
HAL Id: tel-01939425
https://theses.hal.science/tel-01939425

Submitted on 29 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Méthodes de pilotage des flux avec prise : en compte des
incertitudes prévisionnelles

Maxime Claisse

To cite this version:
Maxime Claisse. Méthodes de pilotage des flux avec prise : en compte des incertitudes prévisionnelles.
Autre [cs.OH]. Université Paris Saclay (COmUE), 2018. Français. �NNT : 2018SACLC022�. �tel-
01939425�

https://theses.hal.science/tel-01939425
https://hal.archives-ouvertes.fr


NNT : 2018SACLC022

Thèse de Doctorat
de

L’Université Paris-Saclay
Préparée à

CentraleSupélec
Ecole Doctorale no573

Interface
Sciences et technologies industrielles

par

M. CLAISSE Maxime

Production Planning under Uncertainties
and Forecasts Update

Thèse présentée et soutenue à Gif-sur-Yvette le 12/02/2018:
M., CHU, Chengbin, Professeur, CentraleSupélec

Directeur de thèse
M., JEMAI, Zied, Maître de Conférences, Université de Tunis el Manar

Co-Directeur de thèse
M., KACEM, Imed, Professeur, Université de Lorraine

Président du jury
M., BABAI, Mohamed-Zied, Professeur, Kedge Business School

Rapporteur
Mme, GHAFFARI, Asma, Maître de Conférences, CentraleSupélec

Examinateur
M., ARTIBA, Abdelhakim, Professeur, Université de Valenciennes

Examinateur
M., VAN DELFT, Christian,Professeur associé, HEC Paris

Examinateur





Remerciements

Je tiens tout d’abord à remercier vivement les professeurs Chengbin Chu et Zied
Jemai qui ont encadré cette thèse. Leurs connaissances, culture, et vision scientifique
et industrielle m’ont éclairé dans l’avancée de ces travaux, et m’ont également beau-
coup apporté dans un contexte plus large sur l’appréhension de situations à double
caractère technique et applicatif.

J’exprime ensuite mes remerciements les plus sincères à Monsieur Mohamed-Zied
Babai et Monsieur Imed Kacem, qui, en tant que rapporteurs, ont accepté d’évaluer
ce travail. Leurs pertinents conseils et remarques ont apporté une aide précieuse
pour améliorer et mettre en relief ce travail.

Je remercie également Madame Asma Ghaffari, Monsieur Christian Van Delft, et
Monsieur Abdelhakim Artiba, d’avoir accepté d’être membres du jury, pour l’intérêt
qu’ils ont manifesté pour ces travaux, et pour leurs échanges constructifs.

Je tiens ensuite à remercier Messieurs Jean-Claude Bocquet, Bernard Yannou, et
Vincent Mousseau, qui dirigent ou ont dirigé le laboratoire et l’équipe de recherche
dans lesquels cette thèse a été effectuée, et grâce à qui mon environnement de travail
était propice à un épanouissement professionnel et personnel.

Je remercie chaleureusement Delphine, Sylvie et Corinne, qui ont tout d’abord
toujours été disponibles, à l’écoute, et dont l’aide m’a été particulièrement créatrice
de valeur; et qui, également, m’ont offert des jours au labo agréables par leur bonne
humeur, leur implication, et leur partage.

Cette thèse a été pour moi bien plus qu’une expérience professionnelle, mais
également une période personnelle riche en rencontres. Un immense merci à ma
famille du labo Ronay, Laurie, Toufic, Karim, Hakim, Hadi, Mehdi, ces années de
thèse resteront nos moments de rencontre, remplis d’excellents souvenirs et de vives
émotions.

Je ne remercierai jamais assez mes parents pour leur soutien inconditionnel, leur
immense aide, et leur implication. ”Quitte à faire des études, autant aller jusqu’au
bout. Et puis, si tu ne le fais pas maintenant, tu ne le feras jamais”

Enfin, je remercie infiniment ma femme Denis, qui pendant ces années, a joué
un rôle absolu. Elle a toujours été là pour me soutenir, m’aider, m’écouter, me faire
taire quand il le fallait, me faire avancer, toujours dans le bon sens. Elle a su quoi
dire, quoi faire, quoi penser pour que cette aventure aboutisse. Elle m’a supporté,
poussé vers l’avant, elle m’a fait atteindre cette accomplissement;

elle m’a fait grandir.

I



Cette thèse s’est faite grâce à elle. Merci du fond du coeur mi amor.

II





Abstract

The current environment of the international market of industrial goods, and
the way it evolves through time, has created great challenges in recent years for
organizations involved. Industrial companies have actually to face more and more
volatility, respond to increasing service level, and be able to adapt themselves more
rapidly, whereas costs need on the other way to be controlled and kept in a rational
budget. Actors need consequently to implement adapted management processes
in their organization, and one of the important points needed to be managed is
the uncertain characteristic of the parameters and variables used in their decisional
process. It may have indeed large consequences on the resulting state of health of
the company, as it influences the methods of resources allocation that may finally
not be coherent with the requirements of the market.

Among these methods, Production Planning, as part of tactical operations in-
tegrated into the Supply Chain process, is a key procedure allowing decisioners to
balance demand and production resources. When this specific decisional process
is considered, one of the most critical uncertainties to handle is the ones coming
from the Forecasted Demand. In this context, in order to manage indicators at
stake, such as service level and costs, best practices and management techniques
have appeared, including notably organizational and decisional structures creating
flexibility in the process. The Rolling-Plan Framework is a common practice of
this family. However, it also creates instability since the updates procedures of the
Rolling-Plan framework make the data set on which the decisions are taken change
constantly. Consequently, although the gain in terms of flexibility is non-negligible
for the uncertainties management, it generates on the other hand dynamics com-
plexity.

We study in this work how to deal this dynamics complexity generated by Up-
dates of the Forecasted Demand made in a Rolling-Plan Framework of a Production
Planning Process. In particular, the question to which we answer is how to optimize
the Production Plan in such a context.

This issue is tackled considering a single item single level production system. We
first examine the dynamics and stochastic characteristics of a forecasted demand in
the environment defined, in order to understand how uncertainties and dynamics of
the variables involved impact the system. We hence manage to build a general math-
ematical model to represent it in the context of our study that can be exploitable
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for analytical optimization. More precisely, we analyse the sources of uncertainties,
and developped a double-level probabilistic structure to represent the dynamics and
the uncertainties of the forecasted variables. We study analytically the behavior
of such model, and how this modelling approach impacts the planning system in a
rolling framework, in particular how it can improve the performances in terms of
uncertainties management.

Then, the detailed study of special considerations allows us to design a theo-
retical optimization model of Production Planning taking into account the corre-
sponding forecasted demand model. In particular, we design a specific and adapted
stochastic dynamic programming approach, allowing then us to build a particular
solutions computation framework. We proove that the method developed allows us
to calculate the optimality of our problem in a general manner.

Besides, we apply the model and solution computation process in some study
cases. By assuming some key characteristics for the forecasted demand, as for in-
stance the use of the linear regression as forecasting technique, and for industrial
parameters such as the production lead-time, we manage to get some valuable ana-
lytical results thanks to a dynamic computation process. In particular, we prove the
optimality of solutions through an inductive reasoning based on expectations com-
putation. Depending on the assumptions and configurations in terms of industrial
parameters and variables, several prooves are realized to get the optimality. Then,
analyses and studies are performed leading us to adapative solutions and optimal
behaviors that have been proposed.

Solutions are also implemented and calculated with simulations in some particu-
lar numerical examples. Analyses and sensitivity studies are performed, highlighting
the performances of our optimization method, compared to others. Moreover, the
gain is quantified depending on the industrial environment faced by the system.
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Chapter 0

General Introduction

In this preliminary chapter, we briefly introduce the thesis so that the reader can
understand the context of our work, the challenges it faces, and how we contribute
to respond to them.

To do so, we first describe the background and the objectives of the thesis,
before going through the approaches adopted. Finally, we present the outline of this
manuscript.

1 Production Planning under Uncertainties and Forecasts Update



1. A CHALLENGING BACKGROUND Chapter 0

1 | A Challenging Background

In manufacturing companies, value is created by transforming resources into
goods that consumers and businesses are ready to buy. The supplying process
allowing this value creation begins from the early stage of raw material supply and
leads to final products. It needs to be managed efficiently to get as much value
as possible. Specifically, this process needs to be designed, planned, executed and
controlled to reach objectives under company’s resources constraints. These are the
aim of the Supply Chain Management.

One of the most important issues in that field is due to the general fact that
an ideal management of the Supply Chain requires precisely knowing the whole
functioning of the considered process, its environment, and its evolution. However,
the complexity of companies networks, combined with today’s markets diversity and
variability, makes this impossible. A lack of knowledge is systematically encountered
in any Supply Chain, creating uncertainties within the considered process. These
uncertainties, especially the customers-related ones, have great negative impacts on
the Supply Chain performances.

The future markets demand are indeed a key information that has big influ-
ence on the flows management efficiency. For instance, [Gruen, 2007] analyzed that
8.3% of the products worldwide are facing inventory shortages in the retail industry,
among those 47% are due to poor information concerning the sales and the cus-
tomers needs. Symetrically, 40% of the inventory surplus that become unsaleable
are engendered by a blurred vision of the future requirements of the market in mass
goods distribution. These lost sales cost more than 1% of the total turnover of the
supermarket industry [Lightburn, 2003].

Uncertainties, and more specifically the ones related to the future customer de-
mand, represent consequently an important challenge in the light of what’s at stake.

To better understand what would be required tomorrow by the markets, it is a
common practice to deal with forecasted customer demand. The demand uncertain-
ties are in that case linked with the accuracy of the forecasts made to predict the
future requirements: the more accurate the forecasts are, the less uncertainties there
are about the future demand. Consequently, one of the methods applied in practice
to cope with this uncertainties issue is to work on the accuracy of the forecasts. Dif-

Production Planning under Uncertainties and Forecasts Update 2



Chapter 0 1. A CHALLENGING BACKGROUND

ferent techniques exist, among those one consists of analyzing the historical data,
revealing the way the supply operations have been executed and evolved, in order to
understand how we could project this information into the future so that predictions
become more accurate. The study of such methods was the subject of the thesis
of [Hubert, 2013].

However, whatever the level of accuracy reached by these forecasting models,
they will remain wrong, by definition. Thus, even if we succeed in reducing the level
of uncertainties, in most cases they will stay non negligible. That is why managing
supply operations under uncertainties remains a central issue in Supply Chain Man-
agement. In the specific case of Production Planning, [Mula et al., 2006] showed the
importance of uncertainties management models, and [Sahin et al., 2013] qualified
the consideration of uncertainties in the planning process as a major determinant
of the market success of a company. Still, in spite of its importance, [Graves, 2011]
pointed out that the academic literature involving production planning under un-
certainties is relatively poor compared with deterministic counterparts.

In this thesis, our objective is to attempt fulfilling this gap. We are then partic-
ularly interested in studying how Production Planning under uncertainties can be
managed.

One of the techniques the most commonly used in industry to handle uncertain-
ties in Production Planning is to consider the problem through a Rolling Horizon
framework [Sahin et al., 2013]. The main principle is to consider that, inasmuch as
future customer demand cannot be known for sure, the process needs to be adaptive.
Thus, in this environment, data is regularly updated and re-treated so that decisions
taken within the supplying process are based on the most up-to-date sets of informa-
tion. Uncertainties are consequently minimal, and operations are more appropriately
executed to the current situation. A better reactivity is therefore observed, as well
as diminution of mismanagement, leading finally to better performances [Penlesky
et al., 1989].

However, although decisions are more consistent within the actual processing of
the production operations and customer demand, it raises an important modeling
issue. As a matter of fact, such environment creates instability due to frequent
disturbances into the decision system. In particular, the models used to represent
the future customer demand become dynamic, since demand forecasts are updated
as well. This engenders arduous problem structure, especially in terms of cost mini-
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2. PURPOSE OF THE THESIS Chapter 0

mization. As a consequence, a lack of attention from academics is observed, whereas,
notwithstanding the increase of the modeling complexity, the impact of taking into
account the forecasts updates into the Rolling Horizon Planning framework would
be widely positive [Sahin et al., 2013].

Our work aims at bringing material to contribute to this area.

2 | Purpose of the Thesis

It is therefore shown that uncertainties are a major issue in production planning.
Besides, by improving the flexibility of the decisional process, the Rolling Horizon
framework, commonly used in industry, allows a better management of the unknown
evolution of the demand but increases instability and creates optimization modeling
problems due to forecasts updates procedure.

As we will see in the following section, the existing literature suffers from a lack
of models in such context, whereas it corresponds not only to the real proceedings
of production planning and flows management in any manufacturing environment,
but also to a technique proved to be efficient in practice.

The object of this thesis is consequently to reduce this gap. Hence, we consider in
this work Production Planning under uncertainties in a Rolling Horizon framework.
In particular, we focus our study on production planning while taking into account
the dynamics of the demand forecasts updates.

In order to attempt responding to this challenge, the remainder of the manuscript
will investigate the following questions:

- How do Rolling Horizon Framework and forecasts updates impact the Demand
Forecasts Modeling?

- How do such models influence Supply Chain Performances?
- How can the forecasts update mechanism be modeled to be integrated into an
optimization model?

- What optimization model could be used in such cases?
- How can optimal solutions be computed?
- Are these solutions more efficient than classical production planning methods,
and to what degree do resulting production plans provide better performances?

- In which context can such solutions be implemented?
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We present in the following section the approaches pursued to answer these
questions.

3 | Approaches

3 .1 | Research Methodology

First and foremost, it is important to precise that the previous questions this
thesis attempts to answer have been examined in particular contexts. We indeed
defined the perimeter of our work to the single-product single-level production plan-
ning problem, so that the central issues of our research questions, namely the uncer-
tain and non-stationary characteristics of the forecasted demand, can be analyzed
in depth without adding any external complexity to the problem. For the same
reasons, we also make other assumptions, especially concerning the industrial envi-
ronment. The specific hypotheses taken in this work will be defined more precisely
in the next chapter.

In this context, we have tackled the problem through different steps of investi-
gation:

We first developed a general framework of study for the considered issue. It
enabled us to define in details the decisional system on which the modelings of the
problem have been based. This framework has been used as a pattern to examine
existing planning methods and understand the problem in a quantitative way by
defining variables, parameters, and indicators revealing performances that are at
stake. In particular, the demand-forecasting model has been deeply studied in order
to represent the dynamics of the rolling horizon with updates.

Second, based on this framework, we develop a general optimization model. In
order to catch both dynamic and stochastic features of the problem, a stochastic
dynamic programming approach is developed. In particular, the forecast-updating
mechanism is explicitly expressed in the stochastic modeling, and is integrated into
the optimization process.

Then, analytical studies have been performed in which we were able to develop
computational methods to get theoretical results of the corresponding optimization
problem. It has been especially the case when linear regressions have been used
as forecasting method in a fast delivery environment (zero- or one-period delivery
lead-times).
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The optimal solutions have been then tested through numerical simulations and
compared with other planning methods so that performances enhancement can be
evaluated.

3 .2 | Contributions

The main value created by this thesis is twofold.

First, from an academic point of view, our work led us to developing theoretical
optimization models and their associated optimization methods in a specific but not-
yet-studied non-stationary stochastic context. The models and their corresponding
solutions integrate indeed not only the uncertainties of the customer demand but
also its complex dynamics due to forecast updates. Moreover, although these issues
forced us to make relatively restrictive assumptions in terms of parameters to be
taken into consideration, the results found bring important value. The techniques
presented in this work are indeed purely analytic, and solutions are explicitly ex-
pressed. They also can be extended, allowing consequently to open new interesting
perspectives, that will be discussed at the end of this manuscript.

Second, the problem studied here has a real-life industrial background that prac-
titioners are facing regularly. Uncertainties and dynamic characteristics of the reg-
ularly updated customer demand are indeed the key factors influencing production
quantities that are still nowadays poorly understood. Thus, our work, bringing
theoretical answers to this specific field, has practical industrial implications by
contributing to real-life complex problems on a daily basis. It contributes in par-
ticular to the current high stakes field of flexible and agile Supply Chain, managing
uncertainties being nowadays at the heart of flow management.

4 | Thesis Structure

This dissertation is organized as follows.

In the first chapter, we will define precisely the problem considered in the the-
sis. To do so, we will begin by introducing and studying the production planning
environment, before analyzing the currently used methods. Our objective is here to
position clearly the thesis in its environment of study, and highlight its originality
in the set of current modelings, computation methods, or analyses.
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The second chapter is dedicated to the definition of the quantitative framework of
this study. In particular, the industrial system considered and the decision system
in which our works are inserted will be described in details. The impact of our
positioning on the modeling approaches for production planning will be studied,
and general methods will be assessed accordingly to understand quantitatively the
consequences of the non-stationarity of demand to forecast.

In the third chapter, the optimization model developed in this thesis will be
presented. To do so, we first describe our modeling in a standard case of study,
and the solution methods that can be implemented to take into account the forecast
updates in the optimization problem.

Then, we will study the specific case of simple linear regression method as fore-
casting method and fast delivery mode with no delivery lead-time. Explicit analyt-
ical expression of an optimal solution will be presented, and numerical study will
follow to prove its efficiency.

Chapter four deals with a first extension of our model. The aim of this chapter
is indeed to open the optimization models developed and the solution method im-
plemented for more complex situations by relaxing some hypotheses. Specifically,
we will present analytical results concerning a fast but non-null delivery lead time
of one period. Simple linear regression will still be used for demand forecasting, and
an extension to multiple linear regression will also be studied. In the same way as
previously, simulations will also be performed and the outcome will be analyzed to
understand the solutions in different situations. The goal is to study to what extent
our model can be used.

We finally conclude this thesis with highlights of our work, limits, and perspec-
tives for future researches.
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Problem Statement

In this chapter, we define precisely our positioning.
To do so, we first describe the context of Supply Chain Management and specif-

ically the Production Planning field, to which our work contributes. Our objective
is here to specify concepts that will be used in the sequel of the manuscript.

The second part of the chapter presents existing methods and academical works
related to this thesis. We show here how current academic situation suffers from a
lack of consideration for our issue.

Finally, this litterature review, along with the definition of the context of our
study, leads us to the precise positioning of this manuscript and highlights its rele-
vance.
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1 | Context

1 .1 | Supply Chain Management and Production Planning1

1.1.1 | Supply-Demand Relationship

Current economic and societal situations, and constant changes that take place in
our societies make business environment increasingly challenging for any people and
companies involved. Competitiveness and adaptability are thus nowadays among
the main concerns of all companies willing to prosper in such a globalized and
dynamic market. To succeed in developing such characteristics, companies must
focus on high quality products and services, delivered with a good service level
through flexible processes, while spending the least, in terms of money but also any
of other strategic resources. Supply Chain Management is the field whose goal is
to bring answers to such issues. Its purpose is indeed designing methods allowing
efficient supply operations management. Then, two dimensions need to be made
clear in order to define Supply Chain Management: what operations are concerned,
and how to manage them.

The first dimension is directly related to the process of supplying goods, and all
the necessary phases of the material flow to reach the final delivery to the customer.
In a very basic scheme shown in figure 1.1 , we can summarize these steps into
four chronological groups of operations: procurement, production, distribution, and
sales. The first one aims at getting all products, components, raw materials, etc.
needed to start the manufacturing process. It involves consequently multiple actors
such as suppliers, and upstream logistics partners. The second one concerns the
production of the goods, leading to products that company is ready to sell. Several
production stages can appear, and various people and manufacturing companies
may also be involved. Next, distribution is about the delivery process, but may also
include final product inventory control and warehousing management. Finally, the
sales take care of the interface between Supply Chain and the final customers, in
terms of product deliveries, but also financial and information flows.

The figure 1.1 represents in a very simple manner the supply/demand relation-
ships that exist in the Supply Chain, but it does not explicit the very large combi-

1This section has been written based on the works of: [Arnold et al., 2008], [Chopra and Meindl,
2013], [Cox et al., 1992], [Maimon et al., 1998], [Muckstadt and Sapra, 2010], [Peterson and Silver,
1979], [Pochet and Wolsey, 2006], [Rohde et al., 2000].
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Figure 1.1: Basic steps of material flows and orientation of information flow in SC

natorial complexity that may appear in a supply and delivery network.

As long as companies belong to the same chain linked by supply and demand
relationships, they belong to the same Supply Chain. Thus, there may be any
number of companies involved in the same Supply Chain, where a customer is also
the supplier of its downstream customers. Although a Supply Chain organization
may consequently be very different from one industry to another, the framework of
the types of operations making the process remains similar.

The second dimension refers to the type of decisions made to manage the opera-
tions of the stages of the supply process briefly described above. They can actually
be classified according to the time horizon in which the companies, the people or
the systems involved will be affected by the decision. The decisions are thus usually
split into 4 levels: long-term, mid-term, short-term, or very-short-term ones. The
figure 1.2 shows examples of decisions for each decision level, split by the operations
types.

Figure 1.2: Examples of operations arranged in the matrix "decision levels" and
"steps of the supply process"
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1.1.2 | Planning Procedures

Among all of the decisions needed to be made to manage Supply Chain opera-
tions, we can cluster some of them around an identical goal, namely: making plans.
Planning decisions are key to Supply Chain Management, inasmuch as the ability of
a company to respond to customer demands depends directly on what was planned
by this company. One of the reasons is that supplying any good to a customer
requests time. In fact, depending on the industry, the company’s policies, or the
product considered, multiple configurations may exist to deliver the product. These
configurations may vary according to the moment of the supply process from which
the operations are driven by the firm’s customer orders, called the order penetra-
tion point. However, there will always be a delay corresponding to the time needed
to fulfill the customer order. The figure 1.3 gives us 3 examples of these different
supply chain configurations, engendering different delivery lead time, whether the
company is organized as "engineering-to-order" (in which the design of the product
is launched as soon as an order arrives), "make-to-order" (in which the production
of the product is launched as soon as an order arrives), or "make-to-stock" (in which
the delivery of the product is launched as soon as an order arrives).

Figure 1.3: Examples of configurations according to the organization of the order
penetration point

Moreover, in general, capacities -production, financial, or human resources- are lim-
ited. Therefore, in such a context in which a processing time is required and prac-
tical limitations have to be respected, any industrial company needs to plan its
next operations to respond to the forthcoming customer demand. Planning deals
consequently with the allocation of the capacities of the organizations involved over
a future time horizon, thought and decided to provide requested goods or services
while controlling generated costs.

Planning exists in all steps of the Supply Chain, from the procurement to the
distribution, and consists more precisely of defining for the corresponding operations
what is needed to be executed, how much, when, and where so that the supply
process can be operated as "good" as possible, meaning the best service level possible
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for customers under the finite resource and capacity of the company and the cost
constraints to be respected.

When we consider specifically Production Planning, depending on the time hori-
zon considered, we are respectively dealing with strategic business plan, sales and
operations plan (S&OP), master production schedule (MPS), requirements plan or
production plan, and production schedule or purchase control. We generally speak
about top-down production planning hierarchy. Besides time horizon, the granular-
ity of the details considered in the planning, the purpose of the plan, and the update
frequency are key features that characterize these plans and distinguish them one
from another.

The strategic plan aims at defining from a business point of view the general
objectives and expectations of the company over the next two to ten years. The in-
formation used in this plan are very aggregated, dealing with major product groups,
global turnover, etc., and the update frequency is very low, about several months.
Then, the S&OP’s goal is to define the production capacity and resources -materials
and human- needed to respond to the market requirements represented by the strate-
gic business plan. The information taken into account here are family of products,
and the update frequency is greater, generally one per month.

As far as the MPS is concerned, the objective is to define precisely for the next
months the production needs of each finished goods so that service level can be as
high as possible -or so that the service level targeted can be reached-, while produc-
tions rates compared to capacity and other production constraints are respected. It
is based on the forecasted demand of each final product, the production capacity,
and the current workloads. Following the MPS, the requirements plan allows compa-
nies to get the needs of purchased goods or components, or produced sub-products,
in order to respond to the demand of finished goods generated by the MPS. The
granularity of the information used is consequently thin, inasmuch as details con-
cerning all the production or procurement of any product are needed. The planning
horizon of both MPS and the requirements plan corresponds to several months, and
has to be greater than the requested delivery lead times.

Finally, the production schedule or purchase control is the short-term plan based
on which the operations are executed. It is the tangible implementation of the
previous ordered plans, managing the flows into the plant or in the purchasing
operations with current production workforce, machines, or resources available. As
it is day-to-day production or procurement operations management, the reviewing
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frequency is generally daily, or every several days.
The following figure 1.4 sums up the level of granularity of the details used in the

different plans presented above according to the time horizon of the corresponding
plan.

Figure 1.4: Granularity versus time horizon in different production planning oper-
ations

In this thesis, we particularly focus our work on studying Master Production
Scheduling operations, i.e. decisions leading to the answers of when and how
many finished goods need to be produced to fulfill the demand under poten-
tial costs, resources, and capacity constraints. Also, we will see that the studies
presented in this manuscript have been realized under some specific hypotheses,
described more precisely in the next sections, that make the MPS similar to the
requirements plan. It is indeed particularly the case for the one stage production
configuration. Consequently, in the remainder of this thesis, we will use indifferently
the terms "master production schedule", "requirements plan", "production planning",
or simply "planning" to refer to the master production schedule as defined previously.

The main issue of production planning that makes the exercise difficult is that
planning is all about finding the best compromise. In a general manner, different
departments have its own concerns or interests leading to different stakes, and con-
sequently may take conflicting positions. In fact, from the perspective of the sales or
marketing department, the main objective is to increase company’s turnover. They
are thus particularly concerned about customer service. As a consequence, they
would tend for example to have high level of finished goods inventories and flexible
production. As for the production department, its main goal is to maintain low
production costs, and to avoid falling into over-production situations. These would
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imply reducing the number of change-overs, maintain high level of raw material
inventory to ensure production would not stop, and limit total production level to
sidestep overflows. Finally, the finance department’s attention is concentrated to the
fixed assets costs and return on investment. They would consequently prefer keeping
the inventories at a low level and decreasing the production assets and capacities,
which finally would impact the service level in a negative way.

Therefore, conflicts exist between actors in the decision process leading to the
production plan. In order to solve this situation, production planning is usually
treated as an optimization problem, leading to the best trade-off between financial
and market-oriented criteria, such as minimum costs or maximum profit, and service
level respectively.

This optimization problem and its characteristics depend naturally on the en-
vironment in which the system evolves. That’s why various mathematical models
exist according to the industrial system studied.

In the following section, we go into details of the variety of configurations ex-
isting in production planning. We describe in particular the factors influencing the
modeling of production planning as an optimization problem.

1 .2 | The Production Planning and its study environment2

When a production planning problem is considered, the modeling process leading
to decision support begins by defining the distinctive features of the system that need
to be made clear to delineate the problem.

To do so, several considerations need to be taken into account. First of all,
the industrial system defined by the elements representing the environment of the
production operations has to be clarified. Some of these main elements to consider
are listed in the following paragraph.

Second, the decision system, i.e. the variables, parameters and indicators wished
to be integrated into the modeling has to be specified as well. In particular, the
hypotheses concerning the customer demand modeling on the one hand, and the
dynamics of the decision-making framework for which the optimization is needed
on the other hand, are key factors influencing the modeling of production planning
problems. These are precised in the second paragraph of this section.

2This section has been written based on the works of: [Arnold et al., 2008], [Cao, 2015],
[Cheaitou, 2008], [Chopra and Meindl, 2013], [Graves et al., 1993], [Graves, 2011], [Hubert,
2013], [Muckstadt and Sapra, 2010], [Peterson and Silver, 1979], [Toomey, 2000].
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1.2.1 | Industrial context

The environment in which the production planning decisions have impacts can
be defined through several aspects. Here are the main features of the industrial
context, allowing to understand more precisely the production planning problems
that have to be considered.

i. Products

As described previously, Production Planning is about determining how many
products need to be launched in production, and when. Before getting into these
questions, it is essential to know the information concerning the kind of products
that need to be planned so that the perimeter of the planning can be defined.

The number of types of products impacts indeed the modeling of the problem.
Besides, if multiple items are considered, their production may not be independent
of one another, for instance when they share similar components, or the same pro-
duction process. Production plan will consequently be affected accordingly. Specific
characteristics of some products may also influence the production plan, for exam-
ple when the products considered are perishable, consumable or repairable, seasonal,
etc.

ii. Supply network organization

Depending on which industries or companies are concerned, the structure of
the supply process may be quite different. This network defines how materials,
information, and financial flows are managed between supply chain protagonists. It
can consist of many levels involving several partners, in different locations, or several
internal production facilities. Besides, they may be organized as a serial production
system, a parallel one, or a complex mix of them.

In our case study of the production planning, this structure influences the way
one can model it, inasmuch as several production stages may exist. This engen-
ders different requirements for each stage, not only in terms of procured materials
-components, raw material, etc.-, but also in terms of information. It is indeed
necessary to have specific plans. The organization of the production process is con-
sequently a key industrial parameter in the modeling process of production planning.
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iii. Production lead-time
By nature, any operation of a supply chain depends on upstream material flows

and its procurement, and is supposed to fulfill the downstream requirements. There-
fore, the time required to complete these tasks will impact the way operations are
organized in any production level. In particular, it will impact the timing of when
they have to be executed. The lead-times information is thus an important parame-
ter to which plans are sensitive. This information may be known and defined clearly,
when, for example, it is determined in advance with the corresponding suppliers, or
considered as random, in the case of external or internal disruptions appearing dur-
ing the execution of the operations and impacting their processing time. They are
naturally dependent on the product considered, on the process executed to produce
it, and the supplier executing it.

iv. Production constraints
Besides production lead-times, other aspects of the production context that affect

directly the planning need to be integrated into the model, such as production
capacity constraint, minimum of production quantity during a period, or productions
of fixed lot sizes, etc.

v. Cost structure
One of the main factors influencing the decision-making in production planning

is the costs induced by a plan. As described, production planning is actually a
trade-off. In this context, the costs are here key to the optimization process: it is
usually either the objective function to minimize, or one of the main constraints to
respect so that final decision could satisfy financial stakes of the company.

Various types of costs may be considered in the planning models:

i) The first one represents the cost directly linked to the production orders. De-
pending on the production framework, two sources of expenses can exist:
â The setup costs, or the fixed production costs, which occur when a produc-

tion is placed and that do not depend on order quantity. It corresponds for
instance to the costs generated by operations required to start up a produc-
tion line or a machine. The existence of such costs is a major incentive to
launch mass production in order to benefit from the economy of scale.

â The variable costs, or unit costs, depends conversely on the volume ordered.
These concern all quantity-dependent direct or indirect expenses such as com-
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ponents purchasings, supplying equipment requested to produce one product,
etc.

ii) The second type of costs that occur in a production system to be taken into
account in the planning process is related to the inventory of the produced goods.
It can be either the inventory holding costs, or the shortage costs:
â When the quantity produced is bigger than the customer demand, the com-

pany has an excess of products that must be kept. This surplus proves that
too many products were produced, which means too much money invested.
The surplus of production was indeed a source of expenditures. This capital
is held until the products are finally sold, which generates an opportunity
cost if the capital was used differently. Besides, carrying products in storage
facilities requires fixed and variable costs for taking care of it, such as the
equipment, the financial and human resources needed to manage the ware-
houses, insurance, taxes, damage, etc.
These two sources of expenses represent the holding costs. Different ways
of calculation may be used to evaluate them. Usually, the holding costs per
product are approximated as proportional to the value of the products carried
in stock. In the cases of temporal subdivisions through periods, holding costs
are assumed to be dependent on the number of units held and to the number
of periods during which they are kept.

â Contrary to circumstances engendering holding costs, there exist those in
which the production level cannot meet all the customer requirements when
they arrive. In that case, shortage costs arise. Different situations may be
taken into consideration, among them, the two extremes being:
u Customers may decide to be supplied with another company. In this

case, the sale is considered as lost. This context represents a cost for
the company, in which there is at least the lost profit that could have
been earned. Next sales may also be affected, at least because of the
degradation of the company image through non-satisfied customers point
of view. Moreover, shortages of inventory generate indirect costs due to
the fact it has to be managed. Operational organization must indeed
be adapted: faster delivery modes, and consequently more costly, may
be chosen for example, as a reaction of the lost sales to counterbalance
them. This "lost sales" situation is consequently costly. In the usual
approximation, this cost is considered as proportional to the number of
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sales lost.
u On the contrary, customers may be ready to wait until their demand can

be satisfied. In other words, their requirements not yet fulfilled because
of shortages of stock are delayed, and cumulated with the subsequent
ones, till the inventory reaches a level that could enable the requested
deliveries and finally meet the demand. This delay causes additional
costs due to "new" ordering management and, in a similar way as the
lost sales situation, due to the degradation of the quality of the delivery
perceived by customers. We usually refer to the "backlog" situations when
we consider this kind of behavior when shortages appear. As in the lost
sales case, the backlog costs are proportional to the number of products
backlogged. Besides, it also depends on the number of periods during
which the corresponding requirements have been kept.

As far as this thesis is concerned, we will consider in the remainder of the
manuscript the uncapacitated single-product single-level production planning prob-
lem. No specific characteristics is kept concerning the product, and the different
production lead-times studied are equal to zero, one or two periods. Finally, the
costs chosen in our studies correspond to classical ones, the inventory holding costs,
the unit production costs, and the backlog costs.

1.2.2 | Decisional system considered

In order to complete the positioning in the field of production planning, we need
to define the key features or dimensions of the framework the decisions resulting from
the planning procedure are inserted in. Among them, we first define hereafter the
possible ways to model the customer demand, main input data of planning models,
and then the dynamics of the system for which optimization is needed.

i. Customer Demand Modelings

Once the industrial context has been defined, we know more precisely the internal
and external environment of the production system that can respond to a request.
Still, it is necessary to determine thereafter what kind of request the system is
supposed to fulfill.

Since production planning decisions deal with the future, customer demand gen-
erating production requirements is composed of two parts: the demand already
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received (frim orders) and the demand expected to be received later. The latter
part has to be estimated. Besides, many characteristics may change from a mar-
ket to another one, making the environment influencing the customer demand very
changeable. Thus, depending on the context, the demand modeling will be different.
Several hypotheses or specificities have to be taken into consideration consequently.
We give here some examples of characteristics of the customer demand that impact
the planning problem, its modeling process, and solution methods.

Deterministic versus Random Variables: in the case of a "make-to-order"
environment, or when the market characteristics allow the company to know the fu-
ture customer requests relatively precisely, demand is modeled through deterministic
variables. It is especially the case where few variations of the demand patterns are
observed in a large historical data-base, and are expected to stay unchanged. There-
fore, the demand can be predicted accurately enough to consider it as determined.
In this case, products considered are generally well known, from the customers point
of view, as well as for suppliers and manufacturers.

When, on the contrary, the situation does not permit such hypotheses, forecasts
that are made to model future demand are less precise, and the risk of forecasts
errors exists. That’s the reason why, the uncertainties of the demand need to be
caught by the models representing it. In that sense, random variables are usually
used, and the corresponding problem is then described as stochastic production
planning.

Depending on the environment of study, there are two classes of models for ran-
dom demand that can be considered to capture the demand uncertainties [Lee and
Nahmias, 1993]. In the first one, the demand is usually characterized as "uncertain",
and is defined through a known probabilistic density function (pdf). In the second
one, the context and the available data do not enable to compute accurately any
demand pdf. The demand is thus considered as "unknown". Different models can
be used in that context. Some of them are for example to use conditional pdf, or
several levels of stochastic modeling such as defining a pdf for the parameters of the
demand pdf. In this case, it will be regularly updated as soon as new information
becomes available.

Forecasts and Uncertainties Computation techniques: In a general man-
ner, demand forecasts, and, if considered, their corresponding uncertainties, are cal-
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culated based on various sources of information. Generally, they are determined
thanks to both internal and external data. Historical data as previous sales, orders,
or states of the system -inventory levels, resources allocated, etc.- are for instance
internal one commonly used. Other factors, such as the potential evolution of the
market, expert judgments on trends in any of the domains influencing the company
environment -financial, legal, social, ..., are examples of external information that
can be treated to generate forecasts.

Thus, depending on the availability of the historical data, its patterns, and the
decision-makers’ objectives concerning the forecasts features, different methods of
computation can be used. When there is few historical data or when it is unreliable,
qualitative methods are used. They are based on experts opinions, market surveys,
or any non-quantifiable information. Conversely, if enough data is available, quan-
titative statistical methods are implemented. In this case, two categories of method
exist: the intrinsic or extrinsic ones. The techniques belonging to the first category
are based on historical data. The others use moreover external influencing factors
and draw causal links between them and the forecasted variable.

As far as the uncertainties are concerned, they can be directly calculated through
the statistical method used to compute the forecasted demand as the associated
statistical estimation of the variance of the forecasts. This can be seen as an "a
priori" uncertainties calculation. Other methods model the forecasts errors made
during the previous periods of study and project them to the future periods of the
planning horizon as their associated empirical variance. This projection can depend
on the value of the forecasted demand -relative model-, can be independent -absolute
model-, or both -mix model- [Hubert, 2013], and is generally growing according to
the time interval considered between the forecast date and the period considered.
They can be qualified as "a posteriori" uncertainties calculation methods. In any
case, these calculations lead to a definition of the variance of the forecasts.

The selection of the best method in terms of accuracy is one of the major chal-
lenges in forecasting. This concerns not only the forecasting technique to be chosen
appropriately, but also the optimization of its parameters according to the objec-
tives targeted and the working environment [Chopra and Meindl, 2013]. As seen in
chapter 0, uncertainties are indeed a major source of complexity within the produc-
tion planning modeling and its solution computation, impacting the supply chain
performances in a negative way. That is the reason why being able to get more
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accurate forecasts or, in other words, decreasing their uncertainties, is an objective
shared by many industrial companies.

Static versus Dynamic Demand: Besides forecasts and uncertainties com-
putation methods, another important element of the demand modeling influences
the supply chain performances: its temporal dependency. The customer demand
defined in the previous paragraphs may indeed evolve over time. Two cases may
consequently be considered here: whether this evolution is taken into account in the
demand modeling or not.

The first case -static demand- considers the demand as being modelled with
constant parameters over time. The customer needs are then stationary, and the
demand rate per time unit is the same for all future period considered. These
strong hypotheses make such models theoretical, and thus they may be far from
realistic situations. However, they allow to calculate robust solutions with respect
to costs parameters and demand rate quantification. Besides, they usually represent
interesting solutions to begin with in more complex situations [Lee and Nahmias,
1993].

When, on the contrary, we speak about dynamic demand, it is considered as
time-varying, i.e. changing over time. It is usually represented in this context as a
series of as many elements as periods in the planning horizon, whose elements vary
from each other, modeling the fluctuations of the demand. These variations may be
independent, or determined by an explicit time-dependent function.

ii. Modeling framework of the dynamics of the decision system within
production planning

In the same way as the customer demand, other features of the system may also
be changing over time, making the decision environment evolve. Thus, when we
deal with production planning, another important point is to set to what degree
of consideration the dynamics of the problem is integrated into the optimization
model.

According to this, various frameworks of study exist, starting from the simplest
model with strong hypotheses to the most realistic ones, leading to different solutions
whose efficiency may vary in a non negligible manner: the more accurate the model
is in terms of evolution of the time-related variables, the more flexible the decision
system is, being thus able to respond more adequately to the uncertainties of the
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environment, especially the customer demand.
These frameworks depend on the temporal structure of the decision process re-

sulting from the planning problem considered. In particular, whether the evolution
of the decisions is considered or not into the modeling of the planning problem,
which is represented through the concept of fixed or rolling plan framework.

Fixed versus Rolling Plan framework: The key concept differentiating
these two environments is the date during which the planning process is executed,
and whether the decision-maker would consider it as a new dimension of the problem.
In the remainder, we call this date the forecasts date, inasmuch as it represents a
time instant where forecasted demands are calculated.

i) Fixed Plan framework:
On the one hand, when the fixed plan framework is considered, the plan is
calculated at the beginning of a specific forecasts date, that we note t, for future
periods of the planning horizon, whose length is noted N . Consequently, as
shown in figure 1.5, one unique plan is therefore computed at this precise instant,
the beginning of period t, for the future periods, from t+L to t+L+N−1, L being
the production lead-time. Models of such problems are usually optimization
problems minimizing the costs or maximizing the service level for this unique
plan specifically.

Figure 1.5: A fixed plan framework example

The simplest models consider a one-period problem (N = 1) in this context of
fixed plan. Others take into account several periods, with time-varying demand
or not.

The outcome of this planning procedure is a serie of production -or purchase- or-
ders to be released during the corresponding periods, minus the lead-time. Thus,
those for which the lead-time requires to be executed in the current forecasts date
t are consequently launched actually in the production process.

ii) Rolling Plan Framework:
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In practice though, one period later, a new similar procedure of planning begins.
All the previous calculations of the fixed plan structure start again, taking into
account the latest state of the system, which is precisely what happened until
the end of period t. The latter results calculated at the beginning of t may
consequently not be suitable anymore for the new forecast data.
That is why other models consider this new dimension -the date of forecasts-
and deal with rolling plan framework.

In this case, we take into account the evolution of the state of the system from one
date of forecasts to the next one, leading to evolving or updated decisions. Once
a first plan has been computed at the specific date of forecasts t, the historical
data is indeed updated as soon as the period t has passed, based on the latest
information available. This new set of information is used to compute another
plan for the next periods at the beginning of period t+1. In the same way, a new
plan is next calculated at the beginning of period t+2 by taking into account the
newly available information that appear during period t+ 1, etc. This dynamics
is taken into account in the rolling plan framework.

In this situation, two different cases may arise, whether the length of the planning
horizon N is fixed for all date of forecasts, or if the last period of the planning
is defined at the first date of forecasts, and remain unchanged when time goes
on. We call them respectively "rolling horizon framework" and "rolling decisions
framework" as in [Cheaitou, 2008].

â When the length of the planning horizon N does not change, it means the
last period considered for each plan moves forward according to the forecasts
date. The whole N periods plan is sliding while time evolves. An example of
a rolling horizon framework is presented through figure 1.6a

â On the contrary, when the last period of any plan is fixed, the length of
the planning horizon decreases with respect to the increase of the date of
forecasts. The last period is always the same in any planning considered.
This case is generally observed when seasonal products with sales deadlines
are considered, or when a production outsourcing contract has a end date.
Figure 1.6b shows an example of a rolling decisions configuration.

The resulting production plan of such rolling plan framework planning models
is consequently the series of actual orders released period after period. Each of
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(a) A Rolling Horizon Framework

(b) A Rolling Decision Framework

Figure 1.6: Examples of Rolling Horizon and Decision frameworks

them are calculated with different sets of information, as it has been updated
progressively. The final production orders cannot consequently be completely
adapted with respect to the overall final information, as it has be built gradually
at each step of the process, creating deviation compared with the optimal a
posteriori plan. However, each decision is based on the most accurate set of
information on hand on the date of forecasts.

The decision to consider a rolling environment (either rolling decisions plan or
rolling horizon plans) or not in the planning problem modelled depends on contextual
factors such as the ability to update the information database, the accuracy of the
forecasts, the nature of the products considered, etc.

However, in general terms, both kinds of Rolling Plan framework give better
performances, as it allows adjustments on a continuous-flow basis with respect to
new information available for the system state as well as for future periods [Penlesky
et al., 1989], [Penlesky et al., 1991]. Production orders actually released become thus
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more accurate to the latest information available in the supply chain. By taking
into account the evolution of the state of the system into the dynamics caught
by the decision process of production planning. Rolling Plan frameworks allow
better flexibility of the process, and thus present great benefits as far as the flows
management is concerned.

Non-stationary versus Stationary Demand Forecasts: in Rolling Plan
frameworks, as seen previously, new information arrives between successive dates of
forecasts: the system state is updated as well as historical data to calculate a new
plan for the next periods. Different uses of this new information may be considered,
especially concerning the forecasted demand for the next periods.

If at each iteration, the forecasted demand for the following periods are indeed
computed again based on the newly up-to-date historical data, the forecasts are
updated, and evolve from one date of forecasts to the next one. Then, not only
the state of the system -inventory levels, production capacity status, etc.- is used
to determine the new production plan, but also newly adjusted demand forecasts.
For a fixed considered period in the planning horizon, a forecasted demand depends
consequently not only on the period considered -the index of the demand series-
but also on the date of forecasts -the instant of calculation. Whether the model
of production planning includes this process of update of forecasts with respect to
forecasts date or not, the demand variable may be represented as a non-stationary
one with respect to the date of forecasts.

1.2.3 | Conclusion

As a conclusion of this section, for a decision maker in production planning, the
first step consists of modeling and defining the characteristics of the problem. He
needs to analyze the external environment of the production system, the internal
organization, the constraints, and the capabilities and the capacity of the resources.
He must define properly the objectives of the company and make some assumptions
for the resulting model can be handled from a computational point of view.

This would indeed lead to the structure of the planning problem to study through
the formalization of the key features to consider among the different dimensions and
hypotheses presented above: first of all, the elements representing the industrial
context, then the hypotheses characterizing the decisional structure of the process,
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including the customer-demand modeling, and the time-related hypotheses defining
the dynamics of the decision system considered.

Once delineated, the planning problem is solved either through computation
methods, exact algorithms or efficient heuristics with respect to the assumptions
adopted. A literature review of some of them will be presented in the next section.

2 | Litterature Review and Positioning

In this section, we describe more in details the positioning of this thesis into this
large production planning area by emphasising the problem considered in this work
combined with a literature review of existing planning methods.

We first examine the current academic works concerning various planning prob-
lems through different configurations that may exist in terms of hypotheses about
the decision system considered. Two types of classification features are then used
here, whether the demand is considered as deterministic or random and static or
dynamic on the one hand, and the degree of consideration of the evolution of the
decision system on the other hand: fixed or rolling plan framework, combined or
not with non-stationarity of the forecasted demand. In particular, as the closest to
our research, the context of rolling plan framework is particularly studied.

We finally conclude this chapter by making into perspective the issues described
in the general introduction through planning environment described previously, the
analysis of the state-of-the-art literature, and the challenges presented in chapter 0.

2 .1 | Methods of Production Planning in a Fixed Plan Con-

text

As seen in chapter one, production planning is a vast field of analyses and tech-
niques that depends on a large range of hypotheses. Based on the context of study,
the industrial framework of the company defining its supply chain, the market and
customer demand considerations, and the time-related context defined by decision-
makers, various modelling approaches can be used, from optimization models to
business representation procedures. To solve this problem, many solution techniques
may be implemented, such as for instance procedures of calculations, simulations,
or analytical studies.
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In this section, we present some classical general models and methods for pro-
duction planning or inventory control for some usual "push" systems, chosen among
the different dimensions of the problem described in the previous chapter.

In order to highlight the influence of the dynamic features, as well as the im-
portance of the customer demand hypotheses, we particularly focus the following
non-exhaustive description, summarized in table 1.1, on these dimensions. Thus,
despite the potential dependency on the industrial environment -number or nature
of the products considered, number of production levels in the supply chain network,
production constraints, nature of costs, etc. -, the methods are classified according
to the modeling framework of the customer demand defined. The first paragraph is
dedicated to the classical methods used in simple cases, the second one describes in
more details models adapted to more complex situations, in which both uncertainties
and dynamic demand are taken into consideration.

2.1.1 | Basic Planning methods

We present briefly here standard methods for production planning in basic frame-
works: random static demand with periodic review, or deterministic and dynamic
demand.

When a planning frequency is defined and uncertain demand is considered, the
static inventory control policies -re-order point and order-up-to-level policies- are
adapted methods for production planning. They allow to get adjusted required
production releases at the right timing [Peterson and Silver, 1979] [Zipkin, 2000].

In a different context, when we consider the case of a dynamic and deterministic
demand, the widespread method of production planning in industry is material
resources planning (MRP). Based on the bill of materials of the products considered
and the production lead times of any of its components, it allows the planners to
compute the net requirements of all sub-products and components involved in the
production process, meaning how many have to be available on stock, and when, so
that the final customer demand can be fulfilled. [Orlicky, 1974]. An improved version
(MRPII) is often used when capacity is considered [Vollmann et al., 1997]. This
calculation procedure leads to a requirements plan that can be used as a production
plan.

However, this plan may sometimes have some drawbacks in terms of costs. In
fact, the subdivision into simple sub-plans for any component following the product
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structure may give suboptimal solutions compared with the global minimum cost. It
is especially the case for some environments including for instance non-negative set-
up costs, multi-products, or capacity constraints [Pochet and Wolsey, 2006]. In these
situations, we generally use as a consequence some lot-sizing rules, resulting from
optimization models of the production orders taking into account the specificities
of the situation. Many models exist depending on the context of the application.
Some of them are for intance classified in the reviews of [Jans and Degraeve, 2008]
and [Karimi et al., 2003], and examples of optimisation algorithms are given in [Jans
and Degraeve, 2007].

2.1.2 | Dynamic Planning methods under uncertainties

Although the previous methods are suitable and efficient in many situations,
their main drawback is that they do not consider uncertainties. In particular, we
are interested in this thesis in integrating uncertain parameters into the modeling
of the demand to respond to.

In this context, similar techniques can be implemented in which the stochastic
aspects are taken into account. For instance, the MRP production systems under
uncertainties has been studied. In this context, safety stocks may be relevant to cope
with the randomness of the demand [Graves, 2011], [Caridi and Cigolini, 2000].

As in the deterministic approach though, the standard MRP procedure does
not provide the minimum cost planning in general -the minimum expected cost
in this stochastic context. That’s the reason why mathematical models for lots
sizes optimization have also been developed for stochastic environments [Bitran
and Tirupati, 1993] [Karlin, 1960]. Various methods have been studied; such as
the scenario-based approach [Guan et al., 2006] [Pochet and Wolsey, 2006], the
expectated cost optimization [Helber et al., 2013], [Tempelmeier, 2011], a service
level constraint [Tarim et al., 2011], or dynamic programming approach [Gupta
and Maranas, 2003], [Gupta and Maranas, 2000]. An analytical computation of an
optimal solution is also described in [Cao, 2015].
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2 .2 | Methods of Production Planning in a Rolling Plan

Context

2.2.1 | Deterministic Demand

In the case of dynamic demands with respect to the periods considered combined
with a rolling plan with respect to the forecasts dates, we are dealing with a com-
plex modeling and problem-solving environment, inasmuch as the data to take into
consideration are regularly updated. It adds consequently instability and uncertain-
ties in the system [Tempelmeier, 2011], [Blackburn et al., 1986], creating a highly
variable environment [Sridharan et al., 1988].

However, the implementation of this procedure in real cases has been proved
to be efficient [Sahin et al., 2013]. Besides, [Baker, 1977] experimented in details
how operations are managed in rolling plans, and concluded that such framework
allows the finally obtained production plan to be systematically a low cost solution:
compared with the optimal solution calculated based on all a posteriori information,
the rolling plan deviation never exceeds 10% in terms of costs.

It has consequently been the object of several studies, so that the benefits of
such model can be exploited, while trying to cope with the modeling difficulties. In
a two stages assembly line context, [Bitran et al., 1982] uses a hierarchical method
based on multi-steps linear programming models, and proves its efficient in this
rolling plan context. Other techniques may be used, such as a frozen schedule for
instance [Sridharan and Berry, 1990a]. It corresponds to an interval of time in which
the production plan does not change fromthe date of forecasts. For instance, if, at
the forecasts date t, the plan of N periods is computed in which we define a frozen
interval of l periods, the next plan calculated at the forecasts date t + 1 remains
unchanged for periods t+ 1 to t+ l− 1 compared with the previous one. The length
l can depend on the date of forecasts, or be determined and kept constant for all
of them. In both situations, the calculation of its length has a direct impact on
the variability and uncertainties of the system [Sridharan and LaForge, 1994b]: the
shorter it is, the more up-to-date the orders are, and also, consequently, the more
accurate and coherent they are regarding the demand to which they fulfill. Other
parameters have a direct influence on the performances of the plan: the re-planning
frequency or time between orders (TBO), the planning length, the choice of the
lot sizing rules, the method of safety stocks quantification, and the a posteriori
forecasts errors [Yeung et al., 1998]. The objective is then to calculate an adapted
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set of variables allowing to compute an efficient production plan with respect to cost
and stability.

To that end, [Lundin and Morton, 1975] and [Schwarz, 1977] analyzed the be-
havior of a rolling horizon systems according to the frequency of re-planning, and
concluded that situations in which the TBO is proportional to the length of the hori-
zon provide good solution in terms of costs. In particular, the configuration with
a planning horizon equal to 5 times the TBO gave only a 1% deviation from the
a posteriori optimal cost in their settings. [Bookbinder and H’ng, 1986] confirmed
this property of proportionality testing the classical lot sizing model of [Wagner and
Whitin, 1958] in a rolling horizon framework. They found indeed a proportionality
factor equal to 4 to ensure a 1% deviation from the optimality. However, the plan-
ning horizon length must exceed a certain limit: [Federgruen and Tzur, 1994] has
indeed shown a "truncated horizon effect" which has big negative impacts on final
costs when the planning horizon is too short.

As far as the frozen interval length is concerned, [Sridharan et al., 1988] and
[Sridharan et al., 1987] proved that when it is kept under 50% of the planning
horizon, it has low effect on costs. However, the higher the re-planning frequency
is, the better in terms of costs [Sridharan and Berry, 1990b].

An important issue which has been the object of various investigations is the
choice of the lot sizing rules. Among them, several authors tested various lot sizing
heuristics and exact algorithms for a fixed plan, but implemented in a rolling horizon
environment. The results indicate that in this rolling context, optimal sub plans do
not provide optimality, and are often overtaken by simpler heuristics. By comparing
the Silver-Meal heuristics [Silver and Meal, 1973], a modified Silver-Meal heuristics
[Silver and Miltenburg, 1984], and the Wagner-Within algorithm, [Bookbinder and
H’ng, 1986] [Blackburn and Millen, 1980] proved that, even if the plan coming from
the Wagner-Within lot sizes rule is contained within 1% of the optimality in terms
of costs, the modified Silver-Meal heuristic gave better solutions in rolling schedules.
Actually, [Ristroph, 1990] described the relation between the planning horizon length
and the performances of lot sizing rules, adding to the comparison the classical
least-unit-cost (LUC) and part-period rule (PPR) heuristics: the performance of
the modified Silver-Meal heuristic is inversely proportional to the planning horizon
length. Thus, when long planning horizons are considered, the Wagner-Within rule
provides finally a better plan. Besides, when the demand forecasts accuracy is low,
the modified Silver-Meal heuristics is also preferable [Russell and Urban, 1993]. In
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order to compensate the short planning horizon obstacle that makes the Wagner-
Within algorithm less insteresting, [Stadtler, 2000] proposed some modifications to
improve its performance.

Concerning the safety stocks quantification under a rolling-horizon framework,
several procedures of quantification are discussed in [Sridharan et al., 1988].

2.2.2 | Random Demand

The above-mentioned studies were conducted considering a deterministic cus-
tomer demand. In a stochastic context in which the demand uncertainties are taken
into consideration, the model may be difficult to handle. [Wemmerlöv, 1986] cited for
instance the excess of inventory and the decrease of the service level engendered in
such situations. Various configurations and techniques may be implemented though.

First of all, in terms of inventory control policies, the dynamic ones allow the
planner to quantify production orders in a forecast-based environment, with a spe-
cific re-planning frequency both calculated under service level constraint [Babai and
Dallery, 2009]. [Federgruen, 1993] also developed an adaptive base-stock policy al-
lowing optimization of production orders with information updating and regular
re-planning.

In production planning, the same parameters and influencing variables are stud-
ied and quantified as in the deterministic approach detailed in the previous para-
graph, although the service level concept must be added as it has an important role
in the planning process [Sridharan and LaForge, 1994a].

The MRP procedure has been studied under rolling horizon and random de-
mand by [Whybark and Williams, 1976] to compare the effectiveness of the safety
stocks and the inflated lead times. He concluded that safety stocks allow better
management of the uncertainties in such contexts.

Safety stocks are thus investigated by [Tang and Grubbström, 2002] that ex-
plained that as soon as they are optimized according to the forecasts errors, there
are less constraints in the choice of the TBO and the frozen interval length inas-
much as they do not impact much the final service level and costs. The calculation
of safety stocks are especially discussed in [Whybark and Williams, 1976], [Sridharan
and LaForge, 1994a], and [Campbell, 1992] who detailed the influence of forecasts
accuracy in the computation process. [Vargas and Metters, 2011] proposed an op-
timization algorithm for production planning in rolling horizon framework when
demand is stationary and proportional unit costs.
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In some industries where supply lead-times are considerable, uncertainties have
big influence on the performances of the planning -cost, service level, ... -, and spe-
cific modeling approahces need to be implemented. [Cao, 2015] studies for example
the case in the automotive industry, whereas and [Fisher and Raman, 1996] focuses
particularly on the fashion industry, for which the seasonal effect -new products
launches in particular- has great consequences on the planning management. A fast
reactive decision environment is indeed required.

In a similar way as in the deterministic case, the lot sizing rules have also been
evaluated in a stochastic environment. In particular, [Wemmerlöv and Whybark,
1984] tested deterministic lot size rules with a safety stock quantified to reach a
fixed service level, and concluded that in an uncertain context, the results are very
different from the deterministic settings. They especially pointed out the efficiency of
the PPR rule. Moreover, the more uncertain the demand is, the less impact the lead
times and the TBO have on heuristics efficiency, although the global performance
decreases. [Bookbinder and H’ng, 1986] proposed a heuristic for lot sizes when a
service level constraint is given. Finally, [Sridharan and Berry, 1990a] noted that
with demand uncertainties, the costs and service level are more sensitive to the lot
sizing rule than the re-planning frequency or the length of the planning horizon.

2.2.3 | Synthesis

According to the hypotheses defining the decision system in which the production
planning is considered, different methods exist in order to get as much value as
possible from the plan resulting from the computation process.

Thus, depending on the choice of taking into account the randomness of the
customer demand, its dynamic characteristic, or the evolution of the decisions from
one date to another, different computation techniques may be implemented, whether
the decision maker would rather target cost optimization, service level improvement,
stability, or flexibility into his Supply Chain. We present in Table 1.1 a brief overview
of methodologies that can be used to manage production plan in different possible
configurations.
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Table 1.1: Methods of Production Planning/Inventory Control

Demand Plan Deterministic Stochastic
time axis framework Demand Demand

Static Rolling

– Order Up-to-level
policy

– Reorder Point
policy

Dynamic

Fixed

– MRP procedure – MRP procedure
under uncertainties

– Lot Sizing – Stochastic
problem Lot Sizing problem

– Safety Stocks
Optimization

Rolling

– Re-planning – Dynamic Inventory
adjustments Control policies

– Adapted heuristics – Re-planning
– Safety Stocks adjustments

quantification – Adapted heuristics
– Frozen Schedules – Safety Stocks

quantification
– Frozen Schedules

2 .3 | Production Planning in a Rolling Plan Context under

uncertainties and Forecasts Update

Contrary to the previous techniques in which the customer demand is dynamic
but not updated at each step of the rolling process, in this paragraph, we present
existing works under a Rolling Plan framework, combined with a random and non-
stationary demand. The forecasts update procedure is indeed considered here into
the proceedings of the computations of the production plan at each iteration. Our
contributions presented in the remainder of this thesis is embedded into this config-
uration of study.

Literature dealing with such contexts can be divided into four categories. The
first one corresponds to a set of theoretical models, in which possible optimization
modelings are studied in a general manner. Then, other works consider the error
bounds of the forecasts in order to manage the orders quantification. Some authors
focus then their study on some specific products, allowing to get results for pro-
duction plan in a particular environment. Finally, the forecasts update, creating
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forecasts evolution at each step of the rolling process, is modelled by some authors
as a stochastic process, more specifically as a martingale.

2.3.1 | Theoretical Modelings

As far as the modeling process of the non-stationary rolling horizon planning
is concerned, some works exist in which a theoretical framework of study is built.
These models allow the authors to develop an optimization model for the considered
problem. Two different optimization techniques can be found: dynamic program-
ming on the one hand, and online optimization on the other hand. We present these
techniques in the following paragraphs.

i. Dynamic Programming Approach
[Michalska and Mayne, 1995] and [Morton, 1979] developed models where the

information is considered as non-stationary with respect to the date of each step of
the rolling plan framework. They modelled the problem with dynamic programming,
and present some theoretical ways to consider the mathematical problem, without
focusing specifically on production planning. As for [Sethi and Sorger, 1991], they
have been ones of the first to develop a theoretical stochastic dynamic programming
model in the specific case of production planning with forecasts update. In order
to represent this dynamics into an optimization model, they describe precisely the
variables at stake, and how they have to be defined and treated so that the minimum
of the expected cost could be reached through a recursive calculation in which several
minimization computations have to be executed step by step, based on a growing
set of information. This work is about how one can build an optimization model
in a theoretical way, but does not aim at developing solution methods. In [Sethi
et al., 2001] and [Sethi et al., 2006], the authors applied the previous modeling
to some specific applications. However, results remain purely theoretical, and no
computational results are reported.

ii. Online Optimization Approach
In another context, [Dangelmaier and Degener, 2011] developed a methodology

for production planning in a specific rolling plan framework in which the only in-
formation available at the time of the decision is the one whose due date does not
allow any time buffer, without any demand information for the future periods whose
production orders may be delayed. At each iteration then, the only required demand
information is released progressively. In this context, they built an online optimiza-
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tion procedure to minimize the risk of shortages. Theoretical mathematical model
is then described to represent such a configuration.

2.3.2 | Performance bounds

Modeling the problem considered here being relatively complex, an approach
used in the literature to end up with practical results is to work with bounds, espe-
cially error bounds. Some authors were indeed able to model the interval in which
the difference between the a posteriori optimal cost for the rolling plan considered
and the generated cost of a sequential optimization of multiple fixed-plan problems
is included.

These models used a general study environment of the control theory to model
the rolling-horizon planning problem.

A review of such works is given by [Chand et al., 2002].

i. Markov Chain Models

To do so, [Alden and Smith, 1992] and [Hopp, 1989] used a Markov chain mod-
eling approach to make this error bounds explicit. Analyses were performed to put
into perspectives the performances of different planning methods, especially the in-
fluence of the length of the horizon in the sequential optimization of multiple fixed
plan framework problems, or the impact of the non-stationarity modeling on the
costs deviation [Hernandez-Lerma and Lasserre, 1990].

ii. Dynamic Optimization

In the same environment, [Morton and Pentico, 1995] developped heuristics in
order to minimize the cost deviation between the a posteriori minimal cost and the
cost generated by the sequence of different fixed-plan problems. In this approach
then, cost performances are at stake, and the objective is to understand how to
manage the inventory in a theoretical way for flow management modeling.

2.3.3 | Specific Products

Rolling horizon planning with forecasts updates has also been studied in some
particular cases where hypotheses allow to precise more specifically the optimiza-
tion model that can be applicable to face the associated challenges. As examples,
we present here some works concerning products whose production horizon have
a length limited to two periods, and fashion products whose sourcing contract is
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flexible over a rolling decision framework made up with two orders.

i. Two-Period Dynamic Programming
When short-life products are considered, the length of the horizon to be taken

into account do not exceed several periods. In that case, models using dynamic pro-
gramming may be explicitely built, and specific solutions can be found to optimize
the total expected cost of a rolling horizon planning problem under uncertainties.
We cite here the works of [Fisher et al., 2001] and [Bradford and Sugrue, 1990], as
well as the thesis of [Cheaitou, 2008] who presents a rich variety of modelings and
their corresponding solution methods.

As for [Gurnani and Tang, 1999], the authors developped a model considering
one period in which two production releases are authorized. A similar framework is
also adopted by [Choi et al., 2003] for the seasonal products.

ii. Flexible Contracts
In the fashion industry, in which products have a short-life cycle, some authors

also analyse how the supply contracts may improve the service level thanks to coordi-
nation and sharing information in a rolling plan framework. This is particularly the
work of [Donohue, 2000] for example, that shows the benefices of flexible contracts
in such a dynamic environment.

Although there may be some similar hypotheses in terms of context of study, this
large field of research is larger than only quantitative optimization of production
planning. Thus, we won’t go into this area much deeper.

2.3.4 | Forecast Evolution Modeling

Another way that allows modeling of the planning problem in an uncertain and
non-stationary context is to model the potential evolution of the forecasts that may
appear from one date of forecast to the next one.

With this aim, [Graves, 1999] modeled the non-stationary demand as a autore-
gressive integrated moving average process, and was able to compute an efficient
safety stock level for a single item inventory system. [Heath and Jackson, 1994] pro-
posed to represent the dynamics of the demand at each iteration of the rolling plan
as a stochastic process, and more specifically a martingale. They consider indeed
that the expectation of the forecasts of a period j > t based upon the information
up to t+1 should be the forecast of this same period based upon the information up
to the current date of forecast t. Using this relation, they performed simulations to
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study the efficiency of some planning methods in a basic scheme of production. By
implementing this forecasts evolution modeling, [Albey et al., 2015] study a similar
case in the specific semi-conductors industry.

2 .4 | Our Positioning

The high level of complexity of the planning problems under uncertainties and
rolling plan framework taking into consideration forecasts update makes the optimal
solution computation very difficult.

That’s why the literature described above deals first of all with mathematical
models that remains purely theoretical, and, in this case, do not give explicit solution
to the problem. These models are built either through the construction of dynamic
programming or online optimization models.

Then, other authors studied the solutions of the problem, but, to do so, fo-
cused on some specific kind of products, as for short-life cycle products so that the
exponential complexity of the problem may be controlled for example.

Finally, the difficulties of the modeling process has been overcome in other works
by studying either bounds of cost deviation in a sequential optimization process, or
by modeling precisely the evolution of the forecasted demand from one forecast date
to another one, which restrains the solution space.

Consequently, current academic works dealing with such decisional environment
are, to the best of our knowledge, are restricted to special cases, under strong mod-
eling hypotheses, or only theoretical mathematical models. This conclusion is also
supported by reviews conducted by [Jans and Degraeve, 2008] who ends his analy-
sis declaring that results concerning non-stationary production planning models are
too few, and by [Sahin et al., 2013] who affirms that although considering forecast
updates in rolling plans may increase the modelling complexity, it may reversely
generate great benefits in terms of cost and/or stability for the solution computed.

From the analysis above, we can see the importance of uncertainties management
and therefore the great interest of the Rolling Plan framework enabling decision
makers to work in a flexible decision system for flow management. Current literature,
however, lacks of knowledge about such configurations. This situation makes the
topic of our study relevant, since it consists of developing optimization models for
production planning under uncertainties and forecast updates.
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We therefore have to investigate the forecast update mechanism and integrate it
into a stochastic optimization model for production planning.

As for the industrial context for our study, as stated in the general introduction,
we will only consider the single-item single-level production environment in order to
focus our attention to the goal described right above.
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Problem Description:
Forecasts Update and Production

Planning

In this chapter, we explain the mathematical modeling choices we made in terms
of modeling and decision making to solve the problem described previously.

The quantitative framework that we will follow all along the remainder of this
manuscript is then described here in details. We first define the modeling of the cus-
tomer demand taking into account our positioning. Second, we present the specific
configuration chosen for our work. In particular, we emphasize the challenges we
have to face by studying some standard key performance indicators and the behavior
of our modeling choice in such a framework in both analytical and numerical ways.
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1 | Forecast Update and Demand Modeling

First of all, we discuss the choice of the customer demand modeling. As described
in the positioning of our study, the main characteristics to take into consideration
here are the uncertainties and the dynamics of the forecasts updates in the Rolling
Plan framework.

1 .1 | Uncertain and Dynamic Demand Modeling

1.1.1 | Forecasts and Uncertainties

When we talk about uncertainties modeling, several challenges appear, whatever
the system considered. It has been indeed acknowledged that the quantitative issues,
related to the representation techniques and the assessment of uncertainties, are
complex.

The question of their assessment in production planning has been studied by
[Hubert, 2013] and other academical works presented in the literature review. In
addition, in this section, we study specifically the representation techniques. We
indeed ask ourselves what ways can be used as modeling practice to embody the
uncertainties in the context of the problem on which we focus, namely the non-
stationary demand of the rolling plan framework. The objective is to be able to
integrate them in the optimization process of production planning.

As described in the first chapter, the key demand information on which the deci-
sion system leading to production plan is based on the future customer requirements.
That is the reason why it is necessary to work with forecasted requirements. The
uncertainties considered here are consequently due to the forecasting process.

In such a context, it is commonly conceded that the mathematical language
of uncertainty is probability [De Rocquigny, 2012]. For our problem, we consider
consequently customer demand as random variable managed by probability theory.
Thus, for a specific period i, we choose to represent the customer demand by the
random variable Di. We also consider that this random variable will be represented
by its associated probabilistic density function (pdf) noted φi.

When we speak about uncertainties in systems modeling, it is important to
note there exist two different sources from which they can appear. In fact, both
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randomness and epistemic uncertainties are included into the uncertainties modeling
process [Riesch, 2012] [Helton, 1994].

The randomness is the natural aleatory characteristics of any event. Specifically,
in terms of customer demand, it represents the human behavior of the protagonists
of the supply chain that cannot be predictable. On the other hand, the epistemic
uncertainties are relative to lack of knowledge. The incomplete characteristic of the
data used into the modeling process creates this particular epistemic uncertainties.
This statistical uncertainties are quantifiable. In our problem, dealing with uncer-
tainties means considering these two sources into the customer demand modeling.

The rolling plan framework, as described in the previous chapter, ensures us to
work with as up-to-date data as possible. In this two-dimensional representation of
uncertainties, it actually allows us to minimize the epistemic uncertainties faced by
the system at the moment of the decision making. In any case, the randomness of
the forecasted demand cannot be neither downplayed nor neglected.

The value of the rolling plan framework takes place consequently in the flexibility
gain for the uncertainties management.

However, it requires more complex time-related features that will be discussed
in the following, especially when we consider the forecast update procedure at each
step of the rolling plan.

1.1.2 | Forecast updates and non-stationarity

This forecasted demand update mechanism makes the learning data set on which
the φi has been calculated to represent quantitatively Di evolve with respect to the
date of forecasts considered.

We need therefore to consider this temporal dimension into our demand model-
ing: we take into account the index of the date of forecast j for the demand in period
i > j, which can consequently legitimately be noted Di,j. In the same manner, we
will note φi,j its corresponding pdf. We note ∆j−1 the set of all information on hand
at the beginning of the date of forecasts j, used to calculate φi,j for any i > j.

Then, the objective of minimizing the epistemic uncertainties described previ-
ously corresponds to establishing a production plan under the use of the Di,j for
which we have i− j periods optimized. The following figures illustrate the learning
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set ∆t−1 to calculate the pdf of random variables Di,t, i > t (figure 2.1) and its
evolution from the date of forecast t to t + 1, engendering the evolution of φi from
φi,t to φi,t+1 (figure 2.2), where L is the lead time and N the planning horizon.

Figure 2.1: The learning set ∆t−1

The update of ∆t−1 generating ∆t creates the changes from the pdf representing
Di,t to Di,t+1.

Figure 2.2: From ∆t−1 to ∆t

The new forecasted demands Dt+1,t+1, ..., Dt+N−1,t+1 together with their corre-
sponding pdf φt+1,t+1, ..., φt+N−1,t+1 have been calculated based on ∆t, taking into
account more information than what existed at the previous iteration, ∆t−1. As a
consequence, for a given i > t+ 1, φi,t+1 has evolved from φi,t.

In such a rolling plan framework with forecast update, the forecasted demand
needs consequently to be considered as non-stationary with respect to the date of
forecasts.

1 .2 | PDF Computation process

In order to model these characteristics, the challenge is to understand how, for
any i > t+ 1, φi,t evolves to φi,t+1.
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These changes are due to the new information that make us pass from ∆t−1 to
∆t. The key information arriving from the sequence of events taking place during
period t that allows this update is the observation of the real customer demand that
occured during period t. Therefore, we need to precise how we could quantify this
observation so that the evolution that we want to model can be made explicit.

The a-posteriori real customer demand faced by the production planning system
during one period can be considered as an observation, or a random sample, of
the unknown -theoretical- random variable representing the demand. Its pdf and
parameters are unknown [Graves et al., 1993]. In the perimeter previously described,
its corresponding uncertainties are only aleatory. This random variable could have
been calculable if an infinite set of data would have been accessible to quantify it.

However, in our study, such information is unavailable: the theoretical pdf that
defines the real demand variable is unknown.

Then, to be able to characterize the real a-posteriori observed demand faced by
the system, we consider that it will be an observation, or a random sample, of the
random variable whose epistemic uncertainties is minimal. In other words, a sample
of the forecasted demand is calculated based on the information of the latest date of
forecast. This allows us to deal with the most accurate form available to represent
the unknown theoretical demand, and then to use data as close to reality as possible.
Using the notation defined in the previous paragraph, we consider consequently that
the real demand in any period i is a random sample of the random variable Di,i,
based on the information available up to i− 1 : ∆i−1.

This assumption allows us to define our demand modeling pattern. It helps us
indeed to understand that, for any i > t + 1, φi,t evolves to φi,t+1 by adding the
information of a random sample of Dt,t.

1.2.1 | Conditional Probabilities

In the study of production planning considered here, the particular periods i
that interest us at the beginning of period t are i = t+ L, .., t+ L+N − 1, as seen
in 1.6a. Specifically, the production decision taken during period t will impact the
period t+L. Thus, at the beginning of period t, one of the most important challenge
faced by planners is the modeling of the demand in period t+ L.

Following the reasoning made above, the best information that we could have to
model it is Dt+L,t+L, whose corresponding pdf φt+L,t+L would be calculated based
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on ∆t+L−1. However, at the beginning of period t, we only have ∆t−1 as available
historical data.

However, we know that φt+1,t evolves to φt+1,t+1 by adding the information of a
random sample of Dt,t as explained previously. But inasmuch as ∆t−1 is completely
known at the beginning of period t, φt,t is calculable, and consequently Dt,t can be
entirely characterized.

By combining ∆t−1 and this new information about Dt,t and its corresponding
pdf, it allows us to get clearer characteristics of ∆t: we can describe ∆t conditional
to Dt,t.

Finally, the direct corollary of this conditional description of ∆t is that we can
consequently be able to compute conditionally φt+1,t+1. Once retrieved, it gives us,
in the same manner, a conditional modeling of Dt+1,t+1.

Iteratively, using the same procedure, we can calculate ∀i > t, φt+i,t+i condition-
ally to variables Dk,k, t 6 k < i.

This particular way to represent the demand ensures us to catch the dynamics
of the update of any φi,t to φi,t+L, i > t + L. This update, faced by any planning
system in a rolling framework, interests us particularly, inasmuch as it impacts the
performance of the order made at t, received at t+ L.

This method requires iterative computation of conditional pdf φk,k for any k such
that t 6 k 6 t+L, each of them being calculated given the previous random variables
Dj,j, t 6 j 6 k. At each step of the computation, the update of the data based on
information that is non available at the beginning of period t is modelled through
conditional probability, using the most up-to-date random variables to represent this
information.

In this context, we can use the appropriate following notation:
â For the specific period t:

u Dt: the random variable representing the demand in period t, calculated
based on ∆t−1 at the beginning of period t.

u φt its corresponding pdf.
â For the following periods i > t:

u ∆i−1|(Dk)t6k<i
: the union set of ∆i−1, and (Dk)t6k<i, which are calculated

iteratively. As described, it represents the information on which the forecasts
made at the beginning of period i would be based, but because of a lack
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of knowledge at te beginning of period t, the set is defined conditionally to
(Dk)t6k<i.

u Di|(Dk)t6k<i
: the random variable representing the demand in period i, calcu-

lated based on ∆i−1|(Dk)t6k<i
. These are computed iteratively conditionally

to random variables Dk for t < k < i.
u φi|(Dk)t6k<i

Their corresponding pdf.
u E [ . |(Dk)t6k<i]: the random variable of the corresponding conditional expec-

tation of variable Di|(Dk)t6k<i
. This represents mathematically the conditional

expectation of Di|(Dk)t6k<i
with respect to the σ-algebra generated by the col-

lection of random variables (Dk)t6k<i.

An illustration of this modeling procedure is presented in 2.3. For ease of reading,
we will note ∀i > t:

â ∆i−1|t = ∆i−1|(Dk)t6k<i

â Di|t = Di|(Dk)t<k<i

â φi|t = φi|(Dk)t<k<i

â Ei−1|t [ . ] = E [ . |(Dk)t6k<i]

Figure 2.3: Method of conditional computation of the demand

1.2.2 | A Dynamic Multiple-level Probabilistic Structure

As set above, the random variables modelling the demand in periods i > t catch
the dynamics of the forecast update that the system will face during the evolution of
the rolling plan from t to t+ L. This probabilistic conditional definition is actually
based on the fact that at the beginning of period t, planners suffer from a lack of
knowledge for future periods from t to t + L. This deficit of information is indeed
represented through the previous probabilistic structure, as described in [Helton,
1994].

This particular form of demand modeling can actually be interpreted as the
following model ∀i > t,:
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 Di|t ∼ φi|t(θi,t)
θi,t = Gi,t ((Dk)t6k<i)

In this structure, θi,t denotes the vector of parameters of the pdf of the random
variable Di|t. It may for example be the mean and the standard deviation, in the
specific case of a normal distribution. Being computed conditionally to random
variables (Dk)t6k<i implies that this specific vector θ depends directly on them.
More precisely, we define by Gi,t the explicit relation between these parameters θi,t
and (Dk)t6k<i.

This Gi,t allows us to characterize φi|t with respect to (Dk)t6k<i through θi,t. On
the other hand, we can write a similar system for any Dk|t, t 6 k < i. We have for
example Di−1|t whose parameter vectors θi−1|t of its pdf φi−1|t can be expressed with
respect to (Dk)t6k<i−1).

 Di|t ∼ φi|t(θi,t)
θi,t = Gi,t ((Dk)t6k<i)

(2.1) and

 Di−1|t ∼ φi−1|t(θi−1,t)
θi−1,t = Gi−1,t ((Dk)t6k<i−1)

(2.2)

Equations 2.2 allows us to write Di−1|t as a random variable whose pdf de-
pends directly on ((Dk)t6k<i−1): Di−1|t ∼ φi−1|t (Gi−1,t ((Dk)t6k<i−1)). Knowing that
θi,t = Gi,t ((Dk)t6k<i), we can specify θi,t as a random variable defined with respect
to ((Dk)t6k<i−1) on the one hand, and Di−1|t already determined with respect to
((Dk)t6k<i−1) on the other hand. It is consequently a random variable depending on
(Di−1|t, (Dk)t6k<i−1); we note ψi,t its corresponding pdf. This leads us to the double
level probabilistic structure:

 Di|t ∼ φi|t(θi,t)
θi,t ∼ ψi|t

((
Di−1|t, (Dk)t6k<i−1

)) (2.3)

This particular structure is showing theoretically the conditional link developped
in the previous paragraph that exists between Di|t and Di−1|t though ψi|t. We have
indeed an explicit recursive link between Di|t and Di−1|t, all along with function Gi,t
expressed with respect to

(
Di−1|t, (Dk)t6k<i−1

)
.

In a similar way, we can build a multiple-level probabilistic structure in order to
get expressed the iterative conditional relations between Di|t and (Dk)t6k<i, getting
retrieved at each step of the computation of the Di|t, i > t, as presented in the
previous section.
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Relation 2.3 has a double interest, as, first of all, it gives a -stochastic- repre-
sentation of the random variable Di,i minimizing the epistemic uncertainties, and,
second, it includes the dynamics of the forecast update facing by Di,t until it is
updated to Di,i. It takes finally into account the non-stationarity relative to the up-
date mechanism required to the uncertainties management through flexibility given
by the rolling plan framework.

1 .3 | Conclusion

We defined in this section a framework of modeling of the forecasted demand of
any period i > t at the precise forecasts date t, taking into account the forecast up-
date that will take place during periods between t and i. Both the non-stationarity
and uncertainties generated by the update mechanism of the rolling plan are conse-
quently represented into our model of the forecasted demand.

This modeling creates first of all a complex dynamics of computation inasmuch
as an iterative way of conditional computation is required to represent the demand
of the objective period, and second a double-level probabilistic structure which gives
us finally a stochastic representation of the demand, whose distribution parameters
are random and recursively defined period after period.

In the next section, we will specify concretely the mathematical choice made
to get this model explicit, and study this representation to better understand its
benefits.

2 | Specifications of our Study

In this section, we go into details of the hypotheses in our work so that the study
can be analyzed in depth, and so that we can go through explicit calculations to
answer our questions expressed in previous paragraph 2.

2 .1 | Demand Forecasts Hypotheses

As seen in section 1, the modeling of the demand as a non-stationary random vari-
able, that takes into account the update of the forecasts, is source of non-negligible
complexity. That is the reason why we intentionally chose in this study to work with
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relative simple forecasting representations and methods of computation so that tech-
niques presented previously can be explicitly calculable and implementable. This
will allow us to attain one particular objective presented in 2, and whose relevance is
justified at the end of the literature review, which is to be able to compute solutions
expressly.

2.1.1 | Mathematical Models choice

The details of the variables and the modeling definition that we will follow in
our thesis are presented here.

i. General form of the PDF

As set in the previous section, the forecasted demand in period i calculated at
the beginning of period t is a random variable defined through its PDF φi|t.

We will see in the next chapters that our production planning problem implies
various integration issues. To that matter, we chose to work with a triangular dis-
tribution. It is indeed a classical linear distribution allowing integration properties
since it is linear, with good approximation properties though. We assume conse-
quently that ∀i, t 6 i 6 t+N −1 , φi|t is the pdf of a centered triangular law, whose
mean is noted mi and its standard deviation σi. In that context, the vector of the
parameters of φi|t, namely θi|t, is here of length 2 and made up of mi and σi. We
note arbitrarily mi − 2si and mi + 2si the boundaries of this triangular PDF. We
have then s2

i = 3/2× σ2
i , (σi 6= 0). As defined, we can write ∀z ∈ R:

φi|t(z) =


φ1 = 1

4s2
i
(z −mi + 2si) if mi − 2si 6 z 6 mi

φ2 = 1
4s2

i
(mi + 2si − z) if mi 6 z 6 mi + 2si

0 otherwise

ii. Forecasting method for the parameters θi|t
In order to compute this PDF, and especially its parameters θi|t so that Di|t can

be represented analytically and numerically, a forecasting technique will be used.

In the large field of forecasting techniques, well presented in a comprehensive
manner in [Hubert, 2013], it is noteworthy that one of them was particularly inter-
esting for our study, namely the linear regression.
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It is indeed a statistical method that drew our attention for a number of rea-
sons. First of all, the linear regression technique is widely used, known, and easy to
implement in industrial environment where various information systems allow com-
panies to have large databases. Second, well calibrated, it can provide good results
in terms of forecasting performances. Then, as quantitative method, the process of
forecasting can integrate any data that can be exploited, allowing a large flexibility
of use. Also, qualitative judgments can be integrated through qualitative predictors
vectors if necessary. Finally, the mathematical procedure and computations are well
modelled in a well known framework of study.

2.1.2 | Linear Regression parameters Computation

We define then the following variables to precise our study with linear regression
as forecasting technique.

Let p > 2 be the number of known predictor variables (Λk)16k6p of length t+N−
1. We note Λ the corresponding t+N − 1× p known matrix, and (λik)16k6p

16i6t+N−1
=

(Λk)16k6p.
The first vector Λ1 is considered as the constant vector equal to 1, and the

second Λ2 equal to the "time vector" representing the trend of the data: λi2 = i,
∀i, 1 6 i 6 t+N − 1.

Thus, as well known [Dodge and Rousson, 2004], at the beginning of t, when a
forecasting procedure is executed to get the forecasted demand from t to t+N−1, the
t− 1 first observations of Λ are used as learning set to calculate the p coefficients of
the predictive linear function. The following N observations (λik)16k6p

t6i6t+N−1
are used

in the predictive set to get the forecasts. We note consequently Λl(t) = (λik)16k6p
16i<t

the subset of Λ used in the learning set for the regression calibration at the beginning
of period t, and Λp(t) = (λik)16k6p

16i<t
the projection set used for predictions for i in

Jt, t+N − 1K.

We note A(t) the vector of the coefficients of the linear regression calculated
based on Λl(t): A(t) = (aj(t))16j6p. ∀t, A(t) is then made up of the p coefficients
of the predictive linear function. These aj(t) are supposed to be calculated with
the least square method. Then, ∀i, t 6 i 6 t + N − 1 , the predicted vector
Ŷi(t) = ∑p

j=1 aj(t).λij represents the output of the linear regression.
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In the context of the customer demand as modelled previously, the dependent
variable of the regression executed at the beginning of period t is the observed
demand. We note it di, ∀i, 1 6 i < t, and d(t) the corresponding vector of length
t − 1. Consequently, the predicted vector corresponding to the linear regression
represents the mean of the forecasted demand in any period i: mi, with t 6 i 6

t+N − 1. It becomes then equal to Ŷi = ∑p
j=1 aj(t).λij.

However, the iterative conditional computation of the pdf φi|t for any i > t

described in the previous section is concretely interpreted here as the fact that mi

will systematically be actually calculated based on all information up to i− 1. This
means that at the beginning of period t, we only keep mt = Ŷt = ∑p

j=1 aj(t).λtj as
output of the regression made based on Λl(t). As for the following periods i > t,
the value kept as mean of the random variable Di|t will be consequently mi =∑p
j=1 aj(i).λij whose corresponding coefficients (aj(i))16j6p are re-computed from

another regression based on Λl(i).

We detail in the following relations how these coefficients A(i) are computed
using the least square method, ∀i ∈ Jt, t+N − 1K.

â For the specific period i = t, we have from the least square method:

A(t) = (Λl(t)TΛl(t))
−1Λl(t)T × d(t)

where MT is the transpose of any matrix M . This leads us to

∀j ∈ J1, pK, aj(t) =
t−1∑
k=1

(
(Λl(t)TΛl(t))

−1Λl(t)T
)
jk
. dk

In order to lighten the notation, we define ∀i ∈ Jt, t + N − 1K, ∀k ∈ J1, t − 1K,
∀j ∈ J1, pK:

αjk(i) =
(
(Λl(i)TΛl(i))

−1Λl(i)T
)
jk

=
p∑

m=1
(Λl(i)TΛl(l))

−1
jm.

(
Λl(i)T

)
jk

=
p∑

m=1
(Λl(i)TΛl(i))

−1
jm. λkj
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The elements of A(t) are then re-written as simply

aj(t) =
t−1∑
k=1

αjk(t). dk

This being known, we can compute the sought mt thanks to the fact that the
output vector (mi)t6i6t+N−1 is equal to A(t)T × Λp(t):

mt =
p∑
j=1

aj(t).λtj =
p∑
j=1

(
t−1∑
k=1

αjk(t). dk
)
λtj

which gives us finally

mt =
t−1∑
k=1

 p∑
j=1

αjk(t). λtj

 dk (2.4)

â For any period i > t, as explained in 1, the iterative computation of conditional
pdf of random variables

(
Di|t

)
t<i6t+N−1

are integrated into the learning set of
the calculation of its parameters θi|t. In other words, we consider Λl(i) and the
concatenation of d(t) and

(
Dl|t

)
t6l<i

in the computation of A(i) that becomes
random:

∀j ∈ J1, pK, aj(i) =
t−1∑
k=1

αjk(i). dk +
i−1∑
l=t

αjl(i). Dl|t

The mean mi of the considered random variable Di|t is consequently, ∀i > t:

mi =
p∑
j=1

aj(i).λij

=
p∑
j=1

(
t−1∑
k=1

αjk(i). dk +
i−1∑
l=t

αjl(i). Dl|t

)
λij

=
t−1∑
k=1

 p∑
j=1

αjk(i). λij

 dk +
i−1∑
l=t

 p∑
j=1

αjl(i). λij

Dl|t

We note ∀i ∈ Jt, t+N − 1K,∀k ∈ J1, i− 1K:

βkmi
=

p∑
j=1

αjk(i). λij =
p∑
j=1

( p∑
m=1

(Λl(i)TΛl(i))
−1
jm. λkj

)
. λij
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Then, we finally have

mi =
t−1∑
k=1

βkmi
dk +

i−1∑
k=t

βkmi
Dk|t (2.5)

The other parameter of the pdf φi|t defined in paragraph i that is required to
express literally the variables modelled is the standard deviation σi. This parameter
represents the uncertainties linked with the random variable Di|t, and, as previously
said, can be calculated (or estimated) with many methods. We can basically classify
them into two different categories: the a posteriori and a priori methods. The first
ones consist of considering the errors made during the previous forecasting proce-
dures, analyzing them, and projecting the trends for forecasted periods. We can cite
as illustrative examples of such techniques the works of [Hubert, 2013] and [Babai,
2005]. The second methods consider conversely the forecasting techniques used and
its associated forecasting uncertainties represented by the error from the obtained
model and the error associated with future observations, calculated based on the
theoretical statistical variance of the estimated vector A(t) [Friedman et al., 2001].
We choose for modelling and computational issues the second type of uncertainties:
the statistical a priori ones.

In our case of study in which we consider the linear regression, the corresponding
uncertainties of prediction are expressed with the following relations:

Let σεi
be the non-biased estimator of the standard deviation of the errors of the

regression εi, for i ∈ J1, t− 1K:

σ2
εi

= 1
i− p− 2

(
t−1∑
k=1

(
dk − A(i)TΛl(i)k

)2
+

i−1∑
k=t

(
Dk|t − A(i)TΛl(i)k

)2
)

with Λl(i)k = (λkm)16m6p being the kth row of the learning matrix Λl(i). In other
words, the product A(i)TΛl(i)k is the output of the regression made at the date i
for the already observed data for period k < i.

Then, we can write that, for any j in J1, pK the variance of the jth element of
A(i) is σ2

εi

(
Λl(i)TΛl(i)

)−1
. We note ci =

(
Λl(i)TΛl(i)

)−1
. We have consequently

∀i ∈ Jt, t+N − 1K:

σi = σεi

√
1 + Λp(i)i × ci × Λp(i)iT (2.6)
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where Λp(i)i = (λij)16j6p is the ith row of the projection matrix Λp(i).

To end this section, we see that the specific case of the linear regression used
as forecasting method presented here finally enables us to compute and express
litterally the pdf for any demand forecasts Di|t, t 6 i 6 t + N − 1 defined in 1.
The relations 2.5, 2.4, and 2.6 clarify indeed θi|t such that the iterative computation
method explained in section 1 can be implemented. Compared to equation 2.3, we
have indeed expressed the Gi,t function.

It allows to take into consideration the forecast update mechanism into the
modeling of the forecasted demand concretly in the model of the pdf. We have
consequently here explicit equations defining the forecast update into the demand
modeling through Di|t.

2 .2 | Studies of the Demand Modeling Choice

Now that the details of the mathematical choice of the demand forecasts have
been defined, they can lead us to interesting analyses in order to understand the
benefits of such dynamic and double level probabilistic modelling.

Litteral calculations may indeed be realized to highlight the characteristics of
such a modelling approach, especially concerning one of the main challenges cited in
section 1, which is the uncertainties estimation and management. Analytical studies
is then presented here to this end.

Then, numerical simulations will be performed to illustrate these characteristics.

2.2.1 | Analytical Study

We present here in details an analysis of the a priori uncertainties of the demand
forecasts that is taken into consideration in the decision process leading to the
production plan at the beginning of any period t in the specific case chosen above
of the linear regression. To do so, we will go in depth into its computation our
double-level probability structure modeling.

As described previously, the production decision taken during period t will im-
pact the period t + L, where L is the production lead-time. We have seen in the
previous section that in our modelling of the corresponding demand forecast Dt+L|t,
the dynamics of the forecast updates from t to t + L − 1 will be integrated into
the representation of Dt+L|t through a conditional iterative computation of its pdf
whose parameters are consequently stochastic.
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The aim of this study is to understand how these parameters are modelled. In
other words, we are studying the ψt+L|t defined in equation 2.3. In order to better
understand the computations, we will take as example the simple linear regression.

In the case of simple linear regression, we have p = 2, meaning the matrix Λ is
only made up of the constant vector equal to 1, Λi1 = 1, ∀i ∈ J1, t + N − 1K, and
the "trend" vector, such as Λi2 = i, ∀i ∈ J1, t + N − 1K. In such context, the βkmi

defined in equation 2.5, and the ci of the equation 2.6 can be explicitely calculated.
We basically have indeed: ∀i ∈ Jt, t+N − 1K

mi = a1(i) + a2(i).i and σ2
i = σ2

εi
.

(
1
i

+ (i/2)2∑i−1
j=1 (j − i/2)2

)
(2.7)

where σ2
εi

= 1
i−4

(∑t−1
k=1 (dk − a1(i)− a2(i)k)2 +∑i−1

k=t

(
Dk|t − a1(i)− a2(i)k

)2
)
.

From here, the coefficients a1(i) and a2(i) of the regression based on the learning
set Λl(i) are only noted a1 and a2 for more ease of reading, ∀t < i 6 t + N − 1,
the particular form of Λ in the specific case of the simple linear regression gives us
thanks to the least square method:


a2=αi1

(
t−1∑
k=1

dk+
i−1∑
k=t

Dk|t

)
+ αi2

(
t−1∑
k=1

kdk+
i−1∑
k=t

kDk

)

a1=
1

i− 1

(
t−1∑
k=1

dk +
i−1∑
k=t

Dk

)
− a2

i

2

where


αi1 = −6

(i− 1)(i− 2)

αi2 = 12
i(i− 1)(i− 2)

which leads us finally to the literal expression of the function Gi,t defined in 2.1:

mi =
t−1∑
k=1

2(3k − i− 1)
(i− 1)(i− 2)dk +

i−1∑
k=t

2(3k − i− 1)
(i− 1)(i− 2)Dk|t (2.10)

For the specific period t + L that interests us, we can consequently write that
βkmt+L

= 2(3k−t−L−1)
(t+L−1)(t+L−2) . This coefficient represents the dynamic links between mt+L

and the previous random variables Dk|t for t 6 k 6 t+L that are integrated into its
computation. As explained ,this consideration allows to take into account the fore-
cast update that will take place during the rolling horizon, but adds uncertainties
into the computation by creating a double level probability structure. This frame-
work forces us to compute mt+L iteratively by calculating successively the φk|t from
k = t to k = t+ L− 1.
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The question now is: "How does this iterative calculation impact on θt+L,t?" Or,
in other words, what can we know about ψt+L|t from 2.3?

To answer this question, we will first of all study the mean and the standard
deviation of the random variable mi defined in 2.10. Then, the same study will be
executed for σi. Results will give us relevant information about the parameters of
φt+L|t in our context of forecast update.

i. Probabilistic Properties

Before any calculation, an important remark is necessary in order to justify the
probabilistic environment in which the following results are computed. In particular,
it is important to understand the probability sets on which our variables are defined
to be able to compute any stochastic features such as the expectation of our random
variables.

Actually, in our modeling, as far as probabilistic spaces and measures are con-
cerned, the unknown random variables defining the real customer demand Di for i
from 0 to t+N−1 define a stochastic process taking real values, meaning basically in
the measurable space (R,B(R)). The corresponding -unknown- density function φi
then defines a measure on the σ-algebra generated by Di included into B(R), noted
Fi. At the beginning of a period t, the observations di for i ∈ J1, t − 1K represent
one -among multiple possibilities- data trajectory included in Ft−1. For next periods
j > t, the unknown Dj define anonther σ-algebra Fj such as Ft−1 ⊂ Fj inasmuch
as the potential trajectories (dk)06k6t−1 are strictly included in the set of possible
observations (dk)06k6j for j > t− 1.

By characterizing recursively Di+1|t with respect to Di|t through the conditional
density function φi+1|t, its corresponding measure so built is defined on Fi+1, in
which Fi is included. Consequently, Di|t and Di+1|t are random variables considered
in two different probability spaces, as their sets of events are not similar. Therefore,
although the definition of Fi+1 depends on Di|t, their sampling are independent.

In terms of expectation computation, this independence makes any joint density
φDi|t,Dk|t of any k, i such that t 6 k < i be equal to the product of their marginal
density function. In other words, given any vector X ∈ Ri−t such that (Dk|t)t≤k<i =
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X, we have ∀z ∈ R:

φi|t(θi,t, z) = φi|(Dk|t)t≤k<i
=X(θi,t, z)

= φi|t(Gi,t(X), z)

Therefore, for any measurable function g in (R,Fi), we have, ∀X ∈ Ri−t

Ei−1
[
g(Di|t)

]
= E

[
g(Di|t) | (Dk|t)t≤k<i = X

]
=
∫
R
g(z)φi|t(Gi,t(X), z)dz

This result allows us to ensure that our calculation of φi|t(θi,t, z) is relevant with
respect to the variables (Dk|t)t≤k<i, for any i between t and t+N − 1.

ii. Characteristics of ψt+L|t
We aim here at defining the stochastic features of mi and σi defined in 2.7 so

that the double-level probabilistic structure can be deeply understood in the context
of the simple linear regression.

Mean mt+L: we first study the mean of the random variable mt+L conditional
to ∆t+L−1|t.

Property 2.2.1 - 1. The variable µt+L defined as follows is an unbiased estimator
of Et+L−1 [mt+L]:

µt+L =
t−1∑
k=1

βkmt+L
dk +

t+L−1∑
k=t

βkmt+L
mk

The corresponding variance Vart+L−1 [mt+L] is equal to

Vart+L−1 [mt+L] =
t+L−1∑
k=t

(
βkmt+L

)2
σ2
k

Proof. The equation 2.10 gives us basically that the variable mt+L is linear with
respect to

(
Dk|t

)
t≤k<t+L

. Moreover, the previous paragraph ensures us that the
covariance between any Di|t and Dj|t, ∀i, j, is equal to zero.

Standard deviation σt+L: in the same manner, we study the random variable
σt+L by computing its mean and standard deviation.

Lemma 2.2.1 - 2. The variable Et+L−1
[
σ2
t+L

]
is calculable with respect to (dk)16k<t,

and (mk, σk)t6k<t+L.
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Proof. We note α3 = 2(2i−1)
(i−1)(i−2) and α4 = −2(i+1)

(i−1)(i−2) . We have ∀k ∈ Jt, t+ L− 1K:

Et+L−1
[
Dk|t

]
= α4

t−1∑
j=1

dj +
k−1∑
j=t

mj

− α1

t−1∑
j=1

jdj +
k−1∑
j=t

jmj


Vart+L−1

[
Dk|t

]
= α1

2
k−1∑
j=t

j2σ2
j − 2α1α4

k−1∑
j=t

jσ2
j + α2

4

k−1∑
j=t

σ2
j

Moreover, we can compute

Et+L−1 [a1] = α3

t−1∑
j=1

dj +
t+L−1∑
j=t

mj

+ α1

t−1∑
j=1

jdj +
t+L−1∑
j=t

jmj


Vart+L−1 [a1] = α3

2
t+L−1∑
j=t

σ2
j + α2

1

t+L−1∑
j=t

j2σ2
j + 2α1α3

t+L−1∑
j=t

jσ2
j

Et+L−1 [a2] = α1

t−1∑
j=1

dj +
t+L−1∑
j=t

mj

+ α2

t−1∑
j=1

jdj +
t+L−1∑
j=t

jmj


Vart+L−1 [a2] = α1

2
t+L−1∑
j=t

σ2
j + α2

2

t+L−1∑
j=t

j2σ2
j + 2α1α2

t+L−1∑
j=t

jσ2
j

The independence gives us ∀k ∈ Jt, t+ L− 1K:

Cov(a1, a2) = α1α3

t+L−1∑
j=t

σ2
j + (α2

1 + α2α3)
t+L−1∑
j=t

jσ2
j + α1α2

t+L−1∑
j=t

j2σ2
j

Cov(Dk|t, a1) = α1kσ
2
k + α3σ

2
k

Cov(Dk|t, a2) = α2kσ
2
k + α1σ

2
k

The equalities expressed above help us get the explicit expressions for Et+L−1
[
D2
k|t

]
,

Et+L−1
[
Dk|t.a1

]
, Et+L−1

[
Dk|t.a2

]
for any k in Jt, t+L−1K; and Et+L−1 [a2

1], Et+L−1 [a2
2],

and Et+L−1 [a1a2].

On the other hand, based on 2.7, we have Et+L−1
[
σ2
t+L

]
= γi . Et+L−1

[
σ2
εi

]
,

where γi is equal to
(

1
i

+ (i/2)2∑i−1
j=1 (j−i/2)2

)
and σ2

εi
= 1

i−4

[∑t−1
k=1 (dk − a1 − a2k)2+∑t+L−1

k=t (Dk|t − a1 − a2k)2
]
.

Thus, σ2
εi
is proportional to the sum of the a posteriori squarred errors equals to

(dk−a1−a2k)2 for k < t and the a priori squarred errors equals to (Dk|t−a1−a2k)2

for k ∈ Jt, t+ L− 1K. We can consequently easily express Et+L−1
[
σ2
εi

]
with respect

to the variables calculated above inasmuch as both operators E [.] and Cov(., .) are
linear ones.
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Remark: complete results are available in appendix.

Lemma 2.2.1 - 3. The variable Vart+L−1
[
σ2
t+L

]
is calculable with respect to (dk)16k<t,

and (mk, σk)t6k<t+L.

Proof. As previously noted, σ2
t+L = γi . σ

2
εi
. Being able to express Vart+L−1

[
σ2
t+L

]
is consequently equivalent to being able to describe Vart+L−1

[
σ2
εi

]
, and then even

Vart+L−1
[∑t−1

k=1 (dk − a1 − a2k)2 +∑t+L−1
k=t (Dk|t − a1 − a2k)2

]
.

Let ek be the quantity equal to dk−a1−a2k for k < t and toDk|t−a1−a2k for k >

t. By definition, Vart+L−1
[∑t+L−1

k=1 e2
k

]
is equal to the sum of ∑t+L−1

k=1 Vart+L−1(e2
k)

and of 2∑16i<j6t+L−1 cov(e2
i , e

2
j).

â We first study the computation of ∑t+L−1
k=1 Vart+L−1(e2

k).

By definition of the least square method, the random variable e is a centered variable.
Considering moreover that it follows a Gaussian distribution, we can write its 2nd

and 4th moments ∀k ∈ J1, t+ L− 1K:

Et+L−1 [e2
k] = Vart+L−1 [ek]

Et+L−1 [e4
k] = 3Vart+L−1 [ek]2

which gives us consequently Et+L−1 [e4
k] = 3Et+L−1 [e2

k]
2.

On the other hand, we know, by definition, that Vart+L−1 [e2
k] = Et+L−1 [e4

k] −
Et+L−1 [e2

k]
2.

Finally, we have then Vart+L−1 [e2
k] = 2Et+L−1 [e2

k]
2, which is known with respect

to (dk)16k<t, and (mk, σk)t6k<t+L based on the proof of 2.2.1 - 2.

â We examine then the term ∑
16i<j6t+L−1 cov(e2

i , e
2
j).

∀i, j s.t. 1 6 i < j 6 t+ L− 1, cov(e2
i , e

2
j) = Et+L−1

[
e2
i e

2
j

]
− Et+L−1 [e2

i ]Et+L−1
[
e2
j

]
As seen right above, the terms Et+L−1 [e2

i ] are known with respect to (dk)16k<i,
and (mk, σk)t6k<i. Moreover, in the same manner, we can easily confirm that
Vart+L−1 [ei] is also known ∀i s.t. 1 6 i 6 t + L − 1, as well as cov(ei, ej), ∀i, j
s.t. 1 6 i < j 6 t+ L− 1.

On the other hand, admitting the (ei)16i6t+L−1 is a Gaussian vector, we can
write Et+L−1

[
e2
i e

2
j

]
= Vart+L−1 [ei]Vart+L−1 [ej] + 2cov(ei, ej)2.

This completes the proof as each term can be expressed with respect to the
wished variable.
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Property 2.2.1 - 4. Assuming the random variable σt+L follows a Gaussian dis-
tribution, it can be represented through its conditional expectation and variance,
expressed explicitly with respect to previous states (dk)16k<t, and (mk, σk)t6k<t+L.

Proof. Being Gaussian, we can write the 2nd and 4th corresponding moments:

Et+L−1
[
σ2
t+L

]
= Vart+L−1 [σt+L] + Et+L−1 [σt+L]2

Et+L−1
[
σ4
t+L

]
= 3Vart+L−1 [σt+L]2 + 6Vart+L−1 [σt+L]Et+L−1 [σt+L]2 + Et+L−1 [σt+L]4

which lead us to:

Et+L−1 [σt+L]4 = 1
2

(
3Et+L−1

[
σ2
t+L

]2
− Et+L−1

[
σ4
t+L

])

On the other hand, Vart+L−1
[
σ2
t+L

]
= Et+L−1

[
σ4
t+L

]
− Et+L−1

[
σ2
t+L

]2
and

Vart+L−1 [σt+L] = Et+L−1
[
σ2
t+L

]
− Et+L−1 [σt+L]2, so we get finally:

Et+L−1 [σt+L]4 = Et+L−1
[
σ2
t+L

]2
− 1

2Vart+L−1
[
σ2
t+L

]
Vart+L−1 [σt+L] = Et+L−1

[
σ2
t+L

]
−
√
Et+L−1

[
σ2
t+L

]2
− 1

2Vart+L−1
[
σ2
t+L

]

The lemmas 2.2.1 - 2 and 2.2.1 - 3 have shown that Et+L−1
[
σ2
t+L

]
and Vart+L−1

[
σ2
t+L

]
can be expressed litterally with respect to the previous state variables (dk)16k<t, and
(mk, σk)t6k<t+L. Consequently, it is also the case for the expectation and the vari-
ance of the variable σt+L.

iii. Conclusion
Our choice in terms of demand modeling has been determined so that it can

include the dynamics of the forecast update through the rolling horizon. This moti-
vation leads us to the mathematical modeling presented in this chapter, and we thus
came up with an iteratively defined forecasted demand, by basing the computation
on random variables defined for future periods.

In order to represent this demand, and exploit it, we work with conditional
definitions, based on future stochastic features calculated at the date of forecasts t.
This creates a double-level probabilistic structure for any demand in period i < t.

In the current section, we analyzed theoretically the impact of such modeling on
the stochastic features of the demand modelled in a concrete example. We prove
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that, using linear regression as forecasting technique, the stochastic characteristics of
the distribution defining the demand are random variables. In particular, we were
able to express their features literally with respect to variables defining previous
periods.

The relations explicitally written here bring value in terms of modeling approach
as they highlight the iterative link between a considered future period that we want
to represent on the one hand, and the future demands that will evolve in the next
forecasts dates through forecast update procedure and that impacts on the quantifi-
cation of the considered forecast demand on the other hand.

In other words, we quantified theoretically the impact of the forecast updates
from t to i on any forecasted demand model Di|t.

In particular, our results show that the uncertainties are greater due to the
generated variance of the expectation of the demand, and also of the corresponding
standard deviation.

As shown previously in this paragraph, the variance of the parameters θi|t through
ψi|t create indeed variability in the computation of Di|t due to different scenarios
(Dk|t)t6k<i. The following illustrations give us a representation of this double-level
probability structure in the specific case of Gaussian variable. It shows how the
variance of both the mean and the standard deviation of φi|t may influence the
distribution. In the first case, 2.4, the distribution may be translated from one
point to another, conditional to (Dk|t)t6k<i. In the second case 2.5, the width of the
distribution may be influenced by these random samplings.

Figure 2.4: The influence of the variance of mt+L
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Figure 2.5: The influence of the variance of σt+L

It is important to note that necessarily, the key probability P(Dt+L|t > X)
influencing the production plan will be impacted. Consequently, it will be crucial to
take into account the link between (Dk|t)t6k<i and Dt+L|t described in details here so
that we can quantify the induced variability and finally exploit it. This information
combined with P(Dt+L|t > X|(Dk|t)t6k<i) enable us to get clearer information on
P(Dt+L|t > X).

In the next section, we present numerically some results showing the benefits of
taking into account this epistemic uncertainties of the parameters of the distribution.

2.2.2 | Simulation results

In this section, we present the simulation results in which we calculated the
stock level of a classical stochastic MRP approach, based on three different ways
of modeling the demand as input of the MRP approach. Specifically, we compare
results based on a fixed horizon framework, a classical rolling plan framework, and
our dynamic and double-level probabilistic rolling approach.

The aim is to show the benefits of considering the impact of the forecast update
into the modeling of the demand in terms of uncertainties. To do so, we particularly
focus the analysis on the average observed service level.

We follow the following procedure. We defined the real demand as a series of 90
random variables, whose mean and standard deviation are defined as a fixed chrono-
logical expanding number and a constant fraction of it respectively. We considered
that our analysis began at the beginning of the 50th period. Thus, we generated a
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random sampling of the first 49 observations of the demand to represent our learning
base as historical observed data. On the other hand, 10 000 samplings of the series
of the demand from period 50 to period 90 have been drawn.

For each of them, three planning processes have been executed.
â First, in the fixed horizon context, from the learning base made up with 49
observations of the real demand, we calculated the forecasted demand for the 41
next periods. These forecasts are, as presented in the previous section, defined
through their triangular pdf, and particularly their mean and standard deviation.
We calculated them using the formulas presented previously based on the simple
linear regression.
Once the forecasted demand computed, we calculated the production plan using
standard net requirements calculation, in which a targeted service level α is defined
to calculate a safety stock σi×Φ−1

st (α) in order to handle the uncertainties σi, φ−1
st (α)

being the standard centered triangular law. The production lead-time is defined as
equal to 4 periods. The targeted service level α is fixed at 95%.
Once the forecast demand is known, all this plan calculated at beginning of period
50, and then based on all information up to 49 is kept, and compared with all the 10
000 scenarios generated in the first place. We calculated thus the real a posteriori
service level faced by the system as the ratio of quantities served for each of scenario,
and compute the observed expectation of these ratios.
â Second, we place ourselves in a context of a classical rolling decision framework.
As in the first case, from the learning base made up of 49 observations of the real
demand, we calculated the forecasted demand for the 41 next periods. Then, we
calculated the production plan using the same standard net requirements calculation
as in the first case, with also a production lead-time of 4 periods and a targeted
service level α fixed at 95%.
Once calculated, the first decision of production to be launched during the first
period is actually executed. Then, for each scenario, the real observed sample of the
demand of the following period is revealed. The process restarts again, but from
period 51 with a new learning base of 50 periods.
Finally, for each scenario, we have a series of production launches at each step of
the rolling plan. The a posteriori service level is finally calculated for each scenario,
and we compute their observed expectation.
â Third, we use a rolling decision framework as defined in our approach presented
in the previous sections.
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In the same manner, from the learning base made up with 49 observations of the
real demand, we calculated the forecasted demand for the 41 next periods. But
here, we take into account the forecast updates that the system will face from the
current forecast up to the delivery of the first production (here, 4 periods later).
We consider indeed the use of the double-level probabilistic structure presented
above allowing to take into account the epistemic uncertainties added by the forecast
update mechanism.
We calculated then production plan using the standard net requirements calculation,
with also a production lead-time of 4 periods and a targeted service level α fixed
at 95% for the first level of uncertainties, and 75% for the second level -epistemic-
uncertainties. This second-level service level target corresponds to the idea to be
able to face 75% of the cases for the computation of the values of the parameters of
the pdf of any random variable representing the forecasted demand of period i.
As previously, once calculated, the first decision of production to be launched during
the first period is actually executed, and, for each scenario, the real observed sample
of the demand of the following period is revealed. The process restarts again, but
from period 51 with a new learning base of 50 periods.
Finally, for each scenario, we have a time series of production launches at each step
of the rolling plan. The a posteriori service level is finally calculated for each of
them, and we compute their observed expectation.

The following figures show the results obtained for the observed mean of the
service levels depending on the demand model chosen in the case of a specific learning
base chosen arbitrarily from period 1 to period 49.

Figure 2.6 illustrates that the forecasted demand based only on the learning set
up to period 49 is not sufficient to get the targeted service level for the whole plan:
the service level is divergent. In fact, here, our sampling of the first learning base
∆t−1 containing information up to 49th period makes the service level diverge to
zero, but the case of a divergence to infinity could have also been observed. The
lack of up-to-date information all along the proceedings of the production plan make
the errors accumulate themselves period after period. Thus, based on a fixed set of
information, the service level diverges on average.

In the case of a rolling plan framework, the divergence is avoided thanks to the
adaptation of the system over time to the evolution of the real observed demand.
But, inasmuch as the risk of error from the period of the date of forecast to the period
of the reception of the required quantities does not take into account the epistemic
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uncertainties coming from the incomplete learning set of the forecast procedure, this
does not consider the forecast update that the system will face necessarily during
this period. Consequently, by taking into consideration this forecast update and its
corresponding uncertainties, we can see in figure 2.6 that our rolling plan approach
integrating the forecast update is more efficient with respect to the targeted service
level compared with the classical rolling plan framework.

We illustrate consequently here the benefits of using a double-level probabilis-
tic system to model the customer demand: the forecast update procedure creates
epistemic uncertainties which are not taken into consideration in the classical rolling-
plan framework. The targeted service level cannot therefore be reached -in average-
because these uncertainties engender a spread of the value of the parameters of the
pdf of the demand appearing during the lead time. In the double-level probabilistic
framework on the contrary, the forecast update creating uncertainties are taken into
account in the demand modeling, and consequently into the production plan. The
service level targeted is reached, inasmuch as the lack of knowledge coming from the
next update is here integrated into the production plan.

Figure 2.6: The expected service level through the planning horizon

Besides, in order to examine more in details the benefits from our framework
that takes into consideration forecast updates compared with a classical rolling plan
framework, we calculated the improvement realized in our modeling compared with
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a classical framework with respect to the lead time. This improvement is quantified
as the difference of the percentage points of the service level of the two modeling
approaches.

Actually, the double-level probabilistic structure that allows us to integrate the
dynamics and the uncertainties generated by the forecast update is more efficient
so as the lead time. Actually, the bigger the production lead-time is, the higher
the epistemic uncertainties during the lead time. This lead-time-dependent benefit
is presented in figure 2.7: for longer lead-time, the benefits of our modeling on the
average service level are higher than classical approaches.

Figure 2.7: The improvements of the service level between a classical and our ap-
proach of the Rolling Plan Framework

2 .3 | Conclusion and Impact on the Production Planning

Optimization Problem

In this section, we have presented the forecasting method that we will use in the
remaining of our manuscript. We described quantitatively the detailed consequences
of choosing the double-level probabilistic modeling to represent the demand in our
rolling horizon with forecast update context.

Then, once defined, we were able to compute the stochastic features of such a
model in an analytical way. This has allowed us to understand the impact of the
forecast update procedure on the modeling parameters of the forecasted demand.

Finally, we simulated demand scenarios and rolling plan frameworks to calcu-
late production order in different contexts of study to illustrate the benefits of our
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forecast modeling on a planning indicators, namely the a posteriori expected service
level.

Such settings of study imply both dynamic and stochastic characteristics of the
planning problem, corresponding to these demand forecasts features.

The following question raises consequently and naturally: what type of optimiza-
tion method can be applied to solve such a problem. In the field of optimization
involving uncertainties, both stochastic programming or robust optimization could
be used. The second one, however, fits more when the distribution of the random
parameters or variables are unknown. Moreover, the first one can be implemented
dynamically with a multi-stage context, allowing consequently to treat the non-
stationarity of our problem.

As a consequence, stochastic dynamic programming seems to be an appropriate
optimization method to be applied.

We will present in the following chapter how we can model the production plan-
ning problem in a rolling plan framework taking into account the forecast update
mechanism with stochastic dynamic programming when linear regression is used for
demand forecasting.
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Optimization Model for the
Production Planning System with

Forecasts Update

In this chapter, we develop an optimization model applied to answer our issue,
namely production planning taking into account forecast updates.

To do so, we integrate the forecasted demand modeling presented in the pre-
vious chapter into an optimization framework. This framework takes into account
both the uncertain and non-stationary characteristics of the demand forecasts. We
analytically develop a method to solve this model.

More specifically, the first part of the chapter is dedicated to the detailed de-
scription of the functions, variables, and parameters of the optimization problem,
and presents a solution method based on theoretical analysis.

In the second part of the chapter, we apply this model for a specific and simple
case study as an illustrating example. Solutions are then computed, with the method
explained in the previous chapter, leading us to analytical results. Finally, numerical
analyses are presented to illustrate the results of our optimization model, and to
better understand how the parameters influence the performances.
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1 | Problem Modeling

1 .1 | System at stake, and objective

1.1.1 | General Variables

As described in details in the previous chapters, we consider here an uncapac-
itated single-item single-level production planning problem with backlog allowed,
under demand forecasts uncertainties, and taking into account the update of the
forecasts occuring at each step of the rolling horizon framework.

We treat the problem as a cost minimization problem, in which the costs con-
sidered are the unit production costs, the inventory holding costs, and the backlog
costs. The objective is to define, at the beginning of period t, the production quan-
tities for the next N periods, using historical data ∆t−1 from periods 1 to t−1, that
minimize these costs, taking into account the forecast update mechanism.

We define the system parameters as described in the following 3.1:

Table 3.1: Parameters Definition

Cost Parameters: H The inventory holding cost per unit per period
B The backlog cost per unit per period
p The per-unit production cost

Industrial Parameter: L The production Lead-time

We note moreover the variables defining the industrial system state at each
period i as detailed in table 3.2:

Table 3.2: State Variables Definition

Xi The random variable representing the available i = t..N

inventory at the beginning of period i
xi The real available inventory i = 1..t− 1

at the beginning of period i
ci The production order launched during period i, i = 1..t+N − 1− L

received at i+ L

Ki The random variable representing i = t..N

the production cost for period i

Wj The expected total production cost for a j = t..N

production plan from j to t+N − 1
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We consider specifically that ∀i ∈ Jt, t+N − 1−LK, Ki is made up of the inventory
cost and/or backlog costs, as well as the production costs:

Ki =

 −B.
(
Xi + ci−L −Di|t

)
+ p.ci when Xi + ci−L −Di < 0

H.
(
Xi + ci−L −Di|t

)
+ p.ci otherwise

For the last L periods, we have for i ∈ Jt+N − 1− L, t+N − 1K,
Ki = −B.

(
Xi + ci−L −Di|t

)
when Xi + ci−L −Di|t < 0, and H.

(
Xi + ci−L −Di|t

)
otherwise. Ki is indeed in these cases made up only of the holding/backlog cost as
ci is not defined.

Inasmuch as the planning problem from period t to the planning horizon t+N−1
is considered, we assume all variables di and xi, i < t are known as historical data,
included into the learning set ∆t−1.

1.1.2 | States of the System

At each period i of the planning that interests us, ie, i > t, the state of the system
is described entirely through specific variables. Precise values of these variables
create the information set needed to understand the instantaneous picture of the
considered environment at this instant i, defined at the beginning of the planning
process, ie at the beginning of period t.

i. Basic State of any period i:

Considering the variables presented in 3.2, the system state at the beginning of
a period i is made up of the followings: the inventory level at the beginning of the
period Xi, and the previous order launched (cj)i−L6j<i. Considering the learning set
presented in chapter 2, the information also included into the state of the system in
period i is all the historical data -including the historical demand- previously noted
∆t−1. In the specific case of the linear regression that we will use in the remaining of
this thesis, and that is described in section 2 of the previous chapter, it corresponds
for example to the learning matrix of size (i−1)×p, and the t−1 historical demand
data (di)16i<t.

We define this state as the basic state of the system. All the data considered here
are indeed raw data, not yet analyzed nor used by the planner into any calculation
process.
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ii. Advanced State of any period i:

The basic state of the system allows the planner to identify the details of the
context in which the production decisions have to be taken, but is not sufficient to
make them up. The decisional system cannot indeed be described entirely without
another level of information, in particular the demand forecasts information.

In fact, as previously defined in chapter 2, in order to take into account the
forecast update procedure of the rolling plan into the modelling of our forecasts, they
are calculated recursively and conditionnaly from period t to the considered period
i. Thus, to be able to understand the precise situation of the decision environment
of period i, demand forecasts Dk|t for k ∈ Jt, i−1K have to be included in the system
state. These are indeed variables conditional to which the computation of the future
forecasts of periods j > i are based, and which are therefore required to take any
decision at the beginning of period i.

These variables are completely defined by their random parameters θk|t, com-
puted recursively from the current forecast date t.

As a consequence, we define these outputs of the forecasting process -ie the
vector of parameters θk|t, for t 6 k 6 i - as an augmented state for the system in
period i, that complete the set of information from which the decision can be taken.
We define it as the advanced state of a period i. It is consequently made up of the
recursive demand forecasts information from t to i − 1, namely Dk|t for t 6 k < i,
and the forecast information for the parameters of period i. Each of these forecasted
demand is entirely defined through the conditional double-level definition of their
parameters set θk|t, which are computed recursively and conditional to the previous
states so that the forecast update mechanism can be included in the information
defining this advanced state of any period i.

1.1.3 | Objective

The problem formulated here is a cost minimization problem. We are seeking
for the production plan over the N following periods of the planning horizon from
the beginning of the first date of forecasts noted t. We consider in particular the
minimization of the expected total cost Wt with respect to the stochastic process(
Di|t

)
t6i6t+N−1

defined in the previous chapter as the dynamic modeling of the
demand that take into account the forecast updates of the rolling plan framework.

The expected cost Wt is by definition the expectation conditional to ∆t−1 of the
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cumulated cost of all periods from t to the planning horizon t+N − 1. It depends
consequently naturally on the state of the system in period t, and on the decision
variables (ci)t6i6t+N−1−L whose optimal point is sought:

Wt

(
xt,∆t−1, (ci)t−L6i<t, (ci)t6i6t+N−1−L,

(
Di|t

)
t6i6t+N−1

)
=

Et−1

t+N−1−L∑
i=t

Ki

(
Xi, Di|t, ci−L, ci

)
+

t+N−1∑
i=t+N−L

Ki

(
Xi, Di|t, ci−L

) (3.1)

1 .2 | Computational framework:

Stochastic Dynamic Programming

As explained, in order to take into account the dynamics of the forecast update
procedure into the optimization problem, we model the demand as a stochastic
historical-dependent process. Each forecasted demand Di|t at any period i > t is
defined conditional to the previous stochastic advanced states t 6 k < i, making its
pdf dependent on the random parameters of previous states (see chapter 2).

Despite its interesting characteristics that allow to depict stochastic scenarios oc-
curring during the rolling framework, this iterative modeling creates a computational
issue in terms of cost function calculation. Actually, the expectation conditional to
the state of t − 1 used to compute the cost function of the optimization problem
at the beginning of period t does not permit us to develop the expression of the
cost function in 3.1. It depends indeed on variables Di|t, i > t that are defined
conditional to states k, for t 6 k < i. We are consequently not able to calculate
an expectation of any measurable function g such as Et−1

[
g
(
Di|t

)]
for any i > t

inasmuch as it is not defined on the right σ-algebra.

Consequently, in order to be able to integrate this dynamic feature into our
optimization problem, we will model the problem as a multi-stage stochastic prob-
lem: each period represents a step of the optimization problem whose optimal point
depends on the previous ones.

We describe in details the relations between the stages of the problem in the
following subsections. First of all, we make explicit the iterative link between the
cost functions of the stages considered, then we detail the dynamics of the states of
the system from one period to another, and finally we explain how these help us to
get the optimal solution of our problem.
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1.2.1 | Recursiveness of the Cost Function Computation

Assuming we are able to compute the conditional expected cost W for a specific
period j such that t < j 6 t+N − L:

Wj

(
Xj,∆j−1|t, (ci)j−L6i<j, (ci)j6i6t+N−1−L,

(
Di|t

)
j6i6t+N−1

)
It implicitly supposes that the system state at the beginning of j is entirely

known, ie we can calculate any function conditional to ∆j−1|t.

Moreover, the advanced information on
(
Di|t

)
j6i6t+N−1

are, as previously de-
fined, calculated recursively based on ∆j−1|t. For an easier reading, it is not neces-
sary to let it explicit in the variables of Wj.

With such hypothesis, the minimum of this function with respect to (ci)j6i6t+N−1−L

would consequently be calculable. We note Vj this value, and call it Value Function
of period j, and (c∗i )j6i6t+N−1−L its argument of the minimum:

Definition 1.2.1 - 1.
Vj
(
Xj,∆j−1|t, (ci)j−L6i<j

)

= Wj

(
Xj,∆j−1|t, (ci)j−L6i<j, (c

∗
i )j6i6t+N−1−L

)
= min

(ci)j6i6t+N−1−L

Wj

(
Xj,∆j−1|t, (ci)j−L6i<j, (ci)j6i6t+N−1−L

)

= min
(ci)j6i6t+N−1−L

Ej−1

t+N−1−L∑
i=j

Ki

(
Xi, Di|t, ci−L, ci

)
+

t+N−1∑
i=t+N−L

Ki

(
Xi, Di|t, ci−L

)

The Value Function of a period j, as defined here, follows an important property:
we have indeed the following recursive equation:

Property 1.2.1 - 2. ∀t < j < t + N − 1− L, the Value Function Vj respects the
following recursive equation:

Vj
(
Xj,∆j−1|t, (ci)j−L6i<j

)
=min

cj

{
Ej−1

[
Kj+Vj+1

(
Xj+1,∆j|t, (ci)j−L<i6j

)]}
(3.2)

Proof. At stage j, the expected total cost Wj is equal to:
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Wj

(
Xj,∆j−1|t, (ci)j−L6i<j, (ci)j6i6t+N−1−L

)

=Ej−1

t+N−1−L∑
i=j

Ki

(
Xi, Di|t, ci−L, ci

)
+

t+N−1∑
i=t+N−L

Ki

(
Xi, Di|t, ci−L

)
=Ej−1

[
Kj

(
Xj, Dj|t, cj−L, cj

)]
+ Ej−1

t+N−1−L∑
i=j+1

Ki

(
Xi, Di|t, ci−L, ci

)
+

t+N−1∑
i=t+N−L

Ki

(
Xi, Di|t, ci−L

)

Given the definition of the probability spaces used here, defined in the previous
chapter, we can use the following law of iterated expectations ∀j > t:

Ej−1

t+N−1−L∑
i=j+1

Ki

(
Xi, Di|t, ci−L, ci

)
+

t+N−1∑
i=t+N−L

Ki

(
Xi, Di|t, ci−L

)
=Ej−1

Ej
t+N−1−L∑

i=j+1
Ki

(
Xi, Di|t, ci−L, ci

)
+

t+N−1∑
i=t+N−L

Ki

(
Xi, Di|t, ci−L

)

As a consequence, we can rewrite Wj as:

Wj

(
Xj,∆j−1|t, (ci)j−L6i<j, (ci)j6i6t+N−1−L

)
=

Ej−1

[
Kj

(
Xj, Dj|t, cj−L, cj

)
+Wj+1

(
Xj+1,∆j|t, (ci)j−L<i6j, (ci)j<i6t+N−L

) ]

which gives us for the value function:

Vj
(
Xj,∆j−1|t, (ci)j−L6i<j

)

= min
(ci)j6i6t+N−1−L

Ej−1

[
Kj

(
Xj, Dj|t, cj−L, cj

)

+Wj+1
(
Xj+1,∆j|t, (ci)j−L<i6j, (ci)j<i6t+N−L

) ]

Moreover, inasmuch as Kj does not depend on (ci)i>j+1, it is also the case for
Ej−1

[
Kj

(
Xj, Dj|t, cj−L, cj

)]
. Thus, we can separate the min over (ci)j6i6t+N−1−L

into two minimum functions over two seperate sets, and distribute the second one
over the last part of the inner sum:
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Vj
(
Xj,∆j−1|t, (ci)j−L6i<j

)

= min
cj

{
min

(ci)j<i6t+N−1−L

{
(Xi)jEj−1

[
Kj

(
Xj, Dj|t, cj−L, cj

)

+Wj+1
(
Xj+1,∆j|t, (ci)j−L<i6j, (ci)j<i6t+N−L

) ]}
= min

cj

Ej−1
[
(Xi)jKj

(
Xj, Dj|t, cj−L, cj

)

+ min
(ci)j<i6t+N−1−L

{
Wj+1

(
Xj+1,∆j|t, (ci)j−L<i6j, (ci)j<i6t+N−L

) ]}
Finally, with the previous definition of the value function, we have consequently:

Vj
(
Xj,∆j−1|t, (ci)j−L6i<j

)
= min

cj

Ej−1

[
Kj + Vj+1

(
Xj+1,∆j|t, (ci)j−L<i6j

) ]

1.2.2 | Dynamic of the States

As defined previously, the states correspond directly to the picture of the plan-
ning system at the beginning of the considered period -what we defined as the basic
state of the system- on the one hand, and the analytical data resulting from the
forecasting process executed at the beginning of this period, giving us on the other
hand, at this precise forecast date, an advanced state of the system on which the
planning decision will be based.

These states move from one period to the next one, following the evolutive flows
of the system in its environment. In the case of the basic state, these flows include
in particular the update of the inventory level, and the real demand record. As far
as the advanced state is concerned, it includes the update of the forecasts, heart of
our issue.

We define this evolution as the law of motion of the system, or the dynamics of
states from one period to another one. We show here that we can define explicit
functions to set this dynamics of the states.

i. Basic State

When we considering the data defining the basic state of the system, we have, on
the one hand, the inventory level which evolves from one period j to the following
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one j + 1 as the classic inventory update equation with backlog: ∀j, j = t..t+N −
1, Xj+1 = Xj + cj−L −Dj.

Modeling this update at the beginning of period t, we have consequently, with
the previous definitions of our variables at stake: ∀j, j = t..t + N − 1, Xj+1 =
Xj + cj−L −Dj|t. We note it ν: Xj+1 = ν

(
Xj, cj−L, Dj|t

)
As far as the historical information is concerned, two cases arise depending on

the data considered.
The first one is basically the case of the demand information corresponding to

periods j < t. Here, recorded historical database is considered. Thus, when the
system evolves from state j to the next one, there is no change for this set of
information.

The second one corresponds more specifically to the static set of information
used as learning set for the whole planning horizon without any dependency with
respect to the date of forecast. In this case, no update occurs during the rolling
plan proceedings, and there is here no law of motion to be modelled. It is the case
for example when we consider a linear regression, where the matrix Λ(t) used for
both learning and projection is known at the beginning of t. The only change is
consequently the split limit between learning set and test set.

ii. Advanced State
The advanced state of the system in any period j > t is made up with the

forecasts information from t to j − 1. In the same manner, the advanced state of
the system in the next period j+1 is therefore made up of the forecasts information
from t to j. The only change from the advanced state in j and the one in j + 1 is
the new information of Dj|t which has to be calculated, and finally integrated into
the set of information of the advanced state. The law of motion that interests us
here is consequently how to get the forecasts information at the beginning of period
j + 1 from the state in j, or, in other words, how to define and characterize Dj|t

from demand information up to j − 1.

The forecasted demand in j corresponds to the random variable Dj|t computed
dynamically from k = t to j. It is entirely determined through the definition of the
parameters θj|t of its pdf with respect to the previous states data.

Depending on the forecasting technique used, the computation method differs.
However, the forecasting procedure will systematically make us able to define the
function Gj|t based on the state in j, ∆j−1|t, that allows to express litterally the
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parameters of the pdf of the new forecasts sought Dj|t, and consequently to define
it precisely (see chapter 2, equation 2.3):

θj|t = Gj|t
(
∆j−1|t

)

Dj|t can consequently be well determined with respect to the state in j, and then,
by including it into the advanced state of period j, the information of the advanced
state in period j + 1 is complete: ∆j|t = ∆j−1|t ∪ {Dj|t}

iii. Dynamics of the states: laws of motion
Finally, when a period j is completely known through both its basic state in-

formation and its advanced state of information, we are able to define precisely the
future period states. They can indeed be explicitely computed with respect to the
previous state, thanks to the following laws of motion:

 θj|t = Gj|t(∆j−1|t)
Xj+1 ν

(
Xj, cj−L, Dj|t

) (3.3)

We will see in the next section how this evolution will be used in the solution
process.

1.2.3 | Dynamic Equation of the Problem

Let P be the planning problem consisting of the minimization of the function
Wt defined in 3.1 with respect to the decision variables (ci)t6i6t+N−1−L taking into
account the forecast update mechanism by using the dynamically defined conditional
stochastic process

(
Di|t

)
t6i6t+N−1

.
We show here in details the computational framework of the solutions of P . This

method will allow us to calculate all the value functions and their corresponding
argument of the minimum for any i > t, or, in other words, the solutions of our
problem.

Lemma 1.2.3 - 3. ∀j, t 6 j < t+N−L, if ℘ is a measurable function with respect
to the σ-algebra generated by Dj|t, then its expectation conditional to the state in j
can be calculated and expressed literally with respect to the information of this state.

Proof. Let j be a period index in Jt, t + N − 1K. Let ℘ be a measurable function
with respect to the random variable Dj|t and its corresponding measure φj|t.
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As defined previsouly, φj|t depends on its parameters θj|t. Based on 3.3, these
are calculable through θj|t = Gj|t(∆j−1|t).

We have consequently:

Ej−1
[
℘
(
Dj|t

)]
=
∫
R
℘(z)φj|t(z, θj|t)dz

=
∫
R
℘(z)φj|t(z,Gj|t(∆j−1|t))dz

Since Ej−1 is the expectation operator conditional to the state in j, the integra-
bility is assessed knowing (Dk)t6k<j. In other words, ∆j−1|t is completely determined
at this level of the calculation.

By cascading definitions, we are consequently able to express precisely φi|t, and
therefore Ej−1

[
℘
(
Dj|t

)]
, thanks to the measurability of ℘ taken as assumption.

Lemma 1.2.3 - 4. For periods j > t + N − L, the value of Wj can be calculated
literally with respect to the state at the beginning of period j − 1 and Dj−1|t.

Proof. When periods j > t + N − L are considered, no decision variables exist.
Consequently, the total cost function Wj can be directly written as

Wj = Ej−1

t+N−1∑
i=j

Ki

(
Xi, Di|t, ci−L

)
1. Specifically, for the last period t+N − 1, we have:

Wt+N−1 = Et+N−2

[
Kt+N−1

(
Xt+N−1, Dt+N−1|t, ct+N−1−L

) ]
The variables Xt+N−1 and ct+N−1−L being part of the basic state of period t +
N − 1 conditional to which the computation of Wt+N−1 is made, we can easily
confirm we are in the scope of the lemma 1.2.3 - 3. Consequently, Wt+N−1 can
be known and expressed literally with respect to the state in t + N − 1. Then,
we note it Wt+N−1

(
Xt+N−1,∆t+N−2|t, ct+N−1−L

)
.

Besides, the law of motion 3.3 allows us to write Xt+N−1 as a variable with
respect to the state in t + N − 2: Xt+N−1 = ν

(
Xt+N−2, ct+N−2−L, Dt+N−2|t

)
,

and ∆t+N−2|t as a union set of ∆t+N−3|t and Dt+N−2|t. Wt+N−1 can be therefore
finally entirely defined with respect to the state in t+N − 2 and Dt+N−2|t. We
note it then finally Wt+N−1

(
Xt+N−2,∆t+N−3|t, ct+N−1−L, ct+N−2−L, Dt+N−2|t

)
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2. Now, considering the next stage Wt+N−2, we have

Wt+N−2 = Et+N−3

[
Kt+N−2

(
Xt+N−2, Dt+N−2|t, ct+N−2−L

)
+Kt+N−1

(
Xt+N−1, Dt+N−1|t, ct+N−1−L

) ]

which can be transformed thanks to the law of iterated expectations as

Wt+N−2 =Et+N−3

[
Kt+N−2

(
Xt+N−2, Dt+N−2|t, ct+N−2−L

) ]
+ Et+N−3

[
Et+N−2

[
Kt+N−1

(
Xt+N−1, Dt+N−1|t, ct+N−1−L

) ]]

which finally leads us to the following relation defining Wt+N−2:

Wt+N−2 = Et+N−3

[
Kt+N−2

(
Xt+N−2, Dt+N−2|t, ct+N−2−L

)
+Wt+N−1

(
Xt+N−2,∆t+N−3|t, ct+N−1−L, ct+N−2−L, Dt+N−2|t

) ]

In the same manner, the variables Xt+N−2, ∆t+N−3|t, ct+N−1−L, and ct+N−2−L

are part of the state of period t + N − 2. Wt+N−2 being computed conditional
to this period, we are again in the perimeter of the lemma 1.2.3 - 3.

The steps one and two can be then executed for Wt+N−2 and Wt+N−3, and,
similarly, for any j > t+N − L in an iterative manner.

This procedure allows us to finally get the fact that for any j > t + N − L, Wj

can be entirely defined with respect to the state in j − 1 and Dj−1|t.

In particular, the lemma 1.2.3 - 4 is true for j = t+N−L, meaning thatWt+N−L

can be expressed literally depending on the state in t+N − L− 1 and Dt+N−L−1|t.
We note it then finally

Wt+N−L
(
Xt+N−L−1,∆t+N−L−2|t, (ci)t+N−2L−16i<t+N−L−1, Dt+N−L−1|t

)
Lemma 1.2.3 - 5. The value function Vt+N−L−1 can be computed and expressed
literally with respect to the information of the state in t+N−L−1. This calculation
allows us to get the last decision variable optimal value c∗t+N−L−1

Proof. First of all, based on the definition 1.2.1 - 1 and the lemma 1.2.3 - 4, we
known Vt+N−L−1 exists, and can be written as
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Vt+N−L−1
(
Xt+N−L−1,∆t+N−L−2|t, (ci)t+N−2L−16i<t+N−L−1

)

= Wt+N−L−1
(
Xt+N−L−1,∆t+N−L−2|t, (ci)t+N−2L−16i<t+N−L−1, c

∗
t+N−L−1

)
= min

ct+N−L−1
Wt+N−L−1

(
Xt+N−L−1,∆t+N−L−2|t, (ci)t+N−2L−16i<t+N−L−1

)
= min

ct+N−L−1

Et+N−L−2

[
Kt+N−L−1

(
Xt+N−L−1, Dt+N−L−1|t, ct+N−2L−1, ct+N−L−1

)

+
t+N−1∑
i=t+N−L

Ki

(
Xi, Di|t, ci−L

)]
Using the law of iterated expectations, we get:

Vt+N−L−1
(
Xt+N−L−1,∆t+N−L−2|t, (ci)t+N−2L−16i<t+N−L−1

)

= min
ct+N−L−1

Et+N−L−2

[
Kt+N−L−1

(
Xt+N−L−1, Dt+N−L−1|t, ct+N−2L−1, ct+N−L−1

)

+Wt+N−L

]
As described previsouly, the lemma 1.2.3 - 4 gives us the dependency ofWt+N−L

with respect to the state in t+N−L−1 andDt+N−L−1|t. Moreover, by definition, the
variables Xt+N−L−1 and ct+N−2L−1 are part of the state of t+N −L− 1. Therefore,
we can apply the lemma 1.2.3 - 3 to be able to express

Et+N−L−2 [Kt+N−L−1 +Wt+N−L] with respect to ct+N−L−1.

In the context of production planning in which our problem is defined, we can
assume the set of possible solutions for ct+N−L−1 and the corresponding values of
Vt+N−L−1

(
Xt+N−L−1,∆t+N−L−2|t, (ci)t+N−2L−16i<t+N−L−1

)
are necessarily bounded.

We then assume the fact that the min exists, and, as soon as

Et+N−L−2 [Kt+N−L−1 +Wt+N−L] is known, can be determined.

Theorem 1.2.3 - 6. P is solvable dynamically based on information on hand at
the beginning of the forecast date t, namely the inventory level xt, the historical
information ∆t−1 -including the real demand observations up to period t − 1-, and
the already launched but not yet received productions (ci)t−L6i<t.

The dynamic equation on which the solutions computation is based is the follow-
ing recursive system:
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∀t 6 j < t+N − L− 1,



Vj
(
Xj,∆j−1|t, (ci)j−L6i<j

)
=

min
cj

{
Ej−1

[
Kj

(
Xj, Dj|t, cj−L, cj

)

+ Vj+1
(
ν
(
Xj, cj−L, Dj|t

)
,∆j−1|t, Dj|t, (ci)j−L<i6j

) ]

Vt+N−L−1 known with respect with Xt+N−L−2, Dt+N−L−2|t, ∆t+N−L−3|t,
and (ci)t+N−2L−2<i6t+N−L−2

Proof. The property of the value function 1.2.1 - 2 makes explicit the recursiveness
it respects for t 6 j 6 t + N − L − 2 by linking value functions of two following
states one to another. We showed that

Vj
(
Xj,∆j−1|t, (ci)j−L6i<j

)
=min

cj

{
Ej−1

[
Kj+Vj+1

(
Xj+1,∆j|t, (ci)j−L<i6j

)]}

As already applied in the previous proofs, we can easily make Vj+1 dependent
on the state in j and Dj|t by using the laws of motion defined in 3.3: we have
indeed Xj+1 = ν

(
Xj, cj−L, Dj|t

)
and ∆j|t be a union set of ∆j−1|t and Dj|t, defined

θj|t = Gj|t
(
∆j−1|t

)
.

Consequently, the laws of motion allow us to confirm that the quantity Kj+Vj+1

is a function depending on the states in j and Dj|t. In this case, we know from
Lemma 1.2.3 - 3 that Ej−1 [Kj + Vj+1] exists and can be computed by integration.

We can confirm consequently that the dynamics of the value function not only
exists, but also allows us to compute it from one state to another dynamically by
solving at each stage of the recursive procedure a minimization problem.

Finally, we know from 1.2.3 - 5 that Vt+N−L−1 can be known with respect with
the states of period t + N − L − 1. By using the same reasoning based on laws of
motion, the final value function of the dynamic equation Vt+N−L−1 can be expressed
literrally with respect toXt+N−L−2,Dt+N−L−2|t, ∆t+N−L−3|t, and (ci)t+N−2L−2<i6t+N−L−2.

Being set, this first statement gives us the initialization of the induction reason-
ing, allowing to roll out the calculations of the dynamic system in order to compute
the solution (c∗i )t6i6t+N−L−1.
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1.2.4 | Conclusion on the solutions computation procedure

The integration of the forecast update mechanism through the definition of the
demand forecasts as a conditional recursive stochastic process creates a complex
multi-dimensional and dynamic environment for a solutions computation system.

However, by characterizing precisely the states of the system in each period and
the forecast update through their dynamic link from one period to the next on the
one hand, and by using a multi-stage stochastic optimization framework modelled
through its dynamic nested form, we are able to highlight properties respected by
our system.

In particular, specific declarations and properties enable us to calculate step by
step the value function from the planning horizon t + N − 1 to our first period of
interest t thanks to conditional expectation computation and minimization problem.

This inductive reasoning based on the dynamic equation that rules the system
finally gives us the solution of our problem (c∗i )t6i6t+N−L−1. To be able to achieve
such computations, some conditions need to be met. First, the forecasting method
used has to be defined such that the law of motion characterizing the stochastic
process of the demand Gi|t can be explicitly written with respect to the previous
states information. This relation is entirely determined by the forecast technique
used by the planner. Second, the sets of possible solutions for minimization problems
have to be bounded so that an optimal point exists.

2 | A First Case Study

In this section, we present a first illustrative example of the calculation process
and solution computation presented above in a simple case study.

The first part describes the industrial parameters and the assumptions defining
the decisional system in which our first example evolves. The second part is dedi-
cated to the implementation of the solutions calculation procedure, which ends with
the literal expressions of the solutions of our problem. Finally, we end this section
by presenting a numerical study illustrating concretely the benefits of our method
compared with other classical techniques.
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2 .1 | Environment Description

2.1.1 | Industrial Parameters

In the example developed here, we deliberately chose a simple case. We aim
indeed to be able to make the computational details explicit so that the mechanism
of the solution-search procedure is clear.

We consequently chose to work with a production lead-time equal to zero period
in this illustrative example (L = 0). The order launched at any period i is then
assumed to be received before the end of this same period.

The forecast update procedure is consequently taken into account into the in-
ventory projection for the next periods after ordering/receiving the orders.

Moreover, as defined in the previous section, we are working with a backlog-
allowed system, in which the costs that interest us are the inventory-holding and/or
backlog cost and the unit production cost per period.

The production does not face any constraint -capacity and/or quantitative re-
strictions, and is supposed to be a one-level production.

2.1.2 | Decision System

i. Demand
The demand modelling chosen here follows the definition given in the previous

chapter. Its pdf φi|t for any i > t is indeed supposed to be a centered triangular one,
and the corresponding parameters θi|t are defined as the mean mi and an equivalent
of its standard deviation si, as defined in paragraph i.

The forecasting method that will be used in this section is the simple linear
regression. Compared with the demand modelling described in chapter 2 section 2,
the learning matrix Λ is consequently of width 2, with Λ1 being the constant vector
equal to 1, and Λ2 the "temporal" vector as known as "trend", equal to i in row i.

The parameters of any pdf φi|t can consequently be calculated explicitly.

ii. States
In the previous section, we defined the basic and the advanced states as the

information required to describe entirely the system in a specific period i > t. They
correspond respectiveley to the inventory information and the static historical data
on the one hand, and the demand forecasts information up to i on the other hand,
in particular the parameters θk|t for k ∈ Jt, iK.
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In our example, we use the simple linear regression as forecasting method. There-
fore, we place ourselves in the case of equations 2.7 as definition for θi|t:

mi = a1(i) + a2(i).i and σ2
i = σ2

εi
.

(
1
i

+ (i/2)2∑i−1
j=1 (j − i/2)2

)

where a1(i) and a2(i) are the multiplying factors of the regression corresponding
respectively to the coefficients for the constant vector equal to 1, and the trend
vector, both of size i. We omit the "(i)" for the following equations, and use only
as notation a1 and a2 to make the reading easier.
As for σεi

, it is equal to σ2
εi

= 1
i−4

(∑t−1
k=1 (dk − a1 − a2k)2 +∑i−1

k=t

(
Dk|t − a1 − a2k

)2
)
.

The least square method give us the following relations allowing us to define θi|t in
details:

a2=αi1

(
t−1∑
k=1

dk+
i−1∑
k=t

Dk|t

)
+ αi2

(
t−1∑
k=1

kdk+
i−1∑
k=t

kDk

)

a1=
1

i− 1

(
t−1∑
k=1

dk +
i−1∑
k=t

Dk

)
− a2

i

2

where


αi1 = −6

(i− 1)(i− 2)

αi2 = 12
i(i− 1)(i− 2)

Advanced states of period i is consequently defined with the detailed description
of any mk, k ∈ Jt, iK, as previously right above. The historical data (di)16i<t and
the inventory level Xk, being the basic state, complete the whole definition of any
state.

2.1.3 | Law of Motion

The law of motion or dynamic of the states of the system is the dynamic equation
making the link between the state of the system in any period i and the state of the
following period i+ 1 explicit.

As defined in the previous section, we are consequently interested here in defining
expressly the equation 3.3, and more specifically the function Gi+1|t(∆i|t). It enables
us to characterize the advanced state in i + 1 based on the information of period
i, ie up to i − 1. This makes the forecast update mechanism explicit inasmuch as
we determine here the dynamic relation between two forecasts calculated at two
following forecast dates in the rolling process.

As proved in chapter 2, for the first element of θi+1|t, mi+1, we have:

mi+1 =
t−1∑
k=1

2(3k − i− 2)
i(i− 1) dk +

i∑
k=t

2(3k − i− 2)
i(i− 1) Dk|t (3.7)
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or, with the notation defined in chapter 2: βkmi+1
= 2(3k−i−2)

i(i−1) .

Thanks to this explicit definition of the coefficient βkmi+1
, we can express the

relation between variables conditional to which θi+1|t is calculated, which are the
random variables Dk|t for t 6 k 6 i. Up to period i − 1, they are included in the
advanced state ∆i|t. The law of motion for mi+1 is therefore completely known at
this stage.

As far as the uncertainty parameter σi, it is considered in this example as a static
parameter. It means the series (σi)t+16i6t+N−1 can be defined entirely at the begin-
ning of period t, without any dynamic computation conditionally to variables Dk|t,
t 6 k < i. It can be interpreted as the fact that the uncertainties are not considered
in this example to be dependent on the forecast updates that are proceeded during
the rolling horizon framework.

In this context, the definition of the coefficients βkmi
are therefore sufficient to

know entirely the dynamics of the forecast update, and consequently to be able to
explicitly describe the law of motion of the system.

As a conclusion, the dynamic link between states from i to i+1 is entirely defined
thanks to the classical inventory update equation 3.3, and the forecasts parameter
evolution 3.7

2 .2 | Optimal Solutions Computation

2.2.1 | Analytical Calculations

Theorem 2.2.1 - 1. Under the assumptions summed-up in section 1, the optimal
solutions of our problem are:

when B > H + 2p:


∀i | t 6 i < t+N − 1, c∗i = 2si

1−
√

2H
H +B

+mi −Xi

c∗t+N−1 = 2st+N−1

1−
√

2(H + p)
H +B

+mt+N−1 −Xt+N−1

Otherwise:
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
∀i | t 6 i < t+N − 1, c∗i = 2si

1−
√

2H
H +B

+mi −Xi

c∗t+N−1 = 2st+N−1

√2(B − p)
H +B

− 1
+mt+N−1 −Xt+N−1

The sign of B − H − 2p only impacts the last production order as side effect.
When the backlog costs are below H + 2p, it is more valuable to produce less than
expected net requirements mt+N−1 −Xt+N−1, whereas high backlog costs force the
system to make the last period excess stock in expectation: c∗t+N−1 is indeed greater
than expected net requirements in that case.

Proof. We only present here the proof for the first case in which B−2H−p > 0. The
proof corresponding to the other case follows a similar reasoning and computational
framework.

i. Proof Principle

We use here a proof by induction using the model developped in the previous
section 2. In fact, we show recursively that the value functions Vi, ∀i, t 6 i 6

t + N − 1 follows a general form with respect to the states in period i and Di|t

thanks to the dynamic equation 3. This specific shape allows us to compute its
corresponding argument of the minimum c∗i , solutions of our problem.

To do so, we first demonstrate the inductive step, by illustrating how the value
function respects a special property from i to i−1 thanks to the integration property
of section 3, the dynamic equation of the system, and the laws of motion defined
previously. Second, we show the last period follows the same property, which defines
the base case of our demonstration.

ii. Expectation and Minimum Computation: the Dynamic Equation of
the Value Function for any i

Based on theorem 1.2.3 - 6, we prove here that if, for any t < i 6 t+N − 1, Vi
respects a special form, Vi−1 also follows this particular property. The calculation
to which this result comes from is a two-step calculation process. It consists of
a minimization problem that allows us to compute c∗i in this specific case. Then,
the laws of motion are applied, which makes the relations be explicitly expressed
through (i− 1)th period.
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In particular, we assume Vi is a linear function with respect to the variables
defining the state in the i− 1th period, to Di−1|t and to ci−1 as follows:

Vi
(
Xi−1, ci−1, Di−1|t,∆i−2|t

)
=γiDi−1

Di−1|t − (ci−1 +Xi−1)p+
i−2∑
k=t

γiDk
Dk|t + Γi

where γiY are fixed coefficients in R, corresponding to the multiplying factor for any
variable Y in the definition of Vi, and Γi a real corresponding to the intercept for
Vi.

In order to calculate Vi−1 in this context, we use theorem 1.2.3 - 6: first, we integrate
Vi with respect toDi−1|t conditionally to the (i− 2)th state, we then add the expected
cost of period i − 1 with respect to the (i− 2)th state, and finally we compute its
argument of the minimum c∗i−1.

Firstofall, the integration of Vi gives us:

Ei−2
[
Vi
(
Xi−1, ci−1, Di−1|t,∆i−2|t

)]
= γiDi−1

mi−1 − (ci−1 +Xi−1)p+
i−2∑
k=t

γiDk
Dk|t + Γi

Second, we need to add Ei−2
[
Ki−1

(
Xi−1, Di−1|t, ci−1

)]
. By definition ofKi−1

(
Xi−1, Di−1|t, ci−1

)
,

we can compute its expected value with respect to random variable Di−1|t condition-
ally to the i− 2th state. Thus, by integrating it with respect to its density function
φi−1|t, we find Ei−2

[
Ki−1

(
Xi−1, Di−1|t, ci−1

)]
as a function of Xi−1, ci−1, and the

advanced information θi−1|t of the state of period i− 1 -mi−1 and si−1:

Ei−2
[
Ki−1

(
Xi−1, Di−1|t, ci−1

)]
=

−B(Xi−1 + ci−1 −mi−1) + pci−1 if Xi−1 + ci−1 < mi−1 − 2si−1

−B(Xi−1 + ci−1 −mi−1) + pci−1

+ H+B
24s2

i−1
(Xi−1 + ci−1 −mi−1 + 2si−1)3

if mi−1 − 2si−1 ≤ Xi−1 + ci−1 < mi−1

−B(Xi−1 + ci−1 −mi−1) + pci−1

+ H+B
24s2

i−1
(Xi−1 + ci−1 −mi−1 + 2si−1)3

if mi−1 ≤ Xi−1 + ci−1 < mi−1 + 2si−1

H(Xi−1 + ci−1 −mi−1) + pci−1 if 2si−1 +mi−1 ≤ Xi−1 + ci−1

Finally, we need to solve the minimization problem
minci−1 Ei−2

[
Ki−1

(
Xi−1, Di−1|t, ci−1

)
+ Vi

(
Xi−1, ci−1, Di−1|t,∆i−2|t

)]
:

The function ci−1 → Ei−2
[
Ki−1

(
Xi−1, Di−1|t, ci−1

)]
is easily identifiable as double

differentiable for all ci−1 ∈ R. Moreover, as shown in the following equation 3.8,
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we have ∀ci−1 ∈ R, ∂2

∂c2
i−1

Ei−2
[
Ki−1

(
Xi−1, Di−1|t, ci−1

)]
≥ 0. Knowing its first-order

partial derivative is equal to −B + p when ci−1 = mi−1− 2si−1 +Xi−1 and to H + p

when ci−1 = mi−1 + 2si−1 + Xi−1, we can establish the convexity of the function
Ei−2

[
Ki−1

(
Xi−1, Di−1|t, ci−1

)]
with respect to ci−1 inasmuch as B > p.

∂2

∂c2
i−1

EN−1
[
Ki−1

(
Xi−1, Di−1|t, ci−1

)]
=

0 if Xi−1 + ci−1 < mi−1 − 2si−1

H+B
4s2

i−1
(Xi−1 + ci−1 −mi−1 + 2si−1) if mi−1 − 2si−1 ≤ Xi−1 + ci−1 < mi−1

−H+B
4s2

i−1
(Xi−1 + ci−1 −mi−1 − 2si−1) if mi−1 ≤ Xi−1 + ci−1 < mi−1 + 2si−1

0 if 2si−1 +mi−1 ≤ Xi−1 + ci−1

(3.8)

Moreover, we know ci−1 → Ei−2
[
Vi
(
Xi−1, ci−1, Di−1|t,∆i−2|t

)]
is linear. Therefore,

the minimum of the function
ci−1 → Ei−2

[
Ki−1

(
Xi−1, Di−1|t, ci−1

)
+ Vi

(
Xi−1, ci−1, Di−1|t,∆i−2|t

)]
exists. We com-

pute its argument of the minimum using derivative computation with respect to our
variable of interest: the equation 3.9
∂

∂ci−1
Ei−2

[
Ki−1

(
Xi−1, Di−1|t, ci−1

)
+ Vi

(
Xi−1, ci−1, Di−1|t,∆i−2|t

)]
= 0 has a solu-

tion in ci−1:

∂

∂ci−1
Ei−2

[
Ki−1

(
Xi−1, Di−1|t, ci−1

)
+ Vi

(
Xi−1, ci−1, Di−1|t,∆i−2|t

)]
= 0

⇔



−B if
Xi−1 +ci−1

< mi−1 − 2si−1

1
2(H −B)
+H+B

2si−1
(Xi−1 + ci−1 −mi−1)

+H+B
8s2

i−1
(Xi−1 + ci−1 −mi−1)2

if

mi−1 −2si−1

≤ Xi−1 + ci−1

< mi−1

1
2(H −B)
+H+B

2si−1
(Xi−1 + ci−1 −mi−1)

−H+B
8s2

i−1
(Xi−1 + ci−1 −mi−1)2

if
mi−1 ≤ Xi−1 + ci−1

< mi−1 + 2si−1

H if
2si−1 +mi−1

≤ Xi−1 + ci−1

= 0 (3.9)

According to the sign of the quantity B − H, the solution of 3.9 belongs either to
[mi−1 −Xi−1 − 2si−1,mi−1 −Xi−1] or [mi−1 −Xi−1, mi−1 −Xi−1 + 2si−1]. When
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specifically B −H ≥ 0, the solution appears in [mi−1 −Xi−1,mi−1 −Xi−1 + 2si−1],
and is consequently the solution of the quadratic equation in ci−1: 1

2(H − B) +
H+B
2si−1

(Xi−1 + ci−1−mi−1)− H+B
8s2

i−1
(Xi−1 + ci−1−mi−1)2 = 0. It appears to be equal to

c∗i−1 = mi−1 −Xi−1 + 2si−1

1−
√

2H
H +B


.

In this special case, we can consequently finally express the value function of
period i− 1:

Vi−1
(
Xi−1,∆i−2|t

)
= minci−1

{
Ei−2

[
Ki−1

(
Xi−1, Di−1|t, ci−1

)
+Vi

(
Xi−1, ci−1, Di−1|t,∆i−2|t

) ]}

⇔



Vi−1
(
Xi−1,∆i−2|t

)
=2Hsi−1

1− 2
3

√
2H

H +B

− pXi−1 + γiDi−1
mi−1

+
i−2∑
k=t

γiDk
Dk|t + Γi

c∗i−1 = 2si−1

1−
√

2H
H +B

+mi−1 −Xi−1

By finally applying the laws of motion of paragraph 3, we express Vi−1 with
respect to the random variable Di−2|t and the i− 2th state variables. The result is
a linear function such that:

Vi−1
(
Xi−2,∆i−2|t

)
=γi−1

Di−2
Di−2|t − (ci−2 +Xi−2)p+

i−3∑
k=t

γi−1
Dk
Dk|t + Γi−1

where

γi−1
Di−2

=
(
γiDi−1

βi−2
mi−1

+ γiDi−2
+ p

)
∀k, t < k < N, γi−1

Dk
=γiDk

+ 2(3k − i)
(i− 2)(i− 3)

and Γi−1 =2si−1H

1− 2
3

√
2H

H +B


+ Γi +

2γiDi−1

(i− 2)(i− 3)

t−1∑
j=1

(3j − i)di


We just proved the inductive step of our proof of theorem 2.2.1 - 1 ∀i such as
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t < i 6 t+N − 1:

Property 2.2.1 - 2. If Vi is a linear function with respect to the variables of the
i− 1th state, to Di−1|t and to ci−1, then c∗i−1 = 2si−1

(
1−

√
2H
H+B

)
+mi−1−Xi−1, and

Vi−1 is a linear function with respect to the variables of the i− 2th state, to Di−2|t

and to ci−2

iii. Calculation of the Base Case
We demonstrate here that the last value function of our planning problem Vt+N−1

follows the property previously announced.
By proceeding in the same manner as previously, the proof described here follows

3 steps of calculation: first, the integration of Kt+N−1
(
Xt+N−1, Dt+N−1|t, ct+N−1

)
conditional to the state of period t+N −2 with respect to φt+N−1|t. Then, the min-
imization problem of the function that interests us with respect to ct+N−1. Finally,
the transformation of the resulted value function into an expression with respect to
the variables describing the state of t + N − 3, ct+N−2 and Dt+N−2|t thanks to the
laws of motion.

We first express Et+N−2
[
Kt+N−1

(
Xt+N−1, Dt+N−1|t, ct+N−1

)]
as a function of

Xt+N−1, ct+N−1, and the advanced information θt+N−1|t of the state of period t +
N − 1: mt+N−1 and st+N−1. To do so, we use the integration with respect to the
density function φt+N−1|t:

Et+N−2
[
Kt+N−1

(
Xt+N−1, Dt+N−1|t, ct+N−1

)]
=

−B(Xt+N−1 + ct+N−1 −mt+N−1) + pct+N−1 in case#1

−B(Xt+N−1 + ct+N−1 −mt+N−1) + pct+N−1

+ H+B
24s2

t+N−1
(Xt+N−1 + ct+N−1 −mt+N−1 + 2st+N−1)3

in case#2

−B(Xt+N−1 + ct+N−1 −mt+N−1) + pct+N−1

+ H+B
24s2

t+N−1
(Xt+N−1 + ct+N−1 −mt+N−1 + 2st+N−1)3

in case#3

H(Xt+N−1 + ct+N−1 −mt+N−1) + pct+N−1 in case#4

case#1⇔ if Xt+N−1 + ct+N−1 < mt+N−1 − 2st+N−1

case#2⇔ if mt+N−1 − 2st+N−1 ≤ Xt+N−1 + ct+N−1 < mt+N−1

case#3⇔ if mt+N−1 ≤ Xt+N−1 + ct+N−1 < mt+N−1 + 2st+N−1

case#4⇔ if 2st+N−1 +mt+N−1 ≤ Xt+N−1 + ct+N−1

We then go to the second step of the computation process, which is the argument
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of the minimum computation. Like the case we had ∀i, the function ct+N−1 →
Et+N−2

[
Kt+N−1

(
Xt+N−1, Dt+N−1|t, ct+N−1

)]
is double differentiable for all ct+N−1 ∈

R, and ∂2

∂c2
t+N−1

Et+N−2
[
Kt+N−1

(
Xt+N−1, Dt+N−1|t, ct+N−1

)]
≥ 0, ∀ct+N−1 ∈ R. Know-

ing moreover its first-order partial derivative is equal to −B + p when ct+N−1 =
mt+N−1−2st+N−1+Xt+N−1 and toH+p when ct+N−1 = mt+N−1+2st+N−1+Xt+N−1,
ct+N−1 → Et+N−2

[
Kt+N−1

(
Xt+N−1, Dt+N−1|t, ct+N−1

)]
is convex as long as B > p.

Then, the following equation 3.10: ∂
∂ct+N−1

Et+N−2
[
Kt+N−1

(
Xt+N−1, Dt+N−1|t, ct+N−1

)]
=

0 has one solution in ct+N−1, which is the minimum we are looking for.

∂

∂ct+N−1
Et+N−2

[
Kt+N−1

(
Xt+N−1, Dt+N−1|t, ct+N−1

)]
= 0

⇔



−B + p in case#1

1
2(H −B + 2p)
+ H+B

2st+N−1
(Xt+N−1 + ct+N−1 −mt+N−1)

+ H+B
8s2

t+N−1
(Xt+N−1 + ct+N−1 −mt+N−1)2

in case#2

1
2(H −B + 2p)
+ H+B

2st+N−1
(Xt+N−1 + ct+N−1 −mt+N−1)

− H+B
8s2

t+N−1
(Xt+N−1 + ct+N−1 −mt+N−1)2

in case#3

H + p in case#4

= 0 (3.10)

According to the sign of the quantity B−(H+2p), the solution of 3.10 belongs either
to the interval [mt+N−1 −Xt+N−1 − 2st+N−1,mt+N−1 −Xt+N−1] or [mt+N−1 −Xt+N−1,

mt+N−1 −Xt+N−1 + 2st+N−1]. When specifically, as admitted in this proof, B−(H+
2p) ≥ 0, the solution appears in [mt+N−1 −Xt+N−1,mt+N−1 −Xt+N−1 + 2st+N−1].
The corresponding quadratic equation has one minimum on this interval, which is

c∗t+N−1 = 2st+N−1

1−
√

2(H + p)
H +B

+mt+N−1 −Xt+N−1

.

We can therefore expressed the value function for i = t+N − 1:

Vt+N−1(Xt+N−1,∆t+N−2|t) =p (mt+N−1 −Xt+N−1)

+ 2st+N−1 (H + p)
1− 2

3

√
2(H + p)
H +B


This expression of the value function is true for all values of c∗t+N−1 with respect
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to Xt+N−1. It includes especially values such that c∗t+N−1 ≤ 0, that don’t exist
concretely inasmuch as a negative order has no sense in practice. Such cases arise
when Xt+N−1 ≥ 2st+N−1(1 −

√
2(H+p)
H+B ) + mt+N−1. For the following, we make the

assumption that we do not face such cases.
To lighten the notation, we note Γt+N−1 the part of Vt+N−1 that does not depend

on the t+N − 2th state: Γt+N−1 = 2st+N−1(H + p)(1 − 2
3

√
2(H+p)
H+B ). This makes

finally Vt+N−1 be equal to

Vt+N−1(Xt+N−1,∆t+N−2|t) = Γt+N−1 + p(mt+N−1 −Xt+N−1)

.
The last step of our process of calculation of the value function is the expression

of the function with respect to the t+N − 2th state variables, and Dt+N−2|t. Using
the laws of motion 3. We have indeed:

Vt+N−1
(
Xt+N−2, ct+N−2, Dt+N−2|t,∆t+N−3|t

)
=((

βt+N−2
mt+N−1

+ 1
)
Dt+N−2 − ct+N−2 −Xt+N−2 +

t+N−3∑
k=t

βkmt+N−1
Dk|t

)
p

+ Γt+N−1

iv. Conclusion
By defining

γt+N−1
Dt+N−2

=
(
βt+N−2
mt+N−1

+ 1
)
p

γt+N−1
Dk

= βkmt+N−1

we can confirm the specific assumption we made at the beginning of the inductive
step of the recursive proof is true for i = t+N − 1.

Therefore, it is, by induction, true ∀i such as t 6 i 6 t+N − 1

2.2.2 | Interpretation

The optimal series of production quantities (c∗i )t6i6t+N−1 calculated here corre-
sponds to the optimal production plan for the periods from t to t+N−1 minimizing
the backlog/inventory cost and unit production cost in the case of a production lead-
time equal to zero, ie the production quantities are received during the period they
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have been ordered. It takes into account the forecast update dynamics of the case
of a simple linear regression forecasting procedure. It is indeed integrated into the
dynamic calculation of the nested form of the value function the law of motion of the
system, making the update of the forecasts explicit through the consideration of the
stochastic demand up to the considered period during the dynamic programming
computation process.

2 .3 | Numerical Study

In this section, we show the benefits of our modeling and computing framework
by illustrating numerically the results presented above and comparing them with
other classical production planning methods in the context that interests us, namely
the stochastic and rolling plan framework environment.

To do so, we run several simulations of a production system in a rolling horizon
framework and analyse the absolute and relative costs of each method. We compare
these numerical results in a first part, before analysing more precisely in a second
part the evolution of the solution performances with respect to different industrial
parameters.

2.3.1 | Numerical Assumptions

We assume here we have a planning horizon N of length equal to 4 periods.
The historical data are available for t = 17 periods. The production plan needed
to be calculated is consequently (ci) for i ∈ {17, 18, 19, 20}. At first, We assumed
arbitrarily p = 1, B = 6, H = 2, and the following initial state:
(di)i=1..16 = (48, 52, 57, 59, 60, 55, 64, 72, 58, 71, 74, 82, 73, 80, 71, 78), x16 = 20, and
(si)i=17..20 = (5, 6, 7, 8). We chose arbitrarily the case B ≥ H + 2p as illustration.
The behaviors of the results stay similar otherwise.

2.3.2 | Methods of computation

In order to compute the production orders, we use our method presented above
and compare it to the following standard stochastic net requirements calculation
procedures: at each period j, the corresponding production orders are equal to
mj + Φ−1

tr (τ).σj − xj−1. Φtr represents the standard cumulative density function of
the triangular distribution and τ the service level targeted.
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This quantity of production order represents basically the classical expected net
requirements, to which we added a safety stock quantified according to the service
level targeted τ and the uncertainties faced during the corresponding period σj.

The simulation is run such that, at each iteration i of the rolling-horizon, we
generate M = 20 different random samples di, which makes the total number of
random scenarios (d17, d18, d19, d20) equal to 204 = 160000. For each of them, we
calculate the total costs of each method to assess, and the inventory level at the end
of any period from t = 17 to t+N − 1 = 20. The averaged results are presented in
the following table 3.3.

2.3.3 | Results

Table 3.3: Simulation Results: Averaged Costs and Inventory

Methods Average Average inventory end of period
used total cost 17 18 19 20

Our method 380.43 2.67 3.53 4.10 2.14
Standard Orders
Calculation with

τ =
50% 391.54 -0.26 0.01 0.00 0.00
52% 389.26 0.18 0.34 0.38 0.41
54% 386.90 0.42 0.59 0.74 0.79
56% 386.09 0.61 1.01 1.06 1.23
58% 384.36 0.86 1.32 1.33 1.59
60% 383.51 1.01 1.53 1.78 2.02
62% 382.94 1.27 1.84 2.14 2.44
64% 382.25 1.54 2.16 2.51 2.86
66% 381.99 1.81 2.49 2.89 3.29
68% 381.81 2.08 2.82 3.27 3.73
70% 381.56 2.37 3.16 3.67 4.19
72% 381.99 2.65 3.50 4.07 4.65
74% 381.96 2.95 3.86 4.49 5.13
76% 383.14 3.27 4.24 4.93 5.63
78% 384.47 3.60 4.64 5.39 6.16
80% 385.72 3.95 5.06 5.89 6.73
82% 387.48 4.32 5.50 6.41 7.32
84% 390.00 4.72 5.99 6.97 7.97
86% 393.35 5.15 6.51 7.58 8.66
88% 397.24 5.63 7.08 8.24 9.42
90% 401.35 6.15 7.70 8.97 10.25

93 Production Planning under Uncertainties and Forecasts Update



2. A FIRST CASE STUDY Chapter 3

We note that the stochastic dynamic programming approach has in average a
lower cost than any standard dynamic safety stock policies. By taking into consid-
eration the potential evolution of the forecasts through the dynamic calculation of
the value function, the production orders are indeed more accurate as the iterations
go on. It is particularly visible in the last period: the average inventory at the end
of the planning horizon is lower than the one corresponding to the stochastic MRP
procedures with similar cost. Whereas safety stocks cumulate themselves periods
after periods, the stochastic dynamic approach is more adapted.

As shown in figure 3.1, our method allows not only to get the optimal safety stock
faced with uncertainties, but also to be more adaptative to the real proceeding of the
physical flows when rolling plan moves forward. Taking indeed into consideration
the forecast update into the calculation of the optimal quantity to be produced, we
have a cost globally better in average that any procedure of optimization of safety
stock. The figure 3.1 illustrates the costs of any safety stock quantification with
respect with τ in blue line, and the cost of our method in black.

Figure 3.1: Costs Comparison with respect to τ

These results have been calculated in a specific industrial and decisional environ-
ment, where potentially impacting parameters have been numerically set arbitrarily.
We study this impact in the following section by examining how the results and per-
formances evolve with respect to these parameters. In particular, we focus on the
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analyse of the influence of the uncertainties and of the cost parameters.

2.3.4 | Sensitivity Analysis

We study then here the results of our dynamic approach in several cases where
either the costs or the uncertainties are changing. We analyze specifically the sen-
sitivity of the performance of our method compared with classical dynamic safety
stock policies in production planning previously presented. We highlight how the
benefits of using our method evolve according to the system parameters.

Our first study considers the variations of the uncertainties of the forecasted
demand. In the second one, we analyse how the fluctuations of cost parameters
impact the performance of the method.

We calculate specifically as indicator and output the gain between our method
and the procedure of optimization of the safety stock corresponding to the τ the
least costly of any of the policies. This benefit is expressed in percentage of cost
reduction, probability of stock out reduction, and inventory level reduction. We
study in both sections its evolution with respect to the corresponding variable of
interest.

The initial state and the parameters of the system considered are assumed to
be the same as the previous study: N = 4, t = 17, x16 = 20, and (di)i=1..16 =
(48, 52, 57, 59, 60, 55, 64, 72, 58, 71, 74, 82, 73, 80, 71, 78).

i. Uncertainties

As previously defined, the uncertainties of the system, modelled through the
variable si, are supposed non-dynamic with respect to the rolling horizon plan,
meaning that we know their value from the current forecast date t to the planning
horizon t+N−1 when planning decision are made at t, and that we do not consider
them as conditional to the future forecasts during the rolling plan proceedings.

Here, to examine the sensibility of our method to the uncertainties, we made the
vector s = (s17, s18, s19, s20) vary such that s17 ∈ J1, 60K, and si+1 = si + 2 for any
i = 17, 18 or 19.

For each of the scenario of the study, we calculate two kinds of outputs. First,
the total average costs and averaged inventory at the end of periods considered for
our method. Then, in a relative way, we compare the cost, inventory level, and
probability of stock out reduction between our method and the least costly of any
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standard safety stock policies among those whose safety stocks vary from τ = 50%
to τ = 90%.

This simulation was made under the following assumptions of costs parameters:
H = 2, p = 20. We chose here the case where B is greater than H+2p. We define it
arbitrarly as B = 1.5× (H + 2p) = 63. While H ≤ B, results have similar behavior
in the other case B ≤ H + 2p.

Absolute results are shown in figures 3.2 and 3.3. Costs is increasing with re-
spect to uncertainty inasmuch as optimal safety stock represented by the quantity
2si

(
1−

√
2H
H+B

)
is proportional to the uncertainty quantification si of period i. This

linearity property is clearly visible in figure 3.3.

Figure 3.2: Evolution of the Cost of the Stochastic Dynamic Approach with respect
to the initial uncertainty

Figure 3.3: Evolution of the averaged inventory at the end of periods with respect
to the initial uncertainty
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As for the relative results, they are presented in the following figures 3.4, 3.5, and
3.6. Figure 3.4 shows detailled results of the evolution of the cost difference between
our method and the best standard safety stock policy in terms of costs among those
whose safety stocks vary from τ = 50% to τ = 90%. It reveals the interest of using
our method especially in an uncertain context: the benefits of our methods grows
in absolute value as the initial uncertainty s17.

Figure 3.4: Evolution of the Cost reduction with respect to the initial uncertainty

Figures 3.5 and 3.6 show relative results concerning respectively the averaged
inventory and the averaged percentage of inventory shortage at the end of periods
17, 18, 19, and 20.

The relative difference of inventory level between our method and the best stan-
dard safety stock policy is presented in 3.5. The percentage points of the difference
of probability of shortages is shown in 3.6.

Both expose a better service level for our method compared with standard ones.
We have indeed higher inventory level from periods 17 to 19 for any s17 used. As for
last period 20, inasmuch as it corresponds to the end of the planning horizon, the
optimal solution imposes the production orders to be lower. Since it cannot be used
as backlog any further, in order to reduce inventory costs, orders are consequently
reduced .

It is also interesting to notice that, in general, the percentage of inventory differ-
ence does not evolve when uncertainty grows up. On the contrary, we note a slightly
decreasing shape of the inventory level difference. The service level performance of
our method is consequently better than any standard procedure, but not increasing.
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The difference in percentage points of stock-out is globally better for our method
when uncertainty grows. We can see indeed that when s17 stays low, the case where
there is no difference of service level between those methods is more frequent. This
is explained by the fact that when s17 is relatively small, both standard procedure
and our method manage to get 100% service level, the difference between them being
thus equal to zero. This explains the shape of the period 17 curve. However, the
results of better service level illustrated by figure 3.5 are clearly confirmed here.

Figure 3.5: Evolution of the relative difference of the averaged inventory level with
respect to the initial uncertainty

Figure 3.6: Evolution of the difference of percentage points of probability of shortage
with respect to the initial uncertainty

To conclude this section, the stochastic dynamic approach that takes into account
forecast update has lower averaged cost than the least costly standard policy. We
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notice moreover that the more uncertain the system is, the more cost-efficient our
method is.

Besides, as explained previously, it has also globally a higher service level for any
period, except the last one of the planning horizon. This result is true for any level
of random influence, represented by the stochastic parameters s17. Little influence
of the uncertainties is observed on service-level performances.

ii. Costs Parameters
In this section, we study the same outputs as in the previous analyses, with

similar assumptions in terms of system definition. However, we define s17 = 10, and
the variables of interest are here the cost parameters H, p and B. The objective is
to study in which industrial context the stochastic dynamic approach is fruitful to
use according to the cost structure of the production system considered.

To do so, we analyse the sensitivity of the performance of our method with
respect to evolution of ratio H

p
on the one hand, and to B on the other hand.

The first case examines consequently the interests of using the stochastic dynamic
programming approach according to the value of the product considered relatively
to its holding costs.

The second one inspects how evolve the performance of our method when backlog
costs are more consequent.

The results are, as previsouly, compared relatively to the least costly of the
standard safety stock policy among those whose service level vary from τ = 50% to
τ = 90%.

Ratio H
p

:
B is here set up to 200 in order to insure the backlog costs is always greater than

the required threshold.
We make the ratio H

p
varies from 0.05 -high value product case- to 1- low value

product case or high inventory holding costs case, and calculation for each of these
values the total cost reduction, and the evolution of the improvement of service
level, through the inventory level difference on the one hand, and the difference of
the probability of stock out on the other hand.

Results are shown in figures 3.7, 3.8, and 3.9 with respectively the evolution
of the cost reduction, the relative difference of inventory level at the end of the
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periods, and the difference of percentage points of probability of shortage between
our method and the best safety stock policy among those whose τ vary from τ = 50%
to τ = 90%.

Figure 3.7: Evolution of the Cost reduction with respect to the ratio H
p

We observe here that the cost of our method is always lower than the best
standard one in figure 3.7 for any value of H

p
.

The interesting concave shape of the curve shows also that there is a minimum
of absolute cost gain corresponding to the passing through the threshold from which
inventory holding cost gets non negligible compared with unit production cost.

Beyond this point, in both decreasing or increasing H
p
, relative stochastic dy-

namic programming cost improves. As a consequence, the benefits are always posi-
tive, and increase as we get further from H

p
= 0.2.

The threshold point, which is the argument of the maximum of the cost reduction,
and from which the value of the per-unit production cost becomes close to the same
order of magnitude of the inventory cost, is also visible on the results of the inventory
levels and the probability of stock out results.

From this point, the difference of service level between our method and the least
costly standard one is indeed relatively small.

Moreover, the evolutions of the difference of inventory level and probability of
shortages are expected. We saw indeed in 2.2.1 - 1 that the optimal production
orders c∗k for k < N are independent of p. Therefore, its corresponding average
inventory level is not changing for periods 17, 18, and 19. The shape of the relative
difference presented in figure 3.8 corresponds consequently only to changes of the
stochastic standard procedure inventory level used as base of comparison.
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Figure 3.8: Evolution of the the relative difference of the averaged inventory level
with respect to the ratio H

p

Figure 3.9: Evolution of the difference of percentage points of probability of shortage
with respect to the ratio H

p

Besides, we note the threshold seen in figure 3.7 appears when inventory level of
period 20 becomes greater than the one of the least costly of the standard procedures.
As a consequence, from this point, the balance between H and p allows more stock
with least cost.

Ratio B
H

:

When high value products are considered, that is to say when p takes great values,
it is consistent to believe the backlog costs take also a greater importance inasmuch
as delays for costly products has strong impact on the proceedings of further supply
chain actions. In that context, we finally analyse a third case study where we make
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B increase, along with a proportional growth of p, while H remains constant. These
analyses are consequently presented with respect to ratio B

H
, illustrating different

areas of some delay policies: high B
H

imposes a strict environment where delays are
costly, whereas a low ratio allows more flexibility as it is more convenient in terms
of cost of delay.

Relative results compared with the least cost standard safety stock policy are
presented in the following figures 3.10, 3.11, and 3.12.

Figure 3.10: Evolution of the Cost reduction with respect to the unit product cost
p, B being adapted accordingly

Figure 3.11: Evolution of the the relative difference of the average inventory level
with respect to the unit product cost p, B being adapted accordingly

Our method still have lower average total costs thanks to the forecast update.
As far as service level and inventory level are concerned, as previously, we get
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Figure 3.12: Evolution of the difference of percentage points of probability of short-
age with respect to the unit product cost p, B being adapted accordingly

better service level for any period except the last one since solution adapts itself to
the end of the planning period.

However, the shapes of these graphs reveal a property. It is interesting to notice
that an asymptotic behavior seems to appear with high values of B. That is to say,
from a given environment of high backlog costs -B

H
being equal to approximatively

70, the increase of these costs does not improve the performance of our method
relatively to stochastic MRP procedure: there is a limit of the enhancement of our
method with respect to a growing B.

iii. Concluding Remarks for the numerical study

We were able to run several simulations to first illustrate the benefits of our
modeling framework - and its corresponding solutions- for the optimization of a
stochastic production plan taking into account the forecast update mechanism that
occurs during rolling plan scheme. Second, we challenged these benefits with clas-
sical planning procedures, and analyse them with respect to the system parameters
to understand their influence.

This study highlights several interesting points. Firstofall, our method allows to
get better results in terms of costs. Moreover, depending on the system environment
in which the method is applied, it can bring more value.

In particular, the more uncertain the system is, the more interesting it is to use
our method in terms of average costs and service level.
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In terms of costs parameters, the average gain gets bigger when the holding
costs increase relatively to production costs -low value products. As for backlog
costs, solution performance increase in terms of relative difference compared with
stochastic safety stock with respect to B, although an upper limit of improvement
appears as long as B grows. These results may particularly be useful to define which
kind of industries may take advantages of such production planning method.

2 .4 | Conclusion of our Simple Case Study

We presented in this section a first simple example of our method of production
planning taking into account the forecast updates under a rolling plan framework.

To focus our study on the optimization procedure in such a complex situation,
this example has been conducted under strong hypotheses. In particular, we chose to
work here with a basic industrial case of instantaneous delivery -production and/or
delivery lead-time equal to zero-, with a simple linear regression forecasting tech-
nique.

These hypotheses however gave us the opportunity to illustrate analytically three
important axes of our method: the modelling of the problem through conditional and
dynamic variables, the solution-computation procedure, through the nested form of a
stochastic dynamic program, and the numerical performances of our method thanks
to a numerical simulation.

The modelling part consists mostly in three steps. First, the definition of the
states of the system for each period of the planning horizon, second, the dynamic
laws that link the states between one another, including the forecast update proce-
dure from one state to the next one, and finally the stochastic dynamic programming
procedure allowing us to compute the solutions.

The solution-computation procedure is based on the nested form of the dynamic
programming. Thanks to the dynamic equation respected by the value function of
the system, the integration properties of the conditional dynamic variables, and the
laws of motion, we were able to prove an induction reasoning allowing us to compute
analytically an optimal production plan.

Finally, simulations have been conducted to illustrate the performance of the
solution and to highlight the benefits of this method. Absolute results have been
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presented, and show that taking into account the forecast update into the opti-
mization procedure brings more value in terms of cost reduction than any standard
planning policy. Sensitivity analyses have also been performed, showing in partic-
ular that the more uncertain the context is on the one hand, and the more high
value the product is on the other hand, the more interesting our method is com-
pared with the safety stock optimization policies. Thus, even in a zero lead-time
system, integrating forecast update mechanism into production planning appears a
value-adding practice for practitioners using rolling-horizon framework.

Two main hypotheses have an important impact on the planning: the short lead-
time and the modeling of the forecasts. From this point of view,the results showing
that we can express literally the production control quantity minimizing the expected
total cost while using modeling of forecast update then open new perspectives. We
will see in the next chapter how we can manage such practices in more complex
situations: a strictly positive lead-time on the one hand, and a multiple regression
on the other hand.
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Study cases of
Fast Delivery and

use of Linear Regression

In this chapter, we aim at applying our method in two different situations. Our
goal is indeed here to study our production planning problem in the non-stationary
and stochastic environment generated by the forecast update procedure under a
rolling plan framework in an analytical way for more complex cases. Extensions of
the model presented in the previous chapter will be then presented, as well as their
solution methods.

The first section will be dedicated to the development of our stochastic dynamic
programming method for a product whose production lead-time is equal to one
period. As for the forecasting method used, it will be kept to be a simple linear
regression.

As for the second part of the chapter, we will develop the method in an envi-
ronment of use of the multiple linear regression as forecasting method, in order to
generalize to various industrial cases. The model and the solutions computation will
indeed be computed in an analytical way so that they could be applied in a large
spectrum of potential contexts. Simulations will also be carried out and result-
ing outcome analyzed in order to understand the solutions encountered in different
situations.
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1 | Model with One-Period Lead Times

In this section, we generalize the problem modelling and solution method pre-
sented previously by relaxing one of the restrictive assumption: the instantaneous
delivery (or zero lead time) assumption. We consider indeed here the lead-time to
be equal to one period, although we still stay in a fast delivery mode.

We explain how the model evolves, and how the solution computation procedure
changes in this new environment. Moreover, a new simulation is realized to illustrate
the solutions found.

1 .1 | Problem description and modelling

We still consider an N -period production problem in a rolling plan framework.
We assume that the production lead-time is equal to 1 period. The objective is
kept to be the search of the production plan from the current forecast date t to the
last period of the horizon t+N − 1, including the forecast update procedure of the
rolling horizon into the calculation of the optimal planning.

We use the same notation as previously. In this context, we have ∀i = 1..t +
N − 1, Ki is equal to −B. (Xi + ci−1 −Di) + p.ci when Xi + ci−1 − Di < 0 and to
H. (Xi + ci−1 −Di) + p.ci otherwise. For the last period, Kt+N−1 is only made up
of the holding/backlog cost as ct+N−1 is not defined.

1.1.1 | Definition of the States of the System

i. Basic state of the system

For any period i, the basic state of the system is defined through the available
inventory at the beginning of period i, Xi -or xt for the specific period t-, and the
historical data of the demand information, from period 1 to period t−1: , (di)i=1..t−1.

ii. Advanced state of the system

As previously defined, random variables Dk|t, t ≤ k < i are conditionnally taken
into the definition of the demand of period i. More specifically, the parameters of the
pdf ofDi|t, namely the vector θi|t, are computed with respect to all information before
period i: ((di)1≤i<t, (Dk|t)t≤k<i). Consequently, in this specific context of study, this
definition does not change compared with the situation previously examined. Thus,
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the parameters θk|t for t 6 k 6 i defining (Dk|t)t≤k<i) are also needed to characterize
the state of the system in period i, known as the advanced state of the system.

1.1.2 | Forecasted Demand Modeling

We use the same modeling framework as in the previous chapter: mi and σi

are respectively the mean and the standard deviation of the random variable Di|t

following a centered triangular distribution between mi − 2si and mi + 2si, where
s2
i = 3/2 × σ2

i . θi|t is equal to the vector (mi, si). mi is supposed to be calculated
with the simple linear regression method. Therefore, its y-intercept a1(i) and slope
a2(i) are following the same relations as described previously.

1.1.3 | Dynamics of the States: laws of motion of the system

The law of motion, being defined as the dynamic equation which explicitly links
the states of the system in any pair of successive periods i and i + 1, only depends
on the demand forecast method used, and the type of industrial configuration in
case of stock-out. Here, the situation is the same as in the previous chapter: simple
linear regression is used for demand forecasting, and unmet demand is backlogged.
We can consequently re-write directly the laws of motion 3:

mi+1 =
t−1∑
k=1

2(3k − i− 2)
i(i− 1) dk +

i∑
k=t

2(3k − i− 2)
i(i− 1) Dk|t (4.1)

or, with the notation defined in chapter 2: βkmi+1
= 2(3k−i−2)

i(i−1) .

As in paragraph 3 of the second section of the previous chapter, used together with
the classical inventory update equation, 4.1 defines consequently completely the laws
of motion of the system, as it makes the link between the parameters of φi+1|t and
∆i|t - the demand information up to i - explicit:

 θj|t = Gj|t(∆j−1|t)
Xj+1 = ν

(
Xj, cj−1, Dj|t

)
In order to simplify the notation and make the link 4.1 clearer between states,

we will use the following notation ∀i, such as t < i 6 t+N − 1.
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As defined in chapter 2 we have,

mi =
t−1∑
k=1

βkmi
dk +

i−1∑
k=t

βkmi
Dk|t

Equation 4.1 allows us to get the value of βkmi
in our case study. We will note, from

now on, ∀j < i the variable βmi

(
∆j|t

)
defined as:

βmi

(
∆j|t

)
=

t−1∑
k=1

βkmi
dk +

j∑
k=t

βkmi
Dk|t

thanks to which we are able to re-write the law of motion as, ∀j < i:

mi = βmi

(
∆j|t

)
+

i−1∑
k=j+1

βkmi
Dk|t

For example, mi can consequently be simply noted mi = βmi

(
∆i−2|t

)
+ βi−1

mi
Di−1|t.

1.1.4 | Objective Function and Value Function

In this new example, we study an industrial environment in which the production
lead-time is equal to one period. Thus, the sought optimal production planning is
here (c∗j)t≤j<t+N−1. This time series minimizes the expected total cost from t to
t+N − 1, Wt.

This total cost depends here specifically on the state of the system in t, the
previous production orders already launched in t − 1, and the production orders
(cj)t≤j<t+N−1 as decision variables :

Wt

(
xt,∆t−1|t, ct−1, (cj)t≤j<t+N−1

)

= Et−1

[
t+N−2∑
i=t

Ki

(
Xi, Di|t, ci−1, ci

)
+Kt+N−1

(
Xt+N−1, Dt+N−1|t, ct+N−2

)]

We define as previously the value function Vj, t ≤ j < t+N −1 as the minimum
of the expected cost of the subhorizon from j to t+N−1,Wj. We note (c∗k)j≤k<t+N−1

its argument of the minimum. In this new example, we have Vj depending on Xj,
∆j−1|t, and cj−1 such as ∀j ∈ Jt, t+N − 2K,
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Vj(Xj,∆j−1|t, cj−1)

=Wj

(
Xj, Dj−1|t, cj−1, (c∗k)j≤k<t+N−1

)
= min

(ck)j≤k<t+N−1

Ej−1

[
t+N−2∑
i=j

Ki

(
Xi, Di|t, ci−1, ci

)

+Kt+N−1
(
Xt+N−1, Dt+N−1|t, ct+N−2

) ]
1.1.5 | Dynamic Equation of the system

In the same manner as we described in chapter 3, the value function defined
here can be re-written through a nested form (see paragraph 3), we have here an
equivalent property:

Property 1.1.5 - 1. The Value Function Vj
(
Xj,∆j−1|t, cj−1

)
respects the dynamic

equation ∀j ∈ Jt, t+N − 2K:

Vj(Xj,∆j−1|t, cj−1)

= min
cj

Ej−1

[
Kj

(
Xj, Dj|t, cj−1, cj

)
+ Vj+1

(
ν
(
Xj, cj−1, Dj|t

)
,Gj|t(∆j−1|t), cj

)]
Proof. The proof follows the same reasoning as in chapter 3, theorem 1.2.3 - 6

1 .2 | Analytical Results

Theorem 1.2.0 - 1. Given the assumptions defined previously, the optimal pro-
duction plan (c∗j)t≤j<t+N−1:

∀j, t ≤ j < t+N − 2,


c∗j = βmj+1

(
∆j−1|t

)
−Xj − cj−1 + j+4

j
mj + 3(B−H)

2(H+B)sj+1

c∗t+N−2 = βmt+N−1

(
∆t+N−3|t

)
−Xt+N−2 − ct+N−3 + t+N+2

t+N−2mt+N−2

+3(B−H−2 p)
2(H+B) st+N−1

(4.2)

Proof. This theorem is proved through the arguments provided in the following
paragraphs.
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1.2.1 | Proof Principle

We use the same framework as in the previous example: our proof will be devel-
oped by induction using the model developed in the previous chapter 2. We show
recursively that the value functions Vi, ∀i, t 6 i < t + N − 1 follows a general
form with respect to the states in period i and Di|t. This specific shape allows us to
compute its corresponding optimum argument of c∗i , solutions of our problem.

To do so, we first demonstrate the inductive step, by illustrating how the value
function respects a special property from i to i−1 thanks to the integration property
of section 3, the dynamic equation of the system, and the laws of motion defined
previously. We then show the last two periods follow the same property, which
defines the base case of our demonstration.

For each of these two parts of the proof, we follow the same steps of computation:
â Integration of the total costs from the considered period so that the expectation

can be expressed literally with respect to the corresponding state information;
â Minimization of this expected total cost with respect to the corresponding cur-

rent production order:
â Approximation of this function through a continuous quadratic polynomial func-

tion with respect to the new current production order;
â Expression of this newly calculated value function with respect to the previous

state information thanks to the laws of motion.

1.2.2 | Iterative Step of the Proof

Our goal is here to demonstrate a recursive form of Vj and its corresponding
optimum argument of c∗j , for all j such as t 6 j < t+N − 3.

To do so, we define Vj as a specific function with respect to the variables of state
in j − 1 and Dj−1|t, and we use the theorem 1.2.3 - 6 as follows.

Let Vj, for any j such as t 6 j < t + N − 3 be equal to the following function
depending on the information of the state in j − 1, and expressed with respect to
Dj−1|t, specifically :
Vj
(
Xj−1,∆j−2|t, Dj−1|t, cj−1, cj−2

)

= γj2
(
cj−1 + cj−2 +Xj−1 − j+3

j−1Dj−1|t − βmj

(
∆j−2|t

))2

+γjc1 cj−1 + γjc2 cj−2 + γjxXj−1 + γjdDj−1|t

+γjββ
(
∆j−2|t

)
+ Γj
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where, in this definition, γj2, γjc1 , γ
j
c2 , γ

j
x, γ

j
d, γ

j
β, and Γj are real numbers that do not

depend on any period k such that t ≤ k < j, and β
(
∆j−2|t

)
is a linear combination

of the demand information ∆j−3|t. Moreover, we assume γj2 > 0 (Peut-on justi-
fier?) since, as seen before, it represents generally a positive linear combination of
industrial parameters.

We calculate here through the four steps previously described the next value
function Vj−1 with respect to the state in j − 2 and Dj−2|t, knowing that, thanks to
the theorem 1.2.3 - 6, Vj−1 is equal to :

Vj−1
(
Xj−1,∆j−2|t, cj−2

)
= min

cj−1

{
Ej−2

[
Kj−1

(
Xj−1, Dj−1|t, cj−1, cj−2

)
+ Vj

(
Xj−1,∆j−2|t, Dj−1|t, cj−1, cj−2

) ]}

i. Integration of the total costs

We first compute the expectation of the value function of j defined with respect
to the information of state j − 1 and Dj−1|t by hypothesis as the inductive assump-
tion. To do so, we integrate its value with respect to φj−1|t, conditionally to the
information up to period j − 2 (ie the state of period j − 1):

Ej−2
[
Vj
(
Xj−1,∆j−2|t, Dj−1|t, cj−1, cj−2

) ]

Then, the costs of current period j are also integrated with respect to the current
random variable Dj−1|t:

Ej−2
[
Kj−1

(
Xj−1, Dj−1|t, cj−1, cj−2

) ]
The detailed results are described in the appendix.

ii. Minimization Problem

The resulting function with respect to cj−1

cj−1 → Ej−2
[
Kj−1

(
Xj−1, Dj−1|t, cj−1, cj−2

)
+ Vj

(
Xj−1,∆j−2|t, Dj−1|t, cj−1, cj−2

) ]

is a continuous function, and double differentiable. Its second derivative is equal to
2γj2, which is strictly positive. It is consequently continous and convex with respect
to cj−1, we can find its argument of the minimum.

Production Planning under Uncertainties and Forecasts Update 112



Chapter 4 1. MODEL WITH ONE-PERIOD LEAD TIMES

To do so, we look for the solution of the following equation

∂

∂cj−1
Ej−2

[
Kj−1

(
Xj−1, Dj−1|t, cj−1, cj−2

)
+ Vj

(
Xj−1,∆j−2|t, Dj−1|t, cj−1, cj−2

) ]
= 0 (4.3)

This equation 4.3 has only one solution on our interval of interest, and is equal
to:

c∗j−1 = βmj

(
∆j−2|t

)
−Xj−1 − cj−2 + j + 3

j − 1mj−1 −
p+ γjc1

2γj2
(4.4)

which gives us the value function of the next period, in other words Vj−1, with
respect to the information state of period j−1, which is Xj−1, ∆j−2|t, and cj−2. The
detailed calculation is available in the appendix.

Remark 1.2.2 - 2. Theorem 1.2.3 - 6 shows that, at each step of the dynamic
programming approach, any value function Vi+1, i ∈ Jt, t+N − 2K needs to be inte-
grated with respect to the demand Di|t, and its corresponding pdf φi|t, conditionally
to the information of period i, ie ∆i|t. It is therefore also the case in our inductive
reasoning. In other words, applied to our case study, Vj−1

(
Xj−1,∆j−2|t, cj−2

)
needs

to be integrated with respect to Dj−2|t.

However, two issues arise here.

First, Vj−1
(
Xj−1,∆j−2|t, cj−2

)
is expressed with respect to Xj−1, ∆j−2|t, and cj−2,

which is the j − 1 state information. The one from the state of j − 2 needs to be
explicit in order to compute this expectation though. That is why, as seen in the
previous chapter and in 2, we will apply the laws of motion.

Second, we have, because the production lead-time is 1-period long, a historical
order that has to be taken into consideration into the state of the system. In par-
ticular, as presented in the expression of Vj−1

(
Xj−1,∆j−2|t, cj−2

)
in appendix, cj−2

appears to be a variable on which the value function depends. Specifically, due to the
triangular distribution of the demand, the shape of the value function Vj−1 changes
depending on cj−2, and in particular its form with respect to mj−1. Consequently,
the link between Vj−1 and previous state information ∆j−3|t and Dj−2|t depends on
cj−2. We therefore cannot explicitly express the expectation of Vj−1, inasmuch as the
structure of the function to be integrated is not known without assignment of cj−2 to
a specific set. Yet, it is a decision variable of the next iteration of the dynamic pro-
gramming. We cannot consequently impose any artificial constraint on it, or there
is a risk of overlooking optimal solutions.
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iii. Approximation

Vj−1 is a piecewise function with respect to cj−2, which prevents us from obtaining
explicit results.

In order to still be able to calculate the desired expectation, we notice that
cj−2 → Vj−1

(
Xj−1,∆j−2|t, cj−2

)
is a decreasing linear function when cj−2 < mj−1 −

2sj−1−Xj−1, is a decreasing cubic polynomial function when mj−1−2sj−1−Xj−1 6

cj−2 < mj−1−Xj−1, another cubic polynomial function when mj−1−Xj−1 6 cj−2 <

mj−1 −Xj−1 + 2sj−1, and finally an increasing linear function when cj−2 > mj−1 −
2sj−1−Xj−1. We can see in figure 4.1a an example of this function given an arbitrary
state in j−1, and in 4.1b the corresponding approximation function applied in blue
line.

(a) An illustrative example of Vj−1 (b) The corresponding approximation

Figure 4.1: Illustration of the approximation function

We consequently make the following approximation to go further. The bound-
aries of the intervals of the different definitions of Vj−1 correspond to specific values
of the order cj−2: mj−1 − 2sj−1 −Xj−1, mj−1 −Xj−1, and mj−1 + 2sj−1 −Xj−1. A
quadratic function that goes through the three values of Vj−1 in these three specific
points approximates it therefore within a very thin range in the interval where the
probabilities of occurrence is high. mj−1 −Xj−1 represents indeed the expected net
requirement for this period, and mj−1 − 2sj−1 − Xj−1 and mj−1 + 2sj−1 − Xj−1

large boundaries with respect to the definition of the uncertainties parameter sj−1.
Moreover, we keep the convexity of the function and the approximation is consistent
with the interval where the minimum occurs with respect to cj−2.
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We approximate therefore Vj−1 with respect to cj−2 as a quadratic function whose
values in c1 = mj−1−2sj−1−Xj−1, c2 = mj−1−Xj−1, and c3 = mj−1 +2sj−1−Xj−1

are respectively the same as the original function so that the integration with respect
to Dj−2|t is feasible. We note Ṽj−1 this approximation.

The results are presented in the appendix.

iv. Application of the laws of motion

In order to finally prove the inductive step of our reasoning, we need to demon-
strate Ṽj−1 follows the same property as Vj. In particular, Vj is expressed here with
respect to the state of period j− 1 and Dj−1|t. In the same manner as in the induc-
tive assumption, and as also described in the previous remark, we need to explicitly
establish the relation between Ṽj−1 on the one hand, and the state in j − 2 and
Dj−2|t on the other hand.

To do so, we implement the laws of motion 4.1 into the solution found previously
for Vj−1. The detailed calculation is available in the appendix.

v. Conclusion

The value function Ṽj−1 with respect to the state of j−2, Dj−2, and cj−2 is equal
to the following:

Vj−1
(
Xj−2,∆j−3|t, Dj−2|t, cj−2, cj−3

)
=

= γj−1
2

(
cj−2 + cj−3 +Xj−2 − j+2

j−2Dj−2|t − βmj−1

(
∆j−3|t

))2

+γj−1
c1 cj−2 + γj−1

c2 cj−3 + γj−1
x Xj−2 + γj−1

d Dj−2|t

+γj−1
β β

(
∆j−3|t

)
+ Γj−1
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with the following relations:

γj−1
2 = H +B

6sj−1

γj−1
c1 = B −H

2 − p− γjc1 + γjc2

γj−1
c2 = H −B

2 − p− γjc1 + γjc2

γj−1
x = H −B

2 − p− γjc1 + γjc2

γj−1
d = 4

j − 2

(
B −H

2 + γjd +
(
p+ γjc1

) j + 3
j − 1

)
− H −B

2 + p+ γjc1 − γ
j
2+

2 (2j − 7)
(j − 1) (j − 2)

(
p+ γjc1

)
+ γjββ

(
∆j−2|t

)
[j − 2]

γj−1
β

(
∆j−3|t

)
=
(
B −H

2 + γjd +
(
p+ γjc1

) j + 3
j − 1

)
βmj−1

(
∆j−3|t

)
+ γjββ

(
∆j−2|t

)
[1..j − 3]

+
(
p+ γjc1

)
βmj

(
∆j−3|t

)

where β
(
∆j−2|t

)
[1..k] is the part of β

(
∆j−2|t

)
with respect to

(
Di|t

)
16i6k

.

Thus, thanks to the integration property and the dynamic equation of the system
3, and the laws of motion 3, we were able to apply theorem 1.2.3 - 6, and demon-
strate that, if, ∀j such that t < j 6 t + N − 2, Vj follows a particular shape with
respect to ∆j−2|t, Dj−1|t, Xj−1, cj−1, and cj−2, then Vj−1 follows also this form, and
we are able to calculate the solution of the minimum problem

c∗j−1 = βmj

(
∆j−2|t

)
−Xj−1 − cj−2 + j + 3

j − 1mj−1 −
p+ γjc1

2γj2

1.2.3 | Base Case: Last two periods of the planning

In order to end the proof, we show here that the hypotheses taken at the begin-
ning of the inductive step is true for the value function Vt+N−2.

To do so, we implement the previous steps of computation for the two last
periods, firstly t+N − 1 and then the t+N − 2th period.

i. Period t+N − 1
As far as the state of t + N − 1 is concerned, ct+N−1 does not exist. There

is consequently no minimization computation at this step. We note therefore the
result of these computation steps V̂t+N−1. It could be considered as a "simplified"
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value function for period t+N − 1.

Integration of the total costs
Conditionally to the state in period t+N − 1, we can calculate
EN−1

[
Kt+N−1

(
Xt+N−1, Dt+N−1|t, ct+N−2

)]
using φt+N−1|t. The detailed result is pre-

sented in the appendix.

Approximation
As previously, we approximate the function
ct+N−2 → EN−1

[
Kt+N−1

(
Xt+N−1, Dt+N−1|t, ct+N−2

)]
obtained to be able to inte-

grate it with respect to Dt+N−1|t.
The approximation process is the same as the one used in the previous paragraph.

The function ct+N−2 → EN−1
[
Kt+N−1

(
Xt+N−1, Dt+N−1|t, ct+N−2

)]
follows indeed

the same form as we saw previously: piecewise function made up of linear and
cubic polynomial functions, continuous and convex. We approximate it then as a
quadratic polynomial function, whose specific points held for the values to be equal
are mt+N−1−Xt+N−1−2st+N−1, mt+N−1−Xt+N−1, and mt+N−1−Xt+N−1 +2st+N−1.

We get finally the first conditional expected cost of our dynamic programming
V̂t+N−1 equal to:
V̂t+N−1

(
Xt+N−1,∆t+N−2|t, ct+N−2

)
= H+B

6st+N−1
ct+N−2

2

+ ct+N−2
6st+N−1

(3(H −B)st+N−1 + 2 (Xt+N−1 −mt+N−1) (H +B))
+ 1

6st+N−1

(
2(H +B)

(
st+N−1

2 + (Xt+N−1 −mt+N−1)2
)

−3 (Xt+N−1 −mt+N−1) (B −H) st+N−1
)

Application of the laws of motion As seen previously, in order to be able
to go further the dynamic computation, we need to make explicit the expression of
V̂t+N−1 with respect to Dt+N−1|t. We apply the laws of motion of the system to do
so.

We finally get:
V̂t+N−1

(
Xt+N−2,∆t+N−3|t, Dt+N−2|t, ct+N−2, ct+N−3

)
=

= H+B
6st+N−1

ct+N−2
2 + ct+N−2

6st+N−1
(3(H −B)st+N−1 + 2 (Xt+N−2 + ct+N−3

− t+N+2
t+N−2Dt+N−2|t − βmt+N−1

(
∆t+N−3|t

))
(H +B)

)
+ 1

6st+N−1
((2B

+2H) st+N−1
2 − 3

(
Xt+N−2 + ct+N−3 − t+N+2

t+N−2Dt+N−2|t

−βmt+N−1

(
∆t+N−3|t

))
(B −H) st+N−1 + (Xt+N−2 + ct+N−3

− t+N+2
t+N−2Dt+N−2|t − βmt+N−1

(
∆t+N−3|t

))2
(H +B)

)
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ii. Period t+N − 2

The same computation procedure as for the one used in the inductive step 2 is
executed here.

Integration of the total costs
We calculate first the conditional total expected cost of the two last periods
Et+N−3

[
Kt+N−2 + V̂t+N−1

]
thanks to the integration with respect to Dt+N−2|t and

its density function φt+N−2|t.The result, shown in details in the appendix, is a convex
and derivable piecewise function with respect to ct+N−2.

Minimization Problem
Thanks to these properties, we can calculate ∂

∂ct+N−2
Et+N−3

[
Kt+N−2 + V̂t+N−1

]
and

deduce c∗t+N−2 with respect to the state in t+N−2 by finding the point that nullifies
this derivative:

c∗t+N−2 = t+N + 2
t+N − 2mt+N−2 + βmt+N−1

(
∆t+N−3|t

)
−Xt+N−2 (4.5)

− ct+N−3 + 3 (B −H − 2 p) st+N−1

2(H +B)

The corresponding value of the function Vt+N−2
(
∆t+N−3|t, ct+N−3

)
is presented

in details in the appendix.

Approximation
In order to be able to compute the integration of this function with respect to
φt+N−2|t, the definition of its shape with respect to ∆t+N−3|t need to be explicit,
especially non-dependent on the interval to which ct+N−3 belongs. Thus, we approx-
imate the function ct+N−3 → Vt+N−2

(
∆t+N−3|t, ct+N−3

)
as a quadratic function,

whose specific points through which it goes are the intervals’ boundaries: ct+N−3 =
mt+N−2 −Xt+N−2 − 2st+N−2, mt+N−2 −Xt+N−2, and mt+N−2 −Xt+N−2 + 2st+N−2.
We note this approximation V̂t+N−2

(
∆t+N−3|t, ct+N−3

)
:

Production Planning under Uncertainties and Forecasts Update 118



Chapter 4 1. MODEL WITH ONE-PERIOD LEAD TIMES

V̂t+N−2
(
∆t+N−3|t, ct+N−3

)
=

H +B

6st+N−2
ct+N−3

2 +
(
H −B

2 − p+ H +B

3st+N−2
(Xt+N−2 −mt+N−2)

)
ct+N−3

+ H +B

3 st+N−2 + B −H
2 (mt+N−2 −Xt+N−2)

+ p
(
t+N + 2
t+N − 2mt+N−2 −Xt+N−2 + βmt+N−1

(
∆t+N−3|t

))
+ H +B

6st+N−2
(mt+N−2 −Xt+N−2)2 + At+N−2

Application of the laws of motion
Finally, in order to be coherent with the environment of the inductive step, we need
to get the same property as the hypotheses taken as assumptions of the reasoning
made ∀j, t < j < t + N − 3. In this context we define the value function Vj with
respect to the state of j − 2 and Dj−1|t. Thus, we need here to express our last
outcome of V̂t+N−2

(
Xt+N−3,∆t+N−4|t, ct+N−3, ct+N−4, Dt+N−3|t

)
with respect to the

state of period t+N − 4 and Dt+N−3|t.

V̂t+N−2
(
∆t+N−4|t, ct+N−3, Dt+N−3|t

)
=

H +B

6st+N−2

(
Xt+N−3 + ct+N−4 + ct+N−3 −

t+N + 1
t+N − 3Dt+N−3|t − βmt+N−2

(
∆t+N−4|t

))2

+Dt+N−3|t

(
B −H + 2 p

2 .
t+N + 1
t+N − 3 + 4p (t+N)

(t+N − 2) (t+N − 3)

)

− B −H + 2 p
2 (Xt+N−3 + ct+N−4 + ct+N−3)

+
(
−B −H2 + t+N + 2

t+N − 2p
)
βmt+N−2

(
∆t+N−4|t

)
+ pβmt+N−1

(
∆t+N−4|t

)
+ H +B

3 st+N−2 + At+N−2

The function finally obtained can be re-written as:

Vt+N−2
(
Xt+N−3,∆t+N−4|t, Dt+N−3|t, ct+N−3, ct+N−4

)

= γt+N−2
2

(
ct+N−3 + ct+N−4 +Xt+N−3 − t+N+1

t+N−3Dt+N−3|t − βmt+N−2

(
∆t+N−4|t

))2

+γt+N−2
c1 ct+N−3 + γt+N−2

c2 ct+N−2−2 + γt+N−2
x Xt+N−3 + γt+N−2

d Dt+N−3|t

+γt+N−2
β β

(
∆t+N−4|t

)
+ Γt+N−2

with
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γt+N−2
2 = H +B

6st+N−2

γt+N−2
d = B −H + 2 p

2 .
t+N + 1
t+N − 3 + 4p (t+N)

(t+N − 2) (t+N − 3)

γt+N−2
c1 = −B −H + 2 p

2
γt+N−2
c2 = −B −H + 2 p

2
γt+N−2
x = −B −H + 2 p

2
γt+N−2
β β

(
∆t+N−4|t

)
=
(
−B −H2 + t+N + 2

t+N − 2p
)
βmt+N−2

(
∆t+N−4|t

)
+ pβmt+N−1

(
∆t+N−4|t

)
Γt+N−2 = H +B

3 st+N−2 + At+N−2

1.2.4 | Conclusion

To end this proof, we sum-up the different steps, and their outcomes:

â We took as assumption a special shape of the value function for any j with
respect to the information of the state of period j − 2 and the demand of j − 1

â Thanks to the dynamic equation of the problem 1.2.3 - 6 and the laws of motion,
we were able to solve a minimization problem for this particular period j, in which
the solution c∗j−1 is equal to

c∗j−1 = βmj

(
∆j−2|t

)
−Xj−1 − cj−2 + j + 3

j − 1mj−1 −
p+ γjc1

2γj2

Moreover, this result allows to get the same shape for Vj−1 with respect to the
information of the state of period j − 3 and the demand of j − 2.
Thus, if this hypothesis is true for one particular j, it will be true ∀i < j.

â By initiating the dynamic computation with the two last periods t+N − 1 and
t+N − 2, we were able to prove that

c∗t+N−2 = t+N + 2
t+N − 2mt+N−2 + βmt+N−1

(
∆t+N−3|t

)
−Xt+N−2 − ct+N−3

+ 3 (B −H − 2 p) st+N−1

2(H +B)

and that the value function Vt+N−2 respects the necessary assumptions set for
the recursive equation. Its shape is indeed the same as defined at the beginning
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of the inductive step.

Finally, knowing that γt+N−2
2 = H+B

6st+N−2
and that γt+N−2

c1 = −B−H+2 p
2 , we can

deduce ∀j < t+N − 2:

c∗j = βmj+1

(
∆j−1|t

)
−Xj − cj−1 + j + 4

j
mj + 3(B −H)

2(H +B)sj+1

With an inductive reasoning, we have just calculated the values of the plan
minimizing the total expected cost taken into account the forecasts update procedure
into the optimization problem with a simple linear regression as forecasting technique
and a prodution lead-time equal to one period.

1 .3 | Simulation

In order to illustrate our results, we run a simulation of the considered production
planning system. We define then a one-item one-level production environment.
The product has a one-period production lead-time. The decision framework is a
"push" system, in which the forecasts are calculated using the simple linear regression
method. The dynamic simulation reflects the rolling plan framework, in which at
each step of the computation, the actual demand of the previous period is observed,
and the forecasting procedure is launched again.

1.3.1 | Numerical Hypotheses

The hypotheses taken are as follows: the planning horizon is N = 4 periods. The
date of forecasts is t = 17, i ≤ 17 being thus the historical data. The production
orders to compute are then (ci) for i ∈ {17, 18, 19}.

To do so, we use our method presented above, and we compare our results with
standard stochastic net requirements calculation procedure under stochastic hy-
potheses: at each period j, the orders are equal to mj

j+1 +Φ−1
tr (τ)σcumu−cj−1−xj−1.

The variable mj
j+1 corresponds to the mean of the forecasted demand of period j+1

made at the beginning of period j, Φtr represents the standard cumulative proba-
bility function of the triangular distribution, σcumu the cumulative uncertainties of
the period covered, namely j and j + 1, and τ the targeted service level.

This quantity represents the expected net requirements, to which we add a safety
stock quantified according to τ and σcumu. Besides, we assumed arbitrarily p = 1,
B = 6, H = 2, and the following initial state:
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(di)i=1..16 = (48, 52, 57, 59, 60, 55, 64, 72, 58, 71, 74, 82, 73, 80, 71, 78), x16 = 20, c16 =
65, and (si)i=17..20 = (10, 12, 14, 16).

At each iteration j of the rolling plan framework, we generate M = 20 different
scenarios dj, which makes the total number of random scenarios (d17, d18, d19, d20)
equal to 204 = 160 000. For each of them, we calculate the total costs of each
method used, and the inventory level at the end of any period. The averaged results
are presented in table 4.1.

Table 4.1: Simulation Results: Average Costs and Inventory

Methods Average Average inventory end of
used total cost 18 19 20

Our method 405.2 8.4 9.6 6.0
MRP with
τ = 65% 408.5 5.4 6.2 8.3
τ = 67% 407.6 6.4 7.3 9.6
τ = 68% 407.3 7.2 8.3 10.7
τ = 69% 407.4 7.6 8.8 11.2
τ = 70% 407.6 8.0 9.3 11.8
τ = 71% 408.0 8.5 9.8 12.4

The average cost of our method is below any stochastic standard planning pro-
cedure fora any target of service level. In particular, the results show the expected
total cost yielded by our method is lower than the best safety stock calculated with
the optimal τ ∗.

The reason is that, in any stochastic standard procedure, the net requirements
are calculated based on the forecasts made at the date of computation of the plan-
ning, whereas our optimization method takes into account the evolution of the fore-
casted demand between the date of forecasts and the reception of the production
order, thanks to the forecast update integrated into our optimization model.

1 .4 | Conclusion

In this section, we have presented an extension of the stochastic dynamic pro-
gramming model described in chapter 3, in which the production lead time is one-
period long.

We have then applied a dynamic programming solution computation framework
by defining the states, the laws of motion including the forecasts update mechanism,
and the dynamic equation of the problem.
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Integration properties, got thanks to approximation of functions and measurable
properties with respect to the corresponding probability density functions, allowed
us to recursively prove analytically the explicit expression of the value function
of the system, and consequently the optimal production orders to be launched to
optimize the non-stationary system generated by the forecast updates in the rolling
plan framework.

The solutions have been then tested via simulation to understand the benefits
of such a method compared with standard production planning procedures. Results
showed that the stochastic programming model still allows to get better perfor-
mances in such a configuration. The integration of forecast updates into the opti-
mization procedure leads us indeed to better flexibility in terms of dynamics and
uncertainties management in a rolling horizon framework.

2 | Multiple Linear Regression

We detail in this section another extension of the previous solution computation.

Using the same optimization framework of a stochastic dynamic programming
approach, we integrate here the forecast updates procedure into the production
planning when the forecasting method applied is the multiple linear regression.

The model used as regression is a standard analytical one, so that it can be
generalisable, and can be applied in different various environments.

The production lead time is kept equal to one period, we consequently still stay
in a fast delivery mode.

We explain how the model evolves, and how the solution computation procedure
changes in this new environment. Moreover, a new simulation is realized to illustrate
the solutions.

Also, we detail a more complex and complete sensitivity analysis so that the
industrial environment influence can be deeply understood in this more general
case. The benefits are discussed as well.

2 .1 | Problem description and modelling

We still consider an N -period production planning problem in a rolling plan
framework. We assume that the production lead-time is equal to 1 period. The
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objective is still the search for a production plan from the current forecast date t to
the last period of the horizon t + N − 1, including the forecast update mechanism
under a rolling plan framework into the calculation of the optimal planning.

We use the same notation as previously. In this context, we still have ∀i =
1..t+N − 1, Ki is equal to −B. (Xi + ci−1 −Di) + p.ci when Xi + ci−1−Di < 0 and
to H. (Xi + ci−1 −Di) + p.ci otherwise. For the last period, Kt+N−1 is only made
up of the holding/backlog cost as ct+N−1 is not defined.

2.1.1 | Forecasted Demand Modeling

We use in this section a similar model of the forecasted demand as defined in the
previous chapter chapter 2: mi and σi are respectively the mean and the standard
deviation of the random variable Di|t following a centered triangular distribution
between mi − 2si and mi + 2si, where s2

i = 3/2 × σ2
i . θi|t is equal to the vector

(mi, si).

We assume here mi is calculated thanks to the multiple linear regression method,
with the matrix Λ of explanatory variables, made up of p > 2 known vectors
(Λk)1≤k≤p of size t+N − 1.

We remind that the first vector Λ1 is the constant vector equal to 1 of size t+N−1,
the second one Λ2 being equal to the ”trend” vector λ2i = i. We also defined in
chapter 2 the learning set Λl(i) = (λjk)1≤k≤p

1≤j<i
used for the multiple regression made

at the beginning of period i.

The least suqare method gives us the coefficients of the regression ak(i) calculated
at date i. The notation A(i) is used as the corresponding vector (ak(i))1≤k≤p. The
detailed calculations of these coefficients were presented in chapter 2. The results
were

mi =
t−1∑
k=1

βkmi
dk +

i−1∑
k=t

βkmi
Dk|t (4.6)

where ∀i ∈ Jt, t+N − 1K,∀k ∈ J1, i− 1K:

βkmi
=

p∑
j=1

αjk(i). λij =
p∑
j=1

( p∑
m=1

(Λl(i)TΛl(i))
−1
jm. λkj

)
. λij
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and ∀i ∈ Jt, t+N − 1K, ∀k ∈ J1, t− 1K, ∀j ∈ J1, pK:

αjk(i) =
(
(Λl(i)TΛl(i))

−1Λl(i)T
)
jk

=
p∑

m=1
(Λl(i)TΛl(l))

−1
jm.

(
Λl(i)T

)
jk

=
p∑

m=1
(Λl(i)TΛl(i))

−1
jm. λkj

2.1.2 | Definition of the States of the System

i. Basic state of the system

As previously defined, in any period i, the basic state of the system consists of
the available inventory at the beginning of period i, Xi -or xt for the specific period
t-, and the historical demand information up to t− 1, (di)i=1..t−1, which is needed to
calculate the parameters of φi|t.

Considering here the case of the multiple regression, we are moreover in the
environment defined in the chapter 2, section 2, paragraph 1.2. Thus, the matrix of
historical data and projection set used respectively as learning set and forecasting
bases has to be integrated into the set of information defining the basic state of the
system.

Following the notation defined, we have therefore the matrix Λ ∈ R(t+N−1)×p,
p ≥ 2 included into the state of the system of any period i. We remind that the
learning set of period i > t will be noted Λl(i), the projection set Λp(i), and the
corresponding entries that Λ is made up of are noted (λij)16j6p

16i6t+N−1

ii. Advanced state of the system

The advanced state of the system if, as explained in the chapter 2, random
variables Dk|t, t ≤ k < i are conditionally considered into the definition of the
demand of period i.

Their parameters θi|t are indeed computed with respect to all information before
period i: ((di)1≤i<t, and (Dk|t)t≤k<i). Consequently, we do not have any change
compared with the previous case study : the parameters θk|t for t 6 k 6 i defining
in particular (Dk|t)t≤k<i) are also needed to characterize the state of the system in
period i. This is our advanced state of the system.
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2.1.3 | Dynamics of the States: laws of motion of the system

The dynamic equations linking two following states of the system in any period
i are, as in the previous chapter, the two equations allowing us to express the
inventory level of period i + 1 in function of the state of period i, and the demand
of i + 1 calculated based on the advanced state of period i. We can consequently
write the laws of motion, following the same reasoning as previously, but with our
new forecasting method that impacts the definition of the advanced state:

mi+1 =
t−1∑
k=1

βkmi+1
dk +

i∑
k=t

βkmi+1
Dk|t (4.7)

with βkmi
= ∑p

j=1 αjk(i). λij = ∑p
j=1

(∑p
m=1 (Λl(i)TΛl(i))

−1
jm. λkj

)
.

Altogether with the classical inventory update equation, 4.7 defines completely the
laws of motion of the system, as it makes the link between the parameters of φi+1|t

and ∆i|t -the demand information up to i- explicit.
We then have the following system 4.8 literally expressed with respect to the

industrial parameters, our assumption variables, and the states of the system.

 θi|t = Gi|t(∆i−1|t)
Xi+1 = ν

(
Xi, ci−1, Di|t

) (4.8)

In order to simplify, we will use again the notation ∀j < i, βmi

(
∆j|t

)
defined as:

βmi

(
∆j|t

)
= ∑t−1

k=1 β
k
mi
dk + ∑j

k=t β
k
mi
Dk|t allowing us to re-write the law of motion

∀j < i:

mi = βmi

(
∆j|t

)
+

i−1∑
k=j+1

βkmi
Dk|t (4.9)

Or, for example, precisely when j = i− 2, mi = βmi

(
∆i−2|t

)
+ βi−1

mi
Di−1|t

2.1.4 | Objective Function and Value Function

The expression of the total cost does not change compared with the previous
case:
Wt

(
xt,∆t−1|t, ct−1, (cj)t≤j<t+N−1

)

= Et−1

[
t+N−2∑
i=t

Ki

(
Xi, Di|t, ci−1, ci

)
+Kt+N−1

(
Xt+N−1, Dt+N−1|t, ct+N−2

)]
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The value function Vj of any j such that t 6 j 6 t+N − 1 is still depending on Xj,
∆j−1|t, and cj−1 :
Vj(Xj,∆j−1|t, cj−1)

=Wj

(
Xj, Dj−1|t, cj−1, (c∗k)j≤k<t+N−1

)
= min

(ck)j≤k<t+N−1

Ej−1

[
t+N−2∑
i=j

Ki

(
Xi, Di|t, ci−1, ci

)

+Kt+N−1
(
Xt+N−1, Dt+N−1|t, ct+N−2

) ]
2.1.5 | Dynamic Equation of the system

The property illustrating the dynamics of the system is still respected here:

Property 2.1.5 - 1. The Value Function Vj
(
Xj,∆j−1|t, cj−1

)
respects the dynamic

equation ∀j ∈ Jt, t+N − 2K: (see 1.2.3 - 6).
Vj(Xj,∆j−1|t, cj−1)

= min
cj

Ej−1

[
Kj

(
Xj, Dj|t, cj−1, cj

)
+ Vj+1

(
ν
(
Xj, cj−1, Dj|t

)
,Gj|t(∆j−1|t), cj

)]
2 .2 | Analytical Results

2.2.1 | Solution #1

i. Computation Procedure

The procedure calculating an optimal solution follows the same framework as in
section 1:
We use the theorem 1.2.3 - 6 and integration properties to dynamically compute
the solution of minimization problems appearing at each step of the dynamic pro-
gramming.
The following steps will be implemented in the same manner as the proof 2

â Integration of the total cost of the considered period so that the expectation can
be expressed literally with respect to the corresponding state information;

â Minimization of this expected total cost with respect to the production quantity
of the current period;

â Approximation of this function through a continuous quadratic polynomial func-
tion with respect to the production quantity;
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â Expression of this newly calculated value function with respect to the previous
state information thanks to the laws of motion.

ii. Results

Theorem 2.2.1 - 1. In such a context, an optimal production plan (c∗j)t≤j<t+N−1

is:
∀j, t ≤ j < t+N − 2,


c∗j = mj(1 + βjmj+1

)−Xj − cj−1 + βmj+1(∆j−1|t) + 3(B−H)
2(H+B)sj+1

c∗t+N−2 = mt+N−2(1 + βt+N−2
mt+N−1

)−Xt+N−2 − ct+N−3

+βmt+N−1

(
∆t+N−3|t

)
+ 3(B−H−2 p)

2(H+B) st+N−1

(4.10)

The generalization of the regression from a simple one to a multiple one here is
visible through the definition of the coefficient existing for the mean of the served
demand in c∗j . It is here indeed a linear combination of coefficients βmj+1 , that was
calculable in the case of simple regression. It is also the direct illustration that
the future forecasts evolution, and consequently the forecast updates, are integrated
into the computation of the optimal orders, inasmuch as these coefficients are known
with respect to the advanced state of information for period j.

The detailed calculations are presented in appendix. It follows the proof 2 pre-
viously detailed, but uses the new definition of the coefficient of the dynamics of
the forecast updates βkmj

for the forecasted period j with respect to the conditional
variable Dk|t, where k ∈ Jt, i− 1K

Finally, we have consequently managed to get, for any regression matrix Λ used
as forecasting method for the customer demand, the optimal production plan to be
organized at the beginning of any period t so that the cost can be minimized, taking
into account the future forecast updates that will happen during the rolling plan
framework.

iii. Simulation and Sensitivity Analysis

In order to illustrate the results and study the performance of our model, we run
several simulations. In particular, we compute our planning technique, and compare
it with classical stochastic net requirements calculation methods.

Several simulations have been done: first a one-time simulation based on an
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arbitrary set of parameters B, H, and p. Then, a sensitivity analysis has been
developed to understand the behavior of our method with respect to cost parameters.

Simulation We simulate here a rolling plan framework based on a learning set
made up of the real customer demand faced by the system for the latest 16 periods,
and a regression matrix of 2 predictors variables. Including the Y -intercept and the
trend, we have then p = 4.

From this learning set, we generate M = 20 scenarios for each of the period of
the rolling horizon, based on the random sampling of the stochastic process defined
as the forecasted demand. The number of periods simulated is 4, which makes the
total number of scenarios reach 160, 000.

The data used is as follows: The historical demand from i = 1 to i = 16 is equal
to 49, 70, 68, 64, 70, 80, 81, 89, 97, 87, 99, 99, 91, 90, 106, 115. The regression matrix Λ
is equal to

Λ =



1 1 13 105
1 2 22 117
1 3 18 124
1 4 18 126
1 5 24 114
1 6 22 130
1 7 23 123
1 8 27 124
1 9 23 127
1 10 24 124
1 11 34 133
1 12 28 128
1 13 27 132
1 14 29 134
1 15 36 144
1 16 33 147
1 17 32 146
1 18 40 148
1 19 38 145
1 20 40 158


The R2 of the corresponding multiple regression is equal to 0.893. The model is

relatively well explained.

Based on this forecasting technique (whose coefficients are respectively equal to
2.6206, 1.5750, 0.9826, 0.3469), we compute the forecasted demand for next periods
itreratively, by random sampling at each step of the rolling horizon framework.

With respect to the corresponding iterative sampling and computation of fore-
casts, the production planning is calculated.
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On the one hand, we compute our method based on the stochastic dynamic pro-
gramming approach; on the other hand, we calculate the standard net requirements
in a stochastic environment, implying safety stock policy. The safety stock is deter-
mined based on the service level targeted, denoted as τ . We compute it as, for any
period i, Φ−1

tr (τ) × σi, where Φ−1
tr is the standard cumulative probability distribu-

tion function of the triangular law, and σi the standard deviation of the forecasted
demand of period i.

The performance of our method is calculated as follows. Based on the values of B,
H, and p, we can calculate an optimal τ ∗ minimizing the cost among all standard
net requirements techniques with respect to τ . This optimal method among the
standard ones has a total expected cost.

We compare this cost with the one generated with our stochastic dynamic pro-
gramming approach: the difference between these two costs is kept as performance
indicator.

If this difference is positive, our stochastic dynamic approach is better than the
least costly of the standard safety stock policy.

Results We choose B = 500, p = 10, and H = 2.

We finally get a 2.02% of cost improvement between the stochastic dynamic pro-
gramming method and the least costly of the standard net requirements procedure
with safety stock computation.

Our method has therefore proved here to be more efficient in this specific con-
figuration of costs.

Sensitivity analyses In order to understand better how efficient the method
can be, we perform a sensitivity analysis based on variations of parameters B and
p.

In particular, we make p varies from 1 to 100, and B from 200 to 600. H is kept
equal to 2 arbitrarily.

The results are shown in Figure 4.2. We present in these figures our indicator
representing the difference between the cost of our method and the cost of the
best -meaning the least costly- standard safety stock policy. In the blue area, this
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difference is negative: our stochastic dynamic programming approach has a better
performance rather than the classical one. In the red area, there is no improvement:
on the contrary, the cost of our method is higher.

The efficiency of the method is challenged here. The trends show that for a
given B, the higher p is, the less interesting the solution is. The performance of the
solution is not better for high values of p, relatively to a given B, compared with
classical ones.

A clear linear threshold exists defining the area of the values of the couple (p,B)
in which the solution presented here is better than the classical planning procedure
in the presence of uncertainties. This area corresponds to small values of p for a
given B. If p becomes greater than this limit, the solution is getting unfit.

Figure 4.2: Cost Improvement in the case of a quadratic approximation

Actually, generally speaking, when, for a specific level of backlog costs B, p
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reaches a certain level, it becomes more interesting to force delays by backlogging
some quantities compared with producing the necessary required quantity. The
number of orders requirements is consequently relatively low.

In this case, we are consequently in an extreme set of production quantities ci of
the considered period i, compared with its expected value: we may have solutions
far lower from the expected net requirements. However, based on the modelling
structure we have here, this specific interval of the production quantity are a par-
ticular range in which the approximation function we made for the value function
is not consistent with the real shape of the value function.

We show indeed in the next figure 4.3 that the quadratic approximation is consis-
tent with the original function within a specific interval centered around the expected
value of the net requirements.

Figure 4.3: The quadratic approximation fits for ck−1 close to the expected net
requirements

Consequently, the solutions calculated based on the approximation function for
values belonging to this extreme interval are not reflecting a correct cost, and there-
fore are not coherent with the real cost environment.

An illustrative drawing explains this phenomena in Figure 4.4: if the correct
optimal production quantities had had the value represented by the green line,
its corresponding real cost would have been at the red line level. However, this
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specific cost level corresponds to solutions evaluated at the yellow line with the
approximation function used here.

Figure 4.4: The approximation may bring wrong cost

The approximation function therefore does not fit this case, and we got bad
performances when, for a given B, p is high, or, inversely, for a given p, B is low.
We need to look for another approximation function that can handle such cases.

2.2.2 | Solution #2

i. Computation Procedure

We use the same procedure of calculation of the optimal solutions as in section
1:

We use the theorem 1.2.3 - 6 and integration properties to dynamically compute
the solution of minimization problems appearing at each step of the dynamic pro-
gramming.

The following steps will be implemented in the same manner as the previous proof of
theorem 2.2.1 - 1, except the approximation function that we detail more precisely
afterwards.

â Integration of the total costs from the considered period so that the expectation
can be expressed literally with respect to the corresponding state information
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â Minimization of this expected total cost with respect to the corresponding cur-
rent production order

â Approximation of this function through a continuous function with respect to
the new current production order

â Expression of this newly calculated value function with respect to the previous
state information thanks to the laws of motion

ii. New Approximation Function
We are looking for a continuous function with respect to ci−1 being able to

approximate Vi at each step of the dynamic programming. Vi as a convex form with
a unique argument of minimum.

Most importantly, on the contrary to the previous approximation, we want the
new approximation function to be efficient within the ranges of extreme values of p,
meaning away from the expected value of ci−1.

In order to be able to keep the integration properties on the one hand, and the
convexity on the other hand, while respecting the constraint of good approximation
function for extreme values of ci−1, we choose to approximate it with a piecewise
linear function made up of the already existing linear forms of Vi with respect to
ci−1, but extended to the centered intervals of ci−1 arounf its expected value.

The approximation is consequently a double piecewise linear function as shown
in blue line through figure 4.5

iii. Results
Theorem 2.2.2 - 2. In such a context, the optimal production plan (c∗j)t≤j<t+N−1:
∀j, t ≤ j < t+N − 2,



c∗j = mj(1 + βjmj+1
)−Xj − cj−1 + βmj+1(∆j−1|t)

+2sj
(
1 + βjmj+1

) (
1−

√
2H
H+B

)
c∗t+N−2 = mt+N−2(1 + βt+N−2

mt+N−1
)−Xt+N−2 − ct+N−3

+βmt+N−1

(
∆t+N−3|t

)
+2st+N−2

(
βt+N−2
mt+N−1

+ 1
)(

1−
√

2(H+p)
H+B

)
(4.11)

The detailed calculations of the proof are presented in appendix. It follows the
proof 2 previously detailed, but uses the new approximation function previously
defined in the dynamic calculation of the value function.
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Figure 4.5: Approximation by a piecewise linear function

iv. Simulation and Sensitivity Analysis

In the same manner as previously, we run several simulations, and compare our
model to classical stochastic net requirements calculation methods.

Simulation We use the same simulation framework as in the previous para-
graph. Results of the corresponding sensitivity analyses are shown in the following
figure 4.6

The figures got from sensitivity analysis illustrate two interesting points.

First, it clearly shows we get efficient results in terms of costs improvement.
We succeeded in getting better solutions in terms of costs rather than the least
costly of the standard stochastic order quantity procedure in a large area of possible
values of couples (p,B). Thanks to the use of this new approximation function, the
number of configurations in which the stochastic dynamic programming approach
is more interesting than the standard ones is consequently higher, and allows users
to improve clearly the cost of the method.

Second, it is interesting to note that the results are exactly symmetric with
respect to the previous ones getting from the first quadratic approximation. Inas-
much as the linear approximation function considered here is complementary to the
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Figure 4.6: Cost Improvement in the case of a linear approximation

quadratic one in terms of range of efficient fitting of the function to approximate,
this makes sense. It also consequently validates the interpretation made at the end
of subsection 1.

2.2.3 | Conclusion

Based on the same computation framework already used in a more constrained
case in the previous section, we were here able to compute optimal solutions and
express them literally for the generalized case of the multiple linear regression with
any learning matrix λ ∈ R(t+N−1)×p, for any natural p > 2.

In these more complex cases, we also investigated the performances of different
solutions getting from two forms of approximation functions used at each step of
the iterative computations of the dynamic programming.
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A more in-depth sensitivity analysis has indeed revealed some interesting be-
haviors of the two possible solutions with respect to different cost configurations
we may face in the environment of work: we showed in particular that different
approximation functions bring unequal efficiency for the corresponding solutions.

Specifically, the results outcoming from the quadratic approximation computa-
tion method are particularly efficient with a low p and large B. On the contrary, the
higher p is compared with B, the more efficient the piecewise linear approximation
is. We can more particularly precise there exists a clear threshold from which the
choice of the approximation function has to change for an increasing p from the
quadratic approximation to the piecewise linear function.

This difference comes from the fact that, depending on the method used, the
interval to which the order quantity belongs may not be the one for which the
approximation is good. Thus, by well choosing the approximation function, the
efficiency of our optimal solutions stays better than any of the classical methods.

In our calculation procedure, results were kept voluntarily entirely analytical, so
that the aim of our work stays coherent within the research questions pointed out
at the end of chapter 4. Thus, details of the proofs of Theorems 2.2.1 - 1 and 2.2
.2 - 2 presented in the appendix are made up of complex literal expressions of the
corresponding dynamic programming implementations. The analytical complexity
of these calculations makes the study of the threshold, clearly visible in our sensitiv-
ity analysis, difficult. The iterative computations developed here are indeed made
up of complex laws of motion due to the forecast update mechanism integration on
the one hand, and the nested form of the value function on the other hand. These
two points does not enable us to express the sensitivity of a value function Vi with
respect to the parameters B and p based on a previous state decision c∗i−1.

An interesting perspective can be however to analyse the characteristics of this
limit in a more complex simulated and/or numerical framework of study.

2 .3 | Concluding remarks

Remark 2.3.0 - 1. When multiple linear regression is used, the capability to ex-
press literally optimal solutions in a general framework allow users to apply the
method to a large spectrum of industrial cases.
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The modeling of inputs developed here is indeed as general as possible. The
variables used, especially in terms of learning vectors Λ can be here any type of
quantified predictor variables.

By having been able to express literaly the law of motion of the dynamics of
the system taking into account the forecast updates in this particularly general case
study, the optimal solutions have been computed and their expression analytically
proved.

Remark 2.3.0 - 2. Depending on the industrial environment defined by the costs
parameters B, H, and p, two methods of approximation may be chosen differently
to get efficient results.

In particular, we found two interesting and distinct ranges of efficiency of the
method.

The complexity of the computation method in an analytical manner pushed
us into implementing an approximation of the value function at each step of the
calculation of the dynamic programming.

Naturally, this approximation reduces the performance of our optimal solution.
However, the important interesting, and valuable point proved here is that what-

ever the cost configuration to which the system is exposed, we are still able to choose
a compatible approximation function that keeps the stochastic dynamic program-
ming approach at a better level of costs compared with any classical method.

It means that the forecast update procedure can still be taken into consider-
ation for any of the values of the couple (B, p), if and only if the corresponding
approximation function is well chosen.

Remark 2.3.0 - 3. Results are purely symmetric when it comes to the approxi-
mation function choice: no joint-set exists in which the approximation function is
efficient.

The choice of the approximation function is consequently directly linked with
the positioning of the system into its industrial environment, but is not issued from
a qualitative evaluation.

Remark 2.3.0 - 4. We also have studied the case where a combinaison of the
two approximation functions is used, defining a piecewise function so that in each
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adequate interval, the most efficient form of approximation is defined. This case
leads unfortunately to no result that can be expressed literally.

We proved here that the consistency of any approximation function is symmetric
and therefore complementary. The question to use both forms of approximation but
into a unique piecewise continuous function is consequently a very interesting issue.

This solution of computation has been studied, but, for the same reasons that
the threshold from which the choice of the form of the approximation function has
to change cannot be calculated, the piecewise approximation function combining a
quadratic form and a linear form is too complex to implement. The nested form of
the dynamic programming computation procedure, used together with the dynamic
properties of the forecast update, create results difficult to exploit.
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Closing Chapter

Conclusion, and Perspectives

1 | Conclusion

In any industrial system concerned with supply chain management, and more
specifically production planning issues, uncertainties are at the heart of numerous
concerns. It is especially the case for markets that are likely to face non negligible
customer demand uncertainties, as driving variable for the planning process.

By improving the flexibility of the decisional process, it is proved that the Rolling
Horizon framework allows better management of these uncertainties, but increases
instability and creates optimization modeling problems due to forecast updates pro-
cedure.

In this thesis, we consequently aimed to study this particular but still high-stake
issue of the production planning optimization problem under uncertainties taking
into account the forecasts update mechanism in Rolling Plan framework. In the
lights of the lack of knowledge of such configurations in the current literature, the
investigation of such optimization models for production planning under uncertain-
ties and forecasts updates appeared indeed to us as a relevant topic of research.

The objective was therefore to be able to build a model and an adapted op-
timization framework for this decision environment existing in real life industrial
problems.
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In order to reach our goal, we brought theoretical materials through different
contributions that follow the research questions pointed out in the introductory
chapter:

- How do Rolling Horizon Framework and forecasts updates impact the Demand
Forecasts Modeling?

We presented in chapter 2 section 1 the fact that the forecasts update pro-
cedure that takes place in a rolling plan creates complex non-stationary and
uncertain features of the customer demand.

By defining a model built through an iterative way of conditional compu-
tation, and a double-level probabilistic structure, we managed to represent
dynamically the customer demand, as well as its uncertainties. The distribu-
tion parameters are consequently random and recursively defined period after
period.

- How do such models influence Supply Chain Performances?

We showed in chapter 2 section 2 that such modeling has impacts on the pa-
rameters of the forecasted demand. In particular, we presented the stochastic
features of these parameters and how it allows us to represent the epistemic
uncertainties.

A simulation finally illustrates this by pointing out the benefits of our forecast
modeling on the a posteriori expected service level.

- How can the forecasts update mechanism be modeled to be integrated into an
optimization model?

Chapter 2 section 1 showed that an important point for the model to be
exploitable is to clearly define the forecasting method, and, thanks to that, to
explicitly model the update mechanism through laws of motion 2.3.

In the chapter 2 section 2, this point has been analyzed in depth for the specific
case of the linear regression froecasting technique.
The results allows us not only to express the dynamics of the update, but also
to be able to integrate it into an optimization routine.
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- What optimization model could be used in such cases?

We developed in chapter 3 section 1 a complete theoretical stochastic dynamic
programming optimization framework that takes into account (1) both ran-
domness and epistemic uncertainties through the iteratively built double level
probabilistic model of the customer demand and, (2) the dynamics of the
forecasts updates explicitly defined that were integrated through the laws of
motion of the dynamics of the considered system into the optimization model.

- How can optimal solutions be computed?

The optimal solutions of such an optimization problem has been literally cal-
culated through a specifically developed framework.

It consists first of the definition of the states and the laws of motion linking
them dynamically. Then, the value function, defined as the local minimum
cost function from one specific period to the time horizon is modelled through
a nested form.
These three main pillars finally allow us to recursively prove a dynamic prop-
ertie of the system, coming from successive conditional expectation computa-
tions.

The proof of this recursive property has been realized in a general case in
chapter 3 and section 1.

As for explicit results, we demonstrated the litteral expression of optimal so-
lutions through three different inductive reasonings.
It has been indeed the object of study of the chapter 3 section 2 in the par-
ticular first simple application case of the use of simple linear regression in a
zero lead-time environment.
Then, Chapter 4 was dedicated to extensions of the model considered. The
zero-lead-time assumption was first relaxed, and the general case of the use
of the multiple linear regression as forecasting techniques was finally deeply
studied.

- Are these solutions more efficient than classical production planning methods,
and to what degree do resulting production orders provide better performances?
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Each time explicit results could be computed, it has been tested and compared
to standard stochastic planning procedure calculated through a targeted ser-
vice level through simulated scenarios. The least costly of any of these has
been selected as the performance assessment for each of the simulation run.
The results showed that the method globally outperformed the standard ones
in the specific configurations tested.
Notwithstanding the net improvement, it is important to note the more com-
plex the industrial environment is, the more subtle the user has to apply the
method, inasmuch as the approximation function has to be chosen appropri-
ately to get the best of benefits from the method.

- In which context can such solutions be implemented?

Sensitivity analyses allowed us to better understand the behavior of the per-
formances of the method developed with respect to the different situations.

In particular, some solutions may diverge from one to another depending on
the cost configurations. Detailed explanations have been presented in Chapter
4 section 2.

Moreover, it is important to precise that all the studies realized here have been
conducted under assumptions of linear holding and production costs, as well
as linear regression as forecasting techniques. Although these hypotheses may
have generated different results and/or efficiency in cases of relaxation, they
still embrace a large field of possible industrial environments, and thus can be
implemented in different situations of MPS issues.

2 | Discussions and Perspectives

Besides the main roots that motivated this research, namely solving real life
problems in uncertain environments under a rolling plan framework, the works pre-
sented in this manuscript fall within the intersection of the production planning field
on the one hand, and the stochastic dynamic optimization on the other hand.

A consequence of this particular positioning has been also to provide a new
application point from both these sides. That is to say, as far as the stochastic opti-
mization is concerned, production planning under forecasts updates, as it has been
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defined and explicitly transcribed here, was not, to our knowledge, an application
yet studied as is. In the mean time, from the production planning point of view,
stochastic dynamic programming approach has been seen here as an interesting tool
to catch all the non-stationary and uncertain features that our problem has raised.

It appears consequently to us that our contributions presented in this manuscript
may also bring interesting content for these two research areas as new angles of vision
and directions of study.

This innovative modelling choice has brought slight arduousness though. Con-
sequently, assumptions has had to be made to be able to go further to the objective
defined.

Inasmuch as the forecasts updates have to be explicitly written before integration
into the optimization framework, the choice of the forecasting technique is one of
the main restrictive hypotheses that has to be made to implement our technique.
We decided in a first instance to study the linear regression case.

Actually, as long as a forecasting technique

(1) allows users to write explicitely the distribution of the parameters
θi|t ∼ ψ

(
∆i−1|t

)
, as defined in 2.3, and

(2) that the corresponding composition function φ
(
θi|t
)

= φ◦ψ
(
∆i−1|t

)
is integrable conditionally to the state of period i, meaning mea-
surable with respect to the conditional pdf φi|t on the σ−algebra
generated by the set of

(
Dk|t

)
t≤k<i

,

then each conditional expectation can be theoretically calculated at each step of the
dynamic programming defined in the computation framework we developed.

That means several extensions of our optimization model taking into account
forecast update, and its corresponding computation framework developed in this
manuscript can be contemplated. In particular, other forecasting techniques may
be applied.

However, the computational complexity of each step of the iterative calculations
may be quite high, as we could see here.

Perspectives can therefore be considered as issues focusing on the computation
steps for specific but yet useful forecasting models. In particular, they can be reduced

Production Planning under Uncertainties and Forecasts Update 144



Chapter 5 2. DISCUSSIONS AND PERSPECTIVES

to a series of calculus approximation problems, which may be already known or, at
least, be supported by other techniques coming from the approximation of integrals.

Placed in the nested form of our model, they could bring values to lower the
computational complexity in more general cases.

Other perspectives can be thought through simulation techniques instead of an-
alytical studies. This would allow a wider spectrum of cases to be integrated into
the model defined in this manuscript.

Finally, the dynamics of the forecast updates is here taken into consideration
only in terms of non-stationarity of the mean variable. The standard deviation of
the demand modeling could also be topic of study, although the random dispersion
of the customer demand is more likely to be dependent on the time horizon rather
than the history of the demand itself. As for the epistemic uncertainties, it is well
history-dependent.

To this aim, Bayes models also seem to be potentially interesting in that sense.
The epistemic uncertainties catching from the double-level probabilistic structure de-
fined in this manuscript is indeed a well-developed and studied area in the Bayesian
inference theory.
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Complementary Chapter

Appendix

1 | Appendix 1

We present here the detailed calculations of the proof of the lemma 2.2.1 - 2 in
Chapter 2, Section 2, Subsection 2, Subsubsection 1, Paragraph ii, Subparagraph ii

∀k ∈ Jt, t+ L− 1K:

Et+L−1
[
D2
k|t

]
=
−α1

t−1∑
j=1

jdj +
k−1∑
j=t

jmj

+ α4
t−1∑
j=1

dj +
k−1∑
j=t

mj

2

+ α12
k−1∑
j=t

j2σ2
j − 2α1α4

k−1∑
j=t

jσ2
j + α42

k−1∑
j=t

σ2
j

Et+L−1
[
a2

1

]
=
α1

t−1∑
j=1

jdj +
t+L−1∑
j=t

jmj

+ α3
t−1∑
j=1

dj +
t+L−1∑
j=t

mj

2

+ α12
t+L−1∑
j=t

j2σ2
j + 2α3α1

t+L−1∑
j=t

jσ2
j + α32

t+L−1∑
j=t

σ2
j
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Et+L−1
[
a2

2

]
=
α1

t−1∑
j=1

dj +
t+L−1∑
j=t

mj

+ α2
t−1∑
j=1

jdj +
t+L−1∑
j=t

jmj

2

+ α12
t+L−1∑
j=t

σ2
j + 2α1α2

t+L−1∑
j=t

jσ2
j + α22

t+L−1∑
j=t

j2σ2
j

Et+L−1
[
Dk|t.a1

]
=
−α1

t−1∑
j=1

dj +
k−1∑
j=t

mj

+ α4
t−1∑
j=1

jdj +
k−1∑
j=t

jmj


×

α1
t−1∑
j=1

jdj +
t+L−1∑
j=t

jmj

+ α3
t−1∑
j=1

dj +
t+L−1∑
j=t

mj


+ α1kσ2

k + α3σ2
k

Et+L−1
[
Dk|t.a2

]
=
−α1

t−1∑
j=1

jdj +
k−1∑
j=t

jmj

+ α4
t−1∑
j=1

dj +
k−1∑
j=t

mj


×

α1
t−1∑
j=1

dj +
t+L−1∑
j=t

mj

+ α2
t−1∑
j=1

jdj +
t+L−1∑
j=t

jmj


+ α2 kσ2

k + α1σ2
k

Et+L−1 [a1a2] =
α1

t−1∑
j=1

jdj +
t+L−1∑
j=t

jmj

+ α3
t−1∑
j=1

dj +
t+L−1∑
j=t

mj


×

α1
t−1∑
j=1

dj +
t+L−1∑
j=t

mj

+ α2
t−1∑
j=1

jdj +
t+L−1∑
j=t

jmj


+ α1α3

t+L−1∑
j=t

σ2
j +

(
α12 + α2α3

) t+L−1∑
j=t

jσ2
j + α1α2

t+L−1∑
j=t

j2σ2
j
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Consequently,

Et+L−1

[
t−1∑
k=1

(dk − a1(i)− a2(i)k)2 +
i−1∑
k=t

(
Dk|t − a1(i)− a2(i)k

)2
]

=

α42

t−1∑
j=1

dj +
k−1∑
j=t

mj

2

− 2 (α4 kα1 + α3α4)
t−1∑
j=1

dj +
k−1∑
j=t

mj

t−1∑
j=1

dj +
t+L−1∑
j=t

mj


− 2α1α4

t−1∑
j=1

dj +
k−1∑
j=t

mj

t−1∑
j=1

jdj +
k−1∑
j=t

jmj


− 2 (α2α4 k + α1α4)

t−1∑
j=1

jdj +
t+L−1∑
j=t

jmj

t−1∑
j=1

dj +
k−1∑
j=t

mj


+
(
k2α12 + 2α3 kα1 + α32

)t−1∑
j=1

dj +
k−1∑
j=t

mj

2

+
(
2 kα12 + 2α1α3

)t−1∑
j=1

dj +
k−1∑
j=t

mj

t−1∑
j=1

jdj +
t+L−1∑
j=t

jmj


+
(
2 kα12 +

(
2α2 k2 + 2α3

)
α1 + 2α3α2 k

)t−1∑
j=1

dj +
k−1∑
j=t

mj


×

t−1∑
j=1

jdj +
k−1∑
j=t

jmj

+
(
k2α12 + 2α3 kα1 + α32

) t+L−1∑
j=t

σ2
j

+ α12

t−1∑
j=1

jdj +
t+L−1∑
j=t

jmj

2

+
(
2α2 kα1 + 2α12

)t−1∑
j=1

jdj +
k−1∑
j=t

jmj


×

t−1∑
j=1

jdj +
t+L−1∑
j=t

jmj

+
(
α22k2 + 2α2 kα1 + α12

)t−1∑
j=1

jdj +
k−1∑
j=t

jmj

2

+
(
2 kα12 +

(
2α2 k2 + 2α3

)
α1 + 2α3α2 k

) t+L−1∑
j=t

jσ2
j

+
(
α22k2 + 2α2 kα1 + α12

) t+L−1∑
j=t

j2σ2
j + α12

k∑
j=t

j2σ2
j

+
−2α4

k∑
j=t

jσ2
j − 4kσ2

k

α1− 2α2k2σ2
k − 2α3σ2

k + α42
k∑
j=t

σ2
j

and finally,

Et+L−1
[
σ2
εi

]
= 1
i− 4Et+L−1

[
t−1∑
k=1

(dk − a1(i)− a2(i)k)2 +
i−1∑
k=t

(
Dk|t − a1(i)− a2(i)k

)2
]
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which lead us to

Et+L−1
[
σ2
i

]
= γi Et+L−1

[
σ2
εi

]

2 | Appendix 2

We present here the detailed calculations of the proof of the theorem 1.2.0 - 1 in
Chapter 4, Section 1, Subsection 2

The expectation of the value function of period j conditionnally to the state of
period j − 1 is:

∀j ∈ Jt+ 1, t+N − 3K:

Ej−2
[
Vj
(
Xj−1,∆j−2|t, Dj−1|t, cj−1, cj−2

) ]
=

γj2
(j − 1)2

((Xj−1 + cj−2 + cj−1 −mj−1 − βmj

(
∆j−2|t

)
)2 +Xj−1 + 2

3 sj−1
2
)
j2

+ 2
(
−
(
Xj−1 + cj−2 + cj−1 +mj−1 − βmj

(
∆j−2|t

))2

+ 4mj−1
2 + 2 sj−1

2 −Xj−1

)
j

+
(
Xj−1 + cj−2 + cj−1 + 3mj−1 − βmj

(
∆j−2|t

))2
+ 6 sj−1

2 +Xj−1


+ γjdmj−1 + γjc2 cj−2 + γjc1 cj−1 + γjββ

(
∆j−2|t

)
+ Γj

The expectation of the cost of period j − 1 conditionnally to the state of period
j − 1 is:
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Ej−2
[
Kj−1

(
Xj−1, Dj−1|t, cj−1, cj−2

) ]
=



−B (Xj−1 + cj−2 −mj−1) + pcj−1 if
βt+N−3
mt+N−2

Xj−1 + cj−2

< mj−1 − 2 sj−1

1
3 (H +B) sj−1 − 1

2 (−mj−1 +Xj−1 + cj−2) (B −H)
+H+B

4sj−1
(Xj−1 + cj−2 −mj−1)2

+ 1
24s2

j−1
(Xj−1 + cj−2 −mj−1)3 (H +B) + pcj−1

if

mj−1 − 2 sj−1

≤ Xj−1 + cj−2

< mj−1

1
3 (H +B) sj−1 − 1

2 (−mj−1 +Xj−1 + cj−2) (B −H)
+H+B

4sj−1
(Xj−1 + cj−2 −mj−1)2

+ 1
24s2

j−1
(Xj−1 + cj−2 −mj−1)3 (H +B) + pcj−1

if

mj−1

≤ Xj−1 + cj−2

< mj−1 + 2 sj−1

H (Xj−1 + cj−2 −mj−1) + pcj−1 if
mj−1 + 2 sj−1

≤ Xj−1 + cj−2

The value function of period j − 1 with respect to the state of period j − 1 is:

Vj−1
(
Xj−1,∆j−2|t, cj−2

)
=

(
βmj

(
∆j−2|t

)
−Xj−1 − cj−2 + j + 3

j − 1mj−1

)
γjc1 + γjc2 cj−2 + γjββ

(
∆j−3|t

)

+ γjd2Dj−2|t + γjdmj−1 + Γj + γj2Xj−1 + 2sj−1
2γj2

(
j + 3
j − 1

)2

+

(
p− γjc1

) (
p+ γjc1

)
4γj2

with
c∗j−1 = βmj

(
∆j−2|t

)
−Xj−1 − cj−2 + j + 3

j − 1mj−1 −
p+ γjc1

2γj2

and Ej−2
[
Kj−1

(
Xj−1, Dj−1|t, cj−1, cj−2

) ]
previously determined.

The value function of period j − 1 with respect to the state of period j − 1 is
after approximation:
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Ṽj−1
(
Xj−1,∆j−2|t, cj−2

)
=

c2
j−2 (B +H)

6sj−1
+
(
B −H

2 − p− γjc1 + γjc2 + B +H

3sj−1
(Xj−1 −mj−1)

)
cj−2

+ B +H

6sj−1
(Xj−1 −mj−1)2

+
(
j + 3
j − 1

)2 2γj2s2
j−1

3 + B +H

3 sj−1 +
(
B −H

2 + γjd +
(
p+ γjc1

) j + 3
j − 1

)
mj−1

−
(
B −H

2 + p+ γjc1 − γ
j
2

)
Xj−1 + γjββ

(
∆j−2|t

)
+ pβmj

(
∆j−2|t

)
+

γjc1βmj
(
∆j−2|t

)
+ Γj −

(
p+ γjc1

)2

4γj2

The value function of period j − 1 with respect to the state of period j − 1 is
after implementation of the laws of motion:
Ṽj−1

(
Xj−2,∆j−3|t, Dj−2|t, cj−2, cj−3

)
=

c2
j−2 (B +H)

6sj−1

+
(
B −H

2 − p− γjc1 + γjc2 + B +H

3sj−1

(
Xj−2 + cj−3 −

j + 2
j − 2Dj−2|t − βmj−1

(
∆j−3|t

)))
cj−2

+ B +H

6sj−1

(
Xj−2 + cj−3 −

j + 2
j − 2Dj−2|t − βmj−1

(
∆j−3|t

))2

+
(
j + 3
j − 1

)2 2γj2s2
j−1

3 + B +H

3 sj−1

+
(
B −H

2 + γjd +
(
p+ γjc1

) j + 3
j − 1

)(
4

j − 2Dj−2|t + βmj−1

(
∆j−3|t

))

−
(
B −H

2 + p+ γjc1 − γ
j
2

) (
Xj−2 + cj−3 −Dj−2|t

)
+ γjββ

(
∆j−2|t

)
+ p

(
2 (2 j − 7)Dj−2|t

(j − 1) (j − 2) + βmj

(
∆j−3|t

))
+ γjc1

(
2 (2 j − 7)Dj−2|t

(j − 1) (j − 2) + βmj

(
∆j−3|t

))

+ Γj −

(
p+ γjc1

)2

4γj2
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The expectation of the costs of period t + N − 1 conditionnally to the state of
period t+N − 1 is:

Et+N−1
[
Kt+N−1

(
Xt+N−1, Dt+N−1|t, ct+N−2

)]
=



−B (Xt+N−1 + ct+N−2 −mt+N−1) if
Xt+N−1 + ct+N−2

< mt+N−1 − 2 st+N−1

−B (Xt+N−1 + ct+N−2 −mt+N−1)
+ H+B

24s2
t+N−1

(
Xt+N−1 + ct+N−2 −mt+N−1

+2 st+N−1
)3

if

mt+N−1 − 2 st+N−1

≤ Xt+N−1 + ct+N−2

< mt+N−1

−B (Xt+N−1 + ct+N−2 −mt+N−1)

+ H+B
12s2

t+N−1

(
1
2

(
Xt+N−1 + ct+N−2 −mt+N−1

+2 st+N−1
)3

− (Xt+N−1 + ct+N−2 −mt+N−1)3
) if

mt+N−1

≤ Xt+N−1 + ct+N−2

< mt+N−1 + 2 st+N−1

H (Xt+N−1 + ct+N−2 −mt+N−1) if
mt+N−1 + 2 st+N−1

≤ Xt+N−1 + ct+N−2
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The conditional expected cost of the two last periods:
Et+N−3

[
Kt+N−2 + V̂t+N−1

]
=

1
18 (t+N − 2)2 st+N−1

(6(H +B)st+N−1
2 + 9 (λ− ct+N−2) (B −H) st+N−1

+ 2 (H +B)
(
st+N−2

2 + 3λ2

2 − 3λct+N−2 + 3ct+N−2
2

2

))
t+N − 12

+
(
− 12 (H +B) st+N−1

2 − 18 (λ− ct+N−2) (B −H) st+N−1

+ 12
(
st+N−2

2 − 1/2λ2 + λ ct+N−2 − 1/2 ct+N−2
2
)

(H +B)
)

(t+N − 1)

+ 6(H +B)st+N−1
2 + 9 (λ− ct+N−2) (B −H) st+N−1

+ 18 (H +B)
(
st+N−2

2 + 1/6λ2 − 1/3λ ct+N−2 + 1/6 ct+N−2
2
) 

+



−B (Xt+N−2 + ct+N−3 −mt+N−2) + pct+N−2 if
Xt+N−2 + ct+N−3

< mt+N−2 − 2 st+N−2

1
3 (H +B) st+N−2 + pct+N−2

−B−H
2 (−mt+N−2 +Xt+N−2 + ct+N−3)

+ H+B
4st+N−2

(Xt+N−2 + ct+N−3 −mt+N−2)2

+ H+B
24s2

t+N−2
(Xt+N−2 + ct+N−3 −mt+N−2)3

if

mt+N−2 − 2 st+N−2

≤ Xt+N−2 + ct+N−3

< mt+N−2

1
3 (H +B) st+N−2 + pct+N−2

−B−H
2 (−mt+N−2 +Xt+N−2 + ct+N−3)

+ H+B
4st+N−2

(Xt+N−2 + ct+N−3 −mt+N−2)2

+ H+B
24s2

t+N−2
(Xt+N−2 + ct+N−3 −mt+N−2)3

if

mt+N−2

≤ Xt+N−2 + ct+N−3

< mt+N−2 + 2 st+N−2

H (Xt+N−2 + ct+N−3 −mt+N−2) + pct+N−2 if
mt+N−2 + 2 st+N−2

≤ Xt+N−2 + ct+N−3

where λ = t+N+2
t+N−2mt+N−2 + βmt+N−1

(
∆t+N−3|t

)
−Xt+N−2 − ct+N−3
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The value of the minimum of the function Vt+N−2 at the point c∗t+N−2 with respect
to the state of period t+N − 2 and ct+N−3:

Vt+N−2
(
∆t+N−2|t, ct+N−3

)
=

At+N−2+

−B (Xt+N−2 + ct+N−3 −mt+N−2)

+p
(
t+N+2
t+N−2mt+N−2 + βmt+N−1

(
∆t+N−3|t

)
−Xt+N−2 − ct+N−3

) if
Xt+N−2 + ct+N−3

< mt+N−2 − 2 st+N−2

1
3 (H +B) st+N−2

+p
(
t+N+2
t+N−2mt+N−2 + βmt+N−1

(
∆t+N−3|t

)
−Xt+N−2 − ct+N−3

)
−B−H

2 (−mt+N−2 +Xt+N−2 + ct+N−3)
+ H+B

4st+N−2
(Xt+N−2 + ct+N−3 −mt+N−2)2

+ H+B
24s2

t+N−2
(Xt+N−2 + ct+N−3 −mt+N−2)3

if

mt+N−2 − 2 st+N−2

≤ Xt+N−2 + ct+N−3

< mt+N−2

1
3 (H +B) st+N−2

+p
(
t+N+2
t+N−2mt+N−2 + βmt+N−1

(
∆t+N−3|t

)
−Xt+N−2 − ct+N−3

)
−B−H

2 (−mt+N−2 +Xt+N−2 + ct+N−3)
+ H+B

4st+N−2
(Xt+N−2 + ct+N−3 −mt+N−2)2

+ H+B
24s2

t+N−2
(Xt+N−2 + ct+N−3 −mt+N−2)3

if

mt+N−2

≤ Xt+N−2 + ct+N−3

< mt+N−2 + 2 st+N−2

H (Xt+N−2 + ct+N−3 −mt+N−2)

+p
(
t+N+2
t+N−2mt+N−2 + βmt+N−1

(
∆t+N−3|t

)
−Xt+N−2 − ct+N−3

) if
mt+N−2 + 2 st+N−2

≤ Xt+N−2 + ct+N−3

where At+N−2 =
(
36 (8H2 + p2)− (B − 17H)2

)
st+N−1

24 (H +B) + st+N−2
2 (H +B)

9st+N−1

(
t+N + 2
t+N − 2

)2

+ 3p (B −H − 2 p) st+N−1

2(H +B)
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3 | Appendix 3

We present here the proof of the theorem 2.2.1 - 1 in Chapter 4, Section 2, Subsec-
tion 2, Subsubsection 1, Paragraph ii.

The proof is structured as an inductive reasoning. The recursive property is the
form of the value function in any period j with respect to the state information of
period j − 1, and the associated optimal solution cj.

3 .1 | Base Case

The base case corresponds to the detailed calculations of the value function of
the second to last period.

To compute its value, we calculate first an equivalent of the value function -
without the optimization problem- for the last period.

3.1.1 | Last period calculations

We have:

Kt+N−1 =


H ×

(
Xt+N−1 + ct+N−2 −Dt+N−1|t

)
if

Xt+N−1 + ct+N−2

−Dt+N−1|t > 0
− B ×

(
Xt+N−1 + ct+N−2 −Dt+N−1|t

)
otherwise.

Let Ṽt+N−1 be equal to Et+N−2 [Kt+N−1]

By integration Kt+N−1 with respect to φt+N−1|t, we get

Ṽt+N−1 =

−B (Xt+N−1 + ct+N−2 −mt+N−1) if (1)

−B (Xt+N−1 + ct+N−2 −mt+N−1)
+ H+B

24s2
t+N−1

(Xt+N−1 + ct+N−2 −mt+N−1 + 2st+N−1)3 if (2)

−B (Xt+N−1 + ct+N−2 −mt+N−1)
+ H+B

24s2
t+N−1

(Xt+N−1 + ct+N−2 −mt+N−1 + 2st+N−1)3

− H+B
12s2

t+N−1
(Xt+N−1 + ct+N−2 −mt+N−1)3

if (3)

H (Xt+N−1 + ct+N−2 −mt+N−1) if (4)
where (1), (2), (3), (4) are defined as the following sets with respect to ct+N−2:
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

(1) : Xt+N−1 + ct+N−2 < mt+N−1 − 2st+N−1

(2) : mt+N−1 − 2st+N−1 ≤ Xt+N−1 + ct+N−2 < mt+N−1

(3) : mt+N−1 ≤ Xt+N−1 + ct+N−2 < mt+N−1 + 2st+N−1

(4) : mt+N−1 + 2st+N−1 ≥ Xt+N−1 + ct+N−2

In order to be able to calculate Et+N−3
[
Ṽt+N−1

]
, we approximate Ṽt+N−1 with a

continuous and derivable function with respect to Dt+N−2|t. To do so, we will use a
quadratic function with respect to ct+N−2:

We note 3 remarquable points through which we want our approximation to go:
the boundaries of the definition of the cost function for period t+N − 1: first point
ct+N−2 = mt+N−1 − 2st+N−1 − Xt+N−1 where Ṽt+N−1 is equal to 2Bst+N−1, second
point ct+N−2 = mt+N−1 + 2st+N−1 − Xt+N−1 where Ṽt+N−1 is equal to 2Hst+N−1,
and the third in ct+N−2 = mt+N−1 −Xt+N−1 where Ṽt+N−1 is equal to H+B

3 st+N−1.

We finally get

Ṽt+N−1 =(H +B) ct+N−2
2

6st+N−1

+
(
H −B

2 + (Xt+N−1 −mt+N−1) (H +B)
3st+N−1

)
ct+N−2

+ (H +B) st+N−1

3 + (Xt+N−1 −mt+N−1) (H −B)
2

+ (Xt+N−1 −mt+N−1)2 (H +B)
6st+N−1

3.1.2 | Second Last period Calculations

i. Application of the laws of motion of the system

Let Xt+N−1 be equal to Xt+N−2 + ct+N−3 −Dt+N−1|t

Let mt+N−1 be equal to βmt+N−1

(
∆t+N−3|t

)
+ βt+N−2

mt+N−1
Dt+N−2|t as in 4.9

ii. Integration of Ṽt+N−1 with respect to Dt+N−2|t conditionnally to the state
in t+N − 2:

Et+N−3
[
Ṽt+N−1

]
=
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st+N−2
2 (H +B)

(
βt+N−2
mt+N−1

+ 1
)2

9st+N−1
+ H +B

3st+N−1

+ B −H
2

(
mt+N−2

(
βt+N−2
mt+N−1

+ 1
)
− ct+N−2 −Xt+N−2

−ct+N−3 + βmt+N−1

(
∆t+N−3|t

))
+ H +B

6st+N−1

(
mt+N−2

(
βt+N−2
mt+N−1

+ 1
)
− ct+N−2 −Xt+N−2

−ct+N−3 + βmt+N−1

(
∆t+N−3|t

))2

iii. Expectation of Kt+N−2 with respect to Dt+N−2|t conditionnally to the
state of t+N − 2:

Et+N−3 [Kt+N−2] =



−B (Xt+N−2 + ct+N−3 −mt+N−2) + pct+N−2− if
Xt+N−2 + ct+N−3

< mt+N−2 − 2 st+N−2

1
3 (H +B) st+N−2 + pct+N−2

−B−H
2 (−mt+N−2 +Xt+N−2 + ct+N−3)

+ H+B
4st+N−2

(Xt+N−2 + ct+N−3 −mt+N−2)2

+ H+B
24s2

t+N−2
(Xt+N−2 + ct+N−3 −mt+N−2)3

if

mt+N−2 − 2 st+N−2

≤ Xt+N−2 + ct+N−3

< mt+N−2

1
3 (H +B) st+N−2 + pct+N−2

−B−H
2 (−mt+N−2 +Xt+N−2 + ct+N−3)

+ H+B
4st+N−2

(Xt+N−2 + ct+N−3 −mt+N−2)2

+ H+B
24s2

t+N−2
(Xt+N−2 + ct+N−3 −mt+N−2)3

if

mt+N−2

≤ Xt+N−2 + ct+N−3

< mt+N−2 + 2 st+N−2

H (Xt+N−2 + ct+N−3 −mt+N−2) + pct+N−2 if
mt+N−2 + 2 st+N−2

≤ Xt+N−2 + ct+N−3

We easily conclude the quantity we are looking for Et+N−3
[
Kt+N−2 + Ṽt+N−1

]
is

the sum of both quantities that we now know: Et+N−3 [Kt+N−2] + Et+N−3
[
Ṽt+N−1

]

iv. Optimization problem for the two last periods

We are looking for the argument of the minimum of the quantity Et+N−3
[
Kt+N−2 + Ṽt+N−1

]
with respect to ct+N−2.

We notice first that the function ct+N−2 → Et+N−3
[
Kt+N−2 + Ṽt+N−1

]
is con-

tinuous, derivable, and convex with respect to ct+N−2. We solve the optimization
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problem we face here by looking for the solution of the equation
∂

∂ct+N−2
Et+N−3

[
Kt+N−2 + Ṽt+N−1

]
= 0

We have:

∂
∂ct+N−2

Et+N−3
[
Kt+N−2 + Ṽt+N−1

]
=

− H +B

3st+N−1

(
βmt+N−1

(
∆t+N−3|t

)
+ βt+N−2

mt+N−1
mt+N−2

)
+ H +B

6st+N−1
(−2mt+N−2 − 3st+N−1 + 2Xt+N−2 + 2ct+N−2 + 2ct+N−3) +H + p

which is equal to zero for

c∗t+N−2 =βmt+N−1

(
∆t+N−3|t

)
+mt+N−2

(
βt+N−2
mt+N−1

+ 1
)
− ct+N−3 −Xt+N−2

+ 3 st+N−1 (B −H − 2 p)
2B + 2H

v. Expression of Vt+N−2

Vt+N−2 can be written, with respect to the state of t+N − 2:
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Vt+N−2 = At+N−2+



−B (Xt+N−2 + ct+N−3 −mt+N−2)
+p
(
βmt+N−1

(
∆t+N−3|t

)
+mt+N−2

(
βt+N−2
mt+N−1

+ 1
)

−ct+N−3 −Xt+N−2
) if

Xt+N−2 + ct+N−3

< mt+N−2 − 2 st+N−2

1
3 (H +B) st+N−2

+p
(
βmt+N−1

(
∆t+N−3|t

)
+mt+N−2

(
βt+N−2
mt+N−1

+ 1
)

−ct+N−3 −Xt+N−2
)

−B−H
2 (−mt+N−2 +Xt+N−2 + ct+N−3)

+ H+B
4st+N−2

(Xt+N−2 + ct+N−3 −mt+N−2)2

+ H+B
24s2

t+N−2
(Xt+N−2 + ct+N−3 −mt+N−2)3

if

mt+N−2 − 2 st+N−2

≤ Xt+N−2 + ct+N−3

< mt+N−2

1
3 (H +B) st+N−2

+p
(
βmt+N−1

(
∆t+N−3|t

)
+mt+N−2

(
βt+N−2
mt+N−1

+ 1
)

−ct+N−3 −Xt+N−2
)

−B−H
2 (−mt+N−2 +Xt+N−2 + ct+N−3)

+ H+B
4st+N−2

(Xt+N−2 + ct+N−3 −mt+N−2)2

+ H+B
24s2

t+N−2
(Xt+N−2 + ct+N−3 −mt+N−2)3

if

mt+N−2

≤ Xt+N−2 + ct+N−3

< mt+N−2 + 2 st+N−2

H (Xt+N−2 + ct+N−3 −mt+N−2)
+p
(
βmt+N−1

(
∆t+N−3|t

)
+mt+N−2

(
βt+N−2
mt+N−1

+ 1
)

−ct+N−3 −Xt+N−2
) if

mt+N−2 + 2 st+N−2

≤ Xt+N−2 + ct+N−3

where At+N−2 is equal to

st+N−2
2 (H +B)

(
βt+N−2
mt+N−1

+ 1
)2

9st+N−1
− H +B

24 st+N−1 + 3
2
st+N−1 (BH + p2)

B +H

+ 3
2
pst+N−1 (B −H − 2 p)

H +B

and corresponds to the non-historical dependent part of the value function Vt+N−2.

vi. Laws of motion and expression of Vt+N−2 with respect to the informa-
tion of state t+N − 3

To be able to dynamically compute the expectations from one period to another
in the dynamic calculation of the proof, we firstly need to approximate the function
Vt+N−2 with respect to ct+N−3:
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Approximation To do so, we want to express Vt+N−2 with respect to ct+N−3

with a continous and derivable function.We approximate then the function with
a continuous quadratic function going through 3 specific points. We choose the
boudaries of the intervals definition. As a consequence, we keep as structuring
couples the followings:

â ct+N−3 = mt+N−2 − 2 st+N−2 −Xt+N−2

for which
Vt+N−2 = 2st+N−2B+p(βmt+N−1

(
∆t+N−3|t

)
+mt+N−2β

t+N−2
mt+N−1

+2st+N−2)+At+N−2

â ct+N−3 = mt+N−2 −Xt+N−2

for which
Vt+N−2 = B+H

3 st+N−2 + p(βmt+N−1

(
∆t+N−3|t

)
+mt+N−2β

t+N−2
mt+N−1

) + At+N−2

â ct+N−3 = mt+N−2 + 2 st+N−2 −Xt+N−2

for which
Vt+N−2 = 2st+N−2H+p(βmt+N−1

(
∆t+N−3|t

)
+mt+N−2β

t+N−2
mt+N−1

−2st+N−2)+At+N−2

We are finally able to re-write

Vt+N−2 =B +H

3 st+N−2

+ p
(
−Xt+N−2 − ct+N−3 +

(
βt+N−2
mt+N−1

+ 1
)
mt+N−2 + βmt+N−1

(
∆t+N−3|t

) )

+ H +B

6st+N−2

(
Xt+N−2 + ct+N−3 −mt+N−2

)2

+ H −B
2

(
Xt+N−2 + ct+N−3 +mt+N−2

)
+ At+N−2

Application of the Laws of motion

Let Xt+N−2 be equal to Xt+N−3 + ct+N−4 −Dt+N−3|t

Let mt+N−2 be equal to βmt+N−2

(
∆t+N−4|t

)
+ βt+N−3

mt+N−2
Dt+N−3|t as in 4.9

Let βmt+N−1

(
∆t+N−3|t

)
be equal to βt+N−3

mt+N−1
Dt+N−3|t + βmt+N−1

(
∆t+N−4|t

)
as in 4.9

Then, we can re-write:
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Vt+N−2 =

B +H

3 st+N−2 + At+N−2

H +B

6st+N−2

(
Xt+N−3 + ct+N−3 + ct+N−4 −

(
βt+N−3
mt+N−2

+ 1
)
Dt+N−3|t − βmt+N−2

(
∆t+N−4|t

))2

+ B −H + 2 p
2

((
βt+N−3
mt+N−2

+ 1
)
Dt+N−3|t + βmt+N−2

(
∆t+N−4|t

)
−Xt+N−3 − ct+N−4 − ct+N−3

)
+ p

((
βt+N−3
mt+N−1

+ βt+N−2
mt+N−1

βt+N−3
mt+N−2

)
Dt+N−3|t + βt+N−2

mt+N−1
βmt+N−2

(
∆t+N−4|t

)
+ βmt+N−1

(
∆t+N−4|t

))

3 .2 | Inductive Step

We define γk2 , γkc1, γkc2, γkx , γkd , γkd2,γkβmk
,γkβmk+1

, and Γk such as, for any k ∈
Jt, t+N − 3K, we can express Vk as follow:

Vk =γk2
(
ck−1 + ck−2 +Xk−1 − γkd2Dk−1|t − βmk

(
∆k−2|t

))2

+ γkc1 ck−1 + γkc2 ck−2 + γkx Xk−1 + γkd Dk−1|t

+ γβmk
βmk

(
∆k−2|t

)
+ γβmk+1

βmk+1

(
∆k−2|t

)
+ Γk

3.2.1 | Expectation of the total cost from period k − 1 with respect to
the period k − 1 information, ie up to k − 2

i. Vk Value function expectation

Ek−2 [Vk] =

(
βmk

(
∆k−2|t

))2
γk2 +

1/3
((

6 γkd2mk−1 − 6Xk−1 − 6 ck−2 − 6 ck−1
)
γk2 + 3 γkβmk

)
βmk

(
∆k−2|t

)
+ γkβmk+1

βmk+1

(
∆k−2|t

)
+ 1/3

(
3Xk−1

2 +
(
−6 γkd2mk−1 + 6 ck−2 + 6 ck−1

)
Xk−1

+ 3 ck−2
2 +

(
−6 γkd2mk−1 + 6 ck−1

)
ck−2 + 3mk−1

2γkd2
2 + 2 sk−1

2γkd2
2

− 6 ck−1mk−1γ
k
d2 + 3 ck−1

2
)
γk2 + γkx Xk−1 + γkc2 ck−2 + γkc1 ck−1 + γkd mk−1 + Γk
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ii. Expectation of Kk−1 with respect to Dk−1|t conditionnally to the state
of k − 1:

Ek−2 [Kk−1] =



−B (Xk−1 + ck−2 −mk−1) + pck−1− if
Xk−1 + ck−2

< mk−1 − 2 sk−1

1
3 (H +B) sk−1 + pck−1

−B−H
2 (−mk−1 +Xk−1 + ck−2)

+H+B
4sk−1

(Xk−1 + ck−2 −mk−1)2

+ H+B
24s2

k−1
(Xk−1 + ck−2 −mk−1)3

if

mk−1 − 2 sk−1

≤ Xk−1 + ck−2

< mk−1

1
3 (H +B) sk−1 + pck−1

−B−H
2 (−mk−1 +Xk−1 + ck−2)

+H+B
4sk−1

(Xk−1 + ck−2 −mk−1)2

+ H+B
24s2

k−1
(Xk−1 + ck−2 −mk−1)3

if

mk−1

≤ Xk−1 + ck−2

< mk−1 + 2 sk−1

H (Xk−1 + ck−2 −mk−1) + pck−1 if
mk−1 + 2 sk−1

≤ Xk−1 + ck−2

We easily conclude the quantity we are looking for Ek−2 [Kk−1 + Vk] is the sum
of both quantities that we now know: Ek−2 [Kk−1] + Ek−2 [Vk]

3.2.2 | Optimization Problem for period k − 1

ck−1 → Ek−2 [Kk−1 + Vk] is a continous, convex, and derivable fiunction with
respect to ck−1. We solve the equation

∂

∂ck−1
Ek−2 [Kk−1 + Vk] = 0

to get its argument of the minimum:

∂

∂ck−1
Ek−2 [Kk−1 + Vk] = 0

⇔ 2 γk2 βmk

(
∆k−2|t

)
+ 2

(
−γkd2mk−1 + Xk−1 + ck−2 + ck−1

)
γk2 + γkc1 + p = 0

⇔ c∗k−1 = βmk

(
∆k−2|t

)
+ γkd2mk−1 −Xk−1 − ck−2 − 1/2 p+ γkc1

γk2

Production Planning under Uncertainties and Forecasts Update 162



Chapter A 3. APPENDIX 3

i. Expression of the value of the minimum of the corresponding minimiz-
ing function:

In other words: Vk−1:

With respect to state of k − 1:
Vk−1 =

(
γkc1 − γkc1

)
ck−2 +

(
γkx − γkc1

)
Xk−1

+ Ak−1 +
(
γkc1 + γkβmk

)
βmk

(
∆k−2|t

)
+ γkβmk+1

βmk+1

(
∆k−2|t

)
+
(
γkc1 γ

k
d2 + γkd

)
mk−1

+



−B (Xk−1 + ck−2 −mk−1)
+p

(
βmk

(
∆k−2|t

)
+ γkd2mk−1 −Xk−1 − ck−2

) if
Xk−1 + ck−2

< mk−1 − 2 sk−1

1
3 (H +B) sk−1

+p
(
βmk

(
∆k−2|t

)
+ γkd2mk−1 −Xk−1 − ck−2

)
−B−H

2 (−mk−1 +Xk−1 + ck−2)
+H+B

4sk−1
(Xk−1 + ck−2 −mk−1)2

+ H+B
24s2

k−1
(Xk−1 + ck−2 −mk−1)3

if

mk−1 − 2 sk−1

≤ Xk−1 + ck−2

< mk−1

1
3 (H +B) sk−1

+p
(
βmk

(
∆k−2|t

)
+ γkd2mk−1 −Xk−1 − ck−2

)
−B−H

2 (−mk−1 +Xk−1 + ck−2)
+H+B

4sk−1
(Xk−1 + ck−2 −mk−1)2

+ H+B
24s2

k−1
(Xk−1 + ck−2 −mk−1)3

if

mk−1

≤ Xk−1 + ck−2

< mk−1 + 2 sk−1

H (Xk−1 + ck−2 −mk−1)
+p

(
βmk

(
∆k−2|t

)
+ γkd2mk−1 −Xk−1 − ck−2

) if
mk−1 + 2 sk−1

≤ Xk−1 + ck−2

where Ak−1 = 2/3 sk−1
2γkd2

2
γk2 + γk − 1/4 (p+γk

c1)2

γk
2

through a continuous approximation with respect to ck−2 to be able
to compute the next expectation To be able to compute the next iteration
expectation, we want to express Vk−1 with respect to ck−2 with a continous and
derivable function.We approximate then the function with a continuous quadratic
function going through 3 specific points. We choose the boudaries of the intervals
definition. As a consequence, we keep as structuring couples the followings:

â ck−2 = mk−1 − 2 sk−1 −Xk−1
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for which
Vk−1 = Ak−1+

(
γkc1 + γkβmk

)
βmk

(
∆k−2|t

)
+γkβmk+1

βmk+1

(
∆k−2|t

)
+
(
γkc1 γ

k
d2 + γkd

)
mk−1+(

γkc2 − γkc1
)
ck−2+

(
γkx − γkc1

)
Xk−1+βmk

(
∆k−2|t

)
p+
((
γkd2 − 1

)
mk−1 + 2 sk−1

)
p+

2Bsk−1

â ck−2 = mk−1 −Xk−1

for which
Vk−1 = Ak−1+

(
γkc1 + γkβmk

)
βmk

(
∆k−2|t

)
+γkβmk+1

βmk+1

(
∆k−2|t

)
+
(
γkc1 γ

k
d2 + γkd

)
mk−1+(

γkc2 − γkc1
)
ck−2+

(
γkx − γkc1

)
Xk−1+βmk

(
∆k−2|t

)
p+mk−1

(
γkd2 − 1

)
p+1/3 sk−1 (H +B)

â ck−2 = mk−1 + 2 sk−1 −Xk−1

for which
Vk−1 = Ak−1+

(
γkc1 + γkβmk

)
βmk

(
∆k−2|t

)
+γkβmk+1

βmk+1

(
∆k−2|t

)
+
(
γkc1 γ

k
d2 + γkd

)
mk−1+(

γkc2 − γkc1
)
ck−2+

(
γkx − γkc1

)
Xk−1+βmk

(
∆k−2|t

)
p+
((
γkd2 − 1

)
mk−1 − 2 sk−1

)
p+

2 sk−1H

We are finally able to re-write

Vk−1 =

Ak−1 + H +B

3 sk−1
(
γkβmk

+ p+ γkc1
)
βmk

(
∆k−2|t

)
+ γkβmk+1

βmk+1

(
∆k−2|t

)
+
(
H −B

2 − p+ γkx − γkc1
)
Xk−1 +

(
H −B

2 + γkc2 − p− γkc1
)
ck−2

+
(
B −H

2 + pγkd2 + γkc1 γ
k
d2 + γkd

)
mk−1 + H +B

6sk−1
(−mk−1 +Xk−1 + ck−2)2

With respect to the state of period k−2: application of the law of motion
Let Xk−1 be equal to Xk−2 + ck−3 −Dk−2|t

Let mk−1 be equal to βmk−1

(
∆k−3|t

)
+ βk−2

mk−1
Dk−2|t as in 4.9

Let βmk

(
∆k−2|t

)
be equal to βk−2

mk
Dk−2|t + βmk

(
∆k−3|t

)
as in 4.9

Let βmk+1

(
∆k−2|t

)
be equal to βk−2

mk+1
Dk−2|t + βmk+1

(
∆k−3|t

)
as in 4.9

Then, we can re-write:

Vk−1 =

(
γkβmk

+ p+ γkc1
) (
βk−2
mk

Dk−2|t + βmk

(
∆k−3|t

))
+ γkβmk+1

(
βk−2
mk+1

Dk−2|t + βmk+1
(
∆k−3|t

))
+
(
H −B

2 − p+ γkx − γkc1
)

(Xk−2 + ck−3 −Dk−2) +
(
H −B

2 + γkc2 − p− γkc1
)
ck−2

+
(
βmk−1

k−2Dk−2 + βmk−1
(
∆k−3|t

)) ((
p+ γkc1

)
γkd2 + B −H

2 + γkd

)
+ H +B

3 sk−1

+ Ak−1
(
−βmk−1

k−2Dk−2 − βmk−1
(
∆k−3|t

)
+Xk−2 + ck−3 −Dk−2 + ck−2

)2 H +B

6sk−1
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3.2.3 | Conclusion

By defining :

â γk−1
2 = H+B

6sk−1

â γk−1
c1 = H−B

2 + γkc2 − p− γkc1
â γk−1

c2 = γk−1
x = H−B

2 − p+ γkx − γkc1
â γk−1

d =
(
pγkd2 + γkc1 γ

k
d2 + B−H

2 + γkd
)
βk−2
mk−1

+
(
γkβmk

+ p+ γkc1
)
βk−2
mk

+γkβmk+1
βk−2
mk+1

+
B−H

2 + p− γkx + γkc1

â γk−1
d2 = βk−2

mk−1
+ 1

â Γk−1 = H+B
3 sk−1 + Ak−1

â γk−1
βmk−1

= pγkd2 + γkc1γ
k
d2 + H−B

2 + γkd

â γk−1
βmk

= γkβmk
+ p+ γkc1

â γk−1
βmk+1

= γkβmk+1

we can write Vk−1 as:

Vk−1 =γk−1
2

(
ck−2 + ck−3 +Xk−2 − γk−1

d2 Dk−2|t − βmk−1

(
∆k−3|t

))2

+ γk−1
c1 ck−2 + γk−1

c2 ck−3 + γk−1
x Xk−2 + γk−1

d Dk−2|t

+ γβmk−1
βmk−1

(
∆k−2|t

)
+ γβmk

βmk

(
∆k−2|t

)
+ γβmk+1

βmk+1

(
∆k−2|t

)
+ Γk−1

We prove consequently that if Vk follows a special property in terms of its shape,
Vk−1 follows the same property.

Therefore, if the inductive hypothese is true for a k, it is consequently true
∀j < k.

On the other hand, the base case allowed us to express Vt+N−2 with respect to
the state of t+N − 3.

By defining:

â γt+N−2
2 = H+B

6st+N−2

â γt+N−2
c1 = γt+N−2

c2 = γt+N−2
x = −B−H+2 p

2

â γt+N−2
d =

(
B−H

2 + p
) (
βt+N−3
mt+N−2

+ 1
)

+ p
(
βt+N−3
mt+N−1

+ βt+N−2
mt+N−1

βt+N−3
mt+N−2

)
â γt+N−2

d2 = βt+N−3
mt+N−2

+ 1
â Γt+N−2 = B+H

3 st+N−2 + At+N−2

â γt+N−2
βmt+N−2

= B−H
2 + p

â γt+N−2
βmt+N−1

= p
(
βt+N−2
mt+N−1

+ 1
)
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then we can confirm that this property is true for k = t + N − 2. Consequently, it
is true ∀k ∈ Jt, t+N − 2K.

This property allows us to compute the optimal solutions for each step of the
dynamic programming as we saw in the previous calculations:
∀k ∈ Jt+ 1, t+N − 1K:

c∗k−1 = βmk

(
∆k−2|t

)
+ γkd2mk−1 −Xk−1 − ck−2 + 3

2
(B −H)
B +H

sk

and

c∗t+N−2 =βmt+N−1

(
∆t+N−3|t

)
+mt+N−2

(
βt+N−2
mt+N−1

+ 1
)
− ct+N−3 −Xt+N−2

+ 3
2

(B −H − 2p)
B +H

st+N−1

4 | Appendix 4

We present here the proof of the theorem 2.2.2 - 2 in Chapter 4, Section 2, Subsec-
tion 2, Subsubsection 2, Paragraph iii.

The proof follows the same framework as the previous one.

The computation steps are the same. The only difference is the approximation
technique for each step of the inductive reasoning.

We present here only the results that differ from the previous proof.

4 .1 | Base Case

4.1.1 | Last period calculations

We approximate here Ṽt+N−1 with a continuous function with respect toDt+N−2|t.
To do so, we will use a piecewise linear function with respect to ct+N−2, such as:

Ṽt+N−1 =

 −B (Xt+N−1 + ct+N−2 −mt+N−1) if (1) or (2)
H (Xt+N−1 + ct+N−2 −mt+N−1) if (3) or (4)

where (1), (2), (3), (4) are defined as the following sets with respect to ct+N−2:
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

(1) : Xt+N−1 + ct+N−2 < mt+N−1 − 2st+N−1

(2) : mt+N−1 − 2st+N−1 ≤ Xt+N−1 + ct+N−2 < mt+N−1

(3) : mt+N−1 ≤ Xt+N−1 + ct+N−2 < mt+N−1 + 2st+N−1

(4) : mt+N−1 + 2st+N−1 ≥ Xt+N−1 + ct+N−2

4.1.2 | Second Last period Calculations

i. Application of the laws of motion of the system

Let Xt+N−1 be equal to Xt+N−2 + ct+N−3 −Dt+N−1|t

Let mt+N−1 be equal to βmt+N−1

(
∆t+N−3|t

)
+ βt+N−2

mt+N−1
Dt+N−2|t as in 4.9

ii. Integration of Ṽt+N−1 with respect to Dt+N−2|t conditionnally to the state
in t+N − 2:

Let L be equal to Xt+N−2+ct+N−3+ct+N−2−βmt+N−1(∆t|t+N−3)
βt+N−2

mt+N−1+1

Depending on the values taken by Dt+N−2|t compared to L, Ṽt+N−1 may have differ-
ent values.

If Dt+N−2|t ≤ L, then
Ṽt+N−1 = H

(
−(βt+N−2

mt+N−1
+ 1)Dt+N−2|t − βmt+N−1

(
∆t+N−3|t

)
+Xt+N−2 + ct+N−3 + ct+N−2)

We note V1 this expression.

Otherwise, when Dt+N−2|t is bigger than L, we have
Ṽt+N−1 = −B

(
−(βt+N−2

mt+N−1
+ 1)Dt+N−2|t − βmt+N−1

(
∆t+N−3|t

)
+Xt+N−2 + ct+N−3 + ct+N−2)

noted V2

Once this is established, two cases arise for the integration whether L is bigger
or lower than mt+N−2.

1. When L ≤ mt+N−2:

Et+N−3
[
Ṽt+N−1

]
=

∫ L

mt+N−2−2st+N−2
V1.φ1 +

∫ mt+N−2

L
V2.φ1 +

∫ mt+N−2+2st+N−2

mt+N−2
V2.φ2

which gives us

Et+N−3
[
Ṽt+N−1

]
=
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H +B

3
(
βt+N−2

mt+N−1
+ 1

)
st+N−2

+ B −H
2

((
βt+N−2

mt+N−1
+ 1

)
mt+N−2 + βmt+N−1

(
∆t+N−3|t

)
−Xt+N−2 − ct+N−3 − ct+N−2

)
+ H +B

4
(
βt+N−2

mt+N−1
+ 1

)
st+N−2

((
βt+N−2

mt+N−1
+ 1

)
mt+N−2 + βmt+N−1

(
∆t+N−3|t

)

−Xt+N−2 − ct+N−3 − ct+N−2

)2

− H +B

24
(
βt+N−2

mt+N−1
+ 1

)2
st+N−22

((
βt+N−2

mt+N−1
+ 1

)
mt+N−2 + βmt+N−1

(
∆t+N−3|t

)

−Xt+N−2 − ct+N−3 − ct+N−2

)3

φ1 and φ2 are the two linear functions defining the triangular distribution of
Dt+N−1|t (see chapter 2): φt+N−1|t = φ1 when z ∈ [mt+N−2 − 2st+N−2,mt+N−2]
and φt+N−1|t = φ2 when z ∈ [mt+N−2,mt+N−2 − 2st+N−2]

2. When L > mt+N−2

Et+N−3
[
Ṽt+N−1

]
=

∫ mt+N−2

mt+N−2−2st+N−2
V2.φ1 +

∫ L

mt+N−2
V2.φ2 +

∫ mt+N−2+2st+N−2

L
V1.φ2

which gives us

Et+N−3
[
Ṽt+N−1

]
=

H +B

3
(
βt+N−2

mt+N−1
+ 1

)
st+N−2

+ B −H
2

((
βt+N−2

mt+N−1
+ 1

)
mt+N−2 + βmt+N−1

(
∆t+N−3|t

)
−Xt+N−2 − ct+N−3 − ct+N−2

)
+ H +B

4
(
βt+N−2

mt+N−1
+ 1

)
st+N−2

((
βt+N−2

mt+N−1
+ 1

)
mt+N−2 + βmt+N−1

(
∆t+N−3|t

)

−Xt+N−2 − ct+N−3 − ct+N−2

)2

+ H +B)
24
(
βt+N−2

mt+N−1
+ 1

)2
st+N−22

((
βt+N−2

mt+N−1
+ 1

)
mt+N−2 + βmt+N−1

(
∆t+N−3|t

)

−Xt+N−2 − ct+N−3 − ct+N−2

)3
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iii. Expectation of Kt+N−2 with respect to Dt+N−2|t conditionnally to the
state of t+N − 2:

Et+N−3 [Kt+N−2] does not change compared to the previous proof.

We can conclude the quantity we are looking for Et+N−3
[
Kt+N−2 + Ṽt+N−1

]
is

the sum of both quantities that we now know: Et+N−3 [Kt+N−2] + Et+N−3
[
Ṽt+N−1

]
.

The value of Et+N−3
[
Ṽt+N−1

]
depends on the position of mt+N−2 compared to the

threshold previously noted L.

iv. Optimization problem for the two last periods

We are looking for the argument of the minimum of the quantity
Et+N−3

[
Kt+N−2 + Ṽt+N−1

]
with respect to ct+N−2.

We solve the optimization problem we face here by looking for the solution of
the equation

∂
∂ct+N−2

Et+N−3
[
Kt+N−2 + Ṽt+N−1

]
= 0

We have:

For the first case: L ≤ mt+N−2:

∂
∂ct+N−2

Et+N−3
[
Kt+N−2 + Ṽt+N−1

]
=

p+ H −B
2 − H +B

2
(
βt+N−2

mt+N−1
+ 1

)
st+N−2

((
βt+N−2

mt+N−1
+ 1

)
mt+N−2 + βmt+N−1

(
∆t+N−3|t

)

−Xt+N−2 − ct+N−3 − ct+N−2

)

+ H +B

8
(
βt+N−2

mt+N−1
+ 1

)2
s2
t+N−2

((
βt+N−2

mt+N−1
+ 1

)
mt+N−2 + βmt+N−1

(
∆t+N−3|t

)

−Xt+N−2 − ct+N−3 − ct+N−2

)2

For the second case: L > mt+N−2:
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∂
∂ct+N−2

Et+N−3
[
Kt+N−2 + Ṽt+N−1

]
=

p+ H −B
2 − H +B

2
(
βt+N−2

mt+N−1
+ 1

)
st+N−2

((
βt+N−2

mt+N−1
+ 1

)
mt+N−2 + βmt+N−1

(
∆t+N−3|t

)

−Xt+N−2 − ct+N−3 − ct+N−2

)

− H +B

8
(
βt+N−2

mt+N−1
+ 1

)2
s2
t+N−2

((
βt+N−2

mt+N−1
+ 1

)
mt+N−2 + βmt+N−1

(
∆t+N−3|t

)

−Xt+N−2 − ct+N−3 − ct+N−2

)2

We note that Et+N−3
[
Kt+N−2 + Ṽt+N−1

]
is, in both cases, a cubic polynomilal func-

tion whose order 3 coefficient is positive. That’s why the local minimum that we are
looking for is the greatest solution among the set of two values of ct+N−2 for which

∂
∂ct+N−2

Et+N−3
[
Kt+N−2 + Ṽt+N−1

]
is equal to zero.

We find:
For the first case: L ≤ mt+N−2:

c∗t+N−2 =−Xt+N−2 − ct+N−3 + βmt+N−1

(
∆t+N−3|t

)
+
(
βt+N−2

mt+N−1
+ 1

)2 st+N−2

√2
√
B − p
H +B

− 1
+mt+N−2


For the second case: L > mt+N−2:

c∗t+N−2 =−Xt+N−2 − ct+N−3 + βmt+N−1

(
∆t+N−3|t

)
+
(
βt+N−2

mt+N−1
+ 1

)2 st+N−2

1−
√

2
√
H + p

H +B

+mt+N−2


The potential solutions give us interesting information concerning the intervals val-
idating the different cases we may face.

More specifically, the case #1 (L ≤ mt+N−2) becomes equivalent to the condition:

2
√

2
√
B − p
H +B

st+N−2 − 2 st+N−2 < 0

or:
B < H + 2p
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We consider for the following that we don’t consider such cases. We consequently
keep for the rest of the proof the case #2: L > mt+N−2.

v. Expression of Vt+N−2

Vt+N−2 can be written, with respect to the state of t+N − 2:

Vt+N−2 = At+N−2+



−B (Xt+N−2 + ct+N−3 −mt+N−2)
+p
(
βmt+N−1

(
∆t+N−3|t

)
+mt+N−2

(
βt+N−2
mt+N−1

+ 1
)

−ct+N−3 −Xt+N−2
) if

Xt+N−2 + ct+N−3

< mt+N−2 − 2 st+N−2

1
3 (H +B) st+N−2

+p
(
βmt+N−1

(
∆t+N−3|t

)
+mt+N−2

(
βt+N−2
mt+N−1

+ 1
)

−ct+N−3 −Xt+N−2
)

−B−H
2 (−mt+N−2 +Xt+N−2 + ct+N−3)

+ H+B
4st+N−2

(Xt+N−2 + ct+N−3 −mt+N−2)2

+ H+B
24s2

t+N−2
(Xt+N−2 + ct+N−3 −mt+N−2)3

if

mt+N−2 − 2 st+N−2

≤ Xt+N−2 + ct+N−3

< mt+N−2

1
3 (H +B) st+N−2

+p
(
βmt+N−1

(
∆t+N−3|t

)
+mt+N−2

(
βt+N−2
mt+N−1

+ 1
)

−ct+N−3 −Xt+N−2
)

−B−H
2 (−mt+N−2 +Xt+N−2 + ct+N−3)

+ H+B
4st+N−2

(Xt+N−2 + ct+N−3 −mt+N−2)2

+ H+B
24s2

t+N−2
(Xt+N−2 + ct+N−3 −mt+N−2)3

if

mt+N−2

≤ Xt+N−2 + ct+N−3

< mt+N−2 + 2 st+N−2

H (Xt+N−2 + ct+N−3 −mt+N−2)
+p
(
βmt+N−1

(
∆t+N−3|t

)
+mt+N−2

(
βt+N−2
mt+N−1

+ 1
)

−ct+N−3 −Xt+N−2
) if

mt+N−2 + 2 st+N−2

≤ Xt+N−2 + ct+N−3

where At+N−2 is equal to

2st+N−2
(
βt+N−2

mt+N−1
+ 1

)−
√
H + p

H +B
H
√

2 +
√

2
3

(
H + p

H +B

)3/2
(H +B) +H


+ 2

3
(
βt+N−2

mt+N−1
+ 1

)
st+N−2

1−
√

2
√
H + p

H +B



and corresponds to the non-historical dependent part of the value function Vt+N−2.
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vi. Laws of motion and expression of Vt+N−2 with respect to the informa-
tion of state t+N − 3

We firstly need to approximate the function Vt+N−2 with respect to ct+N−3 as a
piecewise linear function:

Approximation Vt+N−2 = At+N−2+



−B (Xt+N−2 + ct+N−3 −mt+N−2)
+p
(
βmt+N−1

(
∆t+N−3|t

)
+mt+N−2

(
βt+N−2
mt+N−1

+ 1
)

−ct+N−3 −Xt+N−2
) if

Xt+N−2 + ct+N−3

< mt+N−2

H (Xt+N−2 + ct+N−3 −mt+N−2)
+p
(
βmt+N−1

(
∆t+N−3|t

)
+mt+N−2

(
βt+N−2
mt+N−1

+ 1
)

−ct+N−3 −Xt+N−2
) if

mt+N−2

≤ Xt+N−2 + ct+N−3

Application of the Laws of motion

Let Xt+N−2 be equal to Xt+N−3 + ct+N−4 −Dt+N−3|t

Let mt+N−2 be equal to βmt+N−2

(
∆t+N−4|t

)
+ βt+N−3

mt+N−2
Dt+N−3|t as in 4.9

Let βmt+N−1

(
∆t+N−3|t

)
be equal to βt+N−3

mt+N−1
Dt+N−3|t + βmt+N−1

(
∆t+N−4|t

)
as in 4.9

We finally get Vt+N−2 equal to :

At+N−2 +



((
βt+N−2
mt+N−1

p+B + p
)
βt+N−3
mt+N−2

+ pβt+N−3
mt+N−1

+B + p
)
Dt+N−3|t

+
((
βt+N−2
mt+N−1

+ 1
)
p+B

)
βmt+N−2

(
∆t+N−4|t

)
− (B + p) (Xt+N−3 + ct+N−4 + ct+N−3) + βmt+N−1

(
∆t+N−4|t

)
p

if (1)

((
βt+N−2
mt+N−1

p−H + p
)
βt+N−3
mt+N−2

+ pβt+N−3
mt+N−1

−H + p
)
Dt+N−3|t

+
((
βt+N−2
mt+N−1

+ 1
)
p−H

)
βmt+N−2

(
∆t+N−4|t

)
− (p−H) (Xt+N−3 + ct+N−4 + ct+N−3) + βmt+N−1

(
∆t+N−4|t

)
p

if (2)

where (1) and (2) are defined as the following sets with respect to ct+N−3:

(1) :
Xt+N−3 + ct+N−4 −Dt+N−3|t + ct+N−3

< βmt+N−2

(
∆t+N−4|t

)
+ βt+N−3

mt+N−2
Dt+N−3|t

(2) :
βmt+N−2

(
∆t+N−4|t

)
+ βt+N−3

mt+N−2
Dt+N−3|t

≥ Xt+N−3 + ct+N−4 −Dt+N−3|t + ct+N−3
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4 .2 | Inductive Step

We take as inductive assumption that for any k, t ≤ k ≤ t + N − 2, Vk can be
written as:

Γk +



γ1d
kDk−1|t + γ1x

k (Xk−1 + ck−1 + ck−2)
+γ1βmk

kβmk

(
∆k−2|t

)
+γk1βmk+1

βmk+1
(
∆k−2|t

) if (1)

γ2d
kDk−1|t + γ2x

k (Xk−1 + ck−1 + ck−2)
+γ2βmk

kβmk

(
∆k−2|t

)
+γk2βmk+1

βmk+1
(
∆k−2|t

) if (2)

By following the same steps of calculation as for the second last period, we can
calculate Vk−1:

â Integration of Vk with respect to the state of t− 1: Ek−2 [Vk]
â Addition of the expected cost of period k − 1: Ek−2 [Kk−1]
â Optimization problem to find the argument of the minimum c∗k−1

â Expression of the value function Vk−1

â Approximation of this value function
â Expression with respect to the state of k − 2

4.2.1 | Conclusion

We finally find the same property for Vk−1 as defined above in terms of shape of
Vk.

That means that the indutive assumption is true ∀k as soon as it is true for the
base case. We show previously that this statement is true for k = t + N − 2. In
conclusion, it is then true ∀k ∈ Jt, t+N − 2K

This property allows us to compute the argument of the minimum of each of the
value function Vk calculated at each iteration:
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c∗k−1 =−Xk−1 − ck−2 + βmk

(
∆k−2|t

)
+
(
βk−1

mk
+ 1

)2 sk−1

1−
√

2
√

H

H +B

+mk−1


and

c∗t+N−2 =−Xt+N−2 − ct+N−3 + βmt+N−1

(
∆t+N−3|t

)
+
(
βt+N−2

mt+N−1
+ 1

)2 st+N−2

1−
√

2
√
H + p

H +B

+mt+N−2


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Résumé Français

L’environnement actuel du marché international des biens industriels, et plus
particulièrement son évolution au cours des précédentes années, a généré de grands
défis à relever pour les parties prenantes qui y sont impliquées. Les entreprises
industrielles doivent en effet aujourd’hui faire face à des marchés de plus en plus
volatiles, être capable d’offrir un taux de service élevé, et pouvoir s’adapter le plus
rapidement possible, tout en contrôlant leurs coûts et leur budget de manière ra-
tionnelle et viable. Les parties prenantes ont ainsi besoin de mettre en place des
processus adaptés au sein de leur organisation, et un des points critiques qu’il est
aujourd’hui nécessaire de pouvoir gérer est le caractère incertain des variables et des
paramètres en jeu dans les processus décisionnels. En effet, celui-ci peut avoir des
conséquences importantes sur l’état de santé de l’entreprise, en ayant effectivement
un impact non négligeable sur les stratégies d’allocation des ressources mises en
place, et leur cohérence vis-à-vis des besoins des marchés cibles.

Parmi les pratiques indispensables, la planification de production, en tant qu’étape
tactique de la chaîne décisionnelle de la Supply Chain, est une procédure clé qui
permet aux décideurs de confronter les ressources de l’entreprise et les besoin du
marché. Ici, les incertitudes les plus impactantes et donc à forts enjeux auxquelles
les professionnels doivent faire face sont les incertitude s prévisionnelles. Afin de
pouvoir garder des taux de service ou des coûts de production et de distribution
à des niveaux acceptables, des bonnes pratiques et procédures opérationnelles effi-
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caces sont généralement mises en place, notamment des structures organisationnelles
et décisionnelles permettant d’améliorer la flexibilité des processus industriels, et en
particulier le concept de Plan Glissant. Cependant, du fait de la mise à jour régulière
des bases de données d’apprentissage des prévisions, ce dernier génère également de
l’instabilité dans le système considéré. En conséquence, quand bien même les gains
en terme de gestion des incertitudes sont non négligeables, la planification en plan
glissant génère des problématiques complexes de gestion de la dynamique du système
considéré.

Cette thèse étudie comment traiter cette complexité dynamique générée par
l’actualisation des prévisions de la demande dans un contexte de planification de
production en horizon glissant. En particulier, la question posée ici est celle de
l’optimisation du plan de production dans un tel contexte.

Le problème considéré ici est un système de production mono produit mono
étage. Dans un premier temps, les caractéristiques stochastiques et dynamiques
de la demande prévisionnelle sont examinées. Cette étape permet de comprendre
comment les incertitudes et la dynamique du plan glissant impactent la modélisa-
tion du système. En étudiant les sources d’incertitudes, un modèle stochastique
à deux niveaux est ainsi développé afin de représenter le caractère dynamique
de l’actualisation des prévisions. Cette modélisation générique est alors adap-
tée au problème considéré, et surtout exploitable dans le cadre d’un problème
d’optimisation mathématique.

Ensuite, une approche d’optimisation dynamique stochastique est mise en place
afin de développer la modélisation du problème en prenant en considération les
représentations de la demande prévisionnelle définies précédemment. On démontre
ici de façon analytique que la modélisation permet de développer un algorithme de
résolution par récurrence qui débouche sur l’optimalité de la solution.

Dans un deuxième temps, le modèle et la méthode de résolution développée
sont appliqués à des cas d’étude spécifiques. Selon les hypothèses prises en fonction
des méthodes de prévisions utilisées- comme par exemple la régression linéaire- et en
fonction des paramètres industriels du système -le délai de production, l’autorisation
des retards de livraisons, . . . - des résultats analytiques intéressants sont atteints : un
processus de calcul dynamique inductif permet de déterminer les solutions optimales,
qui varient selon les systèmes étudiés. Des analyses numériques de sensibilité sont
finalement proposées grâce à des simulations afin de mettre en relief les performances
de l’algorithme de résolution développé.
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Résumé : Intégrée dans la chaîne décisionnelle
de  la  Supply  Chain  à  un  niveau  tactique,  la
Planification de Production est  un process  clé
qui permet de répondre au mieux aux besoins
selon les ressources de l’entreprise. Un des défis
du  domaine  est  la  gestion  des  incertitudes
prévisionnelles,  ayant  des  conséquences
importantes sur des indicateurs clés comme le
taux de service ou les coûts. Pour y faire face,
des  méthodes  améliorant  la  flexibilité  des
processus  sont  mais  em  place,  comme  le
contexte de travail en Plan Glissant. Cependant,
en  actualisant  fréquemment  les  données,  la
stabilité du système se retrouve dégradée. Ainsi,
malgré  les  gains  issus  de  la  gestion  des
incertitudes,  ce  cadre  crée  une  complexité
dynamique  à  gérer.  Ce  travail  traite  de  cette
complexité  issue  de  l’actualisation  des
prévisions  pour  la  planification  de  production
en plan glissant. 

Plus  particulièrement,  la  question  traitée  ici
concerne l’optimisation du plan de production,
en considérant u n système mono-produit mono-
étage.  Une  modélisation  mathématique
générique  est  tout  d’abord  développée  pour
construire  un  modèle  d’optimisation  théorique
du  problème.  Ensuite,  une  procédure  de
résolution optimale est développée em utilisant
le cadre d’optimisation dynamique stochastique.
Ce modèle est appliquée à des cas concrets pour
lesquels l’optimalité des solutions calculées est
prouvée  analytiquement  grâce  à  un
raisonnement inductif basé sur des séquences de
calcul  d’espérances  mathématiques.  Des
analyses  numériques  finallement  conduites
mettent  en  exergue  les  performances  de  la
méthode  développée,  ses  limites,  et  sa
sensibilité  vis-à-vis  de  l’environnement
industriel. 

Title : Production Planning under Uncertainties and Forecast Updates

Keywords : Production Planning, Forecasts Uncertainties, Uncertainties Management, Stochastic 
Dynamic Programming.

Abstract  :  Production  Planning,  as  part  of
tactical  operations  integrated  into  the  Supply
Chain  process,  is  a  key  procedure  allowing
decisioners to balance demand and production
resources. One of its most challenging issues is
to  handle  uncertainties,  especially  the  ones
coming from the Forecasted Demand.  In order
to manage indicators at stake, such as service
level  and  costs,  best  practices  increasing
flexibility  in the  process  are implemented,  as
Rolling-Plan  Framework.  However,  it  creates
instability  since the updates  procedures  make
the  data  set  on  change  constantly.
Consequently,  although  the  gain  in  terms  of
flexibility  is  non-negligible  for  the
uncertainties management,  it  generates on the
other hand dynamics complexity. We study in
this  work  how  to  deal  this  dynamics
complexity  generated  by  updates  of  the
Forecasted  Demand  made  in  a  Rolling-Plan
Framework of a Production Planning Process. 

In particular, the question to which it answers is
how to optimize the Production Plan in such a
context.   This  issue  is  tackled  considering  a
single item single  level  production system.  A
general mathematical  model  in the context  of
our  study  is  built  to  be  exploitable  for
analytical  optimization.  A  theoretical
optimization  framework  is  designed,  and  a
specific  solutions  computation  framework
using  stochastic  dynamic  programming  is
developed. We apply it in some precise study
cases in order to compute optimal solutions and
get some valuable analytical results thanks to a
dynamic computation  process.  The optimality
of the solutions is proven through an inductive
reasoning based on expectations  computation.
Solutions  are  finally  implemented  and
calculated  numerically  with  simulations  in
some particular numerical examples. Analyses
and  sensitivity  studies  are  performed,
highlighting  the  performances  of  our
optimization method.
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