the distribution as an exact score of the centrotype. The 

dispersity shows how trustworthy the score estimate is. Our empirical experiment showed that the 

distribution was quite weakly dispersed (Figure 6, the results on the other datasets are similar). The 

visual illustration of the whole scoring process is in Figure S4. 



147 
 

The centrotype scoring leads to another possibility for deciding on the number of clusters. After the 

number of clusters was determined, we could evaluate the    of each centrotype after which we obtained 

a score distribution of all the centrotypes for the particular number of clusters. Therefore we could 

monitor the    for all the centrotypes as a function of the number of clusters (Figure 5) and select the 

optimal number based on the amount of centrotypes containing a higher   . We observed a pattern of 

statistically reliable super-Gaussian centrotypes (     , points above the green line in Figure 5). At c 

= 13 clusters suggested previously by the quality index, we obtained 9 such centrotypes. Low significant 

centrotypes seemed to occur when we further increased the number of clusters, which means that c = 13 

was also a good decision in terms of statistical reliability. 

Afterwards a comparison was made between the bootstrap score and kurtosis of these centrotypes. In 

previous studies, super-Gaussian distributed components usually indicated interesting class separation 

structures while Gaussian-like distribution (kurtosis close to 0) or sub-Gaussian (kurtosis < -1) contained 

less information (Scholz). In figure 5, it can be seen that low kurtosis centrotypes also have a low   . 

However, the highest kurtosis does not ensure the highest bootstrap score (Figure 6).  

 

Figure S4. Illustration for bootstrap scores For a fixed algorithm input, FastICA runs on B different bootstrapped data. The 

centrotype     (blue) is compared to all the estimated sources from each run. The Spearman correlation coefficient 

(red) to the most correlated estimate (green) is the similarity score we are seeking. The final score      is the sum of scores 

from all the bootstrapped data. 

Component order and interpretation  
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The components extracted by a single ICA run have no order. However, we give an interpretation 

order for the centrotypes obtained based on their bootstrap score   . We first interpret the centrotypes 

that have relatively higher    (statistically significant) with smaller error bars (stable after changing 

algorithm inputs). The following are biological interpretations for some of the top nine centrotypes 

(Figure 6). The script for visualization of scores and loadings is in Annex 9. 

 

 

Figure 5. Bootstrap scores as a function of cluster number When the cluster number is fixed, we could 

compute the    score (the median of the H estimate) for each centrotype. Then we monitored the distribution of 

scores as a function of cluster number. 

ICA detects outliers 

ICA seems to be sensitive to outliers. For instance, sample R1S6 (wine fermented by strain S6 in the 

first replicate) has an extreme negative score on     compared to the other samples, including the two 

other replicates of S6 (Figure S5). The same situation was also observed on     &     (Figure S5B-

C). Although the interpretation of these outliers is not so obvious, the reliability of the centrotypes 

encouraged us to investigate the potential technical errors. 
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Figure 6.  H estimates and kurtosis of centrotypes The upper figures shows the distribution of the H estimate of 

each centrotype by mustache box, sorted by their median, e.g.      has the highest    so it is considered to be the 

most statistically-reliable. The lower figure shows the kurtosis of each corresponding centrotype.  

ICA detects phenotype separations 

The three samples (wines from fermentation triplicates) of strain S5 have higher negative scores than 

all the other samples on     (Figure 7). In general, if one component carries biological information, it 

is interesting to know which mass signals are highly involved. These signals have higher loadings in 

weights matrix A, which is the pseudo-inverse of the product of whitening matrix K and demixing 

matrix W:  
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Mass signals with the top 100 highest negative loadings on     were extracted. The concentration 

of these metabolites should be higher in wines fermented by S5 than other strains. Under the 

assumption that exo-metabolome reflects cell activity, we mapped the extracted mass signals from the 

yeast metabolic network using the MassTRIX server (http://masstrix3.helmholtz-

muenchen.de/masstrix3/) [55]. Among 49 annotated masses, 13 were metabolites in the yeast 

metabolic pathway biosynthesis of amino acids (Figure 7). This observation was in accordance with 

information from the yeast provider: strain S5 could synthesize more amino acids and thus stimulate 

secondary fermentation in wine. 

Similar results were observed on     : triplicates of S3 (commercial name: ECA5) had much higher 

positive scores than the other samples (Figure S5D). Corresponding metabolites annotated on 

MassTRIX revealed enrichment in several pathways in central carbon metabolism, such as fructose & 

mannose metabolism, the Pentose phosphate pathway and the TCA cycle. In fact, ECA5 is a strain 

created by adaptive evolution to enhance sugar metabolism, notably the metabolic flux in the Pentose 

phosphate pathway [56].  

Comparison to other ICA algorithms 

The performance of MetICA was compared to other ICA algorithms (Table 1) using another non-

targeted ICR/FT-MS-based metabolomics dataset (published data [11]). The data matrix counted 

initially 18591 signals measured in 51 urine samples from doped athletes, clean athletes and 

volunteers (non-athletes). For the purpose of filtering and formula annotation, such high data 

dimension was more efficiently handled by our in-house developed software Netcalc compared 

to other standard approaches, such as ChemoSpec (http://cran.r-

project.org/web/packages/ChemoSpec/index.html) and MetaboAnalyst 

(http://www.metaboanalyst.ca/). The reduced data matrix (9279 mass signals remained) were 

analyzed directly with MetICA, as well as two FastICA algorithms in R (‘Parallel’ and 

‘Deflation’). Four other ICA packages were tested on the PCA score matrix Xd (51 rows, 43 

columns, ordered by variance explained): icapca in R [57], icamix in R (http://cran.r-

project.org/web/packages/icamix/), kernel-ica toolbox version 1.2 in Matlab with a Gaussian 

kernel [58] and mean field ICA toolbox in Matlab for Bayesian ICA described previously [7]. If 

‘out of memory’ problem occurred or the simulation failed to produce reasonable results, the 

corresponding package was applied only on first few columns of Xd (variance explained was 
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reduced, Table 1[1-2]). For all 7 ICA methods tested, 10 replicates were made with randomized 

algorithm inputs. We evaluated the shapes of extracted components Table 1[3-5]), the stability 

between simulation runs (Table 1[6]) and the reliability of components & model (Table 1[7-8]). 

The comparison revealed that MetICA extracted both super-Gaussian and sub-Gaussian 

components, while 'parallel' FastICA, icapca and icamix only highlighted super-Gaussian 

signals. Components from Kernel-ICA & Bayesian-ICA were more Gaussian-distributed. 

Among seven algorithms, 'parallel' FastICA and icamix gave consistent results between 

simulation runs. MetICA resulted in 12 out of 18 stable components if we fixed the number of 

clusters at 18. Our studies also showed that the amount of stable components would increase if 

the cluster number was tuned for each run through cluster visualization or bootstrapping. In the 

end, MetICA was among the few algorithms that suggested both model selection and component 

ranking. The icapca package suggests a reliable LOO-CV-based component selection, but the 

simulation seemed computationally intensive for our dataset. As a result, the model from icapca 

only explained 75.7% of total variance.  

Table 1 - Comparison between different ICA algorithms Seven ICA algorithms were compared based on [1] maximal 

percentage of variance the algorithm could handle (depending on the computer memory), [2] optimal number of components 

that the algorithm suggests, [3] kurtosis of the most super-Gaussian component [4] kurtosis of the most Gaussian component, 

[5] minimal kurtosis of components (the most sub-Gaussian when it is negative), [6] number of consistent components 

extracted in all 10 algorithms runs with an absolute Spearman's correlation between them higher than 0.8 and on whether the 

algorithm suggests [7] model selection criteria [8] importance order of components. 

 



152 
 

Conclusion 

In this paper, we developed the MetICA routine for the application and validation of ICA on non-

targeted metabolomics data. We adapted Icasso, an algorithm previously used in medical signal 

processing, to our MS-based yeast exo-metabolome data. We studied the convergence of FastICA 

in a way slightly different from that in the original Icasso version [31]: Spearman’s correlation 

was used instead of Pearson’s correlation to simplify the relations between estimated sources; the 

cluster number was selected based on a simple geometric index on projected space, instead of 

quantitative indices in the original space. These two simplifications improved the efficiency for 

high-dimensional data, since we tried to keep the maximum variance after PCA-denoising while 

having enough FastICA runs. We usually generate a huge amount of estimated components 

(>5000), but using the original Icasso is too time-consuming to handle this amount. 

Furthermore, we investigated the statistical reliability of convergence points by comparing them to 

FastICA estimates for bootstrapped data. Reliable centrotypes revealed strong phenotype 

separations and pathway differences between phenotypes. 

From the modeling viewpoint, Bayesian ICA optimized the model by BIC - a trade-off between 

likelihood (how much the model fits the data) and the risk of over-fitting. When processing high 

dimension data became difficult, our method provided an alternative mean of model optimization: 

increasing the number of reliable components instead of fitting the data. We suggested two ways 

of deciding the optimal number of model components, namely the number of clusters: either by 

using a cluster quality index (algorithmic reliability), or through the bootstrap scores of all the 

centrotypes (statistical reliability).  

The whole MetICA routine was tested on simulated data & several MS-based non-targeted 

metabolomics data and proved its ability for model selection. Compared to other ICA methods, we 

could efficiently decide on a reasonable number of clusters based on algorithmic reliability. The 

bootstrap scores further validated our decision. 

Since our routine was based on a simple linear model, we could easily reconstruct the original 

dataset and calculate the fitting error. Therefore, our procedure could also be further used for 

dimension reduction before applying supervised statistical methods, or data denoising to remove 
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undesirable signals (bias and instrumental noise). All in all, it opens a door for extracting non-

Gaussian information and non-linear independence from non-targeted metabolomics data. 

 

Figure S5. Scores of samples on some centrotypes A) On    , sample R1S6 (wine fermented by strain S6 in the first 

replicate) has an extreme negative score, so it is considered as an outlier. B) C) For the same reason as R1S6 on    , samples 

R3S6, R2S4 and R3S11 are considered as outliers. D) The three wines from the fermentation triplicates of strain S3 

(R1S3, R2S3 and R3S3) all have higher positive scores. 
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Figure 7. Interpretation of a centrotype A) The score of each sample on    . The three wines from the fermentation 

triplicates of strain S5 (R1S5, R2S5, R3S5) all have higher negative scores. B) Loadings of metabolites on    . Metabolite 

having higher negative loadings contribute to the separation of S5 from other strains. C) Many of these metabolites are 

annotated in the biosynthesis of amino acids. Here, red nodes are annotated compounds.  
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List of abbreviations used 

MS: Mass spectrometry 

DI: Direct infusion 

NMR: Nuclear magnetic resonance 

ICA: Independent component analysis 

PCA: Principal component analysis 

BIC: Bayesian information criterion 

MAP: Maximum a posteriori 

ICR/FT-MS: Ion cyclotron resonance Fourier transform mass spectrometer 

AF: Alcoholic fermentation 

HCA: Hierarchical clustering analysis 

AL: Average-link 

CCA: Curvilinear component analysis 

MDS: Multidimensional scaling 

SOM: Self-organizing map 

CV: Cross-validation 

LOO-CV: Leave-one-out cross-validation 
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2. Additional results  

2.1 Discussion about the strain S71 

At the start of the workflow, we have observed several particularities of the strain S71 compared to other 

15 strains: i) slower AF kinetics (Figure 23A); ii) lower malic acid concentration at the end of AF 

(Figure 23B); iii) metabolic profiles distant from other strains, especially in negative mode FT-ICR-MS 

(Figure 23CD). For instance, the sample ‘R1S71’ (first AF replicate of S71) was outside the Hotelling 

T
2
 ellipse on the plot of 2 first PCs of X+ (Figure 23C), meaning that it was identified as an outlier 

(Issaq). For the same reason, all three replicates were identified as outliers in (-) ESI mode (Figure 23C). 

S71 showed special metabolic activities characterized by sluggish fermentation and malic acid 

degradation. The central metabolism of this strain must be different from others. This strong phenotypic 

distinction resulted in a particular exo-metabolomic profile at the end of AF. In other words, the 

metabolomics datasets would be strongly representive for this phenotype and the 3 observations of S71 

might distort the correlation structure brougt by other 15 strain. Therefore this strain was removed from 

statistical analysis and from further interpretation. It was not mentioned in the accepted/submitted papers 

either. From now the datasets X+ , X-, L- only contained 45 observations. 
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Figure 23 Some particularities of S71 compared to other strains A) Fermentation kinetics measured by cumulated 

weight loss of the Erlenmeyer B) Malic acid concentration C) PCA analysis of data matrix X+ ((+)ESI mode of 

FT-ICR-MS) D) PCA analysis of data matrix X- ((-)ESI mode of FT-ICR-MS) C) D) are score plot on the 2 first 

components, R
2
 and Q

2
 showed the validity of the model. The Hotelling T

2
 ellipse defined inside a 95% tolerance 

region that indicates the normality of dataset. 

2.2 Genotypic/phenotypic information revealed from metabolomics 

PCA analysis has revealed particular exo-metabolomic profiles of S71 consistent with its particular 

phenotype. In the accepted paper, the MetICA algorithm applied on X- (only contained Netcalc-

annotated formulas) has separated S5 and then S3 from other strains. According to the strain provider, 

S5 is different from other strains for its amino acid metabolism and S3 is the only strain created by 
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adaptive evolution. Other genotypic/phenotypic information of 15 strains explained by different 

unsupervised statistical analysis on X+, X- and L- include : 

i) Hierarchical clustering analysis (HCA) on X- (distance = pearson’s correlation, linkage = average) has 

revealed two clusters of strains : one represented the yeast variety S. cerevisae, another cluster contained 

strains of variety S. bayanus and the hybrid strain S9 (Figure 24A). We have averaged the biological 

replicates here to simplify the interpretation. 

ii) PCA on X+ has revealed a cluster built by strain S3, S6 and S9 on its first PC (Figure 24B). The 

selection of these 3 strains was achieved by evolutionary engineering, such as adaptive evolution (S3 

based on growth on gluconate for the aroma production), random mutagenesis (S6) and breeding for 

hybrid strain (S9, natural cross hybrid between S. cerevisae strains). Compared to strains selected 

directly from nature, they held novel phenotypic traits. For instance, S6 is the highest producer of 

polysaccharides. The reason that the 3 strains were clustered together needs to be elucidated in the future.     

iii) PCA on X+ has separated as well the three replicates of S5 on its third PC (Figure 24C). S5 is 

different from other strains for its amino acid metabolism according to the strain provider.  

iv) MetICA on L- has came out with 8 reliable components that explained 85% of total variance. The 

second most reliable component based on the bootstrapping score showed similarity between S3, S5, S9 

and S13 (Figure 24D). In fact, samples fermented by the four strains were higher in total acidity (> 6.5 

g/L C4H6O6, for exact values see Annex 7). 

vi) MetICA on X+ also separated S. cerevisae from S. bayanus strains and revealed distinct signature of 

S5 on its reliable components. 
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Figure 24 Similarities and differences observed from yeast exo-metabolomic data A) HCA on X- B) C) PCA on 

X+ : B) the score plot of PC1 and PC2 C) the score plot of PC3 and PC4 D) MetICA on L-, the score plot of two 

first most reliable components. In B) C) and D), the extremities of the stars represent the metabolic profiles. 

Samples from the fermentation triplicates of the same yeast strain were connected to their center (the rectangle). 

These “star plots” reveal both the separations between strains and variations between replicates. 

3. Conclusion of chapter 1 

In this study, different unsupervised algorithms were applied on metabolomics datasets X+ , X-, L- to 

reduce the dimension of visualization. An algorithm on a specific dataset could reveal clusters of 

biologically relevant strains. We confirmed the ability of exo-metabolomic profiles at the end of AF to 

reflect phenotypic and genotypic information. Due to the complexity and high dimensionality of non-

targeted metabolomics data, it is necessary to test different unsupervised methods on the same dataset.  
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CHAPTER 2: Molecular evidence of MLF-related phenotypic distinction 

 

Figure 1B What is the molecular evidence of phenotypic distinction ? 

We are now interested in a more complex phenotype information: yeast MLF compatibility. The compl 

exity is due to the variability of observed phenotypes. The expected phenotype MLF+ and MLF- that 

labels the 15 trains was defined experimentally by a cumulative assessment of winemakers and 

researchers. In reality, the observed phenotype could vary according to the chemical composition of 

grape must and to the experimental conditions. We have assessed the actual behavior of LAB strain 

Lalvin VP41 in fermented media from Must A and Must B so that the obeserved phenotypes will be 

compared to the expected one. In combination with the observations of yeast exometabolomic profile, 

the first goal here is to understand how exometabolome reflects distinct signatures between MLF+ and 

MLF- strains. 

In order to unravel the molecular evidence of phenotypic distinction, we were interested in discriminant 

features, defined as a subset of features that could best predict phenotype information. Such features 

were extracted from X+, X- and L- by supervised feature selection algorithms (or classification). 
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Discriminant features holding a valid elemental formula annotation were considered as potential 

biomarkers and targeted in tandem MS experiments. Meanwhile, a feature can be « known » or 

« unknown » according to the wine MS database [4, 5]. For « knowns », their hypothetic structure was 

confirmed by Metlin and/or chemical standards using fragments obtained. For « unknowns », a novel 

strategy was developped to make structure hypothesis. A discriminant feature with a confirmed structure 

was considered as a potential biomarker. In order to confirm in vitro the role of potential biomarkers, we 

evaluated the behavior of O. oeni in media supplemented with these compounds. If statistically-

discriminant metabolites has an actual physiological role, we could further conclude that yeast exo-

metabolome study leads to the discovery of new compounds involved in yeast-bacteria interaction.  

We note that all molecular evidence discovered depend on the grape must used for AF. In our case, only 

the samples fermented from Must A were used for metabolomics study. Our concern was the 

interpretability of discriminant features if several grape musts were used. To ensure also the generality, 

we kept the expected phenotype MLF+ and MLF- along our study. On the other hand, molecular 

evidence here is not exhaustive since the discovery depends on the grape must (vintage, grape variety 

and grape origin), yeast strains, fermentation conditions and metabolomics techniques. In fact, our MS-

based techniques only detect non-volatile compounds in a mass range 100 – 1000 Da. However, the 

wide coverage of metabolome has brought rich molecular evidence and numerous biomarkers involved 

in yeast/bacteria interaction. Our principal results can be found in the accepted paper « New molecular 

evidence of the wine yeast-bacteria interaction unraveled by non-targeted exometabolomic profiling ». 
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Abstract 

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain 

used for primary fermentation can systematically stimulate (MLF+ phenotype) or inhibit (MLF-) 

bacteria and the MLF process as a function of numerous winemaking practices, but the underlying 

molecular evidence still remains a mystery. In this study, such evidence was elucidated by the direct 

comparison of extracellular metabolic profiles of MLF+ and MLF- phenotypes. Non-targeted 

metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful statistical tools and a 

comprehensive wine metabolite database, showed around 2500 unknown masses and 800 putative 

biomarkers involved in phenotypic distinction. For the putative biomarkers, we also developed a 

biomarker identification workflow and elucidated the exact structure (by UPLC-Q-ToF-MS
2
) and/or 

exact physiological impact (by in vitro tests) of several novel biomarkers, such as D-gluconic acid, citric 

acid, trehalose and tripeptide Pro-Phe-Val. In addition to valid biomarkers, molecular evidence was 

reflected by unprecedented chemical diversity (around 3000 discriminant masses) that characterized 

both the yeast phenotypes. While distinct chemical families such as phenolic compounds, carbohydrates, 

amino acids and peptides characterize the extracellular metabolic profiles of the MLF+ phenotype, the 

MLF- phenotype is associated with sulphur-containing peptides. The non-targeted approach used in this 

study played an important role in finding new and unexpected molecular evidence. 

Key words Non-targeted metabolomics; FT-ICR-MS; UPLC-Q-ToF-MS; Machine learning; Wine; 

Biomarkers 

1 Introduction  

Malolactic fermentation (MLF) is a winemaking process that usually follows the completion of 

alcoholic fermentation (AF) by yeasts. The reasons for conducting MLF include the deacidification of 

the wine, the improvement of microbial stability and the modification of the wine aroma profile (Lerm 

et al. 2010). The main MLF reaction is defined as the conversion of L-malic acid to L-lactic acid, with 

the production of CO2. The reaction is driven by lactic acid bacteria (LAB), mostly the stress-resistant 

Oenococcus oeni (O. oeni). Since the bacteria develop under harsh environments characterized by low 

pH (3.1-3.3), high ethanol concentration (13-14%), the presence of sulphur dioxide, osmotic stress and 

low nutrient status, the MLF process can take several weeks and does not always produce satisfactory 

results (Agouridis et al. 2005). 
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Previous research in this area has led to new approaches for improving this process (Alexandre et al. 

2001; Bartowsky 2005; Davis et al. 1985; Torriani et al. 2010). One general observation is that MLF is 

completed more easily when AF has been performed using certain yeast strains and that it could be 

inhibited by other strains, despite the matrix and winery effect (Arnink and Henick-Kling 2005; 

Lemaresquier 1978; Lerm et al. 2010). A commercial yeast strain can be classified into MLF+ (positive 

interaction to O. oeni and suitable for MLF) or MLF- (negative interaction) phenotypes according to 

how the subsequent MLF performs. Since the classification is usually based on numerous winemaking 

experiments at the laboratory, pilot and large scales, winemakers could use such information to select a 

yeast strain suitable for MLF (Costello et al. 2003). However, very little molecular evidence has been 

elucidated regarding this phenotypic distinction. Since AF driven by MLF+ strains should provide a 

favorable extracellular environment for subsequent O. oeni growth, which is contrary for MLF- strains, 

yeast-related molecules or families of molecules characterizing MLF-friendly and MLF-harsh 

environments would be potentially interesting for improving the MLF process. We call these molecules 

MLF biomarkers.  

So far, MLF biomarker discovery has been mainly based on testing the physiological impact of yeast-

related compounds with known biochemical natures, such as compounds released during yeast autolysis, 

ethanol, sugar, sulfur compounds, antimicrobial peptides and fatty acids (Capucho and Romão 1994; 

Feuillat et al. 1977; Guilloux-Benatier et al. 2006; Osborne and Edward, 2007; Zhang and Lovitt 2005). 

This approach might restrict the discovery of new stimulatory/inhibitory biomarkers and prevent the 

consideration of synergistic effects. Besides, none of these individual biomarkers discovered fully 

explain MLF-related yeast phenotypic distinction. Furthermore, non-targeted metabolomics approaches 

have shown great potential for the study of yeast extracellular medium and wine (Roullier et al. 2015). 

The big advantage over the classical method is that it simultaneously generates a considerable amount of 

putative biomarkers of various biochemical natures. For instance, high-resolution MS-based 

metabolomics analysis of wine has suggested new biomarkers related to grape variety, origin, vintage 

and storage (Arapitsas et al. 2014; Cuadros-Inostroza et al. 2010; Roullier et al. 2014). NMR-based 

metabolomics has found associations between wine metabolites and environmental and fermentative 

factors (Hong 2011). In addition, the extracellular metabolome (exometabolome) of yeast, measured by 

high-throughput LC-MS, CE-MS and GC
2
-MS, has shown large and reproducible changes in response 

to stimuli and gene knockout, and related compounds have been elucidated (Kell et al. 2005).  
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Based on the fact that non-targeted metabolomics has unraveled much new and unexpected molecular 

evidence in yeast extracellular media, we decided to compare exometabolomes of MLF+ and MLF- 

phenotypes directly at the end of AF. The samples used were 45 wines fermented from the same grape 

juice with yeast strains of both phenotypes. The complete set of metabolites in each fermented medium 

was measured by High-field Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) 

through the semi-quantitative description of all the metabolites within a given mass range (Gougeon et 

al. 2009; Roullier et al. 2014; Witting et al. 2015). Combining ultrahigh resolution with excellent mass 

accuracy and a wide range of intensity for metabolite detection, FT-ICR-MS enables the discovery and 

elemental formula assignment of thousands of compounds. Using this powerful non-targeted analysis, 

we expected to elucidate differences between MLF+ and MLF- phenotypes. In addition, mass signals 

that statistically discriminate two phenotypes were further identified by Ultra-High Performance Liquid 

Chromatography coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry (UPLC-Q-ToF-

MS/MS or LC-MS
2
). The second analytical technique enabled the discrimination between non-volatile 

isomeric and isobaric compounds (Forcisi et al. 2013; Roullier et al. 2015), thereby allowing the 

determination of the structure of target biomarkers. We emphasize that all the biomarkers identified 

were dependent on the grape juice used initially. In order to evaluate their wider range of interest, we 

tested the physiological impact of several biomarkers in another bacterial culture in vitro.  

In addition to biomarker discovery, the molecular evidence of phenotypic distinction was highlighted by 

the specific biochemical traits of discriminant masses, such as numerous compounds that belong to the 

same chemical family (Roullier et al. 2014). Some molecular evidence may be further associated with 

yeast metabolic pathways (Kell et al. 2005; Witting et al. 2015).  

2 Materials and methods 

2.1 Materials 

Fifteen commercial Saccharomyces strains (wine active dry yeasts S1 to S15, Lallemand Inc., France, 

stored at 4°C) were used to perform AF and exometabolome studies. The fifteen yeast strains used were 

divided into expected phenotype groups of MLF+ (S1 to S10) and MLF- (S11 to S15) according to 

general knowledge of their MLF compatibility. The wine LAB Lalvin VP41TM (MBR®, Lallemand 

Inc.) was used to evaluate yeast phenotypes under defined MLF conditions.  
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The Chardonnay grape must was collected during harvesting in 2012 in the Languedoc-Roussillon 

region. After thawing, the grape must was centrifuged at 8000 rpm for 30 min and the supernatant was 

sterile-filtered. The basic physico-chemical parameters were measured by Fourier transform infrared 

spectroscopy (FTIR). Based on the results, we increased the assimilable nitrogen (YAN) level by 

supplementing the must with (NH4)2HPO4 (RP Normapur, Prolabo, Fontenay-sous-Bois, France) to 

prevent stuck or sluggish AF. The pH, malic acid, sugar and YAN level of the basic AF medium were 

3.4, 5.5 g/L, 210 g/L and 288 mg/L, respectively. The ethanol level at the end of AF predicted from 

sugar concentration was 12.5% (v/v). 

Methanol, acetonitrile (ACN) and formic acid were purchased in LC-MS quality from Fluka Analytical 

(Sigma-Aldrich, St.louis, USA). The analysis of grape must and wines on the FTIR spectrometer was 

performed by Laboratoire Billy et Associé (Chalon sur saone, France). Enzymatic kits (OENOSENTEC, 

Toulouse, France) were used for the quantification of malic acid, gluconic acid, trehalose and citric acid 

in wines.    

2.2 Alcoholic fermentation  

15 strains were fermented in triplicate. Each rehydrated yeast strain was sterilely inoculated at 2 * 10
6
 

cells/mL in 300 mL medium. AF was performed at 20°C without agitation in a cotton-stoppered 

Erlenmeyer flask. Since the weight loss of the Erlenmeyer flask was due to CO2 production and 

reflected fermentative activity, the stabilization of cumulated weight loss indicated the completion of FA 

(Fig. S1). Samples were collected only when the reduced sugar concentration was below 2.5 g/L for all 

strains and replicates. We underline that the fermentation conditions were strictly consistent between 

strains and replicates. For the sampling, 45 wines were centrifuged at 8 000 rpm for 20 min to remove 

cells, then the supernatants were stored in 2-mL VWR glass vials at 4°C (fully filled to avoid oxidation) 

for non-targeted analysis. The remaining supernatants were inerted with argon and stored at 4°C. The 

stored samples were scheduled for FTIR analysis, total SO2 (Ripper method, Jm and Je 1980) and 

reducing sugar (DNS method, Miller 1959) quantification. In addition, replicate samples fermented by 

the same yeast strain were pooled and scheduled for bacterial inoculation.  
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Fig. S1 The figures show the cumulated weight loss during AF (weight loss of the Erlenmeyer compared to the start of 

fermentation) for each strain. Kinetics curves were obtained by averaging the fermentation triplicates. The error bars show 

the standard deviations.  

2.3 Malolactic fermentation  

MLF was carried out with Lalvin VP41TM. The same protocol was applied to investigate the 

experimental yeast phenotype and to test MLF biomarkers in another Chardonnay wine in vitro. 

Bacterial culture was grown in 15-mL plastic tubes containing 15 mL of wine (fully-filled to avoid 

oxidation). MLF experiments were performed in duplicate. After rehydration, Lalvin VP41TM was 

inoculated at a density of 10
6
 CFU/mL and incubated at 20°C. MLF was monitored every 2-3 days by 

malic acid degradation. MLF was considered accomplished when the malic acid concentration was 

below 0.2 g/L. In parallel, a BD Accuri™ C6 flow cytometer (BD Bioscience, Le Pont de Claix, France) 

was used in combination with BOX/PI dyes (Life Technologies SAS, Saint Aubin, France) to monitor 

the bacterial population. The viable O. oeni population during MLF was efficiently discriminated and 

quantified (Salma et al. 2013). 
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2.4 High-field mass spectrometry and metabotyping 

High-field mass spectra were acquired on a Bruker solariX FT-ICR-MS platform (Bruker Daltonics, 

Bremen, Germany) equipped with a 12 Tesla superconducting magnet (Magnex Scientific Inc., 

Yarnton, UK) and an APOLO II electrospray ionization (ESI) source (BrukerDaltonics GmbH, 

Bremen, Germany) in both positive (+)ESI and negative (-)ESI modes. The ion accumulation time was 

set to 0.3 s and time of flight was 1.2 ms. The capillary voltage and spray shield voltage of the mass 

spectrometer were (+/-) 3600 V and (+/-) 500 V, respectively. The drying gas flow rate and temperature 

were set to 4 L/min and 180 °C and the nebulizer gas flow rate was set to 2 bar. Prior to performing the 

measurements, the MS was calibrated externally on clusters of arginine (10 mg/L in methanol), reaching 

a calibration error below 0.1 ppm. 45 wine samples were 1:5 diluted in methanol and directly infused at 

a flow rate of 120 µL/h in randomized order. We applied broad band detection mode with a time 

domain of 4 mega words over a mass range m/z = 100-1  000  Da.  The  spectra were accumulated 

for 200 scans in (+)ESI and 400 scans in (-)ESI. The resolving power of the spectra was 400 000 

at m/z = 400. A quality control (QC) spectrum was acquired every 8 samples in the analytical 

sequence (6 in total). The QC was the grape must before AF (1:5 diluted). The goal of 

acquiring QC was to monitor the m/z shift, sensitivity changes and the repeatability of 

metabolic profiling during an analytical batch. 

The raw spectra were processed with DataAnalysis version 4.1 (Bruker Daltonik GmbH, 

Bremen, Germany). First, each raw spectrum was calibrated internally according to endogenous 

abundant metabolites. Mass peaks were extracted at a signal-to-noise ratio (S/N) of 4. Each spectrum 

was exported in an ASCII file containing m/z and intensities of extracted mass signals. 45 ASCII files 

from each ionization mode were aligned within a 1 ppm window through an in-house program (Lucio et 

al. 2010): m/z values of overlapped peaks were averaged and intensities from corresponding samples 

were concatenated. Mass peaks found in less than 4 out of 45 samples were removed and signal 

intensities were scaled to unit variance. Metabolic profiling of 45 fermented media resulted in two data 

matrices: X+ for (+)ESI (45 samples or observations * 20 332 mass signals or variables) and X- for (-

)ESI (45 observations * 9 301 variables).  

2.5 Statistical analysis of FT-ICR-MS datasets 

X+ and X- were analyzed separately. Unsupervised multivariate analysis (Principal Component Analysis; 

PCA) was applied to reduce data dimensionality and reveal naturally-occurring similarity patterns of 
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observations (Fig. 1). Classification algorithms (or feature selection) were used to identify peaks that 

tended to discriminate MLF+ and MLF- phenotypes. A classifier was used to find a subset of variables 

(mass signals) important for phenotype prediction (Saeys et al. 2007). For non-targeted metabolomics 

data, multivariate classifiers may suffer from overfitting when the dataset contains too many sparse 

variables and very few samples (Broadhurst and Kell 2006). To deal with such problems, univariate 

statistic filters were used to rank the features before building multivariate models (Soufan et al. 2015). In 

addition, we also compared the predictive power of multiple classifiers and selected the best for further 

interpretation (Walker et al. 2014).  

Our training datasets contained 30 observations in MLF+ class and 15 in MLF- (non averaged biological 

triplicates to ensure statistical reliability). A non-parametric univariate Wilcoxon-Mann-Whitney 

(WMW) test was first applied to each aligned mass signal. The two-sided WMW test globally ranked 

the mass signals from the most discriminant to the least. We further tested the predictive power of top-

ranked discriminant masses using the following classifiers (Fig. S3): K-nearest neighbor (KNN), support 

vector machine (SVM), partial least squares discriminant analysis (PLS-DA), naive Bayesian, linear 

discriminant analysis (LDA) following PCA reduction and a decision tree. The optimal variable subset 

along with the best classifier produced the smallest 5-fold cross-validation (CV) error. The CV error was 

chosen to evaluate predictive power instead of prediction accuracy, simply because it suffers less from 

overfitting and assesses the ability of the model to predict new data (Broadhurst and Kell 2006; 

Hawkins et al. 2003). In addition, the CV procedure was randomly initiated 31 times and an 

average error was calculated. We assumed that the selected subsets of masses would provide the most 

molecular evidence for phenotypic distinction. The mass signals in this subset were re-ranked by the 

selected classifier for further interpretation. For instance, since linear SVM appeared to be the best 

classifier for both X+  and X-, SVM-Recursive Feature elimination (SVM-RFE) was used for mass signal 

ranking (Lin et al. 2012). The software used for statistical analysis comprised SIMCA-P+12 (Umetrics, 

Umea, Sweden) for PCA calculation and a set of R packages (http://www.r-project.org). The R script for 

feature ranking and classification can be found in the last part of supplementary file "Wine-MLF-

Supplementary.docx"
3
.  

2.6 Annotation of putative metabolites and network visualization 

                                                           
3
 The R script can be found in Annex 3 of the whole manuscript 
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In order to identify the chemical nature of the mass signals from FT-ICR-MS, masses in X+ and X- were 

first annotated with elemental formulas using an in-house Netcalc software application (Roullier et al., 

2015; Tziotis et al. 2011). Netcalc builds a non-directed mass difference network in which the edges 

(mass differences) represent all existing (bio)chemical reactions and functional groups. Metabolite 

candidates are represented by connected nodes; disconnected masses are removed as contaminants, 

isotopes and noise. Based on this underlying biochemical network structure, we could assign elemental 

formulas to all the metabolite candidates provided that one starting point was given (e.g. glucose 

C6H12O6 as a key metabolite in wine can be used as a starting node). The formulas and theoretical 

masses calculated were used for database annotation and structure validation. Indeed, Netcalc is capable 

of unraveling many novel metabolite candidates: the so-called ‘unknowns’ (Walker et al. 2014). 

Therefore we had to extend the scope of known metabolites by combining several databases. The new 

joint database contained metabolites from the Plant Metabolic Network (http://www.plantcyc.org), the 

Yeast Metabolome Database (http://www.ymdb.ca), the KEGG COMPOUND 

(http://www.genome.jp/kegg/compound/) and the Wine Metabolome Database 

(http://www.ehu.eus/en/web/metabolomip), and also contained oligopeptides (exhaustive combinations 

of 2 to 5 proteinogenic amino-acids).  

For the pathway interpretation, all the theoretical formulas were converted to KEGG ids using the 

webserver MassTRIX (Suhre and Schmitt-Kopplin 2008). No KEGG id was assigned if the server did 

not contain this compound, while contrariwise multiple KEGG ids were assigned to one formula if 

isomers were present. The yeast metabolic network marked with assigned theoretical formulas was 

visualized in Cytoscape 3.1.1 in combination with KEGGscape (Nishida et al. 2014; Shannon et al. 

2003).  

2.7 Metabolite identification by tandem LC-MS
2
 

If a discriminant mass was annotated by Netcalc and a hypothetical structure was given by our joint 

database, the structure was confirmed by performing LC-MS
2
 experiments with TOF-MS (Synapt 

HDMS ao-Q-TOF, Waters, Milford, MA) coupled to the ACQUITIY UPLC system (Waters, Milford, 

MA). 45 non-diluted wines were pooled and the mixture was concentrated four times by drying aliquots 

in a SpeedVac vacuum (SAVANT SPD 121 P, Thermo Scientific) and re-dissolving in 10% methanol. 

This concentrated mixture served as the matrix for all the MS/MS experiments. Reversed Phase (RP) 

chromatography for the separation of mid-to-nonpolar metabolites. LC conditions are summarized in 
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Table S1. The wine mixture was injected five times to condition the columns. MS was calibrated with 

0.01 M sodium formate solution prior to acquisition. The 5 mg/L Leucine Enkephalin solution (Waters, 

Milford, MA) was injected into the source at 25 µl/min to perform a lock mass calibration throughout 

the measurement. The calibration errors were below 1.5 ppm in (+)ESI and below 3 ppm in (-)ESI. The 

fragmentation experiments were performed in target MS/MS mode: precursor mass lists (theoretical m/z 

of hypothetic biomarkers) were prepared for both ionization modes. The TOF-MS was used to isolate 

each candidate in the imported list and fragment them using a preset collision energy. A candidate mass 

could be isolated at different retention times due to the presence of isomers (Fig. S4B). The mass range 

was set from 100 to 1 000 Da. Collision energy levels between 0 eV (only isolation) and 20 eV were 

applied for each precursor mass. The capillary voltage was fixed at 3.1 kV in (+)ESI and at 2.3 kV in (-

)ESI. When one discriminant mass signal annotated in the database was successfully isolated and 

fragmented, the fragments obtained were compared to predict in silico ones from Metlin 

(https://metlin.scripps.edu/). Explained fragments were used to validate the structure hypothesis. If 

available, a chemical standard of hypothetic metabolite was fragmented in the corresponding ionization 

and separation mode. The MS/MS spectra obtained and the retention time of the standard compound 

made it possible to confirm a definite structure.   

Table S1 UPLC conditions for RP separation 
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3 Results  

3.1 Experimentation strategy  

Our innovative study of MLF biomarker discovery was based on the direct characterization of MLF-

friendly (fermented by MLF+ strains) and MLF-harsh (by MLF- strains) environments. In reality, the 

chemical composition of grape juice is strongly dependent on the geographic origin, the variety and the 

vintage of grape (Roullier et al. 2014). Therefore we studied 45 yeast-discarded wines fermented from a 

single grape must under the same experimental conditions to ensure the biomarker interpretability. Also, 

different grape juices would modulate the impact of yeast on the AF process and the final composition 

of wine in different ways, thereby possibly altering yeast MLF compatibility (Arnink and Henick-Kling 

2005) and making the identification of biomarkers from a unique grape matrix unreliable. To resolve 

this problem, the 15 yeast strains used held reproducible MLF+ and MLF- phenotypes independent from 

the geographic origin, variety and vintage of grape. Although this approach allowed performing an 

intuitive comparison between two phenotypes, the scope of study was actually limited to: i) the 

necessary grape selection; ii) fermentation at laboratory scale; iii) sequential fermentation. For point iii), 

some winemakers prefer simultaneous AF and MLF in a yeast-bacteria co-culture (Nehme et al. 2010). 

Other potential interactions such as cell-cell contact and competition were outside the scope of the study. 

The goal here was to assess the ability of non-targeted metabolomics to extract reliable molecular 

evidence from the experimental setup. 

3.2 Yeast phenotypes and metabotypes: expected vs. observed  

Before our study, the 15 yeast commercial strains were classified into two phenotype groups MLF+ (S1 

to S10) and MLF- (S11 to S15) based on general knowledge of MLF compatibility through repeated 

winemaking experiments at the laboratory, pilot and large scales (different regions, different vintages 

and different grape varieties). However, these experimentally defined phenotypes could be slightly 

modified according to grape must composition, as explained previously. The bacterial strain and 

experimental conditions could also alter the phenotype observed (Arnink and Henick-Kling 2005). In 

order to evaluate the impact of all the additional parameters, new cMLF+ and cMLF - phenotypes were 

assigned to the 15 yeast strains according to whether the MLF could be completed by Lalvin VP41TM 

in their corresponding fermented media (Fig. S2). New phenotypes of 13 out of 15 strains were 

consistent with their older ones. The inconsistent strains were S2 and S15: S2 from MLF+ to cMLF- and 

S15 from MLF- to cMLF+ (Table S2).  
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Fig. S2 MLF kinetics was monitored by malic acid concentration and viable cell density (average of duplicates) in two starter 

culture: wines fermented by A) strain S8 and B) S12. According to the kinetics curves A), S8 was assigned cMLF+ since 

malic acid was completely degraded within 25 days and cell growth was observed from day 10. In plot B), Lalvin VP41TM 

failed to completely degrade malic acid within 30 days and no bacterial growth was observed. Therefore S12 was labeled as 

cMLF-. The same rules were used to determine the new phenotypes of other commercial strains.  
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Table S2 Yeast phenotype comparison: expected vs. observed. Observed phenotype was considered to be MLF+ if malic 

acid was completely degraded by the bacteria before day 28 (MLF- otherwise). MLF+ phenotype was sometimes also 

reflected by a considerable bacterial growth during the MLF. In such case, we reported the day from which a considerable 

biomass increase was observed. 

Strains S1 S2 S3 S4 S5 

Expected MLF+ MLF+ MLF+ MLF+ MLF+ 

Malic acid [g/L]  

(Day 28) 

0 0.5 0 0 0 

Considerable 

cell growth?  

Yes 

(Day 13) 

No Yes 

(Day 9) 

No No 

Observed cMLF+ cMLF- cMLF+ cMLF+ cMLF+ 

Strains S6 S7 S8 S9 S10 

Expected MLF+ MLF+ MLF+ MLF+  MLF+ 

Malic acid [g/L]  

(Day 28) 

0 0 0 0 0 

Considerable 

cell growth?  

No Yes 

(Day 15) 

Yes 

(Day 13) 

Yes 

(Day 21) 

No 

Observed cMLF+ cMLF+ cMLF+ cMLF+ cMLF+ 

Strains S11 S12 S13 S14 S15 

Expected MLF- MLF- MLF- MLF- MLF- 

Malic acid [g/L]  

(Day 28) 

0.7 0.5 1.1 0.9 0 

Considerable 

cell growth? 

No No No No No 

Observed cMLF- cMLF- cMLF- cMLF- cMLF+ 
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Physicochemical parameters known to be inhibitory to MLF, such as total SO2, pH and ethanol level 

(Gockowiak and Henschke 2003), did not reveal significant differences, either between strains or 

between phenotypes (data not shown). Instead, metabotyping of 15 strains (triplicates included) with 

FT-ICR-MS in (+)ESI and (-)ESI modes could be used to separate the expected phenotype groups 

(MLF+ and MLF-): PCA on data matrix X+ and X- separated two phenotypes on their first component 

(PC1) (Fig. 1), and Q
2 

values (variance predicted after cross validations) confirmed the statistical 

significance of these components (Naz et al. 2014). Interestingly, metabotypes of inconsistent strains S2 

and S15 were nevertheless in the neighborhood of other strains that belonged to the same expected 

phenotypes: S15 was close to S11-S13 on PC1 of X+ and S2 was on the right side of PC1 of X- like the 

other MLF+ strains. The metabotypes of the 15 strains seemed to be more consistent with the expected 

phenotype groups (MLF+ and MLF-) rather than those observed (cMLF+ and cMLF-). This issue will 

be discussed in the next section. We kept expected phenotypes as sample labels for further studies.   

 

Fig. 1 A) and B) are the PCA score plots for data matrix X+ and X-, respectively. In both plots, the extremities of the “stars” 

represent the metabolic profiles (exometabolome of yeast). Samples from the fermentation triplicates of the same yeast strain 

were connected to their center (the rectangle). These “star plots” reveal both the separations between strains and variations 

between replicates. Color codes (blue and red) are assigned for expected phenotypes.   

3.3 Extraction of discriminant masses 

Univariate Wilcoxon-Mann-Whitney (WMW) tests and classification methods on metabolic profile 

matrices X+ and X- with labeled samples (MLF+ and MLF-) were applied to extract subsets of 
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discriminant masses to obtain the best predictive power. For both X+ and X-, the SVM suggested the 

lowest 5-fold CV error (4.4%) among all the classifiers (Fig. S3). We took the top 2000 mass signals 

from (+)ESI mode (p-value < 0.0073) and the top 1900 from (-)ESI (p-value < 0.045) as discriminant 

masses. These masses provided molecular evidence for yeast phenotypic distinction. The importance of 

each mass was further evaluated by SVM-RFE and top ranked features were considered to provide the 

most molecular evidence (Table 2). 

 

Fig. S3. We calculate the misclassification rate of the most discriminant subsets of mass signals according to a two-sided 

WMW test. The 5-fold CV error was calculated for six classification models. The x-axis indicates the top features (ex. top 10, 

100 ...). The y-axis shows the 5-fold CV error of the top features with different classification methods. The arrows indicate 

the classifier selected. The triangle indicates the lowest CV error reached by the selected classifier.   

3.4 From discriminant masses to potential biomarkers 

A pipeline combining network (formula) annotation, database annotation, tandem LC-MS
2
 identification, 

comparison with standard compounds and physiological tests was developed for the biochemical 

investigation of statistically-discriminant masses (Fig. 2). The pipeline generated potential biomarkers at 

four stages: discriminant formula, discriminant formula with hypothetical structure (Stage 1), 

discriminant formula with exact structure (Stage 2) and biomarker with potential roles (Stage 3).  
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Fig. 2 Workflow of biomarker identification from yeast metabolic profiles 

Thanks to the decision tree in Fig. 2, m/z = 195.051 was identified as a Stage 3 biomarker. This mass 

signal in (-)ESI, according to its p-value, was within the optimal subset of discriminant features and was 

significantly higher in MLF+ samples (Fig. 3A). The elemental formula assigned by Netcalc was 

C6H12O7. This neutral formula was used to find 'D-Gluconic acid' in our database. The corresponding 

theoretical ion was isolated in reversed phase LC-MS with an error tolerance of 5 ppm. The only LC-MS 

feature in the extracted ion chromatogram was at RT = 1.02 min (Fig. S4A). The tandem MS targeting 

this feature resulted in four annotated fragments: [C2H3O3]
-
, [C4H3O3]

 -
 , [C5H5O4]

 -
 and [C6H7O5]

 -
 with 

a 5eV collision energy (Fig. S4D). All four fragments were found in the MS/MS spectrum predicted by 

the Metlin metabolite database (MID = 345). A 5 ppm standard D-gluconic acid (49-53 wt. % in H2O) 

solution diluted in 10% ethanol was analyzed in (-)ESI mode with the same gradient and fragmented 

with the same collision energy. D-gluconic acid standard was eluted at RT = 1.05 min close to the 

unknown LC-MS feature and all four relevant fragments were confirmed (Fig. S4C). At this stage, the 
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discriminant m/z = 195.051 was considered as a potential biomarker with a known structure. We note 

that the LC-MS/MS could not distinguish similar isomeric structures such as L-galactonic acid, L-

mannonic acid. Although furthur structure validation is needed, D-gluconic acid was considered as the 

identified structure in this study since it was the most reported in wine. The same strategy was applied 

for other biomarkers identified. 

We also studied the physiological role of this potential biomarker on Lalvin VP41TM in an MLF-

uncompleted wine produced in the Loire region of France. This wine initially contained 4.5 g/L malic 

acid and 108 mg/L D-gluconic acid. We supplemented this wine with D-gluconic acid standard solution 

to reach a final concentration of 0.5 g/L. This new concentration was set higher than the usual 

concentration (0.1 – 0.3 g/L) found in wine (Peinado et al. 2003) in order to elucidate the exact role of 

the biomarker. We monitored the MLF as a function of malic acid concentration in both the 

supplemented and control media (Fig. 3B). The kinetics revealed accelerated degradation of malic acid 

when the medium was supplemented with D-gluconic acid. In fact, the malic acid was completely 

consumed at day 11 whereas 1.5 g/L remained in the control media. According to the decision tree, the 

discriminant m/z = 195.051 was considered as a Stage 3 potential MLF+ biomarker. In other words, our 

identification strategy suggested that D-gluconic acid is a novel MLF stimulatory biomarker.  

Also, using negative mode RP-LC-MS
2
, we identified the structure of two other discriminant masses m/z 

= 341.109 and m/z = 191.02 as trehalose and citric acid, respectively (Fig. S4EFGH). Our study is the 

first to highlight their importance for phenotypic distinction (Fig. 3CE) and confirm their stimulatory 

role (Fig. 3DF). A medium supplemented with all three Stage 3 MLF+ biomarkers also showed 

enhanced malolactic activity but without a synergistic effect (Fig. 3G).  

Not all the discriminant mass signals were thoroughly identified along our decision tree. Firstly, due to 

the limitation of our wine database, nearly 80% of discriminant formulas remained unknown (Table 1). 

These biomarker candidates were no longer considered for identification in the current study but their 

putative structures could in future be deduced on the basis of the surrounding nodes in the mass 

difference network (Walker et al. 2014). On the other hand, our wine database revealed a total of 246 

putative biomarkers from X- and 600 from X+ (Table 1). Some of these putative structures were 

confirmed by LC-MS
2 

experiments in combination with the Metlin metabolite database. However, we 

did not validate their structure further with a chemical standard or test their physiological impact, simply 

because the abundance of the corresponding LC-MS features was low. In fact, low-abundant metabolites 
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alone would have only slight physiological impact or applicability to winemaking. However, it would be 

interesting in the future to test their synergistic effect with other compounds in the same family. 

Examples of structure elucidation for an oligopeptides (Fig. S5A) and two phenolic compounds (Fig. 

S5BC) are given. In other cases, isomers were present for a discriminant formula. For instance, the 

discriminant mass m/z = 289.072 (Neutral formula: C15H14O6) was isolated in negative mode LC-MS
2
 

with two abundant isomeric peaks: RT = 4.78 min and 5.69 min (Fig. S4B). The structures of the two 

LC-MS features were confirmed via MS/MS and comparison with analytical standards as respectively 

(+)-Catechin and (-)-Epicatechin (data not shown). However, since direct infusion FT-ICR-MS cannot 

separate isomers, we could not statistically distinguish which of the two possible structures was actually 

the potential biomarker. Therefore both features were assigned as Stage 2 biomarkers. In future studies, 

the physiological impact of each feature will be revealed by in vitro tests. Details of certain Stage 1-3 

biomarkers can be found in Table 2. We noted that several methionine/cysteine-containing oligopeptides 

were deduced as MLF- compounds (e.g. m/z = 665.243 and m/z = 533.19).  

Table 1 The table summarizes the statistics of potential biomarkers extracted from two metabolic profiling data matrices, X- 

and X+, obtained from (-)ESI and (+)ESI-FT-ICR-MS respectively. The number of formula annotations for discriminant 

masses and of Stage 1/2 & Stage 3 biomarkers (Fig. 2) are given.  

Biomarker X- Discriminant Formula
 

Stage 1/2 Biomarkers Stage 3 Biomarkers 

MLF+ 1064 237 3 

MLF- 224 6 0 

Biomarker X+ Discriminant Formula Stage 1/2  Biomarkers Stage 3 Biomarkers 

MLF+ 1163 588 0 

MLF- 202 12 0 
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Fig. 3 A) C) E) shows the (-)FT-ICR-MS intensities of three discriminant mass signals: m/z = 195.051, 341.109 and 191.02. 

The intensities of all three signals were significantly higher in the MLF+ samples according to the Wilcoxon-Mann-Whitney 

test. The three discriminant masses were identified as gluconic acid, trehalose and citric acid by tandem MS. B) D) F) G) 

were the malic acid degradation kinetics in control media (non-supplemented wine) and in media supplemented with 

standards of gluconic, trehalose, citric acid and a mixture of the three. The initial levels of the three standards were 108 mg/L, 

120 mg/L and 310 mg/L, respectively. The concentration after supplementation was 500 mg/L for all of them. The purple 

curve is the average of MLF duplicates in control media. The error bars on the green curve represent the standard deviations 

of MLF triplicates.  
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Fig. S4 A) B) are the extracted ion chromatograms of pooled wine studied in LC-(-)-ESI-MS. Masses of the two extracted 

ions are 195.051 & 289.072 C) E) G) are tandem MS spectra of analytical standards D-Gluconic acid (5 ppm), D-(+)-

Trehalose dihydrate (10 ppm) and Citric acid monohydrate (80 ppm) studied in LC-(-)-ESI-MS. Precursors and fragments 

explained by Metlin were annotated with elemental formula. The retention times of the three standards were respectively 

1.05min, 1.1min & 1.3min and collision energies were respectively 5eV, 10eV and 10eV. D) F) H) Tandem MS spectra of 

experimental LC features with m/z= 195.051, 341.109 and 191.02 in the pooled wine. Fragment peaks with black triangles 

were fragments that overlapped with the MS/MS spectra of corresponding analytical standards. Overlapped fragments 

confirmed the hypothetical structures. 
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Fig. S5 Tandem MS patterns are shown for three discriminant masses (theoretical): A) m/z = 344.254 or Ile-Val-Leu B) m/z = 

258.992 or Caffeic acid 3-sulfate C) m/z = 295.046 or Coutaric acid. A) was isolated in (+) ESI and B) C) in (-) ESI. 

Precursor peaks are annotated with red triangle. Precursor peaks and fragments explained by Metlin were annotated with 

elemental formulas. Hypothetical structures and neutral losses are presented.  

3.5 Global interpretation of potential biomarkers 

In addition to identifying individual biomarkers, we also tried to make a global interpretation of the 

biochemical nature of MLF+ and MLF- discriminant masses. This interpretation would provide 

additional molecular evidence for phenotypic distinction. All the formula-assigned discriminant masses 

were included in the study. The 2-dimensional van Krevelan diagram (VKD) was chosen to visualize the 

chemical classes of wine compounds (Gougeon et al. 2009; Roullier et al. 2014) based on H/C and O/C 

ratios (Fig. 4A). In (+)ESI mode, we observed a huge pattern of MLF+ mass signals belonging to 

amino-acids and oligopeptides (Fig. 4C). As can be seen, the MLF+ signals detected in (-)ESI mostly 

belong to carbohydrates and phenolic compounds (Fig. 4E). In both ionization modes, we observed 

sulfur-containing MLF- signals in the region of oligopeptides (Fig. 4BD), which also suggests the 

presence of cysteine and methionine in the peptide sequence. The specificity of these patterns 

(representing only discriminant formulas) was confirmed by comparing the VKD of all the formulas 

annotated in two ionization modes (Fig. S6). 
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Table 2 Details of several stage 1- 3 biomarkers (Fig. 2). Here we present the biomarker stage, theoretical m/z, neutral formula annotated by Netcalc, putative 

structure, Metlin ID, biomarker type, isolated unique LC-MS feature (MS mode, RT and mass accuracy), P-value (two-tailed WMW test), ranking by SVM-RFE and 

the ratio between the mean intensity in MLF+ and MLF- group. 

Stage m/z Neutral Formula Hypothetical Structure Metlin Type Error (ppm) RT (min) MS Mode P-value SVM-RFE Ratio 

3 195.051 C6H12O7 D-gluconic acid 345 MLF+ 2.2 1.02 (-)ESI 2 *10
-2

 1028/1900 1.4 

3 341.109 C12H22O11 D-(+)-Trehalose 3479 MLF+ 1.6 1.1 (-)ESI 4 *10
-2

 1600/1900 1.1 

3 191.02 C6H8O7 Citric acid 124 MLF+ 3.8 1.28 (-)ESI 3 *10
-2 

1481/1900 1.3 

1 344.254 C17H33N3O4 Ile-Val-Leu 18815 MLF+ 0.05 6.1 (+)ESI 2 *10
-3

 1825/2000 1.6 

1 258.992 C9H8O7S Caffeic acid 3-sulfate 96064 MLF+ 1.2 2.3 (-)ESI 2 *10
-2

 1368/1900 1.4 

1 295.046 C13H12O8 Coutaric acid 90083 MLF+ 1.8 4.6 (-)ESI 1 *10
-2

 1619/1900 1.2 

1 275.017 C6H13O10P 6-Phospho-D-gluconate 367 MLF+ NA
1
 NA

1
 (-)ESI 1 *10

-2
 853/1900 1.4 

1 193.035 C6H10O7 D-Glucuronate 161 MLF+ NA NA (-)ESI 3 *10
-2

 1613/1900 1.3 

1 535.152 C18H32O18 1.4-beta-D-Glucan 58599 MLF- NA NA (-)ESI 2 *10
-2

 760/1900 0.9 

1 244.093 C9H13N3O5 Cytidine 3376 MLF+ 0.4 1.1 (+)ESI 1 *10
-3

 735/2000 1.2 

1 268.104 C10H13N5O4 Adenosine 86 MLF+ 1.6 1.3 (+)ESI 6 *10
-3

 811/2000 1.4 
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1 243.062 C9H12N2O6 Uridine 90 MLF+ NA NA (-)ESI 3 *10
-2

 1625/1900 1.4 

1 387.261 C18H34N4O5  [Gly, Val, Pro, Leu]
 2
 -

2
 MLF+ 0.6 & 0.3 5.1 & 5.9 (+)ESI 2 *10

-3
 687/2000 1.6 

1 665.243 C29H40N6O8S2 [Glu, Pro, Met, Cys, Trp] - MLF- NA NA (+)ESI 5 *10
-3

 195/2000 0.9 

1 553.190 C23H32N6O6S2 

[His, Tyr, Met, Cys] 

or [Cys, Met, Asn, Trp] 

- 

MLF- NA NA (+)ESI 6 *10
-3

 1700/2000 0.9 

2 306.076 C10H17N3O6S 

[Asp, Cys, Ala] or 

[Cys, Glu, Gly] (Glutathione)
 3
 

- 

MLF+ 2.4 & 1.2 1.1 & 4.5  (-)ESI 1 *10
-4

 738/1900 1.9 

1 399.145 C15H22N6O5S S-Adenosyl-L-methionine 3289 MLF+ 0.1 1.1 (+)ESI 5 *10
-3

 1638/2000 1.6 

1 255.233 C16H32O2 Palmitic acid 187 MLF+ NA NA (-)ESI 4 *10
-2

 1283/1900 1.3 

1 173.009 C6H6O6 cis-aconitic acid 3300 MLF+ 1.3 1.2 (-)ESI 2 *10
-2

 1434/1900 1.4 

1 177.040 C6H10O6 Glucono delta-lactone 353 MLF+ 2.1 (-)ESI 2.1 1 *10
-2

 1245/1900 1.4 

1 
The mass signal was neither isolated nor fragmented in LC-MS 

2 
Only one or more possible amino acid combinations were assigned for oligopeptides without any sequence information, so Metlin ID is not given. 

3
 The feature at RT=1.1 min was confirmed as glutathione by a chemical standard (data not shown) 
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3.6 Connections between potential biomarkers in metabolic pathways 

By assuming that the yeast exometabolome reflects its intracellular metabolism (Fu et al. 2014; Kell et al. 

2005), certain mass signals detected in the yeast extracellular environment might provide metabolic 

pathway information. We combined all the formula annotations from X+ and X- and converted them to 

KEGG ids. Each KEGG ids held a one-tailed WMW p-value (the lower one was taken if this id 

coexisted in two matrices) that indicated how significant the abundance of the potential metabolite was 

for the MLF+ phenotype. By coloring the yeast metabolic network according to p-values, we observed 

interconnected low p-value metabolites (Fig. 5A). These ‘enriched’ modules might characterize the 

metabolic pathway of the MLF+ phenotype. For instance, the stage 3 biomarker D-gluconic acid was 

involved in such a module: it was connected to the enriched pentose-phosphate-pathway via 6-Phospho-

D-gluconate (Fig. 5B). In the TCA cycle (Fig. 5C), apart from the stage 3 biomarker citric acid, cis-

aconitate, isocitrate, oxolosuccinate and malate were also enriched for the MLF+ phenotype. The 

enriched module observed in Fig. 5D was a subpart of the shikimate pathway that synthesizes aromatic 

amino acids from carbohydrates. Besides the stimulation effect of these amino acids, the shikimate 

pathway is linked to aromatic compound production (Gientka and Duszkiewicz-Reinhard 2009), which 

might be related to the MLF+ phenolic compounds observed in VKD (Fig. 4E). The module in Fig. 5E 

was related to yeast nucleotide metabolism, which might also have a physiological impact on LAB 

(Kilstrup et al. 2005). 

 

Fig. S6. VKDs of all Netcalc-annotated mass signals in data matrix A) X+ B) X-. Each solid ball represents an elemental 

formula. The diameter of a solid ball is correlated to the average intensity of the corresponding mass signal in 45 samples.  
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Fig. 4 A) By plotting H/C against O/C of standard compounds in wine, the VKD identifies regions specific to chemical 

families according to Roullier-Gall et al. (2014); B) VKD of MLF- mass signals in X+; C) VKD of MLF+ mass signals in X+; 

D) VKD of MLF- mass signals in X-; E) VKD of MLF+ mass signals in X- . In B) C) D) E), each solid ball represents an 

elemental formula. The diameter of a solid ball is correlated to the average intensity of the corresponding mass signal in 45 

samples. 
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4 Discussion 

4.1 Theoretical or observed phenotype? 

In practice, when a novel strain is generated, the strain producer launches a cumulative assessment of its 

MLF-compatibility. Information is collected from winemakers and researchers in different regions, 

resulting in a global compatibility score or a theoretical MLF+/MLF- phenotype. New winemakers can 

select a suitable strain for AF that would potentially benefit subsequent MLF based on such information. 

In reality, as explained above (in 3.2), small differences can occur between empirical (cMLF+ and 

cMLF-) and theoretical phenotypes, probably due to the composition of the grape juice and experimental 

conditions. We recall that all 45 wines were fermented from the same grape juice under the same 

experimental conditions, so exometabolomic profiles should allow clustering S2 with other MLF- strains 

and S15 with MLF+ strains. However, that was not the case here (Fig. 1), probably because of the 

limitations of  the analytical method chosen. Although ‘non-targeted’, direct-infusion FT-ICR-MS 

detects only non-volatile compounds in the mass range 100 – 1000 Da. We automatically overlooked 

larger molecules, such as longer peptides and proteins. Yeast releases of such components are matrix-

dependent (Lochbühler et al. 2010) and might explain the new phenotypes observed (Branco et al. 2013). 

Indeed, within the scope of the analytical method chosen, molecular evidence pointed more to 

theoretical phenotypic distinction (Fig. 1). Therefore we assumed that using theoretical phenotype labels 

(based on repeated winemaking experiments) would ensure the reliability of the biomarkers extracted.   

4.2 First molecular evidence: individual biomarkers 

Non-targeted metabolomics was capable of capturing the molecular evidence underlying phenotypic 

distinction. From the statistical viewpoint, classifiers using a subset of detected mass signals 

(discriminant masses) had high predictive power (Fig. S3). In other words, a new strain might be 

correctly classified by the existing statistical model based solely on its exometabolome.  
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Fig. 5 A) The yeast metabolic network visualized with Cytoscape. The nodes represent yeast metabolites in the KEGG 

database. The shades of blue represent the p-values smaller than 0.1: the darker the color, the lower the p-value and the more 

significant the abundance in the MLF+ phenotype. Yellow nodes are not statistically significant metabolites (p-value > 0.1) 

and grey nodes represent metabolites that were not detected or annotated in X+ and X+. Edges represent biochemical reactions. 

B) C) D) E) were the enriched modules observed for the MLF+ phenotype. In B) and C) the pink node represents the two 

Stage 3 biomarkers.  
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We developed a workflow to identify MLF-biomarkers from this subset of masses. The pipeline 

combining structural inference (formula & database annotation), tandem MS identification and in vitro 

tests, successfully demonstrated the stimulatory impacts of gluconic acid, trehalose and citric acid. 

These novel MLF biomarkers can be metabolized by both S. cerevisae and LAB according to previous 

studies. For instance, D-gluconic acid is found naturally in grape juice and is involved in the pentose 

phosphate pathway of yeast (Peinado et al. 2003). Some LAB strains could also metabolize this 

compound (Radler and Bröhl 1984). Trehalose can be synthesized by yeast and also be used as a carbon 

source for growth (Francois and Parrou 2001; Jules et al. 2008). Enzymatic machinery varies from one 

strain to another, so concentration changes during AF. On the bacterial side, free trehalose in fermented 

media is a preferred energy source (Liu et al. 1995) channeled to central catabolic pathways via the 

phosphotransferase system (PTS), thereby enhancing the metabolic activity of O. oeni (Jamal et al. 

2013). Concerning citric acid, citrate synthase (CS) was shown to be essential for the important yeast 

glyoxylate cycle when growing in a sugar-depleted medium (Lee et al. 2011). The presence of the acid 

in MLF media enhances the transmembrane pH gradient, which generates energy for O. oeni in the form 

of proton motive force (Augagneur et al. 2007).  

As for stage 1-2 biomarkers with hypothetical structures (Table 2), some belonged to known biomarkers 

or known compound families including sugar-related compounds, nucleosides (Lerm et al. 2010), 

peptides such as glutathione (Marchand and de Revel 2010) and long-chain fatty acids such as palmitic 

acid (Capucho and Romão 1994). The advantage of non-targeted metabolomics stood out here by 

revealing simultaneously an amount of biomarkers that were known to have a positive effect on MLF. 

Unlike MLF+ biomarkers, fewer novel MLF- biomarkers were annotated (Table 2). For instance, we 

found sulfur-containing oligopeptides that could be fragments of potential antimicrobial peptides. 

Comitini et al. (2005), Osborne and Edwards (2007) as well as Nehme et al. (2010) discovered yeast-

derived proteinaceous compounds active against malolactic bacteria. Among these compounds, 

antimicrobial peptides are an abundant and diverse group of molecules. Their amino-acid composition, 

cationic charge and mass allow them to attach and insert into membrane, leading to membrane 

permeabilization and to the modification of intracellular molecules (Yeaman and Yount 2013). So far, 

the only yeast-derived antimicrobial oligopeptide identified has been in the form of fragments of 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein (Branco et al. 2013). Although plant-

derived cystein-rich short peptides were shown to have antimicrobial activity against gram-positive 

bacteria (Tailor et al. 1997), yeast-derived sulfur-containing peptides have never been studied.  
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All in all, the workflow developed revealed more than 800 MLF putative biomarkers by combining the 

data of two ionization modes. For three of them, we confirmed their exact structure and physiological 

roles. The structures and roles of other putative biomarkers could be revealed in the future by targeted 

studies. Many of the (hypothetical) structures of all the stage 1 to 3 biomarkers were known for their 

positive effect on O. oeni. This consistency not only confirmed the validity of molecular evidence 

through yeast exometabolome comparison, but also revealed the potential interest of new and 

unexpected MLF-biomarkers discovered from this pipeline.        

4.3 Additional molecular evidence: biochemical traits 

Furthermore, more than one thousand Netcalc-annotated discriminant masses were excluded by the 

pipeline since they were ‘unknowns’ (Table 1). Biochemical traits of this huge pool of annotated 

formula might also provide reliable molecular evidence through global interpretation. For instance, the 

VKD confirmed the carbohydrate and amino-acid nature of MLF+ discriminant masses (Fig. 4CE). 

These chemical families have been widely studied for yeast and LAB: the impact of amino acids is 

linked to the auxotrophy of O. oeni for certain amino acids (e.g., glutamate, arginine and tryptophan) 

(Remize et al. 2006). Carbohydrate is involved in phenomena such as yeast autolysis and yeast-bacteria 

competition for nutrition (Giovani et al. 2012). The large variation of yeast carbohydrate assimilation 

and release during AF and autolysis is controlled by complex regulatory systems (Francois and Parrou, 

2001; Hernawan and Fleet, 1995). Regarding O. oeni, previous studies have suggested that appropriate 

sugar mixtures could significantly improve the productivity of O. oeni cultures (Zhang and Lovitt 2005). 

The VKD also highlighted MLF+ oligopeptides (Fig. 4C), a class of nitrogen compounds that were 

considered as nutrients released by yeast. In fact, O. oeni benefits greatly from nitrogen compound 

release, especially the smallest (<1kDa) fraction (Feuillat et al. 1977). These short peptides, released by 

yeast protease activity (Alexandre et al. 2001), may compensate bacterial amino-acid deficiencies 

(Fernandez et al. 2004). Our metabolomics approach targeting small metabolites (<1kDa) confirmed the 

importance of such compounds. In addition, our novel finding during biomarker discovery was the 

amino acid composition and even the sequence of several MLF+ oligopeptides (Table 2). Another 

MLF+ pattern, observed on VKD, represented the phenolic compounds (Fig. 4E). They could either 

stimulate or inhibit MLF according to Lerm et al. (2010).  

Clear and compact elemental formula patterns were observed in Fig. 4B and Fig. 4C, representing 

respectively MLF- sulfur-containing peptides and MLF+ oligopeptides. Such an amount of compounds 



 

196 
 

 

belonging to the same family indicated a potential synergistic effect: a combination of MLF+ factors 

that would provide enhanced or additional effects (Zhang and Lovitt 2005). 

4.4 Application of the molecular evidence 

The three final stage biomarkers, as well as their mixture, demonstrated a positive impact on MLF in 

another wine (Fig. 3BDFG). In the future, their interest for medium supplementation should be tested in 

other wines, with other LAB strains and at pilot and large scales. Based on the biochemical traits of 

MLF-biomarkers and the potential synergistic effect (Fig. 4), supplementing a mixture of compounds 

could also be considered to improve the MLF process. On the other hand, targeted studies on important 

compound families, such as MLF- sulfur-containing peptides and MLF+ oligopeptides, might discover 

new MLF-biomarkers. Enriched modules in the yeast metabolic network (Fig. 5) could be important 

metabolic characteristics of the MLF+ phenotype capable of providing new paths for metabolic 

engineering.  

5 Concluding remarks 

Indirect yeast interaction (stimulation or inhibition) with LAB is a research hot spot in enology. 

Regarding the experimental design described, non-targeted metabolomics showed its ability to unravel 

molecular evidence underlying phenotypic distinction. We not only built reliable classifiers based on a 

subset of detected mass signals, but also identified MLF-biomarkers and found particular biochemical 

traits. The reliability of molecular evidence was emphasized by the consistency of certain biomarkers 

and large compound families with previous knowledge, together with the physiological impact 

confirmed. In the future, non-targeted metabotyping could be applied to similar experimental designs but 

using another grape juice, with other yeast strains, at larger scales or with other analytical methods. Such 

studies would extend the scope of the molecular evidence and MLF-biomarker discovered, leading to the 

creation of a comprehensive database. Beside the wine model used in this study, our approach could be 

applied to interaction studies in other microbial consortiums such as cheese, beer and soil. 
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2. Additional results 

2.1 Observed phenotype in the grape must B 

In the accepted article, only the observed phenotypes (cMLF+ and cMLF- according to whether the 

MLF was completed in the fermented media) in grape Must A are presented. Actually we also evaluated 

in the same way the behavior of Lalvin VP41 in wines fermented from Must B collected in the Loire 

region. New phenotypes nMLF+ and nMLF- were assigned in a similar way (Table 6).  

New phenotypes of 9 out of 15 strains were consistent with the expected ones. The consistency here was 

lower than in Must A (13 out of 15). For the same strain, the assigned new phenotype were sometimes 

different in the two musts. For instance, S2 was assigned cMLF- in Must A but nMLF+ in Must B. Our 

hypothesis here was that two grape musts would modulate the impact of yeast on the AF process and the 

final composition of wine, which alters as well the behavior of bacteria.  
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Table 6 Comparison of expected phenotype and observed phenotype (c and n) in two grape musts. 

Strain  Expected Must A Must B 

S1 MLF+ cMLF+ nMLF+ 

S2 MLF+ cMLF- nMLF+ 

S3 MLF+ cMLF+ nMLF+ 

S4 MLF+ cMLF+ nMLF+ 

S5 MLF+  cMLF+ nMLF- 

S6 MLF+ cMLF+ nMLF- 

S7 MLF+ cMLF+ nMLF+ 

S8 MLF+ cMLF+ nMLF- 

S9 MLF+ cMLF+ nMLF- 

S10 MLF+ cMLF+ nMLF+ 

S11 MLF- cMLF- nMLF- 

S12 MLF- cMLF- nMLF- 

S13 MLF- cMLF- nMLF+ 

S14 MLF- cMLF- nMLF- 

S15 MLF- cMLF+ nMLF+ 

 

2.2 Evaluation of feature selection algorithms 

The novel feature selection algorithm described in the accepted paper « New molecular evidence... » 

was developped to handle the problem of overfitting in non-targeted metabolomics. We also applied 

traditional OPLS-DA approaches on data matrices X+ and X-. The prediction accuracy of both models 

was Q
2
 = 0.956 (calculated by a 7-fold cross validation), thus the prediction error was 0.044. Applying 

our algorithm resulted in the same prediction error with top 2000 features from X+ and top 1900 from X-. 
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Both algorithms have optimized the prediction power of statistical models. The way of optimization was 

however different: OPLS-DA takes into account all features and corrects/transforms the signal 

intensities, while our algorithm selects an optimal subset of features and the optimal classifier without 

modifying the intensities. 

If VIP>1 indicates the statistical discrimination, OPLS-DA on X+ has extracted 936 discriminant 

features and 345 of them were within the subset of 2000 features selected by our algorithm. Similarly, 

194 out of 300 discriminant features extracted from X- by OPLS-DA were included in the subset of 

features selected by our algorithm. In order to clearly compare two algorithms, we performed two-sided 

WMW tests on features selected by OPLS-DA. The p-value distribution of 936 VIP>1 features was 

displayed in Figure 25A. Correspondingly, we plotted the VIP score distribution of top 936 features re-

ranked by SVM-RFE
4

 (Figure 25B). The distributions indicate that the two algorithms were 

complementary: features holding a VIP>1 could have a high univariate p-value (not significantly 

discriminant), while important features suggested by SVM-RFE don't necessarily have a high VIP score. 

Accordingly, the choice between two algorithms can be subjective when the statistical models hold 

similar CV errors. Our strategy was to first extract discriminant features with the novel algorithm. 

Meanwhile an OPLS-DA model was built on the whole dataset and VIP scores were assigned to these 

features. If a discriminant feature was further recognized as a putative biomarker, we always made sure 

that its VIP score was higher than 1. In this way, this putative biomarker should be statistically reliable. 

Actually all biomarkers in Table 2 of the accepted paper « New molecular evidence...» were extracted in 

this way. 

                                                           
4 Since SVM is the best classifier for X+, SVM-RFE was used to re-rank the features according to their 

importance to the classification. 
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Figure 25 Comparison between two FS algorithms A) the p-value distribution of 936 VIP>1 features from X+ B) 

the VIP score distribution of top 936 features from X+  ranked by SVM-RFE C) the p-value distribution of 300 

VIP>1 features from X- D) the VIP score distribution of top 300 features from X-  ranked by SVM-RFE 

2.3 Results of metabolic profiling on LC-MS 

All results presented until now were based on the datasets generated by FT-ICR-MS. Same statistical 

analysis were applied for LC-MS data matrix L-: 

i)  Phenotypic distinction between MLF+ and MLF- strains was observed on the second PC (Figure 26A) 

ii) For the selection of discriminant features, SVM appeared to be the best classifier again (Figure 26B). 

A 5-fold CV error of 0.044 was obtained with top 950 features (p-value < 0.037). 

The extracted features were separated into MLF+ (more abundant in MLF+ phenotype) and MLF- class 

according to a one-tailed WMW test. Meanwhile the elemental formulas of these m/z features were 

assigned by Netcalc. According to the VKDs, MLF+ features were mainly located in the amino 
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acids/peptides region (Figure 26C) , while a phenolic compound pattern was observed for MLF- features 

(Figure 26D). Interestingly, the carbohydrate pattern of MLF+ features presented in Figure 4E of the 

paper « New molecular evidence...» was not clearly observed here probably because sugars were badly 

retained by RP column. Conversely, the clear pattern of amino acids/peptides from LC-MS data was not 

observed for MLF+ features from negative mode FT-ICR-MS, which might be explained by the ion 

suppression effect for direct infusion techniques. These differences indicated the complementarity in 

terms of compound detection between metabolic profiling on FT-ICR-MS and on LC-MS [2].  

An advantage of LC-MS metabolic profiling is that detected features hold both RT and m/z. Such 

information could be used to discover some biochemical traits of biomarkers. 2-dimensional plots RT-

m/z of each feature have unraveled clusters specific to MLF+ and MLF- classes. In fact, most MLF+ 

features were located in a cluster representing middle molecules (300 < m/z <600) eluted at RT = 4 - 6 

min (Figure 26E). MLF- features were more dispersed but we still observed a cluster of small molecules 

(m/z < 200) that was eluted at RT = 6 min (Figure 26F). Global interpretation via VKD and via RT-m/z 

2-dimensional plot could both unravel the biochemical nature of discriminant features. The second 

presentation brings additonal information about compound polarity. The way to identify different 

families of compounds from the second presentation is still under development.  
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Figure 26 Data analysis for LC-MS A) PCA score plots for data matrix L- B) FS algorithm that evaluates different 

classifiers and different subsets of features from L- . C)D) VKDs of Netcalc-annotated features from MLF+ class 

and MLF- class. E) F) 2-dimensional plot m/z as a function of RT for features in MLF+ class and MLF- class, 

respectively. In C)-F), the diameter of each dot was inversely proportional to p-value: the smaller the p-value is, 

the bigger is the dot.  
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2.4 Additional putative MLF-biomarkers identified from X+, X- and L- 

Elemental formulas of discriminant features extracted from X+, X- and L- were used for database 

annotation. Details of this process can be found in the paper « New molecular evidence...». Examples of 

putative biomarkers that are not included in Table 2 of the accepted paper are listed here in Table 7. All 

discriminant features hold a VIP score >1. 

Table 7A Details of putative Stage 1 biomarkers from X+, X- and L-  not presented in the paper « New molecular 

evidence...». Here we present theoretical m/z, neutral formula annotated by Netcalc, putative structure, biomarker 

type, MS mode and RT (min) only if it's a LC-MS discriminant feature.  

m/z Neutral Formula Hypothetical Structure Type MS Mode RT (min) 

*
205.035 C7H10O7 2-Methylcitric acid MLF+ ESI (-) 

**
- 

258.038 C6H14O8N Glucosamine-1P MLF+ ESI (-) - 

300.049 C8H16O9N 
N-Acetyl-D-Glucosamine 6-

Phosphate 
MLF+ ESI (-) - 

331.067 C13H16O10 gallate + glucose MLF+ ESI (-) - 

*
159.03 C6H8O5 Oxoadipic acid MLF- ESI (-) 

***
7.4 

263.129 C15H20O4 Abscisic acid  MLF- ESI (-) 7.7 

273.171 C14H26O5 Hydroxytetradecanedioic acid MLF+ ESI (-) 8.3 

611.145 C20H32O12N6S2 Oxidized glutathione MLF+ ESI (-) 1.2 

473.153 C18H26O11N4 [Asp, Asp, Glu, Pro] MLF+ ESI (-) 5.6 
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243.171 C12H24O3N2 [Leu, Leu] MLF+ ESI (-) 5 

298.177 C14H25O4N3 [Ala, Leu, Pro] MLF+ ESI (-) 3.5 

330.167 C14H25O6 
[Ala, Glu, Leu]  

or [Asp, Val, Val] 
MLF+ ESI (-) 4 

277.119 C14H18O4N2 [Pro, Tyr] MLF- ESI (-) 3.7 

577.212 C30H34O6N4S [Cys, Phe, Phe, Tyr] MLF- ESI (-) 4.2 

*
258.110 C8H20O6NP Glycerophosphocholine MLF+ ESI (+) - 

288.203 C12H25O3N5 [Leu, Arg] MLF+ ESI (+) - 

* 
LC-MS

2
 fragments available for structure elucidation in Figure 27  

** 
A FT-ICR-MS discriminant mass if no RT is given 

***
A LC-MS discriminant feature if RT is given 

We note that in negative mode LC-MS, many putative biomarkers were recognized as peptides by our 

database, which was consistent with the pattern observed in Figure 26C. In (-)ESI FT-ICR-MS, very few 

biomarkers appeared to have peptide nature. Such biomarkers were discovered mainly from (+)ESI FT-

ICR-MS (described in the paper « New molecular evidence...»). It seems that chromatographic 

separation reduces ion competition effect and allows the detection of amino acids/peptides also in (-)ESI. 

LC-MS metabolic profiling enables the distinction between isomeric compounds, leading to more 

definite biomarkers. For instance, m/z = 330.167 was eluted at RT = 1.8, 2.7, 4 and 4.2 min, bringing 

four LC-MS features. Only two of them (RT = 2.7 and 4 min) has shown statistical discrimination 

between phenotypes, meaning two out of four structures were potential biomarkers. In many cases, LC-

MS enhances FT-ICR-MS biomarker discovery by adding RT information. The two following m/z 

(Table 7B) were annotated as putative biomarkers from FT-ICR-MS data X- in the manuscript « New 
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molecular evidence...». Again they were extracted as MLF+ biomarker from negative mode LC-MS data. 

For m/z = 306.076, three features eluted at RT=1.1, 4 and 4.5 min all showed statistical discrimination. 

The most abundant one at RT=1.1 was identified as glutathione by LC-MS
2
 (Figure 27B). The only 

feature of m/z = 243.062 eluted at RT=1.4 showed statistical discrimination. In fact, the intensity of a 

mass feature detected in FT-ICR-MS is the sum of isobars and isomers. Therefore LC-MS could 

enhance biomarker discovery by discriminating different structures behind the same m/z. 

Table 7B 

m/z Neutral Formula Hypothetical Structure Type MS Mode RT (min) 

*
306.076 C10H17N3O6S 

[Asp, Cys, Ala] or 

[Cys, Glu, Gly] (
*
Glutathione) 

MLF+ ESI (-) 
1.1 & 4 & 

4.5 

243.062 C9H12N2O6 Uridine MLF+ ESI (-) 1.4 

 

We note that the matching of biomarkers between LC-MS and FT-ICR-MS is via neutral formulas or 

theoritical masses generated by Netcalc. Sometimes the same discriminant formulas were detected in 

different ionization modes. For instance, C14H27O4N3 was annotated as putative biomarker in both 

(+)ESI FT-ICR-MS and (-)ESI LC-MS at RT = 4.2 min (Table 7C), which is consistent with amino 

acids/peptides structural properties: 

Table 7C 

m/z Neutral Formula Hypothetical Structure Type MS Mode RT (min) 

300.193 C14H27O4N3 
[Gly, Leu, Leu]  

or [Ala, Leu, Val] 
MLF+ ESI (-) 4.2 

302.208 C14H27O4N3 
[Gly, Leu, Leu]  

or [Gly, Leu, Leu] 
MLF+ ESI (+) - 
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2.5 Structure elucidation of additional biomarkers via LC-MS
2
  

 

Figure 27 LC-MS
2
 spectra for biomarker identification: A) m/z = 258.110 (Glycerophosphocholine), biomarker 

from (+)ESI FT-ICR-MS; B) m/z = 306.076 (Gluthathion), biomarker from (-)ESI FT-ICR-MS; C) m/z = 205.035 

(2-Methylcitric acid), biomarker from (-)ESI FT-ICR-MS; D) m/z = 159.03 (Oxoadipic acid), biomarker from (-

)ESI LC-MS. The red arrow represents the precursor and the formulas represent explained fragments.  

We presented LC-MS
2 

fragmentation patterns for some putative biomarkers in Table 7. Four other  LC-

MS
2 

spectra can be found in Figure S5 of the manuscript « New molecular evidence...». The fragments 

obtained could explain the putative structure of these biomarkers via Metlin server. However, we did not 

further confirm their structure by a chemical standard due to their low abundance or to the unavailability 

of standard compounds. These features were still assigned as ‘Stage 1’ biomarkers. 
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3. Conclusion of chapter 2 

Non-targeted metabolomics revealed distinct molecular signatures of MLF+ and MLF- yeast. We have 

developped a workflow to further unravel the molecular evidence of phenotypic distinction. Biomarkers 

discovered from this workflow were molecules that were potentially involved in yeast/bacteria 

interaction. The advantage of the non-targeted approach was the diversity of biomarkers and biomarker 

families. In order to improve this diversity, we have combined two complementary analytical platforms, 

FT-ICR-MS in both (+) ESI and (-) ESI modes and RP-LC-MS in (-) ESI mode. In addition, we have 

optimized the biomarker selection by combining different algorithms and classifiers. Structures of 

putative biomarkers were confirmed by LC-MS
2
 experiments and their physiological roles by in vitro 

test. In a word, for the biomarker discovery, the objective was not only the diversity but also the 

reliability. We have not only demonstrated the ablity of non-targeted metabolomics to unravel molecular 

evidence of yeast/bacteria interaction, but also suggested an interdisciplinary workflow to achieve this 

goal.  
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CHAPTER 3: Further characterization of yeast/bacteria interaction 

 

 

 

Figure 1C. What can metabolomics further bring for the study of wine interactom? 

We present here several separate projects inspired from previous results of non-targeted studies. For 

instance, a global study on the pool of discriminant features has unraveled the importance of 

nitrogeneonous compounds via van Krevelen diagram (VKD) (Figure 4C of the article « New molecular 

evidence... » and Figure 26C). We expect that targeted studies on this family would unravel new 

biomarkers or bring new conclusions. We have targeted first on free and total L-amino acids, followed 

by database-driven oligopeptide studies. Both studies aim to discover specific nitrogeneonous 

biomarkers and biochemical traits from yeast-fermented media. During the second study, we also 

revealed the dynamic of oligopeptide during MLF via non-targeted exo-metabolomic profiling on LC-

MS platform. Always by monitoring the exo-metabolomic profile change during MLF, we tried to 

associate some increasing/decreasing metabolites with metabolic pathways [7]. The goal here is to 

characterize some bacterial pathways affected by a particular yeast exo-metabolome or by yeast-derived 
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compounds. All these small studies derived from metabolomics would allow a better understanding of 

yeast/bacteria interaction. 

1. Targeted studies on free/total amino acids 

The 18 amino acids were quantified by HPLC in 32 wines (16 strains, duplicate) fermented from Must B. 

We obtained concentrations of free and total amino acids (amino acids in peptides/proteins also taken 

into account). The HPLC method detects a wider range of amino acids, including the ones with 

molecular weight smaller than 100 Da (glycine and alanine) and provides an accurate quantification, 

which complements the non-targeted studies for biomarker discovery. Another reason of this targeted 

analysis was that LAB strains have an absolute requirement for some amino acids, such as glutamate, 

serine, arginine...[8]. It’s possible that essential amino acids appear to be MLF stimulatory biomarkers. 

Concentrations (mg/L) of 18 free and total amino acids in each sample were stored in F and T (32 

observations, 18 variables), respectively (Annex 8).  PCA on F nd T illustrated the similarities between 

samples and common trends of variables: 
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Figure 28A PCA for amino acids A) PCA on F B) PCA on T. A) and B) are scatter plots of 2 first PCs: arrows 

represent loadings of each amino acid; labels represent scores of samples. 

S71 had a very different amino acid profile (both free and total) from other strains: both replicates had 

an extremely high score on PC1. According to the amino acid loadings, most amino acids were higher in 

wines fermented by S71. We recall that a particular AF behaviour was oberved for this strain in Must A. 

Now the study of amino acids also supported our hypothesis about its particular metabolism. As already 

explained, in order to reveal the data structure brought by other strains, we removed the two samples of 

S71 and re-performed the PCA: 
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Figure 28B PCA for amino acids after removal of S71 A) PCA on F B) PCA on T. A) and B) are scatter plots of 

2 first PCs: arrows represent loadings of each amino acid; labels represent scores of samples. 

The distribution of samples was clearly revealed in the new PCA scatter plots. The biological replicates 

of the same strains were usually close, which confirmed the reproducibility of amino acid profiles after 

AF. The strain S5 was a little distant from other strains, which again explained its particular amino acid 

metabolism known from the strain provider. We recall that S5 shows a distinct metabolic profile through 

unsupervised analysis of X- and X+ . Here we observed clearly that most amino acids (free) were less 

abundant in wines fermented by S5. As for total amino acids, S5 was particularly rich in cystein and 

methionine. The strong correlation between sulfur-containing amino acids, cystein and methionine 

observed in Figure 28B might be related to their closeness in yeast metabolic pathway [9]. 

We further applied the two-sided WMW test on each amino acid with sample labels MLF+ and MLF-. 

The aim was to discover amino acids that discriminate two phenotype groups. Neither S5 nor S71 were 

taken into account here due to their particular amino acid profile compared to other strains.  
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Table 8 P-value of WMW test for each amino acid (free and total) and their importance to MLF in the litterature 

[9] 

 P-value (Free) Type
1 

P-value (Total) Type Litterature 

Asp 0.65  0.19  Necessary 

Glu 0.1  0.28  Essential 

Ser 0.35  0.33  Essential 

Gly 0.40  0.07  Indifferent 

His 0.14  0.16  Indifferent 

Thr 0.08  0.04 MLF- Indifferent 

Arg 0.1  0.41  Essential 

Ala 0.1  0.11  Indifferent 

Gaba 0.94  0.12  - 

Pro 1  0.83  Indifferent 

Tyr 0.03 MLF- 0.12  Indifferent 

Cys 0.22  0.10  Essential 

Val 0.28  0.41  Essential 

Met 0.001 MLF+ 0.04 MLF+ Essential 

Ile 0.16  0.14  Essential 

Leu 0.16  0.12  Essential 

Lys 0.29  0.04 MLF- Necessary 

Phe 0.05 MLF- 0.11  Indifferent 

1 
Type of biomarker e.g. MLF+ (more abundant in MLF+) was assigned only when p-value<0.05, meaning 

there’s a significant difference between phenotype groups. 

 

Methionine, both free and total, was significantly more abundant in MLF+ group. It is also an essential 

amino acid for LAB growth. However, other essential amino acids did not show a significantly higher 

abundance in MLF+ group. We could not conclude from this study that essential amino acids (such as 

glutamate, serine and argine) are MLF-simulatory biomarkers. In addition, our wines contain a relatively 
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high amount of nitrogen: around 320 mg N/L in both phenotype groups (Figure 29) probably because 

the initial grape must has been supplemented to 280 mg N/L. Such nitrogen level should be sufficient for 

bacteria growth [9]. 

 

Figure 29 Nitrogen concentration in two phenotype groups, calculated from total amino acids. 

2. From non-targeted to targeted: studies on oligopeptides 

Data analysis targeting oligopeptides in non-targeted metabolic profiling matrix X+ revealed the diversity 

of short peptides in wines fermented by MLF+ and MLF- strains. Data analysis of KL+ revealed the 

oligopeptide change during MLF. This study is presented in the submitted paper « Non-targeted 

metabolomics unravels diverse oligopeptides involved in wine yeast/bacteria interaction ». 
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Abstract 

In winemaking practice, yeast-derived low-molecular-weight nitrogen compounds have a major 

physiological impact on bacteria-driven malolactic fermentation (MLF). However, not enough attention 

has been given to the nature and diversity of these yeast components. In this study, we investigated 

yeast-derived short peptides potentially involved in MLF stimulation/inhibition, by comparing the 

chemical composition of MLF-friendly (fermented by MLF+ yeast phenoytpe) and MLF-harsh (by 

MLF- phenotype) environments. Non-targeted metabolomics was chosen to study yeast-fermented 

media for its wide coverage of metabolite detection. Combining ultrahigh-resolution FT-ICR-MS 

analysis, powerful formula/database annotation software and statistical analysis, we identified around 

1400 putative oligopeptides, among which 135 showed statistical discrimination. Thanks to this 

unprecedented diversity, we not only isolated and identified the structure of stimulatory oligopeptides 

such as Ile-Val-Leu by UPLC-Q-ToF-MS
2
, but also revealed particular molecular traits, such as 

molecular weight, length, H/C, O/C and common amino acid patterns. Our results suggest new openings 

for research, namely i) sulfur-containing oligopeptides seem to have an inhibitory effect to MLF; ii) 

leucine and arginine are co-present in several stimulatory oligopeptides. In addition, we performed 

metabolic profiling during MLF on the UPLC-MS platform. The second goal here was to characterize 

the dynamics of peptide change during MLF. We sucessfully correlated certain results with previously-

discovered bacterial proline-specific peptidase activity. 

 

Introduction 

In winemaking practice, the lactic acid bacterium (LAB) Oenococcus oeni (O. oeni) is recognized as the 

principal microorganism involved in malolactic fermentation (MLF). This important step of secondary 

fermentation, usually favored soon after the end of alcoholic fermentation (AF) by yeast (1), converts 

malic acid to lactic acid and CO2, increasing the wine’s pH and improving microbiological stability (2). 

Although desirable for most red wines and for some white grape varieties such as Chardonnay (1), the 

physico-chemical properties of fermented medium, such as low pH (3.1-3.3), high ethanol concentration 

(13-14%), presence of sulphur dioxide, osmotic stress and low nutrient status, constitute a stressful 

environment for the development of O. oeni (3).   
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Among these factors, the effect of the nitrogen fraction, an essential nutrient source for O. oeni, has been 

a research hotspot (4). At the end of AF, wine total nitrogen levels are highly variable from 70 to 700 

mg l
-1

 (expressed in mg l
-1

 (NH4)2SO4) and different types of nitrogenous molecules may be present, 

such as inorganic nitrogen, free amino acids, peptides, grape proteins and mannoproteins released from 

yeast cell walls (5, 6). O. oeni may exclusively assimilate organic nitrogen due to its 

chemoorganotrophic metabolism (7). Since the basic unit of nitrogen assimilation for O. oeni is amino 

acid and the bacterium is known to be auxotrophic to many of them (4, 8), the lack of certain amino 

acids in the medium could lead to MLF inhibition. However, peptides in the medium may compensate 

amino-acid deficiencies. In fact, peptides account for the largest proportion of organic nitrogen in 

fermented medium but, paradoxically, little attention has been paid to their nature and their involvement 

in MLF stimulation/inhibition. The major constraint was due to their extreme diversity and low 

abundance for chemical analysis (9). Previous studies showed that these peptides are produced during 

alcoholic fermentation, but mainly from yeast autolysis (10, 11). Alexandre et al. (12) determined yeast 

protease activity associated with peptide release from wine proteins, such as cell wall proteins. On the 

bacterial side, by adding different molecular weight fractions of yeast autolysate, the fraction < 1000 Da, 

containing mostly free amino acids and oligopeptides, appeared to stimulate the growth of O. oeni most 

in a synthetic medium (10). Although O. oeni is able to use extracellular oligopeptides, the proteolytic 

system of interest including membrane peptide transporters and intracellular peptidase has been subject 

to little investigation (13). Meanwhile, co-culture experiments highlighted the inhibitory activity of 

yeast-derived peptidic fractions againt O. oeni (14). However, few such peptides have been identified or 

characterized so far (15, 16) and the inhibition mechanism has never been elucidated. 

In order to overcome the analytical barriers for compound detection, we applied ultrahigh-resolution 

Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and Ultra-High 

Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight Mass Spectrometry 

(UPLC-Q-ToF-MS or UPLC-MS) for the non-targeted metabolic profiling of fermentation media. Non-

targeted approaches allowed the detection and semi-quantification of a large amount of low-abundance 

molecules in the given matrix (17, 18). Although the objective of non-targeted metabolomics is not to 

study a specific compound family, it has been used to characterize the sulfur-containing metabolome in 

mice (19) and N-containing metabolites in plants (20). Targeting a part of the metabolome is usually 

achieved by powerful data post-processing including database annotation, formula annotation and 

statistical analysis. The advantage of this strategy is the high diversity of compounds in the chemical 
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family studied. In our case, metabolic profiling was performed on samples fermented by MLF+ 

(stimulatory to O. oeni and suitable for MLF) and MLF- (incompatible for MLF) strains. We developed 

a pipeline to target only peptides in our dataset. The goal here was to discover diverse oligopeptides that 

statistically discriminate two phenotypes and that are potentially involved in MLF stimulation/inhibition. 

 

Results and Discussion 

Experiment strategy  

The first goal of the study was to discover diverse oligopeptides potentially involved in MLF 

stimulation/inhibition. Biomarker discovery was based on direct characterization of MLF-friendly 

(fermented by 10 MLF+ strains) and MLF-harsh (by 5 MLF- strains) environments, in other words the 

exometabolomic profiles of two phenotypes MLF+ and MLF- at the end of AF.  Exhaustive 

characterization was achieved by non-targeted metabolomics approaches, generating the data matrix X. 

The extraction of oligopeptide biomarkers alone from the metabolite pool in X was accomplished by the 

workflow shown in Fig. 1. Although the study aimed at detecting a wide range of peptides involved, we 

were actually limited to: i) peptides from the fermentation of a single grape must  (45 different 

fermentation: 15 strains, triplicate); ii) short peptides in the mass range 100 - 1000 Da. The reason for i) 

was that the nitrogen compounds of grape juice are strongly dependent on the geographic origin, variety 

and vintage of grape (17). Using several grape musts would add another factor to the interpretation. A 

simple experimental design with a unique basic matrix would give a straightforward assessment of the 

method. For the same consideration, 15 yeast strains used for AF hold single reproducible MLF+ and 

MLF- phenotypes independent of the geographic origin, variety and vintage of grape. As a result, 

oligopeptides that discriminate two phenotypes should have enough generality and reliability; however, 

their presence was limited to the grape matrix and strains studied. The reason for ii) was that the fraction 

< 1000 Da of yeast-derived nitrogen compounds appeared to promote the growth of O. oeni more than 

other fractions (10). However, we automatically overlooked longer peptides and proteins that might play 

a potential role (15). In brief, our goal was to evaluate the ability of a non-targeted approach to reveal 

peptide diversity in a simple experimental setup. 

The second goal was to characterize the bacterial assimilation of the pool of oligopeptides in yeast-

removed MLF-friendly (fermented by MLF+ strain S3) and MLF-harsh (fermented by MLF- strain S12) 
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environments. By studying the data matrix K, we observed  the exo-metabolome changes of O. oeni 

along the MLF process and revealed the evolution of numerous oligopeptides in the extracellular media. 

The change in concentration of specific oligopeptides was due to the bacterial degradation, release or 

exoprotease activity. Such a study would reveal the dynamics of peptides during MLF.  

 

Figure 1 Workflow of mass annotation for both FT-ICR-MS data X and UPLC-MS data K From the 

workflow, we obtained the amino acid composition(s) of putative oligopeptide signals that were also of biological 

interest (through statistical filters). An example of annotation was given for the mass signal m/z = 344.2546 

detected on the FT-ICR-MS platform. 

Diversity of the nitrogen fraction in yeast-fermented media 

Metabolic profiling on FT-ICR-MS revealed the diversity of nitrogen compounds in 45 yeast-fermented 

media. Among all the 15081 Netcalc-annotated elemental formulas in data matrix X, more than half of 

the nitrogenous compounds were located in the region represented by the rectangle in Fig. 2B (0.1≤ 

O/C≤ 0.7; 1≤ H/C≤ 2.2). Metabolites in this region were recognized by a complete wine metabolite 

database mainly as amino acids and peptides (17, 18). Here we annotated in the region selected 7927 N-

containing formulas (Fig. 2DE), which included 2604 CHON formulas (C, H, O, N-containing), 627 

CHONP formulas, 2717 CHONS formulas and 1979 CHONSP formulas. Under the basic hypothesis 
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that one elemental formula in wine represents on average 3 isomers (18), we detected at least 20 000 

nitrogen compounds. This is the first time that such high chemical diversity has been observed in such 

studies. 

Due to this diversity, we were able to investigate the involvement of yeast strains in the nitrogen fraction 

of fermented media. The comparison of VDKs between MLF+ and MLF- strains illustrated a synergistic 

effect of yeast compounds involved in MLF stimulation/inhibition through clear and compact elemental 

formula patterns (Fig. 2CD). We observed a highly abundant pattern specific to MLF+ (Fig. 2D inside 

the blue circle: 0.2≤ O/C≤ 0.4; 1.6≤ H/C≤ 2.2) and a CHONS(P) pattern specific to MLF- (Fig. 2E inside 

the purple circle: 0.5≤ O/C≤ 0.7; 1.4≤ H/C≤ 1.9). As might be expected, the phenotype-dependent 

molecular traits of yeast nitrogenous components were characterized by clusters of compounds in VKDs. 

We demonstrated for the first time a molecular trait of MLF+ strains based on the H/C and O/C ratios of 

secreted compounds (Fig. 2C). The pattern observed probably represents specific oligopeptides since it 

was located in a particular zone of VKD that represents all the oligopeptides in the ODB (Fig. 2B). The 

possible involvement of sulfur-containing nitrogen compounds in MLF inhibition was also suggested for 

the first time (Figure 2D).  

Oligopeptide identification  

In order to get deeper insight into the chemistry of the nitrogen compounds in 45 yeast-fermented media, 

we concentrated on potential peptides containing 1 to 5 proteinogenic amino acids (Fig. 2C and 2D). 

Such compounds were extracted if they statistically discriminated 2 phenotypes and at the same time 

annotated them as (a) combination(s) of amino acids in ODB (Fig. 1 and Fig. S1). In general, peak 

annotation might result in the false discovery of compounds in MS-based metabolomics studies (21). In 

addition, since the ODB does not contain structure information, we only assigned one or several possible 

amino acid compositions to discriminant masses, without knowledge of the exact sequence. Therefore 

oligopeptide annotation should be further confirmed via structure determination.  
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Figure 2. VKDs in media after AF A) VKD presentation of all annotated formulas from a yeast-fermented 

sample. B) C) D) are VKD presentations of nitrogen-containing formulas obtained by zooming out of the 

rectangle-located region. B) represents the elemental formula of all linear peptides containing 1-5 amino acids 

(the entire ODB). C) D) represent nitrogenous formulas in yeast fermented media. In A) C) D), the diameter of a 

solid ball presents the intensity of the corresponding mass signal: A) in a particular sample; C) the average of all 

samples fermented by MLF+ strains (replicates included); D) the average of all samples fermented by MLF- 

strains. Clear patterns that discriminate one phenotype are circled in C) & D). Compounds located in the same 

region in B) as in C) are circled. 

RP-LC-MS
2 

spectra were acquired by targeting the top 80 discriminant masses (theoretical masses from 

Netcalc-annotated formulas) according to the VIP score and WMW test. If a precursor m/z was 

successfully isolated then fragemented at a preset collision energy, the spectra obtained were searched 

against the Metfrag server (http://msbi.ipb-halle.de/MetFrag/). If the mass signal was truly an 

oligopeptide, m/z of fragments would usually provide exact sequence information. An example was 

given for the discriminant mass m/z = 344.2544 (Fig. S1A). This ion was annotated as the unique amino 

acid composition [L, L, V]. It was also isolated in RP-LC-MS
2 

at RT = 6.1 min and fragmented with 10 
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eV collision energy (Fig. 3A). The only structure suggested by Metlin and validated manually was the 

tripeptide Ile-Val-Leu based on the three fragments [Fa]
+
, [Fb+2H]

+
, [Fc]

+
 and [Fd]

+
, hence confirming 

that our workflow (Fig. 1) had correctly identified this mass as a tripeptide. The discriminant mass m/z = 

375.224 (Fig. S1B) was matched with six different amino acid combinations [E, K, V], [D, K, L], [G, L, 

S, V], [G, T, V, V], [A, A, L, T] and [A, S, V, V]. However, according to the sequence information 

deduced from the LC-MS
2 

spectra, the unique amino acid combination was actually [A, A, L, T] and the 

unique sequence was Ile-Ala-Thr-Ala (Fig. 3B). Likewise, the discriminant mass m/z = 430.3024 was 

assigned to 2 amino acid compositions but only 1 was possible and MS
2 
patterns suggested two possible 

sequences (Fig. S1C and Fig. 3C). We note that for all annotations, the differentiation between Leu and 

Ile needs to be further confirmed via LC-MS
3
. 

Due to the low-abundance and ion-suppression effect of approximate masses (22), 11 out of 80 targeted 

discriminant masses were isolated and fragmented from a certain energy level. Based on their MS
2 

spectra, we confirmed the oligopeptide nature of 9 precursor ions (Table S1). All of them were 

significantly more abundant in the MLF+ group. For the other two, no structure was suggested, probably 

due to the lack of fragments. The amount of oligopeptides confirmed reflects the reliability of the 

annotation strategy. For oligopeptides with known structure, we will be able to confirm their 

physiological roles and stimulatory effect in MLF in future studies. However, the process of peptide 

biomarker extraction, identification and validation seems long, tedious and limited to abundant mass 

signals. An in-house database of wine oligopeptides is under construction in order to accelerate their 

identification in further studies. The database format is similar to Table S1.  
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Figure 3. MS/MS pattern of biomarkers detected in media after AF A) The tandem MS pattern is shown for 

the target m/z = 344.254 (theoretical after Netcalc annotation). The precursor peak is annotated with a triangle. 

Four ions explained by Metfrag are presented and we deduced four fragments Fa – Fd, from which the hypothetic 

oligopeptide structure Ile-Val-Leu was suggested. B) C) Tandem mass patterns for m/z = 375.2240 and 430.3024, 

as well as structure determinations. 
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Figure S1 Three structure-elucidated (Figure 3) discriminant masses A) m/z = 344.2544 B) m/z = 375.224 C) m/z 

= 430.3024. They show importance for statistical modeling (OPLS-DA VIP > 1) and they are significantly more 

abundant in the MLF+ group (WMW P-value < 0.05). 
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Table S1 Identification of yeast-derived MLF+ oligopeptides by RP-LC-MS
2
 

m/z Neutral formula Combination(s) RT [min] m/z of explained fragments Sequence 

344.254 C17H33O4N3 [L, L, V] 6.1 86.1; 160.1; 185.2; 213.2 Ile-Val-Leu 

375.224 C16H30O6N4 [E, K, V] 

[A, A, L, T]... 

1.5 129.1; 260.2; 357.2 Ile-Ala-Thr-Ala 

430.302 C20H39O5N5 [G, K,  L, L] 

[A, K, L, V] 

4.3 86.1; 129.1; 185.1; 301.2 Leu-Ala-Val-Lys 

 or Ile-Ala-Lys-Val  

317.218 C14H28O4N4 [G, K,  L] 

[A, K, V] 

1.7 86.1; 130.1; 147.1; 186.1 Leu-Gly-Lys 

328.223 C16H29O4N3 [L, P, V] 5 169.1; 201.1; 215.1 Leu-Val-Pro 

376.223 C20H29O4N3 [F, L, P] 6.7 70.1; 183.2; 279.2 Pro-Leu-Phe 

403.255 C18H34O6N4 [G, L, L, T] 

[A, L, T, V]... 

4.7 247.1; 268.2; 385.2 Ala-Ile-Val-Thr 

460.313 C21H41O6N5 [K, L, L, S] 

[K, L, T, V] 

4.5 173.1; 245.1 Ile-Val-Thr-Lys 

437.2395 C21H32O6N4 [G, V, V, Y] 

[F, G, L, T]  

6.3 166.1; 229.2; 254.1; 279.2; 

419.2 

Gly-Thr-Ile-Phe 
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Characterization of discriminant oligopeptides 

Statistical analysis of data matrix X obtained from FT-ICR-MS analysis (metabolic profiles of 45 yeast-

fermented media), in combination to the reliable annotation workflow, has extracted 135 masses 

representing oligopeptides involved in phenotype discrimination. Interestingly, 126 of them were 

significantly more abundant in the MLF+ group according to the one-tailed WMW test. With this 

amount of discriminant masses, we could probably study synergistic effects and search for a global 

interpretation instead of identifying individual compounds. Our second strategy was to characterize the 

molecular traits of discriminant oligopeptides, especially MLF+ ones based on the output information of 

the annotation workflow.  

The molecular traits characterized were molecular weights, length, H/C, O/C and common amino acid 

patterns. In order to extract phenotype-specific information, we also characterized all the 1440 

oligopeptides annotated from data matrix X (Fig. S2) for a general picture of oligopeptides. Firstly, we 

observed a slight difference between the m/z distribution of MLF+ oligopeptides and of all the 

oligopeptides (Fig. 4A compared to Fig. S2A): most MLF+ oligopeptides were distributed between m/z 

= 350 - 450 and only a few were observed in the range 450 - 500. According to the VKD (Fig. 4B), 

MLF+ oligopeptides were located in the previously-mentioned “MLF-stimulatory” region (Fig. 2C), 

whereas the entire group of 1440 oligopeptides was distributed much more widely (Fig. S2B). The 

presence of such an MLF+-specific pattern inferred specific proteolytic activities of MLF+ yeast strains 

(12, 23, 24) that might release oligopeptides with a characteristic elemental composition. Such 

oligopeptides might work synergistically on MLF stimulation. Meanwhile, 8 out of the 9 MLF- 

oligopeptides (Fig. 4C) were found in the “MLF-inhibitory” region (Fig. 2D) and they all contained 

sulfur, as observed previously. Our study suggested for the first time several inhibitory oligopeptides 

that contain methionine/cysteine, such as [D, M], [C, D, D], [C, D, D, S, S]… Indeed, Osborne and 

Edwards (2007) (16) and Nehme et al. (2010) (14) found that S. cerevisae strains might produce 

oligopeptides active against malolactic bacteria. Their amino-acid composition, cationic charge and 

mass allow them to attach and insert into membrane, leading to membrane permeabilization and to 

modification of intracellular molecules (25). So far, the only yeast-derived antimicrobial oligopeptide 

identified has been in the form of fragments of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

protein (15). However, none of these fragments contain methionine/cysteine. Another associated 

reference is the plant-derived cystein-rich short peptides that exhibit antimicrobial activity against gram-
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positive bacteria (26). The sulfur-containing MLF- oligopeptides detected in our study could be 

fragments of potential antimicrobial peptides if identified in the future. 

For further characterization, we focused on the masses annotated as a single combination of amino acids 

to ensure certainty regarding their length and composition. The 39 MLF+ oligopeptides with unique 

annotation were mainly tripeptides (Fig. 4D), while for the entire 519 oligopeptides both tripeptides and 

tetrapeptides were abundant (Fig. S2C). This difference suggested the importance of tripeptides in MLF 

stimulation for the first time. We also performed “Peptide degradation network” analysis for the 39 

MLF+ oligopeptides and extracted an interesting subnetwork structure (Fig. 4E). The “common pattern” 

observed in this subnetwork (pink nodes) was [L, R], which indicated that the two amino acids co-exist 

in several longer MLF+ oligopeptides (surrounding colorless nodes). If the edges of this network 

represent yeast proteolytic degradation, it is possible that yeast extracellular protease activity tends to 

produce specific shorter peptides (pink nodes) from longer ones. This activity would benefit the 

subsequent MLF since leucine/isoleucine (L) and arginine (R) have been reported as essential for O. 

oeni growth (4, 8, 27). Instead, the most common pattern in the entire network of oligopeptides was [P, 

P] (Fig. S2D). Interestingly, proline was not reported to be essential for O. oeni. However, O. oeni could 

produce proline-specific peptidase and release other amino acids from proline-containing peptides (13). 
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Figure 4. Characterization of MLF+ putative oligopeptides detected in media after AF based on: A) m/z 

distribution B) VKD presentation of chemical formula in the region 0.1≤ O/C≤ 0.7; 1≤ H/C≤ 2.2; each solid ball 

represents an elemental formula; the diameter of a solid ball is inversely correlated to the p-value of the WMW 

one-tailed test and represents how significantly more abundant the mass signal is in the MLF+ phenotype; the 

color code is the same as that used in Figure 2. D) distribution of oligopeptide length; E) common pattern (the 

node in pink) visualized in the “peptide degradation network” (details in the Material and methods section). C) is 

the VKD for the 9 MLF- oligopeptides; the diameter of a solid ball shows how significantly more abundant the 

mass signal is in the MLF- phenotype. 
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Figure S2 Characterization of all putative oligopeptides from data matrix X based on: A) m/z distribution B) VKD 

presentation of chemical formula in the region 0.1≤ O/C≤ 0.7; 1≤ H/C≤ 2.2; each solid ball represents an 

elemental formula; the diameter of a solid ball is correlated to the averaged intensity over all the samples. C) 

Distribution of oligopeptide length. D) The common pattern [P, P] (node in the center) has the most incoming 

edges (142) in the “peptide degradation network”, which means that it is the pattern appearing most in. E) [K, L, 

L, P, V] (node in the center) has the most outgoing edges (19). C) D) E) were plotted using masses annotated as 

unique amino acid combinations.   

Amino acid abundance of yeast-fermented media 

Apart from the particular molecular traits of discriminant oligopeptides, we believed that the generation 

of diverse oligopeptides during AF would change amino acid availability for O. oeni (28). In order to 

consider the total reserve of amino acids, we assumed that an annotated oligopeptide (only the case of 

unique annotation) containing c amino acids AA (e.g. [L, L, V] contains 2 leucines/isoleucines) with an 

intensity I would increase the abundance of AA by c * I (e.g. the abundance of leucine/isoleucine counts 
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for 2 * I[L,L,V]). Thus the total abundance of amino acid AA by summing up all N = 519 annotated 

oligopeptides would be: 

                                      
    (1) 

Here    and                 represent the intensity and the amino acid composition, respectively, of  j-

th oligopeptide signal. We calculated the abundance of each amino acid in each sample, then the mean 

and standard deviation of abundance in the MLF+ and MLF- groups (all replicates and strains 

considered). A significantly higher level of most amino acids was observed in the MLF+ phenotype 

group (Fig. 5) except for glycine (G), serine (S), tryptophan (W), aspartic acid (D) and cysteine (C). The 

diversity of previously-mentioned MLF+ oligopeptides might contribute to this global enrichment of the 

amino acid reserve.  

 

Figure 5. Individual amino acid abundance in all the amino acids/oligopeptides detected in media after AF 

Here we calculated the sum of intensities of each amino acid in all oligopeptides. Means (heights of histogram 

bars) and standard deviations (error bars) are calculated for phenotypes MLF+ and MLF- (all strains and 

biological replicates considered).  

Oligopeptide profiles throughout the MLF 

After characterizing the discriminant oligopetides in media after AF, we recall that the second goal was 

to monitor the change of extracellular oligopeptides during MLF in both MLF-friendly (in medium 
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fermented by S3) and harsh environnments (in medium fermented by S12). RP separation provides the 

most reliable, robust and sophisticated LC stationary phase for metabolomics studies (29). UPLC-MS 

facilitates metabolite identification and quantitation by reducing sample complexity and allowing isomer 

separation prior to detection (30). Therefore metabolic profiling on the RP-UPLC-MS platform was able 

to capture the minor concentration changes during MLF. 

Exo-metabolome kinetics of Lalvin VP41TM in these two growth media were stored in matrix K. 

Among the 978 aligned LC-MS features, 186 were recognized as amino acids/oligopeptides based on 

Netcalc annotated formulas. Since UPLC-MS combines RT separation with mass detection, one or more 

isomers were found for 14 of these annotated features. Isomeric LC-MS features have the same m/z, 

elemental formula and amino acid composition but are eluted at different RTs, thus they have different 

structures. Isomeric features were considered as different variables in our study.  

Principal Component Analysis (PCA; prcomp in R) was applied for all oligopeptide-annotated features 

(stored in the 18 * 186 data matrix K’) in order to reveal naturally occuring clusters of samples and 

correlated features. Exo-metabolome kinetics were visualized in a combination of malic acid 

degradation and bacterial growth curves. According to the PCA scatter plot, PC1 (R
2 

= 35.4%) divided 

oligopetide profiles based on yeast strains used for AF (Fig. 6B). The profile change over MLF was 

observed on PC2 (R
2 

= 14.6%). The direction of this change was from the negative to the positive side of 

PC2 in both media, which implies that similar LC-MS features contributed to the profile change under 

two conditions. In fact, this trend was explained by the degradation of many oligopeptides (left pointing 

arrows) and the increase of several of them, such as [L, P] (arrow pointing right). More signficant profile 

changes were observed in S3-fermented media, especially from Day 0/3/5/7 to Day 10/13/15/17/18. This 

sudden change was also observed for viable cell kinetics (Fig. 6A) and indicated an exponential growth 

phase. Conversely, a less significant profile change and no exponential growth were observed 

throughout the MLF in S12-fermented media. There was even a decrease of biomass at Day 7, hence the 

bacteria failed to completely degrade malic acid at Day 18 (Fig. 6C). It seems that the change of the 

oligopeptide profile, mainly due to oligopeptide consumption, was strongly related to bacterial activity. 

In MLF-friendly environments, bacteria are able to better assimilate extracellular oligopeptides. Our 

next step was to characterize the oligopeptides assimilated in different environments.  



 

235 
 

 

 

Figure 6. Kinetics of MLF A) C) Growth kinetics of Lalvin VP41TM in media fermented by S3 and S12 

respectively. Both viable cells and malic acid degradation are presented. B) Scatter plot of the first two 

dimensions of PCA. Rectangles represent PCA scores (samples) and arrows represent PCA loadings. The label of 

rectangle 'SxTy' means that the sample was fermented by strain x and we are now at day y of MLF. Some high-

loading annotated oligopeptides are presented here. In A) and B), cyan and purple circles represent the lag phase 

and exponential phase of bacterial growth respectively.  
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Qualitative characterization of oligopeptide change during MLF 

In media fermented by S3, of 186 LC-MS features identified as amino acids/oligopeptides, 6 features 

increased significantly and 55 were present in lower level during MLF according to Spearman’s 

correlations, whereas the abundance of 6 and 39 oligopeptides were respectively higher and lower in 

S12-fermented media. As we observed in the PCA, the decrease in concentration indicates the bacterial 

assimilation of oligopeptides and this trend was strongly correlated to the growth kinetics. Based on the 

high amount of decreased features in the extracellular environment, we confirmed the potential of O. 

oeni to transport or to hydrolyze diverse yeast-derived oligopeptides. These assimilated oligopeptides 

might also express particular molecular traits (Fig. S3). Compared to the entire set of oligopeptides, 300 

- 600 Da tripeptides and tetrapeptides increased equivalently in S3 and S12-fermented media. In general, 

very few amino acids and dipeptides were detected, probably due to their low abundance or to the limit 

of mass detection.  

Regarding their elemental formulas, similar shapes of patterns were observed on the VKDs for degraded 

oligopeptides in  S3 and S12-fermented media, as well as for the entire oligopeptide set (Fig. S3G-I). O. 

oeni seems to degrade oligopeptides with diverse biochemical natures. We also performed “Peptide 

degradation network” analysis for up (increased)/down (decreased)-regulated oligopeptides with unique 

annotations and extracted interesting subnetwork structures for two fermented media (Fig. 7AB). The 

node [P, P] was the common pattern and the series [E, M, P, P] → [P, P] ← [F, L, P, P, V] was observed 

in both cases. By assuming that the bacterial exo-metabolome reflects its intracellular metabolism (31), 

the edges in the networks could be associated with bacterial peptidase activity: longer peptides are 

transported into the cell and broken down into shorter ones. Under this hypothesis, [P, P] increased (Fig. 

7CD) probably because longer peptides (such as [F, L, P, P, V]) were hydrolyzed by bacterial peptidase 

or yeast/bacterial exoprotease, leading to [P, P] release. We thus suggested the activity of peptidase 

specific for proline-containing peptides, such as PepI and PepX, that have already been demonstrated in 

other studies (9). Meanwhile, in S12-fermented media, the regulatory module was much 'smaller' than in 

S3-fermented media. One possible explanation is the inactivation of several peptidase activities in MLF-

harsh environments.  
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Figure 7. Common patterns observed in media during MLF Common patterns of up-regulated (green nodes) 

and down-regulated (orange nodes) oligopeptides visualized in the “peptide degradation network” (details in the 

Material and methods section).  A) B) are the subnetworks of oligopeptides in the MLF samples fermented by S3 

and S12. C) D) show the area of evolution of corresponding LC-MS features [P, P], [E, M, P, P] and  [F, L, P, P, 

V] over the MLF. 

Conclusions 

The non-targeted metabolic profiling of 45 yeast media at the end of AF revealed a high diversity of 

yeast-derived oligopeptides involved in MLF stimulation/inhibition. We identified the structures of 

several new oligopeptide biomarkers and further studied molecular traits and interconnections based on 

the pool of oligopeptides involved. This approach can now be applied to other grape musts or to other 

yeast strains and at larger scales in order to discover more oligopeptides of interest. Non-targeted 

metabolic profiling of samples during MLF revealed the capacity of Lalvin VP41TM to assimilate 

diverse oligopeptides. These decreased/increased features also showed particular molecular traits and 

interconnections. Likewise, using other LAB strains or other wines would expand our understanding of 

bacterial oligopeptide assimilation.  
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From the methodological standpoint, we performed targeted studies on nitrogenous components and on 

oligopeptides using a non-targeted metabolomics approach. Analytical methods used for metabolic 

profiling were not developed solely for wine oligopeptides but for all kinds of metabolites in different 

matrices (17-19, 32-34). The “targeting” was achieved through an identification workflow (Fig. 1). 

Although we can’t gaurantee an exhaustive detection, the workflow has generated enough potential 

oligopeptide features for a global interpretation and its reliability for oligopeptide annotation was 

validated by several unknown features (Fig. 3). The in silico-generated oligopeptide database played an 

important role in recognizing the 'unknowns' (according to traditional metabolomics databases). We 

suggest that the in silico databases of other classes of compounds with repeating units such as sugar, 

lipid and polyphenol could help understanding 'unknowns' in non-targeted metabolomics.  

 

Figure S3 Characterization of degraded oligopeptides in S3-fermented (A, D and G), S12-fermented (B, G and H) 

media and all oligopeptides (C, F, I) based on: A) - C) m/z distribution; D) - F) distribution of oligopeptide length; 

G) - I) VKD presentation of chemical formula in the region 0.1≤ O/C≤ 0.7; 1≤ H/C≤ 2.2; each solid ball 

represents an elemental formula; the diameter of a solid ball is correlated to the absolute value of Spearman’s 

correlation coefficient in G) and H), and to the averaged area over all the samples in I); the color code is the same 

as that used in Figure 2. D) - F) were plotted using features annotated as unique amino acid combinations.   

Material and Methods 
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Microoganisms 

Fifteen commercial Saccharomyces strains (wine active dry yeast S1 to S15, Lallemand Inc., France, 

stored at 4 °C) were used to perform AF. Phenotypes of these strains were either MLF+ (S1 to S10) or 

MLF- (S11 to S15) according to general knowledge of their MLF compatibility obtained from laboratory, 

pilot and large scale winemaking experiments (35). The LAB strain used for MLF was Lalvin VP41TM 

(MBR®, Lallemand Inc.), developed for direct inoculation.  

Grape must 

The growth medium was a Chardonnay grape must collected during harvest 2012 in the Languedoc-

Rousillon region (pH = 3.4, malic acid = 2.5 g l
-1

, sugar = 210 g l
-1

). It was supplemented with 

assimilable (NH4)2HPO4 (RP Normapur, Prolabo, Fontenay-sous-Bois, France) to prevent stuck or 

sluggish fermentation (yeast assimilable nitrogen or YAN = 266 mg l
-1

).  

Alcoholic fermentation  

Each rehydrated yeast was sterilely inoculated at 2 * 10
6
 cells ml

-1
 in 300 mL medium. AF was 

performed in triplicates at 20°C without agitation in a cotton-stoppered Erlenmeyer flask. The weight 

loss of the Erlenmeyer was due to CO2 production and reflected fermentative activity. Therefore the 

stabilization of cumulated weight loss indicated the completion of AF (Fig. S4). Samples were collected 

only when the reduced sugar concentration measured by the DNS method (36) was below 2.5 g l
-1

 for all 

strains and replicates. Monocultures of each yeast strain were carried out in triplicates. The fermentation 

conditions were strictly consistent between strains and replicates. For the sampling, fermented media 

were centrifuged at 14 000 rpm for 20 min to remove cells, then the supernatants were stored in 2-ml 

glass vials at 4 °C (fully filled to avoid oxidation). 

Metabolic profiling of samples at the end of AF 

The methanolic extracts of 45 fermented media (15 strains * 3 replicates, 1:5 diluted) were used for 

metabolic profiling on the FT-ICR-MS platform. Positive electrospray ionization ((+)ESI) was chosen 

since oligopeptides readily accept a proton (H
+
) on its -NH2 group under wine acidic conditions (37). 

Prior to measurements, the MS was externally calibrated on clusters of arginine (10 mg l
-1

 in methanol), 

reaching a calibration error below 0.1 ppm. The samples were infused at a flow rate of 120 µl/h in 

randomized order. The spectra were acquired in broad band detection mode with a time domain of 4 
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mega words over a mass range m/z = 100-1000 Da, and 200 scans were accumulated for each sample. 

The resolving power of the spectra was 400 000 at m/z = 400. The raw spectra were processed with 

DataAnalysis version 4.1 (Bruker Daltonik GmbH, Bremen, Germany). Each raw spectrum was first 

calibrated internally according to endogenous abundant metabolites. Mass peaks were then extracted at a 

signal-to-noise ratio (S/N) of 4. Each spectrum was exported as a two-column ASCII file containing m/z 

and intensities of extracted mass signals. 45 ASCII files were aligned within a 1 ppm window through 

an in-house program (34): m/z values of overlapped peaks were averaged and intensities from 

corresponding samples were concatenated. Mass peaks found in less than 4 out of 45 samples were 

removed and signal intensities were scaled to unit variance. The resulting data matrix X contained 45 

rows representing samples and 20 332 columns representing mass signals.  

Malolactic fermentation  

In order to monitor the change of extracellular oligopeptide profiles during MLF in both MLF-friendly 

(fermented by MLF+ strains) and MLF-harsh (by MLF- strains) environments, fermentation was carried 

out with Lalvin VP41TM (O. oeni) in media fermented by S3 (MLF+) and S12 (MLF-). Triplicates of 

media from the same strain with cells removed were pooled, inerted with argon and stored at 4°C before 

inoculation. Bacterial culture was grown in duplicates in 15-ml plastic tubes containing 15 ml of pooled 

wine (fully-filled to avoid oxidation). After rehydration, Lalvin VP41TM was inoculated at a density of 

10
6
 CFU ml

-1
 and incubated at 20°C. MLF was monitored every 2-3 days by malic acid degradation 

analyzed with an enzymatic assay (OENOSENTEC L-malic acid kit, Toulouse, France). MLF was 

considered accomplished when the malic acid concentration was below 0.2 g l
-1

. Bacterial population 

monitoring was done with a BD Accuri™ C6 flow cytometer (BD Bioscience, Le Pont de Claix, France) 

in combination with BOX/PI dyes (Life Technologies SAS, Saint Aubin, France). The viable O. oeni 

population during MLF was efficiently discriminated and quantified (38). In parallel, extracellular media 

samples throughout MLF were collected for the metabolomics study. 
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Figure S4 The figures show the cumulated weight loss during AF (weight loss of the Erlenmeyer compared to the 

start of fermentation) for each strain. Kinetics curves were obtained by averaging the fermentation triplicates. The 

error bar shows the standard deviation. 

Metabolic profiling of samples during MLF 

MLF media with cells removed were analysed with UPLC-MS (ACQUITY UPLC Waters, Milford, 

USA, maXis
TM

, Bruker, Bremen, Germany) using reversed phase (RP) separation. The separation was 

performed with a Grace C18HL column (1.5 µm; 2*150 mm). Metabolites were eluted with a water-

acetonitrile gradient: buffer A consisted of 5% ACN in water, and buffer B 100% ACN. Both contained 

0.1% formic acid (FA). The gradient started at 100% A, held for 1.12 min, and increased to 37.1% B at 

9 min, held for 3 min with 37.1% B then returned to initial conditions in 0.07 min with re-equilibration 

for 3 min. The flow rate was set at 0.3 ml min
-1

 with a column temperature of 40°C. ToF-MS detection 
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was performed in (+)ESI with an accumulation time of 1 Hz. Instrument tuning allowed the optimal 

detection and resolution of compounds in the mass range 50-1 000 Da acquired. Prior to each analytical 

run, the MS was calibrated with 5 ppm of arginine solution reaching a mass error < 0.004 Da. QCs 

(quality control of a pool of all the samples studied) were integrated at the beginning and in the middle 

of the batch for column equilibration and monitoring of retention time (RT) stability. All samples were 

studied in duplicate in randomized order. 

Automated data pre-processing of UPLC-MS runs were performed using the Genedata Expressionist for 

MS 8.0 software (Genedata AG, Basel, Switzerland). The complete pre-processing consisted of 

chemical noise subtraction, RT alignment, mass recalibration and peak picking. Internal recalibration 

was based on 1:4 diluted low concentration tune mix (Agilent, Waldbronn, Germany), injected prior to 

each run using a 6-port valve mounted on the MS. The output was a data matrix K that contained 18 

rows (9 kinetics points per growth medium, analytical duplicate averaged, biological duplicate averaged) 

and 978 columns (LC-MS features, combinations of RT and m/z). 

Statistical analysis 

The aim of statistical analysis on data matrix X was to extract m/z relevant to phenotype discrimination 

between MLF+ and MLF-. Orthogonal partial least squares discriminant analysis (OPLS-DA; SIMCA-P 

9, Umetrics, Umea, Sweden) first generated a subset of discriminative metabolites through phenotype 

classification. These were further confirmed with the nonparametric Wilcoxon-Mann-Whitney (WMW) 

test (coin package version 1.0-24; R version 3.2.1). The OPLS-DA model was validated with a 

sevenfold cross validation. Our model was considered acceptable since R
2
 = 0.42 and Q

2
 = 0.86 (39). 

Mass signals with a variable magnitude in projection (VIP) value >1 and a p-value <0.05 were 

considered as significantly relevant (33). 

Statistical analysis on data matrix K was performed using a different method since the goal was to 

extract increased/decreased LC-MS features. Spearman’s rank correlation ρ (cor function in R) to the 

time variable (Day 0, 3, …18) was calculated for each LC-MS feature in K. The feature increased 

significantly in the medium throughout the MLF if ρ was higher than 0.8 or, conversely, decreased if ρ 

was lower than -0.8 (40). 

Mass annotation and database assignment 
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Features in data matrix X and K represented non-volatile compounds in diverse chemical families. In 

order to extract only amino-acids/oligopeptides, a mass annotation workflow was created (Fig. 1). 

Masses in X or K were first annotated with elemental formulas using an in-house Netcalc software 

application (41). Netcalc builds a non-directed mass difference network in which the edges (mass 

differences) represent all existing (bio)chemical reactions and functional groups (Fig. S5). Metabolite 

candidates are represented by connected nodes; disconnected masses are removed as contaminants, 

isotopes and noise. Based on this underlying biochemical network structure, we could assign elemental 

neutral formulas (C, H, O, N, S and P elements) to all the metabolite candidates provided that one 

starting point was given (e.g., glucose C6H12O6 as a key metabolite in wine can be used as a starting 

node).  

All the nitrogen-containing formulas annotated by Netcalc were taken for database annotation. The 

linear oligopeptide database (ODB) was built in-house by calculating the elemental formulas of the 

exhaustive combination of 1 to 5 proteinogenic amino acid(s). There were 19 such amino acids since no 

distinction was made between the isomers leucine and isoleucine. Each formula in ODB usually 

represents oligopeptides composed of a specific set of amino acids, thus diverse possible sequences. For 

instance, C17H33O4N3 represents the combination of 2 leucines and a valine (noted as [L, L, V]), thus 

possible sequences from N-terminus to C-terminus can be ‘L(I)L(I)V’, ‘L(I)VL(I)’ and ‘VL(I)L(I)’. The 

same elemental formula sometimes represents different combinations of amino acids. For instance, 

C17H30O5N4 can be either [G, P, V, V] or [A, A, L, P]. If we go through the whole ODB, the percentage 

of elemental formulas in this situation increases over oligopeptide length: 8.4% for dipeptides, 26.2% for 

tripeptides, 47.6% for tetrapeptides and 67.2% for pentapeptides. Therefore, different combinations of 

amino acids might be assigned to a Netcalc-annotated mass signal. Database-annotated mass signals 

were finally considered to have an amino acid/oligopeptide nature even if they were annotated to only 

one amino acid composition. In combination with two types of statistical filters (Fig. 1), we extracted 

potential amino acids/olipeptides involved in yeast phenotype discrimination or in bacterial metabolism.  

Tandem LC-MS
2
 generated structure information on a target compound by first isolating (at one or 

several RTs), fragmenting and then measuring the m/z of the fragment ions produced (42). This 

technique was used to ascertain the amino acid composition and further determine the sequence of a 

given oligopeptide (43). We confirmed the putative annotation of several oligopeptides using this 

method. The LC-MS method (column, pressure and MS parameters) was the same as that described 
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previously in the paragraph « Metabolic profiling of samples during MLF ». Collision energy levels 0, 5, 

10 and 15 eV were applied for the fragmentation of targeted masses. The sample used was a 8-time 

concentrated QC. 

 

Figure S5 The figure shows how Netcalc assigns an elemental formula for the mass signal m/z = 229.1548 (pink 

node). According to the mass difference network, the mass was connected to 6 other mass signals (green nodes) 

via edges that represent potential biochemical transformations or functional groups: 1) Methyline group; 2) 

Hydroxymethyl transfer; 3) Hydro-peroxidation; 4) Glycine decarboxylative condensation; 5) Amino function 

exchanged by hydroxyl function; 6) neutral/reductive deamination. When these green nodes are annotated, the 

formula of the red node can be deduced. In the network scale, we assume that all the nodes can be annotated if a 

few formulas of key metabolites are provided at the start of annotation. According to the formula assigned, the 

pink node was recognized as ‘Leucyl-Proline’. 

Visualization 

The 2-dimensional van Krevelan diagram (VKD) is often used to visualize the chemical classes of wine 

compounds (17, 32) based on H/C and O/C ratios in annotated formulas (Fig. 2). Here we applied this 

presentation only on nitrogenous formulas. The goal was to reveal the synergistic effects of nitrogen 

compounds that belong to a certain chemical cluster.  
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For putative oligopeptides of interest, common amino acid compositions were visualized in a directed 

“peptide degradation network”: a longer peptide (e.g. [L, R, V, V]) was connected to another peptide 

(e.g. [L, R]) if it contained all the amino acids of the shorter one. The “degraded” amino acids (here [V, 

V]) were displayed on the directed edge. Cytoscape 3.1.1 was chosen for network visualization (44). 
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3. Bacterial exo-metabolome changes during MLF 

We monitored the bacterial exo-metabolomic profile change during MLF by measuring the samples 

taken at different days of fermentation. The starter cultures were MLF-friendly wine fermented by S3 

and MLF-harsh wine fermented by S12. Samples were measured in negative mode FT-ICR-MS, 

generating the data matrix K- (9 time points * 2 strains = 18 samples, 20415 variables). Parallely, LC-

MS in positive mode on the same samples provided an complementary analytical scope and generated 

the data matrix KL+ (18 samples, 943 variables). The two matrices were studied separately by PCA:  

 

Figure 30 PCA analysis for exo-metabolomics kinetics data A) Scatter plot of 2 first PCs for K- B) Scatter plot of 

2 first PCs for KL+. The label 'SxDy' means the starter culture is the wine fermented by Sx and we are at day y of 

malolactic fermentation. The arrow indicates the time flow of MLF (blue for S3 and red for S12).  

The exo-metabolomic profile change over MLF was observed on both PC1 and PC2 in Figure 30A, only 

on PC2 in Figure 30B. With both analytical methods, the direction of profile change was the same in 

wines fermented by S3 and S12, which implies that similar metabolites contributed to this change. This 

observation was consistent with the fact that MLF was driven by the same LAB strain. Comparing two 

starter cultures, more signficant profile changes were observed in S3-fermented media, especially from 
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Day 0/3/5/7 to Day 10/13/15/17/18. We recall that this sudden change was also observed for viable cell 

kinetics and indicated an exponential growth phase (Figure 6 of the submitted paper « Non-targeted 

metabolomics unravels...»). Conversely less significant profile change and no exponential growth were 

observed throughout the MLF in S12-fermented media. It seems that the exo-metabolomic profile 

change could well explain the bacterial activity during MLF. Under the hypothesis that exo-

metabolomic profile change reflects the metabolic pathway [7], we tried to map the significantly-

changed features to the O. oeni metabolic network. Spearman’s rank correlation ρ to the time variable 

(Day 0, 3, …18) was calculated for each variable in K- and KL+. A high ρ (close to 1) means that the 

feature increased throughout the MLF. A low ρ (close to -1) indicated the decrease of feature (Figure 31). 

The distributions revealed more increased features than decreased ones in both wines, especially in wine 

fermented by S3.  

Figure 31 Distribution of correlation coefficient of features (K- and KL+ combined) A) For wine fermented by S3 

A) For wine fermented by S12 

The connection of increasing/decreasing features might reveal specific pathway modules involved 

during MLF process. For the pathway interpretation, formula-annotated mass features from K- and KL+ 

were combined and then converted to KEGG ids using the webserver MassTRIX. Mapped KEGG ids in 
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the metabolic network was colored according to the correlation coefficients of corresponding features in 

S3 or S12-fermented media. Here is an example of a pathway module with increased/decreased features: 

 

Figure 32 The same O. oeni pathway module (related to nucleotide metabolism) colored differently according to 

Spearman’s correlation coefficient of features in A) wine fermented by S3 B) wine fermented by S12. Nodes 

represents the putative metabolites and edges represent biochemical reactions. 

For the same pathway module, 4 metabolites increased or decreased in wine fermented by S3 and only 1 

in another wine. This pathway module was also seen in Figure 5 of the accepted paper « New molecular 

evidence...» and was described as 'enriched for MLF+ yeast phenotype'. Different observations about 

exo-metabolomic profile changes all suggested that metabolic activity of the same LAB strain is higher 

in MLF-friendly environment. 
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4. Conclusion of chapter 3 

In this chapter, we tried to go one step further: based on the results of non-targeted metabolomics, we 

performed targeted studies on amino acids and oligopeptides. Our study has revealed particularly the 

involvement of yeast-derived peptides in yeast-bacteria interaction. Other metabolites have shown 

specific connections in yeast/bacteria metabolic network. Such information could both provide 

arguments for strain selection criteria and metabolic engineering of microorganisms.  

Bibliography 
 

1. Dunn, W. B., Bailey, N. J. C. & Johnson, H. E. Measuring the metabolome: current analytical 

technologies. Analyst 130, 606–625 (2005). 

2. Forcisi, S. et al. Liquid chromatography-mass spectrometry in metabolomics research: mass analyzers 

in ultra high pressure liquid chromatography coupling. J Chromatogr A 1292, 51–65 (2013).  

3. Roullier-Gall, C., Boutegrabet, L., Gougeon, R. D. & Schmitt-Kopplin, P. A grape and wine 

chemodiversity comparison of different appellations in Burgundy: Vintage vs terroir effects. Food 

Chemistry 152, 100–107 (2014). 

4. Roullier-Gall, C., Lucio, M., Noret, L., Schmitt-Kopplin, P. & Gougeon, R. D. How Subtle Is the 

‘Terroir’ Effect? Chemistry-Related Signatures of Two ‘Climats de Bourgogne’. PLoS ONE 9, e97615 

(2014). 

5. Roullier-Gall, C., Witting, M., Gougeon, R. D. & Schmitt-Kopplin, P. High precision mass 

measurements for wine metabolomics. Front Chem 2, (2014). 

6. Cardoso, J.-F. Blind signal separation: statistical principles. Proceedings of the IEEE 86, 2009–2025 

(1998). 



 

253 
 

 

7. Boyer, M. & Wisniewski-Dyé, F. Cell-cell signalling in bacteria: not simply a matter of quorum. 

FEMS Microbiol. Ecol. 70, 1–19 (2009) 

8. Fourcassie, P., Makaga-Kabinda-Massard, E., Belarbi, A. & Maujean, A. Growth, D-glucose 

utilization and malolactic fermentation by Leuconostoc œnos strains in 18 media deficient in one amino 

acid. Journal of Applied Bacteriology 73, 489–496 (1992). 

9. Eschenbruch, R. Sulfite and Sulfide Formation during Winemaking -- A Review. Am. J. Enol. Vitic. 

25, 157–161 (1974). 

 

 

 

 

 

 

 

 

 



 

254 
 

 

Conclusion and Perspectives 

Our study has completely characterized one type of yeast-bacteria interaction in wine: the contact-

independent stimulation/inhibition of malolactic bacteria via yeast metabolites. The metabolites 

discovered will have a direct application to the winemaking process, especially to the improvement of 

sequential MLF. Unlike the classical studies that focus on O. oeni in response to known yeast factors, 

our entire study was based on the exo-metabolome of 16 yeast strains for two considerations: i) Yeast 

strains held reproducible MLF+ and MLF- phenotypes, creating friendly and harsh growth environment 

for  O. oeni, respectively after AF. Therefore metabolites that discriminate the two environments should 

have a direct relevance with yeast-bacteria interaction; ii) Exometabolome is a global measurement of 

yeast secreted metabolites and metabolites modified by yeast. It not only reflects secretory activities but 

also cellular metabolic activities even at a level of transcription [1]. Therefore exometabolome study 

might bring further insights of two yeast phenotypes at a cell level without additional quenching or 

extraction steps in the case of intracellular metabolic profiling. The FT-ICR-MS-based non-targeted 

metabolomics was the major tool applied during the study. The huge advantage of the technique was the 

rapid, accurate detection and semi-quantification of thousands of metabolites in wine. Our analysis was 

completed with UPLC-MS that provided additionally isomeric separation. A part of the 

multidisciplinary workflow (Figure 1) was dedicated to extract useful information from high-throughput 

metabolomics data generated from the two platforms. To complete our study, we added in vitro 

biomarker validation, targeted studies and network analysis into the workflow.   

At the first stage of the study, we have performed several method developments about the application of 

non-targeted approaches on yeast exo-metabolome. This mainly include proper sample preparation, 

adaptation of analytical methods on FT-ICR-MS and UPLC-MS from other studies [2-4] to our matrix, 
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data pretreatment and novel algorithms for statistical analysis. The last one brought a new reliable 

estimation of non-gaussian source inside high-throughput metabolomics data while classical statistical 

analysis only suggested gaussian sources. These method developments have maximized the potential of 

yeast exo-metabolome study to reflect diverse genotypic/phenotypic information. Meanwhile, our results 

from unsupervised statistical analysis have revealed the quality of fermentation replicates, as well as the 

particular metabolic signatures of certain strains, such as S71, S3 and S5. This information was used 

further in the workflow. On the other hand, exact molecular evidence for these particular metabolic 

signatures needs to be elucidated in the future. 

From the properly-treated metabolomics datasets, our next step was to extract molecular evidence of 

yeast phenotypic distinction MLF+ and MLF-. Mass features that showed a statistical discrimination and 

held a reliable elemental formula annotation were considered as potential biomarkers of either MLF+ or 

MLF- phenotype. We have extracted a high amount of such features: 1288 from negative mode FT-ICR-

MS, 1365 from positive mode FT-ICR-MS and 670 from negative mode RP LC-MS. However, the 

structure elucidation remained a limiting step towards biomarker discovery. We have developped a 

detailed pipeline that started with database annotation, followed by LC-MS
2
 experiments and Metlin 

spectra matching. The biomarkers discovered, such as gluconic acid, citric acid, seemed to be valid 

biologically according to the in vitro test. The physiological impact of other putative biomarkers, e. g. 

catechin and uridine, needs to be demonstrated in future studies. On the other hand, our pipeline was 

strongly dependent on the wine metabolite database [3], which means more than 75% discriminant mass 

features not recognized by the database would not be further identified. We are now developing an in 

silico deconjugation and full scan MS/MS-based method to identify unknown compounds. Since the 

high diversity of wine metabolites was partially due to the conjugated compounds, such as 

glycoconjugates and sulfonated compounds [5, 6], some unknowns might be recognized in the database 
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after getting deconjugated. For instance, the unknown formula [C9H7O7S]
- 
became [C9H7O4]

- 
after the 

removal of the group SO3 and was annotated as caffeic acid in the wine database. Interestingly, this in 

silico procedure sometimes correlates with full scan MS
2
 data: the parent ion ([C9H7O7S]

-
) decreased 

while the predicted ([C9H7O4]
-
) increased when we increased the collision energy (Figure 33). This 

observation meant that [C9H7O4]
- 
was truly a fragment of [C9H7O7S]

-
 and the in silico deconjugation 

suggested a reasonable hypothetic structure. A novel algorithm in the future could allow the automatic 

matching of in silico-predicted fragments against full scan MS
2 

spectra, and push further the 

identification of unknown metabolites involved in yeast-bacteria interaction. 

 

Figure 33 Illustration of the in silico deconjugation. Overlapped mass spectra of full scan MS
2
 targeting m/z= 

200-300 showed the evolution of parent ion and predicted ion when the collision energy increased.  

Apart from individual biomarkers, the global interpretation of discriminant masses has suggested 

families of compounds involved in yeast/bacteria interaction, such as MLF+ carbohydrate, phenolic 

compounds and nitrogen-containing compounds. The latter family has shown a strong and clear pattern 

on the VKD, so a series of targeted studies was performed in order to complete the non-targeted 
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approach: HPLC analysis of L-amino acids has suggested methionine as a MLF+ biomarker; database-

driven oligopeptide studies suggested particular molecular traits and common patterns of oligopeptides 

involved in yeast-bacteria interaction. We could think of testing in vitro not only the impact of 

individual MLF+ oligopeptides but also a mixture of oligopeptides holding particular biochemical traits 

(e.g. H/C, O/C, sulfur-containing, common pattern...). We would also like to study in the future the 

different enantiomers of yeast-derived amino acids and peptides after a rapid quantification method was 

developped. In fact, although L-amino acids clearly predominate in wine, D-enantiomers have been 

detected in various plants and yeast autolysate [7, 8], as well as in bacterial peptidoglycans, an important 

component of bacterial cell wall [9]. Yeast derived D-amino acids (free or in peptides) and their role on 

O. oeni will be for the first time illustrated. Enantioseparation can not be achieved with a normal column 

without derivatization. Thanks to the teicoplanin column, we are now able to separate most standard L- 

and D-amino acids prepared in 10% methanol. However, the co-elution of L and D peaks occured when 

applying the method in yeast extracellular medium. The problem will be resolved in the future by 

optimizing the separation method and by additional sample treatment.  

To associate extracellular metabolite measurement with metabolic activity, we further performed 

metabolic network analysis. We found connections between MLF-related putative biomarkers in the 

metabolic network and discovered nucleotide, amino acid and TCA cycle-related modules specific to 

MLF+ phenotype. On the bacterial side, the exo-metabolome changes during MLF also suggested 

specific pathway modules. Meanwhile, the concentration changes of extracellular metabolites could be 

associated with secretion rate/metabolic flux and further with the constraint-based fluxomics study. In 

combination with an accurate flux measurement and transciptomic studies, we are planning in the future 

to characterize the impact of yeast on the pathways of O. oeni during MLF [10, 11]. Information 

obtained from both yeast and bacterial side could be useful for metabolic engineering.  
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Globally, our study has shown the ability of the metabolomics-based multidisciplinary workflow to 

unravel molecular evidence of yeast-bacteria interaction. Although some evidence discovered was 

specific to the grape matrix and yeast strains, we could consider in the future to apply the same 

workflow to other matrices, in larger scales and for other strains in order to build a comprehensive 

database of wine yeast-bacteria  interaction. Furthermore, metabolomics could be applied to other types 

of microbial interactions in other consortia. In wine, this strategy might be of great interest to unravel 

yeast-yeast interaction mechanisms that occur during the AF. Metabolomics could be applied to other 

matrices, for instance, to study the impact of yeast G. candidum on the LAB during cheese ripening, one 

could inoculate the cheese surface with different yeast strains that either stimulate or inhibit LAB growth. 

Then the metabolome change of cheese surface will be monitored as well as the population dynamics. 

Metabolites that increase/decrease during the process and that differ between strains should be 

potentially involved in microbial interaction. 
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Appendices 

Annex 1 Key metabolites in wine used as the reference list for FT-ICR-MS internal calibration. m/z in (-) 

ESI mode is given: 

Succinic acid 117.019332 Kaempferol 285.040462 

Ribose 149.045547 Catechin 289.071762 

Vitamine C 175.024812 Ellagic acid 300.998991 

Caffeic acid 179.034982 Quercetin 301.035376 

Glucose 179.056112 Robinose 325.114020 

Citric acid 191.019726 Lactose 341.108935 

Ferulic acid 193.050632 Syringetin 345.061591 

Gluconic acid 195.051026 Neochlorogenic 353.087806 

Lipoic acid  205.036245 Isoquercitrin 463.088200 

Resveratrol 227.071368 Fucosyllactose 487.166844 

Myristic acid 227.201654 Raffinose 503.161759 

Palmitic acid 255.232950 UDP-glucose 565.047815 

Oleic acid 281.248604 Stachyose 665.214582 

 

Annex 2 List of chemical standards tested before metabolic profiling on UPLC-MS.  

Name Formula m/z of [M-H]- RT (min) 

[d10] Adipic acid C6D10O4 153.1008 4.88± 0.2 

Nialamide C16H18N4O2 297.1357 5.6± 0.2 

Sulfadimethoxine C12H14N4O4S 309.1040 8.3± 0.2 

Reserpine C33H40N2O9 607.2661 10.6± 0.2 

[d4] Cholic acid C24D4H36O5 411.3054 12.77± 0.2 

 

Annex 3 R-script for novel feature selection approaches 

############################ 
###Functions and packages### 
############################ 
 
library(coin) # For univariate WMW test 
library(caret) # for PLSDA 
library(e1071) # for SVM and naive bayes 
library(MASS) # for LDA 
library(tree) # for Decision tree 
library(class) # for KNN 
#source("https://bioconductor.org/biocLite.R") 
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#biocLite("OmicsMarkeR") # for SVM RFE feature selection 
library(OmicsMarkeR) 
 
pca_d<-function(new_data){ 
# Function that denoises data by PCA,  
# Function reserved for the 'LDA after PCA' classifier  
  p=ncol(new_data)-1 
  pc=prcomp(new_data[,1:p]) 
  cum_var=cumsum(pc$sdev/sum(pc$sdev)) 
  keep=which(cum_var>0.95)[1] # 95% variance explained 
  reduced=data.frame(pc$x[,1:keep],y=new_data[,(p+1)]) 
  return(reduced) 
} 
 
mont_generator<-function(n,fold){ 
# Function that randomly divide dataset to equal size blocks 
# n: nb of observation in a dataset; fold: nb of blocks 
  l=1:n 
  sample_list=list() 
  for (r in 1:fold){ 
    sl=sample(l,n/fold) 
    l=setdiff(l,sl) 
    sample_list[[r]]=sl} 
  return(sample_list)} 
 
CV_mont<-function(new_data,fold,rep){ 
# Function that performs CV for different classifiers 
# fold: number of folds, rep: number of CV replicates 
# new_data: data matrix with n observations and p variables 
   
  p=ncol(new_data)-1 
  l=1:nrow(new_data) 
  pr_knn=rep(0,nrow(new_data)) 
  pr_pls=rep(0,nrow(new_data)) 
  pr_svm=rep(0,nrow(new_data)) 
  pr_nb=rep(0,nrow(new_data)) 
  pr_lda=rep(0,nrow(new_data)) 
  pr_dt=rep(0,nrow(new_data)) 
   
  # Denoising for LDA after PCA: 
  new_data_reduced=pca_d(new_data)  
   
  for (r in 1:rep){ 
    s=mont_generator(nrow(new_data),fold) 
    for (i in length(s)){ 
       
    # Deviding data to test data and training data: 
      train_data=new_data[setdiff(l,s[[i]]),] 
      test_data=new_data[s[[i]],] 
      train_data_reduced=new_data_reduced[setdiff(l,s[[i]]),] 
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      test_data_reduced=new_data_reduced[s[[i]],] 
     
    # Performing KNN classification: 
      M_knn=knn(train_data[,1:p],test_data[,1:p],cl=train_data[,(p+1)],k=5) 
      pr=as.numeric(as.character(M_knn)) 
      pr[which(pr==0)]=-1 
      pr_knn[s[[i]]]=pr_knn[s[[i]]]+pr 
       
    # Buiding PLSDA classifier with training data: 
      M_PLS=plsda(train_data[,1:p],train_data[,(p+1)],ncomp=1) 
    # Making prediction with test data: 
      pr<- predict(M_PLS,test_data[,1:p],method = "max.dist") 
      pr=as.numeric(as.character(pr)) 
      pr[which(pr==0)]=-1 
      pr_pls[s[[i]]]=pr_pls[s[[i]]]+pr 
       
    # Linear support vector machine: 
      M_SVM=svm(train_data[,1:p],train_data[,(p+1)],kernel='linear') 
      pr<- predict(M_SVM,test_data[,1:p],decision.value=T) 
      pr=as.numeric(as.character(pr)) 
      pr[which(pr==0)]=-1 
      pr_svm[s[[i]]]=pr_svm[s[[i]]]+pr 
     
    # Naive bayesian: 
      M_NB=naiveBayes(train_data[,1:p],train_data[,(p+1)]) 
      pr<- predict(M_NB,test_data) 
      pr=as.numeric(as.character(pr)) 
      pr[which(pr==0)]=-1 
      pr_nb[s[[i]]]=pr_nb[s[[i]]]+pr 
       
    # LDA after PCA: 
      M_LDA=lda(y ~ .,train_data_reduced,prior = c(0.5,0.5),CV=F) 
      pr<- predict(M_LDA,test_data_reduced)$class 
      pr=as.numeric(as.character(pr)) 
      pr[which(pr==0)]=-1 
      pr_lda[s[[i]]]=pr_lda[s[[i]]]+pr 
       
    # Decison tree: 
      M_DT=tree(y ~ .,train_data) 
      pr<- predict(M_DT,test_data,type='class') 
      pr=as.numeric(as.character(pr)) 
      pr[which(pr==0)]=-1 
      pr_dt[s[[i]]]=pr_dt[s[[i]]]+pr} 
  } 
 
return(list(knn=pr_knn,pls=pr_pls,svm=pr_svm,nb=pr_nb,lda=pr_lda,dt=pr_dt))} 
 
cal_error<-function(predicted,y){ 
# Function that calculates the prediction error 
# predicted: output of CV_mont y: initial class label 
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  predicted[which(predicted>=0)]=1 
  predicted[which(predicted<0)]=0 
  error=mean(predicted==y) 
  error=1-abs(2*error-1) 
  return(error)} 
 
################# 
###Main script### 
################# 
 
# An example was given for study positive mode FT-ICR-MS data: 
# Phenotype label of each sample: 1 = MLF+ ;  0 = MLF- 
phenotype2=as.factor(c(rep('1',30),rep('0',15)))  
 
# Columns: Mass, ID and all sample; Rows: Mass signals 
 
new_data=read.table('Positive mode.txt',sep='\t',dec=',',header=T) 
head(new_data) 
# Mass       Mass_IDs   R7S1     R7S2     R7S3     ... 
# 92.35652   1          0        0        2422598  ... 
# 93.01628   3          2821344  0        3761839  ... 
 
# Data pretreatment: scaling, labeling 
masslist=new_data[,1] 
IDlist=new_data[,2] 
new_data=new_data[,3:ncol(new_data)] 
sub_new_data=data.frame(t(new_data)) 
sub_new_data_scaled=scale(sub_new_data) 
colnames(sub_new_data_scaled)=paste0('id_',IDlist) 
 
# Ranking all features by two-sided WMW test: 
sub_new_data_scaled2=data.matrix(sub_new_data_scaled) 
pvalue_list=c() 
for (c in 1:ncol(sub_new_data_scaled2)){ 
  print(c) 
  wt=wilcox_test(sub_new_data_scaled2[,c]~phenotype2,distribution='exact') 
  pvalue_list=c(pvalue_list,pvalue(wt))} 
rank_wil=rank(pvalue_list,ties.method='min') 
rank_order=order(rank_wil) 
 
# Classification error of subsets of ranked masses: 
 
error_svm=c() 
error_knn=c() 
error_lda=c() 
error_nb=c() 
error_pls=c() 
error_dt=c() 
# Subset list: top 2, top 5 until top 2000 
LS=c(2,seq(5,95,5),seq(100,950,50),seq(1000,10000,500),seq(11000,ncol(sub_new_data_
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scaled2),1000)) 
 
for (n in LS){ 
 
# Select top n features: 
  sub_new_data_scaled3=data.frame(sub_new_data_scaled[,rank_order[1:n]],y=as.charac
ter(phenotype2)) 
 
# 5-fold CV with 31 replicates: 
  Pr=CV_mont(sub_new_data_scaled3,5,31) 
   
# CV Errors: 
  error_knn=c(error_knn,cal_error(Pr$knn,as.numeric(phenotype))) 
  error_svm=c(error_svm,cal_error(Pr$svm,as.numeric(phenotype))) 
  error_pls=c(error_pls,cal_error(Pr$pls,as.numeric(phenotype))) 
  error_nb=c(error_nb,cal_error(Pr$nb,as.numeric(phenotype))) 
  error_lda=c(error_lda,cal_error(Pr$lda,as.numeric(phenotype))) 
  error_dt=c(error_dt,cal_error(Pr$dt,as.numeric(phenotype))) 
} 
 
# Visualization of error evolution: 
tmp=log10(ncol(sub_new_data_scaled)) 
summary_CV=cbind(LS,log10(LS),log10(LS)/tmp,error_knn,error_svm,error_pls,error_nb,
error_lda,error_dt) 
plot(summary_CV[,2],summary_CV[,4],type='l',ylim=c(0,1),xaxt='n',lwd=4,xlab='Top ma
ss ranked by WMW test',ylab='5-fold CV error rate') 
lines(summary_CV[,2],summary_CV[,5],col='red',lwd=4)   
lines(summary_CV[,2],summary_CV[,6],col='blue',lwd=4)   
lines(summary_CV[,2],summary_CV[,7],col='saddlebrown',lwd=4)   
lines(summary_CV[,2],summary_CV[,8],col='purple',lwd=4)   
lines(summary_CV[,2],summary_CV[,9],col='green',lwd=4)  
axis(1,at=c(1.3,2.3,3.3,4.3),labels=c(20,200,2000,20000)) 
 
# Selected top 2000 features for SVM-RFE: 
 
selected=sub_new_data_scaled[,rank_order[1:2000]] 
 
 # Features were ranked from the most to least important: 

 
fs=svmrfeFeatureRanking(selected,phenotype2,c=1) 
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Annex 4 Reactants in the Waters AccQ-Tag
TM

 method 

Mixtures Molecules Final concentration Provider 

Amino acid 

standard mixture 

L-Alanine 

1 mmol/L 

Waters, Guyancourt, 

France 

L-Arginine 

L-Aspartic acid 

L-Cysteine 0.5 mmol/L 

L-Glumatic acid 

1 mmol/L 

Glycine 

L-Histidine 

L-Isoleucine 

L-Leucine 

L-Lysine 

L-Methionine 

L-Phenylalanine 

L-Proline 

L-Serine 

L-Threonine 

L-Tyrosine 

L-Valine 

L-Asparagine 

Fluka GABA 

L-Glutamine 

Internal standard AABA 2.5 mmol/L Sigma 

Solution for 

calibration curve 

Internal standard 0.104 mmol/L 

L-Cysteine 0. 005 ; 0.025 ; 0.05 & 0.1 mmol/L 

Other amino acids 0. 01 ; 0.05 ; 0.1 & 0.2 mmol/L 

Derivatization 

Kit 

Borate buffer (R1) 0.14 mol/L Waters, Guyancourt, 

France AQC (R2A) - 

Buffer A 

CH3COONa · 3H2O 19.04 g/L Sigma 

TEA 0.096% Sigma 

EDTA 0.1% Sigma 

H3PO4 - Acros 
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Annex 5 Calibration curves of the HPLC method for the quantification of 18 amino acids. x-axis: Ci/ CIS; 

y-axis: Ai/AIS 
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Annex 6 R-script for creating tripeptide database 

# Reading the 19 amino acids 
aal=c('G','A','S','P','V','T','C','L','N','D','Q','K','E','M','H','F','R','Y','W') 
# Reading their elemental composition 
formula_aa=data.matrix(read.table('amino acids.txt',sep='\t')) 

#   H C O N S P 
#G  5 2 2 1 0 0 
#A  7 3 2 1 0 0 
#S  7 3 3 1 0 0 
#P  9 5 2 1 0 0....                                       
E3=expand.grid(aal,aal,aal) # Find all combinations 
E3=t(apply(E3,1,sort)) 
E3=E3[!duplicated(E3),] # Filter duplicates 
output3=c() 

for (i in 1:nrow(E3)){ 
  pn=paste(E3[i,],collapse='') 
  a1=which(aal==E3[i,1]) 
  a2=which(aal==E3[i,2]) 
  a3=which(aal==E3[i,3]) 

# Take 2 water molecules out 
  form=formula_aa[a1,]+formula_aa[a2,]+formula_aa[a3,]-c(4,0,2,0,0,0)  
  neutral=aam[a1]+aam[a2]+aam[a3]-18.010565*2 
  output3=rbind(output3,c(pn,form,neutral)) 
} 
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TAV Total Acidity Volatile Acidity pH Malic acid Lactic acid CO2 Reduced Sugar

(% vol) g/L C4H6O6 g/L C4H6O6 g/L g/L mg/L g/L

S1 12,67 6,25 0,71 3,40 2,27 0,03 273,33 2,10

S2 12,90 5,50 0,51 3,45 2,00 0,03 358,00 1,80

S3 12,73 6,60 0,64 3,48 2,07 0,00 303,00 1,63

S4 12,47 5,80 0,36 3,39 2,00 0,07 244,00 1,93

S5 12,23 6,85 0,66 3,37 2,27 0,00 226,00 1,93

S6 12,67 5,50 0,26 3,44 1,77 0,13 230,00 2,00

S7 12,60 6,40 0,72 3,39 2,07 0,00 354,67 1,83

S8 12,73 6,15 0,37 3,42 2,17 0,03 345,00 1,60

S9 12,43 6,65 0,35 3,38 2,13 0,00 224,33 2,00

S10 12,63 6,25 0,44 3,40 2,20 0,03 324,00 1,90

S11 12,50 5,60 0,36 3,43 1,93 0,07 420,00 2,37

S12 12,40 6,15 0,38 3,37 2,20 0,07 351,33 1,60

S13 12,53 6,50 0,34 3,39 2,17 0,17 364,00 1,93

S14 12,63 6,00 0,49 3,42 2,00 0,07 316,67 2,07

S15 12,77 5,85 0,32 3,42 2,10 0,07 362,00 2,00

S71 12,30 5,15 0,35 3,50 1,50 0,20 219,33 1,80

Annex 7 Basic physicochemical parameters of 45 fermented media. The average value was calculated for each strain. 
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Annex 8 Free and total amino acids in wines fermented by 16 strains from Must B. Concentrations 

(mg/L) were averaged for biological duplicates. The values with a question remark seem aberrant 

according to other litteratures. These concentrations need to be further confirmed. 

Free 1: 

 

Free 2: 

 

 

 

mg/L ASP GLU SER GLY HIS THR ARG ALA Gaba

S1 5,46 24,46 75,98 9,63 3,20 3,63 11,11 14,83 5,54

S2 7,88 45,40 79,74 19,64 3,84 5,07 13,54 26,81 5,51

S3 6,54 32,90 76,79 23,63 2,38 3,66 5,92 17,25 0,80

S4 6,06 38,12 91,15 15,19 2,17 2,90 7,03 17,71 0,96

S5 4,51 11,17 71,36 5,37 0,67 1,86 2,13 5,49 1,58

S6 7,67 43,39 83,99 18,66 3,43 3,98 11,20 25,61 4,79

S7 4,84 19,27 81,50 8,44 1,79 3,08 5,99 10,16 1,73

S8 8,59 31,52 78,75 13,56 4,13 4,80 15,66 24,18 5,08

S9 7,05 31,10 76,79 13,14 3,71 3,67 10,56 20,10 4,25

S10 5,95 23,17 82,63 8,89 2,79 3,89 10,36 12,43 6,63

S11 7,83 57,53 72,97 21,60 5,92 4,59 19,42 32,07 2,13

S12 7,09 39,17 40,73 12,90 5,48 4,28 16,68 20,57 4,34

S13 3,51 20,45 78,72 8,81 2,20 3,19 5,06 14,08 3,42

S14 5,24 37,48 82,78 16,00 3,30 3,98 9,95 21,37 2,39

S15 7,64 67,58 90,66 51,55 3,52 8,79 162,22 44,98 258,77

S71 26,60 101,40 110,66 52,81 16,03 11,48 73,91 78,62 19,64

mg/L PRO TYR CYS VAL MET ILE LEU LYS PHE

S1 947,75 4,94 9,02 5,47 7,43 2,92 9,73 15,35 5,09

S2 1059,26 5,37 10,00 4,93 8,17 2,80 6,93 13,24 4,69

S3 1216,55 4,40 9,49 4,19 8,23 2,19 5,92 11,92 2,93

S4 1188,36 3,07 10,66 4,28 5,16 2,26 4,57 7,80 3,05

S5 8,38 1,44 8,43 2,08 14,94 1,52 1,61 3,31 1,11

S6 922,35 5,16 9,56 5,16 9,79 2,75 6,97 13,17 4,73

S7 1177,05 3,67 9,10 3,75 8,50 2,09 5,03 9,43 2,92

S8 831,79 6,23 11,07 6,38 33,79 3,12 9,54 20,09 5,89

S9 733,69 5,47 9,32 4,61 8,99 2,66 8,84 14,90 4,83

S10 858,59 5,69 10,53 6,02 8,65 2,89 7,22 12,71 4,76

S11 1291,25 7,58 10,80 5,90 4,57 3,26 10,39 17,17 7,24

S12 702,22 6,99 8,27 5,99 9,13 2,81 10,63 19,30 6,11

S13 539,95 3,26 9,86 3,34 3,07 2,11 4,44 7,45 2,83

S14 532,99 5,50 10,88 5,00 4,18 2,77 7,08 12,68 4,75

S15 1273,84 10,40 11,51 9,17 5,04 3,58 9,59 25,70 6,56

S71 1228,64 17,77 12,12 14,52 17,49 8,39 38,48 68,79 20,39

? ? 

? 
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Total 1: 

 

Total 2: 

 

 

 

 

mg/L ASP GLU SER GLY HIS THR ARG ALA Gaba

S1 104,62 490,50 173,31 87,55 18,23 86,21 41,25 76,94 7,57

S2 101,56 460,44 129,90 102,50 20,99 83,26 45,48 86,32 7,94

S3 111,77 522,78 120,25 96,35 17,45 91,44 36,10 81,37 3,41

S4 82,45 441,50 115,90 88,10 16,63 73,87 34,65 68,21 3,37

S5 56,43 342,13 118,39 108,70 13,00 62,67 23,39 46,51 3,55

S6 88,90 397,70 115,15 94,42 20,48 74,89 37,80 76,24 6,23

S7 97,07 457,84 123,02 94,05 16,24 82,10 35,61 69,67 3,94

S8 105,82 428,92 121,02 95,22 20,98 90,79 45,55 86,80 6,61

S9 93,69 364,26 107,59 85,06 19,40 78,00 37,57 74,78 6,35

S10 94,54 356,43 140,82 90,90 16,11 93,64 32,63 71,80 2,72

S11 136,91 561,96 144,34 126,17 21,05 105,78 46,01 112,50 5,09

S12 104,16 468,08 118,57 93,76 19,97 91,31 40,49 82,03 7,51

S13 75,61 185,10 125,61 77,19 15,16 81,12 30,47 61,51 5,79

S14 96,66 440,03 126,27 110,82 22,15 85,23 38,38 82,47 5,18

S15 162,06 682,97 137,90 170,97 24,41 109,32 191,54 139,80 501,54

S71 204,77 657,75 137,54 181,59 44,76 125,61 121,81 182,37 21,09

mg/L PRO TYR CYS VAL MET ILE LEU LYS PHE

S1 1417,61 29,07 23,66 42,79 21,91 32,00 42,25 42,71 25,65

S2 1264,23 30,08 22,41 38,40 24,88 31,85 37,64 41,48 24,35

S3 1615,22 27,32 44,94 37,94 34,50 28,60 40,24 42,64 23,43

S4 1420,87 24,07 48,90 28,82 37,35 22,25 30,37 27,33 19,58

S5 95,81 16,97 46,72 21,35 65,86 17,14 20,27 20,48 14,17

S6 1022,49 25,13 23,87 33,13 30,27 26,05 32,75 34,64 22,29

S7 1501,77 25,74 19,39 34,47 22,67 28,24 37,63 40,97 22,09

S8 984,98 29,75 14,74 38,54 50,03 29,15 41,36 48,17 25,38

S9 910,09 27,12 17,09 32,21 23,57 26,49 37,90 42,53 22,66

S10 1136,97 28,48 21,40 35,11 29,66 33,91 37,50 30,49 21,85

S11 1890,90 38,52 23,17 46,27 21,83 43,01 53,64 48,31 33,18

S12 791,65 30,85 19,84 38,61 35,08 31,92 44,47 47,61 26,06

S13 622,92 24,21 17,62 26,63 18,86 22,67 28,78 33,31 17,92

S14 617,23 26,59 21,12 33,84 22,58 28,33 37,93 43,32 23,42

S15 1722,15 45,71 8,73 74,32 14,70 51,17 64,87 61,93 35,73

S71 1705,72 53,78 32,07 76,96 39,64 63,37 93,71 124,64 55,70

? ? 
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Annex 9 R scripts for the accepted paper « MetICA: Independent component analysis for high-

resolution mass-spectrometry based non-targeted metabolomics » 

"fastICA2.R" 

# The fastICA2 is a slightly modified version of fastICA http://cran.r-project.org/
web/packages/fastICA/index.html 
library(fastICA)  
 
fastICA2<-function (X,tot_var,alg.typ = c("parallel", "deflation"), fun = c("logcos
h","exp"),  
                    w.distribution = c("uniform","gaussian","beta"), alpha = 1, max
it = 200, tol = 1e-04,verbose = FALSE)  
{  
# The additional parameter is tot_var, the variance of dataset X preserved for ICA 
# and w.distribution, from which random distribut  
# In order to improve the readability, the variables n.comp,row.norm & verbose,w.in
it were ommited  
   
### Input X, same as original fastICA 
  dd <- dim(X) 
  d <- dd[dd != 1L] 
  if (length(d) != 2L)  
    stop("data must be matrix-conformal") 
  X <- if (length(d) != length(dd))  
    matrix(X, d[1L], d[2L]) 
  else as.matrix(X) 
 
### Input tot_var 
  X <- scale(X, scale = FALSE) # Centering the dataset 
  prx <- prcomp(X,scale=F) 
  cum_var <- cumsum(prx$sdev/sum(prx$sdev)) # Cumulated pourcentage of variance 
  if (tot_var > 1) 
    {message("'tot_var' is too large: reset to ", 1) 
     tot_var=1} # Pourcentage of variance should be larger than 1 
  if (tot_var < cum_var[3]) 
    {message("'tot_var' is smaller than variance of 3 PCs: reset to ", cum_var_3) 
     tot_var=cum_var[3]} 
 
# Since we want to keep at least 3 PCs, so the pourcentage should not be smaller th
an cum_var_3 
 
### Input alg.typ & fun & w.distribution, same as original fastICA 
  alg.typ <- match.arg(alg.typ) 
  fun <- match.arg(fun) 
  w.distribution<- match.arg(w.distribution) 
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### Input alpha, same as original fastICA 
  if (alpha < 1 || alpha > 2)  
      stop("alpha must be in range [1,2]") 
 
### Calculate the number of PCs preserved from tot_var 
  n.comp=which(cum_var>=tot_var)[1] # Taking n.comp PCs will preserve at least tot_
var of variance 
 
### Data pretreatment: denoising 
# Unlike original script, PCA was used for denoising instead of SVD on covariance m
atrix  
# prx <- prcomp(X,scale=F) 
  D <- diag(c(1/prx$sdev))  
  K <- D %*% t(prx$rotation) 
  K <- matrix(K[1:n.comp,],n.comp,ncol(X))  
  X=t(X) 
  Xd <- K %*% X  
 
### Generation of w.init by the defined distribution 
  if (w.distribution=='uniform'){w.init=matrix(runif(n.comp*n.comp,0,n.comp),n.comp,
n.comp)} 
  if (w.distribution=='gaussian'){w.init=matrix(rnorm(n.comp*n.comp),n.comp,n.comp)} 
  if (w.distribution=='beta'){w.init=matrix(rbeta(n.comp*n.comp,1,n.comp),n.comp,n.
comp)} 
 
### FastICA algorithm applied on the denoised matrix Xd, same as original fastICA 
  a <- if (alg.typ == "deflation")  
      ica.R.def(Xd, n.comp, tol = tol, fun = fun, alpha = alpha,  
                maxit = maxit, verbose = verbose, w.init = w.init) 
  else if (alg.typ == "parallel")  
      ica.R.par(Xd, n.comp, tol = tol, fun = fun, alpha = alpha,  
                maxit = maxit, verbose = verbose, w.init = w.init) 
 
### Calculation of source and loading matrix & function output, same as original fa
stICA 
  w <- a %*% K  
  S <- w %*% X # Source matrix S = a*K*X 
  A <- t(w) %*% solve(w %*% t(w)) # Loading matrix is the pseudo inverse of matrix 
w 
### Output 
  return(list(X = t(X), K = t(K), W = t(a), A = t(A), Xd = t(Xd), S = t(S), W0 = w.
init, IC = n.comp)) 
 } 
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"metICA.R" 

library(fastICA) 
library(MASS) 
library(e1071) 
source('fastICA2.R') 
set.seed(15) 
 
################################################################# 
####### MetICA_source_generator generates estimated sources###### 
################################################################# 
 
MetICA_source_generator<-function(X,tot_var,w.distribution,max_iter){ 
   
# This function computes estimated sources from randomly-initialized fastICA algori
thm 
# X: data matrix, must be n (nb of observations) * p (number of features), either c
entered or not 
# tot_var: minimal pourcentage of variance kept for ICA 
# w.distribution: type of distribution used for generation of random initial demixi
ng matrix W, 'gaussian', 'uniform' or 'beta' 
# max_iter:number of simulations, set the highest possible based on computer memory 
   
### Input max_iter, at least 50 
  if (max_iter < 50) 
  {message("'max_iter' is too small: reset to ", 50) 
   max_iter=50} 
  
### Iterations  
  type='parallel' # Type of fastICA for the initial half of simulations 
  W_sum=c()  # Matrix storing all simulated mixing matrices 
  W0_sum=c() # Matrix storing the initial demixing matrices 
  A_sum=c() # Matrix storing the loading matrices 
 
  for (i in 1:max_iter){ 
   if (i>floor(max_iter/2)){type='deflation'} # Half as deflation, half as parallel 
   print(paste0('Iteration:',i)) 
   wines.ica <- fastICA2(X, tot_var=tot_var, w.distribution=w.distribution, alg.typ
 = type,  
                        fun = "logcosh", alpha = 1, maxit = 300, tol = 1e-04) 
   W_dmix=t(wines.ica$K%*%wines.ica$W) # Calculation of demixing matrix W 
   W_sum=rbind(W_sum,W_dmix) # Storage of demixing matrix 
   W0_sum=rbind(W0_sum,wines.ica$W0) # Storage of initial demixing matrix 
   A_sum=rbind(A_sum,wines.ica$A) # Storage of loading matrix 
  } 
 
 source_list=X%*%t(W_sum) # Matrix storing estimated sources from all runs 
 
### Algorithm output: combined source matrix, demixing matrix, initial inputs, numb
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er of ICs 
 
 print('Source generation finished,number of components:\n') 
 
 return(list(S=source_list,W=W_sum,W0=W0_sum,A=A_sum,IC=wines.ica$IC))} 
 
################################################################# 
####### Dissimilarity matrix and hierarchical clustering ######## 
################################################################# 
 
MetICA_cluster_generator<-function(S,type_correlation=c('pearson','spearman'),max_c
luster){ 
   
 # This function finds out clusters from estimated sources and outputs 3 files nece
ssary for CCA(Matlab) visualization 
 # S: estimated source matrice from MetICA_source_generator, n estimations = n colo
ums 
 # type_correlation: type of correlation, 'pearson' or 'spearman'  
 # max_cluster: maximal number of partitions tested 
 
  type_correlation <- match.arg(type_correlation) 
  if (max_cluster<2) 
  {message("'max_cluster' is too small: reset to ", 2) 
   max_cluster=2} 
   
  colnames(S)=paste0('IC',1:ncol(S)) 
  write.table(S,file='source_list.txt',sep='\t',row.names=F)  
  print('First file for CCA exported: source_list.txt')  
   
  R=cor(S,method=type_correlation) # Correlation matrix  
  dist_R=as.dist(1-abs(R))  # Disimilariy Matrix in dist format 
  dist_R_matrix=data.matrix(dist_R) # Disimilariy Matrix in matrix format 
  system.time(write.table(dist_R_matrix,file='distance.txt',sep='\t',row.names=F,co
l.names=F)) 
  print('Second file for CCA exported: distance.txt')  
   
  clusterObj <- hclust(dist_R, method="average") # Hierarchical clustering 
  cluster_summary=c()  
  for (nb_cluster in 2:max_cluster){   
    cluster <- cutree(clusterObj,nb_cluster)  
    cluster_summary=cbind(cluster_summary,cluster)}  
  write.table(cluster_summary,file='cluster_labels.txt',col.names=F,row.names=F,sep
='\t') 
  print('Third file for CCA exported: cluster_labels.txt')  
  # Partition results: each column=sample label for a number of partitions given 
   
  print('Cluster generation finished\n') 
   
  return(list(S=S,D=dist_R_matrix,C=cluster_summary)) 
} 
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################################################################# 
############## Compute center of each cluster ################### 
################################################################# 
 
MetICA_cluster_center<-function(S,D,Nb){ 
   
  # This function finds out the centrotype of each cluster 
  # S: estimated sources, generated from MetICA_cluster_generator 
  # D: dissimilarity matrix, generated from MetICA_cluster_generator 
  # Nb: desired number of clusters, decided by the evaluation of CCA in matlab 
   
 if (ncol(S)!=ncol(D) || nrow(D)!=ncol(D)){stop('Matrix dimension not correct!')}   
 if (Nb<2) 
  {message("'Nb' is too small: reset to ", 2) 
   Nb=2} 
   
 clusterObj <- hclust(as.dist(D),method="average") # Hierarchical clustering 
 cluster <- cutree(clusterObj,Nb)  # Label each estimate into one cluster 
 cluster_center<- c() # Matrix contains cluster centers (sources) 
 center_ID<-c()  # The ID of the corresponding estimate, from this ID we could know
 which fastICA run produces this centrotype 
 for (p in 1:Nb){ 
   cl=which(cluster==p) # Indices of estimates that belong to cluster p 
   Si=S[,cl] # Estimated sources belong to cluster p 
   dist_R_matrix_cluster=D[cl,cl] # Distance matrix for estimates belonging to this
 cluster 
   mini_dis=which.min(apply(dist_R_matrix_cluster,1,sum))  # Which estimates has mi
nimal distance to other points 
   cluster_center=cbind(cluster_center,Si[,mini_dis]) 
   center_ID=c(center_ID,as.double(strsplit(names(mini_dis),'IC')[[1]][2]))} 
  
 print('Cluster center calculation finished\n') 
  
 return(list(center=cluster_center,center_ID=center_ID)) 
} 
 
############################################## 
########Validation by Bootstrapping########## 
############################################## 
 
MetICA_bootstrap_generator <- function(n,c,br){  
   
  # This function create bootstrap indices 
  # n: total number of samples, in data matrix the indices of samples should be 1:n 
  # c: number of samples taken for bootstrapping 
  # br: number of bootstrap replicates 
   
  if (c>n/2) 
  {message("'c' is too large: reset to half of the dataset") 
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   c=floor(n/2)} 
   
  boot=1:n  
  bootstrap_history=list() # list storing history of all bootstrap replicates 
   
  for (b in 1:br){ 
    boot_chosen=sample(boot,c) # Indices chosen to be replaced  
    boot_used=sample(boot[!boot==boot_chosen],c) # Indices chosen to replace boot_c
hosen  
    boot_result=list(bc=boot_chosen,bu=boot_used) 
    bootstrap_history[[b]]=boot_result} 
   
  return(bootstrap_history) 
} 
 
MetICA_bootstrap<- function(X,c,cluster_center,tot_var,w.distribution,br,max_iter)
{  
   
  # This function evaluates the correlation between centrotypes tested and ICs obta
ined from bootstrapped data 
  # It scores and orders each centrotypes based on how similar they are to bootstra
pped simulations 
  # X: data matrix, must be n (nb of observations) * p (number of features), either
 centered or not 
  # c: number of samples taken for bootstrapping 
  # cluster_center: matrix generated from MetICA_cluster_center, each column=one ce
ntrotype 
  # The ids of centrotypes are given: OC_1,OC_2... 
  # tot_var: minimal pourcentage of variance kept for ICA 
  # w.distribution: type of distribution used for generation of random initial demi
xing matrix W, 'gaussian', 'uniform' or 'beta' 
  # br: number of bootstrap replicates 
  # max_iter:number of input-randomization 
   
  n=nrow(X) # Number of bootstrap replicates 
  nbc=ncol(cluster_center) # Number of centrotypes tested 
  colnames(cluster_center)=paste0('OC_',1:nbc) 
  history=MetICA_bootstrap_generator(n,c,br) 
  IC_notes_summary=c() 
   
  for (r in 1:max_iter){ 
    print(paste0('Randomized Iteration:',r)) 
    IC_notes=rep(0,nbc) # vector storing score  
    type='parallel'     
    for (b in 1:br){ 
      print(paste0('Bootstrapped X:',b)) 
      if (b>floor(br/2)) {type='deflation'} # Half half deflation parallel 
      X_booted=X 
      X_booted[history[[b]]$bc,]=X[history[[b]]$bu,] # Create bootstrapped dataset 
      set.seed(r) # keep the W0 the same for all bootstrapped dataset 
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      wines.ica.boot <- fastICA2(X_booted, tot_var=tot_var, w.distribution=w.distri
bution, alg.typ = type,  
                                 fun = "logcosh", alpha = 1, maxit = 300, tol = 1e-
04)  
      cor_center_boot=cor(cluster_center,wines.ica.boot$S,method='spearman') # corr
elation matrix between centrotypes and components simulated from bootstrapped datas
et 
      IC_notes=IC_notes+apply(abs(cor_center_boot),1,max)} 
    IC_notes_summary=rbind(IC_notes_summary,IC_notes)}   
   
  print('Centrotype evaluation finished\n') 
   
  # The output IC_notes_summary: each row presents the score of all centrotypes fro
m br bootstrapped data 
  # Each column presents the scores given to the same centrotype but with different
 algorithm inputs  
  colnames(IC_notes_summary)=colnames(cluster_center) 
  IC_notes_summary0=IC_notes_summary 
   
  significance_order=order(-apply(IC_notes_summary,2,median))  
  IC_notes_summary=IC_notes_summary[,significance_order] 
  bx=boxplot(IC_notes_summary,ylab='H-Score',las=2) # Plot the H-scores in a decrea
sed order  
  return(list(score=IC_notes_summary0,bxplot=bx)) 
} 
 
############################################## 
########Production of Simulated Data########## 
############################################## 
 
MetICA_simulated_generator<-function(X,I,PC_scores,PC_loadings,max_iter){ 
   
  # This function produce simulated data from experimental data X 
  # X: original data matrix, must be n (nb of observations) * p (number of feature
s), either centered or not 
  # I: level of background noises 
  # PC_scores, PC_loadings: PC scores and loadings of X used for generation 
  # max_iter: repetitions for background noise generation, the final noise used is 
the average of repetitions 
   
  p=ncol(X) 
  C=cov(X) 
  background=matrix(0,45,p) 
  for (i in 1:max_iter){ 
    print(paste0('Iteration:',i)) 
    background=background+mvrnorm(45,rep(0,p),C)} 
  X_output=PC_scores%*%t(PC_loadings)+background*I/max_iter 
   
  print('Production of simulated data finished\n') 
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  return(X_output) 
} 
 
############################################## 
########Consistency between Replicates######## 
############################################## 
 
MetICA_consistent<-function(source_list,limit){ 
   
  # This function evaluate the stability of MetICA component 
  # source_list is a list object, in which each element is the centrotype or estima
ted source (sample in rows) 
  # limit is the minimal spearman's correlation to accept the two sources are corre
lated, between 0 and 1 
   
  nb_source=ncol(source_list[[1]]) # Nb of sources 
  score_source=rep(1,nb_source) 
  for (i in 1:(length(source_list)-1)){ 
    cor_matrix=cor(source_list[[i]],source_list[[i+1]],method='spearman') 
    max_cor=apply(abs(cor_matrix),1,max) 
    uncor_source=which(max_cor<limit) 
    for (j in 1:nb_source){ 
      if (score_source[j]==1 & j %in%uncor_source){score_source[j]=0}} 
  } 
  # It returns a vector having the same length as evaluated components 
  # 1 present the source is present in every simulation, otherwise 0 
   
  return(score_source)} 
 
################################################################# 
########################Main Script############################## 
################################################################# 
 
#new_data=data.matrix(read.table('Yeast-Experimental.txt',sep='\t',dec='.',header=T,
check.names=FALSE)) 
#new_data=new_data[2:nrow(new_data),2:ncol(new_data)] 
#row.names(new_data)=read.table('Yeast-Experimental.txt',sep='\t',dec='.',header=T)
[2:(nrow(new_data)+1),1] 
#new_data_centered=scale(new_data,scale=F) 
 
# Estimation of sources from the whole training dataset with 800 random inputs, 90%
 variance was kept: 
#M1=MetICA_source_generator(new_data_centered,0.9,'gaussian',800)  
 
# Clustering of estimated sources, evaluated from 2 to 18 clusters 
# output 3 txt files for CCA visualization in metICA_CCA.m 
#M2=MetICA_cluster_generator(M1$S,'spearman',18)   
 
###### We should stop here to visualize the clusters in metICA_CCA.m in order to de
cide optimal partition 
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# We chose 13 as optimal number of clusters, therefore we could compute the center 
of each cluster 
#M3=MetICA_cluster_center(M2$S,M2$D,13) 
 
#Output file: Each column=Centrotype of each cluster,  
#users could make biological interpretations of these centrotypes 
#in the same way as PCA scores!!: 
#write.table(M3$center,'centrotype.txt',sep='\t',col.names=F,row.names=F) 
 
# We evaluate the scores of each center based on bootstrapped datasets   
#M4=MetICA_bootstrap(new_data_centered,5,M3$center,0.9,'gaussian',100,50)  
   
###### Scripts for simulated data production: 
 
#X_comp=prcomp(new_data_centered,scale=F) 
#kurtosis_list=apply(X_comp$x,2,kurtosis) # Check the kurtosis of each PC 
# Choose PC 11 & 15 to create simulated data: 
#X_simulated=MetICA_simulated_generator(X=new_data_centered,I=0.1,PC_scores=X_comp
$x[,c(11,15)], 
#                                       PC_loadings=X_comp$rotation[,c(11,15)],max_
iter=20) 
#write.table(X_simulated,'Yeast-Simulated.txt',sep='\t' 
 
###### Scripts for centrotype's score & loading visualization: 
 
#cscores=M1$S[,M3$center_ID] 
#barplot(cscores[,2],las=2) # Score plot for OC2 
#cloadings=t(M1$A[M3$center_ID,]) 
#barplot(cloadings[,2],las=2)  # Loading plot for OC2 
 
###### Scripts for evaluation for 10 replicates: 
 
#new_data=data.matrix(read.table('Doping.txt',sep='\t',dec='.',header=T,check.names
=FALSE)) 
#ID=paste0('ID_',new_data[,1]) 
#new_data=new_data[,3:ncol(new_data)] 
#new_data=t(new_data) 
#colnames(new_data)=ID 
#new_data_centered=scale(new_data,scale=F) 
 
#cluster_center_history=list() 
#kurtosis_summary=c() 
#for (r in 1:10){ 
#  set.seed(r*100) 
#  print(paste0('Replicates:',r)) 
#  M1=MetICA_source_generator(new_data_centered,0.9,'gaussian',400)  
#  M2=MetICA_cluster_generator(M1$S,'spearman',24)   
#  M3=MetICA_cluster_center(M2$S,M2$D,18) 
#  cluster_center_history[[r]]=M3$center 
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#  kurtosis_summary=c(kurtosis_summary,apply(M3$center,2,kurtosis))} 
 
# min(kurtosis_summary)  # minimum kurtosis of component produced 
# max(kurtosis_summary) 
# MetICA_consistent(cluster_center_history,0.8) # Count number of ones for stable c
omponents 

 

"metICA_CCA.m" 

 

function var=metICA_CCA() 

 

% This function allows visualization of hierarchical cluster 

% agglomeration in 2 dimensional space 

% Somtoolbox needs to be loaded before using this function 

% Somtoolbox can be found in additional file 5 

% The three files needed must be generated from MetICA_cluster_generator 

% (function in additional file 3) 

 

S=importdata('source_list.txt','\t',1); 

S=S.data; 

D=importdata('distance.txt','\t',0); 

%D=evalin('base','distance'); 

C=importdata('cluster_labels.txt','\t',0); 
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% CCA simulation: 

P=cca(S',2,300,D); % 300 iterations, 2 Components 

assignin('base', 'P', P); 

 

% Monitering the cluster agglomeration 

% Random colors were given for these clusters: 

 

for nbc=2:(size(C,2)+1), 

    disp(['Number of Partitions:',num2str(nbc)]); 

    CS=C(:,(nbc-1)); 

    random_col=hsv(max(CS)); 

    for j=1:max(CS), 

        f=find(CS==j); 

        plot(P(f,1),P(f,2),'o','Color',random_col(j,:)); 

        hold on; 

    end 

    hold off; 

    pause(2) 

end 

end 


