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Résumé:

Dans cette thèse, nous étudions les équations d’ondes non-linéaires discrètes dans des
réseaux finis arbitraires. C’est un modèle général, où le Laplacien continue est rem-
placé par le Laplacien de graphe. Nous considérons une telle équation d’onde avec une
non-linéarité cubique sur les nœuds qui est le modèle Φ4 discret, décrivant un réseau
mécanique d’oscillateurs non-linéaires couplés ou un réseau électrique où les composants
sont des diodes ou des jonctions Josephson. L’équation d’onde linéaire est bien comprise
en termes de modes normaux, ce sont des solutions périodiques associées aux vecteurs
propres du Laplacien de graphe. Notre premier objectif était d’étudier la continuation
des modes normaux dans le régime non-linéaire et le couplage des modes en présence
de la non-linéarité. Nous montrons que, en inspectant les modes normaux du Laplacien
de graphe, nous identifions ceux qui peuvent être étendus à des orbites périodiques non-
linéaires, pour l’équation Φ4 discrète. Les modes normaux -dont les vecteurs propres du
Laplacien sont composés uniquement de {1}, {+1,−1} or {+1,−1, 0}- donnent lieu à des
orbites périodiques non-linéaires. Nous effectuons systématiquement une analyse de sta-
bilité linéaire (Floquet) de ces orbites et montrons le couplage des modes lorsque l’orbite
est instable. Ensuite, nous caractérisons les graphes ayant des vecteurs propres du Lapla-
cien dans {+1,−1} et {+1,−1, 0}, en utilisant la théorie spectrale des graphes. Dans
la deuxième partie, nous étudions des solutions périodiques localisées exponentiellement
(spatialement), résultant de l’interaction entre la non-linéarité et la discrétisation. En
supposant une condition initiale de grande amplitude localisée sur un nœud du graphe,
nous approchons son évolution par l’équation de Duffing. Le reste du réseau satisfait un
système linéaire forcé par le nœud excité. Cette approximation est validée en réduisant
l’équation Φ4 discrète à l’équation de Schrödinger non-linéaire discrète et par l’analyse
de Fourier. Les résultats de cette thèse relient la dynamique non-linéaire à la théorie
spectrale des graphes.





This thesis is part of the XTerM project, co-financed by the European Union with
the European Regional Development Fund and by the Normandie Regional Council.

Abstract:

In this thesis, we study the discrete nonlinear wave equations in arbitrary finite networks.
This is a general model, where the usual continuum Laplacian is replaced by the graph
Laplacian. We consider such a wave equation with a cubic on-site nonlinearity which is
the discrete Φ4 model, describing a mechanical network of coupled nonlinear oscillators
or an electrical network where the components are diodes or Josephson junctions. The
linear graph wave equation is well understood in terms of normal modes, these are peri-
odic solutions associated to the eigenvectors of the graph Laplacian. Our first goal was
to investigate the continuation of normal modes in the nonlinear regime and the modes
coupling in the presence of nonlinearity. We show that, inspecting the normal modes
of the graph Laplacian, we identify which ones can be extended into nonlinear periodic
orbits, for the discrete Φ4 equation. Normal modes -whose Laplacian eigenvectors are
composed uniquely of {1}, {+1,−1} or {+1,−1, 0}- give rise to nonlinear periodic orbits.
We perform a systematic linear stability (Floquet) analysis of these orbits and show the
modes coupling when the orbit is unstable. Then, we characterize graphs having Lapla-
cian eigenvectors in {+1,−1} and {+1,−1, 0}, using graph spectral theory. In the second
part, we investigate periodic solutions that are exponentially (spatially) localized, arising
from the interplay between nonlinearity and discreteness. Assuming a large amplitude
localized initial condition on one node of the graph, we approximate its evolution by
the Duffing equation. The rest of the network satisfies a linear system forced by the
excited node. This approximation is validated by reducing the discrete Φ4 equation to
the discrete nonlinear Schrödinger equation and by Fourier analysis. The results of this
thesis relate nonlinear dynamics to graph spectral theory.
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Introduction

This thesis is devoted to the study of complex systems, in particular nonlinear dynami-
cal systems on networks. These are systems of nonlinear ordinary differential equations
(ODEs) represented on graphs where the nodes are the components and the edges their
interactions. Discreteness and nonlinearity are inherent to many systems in nature e.g.
Josephson junction arrays, optical waveguides, diodes coupled by inductances and molec-
ular crystals, to name some. Historically when studying discrete models, comparisons
are regularly made with related continuum models. These comparisons go both ways;
one can think of network nonlinear equations as discretizations of nonlinear partial dif-
ferential equations (PDEs). Similarly, a nonlinear PDE may be seen as an approximation
of a network model when one considers slow variations along the discrete variables.

In the linear theory, Newton’s second law for coupled harmonic oscillators leads to
the graph wave equation where the standard continuous Laplacian is replaced by the
graph Laplacian. This formulation is very useful because the graph Laplacian is a sym-
metric matrix, so that its eigenvalues are real and we can choose a basis of orthogonal
eigenvectors. It is then natural to describe the dynamics of the network by projecting it
on a basis of the eigenvectors, which reduces the dynamical equations to an eigenvalue
problem. This parallels Fourier transform in continuum systems, and gives rise to orbits
(phase curves) which are time-periodic, also called normal modes. These are bound states
of the Hamiltonian which is a quadratic, symmetric function of positions and velocities.
Because of the orthogonality, normal modes do not couple and the harmonic theory is
well understood and can be analyzed in terms of normal modes, by using their linear
combinations.

However, when nonlinearity is present in the equations of motion, normal modes will
couple. Natural questions are: how do they couple? Is there any trace of them in the
nonlinear regime? We investigate which normal modes of the linear theory can or cannot
be extended to the full nonlinear theory. This study leads us to consider the theory of
graph spectra. The possibility of continuing normal modes into nonlinear periodic orbits
(nonlinear normal modes) depends on whether the nonlinearity is on-site (on nodes)
as in the discrete Φ4 model or intersite (on edges) as in the Fermi-Pasta-Ulam model.
This study leads us to ask: what kind of graph admits Laplacian eigenvectors yielding
nonlinear normal modes ?
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Coupled nonlinear oscillators can give rise to another type of periodic vibrations that
are typically exponentially (spatially) localized solutions. These are labeled "intrinsic
localized modes" and come from the interplay between nonlinearity and discreteness. It
is important to ask: how can we approximate this type of nonlinear periodic solutions?

In the literature, nonlinear normal modes and localized modes in discrete models are
studied in the particular case of lattices. The contribution of this thesis consist of the
study of nonlinear normal modes and localized modes in general networks of arbitrary
topology, by the formulation of the discrete models using the graph Laplacian, this leads
to relate the nonlinear dynamics to the graph spectral theory.

The thesis is organized as follows:

In the introductory chapter 1, we recall how conservation laws lead to the graph wave
equation. This is illustrated in two different physical contexts: a network of inductances
and capacities and its equivalent mechanical analogue represented by masses and springs.

In Chapter 2, we consider the nonlinear graph wave equation with a cubic on-site
nonlinearity (the discrete Φ4 model) and show that inspecting the normal modes of the
graph Laplacian, we can identify which ones extend into nonlinear periodic orbits. Three
different types of periodic orbits were found, the monovalent (the so-called Goldstone)
mode that exists in all graphs, and what we call bivalent and trivalent modes, depending
on whether the corresponding eigenvectors are composed of 1 or −1,+1 or −1, 0,+1
(respectively). Then, we perform a systematic linear stability (Floquet) analysis of these
orbits and show how a small nonlinearity will couple the normal modes when the orbit
is unstable. Later, we consider the nonlinear graph wave equation with a cubic intersite
nonlinearity (the FPU model) and show that in addition to the monovalent, bivalent
and trivalent modes, there are other classes of nonlinear periodic orbits stemming from
normal modes.

In Chapter 3, we characterize graphs having Laplacian eigenvectors in {−1, 1} or
{−1, 0, 1}, that we call bivalent and trivalent graphs respectively. This characterization
is done using transformations of graphs based on Laplacian eigenvectors.

In Chapter 4, we present our first exploration, of applying the averaging method
for the discrete Φ4 equation. We average over the fastest oscillation corresponding to a
possible resonance. This averaging is difficult because of the presence of the Goldstone
mode which needs to be treated separately.

In Chapter 5, we consider exponentially localized periodic solutions for the discrete
Φ4 model. To obtain them we introduce a large amplitude localized initial condition on
one node of the network. Then, we can approximate these nonlinear localized solutions.
We validate the approximation by Fourier analysis and using modulation theory which
reduces the nonlinear graph wave equation to the discrete nonlinear Schrödinger equation.
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Chapter 1

Wave equations on networks

In this introductory chapter, we consider the graph wave equation where the Laplacian
is replaced by the graph Laplacian. This is a natural model for describing miscible flows
on a network since it arises from conservation laws. The graph wave equation is well
understood in terms of normal modes, which are periodic solutions associated to the
eigenvectors of the graph Laplacian. To study the extension of the normal modes into
nonlinear periodic orbits, we consider a cubic nonlinear graph wave equations. These are
the discrete Φ4 model which has on-site nonlinearity and the Fermi-Pasta-Ulam model
which has intersite nonlinearity.

1.1 The graph wave equation

Let G(V, E) be a graph with vertex set V of cardinality N and edge set E of cardinality
M . The branches are oriented with an arbitrary but fixed orientation. We consider finite
and undirected graphs with no loops or multiple edges. Notice that we use bold-face
capitals for matrices and bold-face lower-case letters for vectors.

The basic tool for expressing a flux is the N ×M incidence matrix Q (with respect
to the given orientation) defined as

Qje =


−1 if edge e starts from node j,
1 if edge e finishes at node j,
0 otherwise.

(1.1)

In this section, we present the conservation laws and derive the graph wave equation
using as an example the star graph S3 shown in Figure 1.1 (the star graph SN−1 is a tree
on N nodes having one vertex of degree N − 1, and N − 1 pendant (degree 1) vertices).
This can be easily generalized to any graph.
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Figure 1.1 – The star graph S3.

For the example shown in Figure 1.1, we have

Q =


−1 0 0
1 −1 −1
0 1 0
0 0 1

 . (1.2)

The transpose QT = ∇ is a discrete differential operator called gradient of graph. To
see this consider a real-valued vector indexed by the graph’s vertices f = (f1, f2, . . . , fN ).
The vector ∇f has as e component the difference of the values of f at the end points of
the branch e (with orientation). In the example above, we have

∇f =

−1 1 0 0
0 −1 1 0
0 −1 0 1



f1

f2

f3

f4

 =

f2 − f1

f3 − f2

f4 − f2

 , (1.3)

which is the discrete gradient of f associated with the graph. In many applications as we
show below, the branches eij carry a weight mij . Then in expression (1.3) of the discrete
gradient the +1 (resp. −1 ) should be replaced by mij (resp. −mij), so that we obtain
a weighted discrete gradient. The discrete gradient and the incidence matrix appear in
the theory of electrical currents and flows, it can be found in the famous Kirchhoff laws.
As a reference we give the classical Kirchhoff’s paper [1].

We will first write conservation laws using the ∇ operator and its transpose. From
there we establish the relevant wave equation. These derivations are shown for the
example of Figure 1.1 and can be generalized to any graph.

For the specific inductance-capacity electrical network shown in the left panel of
Figure 1.2, the equations of motion in terms of the (node) voltages and (branch) currents
are the conservation of current and voltage

C
dv

dt
+ ∇T ι = s,

L
dι

dt
−∇v = 0,

(1.4)
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Figure 1.2 – Two different physical networks corresponding to the graph shown in Figure
1.1. The left panel shows a network of inductances and capacitances and the right panel
shows the mechanical analogue in terms of masses and springs.

where v = (v1, v2, v3, v4) is the voltage field, ι = (ι1, ι2, ι3) is the current field, C =
diag (C1, C2, C3, C4) and L = diag (L1, L2, L3) are respectively the diagonal matrix of
capacitances and the diagonal matrix of inductances and where s represents the currents
applied to each node (similar to boundary conditions in the continuum case). Note that
equations (1.4) also describe in the linear limit, fluid flow in a pipe network [2], where v
corresponds to the pressure and ι to the flux. From the two equations (1.4) one obtains
the generalized wave equation. For this, take the derivative of the first equation and
substitute the second to obtain the node wave equation

Cv̈ + ∇TL−1∇ v = ṡ, (1.5)

where v̈ = d2v
dt2

, ṡ = ds
dt (Newton’s notation), and where

∇TL−1∇ =


L−1

1 −L−1
1 0 0

−L−1
1 L−1

1 + L−1
2 + L−1

3 −L−1
2 −L−1

3

0 −L−1
2 L−1

2 0

0 −L−1
3 0 L−1

3

 . (1.6)

There is a corresponding branch wave equation for the currents that involves the link
Laplacian in the terminology of [3]. Taking the time derivative of the second equation
and substituting into the first we get

Lϊ+ ∇C−1∇T ι = ∇C−1s. (1.7)

In the rest we will only consider the node graph wave equation of type (1.5).
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A similar graph wave equation arises when describing the other physical system shown
in the right panel of Figure 1.2, the collection of four massesmi, i ∈ {1, . . . , 4}, connected
by springs of stiffness ki, i ∈ {1, 2, 3}. Here the variables are the displacements ui, i ∈
{1, . . . , 4}, of each mass. The equations of motion are

m1ü1 = k1(u2 − u1),

m2ü2 = k1(u1 − u2) + k2(u3 − u2) + k3(u4 − u2),

m3ü3 = k2(u2 − u3),

m4ü4 = k3(u2 − u4), (1.8)

which can be written
ü = −M−1Ku, (1.9)

where u = (u1, u2, u3, u4)T , M = diag (m1,m2,m3,m4) is the diagonal matrix of masses
and where

K =


k1 −k1 0 0
−k1 (k1 + k2 + k3) −k2 −k3

0 −k2 k2 0
0 −k3 0 k3

 . (1.10)

Notice the correspondence capacitances/masses and inverse inductances/stiffnesses. The
matrix (1.10) is symmetric just like the matrix (1.6). In the following, we assume that
the masses are equal, this preserves the symmetry of the right hand side operator in
(1.9). For simplicity we choose k1 = k2 = k3 = k4 = k. Then we normalize times by

the natural frequency w =
√

k
m , t′ = wt. Omitting the primes, the equations can be

written in matrix form as
ü1

ü2

ü3

ü4

 = −


1 −1 0 0
−1 3 −1 −1
0 −1 1 0
0 −1 0 1



u1

u2

u3

u4

 , (1.11)

which we will write formally as
ü = −∆u, (1.12)

where u = (u1, u2, . . . , uN )T is the field amplitude and ∆ is the graph Laplacian [4], the
equivalent of (1.6) and (1.10) for the star graph S3. The N × N Laplacian matrix of a
graph G is defined by

∆ = ∇T∇ = D−A, (1.13)

where A is the adjacency matrix such that Aij = 1 if nodes i and j are connected (i 6= j)
and Aij = 0 otherwise, and D is the diagonal matrix where the entry di =

∑N
j=1Aij

is the degree of vertex i. Note that the graph Laplacian and the graph wave equation
are independent of the orientation of the graph. In the theory of electrical networks, ∆
is referred to as a Kirchhoff matrix [1] or matrix of admittance [2] (i.e. conductivity,
the reciprocal of impedance). Equation (1.11) is a finite difference discretization of the
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continuous wave equation. This justifies the name of "Laplacian matrix" for ∆ since it
is a discrete analogue of the Laplace differential operator. For an extensive survey on the
Laplacian matrix see Merris [5].

Since the graph Laplacian ∆ is a real symmetric positive-semi definite matrix, it has
real non negative eigenvalues and we can always build a basis of orthogonal eigenvectors
vj such that

∆vj = ω2
jv

j , (1.14)

where j ∈ {1, . . . , N}. The vectors vj can be chosen to be orthonormal with respect to
the scalar product in RN , i.e.

〈
vi,vj

〉
= δi,j where δi,j is the Kronecker delta (δi,j = 1 if

i = j, else δi,j = 0), so the matrix P formed by the columns vj is orthogonal. Notice that
∆ is a singular matrix (all the row sums are zero). Therefore ∆ has a zero eigenvalue
ω2

1 = 0 which corresponds to the eigenvector of all ones, that we call the monovalent
eigenvector v1 = 1√

N
(1, 1, . . . , 1)T . The multiplicity of 0 as an eigenvalue of ∆ is equal

to the number of connected components of G. The relation (1.14) can be written

∆P = PW, (1.15)

where W is a diagonal matrix with entries ω2
1 = 0 ≤ ω2

2 ≤ · · · ≤ ω2
N . It is well

known that the second smallest Laplacian eigenvalue is positive ω2
2 > 0 if and only if G is

connected. Fiedler termed this eigenvalue the algebraic connectivity [6]. The eigenvectors
of ∆ corresponding to the algebraic connectivity are known as the Fiedler vectors of G.
Throughout all graphs are assumed to be connected.

It is natural, following [7], to write the equation of motion (1.12) in terms of the am-
plitudes of the normalized eigenvectors vj . We introduce the vector a = (a1, a2, .., aN )T

such that

u = Pa =

N∑
j=1

ajv
j . (1.16)

Substituting (1.16) into (1.12) and projecting on each eigenvector vj , we obtain the
amplitude equations in terms of normal modes

äj + ω2
jaj = 0, j ∈ {1, . . . , N}. (1.17)

The normal modes are bound states of the Hamiltonian

H0 =
1

2

N∑
j=1

[
(ȧj)

2 + ω2
ja

2
j

]
. (1.18)

Because of the orthogonality, normal modes do not couple and the system can be de-
scribed solely in terms of the amplitude of each mode and its time second derivative.
The solution of the linear evolution problem (1.12) is given in terms of the linearly inde-
pendent normal modes

u(t) = a1(t)v1 +

N∑
j=2

[
aj(0) cos (ωjt) +

ȧj(0)

ωj
sin (ωjt)

]
vj . (1.19)
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The zero linear frequency mode associated to the monovalent eigenvector v1 is called
Goldstone mode ([8] p.986). The solution a1(t) = ȧ1(0)t + a1(0) is different from the
others since it is not an oscillation and can be fixed to a constant by setting ȧ1(0) = 0.

When non linearity is present in the equations of motion, normal modes will couple.
It is then natural to examine what happens to these normal modes in the presence of a
nonlinearity, when the equation becomes

ü = −∆u + f (u), (1.20)

where f(u) = (f(u1), f(u2), . . . , f(uN ))T is the field of nonlinear components. We expand
u using the eigenvectors vj of ∆. In terms of the coordinates aj , substituting (1.16)
into (1.20) and projecting on each mode vj , we get the system of N -coupled ordinary
differential equations

äj = −ω2
jaj +

〈
f(u),vj

〉
, j ∈ {1, ..., N}, (1.21)

where we have used the orthonormality of the eigenvectors of ∆. Note how the decom-
position (1.21) is adapted to examine the couplings between modes. Below we show that
some systems exhibit nonlinear periodic solutions that are continued from normal modes,
these are nonlinear normal modes in the strict sense [9]. The situation differs whether
the degrees of freedom are nonlinear and coupled linearly as in the discrete Φ4 equation
or whether they are linear oscillators coupled nonlinearly as in the Fermi-Pasta-Ulam
model.

1.2 On-site nonlinearity : the discrete Φ4 model

We consider the nonlinear graph wave equation with a cubic on-site nonlinearity
f(u) = −u3 = −(u3

1, u
3
2, . . . , u

3
N )T in (1.20)

ü = −
(
ε∆ + ω2I

)
u− u3, (1.22)

where I is the N ×N identity matrix. The parameters are the natural frequency ω and
the linear coupling coefficient ε. With this cubic on-site nonlinearity, the equation (1.22)
is well-posed, see [10] for a review of the well-posedness of the continuum model. The
power of the nonlinearity is important to get a well-posed problem. This can be seen by
omitting the Laplacian and looking at the differential equation ü = −um whose solutions
are bounded for m odd.

This model is an extension to a graph of the Φ4 well-known model in condensed matter
physics ([8] p.299). In the literature [8], the discrete Φ4 model was studied only in the
particular case of lattices where the graph Laplacian (∆u)i = ui+1−2ui+ui−1 (for a one-
dimensional lattice) is a finite difference discretization of the continuous Laplacian. We
formulate the discrete Φ4 model using the graph Laplacian to describe general networks
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of arbitrary topology. The model can describe networks of nonlinear oscillators, such as
Josephson junctions or diodes ([11] p.71-72, 187-189). In mechanical engineering, several
aerospace structures e.g. turbine rotors or space antennas, are composed of weakly
coupled sectors assembled in a cyclic and symmetric configuration. Such a complex
system can be reduced to the Φ4 model in one-dimensional lattice [12].

1.2.1 Amplitude equations

We expand u in terms of the amplitudes a = (a1, a2, .., aN )T of the normalized eigenvec-
tors vj of ∆ as u =

∑N
j=1 ajv

j . The amplitude equations are

äj = −
(
εω2

j + ω2
)
aj −

N∑
m=1

u3
mv

j
m, j ∈ {1, ..., N}.

The term u3
m can be written as u3

m =
∑N

k,l,n=1 akalan v
k
mv

l
mv

n
m. We get then a set of N

second order inhomogeneous coupled differential equations

äj +
(
εω2

j + ω2
)
aj = −

N∑
k,l,n=1

Γjkln akalan, (1.23)

where

Γjkln =
N∑
m=1

vjm vkm vlm vnm. (1.24)

Notice that the graph geometry comes through the coefficients Γjkln. For a general
graph, the spectrum needs to be computed numerically and these coefficients as well. For
some special cases however, like cycles and chains, the eigenvalues and the eigenvectors of
the Laplacian have an explicit formula (see Appendix A) so that Γjkln can be computed
explicitly. Then, we obtain the amplitude equations coupling the normal modes.

1.2.2 Hamiltonian description

The Hamiltonian of model (1.22) is

H (u, u̇) =
1

2
〈u̇, u̇〉+

1

2

〈
u,
(
ε∆u + ω2u

)〉
+

1

4

N∑
m=1

u4
m. (1.25)

The Hamiltonian in terms of normal modes u =
∑N

j=1 ajv
j

H (a, ȧ) =
1

2

N∑
j=1

[
(ȧj)

2 +
(
εω2

j + ω2
)
a2
j

]
+

1

4

N∑
m=1

 N∑
j=1

ajv
j
m

4

.
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Thus,

H (a, ȧ) =
1

2

N∑
j=1

[
(ȧj)

2 +
(
εω2

j + ω2
)
aj

2
]

+
1

4

N∑
j,k,l,n=1

Γjkln ajakalan. (1.26)

If we define the conjugate qj = aj , pj = q̇j , the expression H

H (q,p) =
1

2

N∑
j=1

[
p2
j +

(
εω2

j + ω2
)
qj

2
]

+
1

4

N∑
j,k,l,n=1

Γjkln qj qk ql qn. (1.27)

The equations of motion are

q̇j =
∂H
∂pj

, ṗj = −∂H
∂qj

,

the second equation is equivalent to (1.23).

1.3 Intersite nonlinearity : the Fermi-Pasta-Ulam model

We consider the nonlinear graph wave equation with a cubic intersite nonlinearity, known
as the Fermi-Pasta-Ulam equation [13]

üi = −
N∑
j=1

∆ij uj −
∑
k∼i

(ui − uk)3, i ∈ {1, . . . , N}, (1.28)

where the notation k ∼ i indicates adjacency of vertices and the sum in the second term
on the right hand side is taken over the neighbors k of i. This system was derived from
nonlinear elastic network model describing protein vibrations [14]. The model (1.28) is
an extension to a general graph of the Fermi-Pasta-Ulam lattice model [13].

1.3.1 Amplitude equations

We expand u in terms of the amplitudes of the Laplacian eigenvectors as u =
∑N

j=1 ajv
j .

The amplitude equations are

äj = −ω2
jaj −

N∑
l,m,n=1

Λjlmn alaman, j ∈ {1, ..., N}, (1.29)

where

Λjlmn =

N∑
i=1

∑
k∼i

(
vji − v

j
k

)(
vli − vlk

)
(vmi − vmk ) (vni − vnk ) . (1.30)
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1.3.2 Hamiltonian description

The Hamiltonian of model (1.28) is

H (u, u̇) =
1

2
〈u̇, u̇〉+

1

2
〈u,∆u〉+

1

4

N∑
i=1

∑
k∼i

(ui − uk)4. (1.31)

The Hamiltonian in terms of normal modes u =
∑N

j=1 ajv
j

H (a, ȧ) =
1

2

N∑
j=1

[
(ȧj)

2 + ω2
ja

2
j

]
+

1

4

N∑
j,l,m,n=1

Λjlmn ajalaman. (1.32)

Then, Hamilton’s equation for the zero frequency mode follows that

ä1 =
−∂H
∂a1

=
−1

4

∂

∂a1

 N∑
j,l,m,n=1

Λjlmn ajalaman

 ≡ 0, (1.33)

using that the components of v1 are all equal, we have Λ1lmn = · · · = Λjlm1 = 0, when
at least one index is unity. We have that ȧ1 is a constant. The zero mode corresponds
to a translation of degree of freedom and can be eliminated by setting ȧ1 = 0. The
Hamiltonian (1.32) is then reduced to (see [15])

H (a, ȧ) =
1

2

N∑
j=2

[
(ȧj)

2 + ω2
ja

2
j

]
+

1

4

N∑
j,l,m,n=2

Λjlmn ajalaman. (1.34)

1.4 Continuation of normal modes

Nonlinear periodic orbits continued from normal modes have been studied for vibrating
mechanical systems, see the extensive review by [16]. Classical approaches for proving the
existence of periodic orbits in Hamiltonian systems rely on the Lyapunov center theorem
[17] (see also [18] p.219) and Weinstein–Moser theorem [19, 20]. The elimination of zero
frequency (Goldstone) mode in the FPU model, implies that the quadratic part of the
Hamiltonian (1.34) is positive definite, and the existence of nonlinear normal modes that
are continued from linear ones is guaranteed by the Weinstein-Moser theorem. However,
Goldstone mode exist in the discrete Φ4 model as we will show in Chapter 2, then the
Weinstein-Moser theorem cannot be invoked since the quadratic part in the Hamiltonian
(1.27) is positive semidefinite.

We show in Chapter 2 that for the discrete Φ4 model (on-site nonlinearity), only
normal modes associated to eigenvectors composed of {1,−1, 0} extend to nonlinear
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periodic orbits. In addition to these eigenvectors, there are other eigenvectors giving rise
to nonlinear normal modes for the Fermi-Pasta-Ulam model (intersite nonlinearity).

The results show the importance of nodes where the component of the eigenvector is
zero. The authors in [7] show that at such nodes, any forcing or damping of the system
is null for the corresponding eigenmode. We have the following definition

Definition 1 (Soft node [7]). A node s of a graph is a soft node for an eigenvalue ω2
j of

the graph Laplacian if there exists an eigenvector vj for this eigenvalue such that vjs = 0.

1.5 Intrinsic localized modes

Another type of nonlinear periodic orbits can exist, intrinsic localized modes, also called
discrete breathers which are time periodic and (typically exponentially) spatially localized
solutions that appear in nonlinear discrete systems arising in many physical, biological
systems and networks. They were analytically studied first by Sievers and Takeno [21],
Page [22]. Later, MacKay and Aubry [23] proved the existence of discrete breathers
by considering a lattice model of coupled anharmonic oscillators in the limit of very
weak interaction (anticontinuous limit). The existence of localized solutions in nonlinear
networks is due to the interplay between nonlinearity and discreteness. In fact, non-
resonance of the breather frequency with the linear spectrum is a necessary condition for
obtaining a time-periodic localized state [24]. In order to avoid this resonance, we need
the linear spectrum to be bounded from above. This explains why spatial discretisation is
needed. In contrast, most spatially continuous field equations have an unbounded linear
spectrum. That makes resonances unavoidable.

Localized modes have been investigated theoretically and numerically for a variety
of physical systems [25]. Experimentally observed reports for various systems include
Josephson-junction arrays [26], optical waveguides [27, 28], photonic crystals [29], DNA
double strand [30], micromechanical oscillators [31] and electronic circuits [32].

Localized modes have been thoroughly studied in the Fermi-Pasta-Ulam lattice [33]
and in the discrete nonlinear Schrödinger equation [34]. In Chapter 5, we study localized
solutions for the discrete Φ4 model and validate the approach by reducing the model to
the discrete nonlinear Schrödinger equation.

In the literature, nonlinear normal modes and localized modes are studied in the
particular case of lattices. The contribution of this thesis consist of the study of nonlinear
normal modes and localized modes in general networks of arbitrary topology, invoking
graph spectral theory.
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Chapter 2

Periodic orbits in nonlinear wave
equations on networks

Abstract. We consider the nonlinear graph wave equation with on-site cubic non-
linearity (the discrete φ4 equation). We show that inspecting the normal modes of the
graph Laplacian, we can immediately identify which ones can be extended into nonlinear
periodic orbits (generalizing work of Aoki, 2016). We first define monovalent, bivalent
and trivalent nonlinear periodic orbits depending on whether the components of the cor-
responding eigenvectors of the graph Laplacian are in {+1}, {−1,+1} or {−1, 0,+1}.
Then, we perform a systematic linear stability (Floquet) analysis of these orbits. In
particular, the linearized equations are decoupled for normal modes associated to eigen-
vectors without 0 (soft nodes), these modes are the monovalent (Goldstone) and the
bivalent orbits. We find that for chains the Goldstone mode is stable for a wide range
of parameters while the bivalent mode is unstable. Nevertheless, the linearized equa-
tions are coupled for modes with soft nodes. Numerical results for some graphs show
that trivalent periodic orbits that continue nondegenerate linear modes are unstable be-
low an amplitude threshold; orbits continued from modes with frequency degeneracy are
unstable.

The chapter is organized as follows: In section 2.1, we generalize the criterion of Aoki
that shows which linear normal modes extend to nonlinear periodic orbits, for the (on-site)
nonlinear graph wave equation (discrete φ4 model). Section 2.2 classifies these nonlinear
normal modes for chains and cycles and gives other examples. Section 2.3 presents the
variational equations obtained by perturbing the nonlinear normal modes. These are
solved numerically for chains in section 2.4 for the Goldstone and the bivalent modes.
Full numerical results are presented in section 2.5 for trivalent modes. Preliminary results
on nonlinear quasi-periodic orbits are shown in section 2.6. In section 2.7, we clarify the
extension of linear normal modes for the Fermi-Pasta-Ulam model.
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2.1 Existence of periodic orbits

We consider a simplified version of the nonlinear graph wave equation (1.22) with a
natural frequency ω = 0 and a coupling coefficient ε = 1

ü = −∆u− u3. (2.1)

Expanding u in the basis of Laplacian eigenvectors, u =
∑N

k=1 akv
k, we obtain the

amplitudes equations (1.23) in terms of normal modes

äj + ω2
jaj = −

N∑
k,l,p=1

Γjklp akalap, j ∈ {1, . . . , N}. (2.2)

In [35], Aoki studied nonlinear periodic orbits for chain or cycle graphs, i.e. one
dimensional lattices with free or periodic boundary conditions. He identified a criterion
allowing to extend some linear normal modes into nonlinear periodic orbits for the discrete
φ4 model. In [36], we generalized Aoki’s criterion to any graph.

Let us find the conditions for the existence of a nonlinear periodic solution of (2.1)
of the form

u(t) = aj(t)v
j , (2.3)

the equations of motion (2.1) reduce to

äjv
j
m = −ω2

jajv
j
m − a3

j

(
vjm
)3
. (2.4)

These equations are satisfied for the nodes m such that vjm = 0 (the soft nodes).

For vjm 6= 0, we can simplify (2.4) by vjm and obtain

äj = −ω2
jaj − a3

j

(
vjm
)2
.

These equations should be independent of m and this imposes(
vjm
)2

= C, (2.5)

where C is a constant. Remembering that
∥∥vj∥∥ = 1, we get

C =
1

N − S ,

where S is the number of soft nodes, S = card
{
m, vjm = 0

}
.

To summarize, for a general network, we identified nonlinear periodic orbits uj(t)
associated to a linear eigenvector vj of the Laplacian; they are:

uj(t) = aj(t)v
j ,

1√
C
vjm ∈ {0, 1,−1}, ∀m ∈ {1, . . . , N} , C =

1

N − S ,

äj = −ω2
jaj − Ca3

j .

(2.6)
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We distinguish three kinds of nonlinear periodic orbits monovalent, bivalent and trivalent
depending on whether their components are +1 or −1,+1 or −1, 0,+1 up to a normal-
ization constants. The monovalent orbit is the Goldstone mode v1, and exists for any
graph. The bivalent orbits contain −1,+1 up to the normalization constant 1√

N
. Finally,

the trivalent orbits are composed of −1, 0,+1; they possess soft nodes and the normal-
ization constant is 1√

N−S where S is the number of soft nodes. We present in Chapter
3 a characterization of graphs having bivalent and trivalent Laplacian eigenvectors (see
also [37]).

An important remark is that the criterion can be generalized to any odd power of
the nonlinearity. We can use the condition (2.5) to systematically find periodic orbits
for the discrete φ4 model (1.22) and for a general nonlinear wave equation (1.20) with a
polynomial on-site nonlinearity with odd powers f(u) = −u3 − u5 . . . .

2.2 Examples of nonlinear periodic orbits

We identify the bivalent and trivalent eigenvectors in chains and cycles, since the graph
Laplacian ∆ is tridiagonal matrix for chains and circulant matrix for cycles, and their
spectrum is well-known (see Appendix A). We give other examples that are neither a
chain or a cycle.

First, consider the modes without soft nodes.

• The monovalent mode, also named zero linear frequency mode or Goldstone mode

v1
m =

1√
N
, ∀m ∈ {1, . . . , N} ,

exists for any graph.

• The bivalent mode
vjm = ± 1√

N
, ∀m ∈ {1, . . . , N} ,

exists for chains with N even and j = N
2 + 1,

v
N
2

+1
m =

1√
N


(−1)

m
2 , if m even,

(−1)
m−1

2 , if m odd,

corresponds to the frequency ωN
2

+1 =
√

2. For example, for a chain of N = 4

nodes, we have the following bivalent mode

1 −1 −1 1
1
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• For cycles with N even, the bivalent mode vN alternates, it is such that vNm =
−vNm+1. It corresponds to the frequency ωN = 2

vNm =
1√
N

(−1)m−1 , ∀m ∈ {1, . . . , N} .

For a cycle of N = 4 nodes, we have the following bivalent mode

−1 1

−11

1

Other graphs can exhibit bivalent nonlinear modes. These are for example:

• the network

6 3

2

1

4 5
1

The nonlinear periodic orbit originates from the linear mode,

ω2
4 = 2, v4 =

1√
6

(1,−1,−1,−1, 1, 1)T .

• the network

51

42

3

6

1

The nonlinear periodic orbit originates from the linear mode,

ω2
4 = 2, v4 =

1√
6

(−1,−1, 1, 1, 1,−1)T .
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Nonlinear modes containing soft nodes, or trivalent modes can be found in the following
graphs:

• For chains with N multiple of 3, the trivalent mode v
N
3

+1 corresponds to the
frequency ωN

3
+1 = 1

v
N
3

+1
m =

√
2

N
cos
(mπ

3
− π

6

)
, ∀m ∈ {1, . . . , N} .

Notice that v
N
3

+1
m = 0 for m = 3k + 2 and k ∈ {0, . . . , N3 − 1}.

• For cycles with N multiple of 3, the trivalent mode v
2N
3

+1 corresponds to the
double frequency ω 2N

3
= ω 2N

3
+1 =

√
3

v
2N
3

+1
m =

√
2

N
sin

(
2π

3
(m− 1)

)
, ∀m ∈ {1, . . . , N} .

Notice that v
2N
3

+1
m = 0 for m = 3k + 1 and k ∈ {0, . . . , N3 − 1}.

• For cycles where N is multiple of 4, we have a double frequency ωN
2

= ωN
2

+1 =
√

2

and two eigenvectors

v
N
2
m =

√
2

N


0, if m even,

(−1)
m−1

2 , if m odd.

v
N
2

+1
m =

√
2

N

 (−1)
m
2

+1 , if m even,

0, if m odd.

• For cycles with N multiple of 6, the trivalent mode v
N
3

+1 corresponds to the double
frequency ωN

3
= ωN

3
+1 = 1

v
N
3

+1
m =

√
2

N
sin
(π

3
(m− 1)

)
, ∀m ∈ {1, . . . , N} .

Notice that v
N
3

+1
m = 0 for m = 3k + 1 and k ∈ {0, . . . , N3 − 1}.

Other networks containing soft nodes have eigenvectors extending into nonlinear pe-
riodic orbits. These are for example:
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• the butterfly graph [38]

5

4

3

2

1

1

We have the following important parts of the spectrum

ω2
2 = 1, v2 =

1

2
(1, 1, 0,−1,−1)T ,

ω2
3 = 3, v3 =

1√
2

(−1, 1, 0, 0, 0)T ,

ω2
4 = 3, v4 =

1√
2

(0, 0, 0,−1, 1)T .

• the network

1 3

2

4

5

6

1

The nonlinear periodic orbit originates from the linear mode,

ω2
3 = 1, v3 =

1

2
(1, 0, 0, 1,−1,−1)T .

In [37], we have characterized the graphs having bivalent and trivalent eigenvectors.
This characterization is presented in Chapter 3.

2.3 Linearization around the periodic orbits

We now analyze the stability of the nonlinear periodic orbits that we found by perturba-
tion. This analysis reveals two main classes of orbits depending on whether they contain
soft nodes or not.
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To analyse the stability of (2.6), we perturb a nonlinear mode w = aj(t)v
j satisfying

(2.6) and write
u = w + y, (2.7)

where ‖y‖ � ‖w‖. Plugging the above expression into (2.1), we get for each coordinate
i

ÿi = −
N∑
p=1

∆ipyp − 3 w2
i yi − 3 wiy

2
i − y3

i , (2.8)

where we have used the fact that w is a solution of (2.1).

Two situations occur here, depending on whether the eigenvector vj contains zero
components (soft nodes) or not. If there are no soft nodes, then wi 6= 0, ∀i ∈ {1, . . . , N},
like for the Goldstone mode or the bivalent mode, equation (2.8) can be linearized to

ÿ = −∆y − 3

N
a2
j (t)y. (2.9)

Expanding y on the normal modes, y =
∑N

k=1 zk(t)v
k, we decouple (2.9) and obtain N

one dimensional Hill-like equations for each amplitude zk

z̈k = −
[
ω2
k +

3

N
a2
j (t)

]
zk, k ∈ {1, . . . , N} . (2.10)

Again we generalize the result, obtained by Aoki [35] for chains and cycles, to a general
graph.

In the case where there are soft nodes, we can also write the linearized equations.
First, let us assume for simplicity that there is only one zero component m of vj , then
wm = 0 so that we need to keep the cubic term y3

m in (2.8) for i = m, and we can
linearize (2.8) for all i 6= m. The evolution of y is given by

ÿi = −
N∑
p=1

∆ipyp − 3Ca2
j (t)yi, i ∈ {1, . . . , N} , i 6= m,

ÿm = −
N∑
p=1

∆mpyp − y3
m.

Expanding y on the normal modes, y =
∑N

l=1 zl(t)v
l, we get

N∑
l=1

z̈lv
l
i = −

N∑
l=1

ω2
l zlv

l
i − 3Ca2

j (t)

N∑
l=1

zlv
l
i, i 6= m, (2.11)

N∑
l=1

z̈lv
l
m = −

N∑
l=1

ω2
l zlv

l
m −

N∑
l,p,q=1

zlzpzqv
l
mv

p
mv

q
m. (2.12)
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We now multiply (2.11) by vki and sum over 1 ≤ i ≤ N with i 6= m and multiply (2.12)
by vkm. The two equations are

N∑
l=1

z̈l
∑
i 6=m

vliv
k
i = −

N∑
l=1

[
ω2
l zl + 3 Ca2

j (t)zl
]∑
i 6=m

vliv
k
i ,

N∑
l=1

z̈lv
l
mv

k
m = −

N∑
l=1

ω2
l zlv

l
mv

k
m −

N∑
l,p,q=1

zlzpzqv
l
mv

p
mv

q
mv

k
m.

Adding the above equations and using the orthogonality condition
∑

i 6=m v
l
iv
k
i = δl,k −

vlmv
k
m, we obtain

z̈k = −
[
ω2
k + 3Ca2

j (t)
]
zk + 3Ca2

j (t)
N∑
l=1

zlv
l
mv

k
m −

N∑
l,p,q=1

zlzpzqv
l
mv

p
mv

q
mv

k
m. (2.13)

Equation (2.13) shows that the amplitudes zk of the perturbation y around a nonlinear
periodic orbit w = aj(t)v

j containing a soft node vjm = 0, are coupled linearly. Omitting
the nonlinear term and keeping only the linear coupling term in (2.13), we obtain N one
dimensional coupled equations for each amplitude zk

z̈k = −
[
ω2
k + 3Ca2

j (t)
]
zk + 3Ca2

j (t)
N∑
l=1

zlv
l
mv

k
m.

In the general case, let us denote by Sj =
{
m, vjm = 0

}
the set of the soft nodes of

the trivalent mode vj , then the variational system can be written
z̈k = −

ω2
k + 3C

1−
∑
m∈Sj

(
vkm

)2

 a2
j (t)

 zk + 3Ca2
j (t)

∑
l 6=k

zl
∑
m∈Sj

vlmv
k
m, ∀k 6= j,

z̈j = −
(
ω2
j + 3Ca2

j (t)
)
zj .

(2.14)
The linearized equations (2.14) show how the modes will couple. If Sj ⊂ Sk for such a
k ∈ {1, . . . , N} , k 6= j, the nonlinear mode vj will not couple with the mode vk i.e. vk

will not be excited when exciting the mode vj . Another factor of the uncoupling is when
the coupling coefficients

∑
m∈Sj v

l
mv

k
m = 0, ∀ l 6= k.

To summarize, the stability of the Goldstone and the bivalent nonlinear periodic
orbits, is governed by the N decoupled equations (2.10). For nonlinear periodic orbits
containing soft nodes (trivalent modes), the stability is given by the coupled system
(2.14). In all cases, the orbit will be stable if the solutions zk are bounded for all k.
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2.4 Stability of the Goldstone and the bivalent periodic or-
bits: Floquet analysis

The variational system corresponding to the Goldstone mode or the bivalent mode can
be decomposed into the set of independent (uncoupled) equations (2.10) where aj(t) is
the Goldstone or the bivalent periodic elliptic function solution of

äj = −ω2
jaj −

1

N
a3
j , (2.15)

for proper initial conditions aj(0) and ȧj(0).

In order for the Goldstone mode and the bivalent mode to be stable, the solutions of
the differential equations (2.10) must be bounded ∀k ∈ {1, . . . , N}. The equations (2.10)
are uncoupled Hill-like equations and can be studied separately for each k. From the
evolution of zk in (2.10) we obtain the Floquet multipliers [39] (see Appendix B); this
requires the integration of the first order variational equations{

Ṁ = Ak(t)M,

M(0) = I2,
(2.16)

where M is a 2×2 matrix whose columns are the linearly independent solutions (zk(t), żk)
T

of (2.10) for the initial conditions given by the columns of the identity matrix I2. The
matrix Ak is

Ak(t) =

(
0 1

−
[
ω2
k + 3

N a
2
j (t)
]

0

)
, (2.17)

where aj(t) is the Goldstone or the bivalent periodic orbit solution of (2.15). The fun-
damental matrix solution of (2.16) is M(t). For t = T , the period of aj , the matrix
M (T ) is called the monodromy matrix. The eigenvalues of M (T ) are the Floquet mul-
tipliers and Floquet’s theorem [39] states that all the solutions of (2.16) are bounded
whenever the Floquet multipliers have magnitude smaller than one. To calculate the
Floquet multipliers, we integrate over the period T the first order variational equations
(2.16) simultaneously with the equation of motion (2.15). For this, we used a fourth
order Runge-Kutta routine and the Matlab infrastructure [40].

2.4.1 Goldstone periodic orbit

For a general graph with N nodes, the Goldstone periodic orbit a1(t) solution of (2.15)
for j = 1, ω1 = 0, can be written in terms of Jacobi elliptic functions [41] (see Appendix
C). The solutions lie on the level curves of the energy

E =
1

2
(ȧ1)2 +

1

4N
a4

1, (2.18)
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which is a constant of the motion. Therefore, the phase portrait is easily obtained by
plotting the level curves Figure 4.19. The period of oscillations is (see Appendix D)

T =

√
N Γ2

(
1
4

)
a1(0)

√
π
, (2.19)

where Γ(.) is the gamma function Γ (x) =
∫∞

0 yx−1e−ydy, and Γ
(

1
4

)
≈ 3.6256. The

frequency of oscillations is

ωNL =
2π

T
=

2π
√
π√

N Γ2
(

1
4

)a1(0). (2.20)

We set γ = (4N E)
1
4 , then we can write the solution as

a1(t) = γ cn

(
γ√
N
t,

1√
2

)
, (2.21)

where cn (t, κ) is the cosine Jacobi elliptic function [41] with modulus κ and where we
have chosen ȧ1(0) = 0.

-1 0 1

a
1

-0.4

0

0.4

d
 a

1
 /

d
t

Figure 2.1 – Goldstone periodic orbit for N = 3, a1(0) = 1 and ȧ1(0) = 0.

For the Goldstone periodic orbit, the variational equations (2.10) can be written

z̈k = −
[
ω2
k +

3

N
γ2cn2

(
γ√
N
t,

1√
2

)]
zk, k ∈ {1, . . . , N} . (2.22)

Equations (2.22) are uncoupled Lamé equations in the Jacobian form [42] and can be
studied separately for each k. Note that the stability domain of (2.22) was determined
for example in [43]; it can be seen that there are instable bounds in the plane

(
γ2, ω2

k

)
.

For chains, we studied the Floquet multipliers for the Goldstone periodic orbit.
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2.4.2 Floquet analysis of Goldstone periodic orbit in chains

For chains with N nodes, the instability region of the Goldstone mode is shown in Figure
2.2 as a function of the amplitude a1(0). The points indicate instability. The plot shows
the unstable intervals typical of the Mathieu or Lamé equations [43]. For small chain
sizes, there are just a few very narrow unstable intervals, for example for N = 4, we have
three intervals. As the chain gets longer, the number of the unstable intervals and their
width increases. Note however that for large enough amplitude, the Goldstone mode is
always stable.
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Figure 2.2 – Instability regions of the Goldstone periodic orbit for chains with N nodes
for different initial amplitude a1(0).

2.4.3 The bivalent periodic orbit

The bivalent periodic orbit aj(t) solution of (2.15) can be expressed via Jacobi elliptic
cosine [41]

aj(t) = γ cn
(
Ωt, κ2

)
, (2.23)

where γ = aj(0), ȧj(0) = 0 and Ω2 =
ω2
j

1−2κ2
, while the modulus κ of the elliptic function

is determined by 2κ2 = γ2

Nω2
j+γ2

.

For the bivalent periodic orbit, the variational system are the uncoupled Lamé equa-
tions in the Jacobian form

z̈k = −
[
ω2
k +

3

N
γ2cn2

(
Ωt, κ2

)]
zk, k ∈ {1, . . . , N} . (2.24)
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For chains, we studied the Floquet multipliers for the bivalent periodic orbit.

2.4.4 Floquet analysis of the bivalent periodic orbit in chains

Remember that the bivalent mode only exists for chains with an even number of nodes
N . We calculate the instability region of the bivalent mode v

N
2

+1 and present it in Figure
2.3 as a function of the amplitude aN

2
+1(0). The points indicate the unstable solutions

of (2.24) with N even. For a narrow region starting from a zero amplitude, the bivalent
mode is stable. Above a critical amplitude it is unstable. Notice the difference with the
Goldstone mode which is mostly stable while the bivalent mode is mostly unstable.

0 1 2 3 4 5

amplitude

2

4

6

N

Figure 2.3 – Instability regions of the bivalent mode v
N
2

+1 for chains with an even
number of nodes N for different amplitudes aN

2
+1(0).

To illustrate the dynamics of the Goldstone and the bivalent modes, we solve (2.1)
for a chain of length 1. We confirm the results of the Floquet analysis and show the
couplings that occur in the instability regions.

2.4.5 Example: chain of length 1

For a chain of length 1,

1 2
1
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the spectrum is

ω2
1 = 0, v1 =

1√
2

(1, 1)T ,

ω2
2 = 2, v2 =

1√
2

(1,−1)T .

The amplitude equations (2.2) are:
ä1 =

−1

2
a3

1 −
3

2
a1a

2
2,

ä2 = −2a2 −
1

2
a3

2 −
3

2
a2

1a2.

(2.25)

First we consider the evolution of the Goldstone nonlinear periodic orbit. We solve
numerically (2.1) for an initial condition u(0) = a1(0)v1 with u̇(0) = 0. The left panel
of Figure 2.4 shows the amplitudes a1(t), a2(t) for a1(0) = 1.6. As expected from the
Floquet analysis Figure 2.2 the orbit is unstable and gives rise to a coupling with the
mode v2. On the other hand, for a2(0) = 2 the amplitudes shown in the right panel of
Figure 2.4 do not show any coupling. The Goldstone mode is stable as shown in Figure
2.2. Note that this evolution is similar for large times.
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Figure 2.4 – Time evolution of the mode amplitudes a1 (red online) and a2 (green
online) when exciting Goldstone mode v1 for a1(0) = 1.6 (left) and a1(0) = 2 (right)
with a2(0) = 10−2.

We then consider the evolution of the bivalent mode v2. For that, we solve numerically
(2.1) for an initial condition u(0) = a2(0)v2 and ȧ2(0) = 0. For a2(0) = 1.5, the
amplitudes shown in the left panel of Figure 2.5 do not show any coupling. As expected
from the Floquet analysis in Figure 2.3, the bivalent mode is stable for a2(0) < 1.7 and
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unstable for a2(0) ≥ 1.7. For a2(0) = 1.7, we observe coupling to the Goldstone mode as
shown in the right panel of Figure 2.5.
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Figure 2.5 – Time evolution of the mode amplitudes a1 (red online) and a2 (green online)
when exciting the bivalent mode v2 for a2(0) = 1.5 (left) and a2(0) = 1.7 (right) with
a1(0) = 10−2.

2.5 Nonlinear modes containing soft nodes : Numerical sim-
ulations

To illustrate the dynamics of trivalent modes, we consider three examples. These are
the single frequency mode in a chain of length 2, the double frequency mode of cycle 3,
and the modes of the butterfly graph. The latter are the single frequency mode and two
double frequency modes. We show the difference in the stability of a single frequency
mode versus a double frequency mode.

2.5.1 Chain of length 2

For a chain of length 2,

1 2 3
1
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the spectrum is

ω2
1 = 0, v1 =

1√
3

(1, 1, 1)T ,

ω2
2 = 1, v2 =

1√
2

(1, 0,−1)T ,

ω2
3 = 3, v3 =

1√
6

(1,−2, 1)T .

The amplitude equations (2.2) are:

ä1 =
−1

3
a3

1 − a1

(
a2

2 + a2
3

)
+

1√
18
a3

3 −
1√
2
a2

2a3,

ä2 + a2 =
−1

2
a3

2 − a2

(
a2

1 +
1

2
a2

3

)
−
√

2a1a2a3,

ä3 + 3a3 =
−1

2
a3

3 − a3

(
a2

1 +
1

2
a2

2

)
− 1√

2
a1a

2
2 +

1√
2
a1a

2
3.

(2.26)

When exciting the nonlinear mode v2 containing a soft node, with a2(0) = 2, the
modes v1 and v3 will be excited as shown in the left panel of Figure 2.6. This instability
is explained by two factors. First the coupling terms in the linearized equations (2.14)
do not vanish and the variational system isz̈1

z̈2

z̈3

 =

 −a2
2 0 − 1√

2
a2

2

0 −
(
1 + 3

2a
2
2

)
0

− 1√
2
a2

2 0 −
(
3 + 1

2a
2
2

)

z1

z2

z3

 . (2.27)

The second factor is the closeness of the nonlinear frequency ωNL ≈ 1.569 (for a2(0) = 2)
to the linear frequencies of the graph. When the nonlinear frequency is far from the linear
frequencies, for example when a2(0) ≥ 3.12 (ωNL ≥ 2.128) the periodic orbit v2 is stable
and no coupling with the other modes occurs as shown in the right panel of Figure 2.6.

Notice that the matrix in the variational equations (2.27) is the Jacobian matrix [39]
of the system (2.26) calculated at the periodic orbit a2 solution of ä2 + a2 = −1

2 a
3
2. Note

that this evolution is recurrent for large times.

27



0 10 20 30 40 50

t

-2

0

2
a

m
p

lit
u

d
e

0 10 20 30 40 50

t

-3.12

0

3.12

a
m

p
lit

u
d

e

Figure 2.6 – Time evolution of the mode amplitudes a1 (red online), a2 (green online)
and a3 (blue online) when exciting the mode v2 with a2(0) = 2 (left) and a2(0) = 3.12
(right). The other initial amplitudes are a1(0) = a3(0) = 10−2.

2.5.2 Cycle 3

For a cycle 3,

3 2

1

1

the spectrum is

ω2
1 = 0, v1 =

1√
3

(1, 1, 1)T ,

ω2
2 = 3, v2 =

1√
6

(2,−1,−1)T ,

ω2
3 = 3, v3 =

1√
2

(0, 1,−1)T .

The amplitude equations (2.2) are:

ä1 =
−1

3
a3

1 − a1a
2
2 − a1a

2
3 −

1√
18
a3

2 +
1√
2
a2a

2
3,

ä2 + 3a2 = −a2
1a2 −

1

2
a3

2 −
1

2
a2a

2
3 −

1√
2
a1a

2
2 +

1√
2
a1a

2
3,

ä3 + 3a3 = −a2
1a3 −

1

2
a3

3 −
1

2
a2

2a3 +
√

2a1a2a3.

(2.28)
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The nonlinear mode v3 containing a soft node and corresponding to a double fre-
quency, is unstable for all initial amplitudes a3(0). It couples with the modes v1 and v2

as shown in Figure 2.7. There, we show the evolution of the amplitudes for initial con-
ditions a3(0) = 2 (left) and a3(0) = 8 (right). The coupling can be seen in the linearized
equations (2.14) z̈1

z̈2

z̈3

 =

 −a
2
3

1√
2
a2

3 0
1√
2
a2

3 −
(
3 + 1

2a
2
3

)
0

0 0 −
(
3 + 3

2a
2
3

)

z1

z2

z3

 . (2.29)

The instability observed for large initial amplitudes seems to be due to the degeneracy
of the linear frequency as we discuss below.
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Figure 2.7 – Time evolution of the mode amplitudes a1 (red online), a2 (green online)
and a3 (blue online) when exciting the mode v3 for a3(0) = 2 (left) and a3(0) = 8 (right)
with a1(0) = a2(0) = 10−2.

2.5.3 Butterfly graph

5

4

3

2

1

1

The butterfly graph contains nonlinear mode with soft node corresponding to a simple
frequency, and two nonlinear modes with soft nodes corresponding to a double frequency.
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The spectrum is

ω1 = 0, v1 =
1√
5

(1, 1, 1, 1, 1)T ,

ω2
2 = 1, v2 =

1

2
(1, 1, 0,−1,−1)T ,

ω2
3 = 3, v3 =

1√
2

(−1, 1, 0, 0, 0)T ,

ω2
4 = 3, v4 =

1√
2

(0, 0, 0,−1, 1)T ,

ω2
5 = 5, v5 =

1√
20

(−1,−1, 4,−1,−1)T .

When exciting the nonlinear mode v2 containing a soft node and corresponding to a
simple frequency ω2 = 1 for initial conditions 2.3 ≤ a2(0) ≤ 3.37, there is coupling with
the modes v1 and v5 as shown in Table 2.1. There is no coupling with v3 and v4 since
the soft node 3 of v2 is also soft for the modes v3 and v4, so that the coupling terms
vanish in (2.14). For a2(0) ≥ 3.38 (ωNL ≥ 1.755), the nonlinear mode v2 is stable; there
is no coupling with the other modes.

The nonlinear modes v3 and v4 have soft nodes and correspond to the double fre-
quency ω3 = ω4 =

√
3. When exciting v3 with a small amplitude a3(0) < 1.5 we see

no coupling with the other modes. Starting from a3(0) ≥ 1.5 (ωNL ≥ 1.958) there is
coupling with the modes v1, v2 and v5 as shown in Table 2.1 and no coupling with
v4. This is because the coupling terms in (2.14) corresponding to the mode v4 vanish,∑

m∈S3 v
4
mv

k
m = 0, ∀ k 6= 4 where S3 =

{
m, v3

m = 0
}
the set of the soft nodes of the

trivalent mode v3. We observe similar effects when exciting v4 instead of v3, see Table
2.1.

Excited
modes

ωj
Nonlinear
frequency

amplitude for
instability

Activated
modes

v2 1 [1.404, 1.751] [2.3, 3.37] v2, v1, v5

v3

√
3 ≥ 1.958 ≥ 1.5 v3, v1, v2, v5

v4

√
3 ≥ 1.958 ≥ 1.5 v4, v1, v2, v5

Table 2.1 – Excited modes and their associated linear frequencies, nonlinear frequencies
depending on the initial amplitudes for instability regions, and the activated modes.

To summarize, we observe that a trivalent periodic orbit is stable for large amplitudes
when the eigenvalue is simple. Conversely, when the eigenvalue is double, the periodic
orbit is unstable. In fact, the criterion of Aoki [35] is realized only for a particular choice
of eigenvectors. Rotating the eigenspace will break the criterion and destroy the periodic
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orbits. In that sense, a trivalent periodic orbit for a multiple eigenvalue is structurally
unstable.

2.6 Existence of two-mode solutions

We seek nonlinear solutions of (2.1) that involve two nonlinear normal modes. Substi-
tuting the ansatz,

u(t) = aj(t)v
j + ak(t)v

k, (2.30)

into the equation of motion (2.1) and projecting on each mode vj and vk, we get
äj = −ω2

jaj −
N∑
m=1

u3
mv

j
m,

äk = −ω2
kak −

N∑
m=1

u3
mv

k
m,

where we have used the orthonormality of the eigenvectors. The term u3
m can be written

as
u3
m = a3

j (v
j
m)3 + 3a2

jak(v
j
m)2vkm + 3aja

2
kv
j
m(vkm)2 + a3

k(v
k
m)3,

so that the above equations can be written

äj = −ω2
jaj − a3

j

N∑
m=1

(vjm)4 − 3a2
jak

N∑
m=1

(vjm)3vkm − 3aja
2
k

N∑
m=1

(vjm)2(vkm)2 − a3
k

N∑
m=1

(vkm)3vjm,

(2.31)

äk = −ω2
kak − a3

k

N∑
m=1

(vkm)4 − 3a2
jak

N∑
m=1

(vjm)2(vkm)2 − 3aja
2
k

N∑
m=1

vjm(vkm)3 − a3
j

N∑
m=1

(vjm)3vkm.

(2.32)

To have two periodic solutions for aj and ak, these equations should be uncoupled
and this imposes

N∑
m=1

(vjm)3vkm = 0, (2.33)

N∑
m=1

(vjm)2(vkm)2 = 0, (2.34)

N∑
m=1

vjm(vkm)3 = 0, (2.35)
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in which case the equations reduce to
äj = −ω2

jaj −
1

N − Sj
a3
j ,

äk = −ω2
kak −

1

N − Sk
a3
k.

(2.36)

where Sj is the number of soft nodes of vj and Sk is the number of soft nodes of vk.

The conditions (2.33, 2.34 and 2.35) are the criteria for the existence of two-mode
solutions. It is clear that only trivalent eigenvectors can satisfy these conditions, because
if one of the two eigenvectors is monovalent or bivalent, then the condition (2.34) is not
satisfied. From the examples mentioned in section 2.2, only cycles where N is multiple
of 4 exhibit nonlinear normal modes satisfying the conditions (2.33, 2.34 and 2.35),
they are the nonlinear modes v

N
2 and v

N
2

+1 corresponding to the double frequency
ωN

2
= ωN

2
+1 =

√
2.

2.7 Nonlinear periodic orbits in Fermi-Pasta-Ulam model
on networks

For the Fermi-Pasta-Ulam model (cubic intersite nonlinearity), we show below that bi-
valent and trivalent eigenvectors give rise to nonlinear normal modes. In addition, we
identify other eigenvectors giving such nonlinear normal modes.

We consider the Fermi-Pasta-Ulam equation on a general network (1.28)

üi = −
N∑
j=1

∆ij uj −
∑
k∼i

(ui − uk)3 , i ∈ {1, . . . , N}. (2.37)

Nonlinear normal modes have been investigated in the FPU lattice (for chain or
cycle graphs) [44] using powerful group theoretical methods. Stability analysis has been
performed explicitely for periodic orbits in the FPU model [45].

2.7.1 Existence of nonlinear normal modes

Let us find the conditions for the existence of a nonlinear periodic solution of (2.37),
following [35], of the explicit form

u(t) = aj(t)v
j ,
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the equations of motions (2.37) reduce to

äjv
j
i = −ω2

jajv
j
i − a3

j

∑
k∼i

(
vji − v

j
k

)3
. (2.38)

These equations are satisfied for the nodes i such that vji = 0 (soft nodes) if and only if∑
k∼i

(
vjk

)3
= 0. This condition is satisfied for trivalent eigenvectors, since

∑
k∼i v

j
k =(

di − ω2
j

)
vji = 0 which implies (only for trivalent eigenvectors) that

∑
k∼i

(
vjk

)3
= 0 .

For vji 6= 0, we can simplify (2.38) by vji and obtain

äj = −ω2
jaj −

[
1

vji

∑
k∼i

(
vji − v

j
k

)3
]
a3
j . (2.39)

These equations should be independent of i and this imposes

1

vji

∑
k∼i

(
vji − v

j
k

)3
= γj , ∀i ∈ {1, . . . , N}, (2.40)

where γj is a constant. Bivalent and trivalent eigenvectors which are identified for the
discrete Φ4 model in section 2.1, satisfy the condition (2.40) and yield nonlinear normal
modes also for the FPU model. This is because condition (2.5) implies condition (2.40).
It is important to identify other eigenvectors that are not in {1, 0,−1} satisfying the
condition (2.40).

2.7.2 Other nonlinear periodic orbits for the FPU model

In addition to the bivalent and trivalent eigenvectors identified explicitely and generally
for cycles and chains in section 2.2, we have the following eigenvectors satisfying (2.40) :

• For chains with N multiple of 3, the mode v
2N
3

+1

v
2N
3

+1 =
1√
2N

(1,−2, 1, | 1,−2, 1, | . . . , | 1,−2, 1)T , ω2
2N
3

+1
= 3, γ 2N

3
+1 =

33

2N
.

(2.41)

• For cycles with N multiple of 3, the mode v
2N
3

v
2N
3 =

1√
2N

(2,−1,−1, | 2,−1,−1 | . . . , | 2,−1,−1)T , ω2
2N
3

= 3, γ 2N
3

=
33

2N
.

(2.42)
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• For star graphs SN−1 on N vertices, all the modes v2, . . . ,vN extend to nonlinear
periodic orbits. The normal modes and the corresponding constants γj are

ω2
2 = 1, v2 =

1√
2

(0, 1,−1, 0, . . . , 0)T , γ2 =
1

2
,

ω2
3 = 1, v3 =

1√
2

(0, 0, 1,−1, 0, . . . , 0)T , γ3 =
1

2
,

ω2
N−1 = 1, vN−1 =

1√
2

(0, 0, . . . , 0, 1,−1)T , γN−1 =
1

2
,

ω2
N = N, vN =

1√
N(N − 1)

(N − 1,−1, . . . ,−1)T , γN =
N2

N − 1
.

(2.43)

2.8 Conclusion

We consider the graph wave equation with a cubic on-site nonlinearity on a general
network. We identified a criterion allowing to extend some linear normal modes of the
graph Laplacian into nonlinear periodic orbits. Three different types of periodic orbits
were found, the monovalent, bivalent and trivalent ones depending on whether the corre-
sponding eigenvectors contain 1 or −1,+1 or −1, 0,+1. For the monovalent and bivalent
modes, the linearized equations decouple into N Hill-like equations. For chains, the
monovalent mode is mostly stable while the bivalent is unstable. Trivalent modes con-
tain soft nodes and the variational equations do not decouple. The stability is governed
by a system of coupled resonance equations; they indicate which modes will be excited
when the orbit is unstable. Modes that share a soft node with a trivalent orbit will not be
excited. Numerical results show that trivalent modes with a single eigenvalue are unsta-
ble below a threshold amplitude. Conversely, trivalent modes with multiple eigenvalues
seem always unstable. These results emphasize the importance of normal modes even in
the nonlinear regime. They also show that soft nodes change the dynamics, a fact that
was pointed out in [7].

In this chapter, we classified the bivalent and trivalent eigenvectors in chains and
cycles. In Chapter 3, we characterize the graphs having such eigenvectors.
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Chapter 3

On bivalent and trivalent graphs

Abstract. We define a bivalent graph as having a Laplacian eigenvector with com-
ponents in {−1,+1} (bivalent eigenvector) and a trivalent graph as having a Laplacian
eigenvector with components in {−1, 0,+1} (trivalent eigenvector). These graphs are
important because they yield periodic orbits for nonlinear wave equations on networks.
In this chapter, we characterize them by applying some graph transformations. Bivalent
graphs are shown to be the regular bipartite graphs and their extensions obtained by
adding edges between vertices with the same value for the given eigenvector. We define
a soft regular graph as having a Laplacian eigenvector whose all non zero component
vertices have the same degree. Trivalent graphs are shown to be extensions of these soft
regular graphs via the transformations.

The chapter is organized as follows. In section 3.1, we introduce some preliminaries
of the graph Laplacian. In section 3.2, we present transformations of graphs. Section 3.3
presents a characterization of bivalent graphs. Section 3.4 presents a similar characteri-
zation for trivalent graphs.

3.1 Preliminaries

For simplicity, we consider the eigenvectors vj , j ∈ {1, . . . , N} of ∆ without normaliza-
tion and denote the eigenvalues by λ1 = 0 ≤ λ2 ≤ · · · ≤ λN . We note ∆ (G) instead of
∆, for a given graph G. Thus, v is an eigenvector of ∆ (G) affording λ if and only if

(di − λ) vi =
∑
k∼i

vk, ∀i ∈ {1, . . . , N}. (3.1)

It will be convenient to associate with the eigenvector v a labeling of G in which
vertex i is labeled vi. Such labelings are called valuations [46]. Formally, the (vertex)
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valuation afforded by eigenvector v is the function v : V −→ R defined by v(i) = vi, i ∈
{1, . . . , N}. As the notation indicates, we will feel free to confuse the eigenvector with
its associated valuation.

In the following we give some useful definitions from the literature and we present
our proper definitions (Def.3 and Def.6).

Definition 2 (Regular graph). A graph is d-regular if every vertex has the same degree
d.

Definition 3 (Soft regular graph). A graph is d-soft regular for an eigenvector v of the
Laplacian if every non-soft node for v has the same degree d.

The graph on the left of Figure 3.1 is 3-soft regular for the eigenvector
(0, 1, 1, 0,−1,−1)T since all the non-zero vertices have the same degree 3. The graph on
the right of Figure 3.1 is non-soft regular for the eigenvector
(0, 1, 1, 0,−1,−1, 0, 0)T since the non-zero vertices have different degrees.

0

−11

−11

0

1

0

−11

−11

0

0

0

1

Figure 3.1 – 3-soft regular graph for the Laplacian eigenvector (0, 1, 1, 0,−1,−1)T (left).
Non-soft regular graph for the Laplacian eigenvector (0, 1, 1, 0,−1,−1, 0, 0)T (right).

Definition 4 (k-partite graph). A k-partite graph is a graph whose vertices can be par-
titioned into k different independent sets so that no two vertices within the same set are
adjacent.

When k = 2 these are the bipartite graphs, and when k = 3 they are the tripartite
graphs.

Definition 5 (Perfect matching). A perfect matching of a graph G is a matching (i.e.
an independent edge set) in which every vertex of the graph is incident to exactly one
edge of the matching.

Definition 6 (Alternate perfect matching). An alternate perfect matching for a vector
v on the nodes of a graph G is a perfect matching for the nonzero nodes such that edges
eij of the matching satisfy vi = −vj ( 6= 0).

The left of Figure 3.1 shows the alternate perfect matching (represented by red lines)
for the vector (0,−1,−1, 0, 1, 1)T on the nodes of the 6-cycle.
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3.2 Transformations of graphs

Merris [47] considers several transformations of graphs based on Laplacian eigenvectors.
In the following we review some of them and we present another transformation (Thm.10).

3.2.1 Transformations preserving eigenvalues

Theorem 7 (Link between two equal nodes [47]). Let v be an eigenvector of ∆ (G)
affording an eigenvalue λ. If vi = vj, then v is an eigenvector of ∆ (G′) affording the
eigenvalue λ, where G′ is the graph obtained from G by deleting or adding the edge eij
depending on whether eij is an edge of G or not.

Proof. Suppose that vertices i and j are not adjacent in G. Because v is an eigenvector
of G, (di − λ) vi =

∑
k∼i vk. Hence

((di + 1)− λ) vi = vi +
∑
k∼i

vk = vj +
∑
k∼i

vk, (3.2)

which is the condition that must be met at vertex i for v to be an eigenvector of G′
affording λ. The eigenvector condition at vertex j is confirmed similarly, and the condi-
tions at the other vertices are the same for G′ as they are for G. Reversing the argument,
one establishes the case in which i and j are adjacent in G.

Suppose G1 = (V1, E1) and G2 = (V2, E2) are graphs on disjoint sets of vertices having
eigenvectors x and y that afford (the same eigenvalue) λ. Then the valuation v : V1 ∪
V2 −→ R defined by

vk =

{
xk, if k ∈ V1,
yk, if k ∈ V2,

is an eigenvector of G = G1 + G2 that affords λ. If xi = yj , then, by Thm.7, v is an
eigenvector of the graph G′ obtained from G1 + G2 by adding an edge eij joining vertex i
of G1 and vertex j of G2.

Figure 3.2 shows how Thm.7 can be used to extend an eigenvector and its eigenvalue
to the transformed graphs by adding edges (represented by red lines) between nodes
having the same value. Notice that this transformation does not preserve the regularity
of the graph.
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1 −1

1 −1
1

1 −1

1 −1
1

1 −1

1 −1
1

Figure 3.2 – Three graphs obtained by adding or deleting edges between equal nodes,
affording (the same eigenvalue) λ = 2.

Theorem 8 (Extension/reduction of soft nodes [47]). For a graph G (V, E) fix a
nonempty subset W of V. Delete all the vertices in V\W that are adjacent in G to
no vertex of W. Remove any remaining edges that are incident with no vertex of W.
Suppose v is an eigenvector of the Laplacian of the reduced graph G{W} that affords λ
and is supported by W in the sense that if vi 6= 0, then i ∈ W. Then the extension v′

with v′j = vj for j ∈ W and v′j = 0 otherwise is an eigenvector of ∆ (G) affording λ.

Proof. The valuation v : V (G{W}) −→ R may be extended to a valuation v : V −→ R
by defining vj = 0 for all j ∈ V\V (G{W}). By Thm.7, this extension is an eigenvector
of G affording λ.

Thm.8 is illustrated in Figure 3.3

−1

0

1

1

−1 1

0

0 0
1

Figure 3.3 – Extension at soft node of the eigenvector (−1, 0, 1)T by adding soft nodes.
The eigenvectors afford (the same eigenvalue) λ = 1.

Theorem 9 (Contraction of soft nodes [47]). Let G be a graph on N vertices and v an
eigenvector of ∆ (G) affording λ. Suppose i ∈ V (G), let N (i) = {k ∈ V (G) : eik ∈ E (G)}
be the set of its neighbors. Suppose vi = 0 = vj where N (i)∩N (j) = ∅. If eij is an edge of
G, delete it. Let G′ be the graph on N−1 vertices obtained by identifying vertices i and j,
that is, by contracting them into a single vertex (which is adjacent in G′ to those vertices
that are adjacent in G to i or to j). If v′ is the (N −1)-dimensional vector obtained from
v by deleting its j-th coordinate, then v′ is an eigenvector of ∆ (G′) affording λ.

Proof. At all but the contracted vertex of G′, the eigenvector condition is the same as
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it is for G . Because
∑

k∼i vk = 0 =
∑

k∼j vk, the eigenvector condition is valid for the
contracted vertex of G′ as well.

Thm.9 is illustrated in Figure 3.4

1 −1

0

0

1 −1
1

1 −1

0

1 −1
1

Figure 3.4 – The eigenvector obtained by contracting two soft vertices, affording (the
same eigenvalue) λ = 3.

We introduce the following transformation which preserves the eigenvalues and does
not preserve the soft regularity of the graph.

Theorem 10 (Replace an edge by a soft square [37]). Let v be an eigenvector of
∆ (G) affording an eigenvalue λ. Let G′ be the graph obtained from G by deleting an edge
eij ∈ E (G) such that vi = −vj and adding two soft nodes k, l ∈ V (G′) for the extension
v′ of v (such that v′m = vm for m ∈ V (G) and v′k = v′l = 0) and adding four edges
eik, ekj , eil, elj ∈ E (G′). Then, v′ is an eigenvector of ∆ (G′) for the eigenvalue λ.

Proof. Suppose the edge eij ∈ E (G) joining two nodes having opposite values vi = −vj ,
is replaced by a square eik, ekj , eil, elj ∈ E (G′) of soft nodes k, l ∈ V (G′). The eigenvector
condition

((di + 1)− λ) vi = vi +
∑
m∼i

vm =
∑

m∼i, m6=j
vm = 2× 0 +

∑
m∼i, m6=j

vm, (3.3)

is the condition that must be met at vertex i for the extension v′ of v, by defining
v′m = 0 for m ∈ V (G′) \V (G), to be an eigenvector of ∆ (G′) affording λ. The eigenvector
condition at vertex j is confirmed similarly, and the conditions at the other vertices are
the same for G′ as they are for G.

Figure 3.5 shows how Thm.10 can be used to transform a soft regular graph to a
non-soft regular graph without changing the eigenvalue. Note that a square of soft nodes
can be replaced by an edge between opposite nodes.
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0

−11

−11

0

1

0
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−11

0

0

0

1

Figure 3.5 – Replacing an edge between opposite nodes by a square of soft nodes. The
eigenvectors afford (the same eigenvalue) λ = 3.

3.2.2 Transformations changing eigenvalues

The following transformation allows us to extend graphs by changing the eigenvalues and
preserving the soft regularity of the graph.

Theorem 11 (Add/Delete an alternate perfect matching [47]). Let v be an eigen-
vector of ∆ (G) affording an eigenvalue λ. Let G′ be the graph obtained from G by adding
(resp. deleting) an alternate perfect matching for v. Then, v is an eigenvector of ∆ (G′)
affording the eigenvalue λ+ 2 (resp. λ− 2).

Proof. Let i ∈ V be a fixed but arbitrary vertex. If vi = 0, the eigenvector condition
(di − (λ+ 2)) (0) = 0 is satisfied because the neighbors of i in G′ are the same as its
neighbors in G. If vi 6= 0 then it is paired with some j such that vi = −vj and the
eigenvector condition

((di ± 1)− (λ± 2)) vi = (di − λ) vi ∓ vi = ±vj +
∑
k∼i

vk, (3.4)

is satisfied in G′.

Adding an alternate perfect matching is illustrated in Figure 3.6. This transformation
preserves the soft regularity of the graph and increases the eigenvalue by 2.

40



0

−11

−11

0

1

0

−11

−11

0

1

0

−11

−11

0

1

Figure 3.6 – Graphs obtained by adding an alternate perfect matching for the eigenvector
(0, 1, 1, 0,−1,−1)T . The eigenvalues are λ = 1 (left), λ = 3 (middle) and λ = 5 (right).

Theorem 12 (Add soft node [48]). Let v be an eigenvector of ∆ (G) affording λ. Let
G′ be the graph obtained from G by adding a soft node k and edges joining k with all the
vertices in V (G). Then the extension v′ with v′m = vm for all m ∈ V (G) and v′k = 0, is
an eigenvector of ∆ (G′) affording λ+ 1.

Proof. For i ∈ V (G), the eigenvector condition

((di + 1)− (λ+ 1)) vi = (di − λ) vi = (1)(0) +
∑
m∼i

vm, (3.5)

is satisfied in G′.

1 −2 1

1

1 −2 1

0

1

1 −2 1

0

0
1

Figure 3.7 – Add of soft node adjacent to all vertices. The eigenvectors afford λ = 3
(left), λ = 4 (middle) and λ = 5 (right).

3.3 Bivalent graphs

The bivalent eigenvector v must have as many −1 components as +1, and thus the biva-
lent graph must have an even number of nodes. This is a consequence of the orthogonality
of v to the monovalent eigenvector v1.
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Theorem 13 (Bivalent graphs). The bivalent graphs are the regular bipartite graphs
and their extensions obtained by adding edges between nodes having the same value for a
bivalent eigenvector.

Proof. Let G be a graph having a bivalent eigenvector v affording λ. We reduce G by
deleting all the edges between equal nodes Thm.7, thus obtaining a graph where edges
only connect +1 to −1. This is a bipartite graph.

We write the eigenvector condition for nodes j (with degree dj) such that vj = 1

(dj)(1) +
∑
i∼j

(−1)(−1) = 2dj = λ. (3.6)

Similarly for nodes j such that vj = −1.

The satisfaction of the eigenvector condition for all vertices of G requires that λ =
2dj , ∀j ∈ {1, . . . , N} so that dj = d, ∀j ∈ {1, . . . , N}. Thus, G is d-regular graph. Hence
a bivalent graph is either a d-regular bipartite graph or obtained from such a graph by
adding edges between equal nodes Thm.7.

Reciprocally, a bipartite d-regular graph G has an even number of nodes and satisfies
the eigenvalue condition (3.6) so that G is bivalent.

As an example, Figure 3.8 shows the smallest bivalent graph, with eigenvalue λ = 2.
It is a 1-regular graph.

1 −1
1

Figure 3.8 – A 1-regular bivalent graph (d = 1, λ = 2).

The extension of two copies of a chain of length 1 seen in Figure 3.8 by adding an
alternate perfect matching Thm.11 produces the 2-regular bivalent graph shown in the
right of Figure 3.9

1 −1

−1 1
1

1 −1

−1 1
1

Figure 3.9 – Construction of 2-regular bivalent graph d = 2, λ = 4 (right) from the
1-regular bivalent graph d = 1, λ = 2 (left) by adding an alternate perfect matching.
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The extension of three copies of a chain of length 1 seen in Figure 3.8 by adding an
alternate perfect matching Thm.11 (two times) gives the 3-regular bivalent graph shown
in the right of Figure 3.10

−1

1

−11

−1

1 −1

1

−11

−1

1

Figure 3.10 – Construction of 3-regular bivalent graph d = 3, λ = 6 (right) from the
1-regular bivalent graph d = 1, λ = 2 (left) by adding two alternate perfect matchings.

Adding edges between equal nodes Thm.7 to three copies of a chain of length 1 seen
in Figure 3.8 produces the bivalent eigenvector of the non-regular graphs shown in Figure
3.11 affording the same eigenvalue λ = 2.

1−1

1−1

1

−1

1

−1

−1 −1 11

Figure 3.11 – Two bivalent graphs obtained from the 1-regular graph by adding edges
between equal nodes, that afford (the same eigenvalue) λ = 2.

Note that a bivalent eigenvector affords an eigenvalue λ ∈ {2, 4, . . . , 2dmin} where dmin
is the smallest degree of nodes in the graph.

We recover the following result from [50].

Theorem 14 (Bivalent tree). A tree T is bivalent if and only if it has a perfect matching.

Proof. First note that a tree is bipartite and that a 1-regular graph is a perfect matching.
Assume T be a bivalent tree. Then there exists an eigenvector v with entries solely in
{1,−1} built from a d-regular bipartite graph by adding edges between nodes of equal
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values. Since a tree always has leaves (nodes of degree 1), d must be equal to 1, the
subgraph is 1-regular hence a perfect matching.

Conversely, if a tree has a perfect matching, it is easy to construct a bivalent eigen-
vector by taking opposite values in each edge of the matching, as there are no cycles in
a tree, this can be done by Breadth-First Search (BFS) or Depth-First Search (DFS)
algorithms [49].

For a general graph, the existence of a perfect matching is not a sufficient condition
to be bivalent. As examples, we show in Figure 3.12 two asymmetric graphs i.e. which
have no symmetries.

Figure 3.12 – Two asymmetric 6-node graphs. They have a perfect matching but are
not bivalent.

3.4 Trivalent graphs

The trivalent eigenvectors have soft nodes, yielding a different dynamical behavior as
shown in Chapter 2. The authors in [48] present a classification of graphs whose Laplacian
matrices have eigenvectors with soft nodes.

Theorem 15 (Trivalent graphs). Trivalent graphs are obtained from soft regular graphs
by applying to the same trivalent eigenvector the transformations:

• add a link between two equal nodes,

• extension/reduction of soft nodes,

• replace an edge by a soft square.

Proof. Let G be a graph having a trivalent eigenvector v affording λ.

We reduce G by deleting all the edges between equal nodes Thm.7 and deleting soft
nodes that are not adjacent to non-soft nodes Thm.8, thus obtaining a graph where edges
only connect nodes with different values in {1,−1, 0}. This is a tripartite graph.
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For soft nodes j in the reduced graph, the eigenvector condition

(dj)(0) +
∑

i∼j, vi=1

(−1)(1) +
∑

i∼j, vi=−1

(−1)(−1) = (λ)(0) = 0,

requires that
card {i ∼ j, vi = +1} = card {i ∼ j, vi = −1} . (3.7)

The eigenvector condition for nodes j such that vj = 1,

(dj)(1) +
∑

i∼j, vi 6=0

(−1)(−1) +
∑

i∼j, vi=0

(−1)(0) = (λ)(1).

A similar condition holds for nodes j such that vj = −1. Thus,

λ = dj + d̃j = 2dj − nj , ∀j ∈ Sc, (3.8)

where S = {k, vk = 0} the set of the soft nodes, Sc = {1, . . . , N}\S the complement of
S i.e. the set of the non-soft nodes, d̃j = card {i ∼ j, vi 6= 0} the number of the non-soft
neighbors of j and nj = card {i ∼ j, vi = 0} the number of the soft neighbors of j.

The eigenvalue formula (3.8) is satisfied for G being soft regular for v. For trivalent
graphs G that are not soft regular (an example is shown in the left of Figure 3.13), one
can transform G to soft regular graph by applying Thm.10 several times and replacing
each edge between nodes of opposite values by a square of two soft nodes (as shown in
the right of Figure 3.13).

Conversely, a soft regular tripartite graph G satisfies the eigenvalue condition (3.8)
and any extension of G of the type above is trivalent.

1 −1 1 −1

0

0

0

0

1 −1 1 −1

0

0

0

0

0

0 0

0

0

0

Figure 3.13 – Two trivalent graphs, a non-soft regular graph (left) and a 5-soft regular
graph (right), affording (the same eigenvalue) λ = 5.
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Below we give a classification by eigenvalues of the smallest trivalent graphs. Then,
the transformations connecting the elements within each class generate trivalent graphs.

The smallest trivalent graph having eigenvalue λ = dj + d̃j = 1 (where j is a non-soft
vertex) satisfies dj = 1, d̃j = 0. That is the chain of 3 nodes shown in Figure 3.14.

Trivalent trees are constructed from trivalent chain of 3 vertices (1, 0,−1)T by adding
nodes between two equal-valued vertices Thm.7 and extension of soft nodes Thm.8. A
characterization of all trees that have 1 as the third smallest Laplacian eigenvalue λ3 = 1
is presented in [51].

1 0 −1
1

Figure 3.14 – The smallest trivalent graph affording λ = 1.

The smallest trivalent graphs having eigenvalue λ = dj+ d̃j = 2 (where j is a non-soft
vertex) satisfy :

• dj = 2, d̃j = 0. That is the cycle 4 shown in the left of Figure 3.15,

• dj = d̃j = 1. That is the 1-regular bivalent graph.

−1 1

0

0

−1 1

Figure 3.15 – The smallest trivalent graphs affording λ = 2.

The smallest trivalent graphs having eigenvalue λ = dj+ d̃j = 3 (where j is a non-soft
vertex) satisfy :

• dj = 3, d̃j = 0. That is the graph shown in the left of Figure 3.16,

• dj = 2, d̃j = 1. That is the graph shown in the right of Figure 3.16.
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−1 1

0

0

0 −1 1

0

Figure 3.16 – The smallest trivalent graphs affording λ = 3.

The smallest trivalent graphs having eigenvalue λ = dj+ d̃j = 4 (where j is a non-soft
vertex) satisfy :

• dj = 4, d̃j = 0. That is the graph shown in the left of Figure 3.17,

• dj = 3, d̃j = 1. That is the graph shown in the middle of Figure 3.17,

• dj = d̃j = 2. That is the 2-regular bivalent graph (right of Figure 3.17).

−1 1

0

0

0

0

−1 1

0

0

1 −1

−1 1

Figure 3.17 – The smallest trivalent graphs affording λ = 4.

The smallest trivalent graphs having eigenvalue λ = dj+ d̃j = 5 (where j is a non-soft
vertex) satisfy :

• dj = 5, d̃j = 0. That is the graph shown in the left of Figure 3.18,

• dj = 4, d̃j = 1. That is the graph shown in the middle of Figure 3.18,

• dj = 3, d̃j = 2. That is the graph shown in the right of Figure 3.18.
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1−1

Figure 3.18 – The smallest trivalent graphs affording λ = 5.

The smallest trivalent graphs having eigenvalue λ = dj+ d̃j = 6 (where j is a non-soft
vertex) satisfy :

• dj = 6, d̃j = 0. That is the first graph in Figure 3.19,

• dj = 5, d̃j = 1. That is the second graph in Figure 3.19,

• dj = 4, d̃j = 2. That is the third graph in Figure 3.19,

• dj = d̃j = 3. That is the 3-regular bivalent graph (right of Figure 3.19).
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Figure 3.19 – The smallest trivalent graphs affording λ = 6.

3.5 Conclusion

We have characterized bivalent and trivalent graphs [37] by applying Laplacian eigen-
vector transformations; these are links between two equal nodes, replacing an edge by
a soft square, extension or contraction of soft nodes, adding soft node, and adding or
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deleting an alternate perfect matching. These transformations have been also applied
in a more general context, that is the classification of graphs whose Laplacian matrices
have eigenvectors with soft nodes [48].

We show that bivalent graphs are the regular bipartite graphs and their extensions
obtained by adding edges between two equal nodes. We define a soft regular graph as
having a Laplacian eigenvector with soft nodes such that each non-soft node has the same
degree. Trivalent graphs are shown to be the soft regular graphs and their extensions.

However, the question of whether a given graph is bivalent or trivalent, is difficult
and remains open. Wilf [52] asked a similar question: what kind of a graph admits an
adjacency matrix eigenvector consisting solely of ±1 entries? More recently, Stevanović
[53] proved that Wilf’s problem is NP-complete, and also that the set of graphs having
a ±1 eigenvector of adjacency matrix is quite large. Note that for the regular graphs,
our results on the spectrum of the graph Laplacian carry over to the spectrum of the
adjacency matrix.

The exploration of these graphs is useful, because they yield periodic orbits for the
discrete Φ4 model and for the Fermi-Pasta-Ulam model.
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Chapter 4

Averaging for the nonlinear graph
wave equation

In this chapter, we present a first exploration of the averaging method for the simplified
version of the discrete Φ4 model studied in Chapter 2. Our aim was to use this procedure
to study the nonlinear couplings of normal modes. However, applying the averaging
method to this model is difficult. We explain here the difficulty and how we can solve it.

We write the amplitude equations, by separating the zero frequency (Goldstone) mode
and the other modes. For these modes, we perform an averaging and determine the non-
resonant terms that do not contribute in the motion. The difficulty is that this procedure
cannot be applied for terms containing Goldstone mode, for which we use action angle
variables, in order to average those terms around Goldstone orbit. Then, we determine
a set of resonance conditions and study it for particular graphs that are complete, cycle
and chain graphs. At the end, we highlight the work that remains to be done.

4.1 Amplitude equations

We consider a simplified version of the nonlinear graph wave equation (1.22) with a
natural frequency ω = 0 and a coupling coefficient ε = 1

ü = −∆u− u3. (4.1)

The amplitude equations of (4.1) are

äj = −ω2
jaj −

N∑
k,l,n=1

Γjkln akalan, j ∈ {1, . . . , N}, (4.2)
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where

Γjkln =

N∑
m=1

vjm vkm vlm vnm. (4.3)

Conversely to the variables aj , j ∈ {2, . . . , N} in the linear evolution, the zero frequency
(Goldstone) mode a1 is not a periodic oscillation, it is a linear function of time a1(t) =
ȧ1(0)t+a1(0). Then, it is convenient to separate the variables, a1 and aj , j ∈ {2, . . . , N},
when considering the nonlinear equations.

For j = 1, the amplitude equation is

ä1 = − 1

N
a3

1 −
3

N
a1

N∑
k=2

a2
k −

1√
N

N∑
k,l,n=2

γkln akalan, (4.4)

where

γkln =

N∑
m=1

vkm vlm vnm.

The amplitude equations for j ∈ {2, . . . , N} are

äj + ω2
jaj = − 3

N
a2

1aj −
1√
N
a1

N∑
k,l=2

γjkl akal −
N∑

k,l,n=2

Γjkln akalan. (4.5)

To reduce the order of equations (4.5), we use the change of variables

zj =
1

2
aj +

i

2ωj
ȧj , j ∈ {2, . . . , N}. (4.6)

The equation of Goldstone mode (4.4) becomes

ä1 = − 1

N
a3

1 −
3

N
a1

N∑
k=2

(
z2
k + (z∗k)2 + 2zkz

∗
k

)
− 1√

N

N∑
k,l,n=2

γkln (zkzlzn + z∗kz
∗
l z
∗
n + 3z∗kzlzn + 3z∗kz

∗
l zn) . (4.7)

The equations (4.5) for j ∈ {2, . . . , N} become

żj + iωjzj = − 3i

2ωjN
a2

1

(
zj + z∗j

)
− i

2ωj
√
N
a1

N∑
k,l=2

γklj [zkzl + 2z∗kzl + z∗kz
∗
l ]

− i

2ωj

N∑
k,l,n=2

Γklnj (zkzlzn + z∗kz
∗
l z
∗
n + 3z∗kzlzn + 3z∗kz

∗
l zn) . (4.8)
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To analyze the equations (4.8), we write

zj = ρj e−iωjt, j ∈ {2, . . . , N}. (4.9)

For a linear system, ρj is a constant determined by the initial conditions, and no energy
transfer occurs between the modes. When the nonlinearity is present, ρj will vary on a
time scale large compared to the period 2π

ωj
. Replacing (4.9) in (4.7), we get

ä1 = − 1

N
a3

1 −
3

N
a1

N∑
k=2

[
ρ2
k e−2iωkt + (ρ∗k)

2 e2iωkt + 2ρkρ
∗
k

]
− 1√

N

N∑
k,l,n=2

γkln

[
ρkρlρn e−i(ωk+ωl+ωn)t + ρ∗kρ

∗
l ρ
∗
n ei(ωk+ωl+ωn)t

+ 3ρ∗kρlρn e−i(−ωk+ωl+ωn)t + 3ρ∗kρ
∗
l ρn e−i(−ωk−ωl+ωn)t

]
. (4.10)

Replacing (4.9) in (4.8), we get

ρ̇j = − 3i

2ωjN
a2

1

(
ρj + ρ∗j e2iωjt

)
− i

2ωj
√
N
a1

N∑
k,l=2

γklj

[
ρkρl e−i(ωk+ωl−ωj)t

+ 2ρ∗kρl e−i(−ωk+ωl−ωj)t + ρ∗kρ
∗
l ei(ωk+ωl+ωj)t

]
− i

2ωj

N∑
k,l,n=2

Γklnj

[
ρkρlρn e−i(ωk+ωl+ωn−ωj)t + ρ∗kρ

∗
l ρ
∗
n ei(ωk+ωl+ωn+ωj)t

+ 3ρ∗kρlρn e−i(−ωk+ωl+ωn−ωj)t + 3ρ∗kρ
∗
l ρn e−i(−ωk−ωl+ωn−ωj)t

]
. (4.11)

In the last sums on the right hand side of (4.10) and (4.11) appear two types of terms,
the ones such that the phase

ωk + ωl + ωj

− ωk + ωl + ωj

− ωk − ωl + ωj

ωk + ωl + ωn − ωj
ωk + ωl + ωn + ωj

− ωk + ωl + ωn − ωj
− ωk − ωl + ωn − ωj

is non zero; these are rotating fast and average to zero on the slow time scale [54]. The
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other terms -so called- resonant terms are such that

ωk + ωl + ωj = 0, (4.12)
− ωk + ωl + ωj = 0, (4.13)
− ωk − ωl + ωj = 0, (4.14)
ωk + ωl + ωn − ωj = 0, (4.15)
ωk + ωl + ωn + ωj = 0, (4.16)
− ωk + ωl + ωn − ωj = 0 (4.17)
− ωk − ωl + ωn − ωj = 0. (4.18)

They will contribute to the motion of ρj . This is the rotating wave approximation
([8] p.813). The study of the Fermi-Pasta-Ulam model [55] yielded a similar resonance
conditions.

However, for the rest of cubic terms that contain Goldstone mode a1, the averaging
method cannot be applied, because the terms a1z

2
j and a

2
1zj are of order t and thus cannot

be averaged. Below, we show how we can average these terms containing a1 around the
Goldstone orbit.

4.2 Action-Angle representation for Goldstone mode

For the Goldstone mode it is more convenient to work with action angle variables (I, θ)
[56]. The Goldstone orbit is the solution of

ä1 =
−1

N
a3

1, (4.19)

If we define the conjugate q1 = a1, p1 = q̇1, the Hamiltonian H0 of (4.19) is

H0(q1, p1) =
1

2
(p1)2 +

1

4N
q4

1. (4.20)

The solutions lie on the level curves of the energy E0 = H0(q1, p1) which is a constant of
the motion. We set α = (4N E0)

1
4 , then we can write the solution as (Appendix D)

q1(t) = α cn

(
α√
N
t,

1√
2

)
, (4.21)

where we have chosen q̇1(0) = 0. The period of oscillations is

T =

√
N Γ2(1

4)

α
√
π

. (4.22)
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We write the Goldstone mode in terms of action angle variables (see calculations in
Appendix E)  q1 = N

1
6 (3I)

1
3 cn(θ),

p1 = −N −1
6 (3I)

2
3 sn(θ) dn(θ),

(4.23)

where (I, θ) ∈ R+×R are conjugate variables. For the elliptic modulus κ = 1√
2
, we denote

for simplicity the Jacobi elliptic functions, cn(θ) = cn
(
θ, 1√

2

)
, sn(θ) = sn

(
θ, 1√

2

)
and

dn(θ) = dn
(
θ, 1√

2

)
. To show that the coordinates (I, θ) given by (4.23) are canonical it

is sufficient to show that one has

{q1, p1} =
∂q1

∂θ

∂p1

∂I
− ∂q1

∂I

∂p1

∂θ
= 1, (4.24)

where {., .} is the Poisson bracket [54]. Then (4.20) becomes

E0 =
1

4N
1
3

(3I)
4
3 ≡ H0(I). (4.25)

The angular frequency is then given by

Ω(I) =
∂H0

∂I
=

(
3I

N

) 1
3

. (4.26)

Notice that
p1 =

∂q1

∂θ

∂θ

∂t
,

∂θ

∂t
=
∂H0

∂I
= Ω(I).

Similar analytical calculation of the action angle variables for the quartic potential are
performed in [57].

Since the transformation in action-angle variables is canonical, we write
İ =
−∂p1

∂θ
p1 +

∂q1

∂θ
ṗ1,

θ̇ =
∂p1

∂I
p1 −

∂q1

∂I
ṗ1,

(4.27)

to get the equations in the new variables I, θ when replacing ṗ1 = ä1 in (4.27) by (4.10)

İ = 3

(
3I

N

) 2
3

cn(θ) sn(θ) dn(θ)
N∑
k=2

[
ρ2
k e−2iωkt + (ρ∗k)

2 e2iωkt + 2ρkρ
∗
k

]
+

(
3I

N

) 1
3

sn(θ) dn(θ)

N∑
k,l,n=2

γkln

[
ρkρlρn e−i(ωk+ωl+ωn)t + ρ∗kρ

∗
l ρ
∗
n ei(ωk+ωl+ωn)t

+ 3ρ∗kρlρn e−i(−ωk+ωl+ωn)t + 3ρ∗kρ
∗
l ρn e−i(−ωk−ωl+ωn)t

]
. (4.28)
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θ̇ =

(
3I

N

) 1
3

+ 3N
−2
3 (3I)

−1
3 cn2(θ)

N∑
k=2

[
ρ2
k e−2iωkt + (ρ∗k)

2 e2iωkt + 2ρkρ
∗
k

]
+N

−1
3 (3I)

−2
3 cn(θ)

N∑
k,l,n=2

γkln

[
ρkρlρn e−i(ωk+ωl+ωn)t + ρ∗kρ

∗
l ρ
∗
n ei(ωk+ωl+ωn)t

+ 3ρ∗kρlρn e−i(−ωk+ωl+ωn)t + 3ρ∗kρ
∗
l ρn e−i(−ωk−ωl+ωn)t

]
. (4.29)

Equations (4.11) become

ρ̇j = − 3i

2ωj

(
3I

N

) 2
3

cn2(θ)
(
ρj + ρ∗j e2iωjt

)
− i

2ωj

(
3I

N

) 1
3

cn(θ)
N∑

k,l=2

γklj

[
ρkρl e−i(ωk+ωl−ωj)t + 2ρ∗kρl e−i(−ωk+ωl−ωj)t

+ ρ∗kρ
∗
l ei(ωk+ωl+ωj)t

]
− i

2ωj

N∑
k,l,n=2

Γklnj

[
ρkρlρn e−i(ωk+ωl+ωn−ωj)t

+ ρ∗kρ
∗
l ρ
∗
n ei(ωk+ωl+ωn+ωj)t + 3ρ∗kρlρn e−i(−ωk+ωl+ωn−ωj)t + 3ρ∗kρ

∗
l ρn e−i(−ωk−ωl+ωn−ωj)t

]
.

4.3 Averaging around Goldstone orbit

We fix I0 and change the variables{
J(t) = I(t)− I0,

Ψ(t) = θ(t)− ω0t,
(4.30)

where

ω0 = Ω(I0) =
∂H0

∂I
(I0) =

(
3I0

N

) 1
3

, (4.31)

is the frequency of the selected periodic orbit I0. Expanding the action term in the Taylor
series

(3I)
1
3 = (3I0)

1
3 + (3I0)

−2
3 J − (3I0)

−5
3 J2 +O(J3).

Then, we write the Hamiltonian (4.25) in the Taylor series

H0(I) = H0(I0) +
∂H0

∂I
(I0)J +O(J2) = h0 + ω0J +O(J2), (4.32)

where h0 is the energy level of the periodic orbit I0.
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Expanding the angle terms in Fourier series formally as

cn(θ) =
∑
m∈Z

C2m+1 ei(2m+1)Ω0t ei(2m+1)Φ, (4.33)

cn2(θ) =
∑
m∈Z

D2m ei2mΩ0t ei2mΦ, (4.34)

sn(θ) dn(θ) =
−d

dθ
cn(θ) =

∑
m∈Z

−i2π(2m+ 1)

T0
C2m+1 ei(2m+1)Φ ei(2m+1)Ω0t, (4.35)

cn(θ) sn(θ) dn(θ) =
−1

2

d

dθ
cn2(θ) =

∑
m∈Z

−iπ2m

T0
D2m eimΦ eimΩ0t. (4.36)

where Ω0 = 2π
T0
ω0, Φ = 2π

T0
Ψ and T0 =

Γ2( 1
4)√
π

is the period of the cosine elliptic function.
Notice that Ω0 = 2π

T is the nonlinear frequency of the Goldstone orbit of period T given
by (4.22).

The final equations are

İ = 3

(
3I

N

) 2
3 ∑
m∈Z

−iπ2m

T0
D2m ei2mΦ

N∑
k=2

[
ρ2
k e−i(2ωk−2mΩ0)t

+ (ρ∗k)
2 ei(2ωk+2mΩ0)t + 2ρkρ

∗
k ei2mΩ0t

]
+

(
3I

N

) 1
3 ∑
m∈Z

−i2π(2m+ 1)

T0
C2m+1 ei(2m+1)Φ

N∑
k,l,n=2

γkln

[
ρkρlρn e−i(ωk+ωl+ωn−(2m+1)Ω0)t

+ ρ∗kρ
∗
l ρ
∗
n ei(ωk+ωl+ωn+(2m+1)Ω0)t + 3ρ∗kρlρn e−i(−ωk+ωl+ωn−(2m+1)Ω0)t

+ 3ρ∗kρ
∗
l ρn e−i(−ωk−ωl+ωn−(2m+1)Ω0)t

]
. (4.37)

θ̇ =

(
3I

N

) 1
3

+ 3N
−2
3 (3I)

−1
3

∑
m∈Z

D2m ei2mΦ
N∑
k=2

[
ρ2
k e−i(2ωk−2Ω0)t

+ (ρ∗k)
2 ei(2ωk+2mΩ0)t + 2ρkρ

∗
k ei2mΩ0t

]
+

1

N
1
3

(3I)
−2
3

∑
m∈Z

C2m+1 ei(2m+1)Φ
N∑

k,l,n=2

γkln

[
ρkρlρn e−i(ωk+ωl+ωn−(2m+1)Ω0)t

+ ρ∗kρ
∗
l ρ
∗
n ei(ωk+ωl+ωn+(2m+1)Ω0)t + 3ρ∗kρlρn e−i(−ωk+ωl+ωn−(2m+1)Ω0)t

+ 3ρ∗kρ
∗
l ρn e−i(−ωk−ωl+ωn−(2m+1)Ω0)t

]
. (4.38)
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ρ̇j = − 3i

2ωj

(
3I

N

) 2
3 ∑
m∈Z

D2m ei2mΦ
(
ρj ei2mΩ0t + ρ∗j ei(2ωj+2mΩ0)t

)

− i

2ωj

(
3I

N

) 1
3 ∑
m∈Z

C2m+1 ei(2m+1)Φ
N∑

k,l=2

γklj

[
ρkρl e−i(ωk+ωl−ωj−(2m+1)Ω0)t

+ 2ρ∗kρl e−i(−ωk+ωl−ωj−(2m+1)Ω0)t + ρ∗kρ
∗
l ei(ωk+ωl+ωj+(2m+1)Ω0)t

]
− i

2ωj

N∑
k,l,n=2

Γklnj

[
ρkρlρn e−i(ωk+ωl+ωn−ωj)t + ρ∗kρ

∗
l ρ
∗
n ei(ωk+ωl+ωn+ωj)t

+ 3ρ∗kρlρn e−i(−ωk+ωl+ωn−ωj)t + 3ρ∗kρ
∗
l ρn e−i(−ωk−ωl+ωn−ωj)t

]
. (4.39)

In the equations (4.37), (4.38) and (4.39) appear two types of terms, the ones such
that the phase is non zero; these are rotating fast and average to zero on the slow time
scale. The other terms -so called- resonant terms are such that

2ωk −mΩ0 = 0, (4.40)

2ωk +mΩ0 = 0, (4.41)

mΩ0 = 0, (4.42)

ωk + ωl + ωn −mΩ0 = 0, (4.43)

ωk + ωl + ωn +mΩ0 = 0, (4.44)

−ωk + ωl + ωn −mΩ0 = 0, (4.45)

−ωk − ωl + ωn −mΩ0 = 0, (4.46)

ωk + ωl + ωn − ωj = 0, (4.47)

ωk + ωl + ωn + ωj = 0, (4.48)

−ωk + ωl + ωn − ωj = 0, (4.49)

−ωk − ωl + ωn − ωj = 0, (4.50)

where k, l, n, j ∈ {2, . . . , N} and m ∈ Z.

The resonant terms will contribute to the motion of I, θ and ρj . This is the rotating
wave approximation ([8] p.813). This analysis applies to any graph of arbitrary size N .
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4.4 Resonance conditions

Several remarks can be made:

• The resonance conditions (4.40) and (4.43) can hold only for m ∈ N∗.

• The conditions (4.41) and (4.44) can hold only for m ∈ −N∗.

• The condition (4.40) is similar to (4.41) when replacing m by −m. Similarly for
(4.43) and (4.44).

• The condition (4.42) hold only for m = 0.

• The condition (4.45) is similar to (4.46) when replacing m by −m.

• The condition (4.48) is not satisfied for all k, l, n, j ∈ {2, . . . , N}.

• The condition (4.50) is similar to (4.47) with a permutation of indices.

• In following, we study the nonlinear resonances (4.40), (4.43), (4.45), (4.47) and
(4.49).

• Since the frequencies ωk are bounded, then for large m or large Ω0, we do not have
resonances (4.40), (4.43) and (4.45).

• For a general graph ωN ≤
√
N , then mΩ0−2ωk = O(1) if mΩ0−2

√
N = O(1) and

this is satisfied when Ω0 � 2
√
N

m . This is a sufficient condition to avoid resonance
(4.40).

• For the condition (4.43), mΩ0− (ωk +ωl +ωn) = O(1) if mΩ0− 3
√
N = O(1) and

this is satisfied when Ω0 � 3
√
N

m . This is a sufficient condition to avoid resonance
(4.43).

• For m = 0 in (4.45), we must have ωl + ωn = ωk to get resonance.

• The resonance condition (4.49) is satisfied for

– k = l = n = j and the corresponding coefficient in the averaged equation is
Γklnj =

∑N
m=1(vjm)4.

– l = k, n = j (or n = k, l = j) and the corresponding coefficient in the
averaged equation is Γklnj =

∑N
m=1(vkm)2(vjm)2.

4.4.1 Complete graphs

For a complete graph with N nodes, ωj =
√
N, ∀j ∈ {2, . . . , N}.
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Resonance 2 ωk −m Ω0 = 0

A sufficient condition to avoid the resonance (4.40) is

Ω0 6=
2
√
N

m
, ∀m ∈ N∗.

Resonance ωk + ωl + ωn −mΩ0 = 0

A sufficient condition to avoid the resonance (4.43) is

Ω0 6=
3
√
N

m
, ∀m ∈ N∗.

Resonance −ωk + ωl + ωn −mΩ0 = 0

A sufficient condition to avoid the resonance (4.45) is

Ω0 6=
√
N

m
, ∀m ∈ N∗.

Resonance ωk + ωl + ωn − ωj = 0

The condition (4.47) is not satisfied, ωk + ωl + ωn − ωj 6= 0, ∀k, l, n, j ∈ {2, . . . , N}.

Resonance −ωk + ωl + ωn − ωj = 0

For a fix j ∈ {2, . . . , N}, the resonance (4.49) is satisfied for the (N − 1)3 permutations
of indices k, l, n ∈ {2, . . . , N}.

4.4.2 Cycles

For cycles with N nodes, we have ωN ≤ 2

Resonance 2 ωk −m Ω0 = 0

A sufficient condition to avoid the resonance (4.40) is Ω0 > 4.
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Resonance ωk + ωl + ωn −mΩ0 = 0

A sufficient condition to avoid the resonance (4.43) is Ω0 > 6.

Resonance −ωn + ωk + ωl −mΩ0 = 0

First, we study the case m = 0 where the resonance condition (4.45) reduces to ωk+ωl =
ωn which is given by

sin

(
kπ

N

)
+ sin

(
lπ

N

)
= sin

(nπ
N

)
, (4.51)

for k, l, n ∈ {1, . . . , N − 1}. Numerical computations of the trigonometric identity (4.51)
show that solutions of (4.51) occur for N = 3p and p ≥ 2. They are

N = 3p, sin

(
kπ

N

)
+ sin

(
(p− k)π

N

)
= sin

(
(p+ k)π

N

)
, (4.52)

where p ≥ 2 and 1 ≤ k ≤ N
6 . The relation (4.52) is easily checked using the trigonometric

formula sin (α+ β)− sin (α− β) = 2 cos(α) sin(β) with α = π
3 and β = kπ

N .
An additional solution exists for N = 30p and p ≥ 1

N = 30p, sin

(
3pπ

N

)
+ sin

(
5pπ

N

)
= sin

(
9pπ

N

)
, (4.53)

for p ≥ 1. The second solution (4.53) is easily verified because sin(3α) = 3 sin(α) −
4 sin3(α) and sin

(
π
10

)
= 1

4

(√
5− 1

)
.

Resonance ωk + ωl + ωn − ωj = 0

The resonance condition (4.47) for cycle with N nodes is

sin

(
kπ

N

)
+ sin

(
lπ

N

)
+ sin

(nπ
N

)
= sin

(
jπ

N

)
, k, l, n, j ∈ {1, . . . , N − 1} .

For N = 30p, k = p, we have the solution

N = 30p, sin
(pπ
N

)
+ sin

(
3pπ

N

)
+ sin

(
5pπ

N

)
= sin

(
11pπ

N

)
. (4.54)

Notice that (4.54) is obtained by combining (4.52) with N = 30p, k = p and (4.53).

4.4.3 Chains

For chains with N nodes, we have ωN ≤ 2.
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Resonance 2 ωk −m Ω0 = 0

A sufficient condition to avoid the resonance (4.40) is Ω0 > 4.

Resonance ωk + ωl + ωn −mΩ0 = 0

A sufficient condition to avoid the resonance (4.43) is Ω0 > 6.

Resonance −ωn + ωk + ωl −mΩ0 = 0

First, we study the case m = 0 where the resonance condition (4.45) reduces to ωk+ωl =
ωn which is given by

sin

(
kπ

2N

)
+ sin

(
lπ

2N

)
= sin

( nπ
2N

)
, (4.55)

for k, l, n ∈ {1, . . . , N − 1}. This trigonometric identity is similar to (4.51) when replacing
N by 2N . Resonances occur for N = 3p and p ≥ 2. They are

N = 3p, sin

(
kπ

2N

)
+ sin

(
(2p− k)π

2N

)
= sin

(
(2p+ k)π

2N

)
, (4.56)

where 1 ≤ k ≤ N
3 − 1.

An additional solution exists for N = 15p and p ≥ 1

N = 15p, sin

(
3pπ

2N

)
+ sin

(
5pπ

2N

)
= sin

(
9pπ

2N

)
. (4.57)

Resonance ωk + ωl + ωn − ωj = 0

The resonance condition (4.47) for chain with N nodes is

sin

(
kπ

2N

)
+ sin

(
lπ

2N

)
+ sin

( nπ
2N

)
= sin

(
jπ

2N

)
, k, l, n, j ∈ {1, . . . , N − 1}.

For N = 15p, k = p, we have the solution

N = 15p, sin
( pπ

2N

)
+ sin

(
3pπ

2N

)
+ sin

(
5pπ

2N

)
= sin

(
11pπ

2N

)
. (4.58)

Notice that (4.58) is obtained by combining (4.56) with N = 30p, k = p and (4.57).

61



4.5 Perspective

This procedure can determine the nonlinear stability of the averaged system in the case
where all the terms are non-resonant. Moreover, one can explain analytically the insta-
bilities of the Goldstone mode shown in Figure 2.2, by correlating linear instability of
the Goldstone orbit with resonances in the averaged system.
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Chapter 5

Localized solutions of nonlinear
wave equations on networks

Abstract. We study localized solutions for the discrete Φ4 model on finite arbitrary
networks. Assuming a large amplitude localized initial condition on one node of the
graph, we approximate its evolution by the Duffing equation. The rest of the network
satisfies a linear system forced by the excited node. This approximation is validated by
reducing the discrete Φ4 model to the discrete nonlinear Schrödinger equation and by
Fourier analysis. Finally, we examine numerically the condition for localization in the
parameter plane, coupling versus amplitude and show that the localization amplitude
depends on the maximal normal eigenfrequency.

The chapter is organized as follows: We give the localized modes for the discrete φ4

equation in section 5.1. In section 5.2, we reduce the graph nonlinear wave equation for
a non-zero natural frequency to a discrete nonlinear Schrödinger equation and determine
nonlinear localized solutions. Section 5.3 confirms this analysis by studying the dynamics
in real and Fourier space of two main networks; in particular we examine the localization
vs delocalization regimes in the parameter plane coupling vs amplitude.

5.1 The graph nonlinear wave equation : Localized modes

We study the discrete φ4 equation (1.22) on a finite network

ü = −
(
ε∆ + ω2I

)
u− u3, (5.1)

In the Chapter 2, we constructed nonlinear periodic orbits which are extension of
some linear normal modes of the graph Laplacian. In this chapter instead, we take a
different approach, we assume a large amplitude localized initial condition and search for
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nonlinear localized solutions (see [58]). An important remark is that this work can be
generalized to any odd power of the nonlinearity.

5.1.1 Natural frequency ω = 0

We consider a large amplitude initial condition localized at node j and examine its
evolution. First, we consider the anti-continuum limit, ε = 0, the evolution of uj satisfies
the Duffing equation

üj = −u3
j , (5.2)

where uj(0) = ρ. The other nodes uk, verify uk(0) = 0 and therefore uk(t) = 0. The
solution of (5.2) can be written in terms of the cosine Jacobi elliptic function [41]

uj(t) = ρ cn

(
ρt,

1√
2

)
, (5.3)

where the modulus of cn is κ = 1√
2
(Appendix C) and where we assumed u̇j(0) = 0. The

period of oscillations (Appendix D) is

T0 =
Γ2
(

1
4

)
ρ
√
π
. (5.4)

The frequency of oscillations is

Ω0 =
2π

T0
=

2π
√
π

Γ2
(

1
4

)ρ, (5.5)

Now examine the weak coupling limit ε� 1. The nearest neighbors k of j solve the
forced system

ük = −ε
N∑
p=1

∆kpup − u3
k = −εdkuk + εuj + ε

∑
p∼k, p 6=j

up − u3
k, (5.6)

where dk is the degree of the node k, the notation p ∼ k indicates the adjacency of
vertices and the sum is taken over the other neighbors p of k. We assume that uk is small
and will find a condition on ρ for this to hold. If uk is small, it is natural to neglect the
cubic term u3

k. The part of the solution for uk due to the forcing is

üfk = εuj(t) = ερ cn

(
ρt,

1√
2

)
, (5.7)

where the forcing uj is periodic of frequency Ω0 and amplitude ρ. Then, the response uk
to this periodic forcing will be of amplitude∣∣∣ufk∣∣∣ = O

(
ε

ρ

)
. (5.8)
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This amplitude is small if ρ ≥ 1. Similarly, the next nearest neighbors l of node j exhibit
a forced oscillation given by üfl = εuk(t) and this gives∣∣∣ufl ∣∣∣ = O

(
ε2

ρ3

)
. (5.9)

For simplicity and without loss of generality, we assume an initial excitation of node
j = 1. The evolution of the nodes {2, . . . , N} is described by the forced system of linear
ordinary differential equations

v̈ = −ε ∆1 v + f , (5.10)

where v = (u2, u3, . . . , uN )T , ∆1 is the matrix obtained by removing the first line and
the first column from the graph Laplacian ∆ and where f = (f1, f2, . . . , fN−1)T is the
forcing term such that fk = εu1 if k adjacent to 1 (k ∼ 1) and 0 otherwise. The matrix
∆1 is a reduction of the graph Laplacian ∆. It is therefore real symmetric and positive,
then ∆1 has real eigenvalues 0 < σ2

1 ≤ σ2
2 ≤ · · · ≤ σ2

N−1 and a basis of orthonormal
eigenvectors z1, z2, . . . zN−1. These verify

∆1 zm = σ2
m zm, (5.11)

for m ∈ {1, . . . , N − 1}. We expand v using a basis of the eigenvectors zm as

v =

N−1∑
m=1

αm zm. (5.12)

Substituting (5.12) into (5.10) and projecting on each eigenvector zm, we get

α̈m = −εσ2
mαm +

N−1∑
p=1

fpz
m
p , (5.13)

where we have used the orthonormality of the eigenvectors of ∆1. The sum can be
written as

N−1∑
p=1

fpz
m
p = εu1

∑
k∼1

zmk−1.

We then get a set of (N − 1) second order inhomogeneous ordinary differential equations

α̈m = −εσ2
mαm + εu1

∑
k∼1

zmk−1, (5.14)

where m ∈ {1, . . . , N − 1}. At this level, we just rewrote equation (5.10) in the basis zm.
Initially, αm(0) = α̇m(0) = 0 so that we only observe the forced response of the system.
In particular, the modes αm such that

∑
k∼1 z

m
k−1 = 0 will remain zero. This reveals that

the harmonic frequencies of the solutions u2, . . . , uN that will be observed are
√
ε σm, (5.15)
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for m ∈ {1, . . . , N − 1} such that
∑

k∼1 z
m
k−1 6= 0.

In general, for initial excitation of node j, the harmonic frequencies (5.15) of the
matrix ∆j (obtained by removing the j line and the j column from the graph Laplacian
∆) will be observed if ∑

k∼j, k<j
zmk +

∑
k∼j, k>j

zmk−1 6= 0, (5.16)

where zm are the eigenvectors of ∆j .

5.1.2 Natural frequency ω 6= 0

Now, we consider the equation (5.1) with a natural frequency ω 6= 0. The evolution at
the excited node j to a first approximation satisfies the Duffing equation

üj = −ω2uj − u3
j , (5.17)

where uj(0) = ρ. The solution can be written in terms of cosine elliptic functions

uj(t) = ρ cn
(√

ω2 + ρ2 t, κ
)
, (5.18)

where the modulus κ =
√

ρ2

2(ω2+ρ2)
and we assumed u̇j(0) = 0.

As above, we assume an excitation at node j = 1. The evolution at nodes {2, . . . , N}
is described by the forced system of linear ordinary differential equations

v̈ = −
(
ε ∆1 + ω2 I

)
v + f , (5.19)

Substituting (5.12) into (5.19) and projecting on each eigenvector zm of ∆1, we get

α̈m = −
(
εσ2
m + ω2

)
αm + εu1

∑
k∼1

zmk−1, (5.20)

where m ∈ {1, . . . , N − 1}. The harmonic frequencies are√
εσ2
m + ω2, (5.21)

for m ∈ {1, . . . , N − 1} such that
∑

k∼1 z
m
k−1 6= 0.

5.2 Modulation theory ω 6= 0

When the natural frequency is not zero, following [59], we reduce the discrete Φ4 equation
(5.1) to the discrete nonlinear Schrödinger equation. We write

u(t) =
√
εψ(T )eiωt +

√
εψ∗(T)e−iωt , (5.22)
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where T = εt, ψ = (ψ1(t), ψ2(t), . . . , ψN (t))T is the field vector and ψ∗ is the complex
conjugate of ψ. Plugging (5.22) into (5.1) and collecting terms in order of ε

1
2 , ε

3
2 , . . . , we

obtain for the order ε
3
2 the graph nonlinear Schrödinger equation (see Appendix F)

2iω

ε
ψ̇ = −∆ψ − 3 |ψ|2ψ . (5.23)

This model describes the coupling between waveguides in an optical array. In [60],
the authors examined how linear normal modes couple due to the cubic nonlinearity in
(5.23). Here instead, we assume a large amplitude localized initial condition. This is a
natural and relevant consideration that parallels classical studies of discrete solitons in the
nonlinear Schrödinger equation and light localization in nonlinear photonic structures.

We assume that |ψj | = r = ρ
2
√
ε
≥ 1 constant at a given node where ρ = uj(0), and

|ψk| = 0, ∀k 6= j. The evolution of the excited node j is given by

2iω

ε
ψ̇j = −3r2ψj . (5.24)

The solution of (5.24) is

ψj(t) = r ei 3εr
2

2ω
t =

ρ

2
√
ε
e

i3ρ2

8ω
t. (5.25)

Thus, the solution uj can be approximated using (5.22) by

uj(t) ≈ ρ cos

((
3ρ2

8ω
+ ω

)
t

)
, (5.26)

where the nonlinear frequency is

Ω ≈ 3ρ2

8ω
+ ω. (5.27)

This regime is valid when the correction to the frequency of oscillation due to the non-
linearity is smaller than the natural frequency

3

8ω
ρ2 � ω. (5.28)

This means ω large enough. Discrete breathers for (5.23) in chains were studied in [34],
using the continuation arguments in ε starting from the anticontinuous limit, to show
the local existence of discrete breathers.

The nearest neighbors k of j solve a forced system

2iω

ε
ψ̇k = −

N∑
p=1

∆kpψp = −dkψk + ψj +
∑

p∼k, p6=j
ψp, (5.29)

where we neglected the cubic terms. A particular solution of the forced part 2iω
ε ψ̇

f
k = ψj

is
ψfk (t) =

1

3r

(
1− ei 3εr

2

2ω
t

)
=

2
√
ε

3ρ

(
1− ei 3ρ

2

8ω
t

)
. (5.30)
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Similarly, the evolution of the next nearest neighbors l is given by

2iω

ε
ψ̇l = −

N∑
p=1

∆lpψp = −dlψl + ψk +
∑

p∼l, p6=k
ψp. (5.31)

We have the proportional scalings for ψk and ψl

|ψk| = O
(√

ε

ρ

)
, |ψl| = O

(
ε
√
ε

ρ3

)
, (5.32)

corresponding to the scalings for uk and ul

|uk| = O
(
ε

ρ

)
, |ul| = O

(
ε2

ρ3

)
,

similarly to the scalings for ω = 0 (5.8,5.9).

As above, for simplicity and without loss of generality, we assume an excitation of
node j = 1. The evolution of the nodes {2, . . . , N} is described by the forced system of
linear ordinary differential equations

ϕ̇ =
iε

2ω

(
∆1 ϕ− f

)
, (5.33)

where ϕ = (ψ2, ψ3, . . . , ψN )T , and where f = (f1, f2, . . . , fN−1)T is the forcing term such
that fk = ψ1 if k adjacent to 1 (k ∼ 1) and 0 otherwise.

We expand ϕ using a basis of the eigenvectors zm of ∆1

ϕ =
N−1∑
m=1

βm zm. (5.34)

Substituting (5.34) into (5.33) and projecting on each eigenvector zm, we get

β̇m = i
ε

2ω
σ2
mβm − i

ε

2ω
ψ1

∑
k∼1

zmk−1. (5.35)

The harmonic frequencies of ϕ are
√

ε
2ωσm form ∈ {1, . . . , N−1} such that

∑
k∼1 z

m
k−1 6=

0. The harmonic frequencies of v = (u2, u3, . . . , uN )T using (5.22) are√
ε

2ω
σm + ω, (5.36)

for m ∈ {1, . . . , N − 1} such that
∑

k∼1 z
m
k−1 6= 0. Notice that (5.36) and (5.21) are

almost equal for large ω and small ε, and these are the conditions of validity of the
approximation by modulation theory.
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5.3 Numerical results

We illustrate our findings on two graphs: a cycle 3 joined to a single isolated node known
as the paw graph (Figure 5.1), and the cycle 6 (Figure 5.7). The first graph is not regular
and has one symmetry, the permutation of nodes 3 and 4. The second is a cycle invariant
under cyclic permutations. We will see how symmetries affect the observed modes and
how localized solutions destabilize.

The system of ordinary differential equations (5.1) is solved in double precision, us-
ing a Runge-Kutta 4-5 method with a time step 10−2 and a relative error of 10−8.
To check the validity of the solutions, we calculated the Fourier transform ûk of each
uk, k ∈ {1, . . . , N}. This revealed the frequencies of the motion and allowed a detailed
comparison with the analysis of sections 5.2 and 5.3. In practise, we used the fast Fourier
transform (FFT) of Matlab on a time-series of n = 20000 points on a time tf = 200 to
approximate the continuum Fourier transform. The data was multiplied by a Hamming
window

uk(m)×
(

0.54− 0.46 cos

(
2π

(m− 1)

n

))
,

for m ∈ {1, . . . , n}, k ∈ {1, . . . , N}.

5.3.1 Paw graph

We consider the paw graph studied in [60].

4

3

21

1

Figure 5.1 – Paw graph.

Natural frequency ω = 0

Exciting node 1

We solve equation (5.1) with ω = 0, ε = 0.2 for the paw graph. The left panel of Figure
5.2 shows the time evolution of the solutions uk, k ∈ {1, . . . , 4} when exciting the system
at node j = 1 with initial amplitude u1(0) = ρ = 3. We see clearly a localized solution;
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it can be observed over more than a thousand periods with no significant decay. The
logarithm with base 10 of the modulus of the discrete Fourier transform of the solutions
log10 (|ûk|) , k ∈ {1, . . . , 4} are shown on the right panel of Figure 5.2. The Fourier
components of the neighbor u2 corresponding to the linear mode and the nonlinear mode
are about equal. As we go to the next nearest neighbor the Fourier component due to
the nonlinear excitation of node 1 is a 100 times smaller than the linear response of the
network. This is a general feature that we see on all the systems we have analyzed. It
confirms the exponential localization of the nonlinear mode.

From the Fourier spectrum, we determine that u1 oscillates at the nonlinear frequency
(5.5) Ω0 = 6π

√
π

Γ2( 1
4)
≈ 2.54 and at the odd harmonics of Ω0 (3Ω0 and weakly at 5Ω0) due

to the Fourier expansion of the solution (5.3) (formula (D.4) Appendix C)

u1(t) = ρ cn

(
ρt,

1√
2

)
≈ 4
√

2 Ω0 [b1 cos (Ω0t) + b3 cos (3Ω0t) + b5 cos (5Ω0t) + . . . ] ,

(5.37)
where

b1 =
e
−π
2

1 + e−π
, b3 =

e
−3π
2

1 + e−3π
, b5 =

e
−5π
2

1 + e−5π
.

The solutions shown in Figure 5.2 are such that u1 = O (ρ) and |u2| = O
(
ε
ρ

)
, |u3| =

|u4| = O
(
ε
ρ3

)
. To describe the evolution of u2, u3 and u4, it is then natural to reduce

the system (5.1) to the linear system forced by u1

ü1 = −u3
1. (5.38)

ü2

ü3

ü4

 = −ε

 3 −1 −1
−1 2 −1
−1 −1 2

u2

u3

u4

+ εu1

1
0
0

 . (5.39)

The Fourier representation shows that the nearest neighbor u2 and similarly the
next nearest neighbors u3 and u4 oscillate at the nonlinear frequency Ω0 and at the
eigenfrequencies (5.15) of the matrix ε∆1

√
εσ1 =

√
0.2
(

2−
√

3
)
≈ 0.23,

√
εσ3 =

√
0.2
(

2 +
√

3
)
≈ 0.86,

where

∆1 =

 3 −1 −1
−1 2 −1
−1 −1 2

 . (5.40)
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The eigenvectors of ∆1 are

z1 =
1√

6− 2
√

3

 √3− 1
1
1

 , z2 =
1√
2

 0
1
−1

 , z3 =
1√

6 + 2
√

3

 √3 + 1
−1
−1

 .

(5.41)
The absence of the eigenfrequency

√
εσ2 =

√
0.2× 3 ≈ 0.77 is due to∑

k∼1

z2
k−1 = z2

1 = 0.

t
0 2 4 6 8 10

u
j

-3

-2

-1

0

1

2

3

1

2 3 4

frequency
0 1 2 3

lo
g

1
0
|F

F
T

(u
j)|

-6

-4

-2

0

1

2

3 4

Figure 5.2 – Solution of equation (5.1) for the paw graph and an initial condition u1(0) =
3, u2(0) = u3(0) = u4(0) = 0. Left panel: time evolution of u1 (red online), u2 (blue
online), u3 (green online) and u4 (black online). Right panel: Fourier transform of the
solutions û1 (red online), û2 (blue online), û3 (green online) and û4 (black online). The
parameters are ω = 0, ε = 0.2.

The equations (5.14) are then

α̈1 = −0.2
(

2−
√

3
)
α1 +

0.2
(√

3− 1
)√

6− 2
√

3
u1, (5.42)

α̈3 = −0.2
(

2 +
√

3
)
α3 +

0.2
(√

3 + 1
)√

6 + 2
√

3
u1, (5.43)

To conclude, when exciting node 1 with a large amplitude ρ, the evolution of u1 is given
by (5.3) and the evolution of u2, u3 and u4 byu2(t)

u3(t)
u4(t)

 = α1(t)z1 + α3(t)z3, (5.44)

where α1 and α3 are solutions of equations (5.42,5.43). Note that solving the reduced
system (5.38,5.39) yields the same results as the ones shown in Figure 5.2.
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Exciting node 2

To observe the different response of the system, we now excite node j = 2 with initial
amplitude u2(0) = ρ = 3 and ω = 0, ε = 0.2. The left panel of Figure 5.3 shows the time
evolution of the solutions uk, k ∈ {1, . . . , 4}. The logarithm with base 10 of the modulus
of the discrete Fourier transform of the solutions log10 (|ûk|) , k ∈ {1, . . . , 4} are shown
on the right panel of Figure 5.3.
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Figure 5.3 – Solution of equation (5.1) for the paw graph and an initial condition u2(0) =
3, u1(0) = u3(0) = u4(0) = 0. Left panel: time evolution of u1 (red online), u2 (blue
online), u3 (green online) and u4 (black online). Right panel: Fourier transform of the
solutions û1 (red online), û2 (blue online), û3 (green online) and û4 (black online). The
parameters are ω = 0, ε = 0.2.

The Fourier spectrum shows that u2 oscillates at the nonlinear frequency (5.5) Ω0 =
6π
√
π

Γ2( 1
4)
≈ 2.54 and at the odd harmonics of Ω0 (3Ω0 and weakly at 5Ω0). The solutions

shown in Figure 5.3 are such that u2 = O (ρ) and |uk| � ρ for k = 1, 3 and 4. To describe
the evolution of u1, u3 and u4, it is then natural to reduce the system (5.1) to the linear
system forced by u2 ü1

ü3

ü4

 = −ε

1 0 0
0 2 −1
0 −1 2

u1

u3

u4

+ εu2

1
1
1

 . (5.45)

The Fourier representation shows that the nearest neighbors u1, u3 and u4 oscillate
at the nonlinear frequency Ω0 and at the eigenfrequencies (5.15) of the matrix ε∆2

√
εσ1 =

√
εσ2 =

√
0.2× 1 ≈ 0.447, (5.46)

where

∆2 =

1 0 0
0 2 −1
0 −1 2

 . (5.47)
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The eigenvectors of ∆2 are

z1 =
1√
2

 0
1
1

 , z2 =

 1
0
0

 , z3 =
1√
2

 0
1
−1

 .

Here, only one linear frequency exists. The absence of the eigenfrequency
√
εσ3 =√

0.2× 3 is due to ∑
k∼2,k<2

z3
k +

∑
k∼2,k>2

z3
k−1 = z3

1 + z3
2 + z3

3 = 0.

Exciting node 3

We now excite node 3 with initial amplitude u3(0) = ρ = 3 and ω = 0, ε = 0.2. The
left panel of Figure 5.4 shows the time evolution of the solutions uk, k ∈ {1, . . . , 4}. The
logarithm with base 10 of the modulus of the discrete Fourier transform of the solutions
log10 (|ûk|) , k ∈ {1, . . . , 4} are shown on the right panel of Figure 5.4.

t
0 2 4 6 8 10

u
j

-3

-2

-1

0

1

2

3

1 2

3

4

frequency
0 1 2 3

lo
g

1
0
|F

F
T

(u
j)|

-5

-4

-3

-2

-1

0

1

2

3

4

Figure 5.4 – Solution of equation (5.1) for the paw graph and an initial condition u3(0) =
3, u1(0) = u2(0) = u4(0) = 0. Left panel: time evolution of u1 (red online), u2 (blue
online), u3 (green, online) and u4 (black online). Right panel: Fourier transform of the
solutions û1 (red online), û2 (blue online), û3 (green online) and û4 (black online). The
parameters are ω = 0, ε = 0.2.

From the Fourier spectrum, we can determine that u3 oscillates at the nonlinear
frequency (5.5) Ω0 = 6π

√
π

Γ2( 1
4)
≈ 2.54 and at the odd harmonics of Ω0 (3Ω0 and weakly

at 5Ω0). The solutions shown in Figure 5.4 are such that u3 = O (ρ) and |uk| � ρ for
k = 1, 2 and 4. To describe the evolution of u1, u2 and u4, it is then natural to reduce
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the system (5.1) to the linear system forced by u3ü1

ü2

ü4

 = −ε

 1 −1 0
−1 3 −1
0 −1 2

u1

u2

u4

+ εu3

0
1
1

 (5.48)

The Fourier representation shows that the nearest neighbors u2 and u4 (and simi-
larly the next nearest neighbor u1) oscillate at the nonlinear frequency Ω0 and at the
eigenfrequencies (5.15) of the matrix ε∆3

√
εσ1 =

√
0.2

(
2− 2 cos

(
2π

9

))
≈ 0.3059,

√
εσ2 =

√
0.2

(
2− 2 cos

(
4π

9

))
≈ 0.5749,

√
εσ3 =

√
0.2
(

2 + 2 cos
(π

9

))
≈ 0.8808.

where

∆3 =

 1 −1 0
−1 3 −1
0 −1 2

 . (5.49)

The eigenvectors of ∆3 are

z1 =

 0.844
0.449
0.293

 , z2 =

 0.449
−0.293
−0.844

 , z3 =

 0.293
−0.844
0.449

 .

Natural frequency ω 6= 0

We now analyze a non zero natural frequency, choose ω = 3 and ε = 0.2 and solve the
graph nonlinear wave equation (5.1) for the paw graph. The left of Figure 5.5 shows
the time evolution of the localized solutions at j = 1 with amplitude u1(0) = 3. Again
this has been observed for over a thousand periods with no significant decay. The right
of Figure 5.5 shows the logarithm with base 10 of the modulus of the discrete Fourier
transform of the solutions log10 (|ûk|) , k ∈ {1, . . . , 4}.

Note that u1 oscillates at frequencies Ω, 3Ω and weakly at 5Ω where Ω ≈ 4. The
nearest neighbor u2 (and similarly the next nearest neighbors u3 and u4) oscillate at the
nonlinear frequency Ω and at eigenfrequencies (5.21) which are almost equal to those in
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(5.36) √
εσ2

1 + ω2 ≈
√

ε

2ω
σ1 + ω ≈ 3,√

εσ2
3 + ω2 ≈

√
ε

2ω
σ3 + ω ≈ 3.12.
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Figure 5.5 – Solution of equation (5.1) for the paw graph and an initial condition u1(0) =
3, u2(0) = u3(0) = u4(0) = 0. Left panel: time evolution of u1 (red online), u2 (blue
online), u3 (green online) and u4 (black online). Right panel: Fourier transform of the
solutions û1 (red online), û2 (blue online), û3 (green online) and û4 (black online). The
parameters are ω = 3, ε = 0.2.

We proceed to validate the modulation theory by solving the graph nonlinear Schrödinger
equation (5.23) with ω = 3 and ε = 0.2. From this solution, we calculate u using the
change of variables (5.22). The comparison of Figs. 5.5 and 5.6 confirm the approxima-
tion by the modulation theory.

When exciting initially node 2, we note that u2 oscillates at frequencies Ω, 3Ω and
weakly at 5Ω where Ω ≈ 4. The nearest neighbors u1, u3 and u4 oscillate at the nonlinear
frequency Ω and at eigenfrequencies (5.21)√

εσ2
1 + ω2 =

√
εσ2

2 + ω2 ≈ 3.033.

Similarly, exciting initially node 3, we observe that u3 oscillates at frequencies Ω, 3Ω
and weakly at 5Ω where Ω ≈ 4. The nearest neighbors u2 and u4 (and similarly the next
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nearest neighbor u1) oscillate at the nonlinear frequency Ω and at eigenfrequencies (5.21)√
εσ2

1 + ω2 ≈ 3.0156,√
εσ2

2 + ω2 ≈ 3.0546,√
εσ2

3 + ω2 ≈ 3.1266.

t
0 2 4 6 8 10

u
j

-3

-2

-1

0

1

2

3

1

2

3 4

frequency
2 3 4 5

lo
g

1
0
|F

F
T

(u
j)|

-5

-4

-3

-2

-1

0

1

2

3
4

Figure 5.6 – Solution of equation (5.23) for the paw graph plotted in the u variables using
(5.22) for an initial condition u1(0) = 3, u2(0) = u3(0) = u4(0) = 0. Left panel: time
evolution of u1 (red online), u2 (blue online), u3 (green online) and u4 (black online).
Right panel: Fourier transform of the solutions û1 (red online), û2 (blue online), û3 (green
online) and û4 (black online). Same parameters as in Figure 5.5.

5.3.2 Cycle 6
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3

21
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5
1

Figure 5.7 – Cycle 6
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Natural frequency ω = 0

We now consider the cycle 6 where all the nodes are invariant under cyclic permutations,
so that they behave the same way. We solve equation (5.1) with ω = 0 and ε = 0.2 when
exciting the system at site j = 1 with initial amplitude u1(0) = 3. The left panel of
Figure 5.8 shows the time evolution of the solutions uk, k ∈ {1, . . . , 6}. Notice how u1 is
large while u2, u3 and u4 are small, indicating a localized oscillation. The right panel of
Figure 5.8 shows the logarithm with base 10 of the modulus log10 (|ûk|) , k ∈ {1, . . . , 6}
of the discrete Fourier transform of the solutions. The permutation symmetry of nodes
2↔ 6 and 3↔ 5 is reflected in the solutions u2 = u6 and u3 = u5. This network should
show five linear modes, nevertheless due to the symmetry only three linear modes are
present.

The dynamics at nodes {2, . . . , 6} is described by the linear system
ü2

ü3

ü4

ü5

ü6

 = −ε


2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2



u2

u3

u4

u5

u6

+ εu1


1
0
0
0
1

 (5.50)

Using the result of the Fourier spectrum, we can determine that u1 oscillates at
frequencies Ω0 ≈ 2.54, 3Ω0 and weakly at 5Ω0. The nearest neighbors (u2 and u6) and
next nearest neighbors (u3 and u5) oscillate at frequencies Ω0 and at the eigenfrequencies
(5.15) of the matrix ε∆1

√
εσ1 =

√
0.2
(

2−
√

3
)
≈ 0.23,

√
εσ3 =

√
0.2× 2 ≈ 0.63,

√
εσ5 =

√
0.2
(

2 +
√

3
)
≈ 0.86,

where

∆1 =


2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

 . (5.51)
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The eigenvectors of ∆1 are

z1 =
−1

2
√

3

(
1,
√

3, 2,
√

3, 1
)T

,

z2 =
1

2
(1, 1, 0,−1,−1)T ,

z3 =
1√
3

(1, 0,−1, 0, 1)T ,

z4 =
1

2
(−1, 1, 0,−1, 1)T ,

z5 =
1

2
√

3

(
−1,
√

3,−2,
√

3,−1
)T

.

The absence of the frequencies
√
εσ2 and

√
εσ4 is due to∑

l∼1

z2
l−1 = z2

1 + z2
5 = 0,∑

l∼1

z4
l−1 = z4

1 + z4
5 = 0.
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Figure 5.8 – Solution of equation (5.1) for the cycle 6 for initial amplitudes u1(0) =
3, u2(0) = u3(0) = u4(0) = u5(0) = u6(0) = 0. Left panel: time evolution of u1 (red
online), u2 (blue online), u3 (green online) and u4 (black online). Right panel: Fourier
transform of the solutions û1 (red online), û2 (blue online), û3 (green online) and û4

(black online). The parameters are ω = 0, ε = 0.2.

Natural frequency ω 6= 0

We consider the equation (5.1) with ω = 3 and ε = 0.2 for cycle 6 when exciting the
system at site j = 1 with initial amplitude u1(0) = 3.
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Note that u1 oscillates at frequencies Ω, 3Ω and weakly at 5Ω where Ω ≈ 4. The
nearest neighbors and next nearest neighbors oscillate at frequency Ω and at the eigen-
frequencies (5.21) of the matrix ε∆1 + ω2I√

εσ2
1 + ω2 ≈ 3,

√
εσ2

3 + ω2 ≈ 3.06,
√
εσ2

5 + ω2 ≈ 3.12.
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Figure 5.9 – Solution of equation (5.1) for the cycle 6 for initial amplitudes u1(0) =
3, u2(0) = u3(0) = u4(0) = u5(0) = u6(0) = 0. Left panel: time evolution of u1 (red
online), u2 (blue online), u3 (green online) and u4 (black online). Right panel: Fourier
transform of the solutions û1 (red online), û2 (blue online), û3 (green online) and û4

(black online). The parameters are ω = 3, ε = 0.2.

Solving the graph nonlinear Schrödinger equation (5.23) with ω = 3 and ε = 0.2 for
cycle 6 and calculating u using the change of variables (5.22), yields the same results as
the ones shown in Figure 5.9.

5.3.3 Localization vs delocalization

Up to now, we choose a large amplitude ρ and a small coupling ε. This leads to a
localized solution. For a fixed amplitude, if we increase the coupling, the linear spectrum
of the matrix ∆j will collide with the nonlinear frequency Ω0. For lattices, this is the
well-known modulational instability, see for example [59] and [24]. For general networks,
the localized solution disappears and there is a strong coupling with the neighboring
nodes. Also, the spectrum does not show well defined frequencies. To illustrate the
delocalization regime, we choose ω = 0, ε = 0.5 and solve equation (5.1) for the paw
graph with initial amplitude u1(0) = 2. Figure 5.10 shows the time evolution of the
solutions, there is a strong exchange of energy between nodes.
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Figure 5.10 – Time evolution of u1 (red online), u2 (blue online), u3 (green online) and
u4 (black online) solutions of (5.1) with ω = 0, ε = 0.5 in the paw graph for initial
amplitudes u1(0) = 2, u2(0) = u3(0) = u4(0) = 0.

Using the localized character of the solution and the Fourier spectrum as indicators,
we examined the parameter plane (ε, ρ) and plotted the regions of localization versus de-
localization. First we consider the paw graph and plot these regions for initial excitations
of nodes 1, 2 and 3. This is shown in Figure 5.11.
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Figure 5.11 – Regions of delocalization in the (ε, ρ) plane with ω = 0, exciting initially
nodes 1, 2 and 3 for the paw graph and any node for cycle 6 with amplitude ρ. The lines
separates the regions of localization (large ρ) and the regions of delocalization (small ρ).

The separation curve is O (
√
ε) since the eigenfrequencies of ε∆j scale like

√
ε. As

one can see, the amplitudes for localization are larger for node 1 then node 3 and finally
node 2. The maximal linear frequencies are

√
εσN−1 where σN−1 = 1.93, 1.96 and 1,

respectively for nodes 1,3 and 2. Then the linear spectrum is closer to the nonlinear
frequency Ω0 for nodes 1 and 3 and farther for node 2. Nevertheless, we observe a
difference between nodes 1 and 3 in Figure 5.11 and this could be due to their different
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degrees, d1 = 1 and d3 = 2.

To investigate the effect of the degree on the localization region we compare in Figure
5.11 the paw graph, exciting node 3 (black online) where d3 = 2, and any node of cycle 6
(green online), where all nodes have degree 2, for ω = 0. Note that both curves are very
close. The curve for node 1 of the paw graph is above the one for node 3. It is apart
from the one for cycle 6 despite the fact that the two maximum frequencies are equal
σN−1 = 1.93.

Taking ω 6= 0 leads to very close results as the linear spectrum and the nonlinear
frequency are both approximately shifted by ω. When choosing a quintic nonlinearity
in equation (5.1), the nonlinear frequency is much larger while the linear spectrum is
unchanged. Then, we need to increase ε considerably to observe coupling to the linear
modes.

5.4 Conclusion

We studied localized solutions for a nonlinear graph wave equation. These are approx-
imated by the Duffing equation for the excited node and a forced linear system for the
neighboring nodes. We validate this approximation by calculating the Fourier spectrum
of the numerical solution. This shows the nonlinear frequency of the excited node to-
gether with the normal eigenfrequencies of the linear system describing the neighboring
nodes.

The existence of these localized solutions is confirmed using numerical simulations
and modulation theory. We also examined the localization / delocalization regions in the
parameter plane (ε, ρ). We confirm that localization holds when the nonlinear frequency
is well above the linear spectrum which is bounded by O(

√
ε) . The localization curve

ρ(ε) depends on the maximal normal eigenfrequency.
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Conclusion and Perspectives

The graph wave equation arises naturally from conservation laws on a network. There,
the usual continuum Laplacian is replaced by the graph Laplacian. We consider such
a wave equation with a cubic on-site nonlinearity on a general network. This system
models complex physical networks in mechanical and electrical engineering.

First, we identified normal modes of the linear theory that extend nonlinear periodic
orbits. These are the Goldstone mode and other special modes. The corresponding eigen-
vectors have components in {1}, {−1, 1} or {−1, 0, 1}; we call them monovalent, bivalent
and trivalent respectively. These orbits and their stability were analyzed numerically.
It would be interesting to confirm that the stability results we obtained, can be extended
to general graphs. We could also try to find bi-periodic orbits that involve two nonlinear
normal modes and examine their linear stability. The main model in this thesis was the
nonlinear graph wave equation with on-site nonlinearity. It would be interesting to study
models with intersite nonlinearity, in particular the Fermi-Pasta-Ulam model.

Bivalent graphs have been characterized as regular bi-partite graphs and their exten-
sions obtained by adding edges between vertices with the same value for the considered
eigenvector. Trivalent graphs are obtained from -what we call- soft regular graphs by
applying transformations of graphs (addition of an edge between nodes of same value,
extension/reduction of soft nodes, replace an edge by a soft square). To determine if a
given graph is bivalent or trivalent is a difficult question; some answers can be given for
special configurations.

We examined localized periodic solutions stemming from the interplay between non-
linearity and discreteness. We approximated these by a Duffing oscillator for the excited
node and a forced linear system for the rest of the network. This approximation was
validated by Fourier analysis and modulation theory. It would be interesting to examine
the evolution of two excited nodes.
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Appendix A

Spectrum of cycles and chains

Spectrum of cycles

For cycles, the graph Laplacian ∆ is a circulant matrix where each row is shifted to the
right by one element relative to the preceding row

∆ =



2 −1 0 . . . 0 −1
−1 2 −1 0 . . . 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 −1 2 −1
−1 0 . . . 0 −1 2


. (A.1)

The spectrum of ∆ is well known [61]. The repeated eigenvalues are

ω2
2k = ω2

2k+1 = 4 sin2

(
kπ

N

)
, (A.2)

for k = 1, . . . , N−1
2 (resp. k = 1, . . . , N−2

2 ) if N is odd (resp. N is even). The first
eigenvalue ω2

1 = 0 is simple. When N is even, the last one ω2
N = 4 is also simple. The

components of Goldstone eigenvector v1
m = 1√

N
, m ∈ {1, ..., N}. The components of the

corresponding orthonormal eigenvectors vj , j ∈ {2, . . . , N} are

vjm =

√
2

N


cos
(
jπ
N (m− 1)

)
, m ∈ {1, . . . , N} , j even,

sin
(

(j−1)π
N (m− 1)

)
, m ∈ {1, . . . , N} , j odd.

(A.3)
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Spectrum of chains

For a chain of length N − 1 (N nodes), the graph Laplacian is a tridiagonal matrix

∆ =



1 −1 0 . . . 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 . . . 0 −1 1


. (A.4)

The spectrum of ∆ is well known [61]. The eigenvalues are simple:

ω2
j = 4 sin2

(
(j − 1)π

2N

)
, j ∈ {1, ..., N}. (A.5)

The component m of the corresponding orthonormal eigenvector vj is

vjm =

√
2

N
cos

(
(j − 1)π

N

(
m− 1

2

))
, j,m ∈ {1, ..., N}. (A.6)
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Appendix B

Stability of periodic orbits

Suppose that x(t) = γ(t) = γ (t+ T ) is a periodic orbit of period T for the differential
equation dx

dt = f(x). If the vector field f ∈ C1 we can linearize the ODE about γ by
setting x(t) = γ(t) + y(t) and expanding f in a Taylor series to obtain

d

dt
(x + y) = f (γ(t)) +

dy

dt
= f (γ(t) + y) = f (γ(t)) + Df (γ(t)) y + o (y) . (B.1)

If we neglect the o (y) term we obtain the linearization

dy

dt
= Df (γ(t)) y = B(t)y, (B.2)

where the matrix B(t) is periodic in time. Such systems can be analyzed using Floquet
theory ([39] p.174, see also [62]). The fundamental matrix solution of (B.2) is M(t) whose
columns are linearly independent solutions of (B.2) for the initial conditions given by the
columns of the identity matrix. For t = T , the period of γ, the matrix M = M(T )
is called the monodromy matrix. The eigenvalues of M are the Floquet multipliers,
and Floquet’s theorem shows that all the solutions of (B.2) are bounded whenever the
Floquet multipliers have magnitude small than one. For the case (B.2), one of the Floquet
multipliers is trivially one.

If linear Hamiltonian system has characteristic multiplier ρi then it also has the
multipliers ρ∗i and ρ−1

i . Then, linear periodic Hamiltonian system is stable if and only if
all characteristic multipliers lie on unit circle.
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Appendix C

Basic properties of the elliptic
functions

Consider the upper limit φ of the integral

x =

∫ φ

0

dy√
1− κ2 sin2 y

, (C.1)

as a function of x. The functions

cn (x, κ) = cos (φ) ,

sn (x, κ) = sin (φ) ,

dn (x, κ) =

√
1− κ2 sin2 φ,

are the Jacobi elliptic functions cosine, sine and delta, respectively; see [41] p.567. Here
κ ∈ [0, 1] is the elliptic modulus, and κ′ =

√
1− κ2 is the complementary modulus. The

functions cn and sn are periodic functions with period 4K, while dn is periodic with
period 2K, where

K ≡ K(κ) =

∫ π
2

0

dθ√
1− κ2 sin (θ)2

, K ′ ≡ K ′(κ) = K(κ′), (C.2)

which for κ = 1√
2
gives

K

(
1√
2

)
= K ′

(
1√
2

)
=

Γ2
(

1
4

)
4
√
π
≈ 1.8541,

where Γ(.) is the gamma function and Γ
(

1
4

)
≈ 3.6256.
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One has

cn (−x, κ) = cn (x, κ) , sn (−x, κ) = −sn (x, κ) , dn (−x, κ) = dn (x, κ) .

We have

d

dx
cn (x, κ) = −sn (x, κ) dn (x, κ) ,

d

dx
sn (x, κ) = cn (x, κ) dn (x, κ) ,

d

dx
dn (x, κ) = −κ2 sn (x, κ) cn (x, κ) .

Moreover the following identities hold:

cn2 (x, κ) + sn2 (x, κ) = 1,

dn2 (x, κ) + κ2sn2 (x, κ) = 1,

dn2 (x, κ)− κ2cn2 (x, κ) = 1− κ2.

The Fourier series of the cosine elliptic function is given by

cn (x, κ) =
2π

κK

∞∑
m=0

qm+ 1
2

1 + q2m+1
cos
(

(2m+ 1)
πx

2K

)
, (C.3)

sn (x, κ) =
2π

κK

∞∑
m=0

qm+ 1
2

1 + q2m+1
sin
(

(2m+ 1)
πx

2K

)
, (C.4)

dn (x, κ) =
π

2K
+

2π

K

∞∑
m=1

qm

1− q2m
cos

(
2mπx

2K

)
, (C.5)

where q = e
−πK′
K so that q = e−π for κ = 1√

2
.
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Appendix D

The Duffing oscillator

The period of u solution of
d2u

dt2
= −βu3. (D.1)

Integrating the equation, we get(
du

dt

)2

=
β

2

(
ρ4 − u4

)
,

where we assumed u(0) = ρ and du
dt (0) = 0. This yields

dt = ±
√

2

β

du√
ρ4 − u4

.

The period T0 of u(t) is then given by the elliptic integral

T0 = 4

√
2

β

∫ ρ

0

du√
ρ4 − u4

=
4
√

2

ρ
√
β

∫ 1

0

dz√
1− z4

.

We know that ∫ 1

0

dz√
1− z4

=
Γ2
(

1
4

)
4
√

2π
.

Then, the period of oscillations is

T0 =
Γ2
(

1
4

)
ρ
√
βπ

. (D.2)

The solution of (D.1) can be written in terms of the cosine Jacobi elliptic function

u(t) = ρ cn

(
ρ
√
βt,

1√
2

)
. (D.3)
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The period of the cosine elliptic function is T0 =
4K

(
1√
2

)
ρ
√
β

=
Γ2( 1

4)
ρ
√
βπ

. This confirms the
calculation above for (D.2).

The Fourier series (C.3) of the solution (D.3) is

u(t) =
8π
√

2√
βT0

∞∑
m=0

b2m+1 cos [(2m+ 1)Ω0t] , (D.4)

where

Ω0 =
2π

T0
, b2m+1 =

e−π(m+ 1
2)

1 + e−π(2m+1)
.
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Appendix E

Action-angle variables for the
quartic potential

The Hamiltonian of the quartic potential

HG(q, p) =
1

2
(p)2 +

1

4N
q4. (E.1)

The action variable as a function of the energy ([56] p.103-116) is

I ≡ 1

T0

∮
p (q1, E0) dq1 =

2

T0

∫ α

−α

√
2

(
E0 −

(q1)4

4N

)
dq1 =

2α
√

2E0

T0

∫ 1

−1

√
1− x4 dx,

(E.2)

where α = (4NE0)
1
4 , the angle θ is defined modulo T0 instead than 2π where T0 =

Γ2( 1
4)√
π

is the period of the cosine elliptic function cn
(
t, 1√

2

)
. Evaluation of the integral gives

∫ 1

−1

√
1− x4 dx =

T0

√
2

6
.

The action is thus
I =

1

3
√
N

(4NE0)
3
4 . (E.3)

By inverting, we obtain the energy E0(I) as a function of the action

E0 =
1

4N
1
3

(3I)
4
3 ≡ HG(I). (E.4)
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Appendix F

Derivation of the Graph nonlinear
Schrödinger equation

We consider the continuum equation of (1.22) (see [63])

d2u

dt2
+ ω2u = −ε∆u− u3. (F.1)

To eliminate the term ω2u, we write

u =
√
εψ(T )eiωt +

√
εψ∗(T )e−iωt, (F.2)

where T = εt and ψ∗ is the complex conjugate of ψ. We have

d2u

dt2
= ε

5
2

(
d2ψ

dT 2
eiωt +

d2ψ∗

dT 2
e−iωt

)
+ 2iωε

3
2

(
dψ

dT
eiωt − dψ∗

dT
e−iωt

)
− ω2√ε

(
ψeiωt +ψ∗e−iωt

)
.

The left hand side of the equation (F.1) is

d2u

dt2
+ ω2u = ε

5
2

(
d2ψ

dT 2
eiωt +

d2ψ∗

dT 2
e−iωt

)
+ 2iωε

3
2

(
dψ

dT
eiωt − dψ∗

dT
e−iωt

)
.

The right hand side of the equation (F.1) gives

−ε∆u− u3 = −ε 3
2

(
∆ψeiωt + ∆ψ∗e−iωt +ψ3e3iωt + (ψ∗)3 e−3iωt + 3 |ψ|2ψeiωt

+ 3 |ψ|2ψ∗e−iωt
)
.

We obtain for the order O
(
ε
3
2

)
2iω

dψ

dT
eiωt − 2iω

dψ∗

dT
e−iωt = −∆ψeiωt −∆ψ∗e−iωt −ψ3e3iωt − (ψ∗)3 e−3iωt

− 3 |ψ|2ψeiωt − 3 |ψ|2ψ∗e−iωt.
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Multiplying by e−iωt, we get

2iω
dψ

dT
− 2iω

dψ∗

dT
e−2iωt = −∆ψ −∆ψ∗e−2iωt −ψ3e2iωt − (ψ∗)3 e−4iωt

− 3 |ψ|2ψ − 3 |ψ|2ψ∗e−2iωt.

The terms with a non zero phase are rotating fast and average to zero on the slow
time scale. Only the terms that have 0 phase contribute. This is the rotating wave
approximation ([8] p.813). We obtain the nonlinear Schrödinger equation

2iω
dψ

dT
= −∆ψ − 3 |ψ|2ψ. (F.3)
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