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Résumé

Cette thése est composée de quatre chapitres.

Le premier chapitre est une description préliminaire de la base de données Factset
Ownership. Nous en donnons une description statistique et exposons quelques faits
stylisés caractérisant notamment la structure du portefeuille des institutions finan-
cieres et fonds d’investissement, ainsi que la capitalisation boursiere des entreprises y
étant recensées.

Le second chapitre propose une méthode d’évaluation statistique de la similarité entre
des paires de portefeuilles d’institutions financieres. Une paire statistiquement signi-
ficative donnant lieu a la création d’un lien de similarité entre ces deux entités, nous
sommes en mesure de projeter un réseau a ’origine bi-partite (entre institutions finan-
cieres et entreprises) en un réseau mono-partite (entre institutions uniquement) afin
d’en étudier 'évolution de sa structure au cours du temps. En effet, d'un point de
vue économique, il est suspecté que les motifs d'investissements similaires constituent
un facteur de risque important de contagion financiere pouvant étre a l'origine de
banqueroutes aux conséquences systémiques significatives.

Le troisiéme chapitre s’intéresse aux comportements collectifs des gestionnaires de
fonds d’investissement et, en particulier, a la maniere dont la structure du portefeuille
de ces fonds prend en compte, en moyenne, de fagon optimale les frais de transac-
tion en présence de faibles contraintes d’investissements. Ce phénomene o1, dans de
nombreuses situations, la médiane ou la moyenne des estimations d'un groupe de per-
sonnes est étonnamment proche de la valeur réelle, est connu sous le nom de sagesse
de la foule.

Le quatrieme chapitre est consacré a 1'étude simultanée de données de marché. Nous
utilisons plus de 6.7 milliards de trades de la base de données Thomson-Reuters Tick
History, et de données de portefeuille de la base FactSet Ownership. Nous étudions
la dynamique tick-a-tick du carnet d’ordres ainsi que l'action aggrégée, c’est-a-dire
sur une échelle de temps bien plus grande, des fonds d’investissement. Nous mon-
trons notamment que la mémoire longue du signe des ordres au marché est bien plus
courte en présence de l'action, absolue ou directionnelle, des fonds d’investissement.
Réciproquement nous expliquons dans quelle mesure une action caractérisée par une



mémoire faible est sujette a du trading directionnel provenant de 'action des fonds
d’investissement.



Abstract

The thesis is divided into four parts.

Part I introduces and provides a technical description of the FactSet Ownership dataset
together with some preliminary statistics and a set of stylized facts emerging from
the portfolio structure of large financial institutions, and from the capitalization of
recorded securities.

Part II proposes a method to assess the statistical significance of the overlap between
pairs of heterogeneously diversified portfolios. This method is then applied to public
assets ownership data reported by financial institutions in order to infer statistically
robust links between the portfolios of financial institutions based on similar patterns
of investment. From an economic point of view, it is suspected that the overlapping
holding of financial institution is an important channel for financial contagion with
the potential to trigger fire sales and thus severe losses at a systemic level.

Part III investigates the collective behaviour of fund manager and, in particular, how
the average portfolio structure of institutional investors optimally accounts for trans-
actions costs when investment constraints are weak. The collective ability of a crowd
to accurately estimate an unknown quantity is known as the Wisdom of the Crowd. In
many situation, the median or average estimate of a group of unrelated individuals is
surprisingly close to the true value.

In Part IV, we use more than 6.7 billions of trades from the Thomson-Reuters Tick
History database and the ownership data from FactSet. We show how the tick-by-tick
dynamics of limit order book data depends on the aggregate actions of large funds
acting on much larger time scale. In particular, we find that the well-established long
memory of marker order signs is markedly weaker when large investment funds trade
in a markedly directional way or when their aggregate participation ratio is large.
Conversely, we investigate to what respect an asset with a weak memory experiences
direction trading from large funds.
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Chapter 1

Introduction

In 1946, W. H. Auden published a poem with a line of stern advice:
“Thou shalt not sit with statisticians nor commit a social science”

For a long time, even high-ranking decision makers seemed to concur, preferring to
base their choices on intuition, personal experiences, and anecdotes. Those days are
gone. They have been replaced by an era of “evidence-based decision making” in the
major institutions of society: business, government, education, defence, sports. That
new era prizes information from big data analysts and behavioural scientists.

The data revolution of the past decade is likely to have a further and profound effect
on most organisations. Increasingly, they realise that capturing all the data streams of
their applications is not enough, because the collection of data is a cheap procedure,
and are looking for new ways to apply statistics in order to maximise the value from
their existing businesses while creating new revenue streams. This new era of data
is giving rise to new opportunities (e.g. enhance user experience, productivity and
sales, or improve fraud detection) and challenges (e.g. analysing both structured and
unstructured data). It also leads to the parallel emergence of two major trends in
computer systems which are the growth in high-performance computing and big data.
The convergence of simulations, big data analytics and high performance computing
requires to consider multiple aspects (i.e. hardware, software, algorithm, models,
applications) and implies large changes in the IT infrastructures of most companies.
Therefore transforming the way industries operate and compete (Fox et al., 2015).

Unlocking the value of the data that already exist inside a company is not an easy
task. Big data is not a substitute for common sense or careful research designs: its
value does not lie in its quantity but in its processing and analysis. In other words,
data volume represents a challenge in term of data analysis and scalability. Therefore
appropriate data management and programming capabilities, as well as designing



2 Introduction

creative and scalable approaches to summarise, describe and analyse large-scale and
relatively unstructured data sets represent the new challenges of big data.

Although data volume is a direct challenge in term of data analysis and scalability, the
flip side of volume, which is dimensionality, also needs to be addressed (Zhai et al.,
2014). There are statistical tools (e.g. projections, feature selection, fitting) that allow
us to reduce the dimensionality of the data and therefore play a crucial role increasing
the performance of an algorithm (Xue et al., |2016). However, because of the potential
large search space and the feature interaction problems, high dimensional spaces (i.e.
with a dimension larger than 2) can be puzzling and the saying “desperate times call for
desperate measures” never seemed more appropriate. Statistical tools are not a substitute
for common sense, and, as Challet| (2016) points out, one must learn to place itself in
the right space: a space that encompasses the right features.

Financial markets are prominent example of a real-world application that generates
a tremendous amount of data with prices that are recorded down to a nano-second
resolution. They play a crucial role in the stability and growth of the global economy
(Campbell et al., 1997) and have two major functions: providing liquidity and incorpo-
rating new information in prices. Financial institutions and organisations, who were
precursors in that sector, were probably the first to realise it was an opportunity for
better forecasting, and even nowcasting (Giannone et al., 2008). They have widely
adopted big data analytics to inform better investment decisions with consistent re-
turns.

Context

Financial engineering refers to the use of tools coming from various fields, such as
applied mathematics, economics or computer science, in order to solve a financial
problem. It has evolved through time and with technology. |Aristotle| (350bc) captured
one of its earliest example when he related how Thales of Miletus, in ancient Greece,
demonstrated that, as a philosopher, he was poor by choice, and not by inability:

“He [Thales] was reproached for his poverty, which was supposed to show that
philosophy was of no use. According to the story, he knew by his skill in the stars
while it was yet winter that there would be a great harvest of olives in the coming
year; so, having little money, he gave deposits for the use of all olive-presses in
Chios and Miletus, which he hired at a low price because no one bid against him.
When the harvest-time came, and many were wanted all at once and of a sudden,
he let them out at any rate he pleased, and made a quantity of money. Thus he



showed the world that philosophers can easily be rich if they like, but that their
ambition is of another sort.”

Thales used his understanding of meteorology to predict a coming great harvest of
olives and to make a significant profit. Today financial engineering uses statistics,
stochastics, simulations, data mining and analytics. However it was only in 1900 that
a first milestone in quantitative finance was notched with the publication of Louis
Bachelier PhD thesis, Theory of Speculation (Bachelier, [1900). His thesis is credited
to be the first time advanced mathematics was used in the study of finance. He was
convinced that the financial markets were a rich source of data for mathematicians and
introduced the concept of random walks, that predated Einstein’s study on Brownian
motion by five years, to approximate asset price’s volatile path and calculate option
prices. However sixty years were to pass before someone, in the name of Andrey
Kolmogorov, took the slightest notice of his work (Weatherall, [2013)).

Until the end of the 20th century, technical analysis prospered because of one reason:
speed. The trading complexity was considerably lower than it is today. We were un-
able, at the time, to transmit information quickly, and it limited the number of trades
and therefore the pace at which information was incorporated into prices. Therefore
mathematical calculus was considered the most powerful tool for describing and un-
derstanding the general quantitative relations between the fundamental variables on
which the theory was based (Akyildirim and Soner, 2014).

As organisations grew in size, the tried-and-true methods of managing portfolios that
prospered up to that point in time were becoming ill suited for the management of
vast sums that accrued to institutions as years went by. Investment objectives, diversi-
fication patterns and trading strategies had to be revised. Although portfolio selection
was not uncharted territory anymore, thanks to the Modern Portfolio Theory (MPT)
introduced by Harry Markowitz (Markowitz, [1952), that formed the foundation for all
subsequent theories on how risk can be quantified, investors still struggled in apply-
ing new recent concepts. In theory, MPT could help risk-averse investors construct
and maximise portfolio expected return while exposing themselves to a sustainable
level of risk. However computing the efficient frontier was a time-consuming analyti-
cal procedure. In addition, the cost of using computers was prohibitive for all but the
very largest investment organisations.

As a consequence, technical and fundamental analyses continued to coexist through
much of the 20th century, but the obvious aspect of competition was speed. Whoever
was able to run a model the fastest was the first to identify and then to trade upon a
market inefficiency capturing the biggest gain. To increase trading speed, make, and
execute trading decisions, traders needed faster computers.
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Since then, the technology of investing has moved into the space age: computers at
every stage of the process. Electronic trading made low-cost brokerages and the NAS-
DAQ possible, trading an entire (and large) portfolio instead of individual stocks. Pro-
cessing speed meant more accurate data at a faster pace, allowing quants to perform
simulations and to stop relying only on mathematical analysis. Everything changed
and accelerated: computationally expensive operations such as the simulation of mil-
lions of scenarios for the calculation of sensitivities and valuation adjustments, for
instance, were and still are daily struggles for a derivatives desk (Cesa, [2017).

Moreover, with the democratisation of electronic exchanges, virtually every economic
transaction is recorded down to time scales of nanoseconds. Larger and larger amount
of data is collected. The manipulation of large datasets, in principle, provides bench-
marks for assessing whether expectations are realistic or fanciful and whether risks
make sense or are foolish. This tremendous growth of financial data has meant that
firms needed to find ways to acquire, distribute and utilise it. Therefore data con-
sumption is expanding at an accelerating rate as financial institutions increasingly
take on more data to conduct analytics, comply with regulation and demonstrate best
execution.

Ease of access to tremendous quantities of data on financial market, especially high
frequency data, opens the way for new methodologies both in statistics and computer
science. Because finance was becoming an empirical science (Bouchaud) 2002), and the
fact that financial markets are remarkably well-defined complex systems (Mantegna
and Stanley, 1999), opened the door to physics-based approach for understanding fi-
nancial and economic phenomena. Indeed facts such as these make financial markets
extremely attractive for researchers interested in developing a deeper understanding
of modelling of complex systems and allowed not only to develop advanced mathe-
matical models that often had little to do with the traditional old-school fundamental
and technical thinking but also to uncover universal phenomena that are invariant
across systems (stylized facts) and a new way of looking at high-frequency data.

Similar changes have been witnessed in economics. Until the mid-1980s, the majority
of papers were theoretical, the remainder relied mainly on “ready-made” data from
government statistics or surveys (Hamermesh, 2013), or involved hunting through
the library or manually extracting statistics from trade publication in order to gather
data on a specific industry. As a result, fundamental analysis, that is, trading on
expectation that the price will move according to the level predicted using publicly
available information (e.g. cash flows, inflation and trade balances) and economic
equilibrium theories it derives the equilibrium price levels developed through the 20th
century (known as fundamental analysis). That shift also happened together with the
expansion of available data. Apart from simply having more observations and more
recorded data in each observation, several features differentiate modern data sets from
many used in earlier research.



Nowadays not only tick-by-tick data from the exchanges are available, but also eco-
nomic data from the companies themselves, which are very different in structure and
nature. An often used description of Big Data is the “5 Vs rule” which refers to five
distinct “dimensions”: Volume, Velocity, Value, Veracity and Variety (Zhai et al., 2014).

High-frequency data, thanks to their electronically recorded small number of features
(i.e. typically timestamp, quantity, and price), are particularly clean and readable by
nature. However their complexity lies in their Volume and Velocity which are both
tied to the speed at which new data is generated from the exchanges. For example
the order of magnitude of the number of trades per year recorded of the NASDAQ
is billions and increasing at a fast pace. As a result, the data volume is usually too
large to be stored and analyzed with traditional database technology and the help
of distributed systems becomes necessary. Velocity is associated with the rapidity of
decision making, the time it takes for a trading system to react to a news or a change
in price which tends to decay as the trading speed increases (e.g. typical lead-lag
between stocks).

Conversely financial datasets about companies present a smaller, however still large,
number of timestamps (financial institutions and companies usually report at most
quarterly), but hundreds of features. Quarterly reports are usually electronically up-
loaded however the backoffice of financial institutions and companies are known not
to be fully automatized and are therefore a source of error. In addition, reports vary
from one country to the other, and from one industry type to the other which leads to
heterogeneity. On the other hand macroscopic data is associated with Variety and Ve-
racity. Variety refers to the different type of data (tables, relational database, product,
region, price, name), which still corresponds to structured data. Veracity refers to the
trustworthiness of the data. As opposed to market data that are recorded by machines,
macrostructure data such as the 13-F are not fully automated filings and are therefore
error prone and need further filtering. Each company. depending on the legislation,
might have to report different kind of data, which in turn might be interpreted and
reformated differently by the regulators. The challenge is to standardize all that in-
formation, or at least to be able to filter out non-homogeneous data, from the dataset
under study.

Both of kind of dataset have Value, the proof is they are already extensively used sepa-
rately and usually by different people (with diverse backgrounds and aims), different
objectives, and different timelines. However, as those two kind of data are very differ-
ent yet complementary, combining both should yield more value than when they are
treated independently and separately. Because high frequency behaviour may result
from the behaviour of economic agents.
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Outline

The thesis is divided into four parts.

Part I introduces and provides a technical description of the FactSet ownership dataset.
We show some preliminary statistics emerging from the portfolio structure of large fi-
nancial institutions and funds, and from the capitalization table of recorded securities.
The fact that financial actors do not do charity and tend to maximise their return, and
consequently minimise their costs, tends to initiate the emergence of some stylized
facts (Farmer), [1999) which we will discuss.

Part II proposes a method to asses the statistical significance of the overlap between
pairs of heterogeneously diversified portfolios. In particular, we are using public as-
sets ownership data reported by financial institutions in order to infer statistically
robust links between the portfolios of financial institutions based on similar patterns
of investment. From an economic point of view, it is suspected that the overlapping
holding of financial institution is an important channel for financial contagion with the
potential to trigger fire sales and thus severe losses at a systemic level. The method
is implemented on a historical database of institutional holdings ranging from 1999
to the end of 2013, but can be in general applied to any bipartite network where the
presence of similar sets of neighbours is of interest. We find that the proportion of val-
idated network links (i.e., of statistically significant overlaps) increased steadily before
the 2007-2008 global financial crisis and reached a maximum when the crisis occurred.
We argue that the nature of this measure implies that systemic risk from fire sales
liquidation was maximal at that time. After a sharp drop in 2008, systemic risk re-
sumed its growth in 2009, with a notable acceleration in 2013, reaching levels not seen
since 2007. We finally show that market trends tend to be amplified in the portfolios
identified by the algorithm, such that it is possible to have an informative signal about
financial institutions that are about to suffer (enjoy) the most significant losses (gains).

Part III investigates the collective behaviour of fund manager and, in particular, how
the average portfolio structure of institutional investors optimally accounts for trans-
actions costs when investment constraints are weak. The collective ability of a crowd
to accurately estimate an unknown quantity is known as the “Wisdom of Crowd”. In
many situation, the median or average estimate of a group of unrelated individuals
is surprisingly close to the true value. In our work we focused on financial market
participants, who satisfy two of the conditions understood to underlie the existence
of WoC: diversity of opinions, and better than random behaviour. The results extend
the so-called “Wisdom of the Crowd” to much more complex situation in two impor-
tant ways. First, Wisdom of the Crowd also holds for whole functions instead of a
point-wise estimates. Second, this shows that in socio-economic systems, the optimal
individual choice may only be found when the diversity of individual decisions is



averaged out. Finally we discuss the importance of accounting for constraints when
assessing the presence of Wisdom of the Crowd.

In Part IV, we use more than 6.7 billions of trades from the Thomson-Reuters Tick
History database and the ownership data from FactSet. We show how the tick-by-tick
dynamics of limit order book data depends on the aggregate actions of large funds
acting on much larger time scale. In particular, we find that the well-established long
memory of marker order signs is markedly weaker when large investment funds trade
in a markedly directional way or when their aggregate participation ratio is large.
Conversely, we investigate to what respect an asset with a weak memory experiences
direction trading from large funds.
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Chapter 2

Datasets

Firms are required to publicly report their accounting information (e.g. income state-
ment and balance sheet) and, often, institutional investors and funds are also required
(depending on the country’s regulation) to report key financial data on a regular basis.
These publicly available reports are published on the dedicated website of the coun-
try’s regulator. For example, in the United States, the majority of these reports comes
from SEC filings, which are mandatory and must be submitted on a regular (usu-
ally quarterly) schedule. Not only they are openly available through SEC’s EDGAR
database but, as they are provided in an XML based data structure, are easily parsed
by a computer.

However the variation in the data one obtains from the files can be significant, and
the data contains custom fields that may add complexities when comparing between
companies. Therefore the added value of financial data vendors does not lie in the
automation of data collection from different sources, which is an easy task for a decent
programmer, but is two folds:

1. Raw data comes in very heterogeneous forms, reports are often specific to the
entity’s type, sector of activity and country. Data vendors are able to provide,
thanks to their expertise, data in a standardized (and proprietary) format. In
addition, since the data is not always quantitative, qualitative data can be added
and needs to be interpreted. Although data vendors try to automate most of
these tasks, some of them still need basic analysis by human in order to make
them valuable.

2. Data vendors actively participate in the collection of the missing data. For ex-
ample, since 2004, FactSet reaches out to institutional investors in Europe indi-
vidually in order to incentivize them to provide their data, even though it is not
required for them by the regulators. As a result they are able to record quarterly
as much as 60% of the European funds.



10 Datasets

We need high quality historical datasets, with data as close to the raw data as possible.
In this regard we used two of them:

e FactSet, and in particular its Ownership database, that collects global equity
ownership data for a large number of financial institutions and funds with an
history back to 1999. The main advantage of FactSet is that is can easily be
used from outside as opposed to Bloomberg which incentivize its client to use it
directly with their provided terminal.

e Thomson-Reuters Tick History which provides tick-by-tick data for a large spec-
trum of instruments (e.g. equities, futures, derivatives). They have their sys-
tems incorporated latest thechnologies that provide low-latency data that is well
suited for microstructure analysis.

These two datasets provide complementary views from two perspectives which are
the macro-finance and the high-frequency data from financial markets. The aim of
this chapter is to introduce the reader to both databases, and also to present statistics
and stylized facts that are relevant to the following developments discussed in this
thesis.

2.1 Factset Ownership - General description

Factset is a financial data provider used by investment professionals (e.g. porftolio
managers, analysts, investment bankers, fund managers) for their fund screening and
selection process. FactSet provides multiple interconnectable datasets (e.g. FactSet
Fundamentals, FactSet Estimates, Factset Ownership). We focused on FactSet Owner-
ship in this thesis and will describe its scope and content in this chapter.

The FactSet Ownership database collects global equity ownership data for about 13 000
institutions, 33 000 fund portfolios, and 280 000 non-institutional stake-holders with
history going back until 1999. FactSet aggregates publicly available sources (EDGAR
forms 13F, N-O, N-CSR and occasionally 485BPOS) for its ownership data. Therefore
every data collected is marked with a source name and a report date. Depending
upon the nature of the source, the report date may be updated monthly, quarterly,
semiannually or annually.

In addition, FactSet actively enriches its data by approaching mutual funds (mainly in
Europe) individually to invite them to provide their data.
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’ factset_entity_id ‘ fs_perm_sec_id ‘ security_name
0024G6-E B00121-S-US FIRST AMERICA CAPITAL TRUST TR PFD
002202-E B00242-S-US | NEXT GENERATION TECH HOLDINGS COM
0017JX-E B00484-S-US MEDIA PAL HOLDINGS CORP COM
003DZZ-E B007G7-S-US VITAL LIVING INC COM
003DZZ-E B9BH3P-S VITAL LIVING INC PECV SER D
04GHFT-E BOOBNB-S-US TAX EXEMP BD FD AMER INC COM
04GHFT-E C5BNTC-S-US TAX EXEMP BD FD AMER INC CL F
04GHFT-E H8HTCZ-S-US TAX EXEMP BD FD AMER INC CL C
04GHFT-E S5LHW?7-5-US TAX EXEMP BD FD AMER INC CL F-2 SHS
000KJ3-E B00CQC-S-US FISERV INC COM

Table 2.1: Security level data, extracted from the own_tusic table, as represented in the
Ownership database: it collects securities permanent identifiers together with the gen-
eral entity identifier of active and terminated securities.

2.2 FactSet identifiers

I provide a short description of three identifiers (entity based, security based and fund
based) generated and maintained by FactSet. They are all defined as unique and never
changing with respect to their universe and make it possible to merge datas across the
FactSet Ownership tables and also across other FactSet maintained databases.

2.2.1 FactSet Entity Identifier

It is the most general identifier defined by FactSet: it is defined as any organization
or individual that is included in any of FactSet content sets. Since FactSet provides its
dataset in a relational database format, it allows to seamlessly integrate all the tables
together, not only in the Ownership database but also across all the datasets. Financial
institutions are defined by their entity identifier.

2.2.2 FactSet Permanent Security Identifier

The security identifier is available under the name fs_perm_sec_id. The first 6 charac-
ters of the fs_perm_sec_id are a random alphanumeric combination, followed by “-S-"
and lastly followed with a 2 character code representing the country in which the se-
curity trades. Therefore multiple security identifiers can correspond to a single entity
identifier if it is traded in multiple exchanges, as shown in Table 2.1
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2.2.3 FactSet Fund Identifier

As opposed to the financial institutions which are assigned a unique entity identifier,
funds have their own identifier: the FactSet Fund Identifier. The distinction between
funds and institutions happen because multiple funds can be related to the same in-
stitution (e.g. BlackRock is an institution therefore is assigned an institution identifier,
however its multiple funds are assigned a unique fund identifier each).

2.3 Notations

Let us define some necessary quantities to be more precise, the notations defined in
this section will be sensibly valid through the whole thesis, unless said otherwise.

At quarter g, fund (resp. institution) i has capital Wi(f )(q) (resp. Wi(i)(q)) which is

invested into nff )(q) (resp. nl@(q)) securities among M(q) existing ones. As a result,

each security &, whose capitalization is denoted by C,(g), is found in mil) (q) funds’
(resp. mt? (q) institutions’) portfolios. Wi(af ) (q) (resp. WZE;) (9)) is the position in dollars
of fund (resp. institution) i on security a at the end of quarter 4.

In all the forthcoming chapters of this thesis we will consider only funds or institutions
separately (chapter 3| will focus on institutions whereas chapter E] and [5| on funds),
therefore, for the sake of clarity, we will drop the exponents f and i when there is no
ambiguity. Time referring to quarterly updated data will be denoted by g and by ¢
otherwise. However, the explicit time dependence will usually be dropped when not
necessary.

2.4 FactSet - Securities

A security is a good or an asset that holds a monetary value. Its legal definition
varies by jurisdiction: In the United States, a security is a tradable asset of any kind.
Securities are usually categorized into:

e equity securities (common stocks)
e debt securities (banknotes, bonds, and debentures)

e derivatives (forwards, futures, options and swaps)
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Figure 2.1: The left plot represents the total number of securities collected in FactSet
Ownership as a function of time, and the right plot is their corresponding market
capitalization as a function of time.

In the scope of this thesis, a security will usually refer to an equity security, that is,
an ownership interest held by a shareholder in an entity (company, partnership or
trust). Securities included in the database are actively traded and are one of the issue
type defined in Table As we explained in the introduction, FactSet is constantly
increasing its range of coverage. As a result Figure shows a sensible increase in
the total number of securities and total market capitalization over the studied period
of time. One should keep that property of the dataset in mind when studying... as it
can have great consequences on, for example, the computation of average degree of a
bipartite network.

Since securities are selected by institutional investors, they only play a passive role in
the Ownership database. Therefore they only have two dedicated tables which are the
“own_basic” defined earlier and the “own_prices” (see Table which is a record of
the price history and share outstanding of the securities. This table is useful to convert
the number of shares into dollar, and therefore to compute the portfolio value of an
investor, as well as the market capitalization of a security.

The vast majority, more than ninety percent, of the securities are located in North
America, Europe and Asia.

2.4.1 Distributions

We plot the distribution of company size in term of market capitalization (fig. [2.6),
number of institutional investors (fig. 2.9), number of fund investors (fig. 2.15) and
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‘ Security Issue Types
Type Description Count 20080 B

EQ Equity 70452 .
OE Open-End Mutual Fund | 30277 60000 ..I =/;:
PF Preferred 5930 | ¢ e
AD ADR/GDR 4104 ;-; 40000 - =:$
ET Exchange Traded Fund | 4017 - iII o
CP Convertible Preferred 3622 20000 Ewr
CE | Closed-End Mutual Fund | 2740
WT Warrant/Right 2325 0 L
DR Derivative 1115 2000 2005 2010 2015

Figure 2.2: The table presents the different security issue type identifiers with their
corresponding description and frequency over the whole history. On the right we plot
the detailed year-by-year issue type partition as a function of time.

| fs_perm_sec_id | price | shares_outstanding | price_date |
FV74CR-S-US | 29.60001 26674500 2007-03-31
F96L6N-S-GB 1.37000 7913990 2001-02-28
QW2KHK-S-IE | 19.06106 0 2013-06-30
K5DYBW-S-US | 0.00000 0 2009-02-28
SFCB57-5-US 6.00000 193838 2011-05-31
MBK7R0-S-MY | 0.24798 469668997 2007-07-31
RFVH3G-S-US | 13.87500 9782000 2000-05-31
XKVSDH-S-AR | 0.00000 811185367 2001-03-31
K387JZ-5-US | 46.91906 1555031 2012-12-31
SK4BC2-S-FR | 0.00000 0 2008-08-31

Table 2.2: Excerpt from the “own_prices” table. This table records monthly security
prices and shares outstanding of the active and terminated securities followed by Fact-
Set. The data is adjusted as of the adjustment which is found in the own_basic table.
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Security region | 80000
Code Name Frequency
N North America 52407 60000 region coce
E Europe 40884 g =§
A Asia 24574 % 40000 = y
Y Pacific 2681 & IIII a
M Middle East 1827 20000
L Latin America 1820 IIIII
F Africa 1299 0

2000 2005 2010 2015

Figure 2.3: Repartition of the securities over the seven region defined by FactSet for
the whole history (left table) and on a year-by-year basis (right bar plot).
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Figure 2.4: Number of securities per country for the 20 most represented countries
(left plot). Complementary cumulative distribution function of country frequencies
(right plot).
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Figure 2.5: Complementary cumulative distribution function of the number of the

price p, of the securities in dollar as of 2012-09-30 (left plot). Two-sided p-values

(blue line) and one-sided p-values for log-normal (red line) and power-law (green
line) distributions as a function of time (right plot).

stock prices (fig. 2.5). These distributions will be studied in greater details in sec-
tion 2.9).

2.5 FactSet - Institutions

The primary source for institutional ownership of U.S.-traded equity is the 13F filing.
This filing is mandated by the SEC for any investment management institution man-
aging $100 million or more in U.S.-traded securities. Approximately 3,200 institutions
file 13Fs on a quarterly basis (filed within 45 days of the calendar quarter-end, and
reporting holdings as of that quarter-end). These filings are available electronically
on the SEC’s EDGAR system. Form 13F is limited to the EDGAR system. As the 13F
requires to report only positions greater than 10000 shares or $200000 on listed secu-
rities, some positions are already filtered out. Also it represents only the aggregated
positions of the institutions: the portfolios of sub-funds, that we will describe in the
next section, are merged into a single report.

Using the 13F filing is convenient because all the financial institutions are required to
report quarterly and at the same dates. Therefore the discrete time series are observed
in a synchronous manner and, as we have seen, small positions are not reported so
already filtered out.

Table [2.3| shows the structure of the table that contains all the history of the positions
held by the institutions. Here, the factset_entity_id represents an institution. For
example, the institution 002H53-E held 8100 shares of the security HOPJSL-S-US as of
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Figure 2.6: Complementary cumulative distribution function of market capitalization
Cy as of 2012-09-30 (left plot). Two-sided p-values (blue line) and one-sided p-values
for log-normal (red line) and power-law (green line) distributions as a function of time.
(right plot)

fs_entity_id | fs_perm_sec_id ‘ holding ‘ report_date

002H53-E HOPJ8L-S-US 8100 2011-12-31
002]41-E KB76XV-5-US 234000 2010-09-30
005VN3-E RPSG79-5-US 50000 2011-03-31
07QM1L-E T274DM-S-US 9803 2013-09-30
002BZT-E T8HTVR-S-US 50 2011-09-30
07JGRK-E P5BL31-S-US 63628 2000-06-30
0BJOLD-E B4L9DK-S-US 53604 2009-09-30
05F9J]R-E Q8FXPB-S-US 274955 2006-12-31
009YS4-E K14DFC-S-US 6400 2008-06-30
000RGG-E RLCVVe6-S-US 8349 2013-09-30

i)

.(

Number of institutions n;

3000

2000

1000

2000 2005 2010

Table 2.3: Excerpt from the “own_13f holdings_hist” table. This table contains un-
adjusted historical 13F reported ownership data for active and terminated 13F filers.
Active and terminated securities are included.
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Figure 2.7: Complementary cumulative distribution function, of the number of invest-

ments nl(l) of institutions as of 2012-09-30 (left plot). Two-sided p-values (blue line) and

one-sided p-values for exponential (red line) and log-normal (green line) distributions
as a function of time. (right plot)

2011-12-31. From that table it is possible to reconstruct the portfolio of any institution
in the database at any time.

2.5.1 Distributions

We plot the distribution of institution size in term of total portfolio value in dollar
(fig. and number of investments (fig. these distributions will be studied in
greater details in section 2.9).

2.6 FactSet - Funds

Detailed information about funds holdings is also provided, however FactSet uses a
wide variety of public filings and other sources to compile fund ownership data. The
raw data is formatted similarly to that of the financial institutions in the previous
section. Individual funds are uniquely identified by their factset_fund_id, see Table

24

Therefore, as opposed to 13F Filings, the report frequency ranges from as often as once
a month to as little as once a year (see fig.[2.10). Moreover the report date is not fixed
and can happen at almost any day of the month (albeit often last week of the month).
As a consequence the main challenge we had to tackle while pre-processing the data
was to deal with the disparity and the non-synchronous time-series. In the following
we will cover the cleaning and synchronizing process.
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Figure 2.8: Complementary cumulative distribution function of the portfolio value

Wi(l) of institutions as of 2012-09-30 (left plot). Two-sided p-values (blue line) and one-

sided p-values for log-normal (red line) and power-law (green line) distributions as a
function of time. (right plot)
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Figure 2.9: Complementary cumulative distributions function of the number of in-

vestors n,g) as of 2012-09-30 (left plot). Two-sided p-values (blue line) and one-sided

p-values for exponential (red line) and log-normal (green line) distributions as a func-
tion of time. (right plot)
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fs_fund_id ‘ fs_perm_sec_id ‘ holding ‘ report_date

04BKI5-E | XLSRNP-S-US | 1100 | 2001-12-31
04BPXI-E | MPXT90-SJP | 352800 | 20100930 | _ 10000

04BNZO-E | NYJLQI-S-CH | 2635324 | 2010-03-31 | S

04CS9Q-E | HSKLSN-SIN | 117800 | 2012-03-31 E 10000

04CQCS-E | JCQKGG-S-GB | 11344 | 20100531 | 2

04G7C6-E | DOLWQH-S-DE | 760 | 20120831 | £ oo

04GRB7-E | H7KAT4-5-US 75 | 20121130 | 2

04COFY-E | B4Q6W7-S-DE | 50000 | 2008-11-30

04CSLR-E | GB5SPD-S-US | 1475 | 2008-03-31 0

04BCZX-E | F6XS56-S-US | 19500 | 2005-09-30 2004 2006 2008 2010 201z 201

Table 2.4: Excerpt from the table that collects historic holdings of recorded funds.
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Figure 2.10: Number of reports filled by fund managers for every dates in the studied
history (left plot). Distribution of the time interval, in days, between two reports over
the whole history (right plot)
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2.6.1 Non-synchronous time-series

The two main factors that cause the time-series to be non-synchronous are the report-
ing frequency and the date of the reports. The combination of these two factors causes
large and small spikes in the frequency of dates of report (see left plot in fig. 2.10).
The reporting frequencies can be appreciated by looking at the time-interval distri-
bution between two reports and reveals that funds usually report monthly, quarterly,
bi-annually or annually (see density plot in fig. [2.10), with the majority of the reports
happening bi-annually. The disparity in the date of the reports will be observed more
easily afterwards. Hereafter we describe the three-steps procedure we followed in
order to synchronize the time-series:

1. We have seen that the time resolution ranges from one or two data points a year
(annual or bi-annual reports) to twelve (a minority of funds, mostly US-based,
reports monthly). Quarterly updated funds appear to be a good compromise
between statistics and time-resolution. Therefore we filter out funds that are
not updated at least quarterly on average (see left plot of Figure 2.11). The
report dates frequencies appear to be cleaner, however there is still an alternate
appearance of large and small spikes. The small spikes are now coming from
two sources: monthly updated funds, and report dates disparity.

2. We generate quarterly updated time-series of dates occuring on the last day of
the month (similarly to 13F filings), that we will refer to as merge dates. We
replace the old report dates with the nearest merge date happening in the future
(it can be achieved using a rolling join). Then, if the combination of merge dates
and report dates is not unique (e.g. a monthly updated fund will have three report
dates assigned to a single merge date) only the last one is kept (i.e. the closest to
the assigned merge date). The resulting time series are at most quarterly updated
and fully synchronized.

3. The final step of the procedure is to require the funds to appear a minimum of

four times in a row (a full year).

The final result is synchronous quarterly updated time-series, as shown in right plot

of Figure

2.6.2 Cleaning and filtering

As we have already seen so far the FactSet Ownership dataset presents only few bla-
tant errors that are easily cleaned up. Additionally filtering is required for some quan-
tities. We describe the full process hereafter.
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Figure 2.11: Number of reports by date. Left plot: For funds that report at least
quarterly. Right plot: After applying the full filtering procedure.
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Figure 2.12: Left plot: Market capitalization as a function of the number of investors

for US securities (orange points) and non-US securities (green points). Right plot:

Temporal evolution of the aggregated market capitalization of US over the total market
capitalization.

Period. Figure shows that year 2014, as the number of securities and funds de-
creased, is suspicious. There is a lag between the date of a report and when FactSet
adds it to its database and this lag probably varies depending on the source, the coun-
try, and the sector. Since our subscription to FactSet ended in March 2015, the year
2014 is not fully furnished. Therefore, in this thesis, we restrict our study to at most
36 quarterly snapshots starting from the first quarter of 2005 and ending with the last
quarter of 2013.

Country of origin. Plotting the market capitalization of the securities as a function of
their number of investors (see left plot in fig. results in two distinct cloud of dots,
each of them corresponds to a different region of origin: green (resp. orange) cloud
corresponds to non-US (resp. US)-based securities. The origin of this large difference
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between these two regions is not clear: it could for example come from differences in
regulations in non-US countries, and that FactSet is more effective to collect data in
the US than anywhere else. The fact that the market capitalization is a single number,
so easily collected by FactSet, and that the number of investors requires to be collected
one by one seems to point out to the latter. It turns out that the ratio of the investment
values in US and non-US assets varies little as a function of time (see Fig.[2.12). As a
consequence we focused on US securities. For that reason we decided to focus only
on US securities and removed the non-US securities from the dataset.

Penny stocks. Refers to securities which trade below $5 per share in the USA. Since
they are considered highly speculative investments and are subject to different regu-
lations are not listed on a national exchange. We filtered them out (price p, > 5 USD).

Size. We set a threshold on the size of securities (number of investors n, > 10 and
market capitalization C, > 10° USD) and on the size of the institutions and funds
(number of investments n; > 5 and portfolio value W; > 10°USD).

Buys and sells. A convenient quantity to compute (that we will use in... ) is the
difference in ownership between two quarters W — ng_l(buy or sell). However, Fact-
Set does not always explicitly specify a sold out position with a zero shares held and
usually represents it by an absence of the position. In order to compute ... we add the
missing zeros to correctly identify sold out positions.

At this stage the filtering on the funds is finished and we can compute the final port-
folio value W; and the number of investments 7; that include all the reported positions
(on U.S.-based securities) of the selected funds.

2.6.3 Distributions

We plot the distribution of institution size in term of total portfolio value in dollar
(fig. [2.14) and number of investments (fig. 2.13) these distributions will be studied in
greater details in section [2.9).

2.7 Thomson-Reuters Tick History

Thomson-Reuters Tick History (TRTH) provides access to historical high-frequency
data, with tick-by-tick market resolution, across global asset classes (over 5 million in-
struments from various exchanges) dating to 1996. It reports anonymous transactions
and updates of the aggregated quotes in real-time. TRTH provides for every instrument
at least two, and up to three, distinct files:



24 Datasets

Number of investments ni(f)

0.100

colour
Exponential

— Log—normal
Two Sided

Exponential
== | og—normal
== Power—law

PLol?)

0.001

10 100 1000
Number of investments nif

2004 2006 2008 2010 2012 2014

Figure 2.13: Complementary cumulative distributions functions of the number of in-

vestments n{ of funds as of 2012-09-30 (left plot). Two-sided p-values (blue line) and

one-sided p-values for exponential (red line) and log-normal (green line) distributions
as a function of time. (right plot)
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Figure 2.14: Complementary cumulative distributions functions of the portfolio value

Wl.f of funds as of 2012-09-30 (left plot). Two-sided p-values (blue line) and one-sided
p-values for log-normal (red line) and power-law (green line) distributions as a func-
tion of time. (right plot)
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Figure 2.15: Complementary cumulative distributions functions of the number of in-

vestors n{; of funds as of 2012-09-30 (left plot). Two-sided p-values (blue line) and

one-sided p-values for log-normal (red line) and power-law (green line) distributions
as a function of time. (right plot)

o Trades messages, it contains all the trades timestamped.
o Quotes messages, it contains the best limit.

o Market depth, which is not always available, especially in the US. Contains the
order book up to 10 limits.

The scope of this thesis includes the study of the long-memory length of order signs
however TRTH does not provided signed trades, in addition both files are not exactly
synchronized and there is a non-constant lag of about a few milliseconds in between.
A standard Lee-Ready (Lee and Ready, 1991) procedure could be applied or a more
refined one (Ioke| 2016) (or [Easley et al,| (2016)). However the accuracy of the Lee-
Ready trade classification algorithm is controverted (Theissen, 2001), and the use of
a more refined algorithm (Toke, 2016) was not feasible given the substantial amount
of trades we had to process (more than 6 billions). Therefore we used the simpler
tick-test method.

2.8 Thomson-Reuters Tick History and FactSet matching

This section is relevant for Chapter |5| that focuses on the relationship that exists be-
tween large-trader activity and the long memory of limit-order markets. We limited
our study to 32 quarterly snapshots that correspond to the 2007-2013 period, which
starts before the 2008 crisis and ends with the validity of our FactSet dataset. We
focused our work on US-based securities (as explained in section ) and most of
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Figure 2.16: Number of stocks matched between FactSet and TRTH before (left plot)
and after (right plot) filtering as a function of time.

them were traded on the NYSE or the NASDAQ. For simplicity we focused the anal-
ysis of intraday data from only one US exchange and, because it is fully automatized,
we arbitrarily chose the NASDAQ which left us with 2480 securities identified as being
traded on the NASDAQ by FactSet.

The next step was to match securities from FactSet with their corresponding Reuters
Instrument Code (RIC) in TRTH (a ticker-like code to identify financial instrument
and indices). A simple method would have been to use the ISIN, however our TRTH
dataset does not contain a RIC/ISIN correspondence table. Therefore a less trivial
matching method was to use the company names of the securities in FactSet and
searched for their corresponding RIC on the Reuters website !. Out of the 2480 se-
curities traded on the NASDAQ from FactSet, using automated methods that involve
string comparison algorithm based on the Levenshtein distance, we link assets found
in both FactSet and the TRTH databases. For each asset traded on the NASDAQ and
each day, we extracted all the trade prices together with the best bid and ask prices
just before the trades. We extract the NASDAQ'’s tick-by-tick data provided by the
Thomson-Reuters Tick History (TRTH) database. For each stock, it reports on two
different files the anonymous and unsigned trades and updates on the order book. We
remove 19/03/2008, 24/04/2008 and 25/04/2008 that have significantly less traded
stocks than other dates (as shown in fig. 2.16). Finally, we keep assets traded for at
least 200 days and with more than 200 trades per day on average. That leaves us with
846 stocks and more than 6.7 billion trades (see global daily volume and number of

trades in fig. 2.17).

Thttps:/ /www.reuters.com/finance/stocks/lookup
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Figure 2.17: Daily number of trades (left plot) and total daily volume-dollar (right
plot) for the NASDAQ stocks under study as a function of time.

2.9 Heavy tail distributions

The investigation of distributions is a large area of research in economy (Pareto, [1964;
Stanley et al., [1996;|Amaral et al., [1997; Axtell, 2001} Gabaix et al., 2003a; Mizuno et al.,
2004) and finance (Mandelbrot, 1967, 1997 Farmer, [1999; Bouchaud, 2001, |Solomon!
and Richmond, 2001)), they have in particular been observed in the distribution of
wealth (Solomon and Richmond| 2001), volatility, mutual fund size, or firm size. A
system that exhibits a heavy tail can often be linked to key properties of an underlying
stochastic process that are responsible for creating the observed distribution. The aim
of this section is to provide a short review of diverse distribution that can be observe
with the FactSet dataset, and to use a systematic and rigorous approach in order to
compare candidate distributions. However we shall not relate our observations with
generic mechanisms.

2.9.1 Method

We use the poweRlaw R package (Gillespie, 2015), which implements the method of
Clauset et al.| (2009), which enables power-laws and other heavy tailed distributions
to be fitted in a straightforward manner. It is argued that only the tail of the distri-
bution follow a power-law in practice, therefore a first step is to estimate the scaling
region parameter x,;,0f the power-law model. This threshold is estimated using a
Kolmogorov-Smirnov approach as recommended by (Clauset et al., 2009).

The second part of the analysis is to asses which distribution is closer to the true
distribution. We will compare the candidate distribution (e.g. power-law) with another
plausible distribution (e.g. log-normal) using we will first compare the power-law
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distribution with the log normal distribution using Vuong'’s test statistic (Vuong, (1989),
which is a likelihood test for model selecting using Kullback-Leibler criteria.

This is a two-step process where the first hypothesis being tested is:

e Hy: Both distribution are equally far from the true distribution.

e Hj : One of the test distributions is closer to the true distribution.

If Hy is rejected during that first step, i.e. two-sided p-value smaller than 0.1 (named
“Two Sided” in figures’ legend), it means that it is worth choosing between one or the
other distribution. The one-sided p-value then gives an upper limit on obtaining that
small log-likelihood ratio if the selected distribution is true.

2.9.2 Results

The distribution of fund sizes was reported to have a power-law tail (Gabaix et al.,
2003bja, 2006), and more recently a log-normal tail (Schwarzkopt and Farmer, 2008,
2010). Our observations for fund sizes (see fig. is in agreement with the later,
however not statistically significant for every dates, as shown by the two-sided p-value.
Interestingly, institution sizes, which often represent an aggregated size of multiple
funds, displays a more statistically significant log-normal tail when compared with a

power-law (see fig. 2.8).

Measuring fund (see fig. and institution (see fig. sizes distribution in term
of number of investments yields a different observation: a thinner tail. We did not
investigate this result any further, however a constraint such as an upper-bound in
the number of available investments could be at play: the largest institutions are an
order of magnitude bigger than the largest funds, however their largest number of
investments is almost the same.

The functional form of the upper tail of the firm size distribution is debated. The
size distribution of firms aggregated across industries is accepted to display a power-
law tail (Axtell| (2001)); |Bottazzi and Secchi| (2003); [Dosi| (2005)). Whereas, for firms
belonging to a single industry, the size distribution of firms is sometimes found to
be a log-normal (Stanley et al.| (1995, [1996); [Bottazzi and Secchi (2003); [Dosi (2005))
or a power-law (Axtell (2001)). However we find that security sizes distribution (see
fig. displays a log-normal tail.

We also measured the size distribution of firms in term of number of investors that
we could divide in two categories: institutions and funds. When measured in term of
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funds, the size distribution seems to have a log-normal tail (see fig. 2.15) whereas it is
unclear when measured in term of institutions (see fig. [2.9).

The distribution of prices, which can be manipulated with stock split and reverse stock
split, displays a heavy tail which tends to be closer to a power-law in the latest years.

(see fig. 2.5).
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Chapter 3

Statistically validated network of
portfolio overlaps and systemic risk

The 2007-2008 global financial crisis has drawn the attention of both academics and
regulators to the complex interconnections between financial institutions (Glasserman
and Young, 2015) and called for a better understanding of financial markets espe-
cially from the viewpoint of systemic risk, i.e., the possibility that a local event triggers
a global instability through a cascading effect (Brunnermeier, 2009; Chan-Lau et al.
2009; [Staum, 2012} Acemoglu et al., 2015; [Battiston et al., 2016; Gai and Kapadia,
2010). In this respect, while much effort has been devoted to the study of counter-
party and roll-over risks caused by loans between institutions (Allen and Gale, 2000;
Eisenberg and Noe, 2001} [ori et al., 2006; May and Arinaminpathy, 2010; Haldane
and May, 2011; Bluhm and Krahnen, 2011; Krause and Giansante} [2012; Cimini et al.,
2015; Cimini and Serri| 2016; Barucca et al., 2016), the ownership structure of finan-
cial assets has received relatively less attention, primarily because of lack of data and
of adequate analysis techniques. Yet, while in traditional asset pricing theory assets
ownership does not play any role, there is increasing evidence that it is a potential
source of non-fundamental risk and, as such, can be used for instance to forecast stock
price fluctuations unrelated to fundamentals (Greenwood and Thesmar, 2011; |Anton
and Polk, |2014). More worryingly, if investment portfolios of financial institutions
are too similar (as measured by the fraction of common asset holdings, or portfolio
overlap), the unexpected occurrence of financial distress at the local level may trigger
fire sales, namely assets sales at heavily discounted prices. Fire sales spillovers are
believed to be an important channel of financial contagion contributing to systemic
risk (Shleifer and Vishny, 1992; Cifuentes et al., 2005; Shleifer and Vishny, 2010; Cac-
cioli et al., 2014; Cont and Wagalath, 2014; Greenwood and Thesmar, 2011): when
assets prices are falling, losses by financial institutions with overlapping holdings be-
come self-reinforcing and trigger further simultaneous sell orders, ultimately leading
to downward spirals for asset prices. From this point of view, even if optimal portfo-
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lio selection helps individual firms to diversify risk, it can also make the system as a
whole more vulnerable (Glasserman and Young), 2015; Corsi et al, 2016). The point is
that fire sale risk builds up gradually but reveals itself rapidly, generating a potentially
disruptive market behavior.

In this contribution we propose a new statistical method to quantitatively assess the
significance of the overlap between a pair of portfolios, with the aim of identifying
those overlaps bearing the highest riskiness for fire sales liquidation. Since we apply
the method to institutional portfolios we will use interchangeably the terms institution
and portfolio throughout the paper. In practical terms, the problem consists in using
assets ownership data by financial institutions to establish links between portfolios
having strikingly similar pattern of holdings. Market ownership data at a given time ¢
consists of a set I(t) of institutions, holding positions from a universe of M(t) securities
(or financial assets in general). The |I(t)| x |[M(t)| ownership matrix W(t) describes
portfolios composition: its generic element W, (t) denotes the number of shares of
security @ € M(t) held by institution i € I(t). The matrix VW(t) can be mapped into
a binary ownership matrix A(t), whose generic element A;,(t) = 1 if Wj,(t) > 0 and
0 otherwise, which allows to define the degree d;(t) = Y}, Ajx(t) of an institution i
as the number of securities it owns at time ¢, and the degree ds(t) = Y; Aix(t) of
a security s is the number of investors holding it at time t. The number of securities
held by both institutions i and j, namely the overlap of their portfolios, is instead given
by 0;i(t) = ¥, Aia(t)Aja(t) (with i # j), which is the generic element of the |I(t)| x
|I(t)| portfolio overlap matrix O(t). In network theory language, O(t) represents a
projected monopartite network of institutions obtained as a contraction of the binary
ownership matrix A(t), which instead represents a bipartite network of institutions
and securities. However, in such a projected network two institutions are connected as
soon as they invest in the same security: this generates too many links and fails to filter
out less risky overlaps. For example, a security held by a large number of investors
would trivially determine a correspondent number of projected links without a clear
meaning. Although there is no unique way to tackle this problem, the point of view
we take here can be roughly summarized as follows: if we were to reshuffle links in
the original bipartite network without changing the degree of each node, how likely is
the observed overlap? Thus, the problem is that of building a validated projection of the
original bipartite network containing only the most significant overlaps that cannot be
explained by a proper null network model. In this way we can drastically reduce the
original amount of links and obtain a much sparser validated network with a clearer
meaning.

All methods to build validated projections proposed in the literature involve the use of
a threshold to determine which links are retained in the monopartite network, but vary
in how the threshold is chosen (Neal, 2014). The simplest and most common approach
is to use an unconditional global threshold (Latapy et al., 2008} |Neal, 2013)), which
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however suffers from arbitrariness, structural bias and uniscalarity—by systematically
giving preference to institutions with many holdings (Neal, 2014). Using a threshold
which depends on institution degrees can overcome the latest two limitations (Serrano
et al., 2009; Borgatti and Halgin, 2011). In particular, the threshold can be determined
using a null hypothesis of random institutions-to-securities matching constrained to
institutions degree, for which the probability that two institutions share a given num-
ber of securities is given by a hypergeometric distribution (Goldberg and Roth, 2003;
Sudarsanam et al., [2002). Yet, also this approach is biased by implicitly treating se-
curities as equivalent and interchangeable. A recently proposed improvement to this
method consists in building homogeneous networks of securities, that is, in splitting
the original bipartite network into subnetworks each consisting of securities with the
same degree and of all institutions linked to them (Tumminello et al., 2011). In this
way, the null hypothesis can be properly cast, for each layer separately, with the hyper-
geometric distribution. Problems however arise when securities are characterized by
a strongly heterogeneous number of investors: the process of creating homogeneous
subnetworks with securities having the same degree often translates into almost empty
subsets, causing a serious resolution problem and leading to almost empty validated
networks (see section Methods). A possible solution here is to perform link validation
without taking into account degree heterogeneity (Tumminello et al. 2011), which
however cannot be formalized analytically since the events of choosing different secu-
rities have now different occurrence probabilities. An alternative approach consists in
using a null model of random institutions-to-securities matching constrained not only
to institutions degree but also to securities degree. The fixed degree sequence model
(FDSM) (Zweig and Kaufmann, 2011; Horvat and Zweig, 2013) and the stochastic de-
gree sequence model (SDSM) (Neal, |2014) belong to this category. In the FDSM, the
null hypothesis cannot be formalized analytically and the method relies on a condi-
tional uniform graph test by generating a microcanonical ensemble of random graphs
whose overlaps can be compared with the empirical ones. However, algorithms to
sample the graph configuration space are impractically complex or biased (Blanchet
and Stauffer, 2013), or suffer from arbitrariness (Gionis et al. 2007). In contrast, in
the SDSM the null hypothesis can be formalized at least numerically, but it is com-
putationally impractical in most cases (Neal, |2014). Thus, also the SDSM relies on a
conditional uniform graph test, which is however easy to achieve by using the linking
probabilities between institutions and securities obtained with the Link Probability
Model (LPM) (McCulloh et al., 2010). Yet, in the LPM these probabilities are basi-
cally the proportion of link occurrences over multiple observations of the data, which
requires much more information than that contained in the ownership matrix, and,
more importantly, represents a valid approach only when the underlying network is
assumed to be stationary in time—which is clearly not the case for stock markets.

The method we propose here overcomes all the limitations of its predecessors by build-
ing on a null hypothesis described by the Bipartite Configuration Model (BiCM) (Saracco
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et al., 2015), which is the extension of the standard Configuration Model (Park and New-
man, 2004) to bipartite graphs. In the null BiCM network, institutions randomly con-
nect to securities, but the degrees of both institutions and securities are constrained on
average to their observed values in real ownership data. This is achieved through max-
imization of the Shannon entropy of the network subject to these constraints, which
remarkably allows to analytically and numerically formalize the null hypothesis (see
section Methods). The additional advantages of the BiCM with respect to Tumminello
et al.| (2011) is that of not requiring the homogeneity of neither layer of the network,
and with respect to Neal| (2014); McCulloh et al. (2010) of using only the information
contained in a single snapshot of the data. The method works as follows. For each date
t, in order to distinguish the true signal of overlapping portfolios from the underlying
random noise, every link of the projected network has to be independently validated
against the BICM null hypothesis. Thus, for each pair of institutions (i, j) having over-
lap 0;;(t), we compute the probability distribution 7t(-|7,j,t) of the expected overlap
under the BiCM (see section Methods). The statistical significance of 0;;(t) is then
quantified through a p-value:

oij(t)—l
Ploj(t)] =1— Y m(x]i,jt), 3.1)
x=0

where the right-hand size of Eq. is the cumulative distribution function of 7t (-|i, j, t),
namely the probability to have an overlap larger or equal than the observed one under
the null hypothesis. If such a p-value is smaller than a threshold P*(t) corrected for
multiple hypothesis testing (see section Methods), we validate the link between i and j
and place it on the monopartite validated network of institutions. Otherwise, the link
is discarded. In other words, the comparison is deemed statistically significant if the
observed overlap would be an unlikely realization of the null hypothesis according to
the significance level P*(t). This procedure is repeated for all pairs of institutions, re-
sulting in the validated projection V(f) of the original network: a monopartite network
whose generic element V;;(t) = 1 if Plo;j(t)] < P*(t), and 0 otherwise.

When applied to a historical database of SEC 13-F filings (see section Methods for de-
tails and Fig. |3.1|for the temporal evolution of the main dataset statistics), our method
yields statistically validated networks of overlapping portfolios whose properties turn
out to be related to the occurrence of the 2007-2008 global financial crisis. In partic-
ular, we propose to regard the average number of validated links for each institution
as a simple measure of systemic risk due to overlapping portfolios. Such a measure
gradually built up in years from 2004 to 2008, and quickly dropped after the crisis.
Systemic risk has then been increasing since 2009, and at the end of 2013 reached a
value not previously seen since 2007. Note that because there is only one large crisis
in our dataset, we refrain from making strong claims about the systematic coincidence
of highly connected validated networks and the occurrence of financial crises. We
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Figure 3.1: Temporal evolution of main aggregate quantities characterizing the bipar-

tite ownership network. From left to right: number of institutions |I(t)|, number of

securities |S(#)|, number of different ownership relations L(t) = Y_;; A;s(t) and total

market value MV (t) = Y;; Wis()ps(t), where ps(t) and o5(f) = Y; Wis(t) are the price

and number of outstanding shares of security s at time ¢, respectively. Solid lines cor-

respond to a locally weighted least squares regression (loess) of data points with 0.2
span.

also find that overlapping securities (i.e., those securities making up the validated
overlaps) represent a larger average share of institutional portfolios, a configuration
which would exacerbate the effect of fire sales. Additionally, we show that the pres-
ence of a validated link between two institutions is a good indicator of portfolio losses
for these institutions in times of bearish markets, and of portfolio growth in times of
bullish markets: validated links should indeed represent self-reinforcing channels for
the propagation of financial distress or euphoria. More in general, we find that market
trends tend to be amplified in the portfolios identified by the algorithm. Finally, we
apply the validation procedure to the overlapping ownerships of securities to iden-
tify contagion channels between securities themselves, and observe a stable growth
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Figure 3.2: Two examples of institutions pairs (green nodes) with the securities they
own (yellow nodes). The composition of each portfolio is denoted by different colors
(blue and orange links). The symbol size of a security is proportional to the total num-
ber of its investors. Although both pairs in the plot have an overlap of 50 securities,
the right pair is validated by the algorithm whereas the left pair is not. This is due to
the fact that both the blue and orange portfolios on the right are smaller (the blue one
in particular) and therefore under the BiCM null model the chance of having the same
overlap of the pair on the left is considerably smaller.

of validated securities over the considered time span. This signals an ongoing, deep
structural change of the financial market and, more importantly, that there are more
and more stocks that can be involved in a potential fire sale. The presence of local
maxima within this trend correspond to all periods of financial turmoil covered by
the database: the dot-com bubble of 2001, the 2007-2008 global financial crisis and the
2010-2011 European sovereign debt crisis.

3.1 Results and Discussion

In order to properly understand the results of our validation method for overlapping
portfolios, it is useful to provide a specific example. Fig. shows two similar situ-
ations: two pairs of portfolios both owning 50 securities in common. Only the right
pair is validated by our method, whereas the left pair is not. This happens because the
portfolios in the right pair are of smaller size (especially the blue one) and the same
overlap is therefore less likely to happen by chance. Hence, although the algorithm
cannot directly take into account how much each institution is investing (particularly
with respect to the total asset managed by the institution), it does so indirectly by
taking into account the diversification of different portfolios (i.e., the degree of institu-
tions). Validated pairs of portfolios indeed correspond to overlaps which constitute a
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Figure 3.3: Validated networks of institutions at 2006Q4 (1293 institutions and 93602

validated links). Node colors label institution type, while their size is given by the

logarithm of their degrees in the validated network: dY(t) = Y Vij(t). An institu-

tion is classified either as Broker (BR), Hedge Fund (HF), Investment Adviser (IA),

Mutual Fund (MF), Pension Fund (PF), Private Banking (PB), or Other (i.e., without
classification or belonging to a minor category).

considerable fraction of the total portfolio value of the pair. In short, pairs are validated
when neither the diversification of the investments nor the degree of the securities are
sufficient to explain the observed overlap. As we shall see later, the same mechanism
is at play when we project the bipartite network on the securities side. In this case,
since the degree of a security is a good approximation of its capitalization and of the
dilution of its ownership (Zumbach| [2004; Eisler and Kertesz, [2006), the method will
tend to validated links among securities whose ownership is relatively concentrated.
Fig. gives an overall picture of how the validated network looks like. In general,
we observe the presence of multiple small clusters of institutions, together with a sig-
nificantly larger cluster composed by many institutions linked by a complex pattern
of significant overlaps.
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Figure 3.4: Fraction of institutions appearing in the validated network as a function of

time (top panel); total number of institutions in the original bipartite network (bottom

left panel) and number of validated institutions (bottom right panel) for the different

institution types. Solid lines correspond to a locally weighted least squares regression
(loess) of data points with 0.2 span.

3.1.1 Temporal evolution of the validated network of institutions

After these preliminary observations, we move to the temporal analysis of the struc-
tural properties of the whole validated network of institutions. In Fig. 3.4/ we show the
fraction of validated institutions (defined as the number of institutions having at least
one validated link over the total number of institutions appearing in the ownership
network) as a function of time. We also disaggregate data according to the type of in-
stitution and plot in this case both the number of validated institutions and the original
number of institutions (we avoid to use directly their ratio for a better visualization).
One sees that there is no particular pattern and the fraction of validated institutions
is almost constant in time. By looking at disaggregated data, a few interesting things
emerge. Investment Advisors account for the largest percentage of institutions and,
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Figure 3.5: Average degree of institutions in the validated network as a function of
time, aggregated (left panel) and separated for the different institutions type (right
panel). The vertical line correspond to the date in which we observe the maximum
total market value in the dataset just before prices started to fall during the financial
crisis (see Fig.[3.1). Remarkably, we observe a slow but steady build-up of portfolios
similarity with a clear acceleration in the years preceding the financial crisis and from
2009 onwards. Solid lines correspond to a locally weighted least squares regression
(loess) of data points with 0.2 span.

more prominently, of validated institutions, followed by Hedge Funds and Mutual
Funds. The most interesting behavior is however that of Hedge Funds in the validated
networks: they are relatively under-represented until 2004, but after that their number
displays a steep increase.

Fig.[3.5/displays the temporal evolution of the average degree in the validated network,
which measures how much validated institutions are connected to each other. One
clearly sees an overall increasing trend with a strong acceleration during the years
preceding the financial crisis. In particular, the average degree reaches a maximum
few months before prices started to fall. Furthermore, our results suggest that a similar
process is taking place after 2009, a fact that might question the stability of financial
markets nowadays. The right-hand side plot of Fig. 3.5 reports the same quantity for
each category of institutions, which also has peaks just before the 2008 crash. The
notable exception is Hedge Funds, whose average degree is roughly constant in time.
In addition, the peak for Investment Advisors, Private Banking funds and Brokers
occurs roughly 1-2 quarters before the global peak.
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Figure 3.6: Scatter plot of the average share of securities market value in a portfolio
(wi(t)) = Y, wi,(t) versus the inverse of the portfolio diversification 1/d;(t) for each
institution i. The average over all securities in a portfolio gives, by construction, the
inverse of the institution’s degree (corresponding to the straight line in the plot). Here
we divide the average share over overlapping securities, securities in the portfolio
belonging to the overlap with a validated neighbor) and non-overlapping securities
(the complementary set). We clearly see that overlapping positions correspond to
larger shares in the portfolio. The plot refers to 200604, yet the same qualitative
behavior is observed for other dates.

3.1.2 Validated overlaps vs portfolio size and security capitalization

A seemingly major shortcoming of using a binary holding matrix .A(t) for validation
purposes is that of not taking into account neither the concentration of ownership of
a given security (i.e., which fraction of the outstanding shares a given institution is
holding) nor the relative importance of different securities in a portfolio (i.e., which
percentage of the total portfolio market value a security is representing). These are
clearly important types of information, since one would expect a mild price impact
following the liquidation of the asset by an institution if the latter owns only a small
fraction of that security’s outstanding shares. Conversely, if the asset represents a
considerable fraction of the portfolio market value, a price drop will have a stronger
impact on the balance sheet of the institution. However, despite validating weighted
overlaps og.‘/(t) = Yo Wia(t)Wja(t) is more relevant than binary overlaps to identifying
fire sales propagation channels, we cannot use the original weighted matrix W(t) in
the validation procedure, as in this case it would be impossible to build an analytical
null model—which would make the validation procedure extremely involving. Thus,
we are forced to rely on binary overlaps. However, the dataset at our disposal allows
us to check a posteriori the features of the portfolio positions which contributed to the
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Figure 3.7: Scatter plots of the fraction f,(t) of validated pairs of institutions owning

a security « versus the security capitalization (left plot), its concentration (central plot)

and number of owners (right plot). The straight lines show log-linear regressions of

the data, divided according to securities degrees. Plots refer to 2006Q4, yet the same
qualitative behavior is observed for other dates.

formation of validated links.

To this end, using the information about the price p,(t) and outstanding shares oy (t)
of different securities a at time ¢, we compute the fraction of the total market value
of portfolio i represented by security a, namely wj, (t) = pu(£)Win(t)/ Xy px(£)Wix(t),
and the fraction of outstanding shares of « held by institution i, namely c;(t) =
Wia(t) /0w (t). We apply this procedure to each position Wi, (t) of the bipartite owner-
ship network in order to characterize the features of the positions belonging to vali-
dated overlaps. Fig. [3.6|shows that, on average, overlapping securities (i.e., securities
making up the validated overlaps) represent a larger share of the validated portfolio,
namely 6% more than the average share given by the inverse of the degree.

In order to study the concentration of ownership of different securities we use the
following procedure. Each security s belongs by construction to d,(t)[d.(t) —1]/2
pairs of overlapping portfolios, and we can compute which fraction f,(t) of such
pairs that are validated by the algorithm. We then compute for each security the
total capitalization (as a proxy for the liquidity of the security) as well as the average
ownership fraction per institution (c;(t)) = Y; ¢y (t)/da(t) as a function of f,(t). In
Fig. we show scatter plots of this quantities together with straight lines obtained
from log-linear regressions. As one can see, the probability that any pair of institutions
investing in the same asset are validated by the algorithm decreases as a function of
the capitalization of the asset, increases as a function of the concentration (i.e., with
the average fraction of outstanding shares detained by an institution) and decreases
as a function of the degree of the security. The relation is stronger for securities with
higher degree, because of the larger number of available data points.
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3.1.3 Distressed institutions in the validated networks

As a final test of the effectiveness of the validation procedure, we study the ability
of the algorithm to retrieve (pairs of) institutions which are about to suffer significant
losses. The dataset at our disposal indeed covers periods of financial distress (in par-
ticular the 2008 financial crisis) and it is in such periods that one would expect some
institutions to incur fire sales. Then, if the algorithm does filter information in a useful
way, the presence of a validated link between two institutions should represent a chan-
nel for the propagation of losses. Note that we do not attempt here to design a test
for detecting self-reinforcing fire sales. Rather, we check if the presence of a validated
link ultimately contains information on the occurrence of losses.

To this end, we construct for each date f the set £, (t) of the n institutions experiencing
the highest drop in portfolio value between t and t + dt (which we refer to as “dis-
tressed” institutions). We first consider drops in absolute terms (i.e., the total dollar
amount) which we believe is of macroeconomic significance and check the relation
with portfolio returns later on. We use here n = 300 (roughly corresponding to 10%
of the total number of institutions) and omit in the following the n subscript. We then
compute the fraction I(t) of distressed institutions with respect to the total number of
institutions I(t) and compare it with the fraction of distressed institution Iy,(¢) in the
validated network. The ratio G;(t) = P[i € L(t)|i € V(t)]/P[i € L(t)] = Ly(t)/1(t)
then indicates if distressed institutions are over-represented in the validated network.
Indeed, if G;(t) = 1 the algorithm is not doing anything better than putting dis-
tressed institutions at random in the validated network, whereas, if G;(f) > 1 we
effectively gain information by knowing that a institution belongs to V(t). Simi-
larly, we compare the fraction of links in the validated network which connect in-
stitutions that are both distressed with the fraction of such links when all overlap-
ping pairs of institutions (i.e., all pairs whose portfolios having at least one secu-
rity in common) are considered. The ratio between these two quantities, namely
Ry(t) = Pli,j € L(t)|V;;(t) = 1]/P[i,j € L(t)|o;;(t) > 0], can then be used to assess
the effectiveness of the algorithm to establish a link between two distressed institutions
in the validated network. Since all the positions in our dataset are long positions, it
makes sense to relate G;(f) and Rj(t) to an index that encompasses many securities.
Fig. [3.8/ shows these quantities as a function of the market return r(¢) between t and
t + dt as measured by the Russell 2000 index. Indeed, both ratios are correlated with
the total loss, and are significantly larger than 1 when r(t) < 0 (R; in particular
reaches values close to 8 in periods of major financial distress). Notably, both ratio are
close to 1 when the market loss is close to 0, and decline afterwards. This could be
interpreted as the fact that, in times of market euphoria, overlapping portfolios turn
into self-reinforcing bubbles.

When we repeat the same procedure for portfolio returns (i.e., we use portfolio returns
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Figure 3.8: Scatter plots of the ratios G; (left panel), i.e., the ratio between the prob-
ability of observing a distressed institution in the validated network and the a-priori
probability of observing a distressed institution, and R; (right panel), i.e., the ratio
between the probability of observing a linked pair of distressed institutions in the
validated network and the probability of observing a distressed pair of institutions
when all overlapping portfolios are considered, versus the return r(t) between t and
t + dt of the Russell 2000 index. Red points correspond to dt equal to one quarter,
blue points to dt equal to two quarters; solid lines correspond to a locally weighted
least squares regression (loess) of data points with 0.2 span. Panels are divided in four
regions, corresponding to probabilities larger/smaller than one (i.e., distressed insti-
tutions over/under represented in the validated networks) and to r(t) larger/smaller
than zero (i.e., market contraction/growth).

to label institutions as distressed) we do not obtain meaningful results. This is however
due to the fact that abnormal returns are in general observed for small portfolios for
which we have few data points. Given the statistical nature of our method we cannot
hope to correctly identify such situations for which a different (probably case by case)
methodology is clearly needed. We can however take a simpler point of view and take
for each time t all portfolios whose return is smaller (in absolute term) than a thresh-
old 7y, that we use as a parameter. We then use this subset to compute the average
return of validated portfolios < r >;cy () (¥max, t) together with the average return of
portfolios outside the the validated network < r >z () (¥max,t). For a given value
of 74y, we then have a scatter plot of these two quantities (one point for each date f)
<7 >jcy@) (Tmax) versus <1 >z ) (rmax) which is well approximated by a straight
line (see Fig. [3.9)left panel for an example). Note that with the significance threshold
P*(t) used one has roughly half of the institutions in each set (see Fig. [3.4| left panel).
Finally, we linearly regress < r >jcy(;) (fmax,t) = A <7 >igy(s) (fmax, t) + B, and plot
the value of the slope as a function of the threshold r,,,x. As one can see in the right
panel of Fig. the slope is significantly larger than 1 for values of the threshold
up to roughly 30% in general, and up to 50% when we consider positive and nega-
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Figure 3.9: Left panel: average return of portfolios in the validated network vs average
return in the complementary set. All returns for which |r;(t)| < 7y (here 0.2) are
included. The straight line correspond to a linear regression of the data-points (one for
each quarter). Right panel: value of the slope obtained as in the left panel as a function
of 7muax (see details in the text). When returns greater than roughly 30 — 40% are
excluded the slope is found significantly larger than 1. This indicates that portfolios
in the validated network tend to have higher returns (in absolute terms) than their
not validated counterpart. The inset shows the overall fraction of returns satisfying
|7i(£)| < *max as a function of 7.

tive returns separately. In the latter case we first split for each date institutions with
positive/negative returns and compute return averages in the validated and comple-
mentary set. The fact the the slope become slightly smaller than 1 for large values of
"max is putatively due to abnormal returns, most likely associated with small portfolios
which tend to be outside the validated network. While this drawback is unavoidable
given the statistical nature of our method, on the overall these results show that as
long as abnormal returns are not considered, the returns of validated portfolios are on
average greater (in absolute terms) than those of their not validated counterpart.

3.1.4 Buy and sell networks: the case of Hedge Funds

Before moving to the analysis of the validated network of securities, we illustrate
another interesting application of our method. Our dataset allows us to build, for each
date ¢, the buy (or sell) bipartite network, corresponding respectively to the positions
acquired (or sold) by each institution between t — dt and t: AXY(t) = 1 if Wi, (t) —
Wix(t —dt) > 0 and 0 otherwise; A" (t) = 1 if Wi, (t) — Wi, (t —dt) < 0 and 0
otherwise. Validation of these bipartite networks then highlights the institutions that
have updated their portfolios in a strikingly similar way. As a case study we consider
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the Hedge Funds (HF) buy/sell networks, meaning that we only consider the positions
bought or sold by HF (discarding all other links), and apply the validation procedure
to these subnetworks. The focus on this particular subset of funds is motivated by the
Great Quant Meltdown of August 2007, during which quantitative HF, in particular
those with market neutral strategies, suffered great losses for a few days, before a
remarkable (although incomplete) reversal (see, e.g., Khandani and Lo| (2007)). In
addition, we wish to investigate whether HF reacted in a synchronous way at the end
of the 2000-2001 dot-com bubble.

As for Fig. Fig. shows that the fraction of HF validated in the buy/sell net-
work is roughly constant in time, with however some more interesting local fluctua-
tions (especially in the years around 2008). For what concerns the average number of
neighbors in the validated network, one sees that the fluctuations of the sell networks
lag by 3 months those of the buy networks: indeed, the cross-correlation is maximal
at such a lag, and is quite high (0.8). This is possibly due to the fact that the typical
position holding time of HF is smaller than 3 months: what has been bought will have
been sold 3 months later. Notably, the right panel of Fig. points to the fact that
buy networks are more dense on average than sell networks. This is also reflected in
the autocorrelation of the average number of neighbors, which decrease faster for sell
networks. Since our dataset only contains long positions, we can only conclude that
HF are more synchronized when they open long positions, and liquidate them in a
less synchronized way.

Using as a first approximation the average number of validated neighbors per fund
in order to assess the synchronicity of the HF actions, we clearly observe significant
increasingly synchronized buying patterns after the top of the dot-com bubble. There
may be two reasons for buying at this date: either the strategies of the HF were not
aware of the bubble burst and were still using trend-following, or they took advantage
of the burst to buy stocks at a discount. Noteworthy, synchronized selling lags on
buying, and was overall less intense. Concerning the period of the global financial
crisis, we observe one buy peak at 2007Q3, and one sell peak at 2007Q4. The first
peak may indeed be related to the Big Quant Meltdown of August 2007. However, the
so-called long-short market neutral funds that were forced to liquidate their positions
should appear in the sell network, not the buy one. This would have been observed
if that crisis had happened at the end of a trimester. Unfortunately, there is an almost
two-month delay between the meltdown and the reporting, which probably hides the
event. At all rates, the meltdown acted as a synchronization event, as the buy network
density is clearly an outlier at the end of September 2007: HF have therefore acquired
significantly similar long positions in their portfolios during the same quarter, and
then, expectedly, liquidated them by the end of the next trimester.
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Figure 3.10: Fraction of validated institutions (left) and average degree in the validated

network (right) for the buy/sell subnetworks of Hedge Funds. Here the original bi-

partite network is made up only of Hedge Funds and the positions they acquire/sell
between t — dt and t.
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Figure 3.11: Fraction of securities appearing in the validated network (left panel) and
their average degree in the validated network (right panel) as a function of time. Dif-
ferently from the validated network of institutions, here the number of validated se-
curities grows steadily in time. Yet, the number of validated links grows at a faster
peace, as demonstrated by the increasing average degree. Solid lines correspond to a
locally weighted least squares regression (loess) of data points with 0.2 span.

3.1.5 Temporal evolution of the validated network of securities

In this section we finally use our method to detect statistically significant common
ownerships of securities, in order to identify contagion channels between securities
themselves. Thus, we apply the validation procedure to the security ownership over-
lap 04q(t) = X Aia(t)Ai(t) (instead of the institution portfolios overlap o;;(t)
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Figure 3.12: Statistics of the validated networks of securities, disaggregated by BICS
category: fraction of validated securities (upper left panel), total number of securities
in the original bipartite network (upper right panel), average internal degree (lower
left panel) and internal links (lower right panel) in the validated network. The latter
two quantities are obtained by considering only validated links connecting securities
of the same category. Security categories that are more internally connected are Fi-
nancials (which includes the following level 2 sectors: Banking, Commercial Finance,
Consumer Finance, Financial Services, Life Insurance, Property & Casualty, Real Es-
tate) and Consumer Discretionary (which includes: Airlines, Apparal & Textile Prod-
ucts, Automotive, Casinos & Gaming, Consumer Services, Distributors, Educational
Services, Entertainment Resources, Home & Office Products, Home Builders, Home
Improvements, Leisure Products, Restaurants, Travel & Lodging).

Yo Aia(t)Aja(t)). The presence of a validated link between two securities then reflects
the fact that they share a significantly similar set of owners, which again translates into
a potential contagion channel through fire sales. Fig. shows the temporal evolu-
tion of aggregate features of the validated network projection on securities. Contrarily
to the case of the institutional projection (Fig. and [3.5), here we observe a stable
growth of validated securities: there are more and more stocks that can be involved
in a potential fire sale (or closing down of similar institutions). Moreover, as testified
by the growth of the average degree of validated securities, the validated network be-
comes denser, signaling the proliferation of contagion channels for fire sales. Note the
presence of local maxima that correspond to all major financial crises covered by the
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database: the dot-com bubble of 2001, the global financial crisis of 2007-2008 and the
European sovereign debt crisis of 2010-2011. As for the case of institutions, the sim-
ilarity pattern of securities ownerships is maximal at the end of the considered time
span.

The fact that the average degree of the validated network of securities keeps growing
boils down to the fact that institutions choose securities, not the opposite. While the
number of institutions in our dataset has increased over the years, the number of se-
curities has been roughly constant. If a new institution selects at random which assets
to invest in, then the average degree of the securities network would stay constant.
This is not the case, if only because of liquidity constraints. Therefore, on average, the
portfolio of a new institution is correlated with the ones of pre-existing institutions.

In order to detect if the observed patterns concern peculiar classes of securities, we
perform an analysis of the validated network distinguishing securities according to
the Bloomberg Industry Classification Systems (BICS) —which rests on their primary
business, as measured first by the source of revenue and second by operating income,
assets and market perception. Each security thus belongs to one of the following
sectors: Communications, Consumer Discretionary, Consumer Staples, Energy, Finan-
cials, Health Care, Industrials, Materials, Technology, Utilities (or other). In particular,
we try to detect whether securities of the same category tend to be connected together
in the validated network. To this end, we denote as internal a validated link connect-
ing two securities with the same BICS label, and we compute the internal degree as
the degree of a security restricted to internal links. As Fig. shows, the cate-
gories of securities that are more internally connected are (notably) Financials and, to
a lesser extent, Consumer Discretionary. This does not mean that portfolio overlaps
concentrate on these categories, but rather that relatively more contagion channels
exist within securities belonging to them.

3.2 Discussion

In this work, we have proposed an exact method to infer statistically robust links
between the portfolios of financial institutions based on similar patterns of investment.
The method solves the problem of evaluating the probability that the overlap of two
portfolios of very different size and diversification is due to random allocation of
assets of very different market capitalization and number of owners. The use of an
appropriate null hypothesis provided by the bipartite configuration model (Saracco
et al., 2015) considerably improves the statistical significance of the detected features
of the validated networks. Note that the method is general, and can be applied to
any bipartite network representing a set of entities sharing common properties (e.g.,



§3.3 Methods 49

membership, physical attributes, cultural and taste affinities, biological functions, to
name a few) and where the presence of (unlikely) similar sets of neighbors is of interest

The present study then points to the conclusion that, just before financial crises or
bubble bursts, the similarity of institutions holdings increases markedly. Perhaps wor-
ryingly for equity markets, the proposed proxy of fire sale risk, having reached a peak
in 2008 and subsequently much decreased, has been increasing again from 2009 to
the end of our dataset (2013) up to levels not seen since 2007. Despite our method
relies on binary ownership information, we also found that on average overlapping
securities correspond to larger shares of validated portfolios, potentially exacerbating
fire sales losses. In addition, the proposed validation method can effectively retrieve
the institutions which are about to suffer significant losses in times of market turmoil
(when validated links are the channels for which liquidation losses propagate), as well
as those with the highest growth in times of market euphoria (when overlapping port-
folios turn into self-reinforcing bubbles). Finally we show that the number of securities
that can be involved in a potential fire sale is steadily growing in time, with an even
stronger proliferation of contagion channels.

In this work we have only investigated patterns of portfolio overlap, not the probability
that they lead to fire sales. This is a more complicated problem for which other datasets
and econometric techniques are needed. However, even if we cannot draw any strong
implication from our findings, all the analysis we performed confirm the coherence
of our method and suggest that overlapping portfolios do play a role in financial
turmoils. Furthermore, the relationship between holdings and future portfolio changes
must be better characterized. Indeed, even if two institutions with different strategies
converge to a similar portfolio, this does not imply that they will update the latter in
the same way and at the same time. However, it is likely that part of the institutions
follow in fine) equivalent strategies, which implies portfolio overlap and subsequent
increased risk of fire sales, which triggers further leverage adjustment, as pointed
by Caccioli et al.| (2014); Cont and Wagalath| (2014). Finally, it will be useful to repeat
our analysis on larger datasets so as to encompass other bubbles and crises, and to
examine difference in investment patterns across various markets.

3.3 Methods

3.3.1 Dataset

We extracted 13-F SEC filings from the Factset Ownership database from 1999Q1 to
2013Q4, covering institutions valued more than 100 million dollars in qualifying assets
which must report their long positions to the SEC at the end of each trimester. As
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the 13-F dataset contains only positions greater than 10000 shares or $ 200000, very
small positions are already filtered out. The dataset is composed of a set I(t) of
approximately 15003500 institutions, holding positions from a set M(t) of securities,
whose size fluctuates around 12500 (see Fig.[3.1). Note that the portfolios of sub-funds
are merged into a single report. In addition to the raw ownership data, our dataset is
complemented by meta-data about both institutions and securities.

3.3.2 Significance level under multiple tests

In order to choose an appropriate threshold (the significance level) P*(t) to be used in
the validation procedure, we have to account for the multiple hypothesis tested (cor-
responding to the number 71,4(t) of possible pairs of institutions having a nonzero
overlap). Here we use the rather strict Bonferroni correction Miller| (1981), meaning
that we set the threshold to P*(t) = €/71,4s(t). Note that the choice of the significance
level still leaves some arbitrariness. While results presented in the paper are obtained
with € = 1073, we have tested our method with various values of €, and employed
also the less-strict false discovery rate (FDR) criterion Benjamini and Hochberg| (1995),
without finding major qualitative differences. In fact, while the final size of the vali-
dated network clearly depends on the threshold, the relative temporal changes of the
network statistics are much less affected by the particular value used.

3.3.3 Resolution problems for the hypergeometric distribution approach

As stated in the Introduction, the approach proposed in Tumminello et al.| (2011) to
divide the original bipartite network into homogeneous subnetworks of securities has
some intrinsic limitations, especially when securities are characterized by a strongly
heterogeneous number of investors (as it generally happens in stock market data). In
this circumstance, in fact, the splitting procedure often translates into almost empty
subsets—especially for securities held by a large number of investors. In these subsets,
overlaps can assume only a few values, bounded by the limited number of securities
considered, resulting in a handful, spaced-out possible outcomes for the p-values.
The problem then arises with the use of a global threshold corrected for multiple hy-
pothesis testing. In fact, since institutions are compared on the many subnetworks of
securities with the same degrees, 1145 (t) scales as [2(t)d7%(t) = I?(t) max, dy(t): the
validation threshold becomes extremely small for large and heterogeneous systems
and vanishes in the infinite size limit. These issues lead to a serious problem of reso-
lution, since P*(t) is too small to validate even the smallest non-zero p-value in most
of the subnetworks. As a result, the validated network becomes almost empty by con-
struction. Overall, while the method proposed in Tumminello et al.| (2011) works well
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for small networks with little degree heterogeneity, the same approach is not feasible
in the case of large scale and highly heterogeneous networks.

3.3.4 p-values from the Bipartite Configuration Model

Determining the probability distributions used Eq. requires to solve a technical
problem caused by the heterogeneity of both institutions and securities. For exam-
ple, it is hard a priori to compare a portfolio with very few assets and one with very
many assets. However, the bipartite configuration model (BiCM) Saracco et al. (2015)
provides a null network model suitable for these kind of situations. We remand the
reader to Saracco et al|(2015); Squartini and Garlaschelli (2011); |Park and Newman
(2004) for more details on the method. In the following we will omit the explicit time
dependence of the quantities considered, since the same procedure is repeated for
each date.

In a nutshell, the BiCM prescribes to build the null model simply as the ensemble
Q) of bipartite networks that are maximally random, under the constraints that their
degree sequences of institutions and security is, on average, equal to the one of the
original network. This is achieved through maximization of the Shannon entropy of
the network subject to these constraints, that are imposed through a set of Lagrange
multipliers {6;}/_, and {6s}>_; (one for each node of the network). Solving the BiCM
means exactly to find these multipliers, that quantify the abilities of nodes to create
links with other nodes. Thus, importantly, nodes with the same degree have by con-
struction identical values of their Lagrange multipliers. Once these multipliers are
found, the BiCM prescribes that the expectation values within the ensemble of the net-
work matrix element (A;,)q, i.e., the ensemble probability Q;, of connection between
nodes i and s, is given by:

0;0,
1 + 9100‘ !

(Ai)o = Qi = 3.2)
and the probability of occurrence Q(.A) of a network A in ) is obtained as the prod-
uct of these linking probabilities Q;, over all the possible I x M pairs of nodes. In
other words, links are treated as independent random variables, by defining a prob-
ability measure where links correlations are discarded. The key feature of the BiCM
model is that the probabilities {Q;,} can be used to directly sample the ensemble of
bipartite graphs and to compute the quantities of interest analytically. We can thus
use the matrix Q to compute the expectation values of portfolios overlap between two
institutions i and j as:

(0i)a =) QiuQja, (3.3)

aeS
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or to compute the probability distribution 77(-|d;, d;) of the expected overlap under the
null hypothesis of random connections in the bipartite network—which, according to
the BiCM prescription, only depends on the degrees of institutions i and j. Indeed,
t(-|d;, d;) is actually the distribution of the sum of M independent Bernoulli trials,
each with probability Q;,Qj,. This distribution can be computed analytically using
a Normal approximation of the Poisson-Binomial distribution Hong| (2013). This ap-
proach has been developed by [Saracco et al.|(2016) in parallel with our research. Here
we discuss instead an exact and optimized numerical technique to compute 77(-|d;, d;).
Indeed, the computational complexity of the numerics can be substantially reduced
by recalling, again, that Q;, = Qjy if do = d, Vi: connection probabilities only de-
pends on nodes degree values. This is an important observation, which translates into
the following statement: the expected overlap between any two institutions i and j
restricted to the set of securities with a given degree follows a binomial distribution
with probability Q;,Qj, (Where « is one of these securities) and number of trials equal
to the cardinality of such set. More formally, if {d},}iia I denotes the set of different
degrees within securities, 71, is the number of securities having degree dj,, h is any
security having degree dy,, and if we define qflj = QinQjn, then the expected overlap
<OZ>Q between institutions i and j restricted to securities having degree d), follows the
binomial distribution

(el ) = (1) i = e G4

The overall distribution 7(-|d;, d;) can now be more easily obtained as the sum of
(much fewer than S) binomial random variables Butler and Stephens| (1993): if 7r<;,(-|d;, d;)
is the distribution of the overlap restricted to securities with degree smaller or equal
than h, we have

X
mp(x|d;, di) = Y mepoq(x — k’di,dj)ﬁh(leh/qZ) (3.5)
k=0

and 77(+|d;, d;) = 7t<gmex(-|d;, d;). For this computation, it is useful to recall the peculiar
recurrence relation of the binomial distribution: starting from 7z, (0|7, qZ) =[1- q?j]ﬁh,
each subsequent probability is obtained through:

ﬁh—x—I—l qZ
h
X 1_%‘]'

nh(x\ﬁh,qg-) = T (x — Hflh,q?j). (3.6)

Once the distribution 7(-|d;, d;) is obtained, the p-value P(o0;j) can be associate to the
overlap o0;; using Eq. , and the corresponding link can be placed on the validated
monopartite network provided that P(o;;) < P*. Note that since this computation is
made on the whole network, i.e., considering all the securities, we have a fairly large
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spectrum of possible p-values. Thus, also if we still use a threshold depending on
the number of hypothesis tested (which however now scales just as I1?), we have a
much higher resolution than in [Tumminello et al. (2011), and can obtain non-empty
and denser validated networks.
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Chapter 4

Collective rationality and functional
Wisdom of the Crowd in
far-from-rational institutional
investors

4.1 Introduction

The collective ability of a non-expert crowd to accurately estimate an unknown quan-
tity is known as the “Wisdom of the Crowd” (Surowiecki, 2005) (WoC thereafter). In
many situations, the median or average estimate of a group of unrelated individuals
is surprisingly close to the true value, sometimes significantly better than those of ex-
perts Galton|[1907; Hill and Ready-Campbell 2011; Landemore|2012; |[Nofer and Hinz
2014. Understanding how, why and when WoC works is thus an important research
topic. By far the most important condition under which WoC may emerge is diversity
(Hong and Page, |2004; |Surowiecki, 2005; Davis-Stober et al., 2014). On the other hand,
social imitation is detrimental as herding may significantly bias the collective estimate
(Lorenz et al., 2011; Muchnik et al.,|2013), while averaging several guesses of each indi-
vidual (known as the crowd within) may lead to sharper estimations (Vul and Pashler,
2008; |Steegen et al., [2014).

In many economic systems, human beings must act according to their estimates of
some quantities (such as the value of an item, of retirement plans, etc.), often each in
his own way, with his own tool, experience and knowledge. Mainstream Economics
takes a radical theoretical short-cut by assuming perfect individual rationality, i.e. that
their estimates are the perfect, hence the same ones. This is the so-called the repre-
sentative agent approach (Hartley and Hartley, 2002). We argue here that in these
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systems, WoC applies, i.e., that the average estimate of economic agents may be re-
markably close to the rational, optimal individual choice. In other words, the optimal
individual choice may only be found in some economic systems when the diversity of
individual decisions is averaged out. This is what we call collective rationality in the
following and this is why it is worth extending the reach of WoC to economic theory.
When it applies, it is a consistent aggregation of possibly inconsistent individual esti-
mates (Hogarth, [1978). Aggregation of quite diverse individual actions, especially in a
dynamic context where expectations are continuously revised, is still an open problem
(Kirman), {1992).

Although almost all known examples of WoC are about a single number or coordinate,
there is no reason why WoC could not be found for whole functional relationships be-
tween several quantities, which abound in economic systems. For example, Haerdle
and Kirman analyse the prices and volume of many transactions in Marseille fish
market: while the relationship between these two quantities is rather noisy, the mar-
ket self-organises so that when more fish are sold, prices are lower, as revealed by a
local average (Hardle and Kirman, [1995). More generically, many simple relationships
found in Economics textbooks may only hold on average, but not for each agent or
each transaction.

Finance is an interesting candidate for WoC because their competitive nature has two
important consequences which are known to be two pre-conditions of existence of
WoC (Hong and Page| 2004): competition forces market participants to be heteroge-
neous (Arthur} 1994), which ensures a large diversity amongst them, and it is a strong
incentive for market participants not to behave randomly and try to do their best;
some of them even try to build optimal portfolios from incomplete information.

Asset price efficiency is an obvious instance of WoC in Finance: it means that current
prices, determined by the actions of many traders, are the best possible estimates on
average and fully reflect all available information (Malkiel and Fama, 1970; [Malkiel,
2003; Fama, [1998). If one departs from the estimation of a single number, thus, from the
usual WoC, more complex relationships may be related to rational benchmarks. Since
large funds do perform portfolio optimization according to their own cost function,
we shall focus on their portfolio structure. Diversity of opinions, a crucial requirement
for WoC, is also related to the fact that market participants have diverse constraints,
some of them externally imposed (laws, regulations, exchange rules, etc.) and self-
imposed (computational and mathematical methods, performance and risk objectives,
benchmarks, etc.). Thus, the question here is whether their collective behaviour may be
related to an unbeknownst or unreachable optimal portfolio; in practice, we perform a
local average of the amount under management of funds as a function of the number
of assets in their portfolio. Fortunately, this implies that we do not need to understand
the minute details of the composition of all portfolios and can focus on average of
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simple quantities instead. Our findings imply first that the concept of WoC holds on
a more generic level, intuitive to many economists. which has profound implications
for the role of rationality in economics modelling. On the one hand they vindicate the
importance of rationality as a collective outcome, on the other hand our results clearly
illustrate how individual rationality is not only unneeded, but also a fairy tale when
making complex decisions with imperfect tools.

Another important result comes from the respective importance of two types of con-
straints. On the one hand, as explained above, these institutional investors face many
regulatory, legal, and self-inflicted constraints, whose diversity explains in part the
large individual deviations from the rational benchmark; however, these constraints
have no effect on the ability of the population to approximate the rational benchmark.
On the other hand, we find that some funds must invest into many more assets than
the rational benchmark would recommend; this is due to the real-life constraint that
some assets are not traded enough for a fund to have negligible impact on their prices.
We propose a minimal model of how these funds manage to circumvent this practical
problem.

4.2 Wisdom of the Crowd

Let us define some necessary quantities to be more precise. At quarter g, fund i has
capital W;(g) which is invested into n;(q) securities among M(q) existing ones. As a
result, each security a, whose capitalization is denoted by C,(g), is found in m,(q)
portfolios. The explicit time dependence is dropped hereafter unless needed for the
sake of clarity.

The only quantity defined above which depends on asset allocation strategies of fund
i is n;, the number of securities it chooses to invest in. Our main hypothesis is thus
that WoC is found in the average relationship between n; and W;. A simple rational
benchmark is proposed by de Lachapelle and Challet(2010) : when a fund with capital
W; is able to invest the same amount in each of the n; chosen securities and if the
transaction cost does not depend on the security, then the optimal 7; is such that

W; n?. (4.1)

where the exponent yu is determined by the transaction costs fee structure: reference
de Lachapelle and Challet (2010) shows that if the cost for a transaction of value W is
proportional to W?, then u = (2 — 5)/(1 — 6). For example, proportional transaction
costs (6 = 1) lead to 4 = 1, while a fixed cost per transaction (§ = 0) corresponds
to 4 = 2, which was found for individual investors and asset managers (with much
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Figure 4.1: Scatter plot of the mark-to-market value W; of fund i as a function of its

number of investments 7;. Each black dot represents a single fund. Orange curve: ro-

bust locally weighted regression fit. Dashed blue lines: power-law fits of the small and

large n regions. Green curve: robust locally weighted regression fit of the simulated
model.

smaller portfolios than the large funds studied here). Allowing for individual fluctu-
ations, Eq. becomes log W; = plogn; + €;, where €; has zero average. Denoting
local average of x; by x, the local average of Eq. yields

W o nt. (4.2)

We will test the occurrence of WoC from the validity of Eq. (#.2). More precisely, our
hypothesis is that if the effective transaction cost per transaction is the same for all
assets, then (i) funds are able (and strive to) to build equally-weighted portfolios and
(ii) then WoC is equivalent to the fact that Eq. holds; if in addition the effective
transaction cost is a flat fee, then (iii) p = 2.

The effective transaction cost for a given asset includes one’s impact on the price,
which becomes non-negligible if the value of the transaction is not a small fraction of
the value exchanged daily. To avoid too large an impact, larger funds, on average, tend
to spread their investments on a greater number of assets, which violates the equally-
weighted portfolio hypothesis. As a result, the local average W is expected to increase
more slowly as a function of n in the large n region; equivalently, the exponent y is
expected to be smaller than 2 in this region. In summary, two different regimes should
emerge: one with y. for small n and one with y~ < u. for large n.

Figure plots W; versus n; in logarithmic scales: a cloud of point emerges, with a
roughly increasing trend. The large amount of noise confirms the great diversity of
fund allocation strategies. WoC may only appear in a local average: we computed
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Figure 4.2: Top: temporal evolution of the coefficients i, u~ and -y. Bottom: evolution
of the value of the cross-over point n* between the two regions as a function of time.

a locally weighted polynomial regression Cleveland et al. (1992) (refered to as local
average henceforth) with the stats::loess function of R. As expected, two distinct
regions appear. In each of them, the local regression follows a roughly linear be-
haviour.

The cross-over point n* between the two regions is algorithmically determined for
each quarterly snapshot (see S.1); it is relatively stable as time goes on (see Fig. [4.2).
The two exponents y. and y- are also quite stable as a function of time as well (see
Fig. ; their time-averages i ~ 2.1 £0.2 and i~ ~ 0.3 0.1 are markedly different,
which points to distinct collective ways of building portfolios in these two regions.

Let us now check that the funds have or strive to have equally-weighted portfolios. In
that case, the investment fractions p;, = W;,/W; are well approximated by 1/n; when
Wi, > 0, or, equivalently, the diversity of pj, (as a function of «) is small. The latter
may be summarized by the scaled Shannon Entropy S; = — @ Y« Pia 108, Pin, which
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Figure 4.3: Scaled Shannon entropy S; as a function of the number of investments ; for
all the funds on 2013-03-31 (circles). Blue line: local average S. Red line: local average
Smc from Monte-Carlo simulations reproducing the effect of asset price fluctuations
over three months on the entropy of initially equally-weighted portfolios. Dashed blue
line: local average of the scaled entropy S,estricteq restricted to unchanged portfolio
positions from the previous time step properly rescaled to account for the difference

in the number of asset (see text).

equals 1 and is maximal when all the non-null p;, are equal. Figure reports the
scaled entropy S; of all the funds for a given time snapshot, together with the local
average S. The latter increases up to about n ~ n* and then decreases. The fact that
S < 1is due in part to price fluctuations: even if fund i builds an equally-weighted
portfolio at time g (thus S;; = 1), §; 546, < 1 at a later date g + Jq because the relative
values of its investments are not constant as a function of time. The importance of this
mechanism is confirmed by Monte-Carlo simulations: for each fund i, compute the
average entropy S; pc of its portfolio after 3 months by simulating 20 price paths for
each asset independently, using their respective volatility computed over the 60 last
days. The red curve of Fig. 4.3[shows the effect of natural asset price evolution on per-
fectly equally-weighted portfolios after three months: the resulting (locally averaged)
scaled entropy Spic increases as a function of n, mirroring the local average of S; in
the same figure for n < n*. In other words, the influence of asset price fluctuations on
S; decreases as n; increases. Thus, the decrease of S for n > n* is a strong clue that the
funds cannot build equally-weighted portfolios anymore.

We checked that funds attempt to make their portfolio more equally-weighted when
they update them, or equivalently that the entropy of p;, of the positions kept be-
tween g — 1 and q is smaller than the entropy of the full portfolio at time g, which
implies that new positions are more equally-weighted than old ones. This is fully
confirmed in Fig. the dash blue line is the local average of the entropy restricted
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to the set of common positions between two consecutive snapshots, multiplied by
Smc (1) / Smc (i, common positions) in order to account for the dependence of S on n: the
entropy of old positions is clearly smaller than the entropy of the new portfolio, hence
new positions purposefully bring S; closer to equally-weighted portfolios.

In summary, funds attempt to spread their investment evenly between the assets they
invest in, which means that Eq. may hold. Next, the fact that the local average
leads to a well-defined exponent, constant over of a substantial range of n < n* implies
that this equation holds, i.e. that WoC is present in this data set.

The value y = 2 corresponds to effective flat-fee transaction costs but this does not
imply that market participants really do pay a flat fee per transaction, only that their
population acts as if they do. Quite remarkably, the same exponent was found for
private investors and asset managers (with portfolios smaller by several orders of
magnitude). Thus the collective behaviour of large professional investment funds is
essentially the same one as individual amateur investors. Since Eq. holds over
many decades of portfolio values for a wide spectrum of market participants, we
argue that WoC is a plausible explanation of the average portfolio structure. Finally,
we emphasis that our results much extend the validity of WoC, as it may hold for
whole functional relationships over many decades of n and W, not only for a single
number. This suggests to try to find and understand WoC in new ways and new types
of data.

4.3 Asset selection model

So far, bringing to light WoC in the n < n* region only required to focus on the number
of securities in a portfolio, not on how funds select securities. This implicitly assumed
that funds could invest in all securities they wished, which is clearly not the case in
the large diversification region: the fact that the exponent y is much smaller in this
region implies that funds need on average to split their investments into many more
securities in a non-equally weighted way, as shown by scaled entropy. This is most
likely due to liquidity constraints: in this region, funds could invest as much as they
wish in some assets because there were simply not enough shares to build positions
larger than certain sizes without having too large an impact on their prices. Each fund
has its own way to determine the maximal amount to invest in a given security «; a
common criterion is to limit the amount invested with respect to the capitalization, i.e.
Wiy /C,. Fig. in S.I. strongly suggests that each fund fixes its own upper bound

(max) Wi
/ Co

> max f;, where f;, = (4.3)
14
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It turns out that f* is highly heterogeneous among funds log 1o (f*) ~ —3.0 £ 1.0
(see Fig. [A.5), which reflects both the heterogeneous ways of portfolio construction
and also the confidence of a fund in its abilities to execute large trades without too
much price impact. The existence of such limits implies that portfolios are less likely to
be equally-weighted in the large diversification region, as seen indeed in the decrease
of the average portfolio weights scaled entropy for n > 70 (blue line in Fig. [4.3).

Funds, however, do not invest in a randomly chosen security, even in the low diversifi-
cation region. Figure 4.4/ displays a scatter plot of the capitalization C, of each security
« versus m,, the number of funds which have invested in this security, together with
a local non-linear fit. Similarly to W vs n, one finds a new power-law relationship

log Cy = ylogmy + €4 (4.4)

for large enough m,. Hence in local average notations, C o« m”. Exponent 7y is stable
during the period 2007-2014 (see Fig. and its average § ~ 2.2 +0.1.

In short, one needs to introduce a model of how funds choose to invest in securities
to reproduce the average behaviour of both Eqs and (4.1). Since one sees a cross-
over between two types of behaviour rather than an abrupt change, one needs to
investigate both regions together. Because P(#;) has an approximate power-law tail,
we use logarithmic binning of the axis n;, which ensures that the expected number
of points per bin is approximately constant. We denote the bin number of fund i by
[1;]. Two mechanisms must be specified: how a fund selects security « and how much
it invests in it. The latter point is dictated by Fig. in the large n; region where

fund i invests at most W;, = f.(maX)C

f.(max) by the median value of fi(

1

«; for the sake of simplicity, we approximate
in the bin [#;], denoted by f[(nn}ax). In the small

diversification region, we assume that n; = n?pt, thus W;, = W,/ n?pt to be consistent
with our previous results. We choose a security selection mechanism that rests on
the market capitalization C, of a security a (see S.I.) which is a good proxy of the
liquidity (Fig.[A.6). We perform Monte-Carlo simulations from the empirical selection
probabilities and f{(n?ax) and display the resulting W vs n and C vs m in Figs 4.1| and
(continuous green lines), in good agreement with the local averages (continuous
orange lines). One notices a discrepancy in the relationship C vs m for large n, which
mainly comes from funds in the large diversification region. (See Fig. S.I).

max)

The large diversification region illustrates how constraints may considerably modify
the rational benchmark. While the above mechanism of security selection is able to
reproduce adequately the behaviour of well diversified funds, we could not find a
rational benchmark for the dependence of f™** and n;. Thus, the case for WoC in the
large diversification region is not entirely closed.
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Figure 4.4: Market capitalization of securities as a function of the number of investors
in logarithmic scale. From the local non-linear robust fit (orange line) we observe a
linear relationship for assets with more than about 100 investors. The blue dashed line
corresponds to a linear fit on that group of asset, which yields W, « my, with ¢ ~ 2.1.
Green curve: local average from the simulated asset selection model.

Data

Our dataset consists of an aggregation of the following publicly available reports (in
order of reliability): the SEC Form 13F, the SEC’s EDGAR system forms N-Q and N-
CSR and (occasionally) the form 485BPOS. Our work focuses on the period starting
from the first quarter of 2005 to the last quarter of 2013.

These forms contain of some mistakes. We partially fix them by cross-checking dif-
ferent sources (which often contains overlapping information) and by filtering data
before processing (see details in S.1.).

The main limitation of this dataset is that it provides accurate figures for long positions
only. The other positions (short, bonds, ...) are most of the time only partially known.
The frequency of the dataset is also inhomogeneous: data for most of the funds are
quarterly updated (depending on regulations), hence we decided to restrict ourselves
to 4 points in a year only. Such frequency is probably too low for investigating the
dynamics of individual behaviour but is not a problem for we focus on an aggregate
and static representation of the investment structure.
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Discussion and conclusion

While Wisdom of the Crowd is commonly applied to a population collectively guess-
ing a single number, we provide evidence that it holds much more generally when
a population tries to guess an optimal answer imperfectly. We thus argue that one
should look for WoC in potentially much more complex situations.

In economic systems, the reference function is dictated by individual optimality ar-
guments. We have focused here on financial market participants, who satisfy two
of the conditions understood to underlie the existence of WoC: diversity of opinions,
and better than random behaviour (Hong and Page, 2004). Imitation, known to be
detrimental to WoC (Lorenz et al., 2011} Muchnik et al., 2013), depends on publicly
available data. For example asset price bubbles arise because of positive feedback on
past prices (Lux, 1995). The fact that SEC data studied here is publicly available opens
the way to imitation as well. This is however unlikely to have a sizeable effect in this
study. First, while imitation is possible, it would show up in data with much more
frequent (e.g. daily) updates. Second, large funds know that their positions may be
copied just after publication (which does not occur immediately after filing). Thus,
they may anticipate short-term imitation and may adjust their portfolios just before
reporting dates accordingly. In short, imitation is likely to have a small effect in the
data we study.

At a higher level, our results suggest that, while individuals may deviate much from
the rational expectation theory, standard economic theory may hold at a collective level
without need for micro-founded optimal individual decisions: the average decision
may in some cases approximate that of a rational, representative agent. Our results
however only hold on a snapshot of the system, for which individual fluctuations may
be averaged out. In a dynamic setting, the very large deviations from the rational
benchmark may not be neglected in the presence of feedback loops (Gualdi et al.,
2015). In other words, the dynamics of these fluctuations are worth investigating in
their own right.



Chapter 5

Large large-trader activity weakens
long memory of limit order markets

5.1 Introduction

Financial market dynamics is complex in part because of the very large variety of
timescales at play. Both traders and volatility feedback loops are known to have widely
distributed timescales (Lynch and Zumbach, 2003; Lillo, 2007; Zhou et al., 2011} Tum-
minello et al., 2012} Challet et al., 2016). Accordingly, investigating how timescales in-
teract reveals some of the fundamental dynamical ingredients of price dynamics. For
example, the asymmetric relationship between historical and realized volatility shows
that price dynamics is not symmetric with respect to time reversal (Lynch and Zum-
bach) 2003; [Zumbach, 2009), which imposes a strong constraint on realistic stochastic
volatility models (Blanc et al., [2017).

The long memory of the signs of market orders is a well-established stylized fact of
limit order books (Bouchaud et al., 2004; |Lillo and Farmer, 2004) that passes the most
stringent statistical tests. Lillo et al.| (2005) propose a mathematical framework that
links the long memory of these signs to the way very large orders are split into a series
of smaller market orders (thereby creating a meta-order) and is able to reproduce
the empirical auto-correlation function if the distribution of the meta-order size has a
Pareto-like tail. In other words, the shape of the sign auto-correlation function reflects
that of the distribution of the size of meta-orders.

Here, we use two large databases of almost maximally different timescales, namely
quarterly filings by large investment funds and a comprehensive tick-by-tick database,
which allow us to investigate the influence of large funds on the memory properties
of the limit order book. We first show that the memory length of market order signs
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(buy/sell) of a given asset is markedly weaker when a large fraction of its capitaliza-
tion is exchanged by large funds over a quarter. Reciprocally, we test if assets with the
weakest market order sign memory are likely to being much traded by large funds.
Finally, we use the theoretical framework of Lillo et al. (2005) to put forward a coherent
picture of our findings.

5.2 The data

Our dataset consists of two databases: quarterly snapshots of large investment own-
ership, from the corresponding FactSet database in the 2007-2013 period (32 reports),
which contains data 10845 funds. We filter out funds with less than USD 1007000 in-
vested into securities. The remaining funds are invested in 12531 securities. We focus
on the 2480 assets continuously recorded in FactSet database after their first quarter
of appearance and with at least one full year of record. Using automated methods,
we link assets found in both FactSet and the Thomson Reuters Tick History databases.
The latter provides an event-by-event history of limit order books. For each asset
traded on the NASDAQ and each day, we extracted all the trade prices together with
the best bid and ask prices just before the trades. Finally, we keep assets traded for
at least 200 days and with more than 200 trades per day on average. This leaves 846
stocks and more than 6.7 billion trades. Details about the procedure is provided in
Chapter

5.3 Methods

In order to link trade-by-trade data with quarterly fund filings, we define suitable
quantities in each dataset and investigate how they are related. For each asset «,
we compute the mid-price just before the n-th trade, denoted by m,, as the average
between the best bid and ask prices. Then we define the sign of the n-th market order
of asset « as

€an = SIN(Pan — Man)-

We drop trades that occur exactly at the previous mid-price. As suggested by the above
notation, we define the time as the number of market orders since the beginning of
the time-series.
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Figure 5.1: Example of market order sign autocorrelation functions with linear axis

scales (left plot) and log-log axis scales (right plot). The black dashed horizontal line

is the noise level 2/v/N where N is the length of the market order sign time series.

The black dashed vertical line corresponds to the maximum lag 7*. Apple Inc., trades
of 2014-12-01.

5.3.1 Microstructure: memory length of market order sign auto-correlation

We define several simple ways to characterize the memory of market order signs. Un-
less specified otherwise, all market microstructure quantities are measured over a full
trading week. The first one consists in measuring the probability of the occurrence of
Kk consecutive trades of a given sign in a random contiguous subset of {s,}. Mathe-
matically, for a generic «, this amounts to measuring the conditional event frequency

7'[&5’() = P(Sy =Spp1 =" = Sp4x =) (5.1)

for both s € {—1,1}.

Another way to characterize the memory of order signs is the market order sign auto-
correlation at lag T (in unit of market orders), denoted by C,(7). Process €4 has a long
memory if the integral of its autocorrelation function C, diverges. Many references
find that C,(7) o< at? where b < 1, in which case the integral of C,(7) is infinite (see
e.g. |Lillo et al|(2005); Toth et al. (2015)) (we omit the a index for a and b in order to
avoid too heavy notations). This is indeed a good approximation for very long time
series. For finite time series of length N, one can define the effective memory length
as the lag 7, after which C, reaches for the first time the noise level of autocorrelation
functions 2/v/N, i.e., T is such that C,(7) > 2/ VN VT < 7 . We will also consider
the scaled maximum lag 7 /N.
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5.3.2 Macro-dynamics: directional fund activity ratio

First, we introduce a quantity that measures, for a given asset &, the rescaled global
directional change of ownership averaged over all the funds between the quarter ends
g — 1 and q. We will call it the directional fund activity ratio and define it as

_ LilWin(9) — Wia(q —1)]

ru(q) V) , (5.2)

where Wj,(q) is the position in dollars of fund i on security « at the end of quarter
g, and V, the total volume-dollar of security a exchanged between g4 —1 and 4. If
ro(t) > 0 (resp. r(t) < 0) then the security « is more bought (resp. sold) than sold
(resp. bought) by the large funds in our database. We will focus on Ry (7) = |72(q)]-

5.3.3 Macro-dynamics: absolute fund activity ratio

Another important measure of aggregate fund behaviour consists in quantifying how
much the investment has changed in absolute terms. We thus define S,(q) as the
rescaled absolute difference of invested amounts between quarter ends g — 1 and ¢,
ie.,

_ Li[Wi(q) = Wia(g = 1)|

Sulq) AC

(5.3)

This quantity cannot account for round trips of funds over a quarter, which are fortu-
nately very unlikely for the largest values of S, i.e., the values relevant to the present
work. In addition, when the relative influence on S of large fund round-trips is negli-
gible, S is a good approximation of large fund participation ratio.

5.4 Results

5.4.1 From large fund behaviour to microstructure dynamics

The premise of this paper is that relating tick-by-tick order book properties to the
fund ownership database is easiest when the aggregate behaviour of large investment
funds is the most extreme, which corresponds to large values of either R, or S,. Thus



§5.4 Results 69

1.00 1.00

Quantiles Quantiles

Directional trading ratio Ry
o
o
-

|
Absolute trading ratio Sy
o
=
o

0.01
2008 2010 2012 2014 2008 2010 2012 2014

Figure 5.2: Time evolution of the quantiles of the directional fund activity ratio R, (q)
(left plot) and of the absolute fund activity ratio S, (q) (right plot).

for each quarter g, we divide the assets into 20 groups of R,(gq) by computing the
quantiles kg € {1,---,19}; we do the same for S,(q), yielding ks € {1,---,19}. We
first compare the microstructural dynamics of the top and bottom groups of both
quantities. By convention, the bottom groups gx = 1 correspond to small values of
X € {R, S}, i.e., to securities that are bought and sold equally (R) or not much traded
by large funds (S). Figure |5.2| shows the time evolution of the quantiles of the ratios
R, (q) and S,(g). The large-R quantile are clearly correlated with the large-S quantiles.
This should be expected, as a large R, implies a large S,.

Focusing on the assets belonging to the top and bottom groups determined by the
quantiles of R and S, one now assess the influence of trading by large funds on the
market order sign memory length measures. Starting with the two extreme groups
determined by the quantiles of R, Fig. reports that the frequency of x consecutive
trades of the same sign n&sx) for x = 2, once averaged over all assets belonging to a
given group, is consistently different between the two groups of assets as time goes
on; one also sees that the difference is larger for x = 10 than for x = 2; in fact, it is
an increasing function of «, at least for 2 < x < 10. The difference is larger when
the assets are grouped according to the quantiles of S, as illustrated in Fig/5.4] In
short, being actively traded by large funds decreases the probability of occurrence of
consecutive market orders of the same kind, which thus is a sign of weakening of
market order signh memory.

The other measures of memory length lead to the same conclusion. For example,
fitting the trade sign autocorrelation C,(7) with at~? for a in the top and bottom
groups of assets consistently yields smaller values of the prefactor a for the quantiles of
either R or S (top plots of Fig.[5.5), except in 2008-2009 with respect to the quantiles of
R: during this period, 2 was roughly the same in both groups. The similar behaviour

(s%)

of 7,/ and a is to be expected: C,(7) being a function of {n,gf’()},{, the prefactor a
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Figure 5.3: Time evolution of 7'[,5('(), the probability of observing x consecutive negative
trade signs (left plots) and x consecutive positive trade signs (right plots) for the top
and bottom quantiles of R,(q) (orange and blue lines, respectively).
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Figure 5.4: Time evolution of na(f) , the probability of observing x consecutive negative

trade signs (left plots) and x consecutive positive trade signs (right plots) for the top
and bottom quantiles of S,(g) (orange and blue lines, respectively).
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is mostly related to small-x probabilities N,S(SK). The case of the exponent b is more

nuanced and revealingly so (bottom-left plot of Fig.[5.5): large directional trading by
large funds has no clear influence on b, except in times of crisis, as e.g. in 2008-2009
when assets with large R a smaller b than the assets in the small-R group. The 2011
crisis also lead to a significant and similar influence of R on b; while the typical value
of a of assets with a large R plunged, it did not reach that of assets with small R,
contrarily to what happened during the 2008-2009 period. The absolute activity ratio
S has always been discriminant for a. Regarding b, assets with a large S also had a
smaller b (but a large a) in 2008-2009, while in the 2012-2014 period, the reverse is true.
Thus these fitting parameters provide a more dynamic picture on the influence of the
activity of large funds.

The overall picture is nevertheless the same: for a given number of trades, on average,
the difference of a and b between the top and bottom quantiles of R and S contribute
to shorten the length of the memory as inferred by C,(7T) because the noise level is
reached at smaller lags for assets in the top quantiles. This is indeed confirmed by
Fig. [5.6) which shows the time evolution of the 7; averaged over the top and bottom
quantiles of R and S. One notes that 7; of the top and bottom groups are clearly
separated, while this ceases to be the case for and 7; /N since 2012. The effect of R or
S is opposite on 7, and 7, /N, which is due to the fact that the number of transactions
N of assets with large R or S is typically smaller.

5.4.2 Large fund directional and absolute trading detection

A more relevant question in practice is whether one can detect trading by large in-
vestment funds from quantities measured from tick-by-tick data. In the context of this
paper, the question may be rephrased as how to guess in which quantile of R or S a
given asset may be from the knowledge of a, b, ¥ or 7*/N. Since the later quantities
are measured of a week, we compute with their averages over a given quarter.

Here, we focus on the following simple classification problem: for each quarter, we
split the 20 groups into two categories according to quantile k., assets belonging to
the quantiles k < kcyt form the first category and the remaining ones the other one.
Choosing a memory length measure as the variable according to which one classifies
the assets during a given quarter, it is then straightforward to compute the parametric
Receiver Operating Characteristic (ROC) curve and its associated area under curve
(AUC) for a given quarter. Figure 5.8 reports the AUC associated with 7719, g, b, T*
and 7/ N for the quantiles of both R and S, averaged over the 32 quarters. One sees
that 77519 and a are roughly equivalent and are the best variables to discriminate the
large values of R and S. Even more, their detection power with respect to the quantiles
of S does not depend much on keyt.
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Figure 5.5: Time evolution of the fitting parameters characterizing the long memory of

the market order sign autocorrelation C,(t) = at’. Top plots: evolution of a averaged

over all the members of the bottom and top quantile of R,(g) (left plot) and S, (g)

(right plot). Bottom plots: evolution of b averaged over all the members of the bottom

and top quantiles (orange and blue lines, respectively) of R,(g) (left plot) and S, (q)
(right plot).
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Figure 5.6: Time evolution of 7, the scaled maximum lag before the autocorrelation

function of the trade signs reaches the noise level, averaged over the top and bottom

quantiles (orange and blue lines, respectively) of R,(q) (upper plots) and S, (g) (bottom
plots).
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Figure 5.7: Memory length of stocks in R}(g) (blue dots) and in R2%(g) (orange dots)

at quarter q=26 (2013-09-30). One point corresponds to the memory length computed

for one trading week for a given stock. Points with the same R, correspond to the
same stock (One quarter is about 12 trading weeks).

5.5 A theoretical approach

Lillo et al. (2005) establish the link between the size of meta-orders and the order sign
auto-correlation. In particular, they find that if the distribution of the size L of meta-
orders, denoted by P(L), has a power-law tail P(L) o L~ (A1), then, assuming that the
sign order of each meta-order is equiprobably —1 or 41 and that there are exactly M
active meta-orders at any time for a given asset, the auto-correlation function is given
by C(t) ~at™? = %T_(ﬁ_l) for large 7. This simple relationship gives two insights
relevant to our results.

First, the pre-factor a is a decreasing function of M when B < 2, which is generally
the case as f ~ 1.5 on average for example in the London Stock Exchange (Lillo et al.,
2005). Identifying B — 1 with b here shows that in our case b < 1, hence that g < 2.
This implies that the pre-factor a is a proxy for the number of meta-orders present in
the market, ceteribus paribus, which should then be strongly related to S. This is why
the pre-factor a (and thus (19)) are among the best predictors of the quantile range of

S (Fig. B.5).

Second, b being a proxy for an effective B, it allows to gain some insight on the tail
of P(L). Since the measured b decreases, the probability of very large meta-orders
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Figure 5.8: Average quarterly Area Under Curve (AUC) corresponding to the classi-
fication of funds belonging to quantile k > k., for each market order sign memory
length measures. Left plot: averages of daily microstructural quantities; right plot:
averages of weekly microstructural quantities. AUC averaged over the whole history.
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increases, which is coherent with directional trading from large funds after large price
changes. Another explanation for the change of b resides in the the way meta-orders
are split: there must be feedback loops between the exponent B and the available
liquidity which in turns most probably depends on the current order flow, determined
in part by meta-orders.

5.6 Concluding remarks

This work has brought to light the fact that the influence of the trading of large funds
on the memory of market order signs is far from negligible: large funds do not sup-
press long memory, but may weaken it. When one knows ex postfacto how large funds
have traded, there is a clear difference between limit order book dynamics in which
large fund took a substantial part and those barely touched by them (relatively speak-
ing). Reversely, even when averaging the market order sign memory length measures
over a quarter allows to some extend to predict if large funds have been much involved
in the trading of a given asset.

The main limitation of the present work is the use of quarterly data to characterise
fund behaviour. Using labelled trades would open the way to relate the properties of
order book day by day and and to improve our understanding of the link between the
composition of meta-orders and the memory length of market order signs.
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Chapter 6

Conclusion and outlooks

In this conclusion I want to give a general overview of the topics studied in this thesis
in light of recent developments in the literature, and I will suggest different directions
for possible extension.

In chapter 4| we propose that the average portfolio structure of institutional investors
reproduces the structure which is optimally accounting for transaction costs. Chapter
also discusses that, while individuals may deviate much from the rational expec-
tation theory, standard economic theory may hold at a collective level without need
for micro-founded optimal individual decisions. If similar results were to be found
on portfolio selection then symmetric information properties would emerge from an
aggregation of private, diverse and asymmetric information of a crowd of informed
and noise traders.

We also reminded that, for Wisdom of the Crowds to be valid, the effect of imitation
has to be limited, which can be in contradiction with the fact that the SEC data, for
example, is publicly available. Therefore it appears critical to estimate the degree of
imitation that exists in financial markets. In Chapter 3l we quantified portfolio over-
laps between institutional investors, a temporal analysis of portfolio overlaps lead-lag
relationships could be used as a proxy for imitation and allow to quantify in what
extent institutional investors imitate their (more informed?) peers after publication.
Although that effect may be altered by the fact that large funds know that their po-
sitions may be copied just after publication (which does not occur immediately after
filing). Thus, they may anticipate short-term imitation and may adjust their portfolios
just before reporting dates accordingly.

In chapter |5 we studied the influence that large-traders have on the market dynamics.
We found that large directional traders shortened the memory length of order signs
however we did not explore the origin of these behaviours. Were large trades triggered
by the arrival of new information? [Friedman/ (1953) and [Fama| (1965) argued that
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irrational investors are met in the market by rational arbitrageurs who trade against
them, driving the prices close to a fundamental values. Identifying informed traders
from noise traders could help a better understanding of price formation.

Even though the scope of this thesis was limited to large-traders (institutional investors
and large funds) behaviour and limit order book dynamic, we developed tools (in
Chapter [2) that allows to tackle most of the technical challenges one can encounter
when working with data from diverse sources and nature. These tools can be used for
future development using more macro-economic related datasets.

From a macro-economic perspective, the role of financial markets is to efficiently allocate
capital among competing projects by allowing market participants to meet and ex-
change securities, and, consequently, to enable risk sharing for market participants.
Adam Smith believed in self regulated free-market force, giving everyone freedom
to produce and exchange goods, that became known as the “invisible hand” (Smith,
1759, [1776).

Firms are required to publicly report their accounting information (e.g. income state-
ment and balance sheet). Not only public information release has been shown to
improve the risk sharing mechanism described by Adam Smith (Diamond, [1985), it
has also lead to a lot of work, referred to as capital markets research. For example,
the accounting measurement theory seminal work by Ball and Brown| (1968), which
documents the relationship between prices and accounting numbers using traditional
fundamental analysis, involves the determination of the value of securities by exami-
nation of key value-drivers (such as earnings, risk, growth and competitive position)
reported by firms.

The demand of capital markets research in accounting is strong, numbers of applica-
tions explain its popularity. Fundamental analysis and valuation have been used to
identify mispriced securities (Frankel and Lee, 1998), short-sellers have been shown
to position themselves in stocks with low fundamental-to-price ratios (Dechow et al.,
2001), Lev and Thiagarajan| (1993) validated that some investors use the fundamentals
to assess the extent of earnings persistence and growth, future earnings prediction
from fundamental signals (Abarbanell and Bushee, [1997; Penman, |1992), and an indi-
rect approach which is based on an examination of the relations between fundamental
signals and stock returns (Ou and Penman, [1989; Greig), 1992).

In this thesis we considered firms as passive agents in the funds portfolio selection
process. However firms actively influence this process and evidences show financial
reporting to be important means for management to communicate firm performance
to outside investors (Healy and Palepu, [2001). The consequences are important: man-
agers have been found to manipulate real activities (e.g. price discounts, overproduc-
tion, reduction of discretionary expenditures) and sacrifice economic value, as avoid



81

initiating a very positive net present value (NPV) project if it meant falling short of
the current quarter’s consensus earnings, in order to avoid reporting losses and, even
though these activities enable managers to meet short-run earnings targets, they are
unlikely to increase long-run firm value (Graham et al., 2005; Roychowdhury, 2006).

These facts raise numbers of still open questions. It is instructive to enumerate some
of them:

e do some investors imitate peers using ownership public disclosure?
e do some investors manipulate their portfolio before publication?

e how do investors respond to corporate disclosures?

e how does disclosure affect resource allocation in the economy?

e how much to pay for a stock and what is the role of accounting in that assess-
ment? In other words, does accounting information allow to predict long term
stock prices?

Answering these questions requires a global approach and to the economy as a whole.
A tri-partite study of capital markets, large-traders’ portfolio and firms’ accounting
information would open the way to a better understanding of the mechanisms at play.
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Appendix A

Wisdom of the institutional crowd -
Supporting information

A.1 Determination of the crossover point n*

For each date t, we define the cross-over point n* between the two regions which
appear in the local polynomial regression. We determine this point value with a like-
lihood maximization of the model

logW = u-logn+ (u> — p<)(logn —logn*)0(logn — logn*), (A1)

where 6(x) is the Heaviside function which encodes an if clause so that y = p. if
n < n* and y = u- otherwise. We use the method introduced by Muggeo (2003) to
find parameters y., y~ and n*, which is implemented by its author in the R package
segmented. In essence, this method consists in linearising Eq. and determining
the relevant parameters recursively. Figure shows that n* is stable as a function of
time.

A.2 Asset selection: a model

The framework we introduce in this paper follows a series of a few elementary steps
described below. The aim is for the model to be sensitive to the different constraints
which dominates the portfolio selection of a fund.
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Figure A.1: Temporal evolution of the number of funds N; and securities N, in the
database. Unfiltered in dashed lines and US based only in solid lines.

A.2.1  Asset selection in the small diversification region n; < n*

In this region, we assume that portfolios are equally weighted. Each position has a

size n‘:,v—pi, where nZ-Opt is the optimal number of position computed with Eq. (4.1). The

funds select their asset randomly with a probability proportional to C,. Also, in order

to build an equally-weighted portfolio, a position is valid only if it is of size nﬁit.

A.2.2 Asset selection in the large diversification region n; > n*

In this region, the liquidity constraints make it harder for funds to keep an equally-
weighted portfolio and portfolio values are thus spread on a larger number of assets.
We propose here a stochastic model of asset selection based on two main ingredients:
first that the selection probability of asset a by fund i depends on the diversification of
a fund n; and on the scaled rank of the capitalization of asset «, and that the investment
is bounded by an hard constraint on the fraction of market capitalization of asset «.

We chose a security selection mechanism which rests on the scaled rank of capitaliza-
tion of security «, defined as p, = 35 where r, is the rank of capitalization C, and
M the number of securities at a given time. The selection probability P(W;, > 0|px)
is then obtained by parametric fit to a beta distribution in each logarithmic bin. Note
that we do not use the same rank-based selection mechanism in the low-diversification
region because in this case it is harder to have a good fit with the beta distribution.
This is however only a minor point since the capitalization is approximately power-

law distributed and the two selection mechanisms are basically equivalent (the rank
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Figure A.2: Top: Empirical probability of investing in a security of scaled capitalization
rank p for each fund diversification bin [1;] . Bottom: Probability density function of
investing in a security of scaled capitalization rank p given the diversification n; of the
fund, given by the model.

is proportional to a power of the capitalization) and indeed results are very similar in
both cases.

Figure shows that the distribution of the ranks in which a fund is invested is
sensitive to its diversification n; (t =2013-03-31). The Beta distribution, defined as
defined as

f(x;a,b) = B(a b)x”’l(l — x)b’l, (A.2)

where a and b are the shape parameters of the distribution and B is a normalization
constant, is limited to a [0,1] interval and is flexible enough to describe the asset
selection mechanism of funds.
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Figure A.3: Coefficients a and b of the Beta Distribution as a function of n; . Linear
tits are for eye-guidance only.

A.2.2.1 Maximum investment ratio

Funds limit their investment in a given asset by using a simple rule of thumb: defining
the investment ratio f;, = Vg—;‘“, one easily sees in Fig. that each fund has its iwn
maximum investment ratio

MAX = max, <Vgi“> . (A.3)
(19

Since the average exchanged dollar-volume of an asset is proportional to its capitaliza-
tion (Fig. |A.6), the existence of f"®* is a way to account for the available liquidity.

Although that limit is clear for an individual fund, the range of empirical values f™®
is remarkably large (see Fig.|A.5).

A.3 Simulation of asset selection

The simulation is done in a few simple steps:

1. For a given time t, compute n* from the data using the segmented model Eq. (A.T).
2. Iterate over all the funds: for fund i, with a number of assets #;,

(@ Ifn; <n*:
i. Compute its optimal portfolio value using Eq. (4.1). The fund will in-

WPt o
vest —I— for every position.
ii. Select assets randomly with a probability proportional to C,.
(b) Else if n; > n*:

i. Compute its £, so that the fund i will invest f®* in n; assets.

ii. Select assets according to their capitalization rank following a Beta
probability distribution Fig. with the parameters found in Fig. 1

IWe could use here the empirical probability of asset selection according to their capitalization rank.

However, using a parametric distribution with only a few number of parameters reduces the number of
degrees of freedom and thus makes the model more generic.
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Figure A.6: Market capitalization as a function of the daily exchanged volume dollar
averaged over the previous three months, for 2013-03-31. Fitting data to C, = WZ, daily"
We find # ~ 1 for all the dates in our database, confirming the hypothesis that the
daily exchanged volume dollar of an asset is approximately proportional to its market

capitalization.

By iterating those steps we obtain Fig.

Since the simulation outputs a portfolio for every fund, we can directly infer the num-
ber of investors m, of every security.
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