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“If you want to know the way nature works, we looked at it, carefully, (look at it,
see) that’s the way it looks! You don’t like it? Go somewhere else – to another
universe! Where the rules are simpler, philosophically more pleasing, more
psychologically easy. I can’t help it! OK! If I’m going to tell you honestly what the
world looks like to the human beings who have struggled as hard as they can to
understand it, I can only tell you what it looks like.”

Richard Feynman
QED: Photons, Corpuscles of Light

Sir Douglas Robb Lectures, University of Auckland, June 1979
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Abstract
Soil moisture (SM) is an essential climate variable and its monitoring is required for many
applications, such as meteorological forecasting and hydrological modelling. Satellite borne
microwave instruments provide surface SM estimates continuously in time and globally in space,
with spatial resolutions (footprint) ranging from 30 to 100 km.

The accuracy of satellite SM products needs to be assessed through validation, which usually
consists in comparing satellite-derived and in situ SM time series. In situ sensors typically
measure over an area of a few centimetres (point resolution). Their representativeness area can
be larger as SM exhibits spatial connection, but it never reaches the satellite footprint size. This
spatial scale mismatch between satellite and in situ SM estimates impairs the validation process
and the respective summary statistics to an extent that is not currently known.

This thesis aims at improving the knowledge of the spatial scale mismatch, as well as providing
methods for its assessment applicable to any validation area. To this end, I first explored the
spatial redistribution of SM with a disaggregation model, DISPATCH. This showed that the
principal drivers of SM spatial variability do vary as functions of the landscape and the climatic
conditions. Regarding the time domain, SM shown time scale dependence, which I studied using
wavelet transforms.

From this basis, the connection between the SM spatial and time scales was investigated. Mod-
elled and measured point series at Yanco and Little Washita in situ networks were decomposed
into time scales ranging from 0.5 to 128 days, using wavelet transforms. The spatial repre-
sentativeness of the point measurements was then assessed, on a per time scale basis, with 4
different approaches: temporal stability analysis, triple collocation, the percentage of correlated
areas (CArea) and a new approach that uses wavelet-based correlations (WCor). I found that
the average of the spatial representativeness values tends to increase with the time scales but
so does their dispersion. This implies that some stations had large representativeness areas at
seasonal scales, while others did not. At sub-weekly scales, all stations exhibited very small
representativeness areas. Regarding the methods, WCor and CArea gave consistent results at
all timescales. WCor is the most robust as it is the least sensitive to the number of stations.

This latter experiment revealed that isolating the spatial scale mismatch is not straightforward
as its magnitude varies with the in situ location and the time scale. Nevertheless, one of
the components of the mismatch, the sampling uncertainty, has been assessed separately with
bootstrap and Monte Carlo simulations of point-support series. The series followed a temporal
model describing the typical SM transitions in the region, and a spatial model describing the
statistical distribution of SM.

This thesis has shown that SM time and spatial scales are connected and it has provided some
generic tools to study this connection. This has important implications for validation and
modelling, which could be adjusted depending on the time scale. Non-parametric statistical
approaches, like Monte Carlo and bootstrap, could also be already operationally used in satellite
validation campaigns.
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Résumé
L’humidité du sol (soil moisture, SM, en anglais) est une variable climatique essentielle dont
le suivi est requis dans de nombreuses applications, telles que la prévision météorologique et
la modélisation hydrologique. Les instruments microondes à bord des satellites fournissent des
estimations SM de surface en continu dans le temps et globalement dans l’espace, avec des
résolutions spatiales (empreintes) allant de 30 à 100 km.

La précision des produits satellitaires de SM doit être validée, ce qui consiste généralement à
comparer des séries temporelles de SM obtenues par satellite avec celles mesurées au sol. Les
capteurs in situ sont généralement représentatifs d’une zone de quelques centimètres (résolution
ponctuelle). Celle-ci peut éventuellement être plus grande compte tenu du fait que la SM est
reliée spatialement, mais elle n’atteint jamais la taille de l’empreinte satellitaire. Cette différence
entre l’échelle spatiale des estimations satellitaires et in situ altère le processus de validation et
les statistiques obtenues à un niveau qui n’est pas connu actuellement.

Cette thèse vise à améliorer la connaissance de l’impact de la différence de l’échelle spatiale, ainsi
qu’à fournir des méthodes d’évaluation de celle-ci applicables à toute zone de validation. Pour
ce faire, j’ai d’abord exploré la redistribution spatiale de SM avec un modèle de désagrégation,
DISPATCH. Cela a montré que les principaux facteurs de variabilité spatiale de SM varient en
fonction de l’occupation des sols et du climat. En ce qui concerne le domaine temporel, la SM
a montré une dépendance avec l’échelle de temps, que j’ai étudiée en utilisant des transformées
en ondelettes.

Sur cette base, la relation entre les échelles spatiales et temporelles a été étudiée. Les séries
modélisées à résolution ponctuelle et mesurées sur les régions de Yanco et Little Washita ont été
décomposées en échelles de temps comprises entre 0,5 et 128 jours, en utilisant des transformées
en ondelettes. La représentativité spatiale des mesures à résolution ponctuelle a ensuite été
évaluée, par échelle de temps, avec 4 approches différentes : l’analyse de la stabilité temporelle,
la triple colocation, le pourcentage de zones corrélées (CArea) et une nouvelle approche utilisant
des corrélations basées sur des ondelettes (WCor). J’ai constaté que la moyenne des valeurs
de représentativité spatiale obtenues tend à augmenter avec l’échelle de temps, mais aussi leur
dispersion. Cela implique que certaines stations ont de vastes zones de représentativité à des
échelles saisonnières, tandis que d’autres ne l’ont pas. Aux échelles sous-hebdomadaires, toutes
les stations présentaient de très petites zones de représentativité. En ce qui concerne les méthodes
de représentativité, WCor et CArea ont donné des résultats cohérents à toutes les échelles de
temps. WCor est le plus robuste car elle est la moins sensible au nombre de stations.

Cette dernière expérience a révélé qu’isoler la différence d’échelle spatiale n’est pas direct car sa
magnitude varie avec le point de mesure et l’échelle de temps. Néanmoins, l’une de ses compo-
santes, l’incertitude d’échantillonnage, a été évaluée séparément avec des approches bootstrap et
des simulations de Monte Carlo de séries à résolution ponctuelle. Les séries ont été contraintes
par des modèles temporels décrivant la dynamique typique de la SM dans la région et un mo-
dèle spatial décrivant la distribution statistique de la SM. Cette thèse a montré que les échelles
temporelles et spatiales de l’humidité du sol sont connectées et elle a fourni des outils géné-
riques pour étudier cette connection. Ceci a des implications importantes pour la validation et
la modélisation, qui pourraient être ajustées en fonction de l’échelle de temps. Les approches
statistiques non paramétriques, comme Monte Carlo et bootstrap, pourraient également être
utilisées de manière opérationnelle dans les campagnes de validation satellitaires.
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Soil moisture (SM) represents about 0.009 % of the total Earth’s water storage and about 0.8 %
of the Earth’s liquid fresh water resources (Trenberth et al., 2007), yet it is a fundamental
physical variable that participates in the water and energy exchanges between the land and the
atmosphere. Since 2010, soil moisture belongs to the 50 Essential Climate Variables (ECVs)
defined by the Global Climate Observing System (GCOS).

One of the future trends for climate change is the intensification of the hydrological cycle (Tren-
berth, 2009; Seneviratne et al., 2010). The raise in temperatures will increase the evaporation
of soil moisture from soil and the transpiration from vegetation (evapotranspiration), easing
the probability of droughts and wildfires in some regions of the Earth. The increased water
vapor will lead to more intense rainfalls and floods in other parts of the globe. In less than
100 years, soil moisture will suffer a global redistribution with maximum changes of +25 % and
-25% during boreal summer (Seneviratne et al., 2010). Its monitoring is thus essential.

Global monitoring requires global observations. Passive microwave sensors onboard satellites,
like AMSR-E/2, Aquarius, SMOS and SMAP, provide global observations of surface SM. Sur-
face SM can also be quantified from the ground via in situ measurement networks. There are
important differences in the spatial sampling of satellite and in situ sensors: Satellites provide
SM estimations with a resolution of ∼40 km that fully cover the whole globe surface. In contrast,
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ground sensors have a resolution of some centimetres, are distributed over smaller areas (catch-
ment or regionwide extents) and do not fully cover the surface since the stations are separated
by some kilometres. In consequence, there exist a spatial scale mismatch between satellite and
in situ sensors that capture different regimes of SM variability, both in space and time.

This chapter provides some introductory material on surface SM and its importance in the
climatic system. It also presents the research problem of this thesis: the spatial scale mismatch
between measurement techniques. It is described in detail along with the terminology that will
be used in this thesis manuscript.

1.1 The surface soil moisture (SM) variable

The soil moisture (SM) variable participates in the exchanges of water and energy between the
land surface and the atmosphere. As a consequence, it plays an important role in climatic,
atmospheric, hydrologic and ecological processes (Rodriguez-Iturbe, 2000; Daly and Porporato,
2005; Legates et al., 2011). The following sections describe the principal contributions of SM to
the climatic system and diverse applications.

1.1.1 Definition

Soil moisture is the amount of water stored in the unsaturated soil zone. The term surface SM is
used when it only concerns the top 10 cm of soil. It can be expressed using different conventions,
like the gravimetric (mass of water divided by mass of dry soil) or the volumetric (volume of
water divided by volume of total soil sample). This thesis is dedicated to the study of surface
SM in the top 5 cm of soil, which is the average sensing depth of the two SM-dedicated satellite
missions (SMOS, SMAP) and of most of the operational in situ networks. The volumetric unit
convention for SM is adopted and expressed as m3/m3.

L’humidité du sol est une variable positive bornée. Le minimum théorique est 0 m3/m3 (sol
totalement sec) mais en pratique de l’eau résiduelle reste dans le sol. Par exemple, dans la zone
racinaire, les plantes ne sont pas capables d’extraire de l’eau au-dessous d’un seuil spécifique
(point de flétrissement). Concernant la valeur maximale d’humidité du sol, deux seuils sont
possibles. À saturation, tous les pores sont remplis d’eau. La saturation arrive après de fortes
précipitations et induit une forte probabilité de ruissellement.

SM is a bounded positive variable. The theoretical minimum is zero (totally dry soil), but in
practice, residual SM remains. For ex ample, in the root zone, plants are not able to extract
water below a specific threshold (wilting point). Concerning the upper limit, two thresholds
are possible. At saturation, all pores are filled with water. Saturation takes place after strong
precipitation and makes lateral runoff highly probable. After some time, part of the water
flows in the form of drainage, plant water intake or soil evaporation and plant transpiration
(evapotranspiration). The field capacity threshold is reached as soon as some air enters in the
soil pores. A more detailed review of these processes is given by the Food and Agriculture
Organization (FAO) of the United Nations (Brouwer et al., 1985, ch. 2) and by Western et al.
(2002).

1.1.2 SM related processes

SM partitions the quantity of water and energy transferred between the land and the atmosphere.
Figure 1.2 illustrates the main energy and water processes where SM is involved. Regarding the
water fluxes, the principal forcing of SM is precipitation. This can be easily seen in Figure 1.1
which presents the SM and precipitation time series measured at the same location.
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Figure 1.1 – Example of in situ SM and precipitation time series. The series were measured at station #9
of the Little Washita network (Oklahoma, U.S.).

Surface SM is depleted by downwards drainage and evapotranspiration. Lateral runoff can either
contribute or reduce the SM levels at a location, depending on the direction of the lateral flow.
Other processes like capillary rise or the increase of the water table can induce an increment of
surface SM levels.

The energy and moisture fluxes are related via evapotranspiration. It is estimated that more
than a half of the total solar energy absorbed by the land is spent in evapotranspiration (Oki
and Kanae, 2006). In short, the change of energy within the considered surface layer equals
the net radiation minus the latent heat flux, which is proportional to evapotranspiration. Other
terms also contribute to the energy exchange: the transmission of heat to deeper layers and the
sensible heat flux, associated with changes in temperature. More thorough descriptions of the
processes are available in Western et al. (2002) and Seneviratne et al. (2010).
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Figure 1.2 – Schematic of the water and energy fluxes at the land-atmosphere boundary

1.1.3 Why is SM information relevant

Surface SM plays a major role in different disciplines. Surface SM is a key variable in land-
atmosphere interactions through evapotranspiration and energy fluxes, so it is of high value in
numerical weather predictions (NWPs) and climatic general circulation models (GCMs). Be-
cause it participates in the water cycle, surface SM also helps to improve hydrological forecasts.
In agriculture, surface SM is linked to root zone soil moisture (RZSM) and thus, to yield produc-
tion. Finally, ecological processes can be influenced by SM since it contributes to the available
carbon in soil, plant growth, plant species distribution and the presence of other living organisms
such as bacteria and insects.

Climate and meteorological forecasting. The Earth’s climate can be seen as the result of
a dynamic feedback equilibrium where oceans and land affect the atmosphere and the other way
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round (Douville, 2004). The land-atmosphere boundary is specially heterogeneous in space so
information on surface SM can help for a better modelling of the boundary. The importance of
SM is strongest in transitional regions between wet and dry climates (Seneviratne et al., 2010).
Given that SM is both a water and energy storage, it induces persistence in the climate system
(e.g. Lorenz et al., 2010; Nicolai-Shaw et al., 2016) and SM initialization is useful in seasonal
forecasting (e.g. Douville, 2004; Koster et al., 2010).

Similarly, surface SM may play a important role in weather forecasting as it has been shown
that some regions exhibit strong coupling between the land surface and the lower atmosphere
(Koster et al., 2004; Seneviratne et al., 2010). In these regions, it influences key low atmosphere
variables like relative humidity and temperature of the air (Brocca et al., 2017). However, the
assimilation of SM data from the ASCAT satellite in the meteorological models at the European
Centre for Medium-range Weather Forecasting (ECMWF) (De Rosnay et al., 2013) and the UK
Met Office (Dharssi et al., 2011), has not shown considerable improvement of the SM analysis
when compared to in situ measurements. In contrast, the assimilation of SM data from the
SMAP satellite (Kolassa et al., 2017) and from the SMOS satellite (Rodríguez-Fernández et al.,
2017a) has provided promising results. Finally, the improvements reported in the analysis of SM
seem to be concentrated in some regions of the Earth. The regions are different depending on
the satellite sensor (ASCAT, SMOS) and the assimilation scheme (Rodríguez-Fernández et al.,
2017a).

Hydrological modelling and land applications. The assimilation of surface SM in hydro-
logical models is useful for various applications. In the case of catchment-scale moddels, SM
assimilation can improve the accuracy of different output variables like water table depth and
streamflow (Leroux et al., 2016; Crow et al., 2017) and discharge (Laiolo et al., 2016). By the
same means, satellite rainfall estimates, which have been shown to be quite inaccurate in some
regions of the globe, can be corrected (Brocca et al., 2014; Pellarin et al., 2017).

Land applications like flood and drought forecasting also benefit from improved predictions
thanks to surface SM assimilation. SM serves as a proxy for the amount of water excess and
deficit because it partitions the incoming precipitation into infiltration, runoff and evapotran-
spiration (Seneviratne et al., 2010). Flood modelling can be direclty improved by correcting the
rainfall estimations assimilated in rainfall-runoff models (Massari et al., 2014). This has been
also observed in operational systems like the European Flood Awareness System (EFAS), which
improved flood predictions after assimilation of SM in its internal hydrological model (Wanders
et al., 2014b).

Regarding droughts, surface SM can help predict agricultural droughts (Velpuri et al., 2016;
Bolten et al., 2016; Martínez-Fernández et al., 2016). While the meteorological drought responds
to a simple lack of precipitation, the agricultural drought appears when the crop production is
impaired as a result of not enough water resources for the plants (Mishra and Singh, 2010).
Different indices have been used to predict agricultural droughts. Torres et al. (2013) based the
drought predictions on historical records of the soil water deficit (SWD), an index only dependent
on SM and soil depth. The U.S. Drought Monitor (Svoboda et al., 2002) provides weekly maps
based on 5 severity levels of drought calculated from a number of indicators and variables blended
together, SM included. Al Bitar et al. (2013) proposed to predict drought from the root zone
soil moisture (RZSM), calculated with a double bucket model that assimilates surface SM and
leaf area index (LAI) variables.

Agricultural applications like forecasting of crop production directly derive from the research
on the relation between SM and agricultural droughts. For example, the RZSM derived from
surface SM observations has allowed Gibon et al. (2017) to explain 89 % of the crop yield
variation in Niger, 72 % in Burkina Faso, 82 % in Mali and 84 % in Senegal, after assimilation
in a statistical model. Similarly, surface SM observations allowed Ines et al. (2013) to improve
maize crop predictions. Other agricultural applications include detection of irrigation for water
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resources management. For example, Singh et al. (2016) used SM data from the AMSR-E
satellite to reveal a temporal shift in irrigation practices in India between 2002 and 2011.

1.2 Measurement of SM

There are several technologies providing SM estimates. Direct measurements of SM are only
possible with destructive methods like gravimetric measurements. They consist in evaluating in
laboratory the quantity of water evaporated from a volume of soil that was previously extracted
from the area of study. Direct methods are manual and long SM time series can only be provided
by indirect methods. Indirect methods measure a physical variable that is strongly linked to
SM (e.g. surface emitted energy, capacitance of soil, travel time of a signal in the soil) that is
then translated into SM. These sensors operate at various spatial scales.

The term scale refers to a triplet of entities, which is represented in Figure 1.3: the extent,
the area enclosing all the measurements; the spacing, the distance between measurements; and
the support, the area actually sensed by the instrument (Blöschl and Sivapalan, 1995). SM
measurement systems can be classified according to this scale triplet. In this thesis, two types
of observing systems will be distinguished: those whose support is large (∼402 km2) and those
whose support is small (<12 m2).

Extent

SpacingSupport

Figure 1.3 – Schematic of the scaling triplet: extent, support and spacing

1.2.1 Large-support observations: satellite sensors

Remote sensing instruments can be operated from the ground (placed on towers or elevated
places), from airborne platforms or from satellites. In the first two cases, the support varies
between some meters to ∼1 km, but the observed extents are limited to the watershed scale
(102 km2) at best. In the case of satellite sensors, global coverage is often achieved in some few
days and the surface is fully and regularly sampled.

The support of satellite observations depends on the type of instrument in a first place. Surface
SM can be derived from optical sensors, in which case the support is defined by the optical
pixel and ranges between some meters to some few kilometres. However, no readily global
operational optical-SM products are available since they suffer from diverse major drawbacks:
They are sensitive to the skin soil layer where SM is controlled by top surface phenomena such
as wind and shadowing, to cite some. In addition, optical observations cannot be acquired under
cloudy and night-time conditions and they are highly sensitive to the Earth’s atmosphere and
to different surface elements (vegetation, roughness, etc.) (Petropoulos et al., 2015).

In the case of microwave sensors, the support is equivalent to the resolution of the instrument
and it is defined by the antenna footprint as the area containing half of the total signal power.
In this thesis, the words support, resolution and footprint will be used indistinctly to refer
to the size of the support of microwave observations. This one varies from some meters to
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hundreds of kilometres, depending on the frequency measured by the sensor and other factors
(distance to the Earth surface, sensor characteristics, inclination, etc.). Although they do not
suffer from the same drawbacks as optical sensors, microwave sensors can still be sensitive to
surface elements like vegetation and surface roughness: a careful choice of the sensor regarding
the antenna configuration (active or passive) and the microwave frequency can mitigate these
influences. Active sensors transmit a signal to the Earth that they analyse after reflection,
refraction and scattering by the Earth’s constituents while passive sensors simply measure their
respective natural emissions. Active sensors are more sensitive than passive sensors to the
scattering produced by vegetation structure and surface roughness, among other factors. In
contrast, they can provide observations with resolutions up to some tens of meters. Active
sensors include synthetic aperture radars (SARs) (ERS, ALOS, Sentinel 1) and scatterometers
(ASCAT). Passive instruments (radiometers) have coarser resolutions of some tens of
kilometres but are more immune to surface elements. C- and X-band radiometers like AMSR-E/2
and WindSat (Wagner et al., 2007; Mladenova et al., 2011; Parinussa et al., 2012) as well as
L-band radiometers like SMOS and SMAP (Al Bitar et al., 2012; Kerr et al., 2016; Colliander
et al., 2017) have shown good skills in estimating surface SM.

This thesis is dedicated to the study of SM observations from satellite radiometers, like AMSR-E,
AMSR2, SMOS or SMAP, when compared to point-support measurements. Although they
present important differences in terms of sensor technology and retrieval models, they all co-
incide in having similar resolutions (272-552 km2) and similar scheme for inferring SM. Their
main characteristics are summarised in Table 1.1. The energy measured by radiometers at a
specific microwave frequency or brightness temperature (TB) is transformed into SM through
the inversion of a series of models that depend on the surface characteristics (land cover, rough-
ness, soil texture, temperature). A general diagram of a typical retrieval system is presented in
Figure 1.4. Hereafter, any reference to satellite observations and supports will concern this kind
of sensors.

TB e R r ε SM

brightness
temperatures

emissivity reflectivity corrected
reflectivity

permittivity soil moisture

Radiative
transfer
model r = 1 - e

Roughness
correction

Fresnel
equations

Dielectric
Mixing
Model

Figure 1.4 – Schematic of the transformation of brightness temperature (TB) into SM in radiometer-based
systems. Note that the arrows indicate the direction of the modelling.

1.2.2 Point-support measurements: in situ sensors

Typical in situ measurements have a support of just some few centimetres. One special type,
cosmic-ray neutron measurements, can reach resolutions of 200-300 m (Zreda et al., 2012, COS-
MOS probes). The resolution mismatch with respect to satellite measurements is similar, so
all in situ measurements are considered as point observations. Hereafter, the terms point-,
small- and local-support will be used indistinctly to refer to this kind of measurements. In
practice, in situ measurements can represent a larger area (representativeness area) because
the factors driving SM variability (vegetation, soil texture, topography, rainfall) are spatially
connected. The representativeness area can be considered as the effective support of the in situ
measurement. The estimation of the representativeness area is not straightforward and highly
dependent on the method and criteria followed to estimate it. In any case, it cannot cover the
full satellite footprint because SM-related factors are never perfectly homogeneous within the
footprint.

Permanent in situ stations consist in probes installed permanently in the soil. They usually
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belong to a network, which is a group of spatially distributed in situ stations managed by the
same organisation and designed to monitor SM over a specific area. Networks vary in extent,
spacing and number of stations. They can be divided into two types depending on the number of
stations available per satellite footprint. Networks with only one station per footprint are called
sparse networks. This implies that their minimum spacing is equal or larger than the satellite
resolution. They are also referred as large-scale networks because they usually cover extents
larger than 10,000 km2 (Crow et al., 2012). Networks with multiple stations per footprint are
called dense networks or small-scale networks because their extents vary between 100 km2 to
10,000 km2 (Crow et al., 2012). As a consequence, their spacing is smaller than the satellite
footprint. Examples of sparse networks include the SMOSMANIA network in France (Calvet et
al., 2007) and the SCAN network in USA (http://www.wcc.nrcs.usda.gov). Examples of dense
networks are the watersheds networks in USA, such as Little Washita and Walnut Gulch (Cosh
et al., 2006, 2008), the Yanco network in Australia (Smith et al., 2012) and the Monte Buey
network in Argentina (Thibeault et al., 2015). For a detailed description of available in situ
networks and their respective spatial characteristics the reader is referred to Crow et al. (2012).
The main characteristics of in situ measurements are summarised in Table 1.1.

There is a variety of in situ sensor types: capacitance sensors, impedance sensors, time- and
frequency domain reflectometry (TDR, FDR) sensors and time- and frequency-domain trans-
missometry (TDT, FDT) sensors (Robinson et al., 2008). Although the variable they measure
is different (for example, the charge time of a capacitor in the case of capacitance sensors and
the travel time of a a voltage pulse in the case of TDR sensors), they all take advantage of the
difference between the relative permittivity (ε) of dry soil and water (Topp, 2003). Basically, the
raw measured variable is translated into ε, then ε is translated into SM using dielectric mixing
models or empirical calibrations.

TDR/FDR and TDT/FDT are considered more accurate than impedance and capacitance sen-
sors. The latter are on the contrary cheaper and less power consuming (Bircher et al., 2016),
which makes possible to sample more densely in time and space. For this reason, they have been
widely used in satellite validation campaigns (Albergel et al., 2012), design of in situ networks
(Bircher et al., 2012) and SM spatio-temporal studies (Famiglietti et al., 1999).

Table 1.1 – Main characteristics of in situ and satellite SM measurements.

Ground measurements Microwave remote sensors
(permanent networks) (radiometers)

Support Point 272-552 km2

Extent Dense networks: < 502 km2 Global
Sparse networks: >> 502 km2

Spacing Dense networks: 1-10 km Equals the support
Sparse networks: > 50 km

Spatial sampling Irregular Regular
surface is not fully sampled surface is fully sampled

Temporal sampling Sub-daily, regular 1-4 days, regular or irregular
Temporal coverage > 1 year Since the 2000s: AMSR-E (2002-),

(depending on the network) WindSat (2013-), SMOS (2009-),
AMSR2 (2012-), SMAP (2015-)

Advantages High temporal resolution Global coverage
Disadvantages Geographically limited, Lower temporal resolution

expensive maintenance, Reduced quality under some conditions
large periods of sensor fault are usual
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1.3 Error budget and spatial scale mismatch

Ground and satellite sensors provide SM estimations with very different spatial support sizes an
sampling densities. As a consequence, ground sensors give access to the state of the SM variable
and related processes at particular points in space while satellite sensors give a spatially inte-
grated view. This observational mismatch is referred as the spatial scale mismatch between
ground and satellite SM measurements and is the problem investigated in this thesis.

Despite the spatial scale mismatch, the accuracy of satellite observations is often assessed by
direct comparison with in situ measurements. Therefore, the comparison does not only contain
satellite errors but also in situ errors and the spatial scale mismatch. This section describes the
error budget of satellite-insitu comparisons, with special attention to the spatial scale mismatch.

1.3.1 What is soil moisture at 40 km resolution?

In order to define the spatial scale mismatch, the definitions for the SM observed at the lo-
cal and the footprint scales need to be settled first. The definition for the point SM xi at a
location i seems straightforward and there is unanimity in accepting that the SM measured
with indirect and direct methods should be the same, regardless instrumental and modelling
errors. The meaning of the footprint-support SM y is, however, not clear. There exist two main
interpretations for the footprint-support SM:

Definition I: y is the spatial mean of X, i.e. the xi measured at all the infinitesimal points
i within the footprint support A. If f(X) is the probability density function (PDF) of X, then
the footprint SM is expressed as

yI = µX =
∫
A
xif(xi)dxi (1.1)

In the case of in situ dense networks, this footprint soil moisture yI is approximated by linear
averaging the values recorded by the stations at each time step (also called network average,
NAvg).

Definition II: y is the SM value that corresponds to the measured energy level TB integrated
over the footprint. The retrieval system (Figure 1.4) can be summarised as a global function
G(·) that obtains SM from the ensemble of TBi and a set of parameters {P1, P2, . . . , PK}. Let
f(TB, P1, . . . , PK) be the joint density function of the TBi variable and the parameter set, then
the footprint SM is expressed as

yII =
∫
A

∫
P1
· · ·
∫
PK

G(TBi, P1, . . . , PK)f(TBi, P1, . . . , PK)dTBidP1 . . . dPK (1.2)

This is basically how radiometers perceive the footprint SM. The footprint soil moisture yII is not
the average of the infinitesimal punctual SM but the translation of the average of the infinitesimal
punctual TBs into SM. As it will be explained later, even if the systems, parameters and models
were free of errors, yI is not equal to yII in general.

1.3.2 Observation systems errors and uncertainties

In the SM literature, when the accuracy of observational systems is addressed, the terms error
and uncertainty are usually considered as synonyms. This does not have significant consequences

8



in practice, but it is important to distinguish them when defining the contributions to the spatial
scale mismatch.

The level of uncertainty is the level of lack of knowledge about how the observed state or
variable should behave. The lack of knowledge associated to the number of observations or
samples is called the sampling uncertainty. Generally speaking,our knowledge about the true
state of our variable increases when the number of samples increases. For example, the saturation
point estimated from a 1-week SM series is much more uncertain that the saturation point
estimated from a 1-year series. Similarly, the uncertainty of the average SM for a particular
area increases with decreasing number of sampled locations.

Another type of uncertainty is the epistemic uncertainty that refers to a fundamental ignorance
about the true state or process. The footprint SM is subject to epistemic uncertainty because
there is no unequivocal definition for it (section 1.3.1). Other parameters and variables can
also be concerned by epistemic uncertainty. For example, the definition of the “land cover at
40 km resolution” is not clear if half of the pixel is urban and half is forest. This epistemic
uncertainty about footprint-scale variables entails scaling uncertainty because it is not known
how the variable should be scaled from the small to the large support.

The term error does not allude to the lack of knowledge but to the level of deviation of the
observed state from the true state. For example, supposing that gravimetric measurements are
free of errors, if the capacitance SM measurements at the same location differ, the difference is
the measurement error of the capacitance probe. In the case of errors, usually the true state
cannot be known but the definition of the true state remains known. For example, the definition
of the energy emitted by the Earth within a 40-km area is known and it can be analytically
expressed, but it can only be accessed via the observation systems (antennas) that are subject
to errors (not uncertainty). The variables and parameters used in SM retrieval models are also
affected by classification errors. These arise when the class associated to a location or area does
not coincide with the reality. Finally, the term error can also be synonym of inaccuracy: a model
is a simplification of the reality that could never reproduce its whole complexity. Inaccuracies
in the representation of the reality are unavoidable and lead to errors in the model outputs.

The list of uncertainties and errors in observed SM datasets can be summarised as follows:

• Measurement and instrumental errors: errors in the measured variable (TB, capacitance
of soil, travel time of a signal, etc.) due to the instrument or human actions.

• Errors in input parameters describing soil and land cover (soil texture, vegetation type
and state, etc.).

• Inaccuracies of the models (radiative transfer, dielectric mixing model, etc.).

• Scaling uncertainty (in large-support systems): level of ignorance about how the footprint-
support variable should be at the large-support scale (e.g. SM, land cover).

• Sampling uncertainty: level of ignorance about the variable given the available number
and the location of samples.

1.3.3 In situ and satellite: the spatial scale mismatch

The spatial scale mismatch encompasses all the factors contributing to a mismatch in the spatial
scales of the observation systems, the satellite and the in situ. Three elements contribute to the
spatial scale mismatch: the sampling and the scaling uncertainties, introduced in the previous
section, and the geophysical mismatch. The geophysical mismatch concerns the different pro-
cesses and scales of processes captured by both observation systems as a result of their different
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supports (footprint vs point). The elements of the spatial scale mismatch are summarised in
Figure 1.5 and described in the following paragraphs.

Spatial scale mismatch

Sampling
uncertainty

Scaling
uncertainty

Geophysical
mismatch

relative to the
sampling density

the SM avg. vs
the energy avg.

local vs large
scale processes

Figure 1.5 – The 3 components of the spatial scale mismatch

In situ sampling uncertainty: Point in situ measurements are a proxy to the footprint
SM as defined in Definition I (section 1.3.1): they can be averaged together into the network
average (NAvg), which is an estimate of the true footprint soil moisture yI . The uncertainty
of the NAvg decreases with the number of spatial samples and depends on the location of the
stations. Multiple sampling techniques have been used to estimate this uncertainty, with more
or less success: statistical, geostatistical, stratified and bootstrap sampling. A descriptive review
can be found in (Wang et al., 2008, 2015a).

Scaling uncertainty: When in situ and satellite observations are compared, the scaling un-
certainty is made of two components:

(i) the epistemic uncertainty about about how the footprint-support SM should be (yI or yII )
(ii) the differences between the (true) footprint SM derived from in situ measurements (yI)

and that derived from satellite observations (yII ).

The first component has been already explained in the previous section. The second makes
reference to the fact that yI and yII are fundamentally different because of the non-linearity of
the SM retrieval process. This difference is typical from non-linear systems where the average of
the processed inputs is not equal to the process of the averaged inputs. In the case of satellite
systems, there are two main sources of non-linearities. On the one hand, the function linking
TB and SM is non linear (see Figure 1.6 for the non-linear link between dielectric constant ε
and SM). On the other hand, model parameters, like soil and land cover, are fundamentally
heterogeneous within the footprint and each soil/land cover type exhibit different functional
relationships between ε and SM. Numerous studies have confirmed that this scaling uncertainty
is non-negligible in the case of remote sensing radiometers (Crosson et al., 2010), such as AMSR-
E (Crow et al., 2001), SMOS (Pellarin et al., 2003), Hydros (Crow et al., 2005) and SMAP (Zhan
et al., 2008).

Geophysical mismatch: The geophysical mismatch is related to the observation support:
while the satellite integrates the processes within a surface, the in situ probe observes a point
inside it. In other words, they observe the same variable from different perspectives. For this
reason, they capture different processes or different scales of the same processes. For example,
when precipitation takes place within the footprint, the SM observed at a specific location is
probably different from the averaged SM response of the footprint. This is easily understood
by analogy to zooming in and out a picture. Figure 1.7 illustrates it: if the observational
reference is set at the local scale, the observed value can be “blue”, “yellow” or “green”; when
the observational reference is set at the large scale, the observed value is an integral of the small
scale values, “green” in this case.
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Figure 1.7 – Conceptual representation of the geo-
physical mismatch

1.3.4 Terminology

Herein, I summarise the terminology used in this manuscript concerning spatial scales. In
terms of support, two main scales are distinguished (Table 1.2): the point support (in situ
SM measurements) and the large support (satellite SM estimates). A third support, the small
support, is added to refer to high-resolution SM model datasets. Note that this nomenclature
applies to the physical supports, not to the effective supports or representativeness areas of
in situ stations. Regarding the extent, the most commonly used terms are listed in Table 1.3.

Table 1.2 – Principal spatial supports

Spatial supports
local/point . 12 m2

small/high-resolution . 12 km2

large/footprint/low-resolution ∼ 402-502 km2

Table 1.3 – Principal spatial extents

Spatial extents
field . 1002 m2

hill-slope ∼ 1002 m2

catchment ∼ 102 km2

footprint ∼ 402-502 km2

regional ∼ 1,0002 km2

1.4 Questions and objectives of this thesis

The accuracy of satellite SM observations is usually evaluated by direct comparison to in situ
measurements. Given the limited spatial coverage of in situ networks, most validation campaigns
consist in confronting the observations in time, i.e. confronting a satellite and an in situ time
series taken at a particular location or region. The statistics derived (correlation, bias, RMSE)
are supposed to represent satellite skills. Nevertheless, they are also affected by ground probe
errors and the spatial scale mismatch between the satellite and the in situ observations. While
in situ errors are expected small (<0.05 m3/m3) if the in situ network is properly maintained, the
contribution of the spatial scale mismatch is supposed important although it remains
undetermined. In consequence, the inherent errors of the observation systems remain also
undetermined.

Figure 1.8 provides a preliminary view of the spatial scale mismatch. It shows the comparison
between one SMOS time series and the in situ time series measured at 20 different locations
within the same footprint. The statistics are presented under the form of a Taylor plot (Taylor,
2001), which allows to summarise all the validation results of one network in just one plot. The
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bias is in colour scheme, the correlation in the outer circle and the standard deviation of the
differences (STDD, or unbiased RMSE) in the inner green circle. The scatter in the markers
suggests that the magnitude of the spatial scale mismatch in this area is non-negligible. As an
example, the STDD ranges from 0.045 to 0.08 m3/m3, depending on the location chosen for the
comparison. However, it is not known what percentage of the STDD is attributed to the spatial
scale mismatch and what to the satellite and in situ errors.

Figure 1.8 – Comparison of one SMOS soil
moisture time series with 20 in situ time series
corresponding to the same SMOS footprint

The spatial scale mismatch is not only a spatial
problem but also a temporal problem. SM fields
are not stationary in time and the spatial redis-
tribution of SM changes in time. This means that
the distance in terms of SM between one particular
location and the (unknown) large-support obser-
vation varies in time. Therefore, the spatial scale
mismatch will more likely require to be assessed
with spatio-temporal approaches.

The spatial scale mismatch is a recurrent prob-
lem in the validation of satellite SM products.
It is present since the launch in the late 70s of
the Scanning Multichannel Microwave Radiometer
(SMMR), which was first used to retrieve SM from
space. Since then, various approaches have been
developed to either overcome the spatial scale mis-
match or to evaluate it. For example, downscaling
methods have been conceived to improve the reso-
lution of satellite SM observations with the aid of auxiliary higher-resolution data. Statistical
analysis approaches like triple collocation (TC) have been also adapted to assess the spatial scale
mismatch between a location and the footprint SM. The drawbacks of the methods proposed to
date is that they are specific to a region, to a series of landscape and climatic conditions and/or
they depend on a set of statistical hypotheses that are not always met and difficult to verify.
As a consequence, there is no standard approach to handle the spatial scale mismatch
and, as a proof, satellite observations are still validated operationally without taking it into
account.

Different questions arise when addressing the problem of the spatial scale mismatch:

• what is a good definition for the SM at the satellite resolution?

• what is exactly behind the spatial scale mismatch?

• is the spatial scale mismatch measurable?

• is it possible to quantify its impact in the classical validation metrics?

This thesis seeks to contribute to the resolution of the spatial scale mismatch problem
and related questions. The scope is to improve the current knowledge on the spatial
scale mismatch and to provide novel or improved methods for its assessment. The
proposed approaches need to signify a breakthrough with respect to existing ones in terms of
standardisation: they should be easily applicable to all validation regions. To to this,
the number of geophysical and statistical assumptions should be kept as low as possible. This
should prepare the path for an integrated assessment of the spatial scale mismatch in satellite
validation campaigns.
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1.4.1 Manuscript structure

This manuscript is structured in 6 chapters, including the introduction and the conclusion.
In this first introductory chapter, I have described the research problem and questions. The
spatial scale mismatch problem and related concepts applied to the surface SM variable will be
the guiding thread for the rest of the text.

Chapters 2 and 3 provide a solid background in SM spatial and temporal variability as well as
they introduce most of the datasets and techniques that will be used in the following chapters.
Chapter 2 addresses the study of the spatial variability of SM within a typical satellite footprint.
It describes the state of the art concerning the physical drivers and the statistical behaviour
of SM fields. Then, the DISPATCH downscaling method is evaluated, which illustrates the
potentials and drawbacks of downscaling approaches for overcoming the spatial scale mismatch.
Chapter 3 is dedicated to the temporal variability of SM. The time scales of several SM
datasets are analysed with the help of wavelet transforms, a signal processing tool that has been
marginally used to date in the SM literature.

This thesis develops the hypothesis that the spatial scale mismatch can be assessed from the
temporal domain because SM spatial and time scales are connected. Chapter 4 is dedicated to
the description and evaluation of this core hypothesis. To this end, it provides novel methods
based on wavelet analysis to assess the spatial scale mismatch on a per time-scale basis. The
experiments are applied to modelled and measured SM time series from different typical satellite
validation regions.

While chapter 4 addresses the spatial scale mismatch as a whole, chapter 5 is focused on the
sampling uncertainty. It is dedicated to the transformation of the in situ sampling uncertainty
(spatial) into uncertainty in the usual satellite validation metrics (temporal). In other words,
the scope of this chapter is to provide confidence intervals for the temporal metrics used in
satellite validation campaigns (correlation, bias, RMSE) based on the a priori known sampling
uncertainty. The concepts of chapter 2 will be of use here.

Finally, the last chapter is dedicated to the general conclusions of the thesis as well as the
research perspectives that stem from the works presented here.
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L’humidité du sol représente environ 0,009 % du stockage total de l’eau terrestre et environ
0,8 % des ressources liquides en eau douce de la Terre (Trenberth et al., 2007), il s’agit pourtant
d’une variable géophysique fondamentale qui participe aux échanges d’eau et d’énergie entre
la terre et l’atmosphère. Depuis 2010, l’humidité du sol fait partie des 50 variables climatiques
essentielles (ECV) définies par le Global Climate Observing System (GCOS).

L’une des tendances futures du changement climatique est l’intensification du cycle hydrologique
(Trenberth, 2009 ; Seneviratne et al., 2010). La hausse des températures augmentera l’évapo-
ration de l’eau du sol et la transpiration de la végétation (évapotranspiration), augmentant de
ce fait la probabilité de sécheresses et de feux de forêt dans certaines régions du globe. L’aug-
mentation de la vapeur d’eau entraînera des pluies et donc des inondations plus intenses dans
d’autres parties du globe. En moins de 100 ans, l’humidité du sol devrait provoquer une redis-
tribution globale avec des changements maximaux allant de +25 % à -25 % pendant l’été boréal
(Seneviratne et al., 2010). Son suivi est donc essentiel.

Un suivi global de l’humidité du sol nécessite des observations globales. Les capteurs à micro-
ondes passives à bord des satellites, comme AMSR-E / 2, SMOS, Aquarius et SMAP, fournissent
des observations globales de l’humidité de surface du sol. Cette humidité peut également être
mesurée au sol via des réseaux de capteurs in situ. Il y a des différences importantes entre
l’échantillonnage spatial des capteurs satellitaires et celui des capteurs in situ : les satellites
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fournissent des estimations d’humidité du sol avec une résolution de ∼40 km et qui couvrent
l’ensemble du globe. En revanche, les capteurs terrain ont une résolution de quelques centimètres,
sont répartis sur des zones plus petites (à l’échelle de la parcelle ou de la région) et ne couvrent
pas complètement la surface puisque les stations sont souvent séparées par plusieurs kilomètres.
Par conséquent, il existe une différence d’échelle spatiale entre la mesure satellite et celle des
capteurs in situ qui sont représentatifs de différents régimes de variabilité de l’humidité du sol,
tant dans l’espace que dans le temps.

Ce chapitre fournit des éléments introductifs à propos de l’humidité de surface du sol et de son
importance dans les systèmes climatiques. Il présente également la problématique de recherche
de cette thèse : la différence d’échelle spatiale entre les différentes techniques de mesure. La
problématique ainsi que la terminologie employée tout au long de ce manuscrit de thèse seront
décrites en détail.

1.1 La variable humidité de surface du sol

La variable humidité du sol participe aux échanges d’eau et d’énergie entre la surface terrestre et
l’atmosphère. Par conséquent, elle joue un rôle clef dans le climat et les processus atmosphériques,
hydrologiques et écologiques (Rodriguez-Iturbe, 2000 ; Daly et Porporato, 2005 ; Legates et al.,
2011). Les sections suivantes décrivent les principales contributions de l’humidité du sol au
système climatique ainsi qu’à diverses applications.

1.1.1 Définition

L’humidité du sol est la quantité d’eau stockée dans la zone non saturée du sol. Le terme humidité
de surface est utilisé lorsqu’il ne concerne que les 10 premiers centimètres de sol. Il peut être
exprimé dans plusieurs types d’unités, comme par exemple l’unité gravimétrique (masse d’eau
divisée par masse de sol sec) ou volumique (volume d’eau divisée par volume d’échantillon
total de sol). Cette thèse est consacrée à l’étude de l’humidité de surface du sol contenue dans
les 5 premiers centimètres de sol, soit la profondeur de détection moyenne des deux missions
satellitaires dédiées à l’observation de l’humidité du sol (SMOS, SMAP) et de la plupart des
réseaux opérationnels de mesures in situ. La convention volumique est adoptée et donc le niveau
d’humidité du sol est exprimée en m3/m3.

L’humidité du sol est une variable positive bornée. Le minimum théorique est 0 m3/m3 (sol
totalement sec) mais en pratique de l’eau résiduelle reste dans le sol. Par exemple, dans la zone
racinaire, les plantes ne sont pas capables d’extraire de l’eau au-dessous d’un seuil spécifique
(point de flétrissement). Concernant la valeur maximale d’humidité du sol, deux seuils sont
possibles. À saturation, tous les pores sont remplis d’eau. La saturation arrive après de fortes
précipitations et induit une forte probabilité de ruissellement. Après un certain temps, une partie
de l’eau s’écoule sous forme de drainage, de consommation par les plantes et/ou d’évaporation
du sol et transpiration des plantes (évapotranspiration). La capacité au champ (field capacity,
en anglais) est atteinte à ce moment-là, dès que l’air rentre dans les pores du sol. Un examen
plus détaillé de ces processus est donné par l’Organisation des Nations Unies pour l’alimentation
et l’agriculture (FAO, pour son sigle en anglais) (Brouwer et al., 1985, ch. 2) et Western et al.
(2002).

1.1.2 Processus liés à l’humidité du sol

L’humidité du sol pilote les échanges d’eau et d’énergie à l’interface sol atmosphère. La Figure 1.2
illustre les principaux processus d’échange d’eau et d’énergie pour lesquels l’humidité du sol
joue un rôle. En ce qui concerne les flux d’eau, le forçage principal de l’humidité du sol est
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la précipitation. Cela se voit facilement sur la Figure 1.1, qui présente des séries temporelles
d’humidité du sol et de précipitation mesurées au même endroit.

L’humidité de surface du sol diminue sous l’effet du drainage et de l’évapotranspiration. Le
ruissellement latéral peut soit augmenter ou réduire les niveaux de l’humidité du sol par endroits,
en fonction de la direction du flux latéral.
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Figure 1.1 – Exemple des séries temporelles de mesures in situ d’humidité du sol (SM) et de précipitation.
Les séries ont été mesurées à la station n°9 du réseau Little Washita (Oklahoma, États-Unis).

D’autres processus comme la remontée d’eau par capillarité ou la remontée de la nappe phréa-
tique peuvent induire un accroissement des niveaux d’humidité de la surface de la terre.

Les flux d’énergie et d’humidité sont liés par l’évapotranspiration. On estime que plus de la
moitié de l’énergie solaire totale absorbée par la terre est consommée par évapotranspiration
(Oki et Kanae, 2006). En bref, les variations d’énergie dans la couche de surface sont égales au
rayonnement net moins le flux de chaleur latente, lui-même proportionnel à l’évapotranspiration.
D’autres termes contribuent également à l’échange d’énergie : la transmission de la chaleur aux
couches plus profondes et le flux de chaleur sensible, associé à des changements de température.
Des descriptions plus détaillées de ces processus sont disponibles dans Western et al. (2002) et
Seneviratne et al. (2010).
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Figure 1.2 – Schéma des flux d’eau et d’énergie à l’interface terre-atmosphère.
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1.1.3 Pourquoi connaitre l’humidité du sol est-il pertinent ?

L’humidité de surface du sol joue un rôle majeur dans différentes disciplines. C’est une variable clé
dans les interactions terre-atmosphère par le biais de l’évapotranspiration et des flux d’énergie.
Par conséquent, elle joue un rôle important dans les modèles de prévisions météorologiques
numériques (NWP, pour son sigle en anglais) et dans les modèles climatiques de circulation
générale. Puisqu’elle participe au cycle de l’eau, l’humidité de surface du sol contribue également
à l’amélioration des prévisions hydrologiques. Dans l’agriculture, l’humidité de surface du sol est
liée à l’humidité dans la zone racinaire et donc à la production agricole. Enfin, les processus
écologiques peuvent être influencés par l’humidité du sol car elle contribue à la disponibilité de
carbone dans le sol, la croissance des plantes, la répartition des espèces végétales et la présence
d’autres organismes vivants comme les bactéries et les insectes ou les processus de nitrification.

Prévisions climatiques et météorologiques. Le climat de la Terre peut être considéré comme
le résultat d’un équilibre dynamique où les océans et les terres affectent l’atmosphère e et ré-
ciproquement (Douville, 2004). L’interface terre-atmosphère est spécialement hétérogène dans
l’espace, donc l’information sur l’humidité de surface du sol peut aider à une meilleure modé-
lisation de l’interface. L’importance de l’humidité du sol est la plus forte dans les régions de
transition entre les climats humides et secs (Seneviratne et al., 2010). Étant donné que l’humi-
dité du sol est à la fois un stockage d’eau et d’énergie, elle induit une persistance dans le système
climatique(e.g. Lorenz et al., 2010 ; Nicolai-Shaw et al., 2016) et l’initialisation par l’humidité
du sol est utile dans les prévisions saisonnières (e.g. Douville, 2004 ; Koster et al., 2010).

De même, l’humidité de surface du sol peut jouer un rôle important dans les prévisions météoro-
logiques puisqu’il a été montré que certaines régions présentent un fort couplage entre la surface
et les basses couches de l’atmosphère (Koster et al., 2004 ; Seneviratne et al., 2010). Dans ces
régions, elle influence des variables géophysiques de la basse atmosphère telles que l’humidité
relative et la température de l’air (Brocca et al., 2017). Cependant, l’assimilation des données
d’humidité du sol issues du satellite ASCAT dans les modèles météorologiques au Centre Euro-
péen de Prévision Météorologique à Moyen Terme (CEPMMT) (De Rosnay et al., 2013) et au
UK Met Office (Dharssi et al., 2011), n’a pas montré d’amélioration considérable lors de l’analyse
des humidités prédites par rapport aux mesures in situ. En revanche, les exercices d’assimilation
des données d’humidité du sol provenant des satellites SMAP (Kolassa et al., 2017) et SMOS
(Rodríguez-Fernández et al., 2017a) ont fourni des résultats prometteurs. Enfin, les améliora-
tions rapportées dans l’analyse de l’humidité du sol semblent concentrées dans certaines régions
de la Terre. Les régions sont différentes en fonction du capteur satellitaire (ASCAT, SMOS) et
du schéma d’assimilation utilisé (Rodríguez-Fernández et al., 2017a).

Modélisation hydrologique et applications terrestres. L’assimilation de l’humidité de surface du
sol dans des modèles hydrologiques est utile pour diverses applications. Dans le cas des modèles
à l’échelle du bassin versant, l’assimilation de l’humidité du sol peut améliorer la précision de
différentes variables de sortie comme la profondeur de la nappe phréatique et l’écoulement fluvial
(Leroux et al., 2016 ; Crow et al., 2017) et le débit d’eau (Laiolo et al., 2016). Également, les
estimations des pluies par satellite, qui ont été jugées assez inexactes dans certaines régions du
globe, peuvent être corrigées (Brocca et al., 2014 ; Pellarin et al., 2017).

D’autres applications terrestres comme la prévision des inondations et des sécheresses bénéficient
aussi de prévisions améliorées grâce à l’assimilation l’humidité de surface du sol. L’humidité du
sol sert de substitut à la quantité d’eau en excès et en déficit car elle partitionne la précipitation
entre infiltration, ruissellement et évapotranspiration (Seneviratne et al., 2010). La prévision
des inondations peut être nettement améliorée en corrigeant les précipitations assimilées dans
les modèles de type précipitation-ruissellement (Massari et al., 2014). Cela a été aussi observé
dans des systèmes opérationnels comme le European Flood Awareness System (EFAS), qui a
amélioré ses prévisions d’inondation après l’assimilation de l’humidité du sol dans son modèle
hydrologique interne (Wanders et al., 2014b).
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En ce qui concerne les sécheresses, l’humidité de surface du sol peut aider à anticiper les sé-
cheresses agricoles (Velpuri et al., 2016 ; Bolten et al., 2016 ; Martínez-Fernández et al., 2016).
Alors que la sécheresse météorologique répond à un simple manque de précipitations, la séche-
resse agricole apparaît lorsque la production végétale est touchée en raison de l’insuffisance des
ressources en eau pour les plantes (Mishra et Singh, 2010). Différents indices ont été utilisés
pour prédire les sécheresses agricoles. Torres et al. (2013) a basé ses prévisions de la sécheresse
sur des séries historiques du “soil water deficit” (SWD), un indice uniquement dépendant de
l’humidité du sol et de la profondeur du sol. Le U.S. Drought Monitor (Svoboda et al., 2002)
fournit des cartes hebdomadaires sur la base de 5 niveaux de gravité de sécheresse calculés à
partir d’un certain nombre d’indicateurs et de variables combinés ensemble, dont l’humidité du
sol. (Al Bitar et al., 2013) a proposé de prédire la sécheresse à partir de l’humidité du sol en zone
racinaire, calculée avec un modèle de type “double bucket” qui assimile l’humidité de surface du
sol et l’indice de surface foliaire.

Diverses applications agricoles, comme par exemple la prévision de la production végétale, dé-
coulent directement de la recherche sur la relation entre l’humidité du sol et les sécheresses
agricoles. Par exemple, l’humidité du sol en zone racinaire dérivée des données d’humidité de
surface du sol ont permis à Gibon et al. (2017) d’expliquer 89 % du rendement des cultures au
Niger, 72 % au Burkina Faso, 82 % au Mali et 84 % au Sénégal, après assimilation dans un
modèle statistique. De même, les observations de l’humidité de surface du sol ont permis à Ines
et al. (2013) de mieux prévoir la production du maïs. D’autres applications agricoles incluent la
détection de l’irrigation pour la gestion des ressources en eau. Par exemple, Singh et al. (2016)
ont utilisé des données d’humidité du sol du satellite AMSR-E pour détecter un changement
dans les pratiques d’irrigation en Inde entre 2002 et 2011.

1.2 Mesurer l’humidité du sol

Plusieurs techniques fournissent des estimations d’humidité de surface du sol. Les mesures
directes de l’humidité du sol ne sont possibles qu’avec des méthodes destructrices comme les
mesures gravimétriques. Elles consistent à évaluer en laboratoire la quantité d’eau évaporée d’un
volume de sol préalablement extrait de la zone d’étude. Les méthodes directes sont manuelles
et donc peu compatibles avec la génération de longues séries temporelles. Les méthodes indirectes
mesurent une variable physique fortement liée à l’humidité du sol (par exemple l’énergie émise
par la surface, la capacitance du sol, le temps du parcours d’un signal dans le sol) qui est traduit
en humidité du sol. Ces capteurs fonctionnent à différentes échelles spatiales.

Le terme échelle spatiale réfère à un triplet d’entités, qui est représenté à la Figure 1.3 : l’éten-
due, la zone entourant toutes les mesures ; l’espacement, la distance entre les mesures ; et le
support, la zone réellement détectée par l’instrument (Blöschl et Sivapalan, 1995). Les systèmes
de mesure de l’humidité du sol peuvent être classés en fonction de ce triplet d’échelle. Dans cette
thèse, deux types de systèmes d’observation seront distingués : ceux dont le support est grand
(∼402 km2) et ceux dont le support est petit (<12 m2).

Étendue

EspacementSupport

Figure 1.3 – Schéma du triplet d’échelle : étendue, support et espacement
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1.2.1 Observations ayant un grand support : les capteurs satellitaires

Les instruments de télédétection peuvent être placés à proximité du sol (sur des tours ou des
endroits surélevés), sur des plates-formes aéroportées ou à bord de satellites. Dans les deux
premiers cas, le support varie de quelques mètres à ∼1 km, mais les étendues observées sont
limitées à l’échelle du bassin versant (102 km2) au mieux. Dans le cas des capteurs satellitaires,
la couverture mondiale est souvent réalisée en quelques jours et la surface est échantillonnée de
façon complète, homogène et régulière.

En premier lieu, le support des observations satellitaires dépend du type d’instrument. L’humi-
dité de surface du sol peut être obtenue au moyen de capteurs optiques, auquel cas le support
est défini par le pixel optique et varie entre quelques mètres à quelques kilomètres. Cependant, il
n’existe pas de produits optiques opérationnels car ils présentent des inconvénients majeurs : ils
sont sensibles à la surface du sol où l’humidité du sol est contrôlé par des phénomènes surfaciques
tels que le vent et l’ombre, pour citer certains. En outre, les observations optiques ne peuvent
être acquises en conditions nuageuses et nocturnes et sont très sensibles à l’atmosphère terrestre
et à différents éléments de surface (végétation, rugosité, etc.) (Petropoulos et al., 2015).

Dans le cas des capteurs à micro-ondes, le support équivaut à la résolution de l’instrument qui
est défini par l’empreinte de l’antenne au sol comme la zone représentant la moitié de la puissance
totale du signal reçu. Dans cette thèse, les mots support, résolution et empreinte satellitaire
seront utilisés indistinctement pour se référer à la taille du support des observations micro-ondes.
Celui-ci varie de quelques mètres à des centaines de kilomètres, en fonction de la longueur d’onde
d’observation ainsi que d’autres facteurs (distance à la surface de la terre, les caractéristiques du
capteur, l’inclinaison, etc.). Bien qu’ils ne souffrent pas des mêmes inconvénients que les capteurs
optiques, les capteurs micro-ondes peuvent encore être sensibles aux éléments de surface comme
la végétation et la rugosité de la surface : en fonction des caractéristiques du capteur (actif ou
passif, configuration de l’antenne, longueur d’onde, etc.) ces effets perturbateurs peuvent être
plus ou moins importants. Les capteurs actifs transmettent un signal à la Terre qu’ils analysent
après réflexion, réfraction et dispersion par les milieux traversés ou rencontrés alors que les
capteurs passifs mesurent simplement leurs émissions naturelles. Les capteurs actifs sont plus
sensibles à la diffusion de surface ou de volume que les capteurs passifs. En revanche, ils peuvent
fournir des observations jusqu’à des résolutions décamétriques (au dépend de la couverture
temporelle le plus souvent). Les capteurs actifs comprennent les radars à synthèse d’ouverture
(ROS ou SAR pour son sigle en anglais) (ERS, ALOS, Sentinel 1) et des diffusiomètres (ASCAT).
Les instruments passifs ou radiomètres possèdent des résolutions plus grossières à fréquence
égale (de quelques dizaines de kilomètres) mais ils sont moins sensibles aux effets de structure. Les
radiomètres en bande C et X comme AMSR-E / 2 et WindSat (Wagner et al., 2007 ; Mladenova
et al., 2011 ; Parinussa et al., 2012) ainsi que les radiomètres en bande L comme SMOS et SMAP
(Al Bitar et al., 2012 ; Kerr et al., 2016 ; Colliander et al., 2017) fournissent des estimations de
qualité de l’humidité de surface du sol.

Cette thèse est consacrée à l’étude de la comparaison entre l’humidité du sol obtenue par des
radiomètres satellitaires, comme AMSR-E, AMSR2, SMOS ou SMAP, par rapport aux me-
sures in situ qui possèdent un support considéré ponctuel. Bien que les radiomètres satellitaire
présentent des différences importantes en termes de technologie des capteurs et de modèles d’in-
version, ils ont tous des résolutions similaires (272-552 km2) et un schéma similaire pour estimer
l’humidité du sol à partir du signal observé. Leurs caractéristiques principales sont résumées
dans le Tableau 1.1. L’énergie mesurée par les radiomètres à une fréquence spécifique ou tem-
pérature de brillance (TB) est transformée en humidité du sol par l’inversion d’une série de
modèles qui dépendent des caractéristiques de la surface (couverture terrestre, rugosité, texture
du sol, température). Un schéma général d’un système d’inversion typique est présenté par la
Figure 1.4. Par la suite, toute référence aux observations et aux supports satellitaires concernera
ce type de capteurs.
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Figure 1.4 – Schéma de la transformation de la température de brillance (TB) en humidité du sol dans
les systèmes utilisant des radiomètres satellitaires. Les flèches indiquent la direction de la modélisation.

1.2.2 Mesures ponctuelles : les capteurs in situ

Les mesures in situ typiques ont un support de quelques centimètres seulement. Un certain type,
les mesures des neutrons du rayonnement cosmique (Zreda et al., 2012, capteurs COSMOS)
permettent d’obtenir des résolutions de l’ordre de 200-300 m. Dans les deux cas, l’écart de
résolution par rapport aux mesures satellitaires est similaire, donc toutes les mesures in situ sont
assimilées à des observations à support ponctuel. Par la suite, les termes support ponctuel,
petit et local seront utilisés indistinctement pour se référer à ce type de mesures. En pratique,
les mesures in situ peuvent représenter une zone plus grande (zone de représentativité) parce que
les facteurs générant la variabilité de l’humidité du sol (végétation, texture du sol, topographie,
précipitations) sont spatialement liés. La zone de représentativité peut être considérée comme le
support effectif de la mesure in situ. L’estimation de la zone de représentativité n’est pas simple
et dépend fortement de la méthode suivis et des critères utilisés pour l’estimer. Dans tous les
cas, ce support efficace ne peut pas représenter l’empreinte satellitaire complète car les facteurs
liés à l’humidité du sol ne sont jamais parfaitement homogènes dans l’empreinte.

Les stations de mesures in situ de type permanent consistent en des sondes installées en per-
manence dans le sol. D’ordinaire elles font partie d’un réseau, qui est un groupe de stations
contrôlées par la même organisation et conçu pour surveiller l’humidité du sol sur une zone
donnée. Les réseaux varient en termes d’étendue, d’espacement et de nombre de stations. Ils
peuvent être divisés en deux types en fonction du nombre de stations disponibles par empreinte
satellitaire. Les réseaux avec une seule station par empreinte sont appelés réseaux de type
éparse. Cela implique que leur espacement de l’ordre ou supérieur à la résolution du satellite.
Ils sont aussi désignés comme des réseaux à grande échelle car ils couvrent généralement des
étendues de plus de 10.000 km2 (Crow et al., 2012). Les réseaux avec plusieurs stations par
empreinte sont appelés des réseaux de type dense ou des réseaux à petite échelle parce que
leurs étendues varient entre 100 km2 et 10.000 km2 (Crow et al., 2012). En conséquence, leur
espacement est plus petit que l’empreinte satellitaire. Des exemples de réseaux épars incluent
le réseau SMOSMANIA en France (Calvet et al., 2007) et le réseau SCAN aux États-Unis
(http://www.wcc.nrcs.usda.gov). Exemples des réseaux denses sont les bassins versants de
l’USDA (United States Department of Agriculture) comme par exemple Little Washita et Wal-
nut Gulch (Cosh et al., 2006, 2008), le réseau Yanco en Australie (Smith et al., 2012) et le réseau
Monte Buey en Argentine (Thibeault et al., 2015). Pour une description détaillée des réseaux
de mesures in situ disponibles et leurs caractéristiques spatiales respectives, le lecteur peut se
référer à Crow et al. (2012). Les caractéristiques principales des mesures in situ sont résumées
dans le Tableau 1.1.

Il existe une grande variété de types de capteurs in situ : capteurs de mesures de capacitance,
de mesures d’impédance, capteurs de mesure de réflectométrie de domaine temporel (TDR) et
fréquentiel (FDR) et les capteurs basés sur la transmissométrie (TDT, FDT) (Robinson et al.,
2008). Bien que l’information mesurée soit différente (par exemple, le temps de charge d’un
condensateur dans le cas de capteurs capacitifs ou le temps de déplacement d’une impulsion
de tension dans le cas des capteurs TDR), ils exploitent tous la différence entre la permittivité
relative (ε) du sol sec et de l’eau (Topp, 2003). Fondamentalement, l’information bute mesurée
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est traduite en ε, puis ε est traduite en humidité du sol en utilisant un modèle diélectrique ou
un étalonnage empirique.

Les TDR / FDR et les TDT / FDT sont considérés comme plus précis que les capteurs d’impé-
dance et de capacitance. Ces derniers sont par contre moins coûteux et moins consommateurs
d’énergie (Bircher et al., 2016), ce qui permet un échantillonnage plus dense dans le temps et
l’espace. Pour cette raison, ils ont été largement utilisés dans les campagnes de validation par
satellite (Albergel et al., 2012), dans la conception de réseaux de mesures in situ (Bircher et al.,
2012) et dans des études spatio-temporelles l’humidité du sol (Famiglietti et al., 1999).

Tableau 1.1 – Principales caractéristiques des mesures in situ et par satellite de la SM.

Measures terrain Capteurs micro-ondes satellitaires
(réseaux permanents) (radiomètres)

Support Ponctuel 272-552 km2

Étendue Réseaux denses : < 502 km2 Global
Réseaux éparses : >> 502 km2

Espacement Réseaux denses : 1-10 km Égal au support
Réseaux éparses : > 50 km

Échantillonnage spatial Irrégulier Régulier
Surface pas complétement Surface complétement échantillonnée
échantillonnée

Échantillonnage temporel Plusieurs fois par jour, régulier 1-4 jours, régulier ou pas
Couverture temporelle > 1 an Depuis l’année 2000 : AMSR-E (2002-),

(en fonction du réseau) WindSat (2013-), SMOS (2009-),
AMSR2 (2012-), SMAP (2015-)

Avantages Haute résolution temporelle Couverture globale
Désavantages Limitées géographiquement Plus basse résolution temporelle

Entretien cher Plus basse qualité dans certaines
Défaillances des capteurs courantes conditions

1.3 Bilan d’erreur et d’écart d’échelle spatiale

Les capteurs terrain et satellitaires fournissent des estimations de l’humidité du sol avec des
dimensions de support spatial et des densités d’échantillonnage très différentes. Les capteurs
terrain donnent accès à l’état de la variable humidité du sol et les processus associés à des points
particuliers dans l’espace, tandis que les capteurs satellitaires donnent accès à une vue intégrée.
Cette différence de perspectives d’observation est appelée la différence d’échelle spatiale entre
les mesures terrain et par satellite d’humidité du sol. C’est le problème central étudié dans cette
thèse.

Malgré l’incompatibilité de leurs échelles spatiales respectives, la précision des observations
satellitaires est souvent évaluée par comparaison directe avec les mesures in situ. Par conséquent,
la comparaison ne contient pas seulement les erreurs de satellites, mais aussi les erreurs des
mesures in situ et la différence d’échelle spatiale. Cette section décrit le bilan d’erreur des
comparaisons satellite-insitu, avec une attention particulière portée à la différence de l’échelle
spatiale.

1.3.1 Qu’est-ce que l’humidité du sol à une résolution de 40 km?

Afin de définir la disparité entre les échelles spatiales, les définitions de l’humidité du sol observée
à l’échelle locale et à l’échelle de l’empreinte satellitaire doivent d’abord être posées. La définition
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de l’humidité du sol mesurée à un point dans l’espace semble simple et il y a un consensus pour
considérer que les mesures ponctuelles effectuées au moyen de méthodes indirectes et directes
devraient être identiques, indépendamment des erreurs d’instrumentation et de modélisation. La
définition de l’humidité du sol à l’échelle du support satellitaire (grand support) n’est cependant
pas claire. Il existe deux interprétations principales pour l’humidité du sol à grand support :

Définition I : y est la moyenne spatiale de X, c’est-à-dire les xi mesurés à tous les points
infinitésimaux i dans le support A. Si f(X) est la fonction de densité de probabilité (PDF) de
X, alors l’humidité du sol à grand support est exprimée comme

yI = µX =
∫
A
xif(xi)dxi (1.1)

Dans le cas de réseaux de mesures in situ de type dense, cette humidité du sol est approximée
en moyennent linéairement les valeurs enregistrées par les stations de mesures in situ à chaque
pas de temps (également appelée “network average”, NAvg).

Définition II : y est la valeur l’humidité du sol qui correspond au niveau d’énergie mesurée
(TB) intégrée sur l’empreinte satellitaire. Le système d’inversion (Figure 1.4) peut être résumé
comme une fonction globale G(ů) qui dérive l’humidité du sol des TBi et un ensemble de para-
mètres P1, P2, ..., PK . Soit f(TBi, P1, ..., PK) la fonction de densité de la variable TBi et le jeu
de paramètres, l’humidité du sol à grand support peut être exprimée comme :

yII =
∫
A

∫
P1
· · ·
∫
PK

G(TBi, P1, . . . , PK)f(TBi, P1, . . . , PK)dTBidP1 . . . dPK (1.2)

Cette équation représente essentiellement la façon dont les radiomètres perçoivent l’humidité du
sol. L’humidité du sol à grand support n’est pas l’humidité du sol moyenne mais la traduction
de la TB moyenne en humidité du sol. Comme expliqué plus loin, même si les systèmes, les
paramètres et les modèles étaient exempts d’erreurs, yI ne serait pas égal à yII en général.

1.3.2 Erreurs et incertitudes des systèmes d’observation

Dans la littérature sur l’humidité du sol, lorsque l’exactitude des systèmes d’observation est
traitée, les termes erreur et incertitude sont habituellement considérés comme synonymes. Cela
n’a pas de conséquences importantes en pratique, mais il est important de les distinguer lors de
la définition de leurs contributions à la différence d’échelle spatiale.

Le niveau d’incertitude est le niveau de méconnaissance sur la manière dont l’état ou la variable
observée devrait se comporter. Le manque de connaissance associé au nombre d’observations ou
échantillons est appelé incertitude d’échantillonnage. D’une manière générale, notre connaissance
de l’état vrai de la variable étudiée augmente lorsque le nombre d’échantillons augmente. Par
exemple, le point de saturation du sol estimé à partir d’une série d’humidité du sol mesuré
pendant une semaine est beaucoup plus incertain que le point de saturation estimé à partir d’une
série mesurée pendant une année (à échantillonnage temporel identique). De même, l’incertitude
de l’humidité du sol moyenne sur une zone donnée augmente avec la diminution du nombre de
points échantillonnés.

Un autre type d’incertitude est l’incertitude épistémique qui se réfère à une ignorance fonda-
mentale sur l’état ou le processus réel. L’humidité du sol à l’échelle de l’empreinte satellitaire
est soumise à une incertitude épistémique parce qu’il n’y a pas de définition univoque (section
1.3.1). D’autres paramètres et variables peuvent être également concernés par l’incertitude épis-
témique. Par exemple, la définition de “l’occupation du sol à la résolution de 40 km” n’est pas
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claire si la moitié du pixel est urbain et l’autre moitié est une forêt. Cette incertitude épistémique
sur les variables à l’échelle de l’empreinte satellitaire implique une incertitude d’échelle (scaling
uncertainty) car le processus de changement d’échelle du petit au grand support n’est pas connu
avec certitude.

Le terme erreur ne fait pas allusion au manque de connaissances, mais à la différence entre
l’état observé et l’état réel. Par exemple, en supposant que les mesures gravimétriques sont
sans erreurs, si les mesures de l’humidité du sol par des sondes de capacitance aux mêmes
endroits diffèrent, la différence est l’erreur de mesure de la sonde de capacitance. Dans le cas
des erreurs, habituellement l’état vrai de la variable ne peut pas être connu, mais la définition
de l’état vrai reste connue. Par exemple, la définition de l’énergie émise par la Terre dans une
zone de 40 km est connue et peut être analytiquement exprimée, mais elle ne peut être relevée
qu’imparfaitement par les systèmes d’observation (antennes) qui ont leurs sources inhérentes
d’erreurs (pas d’incertitude). Les variables et les paramètres utilisés dans les modèles d’inversion
de l’humidité du sol sont également affectés par des erreurs liés aux méconnaissances exactes
des caractéristiques de la surface (classification de l’occupation des sols par exemple). Ceux-ci
surviennent lorsque la classe associée à un emplacement ou une zone ne coïncide pas avec la
réalité. Enfin, le terme erreur peut également être synonyme d’imprécision ou inexactitude : un
modèle est une simplification de la réalité qui ne pourrait jamais reproduire toute sa complexité.
Les inexactitudes dans la représentation de la réalité sont inévitables et entraînent des erreurs
dans les sorties de modèle.

La liste des incertitudes et des erreurs des données d’humidité du sol peut être résumée comme
suit :

• Erreurs instrumentales et de la mesure : erreurs dans la variable mesurée (TB, capacitance
du sol, temps du parcours d’un signal, etc.) à cause de l’action de l’instrument ou de
l’action humaine.

• Erreurs dans les paramètres d’entrée décrivant le sol et le couvert terrestre (texture du sol,
type de végétation et état, etc.).

• Imprécisions des modèles (approximations, transfert radiatif, modèle diélectrique, etc.).

• L’incertitude d’échelle (dans les systèmes à grand support) : niveau d’ignorance sur la
façon dont la variable doit être exprimé à l’échelle du grand support (e.g. l’humidité du
sol, le couvert terrestre).

• L’incertitude d’échantillonnage : niveau d’ignorance sur la variable compte tenu du nombre
disponible et l’emplacement des échantillons.

1.3.3 Mesures in situ et satellite : la différence d’échelle spatiale

La différence d’échelle spatiale englobe tous les facteurs contribuant à une inadéquation des
échelles spatiales des systèmes d’observation, satellite et in situ. Trois éléments contribuent à la
différence d’échelle spatiale : l’incertitude d’échantillonnage et l’incertitude d’échelle, introduites
dans la précédente section, et l’écart géophysique. L’écart géophysique concerne les différents
processus et échelles de processus captés par les deux systèmes d’observation en fonction de
leurs supports (empreinte vs point). Les éléments de la différence d’échelle spatiale sont résumés
dans la Figure 1.5 et décrits dans les paragraphes suivants.

Incertitude d’échantillonnage (in situ) : Les mesures ponctuelles in situ sont une ap-
proximation de l’humidité du sol à grand support tel que défini dans la définition I (section
1.3.1) : elles peuvent être moyennées produisant ce qu’on appelle le network average (NAvg), qui
est une estimation de l’humidité du sol à grand support yI . L’incertitude de la NAvg diminue
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la TB moyenne

processus locaux
vs grande-échelle

Figure 1.5 – Les 3 composants de la différence d’échelle spatiale.

avec le nombre d’échantillons spatiaux et dépend de l’emplacement des stations. Plusieurs tech-
niques d’échantillonnage ont été utilisées pour estimer cette incertitude, avec plus ou moins de
succès : échantillonnage statistique, géostatistique, stratifié et bootstrap. Une revue descriptive
peut être trouvée dans (Wang et al., 2008, 2015a).

Incertitude d’échelle : Lorsque les mesures in situ et satellite sont comparées, l’incertitude
d’échelle est constituée de deux composantes :

(i) l’incertitude épistémique qui affecte la définition de l’humidité du sol à grand support
(yI ou yII )

(ii) les différences entre l’humidité du sol (vraie) à grand support obtenue en moyennant les
humidités ponctuelles (yI) et celle dérivée des observations par satellite (yII ).

Le premier composant a déjà été expliqué dans la section précédente. Le second fait référence
au fait que yI et yII sont fondamentalement différents en raison de la non-linéarité du processus
d’obtention de l’humidité du sol à partir de l’énergie observée. Cette différence est typique
des systèmes non linéaires où la moyenne des sorties n’est pas égal à la sortie système des
entrées moyennées. Dans le cas des systèmes satellitaires, il existe deux sources principales de
non-linéarités. D’une part, la fonction reliant TB et humidité du sol n’est pas linéaire (voir
la Figure 1.6 pour le lien non linéaire entre la constante diélectrique ε et l’humidité du sol,
par exemple). Par ailleurs, les paramètres du modèle, comme les caractéristiques du sol et
la couverture du sol, sont fondamentalement hétérogènes au sein de l’empreinte satellitaire et
chaque type de sol et de couverture donne lieu à des relations différentes entre ε et l’humidité
du sol. De nombreuses études ont confirmé que cette incertitude d’échelle est non négligeable
dans le cas des radiomètres satellitaires (Crosson et al., 2010), tels que AMSR-E (Crow et al.,
2001), SMOS (Pellarin et al., 2003), Hydros (Crow et al., 2005) et SMAP (Zhan et al., 2008).

Écart géophysique : L’écart géophysique est lié au support d’observation : tandis que le
satellite intègre spatialement les processus dans son empreinte, la sonde in situ observe un point
à l’intérieur. En d’autres termes, ils observent la même variable sous différentes perspectives.
Pour cette raison, ils captent des processus différents ou des échelles différentes des mêmes
processus. Par exemple, lorsque des précipitations ont lieu au sein de l’empreinte, l’humidité
du sol observée à un endroit spécifique est probablement différente de la réponse en humidité
moyenne de l’empreinte. C’est facile à comprendre par analogie au zoom avant et arrière d’une
image. La Figure 1.7 en est une illustration : si la référence d’observation est définie à l’échelle
locale, la valeur observée peut être “bleu”, “jaune” ou “vert” ; quand la référence d’observation
est fixée à grande échelle, la valeur observée est une intégrale de ces petites valeurs d’échelle,
"vert" dans ce cas.
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Figure 1.6 – Relation entre la constante diélec-
trique du sol et l’humidité du sol selon le modèle
de Mironov (Mironov et Fomin, 2009 ; Mironov et
al., 2009) utilisé dans le processeur SMOS d’in-
version de l’humidité du sol (Kerr et al., 2014)
pour différentes fractions d’argile.

Figure 1.7 – Représentation conceptuelle de l’écart
géophysique.

1.3.4 Terminologie

Cette section résume la terminologie utilisée dans ce manuscrit pour les différentes échelles
spatiales. Concernant le support, deux grandes échelles sont distinguées (Tableau 1.2) : le support
ponctuel (mesures in situ) et le grand support (estimations par satellite). Un troisième support,
le petit support, est ajouté au jeu de données pour nommer l’humidité du sol à haute résolution
provenant des modèles. Notez que cette nomenclature s’applique aux supports physiques, pas au
support effectif ou zone de représentativité des stations de mesures in situ. En ce qui concerne
l’étendue, les termes les plus couramment utilisés figurent dans le Tableau 1.3.

Tableau 1.2 – Supports spatiaux principaux.

Supports spatiaux
local/point . 12 m2

petite/haute-résolution . 12 km2

grand/empreinte/petite-résolution ∼ 402-502 km2

Tableau 1.3 – Étendues spatiales
principales.

Étendues spatiales
parcelle . 1002 m2

flanc d’une colline ∼ 1002 m2

bassin versant ∼ 102 km2

empreinte satellitaire ∼ 402-502 km2

régional ∼ 1.0002 km2

1.4 Questions et objectifs de cette thèse

La précision des estimations d’humidité du sol par satellite est généralement évaluée par compa-
raison directe à des mesures in situ. Compte tenu de la couverture spatiale limitée des réseaux
de mesures in situ, la plupart des campagnes de validation consistent à confronter les deux
types de mesures dans le temps, c’est-à-dire en confrontant une série temporelle du satellite avec
une série temporelle de mesures in situ, les deux prises à un endroit ou une région particulière.
Les statistiques dérivées (corrélation, biais, RMSE) sont censés représenter les performances du
capteur satellitaire. Néanmoins, elles sont également affectés par les erreurs de la sonde terrain
et la différence spatiale entre le satellite et les observations in situ. Si l’on s’attend à ce que les
erreurs in situ soient faibles (<0,05 m3/m3) sous réserve que le réseau in situ soit correctement
entretenu, la contribution de la différence de l’échelle spatiale est supposée impor-
tante bien qu’elle reste indéterminée. En conséquence, les erreurs inhérentes aux systèmes
d’observation restent également indéterminées.
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La Figure 1.8 fournit une illustration de la différence d’échelle spatiale. Elle montre la com-
paraison entre une série temporelle SMOS et les séries temporelles de mesures in situ prises à
20 endroits différents dans la même empreinte satellitaire. Les statistiques sont présentées sous
la forme d’un graphique de Taylor (Taylor, 2001) qui permet de résumer tous les résultats de
validation pour une même référence. Le biais est représenté en code couleur, la corrélation sous
forme angulaire sur le cercle extérieur et l’écart-type des différences (STDD) dans le cercle vert
intérieur. La dispersion dans les marqueurs suggère que l’ampleur de la différence d’échelle spa-
tiale dans cette zone est non négligeable. Par exemple, la STDD varie de 0,045 à 0,08 m3/m3,
selon l’emplacement choisi pour la comparaison. Cependant, on ne sait pas quel est le pourcen-
tage de la STDD est attribué à la différence d’échelle spatiale et ceux provenant erreurs des
mesures in situ et satellitaires.

Figure 1.8 – Comparaison d’une série tempo-
relle d’humidité du sol du satellite SMOS avec
20 séries temporelles d’humidité du sol in situ
mesurées au sein de la même empreinte satelli-
taire.

La différence d’échelle spatiale n’est pas seulement
un problème spatial mais aussi un problème tem-
porel. Le champ spatial d’humidité du sol n’est
pas stationnaire dans le temps et sa redistribu-
tion spatiale varie dans le temps. Ceci veut dire
que la distance en termes d’humidité du sol entre
un point particulier et le grand support (inconnu)
varie dans le temps. Par conséquent, la différence
d’échelle spatiale nécessitera des approches spatio-
temporelles pour être étudiée.

La différence d’échelle spatiale est un problème ré-
current dans la validation des produits satellitaire
d’humidité du sol. Il est présent depuis le lance-
ment à la fin des années 70 du Scanning Multichan-
nel Microwave Radiomete (SMMR), le premier qui
ait été utilisé pour estimer l’humidité du sol de-
puis l’espace. Depuis lors, différentes approches ont
été utilisées pour réduire ou pour évaluer la diffé-
rence d’échelle spatiale. Par exemple, des méthodes de réduction d’échelle (downscaling) ont été
conçues pour améliorer la résolution des observations d’humidité du sol par satellite à l’aide de
données auxiliaires à plus haute résolution. Des approches d’analyse statistique comme la triple
collocation (TC) ont également été adaptées pour évaluer la différence d’échelle spatiale entre
un emplacement et l’empreinte. Les inconvénients des méthodes proposées jusqu’à maintenant
est qu’elles sont spécifiques à une région, à un ensemble de conditions paysagères et climatiques
et / ou qu’elles dépendent d’un ensemble d’hypothèses statistiques qui ne sont pas toujours res-
pectées et difficiles à vérifier. En conséquence, il n’y a pas d’approche standardisée pour
aborder la différence d’échelle spatiale et, à titre de preuve, les observations par satellite
sont toujours validées opérationnellement sans en prendre compte.

Des questions différentes se posent lorsque l’on aborde le problème de l’inadéquation spatiale :

• quelle est la bonne définition de l’humidité du sol à la résolution du satellite ?

• qu’est-ce qu’il y a exactement derrière la différence d’échelle spatiale ?

• la différence d’échelle spatiale est-elle mesurable ?

• est-il possible de quantifier son impact dans les métriques de validation classiques ?

Cette thèse vise à contribuer à la résolution du problème de différence d’échelle spa-
tiale et les questions associées. Le but est d’améliorer les connaissances actuelles sur la
différence d’échelle spatiale et de fournir de nouvelles méthodes ou d’améliorer celles
existantes pour son évaluation. Les approches proposées doivent représenter une amélioration
par rapport aux approches existantes en termes d’application générale : elles devraient être faci-
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lement applicables à toutes les régions de validation. Pour cela, le nombre d’hypothèses
géophysiques et statistiques devrait être maintenu aussi bas que possible. Cela permettrait de
préparer la voie à une évaluation intégrée de la différence d’échelle spatiale dans les campagnes
de validation des produits satellitaires d’humidité du sol.

1.4.1 Structure du manuscrit

Ce manuscrit est structuré en 6 chapitres, y compris l’introduction et la conclusion. Dans ce
premier chapitre d’introduction, j’ai décrit la problématique de recherche et les questions asso-
ciées. Le problème de la différence d’échelle spatiale dans l’observation de la variable humidité
de surface du sol sera le fil conducteur pour le reste du texte.

Les chapitres 2 et 3 fournissent une base solide dans la variabilité spatio-temporelle de l’humidité
du sol et présentent la plupart des ensembles de données et des techniques qui seront utilisés dans
les chapitres suivants. Le chapitre 2 aborde l’étude de la variabilité spatiale de l’humidité du sol
au sein d’une empreinte satellitaire typique. Il décrit l’état de l’art concernant le comportement
statistique et les éléments géophysiques contrôlant les champs d’humidité du sol. La méthode de
désagrégation DISPATCH est évaluée, permettant d’illustrer les potentiels et les inconvénients
de ce type d’approches pour réduire la différence d’échelle spatiale. Le chapitre 3 est dédié à la
variabilité temporelle de l’humidité du sol. Les échelles de temps de plusieurs jeux de données
d’humidité du sol sont analysés à l’aide de transformées en ondelettes, un outil de traitement de
signal marginalement utilisé à ce jour dans la littérature sur l’humidité du sol.

Cette thèse postule que la différence d’échelle spatiale peut être évaluée à partir du domaine
temporel car les échelles spatiales et temporelles de l’humidité du sol sont connectées. Le cha-
pitre 4 est dédié à la description et l’évaluation de cette hypothèse fondamentale. À cette fin,
il fournit de nouvelles méthodes basées sur l’analyse par ondelettes pour évaluer la différence
d’échelle spatiale sur une base d’échelle de temps. Les expériences sont développées sur des séries
temporelles d’humidité du sol modélisées et mesurées sur des régions de validation de produits
satellitaires.

Bien que le chapitre 4 traite de la différence d’échelle spatiale dans son ensemble, le chapitre 5
se concentre sur l’incertitude d’échantillonnage. Il est dédié à la transformation de l’incertitude
d’échantillonnage in situ (spatial) en incertitude dans les statistiques de validation des données
satellitaires (temporelles). En d’autres termes, l’objectif de ce chapitre est de fournir des inter-
valles de confiance pour les métriques temporelles utilisées dans les campagnes de validation des
produits satellitaires (corrélation, biais, RMSE), en se basant sur l’incertitude d’échantillonnage
qui devra être estimée au préalable. Les concepts du chapitre 2 seront utilisés à ce niveau.

Enfin, le dernier chapitre est consacré aux conclusions générales de la thèse ainsi qu’aux pers-
pectives de recherche qui en découlent.
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Spatial variability of surface soil
moisture (SM)
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The spatial scale mismatch problem is intrinsically related to the degree of spatial variability.
Intuitively, the point-support measurements should be equal to the footprint measurement if the
surface is uniform and the observation systems are free of non-linearities, errors and uncertainties
(instrument, paratemers, models, etc.). Heterogeneous surfaces would however induce differences
between the point measurements and the footprint measurement. Based on former studies,
Western et al. (2002) reached to a similar conclusion and stated that significant scale effects
were associated with the spatial variability in soil moisture (SM) and related variables.

Knowing the statistical and physical distribution of SM as well as its geophysical drivers within
the satellite footprint is also important for many other applications: determining the number
and location of in situ stations, building downscaling models for improving the resolution of
satellite SM products, designing land surface models, etc..

This chapter provides the essential notions of SM spatial variability, from both statistical and
geophysical perspectives. These notions are fundamental for the best understanding of chapters 4
and 5, where the spatial scale mismatch between SM measurements will be studied from a spatio-
temporal perspective. This chapter is structured as follows: Sections 2.1 to 2.3 describe the
main aspects of the SM spatial variability, its geophysical drivers, its evaluation metrics and its
statistical distribution. All this constitute the basic background on the SM spatial distribution.
Section 2.4 will be dedicated to the analysis and validation of a semi-physical disaggregation
approach, DISPATCH.

The validation of DISPATCH is important for three reasons: First, it illustrates that the knowl-
edge about the sub-footprint variability can be used to build downscaling/disaggregation ap-
proaches that reduce the spatial scale mismatch. However, disaggregation methods are usually
limited by specific climatic and landscape conditions. Secondly, DISPATCH SM products are
proxies for understanding the spatial redistribution of SM. For this reason, DISPATCH will
be used again in chapters 3 and 4. Finally, some of the in situ networks used for validating
DISPATCH (Yanco, Little Washita and Walnut Gulch) will be also used in the temporal and
spatio-temporal analyses of the subsequent chapters.

2.1 Sources of soil moisture variability

Surface SM is a function of the precipitation frequency and intensity, the infiltration rate and
the run-off rate (Hawley et al., 1983). Infiltration and run-off rates are directly controlled by the
antecedent SM conditions and three main landscape properties: soil, vegetation and topography
(Crow et al., 2012). The dependence between precipitation and the surface layer is complex
so, for simplicity, it is considered as an external independent forcing of SM when analysing SM
drivers. Irrigation is also an external independent forcing.

The relative influence of these four components, soil, vegetation, topography and precipitation,
on the total SM variability is different depending on the area under study and its climatic
conditions. Knowing the most predominant ones can help in the design of in situ networks
and the validation of satellite SM estimates. For example, Bircher et al. (2012) designed a SM
in situ network in Western Denmark based on land cover and texture, which they find to be the
principal variability drivers in the region. Additionally, a good understanding of the variability
drivers and their related water and energy fluxes can help in the development of downscaling
approaches. This will be illustrated in section 2.4 with the DISPATCH downscaling method.

Soil heterogeneity concerns a list of elements: texture, porosity, structure, rock bed depth
and organic content. Porous soils, granular structures and coarse textures like sand drain faster,
while less porous soils, massive structures and finer textures like silt and organic matter resist
more to drainage (Schoonover and Crim, 2015). Differences in soil properties are typical at
small and medium spatial scales (≤ 40 km) (Hawley et al., 1983; Famiglietti et al., 1998). Soil
properties can be one of the most important drivers of SM spatial variability in some areas.
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For example, in the sites analysed by Choi et al. (2007), whose extents ranged from the field to
the basin scales, they showed that most of the SM spatial variance could be explained by soil
heterogeneity (porosity, wilting point and field capacity).

Similarly to soil characteristics, vegetation also plays a important role in SM heterogeneity
within the ∼40 km footprint (Mohanty and Skaggs, 2001; Qiu et al., 2001). This is because veg-
etation directly affects water and energy balance processes that control SM levels. It intercepts
a fraction of the precipitation (canopy), limits soil evaporation and consumes a part of the soil
available water (vegetation intake) (Seyfried and Wilcox, 1995).

Concerning topography, it affects both the vertical and the lateral redistribution of SM through
three elements: slope, aspect and location on the slope (relative elevation) (Hawley et al., 1983).
Steep slopes redistribute the water to the bottom of the slope, reducing infiltration at the
top. Slope orientation and aspect (Malbéteau et al., 2017) as well as elevation (Merlin et al.,
2013) influences the evapotranspiration and thus, soil moisture. Kornelsen and Coulibaly (2013)
found that SM variability was mainly controlled by topography at two meadow hillslope scale
sites during winter and spring. Topography can also explain SM variability specially when soils
are drying (Choi et al., 2007). The structure of soil layers can also influence the redistribution
of SM.

Finally, precipitation is the main meteorological forcing of SM (Crow et al., 2012). Variations
in rainfall occur at different spatial scales. Storm cells can affect just some hundreds of meters
(Goodrich et al., 1995), while precipitation fronts can sweep some hundreds of kilometres (Entin
et al., 2000; Skøien et al., 2003). Rosenbaum et al. (2012) identified rainfall as one of the
main drivers of SM variability at the small catchment scale (< 1 km2). At the regional scale
(> 10,000 km2) Jackson et al. (1999) explicitly showed the pattern produced by rainfall on a
SM field during the Southern Great Plains 1997 (SGP97) campaign. At similar spatial scales,
Choi et al. (2007) identified rainfall as the second most important source of SM variability after
soil heterogeneity.

2.2 Spatial variability metrics

Different metrics are used to evaluate SM spatial variability. The most used ones in the SM
literature are related to the dispersion of the spatial PDF of SM. The dispersion refers to
the scatter of the data around the most common or central values of the distribution. Some
examples of metrics include the standard deviation (σ) (and its squared form, the variance,
σ2), the distribution percentiles and the coefficient of variation (CV). This section provides an
outlook of these metrics, their advantages and limitations.

2.2.1 Variance

The sample variance is defined as

σ̂2 ,
1

N − 1

N∑
i=1

(xi − µ̂)2 (2.1)

where N is the sample size and µ̂ is the sample mean value:

µ̂ ,
1
N

N∑
i=1

x2
i (2.2)
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TheN−1 denominator in Equation 2.1 ensures that the sample variance is an unbiased estimator
of the population variance σ2, given that the samples xi are independent (Manolakis et al., 2005,
p. 139-140).

The sample variance (or the standard deviation) is usually used as measure of dispersion of
SM datasets, for both time series and spatial fields. In the case of normal distributions, the
intervals [µ − σ, µ + σ] and [µ − 2σ, µ + 2σ] contain approximately 68 % and 95 % of the
samples. As section 2.3.4 will describe, SM spatial distributions are not always normal, so the
comparison of σ2 values of different distributions can lead to erroneous interpretations. Instead,
distribution percentiles could be used to provide unambiguous estimates of the dispersion. While
the [µ− 2σ, µ+ 2σ] interval does not necessarily contain 95 % of the samples, the [2.5th, 97.5th]
interval of percentiles always contain 95 % of the samples.

2.2.2 Coefficient of Variation (CV)

The coefficient of variation (CV) is defined as

CV ,
σ

µ
(2.3)

The advantage of the CV is that it allows to compare the dispersion of variables with different
scales and units. It is mainly used for distributions that have only positive values and positive
skewness. It can be applied to other types of distributions, but in this case its usefulness as a
measure of dispersion is questionable (Isaaks and Srivastava, 1989, p. 21): Negative values move
the mean µ towards values equal or smaller than zero where the CV is not defined. In the case
of left-skewed distributions, the left tail artificially inflates the CV.

The CV has been extensively applied to study the spatial distribution of SM (Brocca et al.,
2007; Famiglietti et al., 2008; Brocca et al., 2012; Mittelbach and Seneviratne, 2012), where it
has been used as a normalized measure of spatial variability. The objective was to balance the
SM range and give more weight to the dry-end where SM variations were much smaller than in
the middle SM range (see section 2.3).

From my point of view, the use of the CV for SM spatial studies is equivocal: First, recent
experiments in the spatial domain suggest that the dependence of the variance with the mean
follows a convex law (the peak of variance is reached in the midrange, see section 2.3.3). This
implies that the CV would penalize the variations ∆SM close to the wet-end with respect
to the same variations ∆SM close to the the dry-end. Secondly, as Famiglietti et al. (1999)
highlighted, the range of the observed mean is much larger than that of the standard deviation,
which implicitly leads the CV to monotonically decrease with the mean. This will be further
discussed in section 2.3.3.

I propose to adapt the CV equation to overcome the aforementioned limitations. The coefficient
first proposed by Muilwijk (1966) and Moors and Muilwijk (1971) and later formalized by
Sharma et al. (2011) was specifically adapted for the case of variables that, like SM, were bounded
between a minimum and a maximum value. This “bounded” coefficient of variation (bCV)
is expressed as

bCV = σ√
(xmax − µ)(µ− xmin)

(2.4)

where in the case of SM, xmax should be replaced by the saturation point and xmin by the
wilting point. In section 2.3.3, the performances of the CV and the bCV are compared on an
example.
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2.3 Observed spatial variability

Since the late 70s, several authors have analysed the spatial distribution of SM based on the
metrics discussed in the previous section. They have been usually interested in finding the
relationship of spatial variability with mean SM content and climatic and environmental con-
ditions. Herein, I review the state of the art and derive conclusions about the observed spatial
distribution and variability of SM.

2.3.1 Probability distribution

The PDF of spatial surface soil moisture approaches a normal function when the mean SM
is in the mid-range. Bi-modal distributions have also been observed (Rosenbaum et al., 2012)
specially when the spatial extent is large (Ryu and Famiglietti, 2005). Given the bounded nature
of SM between zero water content and porosity, the PDF becomes skewed and less variable when
the mean soil moisture content approaches the dry and wet ends (Famiglietti et al., 1999; Western
et al., 2002; Ryu and Famiglietti, 2005; Brocca et al., 2007, 2012; Rosenbaum et al., 2012).

The work of Ryu and Famiglietti (2005) was particularly comprehensive and is one of the few that
analyses the SM spatial distribution within the 50 km footprint. They used the 800 m resolution
soil moisture data acquired during the SGP97 hydrology experiment (Jackson et al., 1999). The
soil moisture images were acquired by the Electronically Scanned Thinned Array Radiometer
(ESTAR) instrument, over a 50-km by 250-km area in Oklahoma, U.S.. From this experiment,
a total of 154 50-km samples were analysed. They observed bimodal Gaussian PDFs that they
explained by heterogeneous precipitation patterns in the area. They confirmed the positive
skewness under dry conditions reported before by Famiglietti et al. (1999). However, they could
not observe negatively skewed distributions when the mean SM reached the wettest values: the
distributions appeared truncated, which could be explained by an insufficient sampling of the
wet-edge zone.

2.3.2 Dependence with the mean

Several studies have investigated the relationship between the variance of SM fields and the
mean SM content. Three different behaviours have been observed: variance increases with SM
content (increasing trend), variance decreases with SM content (decreasing trend) and
variance exhibits a convex law with respect to SM content whose maximum is reached in the
SM midrange. Table 2.1 summarises what I consider the most representative studies, classified
per type of variance-mean relationships.

Most of the former studies focused on small spatial extents (< 1 km2) and only some few
investigated the variability within footprint extents. These are highlighted in gray in Table 2.1.
The literature on field and small watershed scales is much more extensive than what is presented
here. Supplementary sources of information are the publications of Western et al. (1998), Brocca
et al. (2007) and Famiglietti et al. (2008), who reviewed the studies on SM spatial variability
until 1996, 2005 and 2004, respectively.

Why different variance-mean laws have been observed? They seem to be dependent on the
climatology, the period and instant of analysis and the effective range of SM values observed.
Western et al. (2004) observed the decreasing trend in the wetter New Zealand catchments
while the increasing trend in the drier Australian catchments. They associated this with more
important lateral flow processes in extremely humid conditions. Similarly, based on previous
studies, Brocca et al. (2007) found decreasing trends of variance with mean SM in humid climates
while increasing trends in semi-arid environments. However, a more comprehensive review, as
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Table 2.1 – Summary of previous studies of soil moisture spatial variability classified according to the
relationship between variance and mean (left column). “+” denotes increasing variance with increasing
mean and “-” denotes decreasing variance with increasing mean. All are based on point-support (in situ)
data, except for *a and *b

Variance
- mean
link

Sensing
depth
(cm)

Extent
(km2)

Nb
sites

Nb
samples
per site
and date

Spacing
Temporal
sampling
per site

Period Climate Reference

+ 30 1.05 1 500 10-20 m 13 dates over 1 year
Sub-humid
temperate

(Western et al.,
1998)

+ *1 30 < 0.6 3 280-485 10-40 m 6-8 dates over 1 year
Sub-humid
temperate

(Western et al.,
2004)

+ 0-5 3 x 3 2 ∼140 250 m
6 & 5 dates
(consecutive)

winter
& spring Semi-arid (Yee et al., 2016)

+ *a ∼5 36 x 36 1 1296 1 km
9 dates

(∼consecutive) spring Semi-arid (Yee et al., 2016)

− 0-6 0.64 6 49 100 m
28 dates

(consecutive) summer Sub-humid (Famiglietti et
al., 1999)

− *1 30 < 0.6 3 250-570 20-40 m 6-8 dates over 1 year Humid (Western et al.,
2004)

− 15 < 0.01 3 45-120 3-10 m 14 dates spring Semi-
humid

(Brocca et al.,
2007)

Convex*b ∼5 50 x 50 10 ∼4000 0.8 km 16 dates
1 month
in summer Sub-humid (Ryu and

Famiglietti, 2005)

Convex*2 10 0.04 4 12 ∼10 m Each hour 1 year - (De Lannoy et
al., 2006)

Convex 0-6 0.8 x 0.8 52 14-27 100-200 m 11-28 dates summer Varied (Famiglietti et
al., 2008)

Convex 0-6 50 x 100 3 20-26 ∼15 km 11-16 dates summer Varied (Famiglietti et
al., 2008)

Convex 0-15 178, 242 2 46 ∼2-3 km 35 dates over 1 year Semi-
humid

(Brocca et al.,
2012)

Convex 5 0.27 1 74 60 m Each hour 1 month of
summer

Humid
temperate

(Rosenbaum et
al., 2012)

Convex 10 Hill-
slope 4 9 - Each day 5.5 years

Humid
continental

(Kornelsen and
Coulibaly, 2013)

*a The support size is 1 km (airborne PLMR sensor) and the surface is fully sampled
*b The support size is 0.8 km (airborne ESTAR sensor) and the surface is fully sampled
*1 Different variance-mean relationships are observed depending on the sites
*2 Not exactly convex: variance increases with mean but it saturates at high SM values

the one in Table 2.1, does not reveal any clear correlation between climate and variance, so the
classification according to climate does not seem conclusive.

Until the 2000s, the variance-mean dependence was classified to describe either an increasing or
a decreasing trend. To my knowledge, the first to draw the convex relationship were Ryu and
Famiglietti (2005). The convex relationship can be seen in Figure 2.1, which has been extracted
from their article for illustrative purposes only. The convex relationship makes sense from a sta-
tistical point of view: the SM is a bounded variable so the variability should tend to be smaller
at the dry and wet edges. The relationship can be also explained from a physical point of view:
the wet-end can only be reached after a rather spatially homogeneous precipitation event. Just
after it, the surface is homogeneously wet so the spatial variance is low and the only differences
come from heterogeneity in soil porosity point values. Different dry-down decays appear after-
wards as a result of local heterogeneities in texture, vegetation and topography. Finally, the
dry-end is reached when most of the surface has dried out completely so the variability becomes
again small. Considering this, it can be concluded that the most probable reason for the obser-
vation of only increasing trends is that samples were not available just after rain events, that
the saturation point was not reached or that precipitation heterogeneity was high. On the other
hand, negative relationships can appear when some areas cannot completely dry out. This can
be produced by a number of elements like topography or too high water table levels.
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Figure 2.1 – Standard deviation as a function of mean SM content from the for the 154 footprint-support
samples of SGP97. Source: Ryu and Famiglietti (2005)

Similar conclusions were derived by Crow et al. (2012), who pointed out that the spatial vari-
ability was dependent on the range of SM values observed within the period of analysis. From
SGP97, SGP99, SMEX02 and SMEX03 campaign data, they derived a convex law for the vari-
ance. The law was applicable at different spatial extents, from the smallest 2.5 x 2.5 m2 to the
largest footprint 50 x 50 km2 extent. Famiglietti et al. (2008) fitted the same variance model
(with different parameter values) for both the field (< 1 km2) and the footprint (50 x 100 km)
scales. These findings are of great importance for this thesis, because they imply that the
variability-mean relationship observed at the field scale can be transposed to the footprint scale.
The convex relationship appears in most of the (few) studies that concerned footprint extents
(in grey in Table 2.1). The only exception is the study of Yee et al. (2016), who found that the
variance only increased with the mean SM content.

2.3.3 The coefficient of variation (CV) and the mean

While there is no consensus on the evolution of SM variance with SM content in space, all studies
agree on the coefficient of variation (CV) to systematically decrease with increasing SM content.
This has been observed at both the field and small watershed scales (Famiglietti et al., 1999;
Brocca et al., 2007; Korres et al., 2015) and the footprint scale (Choi et al., 2007; Famiglietti
et al., 2008; Brocca et al., 2012; Korres et al., 2015). The relationship follows an exponential
law (Brocca et al., 2007; Choi et al., 2007; Korres et al., 2015), whose parameters vary with the
extent, support and spacing of the measured samples (Choi et al., 2007).

As already introduced in section 2.2.2, the monotonic decrease of CV with the SM mean seems
more likely due to purely statistical reasons: the decrease is more controlled by the increase
in SM content than the decrease in SM standard deviation (Famiglietti et al., 1999). In the
same section, I have proposed the bounded coefficient of variation (bCV) as an alternative for
bounded variables like SM. Herein, I present an example that illustrates the performances of the
classical and the bounded CV for SM analyses.
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Figure 2.2 – Evolution of the classical
and the bounded CV (top row) and
the standard deviation (bottom row)
for a typical SM spatial distributions

Example: classical vs bounded CV. The CV and the
bCV are obtained for a range of possible mean SM val-
ues {µk = 0, 0.001, 0.002 . . . 0.449,0.45}, k = 1, 2 . . . 1000.
The minimum and maximum SM values are set to 0 and
0.5 m3/m3, respectively. The standard deviation σk asso-
ciated to each mean value is derived from µk following the
exponential formula of Famiglietti et al. (1998), which they
found suitable for spatial scales from some meters to 50 km:

σ = µ ·A · e−µ·B·100 [m3/m3] (2.5)

with A = 0.564 and B = 0.044 as in Brocca et al. (2012).

The first row of Figure 2.2 shows the CV and the bCV val-
ues (vertical axis) obtained for the same 1,000 synthetic SM
spatial mean values µk (horizontal axis) and the respective
standard deviation values σk (top row). It can be observed
that the CV-mean relationship greatly differs between the
2 types of CV. While the CV decreases monotonically, the
bCV is more balanced in the dry and wet edges.

2.3.4 Dependence with the support and extent

From a probabilistic point of view, SM variability should be related to the measurement extent
and support sizes: the larger the observed surface, the more probable it is to find contrasting
environmental and landscape conditions that would increase the SM spatial variability. In the
case of the aggregated support, the aggregation reduces the probability of finding extreme SM
values within the same extent. This is true only if the number of supports contained within
the extent is “large enough”: very large aggregation supports reduce the number of SM samples
within the extent, making the SM variance extremely sensitive to outliers.

Western and Blöschl (1999) provided a detailed description of the evolution of SM spatial vari-
ance and correlation length with spatial scale (support, extent and spacing). From the variogram
analysis of a field of 1.05 km2, intensively sampled at 30 cm depth, at 500-2000 locations and at
13 different days, they concluded that variance increases with extent and decreases with support,
while the correlation range tends to increase with increasing spatial scale. These conclusions are
summarised in Table 2.2.

Table 2.2 – Dependence of spatial variance and correlation length with spacing, support and extent
according to (Western and Blöschl, 1999). “+” describes an increasing trend (if one increases, the other
increases), “−” describes a decreasing trend (if one increases, the other decreases)

Variance Corr. length
Spacing No conclusive +
Extent + +

Support − +

Although the study of Western and Blöschl (1999) concerned small extents and did not use top
surface measurements, different studies with 5-6 cm depth data on larger areas, have described
the same type of behaviour so Table 2.2 is also valid for such measurements. Nykanen and
Foufoula-Georgiou (2001) observed that variance increased with extent and decreased with the
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support using the airborne 0.8 km ESTAR images acquired during the SGP97 campaign over
an area of 51.2 km x 51.2 km. Later on, SMEX02 in situ TDR data (0-6 cm depth) allowed
Choi et al. (2007) observing that variance decreased with aggregation within the basin scale
(5000 km2). At the same time, Famiglietti et al. (2008) found increasing standard deviation
with extent in the SM in situ data gathered at five different extents, 2.5 x 2.5 m2, 16 x 16
m2, 100 x 100 m2, 800 x 800 m2 and 50 x 50 km2, during 1 month. Most recently, SM in situ
measurements and satellite observations (ALOS, ENVISAT) in the Rur catchment, at extents
varying from 14 to 70 km, have also described the same dependence of variance with extent and
support (Korres et al., 2015).

2.4 DISPATCH: a spatial disaggregation approach

The previous sections have described the main geophysical drivers of SM spatial variability, as
well as its statistical behaviour within the satellite footprint. Knowing the principal geophysical
drivers and their interactions is a necessary step for building downscaling models. Downscaling
models improve the resolution of satellite SM estimates and consequently, they reduce the spatial
scale mismatch between satellite and in situ measurements. It has been even suggested that
downscaled SM products could be used for validation of the respective original satellite products
(Crow et al., 2012; Malbéteau et al., 2016).

Direct validation with downscaled SM products suffers from an important drawback: down-
scaling models and inputs also contain errors and uncertainties. However, the downscaled SM
maps could be used to provide a first estimation of the spatial scale mismatch. As mentioned at
the beginning of this chapter, the spatial scale mismatch depends on the level of sub-footprint
heterogeneity.

One of the premises of this thesis is that the approaches developed need to be globally applicable.
There are no global disaggregation methods, but recently, the DISaggregation based on Physical
And Theoretical scale Change (DISPATCH) algorithm (Merlin et al., 2012, 2013) was integrated
as a Level-4 (L4) processor in the SMOS French ground segment to be run globally. The scope
of this section is to investigate if this method can be effectively applied globally. If so, it could
be used as a generic approach to estimate the spatial scale mismatch.

I personally participated in the development of the L4 DISPATCH processor, an activity that
took place before the start of this thesis. Its validation was one of the first experiments of this
thesis and both, the development and the validation, have been described in detail in a scientific
article (Molero et al., 2016). The following sections present part of the validation results together
with additional analyses, all placed in the perspective of the contents of this chapter: the SM
spatial variability and the spatial scale mismatch. It is important to add that DISPATCH and
the datasets presented in this section will be used again later in this manuscript.

Finally, in the downscaling literature, the terms large-support and small-support are usually
replaced by low-resolution and high(er)-resolution, respectively. These concepts appeared sum-
marised in Table 1.2, in chapter 1. To keep consistency, I will adopt this nomenclature in this
section.

2.4.1 Background on optical-based downscaling

Passive microwave sensors on-board satellites provide surface SM observations at global extents
with a support of some tens of km. The Soil Moisture Ocean Salinity (SMOS) mission is one of
the most outstanding examples of this technology. The Soil Moisture Ocean Salinity (SMOS)
sensor provides surface SM with a resolution of 27 to 55 km and a sensing depth of ∼5 cm
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(Kerr et al., 2001, 2010). The SMOS SM products have been considered as suitable for hydro-
climate applications (Wanders et al., 2014a; Lievens et al., 2015). However, hydro-agricultural
applications need smaller-support observations (sub-kilometric) (Walker and Houser, 2004).

Large-support observations can be translated to a scale with smaller support in an operation
called downscaling or disaggregation. It consists in using data at the target higher resolution to
describe the variability within the large support. The ancillary data usually provide informa-
tion on SM-related variables (brightness temperature (TB), surface temperature, evaporation,
vegetation, precipitation) and static factors (texture, topography). As pointed out in section
2.1, the influence of each component in the spatial redistribution of SM should vary depending
on the region of study.

Observations from active microwave sensors have been used to downscale passive SM observa-
tions (Das et al., 2011; Narayan et al., 2006; Zhan et al., 2006; Tomer et al., 2016). The Soil
Moisture Active Passive (SMAP) mission, launched in 2015, was specifically designed for the
delivering of SM at 3 km and 9 km resolutions by merging the L-band TBs with the higher
resolution L-band backscatter data, both sensors on board.

Higher resolutions can be achieved by downscaling with optical data (visible, near-infrared,
thermal-infrared). However, the temporal availability of the optical products and thus, of the
disaggregated SM product, is degraded when clouds are present. The most common optical
data used for downscaling include soil temperature and vegetation data, such as the LAI or the
normalized difference vegetation index (NDVI) (Fang et al., 2013). In the 90s, it was observed
that the land surface temperature (LST) and the NDVI described a dependence law with soil
surface wetness and evapotranspiration. This was formalized under the triangle (Carlson et al.,
1994; Carlson, 2007) and the trapezoid (Moran et al., 1994) approaches.

Chauhan et al. (2003) proposed a regression formula based on the triangle and trapezoid concepts
that related SM, NDVI and LST. Later on, Piles et al. (2011) added SMOS TBs to the equation.
The major drawback of these empirical approaches is that the regression coefficients need to
be calibrated according to each specific area of study. In contrast, semi-empirical approaches
replace the regression formula by evapotranspiration-related models that do not require local
calibration. An example is that of Merlin et al. (2008b), who used the soil evaporative efficiency
(SEE) as finer scale information to downscale SMOS observations. The SEE, which is the ratio
of the actual to potential soil evaporation, was estimated as in Nishida et al. (2003), where the
soil skin temperature was derived from MODIS data following the triangle approach. Later on,
Merlin et al. (2012, 2013) improved the estimation of the soil skin temperature by taking into
account the vegetation water status (before, it was considered as uniformly unstresses within
the SMOS footprint). The whole disaggregation approach, called DISaggregation based on
Physical And Theoretical scale Change (DISPATCH), also included corrections for the
SMOS antenna pattern, SMOS grid oversampling and estimations of the uncertainty in the
output disaggregation data. The linear version of the SEE-SM model was validated in semi-arid
regions, concretely in a 500 x 100 km area within the Murrumbidgee catchment in Australia
(Merlin et al., 2012; Malbéteau et al., 2016) and in a 60 x 60 km area in Catalunya, Spain (Merlin
et al., 2013). These studies showed that DISPATCH soil moisture had better spatio-temporal
correlation with in situ measurements than the original SMOS products in semi-arid regions.

Based on the conclusions drawn from Merlin et al. (2012) and Merlin et al. (2013), a new version
of DISPATCH was designed for operational and global purposes: some features were selected
to prioritize robustness over accuracy, i.e. to facilitate its application over larger regions of the
globe. The new version was integrated in a processor in the Level-4 (L4) of the Centre Aval de
Traitement des Données SMOS (CATDS), the SMOS French ground segment. The L4 processor
disaggregates SM products from the SMOS Level-3 (L3) segment into higher resolution (0.01°)
SM products (Molero et al., 2016).

The following sections describe and evaluate this operational DISPATCH version. Note that in
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the following, the term “L3 SM” refers to the SMOS L3 soil moisture product and the temrs “L4
SM” or “L4/DISPATCH SM” refer to the “disaggregated products”. The aim of the evaluations
is to investigate if DISPATCH succeeds to reduce the spatial scale mismatch under different
climatic conditions (semi-arid, arid and sub-humid). DISPATCH relies on the assumption that
soil temperature and vegetation green status are driving within-footprint SM spatial variability.
Therefore, the results presented will serve also to assess whether these are global drivers of SM
variability.

2.4.2 Datasets required by DISPATCH

2.4.2.1 Large-support datasets (SMOS)

The CATDS Level-4 Disaggregation processor (C4DIS) disaggregates the SM provided by the
SMOS Level-3 1-day global SM product (MIR CLF31A/D). In this thesis, the product version
2.72 is used. L3 products are presented on the Equal-Area Scalable Earth (EASE) grid, with a
grid spacing of ∼25 x 25 km.

Launched in November 2009, the SMOS (Kerr et al., 2001) is led by the European Space Agency
(ESA) with collaboration the Centre National d’Etudes Spatiales (CNES) and the Centro Para
el Desarrollo Tecnologico Industrial (CDTI). The sensor consists in a passive interferometer at
L-band (1.4 GHz), whose approximate sensing depth is 5 cm. SMOS acquires TBs with different
angles within its field of view, with resolutions that vary from 27 to 55 km, depending on the
angle. In practice, the resolution of the SM product is considered 40 km on average. The
maximum revisit time of the satellite is 3 days with crossing nodes at 6 a.m. and 6 p.m. local
solar time for ascending and descending orbits, respectively.

The L3 SM products are directly computed from custom SMOS Level-1 brightness temperatures
at the CATDS. The SM retrieval algorithm is similar to that of Level-2 (L2) (Wigneron et al.,
2007; Kerr et al., 2012). The main difference is that the L2 processor considers the multi-angular
observations of the same day and orbit, while the L3 processor uses several overpasses, 3 at most,
within a 7-day window. Also, L3 products are presented in a 25-km grid (the EASE-Grid 2.0)
while the L2 products are in a 15-km grid (the ISEA-4H9). The grid resolution must not be
confused with the resolution of the sensor and the SM products, which ranges between 27 and
55 km as mentioned before. Details on the L3 algorithms and processor can be found in (Kerr
et al., 2013a,b).

2.4.2.2 Higher-resolution (HR) datasets

The C4DIS processor uses the LST and NDVI datasets from the MODerate resolution Imaging
Spectroradiometer (MODIS) mission to describe the within-SMOS pixel spatial variability. The
MODIS sensor is a visible/near-infrared/thermal-infrared sensor onboard the NASA Terra and
Aqua satellites since 1999 and 2002, respectively. Their revisit time is 1 day, with crossing
nodes at 10:30 a.m. (Terra, descending orbit) and 1:30 p.m. (Aqua, ascending node). Data
are acquired in 36 spectral bands with wavelengths ranging from 0.6 to 14.4 µm. The spatial
resolution of the products varies between 250 m and 1 km, depending on the band.

The LST datasets are obtained from the version 5 of the MODIS/Terra daily L3 global LST and
emissivity 1-km grid (MOD11A1) and MODIS/Aqua daily L3 global LST and emissivity 1-km
grid (MYD11A1) products. TheNDVI dataset is obtained from the version 5 of MODIS/Terra
16-day L3 global vegetation indices 1-km grid (MOD13A2). The products are retrieved from the
NASA Land Processes Distributed Active Archive Center (LP DAAC). As their names indicate,
the LST products have a daily frequency while the NDVI products have a 16-days frequency.
Both are presented on a 1-km sinusoidal grid (Wan, 1999, 2006; Solano et al., 2010).
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Finally, the C4DIS processor requires elevation information, which is extracted from the
GTOPO30 digital elevation model (DEM) product, available in WGS84 coordinates at a 30-arc
sec resolution and distributed by the U.S. Geological Survey (USGS) EROS Data Center.

2.4.3 DISPATCH algorithm

The main principles of the DISPATCH version used in the C4DIS processor is shortly described
here. A detailed description is included in A. DISPATCH distributes the SM within the large-
support pixel according to the spatial distribution of the soil evaporative efficiency (SEE). The
SEE is the ratio of the actual to potential soil evaporation. In regimes where evaporation is
moisture-controlled, i.e. where the evaporation rate depends on the amount of SM, the total
potential soil evaporation is proportional to the difference in temperature between a wet soil and
a dry soil. This is typical from semi-arid climates. Note that in energy-controlled scenarios, the
presence of SM is not sufficient for evaporation. Humid climates are often energy-controlled.

The SEE is estimated at the target higher resolution (HR) following the model

SEEHR = Ts,max − Ts
Ts,max − Ts,min

(2.6)

with Ts being the soil temperature and Ts,max and Ts,min being the soil temperatures at mini-
mum and maximum soil moisture, respectively. They are derived from the optical observations
(MODIS). Using the triangle approach (Carlson et al., 1994), Ts can be expressed as:

Ts = Tsurf − fvTv
1− fv

(2.7)

with Tsurf being the LST from the higher-resolution sensor (MODIS), fv the fractional vegeta-
tion cover and Tv the vegetation temperature, both to be estimated.

The fractional vegetation cover is calculated from the NDVI obtained from the higher-resolution
sensor (MODIS). Vegetation temperature Tv in Equation 2.7 is estimated with the “hourglass”
approach in Moran et al. (1994). Temperature end-members in Equation 2.6 (Ts,min, Ts,max)
are obtained from the minimum and the maximum surface temperatures in the scene (Tsurf,min,
Tsurf,max), respectively. This is done through approximations the LST-fv space (Merlin et al.,
2013).

Once SEEHR has been obtained for all the higher resolution (HR) pixels within the large-
support pixel, the downscaling relationship can be applied to obtain soil moisture at the
target resolution (SMHR):

SMHR = SMLR + SMp

∂SEELR
· (SEEHR − SEELR) (2.8)

with SMLR being the soil moisture observed by the low resolution sensor (SMOS), SEELR the
spatial average of the SEEHR values within the low resolution (LR) pixel and SMp a parameter
(its calculation is included in A).

Finally, it is worth highlighting that the downscaling equation (2.8) ensures that the mean SM
is preserved along the disaggregation: the low-resolution SM equals the spatial mean of
the high-resolution SM values.
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2.4.4 Validating DISPATCH products

2.4.4.1 Validation datasets: dense in situ networks

Four in situ networks have been selected to evaluate the disaggregated products: the Mur-
rumbidgee (MB) network and its Yanco area in Australia (Smith et al., 2012) and the Little
Washita (LW) (Cosh et al., 2006) and Walnut Gulch (WG) (Cosh et al., 2008) networks in the
U.S.. They provide multiple measurement points within the SMOS footprint and they exhibit
contrasting climate and landscape characteristics.

The MB network is located in southern New South Wales and is considered as a sparse network
(82,000 km2). Its climate changes from semi-arid in the west (the average annual precipitation is
300 mm), to humid in the east (1900 mm in the Snowy Mountains). The MB network consists of
38 stations: 18 provide SM integrated over the top 8 cm of soil (TDR Campbell CS615 sensors)
and the rest provide SM for the top 5 cm of soil (capacitance Stevens Hydra Probes). Seven
stations are located in the limits of the catchment, 5 in Adelong Creek (a grazing 145-km2 area
with steep slopes), 13 in Kyemba Creek (a grazing and dairy 600-km2 area with gentle slopes),
and 13 in the Yanco area.

The Yanco area (3,000 km2) belongs to the MB network. In this study, it is analysed separately
because it constitutes itself a dense in situ network and because the region meets DISPATCH
nominal environmental conditions: Yanco is a flat low-vegetated semi arid area. Yanco is dedi-
cated to irrigated and dry farming, with some pastures. The climate is semi-arid (average annual
precipitation of 400 mm), with most of the precipitation occurring in winter and spring. Soils
are mainly silty-loam. The area has been extensively monitored since 2001 (Merlin et al., 2008a;
Peischl et al., 2012; Smith et al., 2012; Panciera et al., 2014).

The Little Washita (LW) and Walnut Gulch (WG) networks consist of capacitance probes
(Stevens Hydra Probe) installed at 5 cm depth. They started operating in 2002 and they
have been also used in numerous validation campaigns (Jackson et al., 2010, 2012; Leroux et al.,
2013a; Bindlish et al., 2015).

The LW network (610 km2) is located in southwest Oklahoma. The climate is sub-humid
(average annual precipitation of 750 mm). Winters are short and temperate, summers are hot
and relatively dry and spring and autumn concentrate most of the annual precipitation (Allen
and Naney, 1991). The land use is mainly rangeland and crops like winter wheat, corn and
grasses. Soil texture is diverse, with large regions of sands, loams and clays. The surface is
moderately rolling.

The WG network (148 km2) is located in southeastern Arizona. The climate is semi-arid to arid
(324 mm of precipitation per year), dryer than the Yanco area. Most of the rains occur in the
form of small scale high-intensity thunderstorms in summer (Cosh et al., 2008). The land cover
consists of desert shrubs and short grasses. Soils are mainly sands and gravels. The topography
is rolling with significant rock cover.

Table 2.3 – Main characteristics of validation areas for DISPATCH

Yanco Murrumbidgee (MB) Little Washita (LW) Walnut Gulch (WG)
Extent 3,000 km2 82,000 km2 610 km2 148 km2

SMOS pixels covered ∼1 > 1 ∼1/4 ∼1/16
Climate Semi-arid Semi-arid to wet Sub-humid Semi-arid / arid
Annual precipitation 400 mm 300-1900 mm 750 mm 324 mm
Main precip. periods Winter, spring ∼constant at the basin scale Autumn, spring Summer
Soils Silty-loam Clays (west) to sands (east) Diverse Sands and gravel
Topography Flat Diverse Moderately rolling Rolling
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2.4.4.2 Data preparation

The periods selected for the Australian and the U.S. networks are different: 1 year (2010/06-
2011/05) in the case of Yanco and MB, and 5 years (2010/06-2014/05) in the case of LW and
WG. This was motivated by the availability of in situ data.

Data has been filtered out when the radio-frequency interference (RFI) probability of the original
SMOS product exceeded 10 %. The RFI dataset accounts for the percentage of TBs affected by
RFI presence (Oliva et al., 2012; Kerr et al., 2013a). Only the in situ samples taken at SMOS
overpass times (± 1 h) are selected for evaluation. The three time series (in situ, L3 and L4) are
evaluated on common dates with valid SM values (DISPATCH can produce negative SM values
that were filtered out). The final number of samples used is indicated in Table 2.4.

Table 2.4 – Number of samples used to evaluate DISPATCH SM products, classified per in situ network

Yanco Murrumbidgee (MB) Little Washita (LW) Walnut Gulch (WG)
Nb of days

(with 5 or more spatial samples) 140 195 1130 1097

Total nb of samples
(both in time and space) 1477 2838 19,084 18,364

2.4.4.3 Evaluation metrics

We compare the L3 and L4/DISPATCH SM datasets with the in situ datasets using conventional
validation metrics: correlation (R), bias (B) and standard deviation of the differences (STDD).
The STDD is expressed as

STDD =
√
E
{[

(SMsatellite − E{SMsatellite})− (SMinsitu − E{SMinsitu})
]2} (2.9)

where E{·} is the mathematical expectation operator. I prefer the standard deviation of the
differences (STDD) to the RMSD (Equation 2.10) because it is independent from biases in the
mean and amplitude values:

RMSD =
√
E
{[
SMsatellite − SMinsitu

]2} =
√
STDD2 +B2 (2.10)

where B is the bias and “satellite” stands for either the L3 or the L4 dataset. The STDD is
also referred as the unbiased root mean squared difference (ubRMSD) in the SM literature. The
term STDD is used here to be consistent with the original definition of the metric (Mood et al.,
1974; Salkind, 2010).

One more metric is used, the slope of the regression line (S), to evaluate the gain in spatial
representativeness:

S = R · σsatellite
σinsitu

(2.11)

While R is the slope of the standardized regression line, S takes into account the mismatch
in standard deviations (σ) between the satellite and the in situ datasets. Generally speaking,
the ultimate objective of a disaggregation approach like DISPATCH is that disaggregated and
in situ values are as close as possible to the 1:1 line with minimum dispersion (Merlin et al.,
2015).
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2.4.5 Results and discussion

The scope is to evaluate whether DISPATCH is valid as a generic disaggregation approach.
The analyses here follow 3 complementary strategies: visual inspection, spatial and temporal
evaluation. It is important to remind here that the spatial scale mismatch is not only of spatial
nature but also of temporal nature. As a proof, SM measurements acquired with different
support sizes or at different locations exhibit different temporal dynamics. For this reason, the
evaluation of DISPATCH not only includes visual and quantitative spatial evaluations but also
temporal ones.

Initially, disaggregated products derived from different SMOS orbits (ascending and descending)
were evaluated separately, but the statistics obtained were similar (not shown here). For this
reason, in the subsequent analyses, ascending and descending orbits are combined together.

Finally, prior to the evaluations of the L4/DISPATCH dataset, I conduct a preliminary analysis
of the in situ spatial variability. This will be important in the performance of DISPATCH as it
will be shown later. This is presented in the following section.

2.4.5.1 Preliminary analysis

DISPATCH is contextual because the SEE depends upon the scene LST maximum and minimum
values. The accuracy of their estimation depends on the dry-wet contrast in the area: the higher
the contrast, the better their accuracy (Merlin et al., 2010). For this reason, a preliminary study
on the in situ SM spatial variability is needed.

The spatial variance can be estimated with the sample variance of the SM values measured by
the stations located within the same satellite footprint. This is only feasible in dense in situ
networks, like those used in this chapter. In the case of sparse networks, the level of spatial
variability could be guessed from the climatic conditions of the area. The literature review in
section 2.3.2 indicated that the spatial variance describes a convex relationship with the mean
SM content. Therefore, we could foresee that in regions where the mean SM content is either
very low or very high, the SM spatial variability will be low and DISPATCH might not be an
adequate proxy to estimate the spatial scale mismatch.

This idea will be verified with the in situ data of the networks used in this chapter (Yanco, MB,
LW, WG). Since the objective is to predict the performance of the DISPATCH-SMOS products,
I only select the measurements closer to the SMOS ascending and descending overpass times.
Figure 2.3 shows the spatial standard deviation vs the spatial mean of the in situ measure-
ments at each time step, classified per network. The standard deviation describes an increasing
trend with the mean SM content: when the mean SM level increases, the standard deviation
also increases. This seems in opposition with section 2.3.2, which concluded that the convex
relationship was the actual law in footprint extents. However, it is not: the convex relationship
was only observed when mean SM values higher than 0.3 m3/m3 were present (e.g. Figure 2.1).
Otherwise, the convex function appeared truncated, resulting in an only-increasing trend. Such
high SM values can only be registered just after spatially homogeneous rain events. They are
not observed here, either because the temporal sampling is not concurrent in time with the
rainfall (and the soil succeeds to drain the income water before the sampling), either because
precipitation is heterogeneous in the regions studied.

Yanco and the MB show a wide standard deviation range: the spatial standard deviation ranges
between 0 and 0.18 m3/m3. This implies that DISPATCH should help to reduce the spatial
scale mismatch on a big number of dates. There are more high standard deviation values in
Yanco than in MB, so probably the disaggregation will be gainful for more dates in Yanco than
in the MB.
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The wide range of variability values in Yanco is probably due to the irrigation and vegetation
(crops) heterogeneity of the area. In the case of the MB, its wide extension ensures a wide range
of observed SM values (the MB covers multiple SMOS pixels).

Little Washita (LW) mean SM values reach moderately wet values (∼0.3 m3/m3). However,
when compared to Yanco and MB, its standard deviation saturates at 0.08-0.09 m3/m3 (3rd col-
umn of Figure 2.3). This can be due to different reasons. First, the extent of the LW network is
smaller than Yanco and MB. The same is also true for Walnut Gulch (WG). For example, LW
is 4 times smaller than the extent of Yanco. Section 2.3.4 indicated that smaller extents tend to
show lower spatial variability. This seems geophysically plausible since smaller extents tend to
concentrate less heterogeneity in precipitation, soils and vegetation. The second reason is that
the sub-humid climate of LW contributes to the spatial persistence of SM and probably makes
soil evaporation to be energy-driven (the presence of humidity in the soil does not forcedly leads
to evaporation). This together with the low spatial variability are important disadvantages for
the application of DISPATCH in this area.

Finally, mean SM values are extremely low (< 0.2 m3/m3) in Walnut Gulch, which is typical
from an arid climate (4th column of Figure 2.3). Since SM content is low, so it is the spatial
variability: most of the values are concentrated below 0.08 m3/m3 of standard deviation, which
contrasts with the Yanco values that can reach 0.18 m3/m3. Although the evapotranspiration in
WG should be moisture-driven as in Yanco, the low spatial variability could prevent DISPATCH
from producing meaningful disaggregated SM maps.
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Figure 2.3 – Th spatial standard deviation vs the spatial mean of the in situ samples of Yanco, MB, LW
and WG, at the SMOS overpass times.

2.4.5.2 Visual inspection of disaggregated maps

Visual inspection of disaggregated maps is a good first step in the evaluation of the method.
Regarding Yanco and the MB, Figures 2.4 and 2.5 give evidence on how DISPATCH succeeds
to reveal important SM spatial features. In Figure 2.4, we observe the irrigated farms of the
Coleambally cooperative. Figure 2.5 clearly shows the evolution of the floods that affected New
South Wales and Victoria states on the first days of January 2011. All this is consistent with the
analysis of the previous section, where the climatic conditions of the areas together with high
spatial variability values suggested that DISPATCH could effectively improve the resolution of
SMOS products.
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Figure 2.4 – Maps of L3 soil moisture and L4/DISPATCH soil moisture for the Yanco area on 2010/11/22.
The black contours define the Coleambally irrigated farms. Source: Molero et al. (2016)
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Figure 2.5 – Maps of L4 disaggregated soil moisture for MB showing the progression of floods on the
first days of January 2011. The day and the orbit (A/ascending, D/descending) is indicated in the title
of each image. The black squares correspond from left to right to Yanco, Kyemba and Adelong areas.
Source: Molero et al. (2016)
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Figure 2.6 shows two sample maps for the LW and the WG watersheds. In the LW case (left),
disaggregation succeeds to reveal the surrounding lakes but not the LW river. A poor perfor-
mance of DISPATCH is expected as result of the climatic and statistical conditions of the area,
which were described in the previous section. Moreover, the limits between the original SMOS
pixels are apparent. This can be explained because DISPATCH disaggregates each SMOS pixel
independently without taking into account the information of surrounding pixels.

The WG images (right column in 2.6) were selected at one day when the spatial σ was high
for that region (0.05 m3/m3). Despite this, the WG disaggregated field still exhibits little
SM heterogeneity. This can be due to the poorer performance of DISPATCH under spatially
homogeneous conditions of moisture, but also to the natural variability of SM: as reminded in
the previous section, low mean SM is linked to low spatial variability. Moreover, WG is a fairly
homogeneous area in terms of soil, vegetation and climate, and SM heterogeneity is mainly
driven by precipitation.
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Figure 2.6 – Maps of L3 soil moisture and L4 disaggregated soil moisture for the LW watershed (left)
and the WG watershed (right) on 2011/05/02 and 2012/01/03, respectively. Solid contours indicate the
watershed boundaries. In the LW maps, the river and lakes are represented by the bold dotted lines.
Source: Molero et al. (2016)

2.4.5.3 Spatial evaluation

The scope is to verify if DISPATCH can be applied globally to estimate the within-footprint
spatial variability that should give access to the spatial scale mismatch. The preliminary and
visual assessments have already given some hints: DISPATCH should provide a good estimation
of the spatial redistribution of SM for those scenarios where the redistribution is controlled by
evapotranspiration and where the spatial variability of SM is high (probably Yanco and the MB,
possibly WG, unlikely LW). This section evaluates if DISPATCH from a spatial perspective. The
following section will be dedicated to the temporal analysis.

The spatial evaluation consists in comparing the L4/DISPATCH and the L3 SM values at the
in situ station locations with the respective in situ measurements at each timestamp. Usual
statistics are calculated at each timestamp. Note that the number of values to compute the
spatial statistics is quite low: the maximum dataset sizes are 13, 38, 20 and 20 for Yanco, MB,
LW and WG, respectively. In practice, the number is lower if clouds are present. I arbitrarily
set 5 as the minimum dataset size to calculate spatial statistics. Due to the small sample size,
the uncertainty in the statistics is non negligible and should be considered when analysing the
results.
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The distribution of spatial statistics with their median and 95 % percentile values for Yanco
and MB are shown in Figures 2.7a and 2.7b. The distributions here are consistent with the
mean statistics presented in Merlin et al. (2012) and Malbéteau et al. (2016) for the same
areas. In Figures 2.7a and 2.7b the distributions of slope and correlation move rightwards after
disaggregation, which indicates that the spatial correlation is improved. This is more visible
in the case of Yanco. The bias remains similar after the disaggregation but the STDD is clearly
degraded, although not too much (∼0.03 m3/m3). This is expected since the disaggregation
step can introduce noise from the ancillary data and the method itself. These results confirm
that a) DISPATCH reduces the spatial scale mismatch in semi-arid areas with high
spatial variability, and b) soil evaporative efficiency (SEE) is a good proxy for SM
variability in those areas(the Murrumbidgee and Yanco).
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Figure 2.7 – Distributions of the spatial statistics from the comparison of in situ to L3 and L4/DISPATCH
soil moisture products. L3 statistics are in blue and L4/DISPATCH statistics are in red

The results for Little Washita and Walnut Gulch, shown in Figure 2.8, are less convincing. In
the case of LW, the only improvement appears in the S metric: more values approach 1 after
disaggregation, although the scatter increases. This reflects that the SEE is not a good
proxy for SM spatial variability in the LW watershed. This seems plausible since the
climate of LW is sub-humid, which implies that the evaporation rate is energy-controlled and
not driven by the available SM. In Molero et al. (2016), it is shown that this situation is partially
reverted during drier conditions in summer. Finally, the LW watershed exhibits large variability
in vegetation and texture types, which are not taken into account by DISPATCH. As shown in
Pan et al. (2003), they are important sources of SM variability in LW. New SEE models that
rely on texture information are promising (Merlin et al., 2016).

Regarding WG (Figure 2.8b), the main improvement concerns the spatial correlation:
the proportion of negative correlations decreases while the proportion of positive correlations
increases after disaggregation. However correlation values are lower than in the Australian cases,
which could be explained by the lower SM spatial variability of the WG region. The sandy and
gravel soils of WG make infiltration much faster, so even if precipitation heterogeneity was
present, the measured sample at the SMOS overpass times would miss the SM heterogeneity
induced by precipitation.

Finally, Figure 2.9 illustrates the gain of applying DISPATCH in Yanco and WG in periods
of the year where the spatial variability of SM is considerable. For simplicity, only the spatial
correlation is shown. In the case of Yanco (left), the optimal period is summer. When the
summer distribution (Figure 2.9a) is compared against the year distribution (Figure 2.7a), it
can be seen that the number of negative correlations has been drastically reduced and that
they have moved towards higher values of correlation. In the case of WG (Figure 2.9b), the
performance is better during winter than during the rest of the year (Figure 2.8b).
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Figure 2.8 – Distributions of the spatial statistics from the comparison of in situ to L3 and L4/DISPATCH
soil moisture products. L3 statistics are in blue and L4/DISPATCH statistics are in red
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Figure 2.9 – Distribution of spatial correlation values from the comparison of in situ to L3 and
L4/DISPATCH soil moisture products. The statistics are calculated for (a) Yanco during summer
(2010/12/01-2011/03/01) and for (b) WG during winters (December, January and February months
of years 2010 to 2014)

2.4.5.4 Temporal evaluation

The principal objective of disaggregation is to improve the spatial resolution but the temporal
dynamics might be also influenced. Figure 2.10 presents all the in situ SM samples compared
to their respective L3 and L4 disaggretated SM values under the form of scatter plots. It should
be reminded that here the values displayed are not spatial means: they correspond to each of
the samples taken in space and time. Therefore, there is not necessarily any link between the
SM values and the spatial variability of the area.

In the case of Yanco and MB (two left-most columns in Figure 2.10), the central part of the
distribution is closer to the 1:1 line although it becomes more scattered after disaggregation.
This can be explained by the noise introduced by the disaggregation method and the ancillary
data.

In the case of LW, a small improvement is seen but only for very dry conditions (< 0.15 m3/m3).
In this part of the SM range, the evaporation rate may be moisture-driven instead of energy-
driven. Similar conclusions were reached when LW summers were analysed (this is not shown
here but can be found in Molero et al. (2016)).

Finally, in the case of WG, no temporal gain can be observed after disaggregation: the range of
both satellite and in situ SM values is very small and concentrated in the driest region. This
is expected since the spatial variability in the WG region is low most of the time excepting for
particular dates.
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2.4.5.5 Discussion

It has been showed that the L4/DISPATCH algorithm reduces the spatial scale mismatch be-
tween SMOS soil moisture products and in situ measurements under two simultaneous condi-
tions:

1. Moisture-driven scenarios in regions whose spatial redistribution of SM is principally con-
trolled by precipitation and evapotranspiration

2. Regions with a relatively high spatial variability of SM

These conditions were met by Yanco, the Murrumbidgee and Walnut Gulch. The degree of im-
provement was controlled by the number of dates with good spatial contrast. The improvement
was far less important in Walnut Gulch because the SM spatial heterogeneity did not last in
time and could not be registered by the temporal sampling. In contrast, the analysis of the
disaggregated products in the Little Washita (LW) indicated that DISPATCH is not suited for
sub-humid climates with low SM spatial variability.

All this suggests that unfortunately, DISPATCH products cannot be used globally to esti-
mate/overcome the spatial scale mismatch. A preliminary assessment on the adequacy of the
region of study should be conducted. Nevertheless, the contribution of DISPATCH is highly
valuable: their disaggregated products are a good proxy for point SM measurements under the
conditions stated before. DISPATCH products improve the spatio-temporal correlation with
in situ measurements. DISPATCH may not be used to estimate the spatial scale mismatch at
a global scale but can help to study it in some regions of the globe.

2.5 Conclusions

A good understanding of the spatial variability of soil moisture (SM) is necessary for better
addressing the study and evaluation of the spatial scale mismatch: the spatial scale mismatch
is intrinsically related to the sub-footprint SM redistribution. From a physical perspective,
4 landscape and environmental factors that drive SM variability were identified: precipitation,
soil, vegetation and topography. They influence a variety of SM-related processes and variables,
such as evapotranspiration, temperature and drainage. If their respective roles in the SM spatial
redistribution are identified, downscaling approaches can be built to improve the resolution of
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large-support SM measurements. I initially suggested that disaggregated SM fields could be
used as a proxy to better estimate the sub-footprint SM variability.

However, it has been shown that downscaling approaches have a main drawback: they are
not applicable globally since the interactions between soil moisture and SM-related variables
varies between regions. This was illustrated in this chapter with the evaluation of DISPATCH,
a semi-physical disaggregation algorithm. DISPATCH was able to reduce the spatial scale
mismatch in areas where the soil evaporative efficiency (SEE) was a good proxy for soil moisture
variability, like the Yanco region in the Murrumbidgee catchment (Australia) and the Walnut
Gulch watershed in Arizona (Oklahoma, U.S.). It was not the case in other sites like the Little
Washita watershed (U.S.), where the spatial variability was more controlled by vegetation and
texture than by temperature and evaporative demand.

An important part of this chapter was dedicated to the study of former literature on the sta-
tistical spatial distribution of SM. From this I concluded that the SM distribution within the
satellite footprint is right-skewed when the mean SM is close to the dry-end, left-skewed when
the mean SM approaches the saturation point and bell-shaped in the SM midrange. The analysis
of in situ data from Yanco, the Murrumbidgee, Little Washita and Walnut Gulch, confirmed the
conclusions derived from literature. The mean-variability dependence is an important notion
that will be used for modelling the sampling uncertainty in chapter 5.

Knowing the mean-variability dependence for the region of study has resulted also useful to
improve the evaluation of disaggregated SM products. Section 2.4.5.1 showed that a preliminary
analysis of the spatial variability of SM allowed to predict the downscaling performance: the
areas with limited spatial variability at the satellite overpass times were those where DISPATCH
performed the worst. In this case, a first estimate of the spatial variability was derived from the
in situ measurements. In the case of sparse networks, where only one station is available per
satellite footprint, the level of spatial variability could be guessed if the climatic characteristics
of the area are known.

Finally, the disaggregation of SMOS SM in the semi-arid Yanco region reduced the distance,
in terms of correlation and bias, between the satellite and the in situ measurements. It also
succeeded in revealing strong SM transitions within the footprint due to irrigation. For this
reason, the disaggregated products will be used in chapters 3 and 4 as proxies for the SM spatial
variability in Yanco.
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The previous chapter has been focused on the spatial dimension of the surface soil moisture
(SM) variable. However, surface SM is highly variable not only in space but also in time. The
drivers that control SM variability in the spatial domain also control the SM variability in the
time domain: for example, precipitation forms the characteristics peaks of SM time series, soil
characteristics shape the dry-down decay after a precipitation event, topography can create SM
trends and vegetation can be responsible of both seasonal and dry-down responses. It can be
inferred that the responses linked to the SM drivers are associated to characteristic time scales,
implicitly implying that SM is a multi-time scale geophysical variable.

This chapter is dedicated to the analysis of the SM variable from a multi-time scale perspective.
After reviewing the past research on SM time scales, the analyses of SM time series in the
time domain and on a per-time scale basis will be presented. The method used for time-scale
decomposition is based on wavelet transforms and is also described.

This chapter, together with chapter 2, are preparatory and necessary steps for chapter 4, which
will be dedicated to the connections between SM spatial and temporal scales.

3.1 Introduction

Several studies have highlighted the multi-time scale nature of the SM process. They have usually
divided the SM temporal dynamics in slow variations and fast variations. The publication of
Entin et al. (2000) is the most relevant study on SM time scales until now. Based on a vast in situ
SM dataset (measurements taken at 0.01-1 m depth for 11-25 years in the U.S., Russia, Mongolia
and China), Entin et al. (2000) built a temporal autocorrelation model made of a short-time
scale component and a large-time scale component. The short one was of the order of a few days
and was related to land local characteristics (soils, topography, vegetation and root structure).
The large-scale component was of the order of 1-2 months and was associated to atmospheric
conditions (precipitation and evaporation patterns). Similarly, Nicolai-Shaw et al. (2016), based
on satellite and model-based SM, showed that the seasonal scale of SM (4-5 months) was more
driven by large-scale atmospheric conditions than by the natural tendency of SM to persist
in time. In contrast, the sub-seasonal scale (1-3 months) was mainly driven by temporal SM
persistence, i.e. the integration of short-scale effects over time.

Several other studies have also distinguished different behaviours between the SM fast-varying
and the slow-varying components. Soil moisture “anomalies” (the fast-varying component) are
usually obtained by removing the “trend” (slow-varying component), which is calculated as a
temporal mean or with a ∼30-day moving average. For example, Gruber et al. (2013a) cited
several publications (e.g. Cosh et al., 2006; Brocca et al., 2007; Famiglietti et al., 2008) that
highlighted that, for the same location, the anomalies of SM datasets from different sensors
and models tend to be better synchronised than the absolute values. Also, some validation
approaches like triple collocation (TC) are systematically applied to detrended SM series because
it is assumed that slow-varying components (> 30 days) mainly contain systematic differences
between the datasets (Gruber et al., 2016). Similarly, Mittelbach and Seneviratne (2012) found
that the differences between the trends of different point SM datasets are larger than those
between their anomalies.

The geophysical and statistical analyses mentioned above seem to indicate that SM time scales
are induced by different geophysical factors and that SM time scales have different properties.
This has important implications on SM validation studies (e.g. triple collocation). However, SM
time scales have not been yet addressed exhaustively and only the division in fast/slow variations
has been studied. The following sections propose a comprehensive study of the time scales
of both point-support and footprint-support SM datasets acquired at different geographical
areas with contrasting climatic and environmental conditions. Soil moisture time scales will be
obtained with wavelet transforms, a well known technique for decomposition of non-stationary
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signals such as SM. SM is non-stationary because its variance and mean vary in time. For
example, mean SM level and variability increases in seasons with more intense and frequent
rains. Section 3.2 describes wavelet transforms and section 3.3 describes the datasets used in
this chapter. Section 3.4 presents the experiments and is structured in 3 parts: The first one
aims to understand the geophysical controls of each time scale, so it is based on a SM dataset
generated with a simple temporal model. The second and third experiments analyse measured
in situ series and satellite series (SMOS). It is worth highlighting that the experiments include
small-support datasets (modelled and in situ) and large-support datasets (the in situ spatial
average and SMOS).

3.2 Time scales: wavelet-based approaches

Wavelets are mathematical functions that allow decomposing time series in time scales (Foufoula-
Georgiou and Kumar, 1994; Percival and Walden, 2000). In geophysics they have been applied,
for example, to decompose vegetation (Blinowska and Durka, 1997) and temperature time series
(Craigmile and Guttorp, 2011), to reveal causality in rain (Molini et al., 2010) and to identify
climatic connections between different variables, like between SM and temperature (Casagrande
et al., 2015) or between the winter Artic Oscillation and the Baltic Sea ice extent (Grinsted
et al., 2004), to quote some of them. A review of wavelets in geophysics can be found in
Foufoula-Georgiou and Kumar (1994).

The main advantage of wavelet transforms is that they are time-frequency transformations: not
only they identify the frequency components of the signal but also when they occur in time
(time localisation property). This is very useful when analysing non-stationary series like SM.
Although wavelets are not the only techniques that provide time-frequency transformations, they
are the most adequate. Moving average filters are easy to use but they unsuccessfully separate
one band of frequencies from another (Smith, 1997), i.e. they have poor frequency accuracy. The
short-time Fourier transform also separates time scales of non-stationary signals by dividing the
signal in chunks and then applying the Fourier transform to each of them. However it exhibits
some limitations related to the fixed width of the chunks: at high frequencies, several cycles are
included within the window, providing good accuracy in frequency but bad localisation in time;
at low frequencies, there is exactly the opposite effect (Barford et al., 1992). Wavelet transforms
solve this issue by allocating larger windows to lower frequencies and shorter windows to higher
frequencies. They rely of a set of filters (wavelets) that are dilated with the time scale.

3.2.1 General definition

Wavelets are, as their name indicates, “small waves”. They can be described as an oscillation
that starts at zero, grows and then decays and comes back to zero. More specifically, a wavelet
is a real-value function ψ(·) that satisfies the following properties:

1. The integral of ψ2(·) is unity:
∫∞
−∞ ψ

2(u)du = 1
2. The integral of ψ(·) is zero:

∫∞
−∞ ψ(u)du = 0

By property 1, the wavelet is defined over a finite interval, and by property 2, the wavelet is
balanced above and below the horizontal axis.

Although the first references to wavelets appeared in the first half of last century with the works
of Haar and Levy, it was not until 1984 that the theoretical expression of the wavelet transform
appeared (Grossmann and Morlet, 1984). The continuous wavelet transform (CWT) is expressed
as a collection of variables {W (τ, t) : τ > 0,−∞ < t <∞}, where τ designates the time scale
(Equation 3.1). It consists in the convolution of the original signal x(u) with a set of translated
and stretched/shrinked versions of the wavelet function ψ(u).
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W (τ, t) =
∫ ∞
−∞

x(u)ψτ,t(u)du =
∫ ∞
−∞

x(u)ψ
(
u− t
τ

)
du (3.1)

The notion of time scale is easily understood with the aid of the Haar wavelet (Haar, 1910). For
a given time scale τ , the Haar wavelet is simply a negative pulse followed by a positive pulse
along the interval [−τ, τ ] (Figure 3.1).

u
-3 -2 -1 0 1 2 3

-1/ 2

1/ 2

ψ
Haar
1,0

Figure 3.1 – Continuous Haar
wavelet at scale τ = 1 and t = 0

For scale τ = 1 and time t = 0, Equation 3.1 looks like:

W (1, 0) = 1√
2

∫ 1

0
x(t)dt− 1√

2

∫ 0

−1
x(t)dt (3.2)

which is proportional to the difference between the averages over
two different periods of length 1: the [-1,0] period and the [0, 1]
period. Thus, the Haar-based wavelet transform of a time se-
ries at a specific scale τ , W (τ, t), is a time series representing
differences between averages of periods of length τ . For
other types of wavelets that exhibit different shapes than Haar,
a similar interpretation applies: the transformed series represent
weighted averages computed along periods of length τ or slightly
longer (Percival and Walden, 2000, pp. 11, 59).

It should be noted that there exist a difference between the notion of scale in the wavelet field and
the notion of period in the Fourier field. The wavelet transform at scale τ represents differences
between periods of length τ . However, the wavelet filter itself expands over a 2τ (or longer)
interval so it selects components of the signal that have a characteristic period of length 2τ (or
longer). For example, if the scale of interest is 0.5 days, then the output of the wavelet transform
will only contain diurnal variations of the signal. This is an approximation to understand how
wavelets work. The nominal width of the discrete wavelet filters is larger: [1/4τ, 1/2τ ] in the
frequency domain. This will be described in the next section.

3.2.2 The maximal overlap discrete wavelet transform (MODWT)

The CWT is a continuous time-scale representation, useful for exploratory analyses and to
evaluate coherence between processes (e.g. Grinsted et al., 2004). However, it is fundamentally
redundant, particularly at large scales were nearby scales show very similar behaviour (Percival
and Walden, 2000, p. 13). The discrete wavelet transform (DWT) can be seen as a sub-sampling
of the CWT that increases the separation between scales as the time scale increases. Scales
are dyadic:

τj = 2j−1 ·∆t, j = 1, 2, . . . , J0 [s] (3.3)

where J0 is the last decomposition level and ∆t is the sampling period of the original signal.
The DWT has two disadvantages: it needs the length of the original signal to be a power of
two (N = 2J0) and it is not shift invariant (Percival and Walden, 2000, pp. 159, 160). The shift
dependence implies that if x(t) is the original signal and x(t− t1) a time shifted version, there
may exist a significant difference in the energy of their transforms. In practice, this means that
the DWT is sensitive to the starting point of the input signal. The maximal overlap discrete
wavelet transform (MODWT) is a non-orthogonal DWT that does not exhibit these problems.
Moreover, the MODWT produces one transformed coefficient per original sample xt ∈ X(t) at
all scales. As a consequence, it moderately increases the number of degrees of freedom per scale,
thus decreasing the uncertainty of wavelet-based statistics (Cornish et al., 2006).
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The MODWT, as the DWT, decomposes a finite sequence X(t) into the J0 levels or scales
of Equation 3.3. At scale j, the transformed coefficients consists in a time series of wavelet
coefficientsWj(t) that represent variations of the signal at scale j, and a time series of scaling
coefficients Vj(t) that represent variations at scales larger than j. More precisely, the wavelet
coefficients represent weighted differences in averages of consecutive periods of length τj while
scaling coefficients represent averaged fluctuations at scales larger than τj . They are obtained
by convolution with the wavelet hj(t) and scaling vj(t) filters as follows:

Wj(t) =
N−1∑
l=0

h°j(l)X(t− l mod N), t = 0, 1, . . . , N − 1 (3.4)

Vj(t) =
N−1∑
l=0

g°j(l)X(t− l mod N), t = 0, 1, . . . , N − 1 (3.5)

where “t − l mod N” denotes periodic extension of the time series and h°j(t) and vj°(t) are the
filters obtained by circularising hj(t) and vj(t) to length N . Note that, for simplicity of notation,
in this thesis I suppress the “ ~ ” symbol that usually distinguishes MODWT coefficients and
filters (W̃j , h̃j , ...) from their DWT counterparts (Wj , hj , ...).

For a maximum level of decomposition J0, the set of wavelet coefficients for scales j = 1, 2, . . . , J0
and the scale coefficients at scale J0 yields an energy decomposition of the signal X:

‖X‖ =
J0∑
j=1
‖Wj‖2 + ‖VJ0‖2 (3.6)

Different types of wavelets can be used to obtain the wavelet and scale coefficients. The most
common MODWT wavelet basis functions are shown in Figure 3.2.
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Figure 3.2 – Different types of MODWT mother wavelets h(t)

The wavelet basis functions need to be dilated at each time scale j to produce the corresponding
wavelet and scale coefficients. If the width of the basis function is L, the width of the jth-scale
filter is given by

Lj ≡ (2j − 1)(L− 1) + 1 (3.7)

Note that L changes with the type of filter (e.g. Figure 3.2) and that, later on, it will be a decisive
characteristic when choosing the number of scales J0 and the accuracy of the decomposed series.
To illustrate how dilation works, Figure 3.3 presents the Daubechies-4 wavelet and scaling filters
at different time scales.
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Figure 3.3 – Daubechies-4 wavelet and scale filters at scales 1 to 5

In the frequency domain, the transfer functions for hj(t) and vj(t) are given by Hj(f) and Vj(f)
and they correspond to band-pass filters and low-pass filters, respectively. The nominal band-
pass of Hj(f) is given by 1/2j+1 ≤ |f | ≤ 1/2j and that of Vj(f) is given by 0 ≤ |f | ≤ 1/2j . This
allows the full set of coefficients for scales 1 to J0 to be computed using a pyramid algorithm
(Percival and Walden, 2000, p. 307). This is illustrated in Figure 3.4. Note that in this figure the
transfer functions Hj(k/N) and Vj(k/N) correspond to the circularised h°j(l) and vj°(l) filters.
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Figure 3.4 – Flow diagram illustrating analysis of X intoW1,W2,W3 and V3 using the pyramid algorithm

The inverse transform of the wavelet and scaling coefficients produce the detail series Dj(t)
and the smooth series Sj(t), respectively. In practice, Dj is obtained by filtering Wj with a
filter whose transfer function is H∗(·), the complex conjugate of H(·), and SJ0 is obtained by
filtering VJ0 with a filter whose transfer function is G∗(·), the complex conjugate of G(·). The
overall wavelet decomposition process is illustrated in Figure 3.5.
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Similarly to Wj , Dj represents variations of the signal at scale j and similarly to Vj , Sj rep-
resents variations at scales larger than j. Unlikely the transformed coefficients, the detail and
smooth series cannot yield an energy decomposition of the original signal. Instead, they yield
an additive decomposition or multi-resolution analysis (MRA):

X =
J0∑
j=1

Dj + SJ0 (3.8)

3.2.3 Practical considerations

3.2.3.1 Boundary conditions

When the filtering operation gets closer to the start and the end of the series X(t), a smaller
number of samples are available for the convolution. A typical solution for this is to circularise
or reflect the series. Circularising is a more appropriate approach when the signal X contains
periodic features. This is the case of SM, which can show diurnal cycles due to evapotranspiration
cycles, or seasonal cycles, due to seasonal changes in temperature, rain or land cover. The
MODWT coefficients that have been computed using part of the circularised signal are referred
as the coefficients affected by boundary conditions of simply the boundary coefficients.

3.2.3.2 Choice of the base wavelet filter

The choice of the base wavelet filter is a complex task that should take into account three
aspects: width, shape and phase. The most common ones are those that approximately rep-
resent differences of contiguous weighted averages (Percival and Walden, 2000, p. 105): Haar,
Daubechies, Least-asymmetric or “symlets” and Coiflets.

Width. The wider the hj(t) and vj(t) filters are in time, the sharper the edges of H(·) and
V (·) are in the frequency domain. This implies that the separation between frequency bands is
more accurate. However, longer filters produce decompositions with more coefficients affected
by boundary conditions and with poorer time localisation. Haar is the shortest filter possible

57



(L = 2), followed by Daubechies (L = 4, 6, . . . ), Coiflets (L = 6, 12, . . . ) and least-asymmetric
(LA) filters (L = 8, 12, . . . ).

Shape. The shape of the filter affects how the generalized differences between adjacent inter-
vals are computed. When filters with short widths are used, the shape can induce artifacts in
the decomposed detail and smooth series at large time scales (for examples, see Percival and
Walden, 2000, pp. 130-133). This is critical in DWT decompositions, but the impact is much
lower in MODWT decompositions (Percival and Walden, 2000, p. 197).

Phase. Unlike the DWT, the MODWT detail series are not affected by the filter phase char-
acteristics. The MODWT is implemented as a two-stage filter cascade (first Hj(.), then H∗j (.),
see Figure 3.5), so the equivalent filter is |Hj(.)|2 that has a phase function that is always equal
to zero, independently from the filter selected (Percival and Walden, 2000, p. 197). For the
same reason, MODWT Dj and Sj series are less affected by filter artefacts and ripples than the
transformed coefficients series Wj and V j.

3.2.3.3 Choice of the maximum level of decomposition J0

The largest time scale should be smaller than the length of the series:

2J0−1 ≤ N (3.9)

This is natural since, for example, it would not make sense to look for seasonal signatures in
1-month series. A more restrictive condition can be applied to ensure that the filter does not
extends beyond the series limits:

LJ0 ≤ N (3.10)

where LJ0 is computed using Equation 3.7. Shorter filters, like Haar or Daubechies, allow larger
J0 values.

3.2.4 Wavelet-based statistics

Variance

There are two types of estimators of the wavelet variance: while the unbiased estimator does
not consider wavelet coefficients affected by boundary conditions, the biased estimator takes all
the coefficients into account. The biased estimator will be chosen in this thesis because it leads
to an exact decomposition of the signal variance (the sum of the wavelet variances at each scale
gives the total signal variance) (Percival and Walden, 2000, pp. 306, 307).

The decomposition of the signal variance is derived from the energy decomposition of
Equation 3.6:

σ̂2
X = 1

N

J0∑
j=1
‖Wj‖2 +

( 1
N
‖VJ0‖2 − µ̂2

)
(3.11)

where µ̂ is the sample mean and the terms between parentheses are equal to the sample variance
of the scale coefficients, σ̂2

VJ0
, i.e. the variance of scales larger than J0. The sample variance is

thus the sum of the variances at each time scale:
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σ̂2
X =

J0∑
j=1

σ̂2
Wj

+ σ̂2
VJ0 (3.12)

For simplicity, hereafter σ̂2
Wj

will be referred as σ̂2
j . The calculation of the confidence intervals

(CIs) for the sample variance is described in Appendix B.

Correlation

A similar decomposition to that of the variance applies to the covariance of two time series X
and Y .

σ̂X,Y =
J0∑
j=1

cov{WX,j(t),WY,j(t)}+ cov{VX,J0(t), VY,J0(t)} (3.13)

However, the correlation between X and Y cannot be expressed as the sum of the correlations
at each time scale:

RX,Y = σ̂X,Y
σXσY

6=
J0∑
j=1

cov{WX,j(t),WY,j(t)}
σX,jσY,j

+ cov{VX,J0(t), VY,J0(t)}
σVX,J0σVY,J0

(3.14)

Given that the correlation cannot be decomposed in time scales, we consider that there is no
gain in using the transformed coefficients Wj and VJ0 for its calculation. Moreover, as explained
in section 3.2.3.2, the Dj and Sj series are less affected by filter artefacts than the Wj and
Vj coefficients, while being similar in terms of interpretation. For these reasons, hereafter the
wavelet-based correlation will refer to the correlation between detail series and not between
wavelet coefficients:

Rj = R{DX,j(t), DY,j(t)} (3.15a)
RSJ0 = R{SX,J0(t), SY,J0(t)} (3.15b)

RX,Y 6=
J0∑
j=1

Rj +RSJ0 (3.15c)

The calculation of the CIs for the wavelet-based correlation is described in Appendix C.

3.3 Datasets

The surface SM time series analysed in this chapter belong to 3 different groups of datasets.
The first consists of time series generated with my own adaptation of the model designed by
Pan et al. (2003). This first dataset will help to understand the relationship between SM drivers
(precipitation, surface, climatology) and time scales. The second set includes time series from
4 dense in situ networks (Little Washita, Walnut Gulch, Yanco and Monte Buey). The third
dataset consists of SMOS observations at the same locations.
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3.3.1 Modelled series (Little Washita)

SM series generated with the model of Pan et al. (2003) will serve to explore the possible links
between SM time scales and related geophysical variables. The model was specifically designed
for the Little Washita (LW) network and has been used with improved calibrations in other
studies (e.g. Coopersmith et al., 2016; Coopersmith et al., 2017). It is of interest here for the
following reasons:

(i) it produces realistic point-support SM series
(ii) it is simple and is only based on 3 input variables: precipitation (p), soil texture (Ks) and

vegetation (LAI)
(iii) the input variables are associated with specific SM temporal dynamics: precipitation with

short time scales (impulse responses), texture with surface memory responses (dry-down
decays) and LAI controls the seasonal behaviour of the SM series

(iv) its simplicity should allow detecting correspondences between the time scales of the mod-
elled SM and the input variables

For a given location, the model of Pan et al. (2003) can be expressed as

SM(t) = min

{
max

{
SM(t− 1) · e

−ηl(t)·∆t
Z + γc · p(t)

ηl(t) ·∆t
·
[
1− e

−ηl(t)·∆t
Z

]
, SMmin

}
, SMmax

}
(3.16)

where ∆t is the sampling period in hours, p(t) is the cumulative precipitation in metres (m)
between t− 1 and t, γc is the interception by vegetation, ηl is the loss coefficient (m/h) and Z is
the penetration depth (m). The loss coefficient depends on the drainage coefficient Ks (cm/h)
and the LAI (m2/m2).

The model was specifically designed for summer, so specific calibration is needed when applied
to different periods (Pan, 2012; Coopersmith et al., 2014). Here, the calibration sought to
minimise the square of the differences with station #1 of the LW network for a 2-year period
during which the station was fully functional (2012/7 - 2014/7). The γc parameter underwent a
special temporal calibration that allowed to improve the fit with the measured SM series. The
resultant γc is not physically plausible, but it ensures that the modelled SM series is close enough
to the reality. Table 3.1 describes the calibration of the parameters and Figure 3.6 shows the
model time series, the adjusted γc parameter and the LAI time series at station #1.

Table 3.1 – Own calibration values for the parameters of the model of Pan et al. (2003)

Parameter Units Value
γc - See figure 3.6
xmin (m3/m3) 0.05
xmax (m3/m3) 0.40
ηl (m/year) = max{0.1 ·Ks + 0.5 · LAI ), 0.5} *1

Z (m) = Zmax − rmod · (Ks −Ks,min) *2

Ks (cm/h) 1.3*3 for loam, 4 for sandy loam, 5*3 for sand
*1 Equation different from Pan et al. (2003).
*2 Equation empirically derived to allow a wider range of decay rates:
rmod = Zmax−Zmin

Ks,max−Ks,min
= 0.09−0.025

5−0.05
*3 Source: FAO, ftp://ftp.fao.org/fi/cdrom/fao_training/FAO_
Training/General/x6706e/x6706e09.htm
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Figure 3.6 – Modelled and measured SM series at station #1 (top), with the adjusted γc parameter
(middle) and the LAI series (bottom) at the same location.

A set of 2x9 modelled SM series is generated with the same calibration: two reference series,
ref-a and ref-b, and two sets of 8 sample series. The ref-a series is generated for a loam tex-
ture using the in situ precipitation (pref ) and the MODIS LAI series observed at station #1
(LAI ref−a). The ref-b series is produced identically except for the seasonal component whose
amplitude is reduced (LAI ref−b = LAIref−a/4). In the experiments that will be presented later,
each reference series is compared against a set of 8 sample series that differ from the reference
in the configuration of one of the 3 variables. The goal is to generate different controlled dy-
namics in plausible SM series so that I can analyse how these controls are detected with wavelet
decompositions.

The detailed setup is provided in Table 3.2 and the modelled SM series are shown in Figure 3.7.
In short, sample series 1.x and 2.x differ in precipitation, sample series 3.x differ in texture and
sample series 4.x differ in the synchronisation of the LAI signal.

Table 3.2 – Characteristics of the modelled series of Little Washita. Only the differences with respect to
the respective reference series (ref-a or ref-b) are indicated

Series Variable
changed Description

1.1-a/b Precip. Moderate precip. noise: p1.1(t) = pref (t) + ε1(t) where εmean(t) ∼ N(0, σmean) *1,*2

1.2-a/b Maximum precip. noise: p1.2(t) = pref (t) + ε1(t) where εmax(t) ∼ N(0, σmax) *1,*2

2.1-a/b Precip. Precip. from station #6: p2.1(t) = pi=6(t) *3

2.2-a/b Precip. from station #16: p2.2(t) = pi=16(t) *3

3.1-a/b Texture Sand: Ks3.1 = 5
3.2-a/b Sandy-loam: Ks3.2 = 4
4.1-a/b LAI 1-month shift: LAI 4.1(t) = LAI ref (t− 30 · 24)
4.2-a/b 3-month shift: LAI 4.2(t) = LAI ref (t− 3 · 30 · 24)

*1 σ2
mean and σ2

max are the mean and maximum of the differences between the precipitation variance σ2
p1 of

station #1 and all the other stations σ2
pi

*2 The noise contribution εmean(t) and εmax(t) is zero when pref (t) is zero
*3 There are non-synchronised precipitation events in stations #6 and #16 with respect to station #1
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Figure 3.7 – Little Washita modelled series for the 2012/07/03 - 2014/07/02 period

3.3.2 In situ measurements

The in situ SM measurements from 4 dense networks are used in this chapter: Little Washita
(LW), Walnut Gulch (WG), Yanco and Monte Buey (MBy). The first 3 networks have been
already used in chapter 2 (section 2.4.4.1) so only the MBy network will be described below.
The main characteristics of the networks are reminded in Table 3.3. The position of the stations
and the land cover maps of the four networks are showed in Appendix D.

Monte Buey (MBy) The Monte Buey (MBy) network covers an area of 36 x 36 km2 in the
Humid Pampas region, in Argentina. The climate is temperate with average annual precipitation
of 1000 mm. The area is totally flat and dedicated to non-irrigated farming and cattle. Fields
are covered by wheat in winter and soya or maize in summer. Some areas can remain fallow
and some plots contain alfalfa. Soil texture is homogeneous (loam to silty loam). The region is
characterized by a water excess: changes in land use and the increase in precipitations in the
last 10 years have raised the water table to 1-2 m below the surface. As part of my thesis, I
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Table 3.3 – Main characteristics of the in situ neworks used in this chapter.

Little Washita (LW) Walnut Gulch (WG) Yanco Monte Buey (MBy)
Extent 610 km2 148 km2 3,000 km2 1296 km2

SMOS pixels covered ∼1/4 ∼1/16 ∼1 ∼1
Climate Sub-humid Semi-arid / arid Semi-arid Humid
Annual precipitation 750 mm 324 mm 400 mm 1,000 mm
Main precip. periods Autumn, spring Summer Winter, spring All year
Soils Diverse Sands and gravel Silty-loam Loam, silty-loam
Topography Moderately rolling Rolling Flat Flat

participated in one calibration and validation (Cal/Val) campaign in Monte Buey in November
2016 (spring). I could witness the water excess status of the area, which is illustrated here in
two pictures taken during the campaign (Figure 3.8).

The network is made of 16 Stevens Hydraprobe stations, installed horizontally at 5 cm depth.
All stations, except for two, are located next to a plot, separated by 1 to 3 meters from the
cropping area. Stations #14 (Los Pinos) and #8 (AAXOD) are located in the middle of the
plot but protected by a fence. MBy stations present long periods of unavailability as a result of
sensor faults. Despite that the network started operating in 2012, only the 2-year period from
2015/01 to 2016/12 has been selected so that the number of available stations is maximised (13
out of 16 stations).

Figure 3.8 – Pictures taken at Monte Buey during the Cal/Val campaing in November 2016 that illustrate
the water table level (left) and the trenches built for water drainage (right)

3.3.3 SMOS data

SMOS soil moisture time series retrieved at the in situ networks locations are also analysed. For
the experiments in this chapter, I use the ESA Level-2 (L2) soil moisture product (version 620),
which exhibited better temporal stability in time than the L3 SM product. These temporal
stability issues are currently under investigation at the SMOS SM expertise centre, the Centre
d’Études Spatiales de la Biosphère (CESBIO).

The characteristics of the SMOS mission have been already described in section 2.4.2.1. In short,
the resolution of the SM product is considered 40 km on average and the maximum revisit time
of the satellite is 3 days with crossing nodes at 6 a.m. and 6 p.m. local solar time for ascending
and descending orbits, respectively.

The L2 SM retrieval algorithm is described in detail in (Kerr et al., 2012, 2014). One of the key
aspects of the retrieval algorithm is that it takes into account the landscape heterogeneity of
the observed surface. The surface is divided in fractions according to the land cover (bare soil,
low vegetation, forest, water, etc.). Each type of land cover is characterised by a specific model
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linking brightness temperatures (TBs) and SM. SM is only retrieved for the largest or dominant
fraction while the other fractions contribute with fixed parameters. In the in situ networks
presented here, the dominant fraction is low-vegetated soil and SM is obtained by inversion of
the L-band Microwave Emission of the Biosphere (L-MEB) model (Wigneron et al., 2007). SM
is iteratively retrieved by minimising the distance between the modelled and the acquired TB.
The iteration requires a initial guess for SM, among other variables, which is obtained from
the European Centre for Medium-range Weather Forecasting (ECMWF) operational forecast
system.

3.3.4 Data preparation and wavelet parameters

The wavelet analysis of SM series requires some conditions to be fulfilled. First, the series should
not present any gap. Secondly, the length of the series should ensure that its circularisation (see
section 3.2.3.1) respects the signal periodic signatures, if they exist. Additionally, the sampling
period must ensure that the derived wavelet scales (τj = ∆t·2j−1) make sense from a geophysical
perspective (e.g. they include daily, seasonal and yearly cycles). Finally, all the series must be
sampled with the same sampling period so they are comparable. The following paragraphs
describe the wavelet-related choices and pre-processing applied to the SM series used in this
chapter.

3.3.4.1 Periods of analysis, sampling periods and wavelet scales

The LW modelled series cover a 2-year period (2012/7 - 2014/7) that has been selected so that
the SM series measured at the reference station #1 does not present any important gap. The
selected period contains complete years so that circularisation can be used in wavelet analyses
(seasonal variations, if they existed, would be respected).

Unlike the modelled series, the in situ time series usually present gaps. The periods of analysis
are different for each network and they are selected trying to minimise the number of gaps and
to maximise the number of stations in operation. Periods containing complete years are again
preferred . Based on this, LW series spread 3 years (2011/5 - 2014/4), WG 5 years (2010/6 -
2014/5), Yanco 1 year (2010/6 - 2011/5) and MBy 2 years (2015/1 - 2016/12). The same series
will be selected for the SMOS series. The list of periods classified per dataset can be found in
Table 3.6 and Table 3.7.

The in situ networks measure surface SM at different sampling intervals: LW and WG measure-
ments were taken every 30 minutes and Yanco and MBy every hour. The first two experiments
(sections 3.4.1 and 3.4.2) concern point modelled and in situ series and the common ∆t = 3 h
can be set for all of them (the in situ series must be downsampled). The 3rd experiment (sec-
tion 3.4.3) compares SMOS and in situ series and ∆t is set to 12 h so that the minimum time
interval between SMOS ascending and descending overpasses is respected. The advantage of
these sampling periods is that they allow a set of wavelet scales that are coincident for all the
experiments and that approximate weekly, monthly and seasonal cycles. The lists of scales for
both sampling periods are provided in Table 3.4 and Table 3.5.

3.3.4.2 Wavelet filters and maximum level of decomposition J0

Given that the selected periods are longer or equal to 1 year, the maximum level of decomposition
is set to 27 = 128 days. This is equivalent to J0 = 11 when ∆t is 3 h and to J0 = 9 when ∆t
is 12 h. Regarding the wavelet filter, it should allow to locate events in time with precision so
that correlation analyses can be performed. Therefore, the smallest length filters, Haar (Haar,
1910) and Daubechies-4 (Daubechies, 1992), should be selected. Also because of the length,
Daubechies-4 has a sharper frequency response than Haar so it better isolates time scales. It
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Table 3.4 – Wavelet scales for time series sampled
at ∆t = 3 h (in situ and modelled series)

Time
scale
j

Time scale
(days)

τj = 2j−1∆t

Time
scale
j

Time scale
(days)

τj = 2j−1∆t
1 0.125 7 8
2 0.25 8 16
3 0.5 9 32
4 1 10 64
5 2 11 128
6 4

Table 3.5 – Wavelet scales for time series sampled
at ∆t = 12 h (in situ and SMOS series)

Time
scale
j

Time scale
(days)

τj = 2j−1∆t

Time
scale
j

Time scale
(days)

τj = 2j−1∆t
1 0.5 7 32
2 1 8 64
3 2 9 128
4 4
5 8
6 16

will be preferred to Haar when its length at the last scale J0 is shorter than the length of the
series N (Equation 3.10). The length of the Daubechies-4 filter at the last scale is 767 days and
that of the Haar filter is 256 days. For this reason, series longer than 2 years will be analysed
with the Daubechies-4 wavelet and shorter series will be analysed with the Haar wavelet. These
choices are summarised in Table 3.6 for the modelled series and in Table 3.7 for the measured
in situ and SMOS series.

3.3.4.3 Pre-processing of in situ series

Despite the careful choice of the periods of analysis, the in situ series still showed gaps. Those
exhibiting long periods of unavailability are removed from the set. The remaining gaps are filled
in a two step process: 1) Big gaps are filled by linear regression with the station series that was
closer in terms of correlation. The minimum length of a “big gap” is set arbitrarily to 40 days
for LW and WG series and to 20 days for Yanco and MBy series. 2) The remaining “small” gaps
are filled with a discrete cosine transform (DCT) approach (Wang et al., 2012). The advantage
of the DCT gapfilling is that it uses the full series (its signal spectrum) and not only local
information to estimate the missing data. Table 3.7 describes the selected periods of analysis,
stations and gap-filling percentages for the series of each in situ network.

3.3.4.4 Pre-processing of SMOS time series

The SMOS L2 soil moisture product is provided on the 15-km ISEA-4H9 (Icosahedral Snyder
Equal Area Earth fixed) grid. For each in situ network, the L2 node that is in the centre of the
network is selected. The identifiers of the selected nodes are indicated in Table 3.7. Ascending
and descending orbits are merged in one single time series, so the final sampling period is
∆t = 0.5 days. Retrievals with probability of radio-frequency interference (RFI) higher than
10 %, and data quality index (DQX) higher than 20 % are removed. Gaps are filled with the
DCT method (Wang et al., 2012). The Monte Buey network was omitted from the analysis
because an unknown RFI source impaired the retrievals from June 2015 onwards so it covered a
75 % of the selected period. The pre-processing of SMOS series at each network is summarised
in Table 3.7.
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Table 3.6 – Pre-processing and wavelet parameters of the modelled point SM series

Little Washita (LW) modelled series

Period 2012/7 - 2014/7
(2 years)

Wavelet type Haar
J0 11 (128 days)
∆t 3 h

Table 3.7 – Pre-processing and wavelet parameters of the in situ and SMOS soil moisture series.

Little Washita (LW) Walnut Gulch (WG) Yanco Monte Buey (MBy)

Period 2011/5 - 2014/4
(3 years)

2010/6 - 2014/5
(4 years)

2010/6 - 2011/5
(1 year)

2015/1 - 2016/12
(2 years)

Wavelet type Daubechies-4 Daubechies-4 Haar Haar
J0 9 or 11 (128 days) 9 or 11 (128 days) 9 or 11 (128 days) 9 or 11 (128 days)

In situ data
Original ∆t 0.5 h 0.5 h 1 h 1 h
Final ∆t 3 h or 12 h 3 h or 12 h 3 h or 12 h 3 h or 12 h

Stations (selected/total) 20 / 20 17 / 20 11 / 16 13 / 16
% gap-filling (regression) 4.5 % 5.7 % 16 % 10.5 %

% gap-filling (DCT) 1.4 % 3.5 % 14.5 %*1 30 %*2

SMOS data
Node 226157 215311 8174767 -
∆t 12 h 12 h 12 h -

% gap-filling (DCT) 58.1 % 55.6 % 54.7 % -
Nb. consecutive gaps (on avg.) 2.8 2.3 2.3 -

Nb. consecutive samples (on avg.) 2 2.9 2.7 -
* Although the percentage of gaps is high, they are distributed evenly so the quality of the DCT gapfilling is not hampered. The
distributions of gaps and samples are:
*1 1.9 consecutive gaps every 13.8 samples (on average)
*2 2.1 consecutive gaps every 5.4 samples (on average)

3.4 Decomposition of soil moisture series

3.4.1 Decomposition of point modelled series

In this section, I investigate how SM time scales are influenced by different drivers of SM
variability: forcing events, surface memory and seasonal signals. This will be done through the
wavelet decomposition of the Little Washita (LW) modelled series, which have been described in
section 3.3.1 and whose wavelet parameters have been summarised in Table 3.6. The experiment
will help interpret real SM measured series in the following sections.

The MRA decomposition of the reference series ref-a is shown in Figure 3.9. The unitless scale
of the detail Dj and smooth SJ0 series is indicated on the left and the respective time scale is
indicated on the right. Vertical red lines indicate the samples affected by boundary conditions.
The reduction on the number of non-boundary samples at scale 11 is striking. When interpreting
this scale, it should be kept in mind that the boundary samples are computed with replications
of the available input time series: they are representative of the available SM series and not of
the infinite unknown SM signal.

Despite the large number of samples affected by boundary conditions, the last scales in Figure 3.9
reflect well the typical seasonal changes in the region. For example, both the 64- and the 128-day
scales reveal that summers are the driest seasons. The most humid periods are not exactly
synchronised every year, but in general they appear during autumn and spring, which matches
with the climatological description of the area. In addition, the first scales (0.125 to 2 days),
which are almost not affected by boundary conditions, reveal well the precipitation events that
drive SM spikes. D1 to D5 series are mostly zero except when a spike in the original SM series
is detected.
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Figure 3.9 – Haar-based multi-resolution analysis (MRA) of the reference ref-a series of the Little Washita
modelled dataset for the 2012/07/03 - 2014/07/02 period

Figure 3.10 shows the wavelet variance of the sample series (dot markers) with respect to
the reference series (cross markers). The only difference between the series of the a and the b
groups was that the LAI (the seasonal component) of the latter had a smaller amplitude. This is
reflected in the smaller variance of b-type series at the 64- and 128-day scales with respect to the
a-type series. The difference is reduced when the texture changes (Figure 3.10-III), which could
signify that different decay rates influence the seasonal persistence. Regarding the precipitation
differences generated with the model, they do not change much the variance levels (Figures 3.10-
I and -II). Finally, surface memory and seasonal drivers are clearly the components that alter
the shape of the variance pattern (Figures 3.10-III and -IV).

The correlations between ref-a series and series 1.x- to 4.x-a and between ref-b series and
series 1.x- to 4.x-b are shown in Figure 3.11. Correlation patterns are far more sensitive to
differences in precipitation. Two distinct behaviours can be noticed. When precipitation
events are synchronised but vary in power (Figure 3.11-I), correlation increases with the time
scale. However, when some of the precipitation events are not synchronised (Figure 3.11-II), the
positive trend can be broken. For example, although station #6 apparently only misses a couple
of precipitation events (e.g. the date 2014/01/01 of the series 2.2 in Figure 3.7), the repercussion
in the wavelet correlation diagram is very important: correlation drops at the 16- and 32-day
scales. The analysis of precipitation recorded at other locations also showed similar patterns
(not shown here), implying that non-synchronised precipitation events can produce “irregular”
correlation patterns whose drops cannot be easily predicted. The last scale (128 days) is rarely
degraded by this kind of situations.
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Figure 3.10 – Wavelet variance of the modelled series.
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Figure 3.11 – Wavelet-based correlation between the modelled sample and reference series.
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Differences in texture seem to affect larger time scales than precipitation. In Figure 3.11-III,
the reference series (loam) is compared against sand- and sandy loam-based series (series 3.1
and 3.2, respectively). Since sands produce faster dry-down decays than sandy loam textures,
decorrelation appears at shorter time scales for sandy and for sandy-loam textures. In any
case, it can be considered that the decrease in correlation due to different decay rates starts at
weekly scales (8 days) or longer. Whether it affects or not the seasonal 128-day scale depends
on the texture and the power of the seasonal component: when the contribution of the seasonal
component is not important (series 3.1-b and 3.2-b), the correlation between decomposed series
at that scale is lost. Otherwise, the seasonality is recovered (cases 3.1-a and 3.2-a).

Thanks to further tests (not shown here), I noticed that the combination of both texture and
precipitation differences can impair the 128-day scale even if the seasonal driver is important.
This confirms the theories of Hasselmann (1976) and Delworth and Manabe (1988) on climatic
and SM variations. Hasselmann (1976) suggested that climatic long-term variations are induced
by high-frequency variations. Similarly, Delworth and Manabe (1988) proposed that the long-
term anomaly of soil moisture is the response of the land surface layer to precipitation high-
frequency forcings. However, the experiment here tends to indicate that there is a mixture of
low and high-frequency effects at large time scales: the seasonal time scales (64-128 days) are
made by two components, pure seasonal signals (vegetation growth, temperature trends, etc.)
and the temporal integration of shorter responses (precipitation and surface memory). Most
likely, there must exist a third component related to static fields (e.g. topography), but it has
not been included in this study.

Finally, Figure 3.11-IV compares SM series with different seasonal drivers. There is no
implication when the seasonal factor is weak (cases 4.1-b and 4.2-b). However, when there is
a important seasonal driver (cases 4.1-a and 4.2-a), correlation at the monthly and seasonal
scales decreases, and the magnitude of the decrease highly depends on the degree of lack of
synchronism of the seasonal drivers.

The conclusions of the analysis of modelled SM series are:

1. The factors driving SM variability control variations at different time scales: precipitation
at small time scales (6 2 days), surface memory at middle time scales (4-64 days) and
seasonal drivers at large time scales (64-128 days).

2. The seasonal scales (64-128 days) are made of two main components: standalone seasonal
signals (vegetation growth, temperature trends) and the temporal integration of shorter
signals (precipitation, surface memory). Static components like topography could be a
third component.

3. Correlation increases with the time scale in the absence of strong heterogeneities of pre-
cipitation, texture and seasonal drivers.

4. Non-synchronised precipitation events can produce irregular correlation patterns.
5. Important differences in texture and seasonal drivers produce different variance signatures.

3.4.2 Time-scale decomposition of in situ series

In this second experiment, real in situ SM data are analysed with wavelet decompositions. The
conclusions from section 3.4.1 will help interpreting the results obtained. The in situ data is
obtained from the 4 dense networks presented in section 3.3.2. The main characteristics of the
networks and of the in situ data can be found in Table 3.3 and Table 3.7, respectively. The
analysis is also based on the wavelet variance and the wavelet-based correlation as in the previous
section. For readability purposes, CIs are not shown here. For further details, Appendix B and C
include the statistics with their respective CIs for the in situ series of the Little Washita network.
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Figure 3.12 presents the variance analysis of the in situ data, where each row corresponds to
one of the 4 dense networks and each plotted line is the variance decomposition of a particular
station series of the corresponding network. The 4 networks follow similar general variance laws:
the temporal variance increases with the time scale until it reaches a maximum. It is relevant
that each network has a distinct variance pattern: the variance increasing rate, the position of
the maximum and the evolution after the maximum are different depending on the network.
The variance pattern seems to operate as a characteristic signature of the SM process of the
respective area and seems related to their climatic and environmental conditions. WG variance
(Figure 3.12b) peaks at the 64-days scale, implying that the strongest differences appear when
contiguous periods of 2 to 4 months are compared. This peak is clearly driven by the contrast
between the summer and spring/autumn months: precipitation in the area consists in high-
intensity thunderstorms concentrated in summer. On the contrary, LW (Figure 3.12a) exhibits
less variation between seasons and more pronounced variation between half-year periods (128-
day scale). The peak at the 16-day scale is a consequence of precipitation being usually absent for
2-week periods (see scale 1 in Figure 3.9) and a good persistence of SM levels after precipitation
events. Irrigation practices predetermine the variance pattern of Yanco (Figure 3.12c): the
seasonal components (64- and 128-day scales) have usually less power than smaller scales and
the variance peak around the 4- to 16-day scales may be related to irrigation periods. Finally,
the variance decomposition of MBy series (Figure 3.12d) should be representative of a typical
humid area with no important seasonal changes where the surface remains mostly wet all the
year. This variance pattern is consistent with that obtained for the modelled series with weak
seasonal component (Figure 3.10): variance increases following an almost perfect power law until
it reaches a plateau at the largest scales.

Figure 3.13 shows the wavelet-based correlation between the point in situ series and the
in situ average series for each of the 4 networks. From a general perspective, the most striking
feature is that the correlation signatures of the LW and WG stations seem less dispersed and
with shapes that are more similar than those of the Yanco and MBy networks. Different aspects
can contribute to that. Firstly, Yanco and MBy series are shorter than LW and WG series
(1-2 years instead of 3-4). The obtained correlation values, specially at large time scales, are
more uncertain (see Appendix C) and so the patterns that we observe could be questioned.
However, the differences between the Yanco diagrams are so important that there should also
exist relevant geophysical aspects behind. From a geophysical perspective, the main causes of
the differences between LW-WG and Yanco-MBy networks may be:

(a) The LW and WG stations are much closer to each other than the Yanco and MBy stations:
the extent of the later cover one satellite footprint while the former only part of it (1/4
and 1/16, Table 2.3). This can contribute to a higher degree of similarity between the
measured time series.

(b) Yanco and MBy networks may contain higher heterogeneity of precipitation than the other
networks because on the one side, Yanco contains irrigated and non-irrigated farms, and on
the other side, their larger extents contribute to larger differences in precipitation between
the stations.

(c) Yanco and MBy are agricultural sites while LW and WG are not. This implies that
vegetation cover changes drastically at least once or twice per year and in a non-uniform
manner in space, which should contribute to different surface responses and so different
SM patterns.

It is not possible to disentangle which of these factors is the main cause of the differences
between LW-WG and Yanco-MBy networks and most probably they all play a significant role.
Nevertheless, it must be highlighted that the origin of the differences is geophysical (and not
noise) and they illustrate the ability of wavelet decompositions to capture different dynamics
and processes.
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Figure 3.12 – Variance decomposition of the point in situ series (color lines) and the in situ spatial average
series (bold black line)
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Figure 3.13 – Correlation between detail series of the in situ spatial average and the point in situ series
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Visual inspection of the area

Linking the variance and correlation patterns in Figures 3.12 and 3.13 to the local conditions of
the stations (precipitation, soil characteristics and seasonal drivers) would require

(a) a very detailed knowledge of the local conditions at those locations
(b) a good estimation of what we understand as “average” conditions of the area

The visual inspection of the validation sites can only partially answer the aforementioned ques-
tions. I participated in a Cal/Val campaign in Monte Buey in Spring 2016. During this campaign
I could realize the difficulty of predicting the level of similarity between a point and the average
SM response by visual inspection. As an example, I was not able to identify the reason of the
correlation decrease of stations #8 and #13 at seasonal scales (Figure 3.13d). Their local land-
scape conditions (illustrated in Figures 3.14a and 3.14b) were similar to those of other stations
that showed instead good agreement with the average at the same scales (e.g. station #11 in
Figures 3.13d and 3.14c). However, the visual inspection was proven useful in some occasions.
For example, station #1 was permanently covered by 1-m height grass, which is a rare condition
in the MBy area and so could explain the lack of synchronism at seasonal scales between this
station and the average series (Figure 3.13d). Station #2 also exhibited decorrelation at seasonal
scales and this was explained by the presence of a leaking pipe nearby. Due to this, the station
was removed from the analysis. Finally, station #7 was the only station that in the close past
was covered by alfalfa and was installed in the limits of an alfalfa plot (Figure 3.14d), which
could explain the very different variance and correlation patterns of this station.

(a) Station #13
(La Lucia)

(b) Station #13
(La Lucia, another

perspective)

(c) Station #11
(La Maya)

(d) Station #7
(El Eclipse)

Figure 3.14 – Pictures taken during the Monte Buey Cal/Val campaign on november 2016. The white
notebook indicates the position of the station

Comparison with modelled series

Comparing now the correlations of modelled data (Figure 3.11) with those of in situ data
(Figure 3.13), there are two signatures that appear in both experiments: correlation increases
with the time scale and correlation increases but presents drops in the middle scales (irregular
pattern). According to the conclusions derived from modelled series, the increasing pattern
appears when the stations only exhibit differences in precipitation amplitudes. This is the case
of many stations in the in situ experiment (e.g. stations #1 in LW, #1 in WG, #5 in Yanco
and #3 in Mby, Figure 3.13). Regarding the irregular correlation pattern, from the modelled
series it was concluded that this pattern appears when there are differences in precipitation
between series that have weak seasonal components. More precisely, the variance reaches a
plateau starting at the 32-day scale (Figure 3.10) and correlation increases with scale with
sudden drops in the middle (Figure 3.11-I and II). It can be observed a similar behaviour in the
in situ experiment for some stations in Figures 3.12 and 3.13: stations #5, #14, #15, #20 of
LW, stations #1, #10, #16 of WG and station #12 of MBy.

Regarding texture, the model showed that series with contrasting textures exhibited a correlation
decrease at middle scales (16-, 32-days) or towards the largest scales (> 32 days) (Figure 3.11)
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together with a different variance pattern (Figure 3.10). Stations that reproduce similar patterns
in Figures 3.12 and 3.13 are stations #8, #17, #19 and #20 of LW, station #16 of WG and
station #8 of Yanco. It is noticeable the case of some stations, like stations #4 of LW and #13
of WG, that exhibit a very different variance pattern but whose correlation still monotonically
increases with the time scale. A difference in the sensor installation depth of some few centime-
tres could produce a different redistribution of the variance between time scales while keeping a
fairly good synchronism with the reference time series.

Finally, the seasonal time scale of some stations is not well synchronised with that of the average
series. In the conclusions of section 3.4.1, I proposed that the SM seasonal scales are made of both
the contribution of seasonal drivers and the integration over time of short-time scale variables.
For this reason, it is difficult to infer from the variance and correlation diagrams the reason of
the differences at seasonal scales. Some examples are stations #4 and #11 of Yanco, where the
decorrelation at seasonal scales can potentially be produced by different seasonal land use and
temperatures and/or the integration of the combined effects of irrigation, precipitation and soil
texture differences.

3.4.3 Time-scale decomposition of SMOS series

The previous section showed that there is a relationship between the wavelet variance signature
of the stations belonging to the same network and the climatological conditions of the region.
Moreover, the in situ average series also followed the same signature. The fact that the climate
can explain the variance pattern does not mean that it cannot be influenced by other factors. Soil
moisture observations are conditioned by the observing system characteristics like the instrument
configuration, the models to obtain SM, the different errors and the spatial observing support.
Do they also play a role in the decomposed variance and correlation patterns? In order to
answer this question I propose to compare the wavelet decompositions of SMOS time series and
the average of the in situ time series (the network average, NAvg). The datasets used in this
experiment were described in section 3.3 and their respective periods and processing parameters
were summarised in Table 3.7. Given that the minimum sampling period possible of SMOS
is 12 h, all the time series here are sampled at a ∆t = 12 h interval, the NAvg in situ series
included. The MBy network is not included here because of RFI presence in SMOS observations.

Figure 3.15 shows the wavelet variance of the SMOS series and the in situ average series
together with their respective CIs, computed following the method described in Appendix B.
The difference between the SMOS and the in situ variance patterns is considerable. While the
in situ patterns are characterized by a first stage of monotonically increasing variance between
the 0.5-day scale and the 8- to 64-day scale, SMOS variances always reach their maximum at the
4- and 8-day scales. This “inflation” of the variance in the first scales can be due to a combination
of factors. The first of them is that SMOS series have undergone a more significant gap-filling
than in situ series (see Table 3.7). In order to clarify the effect of gap-filling, I replicated the
SMOS gaps in the in situ series and computed wavelet variances again. The resultant variance
decomposition for the 3 networks is shown in Figure 3.16. Surprisingly, the DCT gap-filling
does not increase the variance but decreases it at the first 3 scales (0.5-2 days). This can be
due to gap-filling working as a low-pass filter and producing smoother transitions than the real
ones. The most relevant feature is that the rest of the scales (>2 days) remain unaffected by
the gap-filling stage. This implies that phenomena occurring at time scales larger than 2 days
can be perfectly tracked by SMOS with no degradation due to the overpass frequency.

Another possible cause for the “inflated” variance of SMOS observations at sub-weekly scales
is that SMOS observations may suffer from higher levels of instrumental noise. However, this
argument does not explain by itself the variance levels shown in Figure 3.15. This will be further
justified in the next chapter, where I will include a description of the sources of noise in SMOS soil
moisture retrievals and show the variance diagrams of other large-support satellite observations
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(AMSR2) and models (ECMWF). Finally, the most likely explanation is that there co-exist both
noise and geophysical contributions associated to the spatial scale mismatch between SMOS and
in situ acquisitions. While SMOS observes a continuous integrated surface through its antenna
pattern, the in situ average is constructed with only 11 to 20 points. In plain words, SMOS
observes much more local responses through its average TB than the in situ average. It is not
surprising that the larger variance mismatch appears in the WG network: WG is the network
with the smallest extent of the 3 analysed, which suggests that the variance mismatch may have
a geophysical reason. This will be discussed in the next chapter.

(a) Little Washita (LW) (b) Walnut Gulch (WG) (c) Yanco

Figure 3.15 – Variance decomposition of the average in situ series and the SMOS series

(a) Little Washita (LW) (b) Walnut Gulch (WG) (c) Yanco

Figure 3.16 – Variance decomposition of the average in situ series and the SMOS series after setting the
same gaps in in situ series as in SMOS series

The correlation between the detail series of the SMOS and the in situ average series is shown
in Figure 3.17. The CIs have been calculated following the procedure in Appendix C. There are
common features between the diagrams of the 3 networks. For example, they all exhibit very low
correlation at small time scales. As in the case of the variance diagrams, this seems to point out
that the observation systems are affected by considerable levels of instrumental noise, and/or
that the in situ spatial average does not succeed to represent the full surface at those scales. In
addition to this, the correlation patterns in Figure 3.17 increase monotonically with the time
scale, except for Yanco , which shows a decrease at the 64-day scale. The monotonic increase
implies that the in situ spatial average succeeds to capture the middle-scale and large-scale SM
responses (surface memory and climatology) the same way as SMOS. According to the previous
sections, the decorrelation at the smallest scales can be due to precipitation: the in situ average
does not capture precipitation the same way as SMOS does, which is not surprising given that
the first is the average of some SM samples and the second is the SM associated with the average
energy of the entire area. According to the conclusions of the two precedent sections, the irregular
pattern of Yanco (Figure 3.17c) can be due to a higher heterogeneity in forcing events combined
with a moderately low weight of the seasonality (Figure 3.15c). This is consistent with the fact
that Yanco contains irrigated areas.
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Which is the effect of gap-filling in correlation diagrams? By introducing the gaps of SMOS
series in the in situ series and computing correlation again, I can confirm that, like in the case of
the wavelet variance, the first 3 scales are the most affected by the gap-filling stage (Figure 3.18).
This seems coherent with the frequency of gaps in SMOS series that is 2 gaps every 2 samples
on average. In the cases presented here, the 0.5- to 2-day scales exhibit an increase of the
correlation after the gap-filling experiment, most likely because the gap-fill procedure (DCT)
created similar smoother temporal patterns in both in situ and SMOS series.

(a) Little Washita (LW) (b) Walnut Gulch (WG) (c) Yanco

Figure 3.17 – Correlation between the detail series of the average in situ series and the SMOS series

(a) Little Washita (LW) (b) Walnut Gulch (WG) (c) Yanco

Figure 3.18 – Correlation between the detail series of the average in situ series and the SMOS series after
setting the same gaps in in situ series as in SMOS series

3.5 Conclusions

The temporal variability of surface SM is driven by the same elements that control its spatial
variability: precipitation, surface characteristics, land cover and topography. These elements
shape the temporal response at different time scales. For example, precipitation is responsible
of the intermittent peaks in SM time series, surface properties control the velocity of the dry-
down after a precipitation event, and seasonal-varying factors (e.g. land cover, temperature)
can create SM seasonal-varying trends.

Although their effects in original SM series have been usually addressed in the SM literature,
comprehensive studies on the SM time scales and their relation to differences in drivers (het-
erogeneity) was still missing. This chapter has provided the elements to better understand the
relations between the exhaustive set of SM time scales (from 3 h to 128 days) and the SM
drivers. The experiments concerned variance and correlation analyses of wavelet-decomposed
SM series. The SM series were obtained from a modelled dataset and the in situ and SMOS
datasets acquired at 4 in situ networks with constrasting climatological and environmental con-
ditions (Little Washita, Walnut Gulch, Yanco, Monte Buey). The results of these experiments
have led to the following conclusions:
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1. The variances of the wavelet-decomposed series at each time scale (wavelet variance) de-
scribe a shape that is characteristic of the type of sensor (SMOS, in situ) and of the
climatological and environmental conditions of the site. Important differences in precipi-
tation frequency, surface characteristics and seasonal drivers can change significantly the
variance pattern.

2. As inferred from the correlation diagrams (correlation between two wavelet-decomposed
series at each time scale), SM drivers are associated, as expected, to characteristic time
scales in SM: precipitation is associated to sub-weekly scales, surface characteristics to
sub-weekly to sub-seasonal scales and seasonal drivers mainly concern monthly to seasonal
scales.

3. If the only difference between two different locations concerns the amplitudes of the precip-
itation events (no lack of synchronism), the correlation between the respective SM series
increases with the time scale.

4. Although SM drivers are associated with characteristic time scales, there also exists a prop-
agation of the effects of precipitation and surface characteristics to larger scales (monthly
and seasonal): the lack of synchronism between the precipitation events at two locations
and the combination of precipitation differences with texture differences produce irregular
patterns of correlation (the increasing trend is not followed).

5. The correlation diagrams of the in situ series belonging to larger-extent networks (∼1 foot-
print) are much more different that those belonging to smaller-extent networks (< 1/2 foot-
print).

6. The differences between the patterns of the wavelet variance of SMOS and in situ series
and their wavelet-based correlation are mainly associated to the spatial scale mismatch
and noise. This will be further investigated in the next chapter.

This chapter has presented a series of experiments and analyses in the temporal domain but that
are also related to the spatial scale problem: the last analyses concerned the comparison of point
in situ series and footprint-like series (the in situ average) and the comparison of the in situ
average and large-support series (SMOS). Moreover, the first part of the chapter concerned the
comparison of series with differences in precipitation/texture/seasonal components. The term
“differences” is an implicit synonym of “spatial heterogeneity”. The transition to the next chap-
ter, which will address the connection between time and spatial scales, is thus straightforward:
if SM drivers affect differently each time scale, the degree of spatial heterogeneity at each time
scale will be also different.
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Chapters 2 and 3 were dedicated to the study of the spatial and the temporal variability of
surface soil moisture (SM), respectively. The former introduced the concept of spatial scale
and showed that it is possible to go from the large scale to the small scale with downscaling
approaches: if the adequate geophysical proxies for the region of study are chosen (temperature,
vegetation, etc.), the large-support SM observations can be transformed into small-support SM
observations. After that, chapter 3 showed that the same geophysical drivers of SM spatial
variability cause SM to behave differently depending on the observed time scale.

This thesis is focused on the study of the spatial scale mismatch between point-support and
footprint-support observations. Studying the spatial scale mismatch is challenging because, at
the point scale, only few locations can be sampled simultaneously to be compared with the
footprint-scale SM. However, in the temporal domain, the availability of SM observations is
large. Would it be possible to assess the spatial mismatch from the temporal domain? This
could only be possible if spatial and temporal scales are connected, so that the behaviour of
the ones could be inferred from the others. This chapter is dedicated to the study of the inter-
connections of spatial and time scales in SM within typical satellite footprints (∼50 km). The
ultimate objective is to understand how the spatial scale mismatch is distributed through the
different time scales.

The chapter is structured as follows. First, the state of the art concerning the connection
between spatial and temporal scales in hydrology and SM is presented (section 4.1). Then,
the methodology is introduced. The methods concerning time-scale decomposition were already
described in the previous chapter (wavelet transforms). The methods concerning the spatial
domain are introduced here: section 4.2 is dedicated to the description of available and novel
approaches for the assessment of the spatial representativeness of SM datasets. Sections 4.3,
4.4 and 4.5 present the experiments conducted on modelled and measured SM datasets. The
conclusions are summarised in section 4.7. Some of the analyses and results here presented
have been included in a recent publication (Molero et al., 2018). The current document is,
nevertheless, a more broad and comprehensive view of the spatio-temporal scales of SM within
the footprint.

4.1 Connections between spatial and temporal scales

Geophysical processes take place and are observed at a wide range of spatial and temporal
scales. Some processes exhibit one or more preferred scales, i.e. certain scales contain most of
the process signal energy (variations). This has diverse implications. First, processes can transfer
their characteristic scales to other coupled geophysical variables. For example, daily solar cycle
produces daily patterns in evapotranspiration that are reflected in SM daily patterns. Secondly,
the process characteristic scale influences its observation. When the observation scale is smaller
than the process scale, this one is perceived as a trend in the data; when the observation scale
is larger, the same process can be perceived as noise. This is applicable to both spatial and
temporal representations.

The following sections present a summary of past research on spatial and temporal scales in
hydrology and more specifically in surface SM, which will lead to a general hypothesis on the
interaction between SM spatial and temporal scales.

4.1.1 Scales of SM-related processes

The classification of processes by characteristic spatial and time scales has received the inter-
est of disciplines like oceanography (Stommel, 1963) and meteorology (Fortak, 1982). To my
knowledge, the first to draw a time-spatial diagram of hydrological processes were Blöschl and
Sivapalan (1995), based on past literature and their own research. The diagram is presented in
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Figure 4.1 and some reference scales of SM have been added to it. The minimum and maximum
spatial scales, local and footprint, are highlighted on the horizontal axis. In the vertical axis,
3 time scales (daily, seasonal and yearly) are highlighted for informative purposes, although, as
shown in the previous chapter, more time scales could be of interest.

The observation of Figure 4.1 already provides some useful elements for the understanding of
SM temporal and spatial scales. For example, it can be seen that precipitation, which is the
principal forcing of SM, can be found in various forms and scales in nature. Precipitation fronts
are expected rather homogeneous within the satellite footprint. They can last for some hours
(fast cold fronts) to some weeks (slower warm fronts) (Li et al., 2011; Diem, 2013). In contrast,
storm cells and thunder-storms are mainly heterogeneous within the footprint and are usually
restricted to sub-daily time scales.

As illustrated in Figure 4.1, phenomena related to the decrease of SM levels also apply to a
range of spatial and time scales. For example, there can exist daily evapotranspiration cycles
at scales smaller than the footprint. When the infiltration capacity is exceeded as a result of
high rainfall intensity, water drains to deeper soil layers, a process that can last for short time
periods close to the daily scale. Horizontal runoff can appear as a result of soil saturation or a
raise of the groundwater table, in which case it affects field and catchment scales during longer
periods (weeks, months, seasons). Finally, floods can even affect the footprint scale. In their
absence, runoff is considered heterogeneous within the footprint scale.

SM is still coupled to many other processes and variables missing from Figure 4.1 that operate at
distinct spatial and temporal scales. For example, SM can be coupled with evapotranspiration
and temperature (Seneviratne et al., 2010) that usually exhibit seasonal patterns that cover
regional extents (Craigmile and Guttorp, 2011).

As previously introduced, the observation is affected by the relative gap between the observa-
tional scale and the process scale. In consequence, the SM variable is perceived differently at the
in situ and at the satellite spatial scales. Taking the footprint scale as the reference spatial scale
of observation, precipitation fronts should be perceived as spatial trends while convective cells
are probably translated in “noise” because of their within-footprint heterogeneity. A similar
situation to that of convective weather patterns may happen with runoff, drainage and evapo-
transpiration. In contrast, seasonal temperature cycles would most probably be translated into
spatial SM trends given their regional extent. This leads to the conclusion that when compar-
ing in situ and satellite observations, they should contain similar spatial trends (associated to
factors occurring at equal-to- or larger-than-footprint scales), and different small spatial scale
variations associated with within-footprint heterogeneity. Could this remaining “noise” due to
the spatial scale mismatch between the in situ and footprint observations be corrected or, at
least, identified?

The answer could reside in one remarkable feature present in the aforementioned processes and
observed in Figure 4.1: regarding SM-related processes, small spatial scales tend to be
associated with small time scales, and large spatial scales with large time scales.
However, it remains to unveil whether the same is directly applicable to the SM variable itself.
Should this be true, when comparing in situ and satellite SM observations, their small time
scale components should be different while their large time scale components should be similar.

4.1.2 Connections between spatial and time scales in SM

The association between SM spatial and temporal scales has already been addressed in the past.
Although the literature is short, the conclusions are encouraging. At regional and continental
scales, the studies of Cayan and Georgakakos (1995), Vinnikov et al. (1996), and Entin et al.
(2000) found that small spatial scales were connected with small time scales and that large
spatial scales were connected with large time scales. For example, Entin et al. (2000) identified

81



Figure 4.1 – Hydrological processes at a range of characteristic spatial and temporal scales. Source:
(Blöschl and Sivapalan, 1995)

two main scales: the small scale, that was of the order of some tens of meters and of a few
days, was due to local processes such as infiltration, precipitation and drainage; the large scale,
that was mainly of the order of some hundreds of km and 2-3 months, was due to climatic
atmospheric forcing.

At the field and small catchment scales, Skøien et al. (2003) succeeded to relate characteristic
spatial and time scales of 4 variables (precipitation, runoff, water table and SM) stem from
the analysis of an Austrian hydrographic dataset and five small catchments in Australia and
New Zealand. The SM dataset covered spatial extents of up to 1.4 km2. Concerning extents
closer to the footprint scale, Chaney et al. (2014) demonstrated that SM seasonal variations
in the Little River catchment were controlled by large spatial scale factors (land cover and
evapotranspiration) and not by small spatial scale factors (soil texture). Recently, Su and Ryu
(2015) have shown that the correlation between point SM time series (in situ) and footprint
SM time series (satellite) increases with the time scale. This is expected if SM-related processes
at spatial scales equal to or are larger than the footprint exhibit also large time scales, while
sub-footprint processes are related to short time scales. The studies of Su and Ryu (2015) and
Chaney et al. (2014) are the only ones that evaluate SM time scales at the field and footprint
(or close to footprint) scales.

The spatial scale of seasonal trends. In the domain of satellite SM validation, there is a
number of publications that state that temporal trends of in situ and satellite datasets are far
from being similar. In particular, most of the publications that compare SM datasets through
a method called triple collocation (TC), which I will describe later in this chapter, express that
there exist systematic differences in the climatologies of in situ and satellite time series (Dorigo
et al., 2010; Gruber et al., 2013a). For this reason, prior to the application of the method,
they removed the climatology obtained with a moving average window filter of 35-days long
(Crow et al., 2010; Draper et al., 2013) or 31-days long (Gruber et al., 2013a). As an example,

82



Gruber et al. (2013a) states that “the seasonal vegetation growing cycles strongly affect satellite
observations, but not in situ measurements”. This could be due to in situ stations not being
installed under vegetated covers, which is usually the case of agricultural sites.

This interpretation of seasonal scales is in conflict with the aforementioned studies on SM spatial
and time scales (e.g. Ryu and Famiglietti, 2005; Chaney et al., 2014) that highlight a fundamental
consistency between the temporal trends of point and footprint datasets. What happens then
with SM seasonal scales? Are they governed by sub-footprint or by “super-”footprint processes?
I will provide the elements to elucidate this apparent divergence in interpretations that has not
been yet addressed in the literature.

4.1.3 Spatial representativeness of point-support SM series

Although a typical in situ station has a spatial support of just some few centimetres (point/local
support), it can represent a larger extension because the drivers of SM variability (precipitation,
soil characteristics, vegetation and topography) show some degree of spatial connectivity and
organisation. The same is usually expressed by saying that the spatial representativeness,
the representativeness area or the effective support of the station is larger than its actual
support. In soil moisture calibration and validation (Cal/Val) studies, the representativeness
area of a location is measured as the surrounding extension where the observed SM is “sufficiently
similar” to the SM at that location. The degree of similarity is usually expressed in terms of
correlation-like metrics, although sometimes variance-based analysis like variograms can be used.

If spatial and temporal scales exhibit some sort of connection, then the spatial representativeness
of a station should be also connected to the time scales. This implies that if small time scales and
small spatial scales are associated, then locations have small representativeness areas at small
time scales. On the contrary, if large time scales and large spatial scales are associated, locations
should have large representativeness areas at large time scales. In other words, footprint-scale
observations and point-scale observations are expected more similar at large than at small time
scales.

4.1.4 Summary of hypotheses

Along this section 4.1, I have introduced some hypotheses concerning the connection between
spatial and time scales of surface SM that I summarise here:

(i) Spatial and temporal scales are connected.
(ii) Small/large spatial scales are connected to small/large time scales, respectively.
(iii) The spatial representativeness of a location increases with the time scale.
(iv) The connection is induced by SM-related factors: those that are heterogeneous within the

footprint occur at shorter time scales than those mainly homogeneous within the footprint.
(v) Processes occurring at a scale smaller than the observation scale are perceived as noise

while processes occurring at larger scales are perceived as trends.

In addition, there is a remaining question concerning the seasonal time scales of SM: are they
associated with large spatial scales or not? Should we expect similarity between observations of
different support sizes at seasonal time scales?

4.1.5 Summary of the experiments proposed

In order to verify the aforementioned hypotheses and shed light on the related questions, a set of
experiments are conducted. In a first place, modelled SM data is analysed to derive preliminary
conclusions. Then, in situ and satellite SM data are analysed. In all experiments, time scales
are obtained through wavelet transforms as in chapter 3. The spatial scales are assessed through
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methods that evaluate the spatial representativeness of some selected locations. These methods
are presented in section 4.2.

The first experiment is described in section 4.3. It takes advantage of the full regular spatial
sampling of a modelled SM dataset to investigate whether spatial and time scales are poten-
tially connected. The full sampling feature allows also to observe the spatial evolution of the
representativeness area: its shapes, exact extent and spatial evolution with the time scale.

The second experiment is dedicated to the comparison of different methods for spatial repre-
sentativeness assessment when the surface is not fully sampled (section 4.4). This is the nominal
case since dense in situ networks provide around 20 sampling locations within a satellite foot-
print at most. The study is also based on the gridded modelled dataset and is a necessary in
order to select the best methods for the analysis of real measured data.

The third experiment evaluates the spatial representativeness of multiple in situ stations
belonging to different networks. As in the previous experiments, the evaluation is done at a
range of time scales. It allows to verify the conclusions from the first and the second experiment
on modelled data.

Finally, it should be reminded that in the previous chapter, it was presented how differences
in SM drivers (precipitation, soil texture and vegetation growth) affect SM time scales (sec-
tion 3.4.1). The spatial aspect was actually implicitly addressed: “differences” can be replaced
by “spatial heterogeneity”. The conclusions of section 3.4.1 will be of help interpret the results
of the experiments in this chapter.

4.2 Methods for spatial representativeness assessment

The evaluation of the spatial scales of SM observations will be addressed through the evaluation
of the spatial representativeness (or simply, representativeness) of point datasets with respect
to footprint datasets. Herein, I describe the methods used for this purpose, the existing ones
(section 4.2.1) and two novel approaches I propose (section 4.2.2).

4.2.1 Existing methods

4.2.1.1 Temporal stability TStab

Introduced in Vachaud et al. (1985), the temporal stability analysis (TStab) method has been
described and used in a number of publications (Martínez-Fernández and Ceballos, 2005; Cosh
et al., 2006; Mittelbach and Seneviratne, 2012). Given a point-support series xi(t) measured
at location i, and a large-support series y(t), the temporal stability analysis (TStab) evaluates
their relative differences (RD):

RDi(t) = xi(t)− y(t)
y(t) (4.1)

The most representative point time series is the one that exhibits the smallest (relative) bias
and dispersion with respect to the large-support series, i.e. the one with smaller mean RD
or MRD (Equation 4.2) and with the smallest mean standard deviation of the RD or SDRD
(Equation 4.3).

MRDi = 1
N

N∑
t=1

RDi(t) (4.2)
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SDRDi =

√√√√ 1
N

N∑
t=1

(RDi(t)−MRDi)2 (4.3)

Both metrics can be summarised in one single metric like in Jacobs et al. (2004):

RMSEi =
√
MRD2

i + SDRD2
i (4.4)

4.2.1.2 Triple collocation (TC)

Triple collocation (TC) serves to estimate the random errors of three collocated datasets that
represent the same variable (Stoffelen, 1998). It relies on a linear error model:

k(t) = ak + bkθ(t) + εk(t) (4.5)

where k denotes one of the three spatially and temporally collocated data sets (X,Y ,Z), θ is the
unknown true soil moisture state, ak and bk are systematic additive and multiplicative biases
with respect to the true state, and εk is a zero-mean random noise variable. The variance of the
errors σ̂2

εk
can only be calculated if the following assumptions are met:

(i) zero error-signal cross-covariances: σθ,εk = 0
(ii) zero error cross-covariances: σεX ,εY = 0, σεX ,εZ = 0, σεY ,εZ = 0

A detailed discussion about these assumptions is provided in Gruber et al. (2016). Under these
conditions, the following equalities hold:

σ2
k = b2kσ

2
θ + σ2

εk
(4.6a)

σk,l = bkblσ
2
θ (4.6b)

TC has been used for intercomparing soil moisture datasets (Draper et al., 2013; Leroux et
al., 2013b) and for evaluating the spatial representativeness of point-support SM datasets. The
latter can be based on two different metrics, the error variance σ̂2

εk
(Gruber et al., 2013b; Miralles

et al., 2010) and the correlation between the dataset and the true soil moisture r̂k,θ (McColl
et al., 2014; Chen et al., 2016).

The error variance can be derived from Equations 4.6 as:

σ̂2
εX

= σ̂2
X − b2Xσ2

θ = σ̂2
X −

σ̂X,Y σ̂X,Z
σ̂Y,Z

(4.7)

Similar expressions hold for the Y and Z datasets. These error variances are referred as unscaled
because they are relative to their respective X, Y , or Z data space. In order to express the error
variance estimates into a common reference data space, for example that of X, σ̂2

εY
and σ̂2

εZ
should be rescaled by bX/bY and bX/bZ respectively. The bk parameters can only be calculated
if one of them is known. Usually, X represents the in situ dataset and is assumed perfectly
calibrated with respect to the truth (i.e. bX = 1). However, this is not necessarily true, as
Chen et al. (2016) demonstrated in different U.S. in situ networks. Naive rescaling can produce
biased error estimates. For a more detailed description of TC equations the reader is referred
to Gruber et al. (2013b) and McColl et al. (2014).
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The correlation r̂k,θ is defined as:

r̂k,θ = σ̂θ,k
σθσ̂k

(4.8)

If the zero error-signal and signal cross-covariance conditions are met then:

r̂k,θ = bXσθ
σ̂X

(4.9)

By combination of Equations 4.7 and 4.8, the TC correlation can be finally computed as:

r̂X,θ = ±
√
σ̂X,Y σ̂X,Z
σ̂2
X σ̂Y,Z

(4.10)

Similar expressions hold for the Y and Z datasets. The 3 following conditions are necessary for
the computation of r̂k,θ:

(i) Non-negative cross-correlation between all datasets.
(ii) Non-negative σ̂2

εk
(iii) Non-negative r̂2

k,θ

The TC correlation r̂k,θ (and σ̂2
εk
) can be used to evaluate the spatial representativeness of a

point-support dataset (X) if Y and Z are large-support datasets. If the measurement errors are
relatively small, Y and Z should show stronger similarity due to their similar spatial support.
Moreover, if the main differences between the X and Y /Z are due to the geophysical scale
mismatch (and not to measurement errors), the X metrics mainly characterize how distant
the X dataset is from the Y /Z pair. In other words, they characterize the degree of spatial
representativeness of the X dataset. This is analytically described in Gruber et al. (2016) and
Vogelzang and Stoffelen (2012).

The advantage of r̂k,θ with respect to the error variance is that it does not need rescaling and
is already normalized by the total signal power (Equation 4.9) between 0 and 1, and so it can
be used to compare the scores of different triplets. Unlikely r̂k,θ, σ̂2

εk
increases with the signal

variance. In this chapter, I will run TC analyses on wavelet decomposed series, which have
different variances, so the TC correlation metric r̂k,θ is selected. Note that, for simplicity, in
many of the figures in this chapter r̂k,θ is simple denoted as rk,θ.

4.2.1.3 Inverse footprint

The inverse footprint approach was proposed and used by Orlowsky and Seneviratne (2014)
and Nicolai-Shaw et al. (2015). The representativeness area of a location i0 is measured as
the surrounding area where other locations i exhibit temporal similarity (Spearman correlation)
above an arbitrarily selected threshold.

4.2.2 Novel methods

4.2.2.1 Correlated areas (CArea)

The original inverse footprint (Orlowsky and Seneviratne, 2014; Nicolai-Shaw et al., 2015) relies
on two assumptions: First, the representativeness area of a location i0 is a continuous surface
centred on i0. Secondly, the spatial sampling surrounding i0 is sufficient to determine the
representativeness area. As it will be shown later, the spatial representativeness of SM is not
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only dependent on the distance as there are “islands” of representativeness: a location can be
similar to the reference location even if the locations that are closer to the reference are not. This
suggests that the spatial sampling of typical dense in situ networks (10-20 points per satellite
footprint) is not sufficient for the inverse footprint method. For these reasons, I have modified
the original method into an approach that I refer as the correlated area (CArea) method. The
modifications are:

1. CArea is only applied to SM gridded data (surface or disaggregation model at high spatial
resolution).

2. Pearson correlation replaces Spearman correlation. This respects the consistency with the
other approaches described in this thesis that are based on the Pearson statistic.

3. The CArea metric is not the absolute surface of the surrounding area but the percentage
of pixels that exceed a specified correlation threshold, no matter if they are contiguous or
not.

The CArea method evaluates the percentage of pixel time series xi(t) that are correlated with
the reference series xi0(t) above a specific threshold Rth within an extent A:

CArea(i0) = 1
M

∑
∀i6=i0⊂A

H(Rxi,xi0 −Rth)× 100 [%] (4.11)

whereM is the number of locations (pixels) i within the area of study A, and H is the Heaviside
function that is either 0 or 1 for negative and positive values, respectively. The greater CArea(i0)
and Rth values are, the more representative the location i0 is of the observed surface in terms
of correlation. This method can be applied also to time scale decomposed series.

4.2.2.2 Wavelet correlation (WCor)

The wavelet-based correlation (WCor) or just wavelet correlation can be applied to evaluate the
similarity, in terms of correlation, between a point-support series xi(t) and a large-support series
y(t) on a per-time scale basis. This is mathematically expressed as

Rj = R{Dx0,j(t), Dy,j(t)}, j = 1, 2, . . . , J0 (4.12)

where Dj denotes the wavelet-decomposed detail series of the respective time series, xi or y.
The Rj values are simply a measure of linear matching: they cannot directly distinguish the
proportion of errors and the spatial scale mismatch in the comparison. However, as I will show
later, the analysis of multiple in situ and modelled series, will serve to understand how the
spatial scale mismatch is distributed along the time scales and how spatial and temporal scales
are connected.
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4.3 Assessment of the connection between spatial and time scales

The aim of this section is to verify whether it exists a connection between SM spatial and time
scales based on modelled SM datasets. In order to do this, the spatial representativeness of a
set of locations (pixels) will be assessed on a per-time scale basis.

4.3.1 Datasets

Table 4.1 – Pre-processing of the data used to assess the connections between spatial and time scales in
the Yanco region.

Yanco - gridded SM dataset
Period 2014/09 - 2015/03 (6 months)

Wavelet type Haar
∆t 0.5 days
J0 8 (64 days)

Locations (selected/total) 13 / 13
% gap-filling (regression) 0 %

% gap-filling (DCT) 23.3 %
Nb. consecutive gaps (on avg.) 5

Nb. consecutive samples (on avg.) 17.4

The dataset used in this section is a set (time series) of DISPATCH maps at 1-km resolution for
the Yanco region. The DISPATCH method as well as the Yanco area were described in detail
in section 2.4. In this experiment, a important difference is introduced: the large-support
SM product (SMOS L3) is replaced by the spatial average of the Yanco in situ
time series sampled at the SMOS overpass times (approximately 6 a.m. and 6 p.m.). In other
words, it is the in situ spatial average that is disaggregated and not the SMOS observations.
This allows to produce 1-km support time series that are closer to the in situ series and that
are independent from the SMOS satellite errors.

The period of analysis is selected so that:

1. it has the most robust NAvg, i.e. the NAvg calculated with the largest number of in situ
stations

2. it minimises the length and the number of data gaps

Long periods of clouds reduced dramatically the availability of MODIS data and thus, DIS-
PATCH data, specially during the Austral winter. For this reason, only 6-month periods were
initially selected. Among these, it was the 2014/09/01 - 2015/03/01 period that had the most
robust NAvg (calculated with 11 stations) and the lowest percentage of gaps. These constitute
∼23 % of the selected series on average and are filled with the DCT approach (Wang et al.,
2012). The data selection and pre-processing for this experiment is summarised in Table 4.1.

The final SM dataset is fully sampled in space and time. This allows an exhaustive evaluation
of the spatial representativeness when using the CArea method. Interpreting the CArea scores
of all the disaggregated series within the area would be intractable, so only the pixels that
coincide with the locations of the Yanco stations are selected. The spatial representativeness
of these pixels is evaluated on a per time-scale basis by applying the CArea method to their
wavelet detail series. In addition, the representativeness of two other series that are expected to
better represent the satellite footprint is also evaluated. These are the field average (FAvg)
series, which is the average of the series of the pixels contained within the area of study, and
the network average (NAvg) series, which is the average of the series of the pixels matching
Yanco station locations.
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4.3.2 Spatial and time scales in SM gridded data

The CArea method is performed in 2 steps:

1. The correlation between the time series of the location under analysis i0 and all the other
locations i, Rxi0,xi , is computed.

2. The percentage of correlation values obtained that exceeds the pre-determined correlation
threshold Rth is calculated.

Figure 4.2 shows the outcome of the first step when the series analysed i0 is the FAvg. The
black circles denote the location of Yanco stations. The analysis is applied to each time scale
separately. Note that the application of the first step to the FAvg series is equivalent to applying
the wavelet-correlation method to assess the representativeness of each pixel series xi.
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Figure 4.2 – Maps of wavelet correlation per time scale (Rj) between the detail series of each pixel and
the detail series of the average of all the pixels (FAvg, field average) of the gridded SM dataset for the
2014/09-2015/03 6-month period. Source: (Molero et al., 2018)

There are 3 relevant features in Figure 4.2. The first one is that, regardless the 32-day scale,
in overall, the correlation between the pixels and the average series increases with
the time scale. Secondly, the first 3 scales (0.5-2 days) show very low correlation values
that contrast with the other scales. Finally, the seasonal scale (64 days) is the one with the
largest percentage of pixels with very high correlation values (> 0.9). In contrast, the percentage
of pixels with very low correlation values (≤ 0.3) is non-negligible. In other words, the 64-day
scale seem to be the scale that has the largest number of pixels with extreme correlation values.

To complete the analysis, the same first step is repeated for 14 other reference series i0: the
NAvg and the 13 selected pixels. Then, the percentages are computed for a range of correlation
thresholds from 0 to 1 (2nd step). The final CArea scores are presented in Figure 4.3, where each
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line represents one different pixel, the correlation thresholds are indicated on the horizontal axis
and the spatial representativeness values are indicated on the vertical axis. The features that
were observed in Figure 4.2 are also present here. This implies that the wavelet-correlation
method and the CArea method can be considered equivalent when the surface is fully
sampled. The features will be further described in the following paragraphs.

In Figure 4.3, the lines tend to move to the right as the time scale increases, meaning that the
general representativeness of the pixels increases with the time scale, as it was noticed before.
The FAvg and the NAvg series are the most representative series at all time scales, which is
expected. Consistently with the analysis of Figure 4.2, the smallest time scales (0.5-2 days)
exhibit the smallest CArea scores, with more than 75 % of the area correlated below 0.5. As
introduced in section 3.4.3, the low correlation values at small time scales can be induced by
gap-filling and/or by the difference in the support sizes of the local observation (the pixel, in
this case) and the footprint observation (the FAvg here).

I evaluated the impact of gap-filling on original in situ series by comparing the wavelet
correlation values obtained before and after setting the same gaps as those in the DISPATCH
series. I found that, at the 0.5-2 day scales, correlation decreased by 0.08 on average. This
means that gap-filling does not change considerably the first 3 plots in Figure 4.3 with respect
to the other time scales and that, like in the experiments of section 3.4.3, the low correlation
values at short time scales are probably mainly due to the geophysical mismatch between the
local and the footprint observations. It should not be forgotten either that the DISPATCH
model and inputs have intrinsic errors and uncertainties that can have an impact too.
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Figure 4.3 – CArea scores as a function of the correlation threshold for some specific pixels of the gridded
SM dataset for the 2014/09-2015/03 6-month period. Each plot corresponds ot a different time scale.
Source: (Molero et al., 2018)

Although in general, the representativeness values increase with the time scale, the lines become
more distant from each other (Figure 4.3). It can be inferred that the evolution of the spatial
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representativeness with the time scale is not the same for all locations. In this dataset,
small and middle time-scale factors are represented by the surface temperature data used by
DISPATCH, while the NDVI controls the last scales (32 and 64 days). The increase in the
scatter of the lines with the time scale can be due to some locations being very different in
terms of surface temperature and vegetation status with respect to the field average, which is
not surprising since surface skin temperature observations are quite variable in space and time

At weekly scales (8-16 days), most of the series have more than 50 % of the surface with a cor-
relation above 0.5 and 0.6, respectively (Figure 4.3). This signifies that the weekly temperature
patterns are quite homogeneous in the region. However, the 32-day scale breaks the tendency
of increasing correlation with the time scale. This is probably due to a combination of small
time scale heterogeneity (precipitation/irrigation) and low temporal variance. As shown in the
previous chapter, in Figure 3.11, precipitation heterogeneity can produce irregular patterns in
the correlation diagram at monthly scales. This has been also shown in (Molero et al., 2018),
where the comparison of time series with 20 % of the precipitation events randomly shifted by
±0.5 days led to correlation decrease at the same time scales. The hypothesis of the presence
of precipitation heterogeneity in Yanco is highly plausible since it contains irrigated (and non-
irrigated) farms. In addition, from a statistical point of view, low-variance signals tend to exhibit
lower correlation values (Berger and Sweney, 1965; Goodwin and Leech, 2006) and the 32-day
scale has a small temporal variance similar to that of the 2-day scale for this dataset. This can
be verified in Figure 4.4, which presents the wavelet variance of the time series of the NAvg and
the stations #6 and #13. Finally, as result of the noise propagation and the low variance, the
32-day scale may have a low signal power with respect to noise (signal-to-noise ratio or SNR).

Figure 4.4 – Wavelet variance for 3 different
disaggregated series: the average (black), and
those of pixels #6 (blue) and #13 (cyan).
Dotted lines depict 95 % CIs (Appendix B).

Like in Figure 4.2, in Figure 4.3 the seasonal scale
(64 days) is the time scale that exhibits the largest
areas with very high correlation: the most represen-
tative series exhibits ∼40 % of the area correlated
above 0.9. However, the dispersion in representa-
tiveness values is maximum: locations can be either
highly representative of the footprint SM (series #10
in Figure 4.3, yellow areas in Figure 4.2) or not at all
(series #13 in in Figure 4.3, dark blue areas in Fig-
ure 4.2). As described in section 3.4.1, this situation
can be explained by two factors that come in to play
at this scale: seasonal drivers and the propagation
of smaller time scale variations. Regarding seasonal
drivers, in the dataset used here, the main seasonal
factor is vegetation. In Appendix D, I provide ad-
ditional land cover information for the Yanco network, which shows that the area is mostly
low vegetated (Figure D.2) but that the observed NDVI time series differ between locations
(Figure D.3). However, I cannot find a clear relation between the individual NDVI series and
the representativeness scores in Figure 4.3, which seems to indicate that the propagation of
smaller time scale heterogeneities is more important than the seasonal driver in this experiment.
The propagation of short time scale differences produces decorrelation at seasonal scales that
is specially severe when the seasonal variance is weak, as indicated in Section 3.4.1. This is a
highly plausible explanation in the Yanco case, because the region is rich in short time scale
heterogeneities due to irrigation and the 64-day scale has a weak variance compared to the other
scales (Figure 4.4).

The results obtained for the 64-day scale shed light on the apparent opposition about seasonal
scales that was introduced in section 4.1: depending on the location, the respective seasonal
SM component is similar or not to the seasonal component of the footprint SM. This supports
at the same time triple collocation (TC) studies, which suggested that seasonal components
were different, and studies on SM scales like that of Su and Ryu (2015), which suggested that
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similarity increases with the time scale up to seasonal scales.

To conclude, this section has shown that SM time and spatial scales are connected. I stress
the fact that the conclusions here presented are based on modelled SM data, so they should be
verified with measured SM data. This will be addressed in 4.5. The difficulties for assessing the
representativeness of observed data is that the surface is not fully sampled and that the notion
of representativeness depends on the method used to measure it. For this reason the following
section is dedicated to the inter-comparison of representativeness methods.

Conclusions

1. Spatial representativeness scores tend to increase with the time scale.
2. The dispersion in representativeness scores also increases with the time scale: at seasonal

time scales (64 days) the locations can be either highly or poorly representative of the
network average.

3. Small scales exhibit uniform low representativeness scores.
4. At middle scales (32 days), representativeness scores can drop because of: a) propagation

of small scale geophysical differences, and b) low SNR.

4.4 Assessment of the spatial representativeness: comparison of
methods

This section is dedicated to the inter-comparison of the methods for assessing spatial represen-
tativeness that have been described in section 4.2: temporal stability analysis (TStab), triple
collocation (TC), correlated area (CArea) and wavelet-based correlation (WCor). Herein, the
representativeness is evaluated at the same locations of the gridded SM dataset used in the
previous section. The 1-km pixels are considered as the local-support datasets. The footprint-
support dataset is represented by the network average (NAvg) in the case of TStab and WCor
approaches. In the case of TC, the datasets of the triplet must be independent so neither the
NAvg nor the FAvg can be used. Instead, SM products from SMOS and AMSR2 satellite sensors
and an ECMWF model are selected and two types of triplets are configured: the AMSR2-triplet
formed by one pixel time series, SMOS and AMSR2 time series, and the ECMWF-triplet formed
by one pixel time series, SMOS and ECMWF time series.

4.4.1 Datasets

The area of study is Yanco and the selected period is 2014/09 - 2015/03 (6 months), which
ensures that the number of gaps in gridded SM data is minimum. All datasets are sampled and
temporally collocated to match SMOS overpass times over the study area (∆t = 0.5 days). The
area of study includes all the locations of the Yanco stations plus a 0.05° extension to avoid
borders effects in the CArea method.

Regarding wavelet decompositions, the largest possible level of decomposition J0 is 8 (64 days)
and the wavelet type chosen is Haar, since it is the only whose length at scale J0 (256 samples)
is smaller than or equal to the series length (364 samples).

The gridded SM dataset was described in the previous section (4.3). The SMOS series used
in this experiment are extracted from the ESA Level-2 soil moisture product (version 620) for
the analysis period, which was described in section 3.3.3. The other two large-support datasets,
AMSR2 and ECMWF, are described below. Finally, the pre-processing of all the datasets is
summarised in Table 4.2.
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4.4.1.1 AMSR2 data

In May 2012, the Japan Aerospace Exploration Agency (JAXA) launched the GCOM-W1 mis-
sion, with the Advanced Microwave Scanning Radiometer-2 (AMSR2) sensor onboard. AMSR2
is a passive multi-band scanning radiometer that scans the Earth surface with a fixed incidence
angle of 55°. Its revisit time is 1-2 days with crossing nodes at 1:30 p.m. and 1:30 a.m. local
solar time for ascending and descending orbits. In this thesis, I have selected the SM products
derived from the lowest AMSR2 frequency band (6.9 GHz, C-band). Although more sensitive
to vegetation than the lower SMOS frequency (1.4 GHz, L-band), the band selected is the least
sensitive among the available AMSR2 bands. At this frequency, the resolution is ∼35 x 61 km2

(along scan x along track) (JAXA, 2013) and the approximate sensing depth is 1-2 cm, so
shallower than the SMOS one.

Different models are available to translate the AMSR2 observed brightness temperatures (TBs)
into SM. The Land Parameter Retrieval Model (LPRM) is selected since it performs better
than others, specially in the dry part of the SM range and so, in the Yanco region (Draper et al.,
2009; Rüdiger et al., 2009). The LPRM is developed by the Vrije Universiteit Amsterdam (VUA)
in collaboration with the National Aeronautics and Space Administration (NASA). LPRM is
based on a simple radiative transfer equation for polarized C and X signals (Owe et al., 2008;
Parinussa et al., 2012). The surface characteristics are considered homogeneous within the pixel
(vegetation scattering albedo, surface roughness, etc.). Since the product distributed by the
NASA services showed unusual temporal patterns and biases (Cho et al., 2017), in this thesis
I use a LPRM-AMSR2 soil moisture dataset generated by Dr Parinussa from the re-calibrated
TBs provided by the JAXA.

AMSR2 observations are nearly top surface so the accuracy of the derived SM products is highly
sensitive to the surface temperature, which is largely more uniform and stable at the descend-
ing overpass (1:30 a.m.) than at the ascending overpass (1:30 p.m.). The descending overpass
products have been demonstrated largely more accurate than their ascending counterparts in
relatively sparsely-vegetated regions (e.g. Draper et al., 2009; Lei et al., 2015). For this rea-
son, the descending products are the only ones automatically produced by the VUA’s team of
Dr Parinussa and will be the ones used here. The AMSR2 pixel that is closer to the selected
SMOS grid node is chosen. The AMSR2 time series are resampled in time to match the SMOS
overpass times: each temporal sample is associated to the closest SMOS overpass time in local
standard time. The in situ samples were selected at the SMOS overpass times, so the temporal
resampling of AMSR2 may influence its respective scores. Finally, I discard the SM observations
equal to 0.0 m3/m3 and those with quality values higher than 68, which were associated with
anomalous SM retrievals. The AMSR2 data is summarised in Table 4.2.

4.4.1.2 ECMWF data

The European Centre for Medium-range Weather Forecasting (ECMWF) data is obtained from
the top 0-7 cm SM layer of the ECMWF forecast system that is used by the SMOS L2 processor
as initial guess in the retrieval loop. It is automatically interpolated in space and time to
match the SMOS L2 grid and overpass times by the SMOS processor. More information on this
ECMWF auxiliary product can be found in (Kerr et al., 2012, 2014, 2016). A summary of the
pre-processing of ECMWF data can be found in Table 4.2.

It should be noted that the characteristics of this custom ECMWF product may foster similarity
with the SMOS soil moisture product. The SMOS retrieval algorithm consists, basically, on
trying several SM values and only keeping the one whose modelled TB better fits with the
observed TB. The first value tried or initial guess is the ECMWF forecast, so the SMOS retrieved
soil moisture depends on the custom ECMWF product and the optimisation strategy. Moreover,
the SMOS radiative transfer models need the effective soil temperature to translate TB into
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emissivity (then into reflectivity, dielectric constant and SM). The effective soil temperature is
estimated from the soil temperatures of the ECMWF forecast model, which may also contribute
to a better connection between ECMWF and SMOS soil moisture.

Table 4.2 – Pre-processing of the data used to assess the spatial representativeness in the Yanco region

Yanco
Period 2014/09 - 2015/03 (6 months)

Wavelet type Haar
∆t 0.5 days
J0 8 (64 days)

gridded SM data
Locations (selected/total) 13 / 13
% gap-filling (regression) 0 %

% gap-filling (DCT) 23.3 %
Nb. consecutive gaps (on avg.) 5

Nb. consecutive samples (on avg.) 17.4
SMOS data

Node 8174767
Orbits asc. + desc.

% gap-filling (DCT) 56 %
Nb. consecutive gaps (on avg.) 2.8

Nb. consecutive samples (on avg.) 2.2
AMSR2 data

Pixel Closest to SMOS node
Orbits desc.

% gap-filling (DCT) 65.6 %
Nb. consecutive gaps (on avg.) 1.9

Nb. consecutive samples (on avg.) 1
ECMWF data

% gap-filling (DCT) 48.3 %
Nb. consecutive gaps (on avg.) 2.5

Nb. consecutive samples (on avg.) 2.8

4.4.2 Methods applied to full time series

Initially, TC, TStab and CArea were not designed for time-scale decomposed series, so in this
section I analyse their relative performances on full and de-trended time series, which are the
nominal cases. Figure 4.5-a shows the spatial representativeness scores of the set of selected
locations of the gridded SM dataset. The CArea scores, obtained for a Rth = 0.55, appear at
the left, the TC scores in the middle and the TStab scores at the right of the plot. Note that
each of the methods have a different vertical axis which is orientated so that the maximum of
representativeness is in the top. Some locations are not present in the TC groups because the
TC estimate of the error variance was negative. This happens when the variance of the gridded
SM dataset is smaller than the product of the cross-covariances in Equation 4.7. This could be
due to temporal biases.

In Figure 4.5, the ranking of the locations obtained with the different methods is not the same.
TStab exhibits the largest disagreements compared to the other methods, probably because
Yanco is an agricultural site so human decisions, such as cropping and irrigation, might impair
the temporal stability of the spatial distribution of SM (Yee et al., 2016). In any case, differences
between the rankings provided by the other methods are still important, even between the
two TC variants. Given that seasonal biases can play a significant role as suggested in TC
publications (e.g. Miralles et al., 2010; Chen et al., 2016), I have also conducted the same
analysis after detrending the datasets for variations larger than 32 days (the 32-days wavelet
smooth series S8 is subtracted from the original time series).

Figure 4.5-b shows the representativeness scores after detrending the datasets. TStab could not
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be applied because the wavelet detrending produced multiple zero-crossings of the series (detail
series are zero-mean by construction), which would imply divisions by zero. Therefore, TStab
will not be used in the subsequent experiments in this chapter. Concerning the two TC variants,
now the ordering of the locations is more similar. This improvement is probably because the
wavelet detrending has successfully removed the positive bias that AMSR2 series showed during
the first half of the analysed period (not shown here). Seasonal/month-scale biases in sensors
operating at frequencies higher than L-band can appear because of their increased sensibility
to vegetation and atmospheric factors. This was observed, for example, in the LPRM product
from the SSM/I sensor (Ku-band) (Dorigo et al., 2010).

Despite detrending, the TC and the CArea approaches still provide different results (Fig-
ure 4.5-b). They both attribute more spatial representativeness to the network average and
pixels #4, #5, #8, #9, #10, and smaller representativeness to locations #1, #2, #6, #7. How-
ever, some locations (#3, #12 and #13) show large discrepancies. As a conclusion, detrending
helps to improve the match between methods.
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Figure 4.5 – Spatial representativeness scores (vertical axis) from different methods (horizontal axis) for
different pixels of the gridded SM dataset. The representativeness is evaluated on a) full series and on b)
detrended series (components > 32 days are removed). The CArea correlation threshold is 0.55. Source:
(Molero et al., 2018)

4.4.3 Methods applied to decomposed series

Since detrending improves the match between methods, it can be inferred that some time scales
should allow a better match than others. In order to link time scales and levels of representa-
tiveness, it is needed first to select the method that is able to better assess the spatial represen-
tativeness at all time scales. This section compares the performances of different methods on a
per time scale basis. The WCor method is added to the analyses.

The results are presented in Figure 4.6. Each plot corresponds to a different time scale and
it can be interpreted similarly to those in Figure 4.5. Multiple locations are missing from the
TC groups at half-day, 1-day, 32- and 64-days scales: some of them were off vertical axis limits
and some of them failed the TC preliminary tests (section 4.2.1.2). The principal reason of the
absence of TC scores here is that some datasets exhibited very low cross-correlations (< 0.4)
at those scales. Very low cross-correlations between some of the datasets is an indicator of the
violation of the linear model assumption and can also produce very low TC correlations r̂k,θ and
estimated negative error variances σ̂2

εk
. The correspondence between the low cross-correlations

and the TC scores is illustrated with the help of Figure 4.7, that includes the datasets cross-
correlations per time scale for two sample cases, the NAvg and station #4. It can be observed
that when their correlations are below 0.3 points (black, red and magenta lines), their TC scores
are missing from Figure 4.6

In Figure 4.6, TC rankings largely differ from WCor and CArea rankings. The best match
between methods appears at the 4- and 8-day scales (regardless TC-AMSR2). The match
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Figure 4.6 – Spatial representativeness scores from different methods for different pixels of the gridded
SM dataset. The representativeness is evaluated on wavelet-decomposed series (detail series). Source:
(Molero et al., 2018)

between CArea and WCor is particularly good at the 16-day scale but not with TC scores. In
fact, at scales equal or larger than 16 days, the number of independent samples is drastically
reduced as a result of wavelet filtering, so the performance of TC approaches is impaired. The
usual recommendation for conducting TC analyses is to have a sample size of at least N=100
(Dorigo et al., 2010) or N=500 (Zwieback et al., 2012). The sample size here is 366 so the
number of independent samples likely falls below the 100 threshold at large scales. Note that
the exact estimation of the number of independent samples in this type of wavelet decompositions
(MODWT) is not straightforward as explained in Appendix C. At small scales (≤ 2 days), the
mismatch between TC and the other methods is probably due to the very low correlation between
the datasets (Figure 4.7). In conclusion, TC is not convenient in the case of too short series or
in the case of small time scales.

In contrast to TC, the results of WCor and CArea approaches are consistent: the rankings
of the locations are similar for all time scales. This is a significant result because WCor assesses
the representativeness of a location by comparison to the network average (NAvg), while CArea
assesses the representativeness of a location by comparison to all the other individual pixels: the
correlation between a point series and the average is not simply the average of point-to-point
correlation values. In conclusion, WCor is a robust method for the evaluation of spatial
representativeness on a per-time scale basis when the surface is not fully sampled and
the CArea method cannot be applied. This is the typical situation in validation of satellite SM
products.
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Figure 4.7 – Correlation between the detail series of the TC datasets. The left column represents the
TC-ECMWF triplet and the right column, the TC-AMSR2 triplet. In the top row, the gridded SM
dataset is the network average, in the bottom row, the gridded SM dataset is the pixel #4 time series

Conclusions

1. TStab cannot be applied to wavelet decomposed series because of their multiple zero-
crossings

2. WCor and CArea give consistent results
3. TC scores are similar to WCor and CArea scores except when cross-correlation between

the datasets is low (sub-weekly scales) and when the number of independent samples is
low (seasonal scales)

4.5 Assessment of the spatial representativeness of decomposed
in situ series

I have shown the geophysical drivers of the different spatial/temporal scales of some SM modelled
datasets (sections 3.4.1 and 4.3). When different methods for assessing spatial representativeness
were compared, WCor performed better than TC in modelled datasets (section 4.4). All this
has prepared the analysis of actual observed SM data that will be addressed in this section.
The spatial representativeness of in situ SM series from the Little Washita (LW) network will
be assessed, on a time-scale basis, with the TC and WCor methods using different footprint-
support datasets: the network in situ average (NAvg), SMOS, AMSR2 and ECMWF. The CArea
approach will not be used because the spatial sampling is not sufficient.
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4.5.1 Datasets

The selected period is 2012/07 - 2014/07 (2 years) and ensures that there is a minimum number
of gaps in the in situ series, that a number of whole years is selected and that all datasets
are available (AMSR2 observations started the 2012/05/18). As in the previous sections, all
datasets are sampled and temporally collocated at SMOS overpass times over the study area.
LW in situ series are gapfilled following the same procedure as in chapter 3 (section 3.3.4). The
pre-processing of all the datasets is summarised in Table 4.3.

Regarding wavelet decompositions, the last level of decomposition is J0=9 (128 days) and the
wavelet type chosen is Daubechies-4. Daubechies-4 better isolates time-scales than Haar and,
although at scale 9 the length of this wavelet filter is longer than the series length (Lj = 1534
> N = 1460), the wrapping due to circularisation is minimum and only concerns very low
energy coefficients.

Table 4.3 – Pre-processing of the data used to assess the spatial representativeness in Little Washita.

Little Washita
Period 2012/7 - 2014/7 (2 years)

Wavelet type Daubechies-4
∆t 0.5 days
J0 9 (128 days)

In situ data
Stations (selected/total) 20 / 20
% gap-filling (regression) 6 %

% gap-filling (DCT) 1 %
Nb. consecutive gaps (on avg.) 3.1

Nb. consecutive samples (on avg.) 714.8
SMOS data

Node 226157
Orbits asc. + desc.

% gap-filling (DCT) 58.1 %
Nb. consecutive gaps (on avg.) 2.8

Nb. consecutive samples (on avg.) 2
AMSR2 data

Pixel Closest to SMOS node
Orbits desc.

% gap-filling (DCT) 79.3 %
Nb. consecutive gaps (on avg.) 3.8

Nb. consecutive samples (on avg.) 1
ECMWF data

% gap-filling (DCT) 48 %
Nb. consecutive gaps (on avg.) 2.5

Nb. consecutive samples (on avg.) 2.7

4.5.2 Representativeness in dense networks

The representativeness scores obtained for the Little Washita in situ series with the TC and
WCor methods are presented in Figure 4.8. Different configurations of the methods are possible,
depending on the large-support dataset used. This section analyses their respective scores in
the context of in situ dense networks, where the NAvg is available. In the following section, the
same Figure 4.8 will be again studied but in the context of sparse networks, where no NAvg is
available.
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Comparison of TC with WCor-NAvg

Looking at the TC-ECMWF, TC-AMSR2 and WCor-NAvg scores in Figure 4.8, the patterns
described by the spatial representativeness and the time scales are consistent with what was
observed in modelled datasets in sections 4.3 and 4.4. The overall spatial representativeness
increases with the time scale and the seasonal scales (64 and 128 days) exhibit the largest
dispersion in representativeness scores among the stations. Unlike in the experiment of the
previous section (Figure 4.3) where a drop in representativeness scores appeared at the 32-day
scale, here the drops appears at the 64-day and does not concern WCor-NAvg scores. Instead, it
concerns all other methods and configurations: TC scores and the WCor values calculated with
SMOS, AMSR2 and ECMWF datasets. A possible explanation for this is that the LW network
only covers ∼1/4 of a footprint, so the locations should have more significant differences in small
spatial scale factors (precipitation, texture, vegetation) with respect to the satellite observations
than to the in situ NAvg. As explained in sections 4.3 and 4.4, such small scale heterogeneities
can be propagated to larger time scales, producing drops in the correlation diagram at monthly
and seasonal scales.

Regarding the different TC configurations, much more scores are present than in the gridded
SM experiment, probably because the number of samples is four times bigger (2 years of data
instead of 6 months). This helps also improving the matching between the representativeness
rankings provided by the TC-ECMWF, TC-AMSR2 and WCor-NAvg methods. While in the
experiment based on 6-months gridded SM data, only the 4- and 8-day scales showed a good
match between methods, here the good match applies to 4 scales, the 2-day to 16-day scales.

Regarding the largest scales (32- to 128-days), it can be observed again a reduction in
the number of TC scores, due to the reduction in the number of independent samples after
wavelet filtering. Despite this, the consistency between WCor and TC results still hold good
at the last 128-day scale, because the correlation between datasets is extremely good at that
scale. For example, both methods designate stations #3, #11, #14, #15, #17, #19 as the
most representative and stations #2, #4, #5,#8, #16 and #20 as the least representative ones.
Figure 4.9 shows the wavelet correlation between the TC datasets when the representativeness
of the NAvg is evaluated (a,b) and when the representativeness of station #8 is evaluated
(c,d). There is a clear correspondence between the correlation values in Figure 4.9 and TC
representativeness scores in Figure 4.8 at the 128-day scale: station #8 triplets show very low
correlation so station #8 is not present among the TC scores. Similarly, the NAvg triplets show
very high correlation when ECMWF and not AMSR2 is used as 3rd dataset, so the NAvg is
present among the TC-ECMWF scores but not among the TC-AMSR2 scores.

Comparison between WCor configurations

TheWCor-SMOS, WCor-AMSR2 andWCor-ECMWF scores follow the progression of increasing
representativeness with increasing time scale as the WCor-NAvg. However, their representa-
tiveness values at scales smaller than 4 days are much smaller than the WCor-NAvg values.
They are actually off axis limits. There are two causes that can explain this:

(i) Geophysical spatial scale mismatch: The geophysical station-NAvg distance is much smaller
than the station-satellite distance, since satellite sensors provide a SM observation that is
the result of the full integration of the observed surface.

(ii) Gap-filling: The gap-filling proportion of SMOS, AMSR2 and ECMWF is much higher
(> 48 %) than that of the in situ series (7 %) and gaps are not distributed similarly.
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Figure 4.8 – Spatial representativeness scores for different in situ locations of the LW network. The
representativeness is evaluated on wavelet-decomposed series (detail series). Source: (Molero et al.,
2018)
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In addition, Figure 4.9 reveals a surprising feature: at sub-weekly scales, the correlation between
a location (station #8) and the large-support datasets is is the same range (0 - 0.3) as the cross-
correlations between the large-support datasets. Su and Ryu (2015) showed similar wavelet
correlation values at the same scales for the MERRA model and AMSR-E, both large-support
datasets too. Can it be said then that the low scores at sub-weekly scales are due to the spatial
scale mismatch or that it is simply noise? The main contribution should still be the spatial
scale mismatch because the representativeness scores obtained when the NAvg is used as large-
support dataset are also low. However, when SMOS, AMSR2 and ECMWF are compared, more
elements come into play. For example, there is a mismatch in observing times and in sensing
depths between AMSR2 and the other datasets. Moreover, the physics of the instruments are
different and they are more or less sensitive to different changes in the surface. AMSR2 is more
sensitive than SMOS to top-surface elements and phenomena occurring at small time scales
(wind, solar exposition, etc.) may change the perceived signal.
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Figure 4.9 – Correlation between the detail series of the TC datasets. The left column represents the
TC-ECMWF triplet and the right column, the TC-AMSR2 triplet. In the top row, the in situ dataset is
the network average, in the bottom row, the in situ dataset is the station #4 time series
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4.5.3 Representativeness in sparse networks

Sparse networks (only one station is available per satellite footprint) are even more common
in satellite validation than dense networks. In the case of sparse networks, the large-support
observation can only be provided by satellites or models. In this section, I compare the per-
formances of WCor and TC approaches when based on large-support satellite and model data.
The respective scores are also those in Figure 4.8.

Comparison of TC and WCor configurations without the NAvg

When comparing the different TC and WCor configurations, similarities are found by groups
(Figure 4.8): TC-ECMWF rankings match well with the WCor-SMOS/ECMWF ones (1st

group), while TC-AMSR2 rankings match well with the WCor-AMSR2 results (2nd group).
This highlights that both TC and WCor methods have a high sensitivity to the choice of the
large support dataset. The consistency between methods is lost at the 64-day scale for the 2nd

group and at the last 128-day scale for the 1st group, which is probably due to the reduction in
the number of independent samples that impairs TC performance. ECMWF results are closer to
SMOS than to AMSR2 results probably because their temporal gaps were similarly distributed
and because SMOS is not totally independent from ECMWF soil moisture and temperatures as
explained in section 4.4.1.2.

There are 3 possible large-support observations, different from the NAvg, available for the LW
region. Which large-support dataset is the most appropriate to track the evolution of
spatial and temporal scales? It is easy to see that, in this study, the WCor-NAvg results are
more similar to the results of the 1st group (WCor-SMOS/ECMWF) than to the 2nd group
(WCor-AMSR2). The much larger number of gaps and the sensing time mismatch in AMSR2
series impairs the performance of its group. At middle scales (4-16 days), the ranking of WCor-
ECMWF is the most similar to the WCor-NAvg ranking (Figure 4.8). I attribute this to SMOS
observational noise. At last scales (32-128 days), the situation is reversed and WCor-SMOS is
closer to WCor-NAvg. Therefore, SMOS can be considered as a good large-support dataset to
be used for spatial representativeness assessment in the Little Washita region, especially at the
month and seasonal scales. Moreover, gap-filling does not seem to influence the performance of
SMOS.

Finally, although I have based the evaluation of the spatial representativeness on correlation
metrics, it is worth showing the variance decomposition of the different datasets analysed.
Figure 4.10 includes the wavelet variance diagrams of the TC triplets built for evaluating the
representativeness of the NAvg (top) and of station #8 (bottom). This completes the analysis
started in section 3.4.3 (Figure 3.15). First, as suggested in section 3.4.3, the variance diagrams
are distinctive for each type of sensor. Also, it is confirmed that the higher SMOS variance
at 0.5-8 day scales is partially due to noise. AMSR2 variance keeps lower in the first two
scales probably because a larger number of gaps were DCT filled, which smooths the temporal
transitions so it acts as a low-pass filter.

ECMWF variance keeps lower also for scales larger than 1 day. The dynamics of ECMWF series
are governed by its model structure so it does not show the same levels of high-frequency noise
as sensors can show. Finally, SMOS and AMSR2 are the observation systems with more similar
variance patterns. SMOS is the system that better reflects the NAvg variance pattern at large
time scales, suggesting again that it is specially suitable for the Little Washita region at month
and seasonal scales.
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(a) NAvg-SMOS-ECMWF (b) NAvg-SMOS-AMSR2

(c) Station #8-SMOS-ECMWF (d) Station #8-SMOS-AMSR2

Figure 4.10 – Wavelet variance of the TC datasets. The left column represents the TC-ECMWF triplet
and the right column, the TC-AMSR2 triplet. In the top row, the in situ dataset is the network average,
in the bottom row, the in situ dataset is the station #8 time series

Conclusions

1. The results confirm the conclusions of previous sections on modelled data:
(a) Spatial representativeness tends to increase with the time scale.
(b) Dispersion of spatial representativeness scores also increases with the time scale.
(c) Stations show uniformly low spatial representativeness at sub-weekly scales.

2. Sub-weekly time scales may be also affected by mismatch in sensing depths, in sensing
times or in unavailability of data.

3. The representativeness scores obtained with satellite datasets show tendencies that cannot
be revealed with the in situ average: lower scores at sub-weekly scales and deterioration
of the scores at some specific scales. This may be due to their different approaches of
obtaining the footprint SM (averaged energy vs averaged SM).

4. In sparse networks the representativeness scores are highly sensitive to the satellite and
model selected as large-support dataset.

5. DCT gap-filling of SMOS and AMSR2 partially compensates the noise of the sensors at
the two first scales. Gap-filling benefits the correlation at the first two scales when the
series have similar gap schemes (ECMWF, SMOS) and slightly reduces the correlation
when the series have different gap schemes (in situ, satellite).

4.6 Discussion: links with chapter 3

The correlation patterns showed in sections 4.3, 4.4 and 4.5 are similar to those showed in chap-
ter 3 (section 3.4). The modelled Little Washita dataset in section 3.4.1 served to illustrate how
the differences in specific temporal components of the SM signal influence the wavelet correla-
tion diagram. Three components were distinguished: impulse responses, dry-down decays and
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seasonal dynamics. They were represented by distinct parameters in the model of section 3.4.1:
precipitation, soil texture and vegetation leaf area index (LAI).

The differences in one or more of these components may be due to spatial heterogeneity: two
different locations where SM is measured may differ in precipitation, soil and vegetation charac-
teristics; similarly, precipitation, soil and vegetation are perceived differently by point-support
and by large-support sensors. For these reasons, the conclusions of chapter 3 can be extrapolated
to this chapter.

The experiments of this chapter have revealed that locations have very small spatial repre-
sentativeness at sub-weekly time scales. The model-based experiment in the previous chapter
(section 3.4.1) indicated that, at sub-weekly scales, low correlation between different SM series
was due to precipitation. Therefore, it can be derived that the main reason of the small rep-
resentativeness at sub-weekly scales is the heterogeneity in precipitation, and maybe in other
short time scale elements, within the satellite footprint. The precipitation at a specific location
would be fundamentally different from the “footprint precipitation”.

Another aspect highlighted in section 3.4.1 was that the propagation of short time scale re-
sponses, such as precipitation and dry-down decays, could induce irregular correlation patterns.
This has been observed in the gridded SM dataset (section 4.3 and 4.4) and the in situ SM
dataset (section 4.5). In the latter, the representativeness scores calculated by using satellite
and model SM as large-support datasets revealed a drop in the correlation level at the 64-day
scale. The satellite sensor does not perceive small time-scale components in the same way the
point in situ sensor does, so it seems plausible that such differences integrate over time and
reduce correlation scores at scales with low SNR.

Finally, one of the conclusions of chapter 3 was that the seasonal scale was made of 3 components:
the influence of seasonal-varying geophysical factors (e.g. vegetation), the integration of small
time-scale signatures and static fields (e.g. topography). As a consequence, the spatial scale
mismatch might be highly variable at seasonal scales depending on the location analysed. This
justifies that, in the figures presented in this chapter, some locations are highly representative
while others are very poorly representative of the footprint SM estimates. It is also true that
the last time scales have higher statistical uncertainty due to a reduction in the number of
independent samples and a large number of boundary samples after wavelet filtering. This makes
difficult to compare locations with similar moderate representativeness values at seasonal scales
(e.g. correlation values between 0.5 and 0.8). Nevertheless, extremely high and extremely low
representativeness scores (e.g. correlation >0.9, <0.4) respond to clearly similar and opposed
temporal dynamics, respectively, that can only be due to geophysical reasons. Examples of
WCor confidence intervals at seasonal scales can be seen in Appendix C.

4.7 Conclusions

This chapter has been dedicated to the study of the interactions of spatial and time scales within
typical coarse scale satellite footprint-size areas. For this purpose, I have evaluated the spatial
representativeness of different locations for a comprehensive range of time scales. The decom-
position in time scales has been achieved with wavelet transforms and the representativeness
has been assessed with various methods: triple collocation (TC), temporal stability analysis
(TStab), correlated area (CArea), an approach adapted from the inverse footprint method and
wavelet-based correlation (WCor), a new approach proposed here.

The analyses have been conducted on both model-based and measured SM data from Yanco
and Little Washita networks. These experiments have confirmed that there exists a connection
between spatial and temporal scales: the spatial scale increases with the time scale. However, this
increasing relationship is not always observed. At sub-weekly scales, all locations are equally
not representative of the footprint observations. From sub-weekly to seasonal scales, the
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spatial representativeness tends to increase in overall. However, the representativeness
scores obtained for the set of selected locations also become more scattered. At the end,
at seasonal scales, locations are either highly or very poorly representative of the footprint
observation.

The justification for the observed connections between spatial and temporal scales can be found
in the factors driving SM variability. As described in section 4.1, SM-related processes usually
exhibit characteristic spatial and time scales that are connected, small spatial scales with small
time scales and large spatial scales with large time scales. For example, convective precipitation
events are heterogeneous within the footprint and do not last in time for more than one day.
Texture is fundamentally heterogeneous within the footprint and contributes to the temporal
dry-down pattern whose maximum duration is around 3 days. The results of this chapter are
consistent with the analysis of chapter 3: heterogeneity in precipitation and soil characteristics
may induce low spatial representativeness values at sub-monthly scales, irregular correlation
patterns may be related to the integration of the precipitation and soil temporal responses over
time and seasonal scales may be influenced by large scale factors like global temperatures but
also by the integration of within-footprint heterogeneities.

The experiments proposed have also helped to solve the question stated in section 4.1.4 about the
spatial scale of seasonal trends. This was motivated by the apparent divergent interpretations
concerning seasonal scales I noticed in former studies. In my experiments, a large number
of locations exhibited good synchronism with the large-support dataset at those scales, which
confirms the results of Su and Ryu (2015). On the other hand, I also found that many locations
did not follow the footprint seasonal patterns, corroborating that in TC studies the seasonal
trend can be a source of non-linearities (Gruber et al., 2016). In conclusion, both phenomena,
similar and dissimilar seasonal scales co-exist within the same footprint.

Finally, a valuable outcome of this chapter is the inter-comparison of methods for the assessment
of spatial representativeness. It revealed that TStab could not be applied to wavelet decomposed
series because their multiple zero-crossings prevented the TStab equation to be solved. TC
provided representativeness scores that were consistent with CArea and WCor scores, principally
when the cross-correlation values between the datasets was above 0.4 and when the number
of samples was large enough (> 100). Very low cross-correlation values were systematically
observed at sub-weekly scales and, as a consequence, TC scores could not be computed. The
reduction in the number of independent samples was specially harmful at large time scales
(≥ 64 days in this case), so many TC scores were missing or highly uncertain. In contrast
to TC, CArea and WCor results were consistent in general at all time scales. Since
WCor is less sensitive to the spatial sampling size than CArea, I would recommend to use
WCor as a reference approach when working with real measured data (dense and sparse in situ
networks) and when time scale decompositions are desired.

This is, to my knowledge, the first comprehensive investigation on the connection between SM
spatial and time scales within the satellite footprint (∼50 km). The understanding of these
interactions can help to improve validation: the spatial scale mismatch could be estimated from
the temporal observations and then included in the validation error budget. Meanwhile, small
time scales could be removed from the validation of satellite products: it has been shown that
locations are not representative of the footprint at such time scales. Finally, time decompositions
along with the WCor method are promising tools for improving not only the satellite validation
but also the modelling of surface SM. Multi-scale algorithms could be built based on the specific
interactions at each time and spatial scales. Given this time-scale dependence, spatial variability
should be addressed differently depending on the time scale.
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Chapter 5

Uncertainty in temporal validation
statistics due to spatial sampling
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The previous chapters have addressed the spatial scale mismatch as a whole, without differen-
tiating its 3 components: the sampling uncertainty, the scaling uncertainty and the geophysical
mismatch. The sampling uncertainty (SU) refers to the lack of knowledge about the required
sampling scheme of the study area: what would have happened if the area had been sampled
differently? It is the only component of the spatial scale mismatch that is independent from
satellite observations.

When a satellite time series is compared against an in situ time series a set of summary statistics
is obtained. They are uncertain to some level due to the SU, since they would have been different
if we had sampled at another location. However, we cannot know to what extent. In practice,
the objective is not only to estimate the SU but to evaluate its influence in satellite validation
statistics. It should be kept in mind that the SU varies in time but it has a spatial origin. In
contrast, satellite validation statistics are temporal.

Two different SU cases can be distinguished: the sampling uncertainty of the locations
(SUL), when the satellite observations are compared to time series from individual ground sta-
tions xi, and the sampling uncertainty of the mean (SUM), when the satellite observations
are compared to the sample spatial average of multiple ground series (the network average or
NAvg). The scope of this chapter is to provide procedures to evaluate the uncertainty in the
satellite (temporal) validation statistics that is due to the SUL and the SUM, in the form of
confidence intervals. The premise is that the approaches developed should be easily applicable
to any region of study, so that a standard protocol could be established in the future in satellite
validation campaigns.

5.1 Assessment of the sampling uncertainty of individual loca-
tions (SUL)

One of the most frequent cases of satellite SM validation approaches consists in comparing the
satellite observations with the measurements of only one in situ station. Such is the situation
when validating using sparse networks like SCAN or SNOTEL. The in situ series and thus, the
statistics obtained, would be different if the in situ samples were taken at a different location:
they are affected by the sampling uncertainty of the locations (SUL).

Intuitively, if SM-related factors such as soil composition, vegetation, topography and precipi-
tation, affect homogeneously the study area, then the sampling uncertainty is expected to be
small. For a given surface size and number of sampled locations, the SUL is more important as
the spatial variability of the area increases. In addition, the SUL is not constant in time because
the spatial distribution of SM is not either. Chapter 2 showed that the spatial distribution of
SM and its respective mean and variance, vary in time.

Satellite SM products are usually validated by comparing them to point in situ SM measure-
ments under the form of time series. Their similarity is evaluated through a set of metrics,
namely correlation (R), bias (B) and standard deviation of the differences (STDD). The statis-
tics obtained are temporal but they are affected by the SUL: they would have been different
if the ground station had been placed at another location within the satellite footprint. The
approximate influence of the SUL in validation statistics can be observed in one of the figures of
the introduction, Figure 1.8. There, one SMOS SM time series was compared with the in situ
series measured at different stations within the footprint and a wide range of possible statistics
was obtained.

The SUL is critical when comparing the performances of different large-support SM products.
This is easily explained with an example. We compare SMOS and AMSR2 soil moisture time
series with the in situ time series measured at station i1. The respective correlations obtained
are 0.7 and 0.8. Then, we compare the SMOS and AMSR2 series to a different station, i2, and
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we obtain 0.75 and 0.61 instead. Which of the two satellite SM products is closer to the in situ
measurements then?

The comparison between the SM products of the two satellites would be easier if we could draw
the confidence intervals (CIs) of the temporal correlation considering the SUL of the area of
study. If we knew that the 90 % CIs are [0.6, 0.77] for SMOS and [0.61, 0.81] for AMSR2, then
we could affirm that, at the view of the SUL and the statistics at the sampled locations, SMOS
and AMSR2 seem equivalent in terms of correlation for the region of study.

This section aims to provide an approach for translating the SUL into uncertainty of the temporal
validation metrics. As stated in the introduction of this chapter, the approach should be as
generic as possible. Section 5.1.1 describes the approach in overall and the sub-sequent sections
(5.1.2 - 5.1.7) describe each of the steps.

5.1.1 How to evaluate the contribution of the SUL to validation metrics?

As explained before, the SUL is intrinsically dependent on the spatial variability of SM. There-
fore, it can only be estimated if the spatial variability is estimated first. The typical spatial
sample size of dense networks allows to obtain multiple statistics for the same satellite footprint
(10-20 stations so 10-20 values). The dispersion of these statistics gives an idea of the impact
that the SUL has in them, but is not sufficient to directly deduce confidence intervals. Some
approach is needed to “fill” the distributions of statistics.

5.1.1.1 Proposed approach

For a given footprint area A, the computation of the CIs of the validation statistics could be
derived if we had access to the distributions of all the possible statistics within that area. Let
us suppose that at each time step t, SM(t) is a continuous spatial field, the distributions of
statistics could be obtained if we had access to all the point SM series in the area, xi(t) ∀i ∈ A.
The statistics could be simply obtained by comparing the satellite time series y(t) and each of
the point series xi(t) (Figure 5.1).

{xi(t)}, ∀i ∈ A
∆R,∆B,
∆STDD

y(t)

All possible point
time series

Observed large-
support time series

Statistics and CIs

Figure 5.1 – Necessary elements to obtain the distribution of validation statistics within a satellite foot-
print of size A.

In reality, we do not have access to all the possible point time series of the region, but models
can represent them and the continuous A area can be approximated by high-resolution grids.
There are two main types of models: physical and empirical. Physical models describe the
underlying physics of the process or target variable. Most of the hydrological and land surface
models that provide spatialized SM as an output are physically-based. This implies that they
are designed for specific environmental conditions or for a specific region of study. Moreover,
the statistical spatial distribution of the true SM field is not necessarily reproduced by the
model. Due to this, physical models do not seem appropriate for building a standard procedure
applicable to all validation regions.
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Empirical models describe the relationships between a set of variables (explanatory variables)
and the response variable (SM in this case), relationships that cannot necessarily be explained
from a physical point of view. The structure and coefficients of empirical models can be specific
to the area of study, but empirical models are usually simpler and much easier to build than
physical models. In some cases, the same model structure can be re-used for different regions.
For these reasons, empirical (or semi-empirical) modelling is selected in this chapter to simulate
SM time series.

With empirical modelling, if we have K measured in situ series in the region of study, then K
models can be built to reproduce their dynamics. However, the question on how to generate
all the possible time series within the region remains to be answered. Moreover, some kind of
spatial information should be necessary to spatialize them. We usually have access to spatial
information of the region of study because intensive ground campaigns are not rare in valida-
tion regions. However, it is not clear how to harmonize both temporal and spatial sources of
information.

As a summary, the procedure to evaluate the uncertainty in temporal validation metrics due to
the SUL should follow the following steps:

1. Find the models that match both the temporal dynamics of measured SM series and the
estimated spatial SM distribution:
1.1. Find an empirical temporal model f temp

i (t)
1.2. Find a spatial model gspat

A (t). The spatial model varies in time because the spatial
distribution of SM also varies in time

2. Simulate point time series xi(t) according to both the temporal and the spatial models
3. Compare each of the simulated series to the large-support series (satellite) y(t) and derive

confidence intervals for the statistics ∆R,∆B,∆STDD

This is illustrated in Figure 5.2 and described in detail in the following sections. It is important
to highlight that the temporal model should reproduce quite accurately the dynamics of the
in situ measurements so that the simulated series can replace in situ measurements in the
validation of satellite products.

gspat
A (t)

{f temp
i (t)}, ∀i ∈ A

{xi(t)}, ∀i ∈ A
∆R,∆B,
∆STDD

y(t)

Spatial variability model

Temporal models

All possible point
time series

Observed large-
support time series

Statistics and CIs

Figure 5.2 – Procedure to estimate the effect of the sampling uncertainty in validation statistics.

5.1.1.2 Datasets

The feasibility of the whole procedure is tested for the Little Washita validation region. Examples
with the SM datasets acquired for this region will be included at each of the steps of the
procedure.

The in situ dataset consists in the SM time series measured at 5 Little Washita stations
(#4, #6, #9, #10 and #13) for the period 2013/01 - 2013/06 (6 months). Only 5 out of 20
were selected because the aim is to simply show the feasibility of the procedure presented in this
chapter. These 5 specific stations were selected because they did not present any gaps for the
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period of study and temporal semi-empirical models with a reasonably good fit were easily found
for them. I dit not try to find a model for the other stations of the network, so they could be
used for further validation in future studies. As satellite datasets, both SMOS L2 and AMSR2
LPRM soil moisture time series for the same time period and region are used. The series are
filtered with the same quality thresholds as in previous chapters (SMOS: RFI ≤ 10 % and DQX
≤ 20 %; AMSR2: quality mask < 68). A detailed description of the SMOS and AMSR2 soil
moisture products was included in sections 3.3.3 and 4.4.1.1, respectively.

5.1.2 Temporal model

The scope of this section is to find an empirical or semi-empirical temporal model to generate all
the possible point time series xi(t) for the Little Washita region. SM time series have two char-
acteristic temporal patterns: sudden peaks due to precipitation and exponential-like dry-down
decays due to various factors (e.g. infiltration, soil type, vegetation). These two features are well
represented in the temporal semi-physical model of Pan et al. (2003), already used in chapter 3.
Unfortunately, although Pan’s model was able to represent well the characteristic SM dynamics,
the fit between the output modelled SM and the measured SM was not satisfactory enough for
the current application (they differed in decay patterns and the minimum and maximum values,
see Figure 3.6). The scope is now to find a model able to exactly reproduce the measured SM
series. In other words, over-fitting is desired in this particular context so that the modelled
series xi(t) can be considered as true in situ series.

I propose to develop an empirical polynomial model with a similar structure to that of Pan’s:
at time t+ 1, the increase of SM depends on the previous precipitation prect and decays follow
an exponential function whose exponent depends on the soil depth Z, the sampling period ∆t
and the previous vegetation leaf area index LAI t. The Pan’s model depended on additional
physical parameters like drainage, SM loss and vegetation interception. The model developed
here is considered semi-empirical because it relies in a reduced number of physical parameters
and variables and their functional relationships are not physically-based.

The general structure of the temporal model f(·) is given by the following two equations:

f(SM t) = SMt+1 =
{

SM t + fp(prect,SM t), if prect > 0
SM t · e−fd(LAI t,SM t)·∆t

Z , otherwise
(5.1)

where fp(·) and fd(·) are polynomial functions, also referred as the peak model and the decay
model, respectively. The fp(·) and fd(·) models are obtained by least-squares fitting (Levenberg-
Marquardt method) of different polynomial functions to the observed SM, precipitation and LAI
data. The equations obtained are:

fp(prect,SM t) = a00 + a10SM t + a01prect + a20SM 2
t + a02prec2

t + a11prectSM t (5.2a)
fd(LAI t,SM t) = b00 + b10SM t + b01LAI t + b20SM 2

t + b11LAI tSM t (5.2b)

The same model structure (but with different a and b coefficients values) was found for the
5 Little Washita stations The construction of the models and the obtention of the a and b
coefficients for the peak and decay models is described in detail in Appendix E. As an example,
the modelled series for station #9 is shown in Figure 5.3. The fit is not perfect, but represents
with sufficient accuracy the measured SM series.
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Figure 5.3 – Final model fit for station #9

Finally, it is important to highlight that
the temporal models here are designed for
the finest temporal sampling available,
∆t=30 min in the case of Little Washita
series.

5.1.3 Spatial model

The only physical variables used by the
temporal model are precipitation, LAI
and SM. A way to spatialize the tem-
poral model would consist in providing
high-resolution maps of the 3 variables,
SM included. Obviously, if we knew the
true SM field for each time step, there would not exist any sampling uncertainty problem to
solve. Instead, we can estimate the statistical spatial distribution of SM. On the one hand, the
spatial PDF of SM can be estimated from intensive ground sampling, which is usually conducted
when a new in situ network is deployed or during specific temporary validation campaigns. On
the other hand, the spatial PDF of SM has been studied several times in literature. This litera-
ture was reviewed in Chapter 3. It was concluded that the spatial distribution of SM can
be inferred from the spatial mean SM level: the distribution function is similar to a beta,
right- and left-skewed to the limits of the SM range (∼0-0.5 m3/m3) and symmetric bell-shaped
in the middle SM range. This was true at least for areas similar to the Little Washita region,
with no abrupt topography and low homogeneous vegetation.

I propose to use this knowledge to build the spatial model. In the case of the Little Washita
region, I developed a simplistic model based on existing literature since I did not have access to
intensive ground sampling data. Three important assumptions are made:

(i) The spatial PDF at each time step is modelled as a beta function
(ii) The mean of the available in situ samples at each time step (the network average, NAvg)

is a good representation the most probable value of the population (mode)
(iii) The standard deviation of the available in situ samples at each time step (σ̂t,insitu) is a

good representation of the standard deviation of the population

Assumption (i) is valid except if fractional precipitation occurs within the footprint, in which
case the distribution is bi- or multi-modal (Ryu and Famiglietti, 2005), depending on the contrast
between the areas affected and not affected by precipitation. Regarding assumption (iii), the
variance calculated with 5 stations is highly uncertain (the sample variance could be far from
the population variance), more uncertain than the respective sample mean. However, the level
of uncertainty is unknown. To my knowledge, there is not any study relating the sample size
and the spatial SM variance within satellite footprints. The only few related publications are
dedicated to the spatial mean or the coefficient of variation (CV) at best, and their results
are very different: the necessary spatial sample size ranges from 50 locations in 160x160 fields
(Wang et al., 2008) to only 6 locations in 102 km2 (Brocca et al., 2012).

Finally, the spatial distribution of SM at time t can be expressed as:

Xt ∼ Bα,β(mode = NAvg, σ = σ̂t,insitu) (5.3)

The α and β parameters of the beta distribution Bα,β are derived from the values of the mode
and the standard deviation (the calculation is not shown here).

Figure 5.4 shows the spatial PDFs produced with a standard deviation of 0.05 m3/m3 and modes
0.1, 0.25 and 0.4, from left to right. The minimum and maximum possible values of the beta
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distributions have been rescaled to 0 and 0.5, respectively. These are considered as the minimum
and maximum possible SM values for the region of study.
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Figure 5.4 – Spatial model: spatial PDFs produced with a standard deviation of 0.05 m3/m3 and modes
0.1, 0.25 and 0.4, from left to right

5.1.4 Spatio-temporal simulations

Once the temporal and spatial models are obtained for the region of study, the simulation of
xi(t) time series can be undertaken. The scope is to produce a Monte Carlo simulation of M
point soil moisture time series that respect both the statistical spatial law and semi-empirical
temporal law:

M simulated point time series: {x1(t), x2(t), . . . , xM (t)} t = 0, 1, . . . , N − 1

A possible solution is to randomly sample from the modelled spatial distributions at each time
step. Unfortunately, nothing ensures that the dynamics of the temporal model f(·) are respected:
the output time series will have a very high level of white noise and they will not exhibit typical
SM dynamics. A second alternative would consist in obtaining M samples from the spatial
distribution at t=0, ~x(t = 0) = {x1, x2, . . . , xM}t=0, then propagate them with the temporal
model. This ensures that the spatial distribution at t=0 and the temporal laws are respected,
but it does not ensure that the spatial distributions at t6=0 are respected.

M simulated samples at time t : ~x(t) = {x1, x2, . . . , xM}t=0

The second alternative could work if a way to harmonize the propagated samples with the spatial
distribution at t 6=0 were found. This is actually possible with statistical mapping approaches.
I propose to match the distribution of the propagated samples, f(~x(t)) or ~xtemporal, with the
distribution of the spatial model at the same time step, ~x(t + 1) or ~xspatial. This mapping
approach can be performed through CDF matching or quantile mapping. The CDF of a
random variable X is defined as the probability of X to have a value smaller or equal to x:

CDF (X) = Pr[X ≤ x] (5.4)

The CDF matching is a non-linear transformation that can be applied to any distribution type.
The transformation is suitable when the distributions have similar shapes. In the case of ~xtemporal
and ~xspatial, the CDF matching is expressed as

~xtemporal,NEW = CDF−1
spatial(eCDFtemporal(~xtemporal)) (5.5)
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where eCDFtemporal(·) denotes the empirical CDF function of the distribution of propagated
samples and CDF−1(·) is the inverse of the theoretical CDF of the spatial distribution.

Here, the eCDFs are approximated by dividing the range of ~xtemporal values in as many steps
(quantiles) as there are values. Then, values in between the quantiles are approximated to the
closer lower quantile. The inverse CDFs (spatial model) are obtained analytically for a beta
distribution function whose parameters are derived from in situ measurements (Equation 5.3).

The spatio-temporal simulation is done sequentially as follows.

While t < N :

1. At t=0, randomly sample M times from the spatial PDF Xt=0 (Equation 5.3):
~x(t = 0) = {x1, x2, . . . , xM}t=0

2. Propagate ~x(t) to t+1 with the temporal model f(·) (Equation 5.1):
~xtemporal = f(~x(t))

3. CDF matching: transform the propagated samples to match the theoretical spatial
distribution at t+1 (Equation 5.5):

~xtemporal → ~xtemporal,NEW

4. Update the time series:
~xt+1 = ~xtemporal,NEW

5. Update the time step and go back to step 2
t = t+ 1

There is still a remaining issue. If the network is represented by K stations, then K temporal
models are available, with their respective coefficients and the input variables for the concerned
locations. In the Little Washita sample case, K=5 stations were considered (#4, #6, #9, #10
and #13). Which of the 5 temporal models should be used to propagate the samples in
step 2? In this experiment, the models are assigned randomly to the samples generated at t=0
following an uniform distribution. The assignation is done only at t=0: at the following time
steps, the samples that have been propagated with a specific model, will be again propagated
with the same model. This implicitly assumes that each of the stations represents 1/K of the
surface. Note that if the relative representativeness weights of the stations were known, then
the random selection could be done based on that distribution. For example, if station #4
represented 30 % of the area, then 30 % of the spatial samples could be randomly selected and
propagated with the temporal model of station #4.

The full procedure is tested with the Little Washita example for M=10,000 simulations. Fig-
ure 5.5 displays the distributions obtained at t=3000 and t=6000 (Figures 5.5a and 5.5b, re-
spectively). The distribution of SM samples at time t is in the top row, while the CDF-matching
operation is illustrated in the bottom row. The differences between ~xspatial (red) and ~xtemporal
(grey-blue) are small. This is expected in the absence of precipitation since the difference in
SM is very small between 2 consecutive time steps (∆t is 30 min in the Little Washita series).
The similarity between ~xspatial and ~xtemporal is also beneficial for the CDF-matching approach,
which succeeds to match the ~xtemporal samples to the theoretical spatial CDF. For example, in
Figure 5.5a, the frequency of the x=0.14 m3/m3 value is corrected from 1.25 % to 2 %.

The M=10,000 simulated series for the Little Washita region are shown in the 2 top rows of
Figure 5.6: in the top row, each series is represented by a different coloured line and in the 2nd

row, the density of series is represented in a degraded grey colour scheme. The simulated series
seem to successfully follow the typical SM dynamics in the region. The average simulated series
and the average measured series differ a little as expected, since the average of the 5 measured
series was used as the mode of the spatial distributions. The spatial standard deviation (3rd row)
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(a) At time step t=3000 (b) At time step t=6000

Figure 5.5 – Distribution of samples before and after CDF-matching

is mostly respected by the simulation. The largest differences between the standard deviation
of the simulated and that of the measured series appear when the fit between the simulated and
the real dynamics is the worst. This is evident when Figure 5.6 is compared against Figure E.4
in Appendix E. When comparing the simulated and the measured series, the periods from the
10th to the 31st of March and from the 25th of April to the 15th of May are the ones that show
the largest differences in SM (Figure E.4) and thus, in standard deviation (Figure 5.6).

Figure 5.6 – Simulation of M=10,000 point series for the Little Washita region. In the top row each
coloured line is one different simulated series and in the 2nd-top row, the density of series is represented
in gray. The 3rd row shows the spatial standard deviations of the 5 measured series and of the 10,000 sim-
ulated series. The bottom row shows the 5 measured in situ series.
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5.1.5 Calculation of statistics and final results

Once the simulation of the point series xi(t) has finished, they can be compared to the large-
support (satellite) time series y(t) and the respective temporal statistics can be computed. For
example, in the case of correlation (R), M possible scores will be produced as follows:

Ri = R{xi(t), y(t)}, i = 1, 2, . . . ,M (5.6)

Considering the Little Washita experiment, the correlation (R), bias (B) and standard deviation
of the differences (STDD) are computed for 3 cases, depending on the large-support dataset
used: a) the spatial average of in situ series (network average, NAvg), b) the SMOS time series
and c) the AMSR2 time series. The STDD (also called unbiased RMSE), is chosen instead of
the root mean square error (RMSE) because it is not affected by the bias:

STDD =
√
E
{[

(y(t)− µ̂y)− (xi(t)− µ̂xi)
]2} =

√
RMSE2 −B2 (5.7)

where y(t) is the large-support SM series, xi(t) one of the simulated point SM series and µ̂ is
the sample temporal mean.

In the example, only the samples with simultaneous availability of in situ, SMOS and AMSR2
observations are kept, so that the statistics obtained for each pair are comparable. The final
total number of temporal samples is 52. The selected large-support time series are shown in
Figure 5.7, together with the simulated series (top row) and the 5 in situ series considered
(bottom row). The temporal dynamics of the NAvg, SMOS and AMSR2 seem in agreement
witht those of the measured and simulated point series.

Figure 5.7 – The network average (NAvg), SMOS and AMSR2 series on top of the simulated point series
for the Little Washita region

Figure 5.8 shows the distributions of statistics obtained from the comparison of the simulated
time series and the 3 large-support datasets (the NAvg (a), SMOS (b) or AMSR2 (c)). In
addition, each large-support dataset is compared to the average of the simulated series (vertical
red line) and to the NAvg (vertical red bold line). The distance between these 2 lines is small
in all cases. This supports the use of the simulated series as a reasonable proxy of the
overall temporal dynamics of the area. The other relevant aspect is that the distributions
here are far from normal, which justifies the use of non-parametric methods like Monte Carlo
for assessing the uncertainty in temporal metrics. This is not surprising since the statistical
formulas of the correlation and of the STDD are not linear, so even if the compared datasets
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followed a normal distribution, the outputs would not necessarily do the same. Finally, it is
also striking that most of the distributions in Figure 5.8 present peaks. They are associated
with the specific temporal dynamics of the 5 in situ series used as modelling references. Most
probably, increasing the number of reference series would help produce smoother distributions.

(a) Comparison with the NAvg (b) Comparison with SMOS (c) Comparison with AMSR2

Figure 5.8 – Comparison of the network in situ average (NAvg), SMOS and AMSR2 time series with the
simulated point series

The spread of the distributions is considerable in all the plots of Figure 5.8. Regarding correla-
tion, the simulated series show correlation values with the NAvg that range between 0.7 and 1,
and with SMOS between 0.45 and 0.8. In the AMSR2 case, most of the correlation samples
are concentrated around a peak between 0.7 and 0.8. This peak is hidden in the picture by
the vertical lines and accounts for around 20 % of the samples. It is worth reminding that the
distributions presented are not exact representations of the spatial variability of the region, but
are good representations of the range of statistical possibilities (assuming beta distribu-
tions). This implies that, in the case of SMOS and AMSR2, we could rarely expect correlations
above 0.8, supposing that the in situ series used as reference were sufficiently representative of
the temporal dynamics of the region.

Regarding the bias (Figure 5.8, middle row), the shape of the distributions is the same for the
3 large-support datasets, which is expected since the distribution of means of the simulated
series is the same for the 3 cases. The bias uncertainty is large, much more than the STDD
uncertainty, of approximately 0.2 m3/m3 between the 5-95 % CI. This may be an artefact of the
models and the simulation. Whether the same distribution of biases could be found in reality
needs further investigations and dedicated in situ campaigns.

The dispersion of STDD is small although non-negligible: around 0.025 m3/m3 for the 3 cases
(Figure 5.8, bottom row). It seems that the models used produce variations mainly in correlation
and bias. As suggested before, further field-work studies are needed to verify these results. The
NAvg is the large-support dataset that whose error structure is the most similar to the in situ
dataset. For this reason, the comparison between the simulated series and the NAvg serve as
a minimum bound for the SUL. The lower limit of the STDD distribution for the NAvg
is 0.01 m3/m3, so it can be stated that the minimum error we could expect due to sampling
uncertainty is 0.01 m3/m3.
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5.1.6 Inter-comparison of validation statistics affected by the SUL

The final objective is to state whether the difference between the validation statistics of two
different SM products are significant or not given the SUL. The two SM products under validation
can concern different satellites, models or dataset versions. Although the terms significance and
confidence interval (CI) are not equivalent, CIs provide a good first approximation. More about
significance and CIs can be found in the shaded box below.

A way to ease the interpretation is to present the information in Figure 5.8 as box plots. The
statistics for the SMOS and AMSR2 cases are presented under the form of box plots in Figure 5.9,
where the median and the 5 %, 25 %, 75 % and 95 % percentiles are depicted. Although
trivial, this representation is important since it compares directly the validation of two satellites
taking into account the sampling uncertainty. For further information, the statistics obtained
for the 5 reference in situ series when compared to the satellite datasets are depicted with
triangle markers. The markers are within the limits of the distributions, which confirms that
the simulations were reliable enough. Moreover, a part of the simulated series present better
statistics than those of the measured in situ series, confirming that the simulation did not simply
consist in injecting uncorrelated noise.

Figure 5.9 indicates that the differences in correlation and bias between SMOS and AMSR2
analyses are not significant. For example, supposing that only station #6 was available, its
correlation with SMOS is higher (0.75) than with AMSR2 (0.67) but given the spread of the
distributions in Figure 5.9a, it cannot be assumed that this difference in correlation is significant:
if we had sampled at another location, SMOS would not have been necessarily better than
AMSR2. Similarly, no meaningful differences are found for the bias. On the contrary, the
distributions of STDD are well separated and so the almost 0.02 m3/m3 of separation between
the STDD of station #6 and SMOS and that of station #6 and AMSR2 is significant, even after
taking into account the sampling uncertainty in this region.

(a) Correlation (b) Bias (c) STDD

Figure 5.9 – Validation of SMOS and AMSR2 datasets with 5 in situ series with simoultaneous assessment
of the statistical sampling uncertainty (box plots). In the box plots, the middle red line is the median,
the limits of the box are the 25 % and the 75 % quartiles and the whiskers are the 5 % and the 95 %
percentiles of the uncertainty distribution. Statistics falling outside the 90 % percentile are represented
as blue circles.
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A note about confidence intervals (CIs) and significance. CIs and statistical signifi-
cance are intrinsically related, although they are not the same. A 90 % CI, for example, is the
range that covers the mean value 90 % of the time, not the probability of the mean to fall inside
that range. If the CIs of two statistics do not overlap, then their mean values are significantly
different. The opposite is not necessarily true (Schenker and Gentleman, 2001): two statistics
can have overlapping CIs, yet be significantly different. The significance of the difference in
the statistics is evaluated by obtaining the probability of finding a null difference by chance
(hypothesis testing). This is not straightforward when the statistics are obtained for serially
correlated data (e.g. Ebisuzaki, 1997; Holm, 2015) and should deserve a full chapter. For this
reason, herein significance is evaluated with CIs instead of with hypothesis testing. The aim of
this chapter is to simply provide general guidelines on how to assess the impact of the sampling
uncertainty in the statistics used in satellite validation campaigns.

5.1.7 Discussion

The procedure presented in this section related the sampling uncertainty of the locations (SUL)
to the uncertainty in temporal validation metrics. It has for main advantage to be a standard
procedure applicable to any region. Empirical temporal models and statistical spatial models
can be found for any area under study. The approach only requires some in situ SM and
precipitation time series measured in the region of study as prerequisites.

However, the procedure presented has some limitations. First, it requires that the ensemble
of measured in situ SM and precipitation series represent well the temporal dynamics of the
region. If they are not sufficient to represent the dynamics, then the confidence intervals obtained
for the validation statistics are underestimated. This is particularly important in the case of
sparse networks, where only one station per satellite footprint is available to validate satellite
observations. Although underestimated, the confidence intervals could still be interpreted as the
minimum bound of the uncertainty. For this reason, I recommend to use the procedure also for
sparse networks.

Unlike typical model-regression approaches, here over-fitting is a desired characteristic. The
temporal models should provide outputs that fit the in situ dynamics as much as possible.
Moreover, the same period is used for constructing the model and for simulation. This seeks
to have a distribution of point-satellite statistics that are a good representation of the reality.
It is not the first time that satellite SM products are validated with models. However, in
such cases one particular remark is always addressed: it is not known whether the model is a
good representation of the true SM and measurements are considered better options if they are
available. The over-fitting here seeks to circumvent this weak point in this particular context.

Even with over-fitting, the models are still sources of uncertainty, since they are representations
of the reality and not the reality itself. The temporal model error can be assessed by direct
comparison to the reference in situ series used to build it. However, it is not possible to assess
the error of the statistical spatial model since the region is too large to be densely sampled.
Here, I have adopted a simple model that relies on literature review, where spatial distributions
are more or less skewed depending on the mean SM level. However, in many occasions, SM
spatial distributions exhibit more complex shapes such as bi-modal shapes.

When more than one station is available within the satellite footprint, more than one temporal
model is possible. The question about how they should be assigned to each of the simulated
samples at t=0 is non-trivial. By default, I have used an uniform random scheme where each
model is applied to 1/K of the simulated series, being K the number of in situ stations. Other
sampling schemes could be used if the representativeness of each station was known.

Another limitation of the procedure is related to the significance of the in situ spatial mean
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(NAvg) and standard deviation, which are used to build the spatial model. They are calculated
based on a small sample size (≤ 20), 5 in the Little Washita sample case, so their uncertainty
is high. Their uncertainties can be statistically estimated with non-parametric approaches like
bootstrap. The following section covers this aspect.

Finally, it is important to remind that the approach presented here is a geo-statistical simu-
lation that generates SM values according to a prescribed statistical spatial law and the typical
temporal dynamics of the region. The uncertainty distributions should not be interpreted as the
actual statistics but as the possible statistics for the region of study from a statistical perspec-
tive.

5.2 Assessment of the sampling uncertainty of the mean (SUM)

When satellite SM time series are validated with the aid of in situ dense networks, they are
compared to the network average (NAvg), which is the spatial average of the SM sampled at
a set of defined locations. The NAvg is an estimation of the mean SM of the area. The NAvg
suffers from the same issues as the SUL and the estimated mean is different depending on the
number of samples and their locations. This is usually referred in the statistical literature as
the uncertainty of the sample mean. Herein, the term sampling uncertainty of the mean
(SUM) is adopted to stress that the uncertainty is due to sampling. Intuitively, for a given
number of sampled locations, the more important the spatial variability is, the higher the SUM
should be. Similarly, for a given spatial variability level, the lower is the number of sampled
locations, the higher the SUM should be. This section seeks to find a standard procedure for
assessing the SUM and its influence on temporal validation statistics.

5.2.1 How to assess the uncertainty of the mean?

The evaluation of the uncertainty in temporal validation statistics due to the SUM concerns two
aspects:

1. The assessment of the SUM
2. The propagation of the SUM to the temporal validation statistics

It is necessary to decide first the methodology for assessing the SUM (1st step). The imple-
mentation of the 2nd step, the propagation of the SUM to the temporal validation statistics,
will be different depending on that 1st step. This section describes the approaches available for
assessing the SUM.

There are two main approaches to assess the SUM: geostatistical and purely statistical. Geosta-
tistical approaches consist in building a model of the surface based on statistical relationships
between different geophysical variables, the output variable (soil moisture) included. The most
common example of geostatistical approaches is kriging, which was first introduced in the 1950s
by Daniel Krige. In short, kriging provides an estimate of the variable under analysis at a specific
location based on a linear interpolation of some available measurements. Each measurement lo-
cation contributes differently to the interpolation depending on the separation distance and the
degree of spatial correlation. The two parameters are summarised in a variogram that represents
the mean variance between two points as a function of their separation distance. Block-kriging
is a type of kriging that, instead of estimating the value at a location, estimates the average
value of a whole area (Cressie, 1993, pp. 284-286; Webster and Oliver, 1992, pp. 150-154). It has
been used, for example, for upscaling SM point measurements to the field scale (Wang et al.,
2015b). The main advantage of block-kriging is that it provides simultaneously an estimate of
the spatial average µ̂, the spatial variance σ̂2 and the interpolation error or SUM. To do that,
the experimental variogram for the variable of interest (soil moisture) is first computed based on
measurements. Then, a model is found for the variogram and the block-kriging equations can be
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applied. The estimation of the variogram is based on the underlying assumptions of second-order
stationarity (Webster and Oliver, 1992, p. 72) and on a good sample size and spacing (Webster
and Oliver, 1992, p. 75-93). Second-order stationarity in space means that the spatial mean and
variance of the variable of interest are constant over the area.

Block-kriging could be used to estimate the spatial mean, variability and SUM at the satel-
lite footprint scale from in situ measurements. However, SM is not second-order stationary
at such extents and the available number of samples is too low (the sampling size in perma-
nent dense in situ networks is between 10 and 20 locations). Second-order stationarity could
be circumvented with detrending approaches but the sampling size problem is unavoidable. I
conducted some tests to evaluate the necessary sampling size to build reliable SM variograms
in the Little Washita region. I obtained the empirical variograms of both measured and mod-
elled (DISPATCH) SM data for different sample sizes and I found that a minimum sampling
size of around 100 was required for moderately humid conditions. Smaller number of samples
produced empirical variograms that were very “noisy” so fitting a variogram model was difficult.
The 100 sampling size is consistent with former studies (Webster and Oliver, 1992). Other krig-
ing approaches like block co-kriging could provide smoother variograms, because they estimate
the unknown SM information from other related geophysical variables (e.g. temperature, vege-
tation) available with higher density. However, the related variables used and the detrending are
region-dependent. The main premise for the approaches presented in this chapter is that they
should be as generic as possible and easily applicable to any validation site. For this reason,
block co-kriging is not considered here.

Statistical methods can also provide estimates of the sampling uncertainty of the mean. If
the spatial distribution of SM is known, then analytical approaches can be used. When the
distribution is normal, the calculation of the confidence interval (CI) for a desired coverage level
1− α is straightforward. The [100 · α/2, 100 · (1− α/2)] % CI defines the range that is likely to
contain the mean 100 · (1 − α) % of the times. For example, if α = 0.10, then the [5, 95] % CI
interval contains the population mean µ with a 90 % probability. The lower and upper values of
the CI are calculated as a function of the sample mean µ̂, the value of the student-t distribution
at α/2 confidence level with K-1 degrees of freedom, the sample spatial variance σ̂2 and the
number of spatial samples K (Helsel and Hirsch, 2002, p. 75):

[CIl, CIu] =
[
µ̂− t(α/2,K−1)

√
σ̂2/K, µ̂+ t(α/2,K−1)

√
σ̂2/K

]
(5.8)

If the population distribution is not normal, the samples have to be transformed to match a
normal distribution. This is possible in the case of skewed distributions thanks to log-normal
transformations (Helsel and Hirsch, 2002, p. 76) or Box-Cox transformations (Wang, 2001).

When applied to SM samples, the analytical method presents two major drawbacks: First, the
spatial distribution of SM is not necessarily known and it is not rare that it exhibits shapes that
cannot be transformed to normal (e.g. bimodal distributions). Secondly, in analytical methods,
the centre point of the CI is the sample mean, implying that there is no bias between the sample
and the population mean, which is not necessarily true. As a consequence, analytical methods
will not be considered here.

Non-parametric bootstrap approaches allow to approximate the population distribution and
to obtain the respective CI and bias without requiring preliminary knowledge on the population
distribution. The population distribution is reconstructed by resampling the available sample.
Since no preliminary assumptions are needed, bootstrap is a generic approach that can be used in
any validation area to obtain the uncertainty of the spatial SM mean. Since bootstrap generates
an ensemble of possible spatial means, these can be directly used for computing the ensemble
of possible satellite validation statistics (see next section). For these reasons, bootstrap will be
used for assessing the SUM. Bootstrap has also been used in the SM literature to assess the
spatial mean and the SUM (Ryu and Famiglietti, 2005; Wang et al., 2008; Cosh et al., 2006)

121



and to assess the statistical uncertainty of the error variance in validation studies (Yilmaz and
Crow, 2014; McColl et al., 2014; Draper et al., 2013).

5.2.2 Bootstrap approaches

Efron (1979) introduced the bootstrap approach for assessing the statistical uncertainty of a
summary statistic. The bootstrap is an empirical method, applicable to any population dis-
tribution and that does not require preliminary knowledge of the underlying distribution of
the statistic. The sample itself is used to estimate the population, which is approximated by
resampling the available sample. For this reason, the accuracy of the error estimate is highly
dependent on the sample size. The underlying hypothesis of this method is that the sample is
representative of the population.

Let us suppose we want to estimate the statistical uncertainty of a statistic q̂ that has been
computed on a sample (x1, x2, . . . , xK) derived from the (unknown) population X. A first
bootstrap sample is built by randomly resampling it with replacement: X∗b = (x∗1, x∗2, . . . , x∗K).
Then, the summary statistic q∗b for that bootstrap sample can be computed: q∗b = q(X∗b ). The
procedure is repeated NB times so a total of NB bootstrapped samples and thus, NB bootstrapped
statistics, are obtained. For example, if K=5 and NB=100, we can have a first bootstrap sample
that is X∗1 = (x2, x2, x5, x3, x3), a second bootstrap sample that is X∗2 = (x1, x3, x4, x5, x5),
and so on. This provides an ensemble of bootstrap statistics (q∗1, q∗2, . . . q∗100) that describes a
distribution.

The bootstrapped statistics form a distribution whose mean and standard deviation can also be
estimated:

µ̂∗ =
∑NB
b=1 q

∗
b

NB
(5.9)

σ̂∗ =

√∑NB
b=1(q∗b − µ̂∗)
NB − 1 (5.10)

The difference µ̂∗ − q̂ is the bias of the estimate and σ̂∗ represents the random error of the
estimate.

Confidence intervals (CIs) can also be obtained from the bootstrapped distributions. The
method selected here for computing CIs is the percentile method (Carpenter and Bithell, 2000),
which consists in a simple calculation of the percentiles of the observed distribution of the boot-
strapped statistic. The advantages of the percentile method is that it is easy to implement and
is transformation invariant. “Transformation invariant” implies that if the CI obtained for X is
[xCIl

, xCIu ] and if g(·) is a monotonic transformation, the CI of g(X) equals [−g(xCIl
), g(xCIu)].

A good review of the available CI methods can be found in (DiCiccio and Efron, 1996; Carpenter
and Bithell, 2000).

In this section, bootstrap is used for assessing the statistical uncertainty of the NAvg series (q̂
in Equations 5.9 and 5.10) and how this uncertainty affects the statistics obtained between the
NAvg and the satellite time series. This is done as follows:
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1. Randomly select the station time series of the in situ network under study. This conforms
the initial sample (x1, x2, . . . , xK). Note that each xi is a time series measured at a different
station i and that K is the total number of available stations.

2. Apply bootstrap to obtain NB in situ NAvg series: NAvg∗ = (NAvg∗1(t), . . . ,NAvg∗NB
).

Note that the bootstrap is spatial, not temporal: each full series xi is an input sample for
the bootstrap.

3. Compare the bootstrapped in situ average series, NAvg∗, with the satellite time series
y(t) and obtain NB values of correlation (R∗), bias (B∗) and standard deviation of the
differences (STDD∗). These are obtained as follows (example for the correlation only):

R∗ = (R∗1, R∗2, . . . , R∗NB
) / R∗b = R{NAvg∗b(t), y(t)}, b = 1, 2, . . . , NB (5.11)

5.2.3 Dependency between the SUM and the sample size

One of the critical aspects of bootstrap is the number of samples available. The lower the number
of samples is, the more probable the bootstrap estimate is wrong. For example, the distribution
of bootstrapped means calculated with only 2 samples is probably further from the true mean
than the distribution of the bootstrapped means calculated with 100 samples. Is the number of
stations in dense networks good enough to produce accurate bootstrap statistics? The aim of
this section is to answer this question by evaluating the width of the confidence intervals of the
validation statistics (R, B, STDD) as a function of the number of stations.

5.2.3.1 Datasets

The datasets are similar to those in the SUL procedure (section 5.1.1.2). The 20 stations of the
Little Washita region are considered here and the period 2013/01 - 2013/06 is again selected.
As satellite datasets only the SMOS L2 SM product is considered. SMOS series are filtered with
the same quality thresholds as in section 5.1.1.2.

Initially, the experiment was conceived so that the bootstrapped series were also compared with
AMSR2 time series. For this reason, only the samples with simultaneous availability of in situ,
SMOS and AMSR2 observations are kept (52 in total). AMSR2-in situ comparisons are not
shown here because the SMOS-in situ comparisons are sufficient for illustrating the effect of the
number of stations in the uncertainty of the validation metrics.

5.2.3.2 Methodology

In overall, the simulation takes place in 3 stages:

For K'=2 to K:

1. Select K' time series out of the K available in situ series and obtain the respective boot-
strapped NAvg∗. K equals 20 in the Little Washita network.

2. Compare with the satellite time series and obtain the bootstrapped R∗, B∗ and STDD∗.
3. Increment K' by one and go back to step 1.

The number of selected samples K' starts at 2 because K'=1 simply represents the individual
stations of the network and not any spatial average series.
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The first step of the simulation is itself a small selection algorithm where multiple different
subsets of size K' are used. Given K available stations, there are multiple combinations of
stations that can produce subsets of size K' < K. Ideally, we should take all the possible subsets.
However, this is computationally very expensive when K = 20 like in the Little Washita case.
The number of combinations without replacement (subsets) is given by the expression

(K
K′
)
. The

maximum number of subsets is reached at K' = 10 and is
(20
10
)

= 184, 756. Supposing that the
number of bootstrap NAvg∗ time series were NB = 10,000 and that each sample had 50 values,
the final number of values would be ∼ 92.378 · 109, which makes 369.512 giga-bytes. This would
require a large hard-disk space and a extremely long execution time on a personal computer.
Since the aim of the experiment here is simply to serve for illustrative purposes, a reduced
number of subsets Nsubsets is selected: if the number of possible subsets is smaller than
1000, then Nsubsets is set to this number; otherwise, Nsubsets is set to 1000. The algorithm for
step 1 is integrated in the simulation and the complete approach is as follows:

Complete method

For K'=2 to K:

1. Obtain the bootstrap NAvg∗ for Nsubsets of size K' as follows.
For ns=1 to Nsubsets:

1.1. Randomly select one subset of K' time series (different from any previous one)
1.2. Obtain the NB bootstrapped NAvg∗ samples for that subset
1.3. Increment ns by one and go back to step 1.1.

A total of Nsubsets x NB bootstrapped NAvg∗ samples is available at the end of this step.

2. Compare with the satellite time series and obtain the bootstrapped R∗, B∗ and STDD∗.
3. Increment K' by one and go back to step 1.

In step 1.2, the number of bootstrapped samples NB has been set so it changes depending on
K'. This is because the number of possible combinations with replacement increases with K'.
Small subset sizes exhibit low number of possible combinations, so it is not efficient to use too
large numbers of bootstrap simulations. For example, for K' = 2, only 3 combinations are
possible so it is not efficient to use 10,000 bootstrap samples. The number of bootstrap samples
is arbitrarily decided as follows: If K' is smaller than 4, then NB is set to 100. If K' is between
4 and 6 samples, NB is set to 1,000. For larger number of samples, NB is set to 10,000.

5.2.3.3 Experiment and results

The Little Washita in situ time series are bootstrapped and compared to the respective SMOS
series following the procedure explained before. The SMOS time series were described in sec-
tion 5.2.3.1. Figure 5.10 shows the distributions obtained for the temporal correlation metric.
The distributions for the temporal bias and the temporal STDD are included in Appendix F.

As expected, Figure 5.10 reveals that the distributions of the statistics become narrower with
increasing sample sizes, i.e. the statistical uncertainty of the NAvg, the SUM, decreases with
increasing number of in situ stations. When only 4 or less series are available, the shape
of the distributions is noisy and present several sudden peaks. This is because the number of
possible combinations with replacement is low (3, 10 and 35 for K' = 2, 3 and 4, respectively).

In Figure 5.10, the increase of the SUM becomes less evident for sample sizes larger than 14. In
order to ease the analysis, Figure 5.11 directly presents the width between the vertical dashed
lines in Figure 5.10 (the 90 % CI) as a function of the sample size K', for each of the validation
metrics. The width of the CI decreases first very quickly with K', then slowly for larger values
of K' (K' ≥ 14). In this region and period, the original sample size of K = 20 seems a good
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Figure 5.10 – Bootstrap distribution of the correlation between SMOS and the in situ NAvg, as a function
of the number of in situ time series taken to compute the NAvg. The dashed line correspond to the median
and the dotted lines to the 5 % and 95 % confidence limits

compromise between the statistical uncertainty of the NAvg and the number of stations that
need to be maintained. When compared to SMOS, the uncertainty in correlation is 0.05, in bias
is 0.05 m3/m3 and in STDD is 0.004 m3/m3.
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Figure 5.11 – Width of the 90 % CI of the bootstrap distributions of the validation statistics, as a function
of the number of in situ time series taken to compute the NAvg in Little Washita
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It is important to highlight that this experiment implicitly assesses the SUL and the SUM at
the same time. When bootstrapping is performed within an only selected subset of K' stations,
then only the SUM is evaluated for that particular subset. When multiple different subsets
of K' < K stations are tested we are also implicitly answering the question “what would have
happened if the surface had been sampled at other different locations?” In other words, we
are evaluating the contribution of the SUL to the SUM. It should be noted however, that this
procedure underestimates the SUL because K=20 is far from being a dense sampling of the
surface and because it analyses the influence of the SUL in the SUM, not the SUL itself. For a
complete assessment of the SUL, the approach presented in section 5.1 is recommended.

5.2.4 Comparison of different SUM estimation approaches

The previous section has evaluated the uncertainty in the validation statistics that is due to the
SUM, as a function of the number of in situ stations used to estimate the NAvg. I suggested
that, when the number of selected stations was lower than the number of available stations
(K' < K), the evaluations of the SUM were implicitly affected by the SUL. However, the SUL
was underestimated because K=20 seemed an insufficient number of stations to represent it. A
possible solution is to use the point time series simulated in section 5.1 to assess the SUL, since
they are supposed to be a full sampling of the (statistical) SM field.

It is expected that the magnitude of the estimated SUM changes with both the number of
selected point series K' and the number of available point series K. The previous section showed
the dependence with K'. This section will address the dependence with the number of available
point series K.

5.2.4.1 Datasets and methods

Two datasets are used: the 10,000 point SM series simulated in section 5.1 and the 20 in situ SM
series of the Little Washita network. The period analysed is the same as in previous sections,
2013/01 - 2013/06 (6 months).

Only the dependence with the number of available point series K will be evaluated, so the
number of selected locations K' is fixed. K' is set to 5 to match the number of reference stations
used in the modelling of section 5.1. Regarding the number of available series K, three cases are
considered:

- Case A: K' = 5, K = 20
- Case B: K' = 5, K = 10,000
- Case C: K' = K = 5

The approaches to evaluate the SUM in each case are different:

- Case A: 1,000 different subsets of 5 series out of 20 in situ series are bootstrapped
- Case B: 1,000 different subsets of 5 series out of 10,000 simulated series are bootstrapped
- Case C: 1 only subset of 5 in situ series is bootstrapped (stations #4, #6, #9, #10, #13)

In case A, the SM field is under-sampled (20 locations), while B represents the case where the
field is fully sampled. In both cases, the influence of the SUL is implicitly assessed through the
random selection of different subsets of stations. Case C cannot account for the SUL since the
full set of available stations is used.

A total of NB=1000 bootstrap average series (NAvg*) are produced for each subset. Therefore,
cases A and B provide 1e9 NAvg* series and case C, 1000 NAvg* series. As in the previous
sections, these bootstrap average series are compared to the SMOS soil moisture series for the
same region and the respective temporal statistics are obtained (R∗, B∗ and STDD∗).
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5.2.4.2 Results

Figure 5.12 shows the temporal statistics obtained for each of the cases described in sec-
tion 5.2.4.1. Each column corresponds to a different case and cases are ordered from left to
right. The distributions of case C contrast with those of the other cases: they are noisy and
irregular. This is probably due to the low number of stations that makes the NAvg very unstable
and sensitive to each of the individual series. One of the in situ series is very different from the
others (#4), specially in terms of bias (this can be seen in the lowest plot of Figure 5.6). It is
not surprising then that the most important spikes appear in the bias distribution (2nd row of
Figure 5.12C). The distributions of the A and B cases are similar except for the STDD. It seems
that, by chance, the subsets obtained from the 10,000 simulated series are more similar in terms
of STDD than those obtained from the 20 in situ series.

(A) K'=5 from K=20
in situ series

(B) K'=5 from K=10,000
simulated series

(C) K' = K = 5
in situ series

Figure 5.12 – Temporal statistics and their respective uncertainty distributions obtained when validating
SMOS soil moisture series with only 5 ground series (K'=5). The uncertainty distributions are obtained
with 3 different approaches: A) Bootstrap 1,000 subsets of K'=5 series out of 20 in situ series; ; B)
Bootstrap 1,000 subsets of K'=5 series out of 10,000 simulated series; C) Bootstrap one group of K'=K=5
in situ series.

It seems that the CIs of the distributions of case C are slightly narrower than those of the other
cases. This supports the argument that case C only accounts for the SUM and not the SUL,
while cases A and B are also affected by the SUL. The exact CI widths of the distributions
are included in Table 5.1, together with their medians and a short description of the different
cases. Table 5.1 confirms that the C experiment slightly underestimates the width of the CIs
with respect to the other two approaches, but only in the case of the correlation and the bias.
No important biases are found between the median of the C statistics and those of the A and
B cases. Therefore, the subset of stations of case C (#4, #6, #9, #10 and #13) is sufficient to
provide a non-biased estimation of the validation statistics.
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Table 5.1 – Characteristics of the distributions of the bootstrapped statistics obtained with different
approaches. The approaches (A, B, C) assess the sampling uncertainty in groups of 5 stations.

Case Correlation Bias (m3/m3) STDD (m3/m3)
Code SU Series K' K ∆CI Median ∆CI Median ∆CI Median
A SUL + SUM in situ 5 20 0.16 0.79 0.12 -0.02 0.012 0.038
B SUL + SUM simulated 5 10,000 0.17 0.74 0.14 -0.03 0.009 0.038
C SUM in situ 5 5 0.1 0.75 0.1 0 0.007 0.037

The medians and CI widths of cases A and B are mostly in agreement, except for the STDD.
This suggests that the simulation approach of section 5.1 provides an ensemble of series that
is consistent with the mean SM process represented by the 20 in situ stations. Given the
similarity of the statistics of cases A and B, there is no gain on simulating the 10,000 point
series to estimate the SUM. The SUM can be effectively estimated with the 20 available stations
in the Little Washita network. Finally, the approach of section 5.1 can be reserved to analyse
the SUL when no NAvg is used.

5.2.5 Inter-comparison of validation statistics affected by the SUM

Following the same rationale of section 5.1.6 box plots can ease the interpretation of the un-
certainty information when comparing the validation of two different satellite products. In this
section, I show how this can be done when validating SMOS and AMSR2 soil moisture products
with the Little Washita NAvg. Only the SUM is assessed here and two cases are tested: when
only the stations #4, #6, #9, #10 and #13 are available, and when the 20 Little Washita
stations are available.

Figure 5.13 shows the intercomparison of SMOS and AMSR2 validations in the presence of
SUM when only the 5 designated stations are available. In the box plots, the horizontal red
line is the median, the box limits the 25 % and 75 % quantiles and the whiskers the 5 and
95 % percentiles. The triangle marker denotes the statistic obtained in the comparison of the
measured NAvg (each station has a weight of 1/5 in the NAvg) and the satellite series. The
difference in STDD between the 2 satellites is significant, however it is clearly not the case of
the bias: the boxes almost totally overlap. SMOS seems better correlated to the in situ average
than AMSR2, although it is hard to evaluate whether the difference is significant: the lower
confidence limit of the SMOS correlation coincides with the median of the AMSR2 correlation.
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Figure 5.13 – Validation of SMOS and AMSR2 datasets with the NAvg of 5 in situ series with simultaneous
assessment of the sampling uncertainty of the NAvg (box plots). The triangle represents the comparison
with the measured NAvg

It is expected that, with more available stations, the SUM will be smaller and consequently the
comparison between the performances of the two satellites might be affected. Figure 5.14 shows
the intercomparison of SMOS and AMSR2 validations when the 20 Little Washita stations
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are considered. Now, the correlation of SMOS is clearly better than that of AMSR2 even
considering the SUM. The same is applicable for the STDD. A part of the bias distributions
of the two satellites overlap but the difference in bias seems significant: the confusion surface
only concerns the lower and the upper 25 % quartile of the SMOS and AMSR2 distributions,
respectively.
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Figure 5.14 – Validation of SMOS and AMSR2 datasets with the NAvg of 20 in situ series with simultane-
ous assessment of the statistical sampling uncertainty (box plots). The triangle represents the comparison
with the measured NAvg

5.3 Conclusions

This chapter has addressed the sampling uncertainty of in situ measurements and its influence
in satellite temporal validation statistics. The sampling uncertainty has been divided in two
components, the sampling uncertainty of the locations (SUL) and the sampling uncertainty of
the mean (SUM). Specific procedures have been developed to assess each of them separately.

The premise of this chapter was that the approaches proposed should be easily applicable to any
validation area. In other words, they should not be region-specific and as generic as possible so
they could be operationally used in satellite validation campaigns. The approaches presented
fulfil this requirement. The approach presented for the SUL is based on empirical and statistical
models that can be easily built for any validation area. The simulations are based on Monte
Carlo samplings, which are well suited to any distribution type. Finally, the confidence intervals
of the validation statistics are obtained empirically from the obtained distribution of samples.
The approach presented for the SUM is also generic. The uncertainty of the mean was evaluated
through bootstrap resampling and no assumptions are made about the underlying distribution
of SM.

However the approaches here present some drawbacks. The simulations produced to assess the
SUL are constrained by different factors: (i) temporal models need to perfectly mimic the
in situ series, (ii) the assignation of the temporal models to the simulated samples is arbitrary
and (iii) the accuracy of the spatial model is difficult to assess. The modelling and simulation
procedures were tested with 5 in situ Little Washita series spanning 6 months. The results were
satisfactory and the 10,000 point simulated series allowed to build confidence intervals in the
statistics obtained when validating SMOS and AMSR2 soil moisture over the Little Washita
region. Future research should verify that the procedure is applicable to longer time series and
other validations regions. Long series increase the probability of finding long gaps as well as the
difficulty of model fitting. Finally, it should be noted that, when applied to sparse validation
networks (1 station per satellite footprint), the procedure most probably underestimates the
sampling uncertainty. However, it is still useful as it could serve to indicate the minimum
geostatistical uncertainty for the region under study.
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Regarding the assessment of the SUM, the procedure proposed is easily applicable to any
validation site since it simply consists in bootstrapping the available in situ series. However, it
is worth highlighting that this is a purely statistical procedure: its reliability is based on the
representativeness of the available sample series. For example, if the region of study corresponds
to a satellite footprint (∼402 km2) and we have 20 sample locations, but they all are located
together in a small area of 100 x 100 m2, they will probably be very similar so the SUM will
be evaluated artificially small. The sample locations should be located carefully so that the
statistical uncertainty can be interpreted as representative of the sampling uncertainty of the
region of study.

A useful aspect of this chapter is that the contribution of the SUL to the NAvg can be assessed
if the SUM bootstrap approach is applied to the simulated series of the SUL procedure. This
was tested with the Little Washita case and the results were satisfactory. Further studies are
needed to analyse whether this is applicable to other validation networks.

Finally, the assessment of the sampling uncertainty covers one of the components of the spatial
scale mismatch. In previous chapters, the spatial scale mismatch was addressed as a whole.
It remains to know how the sampling uncertainty evolves along time scales so that the specific
contributions of the other two components of the spatial scale mismatch (the scaling uncertainty
and the geophysical mismatch) can be addressed. This is totally feasible and is kept as one of
the future lines of investigation.
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Chapter 6

Conclusions and perspectives
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Soil moisture (SM) is an essential climate variable whose continuous and global monitoring
is necessary for several applications, like meteorological forecasting, hydrological modelling,
agricultural assessment or prevention of natural hazards. Both continuous and global monitoring
are achieved through instruments on board satellites. In particular, the retrieval of SM from
satellite microwave radiometers at low frequency bands has been highly advanced and surface SM
products can be obtained from various satellites equipped with such sensors, such as AMSR-E/2,
SMOS and SMAP.

Satellite SM products can contain errors from various sources, the instrument, the models and/or
the auxiliary parameters. For this reason, their accuracy is evaluated through comparison with
ground SM measurements, a process called validation. One of the difficulties is that the size
of the surfaces integrated by each of the measurement systems, or supports, is different: the
satellite support (footprint) ranges between 272 and 552 km2, depending on the satellite, and
the in situ support concerns only some few centimetres. This spatial scale mismatch between
satellite (large-support) and in situ (point-support) SM estimates hampers the validation process
and the derived statistics. Different methods have been proposed to overcome the spatial scale
mismatch, but they are usually limited by various physical and statistical conditions. Moreover,
the magnitude of the contribution of the spatial scale mismatch to the validation statistics
remains unknown.

What is a good definition for the SM at the satellite resolution? What is exactly behind the
spatial scale mismatch? Is the spatial scale mismatch measurable? Is it possible to quantify its
impact in the satellite validation metrics? The answers to these questions have been investigated
through the following objectives, which were already stated at the end of the introduction
(chapter 1) and that will articulate this chapter of conclusions:
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• Improve the current knowledge on the spatial scale mismatch.

• Quantify the spatial scale mismatch if possible.

• Provide novel or improved methods for its analysis. The methods should be as generic as
possible and easily applicable to all validation regions.

• Prepare the path for an integrated assessment of the spatial scale mismatch in satellite
validation campaigns.

6.1 Summary

6.1.1 Improving the knowledge on the spatial scale mismatch

One of the intrinsic uncertainties of the spatial scale mismatch has a epistemic nature: we do
not know what is the SM at the large-support scale. Two definitions are possible:

– Definition I: The large-support SM is the average of all the infinitesimal point SM values
contained within the support

– Definition II: The large-support SM is the SM level associated with the integral of the
energy emitted within the support

In situ measurements provide an estimate of the first definition through the network average
(NAvg), which is the spatial mean of the SM measured by different stations within the satellite
footprint. The satellite provides an estimate of the second definition. The true (unknown) SM
values of definition I and of definition II are fundamentally different due to a number of factors
(models, non-linearities, etc.).

In chapter 1, I defined the spatial scale mismatch as made of 3 components: the scaling uncer-
tainty, the geophysical mismatch and the sampling uncertainty. The scaling uncertainty refers
to the difference in the aforementioned definitions. A geophysical mismatch between in situ
and satellite measurements is present because in situ stations record geophysical dynamics at a
particular point while satellite sensors provide an integrated view of the geophysical dynamics.
The sampling uncertainty refers to the unknown capacity of the in situ stations to represent the
footprint SM of definition I: this unknown capacity depends on the location and the number
of spatial samples. These definitions are important because this is the first time that the
definition of the spatial scale mismatch is stated with precision in the case of SM.
Moreover, they provide the basis of an heuristic framework for the assessment of the spatial
scale mismatch.

Chapters 2 and 3 helped to understand the geophysical elements behind the spatial scale mis-
match. In chapter 2, the analysis of previous literature indicated that differences between the
point and the footprint SM exist because of within-footprint variability of geophysical factors
such as precipitation, soil characteristics, vegetation and topography. These are drivers of the
SM spatial variability and their importance varies with the region landscape and climatologi-
cal conditions. Data about these drivers can help reduce the support of satellite products (a
process called disaggregation) and thus, reducing the spatial scale mismatch. I evaluated the
DISPATCH disaggregation approach in 3 regions with contrasting climate conditions. The ex-
periment confirmed that the principal drivers of SM spatial variability are different
depending on the region landscape and climatological conditions. The disaggregation sup-
posed an improvement with respect to the original satellite SM products (SMOS) in semi-arid
and arid regions, like in the Yanco area (Australia) and the Walnut Gulch catchment (U.S.), but
not in humid regions (Little Washita catchment, U.S.). This was expected because DISPATCH
is based on the assumption of a sub-footprint SM distribution controlled by the soil temperature
and the vegetation status (NDVI) through evapotranspiration. The experiment also confirmed
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that disaggregation approaches can be used to overcome the spatial scale mismatch,
but they are not applicable globally.

Chapter 3 approached the geophysical elements behind the spatial scale mismatch from a tem-
poral perspective. It was shown that, when two different SM series are compared (two series
measured and different locations or provided by sensors with different supports), they exhibit
differences at specific time scales depending on the geophysical element causing the difference.
In other works, SM time scales and SM-related geophysical variables are connected:

• precipitation is usually a small time scale factor (sub-weekly scales)

• surface characteristics like texture are mostly associated to middle scales (sub-weekly to
sub-seasonal scales)

• seasonal factors like vegetation are restricted to the SM seasonal scales

Additionally, the influence of precipitation and surface characteristics was occasionally propa-
gated to seasonal scales.

Finally, the study of the spatial scale mismatch was completed in chapters 4 and 5 through the
analysis of point and large-support SM series from a spatio-temporal perspective. In chapter 4,
I linked SM time scales with the spatial representativeness of point series. The spatial rep-
resentativeness of a location that works as an effective support and is defined as the surrounding
extension where the observed SM is “sufficiently similar” to the SM at that location. The de-
gree of similarity was expressed here with correlation-based metrics that compared the time
series measured at the study locations with other SM datasets. From the analysis of the spatial
representativeness at a range of time scales, from 0.5 to 128 days, I concluded that:

• The spatial scale mismatch tends to decrease with the time scale.

• In contrast, the dispersion of mismatch scores increases with the time scale: at seasonal
scales some locations are highly representative while others are extremely poorly represen-
tative of the footprint SM.

• A sub-weekly scales, the spatial scale mismatch is very important and uniform for all
locations.

The first of the conclusions of the list was derived from the fact that the spatial representativeness
scores tend to increase with the time scale. From this it can be inferred that SM spatial and
temporal scales are connected: small spatial scales are connected with small time scales
and large spatial scales with large time scales. This is a relevant outcome of this thesis, since it
is the first time that such a study has concerned footprint extents.

While chapter 4 was dedicated to the spatial scale mismatch as a whole, chapter 5 was specifically
dedicated to the study of the sampling uncertainty. This was analysed in two cases: a) when
the satellite is compared (validated) with only one in situ stations, and b) when the satellite
is compared with the average of a set of stations (the network average, NAvg). The sampling
uncertainty of the first case was referred as the sampling uncertainty of the locations (SUL),
and that of the second ad the sampling uncertainty of the mean (SUM). The SMOS and the
AMSR2 soil moisture products were validated in the Little Washita region and the influence of
both the SUL and the SUM was evaluated. The experiment showed that the uncertainty in
validation statistics due to the SUL is largely more important than the uncertainty
due to the SUM. This is true when the NAvg is calculated using the typical number of stations
of dense in situ networks (10-20). Another relevant conclusions is that the contributions of
the SUL and the SUM were non-negligible. When the two different satellite SM products
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were compared, their differences in performance were more or less significant depending on the
degree of sampling uncertainty. For this reason, the SUL and the SUM should be systematically
estimated when comparing the validation statistics of two different satellite SM products.

6.1.2 Quantifying the spatial scale mismatch

If the first question of this thesis was “what is the spatial scale mismatch?”, the second question
stems naturally from it: to what extent the spatial scale mismatch affects the satellite validation
statistics? The quantification of the spatial scale mismatch was demonstrated feasible when only
the sampling uncertainty was considered. In chapter 5, the uncertainty of the correlation,
the bias and the standard deviation of the differences (STDD) between satellite and in situ
measurements was quantitatively assessed. For example, the uncertainty in correlation due to
the SUL when SMOS was validated in the Little Washita region for a particular period was
estimated of the order of 0.15. Most importantly, confidence intervals were derived for all
metrics, which allowed to evaluate the significance of the differences observed between SMOS
and AMSR2 products for the same region.

It should be noted that the estimation of the SUL was based on the statistical spatial distri-
bution of SM in the study area, which is not always known. This is usually the case of sparse
in situ networks, where only one station is available per satellite footprint and where additional
temporary sampling campaigns are rare. According to the literature, the statistical spatial dis-
tribution of SM is similar for many regions: bell-shaped when the mean SM is in its middle
range and skewed towards its minimum and maximum values. This information can be used
to build a minimal statistical model and to provide a minimum threshold for the SUL in
sparse networks.

Regarding the whole spatial scale mismatch, its quantitative assessment was revealed more diffi-
cult. In chapter 4 I hypothesized that since small spatial scales seemed connected to small time
scales, then sub-footprint heterogeneity should be connected to small time scales. Consequently,
the differences in temporal dynamics between in situ and satellite SM series should only be
present in the smallest time scales. The analyses indicated that this was only partly true: it is
true that sub-weekly time scales were greatly and equally affected by the spatial scale mismatch
but other time scales are not independent from it. Indeed, differences in typical small time
scale factors, such as precipitation and soil texture, seem to be propagated up to
seasonal scales, specially if the seasonal component of the SM signal is weak. Moreover, the
spatial scale mismatch is more or less important depending on the in situ location. Nevertheless,
two useful ideas can be derived from chapter 4:

1. Small time scales could serve to build a lower bound for amount of spatial scale
mismatch

2. The dependence between spatial scale mismatch and time scales is strong, so the spatial
scale mismatch could never be totally solved without taking time scales into account

6.1.3 Methods

The main premise for the methods developed during this thesis was that they should be as generic
as possible so they could be easily applied to all validation regions. Until now the approaches
used to study or evaluate the spatial scale mismatch were constrained by geophysical conditions
(e.g. disaggregation) or by statistical prerequisites (e.g. triple collocation) that were difficult
to fulfil everywhere. As a consequence, the approaches proposed should be somehow novel or
different from the existing ones.
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Wavelet transforms were one of the core tools used in this thesis. They have allowed to study
SM time series on a time scale basis. In situ and model time series were analysed in scales
ranging from 3 h to 128 days and satellite time series from 12 h to 128 days. It was shown
that wavelet transforms are well suited to analyse SM signals since they succeed to reveal their
characteristic temporal patterns (peaks, decays, seasonality, trends). For example, they allowed
to link SM time scales with SM-related factors (precipitation, soil and vegetation) in chapter 3.

One of the main constrains of wavelet transforms is that they have to be applied to regularly
sampled series. In practice, soil moisture time series contain gaps and they have been filled
by using an approach based on the discrete cosinus transform (DCT). This approach has been
revealed appropriate for the case of satellite soil moisture series where gaps are not localised in
long periods of unavailability but evenly distributed along the series ; these represent between
50 % and a 70 % of the total number of samples in the series, depending on the satellite and
the experiment. The most significant conclusions concerning the application of the DCT to soil
moisture series are: 1) DCT gapfilling is not the root cause of the higher variance observed in
satellite datasets with respect to in situ datasets at short time scales, 2) the contribution of the
DCT gapfilling to the decorrelation between satellite and in situ series is small, and 3) DCT
gapfilling can foster correlation between two time series where gaps are arranged in a similar
way.

The study of the spatial scales required using methods to “measure” them. A way to measure
the spatial scales is to evaluate the spatial representativeness of different locations within the
footprint. Moreover, as mentioned before, I was interested in linking SM spatial and temporal
scales, so the assessment of the spatial representativeness required methods adapted to operate
on a per-time scale basis. I proposed the correlated area (CArea) method, an adaptation
of the inverse footprint method of Orlowsky and Seneviratne (2014), specially suited for SM
gridded data. In addition, wavelet transforms led me to the development of the wavelet-based
correlation (WCor) approach, which consists in comparing the wavelet decompositions (detail
series) of the in situ SM series against the NAvg. In the case of sparse networks, the same can
be done using another large-support dataset different from the NAvg, such as a satellite. In this
case, the choice of the large-support dataset has to be carefully addressed. By using modelled
gridded SM data, I showed that both methods, CArea and WCor, performed equally well and
provided consistent representativeness scores.

In the case of actual in situ SM data, the CArea method cannot be applied so WCor was
compared against other approaches that were typically used in SM studies to assess the spatial
representativeness: temporal stability analysis (TStab) and triple collocation (TC). TStab could
not be applied to decomposed series because of their multiple zero-crossings. Regarding TC, it is
suitable for week and month scales where it provides consistent results with WCor. However, at
sub-weeekly scales where datasets cross-correlations were found low, and at seasonal scales, where
the number of independent samples was also low, TC scores were erratic. As a conclusion, WCor
was more robust and accurate than the other approaches. I recommend WCor when analysing
real measured data (dense and sparse in situ networks) and when time scale decompositions are
desired.

The evaluation of the sampling uncertainty in chapter 5 was possible thanks to a number of
generic approaches: statistical modelling, empirical modelling, Monte Carlo simulations,
CDF matching and bootstrap. In order to estimate the influence of the SUL in temporal
validation statistics, a complete procedure based on these tools was designed. In overall, for a
given study region, the SUL procedure consists in 1) building an empirical temporal model
for the point SM series, 2) building a statistical spatial model for the area, 3) simulating point
SM series constrained by both models through Monte Carlo simulations and CDF matching,
4) comparing the simulated series against the satellite SM series to obtain the uncertainty
distribution of the statistics.

The SUL procedure gave reasonable results for the validation of SMOS over the Little Washita
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region: the Little Washita in situ series fall within the distribution of simulated series, similarly
to the SMOS-in situ statistics, which fall also within the uncertainty distributions obtained.
These should not be interpreted as the actual statistics but as the possible statistics for the
region of study from a geo-statistical perspective. Finally, the SUL procedure can be applied
to other validation regions different from the one tested here. This is the first procedure
dedicated to the evaluation of the SM sampling uncertainty.

Bootstrap was used to assess the uncertainty in validation statistics due to the sampling uncer-
tainty of the NAvg: first, the in situ station series were combined 1,000 times with replacement to
generate 1,000 possible NAvg series. Then, these series were compared to the satellite SM series
under validation. From this, an empirical distribution of statistics was obtained. The method
was easy to implement and did not require any prerequisites, so I recommend its systematic use
when validating satellite products with dense in situ networks.

Bootstrap can be combined to the SUL procedure to estimate not only the SUM but
also the influence of the SUL in the SUM. This was described in section 5.2.4 and I concluded
that, in the case of “well-sampled” networks like Little Washita (20 stations), there is no gain
of combining bootstrap and the SUL procedure with respect to the simple bootstrap.

6.1.4 Towards an integrated assessment of the spatial scale mismatch in satel-
lite validation

By answering the initial questions (what is SM at the footprint resolution, what is the spatial
scale mismatch and how to measure it), this thesis has provided some useful elements for the
improvement of validation studies.

The most direct consequence is that the approaches for assessing the SUL and the SUM
(chapter 5) are readily applicable to validation studies. Naturally, further research can bring
some improvements, but there is no objection to apply them as they are right now.

Regarding the investigations about SM spatial and temporal scales, as previously mentioned,
the extraction of the spatial scale mismatch from specific time scales has not been possible.
However, the investigation have provided relevant aspects of the SM signal that can be taken into
consideration when validating SM products. First, sub-weekly time scales should probably
be omitted when validating satellite SM products with in situ measurements. These scales are
fundamentally different between the two observation systems due to the spatial scale mismatch,
so it does not make sense to evaluate the performance of the satellite product taking them into
account.

An additional lesson from the investigations on spatial and temporal scales is that we should be
careful with seasonal scales. Studies using triple collocation (TC) to validate satellite esti-
mates or to assess the representativeness of in situ stations, systematically remove the seasonal
SM component before conducting the analyses. As showed in chapters 3 and 4, the seasonal
scale can be affected or not by the spatial scale mismatch and its influence depends on the
location studied. By removing seasonal components not affected by the spatial scale mismatch,
TC-based validations would omit a part of the SM signal that indeed, fosters similarity between
the satellite and the in situ measurements. If affected by the spatial scale mismatch, TC-based
representativeness assessments would artificially benefit those stations not spatially represen-
tative at seasonal scales.

Finally, wavelet decompositions could be used to improve detrending in validation studies. In
the SM community, detrending is systematically accomplished with moving average filters of
30-day length. This approach presents multiple drawbacks. For example, the window length
is arbitrarily fixed without any preliminary investigation. Continuous wavelet transforms could
be used to choose the best window length. Additionally, the frequency response of moving
average filters is much wider than most of the wavelet filter types, so the output series are still
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considerably affected by slower variations of the signal (>30 days). Wavelet decompositions
could help select the best window length and providing cleaner detrending.

6.2 Perspectives

6.2.1 Perspectives for the proposed approaches

In this thesis, the analysis of the SM spatial and temporal scales could not result in the devel-
opment of a method to evaluate the full spatial scale mismatch. However, it showed that the
spatial scale mismatch has an indissoluble link with the SM time scales and that the first cannot
be understood without the second. In this context, there are some lines of research concerning
SM time scales that deserve to be explored.

In sparse networks, only one in situ location is compared to the satellite SM. In this case,
the spatial scale mismatch is made of only two components: the sampling uncertainty and the
geophysical mismatch. The first can be estimated with the approaches in chapter 5. The second
cannot be fully estimated, as mentioned in previous sections, but a minimum bound can be
extracted from the sub-weekly scales. If this minimum mismatch could be estimated in terms of
variance, then it could be incorporated to the spatial model in the SUL procedure of chapter 5.
This would provide the minimum uncertainty in validation statistics due to the spatial
scale mismatch.

When multiple in situ stations are available (dense networks), it is the network average (NAvg)
that is directly compared to the satellite SM. Two uncertainty components are added to those
of the sparse network case: the scaling uncertainty and the sampling uncertainty of the mean
(SUM), which is part of the sampling uncertainty. The evaluation of the scaling uncertainty
is the most difficult problem. Possible hints for its resolution could be found in sensibility
studies and studies specifically addressing the gap between the linear average of the observations
and the linear average of the retrievals (e.g. Crow et al., 2001; Pellarin et al., 2003; Crow et al.,
2005; Zhan et al., 2008; Crosson et al., 2010). How to translate the information obtained in
these studies to the operational assessment of the scaling uncertainty needs dedicated research.

Regarding the assessment of the spatial representativeness of particular locations, new methods
can still be proposed. A recent communication of Rodríguez-Fernández et al. (2017b) suggested
that neural networks could be used to analyse the representativeness of in situ lo-
cations. Neural networks are efficient non-linear regression tools and they have been already
used with success to retrieve SM from observations (brightness temperatures). In Rodríguez-
Fernández et al. (2017b), in situ-like SM time series were produced by a neural network using
SMOS observations (brightness temperatures) and MODIS NDVI values as input vectors. They
suggested that strong differences between the neural network SM series and the actual in situ
series would indicate poor spatial representativeness of this one. This is a promising approach
since it can be also used for all validation sites. However, how to use it to evaluate the un-
certainty in the validation metrics needs to be investigated. Finally, it would be of great value
to analyse the wavelet decomposition of the neural network SM series: this can provide more
elements to the understanding of the connection between SM spatial and time scales.

Some of the approaches presented in this thesis deserve further research. Those presented in
chapter 5 for assessing the sampling uncertainty are ready to be applied to other validation
networks. This is desirable and necessary to validate them. One of the aspects observed is that
the temporal modelling of the SUL procedure seemed to inflate the bias of output statistics. The
comparison to additional in situ measurements could help to determine if this bias is consistent
with the reality. In addition, a promising line of work is to use neural networks to model the
SM dynamics in the SUL procedure.

137



The conclusions reached on SM spatial and time scales are highly valuable for modelling and up-
scaling/downscaling methods. Models designed on a per time scale basis might show improved
skills. For example, at sub-weekly time scales, disaggregation could consider that the redistri-
bution of SM only needs to be based on small spatial scale factors, such as rain or texture. At
seasonal scales, disaggregation might only require seasonal varying signals, such as vegetation.
This kind of schemes has already been used for disaggregating other geophysical variables like
land surface temperature.

6.2.2 Application to other geophysical variables

This thesis has addressed the spatial scale mismatch in the case of the SM variable. However,
the spatial scale mismatch is a common problem in satellite remote sensing that affects many
other geophysical variables. The approaches developed here are generic enough to be applied to
other variables. Naturally, the approaches should be adapted and interpreted according to the
characteristics of the variable under study.

Snow-related variables, like snow cover or snow water equivalent (SWE), are good candidates
for the approaches of this thesis because they present several similarities with the SM variable.
First, snow can be highly variable within the satellite footprint. MODIS, which is usually
preferred for its good temporal sampling (1 day), provides snow products at 250 m resolution
and snow can vary considerably within that range. The spatial redistribution of snow cover varies
in time: while in some periods of the year the snow cover is thin and mostly homogeneous, in
other periods, the snow is arranged in patches with more important heights. Most snow variables
are bounded by its minimum zero value so they also exhibit skewed distributions like SM when
approaching zero (Grünewald et al., 2010). Finally, wavelet decomposition and simple simulation
approaches can be applied because there also exist permanent in situ stations measuring snow
variables continuously in time and snow is a consequence of precipitation events.

Rainfall is another geophysical variable suffering from similar observational scaling problems.
For example, rainfall products from TRMM satellite are provided at a 0.25° resolution (∼25 km)
and rain gauges measure at a particular point. Moreover, similar questions to those rose for the
footprint SM are present in the case of the rainfall variable. What is the rainfall rate at 25 km
resolution? The average of the rainfall in the area? Wavelet decompositions could be applied to
rainfall since there exist both long satellite and in situ series.

Another variable that could be studied with the approaches developed in this thesis is the land
surface temperature (LST). There exist permanent in situ stations that measure the LST at
resolutions up to 10 m. Although there are satellite missions providing LST products at similar
resolutions (e.g. Landsat at 30 m), coarser resolution sensors like MODIS (1 km) are still used
and need to be validated. The LST is fundamentally heterogeneous within the 1 km footprint,
so its validation also suffers from the spatial scale mismatch problem.

6.3 Open questions

Research starts but never ends and this thesis is not an exception. This thesis leaves some open
questions, either because answering them was not the objective of this thesis, either because the
answers were more complex than expected.

The main practical question of this thesis was whether the spatial scale mismatch between
satellite and in situ SM measurements could be assessed. I showed that this can be done, at
least partially. The sampling uncertainty can be evaluated, as demonstrated in chapter 5. The
evaluation of the whole spatial scale mismatch needs however further research. In section 6.2.1,
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I have suggested some lines that can be explored. As a conclusion, the obtention of a mini-
mum bound for the contribution of the spatial scale mismatch in satellite validation
statistics seems feasible.

More general and almost philosophical questions do not have yet a clear explanation. For
example, the notion of spatial representativeness remains open. All the methods used for
assessing the spatial representativeness were based on correlation metrics (chapter 4). However,
the representativeness could be expressed with other metrics like the variance. Can we affirm
that a station time series is representative of the footprint time series because they correlate well
although they are very different in variance? Usually, multiple metrics cannot be maximised at
the same time, so some discussion in the SM community is needed about what are the metrics
that should be prioritized.

In chapter 1, I presented the two possible definitions of footprint-support SM. Are we eager
to accept that the footprint SM is a translation of the integrated energy and that it should not
be obligatorily equal to the SM average? Or do we intend the satellite SM to perfectly match
the (unknown) SM average of the region of study? In the first case, we should adapt our large
spatial scale models to what the satellites see. Again, this is a important issue that should be
discussed by the SM community.

Finally, apart from the spatial scale mismatch, there are other sources of mismatch between
the satellite and the in situ measurements, the temporal and the vertical mismatch. The tem-
poral mismatch is produced because unlike the satellite, the in situ measurements may not be
taken exactly at the satellite overpass. The vertical mismatch appears when the sensing depths
of the satellite and the in situ sensors do not coincide. It is known that the sensing depth of the
satellite sensor varies in time due to changes in surface conditions (SM level, texture, vegeta-
tion). In contrast, the in situ station is installed at a constant depth, unless changes in the soil
surface take place, which are not so uncommon. The vertical mismatch is mainly translated into
decorrelation. These sources of mismatch were not within the objectives of this thesis, but it is
important to consider them when validating satellite SM products since they also contribute to
the uncertainty in the statistics.

6.4 Final note

This thesis has contributed to a better understanding of the spatial scale mismatch between
satellite and in situ SM measurements. It has shown that SM spatial and temporal scales are
inter-connected and that the spatial scale mismatch can be partially estimated. This has been
possible with the adaptation and development of approaches based on generic signal processing
and statistical tools. Such approaches can be used globally and adapted to other geophysical
variables.

The uncertainty in satellite validation statistics due to the spatial scale mismatch has been
usually overlooked, most probably, because it is difficult to estimate. This thesis has helped to
raise the awareness of the magnitude of the spatial scale mismatch in satellite validation. Its
influence can be dramatic at sub-weekly time scales and one of its components, the sampling
uncertainty, can completely change the comparison of the relative performances of two different
satellite SM products. It is essential that, when comparing satellite SM products, everyone ask
him/herself if the difference is significant or can be simply obtained by chance due to the spatial
scale mismatch.

Finally, there is a common general belief that improving the resolution of satellite SM products
will make negligible the spatial scale mismatch. Different solutions have been proposed (SMAP)
or are under development (SMOS-Next, SMOS-HR) to provide global SM products at higher
resolutions. The target resolutions are limited to kilometric scales (1 to 10 km) because the
solutions are based on L-band sensors, which are the ones that show a better sensibility to SM
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under a wide range of vegetation conditions. However, reaching kilometric resolutions will not
remove the spatial scale mismatch: SM can vary rapidly in just some few meters. The spatial
scale mismatch between satellite and in situ SM measurements has still a long life to run.
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Chapitre 6

Conclusions et perspectives
(français)
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L’humidité du sol est une variable climatique essentielle dont la surveillance continue et globale
est nécessaire pour plusieurs applications, comme la prévision météorologique, la modélisation
hydrologique, la gestion de ressources en agriculture ou la prévention des risques naturels. La
surveillance continue et globale de l’humidité du sol est possible grâce à des instruments em-
barqués à bord des satellites. En particulier, les radiomètres micro-ondes à basse freéquence
fournissent des estimations de bonne qualité et des produits d’humidité du sol de surface sont
obtenus grâce à divers satellites équipés de tels capteurs, comme AMSR-E / 2, SMOS et SMAP.

Les produits satellitaires d’humidité du sol sont entachés d’erreurs provenant de diverses sources
(instrument, modèles et / ou paramètres auxiliaires). Pour cette raison, leur précision est éva-
luée au moyen de mesures terrain, une opération appelée validation. L’une des difficultés de
la validation est que les dimensions des surfaces intégrées par chacun des systèmes de mesure,
ou supports, sont différentes : le support satellitaire (empreinte) varie entre 272 et 552 km2,
selon le satellite, et le support de mesures in situ concerne seulement quelques centimètres.
Cette différence d’échelle spatiale entre l’estimation du satellite (grand support) et la me-
sure in situ (support ponctuel) rend très délicat le processus de validation et les statistiques
qui en découlent. Différentes méthodes ont été proposées pour surmonter la différence d’échelle
spatiale, mais elles sont généralement limitées par diverses conditions physiques et statistiques.
De plus, la contribution de la différence d’échelle spatiale aux statistiques de validation reste
inconnue.

Quelle est la bonne définition pour l’humidité du sol à la résolution satellitaire ? Quelle est la vraie
nature de la différence d’échelle spatiale ? La différence d’échelle spatiale est mesurable ? Est-il
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possible de quantifier son impact sur les statistiques de validation du satellite ? Les réponses à
ces questions ont été étudiées par le biais des objectifs qui suivent, énoncés dans l’introduction
(chapitre 1) et qui articuleront également ce chapitre des conclusions :

• Améliorer les connaissances actuelles sur la différence d’échelle spatiale.

• Quantifier la différence d’échelle spatiale si possible.

• Fournir des méthodes novatrices ou améliorées pour son analyse. Les méthodes devront être
aussi génériques que possible et facilement applicables à toutes les régions de validation.

• Mettre en place les éléments pour aller vers une évaluation intégrée de la différence d’échelle
spatiale dans la validation de produits satellitaires d’humidité du sol.

6.1 Résumé

6.1.1 Améliorer les connaissances sur la différence d’échelle spatiale

L’une des incertitudes intrinsèques de la différence d’échelle spatiale possède un caractère épis-
témique : on n’a pas une définition univoque pour l’humidité du sol à grand support. Deux
définitions sont possibles :

– Définition I : L’humidité du sol à grand support est la moyenne de toutes les valeurs
d’humidité du sol ponctuelles contenues dans le support

– Définition II : L’humidité du sol à grand support est l’humidité associée à l’intégrale de
l’énergie émise dans le support.

Les mesures in situ fournissent une estimation de l’humidité du sol selon la première définition
comme le network average (NAvg) qui est la moyenne spatiale de l’humidité du sol mesurée
par différentes stations au sein de l’empreinte satellitaire. Le satellite fournit une estimation de
l’humidité du sol selon la deuxième définition. Les vraies valeurs d’humidité du sol (inconnues
en fait) selon les définitions I et II sont fondamentalement différentes en raison d’un certain
nombre de facteurs (modèles, non-linéarités, échantillonnage, etc.).

Au chapitre 1, j’ai décomposé la différence d’échelle spatiale en trois composantes : l’incertitude
d’échelle, l’écart géophysique et l’incertitude d’échantillonnage. L’incertitude d’échelle se réfère à
la différence entre les définitions mentionnées dans le paragraphe précédent. L’écart géophysique
entre les mesures in situ et les estimations par satellite existe parce que les stations in situ enre-
gistrent la dynamique géophysique à des points particuliers tandis que les capteurs satellitaires
offrent une vue intégrée de la dynamique géophysique. Enfin, l’incertitude d’échantillonnage fait
référence au manque de connaissance sur la capacité des stations in situ à représenter l’humidité
du sol de la définition I ; ce degré de connaissance dépend de l’emplacement et du nombre de
stations. Ces définitions sont importantes car c’est la première fois que la définition de
la différence d’échelle spatiale est décrite avec précision dans le cas de l’humidité du
sol. En outre, elles fournissent la base d’un cadre heuristique pour l’évaluation de la différence
d’échelle spatiale.

Les chapitres 2 et 3 ont aidé à comprendre les éléments géophysiques conditionnant la différence
d’échelle spatiale. Au chapitre 2, l’analyse de la littérature a indiqué que les différences entre
l’humidité du sol ponctuelle et l’humidité du sol à grand support existent du fait de la varia-
bilité intra-empreinte des facteurs géophysiques tels que la précipitation, les caractéristiques du
sol, la végétation et la topographie. Ce sont les moteurs de la variabilité spatiale de l’humidité
du sol et leur importance varie selon le paysage et la climatologie. Disposer d’informations sur
ces “moteurs géophysiques” aide à réduire le support des produits satellites (dans unprocessus
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appelé désagrégation ou downscaling) et ainsi réduire la différence d’échelle spatiale. J’ai éva-
lué l’approche de désagrégation DISPATCH sur 3 régions possédant des conditions climatiques
contrastées. L’expérience a confirmé que les principaux facteurs de variabilité spatiale
de l’humidité du sol sont différents selon l’environnement et les conditions clima-
tologiques. La désagrégation a montré une amélioration par rapport aux produits satellitaires
d’humidité du sol originels (SMOS) dans des régions semi-arides et régions arides, comme Yanco
(Australie) et le bassin versant de Walnut Gulch (États-Unis), mais pas dans les régions humides
(bassin versant de Little Washita, US). Cela était attendu car DISPATCH est basé sur l’hypo-
thèse d’une distribution spatiale de l’humidité du sol contrôlée par la température du sol et le
statut végétal (NDVI) par évapotranspiration. L’expérience a également confirmé que les ap-
proches de désagrégation peuvent être utilisées pour réduire la différence d’échelle
spatiale, mais elles ne sont pas applicables à l’échelle mondiale.

Le chapitre 3 a abordé les éléments géophysiques conditionnant la différence d’échelle spatiale à
partir d’une perspective temporelle. On a montré que lorsque deux séries différentes d’humidité
du sol sont comparées (deux séries correspondant à des emplacements différents ou correspondant
à des capteurs ayant des supports différents), elles présentent des différences à des échelles de
temps spécifiques liées aux caractéristiques des éléments géophysiques. Les échelles de temps
de l’humidité du sol et les variables géophysiques qui lui sont liées sont connectées :

• la précipitation est habituellement un facteur à petite échelle de temps (échelles sous-
hebdomadaires)

• les caractéristiques de surface comme la texture sont principalement associées aux échelles
intermédiaires (échelles sous-hebdomadaires et sous-saisonnières)

• les facteurs saisonniers comme la végétation sont limités aux échelles saisonnières de l’hu-
midité du sol

En outre, l’influence de la précipitation et les caractéristiques de surface sont occasionnellement
propagées vers les échelles saisonnières. Enfin, l’étude de la différence d’échelle spatiale a été
conduite dans les chapitres 4 et 5 à travers l’analyse des séries d’humidité du sol à petit et à
grand support depuis une perspective spatio-temporelle. Au chapitre 4, j’ai connecté les échelles
de temps de l’humidité du sol avec la représentativité spatiale des séries ponctuelles. La
représentativité spatiale ou support effectif d’un point dans l’espace est défini comme étant
l’étendue où l’humidité du sol observée est “suffisamment similaire” à l’humidité du sol à cet
endroit. Le dégrée de similitude a été exprimée ici avec des indicateurs basés sur la corrélation
qui ont comparé des séries temporelles à petit support avec d’autres séries temporelles à petit
et grand support. À partir de l’analyse de la représentativité spatiale à des différentes échelles
de temps, de 0,5 à 128 jours, j’ai conclu que :

• La différence d’échelle spatiale tend à diminuer avec l’échelle de temps.

• En revanche, la dispersion des scores obtenus augmente avec l’échelle de temps : à l’échelle
saisonnière certains points sont très représentatifs du grand support tandis que d’autres
sont extrêmement peu représentatifs.

• À l’échelle sous-hebdomadaire, la différence d’échelle spatiale est très importante et uni-
forme pour tous les emplacements.

La première des conclusions de la liste découle des scores obtenus de représentativité spatiale
qui ont tendance à augmenter avec l’échelle de temps. À partir de là, on peut déduire que les
échelles spatiales et temporelles de l’humidité du sol sont reliées : les petites échelles
spatiales sont reliées aux petites échelles de temps et les grandes échelles spatiales aux grandes
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échelles de temps. Ceci est un résultat pertinent de cette thèse, car c’est la première fois qu’une
telle étude porte sur l’étendue de l’empreinte.

Alors que le chapitre 4 était consacré à la différence d’échelle spatiale dans son ensemble, le
chapitre 5 a été spécifiquement dédié à l’étude de l’incertitude d’échantillonnage. Celle-ci a
été analysée dans deux cas : a) lorsque le satellite est comparé (validé) avec une seule station de
mesure in situ, et b) lorsque le satellite est comparé à la moyenne d’un ensemble de stations de
mesures (network average, NAvg). L’incertitude d’échantillonnage du premier cas a été identifiée
comme l’incertitude d’échantillonnage des positions (sampling uncertainty of locations, SUL),
et celle du deuxième cas comme l’incertitude d’échantillonnage de la moyenne (SUM). Des
produits d’humidité du sol du satellite SMOS et AMSR2 ont été validés dans la région de
Little Washita et l’influence de la SUL et de la SUM a été évaluée. L’expérience a montré que
l’incertitude dans les statistiques de validation due à la SUL est plus importante
que l’incertitude due à la SUM. Ceci est vrai lorsque le NAvg est calculé en utilisant le
nombre typique de stations dans les réseaux de mesures in situ de type dense (10-20 stations).
Une autre conclusion majeure est que les contributions de la SUL et de la SUM n’étaient
pas négligeables. Lorsque les deux produits d’humidité du sol satellitaires différents ont été
comparés, leurs différences de performance étaient plus ou moins importantes en fonction du
degré d’incertitude de l’échantillonnage. Pour cette raison, la SUL et la SUM devraient être
systématiquement estimées quand on compare les statistiques temporelles de validation de deux
produits d’humidité du sol issus de satellites différents.

6.1.2 Quantification de la différence d’échelle spatiale

Si la première question de cette thèse était “qu’est-ce que la différence d’échelle spatiale ?”, la
deuxième question en découle naturellement : dans quelle mesure la différence d’échelle spatiale
affecte la validation des statistiques de validation des satellites ? La quantification de la différence
d’échelle spatiale a été démontrée faisable uniquement lorsque l’incertitude d’échantillonnage
a été prise en compte. Au chapitre 5, l’incertitude de la corrélation, du biais et de l’écart type des
différences (STDD) entre les mesures satellitaires et in situ d’humidité du sol ont été évaluées
quantitativement. Par exemple, l’incertitude dans la corrélation due à la SUL lorsque SMOS a
été validé dans la région de Little Washita pendant une période donnée a été estimée de l’ordre
de 0,15. Plus important encore, des intervalles de confiance ont été obtenus pour toutes les
métriques, ce qui a permis d’évaluer la significativité statistique des différences observées entre
SMOS et les produits AMSR2 pour la même région.

Il convient de noter que l’estimation de la SUL était basée sur la distribution spatiale statistique
de l’humidité du sol dans la zone d’étude, ce qui n’est pas toujours connu. Ceci est généralement le
cas des réseaux de mesure in situ de type épars, où une seule station est disponible par empreinte
satellitaire et où les campagnes d’échantillonnage plus dense sont rares. Selon la littérature, la
distribution spatiale statistique de l’humidité du sol est similaire pour de nombreuses régions :
en forme de cloche lorsque l’humidité du sol moyenne est en milieu de gamme et asymétrique
vers ses valeurs minimales et maximales. Cette information peut être utilisée pour construire
un modèle statistique minimal et fournir un seuil minimum pour la SUL des réseaux de
type épars.

En ce qui concerne la différence d’échelle spatiale totale, son évaluation quantitative s’est révélée
plus difficile. Au chapitre 4, j’ai émis l’hypothèse que, si les petites échelles spatiales étaient liées
à des petites échelles de temps, l’hétérogénéité à l’intérieur de l’empreinte satellitaire devrait être
reliée à de petites échelles de temps. Par conséquent, les différences de la dynamique temporelle
entre les séries d’humidité du sol in situ et satellite ne devraient être présentes que pour les
plus petites échelles de temps. Les analyses indiquent que cela n’est que partiellement vrai : s’il
est vrai que les échelles de temps sous-hebdomadaires apparaissent largement et uniformément
affectées par la différence d’échelle spatiale, d’autres échelles de temps ne sont pas épargnées.
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En effet, des différences dans des éléments géophysiques à petite échelle temporelle,
tels que les précipitations et la texture du sol, semblent se propager jusqu’aux
échelles saisonnières, surtout si la composante saisonnière du signal humidité est de faible
amplitude. De plus, la différence d’échelle spatiale est plus ou moins importante en fonction
de l’emplacement de la station de mesure in situ. Néanmoins, deux idées utiles ressortent du
chapitre 4 :

1. Les petites échelles de temps pourraient servir à construire une limite inférieure pour la
différence d’échelle spatiale

2. La différence d’échelle spatiale dépend fortement des échelles de temps ; vouloir la réduire
ou la résoudre totalement ne pourrait pas se faire sans tenir compte du temps.

6.1.3 Méthodes

Le prérequis principal pour les méthodes développées au cours de cette thèse était qu’elles
devraient être aussi génériques que possible afin d’être facilement applicable à toute région de
validation. Jusqu’à présent, les approches utilisées pour étudier ou évaluer la différence d’échelle
spatiale étaient contraintes par des conditions géophysiques (comme par exemple dans le cas
de la désagrégation) ou par des prérequis statistiques (par exemple, la triple collocation) qui
étaient difficiles à respecter de manière générale voire à vérifier. Par conséquent, pour pallier ces
contraintes, les approches proposées devaient être nouvelles ou différentes.

Les transformées en ondelettes ont été l’un des outils de base utilisés dans cette thèse. Elles
ont permis d’étudier les séries temporelles d’humidité du sol sur une base d’échelles de temps.
Des séries temporelles de mesures in situ et modélisées ont été analysées en échelles de temps
allant de 3 h à 128 jours et des séries temporelles satellitaires de 12 h à 128 jours. Il a été montré
que les transformées en ondelettes sont bien adaptées pour analyser les signaux humidité car
elles réussissent à révéler leur dynamiques temporelles caractéristiques (pics, décroissances par
assèchement, saisonnalité). Ainsi, elles ont permis de relier les échelles de temps de l’humidité
du sol avec les facteurs géophysiques liés à l’humidité du sol (précipitations, sol et végétation)
au chapitre 3.

Les transformées en ondelettes ont pour contrainte principale de nécessiter un échantillonnage
temporel régulier pour être applicables. Dans la pratique, des trous existent et ont été comblés
avec une approche en transformée en cosinus discrète (TCD). Cette méthode s’est révélé adéquate
pour le cas des séries satellitaires d’humidité du sol où les trous sont de courtes durées et
sont répartis uniformément dans la série ; ils représentent entre 50 % et 70 % du nombre total
d’échantillons, suivant les satellites et les conditions expérimentales. Les conclusions les plus
significatives sur l’impact de la TCD, malgré un taux de remplissage élevé, sont : 1) elle n’est
pas à l’origine de la plus grande variance des séries satellitaires dans les petites échelles de
temps comparée aux séries de mesure in situ, 2) sa contribution à la décorrélation entre les
séries satellitaires et in situ reste faible, 3) elle peut cependant induire de la corrélation entre
deux séries dont les trous sont placés de manière similaire.

L’étude des échelles spatiales a nécessité l’utilisation et le développement de méthodes pour leur
“mesurer”. Un moyen de mesurer l’échelle spatiale consiste à évaluer la représentativité spatiale
de différents sites au sein de l’empreinte satellitaire. Cependant, mon principal intérêt était de
relier les échelles spatiales et temporelles de l’humidité du sol, et donc l’évaluation de la repré-
sentativité spatiale a exigé des méthodes applicables sur chaque échelle de temps. J’ai proposé
la méthode de l’aire corrélée (CArea), une adaptation de la méthode de l’empreinte inverse
(inverse footprint) d’Orlowsky et Seneviratne (2014), spécialement adaptée à des données d’hu-
midité du sol densément échantillonnées dans l’espace. En outre, les transformées en ondelettes
m’ont amené au développement de la corrélation basé sur des ondelettes ou wavelet-based
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correlation (WCor), qui consiste à comparer les décompositions en ondelettes (séries de dé-
tail) de la série d’humidité in situ avec la série NAvg. Dans le cas de réseaux épars, la même
méthode peut être appliquée mais en utilisant une autre donnée à grand support se substituant
à NAvg, tel qu’une humidité satellitaire. Dans ce cas, le choix de la donnée à grand support
doit être soigneusement considéré. En utilisant des données maillées modélisées d’humidité du
sol, j’ai montré que les performances des deux méthodes, CArea et WCor, étaient bonnes et
similaires.

Dans le cas des données d’humidité du sol in situ réelles, la méthode CArea ne peut pas être
appliquée, donc WCor a été comparée à d’autres approches habituellement utilisées dans les
études d’humidité du sol pour évaluer la représentativité spatiale : l’analyse de la stabilité
temporelle (TStab) et la triple collocation (TC). Lorsque l’on s’intéresse aux séries décomposées
par ondelettes TStab devient inapplicable, les séries de détails étant par construction de moyenne
nulle. En ce qui concerne TC, la méthode est appropriée pour les échelles hebdomadaires et
mensuelles où elle fourni des résultats cohérents avec WCor. Cependant, à des échelles sous-
hebdomadaires où les corrélations croisées des jeux de données ont été trouvées faibles, et aux
échelles saisonnières où le nombre d’échantillons indépendants était petit, les scores de TC se
sont avérés erratiques. En conclusion, WCor s’est montré plus robuste et plus précise que les
autres approches. Je la recommande donc lorsqu’on analyse des données réelles mesurées (réseaux
in situde type dense et épars) et lorsque la décomposition en échelles de temps est souhaitée.

L’évaluation de l’incertitude d’échantillonnage au chapitre 5 a été possible grâce à un certain
nombre d’approches génériques :modélisation statistique,modélisation empirique, simu-
lations de Monte Carlo, CDF matching et bootstrap. Afin d’estimer l’influence de la SUL
dans les statistiques temporelles de validation des produits satellitaires, une procédure complète
basée sur ces outils a été conçue. D’une manière générale, pour une région d’étude donnée, la
procédure évaluant l’impact de la SUL consiste en 1) la construction d’un modèle temporel
empiriquepour les séries d’humidité du sol ponctuelles, 2) la construction d’un modèle spatial
statistique pour la zone, 3) la simulation des séries d’humidité du sol contraintes par les deux
modèles à l’aide de simulations Monte Carlo et de CDF matching, et 4) la comparaison des séries
simulées avec la série satellite d’humidité du sol pour obtenir les distributions d’incertitude des
statistiques.

La procédure d’estimation de la SUL et de son impact a donné des résultats raisonnables dans
la validation des produits d’humidité du sol de SMOS sur la région de Little Washita : les
séries in situ de Little Washita se trouvent à l’intérieur de la distribution de séries simulées,
de manière similaire aux statistiques SMOS-in situ, qui se trouvent aussi à l’intérieur des dis-
tributionsd’incertitude obtenues. Les distributions ne doivent pas être interprétées comme des
statistiques réelles mais comme les statistiques possibles pour la région d’étude d’un point de
vue géostatistique. Enfin, procédure d’évaluation de l’impact de la SUL peut être appliquée à
d’autres régions de validation sans difficulté majeure. C’est la première procédure dédiée
à l’évaluation de l’incertitude d’échantillonnage de l’humidité du sol.

L’approche par bootstrap a été utilisée pour évaluer l’incertitude dans les statistiques de valida-
tion induite par la SUM : Dans un premier temps, les séries de stations de mesures in situ ont
été combinées 1000 fois avec remplacement pour générer 1000 séries possibles de NAvg* (séries
bootstrap). Ensuite, ces séries ont été comparées à la série satellitaire en cours de validation.
Finalement, une distribution empirique des statistiques a été obtenue. La méthode est facile
à mettre en œuvre et ne nécessite aucun prérequis, donc je recommande son utilisation systé-
matique lors de la validation de produits satellites avec des réseaux de mesure in situ de type
dense.

L’approche par bootstrap peut être combinée à la procédure d’estimation de la SUL afin
d’estimer non seulement la SUM mais aussi l’influence de la SUL dans la SUM. Ceci a été décrit
dans la section 5.2.4 et j’ai conclu que, dans le cas de réseaux «bien échantillonnés» comme
Little Washita (20 stations), la combinaison bootstrap-SUL n’apporte pas de gain par rapport
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au bootstrap simple.

6.1.4 Vers une évaluation intégrée de la différence d’échelle spatiale dans la
validation satellitaire

En répondant aux questions initiales (qu’est-ce que l’humidité du sol à la résolution satellitaire,
quel est la différence d’échelle spatiale et comment la mesurer), cette thèse a fourni des éléments
utiles pour l’amélioration des études de validation.

La conséquence la plus directe est que les approches pour évaluer la SUL et la SUM
(chapitre 5) sont facilement applicables dans les études de validation. Naturellement,
d’autres recherches peuvent apporter des améliorations, mais il n’y a aucune objection à les
appliquer comme elles le sont actuellement.

En ce qui concerne ma recherche sur les échelles spatiales et temporelles d’humidité du sol, il n’a
pas été possible d’extraire la différence d’échelle spatiale à partir d’échelles de temps spécifiques.
Cependant, des caractéristiques pertinentes du signal humidité ont été identifiées et peuvent être
prises en compte lors de la validation des produits d’humidité du sol. Premièrement, les échelles
de temps sous-hebdomadaires devraient probablement être omises lors de la validation de
produits satellitaires avec des mesures in situ. Ces échelles sont fondamentalement différentes
entre les deux systèmes d’observation en raison d’une forte différence d’échelle spatiale. Il n’est
donc pas pertinent d’évaluer la performance d’un produit satellitaire à ces échelles qui reflèteront
davantage les écarts de géophysiques et d’échantillonnage.

Une leçon supplémentaire de ma recherche sur les échelles spatiales et temporelles est que nous
devrions faire attention aux échelles saisonnières. Les études utilisant la triple collocation
(TC), soit pour valider les estimations satellitaires ou pour évaluer la représentativité des sta-
tions de mesures in situ, éliminent systématiquement l’échelle saisonnière de l’humidité du sol
avant de procéder aux analyses. Comme le montrent les chapitres 3 et 4, les échelles saison-
nières peuvent être affectées ou non par la différence d’échelle spatiale et son influence dépend
de l’emplacement étudié. En supprimant les composants saisonniers qui ne sont pas affectés par
la différence d’échelle spatiale, les validations basées sur la TC omettraient une partie du signal
humidité du sol qui, en effet, favorise la similitude entre le satellite et les mesures in situ. Si les
composants saisonniers sont en revanche affectés par la différence d’échelle spatiale, les évalua-
tions de représentativité basées sur la TC bénéficieraient artificiellement aux stations avec
une mauvaise représentativité spatiale à l’échelle saisonnière.

Enfin, les décompositions en ondelettes pourraient être utilisées pour éliminer la tendance
dans les séries temporelles utilisées dans les études de validation lorsque c’est adapté. Dans la
communauté scientifique s’intéressant à la thématique de l’humidité du sol, l’élimination de la
tendance est systématiquement réalisée avec des filtres de moyenne mobile de longueur voisine
de 30 jours. Cette approche présente de multiples inconvénients. Par exemple, la longueur de la
fenêtre est arbitrairement fixée sans aucune enquête préliminaire. Les transformations continues
d’ondelettes pourraient être utilisées pour choisir la meilleure longueur de fenêtre. En outre, la
réponse fréquentielle des filtres de moyenne mobile sont beaucoup plus larges que la plupart
des types de filtres d’ondelettes, de sorte que les séries filtrées sont encore considérablement
affectées par des variations plus lentes du signal (>30 jours). Les décompositions en ondelettes
pourraient aider à sélectionner la meilleure longueur de fenêtre et utiliser la série de lissage de
l’échelle sélectionnée pour une élimination plus propre de la tendance.
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6.2 Perspectives

6.2.1 Perspectives pour les approches proposées

Dans cette thèse, l’analyse des échelles spatiales et temporelles de l’humidité du sol n’a pas
pu se concrétiser dans le développement d’une méthode pour évaluer la différence d’échelle
spatiale de manière globale. Cependant, elle a montré que la différence d’échelle spatiale a un
lien indissoluble avec les échelles de temps de l’humidité du sol et que la première ne peut pas
être comprise sans le deuxième. Dans ce contexte, il existerait des lignes de recherche concernant
les échelles de l’humidité du sol qui méritent d’être explorées.

Dans les réseaux épars, un seul emplacement in situ est comparé à l’humidité du sol du satellite.
Dans ce cas, la différence d’échelle spatiale n’est constituée que de deux composantes : l’incerti-
tude d’échantillonnage et l’écart géophysique. La première peut être estimée avec les approches
du chapitre 5. La deuxième ne peut pas être entièrement estimée, comme mentionné dans les sec-
tions précédentes, mais une limite inférieure peut être extraite des échelles sous-hebdomadaires.
Si cette différence minimale était estimée en termes de variance, elle pourrait être incorporée
au modèle spatial dans la procédure basée sur la SUL du chapitre 5. Cela fournirait l’incerti-
tude minimale dans les statistiques de validation induite par la différence d’échelle
spatiale.

Lorsque plusieurs stations in situ sont disponibles (réseaux denses), c’est la moyenne du réseau
(NAvg) qui est directement comparée à l’humidité du sol du satellite. Deux composants d’in-
certitude sont ajoutés au cas des réseaux épars : l’incertitude d’échelle et l’incertitude d’échan-
tillonnage de la moyenne(SUM), qui font partie de l’incertitude d’échantillonnage. L’évaluation
de l’incertitude d’échelle est le problème le plus difficile. Des idées pour sa résolution
peuvent être trouvées dans les études de sensibilité et les études traitant spécifiquement l’écart
entre la moyenne des observationset la moyenne des inversions d’humidité du sol (e.g. Crow
et al., 2001 ; Pellarin et al., 2003 ; Crow et al., 2005 ; Zhan et al., 2008 ; Crosson et al., 2010).
Comment traduire les informations obtenues dans ces études à l’évaluation opérationnelle de
l’incertitude d’échelle nécessite d’une recherche dédiée.

En ce qui concerne l’évaluation de la représentativité spatiale de points particuliers dans l’es-
pace, de nouvelles méthodes peuvent encore être proposées. Une communication récente de
Rodríguez-Fernández et al. (2017b) propose d’utiliser les réseaux de neurones pour analy-
ser la représentativité des séries de mesures in situ. Les réseaux de neurones sont des outils de
régression non linéaire efficaces et ils ont déjà été utilisés avec succès pour inverser l’humidité du
sol à partir des observations de températures de brillance. Rodríguez-Fernández et al. (2017b)
a produit des séries temporelles d’humidité du sol avec un réseau de neurones en utilisant la
température de brillance d’humidité du sol de SMOS et le NDVI du satellite MODIS comme
vecteurs d’entrée entraînés sur des mesures in situ. Ils ont suggéré que les séries in situ réelles
auraient une représentativité spatiale médiocre quand elles présenteraient de fortes différences
avec les séries générées par le réseau de neurones. C’est une approche prometteuse car elle peut
également être utilisée pour tous les sites de validation. Cependant, leur utilisation pour évaluer
l’incertitude dans les statistiques temporelles de validation doit être étudiée. Enfin, il serait très
utile d’analyser la décomposition en ondelettes des séries d’humidité du sol issues des inversions
par réseau de neurones : cela peut fournir plus d’éléments à la compréhension de la connexion
entre les échelles spatiales et temporelles de l’humidité du sol.

Certaines des approches présentées dans cette thèse méritent d’être approfondies. Celles présen-
tés dans le chapitre 5 pour évaluer l’incertitude d’échantillonnage sont prêtes à être appliquées
à d’autres réseaux de validation. Ceci est souhaitable et nécessaire pour les valider. L’un des
aspects observés est que la modélisation temporelle de la procédure SUL semblait gonfler le
biais des statistiques de sortie. La comparaison avec des mesures in situ supplémentaires pour-
rait aider à déterminer si ce biais est cohérent avec la réalité. En outre, une ligne de travail
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prometteuse consisterait à utiliser des réseaux de neurones pour générer des séries d’humidité
du sol dans la procédure SUL.

Les conclusions sur les échelles spatiales et temporelles de l’humidité du sol sont très utiles pour la
modélisation pour les méthodes d’upscaling et de downscaling. Des modèles conçus en stratifiant
la modélisation par échelles de temps pourraient permettre d’obtenir de meilleures performances.
Par exemple, à des échelles de temps sous-hebdomadaires, la désagrégation pourrait considérer
que la redistribution d’humidité du sol doit uniquement être basée sur de facteurs à petite
échelle spatiale, tels que la pluie ou la texture. Aux échelles saisonnières, la désagrégation ne
nécessiterait que des signaux saisonniers, comme la végétation. Ce type de schémas a déjà été
utilisé pour désagréger d’autres variables géophysiques comme la température de surface de la
terre.

6.2.2 Application à d’autres variables géophysiques

Cette thèse a abordé la différence d’échelle spatiale dans le cas de la variable humidité du sol.
Cependant, la différence d’échelle spatiale est un problème commun dans la télédétection par
satellite qui affecte aussi d’autres variables géophysiques. Les approches développées ici sont
suffisamment génériques pour être appliquées à d’autres variables. Naturellement, les approches
devraient être adaptées et interprétées selon les caractéristiques de la variable étudiée et les
propriétés des systèmes d’observation associés.

Les variables liées à la neige, comme la couverture de neige ou le contenu en eau équivalente de
la neige (SWE), sont de bonnes candidates pour les approches présentées dans cette thèse parce
qu’elles présentent plusieurs similitudes avec la variable humidité du sol. Tout d’abord, la neige
peut être très variable dans l’empreinte satellitaire. Le satellite MODIS, qui est généralement
préféré pour son bon échantillonnage temporel (1 jour), fournit des produits de neige à une réso-
lution de 250 m et la neige peut varier considérablement dans cette empreinte. La redistribution
spatiale de la couverture neigeuse varie aussi dans le temps : à certaines périodes de l’année, la
couverture de neige est mince et surtout homogène, et à d’autres périodes, la neige est dispo-
sée en tache avec des hauteurs plus importantes. La plupart des variables associées à la neige
sont bornées par la disparition totale de la neige, elles présentent des distributions asymétriques
comme l’humidité du sol lorsqu’elles s’approchent de zéro (Grünewald et al., 2010). Enfin, la
décomposition en ondelettes et les approches de simulation simples peuvent être appliquées car
il existe également des stations de mesures in situ permanentes mesurant les variables de neige
continuellement dans le temps et la neige est une conséquence des événements de précipitation.

La précipitation est une autre variable géophysique qui souffre de problèmes similaires d’échelle
d’observation. Par exemple, les produits pluviométriques du satellite TRMM sont fournis à une
résolution de 0,25°(∼25 km) et les pluviomètres mesurent à un point particulier dans l’espace.
En outre, des questions similaires à celles posées sur l’humidité du sol à grand support sont
présentes dans le cas de la variable pluie. Qu’est-ce que le taux de précipitations à la résolution
de 25 km? La moyenne des précipitations dans la région ? Des décompositions en ondelettes
pourraient être appliquées aux précipitations car il existe à la fois des longues séries de mesures
in situ et satellitaires de pluie.

Une autre variable qui pourrait être étudiée avec les approches développées dans cette thèse est
la température de surface de la terre (LST, pour son acronyme en anglais). Il existe des
stations de mesures in situ permanentes qui mesurent la LST à des résolutions allant jusqu’à
10 m. Bien qu’il existe des missions satellites offrant des produits LST à des résolutions simi-
laires (e.g. Landsat à 30 m), des capteurs de résolution plus grossiers comme MODIS (1 km)
sont toujours utiliséset doivent être validés. La LST est fondamentalement hétérogène dans une
empreinte de 1 km ; sa validation souffre également de la différence d’échelle spatiale.
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6.3 Questions ouvertes

La recherche commence mais ne se termine jamais et cette thèse n’est pas une exception. Cette
thèse laisse certaines questions ouvertes, soit parce que leurs réponses n’étaient pas incluses
dans ses objectifs, soit parce que les réponses étaient plus complexes que prévu, soit encore
parce qu’elles sont apparues à la lueur de ces travaux.

La principale question pratique de ce travail de thèse était de savoir si la différence d’échelle
spatiale entre les deux mesures d’humidité du sol, satellitaire et in situ, pouvait être évaluée.
J’ai montré que c’est faisable, au moins partiellement. L’incertitude d’échantillonnage peut être
évaluée comme le montre le chapitre 5. En revanche, l’évaluation de la différence d’échelle spatiale
totale nécessite des recherches supplémentaires. Dans la section 6.2.1, j’ai suggéré quelques voies
qui peuvent être explorées. En conclusion, l’obtention de la différence d’échelle spatiale
minimum présente dans les statistiques temporelles de validation satellitaires semble
possible.

Des questions plus générales et presque philosophiques n’ont pas encore de réponses claires. Par
exemple, la notion de représentativité spatiale reste ouverte. Toutes les méthodes utilisées
pour l’évaluation de la représentativité spatiale sont basées sur des mesures de corrélation (cha-
pitre 4). Cependant, la représentativité pourrait s’exprimer avec d’autres paramètres comme
la variance. Peut-on affirmer qu’une série temporelle de mesure in situ est représentative des
séries temporelles à grand support lorsque leurs dynamiques respectives sont bien corrélées alors
qu’elles sont très différentes en variance ? En général, variance et corrélation ne peuvent pas
être maximisées en même temps. Par conséquent, la communauté scientifique s’intéressant à la
thématique de l’humidité des sols doit décider quelles sont les métriques les plus pertinentes à
utiliser pour l’évaluation de la représentativité spatiale.

Au chapitre 1, j’ai présenté les deux définitions possibles pour l’humidité du sol à grand
support. Serait-on prêt à accepter que l’humidité du sol à grand support soit une traduction
de l’énergie intégrée et qu’elle ne devrait pas être obligatoirement égale à l’humidité du sol
moyenne ? Ou considérerait-on que l’humidité du sol issue d’un satellite corresponde parfaite-
ment à l’humidité du sol moyenne (inconnue) de la région d’étude ? Dans le premier cas, les
modèles opérant sur des grandes échelles spatiales devraient s’adapter à ce que les satellites
voient. C’est une question importante qui doit être discuté par la communauté scientifique.

Enfin, en dehors de la différence d’échelle spatiale, il existe d’autres sources d’écart entre le
satellite et les mesures in situ : l’écart temporel et le d’écart vertical. L’écart temporel apparaît
quand les mesures in situ ne sont pas prises exactement au moment du survol du satellite.
L’écart vertical apparaît lorsque la profondeur de détection du satellite et celle des capteurs
in situ ne coïncident pas. On sait que la profondeur de détection du capteur satellitaire varie
dans le temps en raison des changements dans les conditions de surface (niveau d’humidité du
sol, texture,végétation). En revanche, la station in situ est installée à une profondeur constante,
à moins que des changements dans le sol aient lieu, ce qui n’est pas si rare. Cette discordance
verticale se traduit principalement en décorrélation et, dans une moindre mesure sans doute,
en variabilité. La prise en compte de cet effet n’entrait pas dans les objectifs de cette thèse,
mais il serait important de les considérer lors de la validation des produits d’humidité du sol
satellitaires ou du moins d’évaluer leur impact car ils contribuent nécessairement à l’incertitude
dans les statistiques.

6.4 Note finale

Cette thèse avait pour objectif de contribuer à une meilleure compréhension de la différence
d’échelle spatiale entre les mesures d’humidité du sol par satellite et in situ. Elle a montré que
les échelles spatiales et temporelles de l’humidité du sol sont interconnectées et que la différence
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d’échelle spatiale peut être partiellement estimée. Cela a été possible grâce à l’adaptation et
aux développements des approches génériques basées sur des outils de traitement du signal et
des outils statistiques. Ces approches peuvent être utilisées globalement et adaptées à d’autres
variables géophysiques.

L’incertitude dans les statistiques temporelles de validation de produits satellitaires induite par
la différence d’échelle spatiale a été généralement négligée, très probablement parce qu’elle est
difficile à estimer. J’espère que cette thèse aura aussi sensibilisé sinon convaincu le lecteur de
l’influence majeure de la différence d’échelle spatiale dans la validation des produits satellitaires.
Cette différence d’échelle peut être très significative dans les dynamiques sous-hebdomadaires.
L’une de ses composantes, l’incertitude d’échantillonnage, peut complètement changer la com-
paraison des performances relatives de deux produits satellitaires. Il est donc essentiel lorsque
l’on compare des produits satellitaires d’humidité du sol de réfléchir à la signification statistique
des différences : rendent-elles compte des performances réelles ou bien sont-elles obtenues par
hasard en raison de la différence d’échelle spatiale ?

Enfin, il existe une croyance générale selon laquelle l’amélioration de la résolution des produits
satellitaires d’humidité du sol rendra négligeable la différence d’échelle spatiale. Différentes so-
lutions ont été proposées (SMAP) ou sont en cours de développement (SMOS-Next, SMOS-HR)
pour fournir des produits d’humidité du sol globaux à des résolutions spatiales améliorées. Ces
résolutions cibles sont limitées aux échelles kilométriques (1 à 10 km) parce que les solutions
sont basées sur des capteurs en bande L caractérisés par une grande sensibilité à l’humidité du
sol dans une large gamme de conditions de végétation. Cependant, les hautes résolutions kilomé-
triques ne supprimeront pas les différences spatiales : l’humidité du sol peut varier rapidement
dans quelques mètres seulement. La problématique de la différence d’échelle spatiale entre les
mesures d’humidité du sol par satellite et les mesures in situ restera un sujet d’actualité pour
encore de nombreuses années.
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Appendix A

The DISPATCH processor

The descriptions herein concern he operational version of DISPATCH integrated in the Level-4
(L4) of the French ground segment of the SMOS mission. The DISPATCH processor, called
CATDS Level-4 Disaggregation processor (C4DIS), disaggregates SMOS Level-3 soil moisture
products to a final resolution of 0.01°.

A.1 DISPATCH algorithm

DISPATCH distributes the SM within the low-resolution pixel according to the spatial distribu-
tion of the soil evaporative efficiency (SEE). The SEE is estimated at the target higher resolution
(HR) following the model:

SEEHR = Ts,max − Ts
Ts,max − Ts,min

(A.1)

with Ts being the soil temperature and Ts,max and Ts,min being the soil temperatures at mini-
mum and maximum soil moisture, respectively. They are derived from the optical observations
(MODIS). Using the triangle approach (Carlson et al., 1994), Ts can be expressed as:

Ts = Tsurf − fvTv
1− fv

(A.2)

with Tsurf being the LST from the higher-resolution sensor (MODIS), fv the fractional vege-
tation cover and Tv the vegetation temperature, both to be estimated. The triangle method is
illustrated in Figure A.1

Tsurf has been previously corrected for elevation effects (Merlin et al., 2013):

Tsurf = Tsurf,original + γ · (HHR −HLR) (A.3)

with γ (◦C/m) the mean lapse rate (set to 0.006 ◦C/m and valid locally), HHR the altitude of
the HR pixel and HLR the mean altitude of within the low-resolution pixel.
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Figure A.1 – Example of the triangle method of Moran et al. (1994), which is based on the position of
the pixel in the LST-fv space, applied to the ASTER data acquired on the 17/08/2011 in Urgell, Spain.
Source: Merlin (2016)

The fractional vegetation cover is calculated as:

fv = NDV I −NDV Is
NDV Iv −NDV Is

(A.4)

where NDVI is obtained from the higher-resolution sensor (MODIS), and NDV Is and NDV Iv
are set to arbitrary NDVI values for bare soil (0.15) and full-vegetated surface (0.90), respectively.

Vegetation temperature Tv in Equation A.2 is estimated with the “hourglass” approach in Moran
et al. (1994). Temperature end-members in Equation A.1 (Ts,min, Ts,max) are obtained from
the minimum and the maximum surface temperatures in the scene (Tsurf,min, Tsurf,max), re-
spectively. This is done through approximations in the LST-fv space (A.1 and Merlin et al.
(2013)):

1. At the pixel with minimum temperature Tsurf,min
(a) if the vegetated portion is low (fv < 0.5), we assume fv ≈ 0 to derive the minimum

soil temperature, Ts,min = Tsurf,min. Tv,min is set to Tsurf,min as well
(b) if the vegetated portion is large (fv >= 0.5), we assume fv ≈ 1 to derive the minimum

vegetation temperature, Tv,min = Tsurf,min. Then, Ts,min is derived as the minimum
Ts obtained from Equation A.2 with Tv = Tv,min in poorly vegetated pixels (fv < 0.5)

2. At the pixel with maximum temperature Tsurf,max
(a) if fv < 0.5, we assume fv ≈ 0 and Ts,max = Tsurf,max. Tv,max is derived as the

maximum Tv obtained from Equation A.2 with Ts = Ts,max in highly vegetated
pixels (fv >= 0.5)

(b) if fv >= 0.5, we assume fv ≈ 1 and Tv,max = Tsurf,max. Then, Ts,max is derived as
the maximum Ts obtained from Equation A.2 with Tv = Tv,max under low vegetated
conditions (fv < 0.5)

Once SEEHR has been obtained for all the HR pixels within the large-support pixel, the down-
scaling relationship can be applied to obtain soil moisture at the target resolution (SMHR):

SMHR = SMLR + ∂SM

∂SEELR
· (SEEHR − SEELR) (A.5)
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with SMLR being the soil moisture observed by the low resolution sensor (SMOS) and SEELR
the spatial average of the SEEHR values within the LR pixel. The partial derivative in Equa-
tion A.5 equals SMp, a paramater that is calculated at LR following the linear SEE-SM model
in Budyko (1961):

SMp = SMLR/SEELR (A.6)

A.2 The C4DIS processor

Herein, the basic features of the C4DIS processor are described. A more detailed description of
the processor can be found in Molero et al. (2016).

The pre-processor prepares the data for the application of DISPATCH. Up to 24 possible com-
binations of LR and HR data are generated as follows: First, the pre-processor resamples the
SMOS L3 dataset from the original 25-km grid to four 50-km grids. This produces four LR ob-
servations per input SMOS dataset. The procedure is further described in Merlin et al. (2012)
and Malbéteau et al. (2016). Then, the pre-processor selects the MODIS LST datasets avail-
able within a 3-day window centred on the SMOS date, both Aqua and Terra observations
included. In consequence, each of the 4 resampled SMOS observations can be disaggregated
using the surface temperature of 3x2 MODIS products, which makes 24 possible combinations.

DISPATCH is applied to each of the (up to) 24 sets of observations. Less than 24 sets are
possible if some of the products are not available or if some of the LST/NDVI products exceed
the cloud-free and sea-free thresholds (67 % and 90 %, respectively). Moreover, the operational
version filters those HR pixels that do not have maximum quality (quality flags 0 and 17, Wan
(2006) and Solano et al. (2010)).

The (up to) 24 disaggregated SM datasets are averaged together in one final dataset called
SM_HR. This helps to reduce independent random errors. However, the 3-day window is
based on the assumption that SM fields are stable for periods of at least 1 day around the SMOS
overpass time. This assumption is not satisfied if a precipitation event occurs in between, in
which case additional noise will be introduced.

The final L4 disaggregated product contains 3 datasets: the SM_HR dataset and two other
that could serve as indicators of the method uncertainty. These are the STD dataset, which
contains the standard deviation of the 24-disaggregated output ensemble, and the COUNT
dataset, which is the size of the ensemble. SM_HR values are masked if COUNT values are
lower than 3.
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Appendix B

Confidence intervals (CI) for the
wavelet variance

The CIs of the biased estimator of the wavelet variance σ̂2
j can be calculated following two

methods according to Percival andWalden (2000, pp. 311-315). The first assumes that {Wj(t)} is
a Gaussian process, so for a large number of samples N , the sample variance σ̂2

j is approximately
Gaussian distributed with mean σ2

j and variance 2Aj/N , Aj a constant. The CIs obtained with
this method are often inconvenient because they can have a negative lower limit. The other
method does not suffer from this drawback by assuming that df · σ̂2

j /σ
2
j is a chi-square random

variable with df equivalent degrees of freedom (χ2
df ). The resultant CI is:

[CIl, CIu] =
[

df · σ̂2
j

Qdf (1− p) ,
df · σ̂2

j

Qdf (p)

]
(B.1)

where Qdf (p) is the p probability point of the χ2
df distribution. The above equation requires

a value for df that can be calculated following different strategies. If the sample size is large
enough (N = 128 is already considered sufficient) the following expression for df gives CIs that
are “reasonable accurate” (Percival and Walden, 2000, p. 315):

d̂f =
Nσ̂4

j

Âj
(B.2)

where Âj is a constant derived from the spectral density function Ŝj(f) of the wavelet coefficients
{Wj(t)}:

Âj = 1
2

∫ 1/2

−1/2
(Ŝj(f))2df (B.3)

Given that the length of the time series analysed in this thesis is largely bigger than 128, the
Equations B.1, B.2 and B.3 are used to derive the CIs for the biased wavelet variance. The
following figure shows the wavelet variance of the Little Washita in situ series described in
section 3.3 with their respective CIs calculated with the selected method. The Little Washita
series had a length of 3 years and were sampled at 3 h interval (8760 samples).
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Figure B.1 – Variance decomposition of the in situ time series (color lines) and the average in situ series
(black line) of the Little Washita network, with the respective confidence intervals
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Appendix C

Confidence intervals (CI) for the
wavelet correlation

There exists one available method to compute the confidence intervals (CIs) of the sample
wavelet correlation. However, it produces CIs that are excessively large at large time scales.
Herein, I present the theory on CIs for the correlation coefficient and I propose a new approach
to produce CIs at large time scales that are more tractable.

The sample correlation RX,Y measures the strength of the linear relationship between a set of
N bivariate observations, (x1, y1), (x2, y2), . . . , (xN , yN ):

R = 1
N

N∑
n=1

xn − µ̂X
σ̂X

· yn − µ̂Y
σ̂Y

(C.1)

If the observations are independent and follow the same bivariate distribution, R is a consistent
and approximately unbiased estimator of the population correlation ρX,Y (Rodriguez, 2006).
The Fisher’s z transformation (Equation C.2) helps for the construction of confidence intervals
for R, since it approaches normality much faster than R. Rodriguez (2006) showed that the
standard deviation of z is approximately (N − 3)−1/2 and that the variance of R is inversely
dependent on the sample size N (Equation C.3).

z = tanh−1R = 1
2 log

(1 +R

1−R

)
(C.2)

V ar{Rx,y} =
(1− ρ2

xy)2

Neff − 1 ·
(

1 +
11ρ2

xy

2Neff

)
+O(N−3

eff ) (C.3)

This estimation of the statistical significance of R is adequate when the data have a bivariate
normal distribution and do not exhibit serial auto-correlation. However, most typical geophysical
series, like soil moisture, have serial dependence (Ebisuzaki, 1997). Serial dependence reduces
the effective sample size from N to Neff independent samples (Mudelsee, 2003). As can be
inferred from Equations C.2 and C.3, the reduction in sample size widens the uncertainty limits
for R.

For time series with some degree of auto-correlation, Percival et al. (2000) identified two possible
ways to compute the uncertainty of the wavelet autocorrelation defined in Equation C.4. The
first option is to estimate Neff and replace N by Neff in Equation C.3. The second option
consists in bootstrap approaches.
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RX,Y,j = Cov{WX,j ,WY,j}√
σ̂2
X,j · σ̂2

Y,j

(C.4)

CIs with the analytical method (wavelet coefficients) Whitcher et al. (2000) pro-
posed an analytical solution to approximate the 100(1 − 2p)% confidence intervals (CIs) for
the MODWT wavelet correlation at scale j:

[CIl, CIu]j =
[
tanh

{
zj −

Φ−1(1− p)√
Neff ,j − 3

}
, tanh

{
zj + Φ−1(1− p)√

Neff ,j − 3

}]
(C.5)

Where zj is the z-transform of RX,Y,j , Φ−1(1 − p) is the p probability point for the standard
normal distribution andNeff ,j is the effective sample size at scale j. They propose to approximate
Neff,j as the number of DWT coefficients at scale j (Equation C.6). The rationale is that DWT
coefficients can be regarded as uncorrelated if the original series is equal or similar to a long-
memory process (Percival et al., 2000) (MODWT are always serially correlated).

Neff ,j =
⌊
N

wa,j

⌋
(C.6)

where wa,j = 2j is the autocorrelation length for the equivalent wavelet filter, i.e. the number of
samples that contribute the most in the construction of one wavelet coefficient (Cornish et al.,
2006).

The drawback of this approach is that former research showed that the estimation of Neff is not
trivial and the results are not always consistent (Ebisuzaki, 1997). Maybe because of this, the
resultant CIs of the analytical method seem too pessimistic for large scales. To illustrate this, I
applied this method to the wavelet correlation between the point in situ series and the average
in situ series of the Little Washita dataset described in section 3.3. The series expanded 3 years
and were sampled at 3 h interval. Eleven levels of decomposition were produced (J0 = 11,
τj=128 days, 8760 samples). I found that the comparison of the wavelet correlations obtained
was intractable from scale 7 (8 days) onwards due to too wide CIs (not shown here). This was
explained by the very rapid decrease in the effective number of samples with scale. For example,
at scale 11, the autocorrelation width was wa,11 = 211 = 2048 samples so the effective sample
size was reduced to Neff,9 = b8760/2048c = 4.

CIs with bootstrap approaches (detail series) I propose a new method to compute the
CIs for the wavelet-based correlation metric defined in section 3.2.4. The method is based on
bootstrap approaches. In contrast to the analytical method, bootstrap is non-parametric, i.e. it
does not require any assumption on the distribution of RX,Y,j . However, standard bootstrap does
not take into account dependence between the samples. A simple way to account for the serial
dependence is not to break blocks of samples that are strongly auto-correlated. In other words,
the bootstrapped samples are not samples but blocks of samples. This method is called block
bootstrap (Davison and Hinkley, 1997). The block length must be chosen not smaller than the
temporal auto-correlation length so that the output bootstrapped series is not “whitened”. As
explained in the description of the analytical method, the estimation of auto-correlation length
is not trivial so the value block length = wa,j = 2j seems a good preliminary approximation.

An important drawback when applying block bootstrap is that the number of blocks is reduced
significantly in the last scales. If we consider again the Little Washita 3-years time series
(2190 samples) as example, at scale 9 the number of blocks would be b2190/512c = 4. A way to
increase the sample space is to allow the blocks to overlap (Davison and Hinkley, 1997).
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The CIs for Figure C.1 shows the correlation and the 95 % CIs calculated with the overlapping
block bootstrap on the Little Washita series. The CIs here exhibit a strong correspondence
between correlation levels and uncertainty: the lower the correlation, the higher the uncertainty,
and vice versa. The effect in the last scale is striking: the series exhibiting correlation close
to 1 have extremely narrow CIs. However, the dependence with Neff,j is always present. For
moderate values of correlation (0.5-0.9), same correlation values at different time scales do not
have the same CIs: the larger scale has wider CIs (e.g. series #12, the CIs of the 64-day scale
are wider that those of the 0.5-day scale). For a more detailed view of the bootstrap process,
Figures C.2 and C.3 show the bootstrapped distributions at each time scale for series #1
and #3, respectively.

Figure C.1 – Correlation between the detail series of the point in situ series and the average in situ series
of Little Washita, with the respective 95 % CIs calculated with the overlapping block bootstrap method
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Figure C.2 – Bootstrap distributions of the correlation between station #8 series and the average in situ
series of the Little Washita network

0.6 0.8 1

F
re

q
u
en

cy
 (

%
)

0

10

20

30
Scale 1, 0.125 days

0.6 0.8 1
0

10

20

30
Scale 2, 0.25 days

0.6 0.8 1
0

10

20

30
Scale 3, 0.5 days

0.6 0.8 1
0

10

20

30
Scale 4, 1 days

0.6 0.8 1

F
re

q
u
en

cy
 (

%
)

0

10

20

30
Scale 5, 2 days

0.6 0.8 1
0

10

20

30
Scale 6, 4 days

0.6 0.8 1
0

10

20

30
Scale 7, 8 days

Correlation

0.6 0.8 1
0

10

20

30
Scale 8, 16 days

Correlation

0.6 0.8 1

F
re

q
u
en

cy
 (

%
)

0

10

20

30
Scale 9, 32 days

Correlation

0.6 0.8 1
0

10

20

30
Scale 10, 64 days

Correlation

0.6 0.8 1
0

10

20

30
Scale 11, 128 days

Median

Mean

Obs value

95% CI

Figure C.3 – Bootstrap distributions of the correlation between station #12 series and the average
in situ series of the Little Washita network

162



Appendix D

In situ networks: land cover maps

Figure D.1 shows the Ecoclimap land cover map (Masson et al., 2003) for the four dense in situ
networks used in this thesis. It is presented in the Discrete Flexible Fine Grid (DFFG), 4 by 4 km
grid used in the SMOS Level-2 processor for weighting land cover classes (Richaume et al., 2006;
Kerr et al., 2014).

The Ecoclimap database accounts for a total of 218 ecosystems. They can be summarised in a
smaller number of classes for modeling purposes, as they are in the SMOS Level-2 processor.
Figure D.1 shows the maps of the aggregated land cover classes for the same four dense in situ
networks as before.

By looking at both Figures D.1 and Figures D.2, we can observe that the networks are homoge-
neous in terms of big land cover classes and low vegetation is the main class. However, we may
find different low vegetation types within each network. In the absence of finer classification
data, Figure D.3 illustrates well this situation in Yanco. In this figure, it can be seen that the
NDVI time series differ between stations in the Yanco network, implying different agricultural
practices and/or crops.
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(a) Little Washita (b) Walnut Gulch

(c) Yanco (d) Monte Buey

Figure D.1 – Ecoclimap land cover maps for the four dense in situ networks used in this thesis. The
circle represents a mean SMOS footprint size of 40 km.

(a) Little Washita (b) Walnut Gulch

(c) Yanco (d) Monte Buey

Figure D.2 – Aggregated Ecoclimap land cover maps for the four dense in situ networks used in this thesis.
The aggregated classes are those considered in the SMOS retrieval algorithms. The circle represents a
mean SMOS footprint size of 40 km.
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Figure D.3 – NDVI time series observed at each of the station locations (the station ID is indicated in
the axis labels at the left). The values are extracted from the NDVI raster, input to the disaggregation
algorithm in the C4DIS processor (Molero et al., 2016).
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Appendix E

Temporal empirical models of 5 in
situ series

The following model is obtained for the temporal dynamics of the SM measured at stations #4,
#6, #9, #10, and #13 of the Little Washita network during the 2013/01 - 2013/06 period:

f(SMt) = SMt+1 =
{
SMt + fp(prect, SMt), if prect > 0
SMt · e−fd(LAIt,SMt)·∆t

Z , otherwise
(E.1)

where ∆t is the sampling period, Z is the soil depth (5 cm), and fp(·) and fd(·) are the peak
and decay models that are expressed as:

fp(prect, SMt) = a00 + a10SMt + a01prect + a20SM
2
t + a02prec

2
t + a11prectSMt (E.2a)

fd(LAIt, SMt) = b00 + b10SMt + b01LAIt + b20SM
2
t + b11LAItSMt (E.2b)

The a and b coefficients are obtained by least-squares fit (Levenberg-Marquardt method). The
least-squares fit minimises the sum of the squares of the deviations between the observation and
the model. In the case of the peak and decay models, the least-squares initial equations are:

â00,...,11 = arg min
a

m∑
i=1

[∆SMi − fp(preci, SMi, a00,...,11)] (E.3a)

b̂00,...,11 = arg min
b

m∑
i=1

[Ei − fd(LAIi, SMi, b00,...,11)] (E.3b)

where m is the number of samples used for fitting and E = −ln(∆SM) Z∆t . Normally, m
should have been equal the total number of time intervals N − 1 and ∆t should have denoted
the sampling period (30 min) and ∆SM , the difference between two consecutive SM values,
SMt+1−SMt. However, the models found did not lead to simulated SM series reasonably close
to the measured SM series. This can be observed in Figure 3.6, where the modelled and the
measured series differ in the decay patterns (slightly) and in the minimum and maximum values
reached (moderately).

Better models were finally found by selecting only some of the samples of the series for the fit.
For fitting the peak model, only the samples at the beginning and at the end of a peak interval
were considered. A peak interval is defined as an interval of increasing SM leading to a peak.
For fitting the decay model, only the samples at the beginning and at the end of a dry-down
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decay were considered. This implies that prior to the application of Equation E.3 the peak and
decay intervals had to be identified. This was not straightforward since the precipitation did
not always preceded by one time step the increase in SM. The algorithm for the detection of the
peak intervals consisted in i) selecting the local maxima (peaks) preceding a decay, ii) localizing
the minimum SM value preceding each peak by 1 time step or more (and after any other local
maximum). The selection of the peak intervals is illustrated in Figure E.1 for station #9. The
algorithm for the detection of the decay intervals repeated i) and changed the 2nd step by: ii’)
localizing the minimum SM value after each peak by 1 time step or more (and before any other
local maximum).
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Figure E.1 – Pre-selection of peaks and decays for the fit of the peak model for station #9

After the selection of m intervals, Equation E.3 could be solved by replacing ∆t by the interval
length (in time units) and ∆SM by the difference in SM between the end and the start of the
interval. As an example, Figures E.2 and E.3 show the fit obtained for the peak and decay
models for station #9.
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Figure E.2 – Fit of the peaks model to the observed data at station #9

The fitted a and b coefficients were found different depending on the in situ series used as
a reference. The final modelled series for each of the stations are displayed in the following
figures, together with their reference in situ SM series and the explanatory variables used, LAI
and precipitation.
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Figure E.3 – Fit of the decay model to the observed data at station #9
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Figure E.4 – Observed and modelled time series at each of the 5 selected stations locations: #4, #6, #9,
#10 and #13
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Appendix F

Bootstrap distributions and sample
size

Figure F.1 – Bootstrap distribution of the correlation between SMOS and the in situ NAvg, as a function
of the number of in situ time series taken to compute the NAvg. The dashed line correspond to the
median and the dotted lines to the 5 % and 95 % confidence limits
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Figure F.2 – Bootstrap distribution of the bias between SMOS and the in situ NAvg, as a function of
the number of in situ time series taken to compute the NAvg. The dashed line correspond to the median
and the dotted lines to the 5 % and 95 % confidence limits
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Figure F.3 – Bootstrap distribution of the STDD between SMOS and the in situ NAvg, as a function of
the number of in situ time series taken to compute the NAvg. The dashed line correspond to the median
and the dotted lines to the 5 % and 95 % confidence limits
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TITRE : Différence d’échelle spatiale entre les mesures satellitaires et in situ d’humidité du sol : analyse par
des approches spatio-temporelles

RÉSUMÉ : L’humidité du sol est une variable climatique essentielle dont le suivi à l’échelle globale est pos-
sible grâce à des instruments micro-ondes à bord des satellites. La précision de ces estimations est validée par
comparaison directe aux mesures au sol. Tandis que les estimations satellitaires ont des résolutions allant de 30
à 100 km, les capteurs in situ sont généralement représentatifs d’une zone de quelques centimètres (résolution
ponctuelle). Cette différence entre l’échelle spatiale des estimations satellitaires et in situ impacte le processus de
validation et les statistiques obtenues à un niveau qui n’est pas connu actuellement.

Cette thèse vise à améliorer la connaissance de l’impact du changement d’échelle spatiale, ainsi qu’à fournir des
méthodes d’évaluation de celle-ci applicables à toute zone de validation. Pour ce faire, la relation entre les échelles
spatiales et temporelles a été étudiée. Des séries modélisées et mesurées sur des régions différentes du globe ont
été décomposées en échelles de temps allant de 0,5 et 128 jours, en utilisant des transformées en ondelettes. La
représentativité spatiale des mesures à résolution ponctuelle a ensuite été évaluée, par échelle de temps, avec 4
approches différentes : l’analyse de la stabilité temporelle, la triple colocation, le pourcentage de zones corrélées
(CArea) et une nouvelle approche utilisant des corrélations basées sur des ondelettes (WCor). De plus, l’incertitude
d’échantillonnage a été évaluée séparément avec des approches bootstrap et des simulations de Monte Carlo de
séries à résolution ponctuelle.

À l’issue de ces expériences, il y a été constaté que la moyenne des valeurs de représentativité spatiale obtenues
tend à augmenter avec l’échelle de temps, mais aussi leur dispersion. Cela implique que certaines stations ont
de vastes zones de représentativité à des échelles saisonnières, tandis que d’autres ne l’ont pas. Aux échelles
sous-hebdomadaires, toutes les stations présentaient de très petites zones de représentativité. Enfin, l’impact de
l’incertitude d’échantillonnage s’est avéré assez important dans les métriques de validation satellitaire.
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TITLE: Analysis of the spatial scale mismatch between satellite and ground measurements of soil moisture
using spatio-temporal approaches

ABSTRACT: Soil moisture is an essential climate variable that is globally monitored with the help of satellite
borne microwave instruments. The accuracy of satellite soil moisture estimations is assessed by direct comparison
to in situ measurements. While satellite estimates have a resolution ranging between 30 and 100 km, in situ
sensors typically measure over an area of a few centimetres (point resolution). This spatial scale mismatch
between satellite and in situ soil moisture estimates impairs the validation process and the respective summary
statistics to an extent that is not currently known.

This thesis aims at improving the knowledge of the spatial scale mismatch, as well as providing methods for its
assessment applicable to any validation area. To this end, the connection between the SM spatial and time scales
was investigated. Modelled and measured soil moisture series at different regions of the globe were decomposed
into time scales ranging from 0.5 to 128 days, using wavelet transforms. The spatial representativeness of the
point measurements was then assessed, on a per time scale basis, with 4 different approaches: temporal stability
analysis, triple collocation, the percentage of correlated areas (CArea) and a new approach that uses wavelet-
based correlations (WCor). Moreover, one of the components of the mismatch, the sampling uncertainty, has
been assessed separately with bootstrap and Monte Carlo simulations of point-support series.

It was found that the average of the spatial representativeness values tends to increase with the time scales but
so does their dispersion. This implies that some stations had large representativeness areas at seasonal scales,
while others do not. At sub-weekly scales, all stations exhibited very small representativeness areas. Finally, the
sampling uncertainty has been observed to have a considerable impact on satellite validation statistics.
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