
HAL Id: tel-01939193
https://theses.hal.science/tel-01939193

Submitted on 29 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From reads to transcripts: de novo methods for the
analysis of transcriptome second and third generation

sequencing.
Camille Marchet

To cite this version:
Camille Marchet. From reads to transcripts: de novo methods for the analysis of transcriptome second
and third generation sequencing.. Bioinformatics [q-bio.QM]. Université de Rennes 1, 2018. English.
�NNT : �. �tel-01939193�

https://theses.hal.science/tel-01939193
https://hal.archives-ouvertes.fr

2018

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Bretagne Loire

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

Ecole doctorale Math-STIC

présentée par

Camille Marchet

préparée à l’unité de recherche no 6074 IRISA
Institut de Recherche en Informatique et Systèmes Aléatoires

(Composante universitaire)

From reads to transcripts:

de novo methods for the analysis

of transcriptome second and third

generation sequencing

Thèse soutenue à Rennes
le 28/09/2018

devant le jury composé de :

Éric Coissac
Maitre de Conférences - Rapporteur

Hélène Touzet
Directrice de Recherche - Rapporteuse

Thomas Derrien
Chargé de Recherche - Examinateur

Dominique Lavenier
Directeur de Recherche - Examinateur

Thierry Lecroq
Professeur - Examinateur

Anne Siegel
Directrice de Recherche - Examinatrice

Hagen Tilgner
Assistant Professor - Examinateur

Pierre Peterlongo
Chargé de Recherche - Directeur

2

Contents

Remerciements 7
Preamble . 11
Introduction . 13
1 What is RNA from molecular biology point of view 14

1.1 Introduction to nucleic acids . 14
1.2 Dynamics of RNA . 16

2 Access RNA sequences . 20
2.1 Short reads and former technologies 20
2.2 Focus on long reads . 21

3 RNA from a computational point of view . 25
3.1 Algorithmic complexity . 25
3.2 Nucleic molecules as text . 26
3.3 Sequences comparison: text algorithms 26
3.4 Graph theory notions . 28
3.5 Common indexing schemes . 31
3.6 Main procedures to investigate reads 32

4 How this work contributes to the study of transcriptomes 35
4.1 Some current questions on mRNA . 35
4.2 Main contributions . 36

1 Compare pairwise sequences in (meta)-transcriptomics data 39
Compare pairwise sequences in (meta)-transcriptomics data 39
1 Problem statement and previous works . 40

1.1 Overview of heuristics applied to pairwise sequence comparison . . . 40
1.2 Current methodological challenges . 43

2 Short read connector: two scalable methods to study similarity between se-
quences sets . 44
2.1 Presentation of the data structure . 45
2.2 Short Reads Connector methods . 49

3 Detection of similarity of sequences in large scale studies 54
3.1 Application case: marine holobionts 55
3.2 Experimental design . 58
3.3 Validation of SRC using know models 59

3

3.4 Added value of SRC on novel holobiont 60
3.5 Discussion on holobionts results . 60

4 Using SRC-linker on long, spurious sequences 61
4.1 SRC-linker: proof of concept for long reads 61
4.2 New features for adapting SRC to long reads 64

5 Discussion . 66

2 Cluster sequences in transcriptomics datasets 67
1 The issue of biological sequences clustering 69

1.1 Clustering and community detection 69
1.2 Method for biological sequences clustering 72
1.3 Clustering RNA long reads . 73

2 Novel algorithm for gene expression clustering in long reads 77
2.1 Implementation details . 79

3 CARNAC-LR and long read clustering pipeline 84
3.1 Pipeline overview . 84
3.2 Implementation choices . 86
3.3 Performances . 88
3.4 Expected clusters on particular cases 89

4 Results of CARNAC-LR on several datasets 89
4.1 Behavior on classic community problems 90
4.2 Comparison to state of the art . 91
4.3 Comparison to tools for sequence clustering 91
4.4 Validation on a real size dataset . 93
4.5 Complementary of de novo and reference-based approaches 93

5 Discussion . 95

3 Correction of long, spurious reads 97
1 Background . 98

1.1 Short read correction . 98
1.2 The challenge of variety of error rates and profiles in long reads . . . 99
1.3 Long read correction methods . 100

2 Evaluation of long reads correction methods 101
2.1 State of the art of correction evaluation 101
2.2 New methodological approach to evaluate correction 102
2.3 ELECTOR: evaluation of long reads correction tools 109
2.4 How correctors perform on RNA . 114

3 Discussion . 116

4 Towards access to corrected isoforms using long reads 119
1 Describe full-length isoforms in RNA data 120

1.1 Background . 120
1.2 Objectives of our method . 121

4

1.3 Multiple sequence alignment strategy 121
1.4 How exons are detected in POA results 125
1.5 Consensus calling . 127

2 Results on simulated data . 128
2.1 Validation protocol and simulations 128
2.2 Method validation . 128

3 Discussion . 134
3.1 Details on future implementation of heaviest bundling for consensus

calling . 136

5 Other contributions on NGS data 139
1 Context . 140
2 Dealing with complex regions in graphs . 140
3 Bioinformatics for de novo variant discovery 140

3.1 Expressed SNPs . 141
3.2 Alternative splicing studies . 141

Conclusion and Perspectives . 145
1 Conclusion . 146

1.1 Contributions . 146
1.2 Dissemination of this work . 148

2 Perspectives . 149
2.1 Short Reads Connector at its best . 149
2.2 Enhance CARNAC-LR . 150
2.3 Read correction . 151
2.4 Towards a comprehensive pipeline for de novo study of transcriptomes

with long reads . 153
2.5 Final note . 154

Appendix . 155
1 Appendix to Chapter 2: details on methods 156

1.1 Algorithm . 156
1.2 Example of problematic nodes . 157

2 Appendix to Chapter 4: supplementary results 158
3 Appendix to conclusion: long reads correction 160

3.1 Compute a consensus per region . 162
3.2 Read correction using the consensus 164
3.3 Remarks . 164

5

6

Remerciements

On n’a pas souvent la chance d’avoir une tribune libre pour se retourner et remercier les gens qui ont avancé
avec nous dans la vie, voilà comment je considère le texte qui suit. Si vous vous ennuyez un peu à ma
soutenance, je vous propose de tenter de compter le nombre de ”merci” qui apparaissent dans ce texte afin
que l’on rigole un peu de la faiblesse de ma prose. En échange j’offre un cadeau au première ou à la première
à me donner la bonne réponse.

Tous les parcours ne sont pas tout tracés, dans le mien il existe un certain nombre d’heureux malenten-
dus ou de hasards. Je pense à Monsieur Doussot, qui, mon premier jour d’école en petite section me laisse
apprendre la comptine des grands à travers la cloison car je m’ennuie. A Monsieur Bedrune au collège, les
cours d’arts plastiques sont nuls mais pas sa longue digression sur un bouquin de Sven Ortoli. Après ça, c’est
une sorte de petit rêve de faire de la recherche (en physique quantique, bon). Merci à Alex d’avoir conforté
mon envie de partir à Lyon. Merci à ce monsieur passionné, en sortie ornitho à Guérande, qui me fait choisir
la bioinfo sur un coup de tête en école d’ingénieur, parce que je me dis que j’aimerais bien travailler pour les
biologistes.
Je pense à celles et ceux à qui je m’accroche en pensée quand la perspective de faire de la bonne science
semble lointaine. Federica et ses cours de bio cell, qui personnalise l’amour de sa disciplince combiné au
recul sur sa profession, et qui donne à la biologie beaucoup plus de relief qu’une suite de connaissance à
ingurgiter. Dans la même veine, Laurent P et Hedi. Mes enseignants passionés Madame Levret, Monsieur
Laloé et Monsieur Pautet, ainsi que Monsieur Leroy qui est finalement mon unique prof d’anglais en quelque
sorte.

Un immense merci à Vincent et Marie-France pour m’avoir fait confiance et mise sur les rails à mes
débuts. Vous êtes pour moi l’exemple d’une science à visage humain. Merci Vincent de m’avoir accordé ta
confiance et de m’avoir aidé à décrocher un financement de thèse malgré mon CV... particulier. Merci d’être
un modèle scientifique, même si je mets parfois du temps à prendre conscience des réelles qualités dont on a
besoin pour être un bon chercheur. L’aventure a commencé pour moi un jour de réunion ANR Colib’read à
Paris, j’ai donc une pensée particulière pour Gustavo, Alice, Blerina, Rayan, Raluca, Hélène, Claire, Clara,
Eric, Bastien, et tous les autres membres de ce groupe.
A Lyon je salue tous mes amis et amies, mes co-auteurs et co-autrices et les collègues que j’ai côtoyés à
ce moment au labo et à la plateforme de bioinfo. En particulier Guy qui me soutient toujours beaucoup,
Christian G, Lilia, Janice, Frank, Vincent N, Clothilde, Amandine, Laurent J, Ricardo, Mariana, Laura,
Sheila, Leandro, Philippe, Vincent M, Camille, Magali, Christine et Arnaud, Sylvère ainsi que Mathilde,
Susan, Laurent B (et Tigrane), Florence Martin et Emilie C pour les anciens.
Je continue sur les ANR et les collaborations en remerciant mes collègues d’ASTER, ANR qui a été un
environnement très enrichissant, voire salvateur, pour moi pendant ma thèse. Merci une seconde fois Lean-
dro d’être un si chouette collègue, Rayan pour tes conseils très avisés, Hélène, Jean-Marc et Corinne pour
toute votre aide. Merci aussi aux collègues d’HYDROGEN, Mahendra, Stéphane, Eric P, Olivier. Vous avez
été nombreux à m’envoyer un petit mail d’encouragement pour la dernière ligne droite et j’en profite pour
remercier Etienne D, Pierre et Claude de Nantes (je regrette qu’on ne se soit pas plus vus !). Je n’oublie pas
Thierry, Arnaud et Pierre M et toute l’équipe ELECTOR, Jean-François et toute l’équipe BWISE, Arnaud,

7

Lucie, Fabrice, Erwan et tous les pros des Radiolaires.

J’en profite pour remercier mon jury de thèse, Hélène, Thierry, Dominique, Eric, Anne et Thomas, ainsi
que Christine, Hagen venu de vraiment très loin. Merci d’avoir pris le temps de lire mon manuscrit et de
vous être impliqués dans mon travail. Un grand merci Anne d’avoir assuré un remplacement in extremis au
pied levé et avec le sourire.
Mes collègues rennais n’étant pas en reste, merci dans un parfait désordre à Maud de m’avoir permis
d’enseigner une super UE aux informaticiens de l’INSA avec la plus grande liberté, aux personnes du GT
égalité femme/homme que je regrette d’avoir intégré si tard, et à Anne en particulier, à tout le personnel
administratif du labo, de l’université et de l’école doctorale et à Elodie Cottrel qui a été une interlocutrice
très agréable, ainsi qu’Anne Buzaré.
Bien sûr je salue Symbiose dans son ensemble, les membres passés et présents. Je pense à ses sous-ensembles
comme l’éphémère équipe des 4C, tous mes co-bureaux : Cervin, Julie, Patrick (on continue à se montrer les
tatouages ok ?), Maël, Arnaud : merci d’avoir une meilleure tête que moi le matin sinon on ne s’en sortirait
pas. Mes anciens stagiaires, Benjamin et Lolita je vous souhaite que tout fonctionne selon vos plans dans
vos thèses respectives. La Triforce dont j’ai l’honneur de faire partie en compagnie de mes sempäı Gatou et
Antoine, est l’entité la plus puissance issue de GenScale, sans aucun doute possible. La preuve, elle essaime
en banlieue GenScale nord, je suis contente que l’aventure se poursuive à Lille les garcons ! Dans l’équipe
GenScale je remercie chaleureusement Dominique, pour tes encouragements en particulier au début où tout
était bien flou, et pour tes nombreux conseils pour la suite, Fabrice et Claire pour vos retours pertinents
(”j’ai pas bien compris..!”) sur mon travail, Rumen et Seb même si on n’a pas encore transformé l’essai, et
bien sûr Jacques, tu t’es jeté sans hésiter dans l’aventure CARNAC-LR et tu apportes ta dose de positif et de
zen tous les jours (sans doute grâce à son assidue pratique du yoga). Chez les abonnés au séminaire précaire,
j’appelle Hugo, Wesley (tire profit de mon enseignement sur le Hibou stp), Seb (doucement avec l’escalade),
Lucas (j’espère qu’on menèra au moins un de nos fameux projets au bout), Arnaud, Maël, Marine, Chloé,
Marie, Meziane (on ira en Islande promis j’achète les billets demain), Méline, Maxime, Pierre V, Jérémy,
Cervin et Clémence (bon courage vous deux pour vos soutenances !), et Lolita (t’es la meilleure). A toutes
et tous je vous souhaite que la suite vous sourie. Merci à tous mes collègues de Genouest, et évidemment à
Marie qui assure dans ce job difficile d’organiser la vie de têtes en l’air comme nous.

Enfin, merci à Pierre d’avoir toujours été très positif avec moi, d’avoir mouillé son bison sans peur sur un
sujet pas prévu à la base. Il est possible que je te doive des choses dont j’ignore encore l’existence, manque de
sagesse oblige. Merci en tout cas de m’avoir laissée très libre quitte à faire des erreurs, comme par exemple
et totalement au hasard, faire une thèse sur ce qui aurait pu être trois sujets de thèse différents. Je suis très
contente de ce que l’on a accompli et je sais que nous ne sommes qu’à nos premiers succès. Merci surtout
d’avoir été compréhensif quand à ma situation familiale, et de m’avoir laissé le large dont j’avais besoin en
toute confiance. Tout le monde ne l’aurait pas accepté les yeux fermés, et grâce à ça j’ai pu faire ce qui
comptait réellement pour moi sans regrets. Ca me touche beaucoup.
Je ferme cette page scientifique pour en rouvrir une nouvelle, en remerciant Mikael et Rayan qui vont main-
tenant m’accueillir à Lille pour mon postdoc.

Salut à tous les doctorants, jeunes chercheurs, frères ou meilleurs amis qui voguent ou ont vogué sur la
même galère que moi et que je n’ai pas encore cités, Tristan, Muller, Guillaume, Gilles, Kévin, Florent, Vic-
tor, Ardi, Joris, Président, Présidente, Romain, Yoann, Bastien. Merci Guillaume d’être venu tout exprès
cette semaine pour filer un coup de main et refaire le monde. Vivien, Stéphane, Alex, Xouille, Aurélia,
Amandine et Paul, vous qui avez choisi une vie sans doctorat et êtes bien plus zen et dix fois plus riches
(?), je vous aime pareil. Ceux de l’IRISA, Simon, Hugo, Tristan et Gus : merci pour le café, les Chanya du
vendredi, les conversions aux végétarismes et le soutien mutuel dans l’adversité ! A l’équipe de com chargée
de mes affiches de thèse je decerne le prix du résultat le plus hilaro-cryptique. Et puis il y a d’autres rennais
et rennaises qui ont participé à ma vie durant ces trois ans et que je n’ai pas encore évoqués : Laurent
B, Mathias, Aurore, Benjamin B, Aymeric et Shannon. Je tire mon chapeau à ceux qui m’ont supportée

8

au quotidien ces trois dernières années, c’est-à-dire essentiellement Gurvan, Gaëtan et Simon. Et Antoine
l’inclassable, support indéfectible que je refuse d’écouter une fois sur deux, inutile de résumer ici tout ce
que j’ai appris avec toi en venant à Rennes. Tu dois être la personne qui me connait le mieux en tant que
collègue grognonne. Tu es un pilier dans ma vie et je te remercie vraiment pour ces derniers mois. On se
doit beaucoup et je me réjouis de tous les projets à venir.

Non moins importants, il y a aussi ceux et celles qui tâchent de m’extraire de la recherche et des sciences
de temps en temps. Jean Boulat qui m’accueillit en section arts plastiques à l’INSA. Cécile ma prof de yoga
qui a donné beaucoup plus d’intensité à ma pratique. Tim qui tous les jours mène sa quête pour être plus
libre. La team du jap, championne du monde de spam. Impossible de ne pas citer la bande des Lyonnais,
natifs, exilés ou d’adoption, qui me rappelle tous les jours qu’un autre monde que celui de la recherche
existe. Ben, Pierre, Thomas, Marina, Antoine, Tristan, Thibaud, Muller, Aurélien, Duff, Eric, Elwing et les
autres qui serais-je sans vous ? Une personne qui rit moins. J’ajoute Lisa et Elöıse qui sont mes plus vieilles
amies et que je suis fière de garder près de moi, malgré nos chemins si différents; Arnaud le toulousain et le
canadien Léo; et mes frères et soeurs, Romane Pierre et Max qui ne se sentent pas obligés de faire comme
moi, et tant mieux.
Merci à toute ma famille sur qui je peux toujours compter, Stèphe, Yannick, Isa, Eugénie, Paul, et puis
Jean-Marie et papa puisqu’on dirait que j’ai maintenant deux papas. De chacun de vous deux je tire la
rigueur (un peu) et l’assurance (un peu aussi, je fais ce que je peux). Vous avez eu des épaules bienvenues
surtout ces derniers temps, et vous m’avez toujours fait confiance sans essayer de m’influencer pour choisir
ma trajectoire, c’est une grande chance. Je pense aussi à mes tantes et oncles, et cousins-cousines de Paris
et de Bourgogne, mais également à l’Invicible Armada au complet et au Renarts avec un t qui tous ensemble
sont un grand réservoir de bienveillance à mon égard. Papi et Gracie vous me sauvez la vie chaque été en
m’accueillant à la Cabanasse, je pense fort à vous. J’ajoute qu’il m’est impossible d’exister sans mes modèles
de femmes dans la vie, moteurs et soutiens : ma grand-mère qui est une des personnes les plus fortes et les
plus ouvertes que je connaisse, Isabelle, j’aimerais avoir ton pouvoir d’insuffler la joie de vivre partout où
tu passes, Mireille Dominique et Jeanine qui sont encore autant de femmes fortes, drôles et pleines de vie.
Enfin maman. Il y a trois ans je me demandais si tu serais présente le jour de ma soutenance. Il y a six mois
je me demandais si tu pourrais au moins la voir, même de loin. Récemment je t’ai rassurée en te disant que
ça n’était pas si grave et que c’était au fond une formalité. Qui ce qui comptait c’était tout le reste. Il y a
du vrai là dedans, au regard des 29 ans où tu m’as quotidiennement accompagnée, une journée de plus ou
de moins ce n’est grand chose. Mais la vérité c’est aussi que tout est plus douloureux que prévu car tu me
manques. C’est étrange d’écrire pour quelqu’un qui ne lira pas, mais la force, la constance et l’envie d’aller
de l’avant que tu possédais et que tu m’as patiemment inculquées, je les garde pour me souvenir et pour te
ressembler un peu.

En résumé j’ai la chance de vous avoir nombreux, nombreuses près de moi et je vous dois beaucoup. Un
grand merci.

9

10

Preamble

11

This manuscript is organized in five chapters plus an introduction, a conclusion and perspectives. In the
introduction, general concepts pertaining to RNA and key biological notions that will be later invoked are
presented. These concepts describe biological realities that are for a large part non fully solved: this is also the
occasion to present some fundamental questions in RNA biology. These questions motivate the development
of bioinformatics methods, to which the work presented in this dissertation contributes. As nucleic sequence
biology is nowadays inseparable from the technologies that give access to sequences, they are presented as
well in the introduction. As these technologies deliver imperfect and fragmented information, whose nature
have been changing through years, they importantly impacted the development of bioinformatics methods.
Sometimes challenges due to these technologies supplant biological questions, but they also open new exciting
informatics problems.
The main discipline of this thesis subject is informatics, though being cross-disciplinary it brings readers that
belong to a broader scientific audience. We judged useful to provide a summary of indispensable notions in
graph and text algorithmics to the reader. They recall the notions encompassed within the whole manuscript
that are helpful to globally access the presented work. Introduction ends with a short presentation of the
contributions.

This thesis subject was thought as being composed of three main steps, that require various and some-
times quite distant methodologies. The aim of this thesis is to enable the processing of RNA sequencing from
the sequencer output to the isoform detection, its central theme being the biological and technological nature
of data. Thus we made the choice to treat several methodological steps of a pipeline processing these reads,
instead of focusing on only one step. This explains why most of the broached notions do not come with a
extensive state of the art. We preferred picking what seemed to us essential matter to correctly address the
different encountered issues. It is noteworthy that this thesis focuses mainly on new sequencing technologies
producing so-called “long reads” (in comparison to short reads produced by technologies anterior to 2011),
which only benefited from a sparse methodological literature for RNA at the beginning of our work.

We made the choice to introduce more precise algorithmic notions as the necessity arises all along the
manuscript. We hope this helps easing the reading, since this thesis spans several distinct problems in
bioinformatics. Thus each chapter starts with a presentation of its methodological background and issues.
Upon needed, a particular biological notion of interest can be developed in a chapter. This is for instance
the case in Chapter 1 where the concept of holobiont is presented. In the same spirit, this is meant to avoid
overloading or breaking up the introduction’s consistency.
Main covered domains are pairwise sequence comparison in Chapter 1, sequence clustering in Chapter 2,
multiple sequence alignment and sequence correction in Chapters 3 and 4. Though sometimes going back to
DNA applications is needed, all the methods presented in these chapters are meant to be committed to RNA
sequences as final goal. Chapters 1 and 2 represent accomplished works, published or in press in conferences
proceedings and journals [146, 145, 154], or in revision [144]. They present novel methods and results.
Chapter 3 and 4 depict more exploratory works, with ongoing methodological researches and preliminary
results. Chapter 4 is also an attempt to methodologically synthesize and link together works presented in
previous chapters. Some works on short reads are only briefly mentioned [132, 138, 16, 119] in Chapter
5. We participated in their realization to various extents during this thesis, but they do not constitute the
core contribution of our work. Finally a few works are not presented in this document, since they are early
projects or are more distant from the central theme.

Conclusion presents a summary of the achievements and discusses their impact. Perspectives section
proposes concrete improvements for each main part, and bring prospective works out.

12

Introduction

13

1 What is RNA from molecular biology point of view

1.1 Introduction to nucleic acids

1.1.1 DNA: an informational and historical basis

DNA (deoxyribonucleic acid) is the carrier molecule of hereditary information in the majority of the living
and is present in its three main domains: Eukarya (organisms with cells that have a nucleus bounded by
a membrane), Bacteria and Archaea (both prokaryotes, that do not have nucleus). It is a homopolymer
composed of four different nucleic acids called nucleotides. A chain or sequence of these nucleotides is called
a DNA strand. DNA nucleotides adenine (A), cytosine (C), thymine (T) and guanine (G) have the property
to make pairs. A pairs with T, G with C. For instance the chain ACGT can make a pair with the chain
TGCA. These chains, also called strands, are oriented, in the sense that each end is not terminated by the
same chemical group. We call the 5’ end the one having a terminal phosphate group, conversely the 3’ end
has a terminal hydroxyl group. This asymmetry gives DNA its directionality. DNA strands thus hybridize by
pairs (attached by hydrogen bonds), each strand having the same length, corresponding nucleotides forming
pairs (said complements) and running in the opposite direction (they are called antiparallel). One strand is
then called the reverse complement of the other. A DNA molecule is composed of these two strands bonded
in a helical fashion in three dimensions (right in Figure 1).

DNA is a long molecule which storage in the cell can be extremely optimized in space. In many organisms,
it does not only stores sequences called genes, but also regions that regulate the activity of those genes, as
well as other sequences of diverse roles. Notions of genes and genomes being models, they can harbor slightly
different definitions according to the eye of whom studies. We will call a gene a DNA sub-sequence that

Figure 1: Molecules of RNA (left) and DNA (right). Figure adapted from [41].

14

encodes instruction for any functional process in a cell. In eukaryotes, DNA is stored and well separated from
the rest of the cell in the nucleus (it is not the case in prokaryotes). It is supported by one or more structures
called chromosomes that imply several proteins to keep the very long DNA molecule condensed. The whole
set of genetic material in chromosomes is called the genome. Haploid organisms carry only one copy of each
chromosome. Polyploid species have several copies of each chromosomes, for instance humans are diploid:
they normally carry pairs of each chromosome. Moreover, genomes content is structured and non-randomly
distributed in terms of bases. Several biological phenomenons lead to the presence of repetitions of various
sizes, also called repeats in genomes, that are “copy-paste” sequences that have several occurrences in an
individual. Such sequences can in fact diverge in their content because each copy accumulates different
mutations. Some repeats are inserted in genes, and some genes are themselves copied and form so-called
gene families.

It was thought that once the sequences inside genomes would be known and well interpreted, one could
access all the complexity of the living. It is then natural that DNA sequences started to be extracted and
studied. However when genome sequences started to be obtained for several organisms, the sizes of genomes
strikingly did not correlate to the apparent complexity of organisms (examples are reported in Figure 2). It

Figure 2: Several examples of genome approximate sizes in eukaryotes and
prokaryotes.

became more and more clear that the envisioned metaphor of the DNA as the “book of the living” was not
accurate enough to represent the biological reality. The diversity of biological processes though existing, one
or more keys were gone missing.

1.1.2 From DNA to transcriptomes

The second molecule found in organisms that is composed of nucleic acids is called RNA (ribonucleic acid).
In RNA, uracil (U) substitutes to thymine, but RNA properties remain very similar to those of DNA, at
the exception that it is usually single stranded (left in Figure 1). We simplified on purpose the universal
role of DNA for information support in life, since some viruses only rely on RNA. However a more spread
role of RNA across the living is the diffusion of DNA information in the cell. The paired nature of DNA
gives it a certain chemical stability, which is a useful property to store information on the long run. The
book metaphor stands quite well here, the DNA being a library and RNA being a lent book. RNAs are
thus usually orders of magnitude shorter than DNA molecules, and since single stranded, more fragile. As
DNA, they have strong affinity with related molecules and tend to hybridize. RNA molecules can basepair
with themselves, notably by forming loop structures, which are a category of so-called secondary structure.
A whole category of RNA molecules, called messenger RNAs (mRNAs), transport genetic messages from
the DNA to the rest of the cell. These molecules have a more temporary lifetime than DNA, since they
represent the genetic information that will be used at a given moment of the life of a cell. Messenger RNAs
are decoded within the cell to produce proteins.

This path from DNA through messenger RNAs to proteins is stated in the central dogma of molecular
biology. Contrary to DNA and RNA, proteins are composed of amino acids of 20 different types. The

15

so-called genetic code is the set of rules that allows translation from the nucleotides alphabet to the amino
acid alphabet. In mRNA, triplets of three nucleotides, called codons, encode for one amino acid or a “stop
codon” (that is, the end of an amino acid chain). mRNAs serve as intermediary “buffer” molecules, each
corresponding to one protein. are processed through cellular molecular machinery to obtain proteins. There
are 43 codons possibilities for only 20 amino acids, thus some amino acids have several corresponding codons:
the code is said “degenerated”. Variants of this code exist, however it is highly conserved through the living.
The resultant proteins are the cell main effectors that perform functions. They are involved in various
tasks such as the transport of molecules, chemical catalyzations, DNA repair or replication, shaping other
proteins...

In short, the proteins “blueprints” are encoded and stored in DNA, then this necessary genetic informa-
tion is extracted and encoded a second time in RNAs before translation to protein. Again, the number of
predicted genes after accession to genomes was not in adequacy with the diversity of proteins and functions
observed. In other words, despite central dogma, it was difficult for scientists to make correspond genotypes
with phenotypes (i.e. expressed characters). Though fundamental, this dogma had to be completed by other
principles that govern messenger RNAs production to fit with the actual repertoire of messengers RNA
and proteins. This led to study not only genomes, but also transcriptomes (the set of RNA molecules also
called transcripts) to both access and understand the molecular content of the pool of RNAs that occur in
organisms.

Transcriptomes are not limited to messenger RNAs. Other RNA molecules exist, which different prop-
erties and roles impacting the cell dynamics as well have been discovered after messenger RNAs. The full
population of RNAs in a cell is called total RNA. For instance, ribosomal RNA is another family of RNA
involved in translation mechanism that converts RNA sequences to proteins. Other cellular organelles, such
as mitochondria in most eukaryotes, carry their own genome in addition to the nucleic genome and can
express RNA. However messenger RNAs remain broadly studied for their necessary and direct role in pro-
tein synthesis. In the rest of this document we will generally refer only to messenger RNAs in eukaryotes.
So far we have briefly stated RNA’s genesis and roles in the eukaryotic cell. We also mentioned that such
molecules were sequences, studied by biologists and bioinformaticians. In the following, keys to understand
the features of this molecule will be given, as well as current informatic models that allow its study.

1.2 Dynamics of RNA

1.2.1 Production of RNA molecules in the cell

Transcription All steps described hereafter are illustrated in Figure 3. Messenger RNA is produced
from DNA subsequences that correspond to genes. According to the properties previously described, RNA
molecules are synthesized as complementary strands of templates DNA subsequences [3]. This synthetization
reaction is mainly catalyzed by the enzyme called RNA polymerase II. There exist other, more specific,
RNA polymerases. Transcription also involves proteins called transcription factors that bind to specific
DNA regions called promoters [69]. They participate in the recognition of the gene sequence and to the
and well-functioning of the transcription. After the RNA polymerase is placed at the beginning of a gene
sequence, it proceeds elongation, in which RNA is synthesized by incorporating complementary nucleotides
to the genomic sequence. RNAs are synthesized from the 5’ to the 3’. The exact positions of start and
end are marked by specific sequences, the 5’ transcription start site and the 3’ polyadenilation signal (a
stretch of A bases). The region within these sites is called the coding DNA sequence (CDS). As a result of
transcription a so-called pre-mRNA is released [112]. As well as many processes in the cell, transcription is
regulated. Not all genes see themselves transcribed at the same level [91, 196, 208]. Genes transcribed at
higher rates are called “highly expressed genes ”, on the contrary “lowly expressed genes” are transcribed
at low rates.

Modifications to pre-mRNA We mentioned that RNA, because of its single stranded nature, was
more chemically unstable than DNA. However a desired property is that it must conserve its message until

16

Figure 3: Simplified view of steps of the central dogma of molecular biology. Thick
sequences are exons and thin sequences are introns. Introns form “lassos” while spliced. We
represent the polyA tails and the cap by a thicker 5’ end.

it is conveyed to be translated. In fact, pre-mRNA undergoes modifications. A polyAdenosine tail (polyA)
tail is added to the 3’ end. This tail is typical of messengers RNA among all RNAs. On the 5’ end, a
nucleotide is also added. The pre-mRNA is then said “capped”. They are excluded from the part of the
sequence that will be translated to protein. However these modifications play roles in preventing degradation
by enzymes, they also help the recognition of the RNA by further molecular players. They are thus realized
while within the cell nucleus. While not being a direct modification of the sequence, it must also be noted
that pre-mRNAs are marked by the presence of specific proteins (RNA binding proteins), that are removed
once ready to be transported out of the nucleus. Altogether, these additional sequences and the CDS are
called an open reading frame (ORF). ORFs are looked for in bioinformatics to detect regions prone to code
for proteins. Other post-transcriptional modifications can occur, including RNA editing, during which bases
within RNA sequences can be modified or added after the transcription; and RNA methylation, in which a
methyl chemical group can be linked to a RNA base.

Splicing In eukaryotes, alternating sequences compose a gene, called introns and exons. Exons are
protein coding regions while introns are usually not. Thus splicing is the step during which introns are
removed from the mRNA sequence that used to contain the whole gene sequence. Splicing was discovered
in 1977 by Sharp and Roberts and this contribution was awarded a Nobel Prize in 1993. It involves a large
complex of more than a hundred proteins and RNA effectors called the spliceosome. There are two types of
spliceosomes: major and minor. The major spliceosome targets the vast majority of introns and is involved
in most of the splicing events. It acts by recognizing specific canonical sites called consensus splice site at
the beginning and end of introns [149]. Some non-canonical sites exist and are dealt with by the minor
spliceosome [237]. Such sites are conserved and occur at the exon-intron and intron-exon junctions. The
canonical sites are GU and AG. During splicing, exons are linked while introns form lassos before being
removed. As a result of splicing, a mature mRNA is obtained.

17

1.2.2 Actors of the variability

The key to understanding the gap between the number of proteins and the number of genes, is the production
of variability during the process described by the central dogma of molecular biology. In addition to being
related to a temporality, RNA content can differ across cells at a same moment in a same individual.
Some mechanisms indeed lead to message diversification by producing alternative mRNA [110]: alternative
splicing, alternative promoters and alternative polyadenilation. Alternative splicing happens during the
splicing process, when certain exons are excluded (spliced) as well as introns. The spliceosome can also
recognize alternative 5’ or 3’ splice sites which leads to different exons starts and ends. Alternatively, some
introns are not removed during splicing and remain in the mature mRNA. Thus different mRNA can originate
from the same gene. They are called alternative isoforms or mRNA variants. For a given gene, some exons
are present in all isoform (constitutive exons), other are called alternative exons. Alternative splicing was
first considered as a rare phenomenon [17]. Nowadays we think that a large majority of genes undergo
alternative splicing in human (at least 95% of the 90% multi-exonic genes among human genes are expected
to be alternatively spliced [45, 173, 12].

Alternative splicing products have been detected in proteins, thus confirming the importance of this
mechanism in the variability encountered in the cell [236]. An example of alternative splicing is presented
in Figure 4. Alternative promoters and polyadenilation are not splicing events. They can occur because

Figure 4: Schematic view of an example of alternative splicing event. As in the
previous figure, mature transcripts are presented with their cap and tail. Exons are bold
parts and introns are thin parts. In this case, the middle exon is skipped in the right
mRNA transcript, yielding a different protein from the one obtained through processing the
constitutive transcript, that contains all exons.

of a modification of transcription initiation/termination sites, which yields mRNA composed with different
first or last exons. Figure 5 summaries the different alternative events. Genomic DNA also carries variants
that can appear within an individual (some positions differ in their nucleotidic content between a pair of
chromosomes for instance), thus position (locus) of the variants is called heterozygous, or between individuals.
Heterozygous genomes include variants of a single nucleotide at given positions (SNPs), insertions and
deletions of bases (called indels) and larger variations where large parts of chromosomes are recombined.
Some of these variants appear in coding parts of the genome and participate in the expressed phenotype.

18

Figure 5: Summary of splicing and transcriptional alternative events. For each pre-
mRNA, the alternative isoforms are presented. Pairs of junctions involved in the splicing are
linked by dotted lines. It is not rare that genes undergo complex splicing events that involve
several of the atomic events presented here, such as in the example in the bottom.

1.2.3 Fate of RNAs

Alternative splicing allows a regulation of gene expression via the production of proteins with potentially
different roles in the cell, and also plays a role in the quantitative regulation of gene expression. A fraction
of alternative transcripts is thus not functional, and will be targeted to be destroyed by cell effectors.

Mature mRNAs are exported from the nucleus to the cell cytosol through nuclear pores. This is the
moment where a first filter occurs, since pre-mRNAs cannot pass through the pore [183] if they do not
carry proper modifications brought by the previously described steps. Pre-mRNAs that remained in the
nucleus are degraded afterwards by a dedicated enzyme complex called exosome. Mature RNAs are then
used as templates for translation to proteins. However there exist over mechanisms for the control of error
during these processes. If a pre-mRNA is mistakenly exported or if a mRNA contains errors, the NMD
(nonsense-mediated decay) is a surveillance mechanism that searches and removes aberrant molecules that
contain early stop codons [178]. After translation, all mRNA are degraded, which illustrates well the buffer
role of this molecule.

1.2.4 Main characteristics

In eukaryotes, it is common that alternative spliced and transcriptional variants with various exon content
(isoforms) occur for a given gene [157]. In human, there is evidence for more than 95% of genes to do
alternative splicing [59]. An average of 4 transcripts per gene is depicted, however, this number has to be
taken very cautiously, as the quantity of sequences that could reached by the sequencing experiments has a
strong influence on the number of alternative transcripts found. DNA and RNA sequences lengths are often
given by referring to the quantity of bases they contain (base-pairs or bp, because of the double strand in

19

DNA). A human gene has around 10 exons, 80% of them have length lower than 200 bp, namely, a range
of transcripts size between 1kbp and 5kbp. Human transcripts contain more introns on average than lower
eukaryotes. Annotated human introns are frequently longer than 70 bps [201].

2 Access RNA sequences

In order to study DNA, RNA and proteins, there must be a way to pass from biological material to nu-
meric/text format accessible to humans or possible to process with computers. Sequencing is the process
through which biological sequences are accessed by reading their bases and encoding them, most of the time
in text files such as FASTA that will be described afterwards. Sequencing is therefore a crucial step that
puts a bridge between what exist in cells and our understanding. From late 70’s to now, several generations
of sequencing technologies paved their ways to the retrieval of biological sequences. However even currently
speaking, no method ensures that all sequences of an experiment are read full-length. In a simplified view,
subsequences called reads are extracted randomly from the genome or transcripts. The task of reading each
nucleotide is called basecalling.

The main challenges are to produce fragments as long as possible, to provide fragments distribution
that allow correct representation of the whole nucleotidic material, and to ensure the base-wise fidelity to
the original sequence. In the following, we present an overview of the principal technologies of interest in
our work, with their main features, pros and cons. Sequencing limitations will partly drive the conception
of algorithms to process reads. For genomes, the fragmentation in small sequences means that assembly is
needed to elongate the signal present in reads, and to order them with respect to one another. Transcriptomes,
though containing smaller sequences, are also concerned. Assembly task is described with more details in
the following. We will give emphasis on the relative volatility of these technologies. Particularly in the last
years, reads properties evolve extremely rapidly.

The intuition of the sequencing “depth” is that it is the fraction of the transcriptome that can be accessed.
It can be defined for a transcriptome by the numberofreads×readslength/transcriptomesize. We speak about
genome, transcriptome or transcript “coverage” to express how many times a given subsequence must be
found repeated in the read set. For instance, in genomics context, a genome coverage of 10X means that the
each base of the genome sequence is represented ten times on average in the reads. In transcriptomes, due
to gene expression, not all transcripts are not covered at the same level.

2.1 Short reads and former technologies

2.1.1 Sanger and Expressed Sequence Tags

Appeared in 1977, Sanger sequencing was the first to give access to nucleic acid sequences, based on synthesis
and electrophoresis [205]. It is still used nowadays and provides read lengths around 1,000 bp, which were
involved in first mRNA assemblies and production of EST (expressed sequence tags). EST are reads of
complementary DNA (cDNA) clones from cDNA libraries (RNA is retro-transcribed to its complementary
DNA sequence) prepared from template mRNAs expressed in an experiment. These reads are typically sized
from 500 to 800 nucleotides. The error rate is relatively low (less than 0.1%), however the main drawback of
this technology is its low throughput. Indeed, DNA preparation for this technology is long and costly. Since
depth is an important to capture transcript diversity in transcriptomes, Sanger technology shows limitations
in comparison to more recent sequencing techniques. However it enabled to build high quality reference
transcripts.

2.1.2 Massive sequencing with short reads technologies

In the late 2000’s a revolution operated in DNA and RNA sequencing. The so-called Next Generation
Sequencings (NGS, or Second Generation Sequencing), proposed by companies such as Solexa (that was
later acquired by Illumina), allowed the first high throughput sequencing of transcriptomes. The RNA

20

sequencing protocol RNA-seq was initiated in 2008, principally by Illumina. Other technologies include 454,
Solid or Ion Torrent, however Illumina is the most represented [158]. RNA-seq consists in a first step of
library preparation, in which RNA is randomly fragmented. Then using transcriptases (RT), RNA is retro-
transcribed to its cDNA sequence. This cDNA can undergo an amplification step using a chain reaction
called polymerase chain reaction (PCR). As a result, clones of present fragments are created, multiplying
the number of copies of a given fragment in order to have more signal. Adaptors (small artificial DNA
specific sequences) are then fixed to fragments. At this step, the whole set of cDNA fragments, called the
library, is ready to be put on a flowcell. Flowcells are supports where libraries are deposited. Fragments
fix on the support by hybridization at one end using the adaptors. Then an amplification step starts using
PCR, increasing the number of copies of each fragments and creating spots of similar molecules on the
flowcell. From this point, sequencing strictly speaking starts. Each fragment is processed in parallel, and its
complementary strand is synthesized nucleotide by nucleotide. Modified nucleotides linked to a fluorescent
compound (fluorophores) are introduced in the medium, that fix one at a time on each nucleotide of a
fragment. Fluorophores deliver a light signal that is specific to each four type of base, and processed through
image capture and processing. Each cluster of similar fragments created by PCR yield a colored spot that
corresponds to the reading of one of the A,C,G,T bases. After an image is captured, a new cycle starts that
corresponds to the detection of the following nucleotide on each fragment.

RNA-seq possesses well documented biases and flaws. They include bias in the RT-step, due to pseudo
random primers used to fix the RT on the RNA molecule, and possible chimeric ends of fragments created
at this step. Amplification step in the flowcell is also prone to bias, amplification being expected to be
non-uniform across fragments. Errors are also expected to be more numerous at the end of fragments,
because the error rate increases with the number of sequencing cycles. Illumina error rates are reported to
be below 1% (values vary but 0.1% or less is often mentioned). Finally, all bases are not evenly distributed
across the genome sequences, and GC rich and AT rich regions suffer from uneven read coverage [14], an
effect known as GC-bias. Final length of reads goes from 50 to ∼ 400 bp, but is commonly of 100-150
bp length. Because of the cDNA retro-transcription step, fragments can be in forward or reverse direction
but the original strand is usually not known. Despite biases, RNA-seq is broadly used for RNA transcripts
identification and quantification.

RNA-seq also includes ways to select RNA molecules that will be sequenced. Since a huge fraction of
total RNA is constituted by ribosomal RNA, it can be interesting to filter it out if the matter is messenger
RNAs. Ribo0 protocols help removing specifically ribosomal. On the other hand, polyA+ protocols select
polyadenilated RNAs. As mentioned previously, most of mRNAs bear a polyA tail.

We will not detail earlier microarrays technologies, that nonetheless represent a very stable and cheap
opportunity when whole transcriptome sequencing is not a necessity. There exist many other sequencing
protocols that were designed to capture a precise moment of the RNA production, as well as precise loci,
or aim at describing particular features of the RNA molecules [6]. Single-cell protocols allow to collect
RNAs produced in an isolated cell from an organism. They become more and more popular and are very
interesting for clinic investigations, since they allow the capture of transcripts from different subpopulations
of cells. Here we will focus on large scale, whole transcriptome sequencing experiments. Finally, protocols
that permit to link pairs of reads separated from an insertion distance of a few thousands nucleotides to tens
of thousands (paired-end reads and mate-pairs reads) also exist. Still, these reads do not allow to access the
same order of magnitude in terms of distance information compared to long reads.

2.2 Focus on long reads

From 2011, new and independent sequencing protocols appeared that again would become game changing
in genomics and transcriptomics fields. These platforms have in common the ability to sequence very long
reads in comparison to NGS. Fragments can go from a thousand base pairs to hundreds of thousands, these
lengths increased with time until today. Even taking into account reads pairs that can be provided by
Illumina platforms, the advantage in length is substantial.

We will present two third generation sequencing (TGS) technologies: Pacific Biosciences (PacBio) and

21

Oxford Nanopore Technologies (ONT). We will not mention at length technologies such as Illumina True-seq
(former Moleculo) and 10X Genomics that are sometimes also classified in TGS. They are based on very
different methodologies since they rely on short reads, and are recent as well. In their case, long reads are
re-created by assembling short reads (thus called synthetic long reads) that are ensured to come from the
same region. At the beginning of this work, we were mostly aware of leverage these synthetic long reads had
for genomics complex regions assembly. We chose to focus on known applications to RNA, mostly provided
by PacBio at the time. During this thesis, ONT technologies became more stable and we shifted to them
for several reasons that we explain thereafter.

2.2.1 Pacific Biosciences

PacBio platform relies on biochemical synthesis such as Illumina’s for sequencing. However, PacBio manages
to get signal from one DNA molecule at a time (it is sometimes referred to as SMRT fot Single Molecule
Real Time). The activity of DNA polymerases (one for each DNA templates) is recorded within structures
called zero-mode waveguides on a chip. DNA polymerases synthesize the complementary strand of their
template, each integrated base emits a fluorescent signal as with Illumina. The reported error rates for
PacBio reads are 13 to 15% with a majority of insertions [29]. They adopted a strategy to increase sequences
accuracy for not too long fragments. Hairpins adaptors are ligated at each end of a double stranded fragment,
enabling the polymerase to realize circles around the read. This way, the polymerase traverses several times
a fragment (each repeated sequence is called a subread), then a more accurate consensus (called circular
consensus sequence, CCS) can be extracted from these subreads. Reads which sequence was produced
without consensus are called CLR (continuous long reads), or more recently RoI (Reads of Insert) [61].
Reads length (and CCS quality) depends on the time when polymerase drops the fragment. PacBio delivers
reads that are usually tens of kilo-bases long. PacBio dedicated a protocol, Iso-seq [74], to RNA sequencing.
It aims at taking advantage of the relative short size of transcripts to provide as many CCS as possible. In
order to obtain transcripts of all lengths in the result, Iso-seq imposes size binning of the initial molecules.
The longest transcripts correctness drops, but many 1000-2000 bp long sequences harbor 1-9% error rates
that allow easier analysis than with CLR. PacBio protocol is summed up in Figure 6 (left).

2.2.2 Oxford Nanopore Technologies

In ONT, single-stranded DNA molecules pass through pores. Here too biochemical compound inspired a
sequencing technology, but this time ONT does not relies on synthesis. A comparison to PacBio is shown in
Figure 6. The pores are composed of proteins similar to those found in nucleic pores. They help threading
the DNA so that current changes induced by the nucleotides at each end of pores are measured. The current
signal is different according to the nucleotides passing a pore, and adequate signal treatment can deduce
which group of nucleotide (currently 5-6 bases is the maximal resolution) traversed the pore at a given
moment. ONT proposes several platforms, the MinION being broadly used. In the same spirit that what
is proposed by PacBio, in MinION libraries a hairpin can be attached to the molecule so that forward and
reverse sequences can pass in the pore following each other. Each raw sequence is detected since it is separated
by the adaptor sequence, can be separated (thus called 1D reads) or used to propose a consensus (called 2D
reads) that are expected to show better quality. For R9.4 ONT chemistry, 1D reads were reported to have a
mean 14% errors (with many reads from 8 to 10% errors), 2D around 9%. However this 2D technology is no
longer maintained since 2018, because the hairpin used to obtain a consensus was in certain cases producing
a secondary structure that would slow the strand traversal inside the pore and therefore have a bad impact
on the quality of the sequence. Since 2017, 1D2 is meant to replace 1D and 2D protocols. In this protocol,
two proteins linked to the strands (forward and reverse) help them passing through the pore but the two
strands are no more physically linked. However the two strands sometimes fail to pass after each other and
no consensus can be obtained. It seems with the first generation of data that a consensus could be obtained
from 30 to 60% of the cases, with percent identity median at 95.7. Genomic reads length can reach currently
speaking 200,000 bp on average. One million bp was announced in 2018 by ONT, however such scales are

22

Figure 6: Differences in sequencing and base calling between Pacific Biosciences
on the left and Oxford Nanopore on the right. Pacific Biosciences relies on synthesis
and image processing as Illumina, while Oxford Nanopore works with current measures
through a pore. Figure from [189].

still hard to reproduce in labs. For RNA sequencing, ONT proposes sequencing both with and without PCR
amplification. Even if less reads are provided, sequencing without PCR allow to lower the biases that were
encountered with Illumina. Ribo0 and polyA+ protocols previously described can also be applied. We give
a chronology and summarize the main protocols in Figure 7.

A flaw in ONT reads compared to PacBio relies in the homopolymer regions (regions where the same base
is repeated, such as polyA tails for instance) that are more error-prone as their length is difficult to assess for
this protocol. Errors seem to appear non-randomly in these regions, which make them impossible to be fully
corrected without the help of another type of data [137]. It is estimated for R9.4 50% of reads including low
complexity subsequences from size 5 contain deletion or insertion errors. Moreover these errors are a trouble
when one tries to predict an ORF on the sequences as the frame tends to be shifted (an indel changes the
series of triplets that encodes for amino acids). Reads quality is also correlated with the pore throughput.
The advents in throughput had a good influence on the sequence quality. The higher the throughput, the
less variability for each base to stay in the pore as the reads traverses quicker. Thus, the electric signal is
more stable. Basecall requires intensive computing methods, a new panel of works dedicates to build better
basecallers. Preparation of flowcells can be optimized for improving either throughput or quality.

Recently, ONT announced that RNA molecules could be directly passed through the nanopore, avoiding
the cDNA step (this protocol is called RNA-direct). RNA molecule can be hybridized with a cDNA in
order to make it more stable, but only RNA is threaded in the nanopore. Even if we do not have a lot of
insight, we can state that such a protocol gets rid of possible bias during cDNA conversion, and must be
useful in the future to detect RNA methylations directly by measuring the current in the pore. Moreover,
reads can be sequenced stranded. For the moment, basecallers able to report this type of information are at
early stages [218]. RNA direct is rather slow (5 times slower than 1D protocols), and a higher error rate is

23

observed than in cDNA sequencing. A lot of material is required to start a sequencing and thus RNA-direct
provides less throughput than other sequencings.

Figure 7: Chronology and description of different ONT sequencings. In the left
square, we show library preparation a) with PCR amplification b) without PCR amplification
c) RNA-direct. On the right square, we show how sequences pass through the pore according
to the chosen chemistry (1D/2D/1D2). With 1D, only the template read in blue is read,
the other strand (red) being rejected. With 2D, both strands pass using a hairpin. Using
1D2, both strands also pass, the second being attached to the membrane while the first one
passes, then being released. Figure adapted from [49] and ONT website.

24

Nowadays RNA-seq is the most mature and delivers more depth than other technologies. ONT platforms
are conversely highly “volatile” technologies, prone to many evolutions these last years. Illumina costs remain
a critical argument for the communities that study RNA as a high depth allows to recover more variability
of the cell. A good coverage is important also for differential expression studies. Thus many low counts are a
struggle when starting statistical analysis. Nowadays, Illumina provides 100 to 1000 times more depth than
TGS. However latest sequencers by ONT (such as GridION) aim at lowering the cost of a sequencing and
we can expect to see a convergence of the costs of each technology in the future. The human cost (time of
libraries preparation) does not seem to be in favor of one or the other technology.

When this work started in 2015, PacBio seemed a more assured bet, because its error rate was stabilized
and lower than 10% with CCS, while ONT reads could reach 40% errors. However it rapidly appeared
than only isoform identification could be performed with PacBio because of the size binning of reads during
Iso-seq protocol. Finally, ONT keeps developing extremely handy flowcells that can be brought in the field.
Being sized as a USB key they largely reduce the bulk in comparison to other platforms. Basecalling using
FPGA (configurable integrated circuits that can be specialized in a task) starts to be developed, which
opens the door to full sequencing workflows realizable directly where the RNA is collected and may reduce
the processing time. This implies better sequencing conditions for species that cannot be grown in lab. As
mentioned above, RNA molecules are unstable and can be degraded in hours, depending on how they are
stored. Thus, enabling direct sequencing from the field may have dramatic impacts on the quality of the
sequencing [198], in particular in difficult conditions for sequencing (high temperatures. . .). For all these
reason, our choice was to focus on ONT reads.

3 RNA from a computational point of view

Through sequencing, we are given access to sequences in text format that then can be processed in a
computational way. Algorithms applied to RNA mostly relate to text algorithms and graph algorithms.
Text is a quite natural representation for these sequences. Graphs are convenient to represent sequenced
reads and their putative connections (i.e. sharing certain properties or text sequence). They also well render
the combinatorial nature of RNA transcripts. Hereafter, we introduce notions that are fundamental to the
computational representation and study of RNA. We briefly describe algorithms that are mostly not used as
is in current methods, but are bases for most of the algorithms that treat with reconstructing and identifying
RNA sequences. Then we level up to the softwares and pipelines and give insight to the main bioinformatics
paradigms that are followed for the study of transcriptomes using reads. We made the choice not to introduce
hardware aspects and assumed that the readers are familiar with notions of bit, memory (RAM), disk and
threads.

3.1 Algorithmic complexity

In the following we will use the notation O(fn) which describes the complexity of methods or implementa-
tions. A complexity of O(fn) means that in the worst case the number of steps required for the algorithm to
complete can be bounded by c× fn for a constant c. For instance, we will describe methods with quadratic
complexity (O(n2)), we can guarantee that for such algorithms, the number of operations to complete can
be bounded by a quadratic function in the worst case.

We call P the class of problems that can be solved in polynomial time. Such problems are usually
considered tractable using computers. We call NP -complete problems, problems for which a given solution
can be verified (i.e. we can check it is a valid solution to the problem) in polynomial time but no polynomial
algorithm is known. We say that a problem is NP -hard if it is at least as difficult to solve as any NP -complete
problem. Thus these two classes of problems are currently considered intractable.

For more details, a very good introduction to these notions can be found in the book “Introduction To
Algorithms” by Cormen [44].

25

3.2 Nucleic molecules as text

We will call a string or sequence S an ordered list of characters issued from an alphabet Σ. Thus the
positions of characters are defined in a sequence. DNA alphabet is usually denoted with its 4-sized alphabet
Σ = {A, T,G,C}, that can be encoded using 2 bits per nucleotide. It is very common for the uracil nucleotide
of RNA to be replaced by a T when data is in numeric format or in implementation. In order to remain
coherent in this manuscript, we will systematically replace ”U’s” by ”T’s”. A substring or word of S is a
sequence where elements are removed without changing the global order in S, such that remaining elements
are contiguous. For instance, ACTG is a substring of ACTGA, while ACGA is not. A sequence length is the
number of characters it contains. A prefix (respectively suffix) of length p of S is a substring of the p first
(respectively last) characters of S. A k-mer is a word of size k in a sequence. Classically, a k-mer of size up
to 32 (respectively 16) can be encoded using a 64-bit (respectively 32) integer in efficient implementations.

Edit operations are three possible atomic ways to modify a string. Substitution is the replacement of a
character by another. Insertion is the addition of an extra character at some position of the string. Deletion
is the removal of one character of the string. These operations also happen in genomes where they can be
variations across or within individuals. The edit distance (also called Levenshtein distance) for two string
x, y is the minimum of number of edit operation that are needed to transform x to y (this definition is
symmetric). The Hamming distance for x, y is the number of positions where characters differ from x to y
(the definition is symmetric for two string x, y of equal size).

DNA and RNA sequences can be stored in different formats, the most widely used being FASTA and
FASTQ formats [40]. They can contain whole genomes or transcriptomes (thus correspond to references), or
smaller sequences coming from various steps from DNA and RNA sequencing experiments and bioinformatics
processings. These formats allow to model sequences according to their nucleotide content. The simpler,
FASTA format, contains two types of information: sequences headers that always start with the character
”>” and are strings that can contain relevant information about a sequence, commonly at least a unique
identifier. The other type of lines contain the actual sequence written in a string using the 4 letters alphabet.
Sometimes, non coding nucleotides (or repeats) are identified by using lower case as opposed to coding
nucleotides in upper case. Headers and sequences finish by an end of line. Thus at least two lines encode
for the information of one sequence, the header usually written on one line and the sequence on one line
or more. FASTQ format carries in supplementary lines the confidence in each base after sequencing using
so-called Phred scores. References are often accompanied by GTF or GFF files that complement information
through detailed annotations about known involved genes, sequence strand... However they are not sufficient
to represent certain biological properties, such as RNA secondary structures or methylations. They also
constitute limitations when it comes to representing RNA’s combinatorial nature. Text formats were also
proposed to document the exon combinations, such the one used in AStalavista [63].

3.3 Sequences comparison: text algorithms

3.3.1 Sequence alignment

Figure 8: Alignment of two sequences s1 and s2. 1) Alignment with one mismatch. 2)
A gap in s2, representing a deletion in s2 or the insertion the base G in s1 3) A gap in s1.

Pairwise sequence alignment consists in finding a way to arrange two sequences so that most similar
nucleotides regions are grouped. Usually, an alignment is represented by a trace. Each sequence is written
from 5’ to 3’ on two lines. If two bases are vertically aligned, they are a match or a mismatch. If one
or several base miss at a position in any of the sequences in comparison to the other, a dash “-” (called
a gap) is inserted at this position, vertically aligned with the corresponding base in the other sequence.

26

Thus final strings in the alignment have the same length. Examples are presented in Figure 8. Such task is
fundamental in bioinformatics since it helps retrieving similarity of sequences. According to the similarity
degree, we derive potential common origins for sequences (same gene and same function, organisms that have
close common ancestor, ...) or in other applications, structural properties. The first algorithm to propose
an optimal solution for pairwise sequence alignment was described by Needleman and Wunsch [163], that
relies on dynamic programming. It outputs a similarity measure as well as the corresponding alignment. Its
variation, the Smith Waterman algorithm [219], is a local alignment procedure which seeks optimal alignment
on subsequences of the original pair of sequences. In both case, the alignment takes place in a matrix, each
dimension representing one sequence of the pair to be aligned. The result is obtain in a quadratic time
(O(MN), M and N being the sizes of the sequences).

These algorithms then benefited from optimizations. For instance, computation of alignment only within
a diagonal band in the matrix is used to reduce the number of operations. Many optimizations relying on
hardware such as vectorization through which several operations are sent simultaneously to the processor.
Such an implementation is used in Chapter 3. However they remain extremely costly on real instances,
when a lot of sequences and/or long and divergent sequences have to be compared. Finally, in the biological
sequences alignment context, it can be useful to relax the alignment constraint on ends of the sequences, for
instance because in certain sequencing technologies reads quality drop at the end. Such operation is called
clipping.

Some people define differently alignment and mapping notions, with the assumption that alignment will
yield a score and an associated transformation of one of the two sequences, while mapping only provides
information of a match between sequences (and positions of the match) without the precise resultant align-
ment. However this is not a hard rule, mapping can be seen as one pairwise alignment. This is the way it
will be used thereafter.

3.3.2 Heuristics

The optimizations of presented sequence comparison algorithms have quadratic complexities and are often
non tractable in practice on real instances. Due to this, a majority of methods for sequence pairwise
comparison were developed relying on heuristics. Here we will only talk about sequence (meaning read
or assembly of reads) versus reference or sequence versus sequence mapping. The tools relying on these
methods are called mappers. We use the terms reference or target sequence and query sequence. Most
prominent mappers use an index for the reference sequence and map the reads using this index. Indexes
can rely on several data structures that we present in this introduction and Chapter 1. The core of most
mapping approaches relies on seed and extend strategies. First at the seed step, at set of identical or highly
similar regions shared between the target and the query are identified. They are used as seeds to extend
the alignment, usually with dynamic programming. Classic seeds are chains of contiguous or spaced k-
mers (while k-mers are contiguous substrings, spaced-seeds can contain “wildcard” characters that relax
the matching), or maximal exact matches (perfect matches that cannot be extended at both ends of the
matched string). These methods usually report the best-mapping result. However, all mapping results can
be provided with a score over a certain threshold, but this is at the price of a longer computation. Most
commonly used tools include BLAST [5], BLAT [103], BWA-MEM [129, 125] or Bowtie [116]. They differ by
the data structure employed for indexing and by some fine algorithmic choices during the mapping. Several
mapping tools are used in works presented in this manuscript, most of the time for comparison purposes. In
Chapter 1 and Chapter 2 as well, widely used mappers are compared to the approaches we developed. Seed
and extend approach is a powerful paradigm that will be employed in Chapter 3. Moreover, the presented
pairwise alignment is in fact a particular case since more than two sequences can be aligned. This case will
be presented in Chapter 3 and reviewed in more details in Chapter 4. In terms of format, SAM/BAM [130]
established itself as the canonical way to represent alignments. SAM is text based and BAM is the binary
equivalent. SAM requests mandatory fields that describe an alignment such as start and stop positions of
each sequence in the alignment, and successive edit operations encoded in a string called CIGAR code.

27

3.4 Graph theory notions

3.4.1 Definitions and notations

Graphs are broadly used in bioinformatics since they are a convenient way to represent sequences and to
apply operations on theses sequences. An undirected graph G = (V,E) is a set nodes v ∈ V and edges
e = {u, v} ∈ E with u, v ∈ V . We refer to those graphs in general matter. A directed graph G = (V,E) is
a set of arcs e = (u, v) ∈ E with u, v ∈ V . In order to differentiate directed and undirected graphs, we will
call a vertex an element v ∈ V of a directed graph. Both graph types have different properties. Directed
graphs are for instance used for sequence consensus such as in Chapter 3. The number of nodes or vertices
in graph is denoted |V |, the number edges or arcs is denoted |E|. The degree of a node v, denoted deg(v)
is the number of edges incident to v. Graphs can be visited through following chains of nodes. A path of
length p + 1 in G from u0 to up is a set of nodes (u0, . . . , ui, . . . up) such that (ui, ui+1) ∈ E. A cycle is a
path such that ∃p/u0 = up. A walk is a path that can contain cycles. An undirected complete graph is a
graph in which any pair of disjoint nodes is connected by an edge.

Sometimes, only a part of the graph is of interest. A subgraph G = (V, E) of G is such that V ⊆ V and
E ⊆ E. In undirected graphs, a connected component in G is a maximum set of nodes V ⊆ V such as for all
pairs u, u′ ∈ V, there is a path from u to u′ (maximum means that no other node from V can be added to V
without breaking the condition). Connected components delineate connected regions within the graph, they
are common objects to work with. Objects more strongly connected within connected component are used
for instance to detect genomic variants. A bi-connected component is a maximal subgraph that remains a
connected component after the removal of any one node. A clique in a graph G is a set of nodes V ⊆ V such
as for all pairs {u, u′} ∈ V, there exists from e = {u, u′} ∈ E. Cliques have strong properties used to model
clustering problems, they appear in Chapter 2. A star is a connected component in which all nodes but one
have a degree of one. Stars are also discussed in Chapter 2.

A partition of a graph G is a set of disjoint subgraphs such that any node of G is in exactly one subgraph
of the set. Partitions realize division of graphs into set of nodes. They are used in clustering problems. A
cut of an undirected graph cut is a partition of the nodes of a graph into two disjoint subsets that are joined
by at least one edge. A minimum cut of an undirected graph is a cut involving the minimum number of
edges among all cuts.

A so-called directed acyclic graph (DAG) is another commonly used graph, directed and that contains
no cycles.

Some very classic procedures allow graph traversal and graph ordering. The depth first seach (DFS) is
an algorithm that allows to explore all nodes of a graph. It starts by visiting a given node, said current node.
Each visited nodes are marked. From this node, it explores neighbors one by one that become current nodes.
For each current node, all neighbors are visited unless they are already marked. If a node has no neighbor
or all neighbors are marked, it backtracks to the previous node, until all nodes are marked. The DFS is
commonly employed to find the set of connected components of a graph. It is used for several matters in
Chapter 2. The topological sort is a linear ordering of directed graphs. A graph is topologically sorted if for
every arc (u, v), u comes before v in the ordering. Several algorithms exist to realize the sorting, Topological
sort is used in alignment heuristics in Chapters 3 and 4. It can be realized using Kahn’s algorithm [99] or a
DFS.

An emblematic graph of bioinformatics is the De Bruijn graph. It has been used for decades to solve
assembly problems. In our context, a De Bruijn graph of dimension k is a directed graph G = (V,E) is
created from a set of sequences S by extracting their set of k-mers vk(S). Then V = vk(S) and E = (x, y)
if and only if suffix(x, k − 1) = prefix(y, k − 1), that is, the nodes represent a set of k −mers and edges
denote k − 1 overlaps between nodes. De Bruijn graph are also used in some reads correctors presented in
Chapter 3.

In terms of representation, graphs have the advantage to efficiently represent combinatorial objects.
Indeed, variants such as alternative exons better deserve graph representations than flattened sequences.
Graphs can for instance encode exons in vertices and retain colinearity of exons in transcripts through edges.
Such graph representation of RNA isoform is not extremely well spread, however proposition were made

28

Figure 9: Three sequences integrated into a De Bruijn graph, with k-mers of size
k = 4. Green subsequences are common between the three. Notice how the overlap longer
than k between the first sequence and the two others is directly reported in the graph. Also
notice that a single nucleotide difference (G/C in the middle) creates a branching pattern
called bubble. A compacted De Bruijn graph can be built by concatenating vertices included
in simple paths.

towards this idea, often called splicing graphs. Splicing graphs that will be discussed more in detail in
Chapter 4, show how exons combine in alternative forms from an expressed gene. In example of Figure 10,
we show how alternative events in mRNA are stored in splicing graphs.

Splicing graphs are directed graphs that report the alternative events for a given gene. Other types
of graphs will be used in our work because they allow the application of relevant algorithms. Sequence
similarity graphs are the very first step before clustering in Chapter 2 and particular DAGs are used for read
alignment and consensus in Chapters 3 and 4.

3.4.2 RNA transcript reconstitution with fragment assembly

General problematic Up to recently, sequencing technologies that give access to the actual mRNA
sequences in cells could only deliver extremely fragmented subsequences, (pseudo) randomly extracted from
transcripts in presence. With sufficient coverage, reads overlap, which makes possible to (partly) retrieve how
the substring they represent used to be associated in the original sequences. Thus, the task called “assembly”
aims at solving the puzzle made of those fragments by ordering and orienting them to reconstitute the original
transcripts.

Assembly was first studied in the genomic context, where the goal is to obtain one sequence per chro-
mosome. In order to solve the problem, a class of graphs called assembly graphs is used. These graphs
represent strings or substrings from the sequencing experiment in nodes, and their overlaps in edges. The
most efficient and most used graph representation for assembly these last years is the previously defined
De Bruijn graph. De Bruijn graphs can be efficiently built and cleaned from potential errors. Contiguous
nodes are then searched to reconstruct transcripts. The intuition is that simple paths (called unitigs) in the
graph do not represent substantially long sequences because either errors or variations break the linearity
of the graph. Assembled sequences (called contigs) are paths obtained after simplifications in these graphs.
However, certain biological features yield complex patterns in such graphs. Genomic repeats, as well as
homozygous regions create “X” patterns were decisions have to be made to return a valid path (see also
Figure 11). Genomic repeats longer than the size of the sequencing fragments are the main problem in
assembly since we do not dispose from enough information to reconstruct the neighborhood of these regions.
A simple metric to describe the contiguity of assembly results is the N50. N50 denotes a length so that half
(50%) of the assembly result is composed of sequences larger than the N50. Other indices such as N75 can
be defined in the same way.

29

Figure 10: We take back the complex splicing event example to illustrate splicing
graphs. Several definition were given for these graphs, the first mention is in [86], where they
are defined as De Bruijn graphs (a). In such representation, an alternative donor/acceptor
cannot a priori be identified from a small spliced exon. k-mers in simple paths of the graph
can be concatenated in single vertices, resulting in a compacted De Bruijn Graph (b). In
other papers [31], (c) splicing graphs integrate redundancy in order to better represent the
exons. Exons are vertices of the graph, edges represent the juxtaposition of exons seen in
transcripts. If two distinct versions of a same exon exist (for instance alternative acceptor),
the different versions appear in the graph. The graph’s vertices can also retain if they
represent the variation of an exon, such as the dark blue vertices. In both case, isoforms are
paths in the graph.

RNA and assembly Then the problem was transposed to transcriptomics, where the goal is to find
all isoforms in presence. Before NGS, EST assembly relied on other paradigms than the De Bruijn Graph
(greedy assemblers such as PHRAP[13] or CAP3[94]), where overlaps were directly computed from the reads
sequences (not using k-mers but using alignment), which limitated them in terms of performances. These
assemblers considered only local information at each elongating step, which meant that repeats were highly
prone to lead to mis-assemblies. The first attempts to describe all possible transcripts from a gene with
sequencing data dates from these EST analysis and the notion of splicing graph[86]. Then De Bruijn graphs
were preferred with the advent of NGS.

In De Bruijn graphs built from RNA-seq data, the combinatorial nature of transcripts leads to obtain
more possible exon combinations in graphs than what is present in the reality (Figure 11 a)). Alternative
isoforms, such as genomic variants, generate topological patterns such as bubbles (two flanking nodes linked
by disjoint paths) or branching zones in De Bruijn graphs. Moreover, many repeats exist in the expressed
regions, thus transcriptomics does not avoid the major issue in assembly. The uneven coverage makes the task
to distinguish error from actual variations even harder (Figure 11 c)). Thus alternative splicing events tend
to be merged in the graph into complex and dense patterns that make their distinction extremely difficult.
The challenge is then to decide which parts of the graph represent real transcripts. Global assembly [210,
78, 194, 253] aims at reconstructing the full-length transcripts. It is expected that the transcripts from a
gene will create a connected component in the graph, and that each transcript will be represented by a path
in the component. However, all paths do not represent real transcripts present in the original dataset, and
genomic repeats make whole transcriptome DBG very complex. That is why choices must be made with
heuristics. These (parsimonious) choices may lead to describe less transcripts than what really exists in the

30

dataset (one strategy is to choose the minimal number of transcripts that can describe all paths in the DBG).
Local assembly [200] is more sensitive at the event (expressed SNP, alternative splicing forms) scale. A gene
or a gene family corresponds to a bi-connected component in the graph, and variants produce bubbles in
which each isoform is represented by a path. Methods tried to take into account read count in order to
choose paths, by mapping reads on the components to quantify each variant. Assembly has been a main
way to discover new transcripts since sequencing exists. With novel long reads, assembly could be no longer
necessary to obtain the different transcripts. Indeed these sequences have the potential to span the whole
transcripts sequences. Thus, in the works presented in this dissertation, we will not use assembly to retrieve
transcripts. However, assembly paradigms are useful even when twisted from their initial goals. Assembly
methods can for instance yield consensus that are interesting for read correction, as will be mentioned in
Chapter 3.

Figure 11: “X” repetition pattern in De Bruijn graphs. a) A repeated sequence is
represented in red. Its possible origin is not only a repeated region of the genome. It can
also be a constitutive exon flanked by alternative sequences. We represent a draft compacted
De Bruijn graph. There are more paths in the De Bruijn graph than real transcripts. b)
Junctions counts obtained by read mapping help to retrieve the two original transcripts. c)
The read counts are not enough contrasted between the two transcript to enable choosing a
path. This is a major issue in current assemblies.

3.5 Common indexing schemes

An index is a structure that allows the efficient access to element of an object and/or to associate information
to these elements. The “index” can denote both the structure where elements are stored or a given position
in the structure. Indexation facilitates access to objects in memory, and represents active fields in computer
science and bioinformatics. In bioinformatics, many applications require both texts and graphs to be indexed
in order to access their elements to check their presence or modify them. This need was particularly pointed
in fields such as sequence alignment and assembly. In both cases, shared subsequences must be rapidly
computed and accessed. Since most of the mapping approaches are based on seed and extend, rapidly
knowing the presence and positions of words in sequences is crucial. Some substring indexes will be further
described in Chapter 1, here we present general associative indexation methods using hashing, that are
broadly used and appear in all implementations developed in this work.

31

A hash function is a function used to associate integers from a given range to indexed elements (called
keys). The associated value of a key may be called its hash or its index. Hash functions are used in hash
tables, that are arrays that associate an information (called value) to each key. The idea is to get a collection
of pairs stored in the array T using a hash function f such that f(key) = index where index is the index
in the array, and T [index] = value. In most dynamic hash tables implementation, the array is divided into
buckets that contain pairs of (key, value). When hash functions do not realize an injection of the initial set
of keys, a phenomenon called collision appears. A single hash is then associated to different keys thus several
pairs of (key, value) are stored in the same bucket. Mechanisms to handle these collisions are necessary as
hash collisions are practically unavoidable. The simplistic mechanism called separate chaining consists in
checking each pair of (key, value) of the bucket until the correct pair containing the query key is found.
Furthermore in dynamic hash table new pairs of (key, value) can be inserted on the fly and create collisions.
To handle this problem most hash table might allocate arrays of higher size than the size of the collection
of input keys.

3.6 Main procedures to investigate reads

Figure 12: Summary of pipelines for the study of transcriptomes using short reads.
In the dotted part a reference is obligatory. Assembly-based approaches are on the left and
mapping-based approaches on the right. Detection of splicing variants is also possible using
mapping but not detailed here.

32

3.6.1 Correcting reads

Read correction is an essential step to separate sequencing errors from genomic bases. It aims at identifying
genomic variants (SNP, indels) from artifacts introduced during the sequencing process. These wrong bases
are also limitations to assembly because they represent points where not all reads agree on their sequence,
leading to fragmentation of assembly graphs products. Prominent methods rely on static abundance thresh-
old of k-mers, the hypothesis is that k-mers containing errors will appear less frequently in short reads and
that these error types are stochastic. These methods are presented in Chapter 3, then long reads that now
bring particular issues to read correction that are also thoroughly reviewed in that chapter. Using NGS, read
correction is often one of the first step performed in analysis pipelines so that downstream steps do not inherit
from noise induced by errors. Such paradigm is directly integrated in De Bruijn graph assembly methods,
in which only k-mers seen more times than a certain threshold are considered before starting assembly. It is
noteworthy that recently, a shift occurred with long reads in the genomic context, with sequences corrected
only once the assembly task is realized [126]. In this work, though avoiding assembly step, we also propose
read correction as a late task.

3.6.2 Reference-guided analysis: main goals

In reference-guided studies, reference genomes or transcriptomes are used as bases for the exploitation of
new data. Most of the time, reads need to be aligned on these reference sequences beforehand, but some
methods avoid mapping. Usually genomes and transcriptomes are not used for the same goals since they do
not contain the same information.

Genomes are used to detect known and new isoforms, potentially alternative. First the reads are aligned
on the genes sequences, using aligners such as STAR [52], GMAP [250] or HISAT2 [106]. These tools
integrate specific features to handle RNA reads that are further detailed in the next chapter. When mapped
on reference, reads can be located within an exon sequence, or spanning one (or several, if a small exon is
in presence) exon-exon junction. Once reads are mapped, read counts help methods such as the Bowtie-
TopHat-Cufflinks suite [116, 234, 235] to identify which transcript is in presence using peaks of read counts
on each exon. Reference genomes also provide a baseline for comparison when looking for expressed genomic
variants, or RNA editing. GATK [151] is a method for variant calling based on mapping. Exceptions such as
CRAC [181] identify variants without aligning the reads, based on their k-mers content. As using references
allows easier assessment of results by comparison with well-established biological features, reference-based
methods can be preferred in applications where a high precision is required, such as clinical analyses. This is
the case for gene fusion detection when linked for instance to cancer. The intuition is that reads from such
objects can map on junctions that will link different genes or non colinear exons.

Transcriptomes are often used to determine the abundance of transcripts in presence in a dataset (quan-
tification). This can be done by mapping reads on transcripts, with advantages over genome alignment:
easier alignment since no splice-mapping is intended, which provides more simple framework for statistical
methods that aim at allocating reads to individual transcripts. In simplest methods, when isoforms have
to be identified from one another, only reads covering exon junctions are used, since they are assumed to
represent non-ambiguous information. More advanced statistical methods try to assign reads mapping inside
an exon to the right transcript [122]. These methods integrate steps to decide which exon-chain is likely
according to the observed exon counts. Exactly as in De Bruijn-graph based assembly, such a transcript
determination based on selection of certain possibility over a high number of possible combination is error-
prone. Again, some methods such as Salmon [175] or Sailfish [176] avoid mapping and use reads’ k-mers
content to quantify gene expression, in a faster way than alignment.

We will come back to k-mers-based methods for other application than quantification in the next chapter.
Quantification bias in long reads is still discussed in the ONT context and benefits from few perspective.
It can be forecast that the alignment of full-length reads will allow to dispense with statistical aspects for
quantification, that will be done in a more straightforward way. De novo mRNA isoform identification and
classification by common genic origin will be the main goal in this thesis, thus relating our work to isoform
identification. We made the choice not to consider variants at the level of SNPs or indels, given the error rates

33

and profiles we face. In highly expressed genes though, modules to identify these bases could be developed
within the correction step or downstream.

3.6.3 De novo studies

De novo applications are the core interest of this thesis work. De novo methods are often presented as more
“agnostic” with respect to the reference. Thus contrary to reference-based methods, results are not driven
by our current knowledge of genomes and transcriptomes since reads are not compared to these sequences
before outputting results. They allow to exploit data when no reference/annotation is available, or to avoid
the usage of bad quality references. We recall here that a vast majority of species do not benefit from
references. Thus de novo methods are often presented as allowing to access the dark matter of the living.
Being reference-free also has the advantage, in case a reference is available, to introduce at later as possible
possible biases to results. Results can be computed de novo and reference information can be injected
afterwards to complete them with additional information that is not present in reads, instead of guiding the
whole process. Indeed, reference-free solutions have a priori access to less information than reference-based
approaches.

Usually, mostly transcript assembly and variant calling are realized de novo. For instance, assemblers
such as Trinity [78] or Trans-Abyss [194] propose de novo assembly of transcripts. Also based on De Bruijn
graph but not realizing full-transcript assembly, KisSplice [200] aims ate detecting alternative splicing variants
and expressed small genomic variants. Several works based on KisSplice are presented in Chapter 5.

Still, these methods are not fully exempted from biases, and can bring their share of underlying hypoth-
esis, based on our current knowledge of biology. For instance, most de novo assembly methods do not report
heterozygous variants from expressed regions, or fail to retrieve exhaustive lists of transcripts from a gene.
Transcripts assemblers also generally make the hypothesis of colinearity of exons within a transcripts, since
this is what has been observed so far. Thus, methods often highlight a fraction of a biological reality and
have to be completed by other approaches.

3.6.4 Reads simulation

Read simulation is the production of synthetic reads by computational means, that aims at mimicking
sequencing features. This is of interest when developing new methods since the ground truth is perfectly
controlled. Simulators embed techniques of various precision to correctly model the expected features of a
given sequencing technology, such as read length distribution or error rates and profiles. Since these features
can be prone to changes according to protocols, some simulators made the choice to learn sequencing features
from real data instead of using direct statistical models. In DNA context, ART [93] will be mentioned again
in Chapter 3. The reader can refer to a recent review on these tools [58] for more details.

Many tools for genomic short reads simulation exists, a bit fewer for mRNA, including the Flux Simula-
tor [81] or BEERS [80]. The Flux Simulator is one of the RNA-seq simulator that integrates the most features
including fine simulation of gene expression levels. Following new long reads technologies, a generation of
simulators reproduces long error-prone sequences from PacBio [170, 225], with only one tool published for
ONT [254]. To our knowledge, no published work dedicated to reproduce ONT RNA sequencing experi-
ments. A preliminary work filling this gap is presented in Chapter 4 . For most works presented in this
document, we relied either on real data or on straightforward simulations that did not fit all the features of
a mRNA sequencing experiment (for instance gene expression).

34

4 How this work contributes to the study of transcrip-

tomes

4.1 Some current questions on mRNA

Methodological developments in the transcriptomics field follow fundamental and application questions. A
vast panel of biological questions nowadays require bioinformatics, because they rely on the processing
of data that cannot be processed by hand and/or because they directly pertain to algorithmic questions.
Thus current questions motivate works such as presented in this manuscript. Jointly, technologies evolve to
propose more and more insight to mRNA sequences. The nature of the proposed data can itself raise new
methodological challenges, as well as it gives matter to new biological questions [96]. Sequencing technologies
and their problematics will be described in the following section. Here we propose a short, non-comprehensive
discussion of current important questions about mRNA. We outline some interesting biological problems that
motivate our work in the long run.

4.1.1 Functional transcriptomics

The way transcripts are expressed and their functional roles are widely investigated. Capturing transcripts
gives a glance at the expressed phenotypes. In cancer or other diseases, differential gene expression as
well as differential splicing are looked for. Mutations can lead to enrichment or depletion of certain exons
inclusion in transcripts, or to the inclusion of an intronic region, then to dysfunctioning proteins or other
complexes [241, 227, 68, 56]. Given that we can dig deeper and deeper into transcriptome contents, usual
questions are to identify which subpopulations of transcript actually contribute to the functions in the cell,
and which fraction is noise (or has other functions).

Several projects contributed to build catalogs of transcripts in a functional context. The ENCODE
Consortium [43, 42] aimed at building an encyclopedia of DNA elements in human, which would provide
a list of functional elements including RNA and the different regulation elements implied in regulation of
functional information in cell. The FAANG [7] Consortium extended this goal to several livestock species.
The Geuvadis project also produced human transcriptome data, associated with different populations in
Europe. Such data was coupled with genomes from the 1000 Genomes Project enables to characterize for
instance genomic actors of transcriptome variability such as quantitative trait loci (QTL), that are subparts
of the DNA correlated with a variation of the phenotype, and genomic contributors to mRNA expression
levels (eQTL) [118].

Expression of family of genes (paralog genes) are also poorly understood because they represent method-
ological challenges. Family of genes gather several copies of genes that undergone duplication events during
evolution. The copies tend to diverge with evolutionary time, each accumulating its own mutations. Copy
can express different alternative versions of the transcript, which can be difficult to correctly address to
their origin if the genomic loci are not too divergent. Some regions identified as pseudogenes (genes that
lost the initial biological function they encoded, and are sometimes not coding for proteins anymore) can in
fact express transcripts with differentiated functions [184]. More generally, genomic repeats are a hurdle for
transcriptomics analysis since many repeats appear in transcribed regions [51].

4.1.2 Metatranscriptomics

RNA-seq protocol enables to access the expression of mRNA with only a few picograms of RNA material [148].
Thus, it is extremely useful to obtain gene expression information from environmental samples [171, 244].
Such sequencing experiments are called metatranscriptomics (metagenomics when DNA is sequenced). An
example of project that produced this type of data is the TARA Oceans expedition [23] that coupled sequenc-
ing of total DNA and RNA samples from several stations across oceans to morphological and physico-chemical
measures.

35

RNA-seq paved the way for numerous applications from ecological studies to human diseases (for instance
the gut microbiome, i.e. microbial community, is recently at stake concerning many important diseases such
as diabetes, obesity or depression) [124, 97]. Species that cannot be grown in lab can be sampled directly
from the environment, resulting in a mixture of RNAs from the different individuals that were present. These
studies also allow to investigate systems as a whole instead of separating each actors. Such as transcriptomics,
one challenge in metatranscriptomics is the contrasted heterogeneity of coverage of the different expressed
reads. Biologists are interested in identifying the core functions present in the system, as well as the secondary
and more rare functions. They address this question by retrieving transcripts through assembly, then proteins
are derived from mRNA sequences using prediction tools. However metatranscriptomics assembly is at least
as hard as regular assembly. To this extent, long reads are promising since they no longer require assembly.
Short reads are usually preferred since they give access to very high numbers of fragments that capture a
lot of the variability present in a sample. However pilot metatranscriptomics projects with long reads exist
is TARA Oceans expedition for instance.

4.1.3 Biological models for transcription and splicing

Fundamental questions concerning genomes evolution and splicing apparition are also at stake. Some general
rules such as exon definition started to be stated in the 2000’s, however there are still many questions. For
instance, it remains unclear to which extent exons appear independently in transcripts, or are co-selected to
create transcripts [230]. This is mainly due to the lack of exhaustive and reliable reference transcripts list,
due to the limitations of short reads.

4.2 Main contributions

Given the general concepts that have been introduced we can present this thesis work as bringing algorithmic
and computational solutions to three main problems in the long reads context: 1/detecting similarity between
reads; 2/grouping reads that originate from same genes; 3/correcting reads sequences, all of these tasks being
realized de novo (Figure 13). Finally, the three presented modules can be seen as a three bricks, that once
channeled create a pipeline for de novo mRNA analysis using long reads. This idea leads the whole manuscript
construction. All in all, we aim to propose a group of tools dedicated to describe the isoform content of a
transcriptome sequencing, without a reference.

This thesis work invokes methods that belong to quite differentiated and broad fields in bioinformatics
and computer science. At the beginning of this thesis, very few methods considered long reads for RNA
studies. We anticipated future needs regarding these technologies by looking at how long reads are currently
used in the RNA community. We took the stance not to commit to hybrid (i.e. mixed short and long
reads) experiments and to rather focus on long read only methods, that were rare at the time we began.
Until now, mostly Iso-seq has been involved in the depiction of novel isoforms in transcriptomes of various
species, in projects that also involve short reads most of the time [8, 214, 1, 240, 89]. ONT studies have
just started to develop and we aimed at pioneering in that direction given the interesting features of ONT
platforms [248, 168, 22].

4.2.1 Similarities between reads

We previously identified that one of the fundamental task was identification of pairwise similar sequences.
We wanted to propose a method dedicated to finding similarity between pair of long RNA reads. This
first work would be the basis of almost any other applications we could propose. It is noteworthy that
contrary to short reads, mapping to another read or to a reference makes the difference in long reads. Thus
two long reads with more than 10% errors are way more dissimilar than one read and the reference that
is supposed to be clean from errors. Studies shown that at the current error rates, seeds no longer than
15-17 should be used [32]. Longer seeds can hardly be found in these sequences. This can have significant
impacts on the quality of alignments in species that possess large genomes, since 15-mers are frequently found

36

Figure 13: Main steps of de novo transcriptome study using long reads developed
during this thesis. A main particularity is that assembly must no longer be required.
However reads need to be grouped per gene, hence clustering is adopted in this pipeline.
The gray parts are not covered by our work. See Figure 12 for a comparison with short
reads approaches.

repeated across the genome. Moreover, the alignment step is made more difficult by the numerous indels
and homopolymer errors. Our work on this subject led us to propose a new structure to index sequences
and an alignment-free (thus not relying on paradigms presented before) method for sequence comparison.
All related results are presented in Chapter 1. Currently speaking, we only have preliminary results on the
application of this method to transcriptomics long reads. However, the structure proposed is highly scalable,
we show that it has direct applications with meta transcriptomics short reads. We present a first work that
initiates the validation of our tool on biological instances.

37

4.2.2 Clustering of long reads

In transcriptomics, de novo clustering used to be reserved for assembled short reads or single cell experiments.
In Chapter 2 we propose a novel method to cluster long reads per gene that takes into account the current
error rates and profiles. Such a task can be realized with mapping in cases a reference exists, but were hardly
explored with long reads in de novo context. This problem is difficult given the intertwined problems of
scaling, current noise in data and absence of dedicated mapping tool for RNA. Our method is meant to be a
first milestone to investigate transcriptomes with the new leverage of long reads, even for non model species.
This work was validated using real mouse transcriptome sequenced on nanopore platform. The algorithm
itself pertains to community detection algorithms, and its extension to other bioinformatics applications is
still open.

4.2.3 Correction/consensus of long reads

As pointed out in this introduction, the current quality of sequences is not high enough to provide reliable
functional annotations. In other words, we predict proteins and their roles with difficulty because ORF
predictions suffer from shifts due to indels. Our aim is to correct reads so that the final sequences conserve
the exon structure of the original read and have an increased base quality. This correction task is in fact
highly linked to several problems: finding common exons or common consecutive exon chains in order to
correct these regions altogether, and thus, representing the alternative content in exons of a given gene,
and extend this result to the transcriptome. In a work in progress, we will propose a module that proposes
corrected consensus for transcripts. Its strategies are detailed in Chapter 4. Such module works on the
basis of our clustering method, and additionally brings identified alternative events and their counts in the
dataset. Again this work is meant to be applied de novo. On the long term, our goal is to provide clean novel
isoform using the long reads, in order to help enriching the existing annotations. Since many approaches
rely on these annotations (quantification, gene identification, . . .), possessing more complete and accurate
transcripts annotations is crucial for transcriptome analysis. Works on correction also led us to propose a
tool for long read correction assessment to benchmark our method, that is presented in Chapter 3.

38

Chapter 1

Compare pairwise sequences in
(meta)-transcriptomics data

39

Our work aims to be a channel through which a transcriptomic reads dataset undergo several steps,
from the complex and tangled initial dataset in which reads are all mixed up to a final state in which
reads are grouped by their initial expressed genes, and separated by isoforms. Such a result requires several
treatments performed on reads in order to compare them, decide which are related and understand finer
difference between them. The first requirement is to be able to compare nucleotidic reads content despite
sequencing errors and taking into account biological variations, in order to spot related reads. Hence this
first chapter presents works that pertain to sequence similarity detection.

Many works contributed to this topic, some of them in a particularly seminal way, as illustrated by the
software BLAST that has one of the most cited related paper [5]. While its concept is intuitive, similarity
detection engages in practice a plethora of heuristics. Thus, we will present a non exhaustive background of
the methodological aspects of sequences similarity computation, with its main principles and methods. This
field raises many problematics that fall in the different applications of similarity detection. We will introduce
problematics that RNA sequences raise, and we will not mention all current general problematics but rather
explain those to which we think our work contributes to. We will present novel methods to detect similarity
between sequences, with the data structures, implementation choices and algorithms they rely on. These
methods enable the comparison of a target sequences dataset to a query dataset, they can be reads sets for
instance. They can help identifying reads that are in the intersection of two sets, or to retrieve similar reads
by comparing a set to itself. This latter application is the one needed in the global proceeding of these thesis.
However, these contributions are firstly designed to work generically on short reads, and remain initial proofs
of concept. Indeed, they represent very general frameworks to detect similarity that can be in a second time
adapted to more precise goals. In a second part, we wanted to show that we can work through using such
proof of concept. We will present a collaborative work where our tool was applied in the context of real
biological models and data. We will take time to describe the biological issues of this work. Indeed they
are typical motivations for methods such as those presented here. They also are an opportunity to validate
the developped approach. Then we will present how our method was used to tackle concrete bioinformatics
needs within a pipeline. In a last part we will rely on that framework to draw new ideas that allow the
exploitation of long reads, which is the main goal to be achieved all along this document. Straightforward
ideas were implemented and we present benchmarks against very recent methodological contributions to the
long read field. Other ideas are described but do not benefit from implementation yet.

1 Problem statement and previous works

This section provides general concepts about similarity detection between reads, and how it was applied to
RNA molecules, as well as the main approaches to date. It gives the intuition of the difficulty of the problem
when applied on the Third Generation Sequencing (TGS) reads, and presents a second challenge that is the
scalability of this family of methods. It introduces the aspects of our contribution, that is a method related
to pairwise sequence comparison of reads in a set.

1.1 Overview of heuristics applied to pairwise sequence compari-
son

In this section we provide an overview of standard methods, aside from already presented seed and extend
mappers, that enable sequence comparison.

1.1.1 Alternatives to seed and extend

The broad applications of sequences alignment include many different problematics in genomics and tran-
scriptomics. Mapping, through its seed and extend, has been presented in the introduction such as the main
procedure to compare sequences. Tools to map two strings both at the genome scale exist but are out of this
scope, thus we will focus on comparisons of shorter sequences such as reads. That being said, other heuristics

for sequence comparison exist. Contrary to mapping algorithms, pseudo-alignment procedures do not in-
volve the alignment of sequence at the base wise level. However, they output sequences similarity but based
on matches of words such as k-mers. This is different of alignment since word matches are searched. The
similarity is estimated using the abundance of shared words, for instance by computing the number of shared
words between datasets. By avoiding the quadratic component of dynamic programming approaches, they
are usually more efficient. Both mappers and pseudo-aligners can work de novo. However, pseudo-aligners
usually work at the data-set level while mappers work at the sequence level. Another difference is that the
main data structures for pseudo-alignments methods (frequency vectors) have an optimal behavior in terms
of performances for very small k-mer sizes (i.e. less than 15). However, some methods do not compute
distances and only rely on the k-mers presence/absence [249]. The set of our contribution methods, Short
Reads Connector, falls in the definition of pseudo-alignment. Finally, less methods integrate an alternative
to k-mers using spaced-seeds [105]. A concept related to spaced-seeds is presented in the very last part of
this chapter.

1.1.2 RNA mapping

Interestingly, RNA mapping shares characteristics with mapping of large structural variants in genomes.
When mapping against a reference genome, RNA sequences are split to span each expressed region they
come from (often exons). This is, to a lesser extent, the case when mapping two alternative isoforms.
Large gaps are formed, thus dedicated methods were developed to deal with this feature. RNA mapping to
reference comes in two flavors, exon-first strategies and strategies that adapt the seed and extend paradigm.
Many tools exist, we give a few examples with some of the most used. The first category ([234, 242] for
instance) starts by aligning reads on the reference without particular relaxed condition on gaps. In a second
pass, unmapped reads are split and fragments are realigned. The second strategy [52, 250] uses seeds and
searches for maximal length subsequences that can be aligned without large gaps on the reference. Then
these subsequences are clustered when they are not separated by more than a window that represents
the size of an intron. Pseudo-alignment is used in the RNA context, but usually it is for quantification
purposes [176, 175, 25]. Indeed, these pseudo-alignment methods do not allow precise positioning of reads,
which is often required to precisely define exons bound. An exception, though, is CRAC which relies on
k-mers to produce mappings [181]. Thus, many splice-mappers use catalogs of splice-sites (annotated or
discovered) to map reads with better precision and sensitivity.

1.1.3 Long reads

The first tool to map long reads appeared circa 2012 to map PacBio reads on reference [32]. Since these
technologies are only a few years old, a small number of tools exist in the literature to handle the long reads.
Due to the error rate, the task of mapping on a reference and the task of finding overlaps between reads
became more different. Tools that compute read overlapping are mostly Minimap [126], DALIGNER [161]
and MHAP [18]. A second implementation of Minimap (Minimap2) was proposed recently. These tools can
also be adapted to map on a reference. Other tools include mostly BLASR, GraphMap [224], and adaptations
of NGS mappers such as BWA-MEM. Most of them integrate adaptable parameters to tailor comparisons
to ONT or PacBio specifics.

All tools adopted the seed and extend paradigm. However, the tool Minimap is the unique one to allow
a mode where only the seed collection is performed. Such feature is interesting for applications that do
not require precise read positioning, and will be discussed again in Chapter 3. State of the art tools like
Minimap and MHAP make the choice to change the seeding paradigm by using local sensitive hashing using
minimizers. Minimizers were first used in [193] but it took around ten years before they spread to recent
mapping and pseudo-alignment techniques. Minimizers are smallest k-mers with respect to an order (for
instance lexicographically, or with respect to the result of a hash function) within a set of k-mers. Consecutive
k-mers tend to share same minimizers, thus this property provides an interesting way to sample the seeds.
Seeds are usually sketches of minimizers instead of k-mers. They were first used in [193] but took ten years

41

to rapidly spread to almost all mapping method recently published. GraphMap does not use minimizers in
its first implementation but relaxes the condition of exact matches of k-mers, by using spaced-seed designs
that allow errors. A second implementation of GraphMap then integrated minimizers. A last tool that was
published in late 2017 uses a novel seed strategy where the mapping quality is ensured by a seed clustering
strategy [104].

These tools integrate a second step that allows them to increase the precision of the alignments they
predict. Indeed, seed-and-extend using rather small k-mer allows to detect rough alignments. Minimap
uses a memoization step to find colinear chains of seeds that give more guarantees that the alignment is
correct. MHAP uses a second pass that computes Jaccard distance of the two regions with smaller k-mers.
GraphMap also relies on a seed-chaining step.

1.1.4 Data structures

As previously mentioned, up to date mappers rely on specific data structure to index the reference sequences.
In order to enable the comparison with the data structure used in our contribution, we recall the main objects
used to compute indexes.

Text indexes Two generations of tools proposed hash-table indexing of either the reference or the query
sequences. Such tools were intractable on large texts such as eukaryotes genomes and transcriptomes either
due to their high memory footprint or because they require a complete scan of genome to align a group of
query sequences. Another straightforward method to index such text is the suffix tree. The suffix tree (or
trie) is a tree structure where distinct substrings of the reference are represented by different paths from
the root of the suffix tree [150]. Query sequences can be aligned against each path from the root up using
dynamic programming. However, constructing suffix trees on large instances of the scale of eukaryotes uses
too many resources even on best known implementations were 50 GB of memory were reported for a human
genome [113]. To compensate such a high memory bottleneck, several compressed data structures were
proposed to efficiently index biological sequences, such as suffix arrays, Burrow Wheeler transform (BTW),
and FM-index. A suffix array [143] stores the n indices of suffixes of a word of size n ordered lexicographically,
and associates to them their starting positions in the word. Both suffix trees and suffix arrays allow to query
if a substring is present in the indexed text and to count the occurrences of such substring. Mappers such as
STAR are based on suffix arrays and benefit from the quick similarity computation they enable. The usage
of the BWT in the FM-index structure allowed to simulate a exploration of the suffix tree without the need
to store it explicitly via a process called backward search. Furthermore the advantage of the FM-index over
a suffix array is that the reference can be queried while being compressed. The FM-index have been found
to be the more efficient for DNA alignment and is integrated in most NGS alignment tools such as BWA or
Bowtie [129, 125, 116, 117].

Hash function based indexes Hash tables were described in the introduction chapter. Some
mappers are based on hash tables, such as SHRiMP2 [47]. Other structures such as Bloom filters, that
are not hash table since they do not enable to associate information to a key, also allow to efficiently
store and access a set of keys. However, Bloom filters tend to replace hash tables when possible in recent
implementations, thanks to their efficiency in memory. Bloom filters [107] are bit arrays of size b initialized
with b zeros. For a given key they are filled with l ones at positions returned by l hash functions applied on
the key. They can be queried by applying hash functions to an element and verify the resulting positions are
ones. However, because of collisions Bloom Filters provide false positives, i.e. report an absent element as
present in the filter during a membership operation. Two methods based on Bloom filters are presented later
on. Bloom filters, such as hash tables, are not limited to alignment purposes and are for instance involved
in implementation involving assembly [33, 200]. Their design gives them the property to be very memory
efficient. For instance, one k-mer can be stored using only 8 bits.

42

1.2 Current methodological challenges

In this section we present two challenges that were faced with the methods presented in this first chapter.
While they are not the only two opened questions, we believe that both matter a lot in many current works.
The two axes presented are RNA long reads and scalability. These axes can be thought as parallel since
they are not systematically associated in concrete applications. However, RNA reads similarity and highly
voluminous datasets sometimes meet, for instance in metatranscriptomics projects. Moreover Nanopore
platforms’ throughput increases and we believe long reads will be more and more present in high scale
sequencing. For instance they started to be used in TARA oceans projects.

1.2.1 Mapping RNA long reads

Currently, no tool was specifically designed to discover overlaps between pairs of RNA long reads, which is
our main interest in this chapter. These reads are too long and erroneous to directly apply NGS methods,
and too numerous and short (since they only span a gene) to really fit in genome-wide alignment tools such
as MUMmer [50]. Long reads mappers were at first designed for genomic assembly purposes. However, very
recently some tools started to integrate support for RNA. GMAP was shown to operate quite well for the
mapping of these reads on genomes, contrary to other NGS tools [111]. GraphMap was adapted for long
read mapping to reference transcriptome.

1.2.2 Strategies for scalable similarity computation

Some tools were conceived specifically to enable the comparison of read datasets at huge scales. They are
dedicated to short reads. Compareads [142] indexes k-mers from a read set in a Bloom filter and can query
k-mers from a second read set on the indexed set. Bloom filters permit to perform membership operations
but they do not allow to store additional information. However, they are the reason why the comparison was
made between the queried read set and the set of indexed k-mers as a proxy to the indexed read set, since no
information (i.e. read of origin) can be associated to k-mers. Commet [141] generalized Compareads usage to
more than comparisons of pairs. Because of the properties of construction of the Bloom Filter, Compareads
or Commet are not very efficient on k-mers on rather small size (such as those ≤ 20). It is also impossible to
gain knowledge about intra read set similarities (i.e. compare a set to itself) using Compareads or Commet.
Simka [15] or MASH [169] are also tools based on k-mers. They use them to estimate different ecological
distances such as Jaccard or Bray Curtis distances. However, one difference with Commet-like approaches
is that work at the k-mer scale and compare datasets as wholes. Their result is a range of distances that
Commet-like approaches do not provide, but there is no information at the read scale. Figure 1 sums up
the different methods. All these tools were mainly tested on metagenomic samples. Other tools out of this
scope also committed to lowering their memory and time footprint in metagenomics context, and specialize
in classification of reads using reference banks or work with specific sequences such as 16s RNA (ribosomal
RNA).

1.2.3 Perimeter of this work

Our work is rooted to the Compareads and Commet tools. It does not perform mapping and relies on a
different data structure than those presented above. The indexed sequences are reads or assembled sequences
and contrary to many pseudo-alignment tools, the range of k-mer sizes it works with is rather high (greater
than 15). It was designed to enable pairwise sequence comparison for voluminous datasets, and can work
at the read level. It cannot provide mapping of a sequence on a reference genome or transcriptome but it
can report similarity retrieved for pairs of sequences based on k-mers content. Its method is explained with
short reads and it started to be used by the community on short reads applications, however as it is generic
and agnostic about the sequences natures and length, we present a proof a concept that computes similarity
for pairs of long and spurious reads.

43

2012 2014 2016

 Extract similar reads Compute distances

 Compareads→ Commet Simka

 ● 2 sets ● NxN sets

MASH

Rennes

Figure 1: Tools based on k-mers that help finding similarities between datasets.
GenScale team specializes in producing scalable tools for broad genomic purposes, thus that
many of these tools were made in Rennes. Compareads and Commet compare a set of reads
to a set of k-mers. They are based on a Bloom filter for indexation. Simka and MASH
are shown to illustrate that k-mer based methods not always work at the read level, they
compute ecological distances using k-mers content of read sets.

2 Short read connector: two scalable methods to study

similarity between sequences sets

In this section we present a first contribution brought by this thesis: a set of two tools called Short Reads
Connector-counter and Short Reads Connector-linker that compare pairs of sequences datasets and output
similarity information. For the moment, we narrow the context to short reads, as they were primarily
implemented and tested with that use case. In the next section we will put at stake other types of sequences.
We contributed to the method conception and algorithmic ideas, the implementation of both Short Read
Connector tools was mainly realized by Pierre Peterlongo and the whole relies on a data structure conceived
during Antoine Limasset’s thesis of which Guillaume Rizk provided an optimized implementation dedicated
to nucleic sequences application. Short Read Connector tools (Short Read Connector-linker and Short Read
Connector-counter) were implemented within GATB library [54], maintained and available1. In short, several
objects will be presented in the following sections:

� Short Reads Connector-counter (SRC-c)’s goal is to approximate the number of occurrences of reads
from a read set Q in a read set T .

� Short Read Connector-linker (SRC-l) links reads from the query set Q to reads of the indexed set T
using their identifiers.

� Both rely on a data structure called the Quasi-Dictionary.

� They take as input a target read set that will be indexed, and a query read set that will be compared
to the target set.

1github.com/GATB/short_read_connector

44

github.com/GATB/short_read_connector

2012 2014 2016

 Extract similar reads Compute distances

 Compareads→Commet SRC-Linker Simka
 ● 2 sets ● NxN sets

 MASH

Rennes

 SRC-Counter

 ● read level
 ● sets can be
 identical
l

Figure 2: SRC and related literature. Figure 1 is completed with Short Read Connector
tools: SRC-l and SRC-c. GenScale team specializes in SRC-l compares two reads sets using
a MPHF. It can be noted that minor implementation changes could lead SRC-l to compare
N vs M datasets in one run, for instance by building one index per indexed set. SRC-c can
be seen as performing the same operation than Commet, but relying on a more efficient data
structure.

� They output in a file text the reads that share similarities between the two sets, with different
information according to the tool used.

We start by the presentation of the underlying data structure, then we explain both tools.

2.1 Presentation of the data structure

As pointed out in the introduction of this chapter, there is a long list of tools that can perform mapping
in the general case and find intersection between datasets, but mapping tools are not adapted to very large
(i.e metagenomics or metatranscriptomics) experiments. On the contrary, tools such as presented in 1 scale
voluminous experiments but do not perform mapping. Short Reads Connector tools were firstly developed
with those challenges in mind. In particular Short Reads Connector-linker can be thought as a next step
after Commet, in the sense it allows more resolution than Commet (shown in Figure 2), in the sense that
information is retrieved at the read level rather than at the dataset level. This is because the data structure
is not the same, Short Reads Connector’s data structure allowing more operations than the Bloom filter.
This data structure was called Quasi-Dictionary (QD), referring to dictionaries such as those in Python that
implement hash tables, but with a non-deterministic aspect. The QD is a probabilistic data structure that
enables to index elements of a dataset A and then query elements from a second dataset B, with elements
being words from a given alphabet. It is stated as probabilistic because when queried, the QD returns false
positives in certain cases. This is detailed in the following.

2.1.1 Hashing scheme of the Quasi-Dictionary

The QD enables to associate to each key a piece of information like classic hashing tables. However, contrary
to hash maps such as C++11 unordered map, the QD is a probabilistic data structure, based on a minimal

45

Figure 3: Indexation using a MPHF, figure from Rayan Chikhi for presenting the MPHF
in [134].

perfect hash function (MPHF). MHPF are hash table that possess the property to be both “perfect” (i.e.
no collision occurs for keys) and “minimal” (i.e. it allows to allocate n buckets for a set of n keys). An
illustration is proposed in Figure 3. In other words, a MPHF associates any element from a set A to a
unique value in [0, N − 1], with N = |A|. It requires less amount of memory than classic dynamic hash
tables that rely on pointers to deal with collisions. MPHF are constructed based on static sets. Each MPHF
is computed especially for the set to be indexed. A large literature intends to find the best approaches to
construct MPHF with lower costs in memory, that is absolutely not bounded to bioinformatics applications.
In our case, a method proposed by Limasset et al. does not focus on reaching the theoretical bound for
memory, but rather propose an algorithm to construct quickly and in a reasonable amount of time a MPHF,
with demonstrations of its scalability to billions of keys. We relied on this implementation as it is quick and
practical.

2.1.2 Quasi-Dictionary algorithms

After introducing the underlying core structure of the QD, we state the algorithms that allow to index and
query sequences.

Index creation Algorithm 1 shows how QD indexes elements from A using the MPHF. According to
the MPHF properties, QD associates each key a unique value in [0, N − 1], with N being the cardinality of
A. Any element absent from this initial set of keys A is called a stranger key. Using a MPHF, a queried
stranger keys may be associated to a value in [0, N − 1] with a certain probability. The authors of [134]
did not provide a way to compute this probability, thus we rely on a simple hypothesis that is: the MPHF
will wrongly associate a stranger key to a value in any case. We expect such scenario to happen a lot since
the two datasets to compare are not identical. Thus the behavior of QD can be erratic on stranger keys if
not controlled, which means providing false positives. In order to limit the probability p of false positives
value for our structure, for each indexed element s ∈ A, we store a fingerprint value associated to s, denoted
by fg(s), in an array FG of size N . For each key s, the value of QD.MPHF [s] in [0, N − 1] is used as a
pointer to an index in the array FG, where are stored the associated fingerprint and pieces of information.
The fingerprint of a word s is obtained thanks to a hashing function

fg : Σ|s| → [0, 2f − 1]

46

Figure 4: Indexation and query using the Quasi-Dictionary. 1) Elements from a set
A are indexed using the MPHF and corresponding information and fingerprint are stored in
an array. 2a) Query of a key. 2b) Query of a stranger key (not present in A).

Algorithm 1: Create Quasi-Dictionary

Data: Set A
Result: A Quasi-Dictionary QD indexing elements of A

1 QD.MPHF = create MPHF (A) ;
2 foreach s in A do
3 index = QD.MPHF (s);
4 QD.FG[index] = fg(s);

5 return QD;

. A high f value decreases p and increases the memory usage that is N · f bits for the FG array, and vice
versa. Thus fingerprints are used as to better ensure a queried element is correctly pointed to by the MPHF
(for instance, default f value in our tools is 12). Figure 4 1) summarizes this process. In practice we chose
to use a xor-shift [147] hash function to compute fingerprints, for its efficiency in terms of throughput and
hash distribution even on large sets of keys.

QD query The querying of the Quasi-Dictionary with a word w is straightforward, as presented in
Algorithm 2. The query of an element w is realized by comparing the fingerprint of w, fg(w), to the
fingerprint stored at the given index. If the two values are equal, we consider that the queried word w
actually corresponds to the element indexed, and that the associated information stored in FG can be
returned. We present a first example of query in Figure 4 2a), and an example of stranger key query in
Figure 4 2b).

Algorithm 2: Query Quasi-Dictionary

Data: Quasi-Dictionary QD indexing set A, word w
Result: A value in [0, |S| − 1] or -1 if w detected as non indexed

1 index = QD.MPHF (w);
2 if QD.FG[index] = fg(w) then
3 return index;
4 return −1;

47

2.1.3 False positives

The probability p described above can be seen as a false positive rate. It means that depending on f , there
is a small chance that QD returns a value associated to a stranger key. Thus p 6= 0, unless there is no
information loss when computing the fingerprint of an element fg(w), that is, the fingerprint and w are the
same size (we refer to this particular case as the “perfect mode” of QD). In practice we enable to keep p
value low (p ≈ 2.10−4) thanks to the fingerprints, since with fingerprints of size g there is a probability ≈ 1

2g

to obtain a false positive. On the contrary there is no chance of false negative (i.e. the QD always recognized
an indexed element).

2.1.4 Performances

2.1.5 Time and memory complexities

QD inherits from the MPHF implementation characteristics. The structure can be constructed in O(N)
time and uses ≈ 3 bits by elements. Such a value was carefully chosen during the MPHF design to allow a
good trade-off between on one hand speed up of the MPHF construction and query, and on the other hand
limiting memory footprint. The fingerprint table is constructed in O(N) time, as the fg function runs in
O(1). This table uses exactly N × f bits. Thus the overall QD size (not taking into account the size of
the values associated to each key), with f = 12, is ≈ 15 bits per element. The querying of an element is
performed in constant time and does not increase memory usage.

2.1.6 Performances of the implementation

We designed a benchmark to compare our implementation to a standard and efficient implementation of hash
functions: the unordered map structure provided in the Standard Library in C++11 (QD being implemented
in C++11). In this experiment, the index set A is a set of k-mers from a read dataset. k-mers from the same
dataset compose the set B. Here we do not mean to prove that the structure was functioning on a particular
type of reads such as RNA-seq, we rather wanted to demonsrate it was scalable on any generic read set. We
then chose a metagenomic read set. We performed tests on DNA-seq short reads from a metagenomic Tara
Oceans [100] read set ERR599282, composed of 189,207,003 reads of average size 97 nucleotides. From this
read set, we created subsets by selecting first 100K, 1M, 10M, 50M and 100M reads. We asked for k-mers
of size 31 to be indexed from these reads. We chose 31 as it is a common value to distinguish k-mers in
rather large genomes and metagenomes, that is often used for instance in assembly. The task of extracting
all k-mers from each subset to be passed to QD and unordered map was performed using DSK [191]. We
assessed wallclock time and memory peak for constructing (i.e indexing k-mers) and for querying (i.e. doing
membership operations on the initial set of k-mers) the Quasi-Dictionary using the default fingerprint size
f = 12 and the C++ unordered map, on a machine that had 252GB of memory. We report the results in
Table 1.1. QD is here more performant than the classic hash table to index and query k-mers. As expected,
the Quasi-Dictionary data structure size increases when f increases. However, an interesting result is to be
noted on the usage of QD’s “perfect mode”. Here, k-mers are of size 31, which means that using a fingerprint
of size f = 62 is sufficient to represent exactly any 31-mer, as any base is encoded on 2 bits. The size of
QD with f = 62 remains on average 4 times smaller than the size of the hash table. Thus, as QD is faster
to construct and to query, the usage of the “perfect mode”, thought being the most resource-consuming for
the QD, still presents only advantages compared to the hash table usage in this example.

2http://www.ebi.ac.uk/ena/data/view/ERR599280

48

http://www.ebi.ac.uk/ena/data/view/ERR599280

Indexed Data set
(nb indexed k-mers)

Construc.
time (s)

Memory (GB)
Query

Time(s)
QD Hash QD QD62 Hash QD Hash

1M (64×106) 16 96 0.23 0.61 2.46 11 17
10M (622×106) 174 979 1.78 5.40 23.58 11 17

50M (2,813×106) 538 4,445 7.92 24.29 106.23 11 19
100M (5,191×106) 1,322 7,995 14.58 44.80 202.88 13 19
Full (8,784×106) 2,649 - 24.75 75.88 - 15 -

Table 1.1: Wallclock time and memory used for creating and for querying the Quasi-
Dictionary using the default fingerprint size f = 12 (denoted by “QD”) and the C++
unordered map, denoted by “Hash”. Tests were performed using k = 31 and indexing all
k-mers of the set. The query read set was always the 10M set. We additionally provide
memory results using the “perfect mode” of the Quasi-Dictionary with a fingerprint size
f = 62 (denoted by “QD62”). Construction and query time for QD62 are not shown as they
are almost identical to the QD ones. On the full dataset, using a classical hash table, the
memory exceeded the maximal authorized machine limits (252 GB).

2.2 Short Reads Connector methods

2.2.1 General algorithms and parameters

Short Reads Connector applications use a QD for the data indexation. The main differences between the
two tools SRC-c and SRC-l are the information stored in the QD and the operations during the query. In
order to explain SRC’s methods, we take the example of two reads sets, a target set T and a query set
Q. The two reads sets can be different or identical. We use read sets for the sake of the simplicity of the
explanation, however in the following section we will show applications to other types of sequences. The
first step, prior to querying, will be to extract a k-mer set A from T to be indexed. k-mers are said solid
if their count in a given dataset is above or equal to a certain threshold t. Solidity thresholds are used to
filter out rare k-mers that are more prone to contain errors [192]. Usual k-mers count distributions contain
a peak of k-mers which count is low in comparison to the rest of k-mers. In SRC, filtering of solid k-mers is
performed with a first pass of DSK. In addition to deal with noise, removing these k-mers helps reducing the
size of the input set passed to QD. Rare genomic k-mers can be lost, thus the choice of the threshold can be
particularly impactful for any sequencing data in which coverage is not homogenous. Certain applications
or performance purposes motivated to add the possibility to select solid k-mers from the intersection of the
k-mers from query and target datasets. Once k-mers from read set A are indexed (Algorithm 1), read set Q
can be queried. k-mers from reads of Q form the set B of keys that are looked up in the QD (Algorithm 2).
Outline of both SRC-l and SRC-c procedures is shown in Figure 5.

2.2.2 Short Reads Connector Counter

Overview of the procedure Short Reads Connector-counter approximates the number of occur-
rences of reads from Q in T . The whole procedure is presented in the Algorithm 3. During the indexation,
each solid k-mers of T are gathered in A and recalls its count in T (obtained with DSK) through the array
FG. Then, when querying, for each read q from set Q, the counts of all its k-mers indexed in the Quasi-
Dictionary are recovered and stored in a vector. Collected counts from k-mers from q are used to output
an estimation of its abundance in read set T . The abundance is approximated using the mean number of
occurrences of k-mers from q. Median, minimal and maximal number of occurrences of k-mers from q are

49

Figure 5: SRC-l and SRC-c outline. Indexation with QD, query and output of each tool.

also output.

Algorithm 3: SRC-c: approximating number of occurrences of reads.

Data: Read set T , read set Q, k ∈ N, t ∈ N
Result: For each read from Q, its k-mer similarity with set T

1 solid k-mer set R = get solid kmers(Q, k, t) ;
2 Quasi-Dictionary QD = create quasidictionary(R) ;
3 foreach Solid k-mer ω from R do
4 QD.values[QD.query(ω)] = number of occurrences of ω in T ;
5 foreach read q in Q do
6 create an empty vector count q;
7 foreach k-mer ω in q do
8 if QD.query(ω) ≥ 0 then
9 insert QD.values[QD.query(ω)] in count q ;

10 Output the q identifier, and (mean, median, min and max values of count q);

Minimal k-mer span It is noteworthy that the mean number of occurrences of k-mers of a read is
only a proxy of its abundance. Since k-mers can overlap by at most k−1 nucleotides, having for instance two
shared k-mers does not mean that 2× k bases are shared between the reads. The number of shared k-mers
is then less informative than the number of bases shared. Thus we introduced an additional parameter to
SRC-c, the minimal k-mer span (also s, the “similarity” threshold). The k-mer span is the number of bases
from the read query q covered by a k-mer present in the index. If the read contains at least s% of positions
where an indexed k-mer spans on its whole length, then it is considered similar to a read in the index and
output. Figure 6 illustrates the interest of k-mer span, and Figure 7 shows how it is used during the query
of a read.

False positives impact assessment We propose an experiment to assess the impact on result
quality when using SRC-c’s probabilistic structure instead of a deterministic hash table for estimating read
abundances. We used the 100M reads set previously described both for the indexation and the querying,
thus providing an estimation of the abundance of each read in its own read set. We made the indexation
using k = 31 and counted as solid k-mers seen at least twice. In this example only 756,804,245 k-mers are
solid among the 5,191,190,377 distinct k-mers present in the read set. This means that 85.4% of queried
k-mers are not indexed, this matter of fact enables to measure the impact of the Quasi-Dictionary false

50

Figure 6: Bases covered by shared k-mers. On the left example a read shares two green
k-mers that come from the same read in the index, they overlap of k − 1 bases so the total
number of bases shared is k + 1. In the second example on the right, the two k-mers do
not overlap and 2× k bases are shared. We divide the number of bases covered by a shared
k-mer by the length of the read to obtain the span value, and compare it to the threshold s
to decide whether reads are similar.

Figure 7: Query reads with minimal k-mer span. The k-mers shared between the
read A from the query and reads the index are represented in green. An example of shared
k-mer GCAGT. The example shows the positions in the read corresponding to nucleotides
covered by at least one shared k-mer (positions 1 to 11). The shared k-mer come from a
same indexed read (read 2). Read A has a length of 19 bases, thus if 11

19
is over the similarity

threshold s, read A and read 2 are reported in the output.

positives. We applied the SRC-c algorithm, using f = 12 or f = 62. In the case of k = 31, with f = 12, the
false positive rate is non null while with f = 62 SRC-c is in a “perfect mode” with no false positives. These
two experiments thus enable to evaluate the impact of false positives when using the Quasi-Dictionary for
downstream analyses such as read abundance estimations. False positives lead us to count a k-mer that is not
present in the indexed set as present. Thus, because of the QD false positives, counts obtained with f = 12
are an over-estimation of the real result obtained with f = 62. We computed for each read the observed
difference in the counts between results obtained with the two approaches. The max over-approximation
is 26.9, and the mean observed over-approximation is 7.27 × 10−3 with a 3.59 × 10−3 standard deviation.
Thus, bearing in mind that the average estimated abundance of each read is ≈ 2.22, the average count
over-estimation represents ≈ 0.033% of this value.

2.2.3 Short Reads Connector-linker

Method outline Each read r from a given set has a unique identifier denoting its order of appearance
in the read file. We start by describing the procedure with a minimal k-mer span of 100%, i.e the whole
target read length must be covered by shared k-mers. This time, during indexation, for each k-mer w from
the set A of solid k-mers of T , the FG array stores a list containing the identifiers of reads from T in which

51

w occurs. Each k-mer of each input query read q is queried in the Quasi-Dictionary (Algorithm 2). If this
k-mer is associated to one or several reads from T , then for each of them, we recall positions on q covered
by this shared k-mer using a boolean vector per targeted read in T . Once all k-mers of a read q are treated,
the identifier of q is output and for each read rj from T its identifier is output together with the k-mer span
with q. Again, the k-mer span threshold s can be set to another value. If it is the case, for a given query
read q it will be verified for each boolean vector (i.e. each read from T , how many positions are spanned by
an indexed k-mer. Results will be output only for rj from T for which the number of positions was over s%
over the size of the read. The global algorithm is outlined in Figure 4.

Algorithm 4: SRC linker: identifying read similarities.

Data: Read set T , read set Q, k ∈ N, t ∈ N, f ∈ N
Result: For each read from Q, its similarity with each read from set B

1 solid k-mer set R = get solid k-mers(B, k, t) ;
2 Quasi-Dictionary QD = create quasidictionary(R) ;
3 foreach read r in T do
4 foreach k-mer ω in r do
5 if QD.query(ω) ≥ 0 then
6 add identifier of r to QD.values[QD.query(ω)] ;

7 foreach read q in Q do
8 create a hash table targetsa ;
9 foreach position i in q do

10 ω = k-mer occurring at position i in q;
11 if QD.query(ω) ≥ 0 then
12 foreach tg id in vector QD.values[QD.query(ω)] do
13 targets[tg id][i..i+ k − 1] = “True”;

14 Output for q information about positions covered by shared k-mers with eachb

read tg id from T .

atarget keys are read ids, and each target value is a boolean vector of size |q| initially filled with “False”.
bIn practice only reads whose number of positions covered by a shared k-mers is higher or equal to a user

defined threshold are output.

False positives In SRC-l, a false positive of QD means that a k-mer that was not indexed (i.e. not
solid in the indexed dataset) is returned as a shared k-mer by the data structure. It can lead to overestimate
the number of positions that are covered by a shared k-mer on a queried read. However, this is not always
the case. We present different possible cases in Figure 8, showing that large over-estimations are unlikely to
happen with a false positive rate.

2.2.4 Performances of SRC-L: comparison to state of the art

We set a benchmark of the SRC-l method with comparisons to state of the art tools that can be used in
current pipelines for the read similarity identification. We chose the classical method BLAST [4] (version
2.3.0), as it is able to index big datasets, and consumes a reasonable quantity of memory. We also included
two broadly used mappers, Bowtie2 [117] (version 2.2.7), and BWA [128] (version 0.7.10), both based on
the BWT principle. By default these two tools only output the best possible alignment found. To enable
the comparison with BLAST and our method, we used the “any alignment” mode (-a mode in Bowtie2, -N

52

Figure 8: False positives in SRC-l. Four scenarios are presented. In the three first
scenario, the false positive k-mer comes from the same indexed read than true positives
(read 1). In the first one, a false positive k-mer overlaps true positive k-mers and new
positions. In the second, the false positive k-mer does not spans a position that is not
already covered by true positives k-mers, thus we do not overestimate the span. In the third
scenario, a false positive k-mer spans a region totally uncovered by true positive k-mers.
This leads to the maximal overestimation per k-mer. In the last scenario, a false positive
k-mer from indexed read 2 covers a region of the read A, but the minimal k-mer span is not
reached between read A and read 2, thus their similarity is not reported.

for BWA) in order to output all alignments found instead of the best one only. We also compared SRC-l to
Starcode (1.0) [260], that clusters DNA sequences by finding all sequences pairs below a certain Levenshtein
distance and is particularly designed for large scale comparisons. BLAST, Starcode and SRC-l were used
with default parameters. Because of the time or memory limitations we could compare against all methods
only up to 1M reads. Results are reported Table 1.2. BLAST suffered from a relatively low throughput and
only small datasets were treated within the timeout (10h, wallclock time). BWA and Bowtie shown that the
BWT-derived tools are not well suited to index large set of short sequences nor to find all alignments and
therefore use considerably more resources than their standard usage. However, BWA performed better than
the two other tools in terms of memory, being able to scale up to 10M reads, while Bowtie2 and BLAST
could only reach 1M reads comparison. Most likely, Starcode also suffers from the number of pairwise
comparisons to process. Importantly, this benchmark is however unfair. All compared tools provides either
much more precise distance information between pair of reads or perform additional clustering (Starcode),
thus perform more tasks than SRC-l. However, our benchmark highlights the fact that such approaches suffer
from intractable number of read comparisons, while the simpler method implemented in SRC-l scales. On
this modest size of read set, we see that SRC-l is already ahead both in terms of memory and computation
time. The gap between our approach and others increases with the amount of data to process. Dealing with
the full dataset reveals the specificity of our approach, being the unique able to scale such dataset.

2.2.5 Limitations

In practice, the current QD implementation works only for an alphabet of nucleotides (note that, on the other
hand, the MPHF we use can receive any string or integer as input key). Thus only nucleotidic sequences
can be indexed. However, any piece of information can be associated. Obviously, in any case, the larger the
size of the information to be stored, the larger the memory footprint of the data structure is. In the case
the sequences to be indexed are of size ≤ 15, an open-addressing scheme should be preferred. Thus this

53

Data set 100K 1M 10M 100M Full
Nb solid

k-mers (×106)
0.2 0.6 22 757 1,880

Blast 52 795 - - -
Bowtie2 51 10,644 - - -

Time BWA 106 3,155 62,912 - -
(s) starcode 29 1,103 131,139 - -

SRC-linker 5 45 587 14,748 40,828
Blast 18.5 24.5 - - -

Bowtie2 0.77 5.54 - - -
Memory BWA 0.49 3.4 5.9 - -

(GB) starcode 12.06 18.18 73.5 - -
SRC-linker 1.07 1.28 3.61 44.37 110.84

Table 1.2: CPU time and memory consumption for indexing and querying a dataset versus
itself. Tests were performed using k = 31 and t = 2 (k-mers seen twice or more are solid).
We set a timeout of 10h. BLAST crashed for 10M dataset, Bowtie2 reached the timeout we
set with more than 200h (CPU) for 10M reads. BWA reached the timeout for 100M reads
(more than 200h (CPU) on this dataset). On the 100M dataset, Starcode also reached the
timeout. Only SRC-l finished on all datasets.

structure is of limited interest on small k-mers for instance. Finally, a main property that limits the use of
SRC to certain applications comes from the MPHF that needs to be computed for a static set of keys. This
means that anytime a new element has to be added to the index, the MPHF has to be computed again from
scratch for the whole new set. At the moment an online use of SRC is thus impossible.

3 Detection of similarity of sequences in large scale

studies

This section presents a validation of our tool SRC-c as a way to compute similarities in large scale sequencing
projects, in particular via the de novo study of a marine symbiosis. SRC-c was used to better detect biological
actors in marine holobionts in an assembly pipeline. We first present the concept of holobiont that we believe
can be unfamiliar to the reader. In the meantime we present the interest of holobionts from a biological point
of view, as well as demonstrated and expected impacts they have in ecosystems. This allows us to point out
difficulties when studying such systems, precisely where SRC-c can be useful. In a second time, we explicit
the experiments that were conducted to validate the integration of SRC-c to the holobiont analysis pipeline,
then we show an application to a non model holobiont that illustrates both contributions and current limits
of the approach. Overall, more details concerning this particular work and holobionts can be found in the
preprint manuscript [153].

54

3.1 Application case: marine holobionts

3.1.1 Holobiont concept and motivation

An ecological paradigm back to trend The observation that not all microorganisms are harmful
to their host dates back to many years ago. However, most of them were first investigated for their pathogenic
properties. It is through ecology that was proposed the concept of holobiont, that states that the organism
is often insufficient to describe an individual (for instance a plant or a fish), and that the organism and all
the communities of its symbionts should be seen as a whole. It was first proposed for reef-building corals and
their cohorts of bacteria [197] and kindled many interests. These biological models are today a model species
to study interaction between micro-organisms and their host. Now such a concept has spread into many
aspects of biological research, one of the most impactful those latter years is maybe the gut microbiome.
Any example of a plant or of an animal (in fact any macro-organism) that would not have communities of
micro-organisms living on its surface or inside would in fact now be the exception rather than the rule.
The holobiont concept is back to trend in ecology, notably because metagenomics and metatranscriptomics
allow to set up large scale sequencing experiment from samples that contain material from all actors of the
holobiont.

Examples of impacts of holobionts This holobiont concept is then at the center of crucial
questions in ecology and evolution. It is becoming more and more clear that many stages such as development,
nutrition or metabolism are influenced by the symbionts communities. Popular examples of mutualism are
the interaction between fungi and plants that help land plants nutrition [212]. In the ocean, coral holobionts
involve unicellular eukaryotes and bacteria, and the loss of such symbionts was shown to provoke coral
bleaching [48]. By considering a new paradigm where the organism and its symbionts as an inseparable
“meta-organism”, we reveal that the fitness (i.e. the selective value according to selection processes) of this
whole is the target of natural selection. It implies not only that symbioses (and their perturbations) impact
the of species, like in examples such as coral, but also that the microbial “baggage” is (at least partially)
acquired and not transmitted the same way than genomic information to the offspring. These communities
also harbor a lot of plasticity and can impact on adaptability under stress. Thus holobionts are at the center
of many fundamental debates in biology.

Access holobiont’s sequences Holobionts remain often hard to study for several reasons. A first
point is that a large fraction of the micro-organisms implied cannot be grown in lab. This is why metage-
nomics and metatranscriptomics are particularly interesting as they allow to sequence sample coming di-
rectly from the environment. Secondly structured information must be made from the mixed-up puzzle
that is short-fragment sequencing of a metagenome or transcriptome. As already mentioned, these kinds
of data suffer from supplementary difficulties for they bioinformatics processing, such as high heterogeneity
of coverage that makes many tasks, such as assembly, way harder. However, whole genome information
is still extremely hard to recompose. Then, metatranscriptomics from holobiont samples is an interesting
alternative that gives access to functional sequences. Indeed, a metatranscriptomics experiment provides the
RNA mixture from each actor’s expressed genes. However, the application we present is to be distinguished
from regular metatranscriptomics, at least because studying metatranscriptomes samples do not a priori
implies the presence of symbiosis. Holobiont sequencing can be less challenging than large metagenomic
experiments, since the number of actors in presence is reduced.

Holobionts’ dark matter For many species, no assembled genome is present in databases. We
mentioned Bacteria and Archaea, however holobionts can also imply eukaryotes such as fungi or protists
(unicellular eukaryotes). Thus many symbioses are poorly understood such as the associations between
sponges and bacteria [87], or more recently described associations between two unicellular eukaryotes which
belong to plankton. However, recent studies showed that this plankton symbiosis is widely distributed in
the ocean and significantly contribute to biomass and carbon export in the open ocean [20, 82]. This is then
a real dark matter that is currently understated and just starts to be documented.

55

A B

C

Figure 9: Studied holobionts models from [153]. A/ Top left M1 host Orbicella faveolata
is in symbiosis with Dinophyta symbionts (Symbiodinium spp). B/ Top right M2 Xestospon-
gia muta hosts a diverse microbial community. C/ Bottom shows model M3, Collozoum sp.
as host and Dinophyta symbionts.

3.1.2 Holobiont models in this work

SRC-c was applied on three distinct marine holobionts. The two first models are already known: model
1 (M1) is composed of a coral, Cnidaria host (Orbicella faveolata) and Dinophyta symbionts (Symbio-
dinium spp., a unicellular eukaryote belonging to the Alveolata). Species of M1 form a mutualistic associa-
tion [48, 90]. The coral holobiont also encompass other microorganisms consisting of bacteria, archaea, fungi,
viruses [160, 197]. In the second holobiont model (M2), the marine sponge Xestospongia muta (Porifera)
harbors a dense (around 40% of its volume) and diverse microbial community including marine protists
(e.g. fungi), archaea and mainly bacteria [62, 246, 217]. The symbiotic associations between sponges and
bacteria are suggested to be commensalism [216]. Both models are associated to publications and possess
assemblies and data we could access. They are among best-known models to understand effects of the ini-
tiation, maintenance and loss of symbiosis (for instance coral bleaching [90]). The third holobiont dataset
(M3) involves two distinct lineages of protists (unicellular eukaryotes): the radiolarian Collozoum sp. as
host and Dinophyta symbionts belonging to the Brandtodinium nutricula species [185]. Only the eukaryote
partners of these model are studied here. Recent studies showed that this symbiosis is widely distributed
in the ocean and significantly contribute to biomass and carbon export in the ocean [20, 82]. However, this
holobiont is yet unpublished. It was sampled in the South Pacific Ocean during the Tara Oceans expedition
in 2011 [180]. Pictures for each model are provided in Figure 9.

3.1.3 Goals and place of SRC-c in this work

The goal of this work was to assemble transcripts from holobiont models in order to open the path to
a better understanding of their associations. We present two main objectives in this section: 1-validate
SRC results on real biological data, 2-increase assembly quality and help identify holobiont actors. The
co-occurrence of sequences of different organisms conducts assemblies to provide chimeric transcripts that
come from misassemblied contigs [206, 123, 233]. The unavailability of reference for the organisms leads to

56

Figure 10: Outline of the strategy employed to study holobionts. On the bottom,
a standard (meta)transcriptomics pipeline in blue is followed. However, before assembly an
assignation of reads from the holobiont is performed with SRC. The reads are dispatched in
four groups (symbiont reads, host reads, core reads, unassigned reads) that are assembled in
parallel.

integrate those false positives, chimeric, transcripts to the results. Chimeras will then impact downstream
results, notably the reconstruction of proteic sequences.

Thus, the idea was to assign reads to one of the actors of the holobiont prior to assembly. Then reads
could be assembled in parallel for each actor instead of mixing all reads in a single assembly result. We show
how SRC-c is integrated in a classic assembly pipeline in Figure 10. We intended to observe SRC-c impacts
on contigs quality and downstream analyses: whether it helps reducing the number of misassemblies, and if
its usage is associated with more functional annotation. Models are not all used in the same perspective:

� M1 and M2 are both associated with previously published results, they serve as proves of concept of
the sound results produced using SRC-c.

� M3 is the main research interest as its actors are poorly known, it is investigated in a quantitative
perspective. SRC-c is thus expected to both help identifying actors in a non-model system and to
produce better assemblies than a standard pipeline. For this model, we compared SRC-c’s results
with a classic assembly pipeline.

SRC-c’s role will be highlight till the end of this section because it is the main contribution made to this
work during this PhD thesis. In the meantime, our collaborator Arnaud Meng also committed to this work
and played a main role. We will describe assembly and downstream analyses in order for the reader to fully
understand the implications of this work, however we recall that these parts were Arnaud’s work. In the
same spirit, some details about experiments we did not contributed to (data sequencing protocol, ...) are
not provided in this manuscript in order to keep this section synthetic. They are all available in the preprint
manuscript [153]3.

3https://www.biorxiv.org/content/early/2017/11/17/221424

57

https://www.biorxiv.org/content/early/2017/11/17/221424

3.2 Experimental design

3.2.1 General pipeline

SRC-c SRC-c is integrated to a metatranscriptomics assembly pipeline. It is used to assign reads from an
holobiont transcriptome either to the host or to the symbionts. For each holobiont, libraries were gathered
to be indexed in SRC-c (banks). We divided the query step of the holobiont dataset Q in two parts, one
that consists in the comparison of the holobiont sequences to a bank of host sequences, and another that
performs the comparison to a bank of symbiont sequences.

Assembly and downstream analyses For all models, after SRC assignation step, each set of reads
was assembled using the de novo transcriptome assembly program Trinity [78] (v2.4.0) with default parame-
ters. The newly assembled contigs metrics were calculated with the Transrate program [220] (v1.0.3). Protein
coding domain prediction and functional annotations were realized using a publicly available pipeline4. Tax-
onomic assignment of the contigs was performed with MEGAN6 [95].

For M3 in particular, chimeras identification for all assembled contigs was realized following the protocol
described in [257], comparing contigs to the 7,215 Rhizaria presumed contigs from [9] and 3,494,295 coding
domains from de novo assembled contigs of 54 dinoflagellates transcriptomes.

3.2.2 SRC assignation before parallel assemblies

Several nature of banks For each of the three holobiont models, we needed banks to identify hosts
and symbionts actors. We chose the taxonomically closest organisms available in public datasets. The M1
host bank encompasses 20 assembled transcriptomes from Cnidaria and 2 genome-derived ESTs. The M1
symbiont bank includes 123 RNA-seq reads datasets (including the presumed major symbiont Symbiodinium
spp [211]) from the MMETSP project [102] 5, which is a project that puts efforts at completing banks of
marine protists. The M2 host bank involves 4 RNA-seq reads datasets from distinct Porifera genera. The M2
symbiont bank corresponds to the Tara Oceans metagenomic gene catalog (OM-RGC) assembled from the
small plankton corresponding to Bacteria or Archaea [226]. For M3, 7,215 host transcripts were extracted
from de novo assembled transcripts [9] published so far. The same symbiont bank was used for M3 than
for the M1. Thus this selection implied different use cases for SRC-c, with the indexation of reads (M1, M3
symbionts, M2 host), of assembled transcripts (M1 and M3 hosts) and of genes (M2 symbionts) for both
eukaryotes and prokaryotes organisms. These datasets sizes vary from 4.5 Mbp to 25 Gbp with sequences
length from 100 bp to 84 Kbp.

Parameters choice SRC-c was not always used with default parameters as the sequences natures
in bank differed from one another. We adapted the parameters according to the bank type. The different
situations encountered and the parameters sets chosen then provide interesting guidelines for users. First, the
solidity threshold wads adapted according to the nature of the sequences in the bank dataset. For libraries
whose sequences are reads, the default value for the solidity threshold (= 2) was kept. For longer sequences
(using libraries of assembled sequences or EST) the threshold was adapted to the non-redundant nature of
the datasets and set to 1. We chose a k-mer length of 25 according to the smaller input read length. We set
the similarity value s to 50% for models 1 and 3. We first set s to 50% for M2 as well, then decreased it to
40% in order to retrieve more sequences. For this study analyses were performed on a Linux system with 40
cores, with the option -t 0 (maximal number of available threads is used) and 250 GB of memory.

4https://github.com/arnaudmeng/dntap
5https://www.imicrobe.us/project/view/104

58

https://github.com/arnaudmeng/dntap
https://www.imicrobe.us/project/view/104

Figure 11: SRC-c indexation and query strategy for model 1 holobiont. On the
left, we represented banks for each holobiont actor. On the right, reads from the sequenced
holobiont. For each assignment category we show the proportion of holobionts reads that
could be categorized.

3.3 Validation of SRC using know models

3.3.1 SRC-c allowed comparisons of large scale datasets

The volume of sequences involved in the M1 and M2 reads assignation tasks provide a nice illustration of
SRC’s capacity to handle large datasets. We present the experiments volumes in Table 1.3. We also illustrate
SRC-c strategy applied to M1 in Figure 11

Indexed sequences number Queried sequences number Time (hh:mm:ss) Memory (Gb)
M1 (Cnidaria/Dinophita) symbionts library 5,563,498,607 755,025,024 15:40:42 34,2

host library 668,259 1:06:56 3,9
M2 (Porifera/Bacteria) symbionts library 40,154,822 33,220,028 21:04:47 58,9

host library 642,229,224 0:05:57 9,6

Table 1.3: Wallclock runtime and memory usage of SRC-c on M1 and M2.

3.3.2 Comparison to state of the art

We present a summary of qualitative results to highlight conclusions that follow the usage of SRC strategy.
For M1, M2, and later M3 as well, the reader can report to this work preprint manuscript for further
results details. Both M1 and M2 had assemblies already published, however M2 contigs were not obtained
with a similar assembly pipeline, which motivates a qualitative comparison. Our SRC-c approach allowed
assembling more contigs than previous studies, however with shorter N50 for both models (N50 of 971 bp
for M1 and 719 bp for M2 with our approach, 580 bp shorter than literature for M1 and 219 bp shorter
for M2). Conversely those contigs display high remapping rates for M1 (¿80%), and mixed results for m2
(25% ¡ x ¡ 86%)). Differences in the number of contigs as well as contigs metrics could be the results of
the use of distinct de novo assembly softwares. Contigs difference in size could be explained as well by the
assembly, since Trinity contigs are documented to be shorter than those from the other assembly software used
(CLC) [228]. More annotated contigs were found for M1 using SRC-c strategy (the comparison could not by
made for M2 since this information does not appear in the publication). Again, it is difficult to tell whether
this observation can be the consequence of a better suited assembly strategy, and / or the use of a different
annotation pipeline, and / or the supplementation of reference annotation databases between 2015 [182] and

59

2017. Results of assignation using MEGAN6 are very mixed. Depending on the target, MEGAN6 or SRC-c
strategy performs better by providing more assignations. However, intersections between MEGAN6 and
SRC-c, in particular for M1 host (all assignation found with MEGAN6 were also found with SRC-c, with
additional assignations found with SRC-c), encourage to pursue assignation task with our tool since they
validate some of the prediction made using our approach.

3.4 Added value of SRC on novel holobiont

3.4.1 Performances

We show SRC’s performances on this third Model in Table 1.4.

Indexed sequences volume Queried sequences volume Time (hh:mm:ss) Memory (Gb)
M3 (Radiolaria/Dinophita) symbionts library 5,563,498,607 97,957,494 7:05:28 4,10

host library 7,215 0:05:57 3,9

Table 1.4: Wallclock runtime and memory usage of SRC-c on M3.

3.4.2 Results

Comparison Model 3 does not come with an associated publication like models 1 and 2. In order to
have a baseline for comparison, we generated assembled transcripts with a strategy hereafter called no-SRC.
This no-SRC strategy consisted in direct production of a de novo assembled transcriptome, obtained from
holobiont reads considered all together. All metrics were then computed for this set of contigs and for SRC-c
strategy contigs and compared. The assembly metrics appear very similar between SRC and no-SRC.

Assemblies and CDS A comparable number of reads were used for the assembly step and a compa-
rable number of assembled contigs were obtained. The N50 value for the no-SRC strategy is slightly longer
while the remapping rates are 5% better with the SRC strategy. The SRC strategy showed around 46%
less chimeras (418 contigs) than the no-SRC strategy (777 contigs) with most chimeras contained in the
unassigned set. Though it seems not significant (0.465% chimeras for no-SRC versus 0.247% for SRC), in
terms of number of sequences to be studied afterwards by biologists this is a real gain (i.e. biologists will
not waste time to perform PCR or knock out experiments on these false sequences).

CDS, assignation and annotations Again, as well as for M2, M3 libraries may not contain enough
quality sequences from the host. Then only 3% of the holobiont reads are assigned to the host. Overall,
less unassigned reads were observed when the “correct” actors are involved thus the bank completeness is
increased (M1: 24.4% unassigned) compared to the poorly studied models.
We noticed slightly less annotated CDs with the SRC strategy, however regarding functional annotations, the
SRC and the no-SRC strategies provided very similar results. The top 5 functional annotations were strictly
identical for both approaches. However, the SRC strategy categorized the annotations among 4 subsets, which
can be explored independently, allowing group specific interpretations and biological hypothesis building for
each partner from the holobiont. For instance, symbiont CDS linked to the photosystem I and II were
detected, confirming that SRC-c succeeded to assign reads to photosynthetic actors, as expected here for the
symbiotic partner.

3.5 Discussion on holobionts results

Despite the lack of reference, SRC-c enabled to classify a fraction of the reads and helped providing quality
transcripts for M3. In addition, our strategy allowed defining a new category of contigs (the shared contigs)
in comparison to MEGAN6, we thus access to the information that these contigs may come from the core

60

expressed transcripts of the holobiont. Thus they give clues to the identification of genes expressed in all
the actors. However, results on the three models show that more strategies have to be investigated to
make the best of SRC on these instances. Future works on SRC-c parameters settings could include more
extensive exploration of the impact of the similarity threshold parameter on the sensitivity of our approach.
In this regard, if the reads similarity rate to the libraries could be relaxed, it may decrease the number of
unassigned reads in particular for poorly studied models. Assembly stages can also be realized differently,
for instance the addition of unassigned reads to other categories before the assembly could lead to longer
contigs. However, we will have to verify if the chimeras level remain low. Other perspectives on this work
will be presented in the conclusion chapter.

A step forward is to extract sequences related to functions of symbiosis. Sequence similarity networks
(SSN) are used to this extent. They are graphs that integrate protein sequences as nodes and record similar-
ity (for instance reached by protein sequence alignment) in the edges. From assembled transcripts, protein
sequences are predicted and inserted in the SSN. The SSN should help distinguishing connected components
composed exclusively of non symbiotic sequences and connected components linked to symbiotic radiolaria
and dinoflagellates. Then by associating the functional annotations linked to these components, hypoth-
esis can be drawn concerning the symbiosis mechanisms. This should also help identify new unannotated
sequences linked to symbiosis.

4 Using SRC-linker on long, spurious sequences

This section presents our attempts to tailor SRC to long reads, given the difficulties induced by their
spurious nature. We focus on finding overlaps between reads. This time, scaling challenges are intertwined
with sensitivity challenges as the sequences are very noisy. A vast majority of k-mers created by sequencing
errors in the sequences do not exist in the original DNA. Moreover, as we look for small k-mers, depending
on the coverage and on the size of k-mers (around size 15), it can be likely that many spurious k-mers show
occurrences above 2 in the dataset [30]. We start by benchmarking a regular SRC-l approach to long reads
mappers on simulated data, only downsizing k value to fit error rates. We assess their ability to retrieve
read pairs on a simple example. The proof of concept as well as comparisons were published in [145]. This
helps us to identify SRC’s limitations on long read, then to propose enhancements. We show a new feature
in SRC-l’s algorithm to better adapt to the chains of exons contained in RNA reads, and we propose an
exploratory solution for a new seed scheme for SRC.

4.1 SRC-linker: proof of concept for long reads

4.1.1 Comparison to state of the art

Overview In this comparison, recall, precision and performances are at stake. The recall represents
the number of relevant elements retrieved among all relevant elements. It corresponds to the ratio between
true positive and all positives. The precision represents the number of relevant element among the retrieved
elements. It corresponds to the ratio between true positive over true positive and false positive. Having a
good recall while remaining precise is a real hard task. In order to estimate the impact of indexing all k-mers
using the Quasi-dictionary in the context of long spurious reads comparisons, we simulated long reads coming
from different regions of a genome, and we compared the three described approaches to ours. Our goal here
is to demonstrate the potential offered by the Quasi-dictionary data structure. We chose two tools specially
dedicated to detect overlap between pairs of long reads (MHAP and Minimap), and one tool specialized in
long reads that was presented under the mapping-to-reference aspect. Doing so, we can assess how the two
categories of tools behave on this problem. Relying on the Quasi-Dictionary, we argue we can afford to index
all (solid) k-mers at a reasonable cost and then benefit from a more complete information about the content
of the reads than tools based on local sensitivity hashing. However, as presented above, MHAP, GraphMap
and Minimap use a second pass to increase their precision while SRC-l sticks to the single recruitment phase.

61

Read simulation It must be first noticed that no simulation tool for long RNA reads currently exists.
We designed a very simple experiment to be able to distinguish true from false similarities retrieved by the
different tools. We chose spots on the C. elegans genome (genome version PRJNA13758 from WormBase)
separated from hundreds of nucleotides and simulated reads on theses spots of 2000 bases long. This creates
the following situation. No reads overlap two different spots, and reads share whole-length overlaps. This
simple situation enables us to have access to the ground truth about read similarities without using a third-
party mapping tool. We chose C. elegans for its known relative simplicity (it contains few repeats within its
DNA sequence), which lowers the chance to mistake a region for another, and we preferred real biological
sequences to random sequences to be closer to the biological applications we aim at. Two reads sets of 100K
and 1M reads were simulated, using an error profile that mimics PacBio reads [170] and 12% and 15% error
rates, which represents the expected scenario in that sequencing technology. The ground truth is composed
of a set of read id couples. Each couple designs two reads simulated from the same locus. Each tested tool
also produces a set of read id couples. Recall and precision measures are given by the following formulas:

recall =
Number of correctly predicted couples

Number of ground truth couples

precision =
Number of correctly predicted couples

Number of predicted couples

The F-measure is provided by the following formula:

F-measure = 2 · precision · recall

precision + recall

Softwares and command lines We used MHAP version 2.1.1 with default parameters, Minimap
version 0.2-r123 with option -Sw 2 and Graphmap version 0.4.1 with default parameters. We tried increasing
the recall of Minimap by allowing to index more minimizers using the option -Sw so that its results would
be more comparable to GraphMap’s and ours. For MHAP, a similar feature could be tuned too but on our
simulations it increased non significantly the recall while decreasing the precision. We chose the best set of
parameters (k = 15, s = 8 for 12% and 15% error) for SRC-l indicated by our simulations. All tools allowed
multi-threading and were launched using 20 threads. We extended the timeout of 5 hours from the short
reads experiment regarding the longer sequences to process, reaching 15 hours wallclock.

Results We present results on two different error rate that would apply on real data in Tables 1.5 and 1.6

Minimap MHAP GraphMap SRC-linker
Recall(%) 99.31 86.54 97.77 97.96

Precision(%) 99.83 96.74 99.53 99.58
F-measure 99.57 91.35 99.15 98.76

Memory (GB) 6.37 25.94 11.87 2.55
Time (m:ss) 0:24 3:19 9:00 5:49

Table 1.5: Precision and recall followed by time and memory performances for 100K simu-
lated long reads on 1K distinct regions on the C. elegans genome, with 12% error rate.

From those results we can see that the key advantage expected from minimizers methods, time and
memory low footprint, is met with Minimap and only half-met with MHAP (which shows a quite high
memory consumption). If SRC-l running time if quite high and comparable to GraphMap’s, it however has
the lowest memory footprint, while indexing more elements than Minimap and MHAP. On 100K long reads

62

Minimap MHAP GraphMap SRC-linker
Recall(%) 63.25 14.21 92.08 91.95

Precision(%) 99.89 86.94 99.72 97.89
F-measure 77.46 24.43 95.75 94.83

Memory (GB) 6.38 26.32 12.03 2.65
Time (m:ss) 0:24 3:20 9:09 7:35

Table 1.6: Precision and recall followed by time and memory performances for 100K simu-
lated long reads on 1K distinct regions on the C. elegans genome with a 15% error rate.

with 12% error (Table 1.5), with the exception of MHAP recall, all tools present near perfect precision and
recall. As expected, all three state of the art tool provide a high precision rate on this first experiment.
As we increased the error to a more difficult scenario (Table 1.6), we can see that MHAP and Minimap
recall scores decrease while GraphMap maintains very high recall and precision. Our recall outperforms
those of other tools, however, as expected, we reach a lower precision than GraphMap. This shows that
SRC-l already provides acceptable precision without any post-treatment on the contrary to GraphMap and
MHAP that use downstream filters. This also shows that we successfully mimic GraphMap in its ability
to adapt to varying error rates. Minimap is presented as an experimental tool and has not the ambition
to reach the recalls of the other tools that integrate more developments. Its force relies in its lightweight
and fast execution. A third dataset of higher size (1M reads for 10K distinct regions) is generated to show
the scalability of each method. GraphMap ran for more than 15 hours on the bigger dataset thus reached
the timeout we set. MHAP crashed on this bigger dataset. All in all only Minimap and SRC-l managed to
scale on the bigger data volume. They obtained following results: 98.56% recall and 97.95% precision for
Minimap, and 98.28% recall and 92.63% precision for SRC-l. In these experiments we chose the parameters
of SRC-l to optimize its F-measure, giving results not always in favor of precision. The SRC-l precision
could be improved using downstream filters or more stringent parameters. We showed that the tool we
provide, while being simple works well as a recruitment tool for highly noisy sequences thanks to its ability
to preserve as much information as possible about the sequences. It presents both advantages to be robust to
changes over errors or read length, and to be scalable. Two pitfalls for state of the art tools are two choices
in their design: first, since thought for rapid assembly (such as Minimap) of long reads, they do not aim
at retrieving all overlaps between reads. They must be just enough accurate to elongate contigs. Secondly,
the reads we present are particularly small (though realistic for RNA) compared to usual use case for these
tools. Their seed recruitment step might expect longer sequences where to find chains of seeds. Then in the
case of shorter reads, less valid overlaps might be found. Importantly, we recall that our message here is not
to outperform state-of-the-art long read mappers that were designed and optimized specifically for this task.
We simply want to show the application potential that our data structure offers. Thus, we can summarize
the main disadvantage of SRC regarding those reads:

� SRC is not very efficient with k-mers of small size, such as explained above.

� The search of exact matches might not be enough to capture reads similarity since a lot of sequence
modifications occur with the errors.

� SRC’s precision can be improved.

� SRC looks for similarity through the read’s whole length while RNA sequences might only share exon
subsequences.

In the following, we propose to address the three first points using a novel seeding technique, and the last
point by generalizing the minimal k-mer span to defined regions of the reads.

63

Figure 12: Quasi k-mers features and match.

4.2 New features for adapting SRC to long reads

4.2.1 Minimal k-mer span on window

We place ourselves in the SRC-l framework. We generalized the minimal k-mer span algorithm in order
to adapt to exon-exon matching. Thus, two reads overlapping by only certain exons is a scenario that can
occur. In this case, we should detect local sensitivity within a window of the size of an exon, instead of
looking for k-mer span all along the read. Hence a supplementary parameter w is introduced. It determines
the length of a window in which computing the minimal k-mer span. Windows are computed by sliding
on a given query read length. This time, if at least one window of size w contains at least s% of positions
where an indexed k-mer of an indexed read spans, then these read are considered. The better window is
automatically selected by remembering the best matching positions score. This feature is now implemented
in SRC.

4.2.2 Seed scheme using quasi k-mers

The idea of quasi k-mers is to allow a (small) threshold of edit distance between the queried and the indexed
k-mers.

The intuition is that an exact match is required for a subpart of a k-mer (the hard part) and a distance
of one is allowed in the rest (the soft-part). An example of quasi k-mer and of quasi k-mers match is shown
in Figure 12. Quasi k-mers are indexed from the target data-set by associating any seen hard part to its soft
parts (step 1 of Figure 13). Query reads quasi k-mers are then compared to quasi k-mers of the index, an
distance of 1 being authorized between the soft-part of both quasi k-mers (step 2 of Figure 13).

Quasi k-mers The idead of quasi k-mers is to allow a (small) threshold of edit distance between the
queried and the indexed k-mers. The quasi k-mer is divided into two parts, the hard part for which we
require an exact match, and the soft part for which we authorize an edit distance of 1. This distance can be
computed in constant time, which is an advantage for performances. Quasi k-mers differ from spaced seeds
since spaced seeds permit wildcard characters (i.e. substitutions) while quasi k-mers allow both indels and
substitutions.

Indexation Indexations requires two index. The first index is done usin the QD, where k-mers of the
indexed set stored such as in SRC-l. Then all indexed k-mers are screened. For a given k-mer indexed, we
compute hard part and soft part. Soft parts length ls is even, and in practice within a k-mer they are the

64

Figure 13: SRC indexation and query using quasi k-mers. Hard parts are shown
in read, soft parts in black. 1) First, full length quasi k-mers are indexed in the QD. An
additional table helps to associate hard parts to soft parts. 2) Hard parts from query reads
are queried in the table and quasi k-mers are compared to find matches. When a match is
found, the full length quasi k-mer is reconstructed (i.e. the indexed version is taken, not the
queried version that can be different from what is indexed) and queried in the QD.

prefix and suffix of size ls
2 . We chose to divide soft part in two in order to be able to index a quasi k-mer

and its reverse complement. Hard part is then the middle substring of length lh = k− ls. A second index I
associates pairs of (hard, soft). Both half soft parts can be concatenated. One hard part can be associated
to several soft parts. Thus any hard part is associated to a list of couples (s1, s2) of soft parts. We consider
hard parts of size 15 or less, since these are the typical size of conserved-enough words across several long
reads sequences [32]. Whole soft parts are expected to be around 10 nucleotides long, however this will have
to be further tested.

A particular technique called open addressing can be used to handle collisions in hash tables. The
solution is to build an array that can contain all possible keys of a set. In this scheme, each possible key
has its own bucket. This technique allows to efficiently store sets when the key space is small. Thus if the
set of possible keys is too large, the available memory is not enough to allocate the array. In the case of
k-mers that are frequently indexed for mapping or storing De Bruijn graphs for instance, associating 32 bits
integers to k = 15 constitutes the limit since there are 1,073,741,824 possible words of length 15 on the
nucleic alphabet, which can fit on most laptop computers. Thus the first indexation of hard parts of small
size can be realized using open adressing, however the use of the QD allows to be more adaptive on the
length, in a perspective of error rates decreasing in the future years.

Querying In the querying phase, lh-mers from each read from the query set are screened. Reads are
went over read.size− ls nucleotides, starting at position ls

2 . lh-mers are looked up in the I index. If a match

exists, the ls
2 + 2 nucleotides on the left and of the right of the lh-mer in the query reads are compared

to the couples of soft parts in the QD. If for a couple the sum of the two edit distance is strictly below 2,
the indexed lh-mer and its the two matching soft parts are concatenated to form a k-mer that is queried in
the QD. This query of an indexed k-mers allows the the k current positions in the query to be considered

65

spanned by a shared quasi k-mer using SRC’s regular algorithm. The steps involving computing minimal
span and other SRC steps remain unchanged. It is noteworthy that the k-mer reconstitution ensures that
no false positive is queried in the QD, the whole structure thus does not provide any false positive in this
application.

5 Discussion

Quasi k-mer strategy is not yet implemented in SRC and lacks further testing to support the initial ideas.
Still, this inexact match scheme is expected to have twofold impact. Firstly, increase the recall by relaxing
the hard condition of exact matches. We highlight that our strategy would be particularly well tailored for
long reads since it allows indels in addition to substitutions. Secondly, by looking at overall words of size
k ≥ 20, we could increase the precision of our approach. Thus, longer k-mers are less prone to be found
repeated across genomes.

In Chapter I, we proposed a new indexation scheme based on a Minimal Perfect Hash Function (MPHF)
together with a fingerprint value associated to each indexed element. We have shown experiments on sets
containing more than eight billion elements indexed in less than an hour and using less than 25GB RAM.We
proposed two applications: SRC-counter (SRC-c) and SRC-linker (SRC-l). The first estimates the abundance
of a sequence in a read set. The second detects similarities between pair of reads inter or intra-read sets.

The potential of SRC to scale voluminous datasets is well established. With the work on holobionts, we
initiated its validation on biological data and highlighted advantages and current limitations of the method.
As for our main interest, long reads pairwise comparison, SRC might not be well-suited in its initial form.
Preliminary inputs for SRC’s adaptation to RNA long reads shown that SRC could be tuned to gain in
speed and precision. We highlight that a tool dedicated to retrieve pairwise similarities between RNA long
reads still misses in the literature, however new advances are proposed in Minimap2 paper [127]. We started
its evaluation on simulated data and we proposed two new features to better adapt it to the characteristics
of long reads. Since these improvements still have to be tested, in the following we will rather rely on
the well-established tool Minimap, that performed well on our benchmark. Minimap is though not really
adapted for transcriptomics purposes. Future works on SRC should enable to provide a tool that will be
tailored for both RNA and long reads. They include the implementation of quasi k-mers, but could it could
also be interesting to propose speed-ups for SRC. For instance, the query of a read could be stopped at the
first encountered window that completes the minimum k-mer span requirement.

66

Chapter 2

Cluster sequences in transcriptomics
datasets

67

As presented in the previous section, similarity detection between sequences allows to relate sequences
to one another. This deserves many applications, we shown for instance it helps to infer read’s origin in a
holobiont by assigning groups of reads to species in function of their resemblance to known species sequences.
In this application, using SRC, we realized a partition of the reads, meaning that we delineated subsets of
reads that share common properties (i.e. in this case, belonging to a certain actor of the holobiont). This
task used distance information between queried reads on one hand and a list of reference sequences on which
we relied on the other hand. However, certain applications do not imply the presence of reference sequences.
Groups can be defined by only comparing reads within a dataset. Different methods allow to divide datasets
in groups (clusters) in which elements share common features. Usually, clustering is made on the basis
of similarity measures between elements of the set. In the context of sequencing data, clustering is useful
because it allows to extract structured information from large reads sets. The sizes of datasets prevent to
define groups by hand, as well the quantity of data, and in certain cases noise makes this task non-trivial.

In this chapter our application case is the clustering of reads from a transcriptome sequencing into
as many groups as there were expressed genes sequenced. By defining such clusters, we aim at putting
together reads that come from isoforms coming from the same gene, even if these isoforms can differ for
instance because of alternative splicing. Moreover, the work presented in this chapter allows to cluster reads
de novo, without mapping on a reference technique and using only the information contained in the initial
dataset. With these two points, de novo clustering and long reads, in mind, we aim to meet a methodological
lack. During this thesis work, several pipelines for RNA long reads were published [28, 1]. However, at the
exception of one pipeline [77], all were designed to work with a reference. This means that a large majority
of species that do not benefit of reference could not be addressed, limiting the utilization of long reads to
applications mostly dealing with model species. De novo clustering of reads methods however exist, this
problem has been broadly faced in the past with short reads and assembled sequences from short reads.
However, it had not been handled in the case of long reads when this thesis work started. As we will show
in the following, long reads introduce unprecedented noise problems that need specific developments.

The developments presented in this chapter rely on methods of similarity detection such as those pre-
sented in the previous chapter. Being able to define clusters of reads per gene give access a variety of useful
information within a transcriptome sequencing experiment:

� For each gene, a proxy to its expression level. As stated in the introduction, even if a proportion of
reads is not full-length, they still correspond to a single transcript molecule expressed by a gene.

� For each gene, a list of reads that correspond to truncated or full-length isoforms.

� For the most erroneous reads, a chance to be linked to other reads with lower error rate (less infor-
mation loss).

Furthermore they allow to process groups of reads at the gene level of detail in downstream analysis. For
instance, clusters can be used to:

� Be corrected independently, offering both only sequences supposed to be close to one another and
smaller dataset scales, correction being a bottleneck in big datasets.

� Be analyzed independently (for instance isoform identification).

� Build consensus that provide a representative sequence per cluster. Such sequences are meant to be
cleared from most of the errors and can be compared to data banks to try to identify the gene reads
origin from.

Early attempts to solve such clustering problem can be traced back to before the age of NGS: in the NCBI
Unigen database [209] Expressed Sequence Tags (ESTs) are partitioned into clusters that are very likely to
represent distinct genes. In fact, clustering has been the basis for gene indexing in major gene catalogs like
Unigene, HGI, STACK or the TIGR Gene Indices [24, 186]. Here we update this question to long reads.
Thus the study presented in this chapter are meant to allow long read processing with additional information
concerning the common genomic origin of reads, and higher resolution by attributing each read a group of
related sequences.

In the following, we will discuss existing algorithms and methods that exist to tackle the clustering
problem we defined. We introduce definitions and concepts we think are useful to the reader to understand the
methodological choices we made. We will show current limitations of published methods with regards to long
reads, which led us to propose a novel algorithm and its implementation. Both constitute a main contribution
of this thesis work and will be presented in details. Presented results on real instances are intended to
help assess the behavior of our clustering method, thus we will not propose biological interpretation of
these results, or present novel biological results. This work occurred during the sequencing of novel full
transcriptomes datasets from mouse tissues within the ASTER ANR group project, that were used for our
study and that are briefly presented.

1 The issue of biological sequences clustering

In this section we introduce methodological concepts that will be useful to understand our contribution. We
separate general algorithmic clues for solving our clustering problem and actual implementations applied to
sequencing data clustering. We then evaluate how presented algorithms and methods work on long reads.

1.1 Clustering and community detection

1.1.1 Clustering versus community detection

Usually, a matrix of similarity is used to represent connections between elements and to draw groups. This is
equivalent to a representation using a complete graph, where nodes are elements and weighted edges report
the degree of similarity between each pair of elements. Statistical approaches are then used to retrieve
groups. When a threshold is applied on detected similarity, edges carrying similarity below the threshold
are removed which leads to an incomplete graph. On this kind of instances, topological approaches can be
applied to select relevant groups or classes. Classically, optimization problems look for similarity measures to
be minimized (respectively maximized) between (respectively within) clusters. Roughly speaking, these class
resolution strategies can be classified into two approaches based on graph study, according to applications
and the scientific community of affiliation: a graph clustering strategy based on the search for minimal cuts
in graphs and a community finding strategy based on the search for dense subgraphs (see Figure 1). The first

a) b)

Figure 1: Clustering paradigms. a) A graph clustering strategy finds a partition of a
graph in a predefined number of clusters, trying to minimizing the number of edges running
between clusters. b) A community finding strategy looks for dense subgraphs, such as cliques
or quasi cliques within the initial graph.

approach generally searches for a partition into a fixed number of clusters by deleting a minimum number of
edges (called the cut size) that are supposed to be incorrect in the graph. The second approach frequently
uses a criterion that measures the edge densities in subgraphs and divides the graph in groups of nodes
for which the within density is higher than the between density, without a priori regarding the number of
clusters. Several definitions for edge density of subgraphs have been tried. In an undirected graph G = (V,E)

69

with n = |V | nodes and v = |E| edges, the edge density d(S) of a subgraph S with nS nodes, vS internal
edges (vS = |(n,m) m ∈ Sandn ∈ S|) is defined as such: d(S) = vS

nS(nS−1)/2 [255]. A simple subgraph that

is expected to have a maximal edge density according to any definition is a maximal clique (a clique that
cannot be extended by including any more node). γ-cliques can be more adapted to real life data. They
are defined as subgraphs with an edge density of at least γ, with γ between 0 and 1. However, the maximal
cliques cannot be listed in polynomial time for many graphs, and finding the maximum γ clique for a fixed γ
density is also NP-complete [177]. On top of that, incompleteness in real data might lead to loss of maximal
cliques that should appear if the information were complete. Thus, simpler measures such as the number
of triangles are used instead to measure the subgraphs density. Given that it is difficult to decide on the
right number of clusters and to form them solely on the basis of minimizing potentially erroneous links, the
main findings and recent developments are based on the community finding strategy. Thus graph clustering
techniques work well for specific types of problems (particularly graph bisection, i.e. partition in two sets, or
problems with well defined edges similarity measures), but perform poorly in more general cases [165]. Our
application falls in the general case since we do not know a priori how many clusters are expected, nor we
have a precise definition of similarity to be put on the edges (the similarity of two reads is rarely a binary
information). We thus choose to model our clustering problem as community finding problem, a gene’s set of
reads being a community in our general case. We therefore introduce more in detail the community finding
problem and the main associated algorithms.

1.1.2 Quick introduction to community detection

Communities are groups of vertices usually obtained via graph partitioning, however there is no rigorous
shared definition. A graph partition is a division of the graph such that any node belongs to a single cluster.
Communities are clusters, usually nodes belong to a community because they have something (property
related to their nature, role) in common. A common precondition is that the graph must be sparse, i.e.
the number of edges in the graph is of the order of the number of nodes, not over. A second one is the
“connectedness” of a community. However, objects such as cliques can hardly model properly communities
and should have to be relaxed. Apart from this “connectedness”, it is frequent that for a given problem, little
is assumed about the graph structure of communities. Along with this, the number and sizes of expected
communities are often not known a priori. Due to the loose setting of the problem definition, a plethora of
methods have been proposed. Moreover such problem has appeared among many disciplines, taking many
forms and being slightly differently formalized according to the specific problems it was linked with.

Graph partitioning was first formalized in the 1970’s. However, algorithms for graph partitioning were
not suitable for communities detection as they expected as an input the sizes and/or number of clusters to
retrieve. One of the fundamental papers to face this problem was proposed by Girvan and Newman [166]
(the proposed algorithm being dubbed after their initials as the GN algorithm). They introduced the idea
that a certain measure could assess if subgraphs are eligible to fall in the community definition or not. By
maximizing this measure within the graph they partition it into communities. More precisely they proposed
to identify edges that connect putative communities in a graph and to remove them via a procedure, in
order to isolate each community. This procedure was relying on a measure called edge-betweenness. The
complexity of this algorithm is cubic (O(n3) with n the number of edges), on sparse, real instance graphs,
which made it computationally intractable on large graphs. Then other measures were proposed, the most
popular for this problem being the modularity that is described thereafter. We limit the presentation to the
most broadly used algorithms, however a very complete review on this topic was proposed in [65].

1.1.3 State of the art algorithms

The first methods for community finding relied on edge-betweeness but were then replaced by more advanced
developments. We present algorithms based on modularity [166] and clustering coefficient [245] that are two
core notions for community finding. The clustering coefficient is used our contribution. We also present
briefly some alternative approaches. The most popular algorithms from this section will then be tested for

70

our specific problem.

Modularity Modularity was introduced by Newman as an improvement of the GN algorithm [166]. A
first goal was to reduce the limiting complexity of the GN algorithm. Girvan et al. went from a cubic
complexity to a second algorithm based on a greedy optimization in O((m + n)n), or O(n2) on a sparse
graph (n edges m nodes) [72]. Then was proposed another optimization that reached O(nlog2(n)) on most
real instances [39]. This opened the way to communities detection on real life large instances, such as those
that can be encountered in bioinformatics.
Modularity Q is the fraction of edges that fall within communities minus the expected value of the same
quantity if edges fall at random without regard for the community structure. A high value of Q represents
a good community division. The null model (random graph) is the basic concept behind the definition of
modularity, as a community is expected to have a number of edges that exceeds the number of edges the
same subgraph would have in the null model. The idea is to optimize Q over possible divisions of the graph.
In practice the optimization is approximated with a greedy algorithm that repeatedly joins communities
together in pairs, choosing at each step the join that results in the greatest increase (or smallest decrease)
in Q. This algorithm and its further refinements and optimizations helped finding community structure
even in very large networks and are maybe the most popular solutions to perform this task. However, they
tend to form quickly large communities at the expenses of small ones. A more recent work also based on
modularity is Louvain algorithm [21]. It is looking for a hierarchy of clusters, by practicing a multi-level
optimization that merges the clusters initially reduced to one element as long as the modularity increases.
This algorithm is fast because it uses a greedy strategy and is quite popular for extracting communities from
large networks. However, like the other algorithms based on modularity, it suffers from two drawbacks: it
has difficulty dealing with small clusters and is unstable in that, depending on the order of application of
merges, it can produce very different solutions that are difficult to compare [75]. The clustering coefficient
can be related to the average distance between pairs of neighbors of the vertex. This distance can be between
one (if neighbors are connected) or two (if they are not). As the distance between two connected nodes is on
average greater than one, authors related this to a curvature measure. They proposed a metric representing
the distance between nodes and a curvature and defined communities as subgraphs with a large curvature.

Other approaches The clustering coefficient [245] is an alternative to modularity for the measure
of subgraphs densities. It measures the concentration of triangles in a given subgraph [164]. In [55], the
clustering coefficient is used as a local metric on nodes. The clustering coefficient can be related to the
average distance between pairs of neighbors of the vertex. Authors proposed a metric representing the
distance between nodes and a curvature. They defined communities as subgraphs with a large curvature.
An algorithm works with the measure of information centrality, based on the concept of efficiency [67].
Efficiency measures how well information can be disseminated in a graph using the shortest paths between
its nodes. The efficiency of a graph is defined as the average of the inverse distances between all pairs of
vertices. If the nodes are close then the efficiency is high. It is expected from a community that it maintains
a good efficiency within its nodes. However, the complexity of this approach is high (O(n4), n being the set
of nodes in a sparse graph).

The concept of graph-partitioning itself was questioned as, according to definitions, communities can in
certain case intersect. In this context, algorithms realizing a cover were proposed. Some applications can
justify to change the definition of communities as objects that have potential overlaps. For instance, the
reads coming from the expression of two copies of paralog genes can be seen as two overlapping communities.
The most popular technique is the Clique Percolation Method (CPM) by Palla et al. [172]. This method
defines communities as maximal unions of adjacent cliques of a certain size. It assumes the graph has a
large number of cliques and this can be a limitation. On real instances many nodes can be left out, in
particular isolated nodes in the graph. Finally, there exist other proposals such as an algorithm based on
the generalization of the clustering coefficient [187], or label propagation algorithms [188].

71

1.2 Method for biological sequences clustering

In this section, we present biological sequences clustering. We start by giving a list of the main generic
methods designed for broad purposes (not only RNA sequences), which allows us to illustrate applications
of the previously stated community finding algorithms. Then we present clustering specific developments
dedicated to RNA sequences.

1.2.1 Background of community detection in the biological sequences context

We mentioned that similarity information was the core information used to build graphs on which clustering
methods perform cluster resolution. As they were based on short but reliable sequences, many works ap-
plied to sequence clustering put most of their efforts in finding the most efficient way to compute similarity.
Indeed, the scale of short reads experiments motivated dedicated developments. These methods essentially
tried to avoid all versus all pairwise comparison of sequences, that became a major issue with the advent
of NGS and metatranscriptomics. Graphs representing reads similarities could then be draw, with reads as
nodes and edges linking pairs of reads with similarity over a given threshold. On the other hand, certain
methods remained quite basic in their clustering scheme (e.g. CD-HIT [131], SEED [10], Uclust [57], DNA-
CLUST [71]). For instance, connected components could be extracted from the graph of similarity as final
clusters. These approaches and the underlying similarity measures were thought for highly similar sequences.
Other works that include more specific developments such as OTU clustering (operational taxonomic units,
which are groups sequences from organisms from close biological groups according to a similarity threshold
that is defined in specific conserved regions of the DNA or RNA) [261, 140]. These methods rely on the
general assumption that there exist representative sequences of a cluster, to which other sequences can be
linked.

Previously described community finding algorithms also benefited from implementations in this context.
In [167] was proposed a method for the characterization of genome-wide repetitive sequences in 454 genomics
datasets. The authors described a precise clustering of repeats based on communities detection [166]. This
method works on NGS reads and start from pairs of short reads similarities that are way easier to compute
and with order of magnitude less errors. The CPM algorithm was used to cluster protein families [98, 2], while
Louvain algorithm was used for the clustering of specific RNA subunits [64] or homologous proteins [156].

1.2.2 RNA clustering applications

Several types of clusters can be looked of with RNA sequences. Reads can be grouped by gene of origin, or
constitute smaller clusters of similar alternative transcripts. All genes are not expressed at the same level in
the cell, which leads to an heterogeneous abundance of reads for the different transcripts in presence. Thus
clusters of different sizes including small ones are expected, which is a hurdle for most algorithms, including
the prevalent methods based on community detection [65].

A core application for sequence clustering methods when it comes to working with RNA has been the
clustering of EST. This type of data, produce and studied in the 2000’s, shared the same type of problematics
than long RNA reads: being able to cluster and capture alternate transcripts forms that represent a single
gene, and obtain a consensus of from the sequences (by assembly). Most of cDNA clones used did not
represent full-length mRNA, and ESTs were known to contain errors. ESTs were collected into gene indices,
which were clusters where each set of transcripts correspond to a single gene. Tools such as STACK [37]
(with a clustering phase made by d2 cluster [26]) performed such tasks. d2 cluster [26] was named after
the d2 distance of dissimilarity between two sequences introduced by Torney [232], based on the comparison
of the multiplicity of words between them (d2 = 0 meaning that two sequences are identical). After the
similarity computation, many of these tools used single-linkage transitive closure algorithms (i.e. finding
connected component in the graph) [53, 27]. Such clustering had the advantage to recruit all transcripts of
a gene that share at least an exon, and to produce rather big clusters. A counterpart of searching connected
components in the graph of EST sequence was that its simplicity could lead to chimeric clusters, for instance

72

because of repeats. These chimeric clusters would lead unrelated gene families to each other. Other tools
such as CD-HIT [131] also proposed a “EST” version to retrieve clusters of similar sequences.

1.3 Clustering RNA long reads

Previous works The issue is to automatically group alternative transcripts in a same cluster (Figure 6),
which means retrieve and account for similarity information despite the reads error rates. We presented clus-
tering tools that were proposed for NGS reads. As for TGS long reads, a few recently published pipelines
aim at retrieving the expressed gene that correspond to reads, but they rely on reference genome informa-
tion [28, 1]. A sole tool, Tofu, is designed to work with reads de novo and was published in 2015 [77]. Tofu
is an iterative pipeline that highly relies on the properties of PacBio sequencing experiment, and requires
specific features of long reads from Iso-seq sequencing. It is therefore adapted to PacBio reads, but not to
ONT reads. Tofu relies on previous works towards the clustering of PacBio reads, summed up in the core
clustering method called ICE. Reads of higher quality (CCS) are mapped against one another and similar
isoforms are detected using BLASR [32]. A graph of isoform similarity is then built on this basis. Maximal
cliques are looked for in the graph [174]. Once a clique is found, nodes are removed from the graph, and the
procedure is repeated until the whole graph is partitioned. Each clique is considered as a cluster. Inciden-
tally, the aim of Tofu differs from our expected result since it retrieves one cluster per isoform rather than
one cluster per expressed gene. However, it is a pipeline that goes further than isoform clustering, and we
will discuss its interest in the next chapters.

1.3.1 Validation of clustering methods goodness

In order to asses which algorithm performs correctly on long reads from Nanopore experiments, we set up
a benchmark used real data from mouse transcriptome. Mouse has the advantage to possess good quality
reference genome and transcriptomes that can be used for validation, by comparing any de novo result to
a mapping result. The reads we used were sequenced at the Genoscope by Jean-Marc Aury’s team in the
context of the ASTER ANR project, which has intersecting goals with the presented work.

Mapping to obtain reference clusters for validation Among the several generations of
sequencing datasets, we used 1Donly Nanopore reads from the mouse brain transcriptome sequenced on a
MinION platform (accession number: ERP107503)1. 1,256,967 nanopore 1D reads were obtained, represent-
ing around 2Gb of data with an average size of 1650bp and a N50 of 1885bp. “Ground truth” clusters were
computed at the Genoscope and used here for validation purpose. A Genoscope in-house protocol based
on mapping on a reference was performed. Reads from the mouse brain transcriptome were aligned to the
masked mouse genome assembly (version GRCm38) using BLAT [103]. For each read, the best matches
based on BLAT score (with an identity percent greater than 90%) were selected. Then, those matches were
realigned on the unmasked version of the genome using Est2genome [159]. Reads that mapped onto the mi-
tochondrial and ribosomal sequences were discarded. Moreover, one region on chromosome 1 was excluded as
it harbors a high number of reads (>10k). Next, reads were clustered according to their genomic positions:
two reads were added in a given cluster if sharing at least 10 nucleotides in their exonic regions. For the
whole data experiment, all reads that could be mapped on the reference were taken into account (501,787).
Due to repeats, some reads were mapped at multiple loci on the reference. When a given read maps on
several loci, such loci are gathered in a single expected cluster (12,596 expected clusters, we recall that the
total number of genes in mouse is around 27,000). This means that for instance reads from copies of paralog
genes that have not diverged to much or reads containing a copy of a transposable elements are expected to
be in the same cluster. This set of clusters, or a subset, is used in the following as a “ground truth”. not all
reads errors due to repeats

1https://www.ebi.ac.uk/ena/data/search?query=ERP107503

73

Clusters’ goodness assessment metrics To assess the results, we used recall and precision
measures, which are standard measures to assess the relevance of biological sequence clustering [243]. The
recall and precision measures are based on reference clusters obtained by mapping for this validation. They
are computed based on representative graphs [213]. These measures were already used to assess the relevance
of biological sequence clustering [243]. Let {C1, . . . Ci}1≤i≤L be the set of clusters found by the clustering
method tested, where L is the number of predicted clusters. Let {K1, . . .Kj}1≤j≤K be the set of “ground
truth” clusters, where K the number of expected clusters. Let Rij be the number of nodes from Ci that are
in “ground truth” cluster Kj . Recall and precision are defined by:

Recall =

K∑
j=1

maxi(Rij)

L∑
i=1

K∑
j=1

Rij

(2.1)

Precision =

L∑
i=1

maxj(Rij)

L∑
i=1

K∑
j=1

Rij

(2.2)

Note that the “ground truth” is not really available and that it is estimated from mapping results on the
reference genome. Recall expresses the mean over all clusters of the fraction of relevant reads in a result
cluster out of the expected read population of this cluster. It presents to which extent clusters are complete.
Precision expresses the mean over all clusters of the fraction of relevant reads among the population of a
result cluster. It shows the clusters’ purity. The F-measure is a summary measure computed as the weighted
harmonic mean between precision and recall. Recall and precision are tailored to express the confidence
that can be placed in the method, according to its ability to retrieve information and to be precise. We
complementary assess the closeness of the computed clusters as compared to mapping approaches. Let X0

be the reference partition (set of clusters obtained by mapping), and X the partition obtained using a given
clustering method. Then a11 is the number of pairs of nodes that are placed in a same cluster in X0 and
X1. a00 indicates the number of pairs for which nodes are placed in different clusters both in X0 and X1.
a10 (respectively a01) is the number of pairs of nodes placed in the same community in the reference X0

(respectively X) but in different clusters in X (respectively X0). Based on those, several indices show the
match between the reference and computed partitions described, such as the Jaccard index:

J(X0,X) =
a11

a11 + a10 + a01
(2.3)

In ranges in [0, 1] The closer to 1, the closer the predicted set of clusters is close to the “ground truth” set.

1.3.2 Evaluation of state of the art clustering algorithms on long reads

We first study the behavior of major community finding algorithms on long reads, as we consider they are
the basis of implemented methods to cluster sequences. To our knowledge, none of these algorithms had
previously been tried for the purpose we describe using TGS reads. We chose to perform the benchmark
on a subset of 10K reads (10,183 mouse reads within 207 reference clusters) from the previously described
dataset. This allows a quick assessment of the different results. However, such sampling can accentuate
the low expression effect in the subset. We have thus checked the methods on a second 10K sample from
chromosome 1 only to also account for highly expressed genes. We evaluated four state-of-the-art methods
that were previously applied to similar problems of biological clustering: single linkage transitive-closure
(which is not properly a community finding algorithm but has been a widely spread solution for EST, used
for instance in [53, 27, 37]), a modularity-based algorithm [73] (used in [152, 247, 167]),the Clique Percolation
Method by Palla et al [172] (used in [98, 2]) and Louvain algorithm [21] (used in [64, 156]). Any of these

74

methods require a common input similarity graph. Such graph was computed using Minimap in the same
fashion than in last section of the previous chapter. The reads constituted the set of nodes of the input graph,
and we draw edges between nodes when Minimap detected similarity between a pair of reads. More details
on the use of Minimap in this case is given later in this chapter. Both benchmarks are presented in Tables 2.1
and 2.2. Trends presented in both Tables lead to the same conclusions. On a rather small instance already,

Table 2.1: Comparison with state of the art methods. The benchmark was realized on a 10K
reads dataset from the mouse brain transcriptome. Recall precision and Jaccard Index are
presented (see Equation 2.3, 2.1 and 2.2) to assess for the goodness of communities detection.
CPM5 (respectively CPM50) designates the CPM algorithm using k = 5 (respectively k =
50).

Recall (%) Precision (%) F-measure (%) Jaccard index
Transitive closure 75.74 5.614 13.62 7.3E−4

Modularity 60.70 71.16 65.51 9.7E−2

CPM5 79.00 69.35 73.86 3.5E−1

CPM50 49.21 89.92 63.60 7.6E−2

Louvain 88.58 14.91 25.53 1.1E−3

Table 2.2: Comparison with state of the art methods on a chromosome 1 10K reads sample.
Reads were selected randomly from the brain transcriptome dataset. Recall precision and
Jaccard Index are presented (see Equations (3,4,5). CPM5 (respectively CPM50) designates
the CPM algorithm using k = 5 (respectively k = 50).

Recall (%) Precision (%) F-measure (%) Jaccard index
Connected comp. 69.04 21.76 33.09 2.3E−1

Modularity 34.30 12.0 17.77 2.1E−1

CPM5 55.29 29.27 38.27 3.4E−1

CPM50 12.52 89.63 21.96 5.2E−1

Louvain 87.50 1.191 2.350 3.1E−2

all approaches show globally a lack of precision. As expected, the transitive closure approach suffers from
low precision, as it tends to aggregate too many reads. Thus, low precision conveys the idea that clusters
were mixed up. Low precision combined to high recall indicates that most of the reads are retrieved in
big clusters, that represent several “ground truth clusters” mistakenly put together. On the contrary high
precision combined to low recall tends to show that the data was over-clustered, leading to small, hence
precise clusters that do not gather a lot of information. The modularity-based approach fails to find good
clusters for this graph, with both low recall and precision. Louvain is also based on modularity and shows
even more contrasted patterns, where it seems that most of the reads are recruited in a same cluster. Despite
showing the best recall, Louvain’s precision is too low to reach a high F-measure or Jaccard index. Louvain
being an multi-level algorithm, we also tested results after each iteration, with similar trends (presented
results being for the last iteration of their algorithm). In the introduction to community finding methods,
we anticipated that the heterogeneous size distribution of the clusters could be a cause of failure, as well
as of overlapping effects due to the repeats. CPM was tested with values for its input parameter k ranging
from 3 to 50 (no community found for greater values). k represents Results are presented for k=5 and k=50

75

and summarize the behavior of this approach on our input graph. For low values of k, CPM outputs more
clusters and has better recall than for high values. However, its precision is globally low. For higher values
of k, the results are strongly enhanced but represent only a small fraction of the input. By concentrating its
results in a small subset of clusters, it obtains a poor recall and not all its predicted clusters can be trusted.
Thus, this study demonstrates that the current community finding approaches have limited power on a long
read dataset. In order to assess whether the implementations specifically designed for sequence clustering
help in the treatment of long reads, we present a second study in the following.

1.3.3 Evaluation of sequence clustering tools on long reads

To set up this second benchmark, we reproduced the study designed in one of the latest of sequence clustering
tools’ paper [261]. Zorita et al. selected the most widely used clustering tools to compare their method with:
CD-HIT [131], SEED [10] and Rainbow [36]. We added the only other de novo clustering tool that, to
our knowledge, is designed to work with long reads, Tofu [77]. We used the same mouse dataset as in the
previous section, and present our result in Table 2.3. Again, a second way to sample data is also presented
in a second Table 2.4.

Recall (%) Precision (%) F-measure (%) Status

CD-HIT 26.60 99.27 41.96 run
SEED 0 0 0 run

Starcode - - - error
Rainbow - - - could not

be run
Tofu - - - could no

be run

Table 2.3: Benchmark of nucleic acid sequence clustering tools. Each tool embeds its own
strategy to compute similarity between sequences, our pipeline integrates Minimap. The
three first columns present the same metrics than in previous benchmark. The status column
indicates whether the tool could be used on ONT reads. Wallclock time and peak memory
are reported in the last columns. Starcode finished with error message “does not work with
sequences longer than max sequence length exceeded (1023)”. SEED returned an empty
output. Rainbow could not be run because it explicitly asks for paired reads typical from
RAD-seq short reads sequencing. Tofu pipeline specifically involves sequences from PB Iso-
seq sequencing that cannot be replaced with ONT reads.

All these tools counter-perform, as only two could actually be launched and give poor results (F-measure
up to 41.96% due to low recall). SEED is designed to create clusters with sequences that differ from at most
3 mismatches, thus finds no clusters. Starcode is not adapted to the size of ONT sequences and terminates
with an error message. Moreover, as well as SEEDS, Starcode authorizes a limited distance between pairs
of sequences (a maximum Levenshtein distance of 8) which is not adapted to long reads error rate. We
modified Starcode source code to increase the maximum length size for reads. This led Starcode to either
output singleton clusters or segfaulting for large maximum values. Rainbow only accepts paired reads such

76

Recall (%) Precision (%) F-measure (%) Status time (hh:mm:ss) Memory (Mb)

CD-HIT 11.70 99.87 20.95 run 03:33:2 3.11
SEED 0 0 0 run ends -

immediately
Starcode - - - error - -
Rainbow - - - could not - -

be run
Tofu - - - could no - -

be run

Table 2.4: Benchmark of nucleic acid sequence clustering tools (read sampling
from mouse chromosome 1).

as those sequenced in RAD-seq short reads experiments (sequencing of isolated specific genome regions).
CD-HIT, that maybe the most broadly used sequence clustering tool, was used in its “est” version. We
tested different values for sequence identity threshold (-c), that can be decreased down to 0.8. We report
only the best result, reached for -c 0.8. Finally, Tofu highly relies on the specificity of Pacific Bioscience
RNA protocol (Iso-seq) sequences, and cannot be run with ONT reads. However, we recall that none of
these tools was designed to work with ONT reads, which explains the results. At the exception of Tofu, they
are anterior to TGS and suppose high similarity between sequences. This study, jointly with the previous
section, shows that there is room for improvement for de novo clustering of nanopore reads. Notably, any
proposed solution lacks of precision (or are very precise at the scale of a few clusters), and many output
extremely large or extremely small clusters according to the benchmarks. This conclusion motivates our own
developments, that aim at proposing a new clustering method adapted to ONT long reads.

2 Novel algorithm for gene expression clustering in

long reads

This section describes an algorithm dedicated to the clustering of long RNA reads in clusters by gene, that we
designed during this thesis. Within a long read dataset, our goal is to de novo identify for each expressed gene
the associated subset of TGS reads. Our method was designed with in mind general long reads properties,
before being tested on ONT reads in the next section. Here we state our methodological choices and explain
the algorithm.

2.0.4 General principles

While being largely inspired by community finding strategies, our method intend to take the best of both
worlds and include some feature from the graph clustering strategies, by trying to minimize a cut size. Details
of these methods are detailed in the following. As any general clustering purpose, we seek to maximize intra-
cluster similarity and minimize inter-cluster similarity. As mentioned previously, the expected subgraph
signature of a gene in the graph of reads is a community, that is, a cluster of similar reads. Our method
makes no assumption on the number of expressed genes (i.e. communities), since we want it to work on non
model species. We do not make assumption either on the size distribution of such communities. As we want
to realize a partition of the graph, there are no intersecting communities (no read belongs to several gene
families) and every node belongs to a community (each read is assigned to a gene).

77

2.0.5 Description of input graph object

Our method starts from a set of long reads and a graph of similarity between them. We define a similarity
graph as an undirected graph in which nodes are reads and there is an edge between two nodes if the
computed similarity between these nodes exceeds a fixed threshold. This kind of graph can be constructed
using mapping methods dedicated to long reads, that are able to detect overlaps between long reads. We
presented and compared main methods in the previous chapter. In the graph, reads from a same gene are
expected to be connected with one another because they are likely to share exons. In the ideal case, all reads
from a gene are connected with one another. It is therefore a clique. We shown in the end of the previous
chapter that the spurious nature of data imposes the use of heuristics to detect read overlaps. As previously
presented, this leads to failing to retrieve all links between reads (recall of mapping methods is not of 100%),
and to the presence of spurious links (wrong connections between unrelated reads, since precision is not
of 100% either). This leads to the expectation of a graph with both missing edges and spurious edges. A
toy illustration of the situation is presented in Figure 2. These caveats have to be taken into account. In

Figure 2: A small example of read similarity graph. Each read is a node, detected sim-
ilarity between reads is materialized by an edge if it is over a given threshold. The expected
signature of a gene in such a graph is a clique and a connected component. Communities in
this example are colored zones (green and rose). Noise in data leads to missing information
(missing edge in the green subgraph) as well as spurious edges between unrelated genes (red
edge).

particular, we want to obtain a method which clusters can be trusted, thus makes good choices in removing
the spurious links.

2.0.6 Formalization

As previously presented, community finding algorithms rely on measures of the density of edges in subgraphs.
To measure the density within subgraphs, we choose to use the clustering coefficient (ClCo) [164] rather
than modularity. Indeed, we assume that a gene should be represented by a complete subgraph (clique) in a
perfect similarity graph. As previously stated in its definition, this coefficient is more directly connected to
the notion of clique than modularity. An example of ClCo computation is given in Figure 3. Working with
a possibly heterogeneous graphs, ClCo computations also allow us to compute local densities rather than
trying to optimize a global metric. Naturally, subgraphs which cannot increase their clustering coefficient
by the inclusion of new nodes are good candidates for community clusters. The foundation of our method is
then a problem depending on two parameters, the number k of clusters and the cutoff θ on the ClCo value.
Specifically, the original problem is formalized as follows:

Definition 1 A community is a connected component in the graph of similarity having a clustering coeffi-
cient above a fixed cutoff θ. An optimal clustering in k communities is a minimal k-cut, that is, a partition

78

Figure 3: An example of ClCo computation. ClCo’s value is the highest on cliques. It
can be computed by dividing the number of edges of the observed graph by the number of
expected edges if this graph were a clique. This leads to a value of 1 for cliques, and between
0 and 1 for any other graph.

of the graph nodes in k subsets, that minimizes the total number of edges between two different subsets (the
cut-set).

Relying on results from previous chapter, we assume that the overlap detection procedure has good specificity
(it produces a low rate of spurious overlaps), thus our input similarity graph contains mostly biologically
sound edges. The logic behind the search for a minimum cut in the graph is that most of the edges of the
initial graph should therefore be kept during clustering. This problem is known to be NP-hard for k ≥ 3 [46].
Another source of complexity is that we don’t know in advance the number of communities, so we have to
guess the value of k. One should thus compute the k-cut for each possible value between 1 and the maximum,
which is the number of reads. Solving this problem is not feasible for the large number of reads that have
to be managed. We are thus looking for an approximation of the solution by using an efficient heuristic
approach exploring a restricted space of values for k. Finally, the second parameter, the cutoff θ, is not
known either. The algorithm has thus to loop over all possible values, that is, all ClCo values for a given
connected component. In practice, we will show it is sufficient to sample a restricted space of possible k
values. In short, our method means to find communities such as:

1. A community is a connected component having a clustering coefficient above a fixed cutoff θ ¿ 0.

2. Communities are disjoint sets. These two first properties are illustrated in Figure 4.

3. An optimal clustering in k communities is a minimal k-cut of the graph. Figure 5 shows the usage of
this third property.

2.1 Implementation details

2.1.1 Outline

Our community detection algorithm is composed of two main steps. The first one looks for an upper bound
of the number of clusters k. To this aim, we relax the condition of disjoint communities and look initially
for star subgraphs (a read connected to all reads similar to it) having a clustering coefficient above a certain
cutoff. This corresponds to detecting well-connected reads, called seed reads, using ClCo and node degrees.
They form the basis of communities with their neighborhood.

The main challenge is then to refine the boundaries of each community in order to fulfill the partition
condition. During this process, the value of k is progressively refined by possibly merging clusters whose
combination produces a better community (greater ClCo value). The other possibility of refinement is to
assign nodes to a community and remove them from another. If x edges between a node and its previous

79

Figure 4: Here we choose an example of partitions with cutoff θ fixed to 0.9. Two
possible ways to partition the graph are presented on the left and on the right. Communities
are colored subgraphs, there are three communities on the left partition and two on the right
one. We computed the ClCo of each community. The left set of communities is eligible
according to the properties looked for in our algorithm, because 1-all communities’ ClCo are
above or equal to the cutoff, and 2- it is a partition. The right community is a partition as
well but is not eligible because one ClCo is below the threshold.

Figure 5: We take again the eligible partition of the previous figure on the left,
we keep θ fixed to 0.9. The cut to realize the left set of communities is of 5, because
separating the graph in three communities leads to cut 1+4 edges. On the other, in another
set presented on the right, that respects the conditions of the graph partition and of the
cutoff, the cut is only of 3. Thus we will chose this right set over the left one in order to
minimize the cut.

community are removed, the cut size of the partition is increased by x. This core algorithm is run for different
cutoff values to obtain different partitions that we compare. We keep the partition that is associated to the
minimal cut (i.e. number of edges removed when computing this partition). Figure 7 sums up the different
steps and the pseudo code of the main algorithm is detailed in Appendix. In the following, the different
steps of the implementation are detailed.

80

Figure 6: Clustering scenarios. In the case of basal gene expression and alternative
events (described below), with the exception of mutually exclusive transcripts, it is expected
that all transcripts of a gene will be grouped together in a single cluster. Very small exons
or very long retained introns (not shown) can also be limitations according to the mapping
tool strategies. In the more complex case of families of genes, two or more copies of paralog
genes can express transcripts at the same time. If these transcripts share a common exonic
content and if the gene sequences have not diverged too much (to allow overlap detection),
transcripts from this family of genes are clustered together, despite coming from different
loci. Although this is an algorithmic limitation, it can be interesting to group these sequences
together, as they likely share similar functions. A like scenario occurs for transcripts sharing
genomic repeats (such as transposable elements).

Figure 7: Summary of the algorithm. (a) All ClCo and degrees are computed. Each
ClCo value is a cutoff. For a given cutoff, (b) different cutoffs yield different seed nodes
(black stroke) that initiate clusters with their neighborhood. (c, c’) Boundaries of each
cluster are then refined. Intersection between clusters are solved either by (c) merging them
or by (c’) splitting. (d) The communities at different cutoffs evolve in different partitions.
In the end we keep only the best partition according to our criterion, i.e. minimizing the
cut.

2.1.2 Generation of partitions

In order to generate and compare different partitions for the graph, we define cutoffs that rule the generation
and refinement of communities. The cutoffs can be seen as the level of connectivity at which a community
can be generated ((a,b) steps and (c) merge step in Figure 7). In the basic algorithm, for each connected

81

component, all ClCo are computed in the first place, and partitions are built for each non-zero ClCo value
as a cutoff. In the end, only one partition is retained, associated to the minimal cut (step (d) in Figure 7).
However, we have reduced the number of possible cutoff values for the sake of scalability. To this end, for
all node in the graph, a ClCo centered the node (Equation 2.4) is computed in a first pass. The resulting
set of ClCo is used as the range of cutoffs. An example is presented in Figure 8. In the following, each step

Figure 8: In this figure we show how we avoid to compute ClCo values for each
subgraph in order to have a range of cutoff θ values. Local ClCo are computed
centered on nodes. This to a restraint set of four ClCo values as several nodes share the
same values. This set will be used in our algorithm for cutoffs on this connected component.
It is noteworthy that on another connected component of the graph, this set might change.

is described for a given cutoff value.

2.1.3 Selection of community founding nodes

Let G = (N , E) be an undirected graph of reads. Let ni be a node (read) from N and Ni ⊂ N its direct
neighborhood. Let deg(ni) be the number of edges connecting ni to its direct neighbors (similar reads),
i.e. deg(ni) = |Ni|. For each node ni ∈ N with degree deg(ni) > 1, we first compute the local clustering
coefficient :

ClCoi =
2 |{(nj , nk) ∈ E : nj , nk ∈ Ni}|

deg(ni)× (deg(ni)− 1)
(2.4)

Nodes of degree 0 and 1 have a ClCo of 1. This local coefficient represents the cliqueness of the Ni ∪ ni
set of nodes. The closer to 1, the more the set of nodes is inter-connected, which witnesses a group a reads
that potentially come from the same gene. By contrast, the subgraph induced by a node with a ClCo of
0 and its neighbors is a star (i.e. a tree whose leaves are all the neighbors). If the coefficient is close to 0,
the nodes are weakly connected and are unlikely to come from the same gene. In order to prevent unwanted
star patterns we add an auxiliary condition for nodes to be eligible seeds. At a given cutoff value, the seed
reads are primarily nodes which ClCo is above or equal to this value. We add a statistical precaution to
prevent star-like patterns (with a very low ClCo with respect to the degree of the seed node) to initiate
communities. We recall the star pattern case and a more likely case of degenerated star and its impact on
the graph in Figure 9. We state the following auxiliary condition for seeds:

∀ni, ClCoi ∈]cutoff, θ2[⇒ deg(ni) ≤ θ1 (2.5)

θ1 and θ2 are the values such that 1% of the observed degrees are greater than θ1 and 1% of the observed
ClCo are lower than θ2 (1st and 99th percentiles). The selected seeds with their direct neighbors form the

82

initial communities. This second condition was motivated by empiric observation as well as the particular
case of degenerated star patterns in the graph (Figure 9). These nodes are then prevented to form clusters.
We show examples of such nodes in the mouse dataset in Appendix. We recall that at this point, we relaxed

ClCo = 0 ClCo = 0.07

Figure 9: Examples of stars in graph. On the left we present an example of a star with
its central node in red which ClCo is of 0. On the right we present a more realistic example
where a degenerated star pattern creates a very low ClCo value that will also be a cutoff
value. In a real example this node might be highly more connected.

the condition that community must realize a partition. It is then possible that two or more communities
intersect.

2.1.4 Refinement of community boundaries

Community refinement aims at solving the conflicts of intersecting communities. Communities intersection
happen because of spurious connections in the graph due to the creation of edges between unrelated reads
in the first step.
The intersecting communities are looked up pairwise in order to assign nodes of the intersection to only one
community. In fact two cases have to be distinguished.

Split and merge procedures Either the edges between two communities are estimated spurious
and these communities must be seen separated (split, (c’) step in Figure 7, or the edges have sufficient
support and the two communities have to be merged to obtain the full gene expression (merge, (c) step in
Figure 7). In order to decide between the two, we use again the cliqueness notion. This time we introduce
an aggregated clustering coefficient of the union of two nodes ni and nj :

ClCoij =
2 |{(nk, nl) ∈ E : nk, nl ∈ Ni ∪Nj}|
|Ni ∪Nj | × (|Ni ∪Nj | − 1)

(2.6)

If the value of ClCoij is greater than or equal to the current cutoff, we consider that there is a gain in
connectivity when looking at the union of the two communities and they are merged. In the other case,
the nodes of the intersection are reported to only one of the two communities. We call it split procedure,
and report pseudo-code for this part in algorithm of Figure 10. We remove the edges connecting these
nodes to one or the other cluster according to which realizes the minimal cut. In case of ties for the cut,
the algorithm uses a second criterion. During the split procedure, nodes are assigned to one of the two
observed clusters, depending on the cut value (in order to minimize it). In the case of a tie, we add a second
criterion: the maximization of the sum over all communities of their clustering coefficient values. For two
sets N1, N1′ , N1′ ⊆ N1, this difference is defined as :

∆ClCoN1,N1′ = ClCoN1
− ClCoN1′ , (2.7)

83

with CC calculated as in Equation 2.6. In some cases, the split procedure leads to breaking connected
component. We ensure that for clusters which nodes were removed from, the connectivity is still present.
If it is not the case, we create as many new (smaller) clusters as there are connected components after the
split.

It must be noted that this last tie procedure could have been the generic procedure. Instead of generally
minimizing the cut during a split, we could rather have maximized the ∆CC. However, this alternative
was tested in early versions of our algorithms using mouse data, and resulted in a slight decrease of the
performances of cluster resolution. Based on those empirical results we preferred this version of the procedure.

Details on the clusters comparison The global result depends on the order in which pairs of
clusters are compared. This order is carefully designed. First the communities associated to the two nodes of
greatest degree (and secondly maximal ClCo) are chosen, the intersection is resolved and the first community
is updated. Then, it is compared to the third best community that intersected it if it exists, and so on until
all intersections are solved. This way, we start the comparison by the most promising communities that
combine reliability (they are well-connected subgraphs) with a high potential of resolution (they likely are
the biggest communities, thus solve intersections for many nodes). On the contrary, communities associated
to small subgraphs and relatively low ClCo are only resolved afterwards.

2.1.5 Final clusters

Several initial ClCo threshold on connected components give rise to several partitions. For each connected
component, we keep the partition associated with the minimal cut. Then we output as many disjoint final
partitions as there are connected components as our result clusters. The fact that our algorithm authorizes
communities to merge to increase their connectivity leads to wonder how it ensures that it is not always
a whole connected component that is chosen as a final cluster, since the cut would be of 0. We show a
counterexample in Figure 11 to illustrate that according to the properties we expect from communities, even
if some partitions lead to a cut of 0, they are not selected as the final cluster because of their ClCo. We also
experimentally verified that any output cluster had a ClCo value above or equal to the retained threshold
for each connected component, using mouse dataset.

3 CARNAC-LR and long read clustering pipeline

In this section we present the choices we made to implement the previous algorithm into a tool a tool dubbed
CARNAC-LR (Clustering coefficient-based Acquisition of RNA Communities in Long Reads). This tool’s
goal is to output clusters that correspond to genes’ expressed reads in a long read data. In particular we
propose solutions to make CARNAC-LR scalable. We also present the pipeline in which CARNAC-LR is
inserted in, that takes long reads from a transcriptome sequencing and clusters them by genes.

3.1 Pipeline overview

3.1.1 Input/Output

The pipeline’s input is a FASTA file of reads. The output is a text file with one line per cluster, each
cluster containing the read indexes. Each read is represented by its index in the original FASTA file during
CARNAC-LR computation. Then using indexes, each cluster can easily be converted to a FASTA file where
each read’s sequence is retrieved from the original file (a script is proposed for doing this task). An overview
of the pipeline is presented in Figure 12 A visual example of our pipeline’s output is provided in Figure 17.
We have selected a cluster of sufficient size to be able to present a variety of isoforms. It corresponds to a gene
for which mapping retrieved 120 reads. In this example, our approach recovered 93% of the predicted gene’s
reads while including no unrelated read in the cluster. Two types of missed reads can be distinguished: 1) A

84

1 Algorithm: Split

Data: Graph G = (N , E).
Ci and Cj two clusters of nodes ⊂ N with a non null intersection Ik = Ci ∩ Cj .
Cl is the set of clusters.

2 cutCi ← {elm : nl ∈ Ci \ Ik, nm ∈ Ik, elm ∈ E};
3 cutCj ← {elm : nl ∈ Cj \ Ik, nm ∈ Ik, elm ∈ E};
4 switch cutCi do
5 > cutCj : Remove nodes of Ik from Cj;

6 if Cj is not connected anymore then
7 Split(Cj) using steps 11, 12, and 13 of main algorithm in appendix;
8 Append new clusters in Cl;

9 < cutCj :

10 Remove nodes of Ik from Ci;
11 if Ci is not connected anymore then
12 Split(Ci) using steps 11, 12, and 13 of main algorithm in appenix;
13 Append new clusters in Cl;

14 == cutCj :

15 Compute ∆CCCi,Ci\I and ∆CCCj ,Cj\I (equation 2.7);
16 if ∆CCCi,Ci\I ≤ ∆CCCj ,Cj\I then
17 Do steps 5 to 8.
18 else
19 Do steps 10 to 13.

Figure 10: Node removal from one of two intersecting sets. This procedure chooses
the set to shrink by keeping the minimal cut between the two. In case of ties, this procedure
attributes the nodes of the intersection to the set that has the greatest gain or the lowest
loss of connectivity when keeping the nodes of the intersection.

group of black reads that share no genomic sequence with the majority of the gene’s transcript, because they
come from an intronic region. These reads could not be linked to the others by Minimap and thus cannot be
clustered with them, as shown in the particular case described in Figure 6. 2) Two other reads for which local
connectivity was not detected by Minimap were discarded from the cluster. The plot shows different exon
usage in transcripts, which reveals alternative splicing in this cluster. Thus different alternative isoforms
were gathered in a single cluster as expected.

3.1.2 First step: computing similarity between long reads

Our pipeline starts with the computation of long read similarities using Minimap [126] and then produces
the clusters. Minimap was chosen according to results of the previous chapter, for its efficiency and its very
high level of precision on ONT and PB [38], among other recent methods that can compute similarity or
overlaps between long reads despite their error rate [162, 19, 224, 32]. To generate the similarity graph for
CARNAC-LR, Minimap version 0.2 was launched with parameters tuned to improve recall (-Sw2 -L100

-t10). It produces a file of read overlaps in .paf format.

85

Figure 11: We compute local ClCo in the connected component to obtain a set of
values to set the cutoff θ to. Let’s assume that by iterative merges of communities, on
ends up with the whole graph. Even by looking at the lowest theta value (0.5), the ClCo
of the whole graph (0.42) makes it ineligible to be a community as it is lower than θ. Thus,
even if the whole graph as cluster would lead to a cut of 0, it is never selected as a final
community.

Figure 12: CARNAC-LR and the long reads clustering pipeline.

3.1.3 Second step: clustering

Minimap’s output is converted into a graph of similarity, where each node represents a read and an edge a
sequence similarity between two reads above a certain threshold (see [126]). Such graph is then passed to
CARNAC-LR, that is parameter-free and retrieves and outputs the gene clusters. CARNAC-LR benefits
from parallelization. A thread can be assigned to the treatment of a single connected component, thus many
connected component can be computed in parallel.

3.2 Implementation choices

In order to cope with noise in the input graph, we introduce features to simplify the graph (disconnect
loosely connected nodes) and to control the space of research of the possible partitions. In practice these
features are also key to reduce the complexity of our approach. Our experiments showed that the running
time is reasonable, clustering millions of reads in a few hours. Two key ideas to obtain this result have been
to reduce the number of cutoffs and to disconnect the articulation points [92] to reduce the size of connected
components in the graph. Indeed, the most costly phase relies on the treatment of the largest connected
components. In these components, many clustering coefficients values are very close and their variation is
mainly an effect of noise. Introducing a rounding factor when computing the ClCo results in a neat decrease
in the number of different values observed, which drastically limits the number of iterations required for the
main loop, while providing a very good approximation of the minimal cut. In addition, an upper bound is

86

 Annotated transcripts
(ensembl87)

 Annotated gene
(refseq105)

 Mapped reads in
present in cluster

 Reads missing in
cluster

Figure 13: Example of CARNAC-LR’s output cluster in mouse. The output of
CARNAC-LR is a text file with one line per cluster, each cluster containing the read indexes.
We selected a predicted cluster made of 112 reads (purple). For validation purpose these
reads were mapped with BLAST on an in-house igv [195] version for mouse genome. Reads
are spliced-mapped, bold parts are the mapped sequences from the reads and thin parts
represents the gaps between the different mapped parts of the reads. Despite the staircase
effect observed in the data, this allows to notice that several types of variants were gathered.
They could all be assigned to gene Pip5k1c (chr 10:81,293,181-81,319,812), which shows no
false positive was present in this cluster. 8 reads (black) present in the data are missed in
this cluster. The group of 6 black reads on the left represent intronic sequences and share
no sequence similarity with the others and thus could not appear in the same cluster.

set on the number of sampled values (100 by default).
We also chose to disconnect the articulation points of the graph to remove nodes that can be targeted as
potential bridges between two correct clusters. These are nodes whose removal increases the number of
connected components in the graph. Such nodes can be spotted as problematic as we do not expect a single
read to be the only link between many others. Their detection can be done with a DFS in linear time for
the whole graph.
Our algorithm has been also carefully designed with respect to the features of long read clustering. To obtain
a O(n.log(n)) complexity with respect to the number n of reads, we have made the following assumption:
The degree of each node is bounded by a constant, i.e. there is a limited number of transcripts that share
similar exons. This ensures that the clustering coefficient of all nodes is calculated in linear time. The most
complex operation is the initial sorting of nodes, first by decreasing degree value, then by decreasing ClCo
value, which can be achieved in O(n.log(n)). Moreover, since each cluster is initially built on a seed read
(see paragraph 2.1.3), it intersects with a bounded number of clusters. Since the loop for making a partition
from overlapping clusters is based on a scan of intersections, it is achieved in linear time with respect to the
number of reads.

Approximated minimal cut The most costly phase relies on the treatment of the largest connected
components. In large connected components, many clustering coefficients values are very close. Introduc-

87

ing a rounding factor in when computing the ClCo results in a neat decrease of the number of different
values observed, and thus restrains drastically the number of iterations necessary for the main loop. As a
consequence, the optimization only computes an upper bound of the minimal cut.

Graph pre-processing We chose to disconnect the articulation points of the graph to remove nodes
that can be targeted as potential bridges between two correct clusters. These are nodes whose removal
increases the number of connected components in the graph. Such nodes can be spotted as problematic as
we do not expect a single read to be the only link between many others. Their detection can be done with
a DFS in time complexity of O(N + E) for the whole graph. This pre-processing is made in one pass on the
initial graph.

3.3 Performances

In Figure 15 we plot wallclock runtimes of CARNAC-LR on different sizes of datasets samples from real
data. For 10K, the graph characteristics were (N=4,340, E=125,172, number of connected components=403,
biggest connected component=194 nodes), for 100K (N=43,588, E=435,530, number of connected compo-
nents=3,970 , biggest connected components=6,010 nodes) and 1M (N=439,510, E=15,043,753, number
of connected components=38,506, biggest connected component=94,099 nodes) We show a roughly linear
time consumption in the size of the input in the experiment. In Figure 14 we show the gain in thread-
ing CARNAC-LR. The longest computation time is dedicated to the biggest connected component (94,099
nodes) that takes one thread. It can be seen that the memory footprint is not impacted a lot by the use of
several threads.

5194

17.1

2964

22.9

2000

34.4

1351

38.2

1072

39.40

1000

2000

3000

4000

5000

1 2 4 6 10
Threads

Ti
m

e(
s)

/M
em

or
y

(G
b)

type
memory

time

Runtime and memory footprint of CARNAC−LR
 according to the number of threads used

Figure 14: Comparison of time and memory consumption and gain in throughput
of CARNAC-LR on mouse dataset (1M reads) when single or multi-threaded.

88

12

112

1047

0

2

4

6

10000 100000 1000000
Read set size

Lo
g

tim
e

(s
)

Runtime of CARNAC−LR according to the initial read set size

Figure 15: Wallclock time for different sizes of datasets (10K, 100K and 1M reads)
of mouse transcriptome reads (40 threads). Time scale is log, real wallclock time values
in seconds are annotated in bars.

3.4 Expected clusters on particular cases

Our clustering algorithm goal is to group RNA reads by gene. We show expected clusters on several instances
in Figure 6. Constitutive transcripts lead to read that share a similar exon content and must be clustered
together. Alternative splicing events or alternative transcription events lead to changes in the exon content
in molecules and then in reads. If reads still share common exons, they must be put in a same cluster.
However, if reads from a same gene come two very different isoforms that do not share exons, then we do not
have any a priori information that would lead us to cluster them together. Thus they will fall in different
clusters. The clustering of sequences from transcriptome reads is made difficult by the existence of multiple
repeats. This first attempt to cluster RNA reads by gene is not designed to precisely assign reads from
paralog genes to their original locus, we only provide first-approximation results in these cases. Our method
will gather all reads from a gene family together, provided the different copies have not diverged too much
and can thus be seen as a useful pre-processing step for the analysis of paralogs. At this time, it remains
undisclosed which level of divergence is needed to form two separates clusters in our application.

4 Results of CARNAC-LR on several datasets

In this section we present the results of our clustering method CARNAC-LR on several instances. First, using
synthetic datasets that define classic cluster resolution problems, we show it retrieve sound communities and
demonstrate its interesting aspect over modularity based methods. Then, we include CARNAC-LR in the
benchmarks already used to assess state of the art algorithms and methods to illustrate its interest on long
reads in comparison to these approaches. Finally we apply CARNAC-LR on a full length transcriptome
sequencing and compare its result to a mapping approach. All experiments were run on Linux distribution
with 24 Intel Xeon 2.5 GHz processors, 40 threads and 200 GB RAM available.

89

4.1 Behavior on classic community problems

Fortunato et al. [66] proposed to test the resolution limit of community detection on a ring of 30 cliques of 5
nodes interconnected through single links. Authors. shown that modularity-based methods would result in
a maximal resolution of clusters made of pairs of cliques. A same result is reported in Louvain’s paper [21].
The Louvain algorithm finds the partition in cliques at the first level of the hierarchy and build groups of

Figure 16: The ring of cliques problem proposed by Fortunato et al. and Louvain
algorithm results, this figure is from Blondel et al([21]). The last pass of the algorithm leads
to link pairs of cliques into final clusters. By contrast, our algorithm would yield results at
the same definition than Louvain’s first pass, where each clique is considered as a cluster in
itself.

2 cliques at the second and last level. Our algorithm finds the correct partition in cliques. As our method
easily found the solution to this first problem, we slightly complicated the initial example. We built a ring
of 30 identical cliques like in the original paper, but we made the cliques bigger (size 7) and we put a pair of
edges (instead of one edge) linking each pair of cliques (see Figure 17). The edges of the pairs involve distinct
nodes from the cliques. One may expect that each original clique is found as a final cluster by methods. As
a matter of comparison, we provide the resolution achieved by Louvain’s algorithm on this new problem to
illustrate its difficulty (see Figure 18). It cannot find the partition in cliques and moreover, the cliques are
not always split at the same place. This is not a surprising result as Louvain already missed to output one
clique per cluster in the original example. Contrary to modularity-based approaches [66, 21] CARNAC-LR
successfully reported the 30 expected clusters of cliques (Figure 19).

Those instances only model simple cases, that are not representative of real data clusters that include
more noise. However, they demonstrate the advantage of ClCo on this aspect over modularity.

Figure 17: We provide an example to show how 7-cliques are connected in our
example design. In total, a ring of 30 7-cliques is used.

90

Figure 18: We illustrate Louvain’s result on this instance. The clusters formed by
Louvain are in red, spanning several cliques.

Figure 19: CARNAC-LR result clusters on the ring of 7-cliques. A close-up on two
cliques is shown on the left. Each cluster output by CARNAC-LR is represented by a green
circle. It can be seen that cliques are separated from each other as our method identifies
them as independent clusters.

4.2 Comparison to state of the art

4.2.1 Comparison to algorithms for community detection

The previous benchmark is set up again, this time including CARNAC-LR. Results are presented in Tables 2.5
and 2.6. Our method has the best precision and the best overall trade-off between precision and recall as
shown by the F-measure. It also has the highest Jaccard index among all tested approaches. As CARNAC-
LR is conceived for general pipelines making the complete analysis of gene variants, it is important that is
does not mix two unrelated genes in a same cluster. Thus our approach is more conservative than CPM,
and it shows comparatively good results in any case, and furthermore needs no input parameter.

4.3 Comparison to tools for sequence clustering

In the same spirit, in included CARNAC-LR to the benchmarks comparing tools for sequence clustering.
Results are presented in Tables 2.7 and 2.8. CARNAC-LR presents clear advantages in comparison to the
only other tool that could compete, CD-HIT. Our pipeline is also several orders of magnitude faster than
CD-HIT. Again, we highlight that such results are expected in the sense that the compared tools are not
fit to ONT long reads. On the contrary, these results do not demonstrate that our pipeline would prevail
in most generic cases, such as short read clustering. But they show that the challenge introduced in this
chapter is better solved by our pipeline than using other tools.

91

Recall (%) Precision (%) F-measure (%) Jaccard index
Transitive closure 75.74 5.614 13.62 7.3E−4

Modularity 60.70 71.16 65.51 9.7E−2

CPM5 79.00 69.35 73.86 3.5E−1

CPM50 49.21 89.92 63.60 7.6E−2

Louvain 88.58 14.91 25.53 1.1E−3

CARNAC-LR 65.0 98.41 86.62 7.9 E−1

Table 2.5: Comparison with state of the art methods. The benchmark was realized on a 10K
reads dataset from the mouse brain transcriptome. Recall precision and Jaccard Index are
presented (see Equation 2.3, 2.1 and 2.2) to assess for the quality of communities detection.
CPM5 (respectively CPM50) designates the CPM algorithm using k = 5 (respectively k =
50).

Recall (%) Precision (%) F-measure (%) Jaccard index
Connected comp. 69.04 21.76 33.09 2.3E−1

Modularity 34.30 12.0 17.77 2.1E−1

CPM5 55.29 29.27 38.27 3.4E−1

CPM50 12.52 89.63 21.96 5.2E−1

Louvain 87.50 1.191 2.350 3.1E−2

CARNAC-LR 60.35 98.86 74.72 7.1E−1

Table 2.6: Comparison with state of the art methods on a chromosome 1 10K reads sample.
Reads were selected randomly from the brain transcriptome dataset. Recall precision and
Jaccard Index are presented (see Equations (3,4,5). CPM5 (respectively CPM50) designates
the CPM algorithm using k = 5 (respectively k = 50).

Recall (%) Precision (%) F-measure (%) Status time (hh:mm:ss) Memory (Mb)

CD-HIT 26.60 99.27 41.96 run 03:06:5 2.47
SEED 0 0 0 run ends -

immediately
Starcode - - - error - -
Rainbow - - - could not - -

be run
Tofu - - - could no - -

be run
CARNAC-LR 65.0 98.41 86.62 run 00:00:13 4.00
+ Minimap

Table 2.7: CARNAC-LR added to the benchmark of nucleic acid sequence clus-
tering tools.

92

Recall (%) Precision (%) F-measure (%) Status time (hh:mm:ss) Memory (Mb)

CD-HIT 11.70 99.87 20.95 run 03:33:2 3.11
SEED 0 0 0 run ends -

immediately
Starcode - - - error - -
Rainbow - - - could not - -

be run
Tofu - - - could no - -

be run
CARNAC-LR 60.35 98.86 74.62 run 00:00:16 3.99
+ Minimap

Table 2.8: CARNAC-LR added to the benchmark of nucleic acid sequence clus-
tering tools, on chromosome 1 sample.

4.4 Validation on a real size dataset

In the following we use the whole transcriptome data from mouse as well as the full “ground truth” clusters
set retrieved by the Genoscope to extend our conclusions to a real size instance. We demonstrate that
CARNAC-LR scales to this dataset, that is still outputs sound clusters, and then we show that it can be
complementary to the mapping approach for this application that posess a reference genome.

4.4.1 Clusters goodness

In this experiment we demonstrate the quality of de novo clusters obtained by CARNAC-LR. We used the
subset of reads that could be mapped to the mouse genome reference (501,787 reads) as a way of comparison
to assess the biological relevance of our clusters. CARNAC-LR’s results were computed using 43 GB RAM
and 18 minutes.
The mean recall for CARNAC-LR was of 75.38% and the mean precision was 79.62%. In other words,
retrieved clusters are 75.38% complete on average, and an average 79.62% portion of the clusters is composed
of unmixed reads from the same gene. In order to evaluate if our method’s recall and precision is consistent
independently of the genes’ expression levels, we computed expression bins. For a given gene, we use the
number of reads of the “ground truth” cluster to approximate an expression. Any “ground truth” cluster
with 5 or less reads is placed in the first bin, and so on for 5-10, 10-50 and ≥ 50 reads categories. Each
of the four bin represents quartiles of expression, which means there is an equal number of clusters in each
bin. Figure 20 presents the recalls obtained for binned expression levels and shows our approach’s recall and
precision remain consistent despite the heterogeneous coverage in reads.
Furthermore, we can deduce from this plot that small clusters do not bias the presented mean recall and
precision, as even for big clusters (i.e. ≥ 50 expression bin) that are more prone to lose some reads, these
metrics remain high.

4.5 Complementary of de novo and reference-based approaches

4.5.1 Intersection and difference with the set of mapping clusters

The mouse dataset is useful as it provides a “ground truth” for validation. However, it does not totally
illustrates the interest of CARNAC-LR since this is not a real de novo application. Still, it is a good example
to show that our de novo method can also be seen as an interesting complement to mapping approaches in
the case a reference is available. As it does not rely on any reference information, our approach putatively
yields different results than classical mapping approaches. Thus we investigate the differences between
CARNAC-LR and the Genoscope mapping approach. This time we ran CARNAC-LR pipeline on the full

93

0

25

50

75

100

0−5 5−10 10−50 >=50
Expression bins (nb reads/gene)

R
ec

al
l a

nd
 P

re
ci

si
on

 (%
)

precision recall

Figure 20: Assessed mean recall and precision of CARNAC-LR+Minimap. They
were computed on mouse reads using clusters found by mapping on a reference as a “ground
truth” (see Equations 2.1 and 2.2). Expression bins are computed from quartiles of ex-
pression predicted by mapping and represent the number of mapped reads by gene. Mean
precision and recall over all clusters falling in theses bins were then calculated.

mouse brain transcriptome dataset (1,256,967 reads), including reads that were processed but unmapped
or filtered out using the mapping approach. We compared the intersection and difference of results of our
approach and mapping. CARNAC-LR+Minimap pipeline took less than three hours (using 40 threads).
In comparison, the “ground truth” clusters took 15 days to be computed (using up to 40 threads). Our
approach was able to place 67,422 additional reads that were absent in the mapping procedure. It resulted
into 39,662 clusters. These clusters fall in two categories (i) common clusters with a mix of reads treated by
our approach and/or processed by mapping, or (ii) novel clusters that contain reads treated by our approach
or mapping exclusively. Each approach performed differently on these categories.

Common clusters For category (i), mapping complemented many common clusters with small amounts
of reads left aside by our approach. As some reads are processed by mapping, a recall and precision can still
be calculated using mapping as ground truth. We computed recall and precision based on the read fraction
of clusters that could be compared with mapping. They are quite similar compared to the values obtained
in the previous section (75.26% and 79.30%). This demonstrates that CARNAC-LR efficiently used the
supplementary connectivity information despite the addition of potentially noisy reads.

Novel clusters Conversely CARNAC-LR shows a better ability to group reads unprocessed by mapping
into novel clusters (Figure 21). CARNAC-LR output 824 novel clusters (17,189 reads) of category (ii)
containing at least 5 reads. In order to evaluate the relevance of these novel clusters, we remapped reads

94

a posteriori, separately for each cluster, on the reference genome using a sensible approach (GMAP [251]
version 2015-09-29). This operation took approximately 10 hours (using 4 threads). 19.68% of mapped
reads were assigned to the MT chromosome, then chromosome 11 represented 10.85% of the reads, and
other chromosomes each less than 10% of mapped reads. A third of the reads were multi-mapped (36.7%).
However, on average, for each cluster 98.89% of the reads shared a common genomic locus. This is consistent
with the expected results of the clustering for reads containing repeats or paralog regions (Figure 6). Finally,
5.7% of the clusters contained exclusively reads mapped at a single locus. All of them could be assigned
to an annotated gene. Thus even if a reference was available, our approach was able to retrieve de novo
expressed variants of genes that were completely missed by the mapping.

Correlation of expression levels Another way to look at these results is two consider the number
of reads predicted by each method as the gene’s expression, and to compare expression levels predicted by
our approach and by mapping. ONT sequences start to be shown to qualify for transcript quantification
in [168]. We shown that, despite the previously described differences, they are highly and linearly correlated,
with a Pearson correlation coefficient of 0.80 (Figure 22).

Figure 21: Complementarity of CARNAC-LR and mapping approaches. Only
clusters of size ≥ 5 are represented. Mapping complemented common clusters a with a mean
13 reads per cluster in 90% of clusters. CARNAC-LR’s supply was tenfold lower with a mean
1,3 read added to 100% of common clusters. On the other hand, CARNAC-LR retrieved 15
fold more novel cluster than mapping.

These results demonstrate that CARNAC-LR pipeline enables to retrieve clusters per expressed gene in
a whole transcriptome sequencing using ONT reads. Clusters are sound in comparison to more conservative
mapping approach, and the method can be helpful even when mapping is possible since it has the ability
to fish back reads lost by mapping. It also presents drawbacks, such as its recall that could benefit from
improvement. To that extent, we will present ideas in the discussion chapter.

5 Discussion

In this chapter we mostly presented CARNAC-LR at work on a mouse transcriptome. In order to further
validate our approach we plan to apply it on more diverse datasets. Larger datasets could bring practical
limits in memory and time for our approach. CARNAC-LR has been conceived with very noisy reads in
mind. The noise in reads is propagated to the graph, hence we payed attention to design our clustering

95

R = 0.8002

0

200

400

600

0 100 200 300
gene expression estimated with mapping

va
ria

nt
 e

xp
re

ss
io

n
es

tim
at

ed
 w

ith
 c

lu
st

er
in

g

10
100

300
density

Figure 22: Comparison of clustering and mapping approaches. Comparison and
correlation of expressions levels. Gene’s expression can be inferred by counting the number
of reads by gene. For each gene we counted the number of reads retrieved by mapping and
we compared it to the number of reads reported by our pipeline and validated by mapping.
We computed the Pearson correlation coefficient between the two (in green). Density is the
number of points counted in a colored region. Despite a few outliers, we can see a strong
linear correlation between the two expression levels estimations (plotted in black). Seven
outliers above 750 on Y axis (up to 3327) are not shown.

method to deal with it. In the future, we might be able to determine more precisely and with more accuracy
the reads that belong together. Such possibility could come from the reads’ error rate that will decrease,
or from more RNA-dedicated tools such as our Long Read Connector project. In this case, it is likely that
the similarity graph will be cleaner, and seeking connected components might be sufficient to retrieve each
gene’s expressed transcripts. If the error rate decreases, it will also be easier to separate gene families.
Notwithstanding, advantages and limits of CARNAC-LR algorithm as a general method for the discovery
of communities, aside from the transcriptomics context, still deserve to be better understood, as suggested
by the results on the ring of cliques. CARNAC-LR remains to our knowledge the only method to de novo
cluster reads by gene using ONT. An actual limitation is that de novo exploitation of reads remains difficult,
even after clustering. In fact CARNAC-LR is meant to be followed by other computation steps to decipher
isoforms in each cluster. In Chapter 4, CARNAC-LR will be the prerequisite to partition the datasets into
clusters on which a method to reduce noise and detect alternative events in reads is applied.

96

Chapter 3

Correction of long, spurious reads

97

Previous chapters led to 1-find similar reads by comparing them pairs 2-gather reads by gene using
clustering. Tackling the last announced goal: read correction to obtain isoform sequences will be covered by
this chapter and the next one. This is an important matter since at the moment, long reads cannot be used
as is, in particular accurate protein prediction is impossible given the errors. Even in cases where references
are available, many reads fail to be associated to the annotated gene they originate because mapping tools
cannot deal with the error rates that are sometimes superior to the variability found in the reference. In this
chapter, we essentially demonstrate that current correction methods cannot be applied for our problem. We
start by presenting short-reads correction methods and explain why they were replaced by new paradigms
for long reads that we present in the first place. We then expose the main contribution of this chapter, a
generic tool for long read correction methods assessment. This tool aims at helping to find out limits of
current correction methods. It embeds original algorithmic choices that will be found again in Chapter 4.
We then demonstrate that published correction methods do not perform well on RNA and we identify their
pitfalls. Thus this chapter prepares the task of designing a specific approach dedicated to obtain high-quality
sequences from transcriptomic long reads.

1 Background

1.1 Short read correction

1.1.1 Methods

The most prominent strategy used in NGS reads correctors is based on k-mers spectra. A k-mer spectrum is
a discrete distribution of the number of occurrences of k-mers in a given dataset, or a pool of datasets. k-mers
spectrum techniques have the advantage to be quicker than previous methods based on alignment [203] and
more memory efficient [256]. Thus they are more scalable and were largely adopted in the context of NGS.
They are well adapted when an experiment coverage is homogeneous (i.e. most of the genomic sequencings).
The intuition is that erroneous k-mer will be significantly less frequent than genomic k-mers in a dataset
if the coverage is high. Thus a threshold can be determined using the occurrences distribution, that is
typically multi-modal (for instance in haploid species, there are a first peak of k-mers that appear once or a
few times, likely to be errors, then a second peak which amplitude depends on the sequencing depth). On
large genomes, storing genome wide distribution of k-mers for k-mer counting can be memory consuming,
as pointed in Chapter 1. Recent tools such as Lighter [223] rely on efficient data structures (Bloom filters)
and represent real advantages over previous methods such as Musket [136]. For correction, methods try to
correct as many erroneous k-mers of the reads as possible by replacing them by solid ones using heuristic
strategies to make the least possible operations (“solid” k-mers are introduced in Chapter 1). A documented
limitation of these methods is the possible loss of rare genomic k-mers. This can happen in scenarios of local
coverage biases due to variability or sequencing biases. For same reasons, metagenomic or transcriptomic
datasets that harbor heterogeneous k-mers distribution cannot be accurately corrected directly with these
techniques and require more sensitive approaches.

Some methods were dedicated to RNA and uneven coverage. Rcorrector is a method that was developed
for RNA-seq data correction [222], based on the De Bruijn graph and uses the graph properties to store
efficiently the k-mers of the reads and to localize errors thanks to graph topology. Erroneous k-mers provoke
branching regions in the graph, the different branches support either successive erroneous k-mers in vertices
or real sequences. However, alternative variants also lead to these patterns. The difference between errors and
variants in the graph is that erroneous k-mers are expected to be found with relatively lower coverage than
real sequences. Thus Rcorrector applies local relative filters to distinguish error from expressed sequences.
These filters apply on first k-mers of a branch (branches paths with a single predecessor vertex), that lead
to branch pruning their if their coverage falls below the current threshold. Reads are then corrected using
the path that implies the less modifications on their sequences.

Rcorrector introduces to some extent that assembly and correction are somehow related. Recently, graph
methods for correction have been shown to provide better results than k-mer spectrum methods [133]. How-

ever, except from Rcorrector and a recent proposal [133], graph strategies for correction are only employed
in a few methods on long reads [202, 204]. In these methods, sequences from unitigs in a De Bruijn Graph
are non ambiguous assemblies of several contiguous solid k-mers that can be used to correct reads.

1.1.2 Consensus and correction

Read correction is necessary only because of actual technology pitfalls and is not responding to any biological
question. However, this problem is interestingly related to many others in sequence bioinformatics. Before
the advent of k-mer spectrum techniques, methods proposed to correct reads using multiple alignments [203].
The alignment of several reads on a same genomic interval allowed to define a consensus (majority) version
of the base for each position of the alignment. For instance, a voting scheme that counts the base that
occurred most frequently at each position of the alignment can be used. Sequences extracted from graphs
can also be used for consensus. Using graphs, error handling is seen as the replacement of erroneous bases
by consensus bases. Correction is not realized strictly speaking since the read content is not modified but
the errors are removed.

Thus, we can say that a correction is the action to modify bases in reads to enhance the read quality
by trying to get closer to the genomic sequence. A consensus is built from a set of sequences and is a single
sequence of bases from the set that maximizes a given score at each position (for instance, the most frequent
bases at each position). Consensus is used for correction. Well corrected reads should yield better consensus
(if no bias is introduced).

Contrary to correction that is seen as a primary step where all reads can potentially be modified by the
correction tool, polishing is defined as an improvement of sequences (often contigs) quality as a final touch
after other steps (for instance, assembly of reads into contigs). Polishing resorts to consensus, less-error
prone sequences such as contigs as “backbones” to correct reads, or aims at correcting contigs themselves.
Even if it shares methodological similarities with correction, polishing is harder to evaluate since it highly
depends on the consensus sequence input. However polishers can be used for read correction, and some tools
present both aspects in their implementation [34]. Polishing algorithms relate more to the goal presented in
Chapter 4. In the following we will deals with correctors only.

1.2 The challenge of variety of error rates and profiles in long
reads

1.2.1 Why previous methods do not work

k-mers spectrum rely on the property that a sole mismatch in a read will provoke a controlled number of
erroneous k-mers. Indels, as well as close (separated by less than k bases) errors are more difficult to correct
using k-mer spectrum, since it is difficult to correctly assess how many k-mers are impacted in the sequence.
Moreover, they use k-mer sizes large enough to ensure that k-mers are rarely repeated on average in the
genome while having higher frequencies than erroneous k-mers. In the case of TGS with more than 10%
errors, the previous methods no longer apply. It is way more difficult to separate erroneous from genomic
k-mers using the frequencies when using long k-mers, since even genomic long k-mers are expected to be
rare. Moreover, the sequencing depth obtained with NGS is at the moment hard to reach with TGS, giving
less leverage to differentiate genomic from error-prone k-mers. On the other hand, small genomic k-mers are
more repeated across the genome, and small k-mer sizes allow more sequencing errors to pass the solidity
threshold. Finally, non systematic errors such as those found in homopolymers in ONT suggest that a
third-party technology is needed to achieve a satisfying correction level with these reads.

99

1.3 Long read correction methods

1.3.1 Using short reads

Hybrid methods are named after their employment of NGS reads to help long read correction. Hybrid
correction was the first correction paradigm to emerge for long reads, since the first experiment only produced
low coverage for long reads, with particularly high error rates. In tools such as Colormap [85], Nanocorr [76],
Proovread [84] or PbCR [108], short reads are directly aligned to long reads, there sequences being inserted
in place of the long read alignment locus. More recent methods integrate strategies to elongate the corrected
zones and to facilitate alignment. Several methods rely on contigs made of short reads. HALC [11] aligns
the long reads on the short reads contigs. LoRDEC [202] and Jabba [155] align long reads on unitigs in De
Bruijn graphs built using short reads. NAS [139] additionally uses the long range information of long reads
to guide short reads assembly before to correct with the contigs.

1.3.2 Self-correction

Self-correction methods no longer use NGS reads for correction. One of the first method that proposed long
read correction using only long reads sequences was LoRMA. LoRMA [204] follows the LoRDEC paradigm
by constructing a De Bruijn Graph on the whole set of reads, then uses the graph’s unitigs as consensus that
can correct long reads sequences. PBDAGCon [34] also relies on graphs but is not based on a DBG. Instead,
it mimics multiple sequence alignment partial order strategy, that will be presented in the next chapter. In
short, performing pairwise alignments, it builds a directed acyclic graph representing the reads aligned to
each others and extract a heaviest path (i.e. globally supported by most reads) in this graph as a consensus
to correct reads. Falcon [35] and Canu [109] use a similar strategy to extract consensus from a DAG’s path.
MECAT [252] works in a different way, it starts with pairwise alignment of long reads and has an hybrid
use of voting scheme (in regions containing not too many errors) and of DAGs such as in PBDAGCon. As
pointed in Daccord’s manuscript [231], main drawbacks of long reads correction methods are the corrected
sequences fragmentation and low rate of corrected sequence compared to the input. Certain correctors make
the choice to exclude reads that could not be corrected from the output. They can also report only the
corrected parts and discard ambiguous subsequences, or fail to reconstitute the whole long read structure
when it is mapped on complex regions of a DBG. Both hybrid and self correction methods thus often propose
a trim and untrimmed version of the corrected sequences.

Self-correction seems to be proven to give better results than hybrid correctors as soon as the long read
coverage is sufficient (over 30X) through the benchmarks supporting their respective publications. This can
be explained by difficulties to align short reads on repeated sequences covered by long reads, or difficulties in
the alignment due to the GC bias in short reads. It also seems that self-correction leads to less fragmented
corrected sequences. However, such statements lacks a global study that goes over the sum of individual
publications. The evaluation tool presented in this chapter aims at filling this hole and providing support
for benchmarks.

1.3.3 Correction as a bottleneck in pipelines: works toward efficiency

Because it usually includes computationally expensive steps of alignment, long read correction is frequently
reported as a bottleneck in long reads pipeline. More efficient implementation using SIMD (parallel comput-
ing) were proposed [239]. Very recent methods started to tackle this issue using new paradigms. For instance
MECAT proposes very fast and memory efficient strategies for read mapping and correction. Daccord (un-
published) uses an assembly strategy directly on the long read sequences to perform their correction. Since
it performs only assembly on short sets of k-mers from different intervals of the read, it reduces its time and
memory consumption. However, Daccord still relies on a third-party prior step of precise read alignment
that remains time consuming.

100

2 Evaluation of long reads correction methods

A large panel of methods is already available to correct long reads, with a variety of algorithmic strategies.
We are lacking tools to correctly assess the pitfalls of the different methods on various sequencing scenarios,
including transcriptomics. In the following we introduce a new tool, ELECTOR, dedicated to assess long
read error correction methods. We also demonstrate that current correction method only partially achieve
the task of correcting RNA long reads.

2.1 State of the art of correction evaluation

We start with a disclaimer: as no corrector is at the moment adapted to RNA, this part is based on genomic
long reads. Thus, evaluation tools for correction methods will be presented using genomic experiments. In
the end of the section we show that ELECTOR could be easily used on transcriptomics experiments as well.

We pointed the need for more comprehensive assessment of long read correction tools, both because
all methods do not optimize the same feature and some can be more adapted to some genomes/sequencing
experiments than others, and because such tools are useful to develop new correction methods. In the
following we present an implemented tool dubbed ELECTOR (EvaLuation of Error Correction TOols for
long Reads), developed for general long reads correction methods assessment. It is based on an original use
of multiple sequence alignment, and more generally on algorithmic concepts that are used besides in this
thesis work. This work was realized in the context of MASTODONS C3G project, and is also a part of Pierre
Morisse’s Phd thesis. Pierre contributed to ideas and participated in the implementation, in particular he is
responsible for adding remapping and assembly assessment modules of our tool, and performed many of the
experiments. We provided the algorithmic ideas on which the main metrics computations are based. This
work is yet non published, but ELECTOR is available1.

2.1.1 LRCstats

Correction methods quality assessment is usually based on the portion of corrected reads that could be
remapped on the reference [256, 155]. Despite being interesting, this information remains incomplete, in
particular it likely not to take into account poor quality reads or regions difficult to map to. In LRCstats [114]
was proposed the first pipeline to allow benchmarking of long read correction methods. LRCstats aims at
assessing the success of these methods to disminish the error rate in reads. It relies on read simulators
(SimLoRD [225] or PBSim [170]) to produce erroneous reads with controled properties. It uses the the SAM
alignment of these reads to the reference to retrieve the original sequences. LRCstats takes the corrected
version of each read (after a pass of a correction method), the original version deduced from the alignment
and the simulated reads to produce a three-way alignment. In this scheme, two pairs of sequences are aligned.
The alignment is done with regular dynamic programming. The read is aligned to the original version and
the corrected version is aligned to the original version as well. Then statistics are computed and collected
from the comparison of the three versions of the sequence.

2.1.2 Current lacks to identify correction methods pros and cons

La et al. presented results on Pacific Biosciences data for hybrid correction tools using LRCstats. At
the moment, no work presented a benchmark focused on self-correction methods. We also lack hindsight
about the results obtained on nanopore sequences, while PacBio reads have more studies dedicated since the
technology is older and more stable.
LRCstats provides reads error rate before and after correction as well as the detailed counts of every error
type. However, reads error rate after correction is not a good indication of the corrector’s behavior. For
instance, there is no clue to be found about the putative insertion of new errors by the corrector by looking
only at the error rate . This type of information is extremely useful to developers, and can be crucial

1https://github.com/kamimrcht/benchmark-long-read-correction

101

https://github.com/kamimrcht/benchmark-long-read-correction

according to the type of biological question the reads are sequenced for. Thus, additional metrics such as
recall and precision should be given as complements in order to understand correction methods pros and
cons.
Aside from information that could be missing, it can be interesting to understand how a correction method
performs on a genome that has particular features (size, repeats, ...). It can also be relevant to test reads
with different properties. However, in experiments involving large size datasets and/or very long reads,
the evaluation can be an order of magnitude longer than the correction step itself, which is not a desired
property. Thus, it can be difficult for someone to correctly evaluate a correction method for a particularly
large genome, or in the context of very long reads (over the Mb to the Gb recently). Both deep coverage
and very long reads are though extremely useful. Long reads sequencing experiment is shown to have a log-
normal read length distribution, thus high coverage helps the correction of the longest reads. Very long reads
themselves are the most prone to untangle difficult assembly patterns provoked by repeats or heterozygocity.
Incidentally they have a positive impact on the contigs mean length.

2.2 New methodological approach to evaluate correction

Given the absence of methods able to propose precise and accurate metrics to better render the efficiency
of correction methods for long reads, we proposed an approach that could both provide these metrics and
be used even on large genomes-scale experiments. Contrary to LRCstats that was based on two read pairs
alignment, our approach is based on a multiple alignment of triplet of sequences. Our method compares at
once the corrected, uncorrected and genomic versions of each read. We consider these three versions exist for
each read, and are stored in three FASTA or FASTQ files (perfect, uncorrected and corrected files). All three
files have the same number of lines and reads are sorted so that the versions of the sequences correspond to
each other and appear in the same order. The three files are read to compares triplet of reads of same index
in each file. We then obtain one alignment per triplet that is used to compute different metrics. The multiple
alignment is realized using an efficient heuristic that combines anchoring and partial ordered alignment, that
we call seed-MSA. First we describe the simple multiple alignment procedure, then we add the anchoring
strategy.

2.2.1 Multiple alignment of triplets of sequences

Multiple sequence alignment (MSA) is not strictly defined, but can be seen as the task of rewriting more
than two sequences contained in lines of a matrix so that conserved bases are in a same column. This means
adding gap characters when necessary (i.e create columns with homogeneous content). An example is shown
in Figure 1. Base-wise recall and precision of a method can be computed only if corrected, uncorrected

Figure 1: Toy example multiple sequence alignment of three sequences. The MSA
can be represented using a matrix where rows are sequences and columns are bases/gaps.
Gaps are added in each sequence when necessary to group conserved bases.

102

and perfect version of the reads can be precisely compared at each position. MSA has the advantage to well
group bases conserved across sequences in the alignment and to have more power than pairwise alignment
to detect weakly conserved bases. Many algorithms for MSA exist, mostly heuristics since optimal solutions
often suffer from intractable computational time when sequences are long, very different or numerous. Here
we will rely on an algorithm where MSA in not represented in a matrix but in a DAG. This strategy is
called partial order-MSA (PO-MSA) [121]. This algorithm comes with an implementation (poaV2). For our
purpose we use a modified version of poaV2 that works with triplet alignment. The graph representation has
the advantage to solve certain inconsistencies of algorithms based on matrix by representing differently the
information of the alignment. The detailed algorithm is went through in Chapter 4, as it is the core method
used to perform sequences consensus. Here we work with a particular case where only three sequences are
aligned. Important messages to keep in mind is that from a given graph, a unique MSA profile can be
extracted. Each nucleotide is a vertex and arcs represent consecutive bases in a sequence. The method
guarantees to conserve the order of the bases in a given sequence and each sequence can be retrieved in the
graph. Gaps in the alignment are directly represented in the graph topology. In short, the alignment process
is the following:

1. The reference version of the read is used to initiate a linear graph (Figure 2 1))

2. The corrected read is then aligned to the reference using classic global dynamic programming (Figure 2
2))

3. The initial graph is completed with new nodes from the corrected reads. When possible (i.e. when
matches occur) the graph is simplified by merging matching identical nodes (Figure 2 3))

4. Then the uncorrected version of the read is aligned against the graph using a generalization of align-
ment procedure detailed in Chapter 4 (Figure 2 4))

5. Again the news nodes are added to the graph and simplifications are made

6. We apply a topological sort on the DAG, so that positions are defined in matrix columns for each
vertex of the graph (Figure 2 5))

7. A matrix MSA profile is output (Figure 2 5))

The rationale besides the choice of aligning first the corrected version with the reference version is that this
first alignment is expected to be the most accurate. Since the read is corrected, this pair must the most
similar of the three possible pairs. The alignment of two most related sequences is then more reliable and
provides a better overall result [60]. Even if in our case the three versions in a triplet are expected to be
alike most of the time (thus the order has little impact), this chosen order should provide at least slightly
better quality alignments than another order. This alignment scheme can be generalized to any triplet of
sequence alignment in any order. However, the approach we present in the following is meant to be used for
triplets of sequences that come from the same genomic region.

2.2.2 Recall, precision, correct base rate

We collect the output multiple sequence alignment for each triplet of sequences. Once the MSA is computed,
we have a base-wise information of the differences and similarities in nucleotide content for each three versions
of a sequence. Insertions or deletions are represented by a dot ”.” and a corresponding nucleotide a,c,t

or g in the sequence containing an insertion relatively to the two others. For each position in the MSA,
if the reference, uncorrected and corrected bases are equal, the result is correct. Figure 4 presents how
false negatives, false positives and true positives can be inferred from the MSA. If only the reference and
uncorrected bases are the same but the corrected base is different, a new error was introduced by the corrector
(false positive base). If the reference and uncorrected bases are different, there is an error to correct. In this
case, if the corrected and reference bases are the same, the error was corrected (true positive base), on the
contrary if the corrected and uncorrected bases are different, a new error was introduced by the corrector
(false positive base). If there is an error to correct but the corrected and uncorrected bases remain the same,

103

Figure 2: Toy example of multiple sequence alignment of triplet of read versions
used in ELECTOR.

the error was not corrected (false negative base). From these observations we can compute false negative
(FN), true positive (TP) and false positive (FP) counts for each read, as detailed in the Algorithm 3. We
consider all bases in the MSA and count the number of bases that are equal between reference and corrected
version, and divide this count by the number of bases in the reference sequence to obtain the correct base

104

1 Algorithm: Getting metrics from triplet MSA

Data: Matrix of multiple alignment for a triplet
2 FP = 0;
3 FN = 0;
4 TP = 0;
5 foreach Column C of the MSA matrix do
6 trueNt = Column[0];
7 uncorrNt = Column[1];
8 corrNt = Column[2];
9 if not (trueNt == uncorrNt == corrNt) then

10 if trueNt == uncorrNt then
11 if uncorrNt != corrNt then
12 ++FP;

13 else
14 if trueNt == corrNt then
15 ++TP;
16 else
17 if uncorrNT == corrNt then
18 ++FN;
19 else
20 ++FP;

Figure 3: Counting false positives (FP), false negatives (FN) and true positives
(TP) in the MSA matrix. These values are computed for each triplet of sequence that
has its own MSA.

rate. Recall and precision are also computed:

recall =
TP

TP + FN
precision =

TP

TP + FP
(3.1)

2.2.3 Seed-MSA approach

General idea The time complexity of the PO-MSA increases linearly with the average number of
branches in the DAG. Its global complexity is in O(nMN) with n the average number of predecessors per
vertex in the graph, M the length of the sequence to be aligned and N the current number of vertices
in the graph. Thus, very long reads can induce longer computation time, because in addition to their
length they imply more errors and branches in the graph. We propose a seed chaining strategy inspired
from Mummer’s [50] or Minimap’s [126] approaches, in order to divide the multiple alignment problem into
smaller problems and thus, reduce the time footprint of our approach. See Figure 9 for an example. For
each triplet, we compute seed k-mers that have the following properties: 1-they appear in each of the three
versions of the sequence, 2- they are not repeated across any of the versions of the sequence. Once these
seeds are detected, a memoization procedure is applied to find the longest subchain of valid seeds. The
procedure is similar to what is used for instance in Minimap2 [127], to which the reader can refer for details.

105

positions 0123456789
genomic sequence TCGT.ATC..
read with errors ..GCTA.CC.
corrected read TCGT.ATCCC

Figure 4: Toy example MSA of the three versions of a sequence. Let’s first compare
the genomic sequence to erroneous read. Errors in the read are reported in bold. Substitution
such as in position 3 (T/C) are aligned in the MSA. An insertion with respect to the genomic
sequence (position 4, 8) opens a gap in the first line. A deletion with respect to the genomic
sequence (positions 0,1,6) opens a gap in the read line. The corrected read can contain:
positions that must not be corrected and that are not corrected (black characters), positions
that must be corrected and that have been corrected (green characters), positions that
must be corrected thought that have not been corrected (orange) and positions that are
inaccurately modified by the corrector (red). In the corrected read line, red positions are
false positives, orange positions are false negatives and green positions are true positives. It
is then possible to compute a recall and a precision.

We give an outline of the procedure in Figure 6. It ensures that seeds appear always in the same order in
all three sequences. The seed k-mers have a fixed size k that is adapted according to the current observed
long error rates, i.e. 9 to 15 nucleotides. These seed k-mers are ordered according to their positions in the
three sequences. Thus, they delineate positions where each version of the read have an exact match of k
nucleotides. We then consider that subsequences that are extracted from the same duo of seeds in each
version of the read come from the same genomic location. This way we divide the global multiple alignment
problem is smaller problems separated by regions of exact matches.

Figure 5: Seed strategy to compute a multiple sequence alignment for a triplet
of reference, uncorrected and corrected versions of a read. Instead of computing
a multiple alignment on the whole lengths of the sequences, we rather divide this problem
in smaller multiple alignments. As each version is different, in order to decide were to start
and end alignments we find seed k-mers (in black) that are local exact matches between the
three sequences.

k value choice using multi-k strategy The optimal k size to obtain small subsequences can be
difficult to predict as it depends of the initial read size and its error rate. Very long read increase the chance

106

Figure 6: Valid k-mers are shared in all three sequences and not repeated in any of
them. In this example, all colored k-mers are valid k-mers according to our seed definition.
Valid k-mers are ranked in each sequence. We start with the last k-mer (orange) on the
reference. The chain starting with this k-mer cannot be elongated (it is then marked with
0). We select the previous valid k-mer (black). The chain starting with this k-mer can be
elongated only with the orange k-mer in all three sequences (it can be elongated with blue
and green only in the erroneous sequence). We mark the black k-mer with 1. Then the
maximal sub-chain length is 2. We iterate this procedure for all valid k-mers in decreasing
order on the reference sequence. The maximal subchain length is not increased starting by
the blue k-mer. It is increased with the green k-mer and increased again with the red one, it
is then maximal. Note that a non iterative algorithm that would not start by the last k-mer
would lead to the same result but is less optimized. If we obtain several maximal longest
sub-chains, the first encountered is kept.

to see a k-mer repeated, that hence cannot be a seed (condition 2). Longer k-mers (around 15 nucleotides)
are less prone to be seen several times in long sequences, but are harder to find in the three sequences at
a time (condition 1), especially the error rate is high. Shorter k-mers (up to 9) are easier to be found in
common, but are more likely to be repeated. As it is difficult to a priori set a k-mer size, we designed a quick
iterative strategy that tests for several k value to choose the most adequate for a given triplet. We chose

107

to minimize the maximal interval between two seeds as the MSA algorithm bottleneck is expected to be the
longest sequence. We start at the maximum k value (15), compute seeds and store the size of the maximum
interval between two seeds (the maximal interval being the maximal interval observed for all intervals in the
three sequences of the triplet). We decrease k and keep the new maximum interval size if it is smaller than
the previous stored. If at some point the maximum interval size gets larger than the stored value, we stop
the iterative process. Thus we keep a local minimum, that is mechanically not likely to be reached again by
decreasing k. Indeed, if k-mers of a certain size are repeated and prevent to find seeds, smaller k-mers will
be included in these larger k-mers and repeated too. We can test k values until 9 and keep the size that
minimizes the maximal interval between two seeds. Figure 7 presents an example of this strategy.

Figure 7: Multi-k strategy to determine the best k size for intervals. We compute
seed k-mers of size 15 for a start. The maximal interval are represented in gray. The
maximal interval size is recorded. Then at k=13, the maximal interval size is smaller than
the previous recorded, thus it replaces the previous. This comparison is made for k values
until 11. 11-mers are more prone to be repeated across the sequences, it is then harder to
find close seeds. The maximal interval is then longer than the previous stored, we stop the
procedure. In this example we would thus keep k=13.

Getting sequences chunks Once a size is fixed for the seeds, we start at the leftmost seed and wait
for the next seed to be spaced by at least a distance that is a parameter p (in practice 20 nucleotides) on
the reference sequence. Once the pair is found, we search for the next seed at at least a p distance and so
on. These final seeds are reported in the two other sequences. We extract all triplet subsequences between
two consecutive final seeds, as well as the left and right flanking sequences if they exist.

Reconstitute the MSA The sequences chunks are aligned with the PO-MSA algorithm, the align-
ment matrices being substantially smaller. Then, the seeds are replaced between each small MSA result to
obtain a MSA at the scale of the whole sequence (see Figure 9).

2.2.4 Split/trimmed reads

Most of the correctors output split or trimmed corrected reads. Trimmed reads are reads whose one or both
ends are missing. Split reads are corrected by parts, each part that could be corrected is output separately.
In this latter case, each split part has its own MSA triplet. We duplicate the perfect and uncorrected versions
of the read as many as there are split parts in order to do all multiple alignments necessary. In both split
and trimmed reads, recall and precision must be computed only on the parts of the MSA that have been
corrected. For trimmed reads, we detect continue windows of size over a parameter w that are gaps only
appearing in the corrected read line of the MSA. Then, recall and precision are computed only out of these
windows. We show an example is Figure 8. The condition of long gaps appearing only in the corrected line
of the MSA must prevent to mix up long homopolymers insertions and uncorrected parts such as illustrated

108

-----------------------------------ATTGTCAGAT

... ATTGTCTGAT

... AT-GTCT--T

Figure 8: Using the MSA, large windows containing only gaps appearing only in
the corrected sequence (red parts) can be detected. Such long gaps signal a trim of
the read. We compute recall and precision only on the untrimmed (white) part.

-----------------------------------ATTGTCAGAT

... ATTGTCTGAT

... AT-GTCT--T

ACTTGTTTG----------ATTGTCAGAT

----------ATTGTCTGAT

.AAAAAAAAAAAT-GTCT--T

Figure 9: Differences in MSA patterns between gaps provoked by an homopolymer
insertion in the erroneous read and uncorrected parts in the final read. In the
top MSA of the example, a gap is opened in the corrected line, because of an homopolymer
in the uncorrected line. However, this gap also exists in the reference (blue region). On the
contrary, an uncorrected parts in a trimmed reads is materialized in a gap that appears in
the line of the corrected read only, because of the missing nucleotides in this sequence.

in Figure 9. For split reads, the same window detection approach is applied on each subpart. Then recall
and precision are computed only on regions that are not at the intersection of the different windows. An
exemple is provided in Figure 10.

Finally, LRCstats discards reads which anchors show that they will map elsewhere than the expected
region they come from, thus realizes an important gain in speed by avoiding costly divergent alignments. In
our case, if a triplet yields no seeds, we do not perform the alignment and report this read separately.

2.3 ELECTOR: evaluation of long reads correction tools

2.3.1 Overview

Based on the previously described alignment strategy, we propose ELECTOR, a new evaluation tool for
long read correction. It provides a range of metrics that asses correction quality, and integrates modules
of read remapping and assembly metrics. It also adds results on assembly and remapping of the corrected
reads (Figure 11). In the following, we present only the first module since it is the core work. The second
module performs remapping and assembly, through a pipeline using BWA-MEM [125] and Miniasm [126].
ELECTOR is meant to be a user friendly tool, that delivers its results through different output formats,
graphical results that can be directly integrated to users’ projects. We made this tool compatible with a
wide range of correctors and present novel results on self correctors. ELECTOR is based on simulated data
from realistic simulation operated by state of the art tools (NanoSim [225] and SimLord [254]).

2.3.2 Input sequences

Simulated reads ELECTOR is implemented as a pipeline that is divided in two modules, an overview
is shown in Figure 11. Input sequences are passed to the first and second modules. The full evaluation

109

-------------------ATTGTCAGAT ... GGAAT--

ATTGTCTGAT ...

AT-GTCT--T ...

part 1

---ATTACCTAGA----AGT ... -CCCGTAGATCCAGTTGCA---

ATTGTCTGAT ...

AT-GTCT--T ...

part 2

-------------------ATTGTCAGAT ... GGAAT-------ATTACCTAGA----AGT ... -CCCGTAGATCCAGTTGCA---

ATTGTCTGAT ...

AT-GTCT--T ...

Figure 10: A split corrected read is represented in several FASTA sequences. In
this example the read is corrected in two parts. One multiple alignment is made for each
part. We detect long gaps similarly in each MSA result (yellow windows for the first corrected
sequence and blue windows for the second). Then those results are combined by intersection.
Windows that result from intersecting yellow and blue parts are in green. The represent
remaining long uncorrected gaps after combining the different corrected subsequences of the
read. Recall and precision are computed out of the green windows.

Figure 11: Overview of ELECTOR pipeline. Input provides the versions of the sequences
at the different stages: without errors (from the reference genome), with errors (simulated
or real reads) and corrected (after a correction method pass). For each sequence, a multiple
alignment of the three versions is realized, and results are analyzed to provide correction
quality measures. In a second part, reads are assembled using Minimap2 + Miniasm, then
contigs and reads are mapped on the reference genome to provide remapping and assembly
statistics. A text summary, plots and a PDF summary are output.

pipeline works with simulated reads using a reference genome provided by the user. This choice is motivated
by the need to known the ”true” sequences in order to precisely control the results brought by the assessed
correction method. With simulation tools, we ensure we take as input sequences that will closely simulate
the characteristics of long reads. Configuration of simulation, i.e. error rate, coverage, and the choice of the
reference genome are the user’s call.

Users are asked to simulate a dataset of reads, and to correct them with the desired correction method.
The genome used for the simulation, the simulated erroneous reads and the corrected reads are then input

110

Experiment Recall Precision Correct bases Time
”1k” MSA 93.964% 93.479% 97.639% 11h
”1k” Splitted MSA 93.809% 93.507% 97.631% 38min
”10k” MSA 84.505 % 88.347% 95.290% 107h
”10k” Splitted MSA 84.587 % 88.278% 95.250% 42min

Table 3.1: Comparison of the two multiple alignment strategies on a simulated
datasets from E.coli genome. The reads from the ”1k” experiment were simulated with
a 1k mean length, a 10% error rate and a coverage of 100X. The reads from the ”10k”
experiment were simulated with a 10k mean length, a 15% error rate and a coverage of
100X. The reads were corrected with MECAT with default parameters.

to our pipeline. ELECTOR uses headers of corrected reads to make them correspond to their uncorrected
and perfect version and makes triplets for the multiple alignment. Correctly formatted and sorted files of
respectively perfect, uncorrected and corrected reads are created. If necessary (split reads), uncorrected and
perfect versions are duplicated in order to obtain one MSA per split part of a read.

2.3.3 General correction quality metrics

Metrics for correction quality (recall, precision...) are obtained using the seed-MSA strategy previously
described using the three input files to make triplets of sequences. We filter out corrected reads which length
is below a percentage threshold (in practice 1%) of the reference length. Metrics described above are not
computed on these reads as we expect the alignments’ quality to be poor. We also take into account that
correctors distinguish corrected bases from uncorrected ones using a different case and only consider upper
case bases in this situation to compute FP . For hybrid correctors, the result we present were generated
using short reads simulated with ART [93].

2.3.4 Validation of the seed-MSA strategy

We first validate our seed-MSA strategy both in terms of performances and results. We show to which extent
its results differ from the classic MSA approach, and the gain in speed. We expect that recall, precision and
correct base rate hardly differ so that the MSA behavior is correctly reproducible. Conversely, we expect an
important gain in time with seed-MSA compared to MSA. We compared multiple alignment results obtained
with this seed-MSA to results obtained by the regular implementation of MSA on two datasets of different
read lengths.

Results are presented in Table 3.1, they show that classic MSA and seed-MSA approaches differ only by
a few digit in the presented metrics for both experiments.

However, using seed-MSA, a substantial gain of several orders of magnitude in time is achieved: while
the classic MSA strategy has a quadratic runtime with respect to the read length, seed-MSA drastically
reduces this drawback. As another illustration, we tried to evaluate the correction of one 100Kb read with
LRCstats, which did not pass on our cluster with 200 GB memory.

2.3.5 Presentation of ELECTOR’s results on several datasets

We present results of ELECTOR on several simulated datasets and several species genomes (A. baylyi, E.
Coli, S. Cerevisiae). The datasets are presented in Table 12. We display the ELECTOR pipeline results
using reads corrected on lists of hybrid and self correctors, and present main metrics output of ELECTOR’s

111

Dataset A. baylyi E. coli S. cerevisiae
Reference organism
Strain ADP1 K-12 substr. MG1655 W303
Reference sequence CR543861 NC 000913 scf7180000000{084-13}
Genome size 3.6 Mbp 4.6 Mbp 12.2 Mbp
Simulated Pacific Biosciences data
Number of reads 8,765 11,306 30,132
Average length 8,202 8,226 8,204
Number of bases 72 Mbp 93 Mbp 247 Mbp
Coverage 20x 20x 20x
Illumina data

Accession number ERR7889131 Genoscope2 Genoscope3

Sequences from Loman Lab Sequences from Schatz Lab
Number of reads 900,000 775,500 2,500,000
Read length 250 300 250
Number of bases 224 Mbp 232 Mbp 625 Mbp
Coverage 50x 50x 50x
error rate 0.178534 0.179267 0.666190

Figure 12: Description of the data used in the experiments.
1Only a subset of the data was used.
2http://www.genoscope.cns.fr/externe/nas/datasets/Illumina/ecoli/
3http://www.genoscope.cns.fr/externe/nas/datasets/Illumina/yeast/

first module in Tables 3.2,3.3,3.4. The first module of ELECTOR computes general metrics: mean recall,
precision, correct base rate, number of trimmed or split reads and mean missing size, GC content. We
compare LRCstats and ELECTOR on several datasets, with LRCstats as the reference, in order to assess
if ELECTOR reports similar results. Since LCRstats does not provide recall and precision, we show the
comparison on correct base rates only (Table 3.5).

In terms of comparison between LRCstats and ELECTOR, the two methods relatively agree on most
of the results. This shows that ELECTOR’s approach enables to retrieve reliable results. Both LCRstats
and ELECTOR report HALC and LoRDEC as the tools providing the best correct base rates, Canu’s lower
performance. However, ELECTOR reports more pieces of information. For instance, on the long reads of the
A. baylyi dataset corrected with Nanocorr, LRCstats reports a correct base rate of 0.99422 and ELECTOR
reports a correct bases rate of 0.99534 (Table 3.5), which are in accordance, but ELECTOR only reports
a recall of 0.97992 (Table 3.2), meaning that Nanocorr failed to correct 2% of the erroneous bases. The
tools strongly disagree on LoRMA’s correction, LRCstats reporting rather bad results while ELECTOR
announces more than 99% correct bases. ELECTOR’s results are closer to what is presented in LoRMA’s
publication. This might come from issues with LoRMA’s corrected reads alignment with LRCstats. Taking
the example of Canu on E. coli, LRCstats and ELECTOR report close correct base rates (respectively
0.91439%, 0.92792%) in Table 3.5. In comparison to other correctors, Canu downperforms on this dataset.
ELECTOR additionally reveals that its recall is to blame in particular: 0.61962% (most of the other tools
have a recall above 99%), while it has precision of 0.95255% in Table 3.3.

Computation of these results is also more time-saving than when using LRCstats. In particular, on the
E. coli dataset, LRCstats took an average of 3 hours and 50 minutes to evaluate the quality of the correction
of the different tools, while ELECTOR only took an average of 25 minutes.

112

http://www.genoscope.cns.fr/externe/nas/datasets/Illumina/ecoli/
http://www.genoscope.cns.fr/externe/nas/datasets/Illumina/yeast/

Metric Colormap HALC LoRDEC Nanocorr Canu LoRMA
Recall 0.99632 0.99725 0.99681 0.97992 0.63545 0.98089
Precision 0.79276 0.99426 0.9951 0.9963 0.9556 0.9582
Correct bases rate 0.96073 0.99831 0.99794 0.99534 0.92792 0.99298
Trimmed / split reads 3,137 2,603 4,385 1,584 1202 340
Mean missing size 5,699 1,314 5,211 385 79 6,656
%GC 40.5 40.40 40.5 40.5 41.0 47.4

Table 3.2: Statistics of the long reads after correction with the different methods,
as reported by ELECTOR on A. baylyi genome.

Metric Colormap HALC LoRDEC Nanocorr Canu LoRMA
Recall 0.99632 0.9966 0.99599 0.98503 0.61962 0.98396
Precision 0.76725 0.99211 0.99275 0.99424 0.95255 0.95372
Correct bases rate 0.95362 0.99823 0.99761 0.99661 0.92499 0.99274
Trimmed / split reads 3,680 4,787 7,990 1,612 1,470 577
Mean missing size 5,982 2,374 5,577 341 76 6,153
%GC 50.8 50.8 50.9 50.8 50.7 53.0

Table 3.3: Statistics of the long reads after correction with the different methods,
as reported by ELECTOR on E. coli genome.

Metric Colormap Nanocorr Canu
Recall 0.99558 0.97952 0.63439
Precision 0.79184 0.98878 0.94484
Correct bases rate 0.96009 0.99472 0.9262
Trimmed / split reads 12,021 5,193 6,338
Mean missing size 5,376 416 196
%GC 38.2 38.2 38.9

Table 3.4: Statistics of the long reads after correction with the different methods,
as reported by ELECTOR on S. cerevisiae genome.

113

dataset evaluation tool Colormap HALC LoRDEC Nanocorr Canu LoRMA
A. baylyi LRCstats 0.99897 0.99961 0.999626 0.99422 0.91439 0.78230

ELECTOR 0.96073 0.99831 0.99794 0.99534 0.92792 0.99298
E. coli LRCstats 0.998964 0.99940 0.99933 0.99602 0.911475 0.67024

ELECTOR 0.95362 0.99823 0.99761 0.99661 0.92499 0.99274

Table 3.5: Correct base rates of the long reads after correction with the differ-
ent methods, as reported by ELECTOR and LRCstats on A. baylyi genome and E. coli
genomes.

2.4 How correctors perform on RNA

In our context, it would be interesting to use ELECTOR on transcriptomics read in order to analyze cor-
rection tools on RNA reads. Since RNA long reads spliced mapping has just been started to be supported
by mapping methods (and no dedicated publication exist), we lack of perspective to use ELECTOR on real
transcriptomic data. On the other hand, ELECTOR can be used on simulated data. Although there exist
many simulation solution for long reads in the genomic context, no method currently exists for RNA. In
particular the gene expression has to be modeled. Thus in the following, we provide a study of long reads
correction methods on RNA that was performed separately from ELECTOR’s context. This work is at the
initiative of members of the ASTER ANR. In particular, Leandro Ishi, Vincent Lacroix and Rayan Chikhi
realized analysis of correction quality, isoforms numbers before and after correction for each gene, and other
results, using mouse transcriptome sequenced at the Genoscope such as the one used in Chapter 2. We
participated in this study, specifically we identified that not all correctors achieve to conserve the isoform
structures during correction. We show the experiments and results that led us to such conclusions. We
additionally mention general conclusion from ASTER’s study that are of general interest.

2.4.1 Specificity and caveats in the case of RNA long reads

Several hurdles can be identified about transcriptomic long read correction. First, similarly to short reads,
gene expression leads to heterogeneous coverage of each isoform. Low coverage give less information for read
correction. In terms of long reads specifically, the task of overlap detection is critical. As pointed out in
Chapter 1, transcriptomic reads are usually less long than genomic ones, leading to a lower correction recall.
Even before the correction has started, a fraction of the sequences is already lost, thus not benefiting either
to correction process nor being corrected. Hybrid methods can escape this problem since they rely on the
short reads coverage. However, many hybrid corrector work with assembled short reads contigs, prone to
errors in the transcriptomic context when several isoform exist. Self-correction method rely on graphs where
a linear consensus is searched. It is difficult to anticipate to which extent isoforms can be collapsed during
this process. Thus, we present experiments in the following to better understand how correctors are able
to respect each isoform structure when correcting reads. The results presented come from a preliminary
study not published yet. They help understand the main pitfalls in actual RNA correction and motivate the
study we present below. The principal indicators we need to observe in order to understand the quality of
correction are the error rate, the loss of coverage and the isoform bias induced by correctors. We anticipate
that isoform bias can occur if some isoforms are overcorrected (reads corrected to major isoform) or if rare
isoforms are dropped by the correction method. The dataset used is extracted from the mouse dataset
presented in Chapter 2 (750,000 reads extracted from this dataset, without rRNA). We selected hybrid
correction (LorDEC, Proovread, PbCR, Colormap) and self correction tools (MECAT, Daccord, LoRMA,
PBDAGCon). All tools were launched with 32 threads. Results were computed using GMAP [250] for
mapping on the genome and BWA-MEM for mapping on the transcriptome and AlignQC [248] (that helps
assessing alignment of corrected reads results).

114

2.4.2 General conclusions on RNA long reads correction

Proovread and PbCR give the longest runtimes, with more than 100 hours to correct the dataset. Concerning
performances, fastest tools include LoRDEC, Daccord, LoRMA and in particular MECAT which achieves
read correction in less than an hour. Trends remain the same with memory usage, MECAT and LoRDEC
distinguish themselves by using less than 10 Gb while other tools use at least twice as much, and up to
ten times more. All tools provide a fraction of split reads, around 30% for the tools that deliver the less of
them. LoRMA is the corrector that splits the most reads (and returned 1.5 times the original number of
sequences), thus achieving a lower mean length for output reads (and losing to some extent the long range
information provided by the reads). Remapping rate varies goes from 85.5% with LoRDEC or Proovread to
more than 99% with LoRMA (however, shorter reads are easier to map) and MECAT (initially 83.5% for
raw reads). As expected, hybrid correctors take advantage of short reads to output better corrected base
rates than self correctors. The same trend applies to errors in homopolymers. While most of these errors
are corrected using hybrid correctors, at least 60% of them remain when using self correctors. Finally, by
mapping on transcriptome it is observed that there exist cases where less isoforms exist in the output than
in the input. In the following, we set up an experiment to identify scenarios that are favorable to such loss.

2.4.3 Isoform loss scenarios

Simulation For this work we need to assess the correctness in terms of base and of structure in reads
after correction. We designed a simulation in order to test these two features, by passing a mixture of
different isoforms to the correctors. We simulated reads for one gene only, with two different transcripts,
and see the impact of the relative abundance between major and minor isoforms and of the the size of the
skipped exon as parameters on the capacity of the correctors not to collapse isoforms.

We simulated a simple case of a gene with two isoforms: the major is the most expressed, the minor is
the less. Exons length and number are chosen according to resemble what is reported in eukaryotes (8 exons,
200 nucleotides). A skipped exon, whose size can vary, is introduced in the middle of the inclusion isoform.
We allow the ratio of minor/major isoforms (M/m) to vary in order to model a local differential in splicing
isoform expression. For a coverage of C and a ratio M/m, the number of reads coming from the major
isoform is MC and the number of minor isoform reads is mC. All reads are sequenced along the full-length
isoform. We produce two versions of each read. The reference read is the read that represents exactly its
isoform, without errors. The uncorrected read is the one in which we introduced errors. We use an error rate
and profile that mimic observed R9.4 errors in ONT reads (13% error rate, with 37% of substitutions, 9% of
insertions and 54% of deletions). After a corrector is applied to the read set, we obtain a triplet (reference,
uncorrected, corrected) read that we use for assess the quality of the correction under several criteria.

Isoform structure In order to retrieve isoforms in presence after a pass of a corrector, we re-map the
corrected reads on both reference isoforms. Since the amount of reads is reasonable we can afford dynamic
programming to obtain precise alignments, so we used a Smith Waterman efficient implementation [259].
Reads are assigned to one or the other isoform according to their mapping profile result. Inclusion reads
(respectively exclusion reads) are expected to map on the reference inclusion isoform with no large insertion
(respectively with a large deletion, sized as the skipped exon) in the middle. Inclusion reads (respectively
exclusion reads) are expected to map on the reference exclusion isoform with a large insertion of the size
of the skipped exon (respectively with no large deletion) in the middle. In the output, we check if both
isoforms appear, and if they do, whether it is at the right ratio. Some tools could not be run on these
small simulation datasets: LoRMA, PBDAGCon (worked with 100X long reads) and MECAT. Either the
tools stopped early in their execution or did not correct any read. We think that the relative short size of
sequences in comparison to genomic reads was the main issue. Hybrid correctors and self correctors results
are presented separately in Figures 13 and 14. The overall comparison between the two paradigms shows
that hybrid correctors are less impacted by isoform collapsing phenomenon since their algorithms act less
directly on the long reads. LoRDEC shows the best capacity to respect the isoforms in presence. However,
in regions less covered (such as lowly expressed genes, rare transcripts), all tool report less precisely the right

115

amount of each isoform. Self correctors require enough material to build consensus, this is why only Daccord
could be launched on 10X long reads, with rather erratic results. Even on higher coverage, not all correctors
achieve to correct our simple instance and none reports exactly the expected number of sequences for each
isoform. We could not derive any clear trend concerning the relative isoform ratios, even if the 90/10 ratio
seems to be in favor of overcorrection to the major isoform. Skipped exon length seems to impact both
hybrid and self correctors, small exons being a real challenge.

3 Discussion

In this chapter we presented ELECTOR, a tool to assess long reads correctors. In the context of this thesis,
ELECTOR is particularly meant to help the development of a correction tool. Not presented ELECTOR’s
works in progress in this dissertation include the indel rates (and comparison with LCRstats) and percent
of errors in homopolymers. We also are currently working to handle real data with ELECTOR. In this
case we have to map the reads on the reference to extract a reference sequence. This task is realized with
Minimap. However, this supplementary step implies that reference reads depend on mapping quality, which
will have impact on presented results. We enable polyploid genome simulation, in this case each uncorrected
and corrected version are linked to their corresponding reference sequence from the original haplotype, and
recall, precision and correct base rate are computed adequately.

ELECTOR has the ability to adapt to RNA long reads as well, and will be useful to assess RNA read
correction. Currently, the limitation is rather on the side of the data simulation. In order to build a
benchmark for a RNA correction tool, we would like to start with simulated reads in order to control exactly
the ground truth. But there exist no simulation tool for PacBio or ONT transcriptomics reads, most likely
because it requires more work than in genomics to correctly simulate gene expression. A work in progress
simulation tool for this application is presented in the next chapter.

We could see that a methodological gap exists between correcting genomic sequences and correcting
transcriptomic sequences. No real generic or RNA correction method exists, all are rather tailored for DNA.
According to the aspect that is looked for (base-wise accuracy, not loose any isoform,...) all correctors
perform differently and none can reach good results for all requirements at a time. Thus there is no method
that has synthesized all needs for RNA at the moment. The next chapter will be dedicated to present a
consensus method for RNA reads. Both ELECTOR’s underlying algorithms and presented correctors allowed
us to introduce key concepts for the following chapter.

116

Figure 13: Hybrid correctors and isoform structure conservation using 10X short
reads coverage (up) and 100X (down). The correctors are presented in the different
lines, the alternative exon size is in column. Bars are plot for each isoform ratio (75/25;
50/50 and 90/10) on the horizontal scale. On the vertical scale, the closer a bar is to its
corresponding ratio value on the horizontal, the better. For instance, the top left blue bar is
a results from Proovread, for 50/50 isoform ratio in input and an exon of size 10, and we do
not retrieve a 50/50 ratio after correction since the bar does not go up to 50 on the vertical
axis.

117

Figure 14: Self correctors and isoform structure conservation using 10X long reads
coverage (up) and 100X (down).

118

Chapter 4

Towards access to corrected isoforms
using long reads

119

In Chapter 3, we raised the point that correction methods could not be trivially adapted from genomics to
transcriptomics. We also draw a parallel between correction and consensus. We aim at proposing a modular
approach for going from raw long reads to isoform identification by gene. The two first modules being
discussed in Chapters 1 and 2, in this last Chapter, we propose a method to compute isoforms consensus
from clusters of reads coming from the same gene. We chose consensus over correction because we think that
providing one consensus per isoform plus the count associated to each isoform is sufficient and less redundant
than providing a corrected version for each read. But the two results are fundamentally quite similar. Against
intuition, we only start reads sequence correction in the end of the pipeline. Recently in genomic assembly
domain, a paradigm shift occurred, brought by long reads usage. Miniasm [126] was the first long read
assembly method to propose an assembly-first method in which overlaps are found in erroneous reads to
perform assembly, and assembled sequences are only corrected afterwards. Here we propose a “cluster-first”
approach in which reads are first associated by genes before being corrected. This enables to divide consensus
computation in several smaller problems, and to focus on each cluster content to identify isoforms from one
another and provide more accurate corrected sequences.

1 Describe full-length isoforms in RNA data

1.1 Background

1.1.1 A look back to EST Consensus strategies

For EST, consensus for isoforms were looked for during the assembly phase. We recall that two main EST
assemblers were PHRAP [13] or CAP3 [94]. Here we give an idea of how these methods found consensus
for the ESTs. The PHRAP assembler is performing three steps: comparison, alignment and assembly of
DNA sequences. The PHRAP assembler is based on an banded (local) version of SW algorithm to perform
comparisons of the sequences: when a word of a certain length is perfectly matching between two sequences,
PHRAP tries to extend the alignment while computing a score. Of all alignments, the highest-scored is kept
and the reads are assembled. PHRAP is using the PHRED quality value to increase its accuracy. The data
was not error-free, which led to discrepancies during the alignment phase. When a region has discrepancies,
it is more tolerant to compute an alignment with regions with a low PHRED score than with regions with a
high PHRED score that are more likely to be due to repeats and to lead to mis-assembly. The contig final
sequence reflects a vote system: if there is an ambiguity at a base during the alignment, the best-quality
base call is chosen.

CAP3 works on a slightly different way. The comparison and alignment steps look like PHRAP’s, using
a BLAST-like technique with a banded Smith Waterman alignment. Overlaps between reads are ranked
according different alignment measures, several reads can be kept in a layout. A multiple sequence alignment
is constructed for each contig. A consensus is created using the quality score of each base, each read is added
one after another to the current consensus (the sequence is read from 5’ to 3’ and reads are added in order).
If the average quality value of the current consensus for a base is lower than the quality value of a read
added, the consensus will change according to the new read information. Others assembly strategies were
develop, for instance TIGR [179] or PAVE [221] that was trying to use the mate-pair information to enhance
the contig construction.

From these works, we keep the ideas of base-voting for consensus calling, and of multiple alignment to
retrieve the common bases in reads.

1.1.2 Long reads

Only a few pipelines are published to date for the processing of long reads in a transcriptomic context.
Mandalorion [28] and TAPIS [1] are two very recent pipelines that enable to detect alternative splicing using
long reads. These methods do not work de novo. Mandalorion takes ONT reads and Illumina, filters and
keep quality long reads that are then mapped on the reference genome using BLAT. Alternative splicing is

detected and they also provide gene expression using the short reads counts. TAPIS works in the same spirit
but integrates Iso-seq (PacBio) reads, and uses the mapper GMAP [251]. Tofu [77] is the first pipeline able
to work reference-free. It starts by a correction step, then clusters similar reads and extracts a consensus by
isoform from the clusters. Then, these consensus can be mapped on a reference if needed. Tofu is specifically
designed for PacBio reads and cannot be applied on ONT.

1.2 Objectives of our method

Our goal is to detect alternative events and call consensus from CARNAC-LR’s clusters described in Chapter
2. In our case, like Tofu, we propose to rely on clustering to avoid using a reference (however we cluster
reads by gene, not by isoform) and to extract several consensus from each cluster. Tofu uses PBDAGCon
to call one consensus per isoform cluster. Alternative splicing is retrieved afterwards when mapping on a
reference. On the contrary, we want our consensus step to 1-directly detect alternative events and 2-propose
several adequate consensus. We will also use partial order graphs such as in PBDAGCon, but we will use on
the original partial order alignment described in Lee’s paper [121]. The rationale is that we want to extract
several meaningful consensus from the alignment, instead of the unique consensus proposed by PBDAGCon.
Moreover, PBDAGCon’s heuristic implies that all sequences are aligned to a first backbone sequence. In our
case, since several skipped exons can appear in the dataset, this is not a desired property since some exons
could be missing from the first sequence (even if we choose the longest as the backbone).

1.3 Multiple sequence alignment strategy

In this section we state the work of Lee in [121] which will be our ground base for building multiple
sequence alignments. The presentation of the algorithms allows us to clarify the choice of POA over other
MSA strategies and to show its interest on our problem.

1.3.1 MSA

First bioinformatics applications of MSA were proteins alignment [135, 83]. Applications to RNA were mostly
dedicated to retrieve RNA secondary structure [207, 262]. There is no unique formal definition for multiple
sequence alignment, but we gave the main principle in the previous chapter. Classical representation of MSA
are matrices. In this chapter, we will work with graph representations. In partial order-MSA (PO-MSA),
the MSA is represented by a directed acyclic graph. Each base of sequence is a vertex, and arcs are drawn
between consecutive bases in a sequence. Vertices record the identity of the sequences they come from as
well as their positions in these sequences. Then sequences can be trivially reconstructed by following paths
of vertices that share same identifiers. Thus, a very trivial simple path PO-MSA can be constructed from a
single sequence, with a single source that is the first base of the sequence and a single target the is the last
base of the sequence. All bases follow each other and are linked by directed arcs from left to right, resulting
in a linear graph.

1.3.2 Graph construction

New sequences are gradually aligned on the graph G. The alignment procedure is described afterwards.
First we explain how, given an alignment between a path in the graph S ⊆ G and a new sequence S ′,
the graph is enriched. A new vertex in G is created for each nucleotide of the sequence S ′. In the graph
construction phase, a second type of undirected arcs is used, that we denote alignment edges. If two vertices
v ∈ Sandv′ ∈ S ′ are aligned, then an alignment edge e = (v, v′) links the pair. Once the sequence is aligned,
each new vertex is looked up. If it is aligned with a vertex of the graph hence we have a couple (v, v′), then:

� if v and v′ represent the same nucleotide, the vertex is fused (see Figure 1 a))

� else,

121

– if v is itself aligned to w ∈ G, with w representing the same nucleotide than v′, then v′ and w
are fused (see Figure 1 d))

– else, we conserve e = (v, v′) (see Figure 1 b))

Figure 1: DAG construction with new aligned sequences. The current graph is
in black, aligned sequence to be added in blue. Green dotted edges represent
a alignment with a match, red dotted represent alignment with a mismatch.
When possible, vertices are fused and arcs between two fused vertices increase in weight.
Otherwise new vertices are created in the graph. When mismatches occur, we keep track of
the alignment with an edge.

The fusion process works as such: only one of the two vertices is kept and stores the information for
the two vertices, any in and out arc is also conserved. Edges e = (v, v′) is removed. Finally, redundant arcs
are removed, that is, there is at most one arc between two vertices.New sequences are added to the graph
iteratively through this scheme, in the order of a FASTA input. The resultant graph is a DAG. Within each
path of this DAG, vertices are ordered with respect to each other. This order imposes that all vertices have
a rank r0, rn, which ensures that for any vertex v of rank rk, if v has source vertices then the ranks of these
vertices are inferior to rk. Finally, each time an arc is placed between two fused vertices, it can be weighted
in the perspective of building a consensus. Arcs are weighted with the number of sequences that supported
the presence of the two consecutive vertices. One can notice that the gaps are implicitly represented by the
graph topology (see for instance Figure 1 c)).

1.3.3 Sequence to graph alignment

The alignment is made through an extended version of global or local classic alignment procedures. In the
Needleman and Wunsch algorithm, two cursors i on sequence 1 and j on sequence 2 are considered. These
cursors move from sequences left to right on each base. The pair (i, j) represents a current position in the
alignment matrix. The algorithms aims at finding out which of the three possible moves is the best to do:

� i and j move forward, which corresponds to aligned bases (match or mismatch)

� i (respectively j) moves forward while j (respectively i) is fixed, which corresponds to an insertion of
one base from sequence 1 (respectively sequence 2)

122

The score of the previous position is added to the score of the move to obtain the score of the new (i, j)
position. This is repeated through all bases. When aligning a sequence on a graph, the same framework
is used. A given base has only one predecessor in the sequence. In the DAG, a base can have several
predecessors, i.e. vertices that are the sources of arcs entering the base’s vertex. Thus, there are more moves
and more previous scores to consider, starting at each predecessor. Through a loop over all predecessors of a
base, we can apply the previous procedure to any case that has to be treated, and the rest of the algorithm
remains the same. In Figure 2, we show the beginning of the alignment of a graph (vertical) and a sequence
(horizontal). The graph is linear in its two first vertices thus the algorithms is run exaclty as the classic
Needleman-Wunsch. In Figure 3, we present all the possible predecessors, moves and scores for a base in the
graph that has several incoming arcs. In Figure 4 the sequence finally aligned is ready to be added in the
graph.

Figure 2: The alignment can be viewed in a similar way than classic alignment
schemes such as Needleman and Wunsch algorithm. In this example, we consider a
graph that was obtained by aligning two first sequences, AAGC and AGC. A new sequence
AACC is to be aligned. Since the graph is ordered, each nucleotide of the graph gets a single
row of the matrix. The sequence to be aligned is placed on the columns in this example.

Predecessors of a base have to be well defined. A topological sort (using the Kahn algorithm [99] or
several DFS) is realized on the graph before each alignment round. This is possible since the alignment
graph is a DAG. Then each vertex is guaranteed to be placed after all its predecessors.

1.3.4 Output a MSA

Since the graph has been ordered, each vertex can be assigned a column in the final MSA matrix. Vertices
aligned to each others are put in the same column. Vertices store the sequences they belong to, so each row
of the matrix can be filled by following paths of vertices from the same sequence (Figure 4). There is a
bijection between a POA graph and a given MSA result. However the representation arbitrarily place gaps
in certain cases.

1.3.5 Differences with other strategies

Since pairwise comparison of sequences complexity is in O(N2) with N the length of sequences, the com-
parison of P sequences is in O(NP) hence intractable for a large number of sequences. That is why the

123

Figure 3: The algorithm performs the same way than Needleman and Wunsch but
with more possible moves and predecessors for vertices with several predecessors.
In this example, the third vertex G has several predecessors in the graph, we represented
the different possible moves by colored arrows with associated scores.

Figure 4: Integration of the sequence to the graph. We then obtain an alignment of the
sequence on the DAG, in this example with a mismatch. It is inserted in the graph. A
flattened alignment can be obtained.

community relies mostly on heuristics. Most works anterior to PO-MSA relied on a progressive strategy.
Progressive strategies consist in aligning pairs of MSA to build larger MSAs. This implies to flatten each
MSA of a pair to a linear profile called a consensus. This step implies loss of information, in particular
when gaps and insertion occurs. The consensus inherits from choices made at gaps and insertions and fixes
them for all sequences of the MSA. Hence, consensus can be computed for MSA, but a MSA cannot be
retrieved only given the consensus. Moreover several MSAs can have the same consensus. Algorithms such
as CLUSTAL [88] work that way, with a polynomial time complexity in O(N2logP). However, and de-
spite enhancements proposed for instance in CLUSTALW [229], these approaches are greedy and can deliver
sub-optimal alignments.On the contrary, PO-MSA helps resolve certain inconsistencies of previous multiple
alignment procedures. It does not deliver an optimal MSA solution, however it keeps the whole information
of the MSA in the DAG, and can guarantee the optimal alignment of each new sequence on the graph. The
result will depend on the order the sequences are added in the graph. Moreover, its algorithm’s speed is
increased, since it is linear with the number of branches per vertices in the graph.

PO-MSA approach was brought back recently by long reads correction and polishing tools [238, 258, 34].
Its implementation was also validated for EST assembly purposes.

124

In order to retrieve isoforms structure, the task of grouping common elements in the MSA is more
important than the overall alignment similarity. In other words, we accept to add a lot of gaps to the
MSA in exchange for accurate grouping of bases from same exon sequences. Our primary goal was not to
develop a new algorithm for MSA. We focused on using available methods to first present the coherence of
our approach.

1.4 How exons are detected in POA results

1.4.1 General idea

In Figure 5 we outline the expected patterns of alternative variants in a cluster. The presence/absence of
an exon creates a gap in the MSA. Alternative events can be classified with a small degree of resolution.
Alternative start and end of transcription create gaps at the very beginning or end of the MSA. First
alternative donnor or acceptor site, if they concern a long enough region to be detected, can also create
such pattern. Skipped exon, other alternative donnor/acceptor and retained intron create long gaps (tens
to hundreds of positions in the MSA) flanked by constitutive parts. In reads that include the alternative
regions, we expected that these subsequences are at least of the size of an exon. Such a size may vary, thus
we take it as a parameter, in practice set to 30 nucleotides that corresponds to what is mostly observed in
eukaryotes.

Figure 5: Expected patterns in a MSA aligning different isoforms of a gene. Al-
ternative events are linked to the presence/absence of subsequences (exon, parts of exons or
introns) that create long gaps in the MSA. On the contrary, constitutive exons align.

1.4.2 Gap detection

In the case of perfect sequences, the gap detection in the alignment matrix would be straightforward. Using
long reads, the noise introduced in the alignment can fragment the gaps.

The first task is thus to retrieve and reconstitute gaps in the MSA. Gaps are chains of successive dashes in
a MSA line. First, all gaps longer than a gap threshold are detected in each read R, leading to a list of pairs
of coordinates for gaps that are column numbers in the MSA: gaps(R) = (gx = (p0, p1), gy = (pi, pj), ...)),
with p denoting a column number (step a in Figure 6). The first coordinate of a gap is the position where
the first dash was found in the MSA, the last is the position where the last dash is found. Very short gaps
are more likely to be due to sequencing errors, thus not reported. In practice we set gap threshold to 8.
Then, successive gaps gx = (pi, pj), gx+1 = (pk, pl) are considered. If the right coordinate of gx and the left

125

coordinate of gx+1 are separated by less than gap threshold, which means a few nucleotides are included
whithin a gap, a new gap g = (pi, pl) replaces gx and gy (step b) in Figure 6).

Errors in sequences lead to detect gaps corresponding to a same alternative exon at slightly different
positions in the different reads (see Figure 6 a) and b)). Thus we look for consensus positions for each gap in
order to define alternative regions. In the set of all reported left positions Pleft (respectively right positions),
we cluster positions that do not differ from more than w nucleotides (w = 10 in practice). Within clusters,
we chose the position that is the most reported (Figure 6 c)). Final regions are then drawn. Coordinates
for gaps in all reads are ordered. Regions are defined within and between each gap coordinates. In the case
several gaps overlap, the larger gap is divided in several regions according to the smaller gap(s) it spans
(for instance last gap of first and second reads versus third and forth in Figure 6 d)). Reads are clustered
according to whether they contain sequence or gap in each region (clusters are reported with the letter “c”
on the right in Figure 6 d)), i.e. they represent the same isoform.

Figure 6: Steps of alternative regions discovery in the MSA. We present three se-
quences aligned that are three rows in the MSA. a) Gap detection. Gaps in green are
reported, for instance gap at positions (pi, pj) in the first row is reported. b) Gap fusion
when small island of nucleotide fragment larger gaps. Gaps in green are fused if they are
separated by a small number of nucleotides (two first rows are fused to larger gaps) c) Seek
a consensus position for each gap. A sliding window in red goes from the left to the right
of the MSA positions. If a first gap position is present in the window, it record its value. If
several gap position compete, the most reported is recorded (number of times each position
is reported is written in green). While the window slides and encountered new reported
positions, the current value can still be updated. For instance pi−2 is updated by pi. If the
window overlaps a region where no gap is reported, a new slot for a new position is created.
d) Extract regions using consensus gap positions.

126

1.5 Consensus calling

Once regions are detected, we achieve to find common subsequences in groups of reads within clusters. We
have enough information to start calling consensus with less risk of mixing different isoforms. We review the
different options at our disposal to call consensus. The first strategy is to correct by isoform (Figure 7 B).
The expected advantage of such approach is that the consensus is called on the whole sequence and does not
suffer from approximate region definition. However, a rare isoform might not be supported by enough reads
to build a consensus.

The other option is to correct by region, i.e. (groups of) exons (Figure 7 A). The main advantages are
that rare isoform can still be (at least partially) corrected since they can share exons with other isoforms. This
strategy also allows to compute again smaller and more accurate multiple alignments on each region. These
smaller alignments should yield better quality consensus since they integrate less noise and are supposed to
be realized between identical subsequences. When a region contains both gaps and exon sequences, only the
reads that do not contain gaps are selected for the second multiple alignment round (for instance in Figure 7,
in the first region constituted of yellow sequence, only the four first reads corresponding to the four first
rows are taken into account for the consensus of this region).

Finally, a hybrid approach consists in first correcting by isoform when possible in order to obtain better
definition at the exon junctions, then to perform a second round of correction using each isoform consensus
and rare isoform to correct by regions (Figure 8). These three strategies are compared in the result section.

Once the isoform correction or exon correction is selected, an algorithm for consensus calling must be
chosen. The most straightforward way is to vote for the majority base in each column of the MSA. A second
way takes advantage of the sequence information in the MSA, and was introduced in a second paper after
POA by Lee [120]. At the moment, only the voting scheme is implemented in our proof of concept. We plan
to soon integrate heaviest bundling that is described in the discussion thereafter.

Figure 7: Two main strategies to extract consensus from the MSA of a gene
cluster. A- each region of the MSA is corrected separately and consensus are concatenated
to obtain consensus of the different isoforms. B- reads from a given isoform are used to
compute a consensus.

127

Figure 8: Hybrid strategy for consensus calling. First a correction per isoform is
realized, then consensus are duplicated for each corrected read and uncorrected reads are
added to realize a second MSA, then each region is corrected.

2 Results on simulated data

2.1 Validation protocol and simulations

The validations we present here are preliminary. We rely on the same protocol than described in Chapter
3 for benchmarking correctors against alternative splicing scenarios. Again we simulate a gene with two
alternative isoforms and an error rate that looks like what is observed in ONT R9.4 chemistry. We will focus
especially on the ability of the method to conserve alternative isoforms and not to collapse rare isoforms.
Recall, precision and correct base rate are obtained using ELECTOR framework described in the previous
chapter. In order to assess the isoform structure conservation, we use the same protocol than described in
the last section of Chapter 3, in which reads are compared to both isoforms and assigned to the one it maps
without long gaps.

Since our method is using only long reads information, the closest related method are self-correctors/tools
for consensus, already presented in Chapter 3. Thus, the following set of methods was tested: LoRMA,
PBDAGCon, daccord, MECAT.

2.2 Method validation

In the following, we present preliminary results obtained on simulated reads that demonstrate the perfor-
mance of our consensus approach, and benchmark it againts other state of the art methods. Complementary
results are presented in the Appendix. Our approach is denoted by “MSA” in the figures.

2.2.1 Choice of a consensus strategy

We first compare the performances of the three presented consensus strategies. Results are presented in
Figure 9. All three methods aim to recover correctly the isoforms in corrected reads (this will be shown
in following sections), thus we focus on other metrics that allow to choose one. The presented plots show
distributions of the results on all the reads of a simulation. On the four metrics presented, the correction
by cluster of isoform gives the lowest results. We believe this is due to the longer alignment to be realized.
Hybrid strategy and exon region correction strategy are quite comparable on all metrics. Exon correction has

128

the advantage to be more conservative (more precise) and faster since it does not relies on a supplementary
step. In the following, we thus chose to present only results using the region correction strategy.

Figure 9: From left to right, top to bottom: distribution of recalls, precisions,
correct base rates and ratio of corrected over original sequence sizes for the
three strategies: consensus by cluster of isoform (MSA isoform), consensus by region
(MSA exon) and hybrid strategy (MSA both).

We use exon-consensus to show in Figure 10 that our method uses coverage to enhance its correction
levels. In order to check for biases in remaining errors after read correction by exon-correction strategy, we
plot how the error count increases along the read. We compute the cumulative number of errors over all
positions of reads and recall the positions of junctions in order to verify that exon-exon junctions do not
accumulate errors. We want to see whether the errors increase drastically and form clusters at junctions
or if the errors remaining after the correction are rather distributed all along the read. We report two
types of errors: false negatives (uncorrected bases) and false positives (wrongly modified bases). We give an

129

Figure 10: Correction quality over coverage. Precision and recall are red and blue bars,
correct base ratio is the green bar, and are presented between 0.75 and 1 on the ordinates.
Coverages increase in the abscissa.

example of these results on one read in Figure 11. It remains unclear if exon-junctions are particularly badly
corrected using these metrics since no effect is visible in any of the simulations. A pattern seems to be the
more frequent errors in the end of the read, this is because the poly A tail, being a homopolymer, is hard to
correct.

2.2.2 Comparison to other correction methods

Eukaryotic RNAs show a combinatorial aspect that most likely was not in mind for the conception of these
tools, which first aim is to help solving assembly. We demonstrated in Chapter III that published correctors
can wrongly correct a read of an isoform to the other, even when both isoforms are fairly represented in the
dataset. This is explained since in most genomic assembly paradigms, variable regions tend to be collapsed
to elongate the overall contigs. These correctors also expect even and relatively high coverages. Often, both
isoforms still coexist in the output dataset, but in wrong proportion. Discovering the exact reasons for this
result (chimeras, bias to major isoform, missing reads) is out of the scope of this work. We focused on a
pragmatic question: are the original isoforms respected and corrected in the output dataset or not?

Isoform structure conservation We present detailed behavior of the correctors when dealing with
alternative isoforms. For a gene and two isoforms, we simulated 20X reads that were dispatched to one or
the other isoform according to the given ratio. For instance for a ratio 90/10, the major isoform got eighteen
reads while the minor isoform was present in two reads. As show in Chapter 3, correctors are prone to
collapse isoforms. We investigate whether the correctors output reads according to the initial ratio, or if

130

Figure 11: Cumulative sum of remaining errors after MSA correction along with
read length. Each dot is the cumulative number of errors over all positions of a read.
Vertical lines show the positions of junctions (one for exclusion forms and two for inclusion
forms). FN errors (red) are erroneous bases missed by the corrector. FP errors (blue) are
bases miscorrected. In this example we show a major isoform read, with included exon of
length 50, and an isoform ratio of 90/10.

they tend to change this ratio. Similarly to the previous chapter, MECAT could not run on this instance,
most likely because of the small size of the sequences in comparison to genomics ones. Results are shown in

131

Figure 12. Apart from our method, no method was clearly able to get close to the real ratio, and even at a
high coverage. Longer skipped exon length does not seem to help either. They either output too less reads
of the major isoform. In particular reads are missing in Lorma’s output. On the contratry, MSA managed
to perfectly respect the ratio.

Figure 12: Preservation of isoform ratio Input (abscissa) and output (ordinate) major
isoform ratio for varying rate of major isoform (abscissa), varying skipped exon size (vertical
blocks), for each corrector that could be launched (horizontal blocks). For a 75% rate of
major isoform, the ratio is 75/25, and it is expected that the colored bar goes up to 75% in
ordinate so that the corrector preserved the ratio. If the colored bar is upper (respectively
lower) the 75%, the corrector output more (respectively less) major isoform reads than there
were in the input.

In addition, we output the ratio between corrected read size and the length of the isoform they come
from. We present these sizes for each read, for the different correctors, in Figure 13. The closer to 100% this
ratio is, the closer the corrected reads are from the original length of the RNA molecule. Results show MSA
has the ratio closest to 100%. It also has the property not to trim reads and to produce reads of accurate

132

length for each isoform. The difference of size between the resultant consensus of each isoform fit the skipped
exon length.

Figure 13: Ratio of corrected over real isoform length in corrected reads.

Using the same simulation scheme, we generate scenarios of shallow and high gene expressions (shown
in Appendix). For shallow (10X) coverage, the trend is the same than previously. Our method is still able
to retrieve correctly the ratio in the dataset. With a higher coverage, the main result does not change even
if other corrector than MSA seem to follow a bit more the trends of each ratio.

With higher coverage, correlated with the better correction, more adequate reads sizes are observed, at
the exception of LoRMA. Our method keeps showing the reads with the closest size to the real sequences.

Base-wise correction quality Recalls and precisions for each method are presented in Figure 14.
Recall values are high for MSA and Daccord, and a high precision score is only obtained for MSA. Zero
outliers for Daccord are reads that were miscorrected to the wrong isoform or were lost during the correction.
LoRMA and PBDAGCon perform poorly for both metrics. In Figure 15, we present the rates of correct base
for each read. MSA shows the best correct base rate, reaching almost 100%, followed by Daccord.

With shallow expression (10X, shown in Appendix), correction remains a hard task, as not much infor-
mation is available for the correction. However, Daccord and our method can increase a the correct base rate.

133

Figure 14: Recall and precision of correctors on 20X reads. Left plot: recalls in
ordinate. Right Plot: precision in ordinate. These metrics are computed after correction for
each read of a 20X experiment, using 4 different correctors in abscissa.

For all correctors, the precision of the correction is impacted. Daccord’s precision is more impacted than
MSA’s, resulting in a difference of correct base rate in Figure 15 in favor of MSA. Other tools downperform.
Note that a correct base rate that is lower or equal to the correct base rate in raw reads (0.87 on average
in our simulations) means that the methods corrected nothing or that supplementary errors were added in
the sequences after correction. At a high coverage (100X), our results show that correctors, in particular
Daccord and at the exception of LoRMA, manage to correct many erroneous bases in the reads (shown in
Appendix). They thus achieve to rise the number of correct bases in the reads that had initially a mean 87%
of correct bases. Our method achieves the best result with over 99% of correct bases. On all coverages, our
method competes best other tools’ recalls, and has the best precision in all tests, which means it introduces
the less new errors while correcting. We showed our method could take advantage of increasing coverages to
enhance its correction, and get extremely close to 100% correct bases.

3 Discussion

3.0.3 Current work in progress

We presented a work in progress method to ouptut consensus for isoforms per gene cluster. We insisted on the
conservation of isoforms structure after sequence correction, which is a feature not commonly represented
in self correctors as show in Chapter 3. Other methods are shaped for genomic applications, and either
simply cannot be run on this particular type of data, or output wrong rations. This has direct consequences
on isoform discovery, isoform counting and isoform expression levels reported after such correction. On the
contrary, our method is shown to strictly respect the isoform ratio, even in the case of a rare minor isoform.
Our results also suggest that our method corrects reads while not requiring high coverage, which is a clear

134

Figure 15: Correct base rate after correction on 20X reads Correct base rate in
ordinate, computed after correction for each read of a 20X experiment, using 4 different
correctors in abscissa.

advantage in RNA context. By both preserving structure and increasing sequence correctness we aim at
outputting reliable reads that can be used as references and allow to infer the protein structure. The proof
of concept we presented has plenty of room for improvements. Ongoing works include the detection of long
gaps induced by errors in homopolymers in the MSA (that can be spotted with the redundant content in
sequences), and dealing with stranger reads wrongly included within a cluster. Sequences that are too distant
from a cluster will penalize the global alignment and thus the consensus quality. Our results also have to be
furtherly validated, using more complex simulations and including errors in homopolymers to the reads. To
precisely detect the exon junctions in case of splicing variants in a cluster remains a main challenge given
the error rates. Moreover, our method does not allow to build a splicing graph in its primary definition.
This is because our method can only detect differences in-between a given cluster. This is a drawback of
de novo methods that can only extract results from information present in the initial reads, without adding
annotations or reference sequences. Finally, we must investigate the maximum resolution of our method,
that is, the smallest size of exon we can detect.

The presented consensus module strongly depends on the constitution of correct clusters to work with.

135

For the moment we use CARNAC-LR as the only tool that can provide such clusters. But each module
(similarity detection/clustering/consensus) is currently independent, which allows to exchange with other
possible methods. A work in progress is to present the three methods we retained (Minimap/CARNAC-
LR/consensus) to process transcriptomics long reads directly embedded into a pipeline. The existence of
such pipeline supposes its utilization on real size instances, thus it has to be able to scale these datasets.
The consensus part has been tested only on one simulated gene at a time for the time being. However, this
procedure can be launched in parallel on each gene, taking advantage of the prior clustering. Then we plan
confirmations on real datasets, that always reveal more difficulties than simulated scenarios.

3.1 Details on future implementation of heaviest bundling for con-
sensus calling

With some figures, we explain heaviest bundling [120] advantages and why it can be more interesting than
a voting scheme for our application. Heaviest bundling works directly on the POA graph. The idea is to
find an optimal path through a POA graph. We give the intuition of the algorithm. It starts by giving a
zero score to each vertex of the POA graph (Figure 16 1)). Then, starting by the vertex first ranked in the
graph order, it allocates a score equal to the weight of the arc that enters the current vertex plus the score
of the source vertex (Figure 16 1)). The first vertex has a score of zero. Weights of arcs correspond to the
number of sequences that supported the occurrence of the two consecutive vertices. If a vertex has several
predecessors, the most weighted arc is selected (the choice is done on arcs rather than vertices in order to
avoid giving to much importance to long insertions that accumulate scores in vertices) (red arcs in Figure 16
2)). If there is a tie between arcs, the source vertex with the higher score is selected (Figure 16 3). In the
end a backtrack procedure starts by the vertex with the highest score and traces back a path of vertices
with the higher possible score. This procedure can in certain cases produce different results from a voting
scheme, mainly because it takes into consideration the local neighborhood of a base using the information
that arcs carry. This information is lost during vote. An example is given in Figure 17.

3.1.1 Assess the pipeline results

We pointed out several times in this document the lack of a simulation tool for RNA long reads. We
currently work on the conception on this kind of simulator. It consists in a pipeline of several published tools
articulated with a novel module for read generation. This pipeline is dedicated to reproduce characteristics
of ONT reads.

Several features are required for an adequate simulation. First, gene and transcripts levels should be
carefully computed in order to reproduce a biologically sound scenario. Since ONT is still fast evolving, the
simulator should be able to adapt to the successive chemistries. Finally it should correctly render the reads
common feature so that synthetic versions and real raw reads have close characteristics. Our method is a
pipeline that can be divided into four steps. For several of these steps, we relied on well established tools
that we articulated with each other. It takes as input .BAM and .BAI from genome alignment as a training
read set, FASTA and GTF of a reference genome and the desired final quantity of molecules. The first
module builds the error model for reads. As previously mentioned, it is difficult to fit distribution for read
errors, in particular since they change according to chemistries. Simulator such as Nanosim made the choice
to learn error rates and profiles by training using real read datasets, and so do we. Alignments of reads
from a real experiment the user wishes to mimic are passed as input, then the first module automatically
deduces error rates and percentages of deletion, insertion and substitution, as well as homopolymer errors,
using AlignQC [248]. Pre-computed error profiles can also be used as input. The second module extracts
transcripts that will be templates for the long reads from the GTF file of the desired reference using gffreads1.
The third module is the expression levels definition. In order to simulate expression for transcripts of the
input reference, we selected the Flux Simulator that enables detailed gene expression simulation. We use

1http://ccb.jhu.edu/software/stringtie/gff.shtml

136

http://ccb.jhu.edu/software/stringtie/gff.shtml

Figure 16: Heaviest bundling intuition. 1) initial vertex score is zero and we show how
the second vertex gets its score summing the weight of the arc and of the source. 2) most
weighted, red arcs are followed when there are several source vertex. 3)in case of tie the
predecessor with the higher score is chosen.

expression levels to decide which quantity of reads are generated per read. The last module is a novel
and efficient implementation that generates the final reads as well as their errorless versions for comparison
matters. It adds the errors at positions in the sequences extracted from the GTF, deals with regular versus
homopolymer errors and adds supplementary characteristics such as the staircase effect that affects length
distribution, commonly encountered in this type of data. A Figure summaries the pipeline 18. This pipeline

137

Figure 17: Toy example comparison of voting and heaviest bundling. On the left, the
consensus is obtained using the graph. On the right, the same alignment is used for voting.
Voting leads to make an arbitrary choice between either “T” or a gap in the second column.
Heaviest bundling relies on more information, we can see that there are more sequences
supporting going through vertex T (2) than avoiding it (1). So when at the last vertex C,
the arc coming from T will be chosen. The final path and consensus will be “...ATC”.

is a work in progress, already implemented and under testing. In the future it should help to model more
complex scenario to test our consensus step.

Figure 18: Pipeline for RNA long read simulation.

138

Chapter 5

Other contributions on NGS data

139

In this chapter we summarize several published works to which we participated, though that do not
represent our main contribution during this thesis. All these works deal with NGS RNA-seq data.

1 Context

The different presented works all derive from the local transcriptome assembler KisSplice [200]. As well
as classic assembly approaches, it relies on De Bruijn graphs. Contrary to transcript assemblers such as
Trinity [79], KiSplice does not assemble full transcripts and rather reports topological patterns (bubbles)
created by genomic and splicing variants in the graph. KisSplice original publication details how these
bubbles can be enumerated in a DBG. Examples of these patterns in a DBG are shown in Figure 1. One
difficulty lies in the fact that genomic repeat can induce several patterns and have to be identified. They
can also create extremely complex subgraphs. KisSplice outputs bubbles in the form of a pair of FASTA
sequences. Reads are then mapped on those sequences to enable event quantification. KiSplice can work
with several datasets and thus deal with experimental plans with sequencing data for different biological
conditions.

Figure 1: Bubbles created by an exon skipping (left) and a SNP (right) in a
compacted DBG. Depending on the length of the paths of the bubble, the variation is
flagged as an exon skipping (one path longer due to the retained exon, in dark blue on
the left example), indel or SNP (both paths of the same lenght, as in the right example).
Repeats can generate bubbles but paths usually have different lengths and a small Hamming
distance. Each path of the bubble is reported in a pairwise fashion in KisSplice.

2 Dealing with complex regions in graphs

Some experiments we realized for [199] were used in a paper in 2017 [132]. This work deals with the main
problem in genome assembly presented in the introduction: repeats. We mentioned that such repeats were
also a hurdle in transcriptomics assembly using NGS. These repeats create problematic patterns in the graph
that lower the capacity of tools such as KisSplice or other assemblers to retrieve variants of interest. In the
complex subgraphs induced by repeats, the number of repeats can grow exponentially, the enumeration of
bubbles in these subgraphs thus taking too much time. In Lima et al., a method is presented to avoid such
regions, thus improving the results of assembly tools.

The paper shows that repeat-induced subgraphs cannot be directly identified (this is an NP-complete
problem) but can be implicitly avoided. Thus, bubbles not present in such subgraphs can be enumerated. By
avoiding repeat-induced subgraphs, more variants can be extracted than with previous KiSplice’s algorithm.
This also allows to flag putative chimeric transcripts that are partly integrated in these regions.

3 Bioinformatics for de novo variant discovery

KisSplice and other de novo tools based on DBG were presented in [119]. Here we described two applications
and methodological developments realized with KisSplice.

3.1 Expressed SNPs

RNA-seq can also be used to investigate expressed SNPs. We took part to the study of Lopez-Maestre et
al. 2016 [138] that used pooled RNA-seq samples to discover SNPs without a reference and was applied
to non-model species. The study showed that pooled samples from model (human) and non model species
enabled the identification, discovery and quantification of SNPs in expressed regions. It highlights that
pooled RNA-seq can be an interesting alternative to investigate differential phenotypes when material is
scarce for a single individual. This approach was compared to reference-based approaches (MPileUp and
GATK [151]) on samples from the GEUVADIS project, most of the SNPs retrieved with these methods were
also retrieved with KisSplice. We contributed to the conception of an R Bioconductor package, kissDE1, for
differential variant analysis using RNA-seq. The statistical model and its application to SNPs are presented
in this publication.

kissDE With the current depth achieved with NGS, in the case of RNA-seq, the question of functional
impact versus noise for variants is often raised for splicing variants. A significant association between a
variant and a condition gives clues to point out interesting candidates for further investigation. kissDE
proposes a statistical method to test for the enrichment of a variant in an experimental condition. It is
meant to work with any pairwise variations: two alleles of a gene, or two splice variants of a gene. It enables
to deal with pooled samples.

Tools already exist for the statistical analysis of splice variants across conditions. Either they rely on
references (DEXSeq [190], CuffLinks [235]), which makes them not well-suited for non-model species and
limited for novel variants, or on a simple model (MATS [215]) which takes only into account single exon
skipping and overlooks the variety of possible variant types across species. MISO [101] proposes a nice
output format that helps visualising the usage of alternative exons, but does not handle replicates. For
SNPs, methods rely on genotypes and do not deal with pooled data. In our package kissDE, we take
coverage information for pairwise alternative variants in two conditions or more (they can be SNPs, exon
skipping, alternative donnor/acceptor, intron retention, indels...) and test whether a variant is enriched in
one condition. kissDE takes replicates into account and requires at least two replicates per condition, with the
advantage of not needing any annotation. It uses the counts reported for each variants, obtained for instance
by remapping the read of the sequence of events output by KisSplice. kissDE was designed in particular in
the scope of KisSplice, and can be easily integrated in a pipeline with tools from KisSplice’s suite. Counts
are assumed to be distributed as a negative binomial as in standard RNA-seq analysis, and we use the
generalised linear models framework to build and compare two nested models with isoforms, experimental
condition and interaction in the second model as effects. We do not explicit in detail the statistical model,
the reader may refer to [138] and [16]. We select the pairs of variants for which the interaction term has
a significant effect with a likelihood ratio test. Then we output p-values and magnitudes of the effect for
each pair of isoform. Magnitude of the effect is measured using percent spliced-in (PSI denoted Ψ), that are
computed for pairwise variants with Ψ = countsvariant1

countsvariant1+countsvariant2 . Then the difference between the Ψ in
the different experimental condition (∆Ψ) is output. An example is shown for exon retention in Figure 2.
For SNPs, an equivalent metric, ∆fe for difference of allele frequency, is output.

3.2 Alternative splicing studies

We participated in the comparison of an assembly-first and a mapping-first approach to analyze RNA-seq
data and find alternative splicing events by Benoit Pilven et al 2018 [16]. We worked on the assembly-first
approach with the tool KisSplice.

This work provides several results. First, it proposes a pipeline of both approaches and discussion
on the parameters that should be used. Secondly it discusses the complementarity of the two approaches
and explains that each performs differently on several instances. As an example, mapping approach deals

1https://github.com/aursiber/kissDE and https://www.bioconductor.org/packages/3.7/bioc/

html/kissDE.html

141

https://github.com/aursiber/kissDE
https://www.bioconductor.org/packages/3.7/bioc/html/kissDE.html
https://www.bioconductor.org/packages/3.7/bioc/html/kissDE.html

 Condition 1 Condition 2

Replicate 1

Replicate 2

Replicate 1

Replicate 2

Inclusion
counts

Exclusion
counts

10 0

20 2

5 50

7 45

Individual PSI computation:
Ψ

cond1_rep1
 = 10 / 10+5 = 66%

Ψ
cond1_rep2

= 20 / 20+7 = 74%
Ψ

cond2_rep1
 = 0 / (0+50) = 0%

Ψ
cond2_rep2

 = 2 / (2+45) = 4%

Mean PSI per condition:
Ψ

cond1
 = 60%, Ψ

cond2
 = 2%

Final result:
P-value = 10-3

∆Ψ = Ψ
cond1

 - Ψ
cond2

= 58%

kissDE

Figure 2: Input and output of the differential analysis. Counts for each replicate of
each condition are computed for instance using KisSplice. These counts together with the
experimental plan are the input of kissDE. In this example, we show counts for one single
event, in practice kissDE tests all events discovered by one method to spot the differential
splicing events. Provided that at least two replicates are available per condition, results are
ranked using p-values and ∆Ψ.

better with low expressed transcripts because the low coverage does not always allow to assemble completely
the variants (some k-mers being missing in the DBG). On the contrary, variants issued from paralog or
pseudogenes are easier to retrieve using assembly since they lead to multiple mapping issues. It concludes
that being complementary, both approach should be led for more comprehensive transcriptome analysis.
Finally, it documents a post-treatment for the study of alternative variants, that can be used after KisSplice
when a reference is available, detailed in the following paragraph. Results were validated and supported by
experimental results using a human SK-N-SH cell line2.

kissplice2refgenome kissplice2refgenome enables to classify events reported by KisSplice using a ref-
erence genome. Pairwise sequences of bubbles found by KisSplice are mapped to the reference genome using a
splice-mapping tool, for instance STAR [52]. The mapping results are then analysed by kissplice2refgenome.
Events corresponding map in blocks on the reference genome, the number and size of blocks depending on
the type of variants. They are classified in variant types according to the block patterns. For instance,
exon skipping maps in three blocks (two flanking, one middle) for the sequence that includes the exon, and
only the two flanking blocks are retrieved for the shorter sequence that excludes the exon. The software
also reports genomic variants such as indels. In order to discriminative ambiguous patterns, such as intron
retention vs deletion that yield same blocks in the alignment, we use a threshold: if the central sequence is
longer than this threshold we consider that it is rather a retained intron, in the other case a deletion. We
show a summary of block patterns in Figure 3.

2http://genome.crg.es/encode_RNA_dashboard/hg19/35

142

http://genome.crg.es/encode_RNA_dashboard/hg19/35

Number of Number of
alignment alignment
blocks blocks

 Number of
 alignment
 blocks

Alternative
Donnor

Alternative
Acceptor

Deletion

Insertion

3

2

>3

2

1

2

2

Exon
Skipping

Multiple
Exon
Skipping

Intron
Retention

2

2

2

1

2

2

1

Splice site

> threshold ≤ threshold

Spliced events mapping results

Other mapping results

Figure 3: Classification of KisSplice events according to the number of blocks in
which they map to the reference genome. Paths representing variants of an event
are mapped on the reference. Spliced mapping results in blocks, events are then classified
by kissplice2refgenome according to the block mapping patterns. (Putative) splice sites are
denoted by with a red arrow.

143

144

Conclusion and Perspectives

145

1 Conclusion

1.1 Contributions

As a consequence of the quick evolution of TGS, the sequencing field is frequently upgraded with new types
of sequences. For instance, recent long read technology ONT RNA-direct could unlock amplification biases
issues in RNA sequencing and thus is promising for gene expression studies. But it shows higher error rates,
at least comparatively to current nanopore reads. By proposing generic tools in Chapters 2 (CARNAC-LR),
3 (ELECTOR) and a proof of concept in Chapter 4 that are tailored to these technologies, we wish to
promote and encourage a broader use of long reads and in particular ONT reads for transcriptome analysis.
We proposed a modular approach composed of independent pieces of software for each task (Figure 1).
Any advance in Chapter 1, such as our proposal for long reads, is meant to be channeled to CARNAC-LR.
CARNAC-LR itself outputs clusters necessary for computing consensus.

We worked to allow reference-free studies with this kind of data. Such contributions remain rare at the
moment and we wish to pursue. In particular, in Chapter 1 we presented a data structure, the Quasi Dic-
tionary, and its applications, Short Read Connector tools, for which there is plenty of room for improvement
towards long reads. In the meantime, Short Reads Connector starts to be used in NGS context to analyze
metatranscriptomes.

Finally in Chapter 5 we gave a short summary of methodological works on NGS we participated to.
These contributions aim at proposing techniques that deal with De Bruijn graphs, extract, identify and
analyze variants (splicing variants, SNPs, indels) from RNA-seq data.

1.1.1 A resource-frugal data structure for indexing and querying sequences

In Chapter 1, we proposed a new probabilistic indexation scheme based on a Minimal Perfect Hash Function
(MPHF) together with a fingerprint value associated to each indexed element. We have shown experiments
on sets containing more than eight billion elements indexed in less than an hour and using less than 25GB
of RAM. We proposed two implemented applications: SRC-counter and SRC-linker. The first estimates
the abundance of a sequence in a read set. The second detects similarities between pair of reads inter or
intra-read sets. Benchmarks against other tools for short reads pairwise comparison show a higher scalability
of our method in comparison to classic methods such as BLAST. These works were published in [146]. Both
applications were tested on several datasets including metatranscriptomics data from TARA Oceans and
holobiont sequencing data of more than five billions sequences.

SRC-counter is currently used to help identify holobiont actors in very large scale experiments regard-
ing marine holobionts. It is integrated in an assembly pipeline as a pre-processing step to assembly. We
demonstrated that our approach was biologically sound by comparing our results to well-broached models
of marine holobionts. Using this pipeline, we could partly retrieve actors of a not well-known protist-protist
holobiont, provide and annotate transcripts with low rate of chimeras. This work has been accepted for
publication in the journal Microbiome [153].

Preliminary inputs for SRC’s adaptation to RNA long reads shown that SRC could be tuned to gain in
speed and precision. We highlighted that a tool dedicated to retrieve pairwise similarities between RNA long
reads still misses in the literature, however new advances are proposed in Minimap2’s recent publication [127].
We published these results in [145]. We proposed new algorithmic solutions to fit both RNA (read local
comparison to find common exons) and reads’ error rates and profiles (using a generalized k-mer concept),
that still have to be further tested.

1.1.2 Clustering RNA long reads from a transcriptome sequencing per genes

In Chapter 2 we presented a community detection method that took elements from clustering paradigm
to retrieve reads corresponding to expressed genes. We intend to demonstrate practical advantages of this
method on general community detection problems, however we have already demonstrated it could achieve a
better definition than modularity-based methods on a classic theoretical problem instance. The main interest

Figure 1: Advances on transcriptome long reads sequencing pipeline. Several so-
lutions are proposed in Chapter 1 for the first step (pairwise comparison), including work
in progress Long Read Connector. CARNAC-LR (Chapter 2) stands as the only tool to
perform de novo clustering on ONT. The consensus step enables to obtain better quality
sequences and detect alternative events at once (Chapter 4). This pipeline is scheduled to
be further validated using real data and simulated data as introduced in Chapter 4.

of this method is that it combines compatibility to nanopore reads and de novo approach. Other methods
rather focused on PacBio or work with a reference. We proposed an implementation called CARNAC-
LR based on our community-detection algorithm combined to Minimap, designed for clustering long reads
obtained from transcriptome sequencing in groups of expressed genes. It imposes no parameter choice to
the user nor to have to select between different results such as multi-level clusterings. It takes raw long
reads without filtering or correction needed. This is an important point since we demonstrated in Chapter
3 than RNA reads could be altered by correction methods. From the clusters output by CARNAC-LR, the
expressed variants of each gene are obtained and related transcripts are identified, even when no reference is
available. We demonstrated our method’s relevance on a mouse transcriptome sequenced with ONT MinION
and compared it to other community detection approaches and other sequence clustering of the literature.
This was also an occasion to illustrate that de novo and reference-based method can be complementary in
an analysis, since we have shown mapping approach and CARNAC-LR had different pros and cons. This
work is in revision in NAR Methods [144].

147

1.1.3 Read correction/consensus and conservation of isoforms

Chapter 3’s results are twofold: we introduced a tool for efficient assessment of long read correction methods
and we illustrated major caveats in RNA long reads corrections. Our evaluation tool, ELECTOR, is meant
to be adaptable to many different sequencing scenarios (diploid genomes, large genomes, transcriptomes)
in order to help users to best define the correction they need. ELECTOR summaries the quality of the
correction through various metrics. An interesting contribution in addition to ELECTOR’s global pipeline
is the seed-MSA approach used to compute main correction metrics. This approach is a multiple sequence
alignment heuristic that allowed a critical gain in speed (we have shown several orders of magnitude of
decrease for our runtime). This work is not published yet.

As for RNA correction, we used simulated data to better understand how different transcripts from a
same gene were treated by long reads correctors. We pointed out that a main issue of self-correctors was that
the conservation of alternative isoforms structures was not ensured by current correction methods. Hybrid
correctors tend to not correcting a fraction of the read, or to fragment them thus loosing the long range
information that is a main interest of long reads. We conclude that no corrector is completely fitted to
correction of transcriptomic long reads. This lack in the state of the art motivated the work presented in
Chapter 4.

In Chapter 4, we propose to compute one consensus per isoform (with in addition its count) from a
transcriptome long reads sequencing instead of trying to correct reads with state of the art methods. We
presented a proof of concept dedicated to produce consensus of the different isoforms in presence for each
gene. This method is meant to work together with a clustering such as proposed by CARNAC-LR. The
preservation of the structure was the main aspect dealt with. As in Chapter 3, we used simulated long
reads for validation. Our method works de novo and using only long reads information. We thus compared
it to self-correctors of the literature. We demonstrated in preliminary results that we could achieve better
correction that state of the art methods. In particular we carefully conserve each alternative isoform present
for a gene while other methods tend to collapse some isoforms, leading to information loss. This contribution
is still a work in progress. In order to generate more complex scenarios that are closer real data, we are
working on a RNA long reads simulator. This tool reproduces reads characteristics, as well as gene expression
and alternative transcripts that are distinctive features of transcriptome sequencing. We aim at generating
full transcriptome simulations on which we will train our consensus method.

1.2 Dissemination of this work

Reproducibility All softwares developed during this work are open source, versioned and available on
GitHub under GPL license. Short Reads Connector relies on the GATB library which allows it to be more
easily maintained. In order to help reproducibility of our experiments, when necessary we made available
the scripts we used for validation, such as recall/precision/Jaccard index scripts for CARNAC-LR. Similarly,
data used for the experiments is publicly available (TARA Oceans and mouse transcriptome mainly). We
also have seen the holobiont paper manuscript as an opportunity to have a discussion about the right set of
parameters to use with our tools, which we think is fruitful to the users. ELECTOR and the RNA simulation
pipeline are also efforts towards reproducibility and production of documented benchmarks.

Projects that use our work SRC is the most stable and first tool we proposed. Therefore it is
the first to be used in projects outside GenScale team. SRC is still employed in “Analyse des Données à
Haut Débit en Génomique” team after our collaboration on non model holobionts. New unpublished radio-
laria/dinoflagellates holobionts and non symbiotic radiolaria metatranscriptomes are currently investigated
using SRC with novel strategies described in the following discussion section. The first objective is to give
access to high quality transcripts on the bases of the pipeline described in Chapter 1. Then, these transcripts
should help to outline genes implied in the symbiosis using sequence similarity networks.

SRC is also a part of a de novo pipeline for detection of small genomic variants. These variants are used
in ecology to retrieve species and population structures [70].

148

CARNAC-LR starts to be used in a project that aims at identifying parts of chromosomes that lead to
similar functions in different species of frogs (Xenopus) using Nanopore cDNA sequencing.

Future of this work We have shown that sequencing data undergoes quick evolution. Though we
anticipated the needs concerning long reads in this work, we also think that many short reads await to reveal
interesting results, however they escape from what methodology proposes. This is the case in huge data
instances or for organisms without a reference as shown with holobionts. There are always less methods that
offer to work reference-free than methods based on a reference, and we think this will remain an interesting
front. De novo works helps to be more distant from the established models, and can be used even for model
organisms to complement mapping-based approaches. However, it is a work in itself to well understand
pros and cons of each approach. Short reads will remain a cheap access to wide depth that are crucial
to investigate metagenomics, metatranscriptomics and transcriptomics. This is why works committing to
lightweight data structures will remain a key for years. Thus novel algorithms or data structures such as the
Quasi Dictionary or Short Reads Connector remain of interest even if technology changes.

2 Perspectives

2.1 Short Reads Connector at its best

2.1.1 Improvements on holobionts

Our first suggestion is to assign assembled transcripts to holobiont actors instead of assign reads. This would
give an equivalent or greater assignation power since assembled transcripts would be longer: we could use
larger k-mers to obtain more precise matches and compute a result over more k-mers in query sequences.
More detailed similarity information would then be needed order to make the difference between chimeras and
transcripts pertaining to the “shared” category. Another improvement that can be realized independently or
in addition to this first one is to set up an iterative pipeline for SRC on holobionts (Figure 2). We saw that
when actors were not well identified, the recall of the method was low. In order to increase it, we propose to
iteratively enrich the banks. After a first assignment round with SRC, holobiont reads linked to an identified
group (host/symbiont) can be added to the reference libraries. Then, based on these new enriched libraries,
a second run of SRC can be performed on the holobiont reads. This can be implemented as an iterative
pipeline: at each round, more reads will be assigned to the host or symbiont categories and will then be used
as reference libraries.

2.1.2 Ideas for a “Long Reads Connector”

First, new benchmarks should be realized with the most up to date tools to distinguish which are the best to
retrieve overlaps between pairs of RNA long reads. This will be the occasion to test our quasi k-mer approach.
Krizanovic et al. proposed an evaluation pipeline for long read splice-mapping [111] using simulated reads,
we could on the other side propose an evaluation pipeline for the overlap detection in this context. NGMLR
is a mapper that was designed to retrieve genomic structural variants using long reads. These problematics
can intersect splice-mapping so this tool could be interesting to evaluate. However, it is mostly developed
to compare long reads to a reference, which can be a limitation. Recent, unpublished results show that
Minimap2 performs well for the support of RNA reads mapping on genome3. Finally, new strategies such as
the one employed in the correction tool MECAT [252] should be assessed. Authors of MECAT also pointed
out that read comparison before the correction task itself was an important bottleneck. They also use a
window strategy, as presented in the last sections of Chapter 1, and integrate a quick step to ensure the
colinearity of matched k-mers that has the same goals that the seeding strategy proposed in Chapter 3.

3http://bioinfo.zesoi.fer.hr/index.php/en/blog-en/56-gmap-vs-minimap2

149

http://bioinfo.zesoi.fer.hr/index.php/en/blog-en/56-gmap-vs-minimap2

Figure 2: Iterative pipeline for SRC in holobiont application. Sequences assigned by
SRC after a first pass are used to complete the banks and a new round is performed on the
remaining reads.

2.2 Enhance CARNAC-LR

2.2.1 Food for algorithmic thoughts

We plan to test CARNAC-LR’s algorithm (without pre-processing) on other classic problems of community
detection using benchmarks such as proposed in [115]. in order to better situate our method in comparison
to other state of the art approaches.

With mouse we shown that both recall and precision of CARNAC-LR could be enhanced. In order
to see how to increase recall, we could extend the recall and precision defined in Chapter 2 to the second
most covered cluster. This way, we could assess whether most expected clusters are retrieved in a single
main CARNAC-LR cluster, or if they are divided in several CARNAC-LR clusters of the same range of size
(Figure 3). According to the results, we will adapt strategies to fish back reads. We would also like to look
in which cases isoforms are separated. The presented recall does not take into account that some isoforms
do not share any exon with the rest of the isoforms expressed by a gene, thus mechanically cannot be put in
a same cluster.

Cutoff rounding is for the moment very simple, we could set up strategies to find a result closer to a local
minimum for the cut. Pre-processing can also be enhanced with for instance the removal of bridges (edges
that connect bi-connected components) instead of articulation points. We also plan to test if several passes
of this algorithm on the biggest connected components is linked with improvement in computation speed
and clusters quality. Finally, the mapping method used has impacts on the input graph. We currently work
at better assessing which mapper gives the best results, and at showing whether clusters remain globally the
same according to mapping methods and parameters or not. In the meantime we also study how robust the
algorithm is to the order in which nodes of the graph are passed in the input.

2.2.2 To go further

As mentioned in Chapter 2, for the moment the distinction between families of genes seems out of reach.
Similarly, the presence of heterozygous genomic variants does not impact and is not reported by the clustering.

150

Figure 3: Analyze of ground truth versus result clusters. Ground truth cluster is
shown in colored, plain stroke. Result clusters are dashed. In scenario a), the blue ground
truth cluster is over-clustered in more than one main result cluster. In scenario b), the
majority of the information contained in the blue ground truth cluster is captured by a
single result cluster. Other results clusters covering it are small or singletons.

In order to make CARNAC-LR fit more with the content of current experiments, we think of integrating
short reads in some ways. The first idea would be to correct long reads using short reads prior to clustering,
which should help cleaning the similarity graph. Uncorrected reads could be kept. However, this has the
disadvantages of current correction methods presented in Chapter 3: possible isoform collapsing and loss of
long range information. Another way is to assemble short reads into contigs and to integrate these contigs
to the similarity graph. Given their lower error rate, they should increase the connectivity of the genes they
belong to, thus making easier to delineate communities.

A last, very natural application for CARNAC-LR would be metatranscriptomics. The main properties
of datasets remain the same, however this would be substantial work to make CARNAC-LR scale to larger
datasets.

2.3 Read correction

2.3.1 RNA short Read correction using graphs

As an extension of the work proposed in BCOOL [133] corrector, we would like to correct RNA short
reads using two solidity thresholds, an absolute threshold to remove extremely low covered unitigs and local
relative thresholds such as used in KisSplice [200] or the read corrector Rcorrector [222] to make the difference
between variants and errors and conserve the information of variable regions. The difference between this
proposal and the literature is that we would integrate information at the read level to decide whether a path
represents an error, while Rconnector uses extremely local information (successor k-mers of a branching
k-mer), and can therefore take wrong decisions due to local coverage depletion. Similarly, only very local
information is taken into account in KisSplice and reads are not corrected. An intuition of the increased
accuracy that would be proposed by such a method in comparison to state of the art is shown in Figure 4.

Not only a more conservative correction would be useful to the numerous RNA-seq projects, but we
would also like to better apprehend the influence of a good correction of short reads on hybrid correction.
Our intuition is that well-corrected reads could better map (for methods that directly map short reads on
long reads) or provide better assemblies (for methods that use unitigs of graphs as correction templates).

2.3.2 Long read self correction

Our work on long reads correction led us detect some of the main pitfalls of current methods. We started very
preliminary work for a self corrector that would avoid long pairwise or multiple alignment steps generally
required at the beginning of the correction process. We think that a seed-chaining strategy such as the
one discussed for ELECTOR in Chapter 4 could replace the alignment step while being more efficient, as
advocated in Minimap’s paper. With the set of seeds, we can delineate regions in reads that can be corrected

151

Figure 4: Comparison between Rcorrector’s approach to detect errors in the graph
and an approach based on BCOOL (BCOOL-Trans). In Rcorrector, both red unitigs
will be flagged as erroneous paths because their local k-mer coverage is low relatively to
other possible paths. k-mers occurrences are reported above their corresponding vertices.
Our approach would only discard one of these two branches, because it would take into
account information carried by reads mapping to each paths instead of k-mer counts. In this
example the branch discarded by Rcorrector because of a local low k-mer count is in fact
supported by a relatively abundant set of reads and will be kept as a correct path. Reads
mapped on those paths can be then corrected. In the case of Rcorrector such reads would
have been wrongly converted to sequences of other paths.

together. Then, according to the complexity (i.e. level of errors) of the region to be corrected, we design an
adaptive strategy for consensus calling. Many regions can be corrected using a MSA and heaviest bundling
such as described in Chapter 4. We mentioned in Chapter 3 that several methods applied De Bruijn graph
to obtain consensus from a set of data. For the most complex regions, we plan to use “micro-assembly” (i.e.
assembly of very small k-mers, of size 5 to 10) of k-mers found in the dataset between seed pairs with a De
Bruijn graph to extract consensus. Consensus obtained by one or the other strategy that can be injected in
reads to correct errors. We show an outline of the procedure in Figure 5, and we give further details for this
method in the Appendix.

152

Figure 5: Outline of the correction using seed chaining and De Bruijn graph based
micro-assembly. The red dashed region is corrected by micro-assembly of small k-mers of
this region, or MSA from sequences of this region. Other, not shown, regions are defined
between pairs of seeds.

2.4 Towards a comprehensive pipeline for de novo study of tran-
scriptomes with long reads

2.4.1 Enhance the consensus step

Currently our consensus step is based on multiple sequence alignment, that can be rather long if reads are
long or if clusters are large. We can think of several strategies to speed-up this step. First, the MSA could be
replaced by heuristics such as the one used in PBDAGCon. A partial order graph is also built but sequences
are mapped onto a single sequence instead of mapping to the graph. However, the graph is updated after
each alignment in a quite similar way than Lee’s algorithm. Other possibilities include the adaptation of the
seed-POA strategy presented in Chapter 3 to RNA.

For highly expressed genes, it is possible that we can afford to sample before alignment. However, this
has to be shown. Experiments tend to show than from 30X coverage the maximal quality for consensus is
almost reached. This means that, using exon-correction strategy, only a fraction of sequences of the regions
could be used to compute consensus (in case of highly expressed regions), thus making the alignment quicker.
Finally we plan to implement and test heaviest bundling presented in the end of Chapter 4 for consensus
calling.

2.4.2 CARNAC-LR and consensus pipeline

The idea is to channel clusters found by CARNAC-LR to the consensus step. Such pipeline was the underlying
condition to have input clusters for the method presented in Chapter 4. This is a work in progress, as well
as the integration of a mapping tool to compute the similarity graph. An advantage is that consensus
computation can be computed in parallel for several clusters. The simulation tool we currently work on will
help us precisely assess clustering and consensus results, coupled with ELECTOR.

We plan to validate the simulation pipeline using mouse transcriptomic data, we will show the properties
of our simulation and compare them to available mouse transcriptome ONT reads sequenced on the MinION
platform at the Genoscope. Such pipeline could also be compared to Tofu on PacBio reads.

153

2.5 Final note

Principal contributions of this work relate to the treatment of long reads of transcriptomics sequencing,
aiming at retrieving the content in alternative transcription and splicing variants in these datasets. We also
presented works regarding data structures scaling meta genomics or transcriptomics projects, and several
applications to short reads. We think that hybrid methods that integrate short and long reads should be
considered, not by using short reads to correct long reads but to really exploit the potential and differ-
ent characteristics of each technology. Future contributions include two main axis: efficient methods for
metatranscriptomics (through space and time saving data structures) and de novo methods for handling
transcriptomics long reads (notably good consensus methods still lack).

154

Appendix

155

1 Appendix to Chapter 2: details on methods

1.1 Algorithm

We provide an outline of CARNAC-LR’s main algorithm. The split procedure we refer to is described in the
main document.

1 Algorithm: Main

Data: Graph G = (N , E)
Result: A cutoff CCmin, and a partition P of N
P = {C(n1), C(n2), ...C(nk)} such that
all C(ni) have a clustering coefficient ≥ CCmin,
and result in a minimal cut of G with value Cutmin

2 foreach node n of N do
3 Compute its degree deg(n);
4 Compute its clustering coefficient CC(n) (equ. (1) in main document);

5 N ← N \ {n | CC(n) = 0 or is an articulation node in G}
6 SN ← sort deg(N); % Sorted list of nodes
7 CCmin = 0; Cutmin =∞
8 % Loop over possible cutoff values
9 foreach cutoff sampled in CC do

10 % Compute possibly overlapping clusters
11 foreach n in SN such that CC(n) ≥ cutoff do
12 C(n)← {n} ∪ neighbours(n); % Initial clusters
13 Scl(n)← Sorted list of clusters containing n in decreasing value of CC
14 NInter ← Nodes in the intersection of 2 clusters
15 Ncl ← sort degc(NInter)

16

17 % Make a partition from overlapping clusters
18 foreach node n in Ncl do
19 x= Scl(n)[1] % Representative element of the cluster
20 foreach y in Scl(n)[2 : length(Scl(n))] do
21 CCxy ←clustering coefficient of x ∪ y (equ. (2) in main document);
22 if CCxy ≥ cutoff then
23 x← Merge(x, y); % C(x) = C(x) ∪ C(y)
24 else
25 x← Split(x, y, E)
26 % n is discarded from one of the clusters
27 % x refers now to the cluster containing n

28 Cut← number of inter-cluster edges in E ;
29 % Update partition with the minimal cut value
30 if Cut < Cutmin then
31 Cutmin ← Cut; CCmin ←cutoff; P ← {C(n)}

Figure 1: Main algorithm for the clustering based on minimal cut to find pseudo-
cliques. The Split step is detailed in Chapter 2. The Merge step is not detailed as it is more
trivial. Procedure sort deg sort nodes in decreasing value of deg, then of CC. Procedure
sort degc sort nodes in decreasing value of deg, then of CC for the representative of the
cluster.

1.2 Example of problematic nodes

We recall that the auxiliary condition for a node ni to be a community seed is

∀ni, ClCoi ∈]cutoff, θ2[⇒ deg(ni) ≤ θ1 (5.1)

θ1 and θ2 are the values such that 1% of the observed degrees are greater than θ1 and 1% of the observed ClCo
are lower than θ2 (1st and 99th percentiles). It was motivated by empiric observations such as presented in
Figure 2. We show, using values computed on the whole mouse transcriptome datasets, that some nodes fall
in the worst case scenario that we control using the second condition to be a seed node. These nodes are
then prevented to form clusters. We show examples of such nodes in the mouse dataset in Appendix.

Figure 2: In this figure we present the ClCo and degrees computed on nodes from
the whole mouse dataset. We plot the degrees 99th percentile and ClCo 1st percentile
in color. We can see that a small population of nodes are both very well connected and have
a very low ClCo value. They are likely to resemble stars.

157

2 Appendix to Chapter 4: supplementary results

We provide supplementary results to show our consensus approach results on more scenarios, using different
coverages.

2.0.1 Isoform structure conservation

First we plot results for isoform conservation at low and high coverages that were not shown in main document
(Figures 3). Results for both shallow and high coverage do not differ from 20X coverage presented in Chapter
4. With a higher coverage, the main result does not change even if other correctors than MSA seem to follow
a bit more the trends of each ratio.

Figure 3: Preservation of isoform ratio for low and high coverages Input (abscissa)
and output (ordinate) major isoform ratio for varying rate of major isoform (abscissa), vary-
ing skipped exon size (vertical blocks), for each corrector that could be launched (horizontal
blocks). For a 75% rate of major isoform, the ratio is 75/25, and it is expected that the
colored bar goes up to 75% in ordinate so that the corrector preserved the ratio. If the
colored bar is upper (respectively lower) the 75%, the corrector output more (respectively
less) major isoform reads than there were in the input. Low coverage is the left plot (10X),
high coverage is the right plot (100X).

We also show corrected reads size over real molecule size ratios for shallow and high coverages (Figure 4).
MSA’s ratio remains close to 1 for shallow coverage. Other methods output reads shorted than expected.
Higher coverages allow them to get closer lengths.

2.0.2 Base-wise correction quality

In this paragraph we detail recall, precision and correct base rates output by methods at shallow and high
coverages.

Daccord and MSA manage to correct most of the erroneous bases with low coverage (PBDAGCon cannot
be run). However, we show in Figure 5 that for all correctors, the precision of the correction is impacted.
Correct base rates thus follow the same trends (Figure 6).

158

Figure 4: Ratio of corrected over real isoform length in corrected reads Low coverage
is the left plot (10X), high coverage is the right plot (100X).

Figure 5: Recall and precision of correctors on 10X reads Left plot: recalls in ordinate.
Right Plot: precision in ordinate. These metrics are computed after correction for each read
of a 10X experiment, using 3 different correctors in abscissa.

Figures 7 and 8 show that Daccord, PBDAGon and our approach took advantage of the higher coverage
to perform correction.

159

Figure 6: Correct base rate after correction on 10X reads Correct base rate in ordi-
nate, computed after correction for each read of a 10X experiment, using 3 different correctors
in abscissa.

3 Appendix to conclusion: long reads correction

3.0.3 Extract subsequences from a read set for correction

We deliver more details on our ideas for long read self correction. The very first step consists in finding
similar regions in reads in an alignment-free way. Contrary other long read correction methods, we propose
an alignment-free scheme that should enable to speed up the initial step that all correctors share: finding
similar regions to be corrected together. This step allows to separate reads in several subsequences that will
be independently corrected. These subsequences are shared by several reads in the set, and will be compared
with each other in some way to build a local consensus. The same seed chaining paradigm than in ELECTOR
(Chapter 3) is used, though generalized to n reads instead of a triplet. In ELECTOR we required that all
three reads harbor all seeds. In this case, since we compare a larger set of reads, it is very unlikely to find
a sufficiently large set of seeds shared by all reads that respects the conditions given in Chapter 3 and have
the advised size for seeds given the error rate, i.e. around 15 nucleotides. Thus, we relax the condition that

160

Figure 7: Recall and precision of correctors on 100X reads Left plot: recalls in
ordinate. Right Plot: precision in ordinate. These metrics are computed after correction for
each read of a 100X experiment, using 3 different correctors in abscissa.

seeds must be present in all reads, and introduce a parameter that is the minimum number of reads that
must contain the k-mer so that is can be a seed. Other condition (non repeated k-mer, order) remain the
same. We can also compute an approximate distance between consecutive seeds using the occurrences of
seed pairs seen in reads. We have the following information at our disposal (Figure 9):

� a set of seeds,

� their order (how seeds are placed relatively to one another from left to right in the read set),

� which read contains which seeds,

� distances between seeds.

Two consecutive seeds flank subsequences in reads, this set of subsequences is called a region. Since not
all reads contain all pairs of seeds, we introduce a supplementary strategy to extract the subsequences of a
region when seeds are missing in a read. If one seed of the pair is present, using the distance between this
pair of seed, it is possible to estimate where the other seed must be placed in the sequence, then to extract
the corresponding region (Figure 10). We still have to define to which extend distances must be used. While
distance between consecutive seeds seem rather safe, distances between distant seeds may suffer from bad
estimation due to the accumulation of errors in the sequences. In the example of Figure 10, the green region
is not extracted from the second read because the next seed in this read was too distant from the current
region.

This procedure is repeated for each region. We end up with several subsets of subsequences from reads
to be corrected.

161

Figure 8: Correct base rate after correction on 100X reads Correct base rate in
ordinate, computed after correction for each read of a 10X experiment, using 3 different
correctors in abscissa.

3.1 Compute a consensus per region

Our work with ELECTOR, as well as other correction methods, suggested that multiple sequence alignment is
a strong tool to extract accurate consensus from a set of sequences. However, it suffers from tractability limits
when large, very divergent and numerous sequences are compared. The division in regions described earlier
aims at reducing the size of the multiple alignment problems to smaller instances, just as in ELECTOR. In
practice, we think that regions must be at most a hundred bases long. However, sometimes it is impossible
to find a set of seeds so that all regions are rather small, moreover even in small regions, some subsequences
can be particularly divergent. Thus, we introduce a prior step to MSA that aims at assessing the complexity
of the region, and an alternative strategy for consensus computing in complex regions.

First, for a given region we extract small k-mers from its sequences, together with their occurrences.
These k-mers are smaller than the k-mers used to find seeds (we think of a size 5 to 9). Using these k-mers
we build a De Bruijn graph. Contrary to De Bruijn graphs usually encountered in practice for assembly, this
De Bruijn graph is small (build on short sequences, with less k-mers due to the sequences and k-mers size),

162

Figure 9: Seed strategy to divide reads in regions to be corrected. Seeds (colored)
are found in a set of reads, they are ordered and distances can be approximated between
pairs of seeds. Subsequences between two consecutive seeds are said to be included in a
“region” that will be corrected. Flanking subsequences before the leftmost and after the
rightmost seeds are also regions. In this example we define four regions using three seeds.
In read 4, the subsequence is extracted using the distance between seed 0 and 1.

Figure 10: How subsequences are extracted from a given region. When the pair of
seeds that delineate a region is present, the subsequence is trivially extracted. Note that we
include both seeds in the sequence. When one seed is missing, it can be retrieved using pairs
of seeds distances recorded, if the next seed is not too far. In read two, the next seed is too
far to safely extract the subsequence of the green region.

which means storing associated pieces of information to k-mers (such as occurrence, sequences of origin...)
remain cost efficient. By measuring the complexity of the graph (i.e. whether it contains a lot of intricated
bubbles), we reach a proxy of the complexity of the region. A region with not too many errors will produce
a rather flat graph (right example in Figure 11) while error-prone regions will produce dense graphs (left
example in Figure 11). Flat graphs indicate that the region can be processed by MSA to find out a consensus.
The MSA can be realized using POA such as in Chapter 4, which has the advantage to allow to directly
apply a heaviest bundling algorithm on the partial order graph (described in Chapter 4) to find a consensus.

A complex region will be longer to align using MSA. In this case, we propose to use De Bruijn graph
traversal instead. Using the build De Bruijn graph and information its nodes carry, we can seek a heaviest
path based on the occurrences of k-mers. Several algorithms are possible, we plan to first test a greedy way
that elongates the path by selecting the next most weighted k-mer. The rationale of using such small k-mer

163

size is twofold:

� the smaller the k-mers, the most likely they appear in many reads, thus the correct version of a region
is solid in the graph

� the graph has less chance to be fragmented: we can find a single path that traverses the region to
correct it

A key is that the space between two seeds must be rather small (at most a hundred nucleotides). Assembly
at such size is possible if the interval between two seeds is not too long, thus k-mers are not likely to be
repeated. Moreover, consensus will be more easily computed from small subsequences. This is also true for
the MSA.

Both MSA and De Bruijn graph consensus must start and end by seeds sequences. In the De Bruijn
graph, an initial path must be found between the k-mer that once concatenated, yield the initial left seed
sequence. The same requirement exists for the right seed. We can imagine starting from each extremity
of the graph and looking for pairs of path that meet at some point in the graph (a strategy also employer
in Daccord). In the MSA, seed sequences are conserved and should be aligned altogether across sequences,
thus can be precisely spotted in the partial order graph. The heaviest bundling must be performed starting
at the first nucleotide of the left seed and end at the last right seed. This is an important condition since
extra (or missing) nucleotides may be introduced when extracting subsequences that are not flanked by both
seeds of the pair.

The De Bruijn graph strategy has the advantage to be more time-saving but can have limitations in
repeated regions. The MSA strategy is more conservative and handles repeats, outputs consensus that are
expected to be more accurate, but only on rather close sequences.

In both case, we obtain a consensus that is a single sequence. Using distances between seed pairs to
compare with the length of the consensus can help us to quick assess if our result is incorrect. Thus, too
short or too long consensus regarding the estimated distance can be discarded to make the correction more
conservative. There must exist case where no correct consensus can be found.

3.2 Read correction using the consensus

Once a consensus is found for a region, it can replaced the corresponding subsequence in the reads. The
trivial case is to replace a read’s subsequence when the two seeds are present (Figure 11 and Figure 12 1)).
In other cases, it is sometimes still possible to correct even when successive seeds are not present in a read.
Once all consensus are found, if all consensus between two given seeds could be computed, they can be
concatenated and replace the sequence between the two distant seeds (Figure 5 2)). If a consensus could
not be found for a given region, it is not corrected in any reads. If the concatenation of several consensus
includes a region where no consensus was found, it is not performed (Figure 5 3)).

3.3 Remarks

This preliminary work is based on several parameters: size and number of seeds, size of regions, size of
small k-mers for the DBG. Several experiment in Daccord’s preprint should help us to rasterize our set of
parameters. Daccord’s approach also advocates for sliding windows. In our case, we only presented no-
overlapping regions. Overlapping regions could be investigated as well. In order to enhance the path finding
in De Bruijn graph, that is sensible to repeated k-mers, we can imagine to build a colored De Bruijn graph
in which k-mers recall to which sequence they belong. This could allow to follow path that are not chimeric.
Repeated k-mers could also recall how many times there were seen repeated on average in the sequences, to
allow finding walks in a controlled way (i.e. going though a node a limited number of times). Finally, this
work is at the moment designed in the genomic case. At the moment the limiting step is that we do not
have a method to find chained seeds in the case of alternative sequences.

164

Figure 11: Consensus strategies. A De Bruijn graph is first built from small k-mers
extracted from the region. Using this graph we assess if the region contains a high rate of
errors. We adapt our strategy according to the complexity of the region. Complex regions
are treated by path finding in the De Bruijn graph, the consensus being a path supported by
k-mers of high occurrence in the set. Less complex regions are processed by MSA + heaviest
bundling to output accurate consensus.

Bibliography

[1] Abdel-Ghany, S. E., Hamilton, M., Jacobi, J. L., Ngam, P., Devitt, N., Schilkey, F., Ben-Hur, A., and
Reddy, A. S. (2016). A survey of the sorghum transcriptome using single-molecule long reads. Nature
communications, 7:11706.

[2] Adamcsek, B., Palla, G., Farkas, I. J., Derényi, I., and Vicsek, T. (2006). Cfinder: locating cliques and
overlapping modules in biological networks. Bioinformatics, 22(8):1021–1023.

[3] Alberts, B. (2017). Molecular biology of the cell. Garland science.

[4] Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment
search tool. Journal of molecular biology, 215(3):403–410.

[5] Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J.

165

Figure 12: Strategies to correct read with consensus. 1) Replace a subsequence flanked
with consecutive seeds with the consensus. 2) Concatenate consensus to correct a larger
subsequence between distant seeds. 3) Missing consensus lead to uncorrected regions.

(1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic acids
research, 25(17):3389–3402.

[6] Anamika, K., Verma, S., Jere, A., and Desai, A. (2016). Transcriptomic profiling using next generation
sequencing-advances, advantages, and challenges. In Next Generation Sequencing-Advances, Applications
and Challenges. InTech.

[7] Andersson, L., Archibald, A. L., Bottema, C. D., Brauning, R., Burgess, S. C., Burt, D. W., Casas,
E., Cheng, H. H., Clarke, L., Couldrey, C., et al. (2015). Coordinated international action to accelerate

166

genome-to-phenome with faang, the functional annotation of animal genomes project. Genome biology,
16(1):57.

[8] Au, K. F., Sebastiano, V., Afshar, P. T., Durruthy, J. D., Lee, L., Williams, B. A., van Bakel, H., Schadt,
E. E., Reijo-Pera, R. A., Underwood, J. G., et al. (2013). Characterization of the human esc transcriptome
by hybrid sequencing. Proceedings of the National Academy of Sciences, 110(50):E4821–E4830.

[9] Balzano, S., Corre, E., Decelle, J., Sierra, R., Wincker, P., Da Silva, C., Poulain, J., Pawlowski, J., and
Not, F. (2015). Transcriptome analyses to investigate symbiotic relationships between marine protists.
Frontiers in microbiology, 6:98.

[10] Bao, E., Jiang, T., Kaloshian, I., and Girke, T. (2011). Seed: efficient clustering of next-generation
sequences. Bioinformatics, 27(18):2502–2509.

[11] Bao, E. and Lan, L. (2017). Halc: High throughput algorithm for long read error correction. BMC
bioinformatics, 18(1):204.

[12] Barash, Y., Calarco, J. A., Gao, W., Pan, Q., Wang, X., Shai, O., Blencowe, B. J., and Frey, B. J.
(2010). Deciphering the splicing code. Nature, 465(7294):53.

[13] Bastide, M. and McCombie, W. R. (2007). Assembling genomic dna sequences with phrap. Current
Protocols in Bioinformatics, pages 11–4.

[14] Benjamini, Y. and Speed, T. P. (2012). Summarizing and correcting the gc content bias in high-
throughput sequencing. Nucleic acids research, 40(10):e72–e72.

[15] Benoit, G., Peterlongo, P., Mariadassou, M., Drezen, E., Schbath, S., Lavenier, D., and Lemaitre, C.
(2016). Multiple Comparative Metagenomics using Multiset k-mer Counting. pages 1–17.

[16] Benoit-Pilven, C., Marchet, C., Chautard, E., Lima, L., Lambert, M.-P., Sacomoto, G., Rey, A.,
Cologne, A., Terrone, S., Dulaurier, L., et al. (2018). Complementarity of assembly-first and mapping-
first approaches for alternative splicing annotation and differential analysis from rnaseq data. Scientific
reports, 8(1):4307.

[17] Berget, S. M., Moore, C., and Sharp, P. A. (1977). Spliced segments at the 5t́erminus of adenovirus 2
late mrna. Proceedings of the National Academy of Sciences, 74(8):3171–3175.

[18] Berlin, K., Koren, S., Chin, C.-S., Drake, J. P., Landolin, J. M., and Phillippy, A. M. (2015a). Assem-
bling large genomes with single-molecule sequencing and locality-sensitive hashing. Nature biotechnology,
33(6):623–630.

[19] Berlin, K., Koren, S., Chin, C.-S., Drake, J. P., Landolin, J. M., and Phillippy, A. M. (2015b). Assem-
bling large genomes with single-molecule sequencing and locality-sensitive hashing. Nature biotechnology,
33(6):623–630.

[20] Biard, T., Pillet, L., Decelle, J., Poirier, C., Suzuki, N., and Not, F. (2015). Towards an integrative
morpho-molecular classification of the collodaria (polycystinea, radiolaria). Protist, 166(3):374–388.

[21] Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of communities
in large networks. Journal of statistical mechanics: theory and experiment, 2008(10):P10008.

[22] Bolisetty, M. T., Rajadinakaran, G., and Graveley, B. R. (2015). Determining exon connectivity in
complex mrnas by nanopore sequencing. Genome biology, 16(1):204.

167

[23] Bork, P., Bowler, C., De Vargas, C., Gorsky, G., Karsenti, E., and Wincker, P. (2015). Tara oceans
studies plankton at planetary scale.

[24] Bouck, J., Yu, W., Gibbs, R., and Worley, K. (1999). Comparison of gene indexing databases. Trends
in Genetics, 15(4):159–162.

[25] Bray, N. L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal probabilistic rna-seq
quantification. Nature biotechnology, 34(5):525.

[26] Burke, J., Davison, D., and Hide, W. (1999a). d2 cluster: a validated method for clustering est and
full-length cdna sequences. Genome research, 9(11):1135–1142.

[27] Burke, J., Davison, D., and Hide, W. (1999b). d2 cluster: a validated method for clustering est and
full-length cdna sequences. Genome research, 9(11):1135–1142.

[28] Byrne, A., Beaudin, A. E., Olsen, H. E., Jain, M., Cole, C., Palmer, T., DuBois, R. M., Forsberg, E. C.,
Akeson, M., and Vollmers, C. (2017). Nanopore long-read rnaseq reveals widespread transcriptional
variation among the surface receptors of individual b cells. Nature Communications, 8:16027.

[29] Carneiro, M. O., Russ, C., Ross, M. G., Gabriel, S. B., Nusbaum, C., and DePristo, M. A. (2012).
Pacific biosciences sequencing technology for genotyping and variation discovery in human data. BMC
genomics, 13(1):375.

[30] Carvalho, A. B., Dupim, E. G., and Goldstein, G. (2016). Improved assembly of noisy long reads by
k-mer validation. Genome Research, 26(12):1710–1720.

[31] Chacko, E. and Ranganathan, S. (2009). Comprehensive splicing graph analysis of alternative splicing
patterns in chicken, compared to human and mouse. BMC genomics, 10(1):S5.

[32] Chaisson, M. J. and Tesler, G. (2012). Mapping single molecule sequencing reads using basic local
alignment with successive refinement (blasr): application and theory. BMC bioinformatics, 13(1):238.

[33] Chikhi, R., Rizk, G., et al. (2013). Space-efficient and exact de bruijn graph representation based on a
bloom filter. Algorithms for Molecular Biology, 8(22):1.

[34] Chin, C.-S., Alexander, D. H., Marks, P., Klammer, A. A., Drake, J., Heiner, C., Clum, A., Copeland,
A., Huddleston, J., Eichler, E. E., et al. (2013). Nonhybrid, finished microbial genome assemblies from
long-read SMRT sequencing data. Nature methods, 10(6):563–569.

[35] Chin, C.-S., Peluso, P., Sedlazeck, F. J., Nattestad, M., Concepcion, G. T., Clum, A., Dunn, C.,
O’Malley, R., Figueroa-Balderas, R., Morales-Cruz, A., et al. (2016). Phased diploid genome assembly
with single-molecule real-time sequencing. Nature methods, 13(12):1050.

[36] Chong, Z., Ruan, J., and Wu, C.-I. (2012). Rainbow: an integrated tool for efficient clustering and
assembling rad-seq reads. Bioinformatics, 28(21):2732–2737.

[37] Christoffels, A., van Gelder, A., Greyling, G., Miller, R., Hide, T., and Hide, W. (2001). Stack: sequence
tag alignment and consensus knowledgebase. Nucleic Acids Research, 29(1):234–238.

[38] Chu, J., Mohamadi, H., Warren, R. L., Yang, C., and Birol, I. (2016). Innovations and challenges in
detecting long read overlaps: an evaluation of the state-of-the-art. Bioinformatics, 33(8):1261–1270.

[39] Clauset, A., Newman, M. E., and Moore, C. (2004). Finding community structure in very large networks.
Physical review E, 70(6):066111.

168

[40] Cock, P. J., Fields, C. J., Goto, N., Heuer, M. L., and Rice, P. M. (2009). The sanger fastq file
format for sequences with quality scores, and the solexa/illumina fastq variants. Nucleic acids research,
38(6):1767–1771.

[41] Commons, W. (2018). File:difference dna rna-en.svg — wikimedia commons, the free media repository.
[Online; accessed 24-May-2018].

[42] Consortium, E. P. et al. (2004). The encode (encyclopedia of dna elements) project. Science,
306(5696):636–640.

[43] Consortium, E. P. et al. (2007). Identification and analysis of functional elements in 1% of the human
genome by the encode pilot project. nature, 447(7146):799.

[44] Cormen, T. H. (2009). Introduction to algorithms. MIT press.

[45] Cusack, B. P., Arndt, P. F., Duret, L., and Crollius, H. R. (2011). Preventing dangerous nonsense:
selection for robustness to transcriptional error in human genes. PLoS genetics, 7(10):e1002276.

[46] Dahlhaus, E., Johnson, D. S., Papadimitriou, C. H., Seymour, P. D., and Yannakakis, M. (1994). The
complexity of multiterminal cuts. SIAM Journal on Computing, 23(4):864–894.

[47] David, M., Dzamba, M., Lister, D., Ilie, L., and Brudno, M. (2011). Shrimp2: sensitive yet practical
short read mapping. Bioinformatics, 27(7):1011–1012.

[48] Davy, S. K., Allemand, D., and Weis, V. M. (2012). Cell biology of cnidarian-dinoflagellate symbiosis.
Microbiology and Molecular Biology Reviews, 76(2):229–261.

[49] de Lannoy, C., de Ridder, D., and Risse, J. (2017). The long reads ahead: de novo genome assembly
using the minion [version 2; referees: 2 approved]. F1000Research, 6(1083).

[50] Delcher, A. L., Kasif, S., Fleischmann, R. D., Peterson, J., White, O., and Salzberg, S. L. (1999).
Alignment of whole genomes. Nucleic acids research, 27(11):2369–2376.

[51] Djebali, S., Davis, C. A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J.,
Lin, W., Schlesinger, F., et al. (2012). Landscape of transcription in human cells. Nature, 489(7414):101.

[52] Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and
Gingeras, T. R. (2013). Star: ultrafast universal rna-seq aligner. Bioinformatics, 29(1):15–21.

[53] Dost, B., Wu, C., Su, A., and Bafna, V. (2011). Tclust: A fast method for clustering genome-scale ex-
pression data. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 8(3):808–
818.

[54] Drezen, E., Rizk, G., Chikhi, R., Deltel, C., Lemaitre, C., Peterlongo, P., and Lavenier, D. (2014).
Gatb: Genome assembly & analysis tool box. Bioinformatics, 30(20):2959–2961.

[55] Eckmann, J.-P. and Moses, E. (2002). Curvature of co-links uncovers hidden thematic layers in the
world wide web. Proceedings of the national academy of sciences, 99(9):5825–5829.

[56] Edery, P., Marcaillou, C., Sahbatou, M., Labalme, A., Chastang, J., Touraine, R., Tubacher, E., Senni,
F., Bober, M. B., Nampoothiri, S., et al. (2011). Association of tals developmental disorder with defect
in minor splicing component u4atac snrna. Science, 332(6026):240–243.

[57] Edgar, R. C. (2010). Search and clustering orders of magnitude faster than blast. Bioinformatics,
26(19):2460–2461.

169

[58] Escalona, M., Rocha, S., and Posada, D. (2016). A comparison of tools for the simulation of genomic
next-generation sequencing data. Nature Reviews Genetics, 17(8):459.

[59] et al, P. (2008). Deep surveying of alternative splicing complexity in the human transcriptome by
high-throughput sequencing.

[60] Feng, D.-F. and Doolittle, R. F. (1997). Converting amino acid alignment scores into measures of
evolutionary time: a simulation study of various relationships. Journal of molecular evolution, 44(4):361–
370.

[61] Fichot, E. B. and Norman, R. S. (2013). Microbial phylogenetic profiling with the pacific biosciences
sequencing platform. Microbiome, 1(1):10.

[62] Fiore, C. L., Labrie, M., Jarett, J. K., and Lesser, M. P. (2015). Transcriptional activity of the giant
barrel sponge, xestospongia muta holobiont: molecular evidence for metabolic interchange. Frontiers in
microbiology, 6:364.

[63] Foissac, S. and Sammeth, M. (2007). Astalavista: dynamic and flexible analysis of alternative splicing
events in custom gene datasets. Nucleic acids research, 35(suppl 2):W297–W299.

[64] Forster, D., Bittner, L., Karkar, S., Dunthorn, M., Romac, S., Audic, S., Lopez, P., Stoeck, T., and
Bapteste, E. (2015). Testing ecological theories with sequence similarity networks: marine ciliates exhibit
similar geographic dispersal patterns as multicellular organisms. BMC biology, 13(1):16.

[65] Fortunato, S. (2010). Community detection in graphs. Physics reports, 486(3-5):75–174.

[66] Fortunato, S. and Barthelemy, M. (2007). Resolution limit in community detection. Proceedings of the
National Academy of Sciences, 104(1):36–41.

[67] Fortunato, S., Latora, V., and Marchiori, M. (2004). Method to find community structures based on
information centrality. Physical review E, 70(5):056104.

[68] Friedman, K. J., Kole, J., Cohn, J. A., Knowles, M. R., Silverman, L. M., and Kole, R. (1999).
Correction of aberrant splicing of the cystic fibrosis transmembrane conductance regulator (cftr) gene by
antisense oligonucleotides. Journal of Biological Chemistry, 274(51):36193–36199.

[69] Fuda, N. J., Ardehali, M. B., and Lis, J. T. (2009). Defining mechanisms that regulate rna polymerase
ii transcription in vivo. Nature, 461(7261):186.

[70] Gauthier, J., Mouden, C., Suchan, T., Alvarez, N., Arrigo, N., Riou, C., Lemaitre, C., and Peterlongo,
P. (2017). Discosnp-rad: de novo detection of small variants for population genomics. bioRxiv, page
216747.

[71] Ghodsi, M., Liu, B., and Pop, M. (2011). Dnaclust: accurate and efficient clustering of phylogenetic
marker genes. BMC bioinformatics, 12(1):271.

[72] Girvan, M. and Newman, M. E. (2002a). Community structure in social and biological networks.
Proceedings of the national academy of sciences, 99(12):7821–7826.

[73] Girvan, M. and Newman, M. E. (2002b). Community structure in social and biological networks.
Proceedings of the national academy of sciences, 99(12):7821–7826.

[74] Gonzalez-Garay, M. L. (2016). Introduction to isoform sequencing using pacific biosciences technology
(iso-seq). In Transcriptomics and Gene Regulation, pages 141–160. Springer.

170

[75] Good, B. H., de Montjoye, Y.-A., and Clauset, A. (2010). Performance of modularity maximization in
practical contexts. Physical Review E, 81(4):046106.

[76] Goodwin, S., Gurtowski, J., Ethe-Sayers, S., Deshpande, P., Schatz, M. C., and McCombie, W. R.
(2015). Oxford nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic
genome. Genome research, 25(11):1750–1756.

[77] Gordon, S. P., Tseng, E., Salamov, A., Zhang, J., Meng, X., Zhao, Z., Kang, D., Underwood, J.,
Grigoriev, I. V., Figueroa, M., et al. (2015). Widespread polycistronic transcripts in fungi revealed by
single-molecule mrna sequencing. PloS one, 10(7):e0132628.

[78] Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan,
L., Raychowdhury, R., Zeng, Q., et al. (2011a). Full-length transcriptome assembly from RNA-Seq data
without a reference genome. Nature biotechnology, 29(7):644–652.

[79] Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X.,
Fan, L., Raychowdhury, R., Zeng, Q., et al. (2011b). Trinity: reconstructing a full-length transcriptome
without a genome from rna-seq data. Nature biotechnology, 29(7):644.

[80] Grant, G. R., Farkas, M. H., Pizarro, A. D., Lahens, N. F., Schug, J., Brunk, B. P., Stoeckert, C. J.,
Hogenesch, J. B., and Pierce, E. A. (2011). Comparative analysis of rna-seq alignment algorithms and
the rna-seq unified mapper (rum). Bioinformatics, 27(18):2518–2528.

[81] Griebel, T., Zacher, B., Ribeca, P., Raineri, E., Lacroix, V., Guigó, R., and Sammeth, M. (2012).
Modelling and simulating generic rna-seq experiments with the flux simulator. Nucleic acids research,
40(20):10073–10083.

[82] Guidi, L., Chaffron, S., Bittner, L., Eveillard, D., Larhlimi, A., Roux, S., Darzi, Y., Audic, S., Berline,
L., Brum, J. R., et al. (2016). Plankton networks driving carbon export in the oligotrophic ocean. Nature,
532(7600):465.

[83] Gupta, S. K., Kececioglu, J. D., and Schäffer, A. A. (1995). Improving the practical space and time
efficiency of the shortest-paths approach to sum-of-pairs multiple sequence alignment. Journal of Com-
putational Biology, 2(3):459–472.

[84] Hackl, T., Hedrich, R., Schultz, J., and Förster, F. (2014). proovread: large-scale high-accuracy pacbio
correction through iterative short read consensus. Bioinformatics, 30(21):3004–3011.

[85] Haghshenas, E., Hach, F., Sahinalp, S. C., and Chauve, C. (2016). Colormap: Correcting long reads
by mapping short reads. Bioinformatics, 32(17):i545–i551.

[86] Heber, S., Alekseyev, M., Sze, S.-H., Tang, H., and Pevzner, P. A. (2002). Splicing graphs and est
assembly problem. Bioinformatics, 18(suppl 1):S181–S188.

[87] Hentschel, U., Usher, K. M., and Taylor, M. W. (2006). Marine sponges as microbial fermenters. FEMS
microbiology ecology, 55(2):167–177.

[88] Higgins, D. G. and Sharp, P. M. (1988). Clustal: a package for performing multiple sequence alignment
on a microcomputer. Gene, 73(1):237–244.

[89] Hoang, N. V., Furtado, A., Mason, P. J., Marquardt, A., Kasirajan, L., Thirugnanasambandam, P. P.,
Botha, F. C., and Henry, R. J. (2017). A survey of the complex transcriptome from the highly polyploid
sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.
BMC genomics, 18(1):395.

171

[90] Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs.
Marine and freshwater research, 50(8):839–866.

[91] Holter, N. S., Mitra, M., Maritan, A., Cieplak, M., Banavar, J. R., and Fedoroff, N. V. (2000). Fun-
damental patterns underlying gene expression profiles: simplicity from complexity. Proceedings of the
National Academy of Sciences, 97(15):8409–8414.

[92] Hopcroft, J. and Tarjan, R. (1973). Algorithm 447: efficient algorithms for graph manipulation. Com-
munications of the ACM, 16(6):372–378.

[93] Huang, W., Li, L., Myers, J. R., and Marth, G. T. (2011). Art: a next-generation sequencing read
simulator. Bioinformatics, 28(4):593–594.

[94] Huang, X. and Madan, A. (1999). Cap3: A dna sequence assembly program. Genome research,
9(9):868–877.

[95] Huson, D. H., Auch, A. F., Qi, J., and Schuster, S. C. (2007). Megan analysis of metagenomic data.
Genome research, 17(3):377–386.

[96] Jain, M., Fiddes, I. T., Miga, K. H., Olsen, H. E., Paten, B., and Akeson, M. (2015). Improved data
analysis for the minion nanopore sequencer. Nature methods, 12(4):351.

[97] Jiang, H., Ling, Z., Zhang, Y., Mao, H., Ma, Z., Yin, Y., Wang, W., Tang, W., Tan, Z., Shi, J., et al.
(2015). Altered fecal microbiota composition in patients with major depressive disorder. Brain, behavior,
and immunity, 48:186–194.

[98] Jonsson, P. F., Cavanna, T., Zicha, D., and Bates, P. A. (2006). Cluster analysis of networks gen-
erated through homology: automatic identification of important protein communities involved in cancer
metastasis. BMC bioinformatics, 7(1):2.

[99] Kahn, A. B. (1962). Topological sorting of large networks. Communications of the ACM, 5(11):558–562.

[100] Karsenti, E., Acinas, S. G., Bork, P., Bowler, C., de Vargas, C., Raes, J., Sullivan, M., Arendt, D.,
Benzoni, F., Claverie, J. M., Follows, M., Gorsky, G., Hingamp, P., Iudicone, D., Jaillon, O., Kandels-
Lewis, S., Krzic, U., Not, F., Ogata, H., Pesant, S., Reynaud, E. G., Sardet, C., Sieracki, M. E., Speich,
S., Velayoudon, D., Weissenbach, J., and Wincker, P. (2011). A holistic approach to marine Eco-systems
biology. PLoS Biology, 9.

[101] Katz, Y., Wang, E. T., Airoldi, E. M., and Burge, C. B. (2010). Analysis and design of RNA sequencing
experiments for identifying isoform regulation. Nature methods, 7(12):1009–1015.

[102] Keeling, P. J., Burki, F., Wilcox, H. M., Allam, B., Allen, E. E., Amaral-Zettler, L. A., Armbrust, E. V.,
Archibald, J. M., Bharti, A. K., Bell, C. J., et al. (2014). The marine microbial eukaryote transcriptome
sequencing project (mmetsp): illuminating the functional diversity of eukaryotic life in the oceans through
transcriptome sequencing. PLoS Biology, 12(6):e1001889.

[103] Kent, W. J. (2002). Blat – the blast-like alignment tool. Genome research, 12(4):656–664.

[104] Khiste, N. and Ilie, L. (2017). Hisea: Hierarchical seed aligner for pacbio data. BMC Bioinformatics,
18(1):564.

[105] Kie lbasa, S. M., Wan, R., Sato, K., Horton, P., and Frith, M. C. (2011). Adaptive seeds tame genomic
sequence comparison. Genome research, 21(3):487–493.

172

[106] Kim, D., Langmead, B., and Salzberg, S. L. (2015). Hisat: a fast spliced aligner with low memory
requirements. Nature methods, 12(4):357.

[107] Kirsch, A. and Mitzenmacher, M. (2006). Less hashing, same performance: building a better bloom
filter. In European Symposium on Algorithms, pages 456–467. Springer.

[108] Koren, S., Schatz, M. C., Walenz, B. P., Martin, J., Howard, J. T., Ganapathy, G., Wang, Z., Rasko,
D. A., McCombie, W. R., Jarvis, E. D., et al. (2012). Hybrid error correction and de novo assembly of
single-molecule sequencing reads. Nature biotechnology, 30(7):693.

[109] Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy, A. M. (2017). Canu:
scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome
research, 27(5):722–736.

[110] Kornblihtt, A. R., Schor, I. E., Alló, M., Dujardin, G., Petrillo, E., and Muñoz, M. J. (2013). Alterna-
tive splicing: a pivotal step between eukaryotic transcription and translation. Nature reviews Molecular
cell biology, 14(3):153.

[111] Krizanovic, K., Echchiki, A., Roux, J., Sikic, M., Morales-Rozo, A., Tenorio, E. A., Carling, M. D.,
Cadena, C. D., Kordonowy, L., MacManes, M., et al. (2017). Evaluation of tools for long read rna-seq
splice-aware alignment. Bioinformatics, 1:7.

[112] Kuehner, J. N., Pearson, E. L., and Moore, C. (2011). Unravelling the means to an end: Rna poly-
merase ii transcription termination. Nature reviews Molecular cell biology, 12(5):283.

[113] Kurtz, S. (1999). Reducing the space requirement of suffix trees. Software-Practice and Experience,
29(13):1149–71.

[114] La, S., Haghshenas, E., and Chauve, C. (2017). Lrcstats, a tool for evaluating long reads correction
methods. Bioinformatics, 33(22):3652–3654.

[115] Lancichinetti, A., Fortunato, S., and Radicchi, F. (2008). Benchmark graphs for testing community
detection algorithms. Physical review E, 78(4):046110.

[116] Langmead, B. (2010). Aligning short sequencing reads with bowtie. Current protocols in bioinformatics,
pages 11–7.

[117] Langmead, B. and Salzberg, S. L. (2012). Fast gapped-read alignment with bowtie 2. Nature methods,
9(4):357.

[118] Lappalainen, T., Sammeth, M., Friedländer, M. R., AC‘t Hoen, P., Monlong, J., Rivas, M. A.,
Gonzalez-Porta, M., Kurbatova, N., Griebel, T., Ferreira, P. G., et al. (2013). Transcriptome and genome
sequencing uncovers functional variation in humans. Nature, 501(7468):506.

[119] Le Bras, Y., Collin, O., Monjeaud, C., Lacroix, V., Rivals, É., Lemaitre, C., Miele, V., Sacomoto,
G., Marchet, C., Cazaux, B., et al. (2016). Colib’read on galaxy: a tools suite dedicated to biological
information extraction from raw ngs reads. GigaScience, 5(1):9.

[120] Lee, C. (2003). Generating consensus sequences from partial order multiple sequence alignment graphs.
Bioinformatics, 19(8):999–1008.

[121] Lee, C., Grasso, C., and Sharlow, M. F. (2002). Multiple sequence alignment using partial order
graphs. Bioinformatics, 18(3):452–464.

173

[122] Li, B. and Dewey, C. N. (2011). Rsem: accurate transcript quantification from rna-seq data with or
without a reference genome. BMC bioinformatics, 12(1):323.

[123] Li, B., Fillmore, N., Bai, Y., Collins, M., Thomson, J. A., Stewart, R., and Dewey, C. N. (2014).
Evaluation of de novo transcriptome assemblies from rna-seq data. Genome biology, 15(12):553.

[124] Li, F., Jiang, C., Krausz, K. W., Li, Y., Albert, I., Hao, H., Fabre, K. M., Mitchell, J. B., Patterson,
A. D., and Gonzalez, F. J. (2013). Microbiome remodelling leads to inhibition of intestinal farnesoid x
receptor signalling and decreased obesity. Nature communications, 4:2384.

[125] Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. arXiv
preprint arXiv:1303.3997.

[126] Li, H. (2016). Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.
Bioinformatics, 32(14):2103–2110.

[127] Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 1:7.

[128] Li, H. and Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform.
Bioinformatics, 25(14):1754–1760.

[129] Li, H. and Durbin, R. (2010). Fast and accurate long-read alignment with burrows–wheeler transform.
Bioinformatics, 26(5):589–595.

[130] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and
Durbin, R. (2009). The sequence alignment/map format and samtools. Bioinformatics, 25(16):2078–2079.

[131] Li, W. and Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of protein
or nucleotide sequences. Bioinformatics, 22(13):1658–1659.

[132] Lima, L., Sinaimeri, B., Sacomoto, G., Lopez-Maestre, H., Marchet, C., Miele, V., Sagot, M.-F., and
Lacroix, V. (2017). Playing hide and seek with repeats in local and global de novo transcriptome assembly
of short rna-seq reads. Algorithms for molecular biology, 12(1):2.

[133] Limasset, A., Flot, J.-F., and Peterlongo, P. (2018). Toward perfect reads: self-correction of short
reads via mapping on de bruijn graphs. In RECOMB-seq.

[134] Limasset, A., Rizk, G., Chikhi, R., and Peterlongo, P. (2017). Fast and scalable minimal perfect
hashing for massive key sets. arXiv preprint arXiv:1702.03154.

[135] Lipman, D. J., Altschul, S. F., and Kececioglu, J. D. (1989). A tool for multiple sequence alignment.
Proceedings of the National Academy of Sciences, 86(12):4412–4415.

[136] Liu, Y., Schröder, J., and Schmidt, B. (2012). Musket: a multistage k-mer spectrum-based error
corrector for illumina sequence data. Bioinformatics, 29(3):308–315.

[137] Loman, N. J., Quick, J., and Simpson, J. T. (2015). A complete bacterial genome assembled de novo
using only nanopore sequencing data. Nature methods, 12(8):733.

[138] Lopez-Maestre, H., Brinza, L., Marchet, C., Kielbassa, J., Bastien, S., Boutigny, M., Monnin, D.,
Filali, A. E., Carareto, C. M., Vieira, C., et al. (2016). Snp calling from rna-seq data without a reference
genome: identification, quantification, differential analysis and impact on the protein sequence. Nucleic
acids research, 44(19):e148–e148.

174

[139] Madoui, M.-A., Engelen, S., Cruaud, C., Belser, C., Bertrand, L., Alberti, A., Lemainque, A., Wincker,
P., and Aury, J.-M. (2015). Genome assembly using nanopore-guided long and error-free dna reads. BMC
genomics, 16(1):327.

[140] Mahé, F., Rognes, T., Quince, C., de Vargas, C., and Dunthorn, M. (2014). Swarm: robust and fast
clustering method for amplicon-based studies. PeerJ, 2:e593.

[141] Maillet, N., Collet, G., Vannier, T., Lavenier, D., and Peterlongo, P. (2014). COMMET: comparing
and combining multiple metagenomic datasets. In Bioinformatics and Biomedicine (BIBM), 2014 IEEE
International Conference on, pages 94–98. IEEE.

[142] Maillet, N., Lemaitre, C., Chikhi, R., Lavenier, D., and Peterlongo, P. (2012). Compareads: comparing
huge metagenomic experiments. In BMC bioinformatics, volume 13, page S10. BioMed Central.

[143] Manber, U. and Myers, G. (1993). Suffix arrays: a new method for on-line string searches. siam
Journal on Computing, 22(5):935–948.

[144] Marchet, C., Lecompte, L., Da Silva, C., Cruaud, C., Aury, J. M., Nicolas, J., and Peterlongo, P.
(2018a). Clustering de novo by gene of long reads from transcriptomics data. bioRxiv, page 170035.

[145] Marchet, C., Lecompte, L., Limasset, A., Bittner, L., and Peterlongo, P. (2018b). A resource-frugal
probabilistic dictionary and applications in bioinformatics. Discrete Applied Mathematics.

[146] Marchet, C., Limasset, A., Bittner, L., and Peterlongo, P. (2016). A resource-frugal probabilistic
dictionary and applications in (meta)genomics. In Holub, J. and Žďárek, J., editors, Proceedings of the
Prague Stringology Conference 2016, pages 85–97”, Czech Technical University in Prague, Czech Republic.

[147] Marsaglia, G. (2003). Xorshift rngs. Journal of Statistical Software, 8(14):1–6.

[148] Martin, J. A. and Wang, Z. (2011). Next-generation transcriptome assembly. Nature Reviews Genetics,
12(10):671.

[149] Matera, A. G. and Wang, Z. (2014). A day in the life of the spliceosome. Nature reviews Molecular
cell biology, 15(2):108.

[150] McCreight, E. M. (1976). A space-economical suffix tree construction algorithm. Journal of the ACM
(JACM), 23(2):262–272.

[151] McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K.,
Altshuler, D., Gabriel, S., Daly, M., et al. (2010). The genome analysis toolkit: a mapreduce framework
for analyzing next-generation dna sequencing data. Genome research, 20(9):1297–1303.

[152] Mei, J., Zhao, J., Yang, X., and Zhou, W. (2011). Remote protein homology detection using a
modularity-based approach. In Information Science and Technology (ICIST), 2011 International Confer-
ence on, pages 1287–1291. IEEE.

[153] Meng, A., Marchet, C., Corre, E., Peterlongo, P., Alberti, A., Da Silva, C., Wincker, P., Pelletier, E.,
Probert, I., Decelle, J., et al. (2017a). A de novo approach to disentangle partner identity and function
in holobiont systems.

[154] Meng, A., Marchet, C., Corre, E., Peterlongo, P., Alberti, A., Da Silva, C., Wincker, P., Pelletier, E.,
Probert, I., Decelle, J., Le Crom, S., Not, F., and Bittner, L. (2017b). A de novo approach to disentangle
partner identity and function in holobiont systems. working paper or preprint.

175

[155] Miclotte, G., Heydari, M., Demeester, P., Rombauts, S., Van de Peer, Y., Audenaert, P., and Fostier,
J. (2016). Jabba: hybrid error correction for long sequencing reads. Algorithms for Molecular Biology,
11(1):10.

[156] Miele, V., Penel, S., Daubin, V., Picard, F., Kahn, D., and Duret, L. (2012). High-quality sequence
clustering guided by network topology and multiple alignment likelihood. Bioinformatics, 28(8):1078–
1085.

[157] Modrek, B. and Lee, C. (2002). A genomic view of alternative splicing. Nature genetics, 30(1):13–19.

[158] Morin, R. D., Bainbridge, M., Fejes, A., Hirst, M., Krzywinski, M., Pugh, T. J., McDonald, H., Varhol,
R., Jones, S. J., and Marra, M. A. (2008). Profiling the hela s3 transcriptome using randomly primed
cdna and massively parallel short-read sequencing. Biotechniques, 45(1):81.

[159] Mott, R. (1997). Est genome: a program to align spliced dna sequences to unspliced genomic dna.
Bioinformatics, 13(4):477–478.

[160] Muller-Parker, G., D’elia, C. F., and Cook, C. B. (2015). Interactions between corals and their
symbiotic algae. In Coral Reefs in the Anthropocene, pages 99–116. Springer.

[161] Myers, G. (2014a). Efficient local alignment discovery amongst noisy long reads. In International
Workshop on Algorithms in Bioinformatics, pages 52–67. Springer.

[162] Myers, G. (2014b). Efficient local alignment discovery amongst noisy long reads. In International
Workshop on Algorithms in Bioinformatics, pages 52–67. Springer.

[163] Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable to the search for similarities
in the amino acid sequence of two proteins. Journal of molecular biology, 48(3):443–453.

[164] Newman, M. E. (2003). The structure and function of complex networks. SIAM review, 45(2):167–256.

[165] Newman, M. E. (2004a). Detecting community structure in networks. The European Physical Journal
B, 38(2):321–330.

[166] Newman, M. E. (2004b). Fast algorithm for detecting community structure in networks. Physical
review E, 69(6):066133.

[167] Novák, P., Neumann, P., and Macas, J. (2010). Graph-based clustering and characterization of repet-
itive sequences in next-generation sequencing data. BMC bioinformatics, 11(1):378.

[168] Oikonomopoulos, S., Wang, Y. C., Djambazian, H., Badescu, D., and Ragoussis, J. (2016). Bench-
marking of the oxford nanopore minion sequencing for quantitative and qualitative assessment of cdna
populations. Scientific reports, 6:31602.

[169] Ondov, B. D., Treangen, T. J., Melsted, P., Mallonee, A. B., Bergman, N. H., Koren, S., and Phillippy,
A. M. (2016). Mash: fast genome and metagenome distance estimation using minhash. Genome biology,
17(1):132.

[170] Ono, Y., Asai, K., and Hamada, M. (2013). Pbsim: Pacbio reads simulator—toward accurate genome
assembly. Bioinformatics, 29(1):119–121.

[171] Oshlack, A., Robinson, M. D., and Young, M. D. (2010). From rna-seq reads to differential expression
results. Genome biology, 11(12):220.

176

[172] Palla, G., Barabási, A., and Vicsek, T. (2007). Quantifying social group evolution. Nature,
446(7136):664–667.

[173] Pan, Q., Shai, O., Lee, L. J., Frey, B. J., and Blencowe, B. J. (2008). Deep surveying of alterna-
tive splicing complexity in the human transcriptome by high-throughput sequencing. Nature genetics,
40(12):1413.

[174] Pardalos, J. A. and Resende, M. (1999). On maximum cli, ue problems in very large graphs.

[175] Patro, R., Duggal, G., and Kingsford, C. (2015). Salmon: accurate, versatile and ultrafast quantifica-
tion from rna-seq data using lightweight-alignment. bioRxiv, page 021592.

[176] Patro, R., Mount, S. M., and Kingsford, C. (2014). Sailfish enables alignment-free isoform quantifica-
tion from rna-seq reads using lightweight algorithms. Nature biotechnology, 32(5):462.

[177] Pattillo, J., Veremyev, A., Butenko, S., and Boginski, V. (2013). On the maximum quasi-clique
problem. Discrete Applied Mathematics, 161(1-2):244–257.

[178] Pérez-Ort́ın, J. E., Alepuz, P., Chávez, S., and Choder, M. (2013). Eukaryotic mrna decay: methodolo-
gies, pathways, and links to other stages of gene expression. Journal of molecular biology, 425(20):3750–
3775.

[179] Pertea, G., Huang, X., Liang, F., Antonescu, V., Sultana, R., Karamycheva, S., Lee, Y., White, J.,
Cheung, F., Parvizi, B., et al. (2003). Tigr gene indices clustering tools (tgicl): a software system for fast
clustering of large est datasets. Bioinformatics, 19(5):651–652.

[180] Pesant, S., Not, F., Picheral, M., Kandels-Lewis, S., Le Bescot, N., Gorsky, G., Iudicone, D., Karsenti,
E., Speich, S., Troublé, R., et al. (2015). Open science resources for the discovery and analysis of tara
oceans data. Scientific data, 2:150023.

[181] Philippe, N., Salson, M., Commes, T., and Rivals, E. (2013). Crac: an integrated approach to the
analysis of rna-seq reads. Genome Biology, 14(3):R30.

[182] Pinzón, J. H., Kamel, B., Burge, C. A., Harvell, C. D., Medina, M., Weil, E., and Mydlarz, L. D.
(2015). Whole transcriptome analysis reveals changes in expression of immune-related genes during and
after bleaching in a reef-building coral. Royal Society open science, 2(4):140214.

[183] Porrua, O. and Libri, D. (2013). Rna quality control in the nucleus: the angels’ share of rna. Biochimica
et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1829(6):604–611.

[184] Poursani, E. M., Soltani, B. M., and Mowla, S. J. (2016). Differential expression of oct4 pseudogenes
in pluripotent and tumor cell lines. Cell Journal (Yakhteh), 18(1):28.

[185] Probert, I., Siano, R., Poirier, C., Decelle, J., Biard, T., Tuji, A., Suzuki, N., and Not, F. (2014).
Brandtodinium gen. nov. and b. nutricula comb. nov.(dinophyceae), a dinoflagellate commonly found in
symbiosis with polycystine radiolarians. Journal of phycology, 50(2):388–399.

[186] Quackenbush, J., Liang, F., Holt, I., Pertea, G., and Upton, J. (2000). The tigr gene indices: recon-
struction and representation of expressed gene sequences. Nucleic Acids Research, 28(1):141–145.

[187] Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., and Parisi, D. (2004). Defining and identifying
communities in networks. Proceedings of the National Academy of Sciences of the United States of America,
101(9):2658–2663.

177

[188] Raghavan, U. N., Albert, R., and Kumara, S. (2007). Near linear time algorithm to detect community
structures in large-scale networks. Physical review E, 76(3):036106.

[189] Reuter, J., Spacek, D. V., and Snyder, M. (2015). High-throughput sequencing technologies. Molecular
Cell, 58(4):586 – 597.

[190] Reyes, A., Anders, S., and Huber, W. (2012). Analyzing RNA-seq data for differential exon usage
with the DEXSeq package.

[191] Rizk, G., Lavenier, D., and Chikhi, R. (2013a). Dsk: k-mer counting with very low memory usage.
Bioinformatics, 29(5):652–653.

[192] Rizk, G., Lavenier, D., and Chikhi, R. (2013b). DSK: K-mer counting with very low memory usage.
Bioinformatics, 29(5):652–653.

[193] Roberts, M., Hayes, W., Hunt, B. R., Mount, S. M., and Yorke, J. A. (2004). Reducing storage
requirements for biological sequence comparison. Bioinformatics, 20(18):3363–3369.

[194] Robertson, G., Schein, J., Chiu, R., Corbett, R., Field, M., Jackman, S. D., Mungall, K., Lee, S.,
Okada, H. M., Qian, J. Q., et al. (2010). De novo assembly and analysis of RNA-seq data. Nature
methods, 7(11):909–912.

[195] Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., and
Mesirov, J. P. (2011). Integrative genomics viewer. Nature biotechnology, 29(1):24.

[196] Rodwell, G. E., Sonu, R., Zahn, J. M., Lund, J., Wilhelmy, J., Wang, L., Xiao, W., Mindrinos, M.,
Crane, E., Segal, E., et al. (2004). A transcriptional profile of aging in the human kidney. PLoS biology,
2(12):e427.

[197] Rohwer, F., Seguritan, V., Azam, F., and Knowlton, N. (2002). Diversity and distribution of coral-
associated bacteria. Marine Ecology Progress Series, 243:1–10.

[198] Romero, I. G., Pai, A. A., Tung, J., and Gilad, Y. (2014). Rna-seq: impact of rna degradation on
transcript quantification. BMC biology, 12(1):42.

[199] Sacomoto, G., Sinaimeri, B., Marchet, C., Miele, V., Sagot, M.-F., and Lacroix, V. (2014). Nav-
igating in a sea of repeats in rna-seq without drowning. In International Workshop on Algorithms in
Bioinformatics, pages 82–96. Springer.

[200] Sacomoto, G. A., Kielbassa, J., Chikhi, R., Uricaru, R., Antoniou, P., Sagot, M.-F., Peterlongo, P.,
and Lacroix, V. (2012). Kissplice: de-novo calling alternative splicing events from rna-seq data. BMC
bioinformatics, 13(Suppl 6):S5.

[201] Sakharkar, M. K., Chow, V. T., and Kangueane, P. (2004). Distributions of exons and introns in the
human genome. In silico biology, 4(4):387–393.

[202] Salmela, L. and Rivals, E. (2014). Lordec: accurate and efficient long read error correction. Bioinfor-
matics, 30(24):3506–3514.

[203] Salmela, L. and Schröder, J. (2011). Correcting errors in short reads by multiple alignments. Bioin-
formatics, 27(11):1455–1461.

[204] Salmela, L., Walve, R., Rivals, E., and Ukkonen, E. (2016). Accurate self-correction of errors in long
reads using de bruijn graphs. Bioinformatics, 33(6):799–806.

178

[205] Sanger, F., Nicklen, S., and Coulson, A. R. (1977). Dna sequencing with chain-terminating inhibitors.
Proceedings of the national academy of sciences, 74(12):5463–5467.

[206] Sangwan, N., Xia, F., and Gilbert, J. A. (2016). Recovering complete and draft population genomes
from metagenome datasets. Microbiome, 4(1):8.

[207] Sankoff, D. (1985). Simultaneous solution of the rna folding, alignment and protosequence problems.
SIAM journal on applied mathematics, 45(5):810–825.

[208] Schadt, E. E., Monks, S. A., Drake, T. A., Lusis, A. J., et al. (2003). Genetics of gene expression
surveyed in maize, mouse and man. Nature, 422(6929):297.

[209] Schuler, G. D. (1997). Pieces of the puzzle: expressed sequence tags and the catalog of human genes.
Journal of Molecular Medicine, 75(10):694–698.

[210] Schulz, M. H., Zerbino, D. R., Vingron, M., and Birney, E. (2012). Oases: robust de novo rna-seq
assembly across the dynamic range of expression levels. Bioinformatics, 28(8):1086–1092.

[211] Schwarz, J. A., Brokstein, P. B., Voolstra, C., Terry, A. Y., Miller, D. J., Szmant, A. M., Coffroth,
M. A., and Medina, M. (2008). Coral life history and symbiosis: functional genomic resources for two reef
building caribbean corals, acropora palmata and montastraea faveolata. BMC genomics, 9(1):97.

[212] Selosse, M.-A. and Strullu-Derrien, C. (2015). Origins of the terrestrial flora: a symbiosis with fungi?
In BIO Web of Conferences, volume 4, page 00009. EDP Sciences.

[213] Senior, J. K. (1951). Partitions and their representative graphs. American Journal of Mathematics,
73(3):663–689.

[214] Sharon, D., Tilgner, H., Grubert, F., and Snyder, M. (2013). A single-molecule long-read survey of
the human transcriptome. Nature biotechnology, 31(11):1009–1014.

[215] Shen, S., Park, J. W., Huang, J., Dittmar, K. A., Lu, Z.-x., Zhou, Q., Carstens, R. P., and Xing,
Y. (2012). MATS: a bayesian framework for flexible detection of differential alternative splicing from
RNA-seq data. Nucleic acids research, page gkr1291.

[216] Siegl, A., Kamke, J., Hochmuth, T., Piel, J., Richter, M., Liang, C., Dandekar, T., and Hentschel,
U. (2011). Single-cell genomics reveals the lifestyle of poribacteria, a candidate phylum symbiotically
associated with marine sponges. The ISME journal, 5(1):61.

[217] Simister, R. L., Deines, P., Botté, E. S., Webster, N. S., and Taylor, M. W. (2012). Sponge-specific
clusters revisited: a comprehensive phylogeny of sponge-associated microorganisms. Environmental Mi-
crobiology, 14(2):517–524.

[218] Simpson, J. T., Workman, R. E., Zuzarte, P., David, M., Dursi, L., and Timp, W. (2017). Detecting
dna cytosine methylation using nanopore sequencing. nature methods, 14(4):407.

[219] Smith, T. F. and Waterman, M. S. (1981). Comparison of biosequences. Advances in applied mathe-
matics, 2(4):482–489.

[220] Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J. M., and Kelly, S. (2016). Transrate: reference-
free quality assessment of de novo transcriptome assemblies. Genome research, 26(8):1134–1144.

[221] Soderlund, C., Johnson, E., Bomhoff, M., and Descour, A. (2009). Pave: program for assembling and
viewing ests. Bmc Genomics, 10(1):1.

179

[222] Song, L. and Florea, L. (2015). Rcorrector: efficient and accurate error correction for illumina rna-seq
reads. Gigascience, 4(1):48.

[223] Song, L., Florea, L., and Langmead, B. (2014). Lighter: fast and memory-efficient sequencing error
correction without counting. Genome biology, 15(11):509.

[224] Sović, I., Šikić, M., Wilm, A., Fenlon, S. N., Chen, S., and Nagarajan, N. (2016). Fast and sensitive
mapping of nanopore sequencing reads with graphmap. Nature communications, 7.

[225] Stöcker, B. K., Köster, J., and Rahmann, S. (2016). Simlord: Simulation of long read data. Bioinfor-
matics, 32(17):2704–2706.

[226] Sunagawa, S., Coelho, L. P., Chaffron, S., Kultima, J. R., Labadie, K., Salazar, G., Djahanschiri, B.,
Zeller, G., Mende, D. R., Alberti, A., et al. (2015). Structure and function of the global ocean microbiome.
Science, 348(6237):1261359.

[227] Tazi, J., Bakkour, N., and Stamm, S. (2009). Alternative splicing and disease. Biochimica et Biophysica
Acta (BBA)-Molecular Basis of Disease, 1792(1):14–26.

[228] Thanh, N. M., Jung, H., Lyons, R. E., Njaci, I., Yoon, B.-H., Chand, V., Tuan, N. V., Thu, V. T. M.,
and Mather, P. (2015). Optimizing de novo transcriptome assembly and extending genomic resources for
striped catfish (pangasianodon hypophthalmus). Marine genomics, 23:87–97.

[229] Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). Clustal w: improving the sensitivity of
progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and
weight matrix choice. Nucleic acids research, 22(22):4673–4680.

[230] Tilgner, H., Jahanbani, F., Gupta, I., Collier, P., Wei, E., Rasmussen, M., and Snyder, M. (2018). Mi-
crofluidic isoform sequencing shows widespread splicing coordination in the human transcriptome. Genome
research, 28(2):231–242.

[231] Tischler, G. and Myers, E. W. (2017). Non hybrid long read consensus using local de bruijn graph
assembly. bioRxiv, page 106252.

[232] Torney, D. C., Burks, C., Davison, D., and Sirotkin, K. M. (1990). Computation of d2: a measure
of sequence dissimilarity. In Computers and DNA: the proceedings of the Interface between Computation
Science and Nucleic Acid Sequencing Workshop, held December 12 to 16, 1988 in Santa Fe, New Mex-
ico/edited by George I. Bell, Thomas G. Marr. Redwood City, Calif.: Addison-Wesley Pub. Co., 1990.

[233] Toseland, A., Moxon, S., Mock, T., and Moulton, V. (2014). Metatranscriptomes from diverse microbial
communities: assessment of data reduction techniques for rigorous annotation. BMC genomics, 15(1):901.

[234] Trapnell, C., Pachter, L., and Salzberg, S. L. (2009). Tophat: discovering splice junctions with rna-seq.
Bioinformatics, 25(9):1105–1111.

[235] Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L.,
Rinn, J. L., and Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq
experiments with TopHat and Cufflinks. Nature protocols, 7(3):562–578.

[236] Tress, M. L., Bodenmiller, B., Aebersold, R., and Valencia, A. (2008). Proteomics studies confirm the
presence of alternative protein isoforms on a large scale. Genome biology, 9(11):R162.

[237] Turunen, J. J., Niemelä, E. H., Verma, B., and Frilander, M. J. (2013). The significant other: splicing
by the minor spliceosome. Wiley Interdisciplinary Reviews: RNA, 4(1):61–76.

180

[238] Vaser, R., Sovic, I., Nagarajan, N., and Sikic, M. (2016). Fast and accurate de novo genome assembly
from long uncorrected reads. bioRxiv, page 068122.

[239] Vaser, R., Sović, I., Nagarajan, N., and Šikić, M. (2017). Fast and accurate de novo genome assembly
from long uncorrected reads. Genome research, 27(5):737–746.

[240] Wang, B., Tseng, E., Regulski, M., Clark, T. A., Hon, T., Jiao, Y., Lu, Z., Olson, A., Stein, J. C.,
and Ware, D. (2016). Unveiling the complexity of the maize transcriptome by single-molecule long-read
sequencing. Nature communications, 7:11708.

[241] Wang, G.-S. and Cooper, T. A. (2007). Splicing in disease: disruption of the splicing code and the
decoding machinery. Nature Reviews Genetics, 8(10):nrg2164.

[242] Wang, K., Singh, D., Zeng, Z., Coleman, S. J., Huang, Y., Savich, G. L., He, X., Mieczkowski, P.,
Grimm, S. A., Perou, C. M., et al. (2010). Mapsplice: accurate mapping of rna-seq reads for splice junction
discovery. Nucleic acids research, 38(18):e178–e178.

[243] Wang, Y., Leung, H. C., Yiu, S., and Chin, F. Y. (2012). Metacluster 5.0: a two-round binning
approach for metagenomic data for low-abundance species in a noisy sample. Bioinformatics, 28(18):i356–
i362.

[244] Wang, Z., Gerstein, M., and Snyder, M. (2009). Rna-seq: a revolutionary tool for transcriptomics.
Nature reviews genetics, 10(1):57.

[245] Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. nature,
393(6684):440.

[246] Webster, N. S. and Taylor, M. W. (2012). Marine sponges and their microbial symbionts: love and
other relationships. Environmental Microbiology, 14(2):335–346.

[247] Wei, Z.-G., Zhang, S.-W., and Zhang, Y.-Z. (2017). Dmclust, a density-based modularity method for
accurate otu picking of 16s rrna sequences. Molecular informatics, 36(12).

[248] Weirather, J. L., de Cesare, M., Wang, Y., Piazza, P., Sebastiano, V., Wang, X.-J., Buck, D., and
Au, K. F. (2017). Comprehensive comparison of pacific biosciences and oxford nanopore technologies and
their applications to transcriptome analysis. F1000Research, 6.

[249] Wood, D. E. and Salzberg, S. L. (2014). Kraken: ultrafast metagenomic sequence classification using
exact alignments. Genome biology, 15(3):R46.

[250] Wu, T. D., Reeder, J., Lawrence, M., Becker, G., and Brauer, M. J. (2016). Gmap and gsnap for
genomic sequence alignment: enhancements to speed, accuracy, and functionality. Statistical Genomics:
Methods and Protocols, pages 283–334.

[251] Wu, T. D. and Watanabe, C. K. (2005). Gmap: a genomic mapping and alignment program for mrna
and est sequences. Bioinformatics, 21(9):1859–1875.

[252] Xiao, C.-L., Chen, Y., Xie, S.-Q., Chen, K.-N., Wang, Y., Han, Y., Luo, F., and Xie, Z. (2017).
Mecat: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. nature
methods, 14(11):1072.

[253] Xie, Y., Wu, G., Tang, J., Luo, R., Patterson, J., Liu, S., Huang, W., He, G., Gu, S., Li, S., et al.
(2014). Soapdenovo-trans: de novo transcriptome assembly with short rna-seq reads. Bioinformatics,
30(12):1660–1666.

181

[254] Yang, C., Chu, J., Warren, R. L., and Birol, I. (2017). Nanosim: nanopore sequence read simulator
based on statistical characterization. GigaScience, 6(4):1–6.

[255] Yang, J. and Leskovec, J. (2015). Defining and evaluating network communities based on ground-truth.
Knowledge and Information Systems, 42(1):181–213.

[256] Yang, X., Chockalingam, S. P., and Aluru, S. (2012). A survey of error-correction methods for next-
generation sequencing. Briefings in bioinformatics, 14(1):56–66.

[257] Yang, Y. and Smith, S. A. (2013). Optimizing de novo assembly of short-read rna-seq data for
phylogenomics. BMC genomics, 14(1):328.

[258] Ye, C. and Ma, Z. S. (2016). Sparc: a sparsity-based consensus algorithm for long erroneous sequencing
reads. PeerJ, 4:e2016.

[259] Zhao, M., Lee, W.-P., Garrison, E. P., and Marth, G. T. (2013). Ssw library: an simd smith-waterman
c/c++ library for use in genomic applications. PloS one, 8(12):e82138.

[260] Zorita, E., Cuscó, P., and Filion, G. J. (2015a). Starcode: sequence clustering based on all-pairs search.
Bioinformatics, 31(12):1913–1919.

[261] Zorita, E., Cusco, P., and Filion, G. J. (2015b). Starcode: sequence clustering based on all-pairs
search. Bioinformatics, 31(12):1913–1919.

[262] Zuker, M. and Sankoff, D. (1984). Rna secondary structures and their prediction. Bulletin of mathe-
matical biology, 46(4):591–621.

182

	Remerciements
	Preamble
	Introduction
	What is RNA from molecular biology point of view
	Introduction to nucleic acids
	Dynamics of RNA

	Access RNA sequences
	Short reads and former technologies
	Focus on long reads

	RNA from a computational point of view
	Algorithmic complexity
	Nucleic molecules as text
	Sequences comparison: text algorithms
	Graph theory notions
	Common indexing schemes
	Main procedures to investigate reads

	How this work contributes to the study of transcriptomes
	Some current questions on mRNA
	Main contributions

	Compare pairwise sequences in (meta)-transcriptomics data
	Compare pairwise sequences in (meta)-transcriptomics data
	Problem statement and previous works
	Overview of heuristics applied to pairwise sequence comparison
	Current methodological challenges

	Short read connector: two scalable methods to study similarity between sequences sets
	Presentation of the data structure
	Short Reads Connector methods

	Detection of similarity of sequences in large scale studies
	Application case: marine holobionts
	Experimental design
	Validation of SRC using know models
	Added value of SRC on novel holobiont
	Discussion on holobionts results

	Using SRC-linker on long, spurious sequences
	SRC-linker: proof of concept for long reads
	New features for adapting SRC to long reads

	Discussion

	Cluster sequences in transcriptomics datasets
	The issue of biological sequences clustering
	Clustering and community detection
	Method for biological sequences clustering
	Clustering RNA long reads

	Novel algorithm for gene expression clustering in long reads
	Implementation details

	CARNAC-LR and long read clustering pipeline
	Pipeline overview
	Implementation choices
	Performances
	Expected clusters on particular cases

	Results of CARNAC-LR on several datasets
	Behavior on classic community problems
	Comparison to state of the art
	Comparison to tools for sequence clustering
	Validation on a real size dataset
	Complementary of de novo and reference-based approaches

	Discussion

	Correction of long, spurious reads
	Background
	Short read correction
	The challenge of variety of error rates and profiles in long reads
	Long read correction methods

	Evaluation of long reads correction methods
	State of the art of correction evaluation
	New methodological approach to evaluate correction
	ELECTOR: evaluation of long reads correction tools
	How correctors perform on RNA

	Discussion

	Towards access to corrected isoforms using long reads
	Describe full-length isoforms in RNA data
	Background
	Objectives of our method
	Multiple sequence alignment strategy
	How exons are detected in POA results
	Consensus calling

	Results on simulated data
	Validation protocol and simulations
	Method validation

	Discussion
	Details on future implementation of heaviest bundling for consensus calling

	Other contributions on NGS data
	Context
	Dealing with complex regions in graphs
	Bioinformatics for de novo variant discovery
	Expressed SNPs
	Alternative splicing studies
	Conclusion and Perspectives
	Conclusion
	Contributions
	Dissemination of this work
	Perspectives
	Short Reads Connector at its best
	Enhance CARNAC-LR
	Read correction
	Towards a comprehensive pipeline for de novo study of transcriptomes with long reads
	Final note

	Appendix

	Appendix to Chapter 2: details on methods
	Algorithm
	Example of problematic nodes
	Appendix to Chapter 4: supplementary results
	Appendix to conclusion: long reads correction
	Compute a consensus per region
	Read correction using the consensus
	Remarks

