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Abstract

Making sense of textual data is an essential requirement in order to make computers

understand our language. To extract actionable information from text, we need to

represent it by means of descriptors before using knowledge discovery techniques.

The goal of this thesis is to shed light into heterogeneous representations of words

and how to leverage them while addressing their implicit sparse nature.

First, we propose a hypergraph network model that holds heterogeneous linguistic

data in a single unified model. In other words, we introduce a model that represents

words by means of different linguistic properties and links them together according

to said properties. Our proposition differs to other types of linguistic networks in

that we aim to provide a general structure that can hold several types of descriptive

text features, instead of a single one as in most representations. This representation

may be used to analyze the inherent properties of language from different points of

view, or to be the departing point of an applied NLP task pipeline. Secondly, we

employ feature fusion techniques to provide a final single enriched representation

that exploits the heterogeneous nature of the model and alleviates the sparseness of

each representation.

These types of techniques are regularly used exclusively to combine multimedia

data. In our approach, we consider different text representations as distinct sources

of information which can be enriched by themselves. This approach has not been

explored before, to the best of our knowledge. Thirdly, we propose an algorithm that

exploits the characteristics of the network to identify and group semantically related

words by exploiting the real-world properties of the networks. In contrast with similar

methods that are also based on the structure of the network, our algorithm reduces

the number of required parameters and more importantly, allows for the use of either

lexical or syntactic networks to discover said groups of words, instead of the single

type of features usually employed.

We focus on two different natural language processing tasks: Word Sense Induc-

tion and Disambiguation (WSI/WSD), and Named Entity Recognition (NER). In to-

tal, we test our propositions on four different open-access datasets. The results ob-

tained allow us to show the pertinence of our contributions and also give us some

insights into the properties of heterogeneous features and their combinations with

fusion methods. Specifically, our experiments are twofold: first, we show that us-
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ing fusion-enriched heterogeneous features, coming from our proposed linguistic net-

work, we outperform the performance of single features’ systems and other basic

baselines. We note that using single fusion operators is not efficient compared to us-

ing a combination of them in order to obtain a final space representation. We show

that the features added by each combined fusion operation are important towards the

models predicting the appropriate classes. We test the enriched representations on

both WSI/WSD and NER tasks. Secondly, we address the WSI/WSD task with our

network-based proposed method. While based on previous work, we improve it by

obtaining better overall performance and reducing the number of parameters needed.

We also discuss the use of either lexical or syntactic networks to solve the task.

Finally, we parse a corpus based on the English Wikipedia and then store it follow-

ing the proposed network model. The parsed Wikipedia version serves as a linguistic

resource to be used by other researchers. Contrary to other similar resources, instead

of just storing its part of speech tag and its dependency relations, we also take into

account the constituency-tree information of each word analyzed. The hope is for

this resource to be used on future developments without the need to compile such

resource from zero.

Keywords. Natural Language Processing, Linguistic Network, Word Representation,

Fusion Techniques, Word Sense Induction and Disambiguation, Named Entity Recog-

nition



Résumé

Donner du sens aux données textuelles est une besoin essentielle pour faire les or-

dinateurs comprendre notre langage. Pour extraire des informations exploitables du

texte, nous devons les représenter avec des descripteurs avant d’utiliser des techniques

d’apprentissage. Dans ce sens, le but de cette thèse est de faire la lumière sur les

représentations hétérogènes des mots et sur la façon de les exploiter tout en abordant

leur nature implicitement éparse.

Dans un premier temps, nous proposons un modèle de réseau basé sur des hy-

pergraphes qui contient des données linguistiques hétérogènes dans un seul modèle

unifié. En d’autres termes, nous introduisons un modèle qui représente les mots au

moyen de différentes propriétés linguistiques et les relie ensemble en fonction des-

dites propriétés. Notre proposition diffère des autres types de réseaux linguistiques

parce que nous visons à fournir une structure générale pouvant contenir plusieurs

types de caractéristiques descriptives du texte, au lieu d’une seule comme dans la

plupart des représentations existantes. Cette représentation peut être utilisée pour

analyser les propriétés inhérentes du langage à partir de différents points de vue, ou

pour être le point de départ d’un pipeline de tâches du traitement automatique de

langage. Deuxièmement, nous utilisons des techniques de fusion de caractéristiques

pour fournir une représentation enrichie unique qui exploite la nature hétérogène

du modèle et atténue l’eparsité de chaque représentation. Ces types de techniques

sont régulièrement utilisés exclusivement pour combiner des données multimédia.

Dans notre approche, nous considérons différentes représentations de texte comme

des sources d’information distinctes qui peuvent être enrichies par elles-mêmes. Cette

approche n’a pas été explorée auparavant, à notre connaissance. Troisièmement, nous

proposons un algorithme qui exploite les caractéristiques du réseau pour identifier

et grouper des mots liés sémantiquement en exploitant les propriétés des réseaux.

Contrairement aux méthodes similaires qui sont également basées sur la structure

du réseau, notre algorithme réduit le nombre de paramètres requis et surtout, per-

met l’utilisation de réseaux lexicaux ou syntaxiques pour découvrir les groupes de

mots, au lieu d’un type unique des caractéristiques comme elles sont habituellement

employées.

Nous nous concentrons sur deux tâches différentes de traitement du langage na-

turel: l’induction et la induction et désambiguïsation des sens des mots (en anglais,
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Word Sense Induction and Disambiguation, ou WSI/WSD) et la reconnaissance

d’entité nommées (en anglais, Named Entity Recognition, ou NER). Au total, nous

testons nos propositions sur quatre ensembles de données différents. Nous effec-

tuons nos expériences et développements en utilisant des corpus à accès libre. Les

résultats obtenus nous permettent de montrer la pertinence de nos contributions et

nous donnent également un aperçu des propriétés des caractéristiques hétérogènes

et de leurs combinaisons avec les méthodes de fusion. Plus précisément, nos ex-

périences sont doubles: premièrement, nous montrons qu’en utilisant des caractéris-

tiques hétérogènes enrichies par la fusion, provenant de notre réseau linguistique

proposé, nous surpassons la performance des systèmes à caractéristiques uniques

et basés sur la simple concaténation de caractéristiques. Aussi, nous analysons les

opérateurs de fusion utilisés afin de mieux comprendre la raison de ces améliorations.

En général, l’utilisation indépendante d’opérateurs de fusion n’est pas aussi efficace

que l’utilisation d’une combinaison de ceux-ci pour obtenir une représentation spa-

tiale finale. Nous testons sur les tâches WSI/WSD et NER mentionnées ci-dessus. Et

deuxièmement, nous abordons encore une fois la tâche WSI/WSD, cette fois-ci avec

la méthode à base de graphes proposée afin de démontrer sa pertinence par rapport

à la tâche. Nous discutons les différents résultats obtenus avec des caractéristiques

lexicales ou syntaxiques.

Enfin, nous analysons un corpus basé sur Wikipedia en anglais et le stockons en

suivant le modèle de réseau proposé. La version Wikipédia analysée sert de ressource

linguistique à utiliser par d’autres chercheurs. Contrairement à d’autres ressources

similaires, au lieu de simplement stocker l’étiquette morpho-syntaxique et ses rela-

tions de dépendance, nous prenons également en compte les informations de l’arbre

syntaxique de chaque mot analysé. L’idée est que cette ressource soit utilisée pour de

futurs développements sans avoir besoin de compiler une telle ressource à partir de

zéro.

Mots clés. Traitement automatique du langage naturel, réseaux linguistiques,

représentation de mots, techniques de fusion, reconnaissance d’entités nommées, in-

duction et désambiguïsation du sens des mots.
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1.1 Context

Making sense of texts plays a vital role on the evolution of general artificial intelli-

gence. Given the constantly-growing generation of textual data, there is the need of

computational systems that are able to extract useful information from large quanti-

ties of textual collections, mainly to facilitate our day-to-day activities and, not less

important, to find useful latent information hidden behind these large quantities of

data. For example (see Figure 1.1), Google, the search engine giant, is now able to

conveniently answer short questions by analyzing textual knowledge bases, such as

the English Wikipedia, in order to find an appropriate answer. Furthermore, Gmail,

Google’s electronic mail client, now automatically identifies events, and sometimes

their location and participants, from our personal emails and then adds them to our

online agendas. On the other hand, finding relations among concepts within a set of

documents can be a rich source of knowledge. An example: using text mining tech-

niques, in the biomedical domain, facts can be linked across publications generating

new hypotheses directly from the literature [Garten 2010].

Indeed, making computers learn, via theories, algorithms and applications, is the

general objective of artificial intelligence research [Sugiyama 2016]. Coming from this
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(a)

(b)

Figure 1.1: (a) While searching Who invented Python?, Google recognizes the simple

question an directly gives us the answer from Wikipedia. (b) Gmail detects we re-

ceived an email from an airline and parses it, finds the date, and automatically creates

the corresponding event in our calendar.

multi-disciplinary area, Natural Language Processing (NLP) is the domain that aims

to make machines understand our language [Jurafsky 2009] and thus making it possi-

ble to communicate with them in our own language. Specifically, speech and text, the

latter being the focus of this work.

Although a challenging task, primarily given the ambiguity and dynamics of hu-

man language, NLP has developed rapidly [Clark 2010] during the last two decades

mainly due to the combination of three factors:

• The availability of large quantities of freely-accessible textual data: primarily

enabled by the current Web technologies, we are today able to download with a

single click the entire content of the English (or other languages) Wikipedia. In

the same sense, we can also download thousands of gigabytes of Web crawled

data. This information is used to derive knowledge about the text itself, as we

will see in the rest of this dissertation.
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• The computational power at our disposition: from consumer-based computers

able to perform parallel computations with considerably large datasets; to on-

demand distributed cloud platforms with high performance computing nodes.

The latter may be from private providers, e.g., AWS Cloud Service1, Microsoft

Azure2, etc; or furnished by public organizations, such as France’s Lyon 1 Uni-

versity3 or the National Institute of Nuclear Physics computing centers4.

• The large quantity of open-source text mining and data science analysis tools.

Luckily, it is becoming more common for NLP laboratories around the world to

make their developments available to the general public, e.g, Stanford University

CoreNLP5, Antwerp’s University CLiPS Pattern6. Additionally, large Web com-

panies, such as Facebook7 and Google8, frequently publish their research code

and utilities. Lastly, communities of individuals develop libraries that grow

to become essential building blocks of several applications and research in the

domain. Notably, s❝✐❦✐t✲❧❡❛r♥9, a popular data science library implementing

several well-known machine learning algorithms. Regarding NLP specifically,

two up-to-date libraries stand out: ❣❡♥s✐♠10 and s♣❛❈②11. These are, for the

most part, cross-platform, high performance, optimized, well maintained, docu-

mented, and easily installable libraries.

Solutions to NLP tasks generally follow three steps to achieve their respective goals

[Aggarwal 2012, Jurafsky 2009]. We can see in Figure 1.2 the typical steps of a NLP

system. First, in Preprocessing , an input corpus is "normalized" so that it will be

easier to treat it in the following steps. Secondly, in Feature Representation, numerous

features are extracted from the preprocessed text. Thirdly, in Knowledge Discovery ,

a machine learning or rule-based (less common nowadays) technique is used to learn

a model able to provide an interesting insight within the existing data as well as on

new future instances. The output of said system is usually the model or the language

1❤tt♣s✿✴✴❛✇s✳❛♠❛③♦♥✳❝♦♠✴
2❤tt♣s✿✴✴❛③✉r❡✳♠✐❝r♦s♦❢t✳❝♦♠✴❡♥✲✉s✴
3❤tt♣s✿✴✴♣✷❝❤♣❞✳✉♥✐✈✲❧②♦♥✶✳❢r✴
4❤tt♣s✿✴✴❝❝✳✐♥✷♣✸✳❢r✴
5❤tt♣s✿✴✴st❛♥❢♦r❞♥❧♣✳❣✐t❤✉❜✳✐♦✴❈♦r❡◆▲P✴
6❤tt♣✿✴✴✇✇✇✳❝❧✐♣s✳✉❛✳❛❝✳❜❡✴♣❛tt❡r♥
7❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴❢❛❝❡❜♦♦❦r❡s❡❛r❝❤
8❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴❣♦♦❣❧❡
9❤tt♣✿✴✴s❝✐❦✐t✲❧❡❛r♥✳♦r❣✴

10❤tt♣s✿✴✴r❛❞✐♠r❡❤✉r❡❦✳❝♦♠✴❣❡♥s✐♠✴
11❤tt♣s✿✴✴s♣❛❝②✳✐♦✴

https://stanfordnlp.github.io/CoreNLP/
http://www.clips.ua.ac.be/pattern
https://p2chpd.univ-lyon1.fr/
https://aws.amazon.com/
https://cc.in2p3.fr/
http://scikit-learn.org/
https://spacy.io/
https://github.com/facebookresearch
https://azure.microsoft.com/en-us/
https://github.com/google
https://radimrehurek.com/gensim/
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1.2 Challenges and Contributions

There are several research challenges that arise from the choices taken in each one of

the steps comprising the NLP system’s flow (Figure 1.2). In this thesis, we particularly

focus on three challenges arising in both the Feature Representation and Knowledge

Discovery phases. These challenges are: (1) modeling, extracting, and storing different

types of linguistic features from raw text, (2) dealing with the sparsity inherent to text

data features and also successfully combining them to get better representations, and

(3) finding relations between words and then leveraging them in order to discover

their latent relatedness and be able to solve NLP tasks.

We propose three contributions, one in terms of theoretical modelization and two

in terms of NLP applications. Specifically, the contributions that we propose in this

work are the following:

• a hypergraph network-based model to hold heterogeneous linguistic data

• a method to combine heterogeneous representations coming from the hyper-

graph model, while at the same time alleviating the sparsity problem, common

while dealing with text features.

• a network-based algorithm to discover semantic relatedness between linked

words

These contributions are tested and evaluated using two different NLP semantic tasks:

Word Sense Induction and Disambiguation, and Named Entity Recognition. We chose

these two tasks as they are semantic problems directly benefited by those methods that

are able to determine the relatedness among words, which is the case of the techniques

we propose. Not less important, we attack these tasks as they are central building

blocks of more intricate text analysis systems. Our propositions are built using open

source tools and trained/tested using freely accessible corpora. We aim to make our

software implementations as efficient as possible using parallelized solutions.

1.2.1 Modeling linguistic features

Challenge Representing unstructured text within a model that describes textual

units and their corresponding features is a critical step within a NLP process. Textual

units – either words, sentences, paragraphs, documents, etc – need to be represented

by some kind of model that will allow for numerical analyses to be applied. Usually,
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textual units are represented in a vectorial space, where each dimension represents a

feature; or in a graph-like structure, where features link units together. Concerning

the features themselves, their selection is often an empirical process determined by the

final goal of the NLP process at hand. Nonetheless, we have access to several types of

linguistic features, each one representing the text from different points of view. Fur-

thermore, texts usually containing large vocabularies involves the need of an efficient

way of storing a corpus and its features. These possibilities entail the following re-

search questions: what type of model can we employ to represent a corpus through

a set of heterogeneous features, extracted from itself, while keeping record of the

relationships between textual units? How can we organize and store this model as

simply and efficiently possible? Answering these questions would allow us to prop-

erly design and build a linguistic resource containing heterogeneous descriptions of

the textual units12 adapted to solve NLP tasks. We present this contribution in Chapter

3, particularly in section 3.3.

Contribution During the last decade, graphs have been used to model textual data

given its ability to naturally describe the dynamics and structured of text. We propose

to represent a linguistic resource in the form of a heterogeneous language network.

This model then can be used as a comprehensive data source to address Natural

Language Processing tasks.

The originality of our work consists in taking into account different types of fea-

tures, e.g., lexical, syntactical, and orthographic information; and unifying them under

a single hypergraph structure. An hypergraph differs from a graph in that its edges

may link several nodes together at the same time. This flexibility allows for simple and

efficient access to the stored elements, either specific types of words or specific fea-

tures. We use the proposed model as the starting point of our other two contributions:

solving Word Sense Disambiguation and Induction and Named Entity Recognition.

Lastly, as a proof of concept and in order to test the implementation practicality

of our model, we process the English Wikipedia corpus and store its heterogeneous

features under the form of the proposed model. We particularly focus onto the lexical

and syntactical characteristics of words.

12In this work we focus on words. As such, the rest of this dissertation deals with the representation

of words.
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1.2.2 Combining features and dealing with sparsity

Challenge While the proposed linguistic network contain heterogeneous features, in

our previous propositions we have exclusively employed them separately. Nonethe-

less, employing these different attributes on a single textual representation is equally

useful in terms of solving NLP applications. A certain type of feature may indicate

relations that are completely unknown in another representation space. Thus a certain

type of features can complement another to improve the overall description of words.

Another challenge that arises when building large co-occurrence networks, such

as ours, is data sparsity. Indeed, sparsity is one of the main characteristics of textual

data. Natural language processing systems rely on accurate information being found

within a corpus. However, it is hard to see all the possible word co-occurrences in

an input corpus and thus a system trained from it is not able to apply the acquired

knowledge when it encounters unseen words and their co-occurrences.

Towards addressing both challenges previously described we pose the following

questions: how to alleviate data sparsity on textual data? Concerning combining

linguistic features, how can we produce a single textual representation (one unified

feature space) that is able to leverage the complementarity among features? Lastly,

what is the behavior of combining features against using them independently? The

answer to these questions may shed light into more robust NLP systems, able to

cope with sparsity while leveraging at the same time useful information coming from

different types of features.

Contribution Addressing the sparsity of textual data is not an easy task and often

involves complex procedures and loss of information. To alleviate this issue, we pro-

pose the application of multimedia analysis fusion techniques to solve NLP semantic

tasks. The fusion methods we employ comprise a set of methods to combine (or fuse)

different types of features into a single unique representation. While combining at-

tributes we also enrich them by leveraging the complementary information they carry

individually. Furthermore, we address the challenge of data sparsity by transferring

unseen relations from one feature space to another, that is, we obtain a denser sim-

ilarity space by joining together both feature spaces. The experiments we carry out,

in word sense induction and disambiguation and named entity recognition, show the

pertinence of our approach. Specifically, we try different fusion techniques as well as

several fusion configurations to improve the tasks’ performance compared with using
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representations independently. Additionally, we study to what extent each type of

fusion employed affects the performance of the tasks we evaluate. This contribution

is discussed in the linguistic representation introduced in Chapter 3, Section 3.3 and

in its application in Chapter 4, Section 4.2.

1.2.3 Leveraging the network to find semantic relatedness

Challenge Leveraging the structure within the proposed linguistic network is one

of our main reasons to build such a graph-based language resource. This structure,

namely the features linking words together, originate groups or communities of re-

lated words within the network. In that sense, leveraging these latent communities

is still today an open question in the domain of graph-based NLP. Particularly in the

context of semantic NLP tasks, where determining the relation among words is of

utmost importance, we rise the following questions: what kind of communities ex-

ist within language networks? How can we find and employ them to solve NLP

tasks? Furthermore, assuming an heterogeneous network like the one we propose,

what are the quantitative and qualitative differences, both in terms of performance

and results, between the different representations existing within the network? De-

termining the structure inside a language network, as well as devising an algorithm

to exploit it would allow us to better understand the role of communities in graph-

based approaches for NLP. Finally, getting a glimpse of the differences between each

heterogeneous feature can help us to decide which is the most appropriate according

to a NLP system objective.

Contribution Linguistic networks are complex structures that may hold heteroge-

neous entities and links together. Properly leveraging these structures has been indeed

a popular area of research in the NLP literature.

We propose a variant to a literature algorithm that solves word sens induction and

disambiguation mainly by leveraging the structure of a language network in. The

assumption of the algorithm is that of the network having "real-world" characteris-

tics, broadly, this means that there are several tight-knit groups of words within the

structure. Nonetheless, contrary to the existent model, our proposition differs regard-

ing the considerably lower number of parameters by adjusting them automatically

according to the statistics of the concerned network. We also allow for more flexibility

of the studied contexts of each word. Furthermore, we leverage the structure of our
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Chapter 2 This chapter contains the theoretical background on the concepts dis-

cussed in this thesis. At the same time, we present the state of the art on the techniques

that are relevant to our work. Specifically, we discuss the basics on text representa-

tion and how they are all related together by the distributional hypothesis. We then

introduce the two main types of mathematical entities to manipulate text in a com-

puter: vector-space models and graph-based models. Given our choice to work with

graphs, we continue this path and introduce the types of textual graphs that concern

us. Finally, we describe an inherent problem to text data: sparsity.

Chapter 3 We begin by giving a review on how linguistic networks are used in the

literature which contextualizes our first and second contributions. We present and

define a novel structure to hold language information based on a fusion enriched

hypergraph linguistic model. Initially, as the first set of characteristics of the model,

we discuss its characteristics and the intuitions behind its conception: the choice of the

structure, the role of nodes and heterogeneous edges and the type of features stored.

Then, as the second important set of properties of the proposition, we introduce a set

of techniques to make use of heterogeneous relations while dealing with sparsity in

order to produce an unique enriched representation. Namely, we present the feature

fusion techniques. These methods are integral part of our contributions. Finally, we

present a concrete application of our hypergraph model, an instantiation of the model

based on the English Wikipedia. We describe its properties and motivations. Contents

of this chapter are published in [Loudcher 2015, Soriano-Morales 2016a, Guille 2016].

Chapter 4 In this chapter, we present our two applied contributions. First, an

algorithm that exploits the structure of the network, i.e., the connections between

nodes to solve word sense induction and disambiguation. We test the linguistic

and lexical features and discuss about its qualities. Our results improve on the

performance of similar propositions from the literature. Secondly, we explore the

application of multimedia fusion techniques using linguistic features to solve NLP

tasks. We experiment with these methods on three datasets for named entity recog-

nition and one dataset for word sense induction and disambiguation. Indeed, we

show that using certain configurations of fusion techniques can lead to improve-

ments over single-feature and trivial-concatenation representation matrices. Further-

more, we explore the contribution from each feature space for each sense and class in

each task respectively. This work has been published or accepted for publication in
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[Soriano-Morales 2016b, Soriano-Morales 2017].

Chapter 5 We conclude this dissertation and present possible avenues for future

work.





Chapter 2

Background

Abstract. This chapter goes into detail about the notions of the theoretical our work is based

on. First, we introduce the distributional hypothesis and the parameters involved in the

generation of descriptive contexts from a corpus. Secondly, we present how can we describe

the distributional contexts within a model, either directly through a vectorial representation or

by means of a graph-based representation. Thirdly, we discuss one of the main challenges of

dealing with textual data: data sparsity. We cover what is it, its consequences, as well as

existent solutions to it. Finally, we summarize the concepts introduced and contextualize our

propositions.
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2.1 Distributional Hypothesis

The work we present in this thesis is prominently based on the distributional hypoth-

esis (DH) . This is also the case for the large majority of semantic approaches in NLP

today. This context-analysis insight is usually credited primarily to [Harris 1954]. The
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open challenge on distributional models and methods. Determining the specific type

of semantic relation (e.g., synonymy, hyponymy, meronymy) is still an open issue in

the community [Turney 2010, Fabre 2015, Périnet 2015a]. While distributional models

can give us fast access to semantic relations between words within a corpus, they are

most of the times ambiguous relations. It is still our task, as users, to determine the

type of semantic relations found, in the case these distinctions are needed by the NLP

system at hand.

Distributional methods, based on the DH, have been used for a long

time now [Jurafsky 2009], although computationally automatized since the 1990s

[Périnet 2015a]. Being a mature research field, systems based on these distributional

models are varied and cover a large range of NLP tasks being obviously most popu-

lar on semantic tasks [Bruni 2014]. We do note that nowadays, they have somewhat

resurfaced (although they really never went away) thanks to the recent re-introduction

of word embeddings , or simply word distributional representations . In short, a word

embedding, in the context of newer developments, is a vectorial representation that

"embeds" words into a low-dimensional space, usually generated either by means of

some sort of matrix reduction [Lebret 2013, Levy 2014b] or by using neural networks

[Collobert 2011, Mikolov 2013]. These representations are usually obtained from very

large bodies of text and they have shown to be quite effective for solving NLP tasks.

The actual implementation of a distributional model consists in three steps: (1)

determine what type of context is going to be used, (2) chose a computable context

representation, and (3) determine a weighting scheme and a relatedness measure.

We move now onto the description of what are the types of contexts commonly

used while implementing a distributional model to represent words. We cover two

types: lexical co-occurrence and syntactic co-occurrence. In this work we will exclu-

sively focus on those two contexts. The first one describes a word’s context based on

its nearby words. The second defines a word’s context according to the syntactic rela-

tions between the word and its neighbors. We will use the example phrases in Figure

2.3 to illustrate the kind of contexts we will describe below.

2.1.1 Lexical Contexts

Also called linear contexts, lexical contexts consist on those words that co-occur with

a given word in a predetermined neighborhood: either in a sentence, a paragraph

or larger units of text such as full documents [Levy 2014a, Sahlgren 2008]. Nowa-
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Table 2.1: Lexical contexts of the words code, chip, and coil appearing in each one of

the phrases on Figure 2.3. The context is paradigmatic, the window being the word

and 2 words to the left and right.

Words Lexical Context

code code;w+1:chip; w+2:works

chip w-2:interaction; chip; w+1:coil

coil coil;w+1:creates; w+2:magnetic

obtain sense from them. Lexical contexts are able to somehow take into account the

order of appearance of words in a phrase. Still, words in a sentence are not related

among them like a list: semantic information is indeed extracted from words them-

selves, however syntax highly affects the way information is combined into semantic

structures. Words tend to form groups between themselves, called constituents or

chunks, which relate to other constituents to form a single phrase unit [Bender 2013].

Constituency Tree Indeed, constituents are represented with tree structures aptly

named constituents parse tree, or simply parse tree (see Figure 2.4) [Jurafsky 2009].

These trees actually represent the context-free grammars models that we use to de-

scribe the chunk structure. As such, the parse tree differentiates between terminal,

pre-terminals and non-terminal nodes. Non-terminal nodes refer to chunk labels (e.g.,

noun phrases1: NP, verbal phrases: VP, prepositional phrases: PP), pre-terminal nodes

pertain to Part of Speech (PoS) categories (e.g., determinants: DT; adjectives: JJ; nouns:

NN). Finally, terminal nodes indicate the word itself.

A constituents tree is illustrated in Figure 2.4. The image corresponds to the parse

tree of the first phrase of the example in 2.3: The code in the chip works. From the

bottom-up, looking at the node labeled chip, we see it is a token of type noun (pre-

terminal labeled NN) and it belongs to a noun phrase (non-terminal NP) which in

turn belongs to a prepositional phrase (PP) which finally is part of the main noun

phrase of the sentence S. Constituents usually include a word with a prominent role:

the head of the constituent. In practical terms, the head (or governor) is the most

important word in the chunk because it determines what kind of words (either a verb,

an adjective, a noun, etc.) will be joining it within the constituent.

1The nomenclature used is the Penn Tree Bank annotation.
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malize syntactic information with dependency trees. This time, the syntactic structure

of a sentence is described in terms of words and asymmetric binary grammatical func-

tions between these words [Clark 2010]. The trees are directed, all nodes are terminal

and they represent words and they are linked following a direction from the head to

its modifier (or dependent). An edge thus represent one of these dependency func-

tions which are labeled with tags that, just as PoS tags and chunk tags, describe what

kind of relation exists between two words [Bird 2006]. For example, the Universal De-

pendencies2 tagset [Nivre 2016, Schuster 2016], which we use in this work, includes

tags such as det: determiner, the relation between a noun head (governor) and its de-

terminer , nmod: nominal modifier, the same but with a modifier, or conj: conjunction,

two elements connected by a conjunction.

To illustrate dependency trees, we can observe in Figure 2.5 the dependency parse

of the second phrase shown in 2.3. In this particular case, the relation tags used are the

"enhanced" universal dependencies by [Schuster 2016]. The difference is that relations

are made more explicit by collapsing them (reducing two relation edges into a single

one) and including the modifier (or adjunct) directly into the label. Consequently,

they can be more useful to determine the relatedness between words.

The context that can be extracted from dependency relations varies. Still, the usual

consensus is to treat the relation as the triple it is: (head, relation,dependent) and

based on it extract a certain type of context. In the example of Figure 2.5, a context of

the word chip, according to [Lin 1997] would be: (conj : and, coil,head). This indicates

that chip is connected to coil by the conjunction and. More recent context definitions,

such as those of [Baroni 2010, Levy 2014a, Panchenko 2017] also include the inverse

relation a word participates in, i.e., if the target word is a dependent, its dependency

relation is also included but indicated as "inverse". Again, using the previous example

with the word chip, the contexts now would then be: interaction/nmod:between−1;

coil/conj:and . These contexts and other example can be seen in Table 2.3.

Syntactic contexts are less used than their lexical counterpart in large part due

to the process of obtaining the trees discussed before. While nowadays there are

several software solutions able to extract this kind of information, the process is de-

cidedly more complex than counting words in a lexical context setting. Furthermore,

the information is not 100 % accurate, as the systems are trained using human an-

2This set of tags share a large quantity of labels with the more classic Stanford Dependencies

[De Marneffe 2006, De Marneffe 2008] tagset. Briefly, universal dependencies aim to develop cross-

linguistically and cross-language consistent annotations [Nivre 2016].
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2.2 Vector Space Models

Given a set of words in a corpus, the objective of determining their contexts is to

assess how related their meaning is. This assessment of relatedness thus need to

be measured by a metric in order to determine its level. The way we measure the

relatedness between words relies on well-known algebraic operations, such as the

dot product. In order to calculate a dot product we need vectors. It follows that to

calculate relatedness among words we need to represent words by means of vectors,

where each vector describe a word and each dimension a context of it.

The Vector Space Model (VSM) consists in representing textual units in a multi-

dimensional space. The textual units represented are not constrained to words them-

selves. We may describe co-occurrent features for documents, phrases, paragraphs, or

other types [Manning 1999]. A matrix is used as the structure that holds each object

and its context features. Indeed, in practical terms, a VSM is then an array of real-

number vectors, where each one represent a text unit and the columns describes the

co-occurrent contexts the word participates in. To illustrate this, in Table 2.4 we repre-

sent words of the previous examples in a word space . Each entry of this matrix (called

a co-occurrence matrix) represent a weight that infers the importance of the row word

(or target word) with respect to the column (context) co-occurrence in a given context,

within an input corpus [Jurafsky 2009]. That is, the word code, co-occurs once with

the context indicated by the second and third columns, which in turn correspond to

the words chip and works.

In the example, the weights consist merely on the frequency of co-occurrence of

each word with each context. Indeed, there are still other two related parameters that

affect the meaning extracted from a distributional model: the weight each cell in the

matrix has, or how do each co-occurrence affect each word; and the similarity measure

between vectors we will use to determine the semantic relatedness among words. For

a complete analysis on a wide range of parameters affecting vector space models, see

[Baroni 2010, Kiela 2014, Levy 2015].

2.2.1 Matrix Weights

The weight is an important parameter in the creation of a VSM for a NLP applica-

tion. Weights can be binary, simply indicating presence or absence. They can count

the number of co-occurrences of a word and the context, their absolute frequency.
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Table 2.4: Matrix representation of the lexical contexts of the words appearing in the

phrases of Figure 2.3. The window is the complete phrase where the word occurs.

Words Contexts

w1 w2 w3 w4 w5 w6 w7 w8

codew1
0 1 1 0 0 0 0 0

chipw2
1 0 1 1 1 0 0 0

worksw3
1 1 0 0 0 0 0 0

interactionw4
0 1 0 0 1 0 0 0

coilw5
0 1 0 1 0 1 1 1

createsw6
0 0 0 0 1 1 1 1

magneticw7
0 0 0 0 1 1 0 1

fieldw8
0 0 0 0 1 1 1 0

Weights may also be a type of discriminative measure that usually tries to give more

importance to those contexts that co-occur more frequently with the target word while

being less frequent with the rest of the words in the text [Jurafsky 2009, Clark 2010].

Point-wise Mutual Information (PMI) [Church 1990] and Positive Point-wise Mu-

tual Information (PPMI) [Niwa 1994] are two popular choices to weight terms in a

co-occurrence matrix [Turney 2010, Jurafsky 2017]. We describe both of them below.

Given a co-occurrence matrix M, containing W words (rows) and C contexts

(columns), where fij ∈ RW×C denotes the frequency of target word wi frequency in

the context cj , i.e., how many times they both co-occur. N =
∑W

i=1

∑C
j=1 fij represents

the sum of all the matrix cells. PMI is defined as:

PMI(wi, cj) = log
P(tij|cj)

P(tij)P(cj)
(2.1)

where P(tij|cj) =
fij

N
tells us how many times the word and the context appeared

together, normalized by the total context frequency. P(tij) =
fij

N
, and P(cj) =

fj

N
. The

ratio gives us an estimate of how much more the target and context co-occur than we

expect by chance.

While PMI is often used as a weighting choice, it has three main downsides

[Jurafsky 2017, Levy 2015]: (1) PMI is biased towards co-occurrences of rare events,

that is, a low-frequency context c co-occurring with any word w will yield a large

PMI. Also (2), PMI may yield negative values, which would indicate a certain level of
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semantic "unrelatedness", which is not a very intuitive concept. And (3), if a context

and a target word are not observed together (something that is very possible to hap-

pen because the co-occurrence matrix is sparse, we will look into that in the following

paragraphs), the denominator of 2.1 is zero and thus PMIij becomes undefined.

To solve the first issue, [Levy 2015] proposes a smoothed version of PMI, defined

as:

PMIα(wi, cj) = log
P(tij|cj)

P(tij)Pα(cj)
(2.2)

with Pα(cj) =
fαj

Nα
, where α is a smoothing parameter that affects the contexts

counts in order to alleviate the bias of PMI towards rare contexts co-occurrences : the

probability of a low-frequency context cj will be larger thanks to α, which makes the

denominator of 2.2 larger, which in turns make PMIα smaller. Thus, addressing the

bias for all words when co-occurring with a low-frequency context.

The second and third inconvenient are resolved by using Positive Point-wise Mu-

tual Information (PPMI). PPMI simply replaces all values lower than zero (including

−∞) by a zero:

PMI(wi, cj) = max(PMI(wi, cj), 0) (2.3)

2.2.2 Defining Vector Similarity

The second parameter to consider after weighting the co-occurrence matrix is how to

actually determine the similarity between two word vectors.

As with weighting schemes, there are multiple metrics (defined and compared to

greater detail in [Clark 2010, Ferret 2010, Kiela 2014, Clark 2015]) used in the literature

to determine the similarity between two vectors. We will focus on two that are of

interest to this thesis: cosine and Jaccard similarity. More types of metrics and their

comparison can be found in the previously cited literature. While there does not seem

to be a single best measure of similarity, we usually use the cosine similarity, as it

naturally can deal with real-valued vectors. On the other hand, when dealing with

binary presence-absence vectors, it is more common to use Jaccard similarity.

Cosine Similarity The cosine similarity determines the angle between two mul-

tidimensional vectors. It is simply defined as the dot product between two vectors,

normalized by the multiplication of their Euclidean length [Manning 2008]. The co-

sine similarity is bounded between [0, 1], yet we usually interpret the result in the
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positive space, where 0 means there is an angle of 90◦ between the two word vectors,

thus no similarity at all; and 1 means there is no angle between them, so they are

completely similar. Furthermore, if the weights of the matrix are non-negative values,

the cosine similarity is bounded to the range [0, 1]. The cosine similarity is defined as:

simcosine(
−→w1,−→w2) =

−→w1 ·
−→w2

||−→w1|| ||
−→w2||

=

∑C
i=1w1i

×w2i
√∑C

i=1w
2
1i

√∑C
i=1w

2
2i

(2.4)

Jaccard Index Also known as the Tanimoto index, the Jaccard index

[Jaccard 1908] determines the similarity between binary vectors, it is defined, in terms

of dot products:

simJaccard(
−→w1,−→w2) =

−→w1 ·
−→w2

||−→w1||2 + ||−→w2||2 −
−→w1 ·
−→w2

(2.5)

In terms of two sets, A and B, the Jaccard index calculates the ratio between the

cardinality of the intersection of two word vectors divided by the cardinality of their

union: simJaccard(A,B) =
|A∩B|

|A∪B|
. We prefer the definition in terms of dot products

because in that way it is more straight-forward to implement it computationally.

We have been discussing vectorial space representations and their parameters (ma-

trix weighting, similarity measure). While VSM models are the most popular to de-

scribe the semantic similarity between words, there are other structures that make

it easier to model the interactions that take place among lexical units within a cor-

pus. In that sense, in the next section we introduce the fundamentals of graph-based

representations for NLP, which are part of the contributions of this thesis.

2.3 Network Models

Network3 based models have been studied deeply during the last years in the NLP

field [Mihalcea 2011]. While we can represent a graph as a matrix, and thus as a

vector space model, graphs are useful representation formalism that can be applied

to a large set of linguistic characteristics, from the relation between words in a text or

between the features that describe them. Indeed, language being a dynamic complex

3We will use the notion of network and graph interchangeably during the rest of this dissertation,

unless stated otherwise.
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system, networks provide an adequate model to represent and study the structure and

evolution of linguistic systems [Choudhury 2009a].

Furthermore, based on graph theory, we can conceive efficient and sophisticated

solutions to NLP tasks, such as PoS tagging, role-labeling, word sense induction

and disambiguation, chunk parsing [Mihalcea 2011]. Notably, NLP graph-based ap-

proaches are largely employed to solve unsupervised tasks, where we can expect to

get insights from the data by looking at the links existing between entities; and semi-

supervised problems, again by leveraging relations to propagate across the network

small quantities of hand-crafted tags [Nastase 2015]. An additional non-negligible

advantage of graph models are that they allow human interpretation and analysis

through their visualization (nonetheless with relatively small samples of text).

Based on the advantages just mentioned, in this thesis we base our linguistic4

model proposition on a graph-based structure. In the following paragraphs we discuss

the types of networks used to represent textual data, which closely relates to the co-

occurrence representations that we covered in the vector space model. Indeed, graph-

based methods follow the same distributional principles as VSM. Thus, as we will

see, the relationships among nodes on these networks are very similar to the types of

contexts described in Section 2.1.

2.3.1 Linguistic Networks

A graph is a data structure consisting of a set of vertices connected by a set of edges

that model relationships between objects. Formally it is defined as a set G = (V ,E),

where V is a collection of vertices V = {Vi, i = 1,n} and E is a collection of edges over

V , Eij = {(Vi,Vj),Vi ∈ V ,Vj ∈ V}.

When referring to language networks, nodes represent lexical units (most of the

time words) and the edges represent the relationships between words. We present

below the types of linguistic networks.

2.3.2 Types of Linguistic Networks

According to their objectives, we can consider two types of contributions in the

linguistic-network literature: on the one hand, there are those approaches that in-

vestigate the nature of language via its graph representation, and on the other

4We will refer to a linguistic representation as an structure that holds textual units linked by their

linguistic features, in this case, distributional co-occurrences.
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hand, we find those that propose a practical solution to a given NLP problem

[Choudhury 2009a]. In particular, we pay attention to two aspects of a given network-

based technique: (1) the characteristics of the linguistic data within the network, and

(2), the algorithms used to extract knowledge from it.

In the following paragraphs we introduce the general categories of linguistic net-

works according to their type of content and relations. We will introduce these cate-

gories as well as the approaches that make use of them.

[Mihalcea 2011] defines four types of Language Networks (LN): co-occurrence

network, syntactic-dependency network, semantic network and similarity network.

Meanwhile, from a deeper linguistic point of view, [Choudhury 2009a] introduces

broader network’s categories, each having several sub-types. The main difference

(in our context) between both definitions lies in the separation of categories. In

[Choudhury 2009a], they conflate syntactic-dependency and co-occurrence networks

into the same category: word co-occurrence networks. Similarly, they join semantic

and similarity networks together and place them inside a broader category of lexi-

cal networks. The third family defined concerns phonological networks which is out

of the scope of this work. In this work we will explore four categories of linguistic

networks: lexical co-occurrence, syntactic co-occurrence, semantic and heterogeneous

networks. Based on the previously cited works, the following paragraphs will eluci-

date what does each kind of network represent.

Lexical Co-occurrence Networks (LCN) In these structures, nodes represent words

and edges indicate co-occurrence between them, i.e., two words appear together in

the same context. The context is also defined by a window of terms. It may vary from

a couple of words to a full document, although it is usually defined at sentence level.

The edges’ weight represent the strength of a link and is generally a frequency based

metric that takes into account the number of apparitions of each word independently

and together. Thus, usually the same type of weights as described are used to rep-

resent the strength of a relation. An example of such network is shown in Figure 2.6.

The words such as control, systems, power co-occur in the same window of terms to the

word project.

Syntactic Co-occurrence Networks (SCN) A Syntactic Co-occurrence Network

(SCN) is very similar to a LCN in the sense that both exploit the distributional hy-

pothesis. Nonetheless, SCNs go further by leveraging syntactic information extracted
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Semantic Networks (SN) A Semantic Network (SN) relates words, or concepts, ac-

cording to well-defined semantic relations. The classical example of a SN is the

renowned knowledge base Wordnet. This network, which serves also as an ontol-

ogy, contains sets of synonyms (called synsets) as vertices and semantic relations as

their edges. Typical semantic relationships include synonymy-antonimy, hypernymy-

hyponymy, holonymy-meronymy. However, other semantic similarities can be de-

fined. The edges are usually not weighted, although in some cases certain graph

similarity measures may be used.

Figure 2.8: Semantic Network of the word mammal.

Heterogeneous Networks Until now, we have described different types of networks

with single types of nodes and relations. Lately, heterogeneous networks have been

defined in order to model multi-typed information in a single structure [Han 2009].

In reality, we could argue that syntactic-based and semantic networks are already het-

erogeneous on their own right, as both of them contain edges that represent different

types of relations.

Without regards to their type, network-based structures are ultimately trans-

formed into matrices before being treated computationally. Therefore, given that we

are still modeling language (words), graphs suffer from sparsity just as vector space

models. Indeed, data sparsity is an issue that affects the performance of knowledge

discovery approaches [Aggarwal 2012, Périnet 2015b] applied to textual data.



30 Chapter 2. Background

2.4 Data Sparsity

Representing word’s contexts as multidimensional vectors, either directly or through a

graph-based structure, is indeed a straight-forward, simple and yet powerful method

to transform textual data into actionable structures. The model links textual informa-

tion, in the form of words and contexts, with the methods used in machine learning.

Nonetheless, there is an important issue that needs to be considered when dealing

with vector space models: data sparsity. A sparse data matrix has most of its entries

equal to zero. Thus, the majority of the words (rows) in the corpus are described by

very few contexts (columns). This is a significant problem as on the Knowledge Dis-

covery phase of any NLP system we aim to train a learning model that will eventually

predict, classify, group our words in one way ot another. If the words are represented

by a limited number of contexts, the learning algorithms will not be able to general-

ize properly. Furthermore, when testing the systems, the system will not be able to

handle unseen word-context co-occurrences. This will lead to reduced performance

[Phan 2008].

This phenomenon is not the consequence of using vector space models per se, as

the vectors are merely a representation of word’s distribution within a text. Indeed,

words tend to be distributed in a text in a very predictable fashion. In any natural

language corpus, most of the words occur very few times. On the other hand, very

few words occur multiple times. The consequence is that most of the entries in a co-

occurrence are zero because we observe very few unique word-context co-occurrences.

Put differently, words co-occur most of the times with the same words and very few

times with other words [Sahlgren 2006]. Given that any corpus is limited, acceptable

English co-occurrences will be missing from it and their weight will be zero while

they actually happen in other corpora [Jurafsky 2017]. To illustrate sparsity, Table 2.4

co-occurrence matrix contains eight words and eight contexts (each of the words), for

a total of 64 entries. Among these entries, only 20 values are non-zero, and more

importantly each word is only represented by 2.5 contexts in average. While it is a

toy example, and 20 non-zero entries from 64 in a matrix would hardly be considered

sparse, it reflects what actually happens with larger corpora, as this problem is corpus-

size independent (and even more important with smaller corpora [Périnet 2015a]).

In order to deal with the distributional representation sparsity, we discuss below

multiple techniques used in the literature [Sahlgren 2006, Ratinov 2009, Molino 2017]

that aim to alleviate matrix sparsity. In the following paragraphs we discuss explicit
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information retrieval and phonetics fields [Ozkan 2010, Ah-Pine 2015], they represent

a set of simple yet powerful methods to merge information and create more power-

ful representations. Indeed, these operations are based on the combination of feature

spaces to obtain representations that leverage the complementarity of the original

spaces. [Bruni 2014] has employed fusion methods to generate enriched multimedia

semantic spaces while blending images and text to define the similarity among words.

While feature spaces are combined, these techniques do not modify the meaning of

the contexts and they remain interpretable. In this thesis, as we described in the in-

troduction of this work, and as we will see later on, we also use these techniques to

fight data sparsity by combining linguistic spaces, without resorting to other types

of data. Namely, by leveraging the properties of two distributional representations,

both lexical and syntactic co-occurrences, we can get more dense and stronger word

representations.

2.5 Conclusion

We have introduced four axis that define the work that we carry out in this thesis.

Our propositionas are based on the distributional hypothesis: we assume that words

that share a common context are related. The relation is determined by the type of

context: whether lexical or syntactic properties. If we choose a lexical context, the

size of the window (how many words to the right, to the left) should be determined

according to the ultimate goal of the NLP task at hand. This window has an effect

on the semantic properties of the relatedness among words: the shorter the window,

the closer we get to a synonymy similarity, i.e., we may be able to interchange words

one for another and keep a coherent phrase. The larger the window, the more topical

the relatedness is, i.e., words are related in a broader sense. On the other hand, when

using shorter windows we indeed approach to the relatedness provided by syntactic

relations [Sahlgren 2006], which relate words that participate in the same syntactic

dependency functions, also known as functional similarity [Levy 2014a].

These contexts need to be represented computationally in order to perform some

Using co-occurrence matrices, we can keep track of what words are seen with what

contexts within a corpus. These counts may then be affected by some weight that

determines the relevance of said co-occurrences in terms of uniqueness in terms of

the whole set of co-occurrences found. Once these word’s vectors are created, we

can thus finally calculate a degree of relatedness between them by employing vector
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similarity metrics, notably the cosine similarity (for real-valued vectors) and Jaccard

(binary valued vectors) metrics.

While matrices are the fundamental structure used in computational operations,

we can model the links among words intuitively with graph-based structures. Indeed,

by modeling text as graphs we gain access to established graph-theory techniques

which helps us elucidate the inner structure of textual data.

Whether it is vector based or graph-based, a textual, explicit, and distributional

representation will be sparse. There are too many words in a text and its assured that,

while they could occur in other texts, they will not occur in a single text. This becomes

an important problem with NLP systems: words are described by only a small set of

features.

In the following chapter we describe our two first propositions which address the

issue of using heterogeneous information to represent a term and alleviating the data

sparsity that comes with such types of textual representations.





Chapter 3

Fusion Enriched Hypergraph

Linguistic Model

Abstract. In the previous chapter we presented the theoretical notions used to represent text

with a distributional approach, that is, the parameters, the models to implement them and the

problems that naturally arise from these kinds of representations. In this chapter we introduce

and define the first set of our contributions. Briefly, we present a linguistic framework to

represent textual data. Feature fusion techniques are then applied over this network in order to

better leverage the data contained in it while addressing the sparsity issue.

We organize this chapter in four parts: we present a brief state of the art on how the

information contained in linguistic graphs is used for WSD/WSI and NER. Secondly, we

introduce our model. Thirdly, we present the method used to combine the data held in our

mode, specifically using feature fusion techniques. Finally, we materialize the proposed model

by transforming an English Wikipedia based corpus into our proposed framework.
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3.1 Introduction

We have covered the details concerning the parameters regarding the construction of

a distributional representation model, as well as its challenges. The challenges that we

will address in this chapter are two: (1) how to organize heterogeneous textual infor-

mation within a single linguistic resource, and (2), how to leverage said information

to obtain complementary representation spaces, while taking into account the feature

sparsity issue that is characteristic of textual data.

The first two contributions of this thesis are contained in a fusion enriched hyper-

graph linguistic model proposition. The model consists on two components which

address two research questions each: the issue of making sparsity less severe and

leveraging different types of features by using a single feature representation space.

We will describe our motivations and its characteristics in the following paragraphs.

We can see the block diagram of the ensemble of our propositions on Figure 3.1.

There, we can observe our enriched linguistic model proposition, comprising our first

two propositions, which is the focus of this chapter, as well as the instantiation of said

model using a Wikipedia based corpus.

The model we present here entails three important characteristics: firstly, the possi-

bility to leverage different1 types of information. Secondly, as the words will be linked

together, there is an inner structure that will emerge from the model and which we

exploit in our experiments. Thirdly, given that we treat unstructured text data, the

relations (or features) between words are sparse, this is alleviated by combining fea-

tures via fusion techniques. The three of them are addressed with our propositions.

In the following chapter, we test the practicality of our proposal with well-established

tasks and related evaluation corpora, which we use as benchmark input data in our

experiments.

Our network is based on the distributional hypothesis, as described in the previ-

ous chapter. As co-occurrence features, we select both lexical and syntactic contexts,

indeed creating a linguistic resource that hold both types of information in order to

get a complementary insight of words’ relations. Our network sets a lexical window, a

co-occurrence weighting, and the definition of similarity between vectors according to

two semantic NLP tasks we treat in the following: word sense induction and disam-

biguation and named entity recognition. Nonetheless, the parameters chosen can be

1We use three in our model definition: syntactic, lexical and what we will call standard features

(explained later on).
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plementary feature space for each word. Finally, as a proof of concept, we describe

the characteristics of the transformation of an English Wikipedia-based corpus into

the framework we propose, a hypergraph model and its single enriched representa-

tion produced via fusion techniques. We show an example of the results produced by

these fusion methods.

.

3.2 Linguistic Networks in Semantic NLP Tasks

We present here an overview of linguistic network’s related work. We discuss what

and how different methods are used with language networks to extract knowledge

from their structural properties. Finally, we discuss the limitations of the current

propositions and the advantages of the model we propose.

Using Lexical Co-occurrence Networks Lexical Co-occurrence Networks (LCN) are

popular since they do not require any special treatment to obtain them, just the

input corpus. It is then natural that truly-unsupervised2 word sense induction ap-

proaches leverage these type of networks, and in return, the distributional hypothesis,

to automatically discover senses for a given target word. That is why several WSI

methods [Véronis 2004, Klapaftis 2007, Navigli 2010, Klapaftis 2008, Di Marco 2011,

Jurgens 2011] are tightly related to LCNs. The cited works use a LCN as described

before while other works such as [Navigli 2007, Qian 2014] represent, as we do, the

co-occurrence by means of a hypergraph scheme. In short, a hypergraph structure

is a graph generalization where an edge (called hyperedge) can link more than two

vertices per edge and thus it is able to provide a more complete description of the

interaction between several nodes [Estrada 2005]. In that sense, in [Qian 2014] they

make use of this type of representation to solve the task of word sense induction.

Briefly, in this task we have to determine a set of senses for a given target word in

a corpus, according to its context (a context here being usually a paragraph where

the target word occurs). In their paper, given an input document with several con-

text instances for each target word, they first extract lexical chains (set of semantically

related words) from the contexts using a topic-modeling based technique. Secondly,

a hypergraph is built where the vertices represent words and the hyperedges link

two or more words if they exist in the same lexical chain. Thirdly, the hypergraph

2Without the need of human-crafted semantic networks.
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is clustered and groups of words are found which are considered to be the senses of

the target word. Lastly, to assign these senses to each target word instance, they con-

sider each sense as a vector, whose dimensions are each word in the corresponding

cluster and its weight determines its level of co-occurrence with the target word. The

sense assignation is done by determining the similarity between sense vectors and a

vectorial representation of each target word instance.

Generally, WSI systems generally perform four steps . Given an input text with

a set of target words and their contexts (target words must have several instances

throughout the document to cluster them), the steps are the following:

1. Build a LCN, assigning tokens as nodes and establishing edges between them

if they co-occur in a given context (usually if they both appear in the same

sentence),

2. Determine the weights for each edge according to a frequency metric,

3. Apply a graph clustering algorithm. Each cluster found will represent a sense

of the polysemous word, and

4. Match target word instances with the clusters found by leveraging each target

word context. Specifically, assign a cluster (a sense) to each instance by looking

at the tokens in the context.

As with semantic networks, not only WSD or WSI can be solved with LCNs. Find-

ing semantic associated terms in a corpus is a critical step in several NLP systems. This

task is solved in the system proposed by [Liu 2011]. They also use a LCN although in-

stead of a co-occurrence graph, they also employ a co-occurrence hypergraph, where

nodes represent words and edges describe co-occurrence at the paragraph level. In

this work, they use such structure to find related terms in a given corpus. In order to

do it, they mine the hypergraph as in a frequent itemsets problem, where the items

are the words from a text. The method consists in first finding similar itemsets by

means of measuring similarity between nodes. Once the 2-itemsets are found, they

induce a graph from the original hypergraph by drawing edges between nodes that

have a similarity superior to an arbitrary threshold. Lastly, in order to find k-itemsets

(k > 2), the find either complete or connected components in the induced graph.

As with WSD, while the LCNs used are mostly the same among approaches, there

are certain moving parts that make up the difference between WSI approaches. The

most common differences that can arise are:
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• The clustering algorithm to find senses in the LCN graph.

• The technique used to match context words to clusters.

• The weight used in the graph edges.

Using Syntactic Co-occurrence Networks A network representation that is on the

border line between being a LCN and a SCN is that of [Bronselaer 2013]. They propose

a graph document modelization. In their network, nodes represent words and edges

their co-occurrence, as any LCN. Still, their graph resembles a SCN because the edges

may represent one of three types of words: either prepositions, conjunctions or verbs.

As a result, they need to first extract syntactic information from a document, namely

the part-of-speech tags of each word. They find the most relevant words of a given

text by ranking the nodes of the graph. The words that best represent a document can

be used to summarize it, as they show in their work.

Approaches based on SCN are rarely used in WSD or WSI systems, and therefore

they are an interesting research avenue to explore.

Using Semantic Networks Word sense induction is indeed a task usually

solved using semantic networks, specially WordNet (and to a lesser extent,

BabelNet) [Mihalcea 2004, Sinha 2007, Tsatsaronis 2007, Navigli 2007, Agirre 2008,

Klapaftis 2008, Agirre 2009, Klapaftis 2010, Silberer 2010, Moro 2014]. Given an in-

put text with a set of ambiguous target words to process, these approaches follow a

two-step algorithm:

1. Link target words (usually nouns, skipping stop-words and functional words)

with their corresponding sense (or synset in the case of WordNet-like dictionar-

ies) and extract their vertices and edges into a new, smaller, SN.

2. Apply a node ranking technique, usually a random-walk-based method, and

select, for each ambiguous word in the input text, its top ranking synset node as

the correct sense.

The amount of edges a SN has grows depending of the size of the version of Word-

Net used or the level of polysemy of a given word. In order to avoid redundancy or

contradiction between linking nodes, [Mihalcea 2004, Navigli 2007] applied pruning

techniques to avoid contamination while calculating ranking metrics in order to define a
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pertinent sense. Regarding edge similarity measures, in [Sinha 2007, Tsatsaronis 2007]

they test some metrics individually and also combined. They found that the best

results are indeed obtained when multiple metrics are used at the same time.

Concerning the measure of semantic affinity between two terms, in [Yeh 2009] they

quantify word similarity by means of projecting them into a Wikipedia space. First,

they represent each word by a vector representing its most pertinent pages, and then

they calculate a vectorial similarity measure between them.

Finally, extracting entities from text can also benefit from the use of SNs. The work

proposed by [Kivimäki 2013] aims to extract technical skills from a document. Again,

using Wikipedia as SN, they first represent each article and the input document in

a token vector space model. Next, they find the document top 200 similar pages by

calculating the cosine similarity between the document and each page. This serves to

extract a Wikipedia subgraph which is used to calculate the most relevant pages for

the entry document. Finally, the top pages are filtered by means of selecting those

articles that actually represent a skill using a fixed list of skill-related tokens. Once

again, the nodes represent Wikipedia articles and the edges the hyperlinks that join

them.

The cited methods vary in how they make use of their SN, not so much in the

network per se. These differences boil down to three aspects:

1. Type of relationship implied by the edges linking the nodes of the network,

2. The algorithm used to rank the nodes after the semantic network is built, and

3. The weight assigned to each edge.

Using Heterogeneous Networks Even though this kind of structure seems to open

new avenues of research in the semantic analysis domain, only few explicitly take

advantage of them, as is the case of [Saluja 2013]. In their approach, they build a

graph that links together features with words, and discover similarity measures that

leverage the multi-typed nature of their network.

3.2.1 Algorithms used in Linguistic Networks

We have discussed until now the different types of networks from a content point of

view. In this subsection, we address the details of the graph-based algorithms used to
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solve semantic NLP tasks. In this section we cover the details of four different types

of graph algorithms.

Edge Weights We begin by describing the metrics used to determine similarity be-

tween nodes, usually stored as edge weights. As stated in the previous sections, most

of the metrics are frequency based, specially when dealing with LCNs. The main idea

of these measures is to assign a weight that decreases as the association frequency of

the words increases. Among these measures, the most popular are the Dice coefficient

[Navigli 2010, Di Marco 2011, Di Marco 2013], normalized pointwise mutual informa-

tion [Hope 2013b], and a graph-adapted tf-idf variant [Tsatsaronis 2007] which aims

to give importance to frequent edges while also favoring those that are rare.

Edge weights can also be calculated when the vertices of a network do not rep-

resent words. Such is the case of [Klapaftis 2010], where nodes represents a target

word context (set of tokens around an ambiguous word). This time the Jaccard index

is used to quantify similarity between them while considering how many words are

shared between a pair of context nodes.

When the nodes represent synsets (or concepts), certain approaches leverage only

the intrinsic nature of the network connections, leveraged by random walk algorithms,

without explicitly using weighted edges [Mihalcea 2004]. On the other hand, there are

techniques that assign a frequency-based weight to represent the importance of a se-

mantic relation, particularly those found in the reviews by [Sinha 2007, Navigli 2007],

where several weights are tested.

A more sophisticated approach to edge weighting is proposed in [Saluja 2013]

where they employ custom-defined functions in order to learn the most appropriate

edges’ weights for a given set of seed vertices inside a network. The main idea is

to enforce smoothness (keeping two nodes close if they have related edges) across the

network.

As a way to rank edges according to their importance, the ratio of triangles (cycles

of length 3), squares (cycles of length 4), and diamonds (graphs with 4 vertices and 5

edges, forming a square with a diagonal) in which an edge participates are calculated

[Navigli 2010, Di Marco 2013]. Once the top edges are found, they create a subgraph

containing only these edges (and its corresponding vertices).

Finally, instead of applying weights to edges, a case where nodes are weighted can

be found in [Kivimäki 2013]. They measure and remove popular nodes in order to

avoid their bias during the application of their random walk approach.
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Graph Search Usually, in a WSD approach, the first step to follow is to build a graph

from a LKB. The goal is to explore the semantic network and find all the senses linked

to those found in the context of an ambiguous word. Aside from custom search heuris-

tics applied by certain works [Agirre 2006, Sinha 2007, Agirre 2009], researchers also

use well-known graph techniques such as depth-first search [Navigli 2007], breadth-

first search [Agirre 2008] and even the Dijsktra algorithm to find the group of closest

senses in the network [Matuschek 2013].

Node Connectivity Measures A Connectivity Measure (CM) determines the impor-

tance of a node in a graph according to its association with other nodes. In most cases

its value ranges from zero to one, where the 0 indicates that the node is of minor im-

portance while 1 suggests a relatively high significance. Nowadays, the most widely

used measures are those based on random walks.

A Random Walk (RW) can be simply defined as the traversal of a graph beginning

from a given node and randomly jumping to another in the next time step.

PageRank [Brin 1998] , the popular random walk based algorithm is used com-

monly in WSD. The recursive intuition of PageRank is to give importance to a node

according to the PageRank value of the nodes that are connected to it. Nonetheless, as

a regular random-walk algorithm, in PageRank the probability distribution to change

from a node to another is uniform. In such case, the jumps a random walker performs

depend solely on the nature of the graph studied. Among the approaches surveyed,

those that use the most PageRank are those that solve word sense disambiguation

[Mihalcea 2004, Agirre 2006, Navigli 2007, Silberer 2010]. These approaches make a

conventional use of PageRank: they apply it and rank nodes to select the most appro-

priate senses for ambiguous words. Still, there are some improvements over the classi-

cal use of PageRank in WSD. Some techniques employ a different version of PageRank

called Personalized PageRank (or PageRank with restart [Murphy 2012] or PPR) were

a random walker may return to a specific starting node with certain probability rather

than jumping to a random node. This formulation allows researchers to assign more

weight to certain nodes. For example, in [Agirre 2009] they are able to use the com-

plete Wordnet graph as their SN. They do this by directly adding context words of a

polysemous token into Wordnet and then giving a uniform initial distribution to only

these nodes. In this way, they force PageRank to give more importance to the context

words without the need of extracting a subgraph from the SN. In [Moro 2014] they

apply the same technique to obtain a semantic signature of a given sense vertex. After
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applying PPR, they obtain a frequency distribution over all the nodes in the graph.

The so-called semantic signature consists in those nodes that were visited more than

an arbitrary threshold and that best represent an input sense node.

There are other methods which share the properties of random walk approaches.

In [Tsatsaronis 2007, Kivimäki 2013] they apply a method known as spreading acti-

vation. This algorithm aims to iteratively diffuse the initial weights of a set of seed

nodes across the network. Specifically, once a weighted semantic network is built,

they activate the nodes representing the context senses, assigning a value of 1, while

deactivating the rest by setting them to 0. They determine the most pertinent senses

to the input nodes by storing, for each of them, the last active sense node with the

highest activation value.

Beyond WSD and into the task of determining word similarities, we found the

work of [Yeh 2009], where they calculate a semantic similarity between a pair of words

while leveraging a Wikipedia SN. For each word, they apply PPR to find the articles

that best represent a word. In [Saluja 2013], they also employ PPR to find synonym

words given a word-similarity matrix and a new unknown word (also known as out-

of-vocabulary word). They link the new word to its corresponding feature nodes and

they normalize the similarity matrix to use the weights as probabilities and thus bias

the random walk. In [Kivimäki 2013] they use centrality measures to determine the

most relevant nodes in a SN and then, in contrast with most approaches, remove them

from the graph in order to not bias their graph algorithms.

With regard to other CMs, there are more elementary alternatives to determine the

importance of a node. For example, the approaches of [Véronis 2004, Klapaftis 2007,

Liu 2011, Bronselaer 2013, Moro 2014] successfully use the degree of a node, or other

metric, to determine its importance in a network.

Graph Clustering/Partitioning Graph clustering is defined as the task of grouping

the vertices of a graph into clusters while taking into consideration its edge structure

[Schaeffer 2007]. As previously mentioned, graph-based word sense induction relies

most importantly in the graph clustering step where the actual senses of a word are

inferred.

In this subsection we also consider subgraph extracting techniques which are ex-

ploited to find separated groups of words and thus induce senses. In this context

we found the approaches of [Véronis 2004, Silberer 2010]. These systems make use of

both the Minimum and Maximum Spanning Trees algorithms (MinST and MaxST, re-
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spectively) as a final step to disambiguate a target word given its context. Meanwhile,

both [Liu 2011, Qian 2014] use the Hypergraph Normalized Cut (HCT) approach, a

hypergraph clustering method based on minimum cuts, to induce senses.

Most of the reviewed approaches employ state of the art techniques

[Klapaftis 2008, Klapaftis 2010, Jurgens 2011, Hope 2013b]. Specifically, they uti-

lize Chinese Whispers (CW) [Biemann 2006], Hierarchical Random Graphs (HRG)

[Clauset 2008], Link Clustering (LC) [Ahn 2010], and MaxMax (MM) [Hope 2013a]

respectively.

Briefly, CW is a randomized graph-clustering method which is time-linear with

respect to the number of edges and does not need a fixed number of clusters as

input. It only requires a maximum amount of iterations to perform. HRG, being

a hierarchical clustering algorithm, groups words into a binary tree representation,

which allows to have more in-detail information about the similarity among words

when compared to flat clustering algorithms. Regarding LC, instead of clustering

nodes, this procedure groups edges. Thus it can identify contexts related to certain

senses, instead of finding groups of words as most approaches do. Finally, MM, is able

to assemble words into a fixed cluster (hard clustering) or allow them to be in several

groups at the same time (soft clustering). It shares certain characteristics with CW:

they are both methods that exploit similarity within the local neighborhood of nodes

and both are time-linear. Nonetheless, a key difference is that CW is not deterministic,

while MM is, thus MM will always find the same clustering result for the same input

graph.

Another common clustering approach to automatically induce word senses

[Goyal 2014, Song 2016] is spectral clustering [Shi 2000] . Some advantages of this

method include that it is simple to implement and often outperforms other cluster-

ing methods as well as being able to work directly with graph and non-graph data

[Luxburg 2007]. The algorithm consists in projecting the normalized Laplacian of an

affinity (or similarity) matrix (adjacency matrix in the case of graph data) on its k first

eigenvectors. The lower-space projection allows for an easier separation, for example

with k-means, in order to find the group membership of each original data point.

Indeed, the Laplacian of an affinity matrix can be used to represent several prop-

erties of the inherent structure within the data. Specifically, in the case of a graph,

it tells us about the number of connected components through its set of eigenvalues,

specially the eigenvectors associated to the smallest eigenvalues, which synthetically
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represent the data.

The normalized Laplacian of an affinity (symmetric and positive) matrix W ∈

Rn×n, with wij = wji > 0, is defined as:

L = I−D−1/2WD−1/2 (3.1)

where I is the identity matrix and D is the degree matrix of W. D is defined as

the diagonal matrix with the degrees d1, . . . ,dn on the diagonal. As W may not be an

adjacency matrix, we define the degrees of each row in the matrix as: di =
∑n

j=1wij.

Given a symmetric and positive similarity matrix W ∈ Rn×n, and a number of

desired clusters k, the steps required to perform spectral clustering are:

1. Obtain the normalized Laplacian L as indicated in Equation 3.1.

2. Obtain the first k eigenvectors u1...k of L.

3. Store said eigenvectors as columns in a matrix V ∈ Rn×k. This matrix is akin to

a lower-dimension projection of the original similarity matrix W.

4. Cluster the points in Vi with k-means. The clusters found and their members

correspond to the cluster of the spectral algorithm.

Special attention must be given to the input matrix W as it must be indeed a

symmetric affinity matrix in order to ensure the proper behavior of this method

[Luxburg 2007, Goyal 2014].

Supervised Sequential Classification In order to determine the correct set of tags

that identify the words within a phrase, sequential NLP tasks such as NER, are usually

solved by using supervised structured algorithms. In particular, we focus on the struc-

tured perceptron by [Collins 2002] sequence labeling algorithm. The general intuition

of this method is introduced below. We chose this method as it is relatively simple and

performs as well as more complex probabilistic approaches (e.g., conditional random

fields, hidden Markov models) [Daumé III 2006, Daumé III 2012].

Like the well-known perceptron algorithm, the structured perceptron is an online

method that learns to classify one example at a time. The goal of this algorithm is to

determine a label for each structured input. Formally, for an input x ∈ X, we want to

predict a class ŷ ∈ Y that maximizes the following matrix product:
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ŷ = arg max
ŷ∈Y

w ·Φ(x, ŷ) (3.2)

where Φ(x, ŷ) is the vector of representing the feature space of input x with respect

to each of the possible labels Y = {1, . . . , K}. Indeed, Φ(x, ŷ) indicates a certain level of

compatibility between input x and each label y.

We learn w as a weight vector which considers each feature in regard to each class.

As with the classic perceptron, w is updated if the predicted ŷ is different to the true

label y, as follows:

w← w+Φ(x,y) −Φ(x, ŷ) (3.3)

The algorithm for the structured perceptron is shown in Algorithm 1. For each

input, we obtain its predicted class and determine whether it is equal to the true label.

If it is not the case, we update the weight vector.

Algorithm 1: Training phase of the Structured Perceptron
Input: Data x ∈ X

Input: True labels y ∈ Y

Input: Max number of iterations MaxIteration

Output: A vector of lerned weights w

1 for Iteration = 1 . . .MaxIterations do

2 foreach (x,y) ∈ X,Y do

3 ŷ = arg maxŷ∈Y
w ·Φ(x,y)

4 if ŷ 6= y then

5 w← w+Φ(x,y) −Φ(x, ŷ)

6 end

7 end

8 end

9 return w

The main issue with this algorithm is the computation of arg maxŷ∈Y
w ·Φ(x, ŷ) in

line 3 of Algorithm 1. As said before, we are looking for the sequence of labels ŷ that

maximize this product. This implies a very large search over all the possibilities that

grows exponentially with the number of possible tags Y. If we consider a phrase with

L words, and a tagset of k labels, the total number of possibilities to explore would be
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Lk. For example, for a phrase with 10 words, and 5 labels, we would need to explore a

space of 105 = 100, 000 possibilities. This exploration then tends to be computationally

unfeasible for a large number of phrases and/or a larger number of words per phrase.

In order to address this problem, another familiar algorithm is employed: the

Viterbi decoder. Briefly, this method calculates the optimal set of labels for each input,

by determining the maximum path (or sequence of labels) through a lattice of tags’

possibilities, one step at a time. As we search the maximum path of labels taking into

account only the current word and the last at a time, we reduce the search space to

LK2. Again, for a phrase of 10 words and 5 labels as before, we would be searching

over 10× 52 = 250 possible sequences of tags.

3.2.2 Discussion

We have covered the network attributes of several approaches on semantic related NLP

tasks. A summary of these strategies is shown in Table 3.1. In this section we shortly

discuss the reviewed articles from a modelization perspective as well as looking at

the evolution of the approaches used to solve the word sense disambiguation and

induction tasks.

Regarding WSD approaches, we see that the use of a lexical knowledge base, such

as Wordnet3, is pervasive in this task. Indeed, new resources, such as BabelNet4,

solves to some extent the fixed (no new senses are included automatically) nature

of this type of resources by leveraging the always evolving knowledge of Wikipedia.

Particularly, in recent years, entity linking has emerged as a related task to WSD. It

takes even more advantage from bases that combine both Wordnet and Wikipedia,

the case of BabelNet. On the other hand, WSI, while being a more flexible approach

(language and word-usage independent, does not require human-made bases) for

solving WSD, its results are tightly linked to the quality of the clustering algorithm

used. With respect to the networks’ modelization, we find that few approaches deal

with syntactic attributes. We believe that finding semantic similarities can be improved

by adding syntactic information not only while using dependency relations but also

by leveraging the constituency tree of each word. Moreover, using syntactic data along

with semantic and/or lexical co-occurrences takes us into the heterogeneous network

domain which has not been addressed in most of the approaches covered. Being

3❤tt♣s✿✴✴✇♦r❞♥❡t✳♣r✐♥❝❡t♦♥✳❡❞✉
4❤tt♣✿✴✴❜❛❜❡❧♥❡t✳♦r❣

https://wordnet.princeton.edu
http://babelnet.org
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Table 3.1: Summary table of several strategies found in the literature.
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Veronis, 2004 [Véronis 2004] x x x

Mihalcea et al., 2004 [Mihalcea 2004] x x

Agirre et al., 2006 [Agirre 2006] x x x

Sinha and Mihalcea, 2007 [Sinha 2007] x x

Navigli and Lapata, 2007[Navigli 2007] x x x

Tsatsaronis et al., 2007 [Tsatsaronis 2007] x x

Klapaftis and Manandhar, 2007 [Klapaftis 2007] x x x

Klapaftis and Manandhar, 2008 [Klapaftis 2008] x x x

Agirre and Soroa, 2008 [Agirre 2008] x x

Agirre and Soroa, 2009 [Agirre 2009] x x x

Klapaftis and Manandhar, 2010 [Klapaftis 2010] x x x

Navigli and Crisafulli, 2010 [Navigli 2010] x x

Silberer and Ponzetto, 2010 [Silberer 2010] x x x

Di Marco and Navigli, 2011 [Di Marco 2011] x x

Jurgens, 2011 [Jurgens 2011] x

Di Marco and Navigli, 2013 [Di Marco 2013] x x

Hope and Keller, 2013 [Hope 2013b] x x x

Moro et al., 2014 [Moro 2014] x x

Qian et al., 2014 [Qian 2014] x x x

Yeh et al., 2009 [Yeh 2009] x x

Liu et al., 2011 [Liu 2011] x x x

Matuschek and Gurevych, 2013 [Matuschek 2013] x x

Bronselaer and Pasi, 2013 [Bronselaer 2013] x x

Kivimäki et al., 2013 [Kivimäki 2013] x x x

Saluja and Navrátil, 2013 [Saluja 2013] x x x x

25 11 12 2 1 9 6 14 8
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able to design new similarity metrics that deal with different types of information

opens new avenues of research in the semantic similarity domain. Finally, concerning

the algorithms employed, few approaches make direct use of the graph Laplacian

representation. New similarities could be defined using the Laplacian as a starting

point.

Taking into account the described opportunities of research, in the following sec-

tion we propose a hypergraph modelization of a linguistic network that aims to solve

some limitations stated above.

3.3 Proposed Model: Fusion Enriched Hypergraph Linguistic

Network

As stated before, our model consists on two parts (and two contributions). The first

one, an hypergraph model that holds different types of linguistic relations extracted

from a corpus. And the second one, the combination of linguistic features in order to

generate a less sparse, enriched representation.

In this section we focus on the first part, the hypergraph model. We note that

for the sake of simplicity we limit ourselves to lexical and syntactic information. The

model in essence holds two different networks, one for each type of relations. They

are both unified by means of a hypergraph structure.

3.3.1 Hypergraph Linguistic Model

Formally, a hypergraph [Berge 1985] is a graph generalization that allows more than

two vertices to be linked by a single edge. We call H = (V ,E) a hypergraph with

the vertex set V and the hyperedge set E. Let V denote a finite set of objects, and let

E (the hyperarcs or hyperedges) be a group of subsets of V such that V = ∪ej∈Eej.

A weighted hypergraph is a hypergraph that has a positive number w(e) associated

with each hyperedge, called the weight of the hyperedge e . A weighted hypergraph is

then denoted by H = (V ,E,w). A hyperedge e is said to be incident with a vertex v

when v ∈ e. As one can see, as in regular graph theory, the adjacency is referred to the

elements of the same kind (vertices vs vertices, or edges vs edges), while the incidence

is referred to the elements of different kind (vertices vs edges).

Building upon previous linguistic representations [Klapaftis 2007, Liu 2011,

Qian 2014], our model is indeed based on the use of a hypergraph. Its single most
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a more appropriate meaning’s relation between words.

Construction In our case, the set of words in the corpus are the set of nodes V , and

the set of hyperedges E represent the relations between nodes according to different

linguistic aspects. We consider each word (i.e., each node) to exist in one of three

types of hyperedges, two syntactic and one lexical co-occurrence contexts:

1. NP: noun phrase (NP) constituents,

2. DEP: dependency relations. We consider all types of dependency functions

between nouns and verbs,

3. SEN: lexical context, in this case the window considered is the whole sentence

The part of speech information is stored implicitly with the constituent informa-

tion. While these parameters are fixed in our implementation, they can easily be

adapted to other configurations. For example, we may consider noun phrases and

verb phrases as chunks, specific types of dependency functions, or different lexical

window size.

To populate the hypergraph, given a token v, a noun phrase p, a sentence s, and a

dependency function dep(h, ·), with h being the head of the relation, we consider the

following rules:

• v is incident (or belongs) to a hyperedge ej of type NP if v appears in the same

noun phrase p.

• The same condition is used with sentence hyperedges SEN: if v appears in a

sentence s, it will be located in a hyperedge ej of type SEN.

• If v participates in a dependency function dep(h, v) as a dependent, it belongs to

a hyperedge ej of type DEP.

Each hyperedge is labeled according to an identifier that allows the hypergraph to

be populated while reading words from a corpus. For example, the hyperedges of the

set SEN = {hS1
,hS2

,hS3
} are indeed hyperedges that represent sentences, identified by

an index in this case. Hyperedges hS1
,hS2

,hS3
contain each a set of words. Addition-

ally, the hypergraph can be represented as a n×m incidence H matrix with entries

h(i, j) = N(vi, ej) where N(vi, ej) is the number of times vi ∈ ej occurs in the corpus.

This frequency values can be later converted into other weighting schemes as seen in
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Chapter 2. Indeed, the incidence matrix allows us to pass from the hypergraph-based

model of representation into the vector-space model.

Running Example We illustrate the process of creating a sample hypergraph model

with the following example phrase: The report contains copies of the minutes of these

meetings. We tokenize the phrase, keeping all the words, and we lemmatize and parse

it to obtain both constituency and dependency trees.

Constituency Tree The constituency tree of the example phrase is shown in Fig-

ure 3.3. The sentence, as well as each noun phrase (NP) node is identified by a number,

these numbers serve as an unique identifier of the phrase chunk within the whole sen-

tence. We can observe that this phrase is composed by five noun phrases and one verb

phrase. Meanwhile, some NP are formed by other kind of phrases, depending on the

grammar production rule used to build each one of them. Furthermore, as is usual in

this kind of structures, there is a one to one relation between the number of tokens in

the sentence and the number of leaves in the tree.

For clarity, in our example we only consider nouns and the first three noun phrases

(from left to right), as well as the nominal subject (nsubj) and direct object (dobj) depen-

dency relations. Thus, in total, as described below, we have three hyperedges of noun

phrase type: NP1,NP2 and NP3. Each of them corresponding to the noun phrases in

the constituents tree.

Dependency Tree The dependencies of the example phrase are shown in Figure

3.4 as a tree structure. The relations can also be seen as tuples in Table 3.2 In these

relations’ examples, the head is the first token to appear followed by the dependent

word. Two hyperedges are found: nsubjcontains and dobjcontains.

Hyperedges Found From both syntactic parses and the phrase itself we build

a hypergraph representation as stated before. We show below the hyperedges sets

found for each type, (NP, SEN, and DEP), and their members. Each hyperedge is

labeled with a unique identifier:

• NP = {NP1,NP2,NP3}

– NP1 = {report}

– NP2 = {copies, minutes, meetings}
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S1

NP1

DT

The

NN

report

VP

VBZ

contains

NP2

NP3

NNS

copies

PP

IN

of

NP4

DT

the

NNS

minutes

PP

IN

of

NP5

DT

these

NNS

meetings

Figure 3.3: Constituency-based tree of the phrase The report contains copies of the minutes

of these meetings.

Figure 3.4: Dependency-based tree of the example phrase.

root(root, contains) det(minutes, the)

det(report, The) nmod:of(copies, minutes)

dobj(contains, copies) det(meetings, these)

nmod:of(minutes, meetings) nmod(minutes, meetings)

nsubj(contains, report)

Table 3.2: Dependency relations of the example phrase.
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On the other hand, we realize that the incidence matrix is relatively sparse and this

it will inevitably increase as more text is included in the hypergraph. Sparsity, as we

saw previously, affects the performance of knowledge discovery techniques applied

to NLP tasks.

Just as the literature approaches covered before, we aim to solve semantic tasks by

using the proposed linguistic resource and its relations. Yet, unlike those approaches

we have three contexts and thus three levels of semantic relatedness, coupled to the n-

ary relations from the hypergraph structure. Nonetheless, our model also suffers from

data sparsity. We will show how to deal with this issue in the following section. The

general idea is that by combining features from the different contexts we can alleviate

the problem as similarities not seen in a context may complement the features from

another context. The set of approaches that perform this combination are known as

multimedia fusion techniques.

3.3.2 Representation Enrichment with Fusion Techniques

The second part of our proposed method deals with the fusion of textual features. For

convenience, we start by introducing in Table 3.3 the notations we use in the descrip-

tion of our fusion approaches. Specifically, by using fusion operators, we combine the

features that describe terms into a single representation space. This new space aims

to address two issues that arise while working with textual data: effectively using

information coming from different linguistic levels (e.g., lexical, syntactic, semantic)

while alleviating the sparsity typical of textual representations.

Multimodal fusion entails set of popular techniques used in multimedia analysis

tasks. These methods integrate multiple media features, the affinities among these

attributes or the decisions obtained from systems trained with said features, to ob-

tain rich insights about the data being used and thus to solve a given analysis task

[Atrey 2010]. We note that these techniques come at the price of augmenting the com-

plexity of a given system by increasing or reducing the sparsity of a given feature

matrix.

In the multimodal fusion literature we can discern two main common types of

techniques: early fusion and late fusion. A third and fourth type of fusion methods,

cross-media fusion and hybrid fusion are also employed in multimedia analysis tasks.

These four fusion operators naturally address the issue of dealing with heteroge-

neous data as they all mix one way or another the feature columns from each of two
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Notation Definition

A,B Single modality representation matrices

ML Lexical representation matrix

MS Syntactic representation matrix

MT Standard features representation matrix

SL Lexical similarity matrix

SS Syntactic similarity matrix

ST Standard similarity matrix

Eα(A,B) Early fusion representation space from matrices A and B

hstack Function that joins together two matrices column-wise

α Early fusion parameter that weighs input matrices

Lβ(A,B) Late fusion representation spaces from matrices A and B

β Late fusion parameter that weighs input matrices

Xγ(A,B) Cross fusion representation from matrices A and B

K(A,γ) Operator yielding the top γ neighbors of similarity matrix A

γ Cross fusion parameter that determines the number of similar neighborhoods to take with

XF Cross Feature fusion

XS Cross Similarity fusion

XFEF Cross Feature Early Fusion

XFXSF Cross Feature Cross Similarity Fusion

EXFF Early Cross Feature Fusion

LXFF Late Cross Feature Fusion

ELXFF Early Late Cross Feature Fusion

EEELXFLXF Triple Early Double Late Cross Feature Fusion

Table 3.3: Fusion related notations and definitions
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representations. Regarding alleviating sparsity, the intuition is that by combining ma-

trices either by summing or element-wise multiplying them, the resulting matrix will

have a denser structure. For example, by summing two matrices with the same shape,

such as two term-term similarity matrices, we obtain a resulting matrix that contains

the similarities of both feature spaces. In the same sense, when multiplying two ma-

trices we combine them while also obtaining a denser output matrix. Nonetheless,

both sum and multiplication result depends evidently on the nature of the matrices

employed. Two of the fusion techniques mentioned above, late fusion and cross-media

fusion use sum and multiplication as they main matrix operator. What is more, both

of them contemplate the use of similarity matrices as at least one of their inputs. Be-

ing similarity matrices, they tend to be dense and thus the resulting sum or product

will be more dense than the original sparse representation, while complementing and

enriching the space with other types of information. We present an example of this

intuition in the following section.

We describe the four of them in the following paragraphs. The notation used is

first introduced as follows. The fusion functions are binary, they all take two inputs,

parameters A and parameter B which define arbitrary single-modality matrices. For

example, both matrices A and B may represent a lexical ML, syntactical based MS, or

other type representation spaces MT . On the other hand, they may also describe their

respective similarity (square) matrices, SL and SS. In a broader sense, matrices A and

B may represent any pair of valid5 term-feature matrices.

Early Fusion This technique is the most widely used fusion method. The principle

is simple: we take both modal features and concatenate them into a single representa-

tion matrix. More formally, we consider two matrices that represent different modality

features each over the same set of individuals. To perform early fusion we concate-

nate them column-wise, such that we form a new matrix having the same number of

lines but increasing the number of columns to the sum of the number of columns of

both matrices. The matrices may also be weighted as to control the influence of each

modality.

Such trivial fusion is shown in Figure 3.6. In this example, two matrices are used,

ML and MS. Each one represents a different feature space. They both have the same

number of rows n, they have m and p columns, respectively. After an early fusion

5Valid in terms of having compatible shapes while computing a matrix sum or multiplication.
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operation, the final matrix has m+ p features. Formally, the early fusion function is

defined as:

E(A,B) = hstack(A,B) (3.4)

As stated before, the matrices A and B are combined together via a concatenation

function hstack which joins both of them column-wise. In order for this operator to

work, both matrices must have the same n number of rows.

During the concatenation, we may also apply a weight to matrices A and B such

as:

Eα(A,B) = hstack(α ·A, (1−α) ·B) (3.5)

Indeed, this weighted early fusion represents the same operation as before with an

extra parameter: α, which controls the relative importance of each matrix. In the

following, we refer to both operations simply as early fusion. When α is determined

(and indicated as a subscript), we refer to weighted early fusion. Otherwise, there is

no weighting scheme applied to the operation.

The main advantage of early fusion is that a single unique model is fitted while

leveraging the correlations among the concatenated features. The method is also easy

to integrate into an analysis system. The main drawback is that we increase the rep-

resentation space and may make it harder to fit models over it.

Late Fusion In contrast to early fusion, in late fusion the combination of multimodal

features are generally performed at the decision level, i.e., using the output of in-

dependent knowledge discovery models trained each with a unique set of features

[Clinchant 2011]. In this setting, decisions produced by each model are combined into

a single final result set. The diagram in Figure 3.7a shows this combination of matrices

A and B. The methods used to combine preliminary decisions usually involve one of

two types: rule-based (where modalities are combined according to domain-specific

knowledge) or linear fusion (e.g., weighting and then adding or multiplying both

matrices together). This particular type of fusion is very close to machine learning

ensemble methods.

Indeed, late fusion combines both modalities in the same semantic space. In that

sense, we may also combine modalities via an affinity representation instead of final

decision sets. In other words, we may combine two modalities by means of their

respective similarity matrices. In this case, a representation is obtained by adding two

similarity matrices, as in Figure 3.7b. In the figure, we use the equal-sized matrices
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the most representative similarities, determined by the parameter γ. Finally, the cross

fusion representation is obtained by computing the product K(SL,γ)× SS.

Formally, we define the cross fusion function as:

Xγ(A,B) = K(A,γ)×B (3.7)

In this case, the K(·) function takes the top-γ closest words (columns) to each word

(lines) while the rest of the values are set to zero. As noted before, matrices A and

B may be two similarity matrices. While A is always required to be a square filtered

similarity matrix, B may be also a plain term-feature matrix, as we describe in the

following paragraphs. The sole requirement is that the number of columns of the

result of the operation K(·) should be equal to the number of rows of B.

Cross fusion aims to bridge the semantic gap between two modalities by using the

most similar neighbors as proxies to transfer valuable information from one modality

onto another one. Usually, the result of a cross fusion is combined with the previous

techniques, early and late fusion. In this work we perform experiment in that sense.

Hybrid Fusion We may leverage the advantages of the previous three types of fu-

sion techniques by combining them once more in a hybrid setting. As described in

[Atrey 2010, Yu 2014], the main idea is to simultaneously combine features at the fea-

ture level, i.e., early fusion, and at the same semantic space or decision level. Nonethe-

less, they define a specific type of hybrid fusion. In this chapter, we adopt a looser

definition of hybrid fusion. That is, we perform a hybrid combination of features by

leveraging the aggregation of the fusion strategies described before.

Having said that, here we distinguish three levels of hybrid fusion (aside from

the use of single features, or SF henceforth, independently) that we employ in our

experiments during the Chapter 4.

1. First Degree Fusion (1F): we consider the three elementary fusion techniques

described before (early fusion, late fusion, cross fusion) by themselves. This

level of fusion serve as the baseline we set to surpass in order to show the

efficacy of the representation feature space found through fusion techniques. As

an example, we may obtain a first degree representation matrix by performing

an early fusion between the lexical matrix and the syntactical features matrix:

E(ML,MS).
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We note that we distinguish two types of cross fusion operators: Cross Feature

Fusion (XF) and Cross Similarity Fusion (XS). The former combines a similarity

matrix with a feature matrix, e.g., XF(S
L,MS). The latter joins a similarity matrix

with another similarity matrix, for example XS(S
S,SL). The intuition behind

cross feature fusion XF is that the rich information from the first input matrix

can be transferred directly to a representation without the need of obtaining its

similarity matrix beforehand. We denote them feature and similarity to refer to

the fact that the first one uses simply a feature matrix and the second requires

some knowledge from the data, in this case the similarity between terms.

2. Second Degree Fusion (2F): in this level we begin with the recombination of the

outputs of the previous two levels. Namely, this procedure yields a combination

of "second-degree" among fusion methods. Indeed, we introduce four types of

second degree fusions employed in the following list. Each one is illustrated

with an example:

(a) Cross Feature Early Fusion (XFEF): consists on the cross feature fusion (XF)

of two inputs, a similarity matrix, and the output of an early fusion. For

example the operation XF(S
T ,E(ML,MS)) implies the XF of the similarity

matrix ST with the early fusion of matrices ML and MS.

(b) Cross Feature Cross Similarity Fusion (XFXSF): entails the cross feature

fusion (XF) of two elements, the output of a cross similarity fusion (XS),

and a term-feature matrix. For example, the operation XF(XS(S
T ,SS),MT) is

the cross feature fusion (XF) of a cross similarity fusion (XS), the late having

similarity matrices ST and SS as inputs, and a standard features matrix MT .

(c) Early Cross Feature FusionEarly Cross Feature Fusion (EXFF): this oper-

ation consists on the early fusion of a feature matrix with the output of

a cross similarity fusion. As an example, the operation E(MT ,XF(S
L,MT))

computes the early fusion of matrix MT with the result of a XF with SL and

MT as operands.

(d) Late Cross Feature Fusion (LXFF): this fusion implies the late fusion of a

feature matrix with the output of a cross feature fusion. For example, the

fusion L(MT ,XF(S
T ,MT)) describes a late fusion between the feature matrix

MT and the cross feature fusion among ST and MT .

3. Higher-Degree Fusion (HF): in this last level we follow a similar approach to
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the previous level by combining the output of the second-degree fusion level

multiple times (that is, more than two times) with other second-degree fusion

outputs. In this level we test the following two fusion operations:

(a) Early Late Cross Feature Fusion (ELXFF): As an example for this fusion,

the operation E(MT ,L(MS,XF(S
T ,MT))) implies the combination of three fu-

sion operations. From left to right, first we compute the early fusion (first

operation) of matrix MT , with the result of a late fusion (second operation)

between feature matrix MS and the result of a cross feature fusion, itself

having as input matrices ST and MT . Indeed, we perform three operations,

an early fusion, a late fusion and a cross feature fusion, thus the name Early

Late cross feature fusion of this operator.

(b) Triple Early Double Late Cross Feature Fusion6 (EEELXFLXF): although it

seems complex, this fusion scheme merely consists on the early fusion of

the last two operators: LXFF and ELXFF, with another feature matrix. As an

example, the operator E(ML,E(E(MT ,L(MT ,XF(S
T ,MT))),L(ML,XF(S

S,ML))))

entails the early fusion of matrix ML with the result of the early fusion of

ELXFF with LXFF.

The fusion operators presented (early, late, and cross fusion) are simple and

straight-forward. In total, there are three parameters to control: α and β in early

and late fusion, respectively. They both control the relevance of each matrix A and B

in the operation. And γ, controlling how many top similarities are kept in the cross

fusion operator.

As we will see in the experiments carried out in the next chapter, it is the aggre-

gation of several of these fusion functions, as hybrid fusion operations, that yields

interesting results against the use of single features or independent fusion operators.

This is in line with other relevant research [Ah-Pine 2015]. We consider early fusion,

the simple concatenation, a baseline to the rest of fusion aggregations we perform.

Fusion techniques also have downsides. As said before, certain operators densify

the feature-space matrix but at the same time the number of dimensions grow consid-

erably (with the early fusion operation). Additionally, to the increment of density, the

number of features represent an important challenge computationally.

6We adopted the double and triple notation to lighten the explicit name of this fusion operation: Early

Early Early Late Cross Feature Late Cross Feature Fusion
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Before getting into the experimentation details, in order to make our hypergraph

linguistic resource concrete, we present the process to obtain such a representation

from a raw corpus, namely the English Wikipedia. In other words, we instantiate our

model with a Wikipedia-based corpus in order to better understand the characteristics

proposed. To get there, we first need a syntactically parsed Wikipedia corpus. In the

following section, the method we describe first extracts text from the corpus and then

analyses it to create a Syntactically Annotated English Wikipedia Dump (SAEWD).

From there, we detail the steps we carried out to store it as the proposed language

network (represented as a hypergraph incidence matrix accompanied by complemen-

tary metadata information regarding the meaning of each vertex and hyperedge).

3.4 Proof of Concept: Wikipedia-based Corpus as an Enriched

Hypergraph

In order to materialize our proposed linguistic model, we need to first create a chain

of applications that will extract text from a semi-structured body of text, tokenize it,

parse it to extract the syntactic trees the model requires, and then store in order to

be used by a NLP application. In this section we describe this process, implemented

as an application that takes a corpus as input and outputs the linguistic resource

we introduced in the previous section. In this practical example, we use the English

Wikipedia corpus as the source for our resource.

The online encyclopedia Wikipedia7 has been used as a source of valuable data

as well as a common background corpus to perform experiments and compare re-

sults for diverse NLP/TM related tasks. For example, concerning the first case, in the

area of Information Extraction, Wikipedia’s infoboxes structured information is used

in [Wu 2010] as a valuable resource to complement and improve their open informa-

tion extraction system. Along the same line, [Charton 2010] extracted metadata from

Wikipedia while leveraging its internal structure in order to produce a semantically

annotated corpus. Moving on to the Information Retrieval field, features extracted

from Wikipedia can also help to better predict the performance of a query [Katz 2014]

in a given corpus. In the second case, as a background collection for experiments, a

document-aligned version of English and Italian Wikipedia has been used to deter-

mine the quality between word’s translations [Vulić 2011].

7❤tt♣s✿✴✴❡♥✳✇✐❦✐♣❡❞✐❛✳♦r❣

https://en.wikipedia.org
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Wikipedia, being such a popular resource already has various off-the-shelf parsed

snapshots (or dumps). These parsed dumps allow researchers to focus more into

their approaches than into the extraction and transformation of Wikipedia’s data. We

briefly describe certain relevant parses found in the literature.

A relevant Wikipedia parsed dump example comes from [Jordi Atserias 2008].

Their work provides a balanced amount of syntactic and semantic information. In

short, the dump includes each word’s part of speech tag, their dependency relations

as well as the output of three different named entity recognition parsers. Addition-

ally, they provide a graph structure that leverages Wikipedia’s internal composition

alongside its corresponding metadata. Nonetheless, the resource is no longer avail-

able on the original URL although it may be obtained through Yahoo’s Webscope8

datasets library. In [Flickinger 2010], they perform a deep parse analysis is performed

to provide detailed syntactic and semantic information. The authors leverage a previ-

ously manually annotated portion of the English Wikipedia. They extract a grammar

from this portion and also train a statistical model to automatically parse the rest of

Wikipedia. Even though the parse offered is deep and rich in details, the annotation

labels, as well as the corpus output format, may not be convenient and easy to use

because of its complexity and particular nature. [Schenkel 2007] released a purely

semantic XML parse that links WordNet concepts to Wikipedia pages. They focus

greatly on cleaning and pretreating Wikipedia. In this paper we do not focus as much

into the cleaning of Wikipedia as already available tools can solve the task quite well

for non-specific needs. Finally, there are certain Wikipedia dumps that offer the raw

cleaned text without any extra subsequent parsing or analysis. Such is the case of the

corpus made available by [Shaoul 2010]. This corpus makes use of the WikiExtractor

script [Giuseppe Attardi 2015] to clean the Wikipedia dump.

Although the existing parses and dumps already satisfy numerous specific re-

search needs, they have certain limitations that drove us to build our own resource:

the Syntactically Annotated English Wikipedia Dump (SAEWD). Specifically, we ad-

dress the following shortcomings: the lack of constituents-based tree information, the

complex output formats, the limited online access and the absence of the tools used

(i.e., the source code) to create the annotated corpus. In SAEWD we include the com-

plete parse tree information for each word provided by well-known parsing tools. We

store the extracted information in a simple and already existing output format. Ad-

8❤tt♣s✿✴✴✇❡❜s❝♦♣❡✳s❛♥❞❜♦①✳②❛❤♦♦✳❝♦♠✴

https://webscope.sandbox.yahoo.com/
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ditionally, we give open access to the parsed dump9 and we share our source code10

with the community. The code allows anyone (with programming skills) to apply

our processing pipeline and build their own particular Wikipedia parse or even to

parse other text collections. Finally, we present and provide a hypergraph linguistic

network for fast NLP/TM experimentation. Indeed, SAEWD aims to be used as a

stepping stone for a standard Wikipedia parsed version for the largest possible set of

tasks in future research.

SAEWD uses widely known English language parsing tools, namely those in-

cluded in the Stanford CoreNLP suite. Aside from being accessible and regularly

maintained, it provides a common set of labels (Universal Dependencies11) used

by numerous NLP and TM experiments. Regarding SAEWD output’s format, we

believe that the file format we use, which follows that of [Jordi Atserias 2008], al-

lows for fast reading and simple interpretation. Among other syntactical infor-

mation, we provide the constituents parse branch for each word (explained in de-

tail in Section 3.4.2). Constituent’s paths, and hence chunk’s production rules,

have been proved useful as a complement feature to classic text representations

[Sagae 2009, Bergsma 2012, Massung 2013].

Furthermore, we propose a hypergraph linguistic representation. Over the past

few years, research on the NLP domain has been focusing on novel techniques that

take advantage of the characteristics of language networks to achieve new and inter-

esting results [Mihalcea 2011]. That is why, in addition to SAEWD, we also propose, as

a proof of concept, a hypergraph representation that stores certain information found

in a SAEWD in a practical way that allows for fast and effortless data extraction. This

hypergraph can be indeed considered as a Linguistic Network [Choudhury 2009b].

It aims to facilitate the implementation of graph-based approaches by allowing re-

searchers to jump directly into the algorithm development stage. We use a sample

of the Wikipedia corpus consisting of articles related to Natural Language Processing

and Text Mining12.

In the following sections we describe the steps we undertook to transform a

Wikipedia dump into SAEWD, we give a detailed account of the contents of SAEWD

and the format in which we stored the parsed information, then we explain the char-

9❤tt♣s✿✴✴❡r✐❝✳✉♥✐✈✲❧②♦♥✷✳❢r✴⑦♣s♦r✐❛♥♦✴❙❆❲❉✳❤t♠❧
10❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴♣s♦r✐❛♥♦♠✴❙❆❲❉✲♠❛❦❡r
11❤tt♣✿✴✴✉♥✐✈❡rs❛❧❞❡♣❡♥❞❡♥❝✐❡s✳❣✐t❤✉❜✳✐♦✴❞♦❝s✴
12Later on during our experiments, we extracted a random sample of 200 thousand articles. We employ

the larger corpus in the experiments in the following sections.

http://universaldependencies.github.io/docs/
https://eric.univ-lyon2.fr/~psoriano/SAWD.html
https://github.com/psorianom/SAWD-maker
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Figure 3.9: The tree steps we took to build SAEWD.

acteristics of our proposed network structure.

3.4.1 Construction of SAEWD

The three main steps we followed to build SAEWD are presented in Figure 3.9. Briefly,

we have one input, which is the Wikipedia dump and one output which is the parsed

snapshot. In the following we provide a detailed description of each step of the pro-

cess.

We begin the construction of the parsed corpus with the Wikipedia dump XML

file obtained from the Wikipedia database13 from early November 2014. This dump

contains around 4.7 million article pages14. As shown in Figure 3.9, we apply the

following processing steps in order to yield the final parsed version.

3.4.1.1 Cleaning Wikipedia

First, we discard Wikipedia’s tables, references and lists, markup annotations and

HTML tags with the WikiExtractor [Giuseppe Attardi 2015] script. We used this tool to

clean and split the content of the original XML file into 429 folders each one containing

100 files of approximately 300 kB. These files contain a certain number of complete

Wikipedia articles which is automatically determined by WikiExtractor according to

the maximum possible size assigned for each file, 300 kB in our case, thus the number

13❤tt♣s✿✴✴❞✉♠♣s✳✇✐❦✐♠❡❞✐❛✳♦r❣✴❡♥✇✐❦✐
14We kept all articles available in the Wikipedia dump.

https://dumps.wikimedia.org/enwiki
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of articles in each file may vary. We decided to use numerous files as well as a small

size to easily read their content into memory while parsing. Having multiple small

files also makes it easier to handle the multi-threading aspect of our parsing tool. We

kept WikiExtractor’s original folder nomenclature which assigns to each one of them

a sequence of letters sorted lexicographically15. The files containing the cleaned text is

simply named wiki_XX where XX goes from 00 to 99, as we have 100 files per folder. It

is important to note that the Wikipedia articles’ titles themselves are not sorted in any

specific way, as it was not in the interest of our research to have them ordered. Inside

each cleaned file, besides the article’s text, WikiExtractor keeps the original article’s

URL as well as its unique Wikipedia ID within an XML-like label that also doubles as

article separator.

3.4.1.2 Parsing Wikipedia

Next, once the Wikipedia dump had been cleaned, we use the Stanford CoreNLP16

[Manning 2014] analysis tools to parse all the file texts produced during the previous

step. As a part of our processing pipeline, we first perform sentence segmentation,

word tokenization and lemmatization. Below, we briefly describe each of the extracted

attributes. We also exemplify them in detail in Section 3.4.2.

• PoS tagging: we obtain the grammatical category of each word, i.e., the part-of-

speech tag, using the CoreNLP default tagger, the left3words PoS tagging model.

• Constituents parse: the output of this analysis is a rooted tree that repre-

sents the syntactic structure of a phrase. This tree is commonly known as the

constituency-based parse tree. For each word, we store its complete path in the

constituency tree. Specifically, we keep all the nodes of a word’s own branch

from the root to the word itself. We employ the Stanford Shift-Reduce parser.

This path is transformed into a single line and included in SAEWD.

• Dependency parse: this attribute consists on an extracted tree that describes

the types of grammatical relations between words, i.e., the dependency-based

parse tree. The analysis was performed with the Stanford’s Shift-Reduce parser.

As information representation, we use the basic dependencies scheme, as we

15We have folders named AA, AB, AC and so on.
16❤tt♣✿✴✴♥❧♣✳st❛♥❢♦r❞✳❡❞✉✴s♦❢t✇❛r❡✴❝♦r❡♥❧♣✳s❤t♠❧

http://nlp.stanford.edu/software/corenlp.shtml
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Table 3.4: English Wikipedia dump statistics.

Number of tokens 1,889,769,908

Unique tokens (types) 8,761,691

Number of sentences 84,760,512

Average number of tokens per sentence 22.30

wanted to include each one of the possible dependency relations without any

collapsing between them.

Finally, once the parsing process is complete, the parsed files are stored into individual

files and thus there are as much parsed files as input Wikipedia cleaned files. The

parsed files keep their original name plus the ♣❛rs❡❞ extension, e.g., ✇✐❦✐❴✵✵✳♣❛rs❡❞.

The structure within the files is described in Section 3.4.2. After parsing, we found the

statistics shown in Table 3.4.

3.4.2 SAEWD Description

In this section we describe in detail the characteristics of SAEWD.

Constituency parse storage in detail We will use an example to better explain the

storage of the constituency-based parse tree. In Figure 3.10 we can see the constituency

parse of the phrase A great brigand becomes a ruler of a Nation. On the bottom of the

figure, we observe the constituent’s path (or branch), of the words brigand and Nation.

As in any tree structure, each leaf node has a defined path from the root node to

itself. In this example, the leaf containing the noun brigand follows the bottom-up

path NP22→S97. Brigand’s parent node is a Noun Phrase (NP) node which in turn

comes from the root of the tree, the Sentence node S. We assign to each phrase chunk

an identifier (22 and 97 in this case) in order to distinguish them according to their

building elements as specified by the grammar rule used. In other words, a phrase

chunk, e.g., a NP, a Verbal Phrase (VP), a Prepositional Phrase (PP), or other chunk

defined by the grammar in CoreNLP, may be built from different types of PoS tags.

Thus, again from Figure 3.10, we see that the sentence S97 is built both from a NP and

a VP chunk. In a similar way, the noun phrase NP18 is produced by a determinant

(DT) and a noun (NN), while NP22 is generated by a determinant, an adjective (JJ)

and a noun. The identification digits are obtained from the hash code that represents
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Table 3.5: Extract of a Wikipedia parsed file. The phrase shown is the parse result of

the previous example sentence in Figure 3.10

FILENAME wiki_00.parsed

token lemma POS constituency head dependency

%%#PAGE Anarchism
...

...
...

...
...

...

%%#SEN 25 9

A a DT NP_22,S_97 3 det

great great JJ NP_22,S_97 3 amod

brigand brigand NN NP_22,S_97 4 nsubj

becomes become VBZ VP_44,S_97 0 root

a a DT NP_18,NP_20,VP_44,S_97 6 det

ruler ruler NN NP_18,NP_20,VP_44,S_97 4 xcomp

of of IN PP_57,NP_20,VP_44,S_97 9 case

a a DT NP_18,PP_57,NP_20,VP_44,S_97 9 det

Nation nation NN NP_18,PP_57,NP_20,VP_44,S_97 6 nmod

each chunk object inside our Java application. For each phrase-chunk tree node, we

keep the last two significative figures produced by the ❤❛s❤❈♦❞❡17 Java method.

As another example, the noun Nation has the following bottom-up constituency

path: NP18→PP57→NP20→VP44. Indeed, the string ◆P❴✶✽✱PP❴✺✼✱◆P❴✷✵✱❱P❴✹✹✱❙❴✾✼,

originating from the previously described path, is the information we keep about the

constituency parse for each token in the Wikipedia dump.

Annotation scheme To store the parsed text we use a scheme inspired by that used

in [Jordi Atserias 2008]. The format can be considered as a regular Tab Separated

Values file (extension tsv), with additional metadata tags. An extract from a parsed

file can be observed in Table 3.5.

The file includes two headers: the first one simply indicates the name of the current

parse file; the second one contains the names that describe each column. The tags and

columns our parsed dump contains are the following:

• Metadata tags:

17Java ❤❛s❤❈♦❞❡ function description: ❤tt♣s✿✴✴❡♥✳✇✐❦✐♣❡❞✐❛✳♦r❣✴✇✐❦✐✴❏❛✈❛❴❤❛s❤❈♦❞❡✪✷✽✪✷✾

https://en.wikipedia.org/wiki/Java_hashCode%28%29
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PoS Tag Token
NP DEP SEN

NP_221 NP_201 NP_181 NP_182 nsubj_become xcomp_become nmod_ruler amod_brigand S1

NN

brigand 1 1 1

ruler 1 1 1 1

nation 1 1 1 1

VB becomes 1

JJ great 1 1 1

Table 3.6: Brief example of the linguistic network incidence matrix of the previous

used phrase. On the left side, as on the top, we can see the metadata we store for each

word (rows) and each column (hyperedges). We omit the rest of the words from the

example phrase for brevity.

1. FILENAME: indicates the original file used to extract the current parse,

2. %%#PAGE: denotes a new Wikipedia article, as well as its title,

3. %%#SEN: marks the beginning of a new sentence. It is followed by two

integers: (1) the number of the current sentence, and (2), the number of

tokens in the sentence.

• Parse columns for each token:

1. Token: the token itself,

2. Lemma: the token the canonical form,

3. POS: its part of speech tag,

4. Constituency: the bottom-up constituency path described before,

5. Head: the head index of the dependency relation the current token belongs

to,

6. Constituency: the name of the grammatical relationship this token partici-

pates in as a dependent.

Using the example phrase introduced before (Table 3.5), the token becomes has

become as lemma, it is a verb, thus it has VBZ as PoS tag, its constituency path is

VP_44,S_97, so it belongs to the verb phrase VP44 which in turn comes from sentence

S97. Finally, becomes, being the main verb, is in this case the grammatical root of the

sentence and its head is by convention determined as zero.
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S

NP

DT

A

JJ

great

NN

brigand

VP44

VBZ

becomes

NP

NP

DT

a

NN

ruler

PP5

IN

of

NP

DT

a

NN

Nation

brigand (NN): NP →S
Nation (NN): NP →PP5 →NP →VP44→S

Figure 3.10: Constituency tree for the phrase A great brigand becomes a ruler of a Nation.

On the bottom, we can see the bottom-up path stored for the words brigand and Nation.

3.4.3 Enriched Wikipedia-based Hypergraph

Once SAEWD is saved to disk, we leverage its information by building a linguistic

network by connecting tokens according to their interaction within the Wikipedia

corpus. Given the large size of the Wikipedia corpus, we chose a sample of it to

illustrate our proposed representation. We randomly selected around 200 thousand

articles.

We focus now on the combination of the linguistic features contained in the model

to obtain a more diverse, enriched, and less sparse representation. In this subsection,

we present a practical example of what are the differences between each the three

essential fusion operators (early, late and cross fusion) and with respect to using sin-

gle features independently. For sake of clarity, we focus on two types of linguistic

information: lexical (with a context window of +2-2 around each word) and syntactic

(using dependency relations).

The goals of this example are to show how the type of context affects the semantic

relatedness of a given word, to get a glimpse of how heterogeneous features get com-

bined into a single enriched representation ideally allowing us to get more knowledge

about a given term, and finally, discover how the sparsity is alleviated by combining
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two different matrices together, especially using the late and cross fusion techniques.

The example consists in presenting the top 5 most similar words of the target

word priest according to different representation spaces. These representation spaces

are obtained using five representation matrices: the lexical features matrix (ML), the

syntactic features matrix (MS), the early fusion matrix E(MS,ML), the late fusion ma-

trix (L0.5(S
S,SL)), and finally two cross fusion matrices (XF(S

S,ML) and XF(S
L,MS)).

We report the sparsity level of each matrix (percentage of zero values in the matrix)

obtained.

The procedure to obtain said similar words consist in calculating a cosine-

similarity matrix for each of the five fusion representations. In some cases, as in

late fusion and cross fusion, this step is implicit as in this example, these operators

already require the computation of similarity matrices (see Equations 3.6 and 3.7).

The most similar terms to the target word can be seen in Table 3.7. We note

that in this example we are not interested in determining the quality of the semantic

related words discovered with each representation space. Even more, it seems hard

to determine the semantic-relatedness quality of these similar (similar in the sense of

cosine similarity) words. Still, we can say that, as expected, the words seem to be

semantically related in a large sense.

As discussed by [Levy 2014a], lexical features seem to give words that are seman-

tically related in a larger sense, in this example, religion related terms. On the other

hand, dependency based relations similarities tend to discover functional words or

words that are of the same semantic type. With respect to early and late fusion, while

the similar words found are already known, we discover new terms that were until

now unknown which seem to be semantically related, such as relic and seer. Con-

cerning the cross fusion, in this case cross feature fusion, both transferring from the

syntactic to the lexical similarity matrix and the other way around, we see that we also

found previously seen words while discovering yet another couple of related words:

monk and chorus. It is also clear how by selecting to transfer information from the

syntactic matrix (fifth column) we get functionally related terms (occupations in the

church or in a power structure) while on the sixth column (transfer from lexical to

syntactic), we get mostly words that correspond to a broader similarity domain.

In Table 3.8 we present again the top 5 similar terms to the word priest. This time

using similarity matrices as representation spaces. The overall behavior described

above regarding the nature of the semantic relations is also kept in this representation
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Lexical

Features

(5.49%)

ML

Syntactic

Features

(4.97%)

MS

Early

Fusion

(5.23%)

E(ML,MS)

XF

Fusion

(16.75%)

XF(S
S,ML)

XF

Fusion

(13.45%)

XF(S
L,MS)

priest

priests

nun

canton

sailor

burial

monk

regent

aedile

seer

meek

sailor

regent

nuclei

nun

relic

vassal

regent

nun

sailor

monk

sailor

fluent

dean

nuclei

chorus

Table 3.7: Target word priest and its top 5 most similar words using different repre-

sentation matrices. The sparsity level (percentage of non-zero values) of each repre-

sentation is shown below the header of each column.

spaces.

With regard to alleviating the data sparsity (indicated below the header of each

column as the percentage of non-zero values in the matrix) it is quite obvious that by

using a similarity matrix we densify the space by means of a matrix multiplication,

which is the case of both cross fusion operators (columns four and five of Table 3.7):

we pass from a sparsity of 5.49% in the lexical matrix and 4.97% in the syntactic matrix

to 16.75% and 13.45% in the cross fusion matrices, respectively. Furthermore, for the

cross feature fusions XF, while we also employ a similarity matrix, we stay in the same

space (same number of dimensions) of the feature matrix, while more than doubling

the density of the space at the same time.

On the other hand, the same reduction of sparsity is achieved while using simi-

larity matrices, (in Table 3.8). Originally having 75.25% and 60.64% sparsity using the

lexical and syntactic similarity matrices respectively, we get to a maximum of 87.22%

using cross similarity fusion going from syntactic to lexical information XS(S
S,SL).

3.5 Conclusion

In this chapter we analyzed the state of the art of linguistic network-based approaches

to semantic similarity task from a graph-centric point of view. We reviewed the tech-

niques in terms of its graph characteristics, from their structure to the algorithms
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regent

coach

broker

dream

tailor

regent

slang

broker

rebel

tiger

regent

slang

seer

tutor

cradle

regent

vassal

vizier
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result

sailor

nuclei

nun
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burial

Table 3.8: Target word priest and its top 5 most similar words using different represen-

tation similarity matrices. The sparsity level (percentage of non-zero values) of each

representation is shown below the header of each column.

employed. Among the literature covered, certain non-explored research paths were

identified, namely the lack of syntactic data on the networks employed, and therefore,

a homogeneous network nature that only allows for relations of a unique type.

We addressed these paths with the proposition of a fusion enriched hypergraph

linguistic model that is able to hold heterogeneous language information while al-

lowing its combination and alleviating the data sparsity. This structure allows the

integration multiple kinds of information and has potential in terms of which algo-

rithms it can be used with. The three levels of contexts we integrated in the model

(sentence lexical co-occurrence, dependency function co-occurrence, and constituent-

membership co-occurrence) aim to cover distinct levels of semantic relatedness. We

noted the challenges of dealing both with textual data sparsity and leveraging the

heterogeneity of the hypergraph. To alleviate both concerns, we propose the use of

fusion functions, introduced also in this chapter. The structure of the hypergraph is

also an important characteristic that we can use to find groups of semantically related

words within a corpus. Finally, we presented a materialization of a corpus, a portion

of the English Wikipedia, as the linguistic network we proposed.





Chapter 4

Applications to named entity

recognition and word sense

disambiguation

Abstract. This chapter presents the experiments we performed as applications of our pro-

posed model. On the first subsection, we use well-known methods to solve named entity

recognition while using fusion enriched representation spaces. We show that these kinds of

representations, leveraging heterogeneous information and alleviating its data sparsity, are

useful to improve the performance of the task. Indeed, our results on three different datasets

using enriched representations are better than those of the baselines we propose, and more

importantly, our results show that the combination of textual features indeed improves the

performance compared to single feature and the trivial feature concatenation. We also give a

detailed analysis into how the fusion operations get to improve the performance of the task at

hand.

In the second subsection, we change the NLP task to word sense induction and disam-

biguation. First, we apply the same fusion operations as before to solve the task using an

existing literature approach. Our experiments on two different corpora show that the im-

provements shown in named entity recognition are consistent in word sense induction and

disambiguation. Secondly, we propose a method to exploit the structure of the network within

our linguistic model. Although the base intuition has been studied before, we improve over

the previous literature results while having a reduced number of parameters and employing

heterogeneous features to solve the task. We also analyze the results obtained according to the

type of word studied, whether nouns or verbs, and according to the effect of the use of either

lexical or syntactical information.
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4.1 Introduction

In this applications’ chapter we set to solve two natural language processing tasks

using as data source corpora in the form of the model described in Chapter 3. We

address the tasks of Named Entity Recognition (NER) and Word Sense Induction and

Disambiguation (WSI/WSD). Both tasks are located on the semantics sub-domain of

NLP.

These experiments represent the third and final contribution of this thesis, after

introducing the theoretical fusion enriched model in the previous chapter. Indeed,

this contribution is the continuation of our set of propositions, as shown in Figure

4.1. We employ both a fusion enriched and a raw hypergraph network based on

benchmark corpora to validate the utility of our proposals.

The general objectives of the experiments described below are: (1) to test the effec-

tiveness of using fusion enriched representations to solve NLP tasks, while combining

heterogeneous information and densifying the feature space; and (2), to leverage the

structure of a network built using the hypergraph structure described before.

There are two main parts in this chapter. First we address NER, we study how

the different types of fusion operations affect the performance of the task. We train

well-known classification algorithms with representations obtained from fusion op-

erations. According to our results, we find that it is indeed interesting to combine

different types of features into a single representation space. We also delve into a

result’s analysis to try to understand the reason behind the improvement using fusion

techniques.
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4.2 First Application: Named Entity Recognition

NER goal is to automatically discover, within a text, mentions that belong to a well-

defined semantic category. The classic task of NER involves detecting, within a text,

entities of type Location (LOC), Organization (ORG), Person (PER), Miscellaneous

(MISC), or if the term is not an even an entity, assigning them a (O) label. The task is

of great importance for more complex NLP systems, e.g, relation extraction, opinion

mining [Nadeau 2007].

Generally, two common solutions to NER involve the use of matching patterns,

created manually or extracted in a semi-automatically fashion[Gupta 2015]; or more

popularly, by training a supervised machine learning algorithm with large quantities

of annotated text [Aggarwal 2012]. The latter being the currently more popular solu-

tion to this task. As is usual with other NLP tasks, NER requires textual features to

represent words in order to determine their role within a phrase. We propose to build

representations based on our fusion enriched hypergraph model.

Usually, representations employed for NER are obtained from the surrounding

context of the words in the input corpus. Mainly, two types of representations are

used: lexical and syntactic. As we know, the first type requires no extra information

than that contained already in the analyzed text itself. The second type, syntactic

features are based on part of speech tags, phrase constituents information, and syn-

tactical functionality between words, the later portrayed by syntactical dependencies.

Likewise, there are specific features that are particular to one task are also be em-

ployed.

The main intuition of these experiments is that word similarities may be found at

different levels according to the type of features employed. In order to exploit these

similarities, we leverage our fusion enriched framework. Specifically, in our experi-

ments, we try to mutually complement independent representations by utilizing said

fusion techniques to generate a single feature space that improves the performance of

NER, specially compared to the using features independently and the trivial feature

concatenation (early fusion). Consequently, the main goal is to assess the effectiveness

of simple, yet untested fusion techniques and their combination.

We consider the first three types of fusion techniques described in subsection 3.3.2

(early fusion, late fusion and cross fusion) as the building blocks to the experiments

we conduct. While we work with a single modality, i.e., textual data, we consider the

different kinds of features extracted from it as distinct modalities. Our intuition being
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Representation Spaces In Chapter 3 we presented the fusion operators to be used in

our experiments. Below we detail the three types of features matrices used to generate

the fusion-enriched combinations that describe the words of the corpus tested.

Lexical Matrix (L) For each token in the corpus, we use a lexical window of two

words to the left and two words to the right, plus the token itself. Specifically, for a tar-

get word w, its lexical context is (w−2,w−1,w,w+1,w+2). This type of context features

is typical for general systems studying the surroundings of a word and in particular

for the named entity recognition task [Daumé III 2006, Nothman 2009, Ratinov 2009].

We retake the example phrase from [Levy 2014a], the lexical-based features of the

phrase Australian scientist discovers star with telescope, are shown in Table 4.1.

Word Features

Australian word:Australian, word+1:scientist, word+2:discovers

scientist word-1:Australian, word:scientist, word+1:discovers, word+2:star

discovers word-2:Australian, word-1:scientist, . . . , word+2:telescope

star word-2:scientist, word-1:discovers, word:star, . . . , word+2:telescope

with word-2:discovers, word-1:star, word:with, word+1:telescope

telescope word-2:star, word-1:with, word:telescope

Table 4.1: Lexical features corresponding to the phrase Australian scientist discovers star

with telescope.

Syntactical Matrix (S) Based on the syntactic features used in [Levy 2014a,

Panchenko 2017], we derive contexts based on the syntactic relations a word partic-

ipates in, as well as including the part of speech (PoS) of the arguments of these

relations. Formally, for a word w with modifiers m1, . . . ,mk and their corresponding

PoS tags pm1
, . . . ,pmk

; a head h and its corresponding PoS tag ph, we consider the con-

text features (m1,pm1
, lbl1), . . . , (mk,pmk

, lblk), (h,ph, lbl_invh). In this case, lbl and

lblinv indicate the label of the dependency relation and its inverse, correspondingly.

Using syntactic dependencies as features should yield more specific similarities, closer

to synonymy, instead of the broader topical similarity found through lexical contexts.

For the phrase Australian scientist discovers start with telescope the dependency-based

context is shown in Table 4.2.
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Word Contexts

Australian scientist/NN/amod_inv

scientist Australian/JJ/amod, discovers/VBZ/nsubj_inv

discovers scientist/NN/nsubj, star/NN/dobj, telescope/NN/nmod:with

star discovers/VBZ/dobj_inv

telescope discovers/VBZ/nmod:with_inv

Table 4.2: Syntactic contexts corresponding to the phrase Australian scientist discovers

start with telescope.

NER Standard Features Matrix (T) The features used for NER are based roughly

on the same as those used in [Daumé III 2006, Balasuriya 2009]. The feature set con-

sists of: the word itself, whether the word begins with capital letter, prefix and suffix

up to three characters (also within a window of two words to the left and two words

to the right), and the PoS tag of the current word. These features are considered to

be standard in the literature. We note that the matrix generated with these features is

exclusively used in the experiments regarding NER.

Learning Methods NER being a supervised learning task, we use an averaged struc-

tured perceptron [Collins 2002, Daumé III 2006] (see Section 3.2.1) to determine the

tags of the named entities. We considered logistic regression and linear SVM. For the

main experiments, we chose the perceptron because of its performance and the lower

training time. On the other hand, for the analysis of the results, we use a logistic

regression as it is considerably easier to interpret its results, keeping in mind that our

goal is to give some insights regarding the usefulness of our fusion methods.

4.2.2 Experiments and Evaluation

We experiment with the four levels of fusion discussed before: Single Features (SF),

First-degree Fusion (1F), Second-degree Fusion (2F) and Higher-degree Fusion (HF).

The representation matrices for NER come from lexical context features ML, syntactical

context features MS or standard features MT . On the other hand, experiments on

WSI/WSD exclusively employ matrices ML and MS.

We recall that our first goal is to compare the efficiency of the primary fusion

techniques applied to named entity recognition. Then, we empirically determine a
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fusion combination operator able to leverage the complementarity of the features used.

To this end, we evaluate the aforementioned 4 fusion levels. We note that the

fusion combinations in the third and fourth level (2F and HF) are proposed based on

the results obtained in the previous levels. In other words, in order to reduce the

number of experiments, we restrict our tests to the best performing configurations.

This is due to the large number of possible fusion combinations that can be tested.

Preprocessing As is usual when preprocessing text before performing named entity

recognition, [Ratinov 2009], we normalize tokens that include numbers. For example,

the token 1980 becomes *DDDD* and 212-325-4751 becomes *DDD*-*DDD*-*DDDD*.

This allows a degree of abstraction to tokens that contain years, phone numbers, etc.

We do not normalize punctuation marks.

Features The linguistic information we use is again extracted with the Stanford’s

CoreNLP parser. We recall that the features used for these experiments on NER are

those described before: lexical, syntactic and standard features, i.e., ML, MS, and MT ,

respectively.

Test Datasets We work with three corpus coming from different domains:

(1) CoNLL-2003 (CONLL): This dataset was used in the language-independent

named entity recognition CoNLL-2003 shared task [Sang 2003]. It contains se-

lected news-wire articles from the Reuters Corpus. Each article is annotated

manually. It is divided in three parts: training (train) and two testing sets (testa

and testb). The training part contains 219,554 lines, while the test sets contain

55,044 and 50,350 lines, respectively. The task was evaluated on the testb file, as

in the original task.

(2) WikiNER (WNER): A more recent dataset [Nothman 2009] of selected English

Wikipedia articles, all of them annotated automatically with the author’s semi-

supervised method. In total, it contains 3.5 million words from an unspecified

number of articles.

(3) Wikigold (WGLD): Also a corpus of Wikipedia articles [Balasuriya 2009].

Nonetheless, this one was annotated manually. This dataset is the smaller, using

149 articles and 41,011 words. We used this corpus to validate human-tagged
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Wikipedia text. These three datasets are tagged with the same four types of en-

tities: Location, Organization, Person and Miscellaneous. Otherwise, while it is

faster to train models with this corpus, it may be the case that they are not able

to properly fit the data given its size, and thus performance is lower than the

other datasets.

The three of these datasets employ the BIO text segment tagging schemes.

This tag set suggests that a word is in the Beginning, Inside, or Outside of a

named entity. Indeed, given that there are four categories, person (PER), loca-

tion (LOC), organization (ORG) and miscellaneous (MISC), there are indeed 9

different classes (B and I for each category plus O).

Evaluation Measures We evaluate our NER models following the standard CoNLL-

2003 evaluation script. Given the large amount of experiments we carried out and to

reduce the number of reported results, we report exclusively the total F-measure for

the four types of entities (Location, Organization, Person, Miscellaneous). WNER and

WGLD datasets are evaluated on a 5-fold cross validation.

4.2.3 Results and Discussion

We present in this subsection the results obtained in the named entity recognition

task, while employing the 4 levels of fusion proposed in the previous section.

In contrast to other related fusion works [Ah-Pine 2015, Clinchant 2011,

Gialampoukidis 2016], we do not focus our analysis on the impact of the parame-

ters of the fusion operators. Instead, we focus our analysis on the effect of the type

of linguistic data being used and how, by transferring information from one feature

type to another, they can be experimentally recombined to generate more complete

representations.

Regarding the fusion operators’ parameters, we empirically found the best config-

uration for β, from late fusion Lβ(A,B) = β ·A+ (1−β) ·B, to be β = 0.5. This implies

that an equal combination is the best linear fusion for two different types of features.

In respect of the γ parameter, used in cross fusion Xγ(A,B) = K(A,γ)× B, we set

γ = 5. This indicates that just few high quality similarities attain better results than

utilizing a larger quantity of lower quality similarities.
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Table 4.3: NER F-measure results using the Single Features over the three datasets.

These values serve as a first set of baselines. Results are obtained with the structured

perceptron algorithm.

A Single Features

CONLL WNER WGLD

MT 77.41 77.50 59.66

ML 69.40 69.17 52.34

MS 32.95 28.47 25.49

Single Features Looking at Table 4.3, we see that the best single features (SF), in

terms of F-measure come from the standard representation matrix MT . This is not

surprising as these features, simple as they may be, have been used and proved ex-

tensively in the NER community. On the other hand, ML performs relatively well,

considering it only includes information contained in the dataset itself. Nevertheless,

this kind of representation is the foundation of most word embedding techniques

used nowadays. While we expected better results from the syntactical features MS, as

they are able to provide not only general word similarity, but also functional, getting

close to synonymy-level [Levy 2014a], we believe that the relatively small size of the

datasets do not provide enough information to generalize

First Degree Fusion In Table 4.4 we present the first degree fusion level (1F). The

best performance is obtained by trivially concatenating the representation matrices.

This baseline proved to be the toughest result to beat. Late fusion does not perform

well in this setting, still, we see further on that by linearly combining weighted rep-

resentation matrices, we can add information to an already strong representation.

Finally, regarding the cross fusion techniques, cross feature and similarity fusion, we

see that they depend directly on the information contained in the similarity matrices.

We note that, as is the case on single features, the combinations with matrix ST yield

almost always the best results. While these fusion techniques by themselves may not

offer the best results, we see below that by recombining them with other types of

fusion we can improve the general performance of a representation.
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Table 4.4: NER F-measure results using first degree fusion (1F). Operators in column

B are either indicated on the table or specified as follows. In XFF, depending on

the dataset tested, b∗
XFF

takes the matrix from the set {ML,MT } which yields the best

performing result. In XSF, b̂∗
XSF corresponds to the best performing matrix in {SL,SS}.

These configurations serve as the main set of baseline results. Results are obtained

with the structured perceptron algorithm.

A B Early Fusion (EF)

CONLL WNER WGLD

ML MS 72.01 70.59 59.38

ML MT 78.13 79.78 61.96

MS MT 77.70 78.10 60.93

ML E(MS,MT ) 78.90 80.04 63.20

Late Fusion (LF)

CONLL WNER WGLD

SL SS 61.65 58.79 44.29

SL ST 55.64 67.70 48.00

SS ST 50.21 58.41 49.81

Cross Feature Fusion (XFF)

CONLL WNER WGLD

SL MT 49.90 70.27 62.69

SS MT 47.27 51.38 48.53

ST b∗
XFF

52.89 62.21 50.15

Cross Similarity Fusion (XSF)

CONLL WNER WGLD

SL ST 27.75 59.12 38.35

SS b∗
XSF 36.87 40.92 39.62

ST b∗
XSF 41.89 52.03 39.92

Second Degree Fusion The second degree fusion techniques (2F) presented in Table

4.5 show that the recombination of cross fusion techniques gets us closer to the early
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Table 4.5: NER F-measure results using second degree fusion (2F) operations. In

XFXSF, â corresponds to the best performing matrix in the set {XS(S
T ,SL),XS(S

L,ST),

XS(S
T ,SS)}. In EXFF, depending on the dataset, b∗

EXFF
takes the best performing matrix

from {XF(S
S,ML),XF(S

L,ML),XF(S
L,MT),XF(S

S,ML),XF(S
S,MT)}. Finally, in LXFF, b̂LXFF

takes the best possible matrix from {XF(S
L,MT),XF(S

S,MT),XF(S
S,ML)}. Results are

obtained with the structured perceptron algorithm.

A B Cross Feature Cross Similarity Fusion (XFXSF)

CONLL WNER WGLD

â MT 37.69 59.44 41.71

â ML 38.31 58.73 41.56

â MS 29.31 52.06 34.91

Cross Feature Early Fusion (XFEF)

CONLL WNER WGLD

ST E(ML,MT) 54.34 64.20 39.59

SL E(ML,MT) 49.71 71.84 45.14

SS E(ML,MT) 47.54 53.77 43.32

Early Cross Feature Fusion (EXFF)

CONLL WNER WGLD

MT b∗
EXFF

49.58 77.32 61.69

ML b∗
EXFF

49.79 66.22 53.54

MS b∗
EXFF

51.53 70.94 53.70

Late Cross Feature Fusion (LXFF)

CONLL WNER WGLD

MT b̂LXFF
54.82 75.70 54.73

ML b̂LXFF
56.53 62.27 52.39

fusion baseline. Except for cross feature cross similarity fusion (XFXSF), the rest of the

recombination schemes yield interesting results. First, in cross feature fusion, the best

results, for the most part, are obtained while using the SL matrix combined with the

output of E(ML,MT), which is still far from the baseline values. Concerning, EXFF, we
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Table 4.6: F-measure results using high degree fusion (HF) operators. In EEELXFLXF,

b̂EEELXFLXF
= E(E(MT ,L(ML,XF(S

S,ML))),L(ML,XF(S
T ,ML))) for CONLL and b̂EEELXFLXF

=

E(E(MT ,L(MT ,XF(S
S,MT))),L(ML,XF(S

S,ML))) for WNER and WGLD. The best result

is obtained in EEELXFLXF when α = 0.95. If α is not indicated there is no weighting

on EF. Results are obtained with the structured perceptron algorithm.

A B
Early Late

Cross Feature Fusion (ELXFF)

CONLL WNER WGLD

MT L(ML,XF(S
S,ML)) 67.16 79.45 62.37

Triple Early

Double Late Cross Feature Fusion

(EEELXFLXF)

CONLL WNER WGLD

ML b̂EEELXFLXF
65.01 78.02 62.34

ML

α=0.95 b̂EEELXFLXF
79.67 81.79 67.05

EF Baseline 78.90 80.04 63.20

get already close to surpass the baselines with the MT matrix, except for the CONLL

dataset. In LXFF, even though the cross fusion XF(S
S,ML) is not the best performing,

we found experimentally that by combining it with ML through a late fusion, it gets a

strong complementary representation. Our intuition in this case was to complement

ML with itself but enriched with the SS information. In the following high degree

fusion results we discover that indeed this propagation of information helps us beat

the baselines we set before.

High Degree Fusion Finally, the last set of experiments are shown in Table 4.6.

Using a recombination of high degree fusion operations (HF), a so-called hybrid ap-

proach, we beat the baselines (single features and early fusion) for each dataset. We

note that the best configuration made use of a weighted early fusion with α = 0.95.

This indicates that the single feature matrix, ML is enriched a small amount by the

fusion recombination, which is enough to improve the results of said baselines. In

CONLL, the early fusion (see Table 4.4) baseline being 78.13, we reached 78.69, the
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lowest improvement of the three datasets. Regarding the Wikipedia corpus, in WNER,

we passed from 79.78 to 81.75; and in WGLD, from 61.96 to 67.29, the largest improve-

ment of all. It is important that we tried the weighted Early Fusion operator with

different α and the best result does not beat these fusion results.

4.2.4 Fusion Analysis

In this subsection we present an analysis on the results obtained with the combination

fusion operators shown above. Namely, we want to understand how each addition

of fusion operators helps to improve the result of the NER task. For simplicity, we

focus on the most successful fusion combination found for the three tested corpora.

While the procedure to build the models analyzed herein is the same as before, we

do have certain dissimilarities due to the need to explain said models in an effective

way. Namely, there are two important changes in the methodology presented before:

(1) we focus exclusively on the Wikigold corpus, and more importantly (2), we change

the learning method from a structured perceptron to a multinomial logistic regression

with L1 regularization. The main reason is that the regression is somewhat easier to

interpret as it fits a sparse vector of weights for each feature and for each possible class.

While the structured perceptron, also fits a matrix of feature weights, its interpretation

is complex as these weights are then used to decode the best combination of tags

given a complete phrase, considering the preceding and following words for each

term in the corpus. In other words, in the logistic regression we can explain each word

prediction independently based on a sparse vector of fitted weights for each feature

and the vector that represent the word itself. On the other hand, while using the

structured perceptron, we need to look at whole phrases while considering precedent

and subsequent words at each time, making the interpretation quite complex. We note

that the performance is considerably lower using the logistic regression. Still, using

the logistic regression also yields a sequential performance improvement by using

enriched feature spaces, similarly to those experiments shown in the previous results

tables (results with the structured perceptron).

The most performing fusion combination found during the previous experiments

is reported in the second to last line in Table 4.6. We will use this fusion operator to

investigate the characteristics of the feature space, which yields improved results. We

note that, experimentally, this operator gave the best results for both the structured

perceptron and the logistic regression learning methods (as can be seen in Table 4.7).
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This operator is fully expressed as:

Eα=0.95(M
L,E(E(MT ,L(MT ,XF(S

S,MT))),L(ML,XF(S
S,ML)))) (4.1)

This fusion is principally based on the early fusion operator. It is important to

notice that only the left most fusion operator is weighted, that is, its first input is the

only one affected by the weight α = 0.95. The rest of the early fusions in the operator

are non-weighted, i.e., no scaling is applied to their operands. Still, as they are second

operator of the first weighted early fusion, they are implicitly affected by a weight of

(1−α) = 0.05.

For the sake of clarity in the presentation of the operator in Equation 4.1, and

while we defined early fusion as a binary function (in Chapter 3), we will express

it below as a n-ary function which concatenates all the input values into a single

representation. Again, we note that the parameter α applies exclusively too the first

operand of the first and left most early fusion operation. Nevertheless, we include the

implicit weights that affect each of the arguments of each function in the description

below. Thus, we identify four main operations in equation 4.1:

4
︷ ︸︸ ︷

2
︷ ︸︸ ︷
Eα=0.95(M

L

︸︷︷︸

1

,MT ,L(MT ,XF(S
S,MT))

︸ ︷︷ ︸

3

,L(ML,XF(S
S,ML))) (4.2)

Explicitly, these numbered operations are below. We associate to each operations

a model, which is trained using the representation obtained with the corresponding

fusion operation.

1 ML used to train model M1.

2 Eα1=0.95,α2=0.05(α1M
L,α2M

T) used to train model M2.

3 Eα1=0.95,α2=α3=0.05(α1M
L,α2M

T ,α3L(M
T ,XF(S

S,MT))) used to train model M3.

4 Eα1=0.95,α2=α3=α4=0.05(α1M
L,α2M

T ,α3L(M
T ,XF(S

S,MT)),α4L(M
L,XF(S

S,ML)))

used to train model M4.

As can be seen, the operation in Equation 4.2 is a concatenation of four elements,

the feature matrices ML and MT , and two late fusions, each one containing a cross
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feature fusion (XFF). The analysis we make tries to elucidate the role of each num-

bered fusion combination. To this end, we analyze the models M1 to M4 and their

corresponding predictions given to certain word instances.

Per-Entity Performance Gain First, we are interested into discovering what is the

contribution of each model to the F-measure metric overall and for each specific type

of named entity. In that sense, Table 4.7 identifies the gains in performance due to

the incremental addition of fusion operations. In the first line we see the results using

the M1. As said before, the results are lower than those obtained with the structured

perceptron. On the second line, it is shown that the increment in F-measure (shown

in parentheses) for all classes obtained by using M2 is considerable and in fact the

largest (17.50) of them all. Also, while all the classes improve, the most important

gain is obtained for the class PER (person), shown in bold letters. In the same sense,

on the third line, for model M3, the best improvement is found for the class ORG

(organization). Finally, the last mode M4, improves LOC (location) class among the

rest of the classes.

Table 4.7: Results and improvements between four multinomial linear regression (L1

normalization) models. The performance (in F-measure) is lower than before but the

improvement trend with more fusion enrichment is kept. Results are obtained with

the logistic regression algorithm.

NER Tags

Model All Tags LOC MISC ORG PER

M1 38.03 49.02 30.24 27.49 41.52

M2 55.53 (17.50) 65.04 (16.02) 40.03 (9.79) 39.46 (11.97) 69.19 (27.67)

M3 56.11 (0.58) 65.75 (0.71) 40.26 (0.23) 41.13 (1.67) 68.99 (-0.20)

M4 56.28 (0.17) 66.08 (0.33) 40.49 (0.23) 41.07 (-0.06) 69.31 (0.32)

In summary, the second element of the fusion operator we analyze improves on

the PER class, the third on class ORG and the fourth and last on class LOC. This

knowledge allows us to frame more easily our next analysis. In the following, we are

interested in determining which are the features that most likely make each model

take a decision towards one class or another. To that end, we look at three different

words that were wrongly classified in a first model and correctly categorized in the
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next fusion enriched model. We study words whose correct tags match the tag of

the enriched model with the best improvement (see Table 4.7). For example, we are

interested in the word Kory, which is wrongly classified by model M1 (it is assigned

a tag O) but it is correctly classified as PER in model M2, since PER is the class with

the largest improvement in regard to M1.

To determine which features are the most relevant, we look into the words non-

zero-valued feature columns and match them to the logistic regression coefficients’

vectors (corresponding to the model’s fitted decision function). In this way we can in-

fer which features contribute or deter the model from selecting a given class according

to whether these values are negative or positive. The words we study are:

• Kory: wrongly classified as O (out of an named entity) by M1 and correctly

classified as PER by M2.

• A-League: wrongly classified as O by M2 and correctly classified as ORG by M3.

• Green: wrongly classified as ORG by M3 and correctly classified as LOC by M4.

In what follows we are interested in determining which features help to determine

the correct classification of the words discussed.

Per-model Feature Importance In Figures 4.3, 4.4, and 4.5 we present six heatmaps

showing the features that contribute and prevent words from being classified as one

of the five tags available according (broadly) to the weights fitted for each feature

during training. Specifically, there is a line for each possible class and a column

for each feature that has a non-zero fitted coefficient and a non-zero value on the

representation space of its corresponding word. In parentheses, next to the classes,

we see the product of the feature vector of the studied word times the coefficients’

matrix of the corresponding model. These values serve as an indicator1 of the class

predicted by the model. Color wise, white indicates zero values, red indicates positive

values and blue represent negative values. The color intensity is directly associated

with the absolute value of the coefficient.

From M1 to M2 In the analysis from model M1 to model M2, we consider the

word Kory.

1Indeed, these values are used to obtain the probability of each class by applying to them a logistic

function, namely a softmax function.
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From M2 to M3 Going from model M2 to M3, we focus on the word A-League.

In the first model, M3 (Figure 4.4a), A-League is classified as O, since it being a noun2

(and not a proper noun) seems to be a good indication of a noun not being part of

named entity, among other features, such as suf+2:r, i.e., the last letter of the second

word to the right of A-League, in this case r.

With respect to model M3 (see Figure 4.4b), A-League is correctly tagged as ORG.

While the largest coefficients are assigned to the features of the model M2 (namely

CAP and NN), we can see that the enriched features CAP_M33 and suf-1:the_M3 play a

decisive role into the assignation of the class ORG, as most of the values corresponding

to the newly added features are positive for this class.

From M3 to M4 Finally, going from model M3 to model M4, in Figure 4.5 we

have an incorrect ORG classification to a correct LOC classification after the applica-

tion of the last fusion operation. The chosen word is Green. Both coefficients’ values

are quite similar to each other (see Figures 4.5a and 4.5b). In fact, the score in paren-

theses for both LOC and ORG are quite close in both models. This is expected as their

difference in performance is small (see Table 4.7). Not surprisingly, there are only two

features coming from the last fusion (the last two columns, indicated with a _M4 suf-

fix. Nonetheless, it seems that one of these enriched features, word-1:in_M4 determines

the model decision towards the LOC class, thus making the correct classification.

In general, in these experiments, we see that the added enriched features are not

the highest valued in the fitted coefficients vectors, nonetheless, they provide the extra

information needed to push the model towards the correct prediction, by enriching

the features through cross and late fusion and by providing more descriptors for each

word and consequently reducing the sparsity of the representation matrices.

Once we found a set of fusion operations that work reasonably well with NER, we

experiment with another task, word sense induction and disambiguation, to confirm

the usefulness of using fusion enriched representations to train better models.

In the next subsection we present a series of analogous experiments, this time

solving WSI/WSD.

2The PoS tagger identified it as a simple noun.
3Features added by the third fusion operation are labeled with a _M3 suffix. The same is done for the

fourth fusion with the suffix _M4
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4.3 Second Application: Word Sense Induction and Disam-

biguation

Word Sense Induction and Disambiguation entails two closely related tasks4. WSI

aims to automatically discover the set of possible senses for a target word given a text

corpus containing several occurrences of said target word. Meanwhile, WSD takes a

set of possible senses and determines the most appropriate sense for each instance of

the target word according to the instance’s context. WSI is usually approached as an

unsupervised learning task, i.e., a cluster method is applied to the words occurring in

the instances of a target word. The groups found are interpreted as the senses of the

target word. The WSD task is usually solved with knowledge-based approaches, or

more recently, with supervised models which require annotated data. It can be also

solved reasonably well by comparing the words surrounding each target word and

the words belonging to the induced senses (or clusters) found during the WSI step, as

we do in this section.

We believe that in order to solve WSD in a truly end-to-end unsupervised way,

one would need to first automatically find a list of senses for a word without the help

of pre-built semantic networks. In other words, solve WSI. Word sense induction is

usually solved as follows:

Given an input document with a set of target words, coupled with a set of contexts

(a target word in a unique context is called an instance), the goal is to discover a list

of senses for each target word and then assign each instance in the document with

an automatically generated sense (this part corresponds to WSD). The common four

steps used are the following:

1. Build a lexical co-occurrence network (LCN), or similar, assigning tokens as

nodes and establishing edges between them if they co-occur in a given context

(usually if they both appear in the same sentence, paragraph or fixed window

of words).

2. Determine the weights for each edge either according to a frequency metric or

using binary weights.

3. Apply a graph clustering algorithm. Each cluster found will represent a sense

4Even though these tasks are closely related, they are independent from one another. Still, we consider

them to be a single one: WSI/WSD.
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of the polysemous target word.

4. Match target word instances with the clusters found (the senses) by using the

word context. Specifically, assign a sense to each instance by looking at the

tokens in the context. This step is actually the word sense disambiguation task.

Word sense induction, while being an unsupervised and thus more flexible task

(language and word-domain independent, does not require human-made knowledge

bases), require a good quality clustering algorithm, as its results are tightly linked to

its performance.

4.3.1 Fusion Enriched Representations

In this subsection we also employ the hypergraph model introduced before to propose

a solution to both WSD and WSI tasks, specifically the enrichment of features via

fusion techniques.

The WSI method, i.e., the clustering algorithm, we employ is already found in the

literature. Nonetheless, our interest lies on using a combined representation, which

is able to address certain concerns that are not deeply studied, namely the use of

heterogeneous context features to solve semantic tasks while reducing the number of

parameters compared to similar approaches. Our method is evaluated with a corpus

corresponding to the WSI task of the international workshop of semantic evaluations,

edition 2007, or Semeval 2007.

As shown in Figure 4.6, the procedure we follow is very similar to that of the

previous NER experiments. The difference being the task addressed and the features

employed (we find clusters using only lexical and syntactic contexts).

We discovered a set of successful fusion operations in the previous experiments.

In these experiments we set to test if the improvements obtained before, using said

fusion schemes, can be transferred into WSI/WSD and other corpora.

Representation Spaces We use the same set of features from the previous subsection

(see 4.2.1), except for the standard NER features, that is, those represented by MT , as

they are specifically designed to tackle that task. Consequently, we will experiment

with two representation matrices ML and MS.

Learning Methods Regarding the machine learning methods to induce senses, (the

WSI part), we employ spectral clustering (as is described previously in Chapter 3,
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transfered into another NLP task, namely Word Sensed Induction and Disambiguation

(WSI/WSD). As preprocessing, we simply remove stopwords and tokens with less

than three letters. The features we extracted from the tested corpora with the same

tools as in the previous task.

Test Dataset The WSI/WSD model is tested on the dataset of the Semeval 2007

WSID task [Agirre 2007]. The task was based on a set of 100 target words (65 verbs

and 35 nouns), each word having a set of instances, which are specific contexts where

the word appear. Senses are induced from these contexts and applied to each one of

the instances. The real number of average senses per word is 2.87 in the test set, which

was the set used to evaluate the competing systems. This number will be useful to

determine the performance of the systems below.

Evaluation Measures Being an unsupervised task, the evaluation metrics of

WSI/WSD are debated in terms of quality [de Cruys 2011]. We consider supervised

recall and unsupervised F-measure, as in the competition original paper [Agirre 2007].

The unsupervised evaluation assumed the induced senses as clusters of examples.

These clusters are compared to the sets of examples tagged with the given gold stan-

dard word senses (classes), and evaluated using the F-measure measure for clusters.

The supervised setting maps the induced senses to manually-defined gold standard

senses, and use a mapping produced by the organizers to tag the test corpus with

gold standard tags. The mapping is automatically produced by the organizers, and

the resulting results evaluated according to the usual precision and recall measures

for supervised word sense disambiguation systems.

We consider that the number of senses found by the system is also a rather good

indicator of performance: the best competition baseline assigns the Most Frequent

Sense baseline (or MFS) to each test instance of each target word. In other words,

each test instance is assigned the sense that occurs the most in the training set. Conse-

quently, this baseline produces an average of one sense (cluster) per word. A system

that goes near this average may be indeed not be resolving the task efficiently but

finding the one cluster per word trivial solution. Consequently, to show that we do

not fall in the MFS solution, we display in our results the average number of clusters.

Furthermore, given this problematic situation we introduce a simple measure, the H-

measure, that takes into account three factors of the performance results of a system:

the supervised recall of all-words (SR), the unsupervised F-measure of all-words (UF),
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and the number of true senses on the corpus. The H-measure is calculated as the

mean of two components. First, the harmonic mean of the SR and the UF. Secondly, a

ratio we propose that is bounded between zero and one. Zero indicates that the sys-

tem produces one cluster per word, that is, the baseline. If the ratio is one, the system

produces a number of average cluster per word that is close to the true gold-standard

average number of senses. We call this quantity δ. More formally, the H-measure is

defined as:

H-measure =
1

2

(

2 ∗
SR ∗UF

SR+UF
+

δ

δ+ |#cl− δ|

)

(4.3)

This metric is bounded between 0 and 1 as the F-measure and recall. The greater

its value, the more confidently we say that the system produces good results. The way

it is formulated, having the F-measure and the recall within the formulation serves

as an assurance against having systems that are bad but coincidentally produces a

correct number of senses. Given that we are calculating the harmonic mean of another

harmonic mean (within the F-measure) makes the H-measure severe regarding F-

measure and recall. Improvements on both metrics must be had to show a growth in

the H-measure.

We consider this measure as a simple method to rank the results that follow, as the

metrics provided by the WSI/WSD competitions are not always ideal and have their

own issues, and more importantly, because they may contradict each other. Still, the

H-measure is not intended to replace the classic metrics.

Results and Discussion Word sense induction and disambiguation results, using

fusion enriched matrices with spectral clustering, are found in Tables 4.8 and 4.9 for

the supervised recall and unsupervised F-measure respectively. We present the results

for al words, nouns and verbs. The values corresponding the H-measure are discussed

immediately following the analysis of the recall and F-measure.

In the unsupervised evaluation results, we include an interesting baseline which

had also the best performing results. The baseline consists in assigning one cluster

per word (or 1c1word), i.e., it simply assigns a single sense to all the test instances

of a word. This baseline was not beat during the competition. On the other had, for

the supervised results, we include the Most Frequent Sense (or MFS) baseline which

tags every test instance with the sense that occurred most often in the training corpus

of the competition. Besides these baselines, we included also the best performing

systems’ results for both of the evaluations.
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Table 4.8: All-words, nouns, and verbs supervised recall for the Semeval 2007 corpus

using fusion operations (SF, 1F, 2F, HF) and spectral clustering. We also display the

average number of clusters found by each fusion configuration, the best performing

system as well as the MFS baseline. In bold the best results per-column among our

experiments.

Fusion Operation / System Recall (%) #cl Fusion Level

all nouns verbs

Single Features

SFML 79.20 82.10 75.80 4.13

MS 79.10 81.60 76.20 4.47

Early Fusion (EF)

1F

E(ML,MS) 78.70 81.11 76.10 4.46

Cross Feature Fusion (XFF)

XF(S
L,ML) 79.20 82.30 75.70 3.63

XF(S
L,MS) 78.30 80.90 75.30 3.08

XF(S
S,ML) 78.60 80.90 76.10 1.08

XF(S
S,MS) 78.90 81.40 76.10 2.72

Cross Similarity Fusion (XSF)

XS(S
S,SL) 78.70 80.90 76.20 1.01

XS(S
L,SS) 78.80 80.90 76.06 1.33

Cross Feature Cross Similarity Fusion (XFXSF)

2F

XF(XS(S
L,SS),ML) 78.40 80.40 76.10 3.11

XF(XS(S
L,SS),MS) 78.90 81.80 75.60 3.16

Early Cross Feature Fusion (EXFF)

E(ML,XF(S
L,ML)) 79.20 82.40 75.70 3.57

E(MS,XF(S
L,ML)) 78.30 80.50 75.80 1.95

Late Cross Feature Fusion (LXFF)

L(MS,XF(S
L,MS)) 78.60 81.10 75.80 4.22

L(ML,XF(S
L,ML)) 79.50 82.80 75.70 3.96

Early Late Cross Feature Fusion (ELXFF)

HFE(ML,L(MS,XF(S
L,MS))) 78.50 81.40 75.40 4.26

E(ML,L(ML,XF(S
L,ML))) 79.50 82.70 75.90 3.99

Baseline MFS 78.70 80.90 76.20 1.00
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Table 4.9: All-words, nouns, and verbs unsupervised F-measure for the Semeval 2007

corpus using fusion operations (SF, 1F, 2F, HF) and spectral clustering. We also display

the average number of clusters found by each fusion configuration, the best perform-

ing system as well as the MFS baseline. In bold the best results per-column among

our experiments.

Fusion Operation / System F-measure (%) #cl Fusion Level

all nouns verbs

Single Features

SFML 72.70 76.90 67.90 4.13

MS 69.30 69.40 69.20 4.47

Early Fusion (EF)

1F

E(ML,MS) 74.00 76.66 71.11 4.46

Cross Feature Fusion (XFF)

XF(S
L,ML) 76.20 79.60 72.50 3.63

XF(S
L,MS) 74.60 75.10 73.90 3.08

XF(S
S,ML) 78.90 80.70 76.90 1.08

XF(S
S,MS) 73.70 77.70 70.00 2.72

Cross Similarity Fusion (XSF)

XS(S
S,SL) 78.90 80.80 76.80 1.01

XS(S
L,SS) 78.70 80.50 76.80 1.33

Cross Feature Cross Similarity Fusion (XFXSF)

2F

XF(XS(S
L,SS),ML) 70.00 68.70 71.40 3.11

XF(XS(S
L,SS),MS) 75.20 77.40 72.80 3.16

Early Cross Feature Fusion (EXFF)

E(ML,XF(S
L,ML)) 76.00 79.50 72.10 3.57

E(MS,XF(S
L,ML)) 75.20 75.40 75.00 1.95

Late Cross Feature Fusion (LXFF)

L(MS,XF(S
L,MS)) 67.80 71.40 63.80 4.22

L(ML,XF(S
L,ML)) 76.09 79.10 72.70 3.96

Early Late Cross Feature Fusion (ELXFF)

HFE(ML,L(MS,XF(S
L,MS))) 74.20 78.20 69.80 4.26

E(ML,L(ML,XF(S
L,ML))) 75.80 78.50 72.70 3.99

Baseline 1c1word 78.90 80.70 76.80 1.00
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We experimentally set β = 0.90 and γ = 50. Remember that β controls the rel-

evance of each matrix in the late fusion binary operator L(β · A, (1 − β) · B) and γ

control the number of nearest neighbors to take from the first operand of the cross

fusion K(A,γ)×B. The parameter α of the early fusion operator is not employed (i.e.,

we concatenate matrices without weighting them) unless the value of α is explicitly

specified.

In the following paragraphs, we will discuss these results obtained. We note that

we omit certain configurations that do not yield interesting results either by converg-

ing to the MFS solution (one sense found per target word) or because the performance

shown by those configurations is simply not interesting. Also, we recall that our ob-

jective is to surpass the performance of using of single features, and/or their trivial

early fusion combination. Nonetheless, in this WSI/WSD task, there are the base-

lines we mentioned before (MFS and 1c1word) which are very simple but hard to beat

[Agirre 2007]. Our goal is then to first beat our baselines while keeping an eye on

these last two competition baselines.

Single Features Regarding Single Features (SF), ML comes on top of MS again,

looking at both recall and F-measure regarding all the words (nouns and verbs).

Nonetheless, MS performs better for both metrics in terms of verbs. Thus, syntac-

tic dependencies can provide useful information about verbs. This may be because

different senses for different verbs can be better found using dependencies because

the differences among head-dependent relations is clearer than between lexical win-

dows of words.

First Degree Fusion On the 1F level, we see that the early fusion techniques in

this task does not surpass the independent features’ representation in none of the

metrics. This is unexpected as in NER, the early fusion operator was actually the

best baseline during the experiments. This may be due to the fact that the clustering

algorithm is sensitive to the noise produced when adding both matrices together, thus

reducing the quality of the clusters found.

In cross feature fusion, with respect to the supervised evaluation, the XF(S
L,ML)

operator that performs as well as ML, while producing almost the same number of

average senses as the true value (3.63 versus 2.87). Indeed, this operator does improves

on nouns, although it has lower performance on verbs. We will see later that this is

indeed the best performing fusion operator according to our H-measure. Regarding
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the unsupervised F-measure, the best result is again obtained by XF(S
L,ML). This

configuration already beats the SF baselines by improving both noun and verb results

on the unsupervised evaluation. Nonetheless, while it produces a bit more senses

than the MSF average number of senses (1 sense per target word versus 1.08 by this

fusion operator), it may be simply approaching the same MSF naive solution, that is,

assigning one sense per word.

Looking at cross similarity fusion (XSF), in both tables, we see that both XS(S
S,SL)

and XS(S
L,SS) produces results that are too close to the baseline MFS and 1c1word,

implying that we are converging to a naive solution.

Second Degree Fusion In level 2F, regarding the supervised evaluation, going

directly to the early cross feature fusion (EXFF), the operator E(ML,XF(S
L,ML)) yields

as good results as the 1F operator XF(S
L,ML) before: it beats the MFS while produc-

ing clearly more than a single cluster per word. This result leads us test to test the

same operands but combined with a late fusion combination, resulting in the oper-

ator L(ML,XF(S
L,ML)). The performance obtained with this operator confirmed the

intuition of enriching a single feature matrix with another weighted-down matrix to

improve the performance. Indeed, we consider that L(ML,XF(S
L,ML)) gets the best

results in terms of all-words supervised recall (while not considering solutions that

are too close to the MFS baseline).

Concerning the all-words unsupervised F-measure, in this level, all the operations

surpass the baseline of the naive early fusion (E(ML,MS) except for XF(XS(S
L,SS),ML)

and L(ML,XF(S
L,MS)). The first one seems to be affected by the quality of the infor-

mation contained in ML, compared to MS, used in the more performing operation

XF(XS(S
L,SS),MS), which is also a XFXSF. The latter performance-lacking operator in

this level, L(ML,XF(S
L,MS)), seems to be due the fact that the MS matrix as the basis of

the late fusion operation is not a good choice. If we look into the results of the matrix

by itself, we see that it is easily outperformed by MS.

High Degree Fusion As with the NER experiments on the HF level, the intuition

in this stage is to recombine the best previous operators in new fusion modalities.

In this case, we present the best performing operations. We note that we tried other

fusions but they were found to have low results. As an example of these failed con-

figurations, we tried E(ML,XF(S
L,ML)) both recombined through an early and a late

fusion operations. Furthermore, in order to have coherence with the best result ob-



4.3. Second Application: Word Sense Induction and Disambiguation 111

tained in NER, we tried solving WSI/WSD using the Triple Early Double Late Cross

Feature Fusion (or EEELXFLXF). Unfortunately, the results in this level were not as

interesting as before. Nevertheless, we present the two most successful high degree

fusion operators found. The two operators we test in this level do improve on the early

fusion baseline. However, they are not able to improve over the 1c1word baseline.

Indeed, contrary to what we reported in the previous NER experiments, the best

results are generally obtained in the 2F level, and not in the HF level, according to the

all-word supervised recall and unsupervised F-measure. Still, it is clear that the best

recombination of fusion operations yield better results than our established baselines

(single features and early fusion) and the MFS baseline.

Specifically, regarding supervised recall, the operations L(ML,XF(S
L,ML)) and

E(ML,L(ML,XF(S
L,ML))) (with a performance of 79.5%) surpass the MFS baseline

(78.7%), both single feature matrices ML and MS (79.2%), and the early fusion triv-

ial operation E(ML,MS) ( with 78.7%). Concerning the unsupervised F-measure, we

do surpass our two baselines but not the 1c1word competition baseline. While con-

sidering this performance metric is harder to determine the best performing model.

There are several fusion operations that match the performance of the 1c1word base-

line, although the number of clusters produced is very close to one. This is the case

of the XF(S
S,ML) and XS(S

S,SL) operators, with 78.9% F-measure and generating 1.08

and 1.01 clusters respectively.

In order to determine the best performing operators, that stray away from the

trivial baselines, in the following we consider the H-measure, introduced before, to

help us identify those systems that perform the best. In Figure 4.7, we see the H-

measure for each of the fusion operators reported. We calculate the H-measure with

δ = 2.87, as this is the number of true senses per target word in the Semeval 2007

test corpus. According to this metric, we find the 1F and 2F degree levels the most

interesting. Specifically, XF(S
L,ML), in 1F, is the most performing fusion operator.

Indeed, by transferring quality lexical similarities into its same feature matrix, we

obtain more useful relations than by using any syntactic data. On the other had, in

second place, the operator E(ML,XF(S
L,ML)) of the 2F level consists also exclusively

on lexical information. While the same operators that outperformed the rest in NER

(in the HF level) are not as adequate in this WSI/WSD experiment, we see that most

of the feature combination techniques improve over the baselines of the single features

and early fusion operations.
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Figure 4.7: H-measure for the WSI/WSD task on the Semeval 2007 corpus. Results

are obtained with the spectral clustering algorithm.
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Notation Definition

d Document containing target words

tw A target word whose sense needs to be found

cttw Context of target word tw

GH Linguistic graph built from a background corpus

Gtw Subgraph extracted from GH containing all the co-occurrent words of target word tw

Btw Bipartite graph induced from Gtw

Stw Similarity matrix of the nodes in Btw

Ftw Filtered nodes in Stw

SoStw Set of senses discovered of tw

th1, th2 Threshold values to filter out non-relevant words

Table 4.10: Network-based proposed method notation

In the following subsection, we put aside the fusion enrichment and we focus into

another characteristic of our proposed hypergraph structure. We leverage the links

(features) among nodes (words) to induce senses. Specifically, we propose a method

that clusters together words which represent induced senses for a set of target words.

4.3.2 Leveraging the Linguistic Network Structure

Until now, we have employed the hypergraph representation in terms of leveraging

the heterogeneous information to enrich and densify a feature space. Now, we will

leverage the relations that exist within the network to identify words that, together

with their neighborhood, represent a sense. Thus, we propose a network-based algo-

rithm to solve word sense induction.

With respect to the information contained in the network, we find that few ap-

proaches include syntactic attributes into their model. We believe that finding seman-

tic similarities can be improved by leveraging syntactic information by using depen-

dency relations.

Proposed Method For convenience, we start by introducing in Table 4.10 the nota-

tions we will use in the rest of our method’s description.

Formally, the objective of WSI/WSD is the following: given a document d with a

set T of target words tw ∈ T and the set C with contexts for each target word cttw.

Specifically, each paragraph represents the context of a target word. A target word in
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a specific context is also called an instance. As described before, the goal is first to

solve the WSI task, that is, automatically determine a list of senses for a given tw, and

then assign one meaning from this list to each of its instances, the WSD task.

Our method is inspired on previous approaches from both [Véronis 2004] and

[Klapaftis 2007]. In Hyperlex, the graph-based method presented in [Véronis 2004],

the main intuition is that co-occurrence networks have small-world properties and

thus it is possible to detect and isolate important heavily-connected nodes, called

"hubs". The idea is that these hubs, and their connected nodes, represent a sense

themselves.

Hyperlex performs WSI and WSD using a weighted lexical co-occurrence network.

The process is performed for each target word in the document. As a first step, they

build a graph by defining the vertices (the target word node is removed) as the tokens

found in the co-occurring context of a target word. The edges link two words co-

occurring together. Each edge is assigned a weight that decreases as the association

frequency of the words increases. The second step consists on iteratively finding

the hubs and removing them, along with their adjacent nodes, from the target word

graph. Again, the intuition of the method is that these isolated hubs, and their adjacent

words, represent a sense of the analyzed word. The third and final step carries out

the disambiguation. A new graph is created by adding the target word to the co-

occurrence graph. Zero-weighted edges are added between each hub and the target

word. A minimum spanning tree is then calculated and the sense component found

to have the closest set of nodes is chosen as the target word sense.

The second approach, UoY, described in [Klapaftis 2007], relies itself on the small-

world intuition presented by Hyperlex to find hubs and its adjacent nodes to represent

senses. In short, these methods, as ours, exploit the real-world characteristics of lin-

guistic networks by theorizing that there are certain few high-degree nodes (called

hubs) that carry an important role in the network and therefore may represent, cou-

pled with their neighbors, a sense for a given target word. Particularly, UoY considers

bigrams and trigrams that co-occur in a paragraph as hyperedges. Under a frequent-

itemset setting, they determine important hyperedges given their support and their

confidence values. Then, the clustering of words takes place by finding the hubs and

considering them as sense carriers only if they satisfy a threshold mainly set upon

their containing-hyperedge confidence value. Finally, once the senses are identified,

each target word instance (represented by a context) is assigned to a sense according
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Figure 4.8: Block diagram of the WSI/WSD method proposed.

to the sum of confidences of the hyperedge appearing on said context.

In our method, we generate a network for each tw and consider that the high-

degree nodes inside this network may represent a tw sense. Figure 4.8 shows an

overview of the process. Also, in Algorithm 2 we show the general flow of our ap-

proach. We detail the steps taken alongside the corresponding line in the algorithm

below.

Creation of the linguistic network In order to find senses from the contexts of a

target word, the first step in our procedure is to build a linguistic graph GH from

a background corpus. As described in previous sections, the dependency and con-

stituency trees are used to build the hypergraph: words are depicted by nodes, and

they may exist inside any of the three different types of hyperedges defined (sentence,

noun phrase or dependency contexts). If any hyperedge is repeated through the cor-

pus, we increment a counter and keep the number of apparitions instead of adding

redundant columns to the hypergraph incidence matrix.

At each step, that is, for each tw in the test input document, we extract a subgraph

Gtw from GH that contains all the words that appear together with tw (line 2), whether

by lexical or syntactic co-occurrence. The tw is removed from Gtw. In this approach

we focus specifically on dependency relations and lexical co-occurrence.

We note that for the syntactic co-occurrence, that is, the dependency relations be-

tween words, we apply two strategies: when dealing with a noun target word, we

use the co-occurrent relations between said noun and other words having a similar

dependency head token. On the other hand, when dealing with a verb target word,

we select the co-occurrent words having said verb as head of the dependency relation.
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Algorithm 2: Pseudo-code of our WSI/WSD network-based approach
Input: A set tw_set = {tw1, tw2, ..., twn} of target words

Input: A background linguistic network GH

Input: Filtering thresholds th1, th2

Output: A set SoStw of senses for each target word

1 foreach target word tw in tw_set do

2 Gtw = ❡①tr❛❝t❴s✉❜❣r❛♣❤(GH, tw);

3 Btw = ✐♥❞✉❝❡❴❜✐♣❛rt✐t❡❴❣r❛♣❤(Gtw);

4 Stw = s✐♠❴♠❛tr✐①(Btw);

5 Ftw = ✐♥❞✉❝❡❴❤②♣❡r❣r❛♣❤(Stw, th1);

6 candidate_hubs = s♦rt✭❞❡❣r❡❡(Ftw))[:100];

7 SoStw = [ ];

8 foreach candidate_hub in candidate_hubs do

9 candidate_hyperedges = ❣❡t❴❤②♣❡r❡❞❣❡s(candidate_hub, Ftw);

10 candidate_avgjaccard = 0;

11 foreach hyperedge in candidate_hyperedges do

12 candidate_avg_jaccard += ❣❡t❴❛✈❣❴❥❛❝❝❛r❞(hyperedge);

13 end

14 if candidate_jaccard > th2 then

15 SoStw.❛❞❞(❣❡t❴✇♦r❞s(candidate_hyperedges));

16 Ftw = Ftw \ candidate_hyperedges;

17 end

18 return SoStw

19 end



4.3. Second Application: Word Sense Induction and Disambiguation 117

The reason is that usually verbs are more often than not the head of dependency rela-

tions, so the intuition is that words which have the same verb governor are somehow

semantically related.

Computing the similarity between nodes In order to computationally treat Gtw, we

first induce a bipartite graph Btw = (U,W,E) from Gtw (line 3). The set of left nodes

U represent words and the set of right nodes W depicts the membership to a given

hyperedge. Thus, we have as many nodes in W as we had hyperedges in GH.

We compute the Jaccard index between each node ni,j ∈ U as Jaccard(i, j) =

|N(i)∩N(j)|
|N(i)∪N(j)|

in order to build a |U|× |U| similarity matrix Stw (line 4). We induce from

Stw a new filtered hypergraph incidence matrix Ftw (line 5), which contains word

nodes as rows and columns as hyperedges. Each of these hyperedges represent a set

of words that are deemed similar between them according to their Jaccard index value,

which must be equal or higher than an assigned threshold th1 .

Clustering words together Once the incidence matrix Ftw is built we can proceed

to induce senses for a target word by clustering words (vertices) together. First, we

calculate the degree of each node ni ∈ Ftw. The degree of a node is simply the number

of hyperedges it is incident in. Nodes are sorted in descending order and evaluated

one by one. We consider the top c-nodes as sense hub candidates (line 6). We accept

or reject a node n ∈ Ftw as a sense carrying word according to one condition. As

shown from line 11 to 17 in the pseudo-code, we set a minimum limit to the average

of the Jaccard similarities between each pair of neighbors of node n ∈ Ftw within

each hyperedge n belongs to. Formally, for a node n, we define the average Jaccard

measure as:

AvgJaccard(n) =
1

|hedges(n)|

∑

h∈hedges(n)

∑
i∈h

j∈h;i6=j
Jaccard(i, j)

|h|

where hedeges(n) is the set of hyperedges n is incident in and its cardinality is defined

as |hedges(n)|, and |h| is the number of nodes in the hyperedge h.

The Jaccard similarity measure allows us to easily determine the neighbors of each

node in the current bipartite hypergraph representation. As each node is joined to a

sentence or dependency node, calculating the Jaccard similarity amounts to determin-

ing the level of co-occurrence between each word according to a specific type of hyper-

edge (represented as a node from the other graph partition) while taking into account
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the total number of hyperedges the words participate in. We differentiate specifically

from the previously described method, UoY, in that in the case of that system, the

weighting of the hyperedges is done by computing the average confidence metric of

each hyperedge. In this regard, the Jaccard similarity is more flexible with respect to

the confidence metric, as the confidence requires in the numerator the number of con-

texts (paragraphs in UoY’s case) shared by all the members of the hyperedge, whereas

the Jaccard measure takes pairs of members individually and thus is less strict in the

apparition of all the elements of the hyperedge in the contexts. Given the nature of

the features used (lexical and syntactical dependencies), we fix our thresholds in a

manual but simpler way by defining percentiles and taking the value of the threshold

directly, without having to change it according to the characteristics of the data.

If node n satisfies both thresholds th1 and th2, it is deemed as a sense purveyor

and all its neighbors (words that appear in the same hyperedges as n) are conflated

into a single set representing a tw sense. This new sense is added to SoStw (line 17).

The sense set is then removed from Ftw.

The process is repeated until no more nodes satisfy both boundaries. When the

process is complete, we obtain a set of senses SoStw where each set contains words

that ideally represent a unique meaning for each target word.

Sense assignation The assignation of a sense consists in looking at each tw instance

represented by a context ct and simply determining which sense s in SoStw shares the

highest amount of words with ct. The sense s is thus assigned to that instance. If two

senses in SoStw share the same amount of words with ct, one of them is randomly

chosen. This operation is repeated for each instance of each target word.

Experiments and Evaluation In the following paragraphs we describe the details

and results of the experiments performed using our proposed method while using

fusion enriched representations.

Test Datasets We trained and evaluated our system on the Semeval 2007 Task 2

(as in the previous experiments) dataset, as on the previous experiments. We recall

that the Semeval 2007 task consisted in the induction and disambiguation of a single

set of 100 words, 65 verbs and 35 nouns, each target word having a set of contexts

where the word appear. The average number of senses in the testing set is 2.87.
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We apply a light pretreatment, consisting on token lemmatization and we remove

all words that appear less than four times. Concerning the individual graphs of each

target word, we work only with nouns and if the extracted graph has fewer than 100

nodes, we do not apply any filtering (we keep all the extracted words). We do this in

order to avoid empty solutions.

Implementation The objective of this experiment is to understand the perfor-

mance of both lexical and syntactic co-occurrence information, used independently,

while solving WSI and WSD tasks while using the method described in the previous

subsection. To that end we build two independent systems, using : ML, which uses

exclusively lexical co-occurrence hyperedges, and MS, which employs only syntactic

dependency hyperedges. Both are obtained as described in Chapter 3, section 3.3.1.

Each type of hyperedge has its own network characteristics as mentioned before.

Sentence hyperedges tend to have a much smaller number of words than those of

the dependency category. This make sense as sentences usually contain less than 30

words, meanwhile a dependency hyperedge may contain up to hundreds of words

(several words may share the same dependency relation). Taking this into considera-

tion we set different threshold values for ML and for MS. First, we consider only the

top 100 nodes as candidate sense hubs. Secondly, we do not set the thresholds’ values

directly but instead we experimentally set up a percentile value for the Jaccard simi-

larity (th1 = 30) and for the average Jaccard similarity (th2 = 30). This is a practical

solution to the changing nature of the network model according to the features being

employed. We experimentally found the best values for each threshold used.

Results and Discussion Our experiments are first evaluated by an unsupervised

and supervised set of measures, as before. Later on, we present the results accord-

ing to our H-measure. The objective of these results comparison is to determine the

level of performance of our proposed method and to verify that the fusion-produced

representation spaces do improve over the use of independent features and the trivial

feature concatenation (with early fusion).

We analyze these results in terms of two axes. First, as we want to discover the

pertinence of the proposed algorithm, our technique is compared to the competition

baseline and to the previous similar method from ][Klapaftis 2007]. Secondly, as be-

fore, we compare the use of single independent features (ML and MS) and the trivial

early fusion (E(ML,MS)) with the other more elaborated fusion operators. The goal is
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Table 4.11: All-words, nouns, and verbs supervised recall for the Semeval 2007 corpus

using fusion operations (SF, 1F, 2F, HF) and our proposed method. We also display the

average number of clusters found by each fusion configuration, the best performing

system as well as the MFS baseline. In bold the best results per-column among our

experiments.

Fusion Operation / System Recall (%) #cl Fusion Level

all nouns verbs

Single Features

SFML 78.70 81.00 76.00 4.21

MS 78.41 80.30 76.10 2.26

Early Fusion (EF)

1F

E(ML,MS) 78.80 81.00 76.40 2.43

Cross Feature Fusion (XFF)

XF(S
L,ML) 78.70 80.90 76.20 3.11

XF(S
L,MS) 78.50 81.10 75.60 1.92

XF(S
S,ML) 79.10 81.60 76.40 1.73

XF(S
S,MS) 78.60 80.90 76.00 1.81

Cross Similarity Fusion (XSF)

XS(S
S,SL) 78.60 80.80 76.20 1.44

XS(S
L,SS) 78.70 80.90 76.20 1.10

Cross Feature Cross Similarity Fusion (XFXSF)

2F

XF(XS(S
L,SS),ML) 78.70 81.00 75.80 1.59

XF(XS(S
L,SS),MS) 78.70 81.00 76.10 1.38

Early Cross Feature Fusion (EXFF)

E(ML,XF(S
L,ML)) 78.70 81.20 75.80 2.41

E(MS,XF(S
L,ML)) 78.90 81.40 76.10 2.35

Late Cross Feature Fusion (LXFF)

L(MS,XF(S
L,MS)) 78.50 81.10 75.60 1.91

L(ML,XF(S
L,ML)) 78.70 80.80 76.40 3.12

Early Late Cross Feature Fusion (ELXFF)

HFE(ML,L(MS,XF(S
L,MS))) 78.60 80.70 76.20 1.99

E(ML,L(ML,XF(S
L,ML))) 78.60 81.10 75.70 2.39

Baseline MFS 78.70 80.90 76.20 1.00

UoY(2007) 77.70 81.60 73.30 9.30
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Table 4.12: All-words, nouns, and verbs unsupervised F-measure for the Semeval 2007

corpus using fusion operations (SF, 1F, 2F, HF) and our proposed method. We also

display the average number of clusters found by each fusion configuration, the best

performing system as well as the MFS baseline. In bold the best results per-column

among our experiments.

Fusion Operation / System F-measure (%) #cl Fusion Level

all nouns verbs

Single Features

SFML 63.80 61.30 66.50 4.21

MS 75.90 78.80 72.60 2.26

Early Fusion (EF)

1F

E(ML,MS) 76.90 80.20 73.10 2.43

Cross Feature Fusion (XFF)

XF(S
L,ML) 71.00 68.10 74.20 3.11

XF(S
L,MS) 77.70 79.60 75.50 1.92

XF(S
S,ML) 75.20 75.50 74.90 1.73

XF(S
S,MS) 77.60 80.50 74.30 1.81

Cross Similarity Fusion (XSF)

XS(S
S,SL) 74.10 72.10 76.50 1.44

XS(S
L,SS) 78.30 79.70 76.80 1.10

Cross Feature Cross Similarity Fusion (XFXSF)

2F

XF(XS(S
L,SS),ML) 77.80 79.10 76.40 1.59

XF(XS(S
L,SS),MS) 75.90 75.60 76.30 1.38

Early Cross Feature Fusion (EXFF)

E(ML,XF(S
L,ML)) 75.40 76.30 74.40 2.41

E(MS,XF(S
L,ML)) 73.80 72.80 74.80 2.35

Late Cross Feature Fusion (LXFF)

L(MS,XF(S
L,MS)) 77.60 79.50 75.50 1.91

L(ML,XF(S
L,ML)) 70.10 67.70 74.20 3.12

Early Late Cross Feature Fusion (ELXFF)

HFE(ML,L(MS,XF(S
L,MS))) 77.90 79.50 75.80 1.99

E(ML,L(ML,XF(S
L,ML))) 75.40 76.30 74.40 2.39

Baseline 1c1word 78.90 80.70 76.80 1.00

UoY(2007) 56.10 65.80 45.10 9.30
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to show the interest of combining different types of information.

In Table 4.11 we show the supervised recall results obtained for the Semeval 2007

corpus, using our proposed method, coupled with fusion operators. In the table, as in

the rest of the tables presented in this section, as before, the columns show the results

for all the words, for the nouns, and for the verbs. Again, the final column indicates

the number of induced clusters per system.

Our system, with a ML matrix is on par with the baseline MFS (assigning the most

frequent sense to an instance) while producing more clusters and closer to the true

number of average clusters. On the other hand, using the MS is on the same level of

performance while not beating the MFS baseline, but lightly performing better than

using ML in terms of verbs. Both systems improve on the inspiration method for our

algorithm, UoY (version 2007) [Klapaftis 2007], while not having to select thresholds

specifically for each type of features used.

Concerning the unsupervised F-measure evaluation, in Table 4.12 we present the

results for our models as well as for UoY. Additionally, one baseline is included, the

1c1word baseline. As described before, this baseline groups all instances of a word

into a single cluster. This baseline was not surpassed during the competition. Looking

at the table, we can see that both our methods overcome the system described before

UoY(2007). Our systems induced a relatively close number of senses to the true num-

ber while retaining a competitive F-measure value. We also note that in this evaluation

MS, the system using only co-occurrent dependency relations outperformed the lexical

co-occurrence only system ML. It is very possible that this lack of lexical performance

is due to the size of the surrounding words window, which in this case is selected to

be the entire phrase were the word occurs. In this evaluation, using our method, it is

clearer that verbs are better addressed, and their senses better induced, using syntactic

information compared to lexical information. It is indeed the same behavior shown

while using the spectral clustering technique before. We do note that our systems do

not perform better than the 1c1word baseline.

In order to have a synthetic perspective of the results of our systems, we show in

Figure 4.9 the H-measure of our proposed model (using different fusion input matri-

ces) as well as the baseline (1c1word, which is analog to the MFS baseline in terms of

supervised recall) and UoY system. According to our measure, the fusion operators

outperform again the single features and the early fusion. Namely, XF(S
L,ML) outper-

forms both independent features ML, MS, and E(ML,MS). It is followed closely by the
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Figure 4.9: H-measure for the WSI/WSD task on the Semeval 2007 corpus. Results

are obtained with our proposed algorithm.

late cross feature fusion (L(ML,XF(S
L,ML))) in the 2F level.

What does seems unexpected is that the roles played by the MS and ML system is

inverted regarding to the fusion experiments presented in the previous subsection. In-

deed, using our network-based approach the performance of MS is considerably larger

than that of ML, whereas using spectral clustering the lexical information outranked

(by a small margin) the syntactic information (based on dependencies). Again, we

attribute this lack of performance of ML to the size of the window employed, which

seems to general to detect appropriate senses. While our fusion systems beat the early
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fusion and independent features baselines, the systems that perform the best do not

employ heterogeneous data to do so. Indeed, the best systems that combine the two

possible types of features lag behind the best fusion spaces. In most of the cases, as

can be seen in the figure towards the center, this is due to the relatively lower number

of clusters produced, which tends to reduce the H-measure performance. This may

be due to the nature of the method, which, while using also syntactic data, has a hard

time determining hubs within fusion-produced representation spaces.

Finally, as a way of determining how both individual representation spaces ML

and MS systems perform in comparison to each other, in Figure 4.10 and Figures 4.11

and 4.12 we show the unsupervised F-measure value for nouns and verbs respectively

(we split the verbs in two figures for visibility). We can see that, as the previous result

tables indicated, MS did better overall. Nonetheless, and what is most interesting in

these figures, is that there are certain words (both nouns and verbs) that obtain better

scores using ML instead of MS and vice versa. For example, the nouns area, future, and

state are better treated by ML, according to this measure, even if by a small margin.

On the other hand, with respect to the verbs, the differences between performance are

more important. Again, the ML system does better while finding senses and assigning

them to the verbs avoid, fix, and work.

4.4 Conclusion

In this chapter we addressed two NLP tasks from two different points of view: on

the one hand, we computed several representation spaces using fusion operations in

order to enrich and densify otherwise sparse and independent features. The matri-

ces generated were used to train both supervised and unsupervised models to solve

named entity recognition and word sense induction and disambiguation tasks. On the

other hand, we proposed a model that leverages the inner structure of the hypergraph

network to group words that belong to a shared sense. This approach was used to

solve word sense induction and disambiguation.

More specifically, concerning the first part, we presented a comparative study of

multimedia fusion techniques applied to named entity recognition. We also tested

hybrid fusion recombinations in order to complement the information contained in

the single representation matrices. In order to accomplish this goal, we built upon

basic fusion techniques such as early and late fusion, as well as cross media fusion

to transfer quality information from one set of features to another. Our experiments



4.4.
C

on
clu

sion
1
2
5

area.n
authority.n

base.n
bill.n

capital.n
carrier.n
chance.n

condition.n
defense.n

development.n
drug.n
effect.n

exchange.n
future.n
hour.n
job.n

management.n
move.n

network.n
order.n
part.n

people.n
plant.n
point.n
policy.n

position.n
power.n

president.n
rate.n

share.n
source.n
space.n
state.n

system.n
value.n

0
.4

0
.6

0
.8 1

FScore

D
E
P

L
E
X

Figu
re

4.1
0:

U
nsu

p
ervised

F-m
easu

re
resu

lts
for

the
nou

ns
of

the
Sem

eval
2
0
0
7

test

set.

affect.v
allow.v

announce.v
approve.v

ask.v
attempt.v

avoid.v
begin.v

believe.v
build.v
buy.v
care.v

cause.v
claim.v
come.v

complain.v
complete.v

contribute.v
describe.v
disclose.v

do.v
end.v

enjoy.v
estimate.v
examine.v

exist.v
explain.v
express.v

feel.v
find.v
fix.v

0
.4

0
.6

0
.8 1

FScore

D
E
P

L
E
X

Figu
re

4.1
1:

U
nsu

p
ervised

F-m
easu

re
resu

lts
for

the
fi

rst
half

of
verbs

of
the

Sem
eval

2
0
0
7

test
set.



126

Chapter 4. Applications to named entity recognition and word sense
disambiguation

g
o
.v

g
ra
n
t.
v

h
o
ld
.v

h
o
p
e.
v

im
p
ro
v
e.
v

jo
in
.v

k
ee
p
.v

k
il
l.
v

le
a
d
.v

m
a
in
ta
in
.v

n
ee
d
.v

n
eg
o
ti
a
te
.v

o
cc
u
r.
v

p
re
p
a
re
.v

p
ro
d
u
ce
.v

p
ro
m
is
e.
v

p
ro
p
o
se
.v

p
ro
v
e.
v

p
u
rc
h
a
se
.v

ra
is
e.
v

re
ca
ll
.v

re
ce
iv
e.
v

re
g
a
rd
.v

re
m
em

b
er
.v

re
m
o
v
e.
v

re
p
la
ce
.v

re
p
o
rt
.v

ru
sh
.v

sa
y.
v

se
e.
v

se
t.
v

st
a
rt
.v

tu
rn
.v

w
o
rk
.v

0.4

0.6

0.8

1

F
S
co
re

DEP

LEX

Figure 4.12: Unsupervised F-measure results for the second half of verbs of the Se-

meval 2007 test set.

show that it is in fact the combination and recombination of fusion operations that

yields enriched feature spaces useful for NLP tasks. This is in unison to the results

presented in [Ah-Pine 2015], where the combination of fusion operators improve on

multimedia information retrieval tasks.

We analyzed the results to understand how the enrichment of features improved

the performance. We found that at each fusion step, a different type of NER tag is

benefited. We studied what features where driving the decision towards the correct

class and found that while the enriched features are not the most prominent in the

decision function, they play an important role by tipping said decision towards the

correct label and away from the wrong one.

Concerning fusion enrichment and WSI/WSD, we found that the fusion operations

also improve the results of the task, although not as clearly as in NER. The metrics

used to measure the performance on this ask does not allow a clear understanding on

the behavior of the model employed. While we want to avoid converging to the trivial

one sense per word solution, we know that words do not have numerous senses. In

that sense, the results obtained stay reasonably away from the trivial solution while

not producing many senses as other approaches.

We proposed a metric, the H-measure, to rank the systems by considering the clas-
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sic performance metrics and the number of senses found relative to the true number

of senses. This metric allowed us to identify with a single value the best system. We

found that according to it, the fusion based systems, whether using well-known al-

gorithms (spectral clustering) or using the method developed in this section, perform

adequately and show general improvements over the single feature representations as

well as other systems.

While there is an improvement using fusion techniques, we do note that they en-

large the feature space, especially early fusion, which is used frequently. This may

imply the need of larger quantities of memory and longer execution time. In that

sense, as future work, more intelligent ways of finding the most appropriate fusion

must be researched. This is indeed one of our future work paths: determining an

optimal fusion path from single features to a high degree fusion recombination. Cou-

pled with this, the automatic determination of the parameters is still ongoing research

in the multimedia fusion community. Consequently, we believe that efficiently deter-

mining both parameters and fusion combinations is the general domain of our future

work. Another route we would like to explore is testing these techniques on other

tasks and with datasets from different domains, in order to assert its effectiveness.

Concerning our proposed network-based method, we show how using the inner

links within the hypergraph structure we can group words that represent senses and

then assign them to target words. Our method distinguishes from similar works in

two main aspects: the definition of similarity used, the reduced number of parameters

that are needed, the use of diverse types of contexts to solve the task. We show that our

method beats said similar approaches. Also, we discovered the behavior of syntactic

contexts in comparison to lexical contexts at word-level: nouns are better represented

by lexical features as opposed to verbs which are best addressed by syntactic features.

In general, lexical contexts seem to perform better. This is in line with other works on

distributional representations [Kiela 2014].





Chapter 5

Conclusions and Future Work

5.1 Conclusion

Linguistic Networks are useful methods to understand the nature of our language. In

the literature, they are generally used to comprehend either the dynamics of words

and other textual units within language, and to solve practical NLP tasks. Nonethe-

less, no mater the objective, they are usually based on the distributional hypothesis,

that is, words will be found in similar contexts if they tend to be semantically related.

Distributional models are based on several parameters, such as the size of the

context to be used, their linguistic type (either syntactic, lexical, etc.), the weight that

affects each context-word co-occurrence, as well as determining how the semantic

relatedness is computed. Indeed, most of the linguistic networks in the literature deal

with a single type of contexts, either lexical or syntactical.

On the other hand, text data representations, described through contexts in a dis-

tributional framework, are sparse by nature: the large majority of the entries in a co-

occurrence matrix are zero. This translates to greatly sparse features’ matrices which

represent problems for knowledge discovery methods as they do not have much infor-

mation about words because each one of them is has a very low number of features.

We considered the lack of heterogeneity and data sparsity two open challenges in

textual representations.

To treat these concerns, on this thesis we proposed three contributions. The first

and second entail a fusion enriched linguistic network, which entails denser text rep-

resentations by combining heterogeneous feature spaces. The second is a method

based on graph structure to find groups of related words.

The linguistic model we proposed unifies language networks by means of a hyper-

graph structure. We consider three different types of co-occurrence contexts in order

to represent three distinct levels of semantic relatedness. These contexts are based on

lexical and syntactic co-occurrences, which are unified with a hypergraph. This union
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yields words that are related by any of the three contexts and thus creating more links

among words.

These heterogeneous features are important as they represent relations between

words from different points of view. Nonetheless, they tend to generate sparse rep-

resentations, as is common with text representations. In this sense, we proposed as

second contribution the use of fusion techniques to combine these features while re-

ducing the sparsity of the representation space.

Lastly, the third contribution entails a network-based method that leverages the

structure of the hypergraph to find communities of words using contexts indepen-

dently. These groups are found based on the intuition that words tend to group

together around a single hub word which represents, broadly, the general semantic

topic of these words.

In order to evaluate the methods and intuitions proposed, we performed experi-

ments on two semantic tasks: WSI/WSD and NER.

With regard to our fusion techniques, we tested them over both WSI/WSD and

NER tasks. Particularly, in NER, we created new representation matrices that showed

overall improvement in performance. In order to get to these improvements, which

are consistent in the whole ensemble of datasets tested, we consistently performed

a high level of fusion aggregation. Once again, lexical and task-standard features,

proved more useful that syntactic features. We estimate this is due to the fact that

syntactic features require larger corpora to actually populate the relations between

words using dependency functions. Our experiments show that reducing the sparsity

by combining heterogeneous features can ameliorate over using independent features

and over the trivial feature concatenation. For all our experiments, while our results

can be regarded as "baseline" performances, we do stay in the same ball-park of similar

task-tailored methods.

Concerning our graph-based model, we tested it on the WSI/WSD task, over the

Semeval 2007 corpus. Using the free-scale presumption we found communities of

words describing senses by using sentence-level lexical contexts and raw frequencies

to weight the co-occurrences. Jaccard similarity was chosen to measure the related-

ness among words. These parameters were defined experimentally. Also, we found

that contrary to what we expected initially, the contexts defined by syntactic-based

co-occurrences perform worse than lexical contexts. The fusion operators produced

representation spaces that improved over using single features, as in NER experi-
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ments. Nonetheless, the heterogeneity aspect of our proposed linguistic network is

not particularly leveraged by the proposed method. Heterogeneous networks seem

not to allow the retrieval of important hubs that represent senses. Finally, we ana-

lyzed the differences of the two contexts in terms of performance for each word in the

Semeval 2007 test corpus. In general, it seems that verbs are better off with syntactical

contexts while nouns are best represented by lexical contexts.

Finally, the proposed hypergraph, through its fusion representations, generate

large matrices that need to be correctly manipulated in order to solve NLP tasks.

To address this challenge, we use simple solutions as simple as word filtering to more

complex approaches that computationally deal with large, sparse, and dense, spaces,

such as parallelization and out-of-core computing methods1. Several other techniques

may be used, and were tried, such as dimension reduction via random projections or

hash-valued representation spaces (commonly known as the hash trick). The down-

side is, in our experience, a considerable loss in performance.

5.2 Future Work

The work we present still has several research paths to be explored. The hypergraph

model itself could utilize different contexts, going further than syntactic or lexical

contexts, for example using morphological or even phonological contexts for words

or other utterances. Even more, the constituent-based contexts are surely open for

improvement: trying more literature approaches or devising intelligent ways to lever-

age the information provided by this syntactic parse. Regarding the computationally

implemented resource, which follows the proposed model guidelines, it would be

interesting to leverage the information within by means of key-valued queries. The

extracted information could be helpful to discover, for example, which and how many

nouns participate in adjective modifier dependency relation, or exploring what are the

must recurring type of noun phrases in corpus to better adequate a NLP system.

Concerning fusion techniques, a more principled way to determine what type of

context with what type of fusion operation would indeed reduce the need for ex-

ploring the whole space of possibilities. In the same sense, in the NER experiments,

finding which fusion operators work best for each of the classes tested (location, or-

ganization, person, miscellaneous) in order to better exploit them in a single fusion

1Algorithms that only keep in memory the required parts of a matrix during computations, keeping

the rest on the hard drive
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operator. On the other hand, for WSI/WSD experiments, a more in-deep exploration

of the senses found by each fusion operator may give us a layered overview of the

textual properties according to each type of feature employed. Coupled with this ex-

ploration, a larger analysis on the contributions of each one of the parameters used in

the fusion operators (α,β,γ) would allow us to properly weight each feature type to

each experimental setting.

Comparing fusion methods with other well-established dimension reduction ap-

proaches would be interesting to understand the trade-offs of lower performance ver-

sus dimension reduction, while focusing on not-so-large corpora. Indeed, if the new

wave of distributional representations, or word embeddings, has a shortcoming is

that empirically it does not perform as well on smaller corpus. This may represent an

avenue of opportunity to methods such as feature fusion functions.

Regarding the network-based algorithm for WSI/WSD, a deeper errors’ analysis

would deep a larger glimpse on the behavior of nouns and verbs according to the

context. Understanding what is the syntactic or lexical difference among contexts,

which induce the good or bad performance of each type of feature could make the

system more flexible to other text domains. Also, the hypergraph could be better

leveraged by using hypergraph-specific methods, mainly through spectral analysis.

Lastly, we built a enriched hypergraph resource based on a very large corpus such

as Wikipedia. The relations between words contained within could be leveraged to

generate more powerful representations as the one created in this work. Indeed, we

explored this avenue but was put aside given the size of a matrix extracted from a very

large corpus. Furthermore, a comparison with other distributional representations

may signal other advantages of our proposed model. Specially for smaller corpora.



Glossary

Constituency Tree This analysis breaks a text into sub-phrases. Non-terminals in the

tree are types of phrases, the terminals are the words in the sentence, and the

edges are unlabeled..

Data Sparsity Common in textual data, the phenomenon of having large quantities

of zero-valued features representing textual units..

Dependency Tree A dependency parse links words together according to their syn-

tactic relations. Each node in the tree represents a word, child nodes are words

that are dependent on the parent, and edges are labeled by the relationship..

Distributional Hypothesis Hypothesis stating that words that occur in the same con-

texts tend to have similar meanings..

Fusion Techniques Set of operators conceived to combine different representation

spaces into a single, more dense, one..

Heterogeneous Networks A network of words linked by different types of linguistic

relations (e. g., syntactic, lexical, or semantic). .

Hypergraph A graph generalization that allows more than two vertices to be linked

by a single edge..

Lexical Co-occurrence Networks A network of words linked by the co-occurrent

neighboring words..

Lexical Context Neighborhood of a word as determined by its surrounding words..

Named Entity Recognition A task of Natural Language Processing, its goal is to de-

tect mentions of named entities within a written text. The classic types of entities

are: organization, person, and location..

Natural Language Processing Domain that aims to make machines understand our

language and thus making it possible to communicate with them in our own

language..
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Network Also referred as a graph, structure that links (via edges) entities together

(represented by nodes)..

Network Model In this thesis, a graph-based framework that relates words, or other

text units, according to different linguistic features..

Semantic Networks A network of words linked by means of their semantic relations..

Spectral Clustering Clustering method that makes use of the eigenvalues of a simi-

larity matrix of the data to perform dimensionality reduction before clustering

in fewer dimensions..

Structured Perceptron A supervised sequence classifier, it consists on coupling a per-

ceptron with the Viterbi decoder algorithm to determine the most appropriate

sequence of tags..

Syntactic Co-occurrence Networks A network of words linked according to the role

they play in constituency and dependency relations..

Syntactic Context Neighborhood of a word as determined by the dependency or con-

stituency relations it participates in..

Word Sense Induction and Disambiguation Natural Language Processing tasks

dealing with finding and assigning correct senses to words.
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