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Résumé

L’auteur donne un panorama des contributions de recherche qu’il a obtenues en tant que post-
doctorant à l’université de Vienne et que Maître de Conférences à l’université Paul Sabatier.
Tout d’abord, l’auteur présente les résultats théoriques qu’il a obtenu pour l’estimation de
paramétres de covariance de processus gaussiens, dans les cadres asymptotiques par expansion
et par remplissage. Ensuite, il décrit ses autres contributions aux processus gaussiens : grands
volumes de données, distributions en entrées, approches séquentielles, contraintes d’inégalités et
applications à la quantification d’incertitudes. Enfin, il présente ses contributions à la construc-
tion d’intervalles de confiance valides dans un cadre post-sélection de modèle.

Mots clès

Processus gaussiens; expériences numériques; quantification d’incertitudes; estimation de paramètres
de covariance; cadres asymptotiques par expansion et par remplissage; contraintes d’inégalités;
approches séquentielles; aggrégation de prédicteurs; inférence post-sélection de modèle; inter-
valles de confiance.

Abstract

The author provides an overview of the research contributions that he made as a post-doctoral
fellow at the University of Vienna, and as a ‘Maître de conférences’ at the University Paul
Sabatier. First, the author presents the theoretical results he obtained for covariance param-
eter estimation of Gaussian processes, in the fixed and increasing-domain asymptotic settings.
Then, he describes his other contributions to Gaussian processes: large data sets, distribution
inputs, sequential designs, inequality constraints and applications to uncertainty quantifica-
tion. Finally, he presents his contributions to the construction of valid confidence intervals
post-model-selection.

Key words

Gaussian processes; computer experiments; uncertainty quantification, covariance parameter
estimation, fixed and increasing-domain asymptotics; inequality constraints; sequential design;
predictor aggregation; post-model-selection inference; confidence intervals.
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Chapter 1

Introduction

1.1 List of publications

My publications are available on my web page

www.math.univ-toulouse.fr/~fbachoc/index.html

The technical reports of the commissariat à l’énergie atomique et aux énergies alternatives
(CEA) can be made available on request.

In the list below, the reference [T1] corresponds to my master thesis. The references [J1], [J2],
[J3], [C1], [T2] and [T3] correspond to my PhD thesis. All the other references correspond to
research that was performed after my PhD thesis.

I am currently co-supervising three PhD students: Andrès Félipe López-Lopera, Baptiste
Broto and José Daniel Bétancourt. The references [J14], [S4], [S5] and [S8] correspond to joint
work with them.

Refereed journal articles

[J16] F. Bachoc, G. Blanchard and P. Neuvial . On the post selection inference constant under
restricted isometry properties. Electronic Journal of Statistics, forthcoming, 2018.

[J15] J. Bect, F. Bachoc and D. Ginsbourger. A supermartingale approach to Gaussian process
based sequential design of experiments. Bernoulli, forthcoming, 2018.

[J14] A. F. López-Lopera, F. Bachoc, N. Durrande and O. Roustant. Finite-dimensional Gaus-
sian approximation with linear inequality constraints. SIAM/ASA Journal on Un-
certainty Quantification, forthcoming 2018.

[J13] F. Bachoc, H. Leeb, and B. M. Pötscher. Valid confidence intervals for post-model-selection
predictors. Annals of Statistics, forthcoming, 2018.

[J12] F. Bachoc, F. Gamboa, J.M. Loubes and N. Venet. Gaussian process regression model for
distribution inputs. IEEE Transactions on Information Theory, 2017.

9

www.math.univ-toulouse.fr/~fbachoc/index.html


[J11] F. Bachoc. Asymptotic analysis of covariance parameter estimation for Gaussian processes
in the misspecified case. Bernoulli, 24(2):1531-1575, 2018.

[J10] D. Rullière, N. Durrande, F. Bachoc and C. Chevalier. Nested Kriging estimations for
datasets with large number of observations. Statistics and Computing, 2017.

[J9] F. Bachoc, A. Lagnoux and T.M.N. Nguyen. Cross-validation estimation of covariance pa-
rameters under fixed-domain asymptotics. Journal of Multivariate Analysis, 160:42-
67, 2017.

[J8] D. Velandia, F. Bachoc, M. Bevilacqua, X. Gendre, J.M. Loubes. Maximum likelihood
estimation for a bivariate Gaussian process under fixed domain asymptotics. Electronic
Journal of Statistics, 11(2):2978 - 3007, 2017.

[J7] F. Bachoc, M. Ehler and M.Gräf. Optimal configurations of lines and a statistical appli-
cation. Advances in Computational Mathematics, 43 (1):113–126, 2017.

[J6] R. Furrer, F. Bachoc and J. Du. Asymptotic properties of multivariate tapering for
estimation and prediction. Journal of Multivariate Analysis, 149:177-191, 2016.

[J5] F. Bachoc and R. Furrer. On the smallest eigenvalues of covariance matrices of multivariate
spatial processes. Stat, 5:102–107, 2016.

[J4] F. Bachoc, K. Ammar and J.M. Martinez. Improvement of code behavior in a design of
experiments by metamodeling. Nuclear Science and Engineering, 183(3):387–406,
2016.

[J3] F. Bachoc. Asymptotic analysis of the role of spatial sampling for covariance parameter
estimation of Gaussian processes. Journal of Multivariate Analysis, 125:1–35, 2014.

[J2] F. Bachoc, G. Bois, J. Garnier, and J.M. Martinez. Calibration and improved prediction of
computer models by universal Kriging. Nuclear Science and Engineering, 176(1):81–
97, 2014.

[J1] F. Bachoc. Cross validation and maximum likelihood estimations of hyper-parameters of
Gaussian processes with model mispecification. Computational Statistics and Data
Analysis, 66:55–69, 2013.

Articles submitted to journals

[S8] F. Bachoc, B. Broto, F. Gamboa, J-M Loubes. Gaussian processes indexed on the sym-
metric group: prediction and learning. arxiv.org/abs/1803.06118, submitted, 2018.

[S7] F. Bachoc, M. Bevilacqua and D. Velandia. Composite likelihood estimation for a Gaussian
process under fixed domain asymptotics. arxiv.org/abs/1807.08988, submitted, 2018.
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[S6] J.M. Azais, F. Bachoc, A. Lagnoux, T.M.N. Nguyen and T. Klein. Semi-parametric
estimation of the variogram of a Gaussian process with stationary increments. arxiv.

org/abs/1806.03135, submitted, 2018.

[S5] F. Bachoc, A. Lagnoux and A. F. López-Lopera. Maximum likelihood estimation for
Gaussian processes under inequality constraints. arxiv.org/abs/1804.03378, submit-
ted, 2018.

[S4] B. Broto, F. Bachoc, M. Depecker and J.M. Martinez. Sensitivity indices for independent
groups of variables. arxiv.org/abs/1801.04095, submitted, 2017.

[S3] M. Ben Salem, F. Bachoc, O. Roustant, F. Gamboa and L. Tomaso. Sequential dimension
reduction for learning features of expensive black-box functions. hal.archives-ouvertes.
fr/hal-01688329/document, resubmitted after decision major revision, 2018.

[S2] F. Bachoc, N. Durrande, D. Rullière and C. Chevalier. Some properties of nested Kriging
predictors. arxiv.org/abs/1707.05708, submitted, 2017.

[S1] F. Bachoc, D. Preinerstorfer and L. Steinberger. Uniformly valid confidence intervals
post-model-selection. arxiv.org/abs/1611.01043, resubmitted after decision major
revision, 2016.

Preprints (not submitted yet)

[P1] F. Bachoc, A. Suvorikova, J-M Loubes and V. Spokoiny. Gaussian process forecast with
multidimensional distributional entries. arxiv.org/abs/1805.00753

Refereed conference proceedings

[C6] F. Bachoc, E. Contal, H. Maatouk and D. Rullière. Gaussian processes for computer
experiments. ESAIM: Proceedings and Surveys, 2017. 17 pages.

[C5] F. Bachoc, D. Preinerstorfer and L. Steinberger. Intervalles de confiance uniforméments
valides en présence de sélection de modèle. 49èmes Journées de Statistique, Avignon,
May 29- June 2 2017. 6 pages.

[C4] F. Bachoc, F. Gamboa, J.M. Loubes and N. Venet. Modèles de régression gaussienne pour
des distributions en entrée. 49èmes Journées de Statistique, Avignon, May 29 - June
2 2017. 6 pages.

[C3] F. Bachoc, H. Leeb and B. Pötscher. Intervalles de confiance valides en présence de
sélection de modèle. 47èmes Journées de Statistique, Lille, June 1-5 2015. 6 pages.

[C2] F. Bachoc, A. Bachouch, and L. Lenôtre. Hastings-Metropolis algorithm on Markov chains
for small-probability estimation. ESAIM: Proceedings and Surveys, 48, p.276, 2015.
32 pages.

[C1] F. Bachoc, J. Garnier and J.M. Martinez. Maximum de vraisemblance et validation
croisée pour l’estimation des hyper-paramètres de covariance pour le Krigeage. 45èmes
Journées de Statistique, Toulouse, May 27-31 2013. 6 pages.
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Technical reports

[T3] J.M. Martinez, A. Marrel, N. Gilardi and F. Bachoc. Krigeage par processus gaussiens
Librairie gpLib. Rapport technique CEA, 2012. 50 pages.

[T2] F. Bachoc, G. Bois and J.M. Martinez. Contribution à la validation des codes de calcul
par processus gaussiens. Application à la calibration du modèle de frottement pariétal de
Flica 4. Rapport technique CEA, 2012. 42 pages.

[T1] F. Bachoc. Calibration de modèles physiques par méthodes probabilistes. Rapport
technique CEA, 2010. 78 pages.

1.2 Overview of research activities

Beforehand, I would like to stress out that the works discussed below have been made possible
thanks to a number of co-authors, from which I have learned a lot.

The topic of my PhD thesis (defended in October 2013) is Gaussian process models. The first
part of the thesis is focused on obtaining methodological and increasing-domain asymptotic re-
sults on covariance parameter estimation [J1,J3]. The second part of the thesis is constituted by
applications of Gaussian process models to computer experiments and uncertainty quantification
[J2].

My first experience of post-PhD research coincides with my participation to the CEMRACS
2013 summer school, where I worked on Monte Carlo algorithms and Markov chains, for a neu-
tron transport application. The resulting publication [C2] turns out to be somehow independent
of my other publications and is mentioned in Chapter 5.

At the university of Vienna

When I was a post-doctoral fellow at the university of Vienna, I strengthened, on the one
hand, my contributions to covariance parameter estimation (Chapter 2) and to applications to
uncertainty quantification (Chapter 3). On the other hand, I started working on the topic of
post-selection inference, together with my colleagues at the university of Vienna (Chapter 4).

Consider first covariance parameter estimation. In my PhD article [J1], it was shown that
the cross validation estimator could be preferable to the maximum likelihood estimator for
prediction purposes. In [J11], I obtained a rigorous result, under increasing-domain asymptotics,
supporting this finding. Also, it turns out that some of the techniques introduced in my PhD
article [J3] (in the univariate case) could be extended to the multivariate case. This enabled us to
provide consistency results for multivariate covariance tapering in [J6]. Similarly, [J3] contains
an asymptotic lower bound for the eigenvalues of covariance matrices of stationary univariate
processes. In [J5], we extend this bound to multivariate processes, using complex Hermitian
matrix tools.

Related to uncertainty quantification, the reference [J4] is an application of Gaussian pro-
cesses to surrogate modeling of computer models in nuclear engineering. In particular we show
how Gaussian processes provide an useful interpretation of the behavior of the computer model,
together with anomaly detection tools.
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CHAPTER 1. INTRODUCTION

Consider then post-selection inference. For this theme of research, I focus on an approach
based on simultaneous coverage and post-selection inference (PoSI) constants, that was suggested
in Berk et al. [2013], for covering individual coefficients in linear regression. The article [J13],
which first version was written when I was working in Vienna, extends the PoSI framework to the
coverage of linear predictors. Another article, that focuses on the link between the computation
of the PoSI constants and optimal (‘space filling’) configurations of lines, is [J7].

At the Institut de Mathématiques de Toulouse

As I started working as a ‘Maître de conférences’ at the Institut de Mathématiques de
Toulouse, I aimed at broadening my areas of research on Gaussian processes. I hence started
working on fixed-domain asymptotics for covariance function estimation. With co-authors, we
focused in particular on the exponential covariance function, for which the theoretical analysis
is facilitated (see Ying [1991]). Chapter 2 presents the two articles [J8,J9] dealing with the
exponential covariance function. In [J8], we prove the asymptotic normality of maximum likeli-
hood estimators of microergodic parameters for a bivariate Gaussian process. In [J9], we prove
the asymptotic normality of a cross validation estimator of the microergodic parameter (for a
univariate process).

With various co-authors, I also started working on more diverse aspects of Gaussian pro-
cesses. In particular, I started putting an emphasis on the connections between Gaussian
processes and contemporary machine learning and data science problems, for instance large
data sets, sequential algorithms, specific input data structures, regression under constraints and
Monte Carlo procedures. This is the object of Chapter 3.

We address the issue of large data sets in [J10], for which the usual matrix-based formulas
of Gaussian processes can not be implemented in practice. In [J10], we suggest an optimal
aggregation of Gaussian process models based on smaller data subsets, together with a dedicated
cross validation procedure, and we show the good numerical performances of this aggregation, in
comparison with other existing procedures. In [S2], we analyze the setting of [J10] theoretically,
providing a consistency result and other theoretical guarantees for our aggregation, and giving
examples of inconsistency for other usual aggregation procedures.

In [J15], we address iterative designs for Gaussian processes, and focus on a class of strategies
called stepwise uncertainty reduction (SUR). The SUR setting provides a fairly general frame-
work that can be applied, for instance, to optimization or failure domain estimation. In [J15],
we provide a general consistency result for a large class of SUR strategies, based, in particular,
on supermartingale arguments. We also apply this general result to four standard algorithms.

In [J12], we consider Gaussian processes for which the inputs are one-dimensional distribu-
tions (instead of real numbers or vectors as is considered above). We consider covariance kernels
based on the Monge-Kantorovich, or Wasserstein, transport-based distance. We demonstrate
the good empirical performances of the resulting Gaussian process model and provide asymp-
totic results (in a situation that would correspond to increasing-domain asymptotics for vector
inputs) for covariance function estimation.

In [J14,S5], we consider Gaussian processes with specific inequality constraints (bounded-
ness, monotonicity and convexity). These types of constraints indeed regularly occur in applied

13



situations. In [J14], we extend in several directions the approach of Maatouk and Bay [2017].
This approach is based on a finite dimensional representation of the process, that guarantees
that the constraints are satisfied everywhere on the input space. We enable a general aggregation
of constraints (for instance, monotonicity and boundedness) and we study the performances of
various Markov chain Monte Carlo (MCMC) algorithms to sample from the conditional distri-
bution of the constrained Gaussian process. In addition, we introduce a constrained maximum
likelihood estimator and study its consistency. In [S5], we provide a deeper theoretical analysis of
maximum likelihood and constrained maximum likelihood. We show that these two estimators
have the same asymptotic distribution conditionally to the constraints, and that this asymp-
totic distribution is the same as for maximum likelihood without constraints. Hence, informally
speaking, the constraints have no asymptotic impact on estimation. Nevertheless, we show in
simulations that they have an impact in finite sample, and that constrained maximum likelihood
is then more accurate.

At the Institut de Mathématiques de Toulouse, I also continued working on post-selection
inference (Chapter 4). Recall that in Berk et al. [2013] and [J13], the setting consists in (Gaus-
sian) linear regression. In [S1], we show that the general idea of Berk et al. [2013] can actually
be extended to significantly more general frameworks, based on asymptotic approximations. We
provide a general construction of confidence intervals, together with uniform asymptotic guar-
antees. We show in simulations that these intervals offer stronger guarantees than those based
on the ‘conditional’ post-selection inference framework (see for instance Lee et al. [2016]), while,
overall, providing similar or shorter intervals. Also, in [J16], we consider the asymptotic order
of magnitude of the PoSI constants. We provide an asymptotically optimal upper bound for the
case of design matrices satisfying restricted isometry properties (RIP).

Finally, the references [S3,S4,S6,S7,S8,P1] are more recent. They also correspond to research
that was carried out at the Institut de Mathématiques de Toulouse. They are briefly presented
in Chapter 5.
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Chapter 2

Covariance parameter estimation

for Gaussian processes

2.1 Introduction

Gaussian processes A Gaussian process ξ on Rd is a stochastic process from Rd to R so that,
for any a ∈ N and x1, . . . , xa ∈ Rd, the random vector (ξ(x1), . . . , ξ(xa)) is Gaussian Rasmussen
and Williams [2006]. In this manuscript, we shall consider that the Gaussian process ξ has
mean function zero, so that it is characterized by its covariance function k : Rd ×Rd → R. The
function k is symmetric non-negative definite, that is, for any a ∈ N and x1, . . . , xa ∈ Rd, the
matrix [k(xi, xj)]1≤i,j≤a is symmetric non-negative definite. Examples of standard covariance
functions are given, for instance, in Stein [1999], Rasmussen and Williams [2006], Roustant et al.
[2012], Abrahamsen [1997]. A covariance function k is stationary when k(x1, x2) = k(x3, x4)

whenever x2−x1 = x4−x3. For a stationary covariance function k, we let k(x1, x2) = k(x1−x2)

and identify k as a function from Rd to R.

Gaussian processes have become popular models for many applications, probably because
of their combination of flexibility and simplicity. Indeed, as we shall see below, the conditional
distribution of Gaussian processes, given observed values, is particularly tractable in practice.
Furthermore, many properties of Gaussian process realizations (e.g. symmetry or smoothness)
can be enforced by appropriately selecting the covariance function Stein [1999], Rasmussen and
Williams [2006].

Scientific fields where Gaussian processes are applied include machine learning Rasmussen
and Williams [2006], geosciences Matheron [1970] and computer experiments Santner et al.
[2003]. In this manuscript, we shall mainly discuss computer experiments when considering
applications (the term uncertainty quantification is also employed in this context). A computer
experiment corresponds to an evaluation of a code function (or computer model) fcode : Rd → R.
[The domain of fcode would typically be a bounded subset of Rd in practice, but we omit this
fact for simplicity of exposition.] Typically, the input x ∈ Rd corresponds to geometric or
physical parameters of the experiment and the output fcode(x) corresponds to a scalar quantity
of interest (usually extracted from complex output data of the computer simulation). For
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specific examples, we refer to Santner et al. [2003], Bachoc [2013] and [J4]. The paradigm
of Gaussian process models for computer experiments is to consider the (fixed and unknown)
code function fcode as a realization of a Gaussian process ξ. This provides a Bayesian framework
that enables to achieve various tasks of interest, for instance, metamodeling (predicting fcode(x)

[J4]), calibration (tuning the computer model for reproduction of field experiments Paulo et al.
[2012], [J2]), global optimization Jones et al. [1998] or failure domain estimation Chevalier et al.
[2014].

Let us now discuss Gaussian conditioning. Throughout the manuscript, for a function g :

Rd × Rd → R and for two finite sequences V = (v1, . . . , va) and W = (w1, . . . , wb) of points in
Rd, we let g(V,W ) be the a× b matrix defined by [g(V,W )]i,j = g(vi, wj) for i ∈ {1, . . . , a} and
j ∈ {1, . . . , b}. Consider then a Gaussian process ξ observed at X = (x1, . . . , xn) with xi ∈ Rd

for i ∈ {1, . . . , n}. Let yi = ξ(xi). We call x1, . . . , xn the observation points and y1, . . . , yn the
observed values. Then, the Gaussian conditioning theorem (see e.g. Rasmussen and Williams
[2006]) implies that, conditionally to y = (y1, . . . , yn)>, ξ is a Gaussian process with mean and
covariance functions mn and kn defined by

mn(u) = k(u,X)k(X,X)−1y (2.1)

and
kn(u, v) = k(u, v)− k(u,X)k(X,X)−1k(X, v). (2.2)

This conditional Gaussianity of ξ, together with the above explicit expressions of the condi-
tional moments, is one of the main reasons why Gaussian processes are popular. The conditional
mean function provides an approximation of ξ based on the observed values y (sometimes called
a metamodel or surrogate model in the case of computer experiments [J4]). The conditional
variance kn(u, u) is an uncertainty indicator on the value of ξ(u). Finally, the full conditional
Gaussianity can be used to define, for instance, probabilistic sequential design strategies Cheva-
lier et al. [2014], [J15].

Covariance function estimation In practice, the covariance function k of the Gaussian
process is unknown and is assumed to belong to a parametric set of covariance functions {kθ, θ ∈
Θ}. Here Θ is a subset of Rp for p ∈ N and kθ is a covariance function on Rd for θ ∈ Θ. A
classical example if given by d = 1, Θ = (0,∞)2, θ = (σ2, `) and kθ(t1, t2) = σ2 exp(−|t1−t2|/`),
where covariance functions of this form are called exponential covariance functions. Many more
examples can be found, for instance, in Stein [1999], Rasmussen and Williams [2006], Roustant
et al. [2012], Abrahamsen [1997]. In this chapter, we will put a special emphasis on the distinction
between the cases where the true covariance function k does belong to {kθ, θ ∈ Θ} and the case
where it does not. We shall refer to the first case as the well-specified case and to the second
case as the misspecified case. In the well-specified case, we write k = kθ0 with θ0 ∈ Θ.

The most standard method for selecting a covariance parameter θ is called (Gaussian) max-
imum likelihood (ML) Stein [1999], Rasmussen and Williams [2006]. It consists in maximizing,
over θ ∈ Θ, the Gaussian probability density function at y, when considering that ξ has zero
mean function and covariance function kθ. The ML estimator θ̂ML can thus be written as

θ̂ML ∈ argminθ∈Θ log(|kθ(X,X)|) + y>kθ(X,X)−1y, (2.3)
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with the notation of (2.1) and (2.2) and where |.| is the determinant. In practice, the optimization
problem (2.3) needs to be tackled numerically and popular procedures are gradient descent-type
algorithms or global derivative-free techniques (e.g. genetic algorithms) Roustant et al. [2012].
Furthermore, the cost of evaluating the criterion in (2.3) for a given θ is a O(n3), which can
become problematic when n becomes larger than about 10, 000 (see [J6,J10]).

Another class of procedures for selecting θ is called cross validation (CV). CV is less popular
than ML but is nevertheless considered by some authors Sundararajan and Keerthi [2001], Zhang
and Wang [2010]. CV was also one of the main topics of my PhD thesis Bachoc [2013]. With the
notation of (2.3), let X−i be the finite sequence (x1, . . . , xi−1, xi+1, . . . , xn) for i ∈ {1, . . . , n}.
Let also y−i = (y1, . . . , yi−1, yi+1, . . . , yn)>. Then, let for u ∈ Rd

mθ,n,−i(u) = kθ(u,X−i)kθ(X−i, X−i)
−1y−i (2.4)

and
kθ,n,−i(u, v) = kθ(u, v)− kθ(u,X−i)kθ(X−i, X−i)−1kθ(X−i, v). (2.5)

The two above quantities are conditional means and covariances given the observation vector
y−i where the observation yi = ξ(xi) is left out. Then, CV consists in optimizing, over θ ∈ Θ,
an empirical criterion evaluating the quality of the conditional distributions for yi given by
mθ,n,−i(xi) and kθ,n,−i(xi, xi) for i = 1, . . . , n. To be specific, a common CV estimator is
defined by

θ̂CV ∈ argminθ∈Θ

n∑
i=1

(yi −mθ,n,−i(xi))
2 (2.6)

and consists in minimizing the sum of leave one out square errors. We remark that this esti-
mation technique can be extended to take into account the leave one out conditional variances
kθ,n,−i(xi, xi) and we refer to my PhD article [J1] for details.

The leave one out conditional means and variances mθ,n,−i(xi) and kθ,n,−i(xi, xi), for i =

1, . . . , n, can be computed all at once, at the cost of a single matrix inversion. Indeed, we have
for i = 1, . . . , n

mθ,n,−i(xi) = yi −
[
k(X,X)−1y

]
i

[k(X,X)−1]i,i
(2.7)

and
kθ,n,−i(xi, xi) =

1

[k(X,X)−1]i,i
. (2.8)

The equations (2.7) and (2.8) are shown in Dubrule [1983], in the more general case of a non-zero
linearly parametrized mean function. They are called virtual leave one out formulas in Bachoc
[2013] and [J1]. Thanks to them, the cost of evaluating (2.6) (or other criteria based on leave
one out) for a given θ is a O(n3), similarly as for ML. The CV estimation procedure (2.6), based
on the virtual leave one out formulas, is for instance implemented in the R package DiceKriging
Roustant et al. [2012].

Existing asymptotic results Let us now consider the asymptotic framework where n→∞
for covariance parameter estimation. In the literature, two main settings are considered: increas-
ing and fixed-domain asymptotics Stein [1999], Zhang and Zimmerman [2005]. Traditionally,
increasing-domain asymptotics corresponds to the case where, as n → ∞, there exists a fixed
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minimum distance between any two distinct xi and xj . As a consequence, the observation points
can not be restricted to a bounded subset of Rd. Conversely, fixed-domain asymptotics refers
to the case where (x1, . . . , xn) become dense in a fixed bounded subset of Rd as n→∞.

The nature of the asymptotic results that can be obtained differs significantly between these
two frameworks. Considered first increasing-domain asymptotics. Then, it has been shown
in Mardia and Marshall [1984], Cressie and Lahiri [1993] that, in the well-specified case and
for fairly general sets of stationary covariance functions {kθ, θ ∈ Θ}, the ML estimator θ̂ML

converges to the true parameter θ0. Furthermore, a central limit theorem holds with the usual
parametric rate of convergence n1/2. During my PhD thesis, I provided a result of this kind
for ML in [J3]. In [J3], it is also shown that the CV estimator θ̂CV in (2.6) is consistent and
asymptotically Gaussian distributed. An interpretation of these increasing-domain asymptotic
results is that, as n → ∞, there are more and more observation points very distant from each
other, yielding approximate independence between the corresponding observations, and thus, so
to speak, an increasing amount of information.

The situation is different under fixed-domain asymptotics. Indeed, two types of covariance
parameters can be distinguished: microergodic and non-microergodic parameters Ibragimov and
Rozanov [1978], Stein [1999]. A covariance parameter is microergodic if, for two different values
of it, the two corresponding Gaussian measures are orthogonal, see Ibragimov and Rozanov
[1978], Stein [1999]. It is non-microergodic if, even for two different values of it, the two corre-
sponding Gaussian measures are equivalent. Non-microergodic parameters cannot be estimated
consistently, but have an asymptotically negligible impact on prediction (at least in the fixed
parameter case) Stein [1988, 1990a,b], Zhang [2004]. On the other hand, it is at least possible
to consistently estimate microergodic covariance parameters, and misspecifying them can have
a strong negative impact on prediction.

Under fixed-domain asymptotics, references indicating which covariance parameters are mi-
croergodic are for instance Stein [1999], Zhang [2004], Anderes [2010]. References providing
asymptotic properties of ML estimators of microergodic parameters are Ying [1991, 1993], Loh
and Lam [2000], Loh [2005], Kaufman and Shaby [2013], Bevilacqua et al. [2018]. We refer to,
for instance, the introduction section in [J9] for a more detailed discussion of this topic and
for further references. We would just like to point out that, generally speaking, the existing
results for ML estimation under fixed-domain asymptotics are relatively scarce, and restricted
to specific parametric models of covariance functions (e.g. to exponential covariance functions
in Ying [1991]).

2.2 Increasing-domain asymptotic analysis of the misspec-

ified setting [J11]

In my PhD article [J1], it is shown numerically that, in the misspecified case, the CV estimator
θ̂CV in (2.6) can yield smaller mean square prediction errors than the ML estimator θ̂ML in
(2.3). Furthermore, it is also pointed out in [J1] that CV is not recommended for regularly
spaced observation points x1, . . . , xn (e.g. regular grids).

In [J11], we provide asymptotic results that confirm these findings. For each n ∈ N, we con-
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sider independent random observation points (X1, . . . , Xn) such that Xi is uniformly distributed
on [0, n1/d]d for i = 1, . . . , n. Hence, we address the case of irregularly spaced (random and in-
dependents) observation points, for which the CV principle has the most ground. Furthermore,
we address an asymptotic setting that corresponds to the increasing-domain framework since
the observation domain is unbounded with volume n equal to the number of observation points.
It should be mentioned that, in this setting, there does not exist a fixed minimal non-zero dis-
tance between any two distinct observation points, contrary to most of the increasing-domain
asymptotic literature for ML and CV for Gaussian processes. This fact significantly complicates
the proofs, see [J11] for more details and discussion.

We consider noisy observations of the Gaussian process and let yi = ξ(Xi) + εi, where
(ε1, . . . , εn), (X1, . . . , Xn) and ξ are independent and where (ε1, . . . , εn) are independent with
N (0, δ0) distribution. The observation variance δ0 ≥ 0 is fixed and unknown. We consider a
parametric model {(kθ, δθ), θ ∈ Θ}, with kθ a stationary covariance function and δθ > 0, for the
covariance function k and the noise variance δ0. We set ourselves in the misspecified case and
do not assume that (k, δ0) ∈ {(kθ, δθ), θ ∈ Θ}. Here, Θ is a compact subset of Rp for a fixed
p ∈ N.

We make the following two technical assumptions, for which ||v|| is the Euclidean norm of a
vector v.

Condition 2.1. The covariance function k is stationary and continuous on Rd. There exists
C0 < +∞ so that for t ∈ Rd,

|k (t)| ≤ C0

1 + ||t||d+1
.

In addition, for any l ∈ N, for any two-by-two distinct points x1, ..., xl, the matrix (k(xi −
xj))1≤i,j≤l is invertible. Finally we have δ0 ≥ 0.

Condition 2.2. For all θ ∈ Θ, the covariance function kθ is stationary. For all fixed t ∈ Rd,
kθ(t) is p + 1 times continuously differentiable with respect to θ. For all i1, ..., ip ∈ N so that
i1 + ...+ ip ≤ p+ 1, there exists Ai1,...,ip < +∞ so that for all t ∈ Rd, θ ∈ Θ,∣∣∣∣∣ ∂i1∂θi11

...
∂ip

∂θ
ip
p

kθ (t)

∣∣∣∣∣ ≤ Ai1,...,ip
1 + ||t||d+1

.

There exists a constant Cinf > 0 so that, for any θ ∈ Θ, δθ ≥ Cinf . Furthermore, δθ is p + 1

times continuously differentiable with respect to θ. For all i1, ..., ip ∈ N so that i1+...+ip ≤ p+1,
there exists Bi1,...,ip < +∞ so that for all θ ∈ Θ,∣∣∣∣∣ ∂i1∂θi11

...
∂ip

∂θ
ip
p

δθ

∣∣∣∣∣ ≤ Bi1,...,ip .
In Conditions 2.1 and 2.2, we can mention that the covariance functions are assumed to

be stationary and to vanish with the rate 1/||t||d+1 as ||t|| → ∞. This type of assumption
is standard in the increasing-domain asymptotic litterature. We require the existence of p + 1

partial derivatives with respect to θ in the parametric model. This is a stronger requirement than
in some other works under increasing-domain asymptotics (e.g. [J3]), which was here necessary
because of the random and independent observation points. Nevertheless, many covariance
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models yield an infinite differentiability of the covariance functions with respect to θ, for instance
the Matérn model Stein [1999]. Finally, the condition δθ ≥ Cinf is crucial and enables us to
bound the spectral norms of n× n inverse covariance matrices (see [J11] for more details). It is
mainly in order to have the technical condition δθ ≥ Cinf that we consider observation errors,
although they also correspond to a significant number of application cases, such as measure
errors [J2], Monte Carlo computer experiments Le Gratiet and Garnier [2014] or the presence
of a nugget effect Andrianakis and Challenor [2012].

Then, we let θ̂CV be the CV estimator defined in (2.6) (adapted to the presence of measure
errors, see [J11] for details). We also let, for θ ∈ Θ,

En,θ =
1

n

∫
[0,n1/d]d

(mn,θ(t)− ξ(t))2
dt (2.9)

be the integrated square prediction error, where mn,θ(t) is defined as in (2.1) (with k replaced
by kθ and with an adaptation to the presence of measure errors, see [J11] for details).

In [J11] we explain that, in (2.9), the variable t is formally equivalent to a new observation
point Xn+1 so that the mean value of En,θ is equal to the mean value of the CV criterion in
(2.6), with n+ 1 points instead of n. This holds notably because (X1, . . . , Xn) are independent.
From this observation, and with the rather technical proof given in [J11], whose main steps are
summarized in Section A.4 there, we obtain the following theorem.

Theorem 2.3. Under Conditions 2.1 and 2.2, we have, as n→∞,

En,θ̂CV = inf
θ∈Θ

En,θ + op(1),

where the op(1) in the above display is a function of (X1, . . . , Xn), (ε1, . . . , εn) and ξ only that
goes to 0 in probability as n→∞.

Theorem 2.3 means that, here, CV is asymptotically optimal for the integrated square pre-
diction error. This confirms the empirical findings in [J1]. In [J11] we also show that ML is
asymptotically optimal for the Kullback Leibler divergence criterion Dn,θ. The quantity Dn,θ is
the normalized Kullback Leibler divergence between the true distribution of the observation vec-
tor and the one corresponding to the covariance parameter θ (see [J11]). We show that the ML
estimator θ̂ML (adapted from (2.3) to take the observation errors into account) asymptotically
minimizes Dn,θ. The message of [J11] is thus that, in the misspecified case where there is not a
single true parameter θ0, different quality criteria are minimized by different parameters. The
integrated square prediction error is then asymptotically minimized by CV and the Kullback
Leibler divergence is asymptotically minimized by ML.

We illustrate this in Figure 2.1, which corresponds to Figure 1 in the online supplement
to [J11] to which we refer for more details. In Figure 2.1, we consider n = 100 and a model
where kθ is the Matérn covariance function and where θ = (σ2, `) where σ2 is the variance and
` is the correlation length. We consider a well-specified case where (k, δ0) ∈ {(kθ, δθ), θ ∈ Θ}
and a misspecified case where the observation error variance is enforced to an incorrect value.
We show the histograms of the ML and CV estimates of ` (in a Monte Carlo simulation) and
the histograms of En,θ̂ and Dn,θ̂ where θ̂ is the ML or CV estimator. We observe that, in the
well-specified case, ML is preferable to CV in all aspects: ML provides a better estimation of
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the true value of ` and smaller values of En,θ̂ and Dn,θ̂. However, in the misspecified case, CV
provides smaller values of En,θ̂ while ML provides smaller values of Dn,θ̂. Furthermore, in the
misspecified case, the ML and CV histograms of ` are centered at different values.
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Figure 2.1: Illustration of [J11] in Section 2.2 for n = 100. The histograms of ˆ̀, Dn,θ̂ and En,θ̂
are reported for ML and CV and in the well-specified and misspecified cases. In the well-specified
case, the dashed red vertical lines denote the true value of `.
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2.3 Increasing-domain asymptotic analysis of multivariate

tapering [J6]

Evaluating the likelihood function in (2.3) has a computational cost of O(n3) in time and O(n2)

in storage. Hence, it typically becomes too costly to evaluate this function (let alone optimizing
it) when n is much larger than, say, 10, 000. On the other hand there is a need to exploit large
data sets, for instance with n above 106 with satellite data. Among the variety of techniques
to tackle this issue (see for instance the references in the introduction section in [J10]), we shall
focus on covariance tapering here Kaufman et al. [2008], Furrer et al. [2006].

We consider a taper function T : Rd → R with compact support, for which the function
x1, x2 → T (x1−x2) is a symmetric non-negative definite function on Rd×Rd. We also consider
a taper range γn > 0 and let k̄θ : Rd × Rd → R be the tapered covariance function, defined by
k̄θ(x1, x2) = kθ(x1, x2)T ([x1 − x2]/γn). The tapered likelihood estimator is then defined by

θ̂tML ∈ argminθ∈Θ log(
∣∣k̄θ(X,X)

∣∣) + y>k̄θ(X,X)−1y. (2.10)

The benefit of tapering is that the covariance matrix k̄θ(X,X) is sparse, because the function
k̄θ has a compact support. Thus, sparse linear algebra procedures can be used, that allow for
much larger values of n than when handling full matrices (see for instance the R package SPAM

Furrer and Sain [2010]). The taper range γn is chosen by the user. Small values of γn yield
sparser matrices, which is computationally beneficial, but yields a larger difference between k̄θ
and kθ, which degrades the statistical accuracy. The opposite occurs when γn is large: the
tapered likelihood function is closer to the (untapered) likelihood function but is more costly
to evaluate. Finally, let us mention that (2.10) corresponds to the one-taper equation and that
a two-taper equation also exists Kaufman et al. [2008], Furrer et al. [2006]. The two-taper
equation yields an estimator with a better bias but more difficult to compute, and for which the
asymptotic analysis is different, see [J6] for more details.

In [J6], we provide an asymptotic analysis of the tapered maximum likelihood estimator, in
the case of a stationary multivariate Gaussian process. A multivariate Gaussian process is a
collection of Gaussian processes ξ(r) = (ξ1, . . . , ξr), with r ∈ N fixed, so that any linear combi-
nation of (ξ1, . . . , ξr) is also a Gaussian process. We consider that ξ1, . . . , ξr have mean function
zero. Hence, ξ(r) is characterized by its matrix covariance function k(r) = (ka,b)a,b=1,...,r, with
ka,b : Rd → R (ka,b is stationary) for a, b = 1, . . . , r. We have cov(ξa(x1), ξb(x2)) = ka,b(x1−x2)

for a, b ∈ {1, . . . , r} and x1, x2 ∈ Rd. For a ∈ {1, . . . , r}, ka,a is a stationary covariance function
and for a, b ∈ {1, . . . , r}, a 6= b, ka,b is called a (stationary) cross covariance function. The
matrix covariance function is symmetric non-negative definite, that is, for any x1, . . . , xm ∈ Rd,
the rm× rm matrix

(ka,b(xi − xj))(a,i)∈{1,...,r}×{1,...,m},(b,j)∈{1,...,r}×{1,...,m}

is symmetric non-negative definite. Examples of existing matrix covariance functions can be
found in Genton et al. [2015], Gneiting et al. [2010]. The multivariate process ξ(r) is observed
at the observation points X = (x1, . . . , xn).

Based on a matrix covariance function, conditioning is carried out by a natural exten-
sion of (2.1) and (2.2). We refer to [J6] for details. When considering a parametric set
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{k(r)
θ = (ka,b,θ)a,b=1,...,r, θ ∈ Θ} of stationary matrix covariance functions, the tapered likelihood

estimator is defined by a natural extension of (2.10). In particular, we consider a matrix taper
function T (r) = (Ta,b)a,b=1,...,r, with Ta,b : Rd → R with compact support for a, b = 1, . . . , r. We
also consider a taper rang sequence (γn)n∈N with γn > 0. Finally, we consider the well-specified
case here and let k(r)

θ0
be the true matrix covariance function of ξ(r) with θ0 ∈ Θ.

Then ML estimator is of the form

θ̂ML ∈ argminθ∈ΘLθ (2.11)

and the tapered ML estimator is of the form

θ̂tML ∈ argminθ∈ΘL̄θ (2.12)

where the expressions of Lθ and L̄θ are similar to (2.3) and (2.10) and are given in [J6].

We define the Fourier transform of a function f : Rd → R by f̃(ω) = (2π)−d
∫
Rd e

−ıw>xf(x)dx

with ı2 = −1. We make the following assumptions for our asymptotic results below.

Condition 2.4. For all fixed x ∈ Rd, a, b = 1, . . . , r, ka,b,θ(x) is continuously differentiable with
respect to θ. There exist constants A < +∞ and α > 0 so that for all i = 1, . . . , p, for all x ∈ Rd

and for all θ ∈ Θ,

|ka,b,θ (x)| ≤ A

1 + ||x||d+α
and

∣∣∣∣ ∂∂θi ka,b,θ (x)

∣∣∣∣ ≤ A

1 + ||x||d+α
.

The Fourier transforms k̃a,b,θ(ω) are jointly continuous in ω and θ and the inverse Fourier
transform thereof exist. The smallest eigenvalue of the matrix (k̃a,b,θ(ω))a,b=1...,r is strictly
positive for all w and θ.

Condition 2.5. For all a, b = 1, . . . , r, the taper function Ta,b is continuous at 0 and satisfies
Ta,b(0) = 1 and |Ta,b(x)| ≤ 1 for all x ∈ Rd. The taper range γ = γn satisfies γn →n→∞ +∞.

Condition 2.6. There exists a constant ∆ > 0 so that for all n ∈ N and for all a 6= b,
||xa − xb|| ≥ ∆.

Condition 2.4 implies a smoothness with respect ot θ and a decrease with respect to ||x||
of the covariance and cross covariance functions, similarly to Condition 2.2 in Section 2.2.
We remark that, for a model of stationary cross covariance functions, the (complex) matrix
(k̃a,b,θ(ω))a,b=1...,r is Hermitian non-negative definite Wackernagel [2003]. Hence, we require a
little more in Condition 2.4 when imposing that the eigenvalues of (k̃a,b,θ(ω))a,b=1...,r are non-
zero. This enables us to have an asymptotic lower bound on the eigenvalues of the nr × nr
covariance matrices obtained from k

(r)
θ , see Section 2.4 and [J5].

Condition 2.5 is very mild and means that the functions ka,b,θ and ka,b,θTa,b(·/γ) will be close
to each other when γ is large. Finally Condition 2.6 is a standard increasing-domain asymptotics
condition, as is discussed above.

Next, we provide the consistency results in [J6] for the tapered maximum likelihood esti-
mator. First we show that the likelihood and tapered likelihood criteria are asymptotically
equivalent.
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Theorem 2.7. Assume that Conditions 2.4, 2.5 and 2.6 hold. Then, as n→∞,

sup
θ∈Θ
|Lθ − L̄θ| = op(1).

As a consequence, under mild conditions on the likelihood function, implying the consistency
of the ML estimator, the tapered ML estimator is also consistent.

Corollary 2.8. Consider the same setting as in Theorem 2.7. Assume that for all κ > 0 there
exists ε > 0 so that

inf
||θ−θ0||≥κ

Lθ − Lθ0 ≥ ε+ op(1),

where the op(1) may depend on ε and κ and goes to 0 in probability as n→∞. Then, as n→∞,

θ̂ML →p θ0 and θ̂tML →p θ0.

We now consider the prediction of ξ1 and let mn,θ(u) be the conditional mean of ξ1(u) given
(ξa(xi))a=1,...,r,i=1,...,n, under the matrix covariance function k

(r)
θ . We also let m̄n,θ(u) be the

conditional mean of ξ1(u) given (ξa(xi))a=1,...,r,i=1,...,n, under the tapered matrix covariance
function (ka,b,θTa,b(·/γn))a,b=1...,r. In both cases we refer to [J6] for the explicit expressions.
Then, we show in [J6] that the predictions obtained with and without tapering are asymptotically
equivalent.

Theorem 2.9. Assume that Conditions 2.4, 2.5 and 2.6 hold. Let (xnew,n)n∈N be a fixed
sequence in Rd. Then, as n→∞,

sup
θ∈Θ

∣∣∣[mn,θ(xnew,n)− ξ1(xnew,n)]
2 − [m̄n,θ(xnew,n)− ξ1(xnew,n)]

2
∣∣∣ = op(1). (2.13)

Assume furthermore that for any fixed θ, a and b, the functions ka,b,θ and Ta,b are continuous.
Let Dn be a sequence of measurable subsets of Rd with positive Lebesgue measures and let fn be
a sequence of continuous probability density functions on Dn. Then, as n→∞,

sup
θ∈Θ

∣∣∣∣∫
Dn

[mn,θ(x)− ξ1(x)]
2
fn(x)dx−

∫
Dn

[m̄n,θ(x)− ξ1(x)]
2
fn(x)dx

∣∣∣∣ = op(1). (2.14)

We illustrate Theorem 2.7 and Corollary 2.8 in Figure 2.2. For two settings (see [J6] for their
specifications), we estimate a standard deviation σ1,2 and a correlation length ρ1,1. For r = 2

(bivariate case) we consider different values of n and of the taper range γ. We observe that,
for a fixed γ, as n increases, the variance decreases significantly but the bias remains non-zero
and approximately constant. On the contrary, for fixed n, the bias decreases as γ increases. We
also observe that the tapered ML estimator becomes more and more accurate as both n and γ
increase, which illustrates the consistency result.

2.4 Smallest eigenvalues of covariance matrices of multi-

variate processes [J5]

For the proofs of Theorems 2.7 and 2.9, and for proofs in other references Shaby and Ruppert
[2012], Bevilacqua et al. [2015], a key element is the existence of a lower bound on the smallest
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Figure 2.2: Illustration of [J6] in Section 2.3. Effect of increasing n and the taper range γ. The
boxplots correspond to n = 400 (gray), 1024 (yellow), 2500 (light blue), left to right for each
taper range. The horizontal lines denote the true covariance parameter values. The case γ =∞
corresponds to the untapered ML estimator. The two simulation settings are (Ai) and (Bi).

eigenvalues of the covariance matrices corresponding to various parameters θ. For instance, in
the context of Section 2.3, the nr × nr covariance matrix k(r)

θ (X,X) defined by

(ka,b,θ(xi, xj)(a,i)∈{1,...,r}×{1,...,n},(b,j)∈{1,...,r}×{1,...,n},

is the covariance matrix of the nr × 1 observation vector, under covariance parameter θ.
In Shaby and Ruppert [2012], Bevilacqua et al. [2015], the existence of this lower bound

is assumed. The contribution of [J5], that we now present, is to show that this lower bound
holds under conditions that are relatively mild and simple to check, for given models of matrix
covariance functions. These conditions are implied by Conditions 2.4, 2.5 and 2.6, so that the
lower bound need not be assumed for Theorems 2.7 and 2.9. In fact, working on the article [J6]
motivated us to study the eigenvalue lower bound in [J5].

Let us consider again a multivariate Gaussian process ξ(r) = (ξ1, . . . , ξr), with r ∈ N, with sta-
tionary matrix covariance function k(r). We consider r sequences of points (x

(1)
i )i∈N, . . . , (x

(r)
i )i∈N.

For a = 1, . . . , r, (x
(a)
i )i∈N is the sequence of observation points for ξa. We thus remark that

we allow here for the different processes to be observed at different observation points (non-
collocated observations) while the processes are observed at the same points in Section 2.3
(collocated). We have the following conditions.

Condition 2.10. There exists a finite fixed constant A > 0 and a fixed constant τ > 0 so that
the functions ka,b, a, b = 1, . . . , r, satisfy, for all x ∈ Rd,

|ka,b(x)| ≤ A

1 + ||x||d+τ
. (2.15)

We define the Fourier transform of a function g : Rd → R as in Section 2.3. Then, from (2.15),
the covariance functions ka,b have Fourier transforms k̃a,b that are continuous and bounded.
Also, note that, for any ω ∈ Rd, k̃(r)(ω) = {k̃a,b(ω)}a,b=1,...,r is a Hermitian complex matrix,
that has real non-negative eigenvalues 0 ≤ λ1{k̃(r)(ω)} ≤ · · · ≤ λr{k̃(r)(ω)}.
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Condition 2.11. We have, for a, b = 1, . . . , r,

ka,b(x) =

∫
Rd
k̃a,b(ω)eıω

>xdω. (2.16)

Also, we have 0 < λ1{k̃(r)(ω)} for all ω ∈ Rd.

The condition (2.16) is very weak and satisfied by most standard covariance and cross co-
variance functions. On the other hand, the condition 0 < λ1{k̃(r)(ω)} for all ω ∈ Rd is less
innocuous, and is further discussed at the end of the section.

We assume, similarly as in Section 2.3, the existence of a minimal distance between two
different observation points of the same process.

Condition 2.12. There exists a fixed ∆ > 0 so that for all a = 1, . . . , r, infi,j∈N;i 6=j |x(a)
i −x

(a)
j | ≥

∆.

For all n1, . . . , np ∈ N, let, for 0 ≤ a ≤ r, Na = n1+· · ·+na, with the convention that N0 = 0.
Let also N = Nr. Then, let Σ be the N×N covariance matrix, filled as follows: For u = Na−1+i

and v = Nb−1 + j, with 1 ≤ a, b ≤ r, 1 ≤ i ≤ na and 1 ≤ j ≤ nb, Σu,v = ka,b(x
(a)
i − x

(b)
j ).

The eigenvalue lower bound of [J5] is then the following, with λ1(A) the smallest eigenvalue
of a symmetric real matrix A.

Theorem 2.13. Assume that Conditions 2.10, 2.11 and 2.12 are satisfied. Then, we have

inf
n1,...,np∈N

λ1(Σ) > 0.

We remark that the version of Theorem 2.13 corresponding to r = 1 (univariate case) is
shown in my PhD article [J3]. The proof of Theorem 2.13 extends that in [J3], and necessitates
to introduce complex Hermitian matrices and matrix Fourier functions.

In [J5] we also extend Theorem 2.13 to the case of a parametric family of stationary covariance
and cross covariance functions {k(r)

θ = (ka,b,θ)a,b=1,...,r, θ ∈ Θ} with Θ compact in Rp. We have
the following, with the same notation as in Section 2.3.

Theorem 2.14. Assume that, for all θ ∈ Θ, the functions {ka,b,θ}1≤a,b≤r satisfy Condition 2.10,
where A and τ can be chosen independently of θ. Assume that (2.16) holds with {ka,b}1≤a,b≤r
replaced by {ka,b,θ}1≤a,b≤r, for all θ ∈ Θ. Assume that k̃(r)

θ (ω) = (k̃a,b,θ(ω))a,b=1,...,r is jointly
continuous in ω and θ with strictly positive smallest eigenvalue for all ω and θ. Assume finally
that Condition 2.12 is satisfied.

Then, with Σθ being as Σ with {ka,b}1≤a,b≤r replaced by {ka,b,θ}1≤a,b≤r, we have

inf
θ∈Θ,n1,...,np∈N

λ1(Σθ) > 0.

It is known that if λ1{k̃(r)(ω)} > 0 for almost all ω ∈ Rd, then λ1(Σ) > 0 whenever the
points (x

(a)
i )1≤i≤na are two-by-two distinct for all a = 1 . . . , r. We show nevertheless in [J5]

that this condition can be insufficient for Theorem 2.13 to hold. More precisely, we exhibit
a counterexample in the univariate case and in dimension one, with the triangular covariance
function.
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2.5 Fixed-domain asymptotic results for the exponential co-

variance function [J8,J9]

In this section, we consider fixed-domain asymptotics. As we have discussed, increasing domain
asymptotic results for ML and CV can typically be obtained for general parametric families of
covariance functions (for instance as in Sections 2.2, 2.3 and 2.4). On the other hand, fixed-
domain asymptotic results for ML are typically obtained for more restrictive classes of covariance
functions, which specific structures can be exploited. Important examples are exponential co-
variance functions Ying [1991, 1993], Matérn covariance functions in dimension d ≤ 3 Kaufman
and Shaby [2013], squared exponential covariance functions Loh and Lam [2000], Matérn 3/2

covariance functions Loh [2005] and generalized Wendland covariance functions Bevilacqua et al.
[2018]. In addition, there are no fixed-domain asymptotic results for CV, to our knowledge, at
the exception of [J9] that we present here.

In this section, we focus on (stationary) exponential covariance functions kρ,σ2 on R, defined
by, for (ρ, σ2) ∈ (0,∞)2 and for t ∈ R, kρ,σ2(t) = σ2e−ρ|t|. A Gaussian process ξ with covariance
function kρ,σ2 is called a stationary Ornstein-Uhlenbeck process and is Markovian. Considering
these covariance functions makes the analysis of ML much more tractable under fixed-domain
asymptotics Ying [1991]. Similarly, inverse covariance matrices obtained from kρ,σ2 are tridiag-
onal with explicit expressions Antognini and Zagoraiou [2010]. This also makes the analysis of
CV (see (2.7) and (2.8)) more tractable.

Cross validation [J9] In [J9], we consider a Gaussian process ξ on [0, 1] with covariance
function kθ0 with θ0 = (ρ0, σ

2
0) ∈ (0,∞)2 and kθ0(t) = σ2

0e
−ρ0|t|. For each n ∈ N the process ξ

is observed at x(n)
1 , . . . , x

(n)
n where (x

(n)
i )n∈N,i=1...,n is a triangular array of points in [0, 1]. We

let (x1, . . . , xn) = (x
(n)
1 , . . . , x

(n)
n ) for concision.

We consider the parametric model {kθ; θ ∈ Θ = [a,A] × [b, B]} with fixed 0 < a ≤ A < ∞
and 0 < b ≤ B < ∞, and with θ = (ρ, σ2) and kρ,σ2 defined as above. We study the CV
estimator θ̂lCV based on the logarithmic score, defined by

θ̂lCV ∈ argminθ∈Θ

n∑
i=1

(
log (kθ,n,−i(xi, xi)) +

(ξ(xi)−mθ,n,−i(xi))
2

kθ,n,−i(xi, xi)

)
(2.17)

with the notation of Section 2.1. The rationale for this CV estimator is that log(2π)+log(kθ,n,−i(xi, xi))+

[ξ(xi)−mθ,n,−i(xi))
2]/kθ,n,−i(xi, xi) is equal to −2 times the conditional log-likelihood of ξ(xi),

given (ξ(x1), ..., ξ(xi−1), ξ(xi+1), ..., ξ(xn)), under the covariance parameters ρ, σ2. This estima-
tor is used in Rasmussen and Williams [2006], Zhang and Wang [2010].

We remark that we are in the well-specified setting for covariance parameter estimation.
As already known Ibragimov and Rozanov [1978], Ying [1991], Zhang [2004], the parameters
ρ0 and σ2

0 are non-microergodic and can not be estimated consistently. The product ρ0σ
2
0

is microergodic and Ying [1991] shows the consistency and asymptotic normality of the ML
estimator ρ̂MLσ̂

2
ML obtained from (2.3).

In [J9] we show the strong consistency of ρ̂lCV σ̂2
lCV . In the sequel, we let ∆i = xi− xi−1 for

n ∈ N, i = 2, . . . , n.
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Theorem 2.15. Assume that

lim sup
n→+∞

max
i=2,...,n

∆i = 0. (2.18)

Assume that there exists (ρ̃, σ̃2) in Θ so that ρ̃σ̃2 = θ0σ
2
0. Then we have

ρ̂lCV σ̂
2
lCV

a.s.→ ρ0σ
2
0 . (2.19)

Then, we show a central limit theorem in [J9].

Theorem 2.16. Consider the same assumptions as in Theorem 2.15. Assume further that
either aB < ρ0σ

2
0; Ab > ρ0σ

2
0 or aB > ρ0σ

2
0; Ab < ρ0σ

2
0 hold. Then we have

√
n

ρ0σ2
0τn

(ρ̂lCV σ̂
2
lCV − ρ0σ

2
0)

D−−−−→
n→∞

N (0, 1). (2.20)

The quantity τ2
n depends on how the underlying design points {x1, . . . , xn} have been chosen.

More precisely,

τ2
n =

2

n

n−1∑
i=3

[(
∆i+1

∆i + ∆i+1
+

∆i−1

∆i + ∆i−1

)2

+ 2
∆i∆i+1

(∆i + ∆i+1)2

]
. (2.21)

In Theorem 2.16, the condition aB < ρ0σ
2
0 ; Ab > ρ0σ

2
0 or aB > ρ0σ

2
0 ; Ab < ρ0σ

2
0 ensures

that the derivative with respect to ρ or σ2 of the sum in (2.17) will be equal to zero for n
large enough almost surely, by applying Theorem 2.15. This is used in the proof of Theorem
2.16. A similar assumption is made in Ying [1991], where the parameter domain for (ρ, σ2) is
(0,∞)× [b, B] or [a,A]× (0,∞).

In the following proposition, we show that the quantity τ2
n in Theorem 2.16 is lower and

upper bounded, so that the rate of convergence is always
√
n in this theorem.

Proposition 2.17. We have, for any choice of the triangular array of design points {x1, ..., xn}
satisfying (2.18),

2 ≤ lim inf
n→∞

τ2
n ≤ lim sup

n→∞
τ2
n ≤ 4. (2.22)

By the previous proposition, the asymptotic variance of the limiting distribution of ρ̂lCV σ̂2
lCV−

ρ0σ
2
0 is always larger than that of the ML estimator. Indeed, we have (

√
n/[ρ0σ

2
0 ])(ρ̂MLσ̂

2
ML −

ρ0σ
2
0)

D−−−−→
n→∞

N (0, 2), see Ying [1991]. This fact is quite expected as ML estimates usually per-
form best when the covariance model is well-specified, as is the case here. It is also interesting
to remark that the asymptotic variance is always the same for ML while it depends on the
triangular array of observation points for CV.

As one can check easily, the regular design, defined by ∆i = 1
n−1 for all i = 2, . . . , n, does not

yield the limiting variance of the ML estimator. Instead, we have τ2
n →n→∞ 3 for this design.

However, in Proposition 2.18, we exhibit a particular design realizing the limiting variance of
the ML estimator: lim

n→∞
τ2
n = 2. In fact, the bounds in (2.22) are sharp as shown in the following

proposition.

Proposition 2.18. (i) Let {x1, . . . , xn} be such that x1 = 0, for i = 2, ..., n− 1,

∆i =

(1− γn) 2
n if i is even,

2γn
n if i is odd,
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where γn ∈ (0, 1), and ∆n = 1−
∑n−1
i=2 ∆i. Then, taking γn = 1/n, we get τ2

n →
n→∞

4.
(ii) Let {x1, . . . , xn} and 0 < α < 1 be such that x1 = 0, ∆i = 1/(i !) for i = bnαc+ 1, . . . , n

and ∆2 = · · · = ∆bnαc = (1 − rn)/(bnαc − 1) with rn =

n∑
i=bnαc+1

∆i. Then
n∑
i=2

∆i = 1 and

τ2
n →
n→∞

2.

Finally, for proving Theorems 2.15 and 2.16, we follow the same general proof architecture
as in Ying [1991] for ML, but our proofs contain several new elements. In particular, the
computations are globally more involved, Taylor expansions with two variables (each variable
being an interpoint distance ∆i) are needed and central limit theorems for dependent random
variables are used. We refer to [J9] for more discussion and for the proofs.

Maximum likelihood in the bivariate case [J8] In [J8] we consider a bivariate Gaussian
process ξ(2) = (ξ1, ξ2) with matrix covariance function k

(2)
θ0

= (ki,j,θ0)i,j=1,2. We let θ0 =

(ρ0, σ
2
1,0, σ

2
2,0, c0) ∈ (0,∞)3 × (−1, 1) and we let for i, j ∈ {1, 2} and x1, x2 ∈ R,

cov(ξi(x1), ξj(x2)) = ki,j,θ0(x1 − x2) = σi,0σj,0 [1i=j + c01i 6=j ] e
−ρ0|x1−x2|.

The parameters σ2
1,0 and σ2

2,0 are the variances of ξ1 and ξ2. The parameter ρ0 is an inverse
correlation length and c0 is the correlation between ξ1(x) and ξ2(x) for all x ∈ R. We remark
that here the correlation functions of ξ1 and ξ2 are the same and that the correlation between
ξ1(x) and ξ2(x) does not depend on x. While this can be a restriction in practice, it has two
main benefits. First, it is guaranteed that k(2)

θ0
is indeed a matrix covariance function for any

θ0 ∈ (0,∞)3 × (−1, 1). Second, when ξ1 and ξ2 are observed at the same n observation points
x1, . . . , xn, then the resulting 2n× 2n covariance matrix can be written as a Kronecker product
involving the n × n correlation matrix (e−ρ0|xi−xj |)i,j=1,...,n (which inverse is tridiagonal and
has an explicit expression as discussed above). We refer to [J8] for more details. This last fact is
crucial for the analysis in [J8] (furthermore, this Kronecker product also entails a computational
benefit for evaluating the likelihood criterion).

We consider the parametric model of bivariate covariance functions {k(2)
θ ; θ ∈ Θ}, where

θ = (ρ, σ2
1 , σ

2
2 , c), where k

(2)
θ is defined as k(2)

θ0
with θ0 replaced by θ and where Θ is a compact

subset of (0,∞)3 × (−1, 1).
In Zhang and Cai [2015], it is shown that the parameters ρ, σ2

1 and σ2
2 are non-microergodic

and that the parameters ρσ2
1 , ρσ2

2 and c are microergodic.
Let us consider that for each n ∈ N, ξ1 and ξ2 are observed at (x1, . . . , xn) = (x

(n)
1 , . . . , x

(n)
n )

where (x
(n)
i )n∈N,i=1,...,n is a triangular array of points in [0, 1], so that (x1, . . . , xn) are two

by two distinct and become dense in [0, 1] as n → ∞. Let us consider the ML estimator
θ̂ML = (ρ̂ML, σ̂

2
1,ML, σ̂

2
2,ML, ĉML) of θ0, defined as in (2.11) (see also [J8]). Then, in [J8],

we show the consistency and asymptotic normality of the ML estimators of the microergodic
parameters. We state the asymptotic normality result here.

Theorem 2.19. If θ0 belongs to the interior of Θ then, as n→∞,

√
n


ρ̂MLσ̂

2
1,ML − ρ0σ

2
1,0

ρ̂MLσ̂
2
2,ML − ρ0σ

2
2,0

ĉ− c0

 D−→ N (0,Σ) , (2.23)
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where Σ =


2(ρ0σ

2
1,0)2 2(ρ0c0σ01σ02)2 ρ0c0σ

2
1,0(1− c20)

2(ρ0c0σ01σ02)2 2(ρ0σ
2
2,0)2 ρ0c0σ

2
2,0(1− c20)

ρ0c0σ
2
1,0(1− c20) ρ0c0σ

2
2,0(1− c20) (c20 − 1)2

 .

We remark that the asymptotic covariance matrix does not depend on the triangular array
of observation points, similarly as ML in the univariate case Ying [1991] and contrary to CV
[J9].
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Chapter 3

Other contributions to Gaussian

processes

3.1 Application to metamodeling in nuclear engineering [J4]

In the application article [J4], we investigate the use of Gaussian processes for metamodeling
of computer codes in nuclear engineering. We consider the Germinal code Roche and Pelletier
[2000] for which Gaussian processes globally compare favorably to kernel methods and neural
networks. In addition, we show how they can help interpreting the behavior and instabilities of
the code.

The context The Germinal code enables to simulate the thermalmechanical behavior of a
fuel pin. A fuel pin is a nuclear component which is a part of a fuel assembly in fast breeding
reactors. A schematic illustration is given in Figure 3.1. In our setting, the Germinal code works
schematically as follows. A number of scalar parameters of interest is chosen. A preprocessor is
built, which constructs, for each vector of these parameters, a (more complex) input file which
can be interpreted by the Germinal code. The Germinal code then produces a (also potentially
complex) output file, from which a scalar variable of interest is extracted, by a postprocessor.
This process is illustrated in Figure 3.2 and is standard in large scale studies involving computer
models.

Hence, a computer experiment here consists in selecting an input point x in [0, 1]d with d = 11

(after renormalization of the physical inputs) and in observing fcode(x) ∈ R. The components
in x are related to the use cycle of the fuel pin, to its geometry, to the input power map and
to the volume of expansion for fission gas. The output fcode(x) is the fusion margin, which is
important because it is an indicator of melting phenomena, which are hazardous and need to be
avoided. An observation of fcode(x) corresponds to the process in Figure 3.2 and takes around
one minute. We refer to [J4] for more details on the context of this study.

Prediction results We model fcode as a realization of a Gaussian process with mean function
zero and which covariance function k is assumed to belong to a parametric set {kθ; θ ∈ Θ} where
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Figure 3.1: Context of [J4] in Section 3.1. A schematic representation of a fuel pin and a fuel
assembly in nuclear fast-neutron reactors.

Figure 3.2: Context of [J4] in Section 3.1. Process for using the Germinal code.
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θ = (σ2, `1, . . . , `d, δ) and where kθ(x1, x2) = σ2ǩ`1,...,`d(x1 − x2) + δ21x1=x2
with ǩ`1,...,`d the

(stationary) Matérn 3/2 correlation function with correlation lengths `1, . . . , `d (see [J4]). Since
ǩ`1,...,`d(x) is a continuous function of x, the term δ21x1=x2

is called a nugget effect Andrianakis
and Challenor [2012] and is here meant to model the numerical instabilities of the code. More
precisely, it can happen in practice that fcode(x1) is significantly different from fcode(x2) even
though x1 and x2 are close. The value of δ is interpreted as the average order of magnitude of
these instabilities. The covariance parameters can be estimated by ML and we let the resulting
Gaussian process conditional mean and variance functions be denoted by mn,θ̂ and kn,θ̂ (see
[J4]).

We compare the predictions obtained from the Gaussian process model with those obtained
by kernel methods and neural networks. The kernel method predictions are computed as de-
scribed in Wahba [1990]. The neural network predictions are obtained from the uncertainty
quantification platform Uranie Gaudier [2010], developed at the French alternative energies and
atomic energy commission (CEA).

The three methods are based on a learning basis (x1, fcode(x1)), . . . , (xn, fcode(xn)) with
n = 3, 807. It takes a few hours to fit the Gaussian process model (covariance parameter
estimation) and to fit the neural network (architecture and coefficient optimization by gradient
descent and cross validation). On the other hand, there is no need to optimize parameters for
the kernel method.

Then, the time required to compute a prediction f̂(x) for a new point x (f̂ = mn,θ̂ for the
Gaussian process model) is about 0.004 seconds for Gaussian processes and kernel methods and
about 0.00015 seconds for the neural network. These prediction times are much shorter than the
computation time for Germinal, and allow for a massive number of predictions. In the context
of [J4], the final aim is to use these predictions to perform a multiobjective optimization of the
fuel pin design. Neural networks are beneficial for prediction time here.

We consider a test base (xt,1, fcode(xt,1)), . . . , (xt,N , fcode(xt,N )) with N = 1, 613, from which
we compute the root mean square error (RMSE) (that should be minimal) defined by

RMSE2 =
1

N

N∑
i=1

(
f̂code(xt,i)− fcode(xt,i)

)2

. (3.1)

Furthermore, the criterion RMSE can be estimated from the learning base for the three pre-
dictors. We let R̂MSE be its estimate. For Gaussian processes it is computed using the fast
CV formula (2.7). For kernel methods, it is computed using an analog of (2.7) and for neural
networks it is computed by directly predicting the observed values of the learning base. We refer
to [J4] for more details.

The values of RMSE and R̂MSE for the three predictors are given in Table 3.1. We observe
that Gaussian process models provide the smallest value of RMSE. Furthermore, Gaussian
processes and kernel methods enable to better estimate the value of RMSE than neural networks,
that are slightly over-optimistic.

Numerical instability analysis and detection For the results of Table 3.1, the estimate
of the nugget variance is δ̂ = 28.5◦. This value is comparable with the value of RMSE for
the Gaussian process model. This is an indication that numerical instabilities exist in the code
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R̂MSE RMSE

Neural networks 34.5◦ 38.5◦

Gaussian processes 35.6◦ 36.1◦

Kernel methods 44.3◦ 44.5◦

Table 3.1: Context of [J4] in Section 3.1. Values of RMSE and R̂MSE for the three predictors
of the Germinal code function.

  
position

Figure 3.3: Context of [J4] in Section 3.1. The values of the Germinal code are plotted for input
points along a segment of [0, 1]11. The x-axis indicates the position on the segment. The y-axis
indicates the code output (fusion margin). The left hand-side corresponds to the first version
of the preprocessor. We observe numerical instabilities. We also show the Gaussian process
prediction and confidence intervals (see [J4] for details) that show that the nugget estimate δ̂ is
appropriate. We also observe two outlier values that can be automatically detected by Gaussian
processes, kernel methods and neural networks [J4]. The right hand-side corresponds to the
improved version of the preprocessor. The improvement results in the absence of numerical
instabilities on this segment.

function fcode. In order to investigate them, we plot in Figure 3.3 the values of the code function,
for input points along a segment of [0, 1]11. Figure 3.3 indeed clearly highlights the presence of
numerical instabilities. In [J4] we explain how they can be analyzed and how the preprocessor
can be improved. This results in a new version of the code function fcode, for which, with the
same segment of input points, no instabilities are visible anymore, as we show in Figure 3.3.
We show in [J4] that, with the new version of fcode, the new estimate of the nugget variance is
δ̂ = 19.8◦ and the new error criterion is RMSE = 27.2◦. Hence, the conclusion of [J4] is that the
estimator of the nugget variance in Gaussian process models is a good quantifier of the presence
of numerical instabilities.
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3.2 Aggregation of submodels for large data sets [J10,S2]

As discussed in Section 2.3, the ML or CV estimation of covariance parameters can become
computationally too costly when n is too large (typically above 10, 000 in practice). Further-
more, for a Gaussian process with covariance function k, computing the conditional mean and
covariance functions in (2.1) and (2.2) entails a similar issue (cost of O(n3) in time and O(n2)

in storage).
Classical methods of the literature are dedicated to this problem, in particular inducing points

Hensman et al. [2013], Nickson et al. [2015], low rank approximations Stein [2014], Gaussian
Markov Random Fields Rue and Held [2005] and compactly supported covariance functions and
covariance tapering Stein [2013], Kaufman et al. [2008], Furrer et al. [2006] (see also Section
2.3). Also, some methods aggregate submodels or ‘experts’ based on subsets of the data Hinton
[2002], Tresp [2000], Deisenroth and Ng [2015].

Aggregation of submodels In [J10,S2], we address this last type of methods, based on
aggregating several Gaussian process submodels. We let X = (x1, . . . , xn) be a sequence of ob-
servation points in Rd. We let X1, . . . , Xq be sequences of observation points so that X1, . . . , Xq

constitute a partition of X. We let ni be the number of elements of Xi so that we have
n1 + . . . + nq = n. For i = 1, . . . , q, we let y(i) be the ni × 1 vector (ξ([Xi]1), . . . , ξ([Xi]ni))

>

where Xi = ([Xi]1, . . . , [Xi]ni). Then, from (2.1), for x ∈ Rd, mi,ni(x) = k(x,Xi)k(Xi, Xi)
−1y(i)

and ki,ni(x, x) = k(x, x) − k(x,Xi)k(Xi, Xi)
−1k(Xi, x) are the conditional mean and variance

of ξ(x) given y(i).
In the literature, several aggregated predictors of the form

magg(x) =

q∑
i=1

αi(k1,n1
(u, u), ..., kq,nq (u, u), k(u, u))mi,ni(u) (3.2)

are suggested, with αi : Rq+1 → R. They are meant to approximate the full conditional mean
given the n observations of ξ. These aggregation techniques include product of expert (POE)
Hinton [2002], generalized product or expert (GPOE) Cao and Fleet [2014], Bayesian committee
machines (BCM) Tresp [2000] and robust Bayesian committee machines (RBCM) Deisenroth
and Ng [2015]. We refer to [J10,S2] for the expressions of αi for them. These aggregation
methods also provide an aggregated variance kagg(x, x), that is meant to approximate the full
conditional variance. The computational benefit of (3.2) is clear, since the time cost is O(n3

1) +

. . .+O(n3
q)+O(q), where the O(n3

i ) is the cost of computing mi,ni(x) for i = 1, . . . , q and where
the O(q) is the aggregation cost. This is much smaller than n3 when q is large.

However, we show in [S2] that aggregations given by (3.2) can lead to mean square prediction
errors that do not go to zero as n→∞, when considering triangular arrays of observation points
that become dense in a compact set D. In other words these aggregations are asymptotically
inconsistent.

Proposition 3.1. Let D be a compact nonempty subset of Rd. Let ξ be a Gaussian process
on D with mean zero and stationary covariance function k. Assume that k is defined on Rd,
continuous and satisfies k(x, y) > 0 for two distinct points x, y ∈ D such that D contains two
open balls with strictly positive radii and centers x and y. Assume also that k has a positive
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spectral density (defined by k̃(ω) = (2π)−d
∫
Rd k(x) exp(−ıx>ω)dx with ı2 = −1 and for ω ∈ Rd).

Assume that there exists 0 ≤ A <∞ and 0 ≤ T <∞ such that 1/k̃(ω) ≤ A(1 + ||ω||T ).
For any triangular array of observation points (x

(n)
i )n∈N,i=1,...,n and for n ∈ N, we let X be

the sequence (x
(n)
1 , . . . , x

(n)
n ) and we let X1, ..., Xqn be sequences constituting a partition of X.

Finally, for n ∈ N we let magg(x) be obtained from (3.2) with q replaced by qn. We also assume
that

αi(v1(x), ..., vqn(x), v) ≤ a(vi(x), v)∑qn
l=1 b(vl(x), v)

,

where a and b are given deterministic continuous functions from ∆ = {(x, y) ∈ (0,∞)2;x ≤ y}
to [0,∞), with a and b positive on ∆̊ = {(x, y) ∈ (0,∞)2;x < y}.

Then, there exists a triangular array of observation points (x
(n)
i )n∈N,i=1,...,n such that

limn→∞ supx∈D mini=1,...,n ||x(n)
i − x|| = 0, a triangular array of sequences X1, ..., Xqn form-

ing a partition of X, with qn →n→∞ ∞ and qn/n →n→∞ 0, and such that there exists x0 ∈ D
such that

lim inf
n→∞

E(ξ(x0)−magg(x0))
2
> 0. (3.3)

The intuitive explanation of the above proposition is that the aggregation methods for which
it applies ignore the correlations between the different predictorsmi,ni(x) for i = 1, . . . , q. Hence,
for prediction points around which the density of observation points is smaller than on average,
too much weight can be given to predictors based on distant observation points.

In Proposition 3.1, the assumptions made on k are satisfied by many stationary covariance
functions, including those of the Matérn model, with the notable exception of the Gaussian
covariance function (Proposition 1 in Vazquez and Bect [2010b]). We show in [S2] that the
proposition applies to the POE, GPOE, BCM and RBCM methods introduced above. Hence,
Proposition 3.1 constitutes a significant theoretical drawback, and warning for practical use, for
an important class of aggregation techniques in the literature.

Our suggested aggregation procedure We letR(x) be the covariance matrix ofmn1,...,nq (x) =

(m1,n1(x), . . . ,mq,nq (x))> and we let r(x) be the q×1 covariance vector between (m1,n1(x), . . . ,mq,nq (x))

and ξ(x) for x ∈ Rd. Then, in [J10], we suggest to approximate the full conditional mean mn(x)

by the optimal linear combination of m1,n1
(x), . . . ,mq,nq (x). That it we suggest the aggregated

predictor
magg(x) = r(x)>R(x)−1mn1,...,nq (x) (3.4)

and the corresponding aggregated predictive variance (approximating the full conditional vari-
ance)

kagg(x, x) = k(x, x)− r(x)>R(x)−1r(x).

The most computationally costly step for computingmagg(x) is to compute the q×q matrix R(x),
see [J10]. Unfortunately, this computation depends on the point x where one aims at predicting
ξ(x). In [J10] we show that, for appropriate choices of q and n1, . . . , nq, the computational
cost for performing r predictions is O(n) in storage and O(rn2) in time. Hence there is a
significant improvement in storage compared to the computation of the full conditional mean,
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and a potentially significant improvement in time if r is smaller than n. Finally, the computation
of magg(x) is easy to parallelize, which is contrary to that of the full conditional mean.

In [J10,S2], we show that the aggregated prediction and variance magg(x) and kagg(x, x)

have several good theoretical properties. They have similar interpolation properties as the
full conditional mean and variance and they provide a Gaussian conditional distribution given
(m1,n1

(x), . . . ,mq,nq (x)). Furthermore, they provide exact conditional means and variances
(given the n observation points) for a Gaussian process with a slightly different covariance
function (where this difference can be bounded). We refer to [J10,S2] for details on these
theoretical properties.

Consider now covariance parameter estimation. In [J10] we suggest a stochastic gradient
descent algorithm for optimizing the leave one out mean square error in (2.6), with mθ,n,−i(xi)

replaced by a leave one out version of (3.4). The motivation for stochastic gradient is that the
cost of computing r leave one out errors, with the aggregation procedure, is proportional to r.
Hence, at each step of the algorithm, the gradient is evaluated on a random sample of indices
in (2.6). This estimation procedure is implemented in [J10] for n = 10, 000, in which case the
computation time is around a few hours with a mono-threaded implementation.

Finally, a tree version of the aggregation procedure is also suggested in [J10] and implemen-
tations of the procedure are publicly available on the web-site http://www.clementchevalier.
com/index.php/r-packages.

Numerical results We present some practical comparisons of our suggested aggregation pro-
cedures with other methods. For a given test base defined similarly as in Section 3.1, we consider
the MSE = RMSE2 criterion (that should be minimized) and the mean negative log probability
(MNLP) criterion defined by

MNLP =
1

nt

nt∑
i=1

1

2
log(2πkagg(xt,i, xt,i)) +

(magg(xt,i, xt,i)− f(xt,i))
2

2kagg(xt,i, xt,i)
,

where f is any function that is modeled as a Gaussian process realization and where magg and
kagg are the mean and variance provided by any aggregation procedure. The MNLP takes into
account both the prediction errors and the predictive variances and should be minimized.

In Figure 3.4, we show boxplots of mean square errors (over random design and prediction
points) for predicting the analytic function Hartman 18 in dimension d = 18, where the total
number of observation points is 106 (see [J10] for details). We observe that the mean square
errors obtained from our aggregation procedures are significantly smaller than those obtained
from nearest neighbor based methods.

Finally, in Table 3.2, we show prediction results in the context of experimental data on
the behavior of a steel test piece subject to cycles of tension-compression. For n = 10, 000

and d = 6, we compare our proposed aggregation procedure to the product of experts and
Bayesian committee machines techniques presented above and to the predictor that uses the
subset of observation points Xi yielding the smallest conditional variance, with i ∈ {1, . . . , q}.
Our suggested procedure provides the best prediction criteria.
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Figure 3.4: Context of [J10] in Section 3.2. Boxplots of mean square errors (in log scale), for
our procedure (Nested), a variant (Nested+), predictions based on nearest neighbors (Near1000

and Near100) and predictions based on 1, 000 random points (Kriging1000). We use either con-
catenated covariance parameters (left panel) or estimated covariance parameters (right panel).
We refer to [J10] for the full specification of the setting of this figure.

SPV PoE GPoE1 GPoE2 BCM RBCM Nested
MSE 0.00416 0.0662 0.0033 0.0662 0.604 0.0625 0.00321

MNLP −1.86 7.25 −0.949 −0.765 107 27.2 −1.97

Table 3.2: Context of [J10] in Section 3.2. Bold figures indicate each line’s best performing
aggregation method. The aggregation methods under study are our proposal (Nested), product
of experts (PoE, GPoE1 and GPoE2), Bayesian committee machines (BCM and RBCM) and
the predictor using the subset of observation point Xi, i ∈ {1, . . . , q}, yielding the smallest
conditional variance (SPV). We refer to [J10] for the full details.

38



CHAPTER 3. OTHER CONTRIBUTIONS TO GAUSSIAN PROCESSES

3.3 Consistency of stepwise uncertainty reduction strate-

gies [J15]

Sequential designs In [J15], we address iterative (or sequential) designs (of experiments)
for Gaussian processes. We consider here a continuous Gaussian process ξ with values in R,
defined on a compact set X of Rd (the setting in [J15] is slightly more general). Then, in the
case of a sequential design, for i ∈ N, the observation point i + 1 is selected as a function of
ξ(x1), . . . , ξ(xi). Hence, in this section, the observation points 1 to i become random points
X1, . . . , Xi ∈ X.

Iterative designs are now routinely used for estimating quantities of interest related to the
Gaussian process realization ξ. For instance, iterative designs exist for mono-objective opti-
mization Mockus et al. [1978], Jones et al. [1998], multi-objective optimization Williams et al.
[2000], Emmerich et al. [2006], Picheny [2014], Binois [2015], Gramacy et al. [2016], Feliot et al.
[2016] and for estimating contour lines, probabilities of failures, profile optima and excursion
sets Ranjan et al. [2008], Vazquez and Bect [2009], Picheny et al. [2010], Bect et al. [2012], Zulu-
aga et al. [2013], Chevalier et al. [2014], Ginsbourger et al. [2014], Wang et al. [2016]. Common
applications include for instance computer experiments Jones et al. [1998], Forrester et al. [2008]
and machine learning Shahriari et al. [2016].

Stepwise uncertainty reduction Here, we focus on a class of sequential designs called
stepwise uncertainty reduction. We let M be the set of Gaussian measures, that is the set of
distributions of continuous Gaussian processes on X (an element ν in M is characterized by a
mean and covariance function). We refer to [J15] for more technical details.

Then, we consider a function H : M→ [0,+∞) that we call an uncertainty functional. The
interpretation is that, for each ν ∈M, H(ν) quantifies the uncertainty we have on the realization
of a Gaussian process with distribution ν. Smaller values of H(ν) indicate less uncertainty.

Let P ξn be the conditional distribution of ξ given ξ(X1), . . . , ξ(Xn). Let mn, kn, En and
Pn be the corresponding mean function, covariance function, expectation and probability. For
x ∈ X, let Condx,ξ(x)(P

ξ
n) be the conditional distribution of ξ given ξ(X1), . . . , ξ(Xn), ξ(x).

Conditionally to ξ(X1), . . . , ξ(Xn), the quantity H
(
Condx,ξ(x)(P

ξ
n)
)
is the uncertainty after

having observed ξ(x). Hence, a good choice of observation point x results in a small value of
H
(
Condx,ξ(x)(P

ξ
n)
)
. The quantity H

(
Condx,ξ(x)(P

ξ
n)
)
is random because ξ(x) is random given

ξ(X1), . . . , ξ(Xn). Hence, we consider its expectation

Jn(x) = En
(
H
(
Condx,ξ(x)(P

ξ
n)
))
.

A stepwise uncertainty reduction (SUR) strategy then consists in letting the observation point
Xn+1 be defined by

Xn+1 ∈ argmin
x∈X

Jn(x). (3.5)

Thus, Xn+1 is a function of ξ(X1), . . . , ξ(Xn). Furthermore, there is no need to observe ξ(x) to
compute Jn(x). In practice, Jn often needs to be minimized numerically. Hence, SUR strategies
are applied to cases where observing ξ(x) is costly (for instance when ξ(x) represents the output
of a computer model), and in particular more costly than minimizing Jn.
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Let us consider two examples of uncertainty functionals. First, let

H(ν) = E(sup
x∈X

ξν(x))− max
x∈X:kν(x,x)=0

mν(x) (3.6)

where mν and kν are the mean and covariance functions of the distribution ν ∈ M and where
ξν is a Gaussian process with distribution ν. For this uncertainty functional, the quantities
of interest are the global maximum and maximizer of ξ. The functional can be interpreted as
the average difference between the global maximum of ξν and the observed maximum (over the
input points at which the variance is zero). Minimizing the corresponding Jn yields

Xn+1 ∈ argmax
x∈X

En

([
max

u∈X;kn(u,u|x)=0
ξ(u)− max

u∈X;kn(u,u)=0
ξ(u)

]+
)
,

where kn(u, u|x) is the conditional variance of ξ(u) given ξ(X1), . . . , ξ(Xn), ξ(x). The above
display corresponds to the celebrated expected improvement criterion for global optimization
Mockus et al. [1978], Jones et al. [1998]. The second example is defined by

H(ν) =

∫
X
pν(u) (1− pν(u)) du (3.7)

where pν(u) = E(1ξν(u)≥T ), where ξν is a Gaussian process with distribution ν and T ∈ R is a
fixed threshold. In this case, the quantity of interest is the excursion set {u ∈ X; ξ(u) ≥ T}.

Consistency results In [J15], we prove the consistency of SUR strategies, under regular-
ity conditions, and where the uncertainty functional possesses the following supermartingale
property.

Definition 3.2. An uncertainty functional H possesses the supermartingale property if, for any
ν ∈ M and x ∈ X, we have E(H(Condx,ξν(x)(ν))) ≤ H(ν), where ξν is a Gaussian process with
distribution ν and where Condx,ξν(x)(ν) is the conditional distribution of ξν given ξν(x).

The supermartingale property is rather natural, since it means that adding a new observation
point decreases the uncertainty on average. In [J15], we prove the following general consistency
result.

Theorem 3.3. Let H denote a non-negative, measurable functional on M with the super-
martingale property. Let (Xn) be a sequence of random points in X so that (3.5) holds. Then
H(P ξn) − infx∈X Jn(x) goes to zero almost surely. If, moreover, continuity conditions given in
Theorem 3.10 in [J15] hold, then H(P ξn)→ 0 almost surely.

In Theorem 3.3, consistency means that the uncertainty measure converges to zero. In [J15],
we also provide in Corollary 3.17 a similar general consistency result for uncertainty functionals
related to a loss function for estimating a quantity of interest. In this Corollary 3.17, there are
fewer continuity conditions that need to be satisfied. Finally, in [J15], we apply the general
results to four examples of SUR strategies, including those defined by (3.6) and (3.7). We give
the details in the next theorem.

Theorem 3.4. Let (Xn)n∈N be defined by (3.5) and (3.6). Let Mn = maxu∈X;kn(u,u)=0 ξ(u).
Then almost surely and in L1 as n→∞, H(P ξn)→ 0 and Mn → supu∈X ξ(u).
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Let also (Xn)n∈N be defined by (3.5) and (3.7). Then almost surely and in L1 as n → ∞,
H(P ξn)→ 0 and, with pn(u) = Pn(ξ(u) ≥ T ),∫

X

(
1ξ(u)≥T − pn(u)

)2
du→ 0

and ∫
X

(
1ξ(u)≥T − 1pn(u)≥1/2

)2
du→ 0.

Finally, let us mention that there exist several references providing consistency or rate of
convergence results for specific sequential designs with Gaussian processes, for instance expected
improvement Vazquez and Bect [2010a], Bull [2011] (Theorem 3.4 provides complementary or
additional results compared to these references) or Gaussian process upper confidence bounds
Srinivas et al. [2012]. In [J15], we restrict ourselves to proving consistency, but aim at a more
general framework than for existing references. Furthermore, to our knowledge, no results exist,
except in [J15], for proving the consistency of sampling criteria for excursion domain estimation
as in (3.7). Finally, note that it is shown that, for instance, the expected improvement crite-
rion can yield inconsistent estimates of the global maximum for some fixed continuous functions
Yarotsky [2013]. Our results can be interpreted as showing that these functions yielding incon-
sistency have probability zero, under the probability measure corresponding to the Gaussian
process model used.

3.4 Distribution inputs [J12]

In [J12], we aim at considering a Gaussian process ξ which input set is the set of probability
measures on R, with a finite moment of order 2, that we write W2(R). In applications, there
are indeed cases where output values can be observed for distributions inputs, for instance in
social sciences Flaxman et al. [2015] or engineering Radulescu et al. [2009].

Covariance functions based on the Monge-Kantorovich transport distance We con-
sider Gaussian processes with mean function zero and aim at constructing covariance functions
based on the Monge-Kantorovich (or Wasserstein) distance, with quadratic cost. For two dis-
tributions µ and ν on R with finite variances, this distance is defined as

W2(µ, ν) =

√
inf

π∈Π(µ,ν)

∫
R2

|x− y|2dπ(x, y),

where Π(µ, ν) is the set of distributions on R2 with first and second marginal distributions equal
to µ and ν. A feature of the Monge-Kantorovich distance for distributions on R is that this
minimization problem can be solved explicitly. More precisely, for a distribution µ on R, let Fµ
be its cumulative distribution function and let F−1

µ (t) = inf{u ∈ R;Fµ(u) ≥ t} be its quantile
function. Then we have

W2(µ, ν) =

√∫
R

(F−1
µ (t)− F−1

ν (t))2.

From the above expression, and from Schoenberg theorem (which is proved in Berg et al.
[1984]), we show in [J12] that the following functions kσ2,λ,H : W2(R)×W2(R)→ R, defined by

kσ2,λ,H(µ, ν) = σ2 exp
(
−λW2(µ, ν)2H

)
(3.8)
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are non-negative definite for (σ2, λ,H) ∈ (0,∞)2 × (0, 1]. In [J12], we also suggest an other
family of covariance functions that extends the Fractional Brownian motion on R, for which we
show that the corresponding covariance matrices are invertible, for sets of two-by-two distinct
input distributions.

Increasing-domain asymptotic results In [J12], we show that the proof techniques of my
PhD article [J3] can be extended to the case of distribution inputs. We consider a general
parametric family of covariance functions {kθ; θ ∈ Θ} on W2(R) and a triangular array of input
distributions satisfying the following conditions.

Condition 3.5. We consider a triangular array of input distributions {µ1, ..., µn} = {µ(n)
1 , ..., µ

(n)
n }

so that for all n ∈ N and 1 ≤ i ≤ n, µi has support in [i, i+K] with a fixed K <∞.

Condition 3.5 is inspired by increasing-domain asymptotic settings for Gaussian processes
on the real line. In [J12], we show the consistency and asymptotic normality of the ML esti-
mator of θ0 (in the well-specified case). We also show that predicting with the ML estimator
is asymptotically as good as predicting with the true covariance parameter. These results hold
under technical conditions that are listed in [J12]. We also show that, in a specific represen-
tative example, with random input distributions which densities are renormalized exponential
of Gaussian processes, all these technical conditions are satisfied. The proofs of the asymptotic
results in [J12] can be divided into two groups. For the proofs in the first group, we show that
the arguments of [J3] can be extended. The proofs in the second group are, on the other hand,
specific to distribution inputs and to the Monge-Kantorovich distance.

Numerical results We first compare the covariance functions in (3.8) with covariance func-
tions based on projecting the densities of the input distributions on finite dimensional spaces.
Projecting functional inputs on finite-dimensional spaces is indeed classical with computer ex-
periments Nanty et al. [2016], Muehlenstaedt et al. [2016]. We address random distribution
inputs, and let the output values be obtained from an analytical function. As quality criteria
for the Gaussian process models, we consider the RMSE criterion as in (3.1) and the proportion
of test values that are covered by the 0.9 confidence intervals. We write CIR0.9 for this second
criterion and we refer to [J12] for the full experimental setting. The results are given in Table
3.3, where our suggested kernel provides the best values of the quality criteria.

In another experimental setting, we compare our suggested Gaussian process model with the
kernel regression procedure of Póczos et al. [2013]. The results are given in Table 3.4 and, again,
show that our suggested procedure performs better.

3.5 Inequality constraints [J14,S5]

In [J14,S5], we consider a zero-mean Gaussian process ξ with covariance function k indexed
on [0, 1]d. We consider conditioning ξ by the event ξ ∈ E , where E is, for instance, a set of
bounded, increasing or convex functions. This event corresponds to inequality constraints for
ξ, as opposed to the more common case of equality constraints (for instance ξ(xi) = yi for
xi ∈ [0, 1]d and yi ∈ R).
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model RMSE CIR0.9

‘distribution’ 0.094 0.92

‘Legendre’ order 5 0.49 0.92

‘Legendre’ order 10 0.34 0.89

‘Legendre’ order 15 0.29 0.91

‘PCA’ order 5 0.63 0.82

‘PCA’ order 10 0.52 0.87

‘PCA’ order 15 0.47 0.93

Table 3.3: Context of [J12] in Section 3.4. Values of different quality criteria for the ‘distribution’,
‘Legendre’ and ‘PCA’ Gaussian process models. The ‘distribution’ Gaussian process model
is based on (3.8), while ‘Legendre’ and ‘PCA’ are based on linear projections of the input
distributions on finite-dimensional spaces. These finite dimensional spaces are based on the
Legendre polynomials and on principal component analysis and have dimensions indicated by
‘order’.

model RMSE CIR0.9

‘distribution’ 0.21 0.91

‘kernel regression’ 0.93

Table 3.4: Context of [J12] in Section 3.4. Comparison of our suggested procedure ‘distribution’
with the kernel regression procedure of Póczos et al. [2013] (this method does not provide
confidence intervals so that CIR0.9 is not calculated for it).
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Gaussian processes with inequality constraints are studied in Da Veiga and Marrel [2012],
Golchi et al. [2015], Riihimäki and Vehtari [2010]. They provide valuable models in applications
such as computer networking (monotonicity) Golchi et al. [2015], social system analysis (mono-
tonicity) Riihimäki and Vehtari [2010] and econometrics (monotonicity or positivity) Cousin
et al. [2016].

Finite dimensional representation Let d = 1 and consider equally-spaced knots {tj =

(j − 1)∆m}j=1,...,m with ∆m = 1/(m − 1) for m ∈ N. Then, Maatouk and Bay [2017] sug-
gests to consider a finite-dimensional Gaussian process, denoted by ξm, as the piecewise linear
interpolation of ξ at knots t1, · · · , tm:

ξm(x) =

m∑
j=1

ξ(tj)φj(x), (3.9)

where φ1 · · · , φm are hat basis functions given by

φj(x) :=

1−
∣∣∣x−tj∆m

∣∣∣ if
∣∣∣x−tj∆m

∣∣∣ ≤ 1,

0 otherwise.
(3.10)

We use ξm as an approximation of ξ, because inequality constraints on the function ξm

can be shown to be equivalent to finitely many inequality constraints constraints on ε =

(ξ(t1), . . . , ξ(tm))>. More precisely, let

Eκ :=


{f ∈ C([0, 1],R) s.t. ` ≤ f(x) ≤ u, ∀x ∈ [0, 1]} if κ = 0,

{f ∈ C([0, 1],R) s.t. f is non-decreasing} if κ = 1,

{f ∈ C([0, 1],R) s.t. f is convex} if κ = 2,

(3.11)

which correspond to boundedness, monotonicity, and convexity constraints and where −∞ ≤
` < u ≤ +∞ are fixed. Let

Cκ :=


{c ∈ Rm; ∀ j = 1, · · · ,m : ` ≤ cj ≤ u} if κ = 0,

{c ∈ Rm; ∀ j = 2, · · · ,m : cj ≥ cj−1} if κ = 1,

{c ∈ Rm; ∀ j = 3, · · · ,m : cj − cj−1 ≥ cj−1 − cj−2} if κ = 2.

(3.12)

Then, it is observed in Maatouk and Bay [2017] that we have, for κ = 0, 1, 2, ξm ∈ Eκ if and
only if ε ∈ Cκ. Thus, for instance, simulations of trajectories of ξm conditionally to ξm ∈ Eκ can
be obtained, by simulating realizations of the vector ε, conditionally to ε ∈ Cκ.

The definitions of the hat functions φj and of the sets Cκ can be extended to d ≥ 2, by
tensorization Maatouk and Bay [2017], and as we also explain in [J14]. Nevertheless, this
framework is currently typically limited to dimensions d = 1, 2, 3 in practice. We are currently
working on other approaches for larger dimensions.

One of the contributions of [J14] is to suggest a generalization of the sets Eκ and Cκ in (3.11)
and (3.12). Indeed, we consider inequality constraints of the form ε ∈ C, where

C =

{
c ∈ Rm; ∀ i = 1, . . . , q : `i ≤

m∑
j=1

λi,jcj ≤ ui
}
,
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where the λi,j ’s encode the linear operations and where the li’s and ui’s represent the lower and
upper bounds. In [J14], we explain how to specify C to impose combinations of constraints, such
as boundedness and monotonicity.

Simulating from the posterior distribution Let d ∈ N here. Let Λ = [λi,j ]i=1,...,q,j=1,...,m

and let ` = (`1, . . . , `q)
> and u = (u1, . . . , uq)

>. For n ∈ N and x1, . . . , xn ∈ [0, 1]d let Φ =

[φj(xi)]i=1,...,n,j=1,...,m. Let E be a set of functions so that ξm ∈ E if and only if ε ∈ C. Then, as
explained in [J14], simulating conditional trajectories of ξm given ξm(x1) = y1, . . . , ξm(xn) = yn

and given ξm ∈ E , boils down to simulating conditional realizations of ε given Φε = y =

(y1, . . . , yn)> and given ` ≤ Λε ≤ u. This in turn boils down to simulating a Gaussian vector εc
(which mean vector and covariance matrix are expressed in [J14]), conditionally to ` ≤ εc ≤ u.

This type of simulation is performed in Maatouk and Bay [2017] by a method called rejec-
tion sampling from the mode. In [J14], we study several other advanced Monte Carlo methods
for this simulation. We consider the Hastings-Metropolis algorithm Murphy [2012], the Gibbs
sampler Taylor and Benjamini [2017], exponential tilting Botev [2017] and Hamiltonian Monte
Carlo Pakman and Paninski [2014]. We refer to [J14] for detailed simulation results. Gener-
ally speaking, we find that exponential tilting and Hamiltonian Monte Carlo provide the most
efficient results, and we recommend to use the Hamiltonian Monte Carlo method.

Constrained maximum likelihood We let d ∈ N here. For simplicity of exposition, in the
rest of Section 3.5, we do not consider the finite-dimensional Gaussian process ξm anymore and
we consider inequality constraints of the type ξ ∈ Eκ with

Eκ =


f : [0, 1]d → R, f is C0 and ∀x ∈ X, ` ≤ f(x) ≤ u if κ = 0,

f : [0, 1]d → R, f is C1 and ∀x ∈ X, ∀i = 1, · · · , d, ∂
∂xi

f(x) ≥ 0 if κ = 1,

f : [0, 1]d → R, f is C2 and ∀x ∈ X, ∂2

∂x2 f(x) is a non-negative definite matrix if κ = 2.

(3.13)
We refer to [J14] for the various algorithmic and theoretical extensions when ξm is considered

instead of ξ. Consider a parametric family {kθ; θ ∈ Θ} of covariance functions on [0, 1]d and
assume that ξ has covariance function kθ0 with θ0 ∈ Θ. Consider also an observation vector
y = (ξ(x1), . . . , ξ(xn))>. For estimating the parameter θ0, it is of course possible to use the ML
estimator presented in Section 2.1. Since this estimator does not explicitly use the information
ξ ∈ Eκ, we call it the unconstrained ML estimator. In [J14], we remark that the logarithm of
the conditional density function of y given ξ ∈ Eκ, under covariance function kθ, is

LC,n(θ) = log pθ(y) + logPθ(ξ ∈ Eκ|y)− logPθ(ξ ∈ Eκ), (3.14)

where the first term is the logarithm of the probability density function of y, under covariance
function kθ (unconstrained log-likelihood), and the last two terms depend on the inequality
constraints. In (3.14), we let Pθ be the probability when ξ has covariance function kθ. Then,
we suggest in [J14] the constrained ML estimator given by

θ̂cML ∈ arg maxθ∈Θ LC,n(θ). (3.15)

The second and third term in (3.14) need to be approximated numerically, which makes
constrained ML computationally more costly than unconstrained ML. In [J14], we consider
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the numerical integration procedure of Genz [1992] and the exponential tilting Monte Carlo
procedure Botev [2017].

Consistency results We consider an infinite sequence (xi)i∈N of observation points that is
dense in [0, 1]d. In [J14], we show that, roughly speaking, consistency results for unconstrained
ML can be transferred into consistency results for constrained ML. The next result corresponds
to the propositions given in Section 5.3 of [J14].

Proposition 3.6. Let ξ be a zero-mean Gaussian process on [0, 1]d which covariance function
k satisfies technical conditions given in [J14]. Let Θ be a compact subset of (0,∞)d+1. Let
kθ be the covariance function of x → σξ(α1x1, · · · , αdxd) for θ = (σ2, α1, · · · , αd) ∈ Θ. Let
θ0 = (1, · · · , 1). Remark that k = kθ0 and assume that θ0 ∈ Θ.

Let κ ∈ {0, 1, 2} be fixed. Then, we have infθ∈Θ Pθ(ξ ∈ Eκ) > 0. Assume that ∀ε > 0 and
∀M <∞,

P

(
sup

‖θ−θ0‖≥ε
(log pθ(y)− log pθ0(y)) ≥ −M

)
−−−−→
n→∞

0.

Then,

P

(
sup

‖θ−θ0‖≥ε
(LC,n(θ)− LC,n(θ0)) ≥ −M

∣∣∣∣ ξ ∈ Eκ) −−−−→n→∞
0.

Consequently

argmaxθ∈Θ log pθ(y)
P−−−−→

n→∞
θ0, and argmaxθ∈Θ LC,n(θ)

P |ξ∈Eκ−−−−−→
n→∞

θ0,

where P−−−−→
n→∞

denotes the convergence in probability under the distribution of ξ, and
P |ξ∈Eκ−−−−−→
n→∞

denotes the convergence in probability under the distribution of ξ given ξ ∈ Eκ.

The technical conditions on k in Proposition 3.6 are not really restrictive and allow for
many stationary covariance functions, in particular the Matérn covariance functions. In [J14],
extensions of Proposition 3.6, to the case where the finite-dimensional approximation ξm is used,
are given.

Asymptotic normality results In [S5], the aim is to provide more quantitative results than
in Proposition 3.6. This can be done, at the cost of considering less general families of covariance
functions.

First, we consider a family of covariance functions {σ2k, σ2 ∈ [σ2
l , σ

2
u]} with fixed 0 < σ2

l <

σ2
u < +∞. We let ξ have mean function σ2

0k with σ2
l < σ2

0 < σ2
u. In this case, it is well-known

that the ML estimator σ̂2
ML satisfies

√
n
(
σ̂2
ML − σ2

0

)
→Ln→∞ N (0, 2σ4

0).

The first result in [S5] is that this asymptotic distribution is unaffected by conditioning by
the event ξ ∈ Eκ for κ = 0, 1, 2. For a sequence of random vectors or variables (Xn)n∈N on Rl,
that are functions of ξ, and for a probability distribution µ on Rl, we write

Xn
L|ξ∈Eκ−−−−−→
n→∞

µ

when, for any bounded continuous function g : Rl → R, we have

E [g(Xn)| ξ ∈ Eκ] −→
n→∞

∫
Rl
g(x)µ(dx).

46



CHAPTER 3. OTHER CONTRIBUTIONS TO GAUSSIAN PROCESSES

Theorem 3.7. Assume that k and the sequence of observation points satisfy technical conditions
given in [S5]. Then, we have, for κ = 0, 1, 2,

√
n
(
σ̂2
ML − σ2

0

) L|ξ∈Eκ−−−−−→
n→∞

N (0, 2σ4
0).

The conditions on k in Theorem 3.8 are not really restrictive. Then, in [S5] we show that
the constrained ML estimator σ̂2

cML, defined in (3.15), has the same asymptotic distribution as
the ML estimator, conditionally to ξ ∈ Eκ.

Theorem 3.8. Assume that k and the sequence of observation points satisfy technical conditions
given in [S5]. Then, we have, for κ = 0, 1, 2,

√
n
(
σ̂2
cML − σ2

0

) L|ξ∈Eκ−−−−−→
n→∞

N (0, 2σ4
0).

Next, in [S5], we consider the Matérn family of covariance functions {kθ,ν ; θ ∈ Θ}, with Θ

compact in (0,+∞)2, with θ = (σ2, ρ) and with

kθ,ν(x, x′) = σ2Kν

(
||x− x′||

ρ

)
=

σ2

Γ(ν)2ν−1

(
||x− x′||

ρ

)ν
κν

(
||x− x′||

ρ

)
.

Here, σ2 > 0 is the variance, ρ > 0 is the correlation length and ν > 0 (assumed to be known)
is the smoothness parameter of the process. The function κν is the modified Bessel function of
the second kind of order ν (see Abramowitz and Stegun [1964]) and Γ is the Gamma function.
We let ξ have covariance function kθ0,ν with θ0 = (σ2

0 , ρ0) in the interior of Θ.
We let d ≤ 3. Then, as shown in Zhang [2004], only the parameter σ2/ρ2ν is microergodic.

Consequently, there are no consistent estimators of σ2
0 and ρ0 but σ2

0/ρ
2ν
0 can be consistently

estimated. It is shown in Kaufman and Shaby [2013], using results in Du et al. [2009], that the
ML estimator (σ̂2

ML, ρ̂
2ν
ML) satisfies

√
n

(
σ̂2
ML

ρ̂2ν
ML

− σ2
0

ρ2ν
0

)
→Ln→∞ N

(
0, 2

(
σ2

0

ρ2ν
0

)2
)
.

In [S5], we show the same types of results as for the case of the estimation of a single
variance parameter. Conditionally to ξ ∈ Eκ, ML and constrained ML have the same asymptotic
distribution, which coincides with that of ML without inequality constraints.

Theorem 3.9. Assume that ν and the sequence of observation points satisfy technical conditions
given in [S5]. Then, we have, for κ = 0, 1, 2,

√
n

(
σ̂2
ML

ρ̂2ν
ML

− σ2
0

ρ2ν
0

)
→L|ξ∈Eκn→∞ N

(
0, 2

(
σ2

0

ρ2ν
0

)2
)

and
√
n

(
σ̂2
cML

ρ̂2ν
cML

− σ2
0

ρ2ν
0

)
→L|ξ∈Eκn→∞ N

(
0, 2

(
σ2

0

ρ2ν
0

)2
)
.

The proof of Theorem 3.9 involves the results of Zhang [2004], Du et al. [2009], Kaufman
and Shaby [2013] on the Matérn model, and tools from extrema of Gaussian processes and from
reproducing kernel Hilbert spaces. In [S5], it is explained where the technical assumptions of
the above theorem are needed, and how these assumptions are interpreted.
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Figure 3.5: Context of [S5] in Section 3.5. Estimates of the distributions of n1/2(σ̂2
ML/ρ̂

2ν
ML −

σ2
0ρ

2ν
0 ) (green, dashed lines) and of n1/2(σ̂2

cML/ρ̂
2ν
cML−σ2

0ρ
2ν
0 ) (blue, dotted lines). We also show

the limit Gaussian distribution (red, solid lines). The vertical lines represent the median values
of the distributions. The values of n are 20 (top left), 50 (top right) and 80 (bottom).

Simulation results The conclusion of the above asymptotic results is that there is no asymp-
totic difference between unconstrained and constrained ML, and that conditioning by ξ ∈ Eκ
does not impact the asymptotic distribution of ML. Hence, the inequality constraints do not
play a role asymptotically.

In [S5], in simulations, we consider small or moderate values of n, in the aim of assessing
how fast the finite sample distributions of the estimators converge to the asymptotic ones, and
if we can observe differences between the estimators.

In Figure 3.5, we show estimates of the distributions of n1/2(σ̂2
ML/ρ̂

2ν
ML − σ2

0ρ
2ν
0 ) and of

n1/2(σ̂2
cML/ρ̂

2ν
cML− σ2

0ρ
2ν
0 ) in the case of the estimation of σ2

0 for the Matérn model with known
ν and ρ0 and for boundedness constraints (see [S5] for the full setting). The conclusion of Figure
3.5 is that the distributions are close to the asymptotic one for n = 80 and that the constrained
ML is more accurate for smaller values of n. Hence, in practice, we recommend to use constrained
ML (which is computationally more costly) for smaller values of n and unconstrained ML for
larger values of n. A practical way of anticipating whether constrained ML and ML would give
significantly different results or not is suggested in the conclusion of [S5].
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Chapter 4

Valid confidence intervals

post-model-selection

4.1 Introduction

Post-model-selection inference The general topic of this chapter is post-model-selection
inference. Post-model-selection inference differs quite significantly in nature from Gaussian pro-
cesses, that are the general topic of Chapters 2 and 3. Arguably, post-model-selection inference
is currently quite an active topic. Various recent contributions are discussed below, and are also
presented in [J13,S1].

In this chapter, we will mainly consider Gaussian linear regression models (except in Section
4.5 where the setting is more general). Hence, we consider a n× 1 Gaussian observation vector
y = µ + ε, with n ∈ N, where µ is a fixed vector and where ε ∼ N (0, σ2In) distribution. We
also consider a n × p design matrix X where p ∈ N is the number of explanatory variables (or
regressors).

A model is then a subsetM of {1, . . . , p}. We use the following notation: ForM ⊆ {1, ..., p},
we writeM c for the complement ofM in {1, ..., p}. We write |M | for the cardinality ofM . With
m = |M |, let us write M = {j1, ..., jm} in case m ≥ 1. For an l × p matrix T , we let T [M ] be
the matrix of dimension l×m obtained from T by retaining only the columns of T with indices
j ∈ M and deleting all others. For a p × 1 vector v, we let v[M ] be the vector obtained by
retaining only the components of v with indices in M .

A model M yields the restricted design matrix X[M ] of size n × |M |. A model selection
procedure, or model selector, is then a function M̂ : Rn →M whereM⊂ {M ;M ⊂ {1, . . . , p}}
is called the universe of possible models. Examples of model selection procedures are AIC, BIC
and the lasso Tibshirani [1996].

A general informal definition of post-model-selection inference would be to characterize it
as statistical inference (e.g. constructing tests or confidence intervals) based on the selected
model M̂ . Since M̂ is random, this is in contrasts to ‘classical’ inference which would be based
on a fixed M , not depending on data. The construction of valid statistical procedures in post-
model-selection situations is quite challenging (cf. Leeb and Pötscher [2005, 2006, 2008], Kabaila
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and Leeb [2006] and Pötscher [2009], and the references given in that literature). Furthermore,
it is known that, in these situations, pointwise asymptotics (for instance over parameters of
the true observation distribution) can be misleading Leeb and Pötscher [2005]. Hence, uniform
asymptotic results are focused on in several references, for instance Charkhi and Claeskens [2018].
In the articles [J13,S1] presented in this chapter, the asymptotic results given hold uniformly
over classes of distributions for the observations.

A short literature review Among various recent references in the post-model-selection con-
text, we can first mention those addressing sparse high dimensional settings with a focus on
lasso-type model selection procedures Belloni et al. [2011, 2014], van de Geer et al. [2014],
Zhang and Zhang [2014]. In these references, it is considered that the mean vector of y can
be written as Xβ0, with β0 a sparse vector of Rp and p > n. The components of β0 are the
targets of inference, and the lasso model selection procedure M̂ is a tool for constructing tests
and confidence intervals.

In a different paradigm, in the references Tibshirani et al. [2016], Lee and Taylor [2014],
Fithian et al. [2015], Lee et al. [2016], Tibshirani et al. [2018], Berk et al. [2013], each model
M ∈M for which X[M ]>X[M ] is invertible, defines a target

β
(n)
M = (X[M ]>X[M ])−1X[M ]>µ (4.1)

∈ argmin
βM∈R|M|

||µ−X[M ]βM ||.

One of the main motivations for this paradigm is that targets of inference can be defined also in
the misspecified case where µ does not belong to the column space of X (when p ≤ n). When
p > n, the existence of a true sparse β0, as above, is not needed. In Berk et al. [2013] and [J13],
further discussion is provided on the interpretation of the model dependent target β(n)

M , and of
its interest.

Then, in Tibshirani et al. [2016], Lee and Taylor [2014], Fithian et al. [2015], Lee et al. [2016],
Tibshirani et al. [2018], Berk et al. [2013], the targets of inference are the components of the
random vector β(n)

M̂
(that has random dimension). In Tibshirani et al. [2016], Lee and Taylor

[2014], Fithian et al. [2015], Lee et al. [2016], Tibshirani et al. [2018], M̂ is assumed to be a
specific model selector, defined by polyhedral constraints, in particular the lasso or a procedure
based on sequential testing. Then, in these references, confidence intervals that are valid (i.e.
have coverage probability larger than or equal to the nominal level), conditionally to M̂ , are
obtained.

On the other hand, in Berk et al. [2013], confidence intervals that are valid for any model
selection procedure M̂ are suggested (the term uniformly valid may be used). In this chapter,
we extend the general ideas of Berk et al. [2013] in different directions.

Validity regardless of the model selection procedure is of fundamental importance, because
many procedures used in practice are almost impossible to formalize: researchers typically use
combinations of visual inspection and numerical algorithms, and sometimes they simply select
models that let them reject many hypotheses, that is, they are hunting for significance. These
often unreported and informal practices of model selection prior to conducting the actual analysis
may also play a key role in the current crisis of reproductibility. Thus, to establish and popularize
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statistical methods that are in some sense robust to ‘bad practice’ is highly desirable.

The construction of uniformly valid confidence intervals of Berk et al. [2013] Assume
that with M ⊂ {M ;M ⊂ {1, . . . , p}}, each M ∈ M is non-empty and is so that XM has full
column rank. In Berk et al. [2013], a family of confidence intervals (CIi,M ; i ∈M ∈ M) for the
components of the vectors β(n)

M is introduced, taking the form

CIi,M = (β̂M )i.M ± σ̂‖si,M‖K1(X,M, α, r); (4.2)

the different quantities involved, which we now define, are standard ingredients for univariate
confidence intervals for regression coefficients, except for the last factor (the ‘PoSI constant’)
which will account for multiplicity of covariates and models. The confidence interval is centered
at β̂M := (X[M ]>X[M ])−1X[M ]>y, the ordinary least squares estimator of β(n)

M ; also, if M =

{j1, . . . , j|M |} with j1 < . . . < j|M |, for i ∈ M we denote by i.M the number k ∈ N for which
jk = i, that is, the rank of the i-th element in the subset M . The quantity σ̂ is assumed to
be an observable random variable, such that σ̂2 is independent of PXY and is distributed as
σ2/r times a chi-square distributed random variable with r degrees of freedom (PX denoting
the orthogonal projection onto the column space of X). We allow for r = ∞ corresponding to
σ̂ = σ, i.e., the case of known variance (also called Gaussian limiting case). In Berk et al. [2013],
it is assumed that σ̂ exists and it is shown that this indeed holds in some specific situations.
Nevertheless, the assumptions on σ̂ are not innocuous, in our opinion, and further discussion is
provided in [J13,S1]. The existence of σ̂ will need to be assumed in [J13] but not in [S1]. The
next quantity to define is

s>i,M := (e
|M |
i.M )>(X[M ]>X[M ])−1X[M ]> ∈ Rn, (4.3)

where eba is the a-th base column vector of Rb. Finally, K1 = K1(X,M, α, r) ≥ 0 is called a
PoSI constant. Let also

s̄i,M =

si,M/‖si,M‖, if ‖si,M‖ 6= 0;

0 ∈ Rn else.
(4.4)

Let U be a Gaussian vector with zero mean vector and identity covariance matrix on Rn. Let N
be a random variable, independent of U , and so that rN2 follows a chi-square distribution with
r degrees of freedom. If r =∞, then we let N = 1. For α ∈ (0, 1), K1(X,M, α, r) is defined as
the 1− α quantile of

1

N
max

M∈M,i∈M

∣∣s̄>i,MU ∣∣ . (4.5)

It is shown in Berk et al. [2013] that we have,

inf
µ∈Rn,σ>0

Pµ,σ
(
∀M ∈M, ∀i ∈M, (β

(n)
M )i.M ∈ CIi,M

)
≥ 1− α, (4.6)

where Pµ,σ indicates the dependence on the mean vector µ of y and on the variance σ2. Hence,
the PoSI confidence intervals guarantee a simultaneous coverage of all the projection-based
regression coefficients, over all modelsM in the setM. Hence, for any model selection procedure
M̂ we have (β

(n)

M̂
)i.M̂ ∈ CIi,M̂ for all i ∈ M̂ with probability larger than 1− α.
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Order of magnitude of the PoSI constant The confidence intervals in (4.2) are similar in
form to the standard (or ‘naive’) confidence intervals that one would use for a single fixed model
M and a fixed i ∈ M . For a ‘naive’ interval, K1 would be replaced by a standard Gaussian or
Student quantile. Of course, the ‘naive’ intervals do not account for multiplicity and do not have
uniform coverage over i ∈M ∈M (see [J13,S1]). Hence K1 is the inflation factor or correction
over standard intervals to get uniform coverage; it must go to infinity as p → ∞ Berk et al.
[2013]. Studying the asymptotic order of magnitude of K1 is thus an important problem, as this
order of magnitude corresponds to the price one has to pay in order to obtain universally valid
post model selection inference.

When n ≥ p, it is shown in Berk et al. [2013] that K1 is asymptotically no smaller than√
log(p) and asymptotically no larger than √p. These two lower and upper bound are reached

by respectively orthogonal design matrices and equicorrelated design matrices (see Berk et al.
[2013]). It is currently a difficult problem to characterize the order of magnitude of K1 for very
general design matrices X. The aforementioned results in Berk et al. [2013], and those given in
[J13] thus tackle specific design matrices, in particular orthogonal and equicorrelated.

4.2 Confidence intervals for predictors in linear regression

[J13]

Adaptation of the PoSI confidence intervals to prediction In [J13], we consider a fixed
p × 1 vector x0 of new values of the explanatory variables. We consider as a model dependent
scalar target of inference the quantity x0[M ]>β

(n)
M . This quantity is an (infeasible) predictor of

a new variable y0, that would typically be studied if the model M were to be selected. We refer
to [J13] for more discussion of this predictor and of its optimality properties.

We construct confidence intervals (CIx0,M ;M ∈ M) where CIx0,M is as CIi,M in Sec-
tion 4.1, with (β̂M )i.M replaced by x0[M ]>β̂M , with si,M replaced by sx0,M and with K1 =

K1(X,M, α, r) replaced by K1(x0) = K1(x0, X,M, α, r). More precisely, we let

s>x0,M := x0[M ]>(X[M ]>X[M ])−1X[M ]> ∈ Rn, (4.7)

we let s̄x0,M be defined as in (4.4) with si,M replaced by sx0,M , and we let K1(x0, X,M, α, r) be
defined as in (4.5), with s̄i,M replaced by s̄x0,M . These confidence intervals are a straightforward
extension of those of Berk et al. [2013]. We naturally obtain

inf
µ∈Rn,σ>0

Pµ,σ
(
∀M ∈M, x0[M ]>β

(n)
M ∈ CIx0,M

)
≥ 1− α. (4.8)

Other PoSI constants In applications, it can happen that x0[M c] is not observed, specifically
if model selection is performed in the aim of observing fewer variables in the future, for cost
reduction. For example, in a medical application one may want to avoid measuring prognostic
variables that require invasive procedures or that incur high monetary costs, see, e.g., Castera
et al. [2015]. Cost considerations in the context of model selection or prediction are also common
in fields such as industrial process control or engineering (Jaupi [2014], Souders and Stenbakken
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[1991]). We remark that, indeed, the knowledge of x0[M c] is not needed to define x0[M ]>β
(n)
M

and to compute x0[M ]>β̂M . However, K1(x0) is not computable if x0 is not entirely observed.

Hence, in [J13], we suggest other constants K2(x0[M ],M), K3(x0[M ],M) and K4, where K2

and K3 do not depend on x0[M c] and K4 does not depend on x0 at all. These constants satisfy
K1(x0) ≤ K2 ≤ K3 ≤ K4, so that the confidence intervals obtained as (CIx0,M ;M ∈ M), with
K1(x0) replaced by K2, K3 or K4 satisfy (4.8).

We refer to [J13] for the full construction of K2, K3 and K4. In short words, the constant
K2 is obtained by maximizing the value of K1(x0) over x0[M c], the constant K3 is obtained by
a ‘partial union bound’ and the constant K4 is obtained from a union bound. We point out
that a version of K4, in the context of Berk et al. [2013], is already suggested in an unpublished
version of Berk et al. [2013] (see [J13] for a link).

Algorithms for approximating K1(x0) to K4 are given in [J13]. The computation of K1(x0)

has computational cost proportional to |M|, that is to 2p if n ≥ p and if all submodels are
allowed for by the model selection procedure. In this case, the computation of K1(x0) is feasible
for p ≤ 30, say. Computing K2 requires to maximize the value of K1(x0) numerically, so that
it entails a larger cost than for K1(x0). Computing K2 is thus often prohibitive. Computing
K3 has a similar complexity as for K1(x0). Finally, K4 has a small computational cost, and we
find that its computation (with the R software) is accurate for p = 1, 000 or smaller. For larger
values of p, one may run into numerical issues for the computation of extreme quantiles of the
Beta distribution (see [J13]).

Large p results for the PoSI constants In [J13], we provide asymptotic results for the
order of magnitude of K1(x0) to K4 as p → ∞. In the next proposition, we consider the case
where X is orthogonal (for n ≥ p). We show that there exist vectors x0 so that K1(x0) has
order of magnitude √p. This is in stark contrast with the setting of Berk et al. [2013], where in
this case K1 has order of magnitude

√
log(p). Furthermore, we show that, for models M not

too close to the full model {1, . . . , p}, K2(x0[M ],M) has order of magnitude √p for all x0[M ].
This illustrates the price one has to pay for not observing x0[M c], since there also exist vectors
x0 so that K1(x0) = O(1).

Proposition 4.1. Consider the known-variance case (i.e., r = ∞ and σ̂2 = σ2) and assume
that for every p ≥ 1 the model universe M used is the power set of {1, ..., p}. Let 0 < α < 1,
be given, not depending on p. Set γ = supb>0 φ(b)/

√
1− Φ(b) ≈ 0.6363, where φ and Φ are the

probability density function and the cumulative distribution function of the standard Gaussian
distribution.

(a) For any p ≥ 1 let X = X(p) be an n(p)× p matrix with (non-zero) orthogonal columns.
For any such sequence X one can find a corresponding sequence of p × 1 vectors x0 such that
K1(x0) satisfies

lim inf
p→∞

K1(x0)/
√
p ≥ γ.

Furthermore, for any sequence X as above one can find another sequence of (non-zero) p × 1

vectors x0 such that K1(x0) = O(1).
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(b) Let δ ∈ [0, 1) be given. Then K2(x0[M ],M) satisfies

lim inf
p→∞

inf
x0∈Rp

inf
X∈X(p)

inf
M∈M,|M |≤δp

K2(x0[M ],M)/
√
p ≥ γ

√
1− δ,

where X(p) =
⋃
n≥p {X : X is n× p with non-zero orthogonal columns}.

In the next proposition, we show that K3 and K4 are asymptotically equivalent as p → ∞.
We also give a simple asymptotic approximation to K4. This next proposition exploits results
in Zhang [2017].

Proposition 4.2. Consider the known-variance case (i.e., r = ∞ and σ̂2 = σ2). Let the
universe of modelsM satisfy technical conditions given in [J13]. For n ∈ N, let Xn,p(M) denote
the set of all n× p matrices of rank min(n, p) with the property that X[M ] has full column-rank
for every ∅ 6= M ∈ M. Furthermore, let α, 0 < α < 1, be given (neither depending on p nor
n). Let n(p) ∈ N be a sequence such that n(p)→∞ for p→∞ and such that Xn(p),p(M) 6= ∅
for every p ≥ 1. Then we have

lim
p→∞

sup
M∈M,M 6={1,...,p}

sup
x0∈Rp

sup
X∈Xn(p),p(M)

|1− (K3(x0[M ],M)/K4)| = 0. (4.9)

Furthermore,

K4/

√
min(n(p), p)

(
1− |M|−2/(min(n(p),p)−1)

)
→ 1

as p→∞.

The above proposition enables to express simply the order of magnitude of K4 whereM =

Ms = {M ⊂ {1, . . . , p}; |M | ≤ s} as a function of the sparsity parameter s. We refer to Section
4.4, corresponding to [J16].

The design-independent target A potential criticism of the target x0[M ]>β
(n)
M is that it is

a predictor of x0 but it depends on X. For this reason, this target is called design-dependent in
[J13]. Hence, the target x0[M ]>β

(n)
M is especially relevant when there is a link between x0 and

the lines of X.
In [J13], we thus also consider the case where x0 and the lines of X are realizations from

a common distribution L (x0 and X are independent from ε). When considering this case, we
also let p be fixed and let the full linear model be well-specified. That is we let µ = Xβ for a
p× 1 vector β. Under this framework, letting Σ be the (uncentered) second moment matrix of
X, we call x0[M ]>β

(?)
M the design-independent target, with

β
(?)
M = β[M ] + (Σ[M,M ])

−1
Σ[M,M c]β[M c]. (4.10)

Here, for a p × p matrix R and for M1,M2 ⊂ {1, . . . , p}, we let R[M1,M2] be the |M1| × |M2|
matrix obtained by retaining only the lines of R with indices in M1 and the columns of R with
indices in M2. The target x0[M ]>β

(?)
M does not depend on the realization of X and has several

optimality properties that make it preferable to x0[M ]>β
(n)
M , see [J13].

In [J13], we show that the above confidence intervals, meant to cover x0[M ]>β
(n)
M , are also

asymptotically valid to cover x0[M ]>β
(?)
M . In the next theorem Pβ,σ indicates the dependence

in β, σ when evaluating probabilities
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Theorem 4.3. Suppose that n1/2((1/n)X>X − Σ) = Op(1). Suppose that the model selection
procedure M̂ satisfies a technical assumption given in [J13]. Let CIx0,M be as in (4.8), with
K1(x0) potentially replaced by K2, K3 or K4. Then we have

inf
x0∈Rp,β∈Rp,σ>0

Pβ,σ

(
x>0 [M̂ ]β

(?)

M̂
∈ CIx0,M

∣∣∣X) ≥ (1− α) + op(1), (4.11)

where the op(1) term above depends only on X and converges to zero in probability as n→∞.

Simulation results In Table 4.1, we show the results of an extensive Monte Carlo study. We
show estimates of the minimal coverage probabilities (over β and σ) of the above confidence
intervals based on K1(x0), K3 and K4, as well as of the naive confidence interval that ignores
the randomness of the selected model. We let p = 10 and n = 20 or n = 100 and generate the
lines of X randomly with equicorrelated covariance matrix. As model selectors we consider here
AIC, BIC, the lasso, SCAD Fan and Li [2001], and MCP Zhang [2010]. We refer to [J13] for the
full setting of the simulation study.

We observe that, as holds from the theory, the confidence intervals based on K1(x0), K3

and K4 always cover the design-dependent target with minimal probability above the nominal
level. However, for n = 20 and for the lasso, SCAD and MCP, they do not cover the design-
independent target with minimal probability above the nominal level. Hence, for this small
sample size, Theorem 4.3 does not provide an accurate description of the finite sample situation.
For n = 100, the confidence intervals based on K1(x0), K3 and K4 cover both targets with
minimal probability above the nominal level. Furthermore, the coverage probabilities are almost
equal between the two targets. This illustrates Theorem 4.3 (see also Lemma C.1 in the online
supplement to [J13]). Finally, we see that the naive confidence intervals have minimal coverage
probabilities significantly below the nominal level. This illustrates the need for studying specific
inference procedures that take the post-model-selection context into account.

In [J13], we also compare the PoSI confidence intervals, based on K1(x0), K3 and K4, with
those in Lee et al. [2016], that are specific to the lasso and conditionally valid. We observe that
the PoSI intervals have lengths that are similar, in the median sense, to those from Lee et al.
[2016], and are shorter, when considering more extreme quantiles. In addition, we show that the
intervals from Lee et al. [2016] have minimal coverage probabilities that can break down when
the regularization parameter of the lasso is data-dependent instead of fixed. In contrasts, the
confidence intervals based on K1(x0), K3 and K4 have minimal coverage probabilities above the
nominal level for any model selection procedure.

4.3 Links with optimal configurations of lines [J7]

In [J7], we investigate the links between the computation of the PoSI constant K1(x0), defined
in the previous section, and the problem of finding evenly spaced lines in the Euclidean space.

Indeed, one can show (see Berk et al. [2013], [J13] and [J7]) that K1(x0) can be written as
fp,r,α(L(X,x0)), where L(X,x0) is a set of at most N lines of Rp, where we let N = 2p−1. The
lines of L(X,x0) depend on the design matrix X and on the vector x0. We have

fp,r,α : D≤N → R+,
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Data set n Model Target
selector design-dependent design-independent

x0[M̂ ]′β
(n)

M̂
x0[M̂ ]′β

(?)

M̂

Knaive K1 K3 K4 Knaive K1 K3 K4

Equicorrelated

20 AIC 0.83 0.99 1.00 1.00 0.79 0.98 0.99 0.99
20 BIC 0.81 0.99 1.00 1.00 0.74 0.98 0.99 0.99
20 LASSO 0.88 1.00 1.00 1.00 0.39 0.71 0.79 0.79
20 SCAD 0.88 0.99 1.00 1.00 0.67 0.92 0.95 0.96
20 MCP 0.86 0.99 1.00 1.00 0.66 0.93 0.96 0.96
100 AIC 0.84 0.99 1.00 1.00 0.84 0.99 1.00 1.00
100 BIC 0.86 0.99 1.00 1.00 0.86 0.99 1.00 1.00
100 LASSO 0.88 1.00 1.00 1.00 0.88 1.00 1.00 1.00
100 SCAD 0.88 0.99 1.00 1.00 0.89 1.00 1.00 1.00
100 MCP 0.88 0.99 1.00 1.00 0.89 0.99 1.00 1.00

Table 4.1: Context of [J13] in Section 4.2. Monte Carlo estimates of the minimal coverage
probabilities (w.r.t. β and σ) of various confidence intervals. The naive confidence interval
corresponds to Knaive. The nominal coverage probability is 1− α = 0.95 and p = 10.

where D≤N is the set of all sets of at most N lines of Rp. A line is defined as the set uR with
u ∈ Sp−1, with Sp−1 the unit sphere of Rp.

The value of fp,r,α(L), for L ∈ D≤N , is defined as the unique K > 0 such that

EV
(
Fp,r

( K2

p · max
uR=`∈L

〈u, V 〉2
))

= 1− α, (4.12)

where Fp,r is the cumulative distribution function of the F-distribution with parameters p and
r, and V is a uniformly distributed random vector on Sp−1.

As we have seen in the previous sections, the function fp,r,α(L) can not be computed exactly
since it is a quantile, and can be costly to approximate for large values of N = 2p − 1. The
quantity K4 = K4(p, r, α) of Section 4.2 is an upper bound satisfying

sup
{`1,...,`N}∈DN

fp,r,α({`1, . . . , `N}) ≤ K4(p, r, α), (4.13)

with DN the set of all sets of N lines of Rp. In [J7], we aim at evaluating the above supremum
in order to assess how tight the upper bound K4 is for small values of p. We indeed remark
that, for large values of p, the asymptotic results in Berk et al. [2013] imply that K4 is tight
in (4.13). In order to evaluate the supremum, we suggest a procedure based on two steps. In
a first step, we compute N evenly-spaced lines by minimizing potential energies (see e.g. Cohn
and Kumar [2007], Hoggar [1982]). Then we evaluate fp,r,α only for these evenly space lines.
This method is computationally beneficial, since potential energies are much less expensive to
compute than fp,r,α, and since their minimization can be carried out independently of r and α.

When, computing sets of lines that are optimal for potential energies, we obtained interesting
results with respect to the notion of universal optimality Cohn and Kumar [2007]. For p = 3, the
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optimal set of lines we find coincides with a set of lines that is known to be universally optimal
Cohn et al. [2016]. For p = 4, 5, our results suggest that there is no universally optimal sets of
2p − 1 lines. For p = 6, there seems to exist a universally optimal configuration of 2p − 1 = 63

lines, which we identified as the best packing configuration provided in Conway et al. [1996].

In Figure 4.1, we show the ratio SK/K4, where SK is an evaluation of the supremum above
obtained by four different methods. For the ‘evenly-spaced lines’ method, SK is obtained as
described above, from sets of lines minimizing potential energies. For the ‘local evenly-spaced
lines’ and ‘very local evenly-spaced lines’ methods, we aim at maximizing fp,r,α, by a stochastic
algorithm sampling sets of lines locally (or very locally) around the sets of lines minimizing
potential energies. These two methods are meant to assess whether these latter sets of lines
are local maxima of the function fp,r,α. Finally, the ‘naive Monte Carlo’ method consists in
maximizing fp,r,α directly, by a stochastic algorithm. We refer to [J7] for more details.

In Figure 4.1, we thus observe that the ‘evenly spaced lines’ method performs significantly
better than the ‘naive Monte Carlo’ one. We also see that the upper bound K4 is fairly tight
in (4.13). We also see, from the results of the ‘local evenly-spaced lines’ and ‘very local evenly-
spaced lines’ methods, that the sets of lines minimizing potential energies show evidences to be
(at least) local maxima of fp,r,α. Finally, we see that for the dimensions p = 3, 6, for which
there exists or seems to exist a universally optimal set of lines, the upper bound K4 is tighter in
(4.13). This indicates that the concept or property of universal optimality is indeed beneficial.

4.4 An upper bound on the PoSI constant under restricted

isometry properties [J16]

In [J16], we consider the PoSI constant K1 = K1(X,M) defined in Section 4.1. As shown in
Berk et al. [2013], when n ≥ p, and when X is an orthogonal matrix, K1(X,M) has order of
magnitude

√
log(p) as n, p→∞.

Consider now the case where M = Ms = {M ⊂ {1, . . . , p}; |M | ≤ s} is the set of s-sparse
models, with s ≤ min(n, p). Then, we show in [J16] that K1(X,Ms) has order of magnitude
no larger than

√
s log(p/s), independently of X (this bound actually aleady appears in an

intermediary version of Zhang [2017]). We call this upper bound the general sparsity based
upper bound.

For a square symmetric non-negative matrixA, we let corr(A) = (diag(A)†)1/2A(diag(A)†)1/2,
where diag(A) is obtained by setting all the non-diagonal elements of A to zero and where B†

is the Moore-Penrose pseudo-inverse of B. We define the restricted isometry property (RIP)
constant of a n× p matrix X with sparsity level s as

δ(X, s) = sup
|M |≤s

||corr(X[M ]>X[M ])− I|M |||op, (4.14)

where ||.||op is the largest absolute eigenvalue. This definition is similar to the common definition
of the RIP constant [Foucart and Rauhut, 2013, Chap.6], except that in this common definition
corr(X[M ]>X[M ]) is replaced by X[M ]>X[M ]. Here we consider corr(X[M ]>X[M ]) because
K1(X,Ms) depends on X only through corr(X[M ]>X[M ]) [J16].
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Figure 4.1: Context of [J7] in Section 4.3. Plot of the ratio SK/K4, by the four different methods
described in the discussion of the figure.
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Then, in [J16], we consider design matrices X with small RIP constants, and provide a
non-asymptotic upper bound on K1(X,Ms) in this case. The upper bound is as follows

Theorem 4.4. Let X be a n× p matrix with n, p ∈ N. Let δ = δ(X, s). We have

K1(X,Ms) ≤ g(r, α)

[√
2 log(2p) + 2δ

(√
1 + δ

1− δ

)√
2s log(6p/s)

]
+ h(r, α),

where g(r, α) and h(r, α) are continuous functions of α on (0, 1) for fixed r ∈ N ∪ {+∞} and,
for any fixed α ∈ (0, 1), g(r, α)→ 1 and h(r, α)→

√
2 log(4/α) as r → +∞.

When δ → 0, this upper bound can be summarized asK1(X,Ms) = O(
√

log(p)+δ
√
s log(p/s)).

Hence, it provides an interpolation between the order of magnitude in the orthogonal case and
the general sparsity based upper bound. Furthermore, we show in [J16] that the upper bound
of Theorem 4.4 is tight in many asymptotic regimes of p, s and δ. More precisely we have the
following.

Proposition 4.5. Let (sp, δp)p≥0 be sequences of values such that sp < p, δp > 0, δp → 0 and
δp
√
sp
√

1− log sp/ log p+ log 6/ log p→∞ as p→∞. Then Theorem 4.4 implies

sup
n∈N

s≤sp,X∈Rn×p

s.t. δ(X,s)≤δp

K1(X,Msp) ≤ Bδp
√
sp

√
log(6p/sp), (4.15)

where B is a constant. Moreover, there exists a sequence of design matrices Xp such that
δ(Xp, sp) ≤ δp and

K1(Xp,Msp) ≥ Aδp
√
sp

√
log
(
min(1/δ2

p, b(p− 1)/spc)
)
, (4.16)

where A is a constant and where b·c is the floor function.
In particular, if δp = O(p−λ) for some λ > 0 and if b(p − 1)/spc ≥ 2, then the above upper

and lower bounds have the same rate.

In Proposition 4.5, the lower bound is obtained by generalizing the equicorrelated design
matrix construction of Berk et al. [2013].

In [J16], we also study the case of large n×p random matrices and give the order of magnitude
of the upper bound as a function of n and p. We discuss how large n should be in this case for
this upper bound to be of smaller order than the general sparsity based upper bound. We then
discuss the orders of magnitude of the lengths of the subsequent PoSI confidence intervals, and
compare these orders of magnitude with upper bounds based on Euclidean norms provided in
Kuchibhotla et al. [2018a]. We refer to [J16] for more details.

4.5 Extension to more general settings [S1]

The construction of universally valid confidence intervals in Berk et al. [2013] and [J13] is specific
to the Gaussian linear case. A key ingredient for this construction, for instance in Section 4.1
and with r =∞ (known variance case) for simplicity, is to define K1 as the 1− α quantile of

max
M∈M,i∈M

∣∣s̄>i,MU ∣∣ ,
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where U is a Gaussian vector. A general interpretation of this is that the vector of the p2p−1

(normalized) differences between true and estimated projection based targets is a Gaussian
vector, from which we consider a quantile of its supremum norm.

In [S1], we extend the construction of uniformly valid confidence intervals to general non
Gaussian non linear settings, by using the same principle. That is, we show that the (normalized)
vector of all the differences between estimators and targets converges to a Gaussian vector. We
then construct confidence intervals, based on a PoSI constant similar to K1 and show their
asymptotic validity in the post-model-selection context. Furthermore, we show how to estimate,
consistently or in a conservative way, the asymptotic covariance matrix of the aforementionned
Gaussian vector. This is a significant improvement of Berk et al. [2013] and [J13], where the
existence of an estimator σ̂2 of the variance, with strong distribution properties, has to be
assumed, and can not be guaranteed to hold in fully general settings (see for instance Proposition
3.5 in [J13]).

General setting and joint asymptotic normality result We consider a general situation
where we observe a data set y ∈ Rn×` with distribution Pn. We denote the i-th row of the
data vector (matrix) y by yi ∈ R1×`, so that y = (y>1 , . . . , y

>
n )>, and write Pi,n for the marginal

distribution corresponding to that row. Throughout, we assume that the data generating distri-
bution is of product form, that is Pn =

⊗n
i=1 Pi,n. Suppose further that one wants to conduct

inference on Pn, and intends to use as a working model an element of Mn, a set consisting of d
nonempty sets of distributions M1,n, . . . ,Md,n on the Borel sets of Rn×`. Throughout d is fixed,
i.e., does not depend on n. We emphasize that it is not assumed that Pn is contained in one of
the sets Mj,n for j = 1, . . . , d. That is, the candidate set Mn might be misspecified.

For each model M ∈ Mn we consider a corresponding target of inference θ∗M,n = θ∗M,n(Pn),
say, which we take as given throughout the present section. Furthermore we assume that for
every Mj,n ∈ Mn the target is an element of a Euclidean space of finite dimension m(Mj,n)

which does not depend on n. We also assume that for every model M ∈ Mn an estimator
θ̂M,n : Rn×` → Rm(M) of the corresponding target θ∗M,n is available. For a specific example,
we refer to the model-dependent target β(n)

M and its estimator β̂M in Section 4.1. We finally
consider a model selection procedure M̂n : Rn×` → Mn.

In this general framework, we assume an asymptotic linearity of the differences between
estimators and targets, for each fixed model. We let Vn denote the covariance matrix under
Pn and we let A1/2 be the unique symmetric square root of a symmetric non-negative definite
matrix A. If A is also invertible we let A−1/2 = (A−1)1/2. For a vector v, we may let v(j) be
its j-th component. We let θ̂n(y) = θ̂n = (θ̂>M1,n

, . . . , θ̂>Md,n)> and θ∗n = (θ∗>M1,n
, . . . , θ∗>Md,n)>. We

denote the dimension of θ̂n by k =
∑d
j=1m(Mj,n), which does not depend on n.

Condition 4.6. There exist functions gi,n : R1×` → Rk for i = 1, . . . , n, and ∆n : Rn×` → Rk,
possibly depending on θ∗n, so that for y ∈ Rn×`

θ̂n(y)− θ∗n =

n∑
i=1

gi,n(yi) + ∆n(y), (4.17)

where, writing rn(y) :=
∑n
i=1 gi,n(yi), it holds for every i ∈ {1, . . . , n} and every j ∈ {1, . . . , k}
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that

Ei,n
(
g

(j)
i,n

)
= 0 and 0 < Vn

(
r(j)
n

)
<∞. (4.18)

Furthermore, for every coordinate j ∈ {1, . . . , k} we have, with {·} the indicator function,

V−1
n

(
r(j)
n

) n∑
i=1

∫
R1×`

[
g

(j)
i,n

]2 {
|g(j)
i,n| ≥ εV

1
2
n (r(j)

n )
}
dPi,n → 0

for every ε > 0,

(4.19)

and

Pn
(∣∣V−1/2

n

(
r(j)
n

)
∆(j)
n

∣∣ ≥ ε)→ 0 for every ε > 0. (4.20)

This condition is satisfied in many applications, and is a relatively standard tool of asymptotic
statistics. A benefit of this condition is that it is formulated in terms of rescaled summands,
which enables a larger range of applications (see the discussion after Condition 1 in [S1]).

Next, we show a joint asymptotic normality result for the vector of differences between
targets and estimators. We let dw denote a distance metrizing weak convergence of probability
measures on the Borel sets of the respective Euclidean space (cf. the discussion in Dudley [2002]
pp. 393 for specific examples). We let A† be Moore-Penrose pseudo inverse of a square matrix
A and we let A†/2 = (A†)1/2. We let diag(A) be obtained by setting all the offdiagonal elements
of A to zero. Finally, we abbreviate Ai = Ai,i for i ∈ {1, . . . , b} when A is b× b.

Lemma 4.7. Under Condition 4.6,

dw

(
Pn ◦

[
diag(Vn(rn))†/2

(
θ̂n − θ∗n

)]
,N (0, corr(Vn(rn)))

)
→ 0. (4.21)

In the above lemma, we state the asymptotic normality result in terms of difference between
measures, because we do not need to assume that the asymptotic correlation matrix corr(Vn(rn))

stabilizes as n→∞.

Confidence intervals based on consistent estimators of Vn(rn) For α ∈ (0, 1) and
a covariance matrix Γ, we denote by K1(Γ, α) the 1 − α-quantile of the distribution of the
supremum-norm ‖Z‖∞ of Z ∼ N(0,Γ). We remark that the PoSI constant K1 in Section 4.1
can be defined by the function K1(Γ, α) applied to a certain p2p−1 × p2p−1 matrix Γ.

Then, the next theorem shows that, when a consistent estimator of Vn(rn) (in terms of the
correlation matrix and of the diagonal elements) is available, one can construct PoSI confidence
intervals that are asymptotically valid. Given M = Mj,n ∈ Mn we abbreviate ρ(M) :=∑j−1
l=1 m(Ml,n) where sums over an empty index set are to be interpreted as 0.

Theorem 4.8. Let α ∈ (0, 1), suppose Condition 4.6 holds, and let Ŝn : Rn×` → Rk×k be a
sequence of functions so that for every ε > 0

Pn
(
‖corr(Ŝn)− corr (Vn(rn)) ‖+ ‖diag(Vn(rn))−1diag(Ŝn)− Ik‖ ≥ ε

)
(4.22)

converges to 0. Define for every M ∈ Mn and every j = 1, . . . ,m(M) the confidence interval

CI
(j),est
1−α,M = θ̂

(j)
M,n ±

√
[Ŝn]ρ(M)+j K1

(
corr(Ŝn), α

)
. (4.23)
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Then, Pn
(
θ
∗(j)
M,n ∈ CI

(j),est
1−α,M for all M ∈ Mn and all j = 1, . . . ,m(M)

)
converges to 1−α as n→

∞. In particular, for every model selection procedure M̂n, we have

lim inf
n→∞

Pn
(
θ
∗(j)
M̂n,n

∈ CI
(j),est

1−α,M̂n
for all j = 1, . . . ,m(M̂n)

)
≥ 1− α. (4.24)

The confidence intervals in the above theorem can be interpreted similarly as the PoSI
confidence intervals in Sections 4.1 and 4.2. Indeed, they are centered at an asymptotically
unbiased estimator and have half-length equal to an estimate of the standard deviation of the
estimator multiplied by a PoSI constant that adjusts for multiplicity.

Confidence intervals based on estimators that consistently overestimate the diagonal
entries of Vn(rn) In case of strong model misspecification, it is typically difficult to obtain
an estimator Ŝn satisfying the condition in Theorem 4.8 (see [S1]).

Hence, we show in [S1] that asymptotically valid confidence intervals can be obtained, in
a larger range of situations than in Theorem 4.8. The two ingredients required for this are
an upper bound on the PoSI constant K1 (corr (Vn(rn)) , α) and observable asymptotic upper
bounds of the diagonal elements of Vn(rn).

Theorem 4.9. Let α ∈ (0, 1), and suppose Condition 4.6 is satisfied. For every n and every
j = 1, . . . , k let ν̂2

j,n ≥ 0 be an estimator of Vn(r
(j)
n ) so that

Pn

(√
[Vn(rn)]j
ν̂2
j,n

≥ 1 + ε

)
→ 0 for every ε > 0. (4.25)

Let K̂n ≥ 0 be so that K̂n ≥ K1(corr(Vn(rn)), α) holds eventually. For every M ∈ Mn and every
j = 1, . . . ,m(M), define the confidence interval

CI
(j),oest
1−α,M = θ̂

(j)
M,n ±

√
ν̂2
ρ(M)+j,n K̂n. (4.26)

Then, for every (measurable) model selection procedure M̂n, we have

lim inf
n→∞

Pn
(
θ
∗(j)
M̂n,n

∈ CI
(j),oest

1−α,M̂n
for all j = 1, . . . ,m(M̂n)

)
≥ 1− α. (4.27)

In the above theorem, K̂n can be computed similarly to K4 in Section 4.2. We also remark
that the rank of corr(Vn(rn)) can be bounded in specific cases, resulting in a smaller upper
bound K̂n, see [S1]. In [S1] we also provide a general method for computing the upper bounds
ν̂2
j,n.

Application to binary regression Now, we let the observation distribution Pn belong to
the set P(bin)

n (τ), for a fixed τ > 0. The set P(bin)
n (τ) is defined as follows: the distribution of a

random vector Yn = (Y1,n, . . . , Yn,n)> is an element of P(bin)
n (τ) if and only if the n coordinates

of Yn are independent, each coordinate Yi,n takes on either 0 or 1, and var(Yi,n) ≥ τ . That is,
we observe binary variables for which the probabilities of 0 or 1 are not too close to zero.

For the models, we consider binary regression based on a n×p design matrixX (with p fixed).
Wet let Mn be the finite set of models, with fixed cardinality. Each model M ∈ Mn is character-
ized by a link function h : R→ (0, 1) and a subset M of {1, . . . , p}. Then, M is parametrized by
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β ∈ R|M | and, under a parameter β, the distribution in M has independent components, with
values in {0, 1}, where the component i ∈ {1, . . . , n} has mean value h(Xi,n[M ]β) where Xi,n is
the line i of X.

For each model M ∈ Mn, we define a target vector β∗M,n ∈ R|M | as a Kullback Leibler
divergence minimizer. We also define the maximum likelihood estimator β̂M,n. We refer to [S1]
for more details. We show several uniform asymptotic results related to the existence of β̂M,n
and to its consistency and asymptotic normality. We remark that, in the binary regression
context, for some points in the sample space {0, 1}n, the maximum likelihood estimator in the
binary regression model does not exist Wedderburn [1976]. Our results show that this issue
occurs with probability going to zero as n→∞, uniformly.

We construct PoSI confidence intervals based on the conservative principle of Theorem 4.9.
For each M ∈ Mn and for every j = 1, . . . ,m(M), the confidence interval for β∗,(j)M,n is written
CI

(j),bin
1−α,M. These intervals are uniformly valid, as shown in the following theorem.

Theorem 4.10. Let α ∈ (0, 1) and τ > 0 and suppose that technical conditions given in [S1]
hold. Let M̂n be a model selection procedure, i.e., a map from the sample space {0, 1}n to Mn.
Then

lim inf
n→∞

inf
Pn∈P(bin)

n (τ)

Pn
(
β
∗,(j)
M̂n,n

∈ CI
(j),bin

1−α,M̂n
∀j = 1, . . . ,m(M̂n)

)
≥ 1− α. (4.28)

In [S1], we also apply the general results in Theorems 4.8 and 4.9 to homoscedastic and
heteroscedastic linear regression. We use estimators of variances that are always observable
(without external assumptions as in Berk et al. [2013] and [J13]). In the homoscedastic case, we
show quantitatively how the estimator of the variance goes from consistent to conservative, as
the degree of model misspecification increases.

Numerical results In [S1], we provide simulation results for homoscedastic linear regression
and binary regression. For linear regression, we compare our suggested confidence intervals with
confidence intervals that are dedicated to the least angle regression model selector Tibshirani
et al. [2018]. For binary regression, we compare our suggested confidence intervals with con-
fidence intervals that are dedicated to the lasso model selector Taylor and Tibshirani [2017].
In both cases, we also study the naive intervals, that ignore the model selection step. Overall,
we find that our suggested confidence intervals compare favorably to the others. Indeed, they
are usually of similar length or shorter than those in Tibshirani et al. [2018] and Taylor and
Tibshirani [2017]. Furhermore, our confidence intervals have coverage proportions above the
nominal level in all the cases under consideration, while the coverage proportions of the inter-
vals in Tibshirani et al. [2018] and Taylor and Tibshirani [2017] can become very small in some
cases. The naive confidence intervals are of course shorter than the ones we suggest, but at the
price of also having coverage proportions below the nominal level.

In Table 4.2 below (which is extracted from Tables 3 and 4 of the supplementary material to
[S1], to which we refer for the full details), we illustrate these conclusions in a Monte Carlo study
in the case of binary regression. We show the coverage proportions, median lengths and 0.9-
quantile lengths of our suggested confidence intervals, of those in Taylor and Tibshirani [2017]
and of the naive ones. We consider three settings with the lasso model model selector and one
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model cov. 0.9 med. qua.
selector P L N P L N P L N

lasso (1) 0.99 0.89 0.84 4.26 7.44 2.09 6.97 43.33 3.42
lasso (2) 1.00 0.85 0.68 1.63 2.31 0.74 1.90 13.52 0.84
lasso (3) 1.00 0.25 0.98 2.22 1.23 1.01 2.83 3.50 1.24
sig. hun. 0.95 0.39 4.40 2.63 6.22 3.63

Table 4.2: Context of [S1] in Section 4.5. Coverage proportion with nominal level 0.9 (cov.
0.9), median length (med.) and 0.9-quantile length (qua.) of our suggested confidence intervals
(P), of those in Taylor and Tibshirani [2017] (L) and of the naive ones (N) in a Monte Carlo
study. We consider three settings with the lasso model model selector and one setting with a
‘significance hunting’ procedure.

setting with a ‘significance hunting’ procedure, that we find representative of some application
practices. The conclusions drawn from the table are similar to those given above.
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Chapter 5

Conclusion

5.1 Other research contributions [C2,S3,S4,S6,S7,S8,P1]

Here, we briefly summarize various other research contributions.

In [C2], we consider a neutron transport application, where the objective is to evaluate the
probability that a particle reaches a sensitive target. The particle evolves as a discrete Markov
chain, and can be subject to absorption, collision and medium change. The probability of interest
is very small. We suggest an adaptation of the particle Monte Carlo algorithm of Guyader et al.
[2011], together with the Hastings-Metropolis algorithm on Markov chain trajectories. We show
that the resulting algorithm gives good results in practice.

In [S3], in the context of Gaussian process models, we suggest an iterative procedure for
joint variable selection and optimization (or more general purposes). We also provide theoretical
insight on the link between correlation lengths and variable importance. In particular, we show
that, under relatively general conditions, the likelihood function of a Gaussian process model
goes to infinity when the correlation length of an inactive variable goes to infinity. This is a
theoretical justification for flagging as inactive the variables corresponding to large estimated
correlation lengths, in practice.

In [S4], we address the computation of Shapley indices Owen and Prieur [2017] in sensitivity
analysis. We show that, in the special case where the function is linear, and the inputs are
jointly Gaussian with partitioned covariance matrix, significant savings in terms of computation
cost can be obtained. This linear Gaussian setting occurs, for instance, in nuclear engineering,
when considering cross section uncertainties Kawano et al. [2006].

In [S6] we consider a Gaussian process on [0, 1] with known smoothness. We estimate the
(microergodic) parameter C driving the behavior at zero of the variogram (that we assume
to be stationary). The estimator we consider is based on quadratic variations. We show its
consistency and asymptotic normality, for a large range of Gaussian processes and of sequences
defining the variations. In simulations, we study the impact of the choice of the sequence on
the asymptotic variance, and show the benefit of combining estimators obtained from several
sequences.

In [S7], we study weighted pairwise likelihood estimators of the microergodic parameter for
the exponential covariance function (see Section 2.5). We show that using the unconditional
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likelihood of pairs of observations can yield inconsistent estimators if the range of admissible
values for the variance is too large. In contrasts, we show that using the conditional likelihood
based on pairs always yields a consistent estimator. We show asymptotic normality results and
compare the asymptotic variances of pairwise likelihood estimators with that of the maximum
likelihood estimator.

In [S8] we address Gaussian processes which inputs are permutations, or partial rankings. We
provide functions based on permutation distances that are symmetric non-negative definite, so
that they can be used to build parametric models of covariance functions. In the case of partial
rankings, we provide computational simplifications of the computation of covariance functions,
also based on these distances. Finally, we show that the increasing-domain asymptotic methods
of [J3,J12] can be adapted to the case of permutation inputs. This enables us to show the
consistency and asymptotic normality of the maximum likelihood estimator of the covariance
parameters.

In [P1], we aim at extending the covariance functions of [J12], that are based on the Wasser-
stein distance for one-dimensional distributions, to multi-dimensional distributions. More pre-
cisely, we aim at constructing covariance functions on the space of distributions of Rd, based
on the notion of optimal transport. In this case, the functions of [J12] (see also (3.8)), that
are indeed covariance functions for d = 1, would not be guaranteed to be covariance functions
for d > 1. We suggest a construction of covariance functions, based on computing distances to
Wasserstein barycenters Le Gouic and Loubes [2017]. We also provide some theoretical guaran-
tees for these covariance functions.

5.2 Ongoing work

Here, I briefly describe my ongoing research collaborations.

With Anne Ruiz Gazen, Klaus Nordhausen and Joni Virta, we are preparing a manuscript, on
a procedure for recovering independent components, for multivariate spatial Gaussian processes.
We provide consistency and asymptotic normality results, under increasing-domain asymptotics.

On a related topic, with Klaus Nordhausen and Joni Virta, we are aiming at obtaining
asymptotic results for procedures similar to the one mentioned above. We study a different
asymptotic settings, for which other proof techniques are needed.

With Edouard Pauwels, we aim at obtaining theoretical results on the use of the Christoffel
function Lasserre and Pauwels [2017] for distribution learning.

With Céline Helbert and Victor Picheny, we are working on a sequential design strategy
based on Gaussian processes, for optimization in the case of computation failures. This topic
entails a combination of Gaussian process based classification and optimization. An application
to fan design in the car industry motivates this work.

With Yann Richet and Thomas Santner, we are working on a nuclear engineering application,
where the objective is to find functional inputs of a computer model, that both are physically
realistic and yield large output values for the computer model.

With Fabrice Gamboa and Jean-Michel Loubes, we are aiming at obtaining quantitative and
graphical indicators for the interpretation of black box machine learning models. This work falls

66



CHAPTER 5. CONCLUSION

within the scope of interpretability in machine learning.

Finally, with Thierry Klein and José Bétancourt, in the context of the French national
research agency (ANR) grant ‘Riscope’, we are working on an application of Gaussian process
models to early warning in he context of coastal flood hazards.

5.3 Open problems and prospects

Let us discuss some open problems and prospects, related to the topics of this habilitation
manuscript.

On a theoretical standpoint, when considering the fixed-domain asymptotic framework for
Gaussian processes, it seems that there exist several questions that are relatively fundamental
and open. First, when considering maximum likelihood estimation of covariance parameters,
even consistency can only be proved in specific settings. The settings where this can be done
that are the most general are arguably these of Kaufman and Shaby [2013] (Matérn covariance
functions in dimension d ≤ 3) and Bevilacqua et al. [2018] (generalized Wendland covariance
functions in dimension d ≤ 3). Yet, the results obtained under increasing-domain asymptotics
are significantly more general.

It is hence an important open problem to show the consistency of the maximum likelihood
estimator in other classical settings. For instance, no results are known for the estimation of the
smoothness parameter of the Matérn covariance function, or for the estimation of the correlation
lengths when d ≥ 4, although maximum likelihood is very commonly used in practice in these
settings.

Consider next the case where a Gaussian process model, with a fixed given continuous covari-
ance function, is fitted to a fixed continuous function. Then, it is not known, in full generality,
whether the Gaussian process predictions will converge to the values of the fixed continuous
function. Some results exist in Vazquez and Bect [2010b], Hangelbroek et al. [2010]. This ques-
tion is important, in my opinion, because in practice Gaussian process models are indeed usually
fitted to deterministic continuous functions (e.g. computer models). Covariance functions for
which this convergence (consistency) would hold, for all continuous functions, could then be
considered as ‘robust choices’.

It would also be beneficial to obtain rates of convergence, in the same context as the con-
sistency results of [J15], for sequential strategies based on Gaussian processes. Indeed, to my
knowledge, most available rates of convergence concern optimization problems. On the other
hand, Gaussian processes are useful in practice for other problems, such as failure domain esti-
mation.

In the same vein as [J12,S8,P1], it seems that there is nowadays a need for statistical models
for diverse and non-standard data. Modern machine learning techniques are indeed applied,
for instance, to texts, graphs or points on manifolds. Gaussian process models that would be
applicable to these contexts would be useful for many practical problems, in my opinion.

Consider then post-model-selection inference. It seems there that the PoSI approach tackles
an important problem, by providing valid inference uniformly over the model selection procedure.
Nevertheless, a concern that practitioners can have is that the confidence intervals may be larger
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than what they are used to. The constant K1 provides confidence intervals that cannot be made
smaller if one wants to retain the full theoretical guarantees of the PoSI approach. Nevertheless,
the constant K1 can currently not be computed in practice for a large number p of explanatory
variables. It is hence replaced by K4 (see Sections 4.2 and 4.5) in these cases, but K4 may or
may not be a tight upper bound for K1, depending on the design matrix X. Hence, finding
more efficient algorithms for computing K1, or obtaining other upper bounds, is key to the
development of the PoSI approach, in my opinion.

Finally, in [S1] the PoSI approach is extended to more general settings than Gaussian linear
regression. In terms of asymptotic theory, the results in [S1] are for a fixed number of models
(equivalently a fixed number of variables in linear and binary regression). It would be inter-
esting to obtain asymptotic guarantees also for a number of models going to infinity (the high
dimensional case). Technical tools for this could be given in Chernozhukov et al. [2013], where
Gaussian approximation results for maximums of sums of high dimensional random vectors are
provided. We remark that, recently, Kuchibhotla et al. [2018b] seem to have followed a similar
path, in the special case of linear models.
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