
HAL Id: tel-01943728
https://theses.hal.science/tel-01943728v1

Submitted on 4 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

User controlled trust and security level of Web real-time
communications

Kevin Corre

To cite this version:
Kevin Corre. User controlled trust and security level of Web real-time communications. Cryptography
and Security [cs.CR]. Université de Rennes, 2018. English. �NNT : 2018REN1S029�. �tel-01943728�

https://theses.hal.science/tel-01943728v1
https://hal.archives-ouvertes.fr

User Controlled Trust and Security Level
of Web Real-Time Communications

THESE DE DOCTORAT DE
L’UNIVERSITE DE RENNES 1
COMUE UNIVERSITE BRETAGNE LOIRE

Ecole Doctorale N° 601
Mathèmatique et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Thèse présentée et soutenue à RENNES, le 31 MAI 2018 par

Kevin CORRE
Unité de recherche : IRISA (UMR 6074) Institut de Recherche en Informatique et Systemes Aléatoires

Thèse N° :

Rapporteurs avant soutenance :
Maryline LAURENT, Professeur, TELECOM SudParis
Yvon KERMARREC, Professeur, IMT Atlantique

Composition du jury :

Présidente : Maryline LAURENT, Professeur, TELECOM SudParis
Examinateurs : Yvon KERMARREC, Professeur, IMT Atlantique

Walter RUDAMETKIN, Maître de Conférences, Université de Lille
Dominique HAZAEL-MASSIEUX, Ingenieur de Recherche, W3C
Vincent FREY, R&D Software Engineer, Orange Labs

Dir. de thèse : Olivier BARAIS, Professeur, Université de Rennes 1

Co-dir. de thèse : Gerson SUNYÉ, Maître de Conférences, Université de Nantes

“Fide, sed cui vide”.
- Locution latine

“Du père qui m’a donné la vie : la modestie et la virilité,
du moins si je m’en rapporte à la réputation qu’il a laissée

et au souvenir personnel qui m’en reste”.
- Marcus Catilius Severus

i

Figure 1: Une scytale. Une
bande de parchemin était
enroulée avant d’écrire le
message, une lettre par tour.
Une fois déroulé, le par-
chemin était illisible à moins
de posséder une scytale du
même diamètre.

Résumé en Français

Contexte

Communication, du latin communicatio [13], est défini par le dictionnaire Oxford comme
étant “the imparting or exchanging of information” et “the means of sending or receiving
information, such as telephone lines or computers” [14]. Face à une incertitude ou à un
risque, un tel échange n’est possible que si une relation de confiance peut être établie
entre l’émetteur et le récepteur. Cette relation de confiance doit aussi concerner les
moyens utilisés pour communiquer. Les communications écrites ont été développées au
travers de plusieurs révolutions : depuis les pictogrammes gravés dans la pierre jusqu’au
signaux électroniques répliqués et transmis instantanément. Bien que ces révolutions
aient rendu les communications omniprésentes, le besoin fondamental de confiance reste
présent.

Depuis l’antiquité, politiciens et généraux ont toujours eu le besoin de communica-
tions sécurisées. La stéganographie, le fait de cacher un message à la vue de tous, est
l’une des plus anciennes techniques pour sécuriser une communication écrite. Une telle
technique peut, par exemple, être réalisée en utilisant une encre invisible ou en utilisant
certains bits d’une image numérique pour encoder un message secret. La cryptographie,
au contraire, est une technique de transformation d’un message secret, un texte en clair,
vers un texte chiffré afin d’en cacher son sens. La scytale, présentée sur la Figure 1, est
une technique spartiate de cryptographie par substitution et le premier usage institu-
tionnel de cryptographie militaire. Elle aurait été utilisée en 404 a.v.J.C. [15]. De même,
le chiffre de César est l’une des techniques cryptographiques les plus simples. Dans cette
technique, les lettres d’un alphabet sont remplacées par d’autres lettres en utilisant un
décalage donné. Jules César aurait utilisé une distance de décalage de trois lettres afin
d’écrire à ses généraux. En connaissant la valeur de décalage, c’est à dire la clé secrète,
le destinataire peut inverser le décalage et récupérer le texte clair.

Les machines à chiffrement électromécanique, telles que la fameuse machine Enigma,
ont apporté une impressionnante augmentation des possibilités de chiffrement. Lors
de la seconde guerre mondiale, les efforts de cryptanalyse des chercheurs alliés visant à
casser les codes électromécaniques menèrent au développement des premiers ordinateurs.
Cette percée mena finalement à l’utilisation d’algorithmes cryptographiques fondés sur
des problèmes mathématiques complexes. De plus, l’informatique permet le chiffrement
de n’importe quel type de données encodées en séquences de bits. Le développement
continu de l’informatique et des algorithmes de chiffrement publics ont rendu la sécurité
des communications accessibles aux petites entreprises et aux individus. Aujourd’hui,
les communications sont chiffrées par défaut, et les utilisateurs sont éduqués à prêter
attention aux indicateurs de sécurité [16] tels que l’icone HTTPS représentant un cadenas
vert 2. Cependant, un tiers de confiance est malgré-tout souvent requis afin d’établir la
communication.

Plusieurs définitions de la confiance ont été proposées. Inspirés par McKnight et
Chervany [17], Jøsang et Presti définissent la confiance comme: “the extent to which

ii

Figure 2: Avertissements de
sécurité sur le navigateur
Firefox.
.

one party is willing to depend on something or somebody in a given situation with a
feeling of relative security, even though negative consequences are possible” [18]. Dans le
sens d’une action, nous dirions que la confiance est la décision par un agent intelligent de
coopérer face à une incertitude ou un risque au sujet du comportement (sa capacité ou
son intention) d’un autre agent. La confiance est une heuristique basée sur l’historique
des interactions, la réputation donnée par une communauté, ou les recommandations
transmises par d’autres sources de confiance.

La sécurité des informations vise à protéger les informations échangées lors d’une
communication, en s’assurant que certaines propriétés de sécurité sont vérifiées:

• Le secret des échanges, la discrétion (en: privacy),

• La confidentialité des messages échangés,

• L’intégrité du contenu,

• La non-répudiation de la communication,

• L’authentification de l’identité des autres participants.

Les systèmes sécurisés sont complexes à construire et peuvent être peu pratiques
pour un usage quotidien. Dans cette situation, la confiance peut être une façon plus
confortable d’assurer la sécurité des communications.

Le World Wide Web (le Web) est construit sur un modèle client-serveur. Sa sécu-
rité est basée sur une chaîne de certificat ancrée dans le User-Agent, généralement un
navigateur Web. Les sites Web sont authentifiés par leurs certificats et les communi-
cations entre navigateurs et serveurs sont sécurisées par des protocoles tels que TLS.
L’émergence de nouvelles fonctionnalités du Web offre beaucoup plus de cas d’usage via
l’utilisation d’une interface de programmation (API) JavaScript. Ces nouvelles interac-
tions sont souvent tripartites entre un utilisateur et deux autres serveurs: un Service
Provider (SP) et un Relying Party (RP). C’est par exemple le cas des scénarios de délé-
gation d’authentification. Dans ces situations, chaque partie ne peut pas monitorer les
interactions entre les deux autres parties. La sécurité et la confiance de telles commu-
nications peuvent donc être plus dures à évaluer. Chaque entité doit alors baser ses
décisions sur des critères subjectifs et sa propre évaluation du risque, donc prendre une
décision de confiance.

Les communications en temps réel, sont un autre exemple de ces cas d’usage com-
plexes impliquant plus qu’une simple relation client-serveur. WebRTC est un ensemble
d’API Web et de protocoles, spécifiés par le W3C et l’IETF, permettant les appels au-
dio, vidéo et le partage de données en mode pair à pair. Le déploiement de ce nouveau
standard pourrait être une opportunité d’ouverture des futurs services Over The Top
(OTT) [de l’accès internet]. Puisque WebRTC apporte de nouvelles fonctionnalités à
l’écosystème Web, sa sécurité est un facteur critique de son succès. Dans ce but, il
est important que la spécification prenne en compte les problèmes rencontrés par les
technologies précédentes. C’est notamment vrai concernant la gestion d’identité, en
particulier comparée à la qualité de service. Comme les expériences précédentes l’ont
prouvé, un modèle d’identité fragile peut avoir un impact important et peut être parti-
culièrement dur à corriger une fois le système déployé.

Défis ouverts
Notre intuition est que les utilisateurs de services de communication temps réel devraient
bénéficier de plus d’informations et de contrôle sur la sécurité et le niveau de confiance de
leurs sessions. C’est notre objectif global. Pour cela, nous devons construire un modèle

iii

Figure 3: Le logo de We-
bRTC.

représentant l’architecture de communication, les différents canaux, protocoles et les
acteurs impliqués. Ce modèle nous permettra de construire une métrique caractérisant
le risque d’utiliser un système de communication, c’est-à-dire son niveau de confiance et
de sécurité.

Au vu de cet objectif, les questions suivantes sont ouvertes : Comment modéliser une
configuration de sécurité d’une architecture de communication constituée de plusieurs
canaux, protocoles et acteurs? Le même modèle peut-il intégrer des informations de
confiance et de sécurité en une seule métrique? Quels paramètres de l’architecture de
communication doivent être utilisés pour construire cette métrique? Peut-on construire
ce modèle dynamiquement?

En supposant l’existence d’un modèle de confiance et de sécurité pour une architec-
ture de communication, ce modèle pourrait être utilisé pour agir sur le système afin d’en
augmenter le niveau de confiance et de sécurité. Afin de donner ce genre de contrôle
aux utilisateurs, nous devons aussi répondre aux questions suivantes: Les utilisateurs
peuvent-ils contrôler le niveau de confiance et de sécurité de leurs sessions de commu-
nication? Est-il possible de faire confiance à une architecture de communication dans
laquelle certains acteurs ne sont pas de confiance? Les utilisateurs peuvent-ils choisir
des acteurs de confiance pour l’établissement de leurs communications?

Afin de permettre aux utilisateurs de contrôler la confiance et la sécurité de leurs
communications, la diversité des configurations possibles doit être suffisamment élevée.
Cependant, les anciens systèmes de communication téléphoniques obéissent à des stan-
dards stricts. Il peut y avoir plusieurs acteurs opérant le réseau, mais ils opèrent sous
des configurations fermées et similaires. Il y a aussi de nombreux services fournis OTT,
mais ils opèrent en mode silo et en mode boîte noire. La diversité de configuration de
ces systèmes est donc elle aussi basse. Au contraire, WebRTC est une technologie Web
disruptive. Du fait de sa simplicité , il est attendu que le nombre de services WebRTC
explose dans un futur proche. La version finale de WebRTC n’a pas encore été publiée
et certaines fonctionnalités restent à implémenter dans les navigateurs. C’est donc le
bon moment pour étudier l’architecture de sécurité WebRTC.

Pour ces raisons, nous souhaitons focaliser nos questions de recherche sur la spéci-
fication WebRTC. Nous voulons comprendre à quel point les utilisateurs peuvent avoir
confiance dans une session WebRTC, y compris si l’un des acteurs n’est pas de confiance.
Notre première question de recherche est donc la suivante:

• RQ1: Quels sont les risques pour l’utilisateur d’une session WebRTC et quelle
abstraction peut-on utiliser pour représenter ces risques aux utilisateurs?

Une façon de s’assurer qu’une session est sécurisée est d’interagir avec des tiers de
confiance, soit avant d’établir la session, soit lors de la session pour en augmenter le
niveau de confiance et de sécurité. Cela pose les questions suivantes:

• RQ2: Peut-on agir sur une session WebRTC afin d’en augmenter le niveau de
confiance et de sécurité?

• RQ3: Peut-on laisser les utilisateurs choisir des acteurs de confiance pour l’établissement
de la communication?

Contributions

Dans cette thèse, je propose trois contributions principales:

iv

Figure 4: Notre interface de
négotiation d’identité sur
un service WebRTC.

Figure 5: L’interface de
sélection d’identité de Web-
Connect.

Discrétion liée à l’architecture d’identité de WebRTC

Dans notre première contribution, nous étudions l’architecture d’identité WebRTC et
plus particulièrement son intégration aux algorithmes de délégation d’authentification
existants. Cette intégration n’a pas encore été étudiée jusqu’à présent. Dans cette
perspective, nous implémentons les composants de l’architecture d’identité WebRTC ce
qui nous permet de montrer que cette architecture n’est pas particulièrement adaptée à
une intégration aux protocoles de délégation d’authentification existants tels qu’OpenID
Connect. Pour répondre à RQ1, nous montrons ensuite comment la position centrale
des fournisseurs d’identité dans l’écosystème du Web est renforcée par leur intégration
à l’établissement de session WebRTC, posant ainsi un risque supplémentaire contre la
discrétion des utilisateurs. Dans l’écosystème Web, la norme est l’architecture des ser-
vices en silo dont les utilisateurs sont captifs. C’est en particulier le cas des systèmes de
délégation d’authentification, pour lesquels la plupart du temps, il n’est pas possible de
choisir son fournisseur d’identité. Afin de répondre à RQ3, nous réalisons une étude afin
de déterminer pour quelles raisons les utilisateurs ne peuvent pas choisir leur fournisseur
d’identité sur Web. Notre étude montre que bien que ce choix soit possible en théorie,
l’absence d’implémentation de certains standards par les sites webs et les fournisseurs
d’identité empêche ce choix en pratique.

Controler les paramètres d’identité de WebRTC

Dans notre seconde contribution, nous cherchons à donner plus de contrôle à l’utilisateur.
Pour ce faire et en réponse à RQ2, nous proposons une extension de la spécification
WebRTC afin de permettre la négociation des paramètres d’identité. Un prototype
d’implémentation est proposé afin de valider notre proposition (voir Figure 4). Cette
implémentation révèle certaines limites dues à l’API d’identité WebRTC empêchant
notamment d’obtenir un retour sur le niveau d’authentification de l’autre utilisateur
ainsi que l’impossibilité de changer de fournisseur d’identité en cours de session. Nous
proposons ensuite une API Web permettant aux utilisateurs de choisir leur fournisseur
d’identité lors d’une authentification sur un site tiers via une interface de sélection
d’identité contrôlée par le navigateur. Répondant à RQ3, notre API repose sur une
réutilisation de l’architecture d’identité WebRTC dans un scénario client-serveur. Nous
présentons une implémentation de notre solution, basée sur une extension du navigateur
Firefox, afin d’en démontrer l’utilisabilité (voir Figure 5). Nos résultats montrent qu’à
long terme, l’adoption de cette API pourrait réduire la charge d’implémentation pour
les développeurs de sites Web et permettre aux utilisateurs de préserver leur discrétion
en choisissant des fournisseurs d’identité de confiance.

Un modèle de confiance et de sécurité pour WebRTC

Enfin dans notre troisième contribution, nous répondons à RQ1 en proposant un modèle
de confiance et de sécurité d’une session WebRTC. Ce modèle intègre en une seule
métrique les paramètres de sécurité utilisés lors de l’établissement de la session, les
paramètres d’encryption des flux média, et les paramètres de confiance de l’utilisateur
dans les acteurs de la session WebRTC. L’objectif de notre modèle est dans un premier
temps de permettre aux utilisateurs non-experts de mieux comprendre la sécurité de leurs
sessions WebRTC. Afin de valider notre approche, nous réalisons une expérimentation
préliminaire évaluant la compréhension de notre modèle par des utilisateurs non-experts
en sécurité.

v

Publications
Mes travaux ont été le sujet de plusieurs publications et contributions, en voici la liste:

Publications Scientifiques
[4] Kevin Corre, Simon Bécot, Olivier Barais, and Gerson Sunyé. “A WebRTC Exten-

sion to Allow Identity Negotiation at Runtime”. Web Engineering - 17th Interna-
tional Conference, ICWE 2017, Rome, Italy, June 5-8, 2017, Proceedings. Ed. by
Jordi Cabot, Roberto De Virgilio, and Riccardo Torlone. Vol. 10360. Lecture
Notes in Computer Science. Springer, 2017, pp. 412–419

[5] Kevin Corre, Olivier Barais, Gerson Sunyé, Vincent Frey, and Jean-Michel Crom.
“Why can’t users choose their identity providers on the web?” PoPETs 2017.3
(2017), pp. 72–86

[12] Ibrahim Tariq Javed, Rebecca Copeland, Noël Crespi, Marc Emmelmann, Ancuta
Corici, Ahmed Bouabdallah, Tuo Zhang, Saad El Jaouhari, Felix Beierle, Sebastian
Göndör, Axel Küpper, Kevin Corre, Jean-Michel Crom, Frank Oberle, Ingo Friese,
Ana Caldeira, Gil Dias, Nuno Santos, Ricardo Chaves, and Ricardo Lopes Pereira.
“Cross-domain identity and discovery framework for web calling services”. Annales
des Télécommunications 72.7-8 (2017), pp. 459–468

Internet Drafts
[6] Rebecca Copeland, Kevin Corre, Ingo Friese, and Saad El Jaouhari. Requirements

for Trust and Privacy in WebRTC Peer-to-peer Authentication. Internet-Draft
draft-copeland-rtcweb-p2p-idp-auth-00. IETF Secretariat, Sept. 2016

A note on RFC Requests For Comments are documents published by the IETF
and describing technical aspects of the internet. RFC are first proposed as draft with
an expiration date of 6 months, which can be extended by submitting new version of
the draft. If an interest emerge, a working group may form. This working group will
develop the draft further until a request to publish it as a RFC is submitted. Not all
RFCs are however submitted on the standard track. Their status may alternatively be
informational, experimental, best current practice, historic, or unknown.

Brevets
[7] Kevin Corre and Vincent Frey. “Method of managing the authentication of a client

in a computing system”. WO2017006013 A1 Patent App. PCT/FR2016/051,601.
2016

Rapports Techniques
[8] Rebecca Copeland, Ahmed Bouabdallah, Ibrahim Javed, Eric Paillet, Simon Bécot,

Ewa Janczukowicz, Kevin Corre, Jean-Michel Crom, Paulo Chainho, Felix Beierle,
Sebastian Göndör, Frédéric Luart, Adel Al-Hezmi, Andreea Ancuta Corici, Marc
Emmelmann, Ricardo Lopes Pereira, Ricardo Chaves, and Nuno Santos. Frame-
work Architecture Definition. Deliverable D2.1. reThink Project, 2015

[9] Jean-Michel Crom, Kevin Corre, Simon Bécot, Ingo Friese, Felix Beierle, Sebastian
Göndör, Ahmed Bouabdallah, Marc Emmelmann, Andrea Ancuta Corici, Ricardo
Chaves, and Ricardo Pereira. Management and Security features specifications.
Deliverable D4.1. reThink Project, 2015

vi

[10] Jean-Michel Crom, Kevin Corre, Simon Bécot, Felix Beierle, Sebastian Göndör,
Ahmed Bouabdallah, Saad El Jaouhari, Rebecca Copeland, Marc Emmelmann,
Ricardo Chaves Andrea Ancuta-Corici Robert Ende, and Ricardo Pereira. Im-
plementation of Governance and identity management components for phase 1.
Deliverable D4.2. reThink Project, 2016

[11] Jean-Michel Crom, Kevin Corre, Ingo Friese, Felix Beierle, Sebastian Göndör,
Ahmed Bouabdallah, Hao Jiang, Rebecca Copeland, Ibrahim Tariq Javed, Marc
Emmelmann, Andrea Ancuta Corici, Robert Ende, Ricardo Chaves, Nuno Santos,
and Ricardo Pereira. Implementation of Governance and identity management
components for phase 2. Deliverable D4.3. reThink Project, 2017

Cette thèse présente le résultat de notre travail de recherche conduit lors des trois
dernières années. Il est le résultat d’une collaboration entre l’équipe Identity and Trust
Architecture d’Orange Labs et l’équipe DiverSE de l’INRIA. Nous avons aussi contribué
au projet H2020 reThink, en particulier à l’architecture d’identité et de sécurité.

vii

Abstract

Nowadays, communications transiting through the Internet are encrypted by default, often end-to-end. Secure
communication is a commodity accessible to everyone rather than restricted to powerful organisations. Users are
being educated to the security risks faced on the internet and to pay attention to security indications. But this
does not solve every security issues: a trusted third party is still required in order to setup the communication.
Security on the Web is based on a certificate chain anchored into the web browser. The emerging web func-
tionalities offer a lot more possible use-cases than the usual client-server communication. Real-time media and
data communication is one of these complex use-cases which involves peer-to-peer and full-duplex client-server
communications. On one hand legacy inter-operable communication systems suffer from issues regarding the
trustworthiness of their incoming call. On the other hand over-the-top communication networks are all set in a
silo model: users are de-facto captive of these services.

WebRTC is a set of standard web API and protocols, which supports peer-to-peer audio-video calling and data
sharing. It is envisioned, given the simplicity to deploy a WebRTC services, that the number of WebRTC enabled
websites could skyrocket in the near future. To succeed, WebRTC should improve from the issues encountered
by previous technologies. A weak identity model may have an important impact later on and is particularly hard
to fix once the system is deployed. Considering the various use cases and the possible number of services and
other actors, the complexity of a communication setup could be really difficult to assess by non-expert users.

Our intuition is that users should be given more informations and control on the security and trust level of
their communications. We want to build a model that could represent the communication setup, the different
channels, protocols, and actors in operations. This model would allow us to act on the system in order to raise the
trust and security level. At the moment, WebRTC’s final version of the specification has not yet been published,
and some functionalities are yet to be implemented in Web Browsers. It may be the right time to challenge its
security architecture by addressing the following research questions:

• RQ1: What are the risks for the user of a WebRTC session and which abstractions can we use to show
these risks to the user?

• RQ2: Can we act on a WebRTC session to raise the trust and security level?

• RQ3: Can users choose actors they trust to participate in the communication setup?

In this thesis, we propose three main contributions:
In our first contribution we study the WebRTC identity architecture and more particularly its integration

with existing authentication delegation protocols. This integration has not been studied yet. To fill this gap,
we implement components of the WebRTC identity architecture and comment on the issues encountered in the
process. In order to answer RQ1, we then study this specification from a privacy perspective an identify new
privacy considerations related to the central position of identity provider. In the Web, the norm is the silo
architecture of which users are captive. This is even more true of authentication delegation systems where most
of the time it is not possible to freely choose an identity provider. In order to answer RQ3, we conduct a survey on
the top 500 websites according to Alexa.com to identify the reasons why can’t users choose their identity provider.
Our results show that while the choice of an identity provider is possible in theory, the lack of implementation
of existing standards by websites and identity providers prevent users to make this choice.

In our second contribution, we aim at giving more control to users. To this end and in order to answer
RQ2, we extend the WebRTC specification to allow identity parameters negotiation. We present a prototype

viii

implementation of our proposition to validate it. It reveals some limits due to the WebRTC API, in particular
preventing to get feedback on the other peer’s authentication strength. We then propose a web API allowing
users to choose their identity provider in order to authenticate on a third-party website, answering RQ2. Our
API reuse components of the WebRTC identity architecture in a client-server authentication scenario. Again, we
validate our proposition by presenting a prototype implementation of our API based on a Firefox extension.

Finally, in our third contribution, we look back on RQ1 and propose a trust and security model of a We-
bRTC session. Our proposed model integrates in a single metric the security parameters used in the session
establishment, the encryption parameters for the media streams, and trust in actors of the communication setup
as defined by the user. Our model objective is to help non-expert users to better understand the security of
their WebRTC session. To validate our approach, we conduct a preliminary study on the comprehension of
our model by non-expert users. This study is based on a web survey offering users to interact with a dynamic
implementation of our model.

ix

Contents

Résumé en Français i

Abstract vii

Introduction 1

I Context 9

1 WebRTC Trust and Security Architecture 11
1.1 WebRTC Overview . 11
1.2 Security on the Web . 14

1.2.1 The Trusted Computing Base . 15
1.2.2 The Same Origin Policy . 15
1.2.3 The HyperText Transfer Protocol Secure . 16
1.2.4 Public Key Cryptography . 17

1.3 WebRTC Security . 19
1.3.1 Confidentiality and Integrity of the Media Path . 19
1.3.2 Availability of the Communication . 20
1.3.3 User Authenticity . 20
1.3.4 WebRTC Identity Path . 22
1.3.5 Considered Protocols for WebRTC Peer Authentication 24
1.3.6 Alternative Key Management Protocols . 28

1.4 Trust . 29
1.4.1 Introduction on Trust . 29
1.4.2 The WebRTC Trust Model . 30

1.5 Privacy of the Call-Session . 31
1.5.1 Attack and Threat Mitigation . 31
1.5.2 Regulations . 33
1.5.3 Privacy Considerations for WebRTC . 34
1.5.4 Tor: Onion Routing . 34

1.6 Signalling Architectures . 34
1.6.1 Voice over LTE and WebRTC Interconnectivity . 35
1.6.2 Matrix . 37
1.6.3 reThink . 38
1.6.4 Distributed Signalling Architectures . 39

1.7 Summary . 41

x CONTENTS

2 State of the Art 43
2.1 VoIP Security Research - 2012 . 43

2.1.1 Threats Classification and Methodology . 43
2.1.2 Keromytis Survey Summary . 44

2.2 VoIP and WebRTC Security Research - 2012+ . 50
2.2.1 Methodology . 50
2.2.2 Observations on VoIP Security Research since 2012 . 50
2.2.3 Survey of WebRTC Security Research . 51
2.2.4 Observations . 56

2.3 Summary . 59

II Contributions 61

Foreword on Methodology 63

3 Privacy Implications of the WebRTC Identity Architecture 65
3.1 WebRTC Identity Architecture Implementation . 65

3.1.1 Local Authentication Implementation . 66
3.1.2 IdP Proxy with OpenID Connect . 67
3.1.3 Observations . 70

3.2 RQ1.1 Additional Privacy Considerations . 72
3.2.1 Audience Issue . 73
3.2.2 IdP in a Central Position . 74

3.3 Why Can’t Users Choose their Identity Providers on the Web? 75
3.3.1 The Study: OAuth Request Collection . 75
3.3.2 RQ3.1: Do RP require specialised API? . 76
3.3.3 RQ3.2: Is dynamic discovery and registration commonly available for RP? 79
3.3.4 RQ3.3: Do RP require a trust relationship with the supported IdP? 80
3.3.5 Developer Survey . 81

3.4 Summary . 84

4 Controlling the WebRTC Identity Parameters 85
4.1 An SDP Extension to Allow Identity Negotiation . 86

4.1.1 Recommendation Sources . 86
4.1.2 SDP Extension . 87
4.1.3 Validation on the current specification . 88

4.2 WebConnect . 92
4.2.1 Implementation . 93
4.2.2 Analysis . 97
4.2.3 Validation . 99

4.3 Summary . 100

5 WebRTC Trust and Security Model 101
5.1 Methodology . 102
5.2 Building the WebRTC Trust and Security Model . 105

5.2.1 Session Confidentiality . 105
5.2.2 Signalling Path Security . 105
5.2.3 Identity Path Security . 106
5.2.4 Media Path Confidentiality . 107
5.2.5 Overall Trust and Security Tree, Instantiation and Computational Models 107

5.3 Validation . 110
5.3.1 WebRTC Trust and Security Model Survey . 110

CONTENTS xi

5.3.2 Discussions . 117
5.4 Summary . 119

III Conclusion and Perspectives 121

6 Conclusion 123

7 Perspectives 125
7.1 On the WebRTC Trust and Security Model . 125
7.2 On the IdP Proxy Interface . 126
7.3 On WebConnect and the WebPayment Working Group . 128

Afterwords 131

Author’s Publications 132

References 133

Glossary 143

List of Figures 148

List of Tables 150

xii CONTENTS

1

Figure 6: A band of parch-
ment was first wrapped
around the scytale, then the
message was written one let-
ter per convolution. Once
unfolded, the message would
be unreadable except for the
receiver which would have
another scytale of the same
diameter.

Introduction

Context

Communications, deriving from the Latin communicatio [13], is defined by the Oxford
dictionary as “the imparting or exchanging of information” and “the means of sending or
receiving information, such as telephone lines or computers” [14]. In case of uncertainty
and risk, such exchange is made possible if a trust relation can be established between
the senders and receivers. This trust relation must also cover the channels used to com-
municate. Written communications were developed through several revolutions: from
immobile chiselled pictograms to electronic signals instantly replicated and transmitted.
While these revolutions made communications more and more pervasive, the fundamen-
tal issue of trust remains. Politicians and military commanders may always have had a
need for secure communications, and for long the concept of secure communication was
equivalent to the confidentiality of a message. Steganography, the fact of hiding a mes-
sage in plain sight, was the earliest technique to secure a written communication. It can
be achieved by using an invisible ink or by inserting a message inside another document,
for instance, using bits of a numerical image to encode a secret text. Cryptography, on
the other hand, is a technique transforming a secret message, called a plaintext, into an
encrypted cyphertext in order to hide its meaning. The first known evidence of cryptog-
raphy is an engraved pottery from 1900bc. The Spartan scytale, shown in Figure 6, was
the first known institutional military cypher, reported as being used in 404 B.C. [15].

Caesar’s cypher may be one of the simplest cryptographic technique. In this tech-
nique, letters are replaced by another letter at a given distance in the alphabet. Julius
Caesar was reported as using this cypher with a shift of three letter to write secret
messages to his generals. Knowing the shift value, i. e. the secret key, a recipient of
an encrypted message could reverse the shift to uncover the plaintext message. Alberti
invented around 1467 a polyalphabetic substitution cypher where the key is modified at
random through the text. Though later works derive from Alberti’s invention, such cryp-
tography technique was already known by the 8th century’s mathematician Al-Kindi.
Substitution cyphers are vulnerable to letter frequency attack. Indeed, a cryptanalyst
can guess the key of a simple substitution cypher by comparing the letter frequencies
of the cyphertext to the letter frequencies of another plaintext known to be written in
the same language. Polyalphabetical substitutions try to alter the frequency of letters
by continuously changing the substitution alphabet. These are however still vulnerable
to more complex frequency analysis. The development of substitution cyphers was thus
a race between cryptographers inventing new keying mechanisms and cryptanalysts.

Rotor machines, such as the famous Enigma machine, brought a large increase in
the number of possible substitutions. Cryptanalysis efforts by allied researchers dur-
ing the second world war resulted in the development of the first programmable com-
puter. This breakthrough also allowed the use of much more complex cyphers based on
complex mathematical problems. Furthermore, computers allow the encryption of any
kind of data encoded as a sequence of bits. The development of computer and public

2 CONTENTS

Figure 7: By displaying
warning on insecure HTTP
webpage, the Firefox web
browser is educating its
users to the faced risk, and
at the same time pushing
web developers to imple-
ment security for HTTP.

1: In 2014, the United States’
Federal Trade Commission has
received over 22 million com-
plaints about illegal and un-
wanted phone calls [20]. Even
though the practice of phone
spam is illegal in the European
Union without an opt-in from
the recipient, in France 1,6 mil-
lion voice and SMS spams were
reported in 2016 to the 33700,
the national spam reporting
number [21].
2: OTT services are provided
on top of existing internet ser-
vice providers networks

cryptographic algorithms made security accessible to small companies and individuals.
Everyday communications are now encrypted by default, and users are being educated
to pay attention to security indications [16] such as the one presented in Figure 7. This,
however, does not solve every issue: a trusted third party is still often required to set
up the communication.

Several definitions of trust have been proposed. Inspired by McKnight and Cher-
vany [17], Jøsang and Presti define trust as: “the extent to which one party is willing
to depend on something or somebody in a given situation with a feeling of relative se-
curity, even though negative consequences are possible” [18]. In the sense of an action,
we would say that trust is the decision of intelligent agents to cooperate in the face of
risk and uncertainty about the behaviour (capability or intention) of other agents. This
heuristic is often based on prior interaction history, reputation from a community or
recommendations from other trusted sources.

Information security, on the other hand, aims at protecting information exchanged
during a communication, by ensuring that certain security properties are met:

• The secrecy of the exchange, i. e. the privacy.

• The confidentiality of the exchanged message.

• The integrity of the content.

• The non-repudiation of the communication.

• The authentication of the other peer’s identity.

Fully secure systems are difficult to build and may be impractical for everyday usage.
In this situation, trust may be a more relaxed way of ensuring the security of the
communication.

The World Wide Web (in short: the Web) is built on a client-server model. Its
security is based on a certificate chain anchored into the User-Agent (UA), usually a
web browser, acting as the Trusted Computing Base (TCB). Websites are authenticated
by their certificates and communications between the UA and the server are secured
by protocols such as Transport Layer Security (TLS). The emerging web functionalities
offer a lot more possible use-cases through JavaScript web Application Programming
Interface (API) and HyperText Transfer Protocol (HTTP) [19] based protocols. These
new relations are often tripartite between a user and two other servers, a service provider
and a Relying Party (RP). This is, for instance, the case in authentication delegation
scenarios. In these tripartite situations, each party cannot fully monitor interactions
between the others parties. The security and trustworthiness of such communication
may be more difficult to assess. As a result, it is up to each entity to take a decision
based on subjective criteria and its own evaluation of the faced risk, i. e. to take a trust
decision.

Real-time media and data communication is another complex use-case involving more
than a single client-server relation. On one hand, legacy inter-operable communication
systems, operated by telephony companies and Internet service providers (often referred
as Telco) have been cluttered by issue regarding the trustworthiness of their incoming
call. These legacy services suffer from a weak trust and identity model which is subject
to abuse. The openness of trust-circle networks and the availability of computation
power allow malicious actors to launch thousands of robocalls at once1. This factor
could be one of the reasons behind the drop of value in telephony services [22], a major
asset of Telco, benefiting to Over The Top (OTT)2 services. On the other hand, OTT
are rapidly gaining market share over Telco but are all set in silo model. The silo model
implies that while these services benefit from a controlled trust model, they cannot
communicate with each other and are the theatre of an intensive battle to become, or

CONTENTS 3

stay, the hegemonic service3. As it is difficult to change network without losing the
ability to reach their contacts, users are de-facto captive of these services.

WebRTC is a set of web API and protocols, specified by the World Wide Web
Consortium (W3C) and the Internet Engineering Task Force (IETF), which supports
Peer-to-Peer (P2P) audio-video calling and data sharing. As WebRTC brings useful new
functionalities to the web ecosystem, its deployment could be an opportunity to open
the future OTT services. For the WebRTC specification to succeed, it should learn from
the issues encountered by previous technologies. As past experiences have proved [25],
a weak identity model may have an important impact later on and is particularly hard
to fix once the system is deployed.

A Motivating Scenario
In a conference call, several users connect to a single room to organise a meeting. Users
share their audio and video, they may also share some documents or their screen [26].
Several communication services are already offering this kind of service, some using
WebRTC. However, a common issue appears when participants connect from different
companies, for instance during a collaborative project. While the service is often inte-
grated with one company’s Identity Provider (IdP), participants from other companies
may not authenticate with it and may have to fallback to a declarative or self-asserted
identity. Because the subject of their conversation is sensible, participants want to en-
sure that no one is maliciously listening, including the communication service itself which
may come from a third party company. Currently, implementation decisions made by
the Communication Service (CS) website drastically limit the user’s choice. And at the
same time communication services are missing the capability to interface with any IdP.

Going further, supposing every participant authenticated to each other, one of them
may want to raise the security level of the session. Each participant would then be
required to authenticate with a higher strength, and the session security would be rene-
gotiated with stronger parameters. For this to be possible, it is required to have a model
of the trust and security level of the session and a mechanism to negotiate it. In the
long-term, the future telephony will move to a fully IP-based network, interconnected
with the Web. In this scenario, inter-operability, i. e. the ability for a user of one CS
to call a user from another CS, could be imposed by regulations. Some projects are
already writing work in progress inter-operable CS architectures [27, 28, 29]. Evaluating
the security of a call session is necessary for users to make an informed trust decision on
whether or not to accept or pass a call. However, in these inter-operable architectures,
the communication stack is drastically more complex than the usual client-server model.

Open Challenges
Our intuition is that users should be given more information and control over the security
and trust level of their communications. This is our global objective. For this to be
possible, we need to build a model that could represent the communication setup, the
different channels, protocols, and the actors in operation. This model would allow
us to forge a single metric characterising the risk of using the communication system,
i. e. the trust and security level. It would also be a useful tool to model an instance of
a communication setup specification and discuss it with expert.

To inform the user of the security of its communication session, it is necessary to
answer the following questions:

• How to model the security of a communication setup made with several distinct
channels, protocols, and actors?

4 CONTENTS

4: The state of WebRTC
implementations on web
browsers can be followed on
Mozilla’s developer website:
https://developer.mozilla.
org/en-US/docs/Web/API/
RTCPeerConnection.

• Can the same model integrate trust and security information into a single mean-
ingful metric?

• Which parameters of the communication setup can be used to forge this metric?

• Can we build this model at runtime?

Supposing we dispose of a trust and security model for the communication setup,
we could leverage this model to raise the trust and security level of the session. This
process could either be manually or automatically controlled by the user. To give this
kind of control to the users, we would also have to answer the following questions:

• Can users control and eventually raise the trust and security level of their com-
munication sessions?

• Is it possible to trust a communication setup in which some of the actors are not
trusted?

• Can users choose trusted actors to participate in their communication setup?

As we mentionned, legacy communication services obey strict standards allowing
interoperability between actors. There are also multiple OTT communication services,
but since they are set in silo and often operate closed-source softwares, we consider them
as blackboxes. WebRTC, however, is a disruptive technology for web real-time commu-
nications. It is envisioned, given the simplicity to deploy a WebRTC service, that the
number of WebRTC enabled websites could skyrocket in the near future. Considering
the proposed use cases, the number of WebRTC services, and the other actors: the com-
plexity of communication setup, from a trust and security perspective, could be difficult
to assess for non-expert users. At the moment, WebRTC’s final version of the specifica-
tion has not yet been published, and some functionalities are yet to be implemented in
web Browsers4. It may be the right time to challenge its security architecture.

For these reasons, we want to address our research questions with respect to the
WebRTC specifications. We want to understand to which extent users could trust a
WebRTC session, even if some parties are untrusted. Our first research question is thus
the following:

• RQ1: What are the risks for the user of a WebRTC session and which abstractions
can we use to show these risks to the user?

One way to ensure that the session is secured is to interact with trusted parties,
either before the session is established, or during the session to raise the trust level.
This opens the two following questions:

• RQ2: Can we act on a WebRTC session to raise the trust and security level?

• RQ3: Can we let users chose actors they trust to participate in the communication
setup?

Contributions
In this thesis, I propose three main contributions:

In our first contribution, we study the WebRTC identity architecture and more
particularly its integration with existing authentication delegation protocols. This in-
tegration has not been studied yet. To fill this gap, we implement components of the
WebRTC identity architecture and comment on the issues encountered in the process.
In order to answer RQ1, we then study this specification from a privacy perspective

https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection

CONTENTS 5

5: https://alexa.com

and identify new privacy considerations related to the central position of IdP. In the
Web, the norm is the siloed architecture of which users are captive. That is all the more
the case for authentication delegation systems where most of the time it is not possible
to freely choose an IdP. In order to answer RQ3, we conduct a survey of the top 500
websites according to Alexa5 to identify the reasons why users cannot choose their IdP.

In our second contribution, we aim at giving more control to users. To this end
and in order to answer RQ2, we extend the WebRTC specification to allow identity
parameters negotiation. We present a prototype implementation of our proposition to
validate our proposition. We then propose a web API allowing users to choose their
IdP in order to authenticate on a third-party website. Our API reuses components of
the WebRTC identity architecture in a client-server authentication scenario. Again, we
validate our proposition by presenting a prototype implementation of our API based on
a Firefox extension.

Finally, in our third contribution, we look back on RQ1 and propose a trust and se-
curity model of a WebRTC session. Our proposed model integrates into a unique metric
the security parameters used in the session establishment, the encryption parameters
for the media streams, and trust in actors of the communication setup as defined by
the user. Our model’s objective is to help non-expert users to better understand the
security of their WebRTC session. To validate our approach, we conduct a preliminary
study on the comprehension of our model by non-expert users. This study is based on
a web survey offering users to interact with a dynamic implementation of our model.

Figure 8 represents how our contributions articulate and how they relate to our
research questions. In our first contribution we study the WebRTC identity architecture.
We then experiment on how to control this identity architecture to increase trust and
security. Finally and based on our knowledge, we close the loop and propose a model of
the trust and security of the WebRTC security architecture.

Identity
Architecture

Model

Control

RQ3

RQ2

RQ1

Contribution 1

Contribution 3

Contribution 2

Figure 8: Overview of our
Contributions

Organisation

The document is organised in three main parts. In the first part, we expose the context
of our research. In Chapter 1, we detail the technical specifications used in our work
such as OAuth 2 and WebRTC. We then present the state of the art to which our work
contributes in Chapter 2. In the second part of this thesis, we present our contributions.
In Chapter 3 we study WebRTC privacy issues based on actual implementations of the
WebRTC identity architecture. In Chapter 4 we propose to give users more control over
their WebRTC identity parameters. Chapter 5 presents a trust and security model of
a WebRTC session intended to help advanced users in understanding the security of
their WebRTC session. Finally, the third part of this thesis proposes a summary of our
contributions in Chapter 6 and discusses our perspectives in Chapter 7.

https://alexa.com

6 CONTENTS

Part I: Context

Chapter 1 WebRTC Trust and Security Architecture is an introduction to the tech-
niques, algorithms, and protocols securing WebRTC and forming the context of our the-
sis. In this chapter, we introduce the WebRTC architecture and specifications, present
an overview of the concepts accomplishing practical security on the Web, and focus on
the protocols used to secure a WebRTC communication. We also introduce the con-
cept of trust and we explain privacy in the context of the Web and in particular the
privacy consideration of the WebRTC specification. Finally, we present some signalling
architecture that could be deployed by WebRTC services.

Chapter 2 State of the Art presents the state of the art on Voice over IP (VoIP)
security research. We review the results of a comprehensive survey of 245 articles on
VoIP security and published in 2012. As the first draft of the WebRTC specification
was published the same year, this survey is a solid starting point to study the field
of WebRTC security. We then present our own survey of VoIP and WebRTC security
research collecting papers published between 2012 and 2017. Based on our findings, we
review collected papers dealing specifically with WebRTC.

Part II: Contributions

Chapter 3 Privacy Implications of the WebRTC Identity Architecture studies the
WebRTC identity architecture from a privacy point-of-view. The specification lacks
support and, to the best of our knowledge, there is no public implementation. We first
describe our implementation of the WebRTC identity architecture and its integration
with existing authentication delegation protocols. We then comment on encountered
issues and detail additional privacy considerations. Finally, we report on our study on
why users cannot choose their IdP on the Web.

Chapter 4 Controlling the WebRTC Identity Parameters proposes to give users more
control over WebRTC identity parameters. Firstly, we define a Session Description Pro-
tocol (SDP) extension to negotiate the other peer’s IdP and authentication strength
during the call setup and present our implementation. Secondly, this chapter presents
WebConnect, a prototype for an Identity Metasystem API based on the WebRTC iden-
tity specification which allows users to preserve their privacy by selecting trusted IdP.
The WebRTC identity specification offers some interesting concepts limited to the scope
of user-to-user authentication, WebConnect extends them to the use case of user-to-
server authentication.

Chapter 5 WebRTC Trust and Security Model presents a trust and security model
intended to help advanced users in understanding the security of their WebRTC session.
We first present our methodology to build our model and then details our actual We-
bRTC trust and security model. The model evaluates security with regards to the risk
presented on the confidentiality and integrity of the communication and shows which
trust relations must be valid for the security level to be trusted too. In order to validate
our approach, we present a preliminary study on the understanding of our model by
advanced users based on a survey and a dynamic implementation of our model.

Part III: Conclusion and Perspectives

Chapter 6 Conclusion presents the conclusions of our work.

CONTENTS 7

Chapter 7 Perspectives discusses possible future research directions and perspectives.
More particularly, we look at continuing work on our WebRTC trust and security model,
improving the WebRTC identity architecture and integrating it with other authentica-
tion protocols, and comparing the WebRTC identity architecture to the current work of
the W3C WebPayment working group.

List of Publications

Scientific Publications
[4] Kevin Corre, Simon Bécot, Olivier Barais, and Gerson Sunyé. “A WebRTC Exten-

sion to Allow Identity Negotiation at Runtime”. Web Engineering - 17th Interna-
tional Conference, ICWE 2017, Rome, Italy, June 5-8, 2017, Proceedings. Ed. by
Jordi Cabot, Roberto De Virgilio, and Riccardo Torlone. Vol. 10360. Lecture
Notes in Computer Science. Springer, 2017, pp. 412–419

[5] Kevin Corre, Olivier Barais, Gerson Sunyé, Vincent Frey, and Jean-Michel Crom.
“Why can’t users choose their identity providers on the web?” PoPETs 2017.3
(2017), pp. 72–86

[12] Ibrahim Tariq Javed, Rebecca Copeland, Noël Crespi, Marc Emmelmann, Ancuta
Corici, Ahmed Bouabdallah, Tuo Zhang, Saad El Jaouhari, Felix Beierle, Sebastian
Göndör, Axel Küpper, Kevin Corre, Jean-Michel Crom, Frank Oberle, Ingo Friese,
Ana Caldeira, Gil Dias, Nuno Santos, Ricardo Chaves, and Ricardo Lopes Pereira.
“Cross-domain identity and discovery framework for web calling services”. Annales
des Télécommunications 72.7-8 (2017), pp. 459–468

Internet Drafts
[6] Rebecca Copeland, Kevin Corre, Ingo Friese, and Saad El Jaouhari. Requirements

for Trust and Privacy in WebRTC Peer-to-peer Authentication. Internet-Draft
draft-copeland-rtcweb-p2p-idp-auth-00. IETF Secretariat, Sept. 2016

A note on Request For Comments (RFC) : RFC are documents published by the
IETF and describing technical aspects of the internet. RFC are first proposed as draft
with an expiration date of 6 months, which can be extended by submitting new version
of the draft. If an interest emerges, a working group may form. This working group will
develop the draft further until a request to publish it as a RFC is submitted. Not all
RFC are however submitted on the standard track. Their status may alternatively be
informational, experimental, best current practice, historic, or unknown.

Patents
[7] Kevin Corre and Vincent Frey. “Method of managing the authentication of a client

in a computing system”. WO2017006013 A1 Patent App. PCT/FR2016/051,601.
2016

Technical Reports
[8] Rebecca Copeland, Ahmed Bouabdallah, Ibrahim Javed, Eric Paillet, Simon Bécot,

Ewa Janczukowicz, Kevin Corre, Jean-Michel Crom, Paulo Chainho, Felix Beierle,
Sebastian Göndör, Frédéric Luart, Adel Al-Hezmi, Andreea Ancuta Corici, Marc
Emmelmann, Ricardo Lopes Pereira, Ricardo Chaves, and Nuno Santos. Frame-
work Architecture Definition. Deliverable D2.1. reThink Project, 2015

8 CONTENTS

[9] Jean-Michel Crom, Kevin Corre, Simon Bécot, Ingo Friese, Felix Beierle, Sebastian
Göndör, Ahmed Bouabdallah, Marc Emmelmann, Andrea Ancuta Corici, Ricardo
Chaves, and Ricardo Pereira. Management and Security features specifications.
Deliverable D4.1. reThink Project, 2015

[10] Jean-Michel Crom, Kevin Corre, Simon Bécot, Felix Beierle, Sebastian Göndör,
Ahmed Bouabdallah, Saad El Jaouhari, Rebecca Copeland, Marc Emmelmann,
Ricardo Chaves Andrea Ancuta-Corici Robert Ende, and Ricardo Pereira. Im-
plementation of Governance and identity management components for phase 1.
Deliverable D4.2. reThink Project, 2016

[11] Jean-Michel Crom, Kevin Corre, Ingo Friese, Felix Beierle, Sebastian Göndör,
Ahmed Bouabdallah, Hao Jiang, Rebecca Copeland, Ibrahim Tariq Javed, Marc
Emmelmann, Andrea Ancuta Corici, Robert Ende, Ricardo Chaves, Nuno Santos,
and Ricardo Pereira. Implementation of Governance and identity management
components for phase 2. Deliverable D4.3. reThink Project, 2017

This thesis presents the results of my three years research work. It is the result of a
collaboration between the Identity and Trust Architecture research project from Orange
Labs and the INRIA DiverSE Team. We also contributed to the H2020 reThink project
for its identity and security architecture.

9

Part I

Context

11

1: Dynamic HTML is the
generic name for the set of
techniques used by a webpage
in order to modify itself. It is
now more often referred to as a
JavaScript/HTML/CSS page.

Chapter 1

WebRTC Trust and Security
Architecture

Information security aims at protecting the confidentiality, integrity, and
availability of an information. These objectives are referred to as the CIA
triad and are often associated with additional security objectives such as non-
repudiation, authenticity, and privacy. Our research questions are centred
on the idea of building a security and trust model for WebRTC. This chap-
ter is an introduction to the techniques, algorithms, and protocols securing
WebRTC and forming the context of our thesis. Firstly we introduce the
WebRTC architecture and specifications in Section 1.1. Then we present
an overview of the concepts accomplishing practical security on the Web in
Section 1.2 and later focus on the protocols used to secure a WebRTC com-
munication in Section 1.3. We also introduce the concept of trust and present
the WebRTC trust model in Section 1.4. Even if the content of a communi-
cation is sufficiently secure, the attacker’s knowledge that a communication
happened may also be a risk for the user. In Section 1.5, we explain privacy
in the context of the Web and in particular the privacy considerations of the
WebRTC specification. Finally, we present some signalling architecture that
could be deployed by WebRTC services in Section 1.6. WebRTC does not
specify a signalling architecture, but these have an important impact on the
underlying trust and security properties.

1.1 WebRTC Overview
WebRTC is a standardisation effort for interoperable real-time communication in the
Web, in line with the specifications of HTML5 technologies. This set of specifications
aims to provide for dynamic webpages1, running in a compatible browser, and suitably
authorized by the user, with the capability to set up audio, video, or data communi-
cations. The main use-cases are audio conferencing, e-commerce support, and personal
or enterprise communications. But other use-cases are also envisioned such as gaming
or file sharing. Due to the ease of deploying a WebRTC service: a simple web server
is enough, it is expected to see the emergence of a larger number of WebRTC enabled
websites.

The three main tracks for WebRTC are a set of dedicated protocol profiles defined
by the Internet Engineering Task Force (IETF) [30], and two JavaScript Application
Programming Interface (API) specified by the World Wide Web Consortium (W3C)
for WebRTC session management [31] and for audio and video media capture [32].

12 CHAPTER 1. WEBRTC TRUST AND SECURITY ARCHITECTURE

Figure 1.1: WebRTC de-
ployment with two browser
endpoints and two signalling
servers [30].

Figure 1.2: WebRTC
browser endpoint
model [30].

These specifications work in conjunction so that “for all options and features of the
protocol specification, it should be clear which API calls to make to exercise that option
or feature; similarly, for any sequence of API calls, it should be clear which protocol
options and features will be invoked” [30]. Although the endpoints targeted by the
API are web browsers implementing WebRTC, it is also possible to use non-browser
WebRTC endpoints. These endpoints conform to the protocol specification but not to
the WebRTC API. For instance, such endpoints may be a native library in C++ offering
WebRTC call functionality to an application.

Figure 1.2 presents the components of the WebRTC browser model and their inter-
actions. The design of WebRTC does not assume that the browser should provide every
functionality required by telephone or conference services. Instead, the browser only
offers functions required for a web application to implement such services. Hence why
the only vital interfaces are the RTC API and the protocols for browser-to-browser com-
munication. A typical WebRTC communication setup is presented in Figure 1.1. The
Media path represents the browser-to-browser communication path over which media
and data channels are established. Signalling is the communication between WebRTC
endpoints establishing, managing, and controlling the media path. The signalling path
generally involves one or more signalling server to serve as a rendezvous point. The
mechanisms and architectures for client-server and eventually inter-server signalling are
out of scope of the WebRTC specification. We present examples of such architectures
in Section 1.6.

The main interface exposed by the WebRTC API is the RTCPeerConnection [31]. It
exposes functions to the webpage’s JavaScript allowing it to manage the WebRTC session
and signalling. The JavaScript Session Establishment Protocol (JSEP) IETF draft [33]
describes how the RTCPeerConnection is used. JSEP permits the establishment and
control of a WebRTC session through the exchange of session description messages,
in a simple offer/answer negotiation mechanism. When an offer/answer exchange is
required, the initiating endpoint calls the createOffer() function. The resulting offer
is installed as a local configuration, using setLocalDescription(), and transmitted on
the signalling path. When received, the offer is used as a remote configuration, with
the setRemoteDescription() interface. Finally, the process is reversed: the receiver
generates an answer, applies it as a local configuration, and sends it. On receiving the
answer, the initiator installs it as a remote description, completing the initial setup.

Session description messages use the Session Description Protocol (SDP) [34] syntax,
as presented in Figure 1.3. The SDP syntax defines a list of parameters, identified by
type letters and belonging to one of the description levels: the session description level,
the time description level, and one or more media description level. The set of type
letters is quite small and not extensible, however, extensions are possible through the

1.1. WEBRTC OVERVIEW 13

Session description
v= (protocol version)
o= (owner/creator and session identifier).
s= (session name)
i=* (session information)
u=* (URI of description)
e=* (email address)
p=* (phone number)
c=* (connection information - not required if included in all media)
b=* (bandwidth information)
One or more time descriptions (see below)
z=* (time zone adjustments)
k=* (encryption key)
a=* (zero or more session attribute lines)
Zero or more media descriptions (see below)

Time description
t= (time the session is active)
r=* (zero or more repeat times)

Media description
m= (media name and transport address)
i=* (media title)
c=* (connection information - optional if included at session-level)
b=* (bandwidth information)
k=* (encryption key)
a=* (zero or more media attribute lines)

Figure 1.3: Session Descrip-
tion Protocol syntax

2: NAT modify the source or
destination of packets going
through them. The reflexive
transport address is the public
Internet Protocol (IP) address
and port created by the NAT
closest to the STUN server.

use of a= attribute lines.
Figure 1.4 shows an example of a (shortened) SDP message for a WebRTC session. It

is an SDP answer for a session with audio and video channels, respectively identified as
sdparta_0 and sdparta_1. Declaration of these channels starts with a m line specifying
the channel type, e. g. m=audio. In the SDP offer/answer negotiation, peers have to agree
on various parameters, for example, audio and video codecs. In order to conduct the
negotiation, an offer includes multiple supported parameters. If compatible, the answerer
accepts these parameters by including them in his answer. Preceeding this example, the
original offer proposed five codecs for the audio channel: opus, telephone-event, G722,
PCMU, and PCMA. Only two, opus and telephone-event, are included in the answer and
thus accepted by the answerer.

In order to efficiently communicate in a Peer-to-Peer (P2P) fashion, peers use the In-
teractive Connectivity Establishment (ICE) [35] to find which of their network interfaces
are able to see each other. Indeed, a computer may be connected to different networks
through different interfaces. In the ICE protocol, peers collect candidate addresses and
exchange them during the SDP negotiation in a=candidate attributes. Each pair of
local and remote candidates are then tested to find potential matching interfaces. In
some situations, for example behind a Network Address Translator (NAT), a peer may
not know his publicly visible address. Session Traversal Utilities for NAT (STUN) [36]
is a client-server protocol used by a client to discover the binding between his source
address and his reflexive transport address2. STUN is a tool that may not work in
some configuration, in particular, if both peers are behind NAT routers with endpoint-
dependant-mechanisms for address attribution. In that case, a relay can be setup using

14 CHAPTER 1. WEBRTC TRUST AND SECURITY ARCHITECTURE

Figure 1.4: Example of a
SDP message (answer)

v=0
o=mozilla...THIS_IS_SDPARTA-54.0.1 5897145307417630851 0 IN IP4 0.0.0.0
[...]
a=fingerprint:sha-256 33:B1:D7:4B:29:29:29:AA:87:01:47:B3:59:41:[...]5D
a=group:BUNDLE sdparta_0 sdparta_1
a=ice-options:trickle
a=msid-semantic:WMS *

m=audio 29188 UDP/TLS/RTP/SAVPF 109 101
c=IN IP4 74.125.39.43
a=mid:sdparta_0
a=candidate:0 1 UDP 2122252543 131.254.67.174 54163 typ host
[...]
a=candidate:20 1 UDP 8331263 74.125.39.43 29188 typ relay [...]
a=rtpmap:109 opus/48000/2
a=rtpmap:101 telephone-event/8000
[...]

m=video 29188 UDP/TLS/RTP/SAVPF 121
c=IN IP4 74.125.39.43
a=mid:sdparta_1
[...]

the Traversal Using Relays around NAT (TURN) [37] extension to STUN. Once ICE
checks have completed, both peers can set up their secure channels.

1.2 Security on the Web

The World Wide Web, or more commonly the Web, is one of the many applications
of the Internet. It allows to retrieve and manipulate resources hosted by a server and
referencing other resources by hypertext links. The Web is built on a client-server model,
and the most common type of client is, of course, the web browser. Web clients are often
referred to as user-agents, particularly in web specifications.

The set of protocols and specifications forming the Web are mainly defined by two
standardisation bodies. Languages such as HTML and CSS, protocols such as the Hy-
perText Transfer Protocol (HTTP), and web API such as WebRTC API are standardised
by the W3C [38, 39]. As the Web is built over the Internet, the IETF contributes to
protocol specifications which are then used in the context of the Web. The European
association for standardizing information and communication systems (Ecma) is also
an important actor as it standardises the ECMAScript programming language, better
known under the name of Mozilla’s implementation: JavaScript. Browser makers, as the
implementors of the most used web clients, are also central to the definitions, evolutions,
and adoptions of web specifications. The most important browser makers are Google
(Chrome), Mozilla (Firefox), Microsoft (Edge/IE), and Apple (Safari). Figure 1.5 gives
a rough indication of the balance of power between these main four browsers. If a fea-
ture is not implemented or removed from one of the popular browsers it will soon be
abandoned by websites. Yet, implementing the full standard specifications is a daunting
task and browsers, although regularly updated, often offer incomplete support for some
features. Keeping up with particular features and implementations from each browser
is a complex task for website developers. A common technique is to conditionally use
shims or polyfills, adapter code that abstract browsers’ implementations under a single

1.2. SECURITY ON THE WEB 15

Figure 1.6: Cross-site request
example. The HTML page
from domain-a.com requests
resources from domain-a.com
and domain-b.com. Re-
quests for domain-a.com are
same-origin and always al-
lowed. Requests for domain-
b.com are cross-origin and re-
quires valid CORS headers
and CSP directives. Exam-
ple taken from developer.
mozilla.org.

w3
sch
oo
l.c
om

gs
.st
at
co
un
ter
.co
m

0%

25%

50%

75%

Safari
Edge/IE
Firefox
Chrome

Figure 1.5: Percentage of
recorded browsers visit-
ing w3schools.com and
amiunique.org in June
2017.

interface.

1.2.1 The Trusted Computing Base

The Trusted Computing Base (TCB) is the set of hardware and software on which the
security of a system relies upon. In a correct implementation of a TCB, if a part of
the TCB is compromised, then the whole system’s security may be at risk. However a
compromised component not part of the TCB should not present a risk to the security of
the system in general or to any other components in particular. While from an Operating
System (OS) point of view the browser is just an application outside of the TCB, in the
context of the Web the browser is a central part of the TCB.

In other words, the browser can actually be considered as the OS of the Web. Indeed,
it is responsible for downloading and running client web application, while exposing
resources and services through web API. As other OS, the browser is also responsible
for maintaining applications isolation.

1.2.2 The Same Origin Policy

For web applications, isolation relies on the concept of origin and the same-origin
policy [40]. An origin is a protection domain regrouping Uniform Resource Identifier
(URI) [41] sharing the same triple of scheme, host, and port. Two pages from different
origins are isolated and cannot share resources, such as variables or cookies. However,
communication is still possible using the postMessage API. This interface allows pages
from different origins to exchange scoped message and cloned variables.

A web application can also embed contents such as scripts or images from other ori-
gins. Figure 1.6 shows an example of a webpage with content loaded from two different
domains. Cross-origin content may enable vulnerabilities in a webpage as it enables
the coexistence of two origins in a single security-context. Cross-Site Scripting (XSS)
and other code injection attacks exploit the user’s trust in a webpage. This kind of
privilege escalation attack allows a malicious script to gain access to sensitive session
information from the security context of the main origin. One way for a webpage to

domain-a.com
domain-a.com
domain-b.com
domain-a.com
domain-b.com
domain-b.com
developer.mozilla.org
developer.mozilla.org
w3schools.com
amiunique.org

16 CHAPTER 1. WEBRTC TRUST AND SECURITY ARCHITECTURE

3: Note that as HTTP is not
considered secure, HTTP and
HTTPS page from the same
domain are not considered to
be from the same origin.
4: Although client authentica-
tion is also possible with TLS,
it is not much used and often
limited to server-server inter-
actions or other particular use
cases.

prevent XSS is to define whitelisted origins through the use of Content Security Policy
(CSP) directives [42]. This ensures that only trusted content can be loaded and exe-
cuted by the web application. Unlike XSS attacks, Cross-Site Request Forgery (CSRF)
attacks exploit a web application’s trust in a user’s authentication to issue commands
in place of the user. To issue a CSRF attack a malicious webpage visited by the user
executes an illegitimate HTTP request on the vulnerable server. The request may, for
instance, be triggered by loading a link inside an HTML image element or the execution
of a JavaScript fetch request. Supposing that the user is authenticated on the vulner-
able application the illegitimate request inherits from this authentication, for instance
through a session cookie. Web applications may deter CSRF attack by enforcing the
same-origin policy for some of their exposed HTTP interface. This can be achieved
by setting unique and unpredictable csrf-token cookie on the client side, or by defining
Cross-Origin Resource Sharing (CORS) [40] headers on HTTP responses. In both types
of attacks, CSRF and XSS, the browser is responsible for correctly applying policies
defined by web applications in order to protect the user.

Web-based protocols may require the discovery of policy or configuration informa-
tion through metadata. In order to avoid collisions with existing resources but also
prevent impersonation on self-hosting services, Request For Comments (RFC) 5785 [43]
defines well-known URI. A well-known URI is a URI whose path components starts with
/.well-known/. Specifications often define resources located under a well-known URI
and assume that they are under control of the host.

1.2.3 The HyperText Transfer Protocol Secure
The HyperText Transfer Protocol (HTTP) [19] is an Internet application layer proto-
col [44] developed to access and modify web resources. It offers several methods to send
resource requests from a client to a server. The two main ones are GET which is used
to retrieve a resource, and POST which is used to send data to the server for creating
or updating a resource. Responses to HTTP requests are made of a status code and an
eventual body containing the actual response, e. g. a file or an object. For instance, the
status code 200 means that the request is successful while the set of 300 codes indicates
a redirection.

HyperText Transfer Protocol Secured (HTTPS) [45] is the combination of the HTTP
and Transport Layer Security (TLS) [46] protocols3. TLS enables authentication and
secure communication between a client and server4. To authenticate itself to a client a
server must provide a signed and valid certificate containing, in particular, his public key,
his domain name, and the certification authority which issued the certificate. After the
client validated the certificates, it uses the public key to communicate a secret session
key to the server initiating a secure communication between both parties.

Certification authorities are the entities responsible for issuing and signing certifi-
cates. There exist four types of HTTPS certificates ranging from self-signed certificates
to Extended Validation certificates. These types differ from the verification conducted
by certification authority, their costs, and the way they are displayed by browsers. Al-
though there is debate whether Organisation Validation certificates offer more guarantees
as Domain Validation certificates. Some Extended Validation certificates are integrated
by browser makers within their browser installation packages. These are often referred
to as root certificates as they do not depend on other certificates. It is the responsibility
of the browser makers to select trustworthy certification authority for providing root
certificates.

In addition to initialising trust chains, the responsibility of the browser is to provide
security information to the user when they connect to a website. This is usually done by
displaying a colour coded indications of the page security level in the address bar and
in-context warning such as in Figure 1.7. Mixed contents such as an insecure login forms

1.2. SECURITY ON THE WEB 17

Figure 1.7: Security indi-
cations for HTTP, HTTPS
and insecure password form
on Firefox. The HTTP indi-
cator will soon be replaced
by a warning similar to the
example shown here.

are also taken into account to determine the security level. However, if the certificate is
invalid the page is automatically blocked by the browser. While this effectively deters
attacks, users usually only see false alarms [47] which could, in turn, have the effect of
lowering their vigilance.

Browser makers are currently pushing HTTPS and advocating for a fully encrypted
Web. For instance, Firefox indicated that they will advertise HTTP site similarly to bad
certificate [16]. A full HTTPS web would lower the trust of users in HTTP websites,
and force those site to finally adopt HTTPS. This objective is made possible thanks
to automated Certification Authority (CA) such as Let’s Encrypt which operates the
Automatic Certificate Management Environment (ACME) protocol. Let’s Encrypt aims
at drastically reducing the complexity and cost of certificate deployment by avoiding
manual operations, a major barrier for the multitude of small websites. Ultimately, the
usage of HTTPS is not a proof of trustworthiness of the website itself but only that the
control of its domain name was verified to some extent and that secure communication
is in place.

1.2.4 Public Key Cryptography
This section introduces the notion and usages of public key cryptography, a corner-
stone of the security of the Web. This technique allows to sign, authenticate, and secure
messages exchanged by two peers without the need to share a common secret key. Public
key cryptography is used in the certificate infrastructure deployed by browsers and CA
for HTTPS, but also in the WebRTC security protocols, and in authentication delegation
protocols.

In 1976 Diffie and Hellman published the concept of public key cryptography, also
called asymmetric cryptography. The race for such an algorithm was won by Ron Rivest,
Adi Shamir, and Leonard Adleman with the publication of the famous RSA algorithm.
In symmetric cryptography, the same key is used to encrypt and decrypt the message.
This is, for instance, the case with Caesar’s cypher where the key is the number of shifts
to apply in order to encrypt a plaintext message, but also the number of opposite shift
to decrypt the message. Conversely, public key cryptography protocols use two keys.
The secret key is randomly generated while the public key is derived from the secret key,
both forming a key pair. As knowledge of the public key does not allow to retrieve the
private key, the public key can be shared freely. We do not go into details on the specific
cryptography mechanisms and algorithms but focus on the use cases made possible by
asymmetric cryptography.

In order to bind an identity to a key pair, a CA issues a digital certificate. These
certificates contain information about the public key, the signing algorithm, the owner’s
identity, and the CA. Certificates may also refer to the CA’s own certificate until a
trusted root certificate is reached forming a chain of trust. X.509 certificates, one of
the most used standards for digital certificates, contain several fields describing the
certificate itself, the issuer, and the subject. An example is given in Figure 1.8. Another
way to issue certificates is to participate in a web of trust where members respectively
sign their keys during key exchange party. OpenPGP [48] is the most widely used web
of trust standard, particularly for signing emails.

Figure 1.9: Public-key en-
cryption of m from Alice to
Bob [49].

18 CHAPTER 1. WEBRTC TRUST AND SECURITY ARCHITECTURE

Figure 1.8: Extract of
a X.509 certificate is-
sued by Let’s Encrypt to
energyq.idp.rethink.orange-
labs.fr.

Subject
Common Name energyq.idp.rethink.orange-labs.fr

Subject’s Public Key
Public Key Algorithm PKCS #1 RSA Encryption
Public Key c5 44 1c 33 79 bf e5 [...] c9 26 a4 e3 5e 4e 6d

Issuer
Common Name Let’s Encrypt Authority X3

Period of Validity
Begins On 31 mai 2017
Expires On 29 août 2017

Fingerprints
Signature Algorithm PKCS #1 SHA-256 With RSA Encryption
SHA-256 Fingerprint 77:21:3C:64:0A:ED:E3:AD:0F:82:03:6D:9B:45:66:B4:

D0:28:D8:04:9E:F3:41:C1:C7:A5:EA:57:BB:A0:34:1D

In the public key encryption scenario (Figure 1.9), Alice wants to send an encrypted
messagem so that it is only readable by Bob, the intended recipient. Bob possesses a key
pair (PBob, SBob) and publishes its public key. Alice then uses this public key to encrypt
the message and send the cyphertext to Bob. On receiving the encrypted cyphertext,
Bob uses its secret key to decrypt the message. While the attacker Eve could not read
the cyphertext, it could still intercept the message and modify it. Confidentiality is
ensured, but encryption does not prove message integrity nor the sender’s authenticity.

Figure 1.10: Public-key sig-
nature of a message m from
Alice to Bob [49].

In the signature scenario (Figure 1.10), Alice possesses a key pair (PAlice, SAlice) and
publishes its public key. In order to sign a messagem, Alice uses a signing algorithm with
the private key and the plain text as a parameter to produce a tag, i. e. the signature s.
She then sends both plain text and signature to the recipient. The signature algorithm
is often associated with a cryptographic hash function, a one-way function mapping the
message to a fixed size string. In this case, the signature is applied on the resulting
hash, also called a digest. By verifying the signature with the public key and comparing
it to the message, or the message’s digest, the receiver is then able to verify the integrity
of the received message. Only the holder of the secret key could have produced the
signature. If the key pair is bound to the sender’s identity, for instance with a certificate
containing the sender’s name, the receiver also verifies the authenticity of the message.

Achieving both confidentiality and integrity is possible if both parties publish their
respective public keys. To do so the sender would sign the message with its own private
key and then encrypt both message and signature with the other party’s public key.
Using asymmetric encryption is, however, a computationally heavy operation compared
to symmetric encryption. In order to solve this problem, public key cryptography is

1.3. WEBRTC SECURITY 19

Figure 1.12: WebRTC Proto-
col Stack [51].

TLS_ECDHE_RSA_
WITH_AES256_GCM_
SHA384

Figure 1.11: This cypher
suit defines ECDHE as
the key exchange mech-
anism, RSA as the au-
thentication mechanism,
AES_256_GCM as the
symmetric encryption algo-
rithm, and SHA384 as the
digest algorithm.
5: A consistent decision with
the direction for HTTPS every-
where.

6: Contrary to the Trans-
mission Control Protocol
(TCP) [55], UDP does not
guarantees the delivery,
ordering, or duplicating of
its packets and avoids the
overhead of such guarantees.

used to establish a symmetric session key. Such key exchange scheme is often referred
to as a Diffie-Hellman exchange.

A cypher suite is a standardised configuration of cryptographic algorithms and op-
tions meant to serve as a toolbox for establishing a secure communication. In TLS, a
cypher suite would define the key exchange algorithm, the bulk encryption algorithm,
the signature algorithm and the relevant key size to be used. Prior to starting the
negotiation, both peer would make a hand-shake to compare their respective available
cypher suite and find a common ground. Figure 1.11 shows the cypher suit used on
idp.energyq.rethink.orange-labs.fr with Firefox.

1.3 WebRTC Security
While the signalling path is secured as any other client-server connection on the Web.
The media path serves for real-time media communications and as such uses different
protocols. Figure 1.12 shows the protocol stack for the WebRTC signalling and media
path. WebRTC mandates the use of secure media channels5 [50]. In this section we
present the protocols protecting confidentiality, integrity, and availability of the media
channel. The WebRTC security architecture also introduces an optional identity path to
let users verify their peer’s authenticity. We give definitions related to user authenticity
in Section 1.3.3 and present the WebRTC Identity Path in Section 1.3.4. We also give
an overview of some alternative key management protocols in Section 1.3.6.

1.3.1 Confidentiality and Integrity of the Media Path
The media path is a P2P connection between two WebRTC endpoints. This path allows
both the setup of media streams offered by the Media Capture and Streams API or data
channels from the RTCDataChannel API.

Media streams are transported over the Secure Real-time Transport Protocol (SRTP) [52],
a secure profile for the Real-time Transport Protocol (RTP) [53] and RTP Control Pro-
tocol (RTCP) “which can provide confidentiality, message authentication, and replay
protection”. Usually, the RTP protocol (and SRTP) is carried over the User Datagram
Protocol (UDP) [54] as real-time media streams are time-sensitive6. As SRTP does not
offer key management functionality, it must rely on another key management proto-
col. The preferred and default protocol for SRTP key management is the DTLS-SRTP
(SRTP profile for DTLS) [56] which must be offered by any WebRTC implementation.
Datagram Transport Layer Security (DTLS) [57] is an adaptation of TLS to datagram
transport protocols. SRTP profile for DTLS [58] is “a SRTP extension for DTLS that
combines the performance and encryption flexibility benefits of SRTP with the flexibility
and convenience of DTLS-integrated key and association management”. SRTP profile

idp.energyq.rethink.orange-labs.fr

20 CHAPTER 1. WEBRTC TRUST AND SECURITY ARCHITECTURE

7: SCTP can be configured
to provide similar features to
UDP or TCP.

8: The french Regulation Au-
thority for Postal and Elec-
tronic Communications (AR-
CEP) published a state of the
art report on net neutrality
regulations and operators prac-
tices in September 2015 [62].

for DTLS can thus be seen as a DTLS optimisation for RTP. On the other hand, data
channels use the Stream Control Transmission Protocol (SCTP)7 [59] and are secured
by DTLS only.

In order to exchange their public keys and setup a session key, peers proceed to a
DTLS handshake over the media path by exchanging certificates. Contrary to server
exposing certificates signed by trusted CA, peers’ certificates are self-asserted and thus
untrusted. In order to authenticate the received certificates, fingerprints of these certifi-
cates are previously exchanged over the signalling path in session level a=fingerprint
SDP attributes (see Figure 1.4 for an example). As long as the signalling path is trusted,
the confidentiality and integrity of the media path is ensured.

1.3.2 Availability of the Communication

The main threat to availability of a WebRTC communication consists in Denial of Service
(DoS) attacks, and in particular Distributed Denial of Service (DDoS). As WebRTC calls
are programmatically controlled, a malicious software could launch multiple calls from
several users to a single destination, for instance a call-center. The consent mechanisms
required by the Media Capture and Streams API mitigate these kinds of attack using
media streams. However, data channels do not require consent before being initialised
and may be used to mount DDoS attacks. Client applications and automated WebRTC
implementations, i. e. call-center gateway, should implement filtering policies to detect
and respond to suspicious call, i. e. call without audio or video. The WebRTC security
architecture [50] details and reference additional availability attacks against WebRTC.

More generally, WebRTC clients may also be vulnerable to SPam over Internet Tele-
phony (SPIT), i. e. the transmission of bulk unsolicited call offers. The possibility of
WebRTC spam depends on the underlying signalling architecture. For instance an open
signalling federation would be more vulnerable to SPIT than a one-way call service de-
ployed on a website. Nonetheless, there is few doubts that in the former case a spam
agent would be easy to write. RFC 5039 [25] references solutions to SPIT call for Session
Initiation Protocol (SIP) that could probably be adapted to WebRTC scenarios. One
solution proposed by the RFC is to implement white and black lists to automatically
accept or reject incoming calls. However, obtaining a new identity may be quite cheap
making black lists ineffective.

Finally, a WebRTC session may be impacted by the available bandwidth on the
network. Janczukowicz et al. [60] demonstrate that concurrent TCP flow may have an
impact on the perceived quality of a WebRTC flow under best-effort routing. Saturating
a network path could thus be used to compromise the availability of the communication.
Alternative routing mechanisms could be used to provide specialised and paid commu-
nication services with a managed quality of service. For instance using TURN servers
for routing the media path, rather than using P2P best-effort [61]. However, specialised
services on the internet are criticised by some as being against the philosophy of the Net
Neutrality8.

1.3.3 User Authenticity

For users navigating the Web, authentication is a common action involving an identifier
and a password. But it may be difficult for them to explain what are the authentication
inherent concepts, and what precisely is their identity. In the following paragraphs,
we define and explain the concepts of identity, identifier, credentials, and claims. We
explain what constitutes an authentication process, and what makes it secure.

A subject’s identity is a set of attributes, called claims, representing the subject in a
specific scope [63]. As an identity is only defined for a specific scope, and a subject may
exist in multiple scopes, a subject may have multiple identities. For instance, the claims

1.3. WEBRTC SECURITY 21

9: An RP is also commonly re-
ferred to as a Service Provider.
However, we reserve this term
for the context of WebRTC.
Note that due to the need
of authenticating users, a We-
bRTC Service Provider is often
an RP too.

described by a subject’s driver license constitutes one of his identity. The same subject
may also have a passport and some social network accounts. Although these identities
belong to the same individual and may overlap, for instance sharing the same name and
age, they are distinct identities.

Identity is often used in the sense of an identifier [63, 64]. This confusion is due to
the fact that a name, or a public identifier in digital identity, is often used as a synonym
for an identity. In the rest of our thesis, we will clearly make the distinction to avoid
confusion.

Claims are the attributes constituting an identity. Identity claims can describe fea-
tures of a user such as his name, his age, or his address. But claims may also be used to
grant access to resources. In that case, we talk about authorization claims. Though some
of the claims on a driver license would be describing the driver itself, e. g. name: Bob or
age: 30. Some other claims may describe the category of cars the driver is authorized to
drive, e. g. cat. A: authorized. On the Web, an authorization claim may allow write
and read access to some data or API. Claims are usually uniquely identified by a URI
or reserved names defined by various standards. For instance the OpenID Connect [65]
specification defines a set of standard identity claims. As claims can change over time,
an identity may also be dynamic.

An identifier is a claim uniquely identifying the subject in a given scope. Identifiers
may have different forms such as a pseudonym, an email address, or a random text. A
website identifies the claimed identity by looking up its records and verifying if such
identifier exists.

Authentication is the process by which an entity proves the validity of some claims
to another party. In the most common scenario, a user authenticates by claiming his
identifier. In this case, we say that the user authenticates himself (or just authenticates if
unambiguous). In order to prove the ownership of an identifier, i. e. to authenticate, the
user has to present valid authentication factors. Contrary to identifiers, authentication
factors are not necessarily unique. Indeed, several users may, by coincidence, use the
same password.

Although authentication commonly refers to proving the ownership of an identifier,
it is also possible to authenticate non-identifying claims. For instance, to protect its
privacy a user may want to claim only his age without revealing his identifier. In order
to allow for this scenario, a trusted third-party is often necessary to assert the validity
of claims. However, identification remains possible if enough claims are provided.

In the most simple case, authentication is a simple relation involving two partici-
pants. However, for privacy, usability, or security reasons, the process may be delegated
to a trusted third party. An Identity Provider (IdP) is a trusted authority issuing and
validating identity claims. The Relying Party (RP) is the consumer of identity claims.
Technically, claims are requested, obtained, and validated using authentication delega-
tion protocols. These protocols allow the exchange of claims through security tokens.
Depending on the protocol, the RP requests some claims to an IdP or to the subject
before granting access to a service9.

Usually, the IdP is responsible for the lifecycle of an identity. This includes the en-
rolment, the management, and the eventual revocation of an identity. Before validating
any claims, verifying authentication factors, and checking an identifier, the identity must
first be created. Enrolment is the registration process used to create or update an iden-
tity. In this situation, there are two possible stances: to define a new identity ex nihilo
or to create an identity from a previously existing one, e. g. by authenticating a national
identity card. In some use cases, e. g. banking or communications, a server may require
a user’s identity to be anchored into a trusted identity. To cater for these different needs,
the Authentication Assurance Levels (AAL) have been proposed by several national or
regional frameworks and later standardised as ISO:29115:2013 [66]. These frameworks

22 CHAPTER 1. WEBRTC TRUST AND SECURITY ARCHITECTURE

categorise the AAL into four roughly equivalent categories, though details may differ for
historical or cultural reasons. Hatin et al. [67] propose a mapping of these discrete levels
into a continuous authentication score. Authentication strength may also be associated
with a time to live or an eroding factor applied over time. Such authentication model
shows similarity to trust models (see Section 1.4) and current work on pervasive authen-
tication systems further contributes to closing the gap between authentication and trust
levels [67].

Alternatively, some servers may be satisfied to know that a user is indeed just a
returning customer. In these cases, the actual identity of the user is not that important
and the server is more concerned with the authentication. Such identity can be qualified
as a declarative identity and its claims are said to be self-asserted. Although confidence
in the authenticity of such identity may be low, anchoring it into a source of reputa-
tion such as a social network may prove its trustworthiness. Conversely, verifying that
identity documents are genuine and up to date is a complex task [68, 69].

1.3.4 WebRTC Identity Path
In some scenarios, users may not trust the website or the underlying communication
provider on which they are making the call. Indeed, the signalling server may be lying
about the connection authenticity and could be mounting a man-in-the-middle attack.
This type of attack, presented in Figure 1.13, allows an invisible attacker Eve to be setup
in the middle of the media path between Alice and Bob by a malicious signalling server
S. When Alice sends her SDP offer to Bob through S, the offer is instead relayed to
Eve. Eve then generates an offer to Bob and configured so that Alice’s media stream is
relayed to Bob. Bob believing to be receiving a legitimate call from Alice replies to Eve
with his own media. Again, Eve relays Bob’s media to Alice. While Alice and Bob talk
to and see each others over encrypted media streams, the encryption is not end-to-end.
Alice and Bob have actually negotiated their media path encryption with Eve, without
knowing it, and Eve is thus able to decrypt their streams.

Figure 1.13: WebRTC Man-
in-the-Middle attack. The
SDP messages are: (1) Alice’s
offer relayed to Eve, (2) Eve’s
offer impersonating Alice, (3)
Bob’s anwser, (4) Eve’s an-
swer.

Alice Eve Bob

S

(1)

(4)
(1-4)

(3)

(2)

1

2

3

4
1-4

To solve this issue, WebRTC proposes a mechanism for peers to authenticate to
one another using an IdP as a trusted third party. We refer to this mechanism as
the WebRTC identity architecture, presented in Figure 1.14a. To authenticate, peers
bind their session fingerprint to a human readable identity by providing an identity
assertion. This identity assertion covers two main claims: the user identifier and the
session fingerprint used. By verifying the assertion and comparing it to the received
session fingerprint attribute, peers can authenticate the other peer and verify that no
man-in-the-middle attack is being mounted.

In order to enable the generation and the verification of identity assertions from any
authentication delegation protocol and providers, the WebRTC security architecture [50]
specifies the IdP Proxy component. This component serves as an interface between the

1.3. WEBRTC SECURITY 23

BrowserBrowser

Signalling Path

JS/HTML/CSS

Application-defined
over
HTTP/WebSockets

JS/HTML/CSS

Application-defined
over
HTTP/WebSockets

Media Path

IdP Proxy IdP ProxyIdentity Path

IdP-defined
assertion validation

IdP-defined
assertion generation

CS CS

IdP

PeerConnection PeerConnection

(a) WebRTC deployment with two browser endpoints, two signalling servers, and a single
identity provider authenticating the left-side peer.

(b) WebRTC Identity API
Architecture

Figure 1.14: WebRTC Identity Architecture

WebRTC PeerConnection object and the IdP through the interface presented in Fig-
ure 1.15. The IdP Proxy is available at a well-known location on the IdP domain.
Before making an SDP call offer or answer, the PeerConnection calls the IdP Proxy to
generate an assertion covering the session fingerprint. After the IdP authenticated the
user, the identity assertion is returned. This assertion is then included in the SDP mes-
sage in an a=identity attribute, along with the IdP Proxy location on the IdP domain.
This allows peers to discover IdP Proxy location without prior knowledge or relation-
ship with the IdP. On receiving an SDP message containing an Identity Assertion, the
PeerConnection object downloads the IdP Proxy from the specified location. It then
calls the IdP Proxy’s assertion verification function. If the verification is successful, the
session fingerprint and the user identity are returned.

dictionary RTCIdentityProvider {
generateAssertion(

DOMString contents,
DOMString origin,
RTCIdentityProviderOptions options,

),
validateAssertion(

DOMString assertion,
DOMString origin,

)

Figure 1.15: Interface Ex-
posed by Identity Providers
in WebIDL.

The WebRTC specification allows users to choose a default IdP in their browser
preferences if none was specified by the Communication Service (CS). But implicitly, if
the CS sets up an IdP to authenticate a WebRTC call, we would expect it to be the

24 CHAPTER 1. WEBRTC TRUST AND SECURITY ARCHITECTURE

-> 1999 2000-2001 2002-2003 2004-2005 2006-2007 2008-2009 2010-2011 2012-2013 2014-2015 2016-2017

WS Federation
Microsoft/IBM

2003

WS Federation
† 2007

Liberty 1.0
2002

Liberty
Federation

2005

Kantara
Initiative

2010

SAML 1.0
2002

SAML 2.0
2005

Shibboleth 1.0
2000

Shibboleth 1.2
2004

Shibboleth 2.0
2008

Microsoft
Passport

1999

BrowserID
† 2016

Microsoft
Cardspace

2007

Cardspace
† 2010

Microsoft
U-Prove

2010
Facebook
Connect

2008

OpenID 1.0
2005

OpenID 2.0
2007

OAuth 1.0
2010

OAuth 2.0
2012

OpenID
Connect

2014

BrowserID
2011

Passport
† 2005

Figure 1.16: Evolution of standards and technologies for user identity management, updated from Jøsang’s 2014 survey [70].

same IdP used to sign into the CS’s website. Indeed, the CS must be able to handle
the authentication procedure and needs to know that the user has an active account on
this IdP. Besides, from a user experience perspective, it is important that the identity
presented on the CS webpage and the one received in the identity assertion are consistent
with each other. In practice, the choice of IdP would thus be defined by the CS and
limited in the same way as for common authentication delegation services. We refer to
this constraint as identity continuity.

1.3.5 Considered Protocols for WebRTC Peer Authentication

In this section, we present the authentication delegation protocols considered for inte-
gration with the WebRTC identity architecture [50]. These protocols are the BrowserID
- Mozilla Persona protocol and the OAuth 2 protocol and its identity extension OIDC.
Figure 1.16 replace these protocols in the history of standards and technologies for user
identity management. As it is a technical prerequisite to both protocols, we first explain
the JSON Web Token standard.

JSON Web Token

JSON Web Token (JWT), specified by RFC 7519 [71], is a way of representing claims to
be exchanged by two parties. These claims are encoded in a JavaScript Object Notation
(JSON) [72] object which can then be signed as a JSONWeb Token Signature (JWS) [73]
or encrypted as a JSON Web Token Encryption (JWE), [74]. JWS and JWE tokens
contain several JSON members and in particular, a header and a payload or cyphertext,

1.3. WEBRTC SECURITY 25

10:

i. e. the JWT claims set. These tokens can be compactly serialised by concatenating
their base 64 encoded members. The acronym JWT is commonly used in place of JWS
or JWE depending on the context.

For instance, the following set of claims describes the subject 248289761001 whose
name is Jane Doe. The token was issued by http://server.example.com at 1509105796
seconds since the Portable Operating System Interface (POSIX) Epoch, i. e. January the
1st of 1970.

{
"iss": "http://server.example.com",
"sub": "248289761001",
"aud": "s6BhdRkqt3",
"nonce": "n-0S6_WzA2Mj",
"exp": 1509192196,
"iat": 1509105796,
"name": "Jane Doe",
"given_name": "Jane",
"family_name": "Doe",
"gender": "female",
"birthdate": "1987-01-01",
"email": "janedoe@example.com",
"picture": "http://example.com/janedoe/me.jpg"

}

The following JavaScript Object Signing and Encryption (JOSE) header describes
the usage of the RS256 algorithm and the key with id 1e9gdk7. RS256 is the compact
representation of the RSASSA-PKCS-v1_5 using SHA-256 algorithm, i. e. a public key
signature algorithm.

{"kid":"1e9gdk7","alg":"RS256"}

Serialisation of this token is done by encoding both components in base 64 and
concatenating them separated by a dot. The signature is then computed by using this
string and the specified algorithm and appended to the serialised token. The following
text is the previous JWT and JOSE header examples signed into a JWS. The red part
is the header, the violet is the JWT payload, and in blue is the signature 10.

eyJraWQiOiIxZTlnZGs3IiwiYWxnIjoiUlMyNTYifQ.eyJpc3MiOiJodHRwOi
8vc2VydmVyLmV4YW1wbGUuY29tIiwic3ViIjoiMjQ4Mjg5NzYxMDAxIiwiYXV
kIjoiczZCaGRSa3F0MyIsIm5vbmNlIjoibi0wUzZfV3pBMk1qIiwiZXhwIjox
NTA5MTkyMTk2LCJpYXQiOjE1MDkxMDU3OTYsIm5hbWUiOiJKYW5lIERvZSIsI
mdpdmVuX25hbWUiOiJKYW5lIiwiZmFtaWx5X25hbWUiOiJEb2UiLCJnZW5kZX
IiOiJmZW1hbGUiLCJiaXJ0aGRhdGUiOiIxOTg3LTAxLTAxIiwiZW1haWwiOiJ
qYW5lZG9lQGV4YW1wbGUuY29tIiwicGljdHVyZSI6Imh0dHA6Ly9leGFtcGxl
LmNvbS9qYW5lZG9lL21lLmpwZyJ9.iYiil5mBuznlG5aGMnOeHkVALg41q1aK
BFCoXW2f5sth3mZtkCwaRWUbj18pMN7iXlJOOdp9YVthccXORflV1hHlMKnrI
aqlsoTo6aSnAHVgCJc64pKKMTOsIF0EVhcJ-obigxx0UOvme8AV1oQQkn8Bzc
2Dd9E5D0qJX5YbeDw

Figure 1.17: A JWT Ex-
ample: OIDC ID Token.
Visit https://jwt.io to de-
code the token. It can also
be verified using the following
public key:
-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4
GNADCBiQKBgQCrpVE2fAdanHGf
HA10RkmNPIFvCry5XMccRguIGR
zU9wgVBfJ+UeChN9GmcmGf67bE
GbtOY7mScWidKpm3u+XZUOXfl3
PQTF3kIPzKU2cOUwDeziHRmGKR
QXvtTy2esBH45GKzKjFHH6ti6o
Uy3QG7wSZ7kXGGS6pgXjkPBU6y
qwIDAQAB
-----END PUBLIC KEY-----

https://jwt.io

26 CHAPTER 1. WEBRTC TRUST AND SECURITY ARCHITECTURE

Figure 1.18: OAuth 2 process
involving Github as AS and
RS, and Gitlab as client.

(a) GitLab sign in page with
a selection of IdP. (b) Redirection to Github

sign in page for Gitlab.

(c) Github consent page to
share email with Github.

BrowserID - Mozilla Personna

BrowserID [75] was Mozilla’s attempt at a decentralized Single Sign-On (SSO) protocol.
Though it has been deprecated in 2016 due to a declining usage, the protocol was a
central example of the WebRTC identity architecture [50] interoperability claim. Mozilla
Persona was the BrowserID service hosted by Mozilla and using a simple email ownership
verification mechanism to authenticate users. The reason for the failure of BrowserID
is probably that it did not attract enough interest from potential IdP.

BrowserID adds the id property to the browser’s window.navigator object. This
property exposes several functions allowing a website client script to request an identity
assertion from the browser. The browser responds to identity assertion requests with a
signed JWT. This JWT contains the user identifier and a certificate for the user’s public
key corresponding to the JWT’s signature. The IdP’s public key verifying the certificate
is publicly exposed on the IdP. Any website can verify the certificate’s signature thus
establishing a trust chain from the user to the IdP.

The BrowserID protocol allows any domain to be used as an IdP by signing a certifi-
cate for the user. The user identifier must be an email address whose domain corresponds
to the IdP’s domain name. The email’s domain allows IdP discovery as the location of
the IdP’s public key and other endpoints are standardised on a /.well-known route.
The browser stores user’s certificates and is then responsible for signing identity asser-
tion for requesting website. This separation of functionalities between the IdP and the
browser allows for a privacy-friendly approach as the IdP is not aware of which site is
the user login into.

Hiding the user’s login actions behind a trusted component is also an approach
proposed by Orange with the Trusted Identity Module [76]. Similarly, our technique
described in the patent for a Method of managing the authentication of a client in
a computing system [7] protects user privacy by putting the identity assertion in a
decentralised network such as a blockchain. In these architectures, the IdP cannot
monitor who is verifying the identity assertion.

OAuth 2 and OIDC

With more and more content being published by users, websites and in particular social
networks need a way to securely expose their API. In order to respect users’ privacy, it
is, however, necessary to get users’ consent to share private information. The original
OAuth specification was published in 2006 as a solution to the problem of authorization

1.3. WEBRTC SECURITY 27

Figure 1.19: Abstract
Oauth 2 code flow taken
from RFC 6749.

delegation. OAuth was then standardised by RFC 5849 [77] and later deprecated by
RFC 6749 [78]: the OAuth 2.0 protocol.

The OAuth 2 specification defines four roles. The Resource Owner (RO), in most
case a user, is legally capable of granting access to the resource. The Resource Server
(RS) is where the resource is hosted. The Client is the application requiring access
to the resource on behalf of the resource owner and with its authorization. Finally,
the Authorization Server (AS) can grant an access token to the client after getting the
resource owner consent.

The main OAuth 2 protocol flow is called the code flow, represented in Figure 1.19.
Figure 1.18 shows the user actions in such a flow. An OAuth 2 flow is based on HTTP
and make use of redirection response (code 300) to let servers exchange information
on behalf of the user. In this flow, the client makes an HTTP request for an autho-
rization from the RO for a specific resource (1 in Figure 1.19). The AS authenticates
the user (Figure 1.18b) and then asks for his consent (Figure 1.18c). The requested
authorizations are transmitted to the AS in the scope parameter of the HTTP autho-
rization request. After the AS got the user’s consent, the request is redirected to the
client (2). This redirection contains an authorization code, for instance in the URL
query parameter, which can be retrieved by the client. The client then exchanges the
authorization code with the AS for an access token (3, 4). This exchange happens out
of the RO scope and allows the AS to authenticate the client. The access token is then
used to access the resource on the RS (5,6). In order to be authenticated by the AS,
the client must be registered. The process of registration most often involves the client’s
developer taking manual actions to register on the AS through HTML forms. However,
automatic discovery and registration are also possible if the AS exposes some metadata
and registration endpoints.

In the alternative implicit flow, the AS directly responds to the authorization request
with the access token rather than with an authorization code. This simplified flow is
adapted for client implemented in the browser rather than on a server. In such scenario,
the client code is visible from the user and cannot protect a secret key. As a result, the
client cannot be authenticated by the AS and the authenticated authorization grant is
unnecessary. However, the resulting process is less secure as the access token may be
exposed on the web browser.

While OAuth 2 is able to convey user authentication information, it does so in non-
standard ways left for implementors to decide. Actually, authentication in OAuth 2 is

28 CHAPTER 1. WEBRTC TRUST AND SECURITY ARCHITECTURE

11: VoIP designates the tech-
niques to communicate using
voice or voice and video over
any compatible IP networks.

12: Note that in interconnec-
tivity scenarios, gateways can
decrypt SRTP profile for DTLS
streams unless both endpoints
are using SRTP profile for
DTLS in conjunction with ver-
ified identity assertions.

implicit as it is assumed that the user was authenticated by the AS in order to get the
user’s consent. For the client, getting the user’s email means that the owner of the email
has been authenticated, but it does not know much more than that.

OpenID Connect (OIDC), developed by the OpenID foundation, is “a simple identity
layer on top of the OAuth 2.0 protocol” [65]. It allows clients to retrieve an ID Token
in parallel from the access token. This ID Token is a JWT, containing information
related to the user’s identity, as the one in Figure 1.17. In addition to the ID Token
and additions to the OAuth 2 protocol, OIDC standardises a set of identity claims. A
client using OpenID Connect and requesting an ID Token must add the openid scope to
his OAuth 2 authorization request. The received ID Token contains a list of attributes
describing the user’s authentication result. In particular, the triple of identifiers iss, sub,
aud respectively identify the token ISSuer (i. e. the AS), the SUBject (i. e. the user),
and the token AUDience (i. e. the client). The audience identifier certifies to the client
that it is the intended audience of the token and is not subject to replay attacks. Note
that to avoid correlation attacks (as described in Section 1.5), the subject identifier
must be locally unique i. e. the same user must not have the same sub identifier for two
different clients. The ID Token also contains expiration time and security parameters
such as authentication time, nonce, and authentication level. The requested claims
describing the user identity can either be contained in the ID Token or retrieved from
the UserInfo endpoint. This endpoint is an OAuth 2 protected resource that can be
accessed with a valid access token for the openid scope. While OIDC standardises a set
of identity claims, additional claims can be added freely to both the ID Token and the
UserInfo endpoint as long as they use collision-resistant names or that naming conflicts
are unlikely.

From a user’s point of view, the difference between OAuth 2 and OIDC flows should
not be visible.

1.3.6 Alternative Key Management Protocols
SRTP profile for DTLS and DTLS in conjunction with the use of the identity path
allow to bind negotiated keys to an identity authenticated by an IdP. Although these
are the default and preferred key management protocols respectively for media and data
channels, alternative key management protocols offer different security guarantees. In
this section, we present the SDES and ZRTP protocols.

The Session Description Protocol Security Descriptions (SDES) [79] was the main
competitor to SRTP profile for DTLS as the default security protocol for WebRTC. The
main advantage of SDES consists in its existing deployment in existing SIP/RTP [80]
based Voice over IP (VoIP) networks11. In particular, interconnectivity between We-
bRTC and SIP/RTP endpoints would require the deployment of media gateways. As
media gateways are complex and costly to implement, leveraging the existing implemen-
tations of SDES gateways would reduce costs and favour WebRTC interconnectivity.
Additionally, due to the existing SDES deployment, gateways may not have to decryp-
t/encrypt session negotiated with SDES thus achieving end-to-end encryption. However,
contrary to DTLS, in the SDES protocol keys are exchanged in clear over the signalling
path inside SDP messages. This implies that the CS can decrypt the streams invisibly.
While this seems to be a major vulnerability, in the context of real-time communication
it may be a legit requirement from CS as they may be subject to lawful interception re-
quirements. In comparison, mounting lawful intercept against SRTP profile for DTLS is
mainly possible through a Man-in-the-Middle (MitM) interception as described earlier12.
DTLS was considered by the IETF as offering stronger security guarantees and quali-
fied as mandatory to implement. Furthermore the implementation of both the DTLS
and SDES protocols may allow for a downgrade attack. To implement such attack,
a malicious service would have to modify the SDP messages to only advertise SDES

1.4. TRUST 29

Figure 1.20: Phone-X appli-
cation displaying the ZRTP
SAS.

support. As a result, peers could negotiate a lower security level, allowing the service
to then mounts an invisible interception attack. Not only was SRTP profile for DTLS
preferred over SDES, but SDES was also not authorized for implementation in WebRTC
endpoints.

The ZRTP protocol [81] is a media path keying protocol for SRTP. It uses a simple
Diffie-Hellman exchange to agree on the symmetric session key. A Short Authentication
String (SAS) is then derived from the session-key and vocally transmitted over the media
path (see Figure 1.20). As both peers compare the exchanged SAS, i. e. hash(KA) =
hash(KB), they get a confirmation that they negotiated the same session-key and that
no MitM is being set up, i. e. KA = KB . Although the SAS comparison is vulnerable to
a real-time audio spoofing attack, in practice it is quite complicated. Indeed, to succeed
and remain undetected, the attacker must inject his own SAS at the right moment.
This requires detecting, how, when, and which one of the peers will say the SAS. Video
session may further deter such attack. However, practical attacks and bugs on ZRTP
implementations have been recently reported [82]. As a matter of fact, ZRTP is currently
implemented by multiple VoIP clients offering end-to-end encryption. But their reliance
on the SAS vocal comparison procedure and their implementations of different security
indicators and procedures may be confusing for most users. ZRTP is also less flexible
than the IdP Proxy solutions of WebRTC as it is only adapted for the VoIP use case.
WebRTC data channels, uni-directional communications, or non-human peer use cases
cannot be secured by ZRTP.

1.4 Trust

Evaluating the security of a system is only possible if it can be observed and monitored.
In communication scenarios, only a fragment of the whole system is under the user
control. The rest of the system is controlled by other peers, certificate authorities, com-
munication service providers, identity providers, and public internet service providers or
enterprise network administrators. If a complete monitoring is not possible, it may be
necessary to make a trust decision. In this section, we define trust and the properties
often associated with formal trust models. We then explain the actual WebRTC trust
model.

1.4.1 Introduction on Trust

Experienced every day, trust is nonetheless hard to define due to the broad range of
situations and interactions it covers. Several definitions of trust have been proposed.
Inspired by McKnight and Chervany [17], Jøsang and Presti define trust as: “the ex-
tent to which one party is willing to depend on something or somebody in
a given situation with a feeling of relative security, even though negative
consequences are possible” [18]. In the sense of an action, we would say that trust is
the decision of intelligent agents to cooperate in the face of risk and uncertainty about
the behaviour (capability or intention) of other agents. This heuristic is often based on
prior interaction history, reputation from a community, or recommendations from other
trusted sources.

A truster is a person, an organisation, or a software agent while a trustee is an
agent, possibly non-intelligent, that can provide a service to the truster. Figure 1.21a
presents such a simple trust relationship. Trust between two agents is asymmetric and
depends on a specific context, i. e. a specific scope of action for which trust is granted.
Transitivity is a property commonly associated with trust relationship where an agent D
would recommend its trust in E to B (see Figure 1.21b). As capability in a given context
does not imply the capability to recommend other agents in the same field of expertise,

30 CHAPTER 1. WEBRTC TRUST AND SECURITY ARCHITECTURE

Figure 1.21: Trust represen-
tation

Truster Trustee
Trust

a: Trust relationship

A

BC

D

E

b: Trust transitivity

transitivity is not present in all models. However, a recommendation could be seen as
a context allowing transitivity to other contexts. Indeed, Jøsang and Pope describe a
transitive path as a chain of recommending trust terminated by a functional trust [83].
Trust recommendation can also be aggregated from multiple sources. Figure 1.21b shows
trust transitivity and aggregation. Dashed arrows represent recommendations, while
the dotted arrow represents the trust relation from A to E built from recommendations
aggregation.

Methods to establish trust are commonly categorised between policies and reputation
based [84]:

• Policies describe the “hard evidence” requirements to obtain trust in a situation
where trust in an agent itself is unknown but there is an existing trust in a third
party authority.

• The concept of reputation describes the perception of a community on the reliabil-
ity of an agent part of this community for a particular context. These recommender
systems are either organised by a trusted third party or in a peer-to-peer fashion.
Furthermore, recommender systems can only establish a reputation in a network
where data about agents’ behaviour is available.

Trust relationships are dynamic as new feedback and credentials creation or revoca-
tion will impact previously existing trust. In some models, recommendations are part of
this dynamic as delay can occur in a trust information propagation. Time may also play
an important role in trust dynamic, either as an ageing factor determining ponderation
of new experience over previous ones or as an eroding factor decreasing trust or the
precision of a trust value.

Various trust metrics have been proposed ranging from discrete or fuzzy to continuous
scale [84]. We observe two categories of trust measure representations that differ from
their representation of distrust. The first category represents trust on a scale of [−x; +x]
with the negative value representing distrust, and zero a neutral trust. The second
category uses a scale of [0;x] with 0 representing full distrust. In the first case, a
bad recommendation by a distrusted source contributes positively to the final trust
level, while on the second computational model, the recommendation would simply be
discarded due to a low ponderation. Other representations can be considered as a special
case of these two categories.

Authors in the literature [85, 86] define operators for trust relationships. In these
models, trust transitivity is generally computed with a multiplicative operator while
trust sources aggregation is modelled by an averaging operator. Some models may
as well represent certainty and distrust. These models handle contradiction in trust
recommendation and uncertainty of trust sources.

1.4.2 The WebRTC Trust Model

From a security perspective, trust is often synonym with “providing proofs of identity,
authorization, and performance” [84]. Although multiple formal trust models have been
proposed and refined in the literature [84], commercial softwares and services often make
use of trust models in a simpler manner. The current WebRTC trust model is an informal
model categorising entities into three categories: the TCB, authenticated entities, and
unauthenticated entities.

At the root of the model is the WebRTC agent, in most cases a browser, which serves
as the TCB. All security properties must be guaranteed by the TCB, as we explained
in Section 1.2.1. In particular, the TCB is responsible for authenticating other entities
acting on the communication.

1.5. PRIVACY OF THE CALL-SESSION 31

13: “Just because we can ver-
ify that https://www.evil.org/
is owned by Dr Evil does not
mean that we can trust Dr Evil
to access our camera and mi-
crophone” [50].

14: The battery status API
was even removed after its im-
plementation in browsers as
its benefits were estimated less
important than the privacy
risk faced by users. This API
is now only available from priv-
ileged code in Firefox [87].

In WebRTC, authenticated entities are either CS, IdP or other peers. Optimally,
these are cryptographically authenticated by presenting certificates via HTTPS for
servers, and DTLS or identity assertion for peers. We previously described in Sec-
tion 1.2.4 how CA build a chain of trust from a root certificate to the final owner’s
certificate. The trust chain is then anchored in the browser as it is browser makers who
configure the list of root certificates in browsers. Similarly, the signalling path forms a
transitive recommendation path for media session security certificates. Note that while
these entities are authenticated, these may not necessarily be trusted13. However, it is
mandatory to authenticate entities before making a trust decision. This trust decision
is ultimately left for the user to decide.

In particular, while the CS has a large control over the WebRTC session, in some
scenarios it may be untrusted. For this reason, the specification introduces an alterna-
tive identity path to exchange identity assertions. These assertions bind media session
security certificates to an identity and from a trust perspective, this forms an alternative
transitive recommendation path. Paradoxically, this identity path is left for the CS to
configure and control as it is the CS who sets the IdP to use. From our point of view,
it is not clear if the identity path can be trusted independently of the CS.

Other network elements are generally not authenticated by the browser. The We-
bRTC specification thus assumes that they behave maliciously and the system is sup-
posed to be secure against attacks from these entities.

1.5 Privacy of the Call-Session
Some JavaScript web API may expose critical data to malicious websites. To protect
users these resources must be guarded against unwanted access. This is done by enforcing
explicit consent policies asking users whenever a website requests access to a sensitive
API. Permissions may be granted or denied based and websites origin. HTTP origins,
considered insecure, are often limited to one time authorizations. Considerations for
privacy in internet standards is steadily increasing14.

RFC 4949 [88] defines privacy as “the right of an entity (normally a person), acting
on its own behalf, to determine the degree to which it will interact with its environment,
including the degree to which the entity is willing to share his personal information with
others”. This definition emerged from the United States Privacy Act of 1974. which
was concerned with the growing amount of personal data stored by the U.S. govern-
ment. In the meantime, the protection of personal data emerged in Sweden, France,
and Deutschland, mainly driven by the fear of mass surveillance by an authoritarian
state [89]. Privacy should not be used as a synonym for data confidentiality: as a right,
privacy is a reason for security rather than a mean. In this section, we describe types
of privacy attack and possible mitigation techniques. We also give a brief overview of
the legal regulation applying to personal data protection. Finally, we present existing
privacy considerations of the WebRTC security architecture.

1.5.1 Attack and Threat Mitigation
The risks associated with privacy threats are multiple [90]. In the most trivial cases,
individuals can suffer from the divulgation of their private life by financial or reputation
loss. Individuals can also feel a sense of unease by knowing or fearing the monitoring
of their actions. This feeling can even lead users to refrain from acting freely. In the
worst case, if the attacker is able to physically harm the individual, the individual’s
life may be endangered. RFC 6973 [90] categorise privacy threats between combined
security-privacy and privacy specific threats:

• Combined security-privacy threats

32 CHAPTER 1. WEBRTC TRUST AND SECURITY ARCHITECTURE

– Surveillance

– Stored Data Compromise

– Intrusion

– Misattribution or Spoofing

• Privacy specific threats

– Correlation

– Identification

– Secondary Use

– Disclosure

– Exclusion

Particularly related to the context of web real-time communications are the threats
of surveillance, misattribution, correlation, and identification. Surveillance is conducted
by an attacker who observes or monitors the individual’s communications. The threat
is present even if the communication is encrypted as the possibility of surveillance can
lead the individual to change his behaviour, while the fact that the communication is
happening may be enough knowledge for the attacker. Misattribution of behaviour can
happen as a result of inadequate or insecure authentication. Similarly, a privacy attacker
may also draw wrong conclusions based on his observations of the individual behaviour.

Correlation threats are made possible by the combination of pieces of information
regarding an individual. By correlating pieces of information from different sources,
an attacker may learn more than what the individual believes to have shared. Finally,
identification is the correlation of an individual’s information in order to infer or establish
the individual’s identity. For instance, browser fingerprinting techniques can uniquely
identify a browser, and its associated user, by executing a set of JavaScript scripts on a
website [91]. Combined together these technical pieces of information can form a unique
and portable identifier, without the user knowledge.

The main solution to mitigate privacy threat is data minimisation. As it is difficult
to define what information can cause a privacy risk, reducing data disclosure globally
reduce the privacy attack surface. Data minimisation is a general principle that should
be applied by developers. The most straightforward approach is to limit data collection
to the minimum required, however, a limit may also be set to the time of retention of an
information. In some cases, individuals may themselves enforce data minimisation by
reducing the information they expose to websites. Though this may come as a tradeoff
between privacy and functionalities. If the original value of some data is legitimate,
denying its usage can protect an individual’s privacy but at a cost. For instance, most
browser fingerprinting techniques rely on the execution of JavaScript. It is possible to
deactivate JavaScript through browser’s options but this would break most websites in
the process.

An individual is said to be anonymous if it belongs to a set of individuals appearing
to have the same attributes. This set is called an anonymity set and individuals within
it must be indistinguishable from each other. Anonymity is relative to the point of
view of the attacker as it depends on the type of information the attacker can observe.
Additionally, the risk of correlation means that it may be difficult to assess if one belongs
to an anonymity set or not. A slight difference in attributes collected may de-anonymise
an individual or at least reduce the size of the anonymity set. Some privacy preserving
approaches thus try to quantify the uniqueness of an attribute.

Respect for privacy recognises the right for an individual to determine to which
degree it is willing to interact and share private information with its environment. For

1.5. PRIVACY OF THE CALL-SESSION 33

this reason, data collection happening “in secret” can be detrimental to an individual’s
privacy. User participation approaches involve the individual in the collection process
by asking his consent. Though modern privacy regulations enforce a strict policy for
explicit user consent (see Section 1.5.2). Depending on the use case and underlying
architecture it may be easier or harder to explicitly ask the user for his consent.

Finally, security in itself is an essential component of privacy protection. Confi-
dentiality of exchanges and strong peer authentication ensure that data are protected
against a malicious third party.

1.5.2 Regulations

Privacy-preserving regulations have been in development since the 1970’s both in the
USA and in European countries. Growing concerns by citizens for their privacy on the
Internet pushed legislators to adopt more protective legislation. The new European
General Data Protection Regulation (GDPR) [92] is a regulation adopted by the Euro-
pean Parliament in 2016 to reinforce and unify data protection for individuals within
the European Union (EU).

On one hand, the GDPR simplify the regulatory environment by unifying it across
the EU. On the other hand, the requirements for companies or public entities collecting
personal data are more significant. At the same time, possible sanctions are also more
severe going up to 20 000 000 euros or 4% of the global company revenue. New principles
are also introduced such as privacy by design and by default. Privacy by design is a
concept developed in 1995 by a joint-team from Canada and the Netherlands. As defined
by the GDPR in its article 25, privacy by design means that appropriate technical and
organisational measures should be taken both at design time and processing time. The
definition of Privacy by default states that appropriate measures should be taken to
ensure that only necessary personal data are collected, processed, and stored for each
specific purpose of processing. This principle also comes with an obligation of conformity
as soon as the design time of a personal data processing system. The responsibility to
implement and prove conformity regarding the regulation belongs to a Data Protection
Officer appointed by each company or public entity.

Major differences oppose the United States and the EU regarding how their laws
protect the privacy of their citizens [89]. In the United States, privacy is a right recog-
nised by the Constitution in order to protect citizens freedom from the government. In
addition, privacy-preserving laws are decided at the state level rather than at the federal
level. Oppositely, though the GDPR also concerns public entities, the regulation is pri-
marily aimed at the Over The Top (OTT) companies often located in the United States.
For users, the GDPR introduces important new rights such as explicit consent, right to
be forgotten, right of access, and right of rectification. Furthermore, the GDPR protects
EU citizens whether the company processing data is located inside or outside the EU.
Such protective regulations from the EU affect companies across the world forcing them
to be compliant. For these reasons, both United States and EU laws are led to interact
with each other. In a similar fashion, several national legislation across the world have
been influenced by European laws.

In the meantime, terrorist attacks are pushing governments to adopt new disposition
to facilitate the collection and the exchange of data between security services. While gov-
ernments reinforce privacy preserving regulations and may invest in privacy-preserving
research, communication surveillance is also an ever more important objective for their
security services. As an example of these contradictory efforts, the United States gov-
ernment is both funding research on the Tor network [93] and trying to break it through
efforts of the National Security Agency [94].

34 CHAPTER 1. WEBRTC TRUST AND SECURITY ARCHITECTURE

15: torproject.org

Figure 1.22: In this exam-
ple, the message is sequen-
tially encrypted with keys
from router C, B, and A. It
is then routed through these
routers starting from A.
Each router removes a layer
of encryption and routes the
message to the next router.
Finally, router C transmits
the message to the destina-
tion. This example is taken
from wikipedia.org.

1.5.3 Privacy Considerations for WebRTC

The WebRTC security architecture intends to prevent several types of privacy attacks.
Persistent identifiers such as DTLS certificates allow for correlation attacks against
anonymous call. To prevent this, WebRTC implementations should allow resetting such
identifiers, for instance with a similar lifetime as cookies or through a website-controlled
mechanism.

ICE candidates addresses may also form a unique identifier, either by themselves or
in conjunction with other web API during browser fingerprinting attacks. Alternatively,
ICE candidates may be used to discover the peer’s location. Several mechanisms imple-
mented by browsers allow controlling exposed candidates addresses. For instance, users
may deactivate the sharing of local candidates or force the use of a TURN relay. The
sharing of local candidates may also be bound to a consent mechanism, for instance
when requesting getUserMedia [95]. This trade-off between privacy and availability
means that an optimal network path may not be available for the communication.

1.5.4 Tor: Onion Routing

Anonymity networks protect user’s privacy from network surveillance and traffic anal-
ysis by anonymising their communications. The most used anonymity network on the
Internet is Tor15 [96]. In this section we give an overview of Tor functioning, and explain
how it is not practical for WebRTC.

Tor is an implementation of onion routing whose principle is to build an anonymous
routing protocol on top of the Internet. The goal of such protocol is to defeat traffic
analysis attacks. The Tor network is constituted of thousands of public routing nodes
publishing their public key, and clients. Clients often connect to Tor using Tor Browser,
a privacy-preserving browser based on Firefox.

In order to establish a communication through Tor, a client randomly chooses nodes
to build a routing circuit. In a circuit, each node knows only the previous and next
nodes. The entry node (resp. the exit node) knows only the IP of the source client
(resp. the destination client). Before sending a packet to the circuit the client encrypts
it sequentially with the public key of each nodes part of the circuit, starting from the
exit node. This creates layers of encryption around the original packet. To route a
Tor packet, each node decrypts the received packet using its own private key, peeling
an encryption layer each time. The resulting packet is then sent to the next node in
the circuit. When the exit node finally decrypts the packet the original TCP packet is
recovered and sent in clear to its destination. An example of onion routing is presented
in Figure 1.22.

Tor is particularly useful for avoiding traffic analysis and circumventing internet
censorship. This is particularly of interest for journalists, human-rights activists, lawyer,
and whistleblowers. However, due to the time consuming layered encryption of each
packet and the additional routing overhead, the latency over the Tor network is quite
high compared to the standard Internet. Additionally, some JavaScript functionalities
or other libraries can reveal privacy-sensitive data. As a result, they are blocked by
Tor Browser. For these reasons Tor is not adapted to protect web real-time media
communications and WebRTC is actually not implemented in the Tor Browser.

1.6 Signalling Architectures

WebRTC does not mandate any signalling architectures. Silo architectures are the most
frequent for web services but do not offer interoperability between CS. In this configu-
ration users are captive of their CS domain. This architecture can be represented in a

torproject.org
wikipedia.org

1.6. SIGNALLING ARCHITECTURES 35

BrowserBrowser

JS/HTML/CSS

Signalling Path
Application-defined
over
HTTP/WebSockets

JS/HTML/CSS
Media Path

CS 1 CS 2

PeerConnection PeerConnection

Figure 1.23: In silo architec-
ture users have to connect
though the same CS to estab-
lish a session.

16: Interestingly, browsers
makers porting their own
communication services
to WebRTC aim first at
compatibility with their
existing solutions and tend
to implement non-standard
features in their WebRTC
implementation. For instance,
WebRTC in Chrome supports
SDES to cater for hangouts
while Edge’s first video codec
support was H.264 Skype’s
proprietary codec.

17: The convergence of fixed
and mobile telephony networks
under an All-IP environment.

triangle involving only one CS server, as in Figure 1.23, On the contrary, interoperable
architectures allow users of some CS to call users from other CS. They are often repre-
sented as a trapezoid architecture with the signalling path involving two CS servers as
in Figure 1.1.

Many existing companies offer VoIP communication services, some of which are al-
ready switching to WebRTC16. The only constraint for signalling is that it uses the SDP
offer/answer model. For the moment VoIP communication services on the Web are heav-
ily relying on the silo model. More complex architectures are being developed to allow
inter-domain interoperability. These architectures differ by the way they handle user
discovery, routing, and identity management and formats. Although the main use case
for WebRTC is VoIP, other services such as video streaming [97] and data sharing [98]
can be supported. In this section, we give a quick overview of some interoperable and
distributed signalling architectures.

1.6.1 Voice over LTE and WebRTC Interconnectivity

Voice over LTE (VoLTE) is an architecture for VoIP over 4G mobile networks. Fig-
ure 1.24a presents a simplified view of the Long Term Evolution (LTE) mobile network,
a standard for high-speed mobile networks designed by the 3rd Generation Partnership
Project (3GPP). This architecture is separated in an access network, i. e. a network of
eNodeB responsible for all radio-related functions including encryption of data sent over
radio interfaces, and a core network responsible for the control of the User Equipement
(UE) and the establishment of IP connectivity. In the core network, the Serving Gate-
way (S-GW) and Mobility Management Entity (MME) handle the UE mobility, while
the PDN Gateway (P-GW) handles IP addresses allocation and Quality of Service (QoS)
enforcement. Finally, the Home Subscriber Server (HSS) is a database containing user’s
profile, location, and IP information. It is responsible for the user authentication, sub-
scription, and discovery. VoLTE interconnects the LTE network with the IP Multimedia
Subsystem (IMS) network. The main goal of the IMS is to achieve the concept of Fixed
Mobile Convergence17. A simplified view of the IMS architecture is presented in Fig-
ure 1.24b. Call Session Control Function (CSCF) form the core of an IMS domain. The
Proxy-CSCF (P-CSCF) is a SIP proxy server which serves as the point of contact for
each user equipment. When a UE connects to a network, it looks up for a reachable
P-CSCF. In IMS roaming scenario, the UE connects directly to the visited network’s
P-CSCF rather than to his home network.

SIP is a signalling protocol supporting the determination of user location, availability,
as well as session negotiation, setup, and management. As it is only concerned with the
signalling part of the communication session, SIP is used in conjunction with other
protocols such as SDP and SRTP (presented in Section 1.1). A network of proxy servers

36 CHAPTER 1. WEBRTC TRUST AND SECURITY ARCHITECTURE

Figure 1.24: A simplified
view of the VoLTE architec-
ture. The LTE offers connec-
tivity to the Internet and to
the IMS while the IMS offers
VoIP service.

Core Network (EPC)

HSS

UE-A
Internet

IMS

S-GW P-GW

MME

eNodeB

(a) Simplified LTE architecture.

IMS Domain A

HSS

Gateway

CSCF

P-CSCF

IMS Domain B

UE-A

UE-B

Interdomain
Connectivity

User Equipement
roaming in Domain A

(b) Simplified IMS architecture.

1.6. SIGNALLING ARCHITECTURES 37

IMS Network IMS Network

UE UESRTP SRTPMedia

(a) End-to-Access-Edge Encryption

IMS Network IMS Network

UE UESRTP Media

(b) End-to-End Encryption.

Figure 1.25: End-to-End and
End-to-Access-Edge encryp-
tion scenario over IMS net-
works.

18: The public identity is a
telephone URI of the form
tel:phonenumber.

allows SIP endpoints to register and routes requests to a user’s location. In VoLTE, the
UE contains a SIP user-agent and an Universal Integrated Circuit Card (UICC) often
refered to as a “SIM Card”. The UICC contains several identity modules including the IP
Multimedia Services Identity Module (ISIM) which in particular provides the IMS home
domain name, a private and public identity18, and a secret key used for authentication
and registration.

VoLTE offers roaming, handover, and interconnectivity with other networks. Inter-
connectivity with WebRTC can be handled by an IMS domain offering a compatible
gateway (see Figure 1.24b). In this case, the IMS domain has to deploy a WebRTC
web server, a WebRTC JavaScript client, and enhanced functionalities for WebRTC in
the P-CSCF. The gateway performs adaptation between WebRTC and IMS protocols
such as transcoding and encryption. While encryption using SRTP profile for DTLS
is mandatory in WebRTC (see Section 1.3), encryption of both media and signalling is
optional in the IMS. Furthermore, as VoLTE security relies on the radio encryption of
the access network, its RTP profile does not support encryption. This constraint implies
that WebRTC-VoLTE interconnectivity cannot use End-to-End encryption with SRTP
and is instead limited to End-to-Access-Edge encryption (see Figure 1.25).

1.6.2 Matrix

Matrix [28] is a specification for a messaging and data synchronisation federation. One
of its use cases is the exchange of signalling message for WebRTC communications.
Figure 1.26 shows three users, each connected to a Matrix home server, and exchanging
synchronised message in a room.

Matrix specifies several API, amongst which a client-server and a server-server API.
The server-server API defines the HTTP interfaces and data format allowing Matrix
home servers to synchronise messages with each other in real-time. Servers can either
push a message to another server, broadcast it to all servers in a room, or make a query
to a server to get a state snapshot. This API also defines how servers are discovered and
authenticated, and how user’s presence information is exchanged between home servers.
The client-server API defines the HTTP interfaces for a client application to connect and
communicate with a Matrix home server. It allows the application to manage rooms and
send messages. The client-server API also defines how users authenticate to their home
server through any Matrix application. This particularity of the Matrix architecture
means that users can choose any application to connect to any home server.

Matrix user identifiers are of the form @UserID:HomeServerDomain. These identi-
fiers are used internally by home servers, and in particular for home server discovery.
However, Matrix also defines third-party identifiers (3PID) as a more user-friendly way

38 CHAPTER 1. WEBRTC TRUST AND SECURITY ARCHITECTURE

Figure 1.26: Federated mes-
saging and data synchroni-
sation between three Matrix
home servers.

Home Server

@bob:bob.com @charlie:charlie.com

@alice:alice.com

matrix.alice.com

matrix.bob.com matrix.charlie.com

Messages

19: http://hypercomm.
github.io/wonder/

20: The runtime was initially
envisioned as a web browser
modification. However, it was
implemented as a JavaScript li-
brary due to the complexity
and costs involved.

to refer to users. The Identity Service API defines how 3PID are associated to Matrix
identifiers, stored, and queried. This service relies on a trusted federation of Matrix
identity servers.

Despite its interesting concepts, the Matrix ecosystem is still in early development.
Most implementations are in the alpha stage and the specification itself is rated as
unstable. The Matrix identity specification is the less advanced specification, and no
identity server implementation is referenced on the Matrix webpage.

1.6.3 reThink

reThink, an H2020 European project, specified and experimented with a real-time com-
munication framework. Its global objective is to allow Telcos to compete with large OTT
companies by offering open and interoperable communication services and applications.

A simplified view of the reThink architecture is presented in Figure 1.27. It builds on
the earlier signalling on-the-fly concept from the Wonder European project19. Signalling
on-the-fly avoids the standardisation of messaging protocols by providing a messaging
API. When two parties want to communicate, they agree on a protocol and download the
corresponding protocol-stub implementing the messaging API. While this architecture
allows interoperability without standards protocols, it still requires standardisation of
the messaging API and message format used for communication.

On the user’s side, reThink applications are executed inside the runtime. The runtime
can be a modified web browser or a native program20. reThink applications make use
of modular software components, called hyperties. These hyperties are downloaded
from service provider catalogues and executed in sandboxed environments. Hyperties
can provide many services to an application, including P2P communications. In the
interoperable reThink architecture, users can connect to each other through different
service providers. Signalling between two hyperties is thus established through one
users’ service provider. More specifically through a messaging node exposed by the
selected service provider. In order to establish the connection, both runtimes agree on
available protocols and download the corresponding proto-stub from the chosen service
provider’s catalogue. This process allows hyperties to set up their session and eventually
open a P2P communication.

Identity management in the reThink architecture is handled by the Identity Module

http://hypercomm.github.io/wonder/
http://hypercomm.github.io/wonder/

1.6. SIGNALLING ARCHITECTURES 39

Bob Service Provider
Catalog

Messaging Node

Alice Service Provider
Catalog

Messaging Node

Messaging Bus

Application

Hyperty

App

Hyperty

Application

Hyperty

Identity Module

IdP
Proxy

Alice Identity
Provider

Catalog

Protocol

Messaging Bus

Id Module

Signalling Alice authentication

Peer to Peer communication

Protocol Stub

Alice Runtime Bob Runtime

Figure 1.27: Simplified reThink architecture

and reuses the concept of the WebRTC IdP Proxy. Some of its design objectives in
addition to the WebRTC compatibility are the ability for users to choose their IdP and
the availability of discovery and presence services. In particular, reThink discovery,
presented in Figure 1.28, is a layered architecture relying on a cryptographic Globally
Unique IDentifier (GUID). The global registry, a trusted distributed hash table run
by a consortium of service providers, maps GUID to user profile information. Users
can manage and control their public profile information stored in the Distributed Hash
Table (DHT) by proving ownership of a private key. These user profiles also point to
user identities on service providers by exposing pairs of service provider domain and
service bound user identifiers. Services providers, in turn, expose a domain registry
containing the user’s reachability information. GUID can either be exchanged manually
or discovered through the use of a discovery service.

1.6.4 Distributed Signalling Architectures
The rapid growth of web traffic and video streaming, in particular, has an important im-
pact on infrastructure costs both for content providers and network operators. Content
Delivery Network (CDN) are constituted of proxy servers geographically distributed to
be as close to clients as possible. Besides tidying core network traffic, CDN optimise
the availability and performance of content delivery through various techniques and in
particular caching, load-balancing, and routing techniques. Distributed CDN merge the
advantages of CDN and P2P networks. These networks leverage their clients’ upload
bandwidth to redistribute content to other clients and further reduce costs. However,
distributed CDN require the installation of client-side software or browser plugin [99].

WebRTC allows browser-to-browser P2P communication for video streaming and
data channels without third-party plugins. It is thus possible to build distributed CDN
around a network of WebRTC enabled browser. To create such network, clients first

40 CHAPTER 1. WEBRTC TRUST AND SECURITY ARCHITECTURE

Figure 1.28: reThink Identity
Discovery

Registration
Service Provider

Domain Registry

Service Provider

Domain Registry

Identity Provider

Domain Registry

Global Registry

DHT

Runtime

Hyp
erty

Hyp
erty

Messaging Bus

Discovery Service

Search query
for Bob

Bob’s GUID

Bob’s UserID

Figure 1.29: In this exam-
ple P1 and P2 are already
part of the network. To join
the network P3 first reaches
the bootstrapping server S.
S signals P2 and P3 so that
they open a P2P data chan-
nel. P3 then requests a video
stream from P1. SDP mes-
sages between P3 and P1 are
signalled through P2 using
existing data channels. Fi-
nally, the video stream is es-
tablished from P1 to P3 [101].

P1 P2 P3

S

DataChannelDataChannel

WebSocketWebSocket

reach a bootstrapping server. This server allows new clients to open data channels with
other clients already part of the network. These data channels form an overlay signalling
network. Once a client joined the network, it can discover other distant clients and
establish P2P connections with them, for instance, to retrieve a file or a video stream.
Figure 1.29 shows an example of such network architecture where P3 joins the network
and finally retrieves a video stream from P1. As the signalling message from P3 to
P1 goes through P2, the signalling architecture is similar to MitM attack as shown in
Figure 1.13. Such signalling path may not be trusted and depending on the use case it
may be an issue. Zhang et al. [100] also report some security and privacy considerations
for their WebRTC CDN framework.

1.7. SUMMARY 41

1.7 Summary

TheWebRTC peer-to-peer media path is negotiated by peers exchanging SDP offer/answer messages
over the signalling path. Media path encryption is mandatory and is mainly built around the DTLS
and SRTP protocols. It ensures confidentiality and integrity of the P2P sessions between peers. The
signalling path generally involves one or more signalling server and its security relies on standard
web security protocols. At the root of these protocols is the web browser which acts as the trusted
computing base. WebRTC applications and their associated signalling servers are also responsible
to protect the availability of the session and network resources by filtering incoming call.

Depending on the signalling architecture or the signalling servers’ origin the signalling path may be
untrusted by users. WebRTC remedies to this issue by allowing peers to bind DTLS certificates to
identity assertions. These assertions are generated and verified by identity providers forming two
symmetric identity paths. Paradoxically, these identity paths are configured by the communication
services.

Privacy is a growing concern for users and contributors of web specifications alike. The main privacy
threats against WebRTC users are related to identification of anonymous callers and correlation
of web browsing and call history. Browsers enforce consent policies to protect users against mali-
cious sites launching non-legitimate calls. However, legitimate communication services also gain an
important knowledge of their users’ call history.

42 CHAPTER 1. WEBRTC TRUST AND SECURITY ARCHITECTURE

43

1: CiteSeer, IEEE Xplore,
ACM Digital Library, and
Google Scholar.
2: IEEE Security & Privacy
Symposium, ISOC Symposium
on Network and Distributed
Systems Security, ACM Com-
puter and Communications
Security, USENIX Security,
RAID, ACM Transactions on
Information and Systems Se-
curity, and IEEE Transactions
on Dependable and Secure
Computing.

Chapter 2

State of the Art

In this chapter, we present the state of the art on VoIP security research.
In Section 2.1 we present the results of a survey reviewing 245 articles on
VoIP security and published in 2012 by Keromytis [102]. As the first drafts
of WebRTC specifications were published the same year, this survey is a
solid starting point to understand the field of VoIP security. In Section 2.2,
we present our own survey of VoIP and WebRTC security research papers
published between 2012 and 2017. We follow a similar methodology as used
by Keromytis and collect and classify 208 papers. We then review the papers
dealing specifically with WebRTC.

2.1 VoIP Security Research - 2012

WebRTC is in 2018 still a young technology. The World Wide Web Consortium (W3C)
WebRTC Working Group was created in May 2011 and the first version of the WebRTC
Security Architecture draft was published in January 2012. The same year, Keromytis
published “A Comprehensive Survey of Voice over IP Security Research” [102] which
reviews 245 articles related to fields of Voice over IP (VoIP) security. This survey is
a starting point for understanding the field of VoIP security research just before the
introduction of WebRTC. Indeed, WebRTC contributors built on the same accumulated
experience when making design and implementation decisions.

In this section, we summarise Keromytis’ survey and categorisation of VoIP research
topics. We also give additional references from our personal knowledge when it seems
relevant. We particularly focus on research that could be applied in the context of
WebRTC communication. Note that a large part of the security research on VoIP is
focused on the network side such as the Session Initiation Protocol (SIP) signalling
protocol and SIP-based architectures. While WebRTC does not mandate a particular
signalling architecture, SIP-based researches are still relevant to WebRTC. Actually, SIP
could be used on the signalling path, but more importantly, most vulnerabilities and
defence mechanisms related to SIP are still relevant for ad-hoc signalling protocols.

2.1.1 Threats Classification and Methodology

To build the survey, Keromytis initially collected papers from personal knowledge,
searches on online library1, and browsing of proceedings of top security conferences,
journals, and specific workshops2. In particular, searches were conducted with the fol-
lowing keywords: “VoIP security”, “VoIP vulnerabilities”, “VoIP attacks”, “SIP security”,
“SIP vulnerabilities”, and “SIP attacks”. The collection was then expanded by browsing

44 CHAPTER 2. STATE OF THE ART

Figure 2.1: Classification
tree [102]

3: Turing tests tries to distin-
guish computers from humans.

the proceedings of conferences in which these papers appeared and searching for other
VoIP security papers by the same authors. The process was iterated over until no new
papers were added to the collection.

These papers were then manually classified according to an extended version of the
VoIP Security Alliance (VoIPSA) threat taxonomy [103]. The considered VoIPSA threat
classes are the following: social threats, traffic attacks, denial of service, and service
abuse. In addition, eight additional classes were considered: overviews and surveys, field
studies and system/protocol analysis, performance analysis, authentication protocols,
architectures, middleboxes, intrusion detection, and miscellaneous. Figure 2.1 presents
the repartition of surveyed papers in these classes.

2.1.2 Keromytis Survey Summary

Social Threats

Social Threats represent the attacks aimed at the human users rather than at the soft-
ware systems. Such attacks are for instance unwanted contacts misrepresenting the
identity of a malicious calling party or bypassing opt-out consent. In practice, research
on social threats is mostly focused on defence against SPam over Internet Telephony
(SPIT) call which we presented in Section 1.3.2.

According to the VoIPSA, the classification of call as spam is subjective. Indeed,
SPIT call may be lawful solicitations and become spam only after bypassing refused
consent. The bulk of defence against SPIT thus focus on getting user’s input. Caller
classification may follow a simple binary approach into whitelists or blacklists. However,
more complex approaches propose to use reputation-based models and social relations
between users to assign a trust value to an incoming call. In these systems, the in-
telligence of SPIT detection algorithms is located at the endpoints and allow users to
manage their own policies for SPIT rejection.

Other approaches place SPIT detection at the network level, i. e. on the signalling
path. These systems measure various criteria such as the number of incoming and out-
going calls, call duration, and call history. Deviation from standard long-term expected
average may reveal a spam call. These analyses may further be refined by user input or
filtered with a Turing test3 presented to the caller. Some authors also propose to apply

2.1. VOIP SECURITY RESEARCH - 2012 45

fingerprinting techniques, either targeting SIP messages format or the audio data of in-
coming VoIP calls. SPIT calls would be detected by the presence of unique fingerprint
over a large number of different calls. Sorge et al. [104] propose to evaluate the repu-
tation of Communication Service (CS) and their SPIT detection algorithms, providing
incentives to honest CS to correctly tag outgoing calls.

Trust and reputation models may easily be bypassed under weak caller authenti-
cation. Some authors thus propose to enforce strong caller identity verification. In
particular, Srivasta et al. [105] propose to consider the caller origin domain and the con-
fidence level in the authentication performed while Croft et al. [106] propose to include
a Verifying Authority into the call setup. This Verifying Authority would be responsible
for applying policies in particular based on the caller identity before transmitting the
call to the user.

Traffic Attacks

The traffic attacks and defences class is concerned with the risks of eavesdropping,
interception, and modification of signalling data and media sessions. These attacks may
either target unencrypted sessions or bypass cryptographically protected sessions. This
field of research, however, does not consider generic cryptography research but only
focus on specific VoIP cases.

Indeed, the specific nature of VoIP traffic, transmitting voice in stream sessions, may
allow specific attacks. Some researchers thus propose to use packet delay variation (also
referred to as jitter) in order to de-anonymise VoIP streams or introduce covert channel.
Other researchers apply machine learning techniques to determine the language spoken
or identify blank, phrases, or even words in encrypted voice streams. As summarised in
Figure 2.2, these attacks use packet size variation of Variable Bit-Rate (VBR) human-
speech codecs. VBR codecs, as opposed to Constant Bit Rate codecs, use variable packet
size depending on factors such as encoded phonemes, blank in speech, or encoding qual-
ity. As VoIP is a time-sensitive application, delay or jitter may have a dramatic impact
on the availability of the communication. Thus reducing bandwidth usage and adapting
to network conditions is a critical feature for VoIP usability. However, these researches
reveal a trade-off between security and availability/quality of VoIP communications.
Request For Comments (RFC) 6562 [107] gives guidelines on the usage of VBR codecs
in conjunctions with Secure Real-time Transport Protocol (SRTP) sessions.

Traffic analysis and signalling data can be used to compromise users’ privacy. Some
researchers study approaches based on anonymisation networks such as Tor (see Sec-
tion 1.5.4) and traffic padding techniques [109, 110]. Srivasta et al. [111] study the issue
of Quality of Service (QoS)-sensitive routes in anonymising networks. To this day, QoS
is still an issue for VoIP over anonymisation networks and researchers are still exploring
possible solutions [112].

A number of researches suppose unencrypted signalling paths or media session or
focus on alternative key agreement protocols such as ZRTP. As WebRTC mandates
the use of Datagram Transport Layer Security (DTLS) and SRTP for media and data
sessions, and browsers enforce the use of Transport Layer Security (TLS) for signalling
session, we do not consider these results as relevant to our research.

Denial of Service

We presented Denial of Service (DoS) attacks in Section 1.3.2. While DoS attacks
may target either endpoints or networks elements, researches in this field mostly focus
on attack and detection at the network level. DoS flooding attacks, schematised in
Figure 2.3, have similarities to SPIT calls meaning that these can be detected by moni-
toring deviation from standard call frequencies or error rate. Legitimate situations such

46 CHAPTER 2. STATE OF THE ART

Figure 2.2: Overall archi-
tecture of an approach for
reconstructing transcripts of
VoIP conversations from se-
quences of encrypted packet
sizes [108].

2.1. VOIP SECURITY RESEARCH - 2012 47

Figure 2.3: Schematic
overview of a DoS flooding
attack. Due to the server’s
limited processing capabili-
ties a lot of regular requests
cannot be processed if a high
load of malicious messages
are targeted towards the
server [116].

as emergencies may also conduct to flooding scenarios. Some researchers thus try to dif-
ferentiate DoS attacks from flash crowds situations [113]. However, the main difference
with SPIT is that DoS attacks aim at shutting down the VoIP network. It is crucial for
detection algorithms to introduce as few overheads as possible during call setup.

Indeed, other DoS attacks directly aim at flooding the memory or CPU of network
elements and in particular SIP servers. While strong message authentication is proposed
as a solution against DoS attacks, some researchers show that authentication may have a
negative impact in some DoS scenarios [114]. Whitelisting or lightweight authentication
based on call history from regular caller’s identity or Internet Protocol (IP) adress,
actually similar to some trust models, are proposed to mitigate attacks. Other mitigation
techniques also propose to adapt server procedures during DoS scenarios, for instance,
dropping ringing call earlier when being overloaded [115].

Payload and flow tampering attacks target specific signalling protocols, respectively
to crash servers or abort sessions. Most research on these attacks focus on SIP and pro-
tection mechanisms are well-known [116] including tools to check SIP implementations.
Additionally, encryption on the signalling path deters flow tampering attacks.

Service Abuse

Service abuse threats are related to the improper use of VoIP services especially in
commercial services, for instance, to increase or avoid billing. The research in this area is
quite limited compared to other threat classes as it features only 7 references. This can be
explained by the specificity of architectures concerned by service abuse threats. Billing
is closely associated with authentication and authorization of users. Some described
attacks use a SIP protocol vulnerabilities revealed by formal verification to forge SIP
messages impersonating users. A solution to fraud and proposed by Geneiatakis et
al. [117] is to let an Authentication, Authorization, and Accounting (AAA) server sign
SIP messages after the user authenticated to the server, hence providing authenticity and
non-repudiation for signalling messages. Although the solution is based on Telco rather
than web protocols, it shows similarity to the introduction of a third-party Identity
Provider (IdP) in WebRTC communication setup.

48 CHAPTER 2. STATE OF THE ART

4: avispa-project.org

5: heartbleed.com

6: The actual fix shows how a
small implementation error can
have dramatic consequences:
https://git.openssl.org/
gitweb/?p=openssl.git;a=
commitdiff;h=96db902

Field Studies and System/Protocol Analysis

Researches in this category focus on analysing protocols, implementations, and deployed
systems using various techniques in order to find security vulnerabilities and flaws. Tech-
niques used include formal verification [118], fuzzy testing [119], as well as black-box [120]
or source code analysis [121]. Similar analyses are also conducted in paper classified in
other categories.

Formal verification techniques ensure that supposing a defined attacker model, the
attacker cannot learn compromising information. Such an attacker model is the Dolev-
Yao [122] model in which the attacker can listen to any message on the network, build
arbitrary messages from known information, and send them over to the network. The
AVISPA project4, for Automated Validation of Internet Security Protocols and Appli-
cations, is a suite of tools for formal modelling and verification of security protocols.
In particular, the project offers a library of protocol models in the High-Level Protocol
Specification Language, some with known and demonstrated attacks.

Formal verification should not hide the fact that actual implementations may present
faults and weaknesses. These faults may be due to weak specification, error in the
implementation, or use of default configurations. For instance the Heartbleed bug5

allowed an attacker to reveal the memory of an OpenSSL protected system, the most
popular TLS implementation, by using a missing bound-check in the handling of the
TLS heartbeat6.

A number of surveyed work resulted in vulnerability disclosure publications in databases
such as the Common Vulnerabilities and Exposure (CVE) database. Such database al-
lows the rapid dissemination of vulnerability disclosures and fixes to organisations using
security software.

Performance Analysis

Performance analysis works focus on evaluating the impact of security protocols on both
call setup and media sessions. We already mentioned the trade-offs between security
and availability/quality of the communications. Papers in this category try to precisely
measure this trade-off.

Results globally show that the main overhead is due to the asymmetric encryption of
signalling messages while the symmetric encryption of the media session only produces
a small overhead. The exact figures vary depending on the actual protocol and configu-
rations being compared. For instance, a prototype demonstrates an improvement from
a factor between 2 and 8 in handled call setup requests per second by using the Elliptic
Curve DSA algorithm instead of RSA.

Other researches, not referenced in the survey, evaluate the strength of cryptographic
protocols. In practice, perfect security is highly impracticable and only imperfect secu-
rity can be achieved [123]. Modern cryptography thus aims for a high enough security
given reasonable computation power. Guessing attacks (or brute-force) form an upper-
bound to the amount of computation required to break an encryption. Against some
encryption schemes, faster techniques than exhaustive search can be used. To estimate
the difficulty of an attack against these encryptions it is necessary to factor computation
time and cost in the equation. For instance, Kleinjung et al. [124] use Amazon cloud
public prices to compare the security level of current algorithms with the level of the DES
in 1980, as proposed by Lenstra [125]. As the computing power increases and computing
cost decreases over time these estimations must be updated regularly. National security
agencies [126, 127] also give recommendations on security algorithm implementations
and usages to achieve reasonable security properties in a given timeframe.

Alia et al. [128] propose a component-based adaptation model to manage the trade-
offs between QoS and Security. They model the adaptable VoIP system as a composition

avispa-project.org
heartbleed.com
https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=96db902
https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=96db902
https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=96db902

2.1. VOIP SECURITY RESEARCH - 2012 49

7: The authors explains this as
to be “because of some difficul-
ties and other reasons for de-
ploying TLS” [130].

8: “[The signalling] message is
sent to the signalling server,
e.g., by XMLHttpRequest or
by WebSockets preferably over
TLS” [50].

of components each providing different QoS and security properties. A utility function
aggregating QoS and security dimensions, shown in Figure 2.4, allows discriminating be-
tween different configurations. Considered dimensions are the latency and video scheme
quality for QoS and the confidentiality, anonymity, and authentication for security. Their
model also uses user’s preferences as weight in the utility function and risk context as
minimal required value for each security dimensions.

U = W lat.F (lat) +W qua.F (qua) +W conf .F (conf)+
W anon.F (anon) +W auth.F (auth)

Figure 2.4: Overall utility
function [128] with F (k) the
utility functions and W k the
user preference weights for di-
mensions k as latency, video
scheme quality, confidential-
ity, anonymity, and authenti-
cation.

Authentication Protocols

The SIP authentication mechanism is based on HyperText Transfer Protocol (HTTP)
digest authentication [129] and allows any SIP proxy or SIP user-agent to issue an
authentication challenge when receiving a request. The response to the challenge is
basically a hash of some information including a nonce, i. e. a unique random number
associated with the request, and a password. The response also includes a username.
Upon receiving the response, the entity which issued the challenge looks up the password
corresponding to the submitted username. It can then perform the same digest operation
and compare the result to the given digest response to validate it.

Researchers working on authentication protocols mainly propose extensions or vari-
ants to SIP authentication and are mostly focused on VoIP as a use case for cryptography.
Interestingly, an article published by Cao and Jennings [130] in 2006 deals with the issue
of end-to-end user identity in VoIP call establishment. One of their assumptions is that
using TLS over each signalling hop is unrealistic7, thus breaking the necessary chain of
trust. In 2017 this assumption cannot be considered valid anymore and the WebRTC
security architecture recommends for the signalling path to be secured by TLS8.

Other categories

Other research surveyed by Keromytis are categorised as middleboxes, architectures, and
intrusion detection aiming at various threats but “not easily classified in any of the previ-
ous categories”. Middleboxes are network devices manipulating traffic for other purposes
than packet forwarding. Researches on VoIP middleboxes thus focus on the traversal
and operation of firewall and gateways to other networks. Architecture and intrusion
detection researches mainly focus on the detection of anomalies in VoIP networks, either
from malicious or non-adversarial causes and related defences.

Observations

According to Keromytis observations, almost 20% of the surveyed publications offer
an overview of VoIP security problems and solutions. He also observes that over 15%
of the work is coming from the cryptographic community, either to increase security
or performance and that roughly 20% of researches are dedicated to addressing SPIT.
While he remarks that SPIT is not currently an issue for VoIP, he adds that prior and
current experiences in email and telemarketing spams should be sufficient motivations
to continue researches against SPIT.

50 CHAPTER 2. STATE OF THE ART

Comparatively, he observes that the problem of DoS is less studied and that re-
searches on the subject focus on the network side of things. In previous surveys on the
CVE database, Keromytis reported a majority of SIP-specific DoS vulnerabilities with
half of the DoS vulnerabilities present at the endpoint. He thus argues for more re-
search targeting this problem, especially looking at strengthening implementations and
not addressing the problem from a black-box approach. Finally, Keromytis also argue
for more work addressing cross-protocol and cross-implementation problems.

2.2 VoIP and WebRTC Security Research - 2012+

To complete our state of the art we survey and categorise VoIP research and published
since 2012. We first present our methodology for collecting papers. We then give a
rough overview of the repartition of VoIP research since 2012 by classifying collected
papers. Finally, we review collected papers dealing specifically with WebRTC.

2.2.1 Methodology

To build our survey we first look at collecting papers related to VoIP security research
and published between 2012 and 2017. We use the same keywords as Keromytis [102],
that is: “VoIP security”, “VoIP vulnerabilities”, “VoIP attacks”, “SIP security”, “SIP
vulnerabilities”, and “SIP attacks”. As WebRTC was introduced in 2012 and is the
focus of our research, we also look for papers specifically targeting WebRTC. To this
end we use WebRTC as an additional keywords, i. e. “WebRTC security”, “WebRTC
vulnerabilities”, “WebRTC attacks”. The search is finally conducted on Google Scholars
search engine and using the search strings presented in Figure 2.5.

Figure 2.5: Paper collec-
tion search strings used on
Scholar.

“VoIP OR SIP OR WebRTC Security OR Vulnerabilities OR Attacks ”
“WebRTC Security OR Vulnerabilities OR Attacks ”

Google Scholar indicates 27 800 results for the first search string and 2 890 results
for the second string. We crawl these results, ordered by relevance until we estimate
that proposed papers are not relevant anymore. Paper selection is done based on title
and abstract, and ultimately our paper collection on VoIP research returns 208 results.
We do not consider non-peer reviewed papers. Relevant RFC are presented in the
background Chapter 1 on WebRTC trust and security architecture.

2.2.2 Observations on VoIP Security Research since 2012

We roughly classify our collection of 208 papers, based on title and abstract, into the
same categories as presented in Section 2.1.1. This allows to compare the proportion
of results for both periods and get a picture of the repartition of researches. Table 2.1
shows the classification of collected papers and compare them with the repartition of
paper collected by Keromytis.

According to our classification, we observe some significant changes (> +/ − 5%)
in the repartition of research. Firstly, we observe a drop in the proportion of research
focusing on social threats by 11% for the period since 2012. Keromytis remarked that
most of the social threat researches were focused on SPIT mitigation, although it was
not an issue in VoIP yet. This fact may explain the decrease in research for this threat
category. Researches focused on traffic attack also decreased by more than 7% on the
same period. In particular, we do not observe any research related to traffic attack
since 2016 and we classify only one 2015 paper as traffic attack related. Conversely, the

2.2. VOIP AND WEBRTC SECURITY RESEARCH - 2012+ 51

Category -/2012 2012/2017 diff WebRTC

Denial of Service 12.6% (31) 16.4% (33) +3.8% 0

Service Abuse 2.9% (7) 5% (10) +2.1% 0
Social Threats 17.5% (43) 6.5% (13) −11% 1
Traffic Attacks 12.2% (30) 5% (10) −7.3% 2

Overviews and Surveys 20.4% (50) 15.9% (30) −4.5% 7
Field Studies and
System/Protocol Analysis 4.9% (12) 8.9% (18) +4% 2

Performance Analysis 5.7% (14) 7.5% (15) +1.8% 0
Authentication Protocols 6.1% (15) 16.4% (33) +10.3% 1
Architectures 7.7% (19) 10.4% (21) +2.7% 8
Middleboxes 4.5% (11) 1% (2) −3.5% 2
Intrusion Detection 4.5% (11) 4.5% (9) − 0
Miscellaneous 0.8% (2) 2.5% (5) +1.7% 0

Total 100% (245) 100% (201) 23

Table 2.1: Classification of
VoIP security papers re-
turned by our search.

9: dblp.uni-trier.de

authentication protocol category of research sees an increase of more than 10%. In par-
ticular, we collected multiple papers applying elliptic-curve cryptography to VoIP while
in Keromytis’s survey only two references are given. Note that some of these differ-
ences may be due to the way we collected and classified papers compared to Keromytis
process.

We then looked for references to WebRTC in surveyed papers. We extracted a list
of authors of these WebRTC security papers and looked for any missing publications
using DBLP9, revealing two additional overview papers. Unsurprisingly, the categories
of Denial of Service, Service Abuse, and Intrusion Detection do not contain WebRTC
related research. Such attacks are generally targeted against the service architecture
which is not the focus of the WebRTC specification. Similarly, the social threats and
traffic attacks categories only contain one and two WebRTC related paper respectively.
While WebRTC mandates or recommends the use of some security mechanisms on the
signalling and media paths security, researches in these areas are not specific to WebRTC
and may target out-of-scope protocols such as SIP. Surprisingly, although WebRTC
does not specify any signalling architecture we observe several WebRTC papers in the
architecture and middleboxes categories. A large proportion of these papers are dealing
with issue of integrating WebRTC services inside enterprise environment and existing
VoIP infrastructures.

2.2.3 Survey of WebRTC Security Research

Traffic Attacks (2)

In their 2015 articles, Mauro and Longo [131, 132] use machine learning techniques to
identify encrypted WebRTC traffic. Used classifier algorithms are configured to con-
sider the inter-arrival times, packet lengths, and the number of packets received and
sent. They implemented a detection system and tested it with three then four classifi-
cation algorithms. Their results are however limited in significance due to the small and
artificial test sample.

dblp.uni-trier.de

52 CHAPTER 2. STATE OF THE ART

10: The STREWS project was
a European research project
running between 2012 and
2015.

Overviews and Surveys (6)

In 2013, one year after the first WebRTC drafts, Jennings et al. [133] published an
overview of the WebRTC architecture and its design principle. They present the security
and identity architecture, in particular, mentioning that their approach aims at allowing
users to “use their preferred identity provider and logs on to the provider in whatever
way that provider uses”. A similar overview paper is published in 2014 by Barnes and
Thomson [134] this time focusing on the security and identity architecture exclusively.

Loreto and Romano published in 2012 [135] an overview of the ongoing efforts for
WebRTC specifications in which they discuss some security considerations. In July 2017
they published an overview of the remaining efforts towards WebRTC 1.0 [136].

Rahaman published an overview on WebRTC security in 2015 [137]. After presenting
the WebRTC security architecture, examples of trusted third-parties IdP are provided:
Google, Facebook, LinkedIn, as well as the Browser Id and WebFinger protocols. Ra-
haman also lists concerns for WebRTC security including the inheritance of VoIP attacks
through gateways and the security of third-party IdP. No details are however given on
particular attacks. Issues of gateway implementation to integrate WebRTC service with
SIP-based systems are also the subject of a 2013 paper by Amirante et al. [138].

The Strategic Research Roadmap for European Web Security project’s (STREWS)10
major contribution is a technical state of practice document for web security [139].
The project’s studied methodology targets new aspects added to the web ecosystem
in parallel with the standardisation and deployment of the technology bringing these
aspects. Following this methodology, the project published a security case study report
on WebRTC [140] as it was deemed a “security sensitive extension to the Web”. This
document identifies six assets related to WebRTC and describes new threats. These
assets are the browser, the client machine, the server machine, the client-side application
code, the identity provider’s infrastructure, and Session Traversal Utilities for NAT
(STUN)/Traversal Using Relays around NAT (TURN) servers. The threats described
cover a large scope including some DoS attacks, service abuse attacks, Man-in-the-Middle
(MitM) attacks, and privacy attacks. In the second part of the document, a few areas
are studied in-depth and new attacks and vulnerabilities are described including:

• In additions to MitM attacks, malicious web applications can also redirect both
streams to an attacker either by accessing streams directly from JavaScript or by
taking screenshots using the HTML canvas elements containing the video streams.

• The central position of IdP means that they can be used as a meta-data capture
service, for instance, to allow legal pervasive monitoring or user profiling.

• The WebRTC identity architecture allows the disclosure of precise user identity
information to malicious web applications.

• The web certificate infrastructure does not have an effective scoping of Certi-
fication Authority (CA)’s authority. This issue extends to IdP handling caller
authentication in many WebRTC scenarios.

Field Studies and System/Protocol Analysis (2)

Reiter and Marsalek published in 2017 [141] an article describing new attacks to We-
bRTC. They identify multiple unprotected assets exposed by WebRTC that can be
leveraged by attackers. These assets are the peers’ public and private IP addresses,
the local network, bandwidth, and peer identity. Based on these assets they present
four attacks and possible mitigation techniques. They first consider an untrusted sig-
nalling path and show that a MitM attack can be mounted against the media path.

2.2. VOIP AND WEBRTC SECURITY RESEARCH - 2012+ 53

11: In their scenario commu-
nication services may use IdP
Proxy to authenticate users
from other domains. This pos-
sibility is not considered by
the WebRTC identity architec-
ture which only considers IdP
Proxy in peer to peer authen-
tication.

This attack is already considered in the WebRTC security architecture Internet Engi-
neering Task Force (IETF) draft [50] which proposes the use of an identity path (see
Section 1.3). Observing that this solution introduce dependencies to third-party IdP,
Reiter and Marsalek propose manual verification of DTLS certificates as a “lightweight
alternative”. Two others presented attacks use Interactive Connectivity Establishment
(ICE) IP address leaks against a peer’s privacy, in particular, to allow device finger-
printing. Finally, they show that a flooding attack can be mounted from malicious
JavaScript, i. e. without relying on an infected host. The JavaScript setups a WebRTC
connection and then sends multiple ICE candidate offers to flood the target.

Also considering ICE IP address leaks, Al-Fannah et al. [142] test combinations of
Operating System (OS), browser, Virtual Private Network (VPN), and VPN configura-
tions. Based on the results from their 116 test cases, they report differences in the type
of address leaked. They recommend that users concerned by this vulnerability carefully
choose their browser and VPN.

Authentication Protocols (1)

De Groef et al. [143] try to determine whether “WebRTC provides endpoint authenticity
guarantees for the peer-to-peer connection”? They consider the integrity and binding of
DTLS certificate to the identity assertion as a prerequisite to ensure endpoint authentic-
ity. Three possible attacks are described, relying either on a malicious signalling server
or a malicious third-party JavaScript provider. Firstly, the DTLS fingerprint may be
compromised by a malicious JavaScript provider, supposing no binding with an identity
assertion. Their second attack assumes the IdP does not correctly check the origin of
request from IdP Proxy. A malicious JS provider tricks an IdP to sign a certificate for
a certificate controlled by an attacker, allowing a MitM attack. Finally, they argue that
the lack of user interface controls to select a preferred identity or IdP undermine the
integrity of identity assertion in WebRTC. They discuss mitigation strategies for each
actor and in particular that “the browser should provide the necessary User Inteface (UI)
chrome to enable users to select an appropriate identity from their favourite Identity
Providers, and, even more important, enables them to only grant access to remote iden-
tities of their choice to set up a peer connection”. They also recommend that “website
owner needs to ensure that in all cases an Identity Provider is used [and if no] external
Identity Provider is needed, the website owner can deploy his own IdP Proxy, that [could]
for instance piggybacks on the session mechanism for the website”. While code snippets
examples are provided for each attack, no implementation of an IdP Proxy is referenced.
In particular, the second attack refers to a “rtcweb://” origin and communication to IdP
Proxy through the postMessage Application Programming Interface (API) although we
were not able to find references to such features in the specifications.

Architectures (8)

Murányi and Kotuliak [144] simulate the interconnection between a WebRTC based
streaming service and the IP Multimedia Subsystem (IMS) using OpenID. OpenID is
implemented as an Single Sign-On (SSO) solution on the web service and used to perform
AAA. It is however not used as peer to peer authentication as proposed by the WebRTC
identity architecture.

Li et al. [145] consider a WebRTC architecture with multiple communication ser-
vices. They observe a mismatch between the WebRTC identity architecture and tradi-
tional SSO authentication11. To solve this issue they propose three alternative identity
architectures. The first architecture relies on an Identity Adaptor Provider (IdAP) pro-
viding IdP Proxy and interfacing between the browser and an identity provider. In
the second architecture, a communication service from a domain (site B) can request a

54 CHAPTER 2. STATE OF THE ART

Identity model Identification Anonymity
to peers

Anonymity
to CS

Unlinkability Identity
conf.

CS
unlink.

Nontrust (BrowserID) X − − − − X

Nontrust (RP-Centric) X X X X − −
Partial trust (RP-Centric) X X X X − −
Full trust (no SSO) X X − − − n/a

Table 2.2: User privacy properties in identity provision model [146].

user (Alice) from another domain (Site A) to authenticate by issuing a challenge. Alice
then authenticates using her own IdP which suppose the existence of a trust relation-
ship between Alice’s IdP and Site B. Finally, the last architecture proposes to set up a
web-of-trust between identity providers and based on PGP. This web-of-trust allows cre-
ating an authentication chain between two browsers. While the paper discusses several
architectures and authentication protocols, no implementation is mentioned.

Beltran et al. [146] works on the trust relationships between actors of the call setup
implied by the WebRTC identity model in a single CS scenario. They identify differ-
ences between browser-centric SSO protocols, e. g. BrowserID, on which the WebRTC
identity model is based and Relying Party (RP)-centric protocols such as OAuth 2
or OpenID Connect (OIDC). They discuss adaptation of RP-centric protocols to the
WebRTC model, however without discussing implementation. Finally, they evaluate
whether user’s privacy is protected depending on the underlying trust model and SSO
protocol used as presented in Table 2.2. Beltran et al. also discuss the question of
trust relationships between actors in enterprise communication scenarios in two other
articles [147, 148]. In particular, they observe that as identity providers may not know
which are the targeted communication services, applying enterprise-specific policies may
prove to be difficult.

In follow up papers, Javed et al. [149, 150] continue working on a WebRTC trust
model. Their proposed trust architecture is presented in Figure 2.6. For each trust
relations, they propose attributes that should be considered to evaluate a trust relation.
In their model, trust relations represent previous experiences, identification, and reputa-
tion each as a vector representing trust, distrust, and mistrust. For instance the vector
< 1, 0, 0 > represents an absolute trust, while < 0, .5, .5 > represent a doubtful distrust.
Trust scores are computed as the proportion of previous good, bad, or unknown previous
interactions and weighted by an ageing factor. They also refine the privacy compari-
son of the SSO protocol used in WebRTC identity architecture proposed by Beltran et
al. [146]. While they propose an extremely detailed trust model for WebRTC, Javed et
al. do not clearly explain how they extract input for their trust score from real WebRTC
services and user input. For instance, it is not clear what defines a bad experience with
a communication service and whether it can be observed at all. We also note that their
proposed trust model do not consider authentication of IdP and CS server, i. e. TLS
channels.

Copeland and Copeland proposed in 2016 [151] a “better than best effort” architec-
ture allowing communication services to select the appropriate network depending on
selected profiles. These profiles are built on balance between four considered criteria:
QoS, Urgency, Security, and Affordability (QUSA). Profiles and the associated network
are selected based on the context of the communication. The context is derived from
input from multiple sources, e. g. calendar, social network, or location, with each source
being attributed precision, accuracy, and confidence scores. The overall architecture is
summarised in Figure 2.7. The paper claims to have simulated 200 cases but point at

2.2. VOIP AND WEBRTC SECURITY RESEARCH - 2012+ 55

Figure 2.6: Javed et al. [150]
WebRTC trust model.

12: This paper is not part of
our VoIP security research col-
lection.

the absence of real-world data.

Social Threats (1)

Following on their WebRTC trust model, Javed et al. [152] propose a trust model eval-
uating trust in peers of a WebRTC communication in real-time. In their model, a trust
value is centrally computed by the communication service for each peer. This trust value
is the weighted sum of an authenticity score, in fact a reputation, and a behavioural
score based on talk time, incoming call numbers, and outgoing call numbers. They sim-
ulate their approach and compare it to other trust models from the literature against
some VoIP social threats and trust model attacks. Security considerations in this work
are quite limited and only consider the authenticity of the other peer. Furthermore,
this authenticity of a peer is actually a reputation score rather than a measure of actual
authentication.

In 2015, Vapen et al. [153] studied the identity management landscape on the web12.
In their study, they classified the type of information shared by IdP to RP in five classes:
basic information, personal information, created content, friend’s data, and a transversal
action class. They also defined semi-ordered risk types classes, build as conjunction of
information shared classes. These classes range from R- to RA++ risk levels, A denoting
action authorization. In addition, their observations show that in practice RP offer few
choices of IdP to their users, with 47% offering only one IdP, and 19% offering four or
more IdP. This situation profits to a few IdP trusting the top ranks, with Facebook as
the number one, followed by Google and Twitter.

Middleboxes (2)

Johnston et al. [154] look at the issues of WebRTC communication services in enterprise
networks, i. e. the traversal of enterprise firewalls for WebRTC session negotiated over

56 CHAPTER 2. STATE OF THE ART

Figure 2.7: Service Mode de-
cision process based on con-
text and QUSA profiles.

HyperText Transfer Protocol Secured (HTTPS). They first present an overview of the
issue and identify that current approaches for session border control and enterprise
policies are not applicable to WebRTC. The reason is that contrary to traditional VoIP
application using SIP, WebRTC applications may not expose sessions information to
firewalls. Several possible solutions are then described and discussed. Other issues, not
related to security, are also discussed such as the interoperation of WebRTC technologies
with existing VoIP infrastructures.

Singh et al. [155] implemented a Google Chrome extension to apply enterprise poli-
cies to WebRTC calls without help from underlying web application. The extension
overloads the WebRTC API to intercept calls, it can then insert user’s enterprise iden-
tity in signalling messages. Rather than implementing an IdP offering an IdP Proxy, the
extension relies on an enterprise public key infrastructure to sign and verify signalling
message. The extension also forces the use of an enterprise media relay, i. e. a modified
TURN server responsible for applying enterprise’s policies.

2.2.4 Observations

We now compare the surveyed state of the art on WebRTC security to our research
questions. These observations allow us to narrow the focus of our contributions presented
in later chapters.

Threats against user’s security in the context of real-time multimedia communica-
tions and mechanisms to protect against these have been well-studied. WebRTC has
been built on this foundation, and the state of the art on VoIP security research con-
tinued to develop since then. As WebRTC is not a full-stack solution, we observe that
researches on WebRTC and on WebRTC security mainly focus on security at the end-
point, including privacy risks for the users, and the issues of WebRTC deployment in
enterprises. One novelty introduced by the WebRTC security architecture is the integra-
tion of third-party IdP into the communication setup through the IdP Proxy mechanism.
This specification attracted a lot of interest from the community: as presented in Ta-
ble 2.3 we observe that out of 22 WebRTC security papers, a total of 13 papers reference
the WebRTC identity architecture. However, the security and privacy of this specifica-

2.2. VOIP AND WEBRTC SECURITY RESEARCH - 2012+ 57

Category / Title Year S
ec
u
ri
ty

T
ru
st

P
ri
va
cy

N
eg
ot
ia
ti
on

Id
P

P
ro
xy

Social Threats
[152] TrustCall: A Trust Computation Model for Web Conversational Services 2017 X X

[153]
Information Sharing and User Privacy in the Third-Party Identity Manage-
ment Landscape 2015 X

Traffic Attacks
[131] A Decision Theory Based Tool for Detection of Encrypted WebRTC Traffic 2015 X

[132] Revealing Encrypted WebRTC Traffic via Machine Learning Tools 2015 X

Overviews and Surveys
[133] Real-time Communications for the Web 2013 X X

[134] Browser-to-Browser Security Assurances for WebRTC 2014 X X

[135]
Real-Time Communications in the Web: Issue, Achievements, and Ongoing
Standardization Efforts 2012 X

[136] How Far Are We from WebRTC-1.0? 2017 X X

[137] A Survey on Real-Time Communication for Web 2015 X X

[138]
On the Seamless Interaction Between WebRTC Browsers and SIP-based Con-
ferencing Systems 2013 X

[139] D.1.1 Web-platform security guide 2013 X

[140] D1.2 Case Study: Security Assessment of WebRTC 2014 X

Field Studies and System/Protocol Analysis
[141] WebRTC: Your Privacy Is at Risk 2017 X X X

[142] One Leak Will Sink a Ship: WebRTC IP Address Leaks 2017 X

Authentication Protocols
[143] Ensuring Endpoint Authenticity in WebRTC Peer-to-Peer Communication 2016 X R X

Architectures
[144] Identity Management in WebRTC Domains 2013 X

[145] Who Is Calling Which Page on the Web? 2014 X X

[146] User Identity for WebRTC Services: A matter of trust 2014 X X

[147]
Unified Communications as a Service and WebRTC: an Identity-Centric Per-
spective 2015 X X

[148] Identity Management for Web Business Communications 2015 X X

[149] Browser-to-Browser authentication and trust relationships for WebRTC 2016 X X X

[150] Br2Br: a Vector-Based Trust Framework for WebRTC Calling Services 2016 L X X

[151] A Question of Quality - VoIP, WebRTC or VoLTE? 2016 X X

Middleboxes
[154] Taking on WebRTC in an Enterprise 2013 P
[155] Enterprise WebRTC Powered by Browser Extensions 2015 P L

Table 2.3: List of reviewed WebRTC papers. Checkmarks indicate whether the papers look or address the issues of security,
trust model, privacy, security parameters negotiation, and the WebRTC identity architecture. The letters stand for L: limited,
R: recommends, and P: policy trust.

58 CHAPTER 2. STATE OF THE ART

tion are only studied from a theoretical point of view [143]. In particular, while WebRTC
is intended to be interoperable with any SSO protocol, cross-implementation issues be-
tween the SSO protocol and WebRTC are rarely considered [145, 143]. The specification
itself only sketches a short example using OAuth in annex A [50]. Additionally, other
works study the privacy implications of the identity architecture but only consider the
privacy threats posed by a malicious signalling server against user identity. Consider-
ation for this type of threats is already present in the WebRTC security architecture
draft [50]. However, we do not observe research considering threats on the privacy of
the communication from the identity provider itself.

Besides understanding the threats faced by WebRTC users, we also want to act on
a WebRTC session to raise the trust and security level. Some surveyed work propose
to negotiate the configuration of a WebRTC or VoIP communication setup in order to
achieve a given security level. The solution of Copeland and Copeland [151] focus on
selecting an appropriate underlying network, i. e. at the network access layer, which does
not allow to manage upper layer parameters. Alia et al. [128] propose an interesting
model for balancing security and QoS. However, their utility function is not convincing.
While an additive approach is coherent for modelling performance overheads, it does
not achieve to model the dependent nature of security parameters. For instance, a weak
integrity on the signal path may have an important impact on confidentiality of the
media path.

Increasing privacy, for instance to mitigate ICE IP address leaks [142], mostly relies
on permanent configuration options such as the selected OS or browser parameters.
Choosing proper actors to participate in the communication setup may also be a way to
increase privacy, either because they implement privacy-preserving protocols or because
they are trusted to not compromise user’s privacy. Regarding this last point, we note
that De Groef et al. [143] recommend that browsers allow users to select an IdP of their
choice, i. e. trusted, to participate in WebRTC sessions set up.

We want a model representing both security and trust to help users in the configura-
tion and negotiation of WebRTC security parameters. A lot of work has been conducted
on modelling reputational-trust in WebRTC [146, 147, 148, 149, 152]. However, these
papers generally do not consider the security of the session and the strength of security
parameters in their models. At most, only the user authentication strength is taken into
account [150]. Alternatively, some researchers [154, 155] consider trust policies with
respect to WebRTC security. However, they focus on applying enterprise policies and
do not propose a complete model of WebRTC security.

2.3. SUMMARY 59

2.3 Summary

We conducted a research survey on VoIP and WebRTC security research. In total, we classified 208
research papers of which 23 were actually addressing WebRTC security. We then reported on the
researches conducted in these 23 WebRTC security paper.

Firstly, we observe that the WebRTC identity architecture attracted a lot of interest from the
community. However, we note that the security and privacy of the specification are only studied
from a theoretical point of view [143]. In particular, the cross-implementation issues between SSO
protocol and WebRTC are rarely considered [145, 143]. The specification itself only sketches an
implementation with the OAuth protocol in its annexe [50]. We neither observe research considering
the IdP as a possible attacker of the user’s privacy. In order to remedy to this issue, we intend to
base our analysis of the WebRTC security and identity architecture on an actual implementation
of SSO protocols in the context of a WebRTC service.

Secondly, one of our research objectives is to build a model representing the trust and security of
a WebRTC session and capable of returning a single metric. In our survey, however, we do not
observe research combining elements of trust and security models. At best, one of the trust model
uses limited security parameters [150] which confirms that combining trust and security for VoIP
is a novel approach. Existing researchs work on the dynamic configuration of VoIP services, but
also uses a simplistic security model [128]. Nevertheless, other researchers recommend that users
be given more control over which IdP they use in VoIP [143] and more broadly on the Web [156].
As we want to give them more control over the trust and security of their WebRTC session, we will
focus on allowing users to negotiate WebRTC identity parameters.

60 CHAPTER 2. STATE OF THE ART

61

Part II

Contributions

13: The description of our im-
plementations may also be
helpful for developers facing
similar needs.

Foreword on Methodology

As we explained in Section 1.1, WebRTC is a set of standard specifications aiming to
provide to webpages the capability to setup VoIP communications. These specifications
also rely on other standards and techniques: authentication delegation protocols, VoIP
protocols and archirectures, JavaScript API, cryptography, ... At the heart of the We-
bRTC identity architecture is the proposal of an abstract authentication interface for
peer-to-peer authentication and the claim that trust in an IdP can replace trust in the
signalling path. We aim to study these propositions and at the same time answer our
research questions. However, we believe that formal paper-based study of standards
must be conducted in conjunction with study of running implementations, in a com-
plementary approach. Indeed, standards are ultimately implemented in actual running
code. During this continuous process, implementors may take liberties with the spec-
ification, add non-standard functionalities, or decide to not implement some of them.
Furthermore, cross-implementation issues may arise, in particular when the integration
of two specifications has not been thoroughly considered. This is precisely the case of the
WebRTC identity architecture which only sketches the OAuth 2 protocol integration. It
appears that, from our state of the art survey in Chapter 2, most of the researches on
WebRTC security have been conducted without considering actual implementations.

X
Specifications

Actual
Implementation

Experiment
 - Implementation
 - Deployment survey

Knowledge
Figure 2.8: Overview of our
Scientific Methodology

Our approach, which we represent in Figure 2.8, differs. The first step of our work is
to conduct a study of these standards and techniques. We presented the results of this
step in Chapters 1 and 2. However, we then use actual implementations to answer our
research questions. To do so, we conduct two types of experiments:

• In implementation experiments we develop software to put an already specified
or a new functionality into action. This allows us to discover actual issues en-
countered during the implementation and integration processes. We describe our
implementations so that our experiments can be reproduced 13.

• In deployment survey experiments, we observe whether a functionality is imple-
mented or used in existing and deployed softwares. Observing an exposed func-
tionality demonstrates if and how it can be used, while observing its actual usage
reveals its importance for other services.

These experiments form the basis of our scientific methodology which we apply in
the following contribution chapters.

64

65

Chapter 3

Privacy Implications of the
WebRTC Identity Architecture

A claim of the WebRTC security architecture specification [50] is that trust
in the signalling layer can be replaced by trust in the IdP. This has implica-
tions regarding potential privacy issues. As signalling and identity functions
are decoupled, a new actor (the IdP) is introduced in the communication
setup. Even-though IdP already occupies a central role on the Web, their
role in WebRTC has the potential to reinforce their position. In this chap-
ter, we study the privacy implications of the WebRTC Identity Architecture.
This part of the WebRTC specification lacks support on web browsers. To
the best of our knowledge, there is no publicly implementation or deployment
of a WebRTC identity enabled WebRTC service or of an IdP supporting the
WebRTC identity architecture. To better understand the WebRTC Identity
Architecture, it is thus necessary to first implement it. We describe our
implementations in Section 3.1. We then detail additional privacy consider-
ations in Section 3.2. One issue we observe is that the IdP choice is limited
by the CS which may appear contradictory with the initial objective of the
specification. In Section 3.3 we study why users cannot choose their IdP on
the Web.

Identity
Architecture

Model

Control

RQ3

RQ2

RQ1

Contribution 1

Contribution 3

Contribution 2

Figure 3.1: Overview of our
Contributions: Study of the
WebRTC Identity Architec-
ture.

3.1 WebRTC Identity Architecture Implementation
The explicit peer authentication proposed by the WebRTC specification plays a central
part of the WebRTC identity architecture. For the moment, it is also a feature whose im-

66 CHAPTER 3. PRIVACY IMPLICATIONS OF THE WEBRTC IDENTITY ARCHITECTURE

1: https://bugs.chromium.
org/p/chromium/issues/
detail?id=493640

2: https://github.com/
Sparika/ACOR_SDP

3: https://github.com/
reTHINK-project/dev-
IdPServer-phpOIDC

4: https://github.com/
reTHINK-project/dev-
IdPServer

Calling JS Code

IdP Proxy

Browser

API Calls

API Calls

CS

PeerConnection

Figure 3.2: Local Authenti-
cation Architecture

plementation in browser lags behind others WebRTC features. The RTCPeerConnection
identity interface is only implemented in Firefox. As a result and to the best of our
knowledge, no Identity Provider (IdP) or WebRTC service are supporting it1. Our first
research question (RQ1) consists in understanding the risk for the user of a WebRTC
session. More particularly, in this section we address the following question:

• RQ1.1: Are there any security vulnerabilities in the identity path of the WebRTC
security architecture?

We want to validate our work on a running implementation of the WebRTC identity
architecture. To do so, we develop a simple WebRTC service2 offering communication
for two users in a single room. The communication server is built with the NodeJS
framework. Session signalling is done through the Communication Service (CS) server
over web sockets and the JavaScripts client code manages the call session. We conduct
our tests on Firefox version 50.1.0.

As the RTCPeerConnection identity interface is provided by Firefox, the missing
part of the WebRTC identity architecture is an IdP exposing IdP Proxy. In addition to
a WebRTC service, we also implement IdP Proxies for three different IdP, following the
WebRTC specification. The first IdP is actually our WebRTC communication service
itself in what we call a local authentication scenario. We present this implementation in
Section 3.1.1. Our two other IdP Proxies are developed for two OIDC servers. The first
server is one of the reference implementations by Nat Sakimura3, while the second one
is an implementation in NodeJS4. We also conducted these implementations within the
context of the reThink project, in order to reuse WebRTC identity architecture for the
reThink Identity Module (see Section 1.6.3). Section 3.1.2 details how we implement
OpenID Connect (OIDC) IdP Proxies and how we adapt their respective IdP servers.
Finally, in Section 3.1.3 we discuss our implementations.

3.1.1 Local Authentication Implementation

Local authentication refers to a scenario where the CS also plays the role of the IdP in
the WebRTC identity architecture, as in Figure 3.2. It is not the architecture initially
envisioned by the specification. As we explained in Section 1.3, the decoupling of identity
and signalling functions are meant to prevent the CS from setting up a man-in-the-
middle during the call session establishment. This architecture may nonetheless be
useful. Firstly, it provides a simple test case for an IdP Proxy with a login and password
authentication as used by most websites not relying on IdP. Secondly, in an interoperable
signalling architecture, multiple CS are used to establish the session. A user may not
trust the signalling path, except for his own CS. In this case using his CS as an IdP
would offer a protection against man-in-the-middle attack from other CS. Finally, in
compatibility scenarios call transit through a legacy interface, for instance, a Session
Initiation Protocol (SIP) Gateway. In this case, the legacy interface plays the role of
both the CS and the IdP.

Functionally, our implementation of the IdP Proxy maps the identity assertion to the
contents parameter, i. e. the session fingerprint. The identity assertion thus serves as
the key to retrieve claims covered by the assertion, and verify in the process that these
claims were effectively registered on the IdP. Figure 3.5 presents the identity assertion
generation interface exposed by the server to the IdP Proxy and its sequence diagram. To
store a new pair, the generateAssertion function of the IdP Proxy POST a content to
the /assertion REST interface. After the server checked that the user is logged in, the
user’s identity and content parameter are stored in a map and the key is returned with
an HyperText Transfer Protocol (HTTP) 200 success response. The IdP Proxy then uses
the key to instantiate an RTCIdentityAssertionResult (see Figure 3.3) and resolve the

https://bugs.chromium.org/p/chromium/issues/detail?id=493640
https://bugs.chromium.org/p/chromium/issues/detail?id=493640
https://bugs.chromium.org/p/chromium/issues/detail?id=493640
https://github.com/Sparika/ACOR_SDP
https://github.com/Sparika/ACOR_SDP
https://github.com/reTHINK-project/dev-IdPServer-phpOIDC
https://github.com/reTHINK-project/dev-IdPServer-phpOIDC
https://github.com/reTHINK-project/dev-IdPServer-phpOIDC
https://github.com/reTHINK-project/dev-IdPServer
https://github.com/reTHINK-project/dev-IdPServer
https://github.com/reTHINK-project/dev-IdPServer

3.1. WEBRTC IDENTITY ARCHITECTURE IMPLEMENTATION 67

generateAssertion promise with it. On the promise’s resolution, the browser adds the
assertion dictionary to the Session Description Protocol (SDP) message.

dictionary RTCIdentityAssertionResult {
required RTCIdentityProviderDetails idp;
required DOMString assertion;

};

dictionary RTCIdentityProviderDetails {
required DOMString domain;

DOMString protocol = "default";
};

Figure 3.3: RTCIden-
tityAssertionResult speci-
fication in WebIDL. The
assertion is an "opaque
string that MUST contain
all information necessary
to assert identity". It is
consumed by the validating
IdP.

Alternatively, if the user does not have an active session, the generateAssertion
promise is rejected with an IdPLoginError JavaScript Object Notation (JSON) object.
This object may contain an idpLoginUrl element, which can be used by the client
service to open a login page on the IdP. A successful login following this Uniform Re-
source Locator (URL) is signalled by a LOGINDONE message sent using the postMessage
Application Programming Interface (API) to the login page’s opener window, i. e. the
communication service client page.

<script>window.opener.postMessage(’LOGINDONE’, ’*’)</script>

Figure 3.6 shows the local identity assertion validation REST interface and its asso-
ciated sequence diagram. To validate a received identity assertion, the peer’s browser
downloads the IdP Proxy from the IdP which produced the identity assertion. The
RTCIdentityProviderDetails dictionary (see Figure 3.3), included in the assertion,
describes the IdP Proxy location. Once the browser instantiated the verifying IdP Proxy,
it calls the IdP Proxy’s validateAssertion function. Our implementation of this func-
tion sends a GET request to the /assertion interface, using the provided assertion (see
Figure 3.6a). The result of the request is a JSON object containing the stored identity
and content. This object is used to instantiate an RTCIdentityValidationResult dic-
tionary (see Figure 3.4) which is then returned to the browser. The browser verifies that
the provided contents matches the SDP fingerprint attribute, binding the fingerprint
to the assertion’s identity.

dictionary RTCIdentityValidationResult {
required DOMString identity;
required DOMString contents;

};

Figure 3.4: RTCIdentityVal-
idationResult specification in
WebIDL.

3.1.2 IdP Proxy with OpenID Connect
In order to integrate our OIDC servers into the WebRTC identity architecture, the IdP
Proxy acts as the OIDC client. In this role, the IdP Proxy requests an ID Token to the
IdP. The IdP authenticates the user and verifies that the user has authorized the IdP
Proxy to obtain an ID Token. As the IdP Proxy is a JavaScript code running inside the
user’s browser, i. e. client side rather than server side, we use the OIDC implicit flow.
This flow allows the client to directly get the requested token, as explained in 1.3.5. The

68 CHAPTER 3. PRIVACY IMPLICATIONS OF THE WEBRTC IDENTITY ARCHITECTURE

POST /assertion

 Parameters

 Response

The fingerprint string to use as a claim in the
identity assertion.

content (query)

User not authenticated302

Success200

{
 id: 0,
 "user": "bob@idp.com",
 "contents": "01234"
}

(a) /assertion POST API

(b) Sequence Diagram

Figure 3.5: Local Identity Assertion Generation

3.1. WEBRTC IDENTITY ARCHITECTURE IMPLEMENTATION 69

GET /assertion/{assertionId}

 Parameters

 Response

The assertion id to verify.assertionId (path)

Identity assertion not found404

Success200

{
 "identity": "bob@idp.com",
 "contents": "01234"
}

(a) /assertion GET API

(b) Sequence Diagram

Figure 3.6: Local Identity Assertion Verification

70 CHAPTER 3. PRIVACY IMPLICATIONS OF THE WEBRTC IDENTITY ARCHITECTURE

5: Fetch is a standard web
API for network requests
similar to the XMLHttpRe-
quest (XHR) interface. An
advantage of using the Fetch
API is that it easily integrates
with the promise based We-
bRTC interfaces. See https:
//developer.mozilla.org/
en/docs/Web/API/Fetch_API
for more details.

resulting ID Token covers the user’s identity and the session fingerprint as claims. It
thus serves as the WebRTC identity assertion. Our implementation, however, requires
additional modifications to OIDC requests.

Firstly, we include the session fingerprint as a claim of the ID Token payload so that
it is covered by the server’s signature. To send it to the server, we define a new request
parameter, rtcsdp, to convey this value in the request. In practice, this parameter
function is quite similar to the nonce request parameter. Both convey random opaque
numbers making the request unique. However, in some cases, a WebRTC session may
reuse a previously established key and thus the same session fingerprint twice.

Secondly, OIDC interactions with the user normally happen through a new tab or
popup opened by the browser. This graphical user interface allows the IdP to au-
thenticate the user or request user’s consent before authorizing the requesting client.
However, in our case, the IdP Proxy is running in a sandboxed invisible iframe. The
OIDC /authorize GET request (see Figure 3.7) is thus executed through the Fetch
API5. Such requests are invisible to the users, i. e. no new tab or window are opened,
hence why the IdP Proxy has to throw an IdPLoginError in order to interact with the
user. As we described in Section 3.1.1, this happens if the user is unauthenticated. In
the OIDC case, it also happens if the IdP Proxy client has not been authorized by the
user. The login or authorization URL is returned in an IdPLoginError to the CS, which
opens it so that the user can login or authorize the IdP Proxy. In either case, the process
followed by the user lands on a page messaging the LOGINDONE signal to the CS. The url
of this page is defined using the redirect_uri parameter of the /authorize request.
When receiving this message, the CS restarts the generateAssertion procedure.

Finally, we also implement a new response_mode value. In the OIDC implicit flow, a
successful authorization redirects to the client web page. The ID token would be returned
with the redirection either in the redirected URL’s query or fragment. However, both
query or fragment are inaccessible from a Fetch (or XHR) response after following a
redirection. Instead, the IdP returns the ID Token in the response body. We thus
define a new response_mode value: body and modify the IdP server implementation
accordingly.

Note that the response_mode and redirect_uri parameters are conflicting as they
correspond to different HTTP response code, 200 and 302 respectively. In our imple-
mentation, the redirect_uri is only followed if response_mode is not set to body.
Figure 3.7 shows our modified /authorize request specification.

To verify the ID Token validity, its signature must be verified by the IdP Proxy
when it is executed from the other peer’s browser. It is either possible to add the IdP’s
public key in the IdP Proxy code or retrieve it from a secured location on the IdP.
Optionally a reference to the key URL could be included in the ID Token header jku
parameter. This solution is discouraged by the OIDC specification which states that “ID
Tokens SHOULD NOT use the JWS or JWE x5u, x5c, jku, or jwk Header Parameter
fields” [65].

3.1.3 Observations
We note that the Firefox implementation is more restrictive than the specification re-
garding identity format. Firefox requires that the identity, the human-readable identifier,
be in an email format with the domain of the email equals to the IdP Proxy domain.
This format prevents domains from asserting identity from other domains, e. g. identifier
ending in @orange.com could not be claimed by an IdP Proxy from the dr.evil.net
domain. However, using the email’s domain as an indication of the IdP’s domain name
is often an over-simplification. As an example, Figure 3.8 shows the Google identity
selection popup. Although the popup’s domain name, i. e. Google’s IdP domain, is
accounts.google.com, user’s identifiers may end in @gmail.com. Some valid identifiers

https://developer.mozilla.org/en/docs/Web/API/Fetch_API
https://developer.mozilla.org/en/docs/Web/API/Fetch_API
https://developer.mozilla.org/en/docs/Web/API/Fetch_API
@orange.com
dr.evil.net
accounts.google.com
@gmail.com

3.1. WEBRTC IDENTITY ARCHITECTURE IMPLEMENTATION 71

(a) /authorize GET API

(b) Sequence Diagram

Figure 3.7: OIDC Assertion Generation

72 CHAPTER 3. PRIVACY IMPLICATIONS OF THE WEBRTC IDENTITY ARCHITECTURE

Table 3.1: JavaScript code
lines for the local authentica-
tion IdP Proxy implementa-
tion.

Module New code lines Total code lines

Proxy 66 66
Routes 38 290
Model 16 89

Project 120 6641

may even end in other domain names if the user did not activate his Gmail mailbox, for
example, @orange.com.

As shown by Table 3.1 the implementation of the local IdP Proxy is quite simple.
Proxy, Routes, and Model give the new and total number of JavaScript code lines
respectively for the IdP Proxy, the HTTP interface implementation, and the database
model. On the project as a whole, our implementation required only 120 JavaScript code
lines. A number to be compared to the 6641 code lines, excluding NodeJS dependencies,
of the full WebRTC service project.

Compared to the local IdP Proxy, implementation of an OIDC IdP Proxy is a complex
task. Firstly, while following the same structure, the IdP Proxy is larger due to its
requirement of ID Token signature verification, client key retrieval, and the handling of
JSON objects. The IdP Proxy JavaScript file contains 207 JavaScript code lines. The
more complex modifications are however made on the OIDC server itself. We add a few
utility functions to the HTTP interface, but we also modify the core OIDC modules to
support the parameters we introduced: response_mode=body and the rtcsdp ID Token
claim. While these modifications are not that heavy in terms of code lines, they require
the understanding and modification of a large code base. As an example, the NodeJS
dependency implementing the OIDC specification contains 1274 code lines in a single
file.

Another issue of the OIDC implementation is its reliance on non-standard modifica-
tion of the specification. Industrial deployment of standards protocols may follow strict
policies regarding the implementation of non-standard features. In our case and due
to the policies of our company, integrating our proposed change to the OIDC server in
production would have required to first get them published by the OpenID foundation.
The complexity of the OIDC implementation does not seem to brings benefits compared
to the simple solution of the local authentication IdP Proxy.

Our implementations show that OIDC facilitates the creation and signature of We-
bRTC identity assertion in an open standard format: OIDC ID Token. However, it
requires the modification of a complex code base not initially designed for this use case.
While using the ID Token format may have practical use cases to exchange WebRTC
Identity assertion. For some use cases, it may be as simple to use a map interface secured
through HyperText Transfer Protocol Secured (HTTPS).

3.2 RQ1.1 Additional Privacy Considerations

We presented the WebRTC security architecture in Section 1.2 and reviewed previous
research works on WebRTC security in Section 2.2. From this work, we observed that
the identity path proposed by WebRTC security architecture has only been studied
from a theoretical point of view and that in these works IdP had not been considered
as possible attackers against the users’ privacy. In this section, we answer RQ1.1 by
presenting new risks for the user’s privacy introduced by the IdP Proxy component.
These privacy considerations were revealed by our implementation process.

@orange.com

3.2. RQ1.1 ADDITIONAL PRIVACY CONSIDERATIONS 73

Figure 3.8: Google identity
selection webpage.

6: The audience may not even
be known a priori, for instance
in the case of a call to an
anonymous peer.

3.2.1 Audience Issue

In addition to the rtcsdp claim, i. e. the session fingerprint, the WebRTC identity
assertion carries two important information: the peer’s identity in human readable form,
and the peer’s identity provider fully qualified domain name. Both pieces of information
are necessary so that the assertion can be verified and associated with a peer’s identity.
But from a privacy point of view, they are sensible identifying information. In the SDP
message, the identity assertion is an opaque string encoded in base 64, which means that
it has no actual definition. However, the IdP Proxy can be downloaded by any party
and instantiated to decode the identity assertion.

Although we explain this privacy issue with the OIDC scenario, it is present whether
or not the IdP Proxy is based on OIDC. As we explained in Section 1.3.5, OpenID
Connect is based on OAuth2, an authorization protocol. As such the concept of autho-
rization and user consent is central to the protocol. In theory, the client, identified by the
client_id in OIDC requests and the audience claim, is authenticated by the IdP. In
the implicit flow, the client authentication is not performed explicitly and instead relies
on the redirect_uri redirection to the client. In the WebRTC use case of user-to-user
authentication, the redirect_uri is not followed as the ID Token is transmitted to the
other peer over SDP signalling. There is no clear definition of the intended audience6
and in our implementation we define and use a unique IdP Proxy client and client_id.
We explored the alternatives of one client_id for each user, each CS, or for each pair
of user/CS without finding clear advantage to any of these solutions.

As represented in Figure 1.15, both generateAssertion and validateAssertion
functions use an origin parameter. This parameter is the origin of the CS which required
the instantiation of the IdP Proxy However, the validateAssertion is executed after
the identity assertion is transmitted over the signalling path. As a result, the IdP does
not know the signalling endpoint’s origin during the generation of the assertion. Some
policy checks could still be applied during the execution of the validateAssertion
function, eventually preventing the decoding and decryption of the identity assertion.
But the specification does not define the error that should be returned in this scenario
and does not plan for transmitting a consent request back to the user. Implementing
such consent mechanism could be allowed using a push notification to the user’s device.

On the other hand the generateAssertion can interact with the user through the

74 CHAPTER 3. PRIVACY IMPLICATIONS OF THE WEBRTC IDENTITY ARCHITECTURE

IdPLoginError. It can thus be subject to user authorization and IdP policies, as long
as the IdP implements such mechanism. Otherwise, without appropriate protection
on the IdP Proxy, a web page could look for the user’s identity. This could reveal
user identities, or at least existing user accounts on IdPs. For instance, given a list
of WebRTC compatible IdPs, running the script described in Figure 3.9 would reveal
identity assertion from unprotected IdPs with active sessions. This is a major issue, and
implementors should take appropriate measures to protect their interfaces against such
vulnerabilities.

Figure 3.9: This JavaScript
code starts multiple invisible
WebRTC sessions. It then as-
sociates an IdP for each of
them and extract their gen-
erated identity assertion.

IdPArray.forEach(function(idp){
var pc = new RTCPeerConnection()
pc.setIdentityProvider(idp.domain, idp.proxy)
pc.getIdentityAssertion()
.then(res => alert("Got your ID token: "+res))

})

The only visible hint to the user that a WebRTC session is starting happens when
the browser requests consent to share video and audio input. But it is also possible to
start a WebRTC session without any attached media, as in our example in Figure 3.9. In
this case, the session is invisible for the user without looking into the browser WebRTC
session statistics. The Interactive Connectivity Establishment (ICE) IP leak issue (see
Section 2.2) is due to the same weakness where the user may not see and control the
start of a WebRTC session. A solution implemented to fix this issue is to tie the im-
plicit sharing of private Internet Protocol (IP) addresses with the explicit authorization
granted to the getUserMedia interface [95]. The same solution could work to implicitly
authorize the sharing of identity information for legitimate WebRTC session. However,
it may prove too restrictive for some use cases such as authenticated data sessions. An
alternative solution would be to have the browser explicitly manage consent for authen-
tication.

3.2.2 IdP in a Central Position

The WebRTC Identity Architecture replaces the users’ trust in CS by trust in IdP
to ensure secure communication through untrusted signalling. Although IdP already
occupy a central role on the Web, they gain the ability to track any user call covered by
an identity assertion.

Indeed, the IdP Proxy code is deployed on both sides of the call and running in the
context of its IdP’s origin. It is also subject to the same sandbox restrictions whether on
the identity assertion generation or validation side. This implies that an IdP Proxy can
place and read cookies on a user’s User-Agent (UA) verifying an assertion. Note that
the user verifying the identity assertion does not actively access the IdP, it only receives
a call offer or answer containing an identity automatically verified by the browser. The
IdP Proxy reading cookies could allow the IdP to track a user’s call history. Eventually,
even an identity unknown to the IdP could be linked with a known identity, and the call
history versed into an existing profile. The IdP can also track user calls across multiple
CS, as long as they use, or are called with the same IdP.

Reusing the classification proposed by Vapen et al., presented in Section 2.2, this
ability to track user call history could at least be classified as R+. It could even be
classified as R++, the highest privacy risk level, with regards to the verifying user’s
data as it would fall under the Friend’s data class of privacy risk. However, users may
not have authorized or even be aware of such tracking capacity. It is interesting to note
that the information sharing relation is here reversed between the IdP and the CS. In a

3.3. WHY CAN’T USERS CHOOSE THEIR IDENTITY PROVIDERS ON THE WEB? 75

7: We presented the identity
continuity constraint in Sec-
tion 1.2 which implies that the
IdP set by the CS for the com-
munication session would be
the same as the one the user
would have previously chosen
to authenticate to the CS.

classical authentication delegation, the user authorizes the IdP to share resources with
the Relying Party (RP). However, in this case, the CS is in possession of call information
and shares them with the IdP by adding it to the call setup.

3.3 Why Can’t Users Choose their Identity Providers
on the Web?

In Section 3.2, we presented how the WebRTC identity architecture may be used by
IdP to track user calls without explicit user’s authorization or awareness. As shown by
Vapen et al. [153], on the web, users are presented with a very limited choice of IdP
when signing in with authentication delegation. They reported that 47% of observed RP
offer only one IdP, and only 19% offer four or more IdP. Due to the identity continuity
constraint7 the same limitation on offered IdP choices applies to WebRTC IdP. Users
may have more trust in IdP whose business model does not rely on selling personal data
or which they would host themselves [157]. However, current Single Sign-On (SSO)
implementations do not permit users to make this choice.

Several reasons could explain that users choice is limited by the decision of the CS.
Verifying the validity of these reasons would reveal if “we can let users chose actors
they trust to participate in the communication setup” (RQ3) and eventual solutions to
achieve this. In this study we thus address the following questions:

• RQ3.1: Do RP require specialised API?

• RQ3.2: Is dynamic discovery and registration commonly available for RP?

• RQ3.3: Do RP require a trust relationship with the supported IdP?

3.3.1 The Study: OAuth Request Collection

To answer the first of our research questions we implement a browser extension to parse
the browser navigation history and look for OAuth 2 and OIDC authorization request
URL. These requests can be identified as OAuth 2 requests by observing the presence of
keyword parameters. They contain information identifying the RP making the request,
the IdP to which the request is destined and the scopes requested by the RP.

https://accounts.google.com/o/oauth2/auth?
client_id=74[...].googleusercontent.com&
response_type=code&
redirect_uri=http://www.dailymail.co.uk/
registration/signin/google.html&
scope=email+https://www.googleapis.com/
auth/plus.login&
[...]

Figure 3.10: Example of an
OAuth 2 request collected by
our extension.

The URL in Figure 3.10 is an OAuth 2 request for an accounts.google.com (URL
Domain Name) authorization following the OAuth 2 code flow (response_type=code).
The request comes from the OAuth 2 client 74658[...].apps.googleusercontent.com,
also identifiable through the redirect_uri parameter as dailymail.co.uk. Compari-
son of redirection Uniform Resource Identifier (URI) domains allows associating client
from several IdP to a single actual RP. For instance, this client and the facebook.com
client registered as 146[...]95 both share the same redirect_uri domain name.
The requested scopes are email and https://www.googleapis.com/auth/plus.login.

https://www.googleapis.com/auth/plus.login

76 CHAPTER 3. PRIVACY IMPLICATIONS OF THE WEBRTC IDENTITY ARCHITECTURE

8: http://www.alexa.com/
topsites

9: Our initial objective was to
share the extension to a large
panel. We later switched to the
Alexa ranking as our panel was
too small. However, a large-
scale study could deliver inter-
esting results, particularly re-
garding smaller websites.

10: Chinese IdP also vary by
the type of authentication
mechanism as they often use
phone authentication through
a QR code.

Note that these URL do not contain private information regarding the user as they are
accessed before the user is identified or authenticated.

To collect data, we manually visit each of the top 500 websites from the Alexa rank-
ing8 and try to use each one of the SSO solutions offered by these websites9. The visited
URL are recorded into the browser history and then parsed by our extension. In Sec-
tion 3.3.2 we present the results of our study and use them to answer RQ3.1. Finally, we
use data on collected RP and IdP to answer RQ3.2 and RQ3.3 in Sections 3.3.3 and 3.3.4
respectively.

As our data-collection search is focused on OAuth 2, we do not collect requests for
IdP using other protocols, e. g. Twitter and Amazon. However, we scarcely encounter
RP offering only these IdP, as a result, the large majority of visited RP is captured
by our extension. In total, we observe 103 unique RP and 23 OAuth 2 provider’s
domain names. The two biggest observed IdPs are undoubtedly Facebook and Google,
respectively serving 63 and 52 RP. The third most observed IdP is Twitter with 30
request URL, but it uses OAuth 1 and as such is not included in our data.

While our results confirm the claim that users are offered a limited choice of IdP,
interestingly we also observe some variations of the number and domain of supported
IdP based on RP geographical origins. Firstly, Chinese websites only offer to log in
through Chinese IdP such as QQ.com10. Occidental websites, i. e. North-American and
European, mostly offer to log in through one or both of the top two IdP, sometimes
with a third solution. Finally, Russian websites offer the largest number of solutions as
they include Russian IdP, e. g. VK.com, and occidental IdP often not limited to the top
three providers. Other regions were not represented in sufficient numbers to draw any
conclusion.

3.3.2 RQ3.1: Do RP require specialised API?
RP not only require user authentication but also authorization to access protected re-
sources. These resources may vary in nature, and may not share a standardised data
format when of the same type. One reason for RP not to allow signing in with any IdP
could be that they require specific resources, which are not available on any IdP.

We classify RP in three categories: Authentication, Profile, and Specialised, in func-
tion of the scope observed in OAuth 2 authorization requests. Authentication classed
RP only require an assertion that the user got authenticated by the IdP. Any IdP could
serve such RP, given a standardised assertion (e. g. a signed JSON Web Token (JWT)).
This authentication assertion may also contain the user identifier for the RP’s use. RP
classified as Profile require basic user profile information in addition to an authentication
assertion. These pieces of information are often used to complete their own database
and provide a personalised user experience. IdP would need to give access to resources
in a standardised data format in order to avoid a specific implementation on RP side.
Finally, Specialised RP require specific resources, for instance, write access on a user
shared repository. By definition, services provided by RP of this class are specialised to
use resources from a few IdP, each one requiring its own implementation. They cannot
be generalised to cover a broad range of IdP.

Figure 3.11 presents these classes, ordered by specificity. Indeed, access to a partic-
ular API is more specific than accessing generic profile information. Similarly, getting
access to a username and phone number is more specific than authentication, which
could be abstracted to a boolean, i. e. authenticated or not. Although special cases
may exist, e. g. access to authorized resources without authentication of the user, this
classification allows us to define which RP could, in theory, accept any IdP, and which
one would be bound to a particular API.

We classify each RP-IdP relationships, i. e. each collected client_id, into one of our
three classes. We evaluate from the available documentation if the requested scopes give

http://www.alexa.com/topsites
http://www.alexa.com/topsites

3.3. WHY CAN’T USERS CHOOSE THEIR IDENTITY PROVIDERS ON THE WEB? 77

Figure 3.11: Classification of
RP-IdP relationships.

access to a specialised API, a profile information API, or an authentication assertion.
Differences between classes may be blurry, for instance, email and friends list can be
considered as user profile information. However, email alone is often used as a unique
user identifier in conjunction with a proof of authentication. OIDC defines a list of user-
information claims and their types, we consider this as the standard for user information.
Other types of information and API, e. g. friends lists or cloud access, are non-standard
and not available from every IdP. We classify these requests outside of the Profile and
Authentication classes as Specialised. Ultimately we define our classes as follows:

• Authentication: requests only subscriber identifier scopes, e. g. the openid or
email scopes.

• Profile: requests scopes for user informations equivalent to OIDC’s standard
claims.

• Specialised: requests any scope not classified as either Authentication or Profile.

Some RP offer to sign in with multiple IdP and may require different types of in-
formation for each IdP. As a result, they may be classified differently for each of their
implemented IdP. Based on common redirect_uri domain names, we regroup clients
into unique RP. For each RP we attribute a minimum (MIN) and a maximum (MAX)
classes, noted MIN/MAX. As an example, a RP classified as Authentication/Profile
requires to access profile information on some of the supported IdP options, but only
requires an authentication proof and a unique identifier on at least one offered IdP. RP
offering only a single IdP are classified as MIN/-.

Result analysis

Our observations, summarised in Table 3.2, reveals that a majority of RP, 58% of
103, are classified as Authentication or Profile. MAX-classed RP, 40% in total, are
the one providing support for multiple IdP. In our observations, 24 out of 56 RP with
a Specialised class are classified with a MIN class of Authentication or Profile. This
double classification demonstrates that while some websites require Specialised services,
they also adapt to support other IdP offering fewer resources. Note that this also leads
to different privacy risk levels for the user. On the other hand, 34% of observed RP are
rated as MIN-Specialized.

The large majority of Specialised RP use resources from Online Social Network
(OSN) such as friends list, user likes, and extended profile information. While data
from different social networks can be similar from a conceptual point-of-view, the for-
mat and API used to access these data depend on the functionalities and concepts offered

78 CHAPTER 3. PRIVACY IMPLICATIONS OF THE WEBRTC IDENTITY ARCHITECTURE

Table 3.2: Observed relying
parties’ classes
Some RP offer to sign in
with a single IdP, we clas-
sify them with a single class,
e. g. Profile/-. Other RP of-
fer multiples IdP, their re-
lations with these IdP may
belong to a single class,
e. g. Profile/Profile, or differ-
ent classes, e. g. Auth/Spe-
cial. For these RP we show
the minimum and maximum
classes they offer. Risk class
refer to privacy risk classes
as defined by Vapen et al.
(see Section 2.2). When a
RP has different risk class due
to multiples RP-IdP relation-
ships, we give an interval for
the Risk classification.

Min/Max Classes Observed Risk class

Authentication/- 10% (10) R−
Authentication/Auth 1% (1) R−
Authentication/Profile 9% (9) R−
Authentication/Special 6% (6) [R−;RA+]

Profile/- 13% (13) R−
Profile/Profile 2% (2) R−
Profile/Special 17% (18) [R−;RA+]

Specialised/- 26% (27) [R;RA+]

Specialised/Special 5% (5) [R;RA+]

No Scope 11% (11)
Total 100% (102)

by social networks. In these cases, the user fully depends on implementation choices by
RP. Although being a standard protocol, OAuth 2 lets IdP define their scopes and data
formats. As a result, IdP may provide similar results in different scopes and data for-
mats. For instance, we observed six different scopes for email access and seven different
scopes for basic profile information. This gives an indication on the lower bound of the
implementation work that RP must complete to support these IdPs.

OIDC solves this problem by standardising basic profile claims (e. g. profile, email,
address, ...) as well as the scopes, endpoint, and data format to retrieve these pieces of
information. From our observation, only four IdP out of twenty implement OIDC, as
reported on Table 3.3. Notably, Google is one of the OIDC providers and serves 50%
of observed RP, while Facebook does not implement it and serves 63% of observed RP.
Other IdP serve less than 6% of RP each. However, out of the 52 RP using Google’s
SSO, only 22 request standard OIDC scopes, and from these 22 only 10 request OIDC
ID Token. Surprisingly, we also observe that out of the 34 RP using the Google API
scopes, 19 were using deprecated scopes.

RP of MIN-Authentication and MIN-Profile classes represent 58% of all observed
RP. We defined these classes as being equivalent to claims covered by OIDC requests. It
appears that from our observations, the quantity and type of information shared under
these scopes would be sufficient to login into a majority of websites. We thus conclude
that current standards for API and data format do not appear to be a hindrance to SSO
interoperability. However, there is a clear lack of implementation of these standards from
big IdP, e. g. Facebook not implementing OIDC or Twitter not implementing OAuth 2.
But the lack of implementation effort also comes from RP. A non-negligible proportion of
them did not update their SSO implementations to the latest versions. Implementation
cost may be a reason, but we also note that studied websites come from the most 500
visited websites. They should have the resources to update their implementations.

Regarding scopes for sharing OSN data such as friends list, we observe that 43%
of RP using OSN data also implemented other IdP without requesting OSN data.
This is even the case when such data would be available from the IdP, e. g. with the
accounts.google.com API. On one hand, a standard format for OSN data could allow
more interoperability between RP and OSN based IdP. But on the other hand, since

3.3. WHY CAN’T USERS CHOOSE THEIR IDENTITY PROVIDERS ON THE WEB? 79

11: As explained in Sec-
tion 3.1.3, an email identifier
may not have the same domain
name as the IdP. In this case,
Web Finger look-up would
discover the email domain
rather than the IdP’s one.

the RP can accept non-OSN IdP, sharing of OSN data appears to be non-mandatory.
The possibility to opt-out of consent for data sharing is however often not offered or not
clearly advertised.

3.3.3 RQ3.2: Is dynamic discovery and registration commonly
available for RP?

In order to support sign-in on an RP with any IdP, the identity protocol must offer
discovery mechanism. This mechanism allows the RP to find the IdP’s protocol param-
eters from a URI provided by the user. Depending on the protocol this URI may be for
instance the user identifier or a resource location on the IdP. Without discovery, the RP
may not know which endpoint to use on the IdP, or which public keys and algorithms
to use to verify information provided by the user or the IdP. Additionally, the protocol
should also allow interactions between IdP and RP without prior manual configuration.
Some protocols require the RP to possess credentials to be authenticated by the IdP. In
this case, a dynamic registration process must take place before any further interactions.

For instance, OAuth 2 recommends that the RP possesses a client identifier and
secret for authentication in order to retrieve an access token. The use of an unregistered
client is not excluded by the specification, but our investigation did not reveal any
use of this. Similarly, OIDC requires the RP to be authenticated to get access and
identity tokens. The current OAuth 2 version does not specify dynamic registration
mechanism, but OIDC optionally offers discovery [158] and dynamic registration [159].
OIDC discovery uses Web Finger [160] to find user’s IdP from the user identifier and
standardises IdP’s metadata location. Metadata are in turn used to find, if available,
the dynamic registration endpoint. However, both discovery and dynamic registration
extensions are optional. Request For Comments (RFC) 7591 [161] proposes to generalise
the specifications of OIDC discovery and dynamic registration to the broader OAuth 2
specification.

Table 3.3, summarizes the observed OAuth 2 IdP. In total, we collect 23 unique IdP
domain names. Out of those, 15 are not requested with a scope parameter and are
not included in our OIDC features investigation. For instance, the rambler.ru request
to instagram.com does not contain a scope parameter, but Instagram still asks some
authorization to the user. On the other 18 unique IdP domain names, only 5 are used
with a openid scope. This indicates implementation of OIDC.

The standard end-point for OIDC configuration metadata is accessed on the path
/.well-known/openid-configuration. We access metadata for each observed OIDC
provider. In total, only two out of five offer openid-configuration metadata. None
of these metadata defined dynamic registration and we neither found support for Web
Finger. We are not able to test Web Finger for every IdP as some IdP do not offer a
look-up compatible user identifier11.

Again, existing protocols offer discovery and RP registration capabilities but im-
plementations are missing these optional functionalities. This mechanism is nonetheless
compatible with manual configurations of IdP. As such RP could nonetheless implement
it to demonstrate interest and support IdP allowing dynamic registration. However, this
would impose an additional component to add to the login page and an associated imple-
mentation. Users would also need to know and enter their OIDC identifier or provider for
the discovery mechanism, which may not always be obvious. There is clearly a usability
limitation compared to the “click to sign in” use of IdP button.

rambler.ru
instagram.com

80 CHAPTER 3. PRIVACY IMPLICATIONS OF THE WEBRTC IDENTITY ARCHITECTURE

Table 3.3: Observed OIDC
and discovery features Imple-
mentations

IdP RP OIDC Metadata

www.facebook.com 63 × ×
accounts.google.com 52 X X

oauth.vk.com 6 × ×
graph.qq.com 5 × ×
login.live.com 3 × X

account.live.com 3 × ×
www.linkedin.com 3 × ×
connect.ok.ru 3 × ×
login.microsoftonline.com 1 X ×
services.Adobe.com 1 X ×
github.com 1 × ×
feedly.com 1 × ×
www.livejournal.com 1 × ×
connect.mail.ru 1 × ×
open.weixin.qq.com 1 × ×
api.weibo.cn 1 × ×
mixi.jp 1 X ×
oauth.riotgames.co 1 X ×

Total 103 5 3

3.3.4 RQ3.3: Do RP require a trust relationship with the sup-
ported IdP?

The decision by the RP to implement a particular IdP may rely on a trust relation. For
instance, a RP may expect verified profile information from a governmental institution
or a secure authentication process with a two-factor authentication. Authentication
Assurance Levels (AAL) are usually used to characterise the strength of an identification
process during the user enrolment and authentication. Similarly, an IdP may trust a
RP, or more particularly monetise access to an API. This implies that RP and IdP got
into an agreement involving registration of payment methods which is out of scope of
existing dynamic registration specification.

Trust relations can be either implicit or explicit. Implicit relations are difficult to
characterise as they are not clearly visible from the user point of view. For instance,
the web site service-public.fr, which provides direct access to French governmental
service, only offers to log in with an account from other public services such as the tax
department, the social security service, or the national postal service. Other implicit
trust relations may be due to strategic decisions, for instance limiting RP access to IdP
of the same company. This is the case for developer.microsoft.com, as it only allows
login through the login.windows.net IdP, both being Microsoft’s services. In these
scenarios, the RP would not allow the user to choose any IdP.

Explicit relations may be more easily characterised as the RP clearly request a solid
information. For instance, Orange’s OIDC IdP offers the scope form_filling. This
scope substitutes to OIDC profile scope and allows the RP to access qualified Orange
information, for instance, the telephone number linked to the user subscription. Such
relation may either fit into the Specialised or Profile class, depending on the RP will

service-public.fr
developer.microsoft.com
login.windows.net

3.3. WHY CAN’T USERS CHOOSE THEIR IDENTITY PROVIDERS ON THE WEB? 81

12: We participated to the
BreizhCamp as members of
the reThink project which was
sponsoring the event.

or capacity to accept generic information, such as standard OIDC profile. We classify
these relations as profile+, as shown in Figure 3.11. Similarly, OIDC RP can verify
if the email was verified by the IdP through the email_verified boolean value. As
this verification is done on the server side, it is not visible from the user point of view.
Explicit trust relations may also be linked to a contract between the RP and IdP. Note
that other common scope may also be subject to an agreement, though it is impossible
to determine without investigating actual IdP API terms of use.

Trusting a presented identity and the associated authentication process is a complex,
and sometimes subjective matter, especially on the web. For instance, social networks
such as Facebook and services using them, claim their identity to be trusted. These
claims are backed by social relationships, evaluation between users, or real-name usage
policies. But stricter organisation, such as governments and banks, would not accept
these identities. OpenID Connect allows requesting a specific authentication level with
the Authentication Context Class Reference (ACR) parameter, referring to the ISO
AAL. Data collected during our OAuth 2 investigation did not reveal acr parameter
usage in OIDC requests. Out of the hundred and three observed RP, we estimate that
fourteen have an implicit trust relationship with their IdP. In most cases, these RP
only offer a single compatible IdP from the same company. Four of these RP are also
classified as Specialised/-, indicating that they would not be able to accept any IdP in
the first place. We found no occurrence of an explicit trust relationship in our panel.

It appears difficult to judge if trust is an issue that would impose manual config-
urations of IdP/RP relationships. To some extent, a decision to support a particular
IdP can be considered as an implicit trust decision. But whether RP are willing to
trust other IdP in order to offer more control to their user remains an open question. It
seems to us, that a solution to simplify the discovery and registration of IdP endpoint
should nonetheless give RP the option to control the range of compatible IdP and the
authentication strength for trust reasons.

3.3.5 Developer Survey

To further investigate the reasons why some IdP are implemented rather than others,
we want to know the developer point of view. Of course, the choice of an IdP depends
on a lot of other factors than the developer’s opinion. First of all the actual project and
its constraints are decisive parameters. But we believe that developer’s preferences also
play an important role in the technology and providers chosen for implementations.

We conducted a survey during the BreizhCamp 2017, a regional conference targeted
at developers from local information technology companies. During this conference we
distributed questionnaire (see Figure 3.12) on tables and at our own exposition booth 12.
The questionnaire consists in rating the value of six properties of IdP in the developer’s
opinion from 0 (low value) to 5 (high priority). The properties to rate are as follows:

• The strength of the enrolment process.

• The strength of the authentication process.

• A popular IdP would have a large user base size and allow many users to connect
to the developer’s website.

• The ability for the developer’s website to access IdP’s API and users’ data.

• The implementation complexity, i. e. maturity, trending technology, documen-
tation availability, SDK availability, ...

• The user experience when enrolling and authenticating with the IdP.

82 CHAPTER 3. PRIVACY IMPLICATIONS OF THE WEBRTC IDENTITY ARCHITECTURE

Figure 3.12: BreizhCamp Developer Survey

3.3. WHY CAN’T USERS CHOOSE THEIR IDENTITY PROVIDERS ON THE WEB? 83

En
rol

men
t

Au
th
en

tic
ati

on

Us
er

Ba
se AP

I

Co
mple

xit
y

UX
0

1

2

3

4

5

Rank

Minimum
Mean

Figure 3.13: Mean, mini-
mum, and standard deviation
of the trust survey results.

Participants are also required to rate their experience in the field of identity manage-
ment. This allowed us to discard a single commercial profile and only consider answers
from technical profiles. In total, we thus have 24 exploitable surveys. All considered
respondents are at least familiar with identity management as end-users, and most are
capable of quoting some protocols.

Figure 3.13 shows the minimum, mean, and standard deviation for each parameter
of our survey. We observe a separation of parameters into two main categories:

The first category regroups properties with a high-value and a low standard devia-
tion: i. e. authentication strength, implementation complexity, and user experience. All
parameters in this categories demonstrate a minimum rank of 2, a high mean value close
to 4, and a standard deviation under 1. In our opinion, this shows that a consensus
from developers exists on the importance of these properties. This is easily explained
as developers have all in common the core task of implementing practical and secure
websites, with library they are able to use.

On the contrary, enrolment strength, user base, and access to API all show a low value
and a high standard deviation. The enrolment strength and access to API parameters
have a low mean value of 2.6, and a high standard deviation of 1.5 and 1.8 respectively.
The need for access to an API is highly dependent on the website use-case, which may
explain the absence of consensus. Enrolment strength is also dependent on use case,
but from discussions with participants who completed the survey at our booth we also
believe that this property may not be as well understood as the authentication strength.
Finally, in the low-value category, we can further distinguish the importance of the user
base which shows a higher mean of 3.5 and lower deviation of 1.3. This may indicate
an important but not critical property. Supposing a developer would like to implement
multiple IdP, even with small user-base, this property would enter in conflict with the
quality of the user experience and with the implementation complexity, which are clearly
higher priority properties.

Based on our results, we argue that a solution to let users choose their own IdP should
preserve a simple user experience, and ease the implementation complexity. Whether the
website needs to trust the IdP remains an open question. On one hand, the enrolment
process is not seen as a priority, which may mean that self-asserted identities may not be
a problem for some websites. On the other hand, the authentication strength is clearly

84 CHAPTER 3. PRIVACY IMPLICATIONS OF THE WEBRTC IDENTITY ARCHITECTURE

a top priority. We thus also argue that a solution to let users choose the IdP should
probably let websites request trusted IdP or AAL.

3.4 Summary

The WebRTC security architecture [50] claims that trust in the signalling layer can be replaced
by trust in the IdP. However, in our state of the art (see Chapter 2) we did not observe research
considering the IdP as a potential threat in WebRTC scenario. In this chapter, our contribution
was to study additional privacy implications focusing on the WebRTC identity architecture and on
the role of the IdP.

We first presented our implementation of the WebRTC identity architecture and in the particular
the integration of the IdP Proxy component with the OIDC protocol. This work reveals that
while OIDC facilitates the creation and signature of WebRTC identity assertion its integration is
not straightforward. In particular, although WebRTC offers an abstract authentication delegation
interface it is not particularly suited to manage authorization delegation. We thus answer to
RQ1.1 by showing additional privacy risks that IdP should take in consideration to implement the
WebRTC identity architecture. We also show how the IdP can compromise users’ privacy without
their explicit consent. The central role and responsibility of IdP in the web ecosystem is reinforced
by their inclusion in WebRTC call setup.

We then focused on answering RQ3 to find if we can let users chose actors they trust to participate
in the communication setup. Previous studies reported that users are presented with a limited
choice of IdP when authenticating on the Web. We conducted a survey of the top-500 website’s
usage of OAuth 2 and OIDC to identify possible reasons for this situation. We classified RP by
the types of authorization they request to users. Our results show that a majority of RP, 58% of
103, do not require specialised data. Although OIDC proposes standardised profile claims, scopes,
endpoint, and data format, we observe that it is implemented by only a few IdP. Similarly, OIDC
offers optional dynamic discovery and registration of RP but these features are not implemented at
all on surveyed IdP. That RP and IdP require pre-established trust relations could explain this lack
of implementation. As we focused our survey on interactions observable from the user’s browser
it does not allow us to answer on that matter. To further investigate this question, we believe
that it should be directly asked to the professional responsible for the deployment of IdP and RP
alike. Finally, we conducted a survey on developer to identify important IdP’s properties in the
developer’s opinion. Our results show a consensus on the need for a strong authentication and
well-crafted user experience but not on other properties. We answer on RQ3.1 and RQ3.2 that
while technical solutions for allowing users to choose their IdP exist, these are not implemented by
IdP and RP alike.

85

Chapter 4

Controlling the WebRTC
Identity Parameters

The WebRTC identity architecture allows to bind the media session to a
validated peer identity. In Chapter 3, we presented privacy issues related
to this specification and to SSO on the Web in general. From our point of
view, the fact that users lack control over which identity services they want
to use on the Web is at the heart of these privacy issues. Furthermore,
users may also ask themselves whether they should trust their peers’ IdP
and their peers’ authentication strength? In order to raise users’ trust in a
communication, both from a privacy and a security perspective, we propose
to give users more control over WebRTC identity parameters. Firstly, in
Section 4.1, we define a SDP extension to negotiate the other peer’s IdP
and authentication strength during the SDP call setup. We implement our
solution which shows that such negotiation mechanism would benefit from
more flexibility in the choice of IdP for peer authentication. Yet, as we
explained previously, IdP choices are limited on the Web. The WebRTC
identity specification poses some interesting concepts but for the limited scope
of user-to-user authentication. We are interested in studying how it can be
extended to support more use cases. In Section 4.2 we present WebConnect,
a prototype for an Identity Metasystem API based on the WebRTC identity
specification. We show that on the long run, adoption of such an API could
reduce the implementation burden for websites developers and allow users to
preserve their privacy by choosing trusted IdP.

Identity
Architecture

Model

Control

RQ3

RQ2

RQ1

Contribution 1

Contribution 3

Contribution 2

Figure 4.1: Overview of our
Contributions: Controlling
the WebRTC Identity Param-
eters.

86 CHAPTER 4. CONTROLLING THE WEBRTC IDENTITY PARAMETERS

1: The only guarantee is that
the IdP Proxy is loaded over
HTTPS.

4.1 An SDP Extension to Allow Identity Negotiation
The WebRTC identity specification allows binding the media session to a validated peer
identity. However, indications as to whether the Identity Provider (IdP) and identity
assertion should be trusted are limited1. Alice may ask herself the following questions:
“should I trust my peer’s IdP” and more importantly “what is the strength of my peer’s
authentication”? In order to address RQ2 “can we act on a WebRTC session to raise the
trust and security level”, we propose to let users negotiate their identity parameters. In
this section we thus address the following research question:

• RQ2.1: How to let users negotiate the other peer’s identity parameters?

As a peer’s authentication strength is known by and depends on the peer’s IdP, trust
in the security of the communication depends directly on Alice’s trust in her peer’s IdP.
Though Alice may not be capable to evaluate this IdP’s trustworthiness, she may not
have previous relations with this IdP or, just not enough observable feedback to judge.
Recommendation from a trusted source could solve Alice’s lack of knowledge and allows
for identity parameter negotiation.

4.1.1 Recommendation Sources
Three actors, potentially trusted by the user and already involved in the WebRTC
communication setup, would be well-suited to recommend trust in the peer’s identity
and conduct the identity negotiation. These are the user’s Communication Service (CS)
and/or its associated client, the user’s IdP, and the browser. However, each of these
actors has a different role and visibility on WebRTC identity management. We use the
following properties to evaluate where to best place the negotiation responsibility:

• Trusted by the user or not.

• Capability to recommend trusted IdP.

• Knowledge of the call context.

Supposing that Alice is allowed to choose a trusted IdP, we can consider that Alice’s
IdP occupies a trusted position in the communication setup. As an IdP, Alice’s IdP
would also be well suited to understand and to evaluate other IdP’s trustworthiness.
However, web IdP are organised in silos and do not interact with each other. In order to
serve as recommendation sources, they would need to build trusted identity federations,
circles of trust, or individual trust relations. Besides, IdP are not aware of the call
context (used call service, risk level, etc.) and only deal with user authentication.
Configuring user preferences for call security depending on call context may prove to be
difficult.

Conversely, the CS is fully aware of the call-context and it would be quite simple
for users to define separate preferences for each CS. CS are also dealing with IdP to
authenticate their own users. Evaluating the trustworthiness of an authentication from
an IdP they already trust would not be different. However, CS trusting IdP that they
do not implement, i. e. without explicit configuration and contractual agreement, would
also require a kind of trusted federated identity service. CS may also not be trusted by
their user and this is the reason why the WebRTC identity specification exists in the
first place. Even if the user’s CS is trusted, the WebRTC identity architecture may still
be relevant in interoperable scenarios as these involve multiple CS.

Finally, the web browser may also be an adequate actor to evaluate the trustworthi-
ness of the other party authentication. Being the WebRTC Trusted Computing Base,
the browser is considered to be trusted. It has also some knowledge of the call context,

4.1. AN SDP EXTENSION TO ALLOW IDENTITY NEGOTIATION 87

Actors Trusted Recommendation Context

Identity Provider + ++ -
Communication Service - + ++
Browser ++ - +

Table 4.1: Comparison of
communication setup actors
to act as an identity recom-
mendation source.

although less than the CS, and could easily be configured by the user. In the cur-
rent specification, the browser is in charge of IdP’s origin validation through HyperText
Transfer Protocol Secured (HTTPS). This already constitutes a kind of low-level trust
recommendation towards asserting identity assertion security. However, browsers are
not usually dealing with authentication strength and IdP trustworthiness.

Table 4.1 summarises our simple comparison of the IdP, CS and browser as trusted
recommendation sources. None of these three actors appears clearly more suited to
evaluate and negotiate over the other party authentication. CS could implement such
functionality as the need arises without waiting for a standardisation process. However,
this raises the question of whether or not the CS can be considered as part of the
Trusted Computing Base (TCB) for WebRTC call. Trusted CS would probably be more
suited for enterprise scenario, but not in the general web ecosystem. For a more generic
identity negotiation implementation working on any WebRTC service, the web browser
would be the best suited to implement such functionality. Indeed, the browser is already
responsible for verifying identity assertion but also for the management of Application
Programming Interface (API) and plugin authorizations.

4.1.2 SDP Extension

As we described in the previous section, the security of a WebRTC session depends
on the peer’s authentication strength and the trustworthiness of the IdP asserting the
peer’s identity. Supposing that knowledge of these two parameters is available, a user
may act on the session to negotiate a higher security level. This would either be done
by requesting a higher authentication level, or an identity assertion from another IdP.

To convey these requests in the negotiation we define two identity parameters. The
Authentication Class Request (ACR): List<ACRValue>, a list ordered by preference of
accepted authentication class values. And the Origin Request (OR): List<Origin>, a
list ordered by preference of accepted IdP’s origins. The identity assertion is transmit-
ted in Session Description Protocol (SDP) offer and answer as the a=identity session
level attribute (see Section 1.3). Defining extensions to this attribute in order to con-
vey identity parameter requests would be possible. However, the identity attribute
grammar specifies that an extension must follow a valid identity assertion. This implies
that it would not be possible to negotiate identity parameters without providing an
identity assertion. However, anonymous calling is often cited as an important use case
for communication services [6, 9]. The need may arise for a user to negotiate identity
parameters while being anonymous.

We instead propose to define a new type of SDP session-level attribute to negotiate
these identity parameters. The Authentication Class and Origin Request (ACOR) SDP
attribute defines a list of accepted authentication class and IdP domain for the other
peer identity.

• a=acor:LIST<ACRValue> ; List<Origin>

An SDP negotiation is a sequence of offer and answer messages, with an offer always
followed by an answer. We detail two scenarios where the negotiation for identity pa-

88 CHAPTER 4. CONTROLLING THE WEBRTC IDENTITY PARAMETERS

2: The definition and evolution
of proposed standard is a heavy
process. A constraint of our
work is to aim for compatibil-
ity with existing specification
rather than proposing heavy
modifications.

rameters either starts from an offer or from an answer. To accept the requested ACOR
attributes, a peer must thus reply a SDP message with a compatible identity assertion.

SDP Offer with Identity Request

Figure 4.2 shows a sequence diagram of the offer scenario. In this scenario, Alice’s
browser (UAA) gets negotiation parameters from Alice’s Recommendation source (RA).
Upon receiving the SDP offer and the requested identity parameters, Bob’s browser
(UAB) checks whether the requested IdP Origins are acceptable. We do not detail the
way to get this information or how to select the IdP, but the solution would probably
rely on Bob’s Recommendation source (RB) and registered IdP in UAB . If no requested
origin is available, the browser must answer with a SDP containing no identity attribute.
Otherwise, it proceeds to request an assertion from the selected IdP. If no requested
ACR matches the current authentication level a standard IdpLoginError is returned.
If this error does not contain a loginURL parameter, then no requested Authentication
Context Class Reference (ACR) are supported by the IdP and a SDP with no identity
attribute is returned by UAB . However, if the error contains a loginURL, the user can
be authenticated with a procedure matching one of the ACR by following the provided
login Uniform Resource Locator (URL). Once this standard authentication procedure is
done, Bob’s Assertion (ASSERTION_B) is returned in the SDP answer.

On receiving ASSERTION_B, UAA asks Bob’s IdP, through it’s own IdP Proxy
instance, to validate the assertion. The IdentityValidationResult returned by the
proxy should contain the assertion ACR value, allowing UAA to open the media channel.

SDP Answer with Identity Request

The answer scenario is similar to the offer scenario but differs in that the assertion is
received before the receiving user sent any identity request. Figure 4.3 shows a sequence
diagram for this scenario. Upon receiving the offer, UAB gets identity parameters from
RB . If the received assertion origin is accepted, UAB checks ASSERTION_A through
a local instance of IdP Proxy A. If one of the identity parameters does not match with
the received assertion, UAB returns a SDP answer with its identity parameters request.
This would trigger a new offer from UAA if possible.

Alternatively, UAB could accept the first offer and later send a new offer to renego-
tiate A’s identity.

4.1.3 Validation on the current specification

Both browser and CS get access to SDP messages during the call setup and could support
identity negotiation in a similar way. The browser would be more difficult to modify than
a WebRTC JavaScript client due to its large code base. In contrast, implementation of
identity negotiation at the IdP level would be something quite different. As the IdP does
not actually see SDP messages, the WebRTC API would need to be heavily modified.
This kind of modification to the specification is out of scope of our research2. Our
objectives for implementing our solution to negotiate identity parameters over SDP are
the following:

• Evaluate the complexity of deploying this solution.

• Validate the feasibility of an implementation given the current state of WebRTC
implementation on web browser.

• Verify that adding identity parameters does not compromise inter-operability with
other services.

4.1. AN SDP EXTENSION TO ALLOW IDENTITY NEGOTIATION 89

Figure 4.2: SDP Offer

90 CHAPTER 4. CONTROLLING THE WEBRTC IDENTITY PARAMETERS

Figure 4.3: SDP Answer

4.1. AN SDP EXTENSION TO ALLOW IDENTITY NEGOTIATION 91

Parameter Can be set (input) Can be verified (output)

Origin Request � Specified
Authentication Class Request � ×

Table 4.2: Capability to Im-
plement the Proposed Solu-
tion

3: Available at https:
//github.com/Sparika/ACOR_
SDP

Figure 4.4: Identity negotia-
tion interface on a WebRTC
service.

Ultimately, we implement the negotiation functionalities at the CS level and integrate
it to our WebRTC service3. Figure 4.4 shows the identity request interface. The web
interface allows both users to request new ACR and OR parameters for the other peer.
SDP messages are returned by the createOffer and createAnswer functions offered
by the PeerConnection object. Once generated, the client code appends an ACOR
attribute to the generated SDP offer or answer. The SDP is then sent to the other peer’s
client. On receiving a message, the client code looks for the requested ACOR attribute,
and at the same time verifies that the received peer-identity, the other peer’s identity
assertion, follows the request previously specified. The resulting negotiation solution is
implemented in under 100 JavaScript code lines, for a very simple client. Renegotiation
allows both clients to make new offer once the session has been established. For instance,
this allows asking an anonymous user to authenticate itself. We, however, identify some
important limitations, mostly due to the specifications.

The generateAssertion function from the IdP Proxy has for parameters contents,
origin, and usernameHint. Request for a particular authentication class to the IdP
is thus not defined. We use the usernameHint parameters to pass ACR parameters
to the IdP. The IdP is modified accordingly to understand this parameter. However,
the IdentityValidationResult dictionary do not represent the ACR. Dictionaries are
JavaScript objects that cannot be extended by adding new members. It is thus impossi-
ble for the validating IdP Proxy to return a certified ACR value to the client inside the
IdentityValidationResult. In clear, even-though the client can request a particular
authentication strength, it cannot verify that the IdP complied with the request. A
solution to solve this issue could be to let the client directly read the identity assertion
contained by the SDP message to check the asserted authentication strength. The down-
side of such solution is that it loses the benefits of the WebRTC identity abstraction as
the client must be able to natively understand the identity assertion.

It also appears impossible to change identity at call runtime or use multiple identities
simultaneously. The WebRTC specification states that if the PeerConnection object has
"previously authenticated the identity of the peer [...], then this also establishes a target
peer identity. The target peer identity cannot be changed once set" [31]. Our tests
demonstrate that modifying the remote peer identity effectively closes the connection.
Once a first identity has been set, it cannot be changed. If this is an issue and if several
IdPs are available, the peer should first wait to receive an ACOR attribute from the
other peer, before setting an IdP for the session.

In the end and to answer RQ2.1, we are able to establish two anonymous sessions and
then request the other peer to authenticate with a particular identity domain. We are
however unable to verify the strength of the authentication, hampering the capability to
request a particular authentication strength. In addition, our modified SDP messages
are effectively ignored by other services and by the user-agent. Interoperability with
other services should not be compromised by this new attribute. Our observations are
summarised in Table 4.2 which shows for both OR and ACR parameters whether they
can be passed as input to the assertion generation function and returned as output of
the assertion validation function.

https://github.com/Sparika/ACOR_SDP
https://github.com/Sparika/ACOR_SDP
https://github.com/Sparika/ACOR_SDP

92 CHAPTER 4. CONTROLLING THE WEBRTC IDENTITY PARAMETERS

4: Firefox Hello was a We-
bRTC service integrated with
Firefox. It was released with
the Firefox 35 update, but
later discontinued since Firefox
49.
5: https://developer.
chrome.com/apps/app_
identity

6: Chrome Apps are third-
party web applications running
inside Chrome.

4.2 WebConnect

In Section 1.5, we presented some privacy threat mitigation techniques, amongst which
is data minimisation. Authorization delegation frameworks give users some control over
the information they want to share to other websites. Used as Single Sign-On (SSO)
solutions, they put users in a situation where they have to choose between the burden
of setting up a new account or sharing some private information. Allowing users to
choose privacy-preserving solutions may be an incentive for providers to respect their
user’s privacy. However, we have shown in Section 3.3.2 that many websites abuse users’
privacy by requesting unnecessary privacy-sensitive data. In addition, Vapen et al. [153]
observed that in practice Relying Party (RP) offer few choices of IdP, an observation
confirmed by our study (see Section 3.3.1). We thus believe that users should be given
more control over which IdP they want to use when authenticating on the Web.

In Section 3.3, we consider some of the reasons that could prevent the implementation
of IdP discovery mechanisms. We estimate that at least 58% of observed websites could
make use of an IdP discovery mechanism. However, we also found several hindrances to
the deployment of such solution:

• the lack of implementation of this feature by IdP and RP.

• the difficulty for users of knowing and entering their identifiers in the discovery
process.

• the possible trust relations between the IdP and RP.

Several tentatives have been made to develop Internet’s “Missing Identity Layer” [162],
without clear success. A proposition of the “Seven Laws of Identity”[162] is that a single
protocol would not fit all needs on the Web, but that “different identity systems must
exist in a metasystem”. This implies the need for a simple encapsulating protocol and
a unified user experience. First released in 2007, Windows CardSpace[163] was an im-
plementation of an Identity Metasystem [164] and Microsoft’s solution to propose an
integrated identity management experience to Windows’ users. It allowed users to se-
lect InfoCards to prove identity claims, e. g. name, age, to requesting applications, as
presented in Figure 4.5.

An identity aware web browser would have several advantages. In their 2011 empir-
ical study, Sun et al. [156] observe users concerns about web SSO and recommend that
“identity support into the browser [would provide user with] a consistent, intuitive and
trustworthy user experience”. We also note that our survey presented in Section 3.3.5
reveals that by default the authentication strength, the complexity of implementation,
and the user experience are the most important factors for developers when considering
to implement an SSO solution. A web Identity Metasystem should thus aim to offer
these advantages to developers in order to facilitate its adoption.

Recent trends in web browser development tend to indicate that browser makers are
looking to offer a complete browser experience. Personal preference synchronisation,
official plugins bringing new functionalities4, or simply access to an application mar-
ketplace. Particularly related to our interest, Google Chrome offers an OAuth 2 API5
to Chrome Apps6. This API implies that users can use a Chrome interface to choose
an identity, sign-in, and modify some of their information such as their profile picture.
However, Chrome only offers integration with Google’s identity.

The WebRTC identity specification also enriches the browser with a kind of identity
management capability but limited to the scope of WebRTC user-to-user authentica-
tion. As we described already, the specification offers interesting features. Firstly, it
offers an IdP discovery functionality by serving the IdP Proxy from /.well-known stan-
dard location on the IdP. And secondly, the WebRTC identity specification exposes a

https://developer.chrome.com/apps/app_identity
https://developer.chrome.com/apps/app_identity
https://developer.chrome.com/apps/app_identity

4.2. WEBCONNECT 93

Figure 4.5: CardSpace user
interface. When a web-
site requests an authentica-
tion, the CardSpace user in-
terface prompts the user with
a choice of identity cards.
The user interface displays
the identity of the request-
ing website and the user can
select one identity card to
present to the website. Alter-
natively, he can preview data
contained by his cards, mod-
ify them, or add a new one.

7: https://github.com/
Sparika/WebConnect

simple protocol for authentication based on the generation, exchange, and verification
of identity assertions. We believe that an identity-enabled web browser exposing an
authentication API to websites could be the basis for a new web Identity Metasystem.
The browser would provide the functionalities and associated interfaces to configure
new identities, register passwords, display login prompt, and define website preferences,
i. e. which identity to use with which web site. Some of these functionalities are already
provided by web browser, e. g. login and password storage, but without the coherency
of a full identity management experience.

The IdP Proxy is the core component of the WebRTC identity architecture. It is
discoverable and exposes the API for handling identity assertions. Theoretically, it is
also protocol independent and we proposed multiple implementations of this component
in Section 3.1. In this Section, we address RQ3 “can we let users chose actors they
trust to participate in the communication setup?”. More precisely, we are interested in
answering the following research question:

• RQ3.4: Can we leverage the WebRTC identity architecture to let users chose their
IdP for user-to-server authentication?

4.2.1 Implementation
To answer our research question, we implement a prototype of a browser modification7.
Our proposed architecture (see Figure 4.6) relies on three components interacting to-
gether:

• A JavaScript API accessible to websites and a user interface for identity selection.
Providing a web API is necessary for WebConnect to be a standard functionality
of web browser and facilitate its integration by developers.

• An IdP Server able to provide a suitable identity assertion through a WebRTC
compatible IdP Proxy.

https://github.com/Sparika/WebConnect
https://github.com/Sparika/WebConnect

94 CHAPTER 4. CONTROLLING THE WEBRTC IDENTITY PARAMETERS

Figure 4.6: WebConnect Ar-
chitecture

WebSIte JS Code

IdP Proxy

Browser

.connect

WebRTC API Calls

IdP

RP

WebConnect

Alice
.register

ID Validation

• An RP website –client and server side– able to understand and verify the provided
identity assertion

Figure 4.7 shows sequence diagrams representing the interaction between the dif-
ferent actors of our implementation. After the user requested to login, the JavaScript
client code calls the WebConnect.connect function which returns a promise for an iden-
tity assertion. The browser then asks the user to choose one of its registered identity
providers and then proceed to instantiate the corresponding IdP proxy. Once the IdP
Proxy returns the identity assertion to the browser, the browser resolves the connect
promise and the website client receives the assertion. It is then up to the client code
to transfer the assertion to the server side. In our example, the client calls the GET
method on a login URL and passes the assertion as a URL query parameter. The server
then extracts the JSON Key URL (JKU) parameter from the identity assertion header,
and get the public key from the IdP over HTTPS at the provided location. This public
key is then used to verify the assertion signature. Once the assertion authenticity and
integrity is confirmed, the server logs in the user and responds to the client GET.

Browser modification

Our browser modification takes the form of a browser extension. This solution was
chosen for its simplicity in comparison to browser source modifications. As a browser
extension does not expose function to the global window scope, its exposed functions
cannot be called by a website. To simulate access to a web API, we also provide a
JS shim exposing our API functions to the website client code. This script can then
communicate with the extension code through the postMessage API.

The API exposed by the WebConnect object offers two functions: connect and
register as specified in Figure 4.8. The register function is called by the IdP to
let users store identity cards in the browser. The iss and type parameters allow to
discover the IdP proxy /.well-known location, while sub is an identifier for the user on
the IdP. name and picture are used for display on the user identity card. The connect
function is called by websites to request an identity assertion authenticating the user.
Its only parameter is a JavaScript Object Notation (JSON) object to convey additional
parameters such as constraints, authentication level, or authorization requests. We do
not implement scenario using this parameter, although we discuss possible usages in
Section 4.2.3.

4.2. WEBCONNECT 95

Figure 4.7: WebConnect identity assertion management sequence diagram.

96 CHAPTER 4. CONTROLLING THE WEBRTC IDENTITY PARAMETERS

8: The WebExtension API is
compatible with the Browser
Extensions API, a cross-
browser effort supported by a
World Wide Web Consortium
(W3C) Community Group for
interoperable extensions [165].

9: http://passportjs.org/

Figure 4.8: WebConnect in-
terface specification in We-
bIDL.

interface WebConnect {
void register (String iss,

String proxy,
String sub,
String name,
String picture);

Promise<JWT> connect(Object request);
};

On the technical side, our extension implements a graphical user interface for iden-
tity selection and configuration on top of the PeerConnectionIdP Firefox module. As
we leverage and reuse the WebRTC identity specification, we developed our prototype
for Firefox which is the only browser to support it. Initially the extension was us-
ing the Firefox Add-on Software Development Kit (SDK) and in particular the chrome
module. This module allows accessing privileged low-level API. We were thus able to
load the PeerConnectionIdP.jsm module and directly instantiate and interact with
the IdP proxy through it. However, the Firefox Add-on SDK is being deprecated in
favor of the WebExtension API8. Extensions developed with these API cannot use
browser specific low-level API such as the chrome module. In order to instantiate
the IdP proxy and get the identity assertion, the extension now instantiates a new
RTCPeerConnection. Though the connection is never initiated, the RTCPeerConnection
object can be used to call the setIdentityProvider and getIdentityAssertion func-
tions. While this effectively allows the extension to retrieve an identity assertion, the
RTCPeerConnection.getIdentityAssertion functions offers less control than the one
exposed by the PeerConnectionIdP.jsm module.

Identity provider implementation

The role of the IdP is to provide an IdP Proxy at a standard location, and through it,
authenticate the user and return an identity assertion. We reuse our OpenID Connect
(OIDC) IdP Proxy implementations described in Chapter 3. The returned assertion is
thus a signed JSON Web Token (JWT). In WebRTC the party wanting to verify the
assertion validity is supposed to also download the IdP proxy to verify the assertion.
However, as we wanted to avoid IdP Proxy sandboxing on the website server, we used
the jku header in the JWT assertion. This allows the verifying party to retrieves, from
the IdP, the public key used to sign the assertion and verify the JWT authenticity.

As standard for OIDC, the assertion payload contains Issuer Identifier (iss) and
Subject Identifier (sub), respectively identifying the IdP and the user to the requesting
website. The payload may also include OIDC user-info claims, such as name, address,
or email.

Website implementation

Besides calling the API to get an identity assertion, a compatible website must also
be able to understand and verify the assertion. In our prototype implementation, the
JavaScript code on the client side sends the assertion to its backend server for verification
and log in. This is done by a GET to a login URL with the assertion transmitted as a
URL query parameter.

The assertion authenticity is then verified by the server. To do so, developer can
use several libraries for JWT support. We implement a JWT strategy for Passport9
–a popular NodeJS authentication library– by adding support for JKU verification.

4.2. WEBCONNECT 97

10: https://www.ietf.org/
mail-archive/web/jose/
current/msg03929.html

Once the assertion has been verified, the server extracts relevant information from it
and lookup for existing users in its database. If no user exists, the server creates a
new entry on the fly. The login procedure thus serves the dual purpose of enrolment
and authentication. Ultimately, the user is returned to the relevant page through the
HyperText Transfer Protocol (HTTP) response.

4.2.2 Analysis

Security analysis

In comparison to a standard OAuth 2 flow, our implementation introduces two major
changes that may have security implications. We discuss these changes in this section.

Firstly, in order to verify the validity of claims covered by a received assertion, the
RP must verify the assertion’s signature. In OAuth 2 this signature would have been
produced by the IdP using a key pair exchanged with the RP during the registration
process. In our solution, we replaced the registration process, including the key exchange,
by a verification of the jku’s origin. However, the OpenID Connect specification states
"ID Tokens SHOULD NOT use the JWS [...] jku, or jwk header parameter fields".
From Internet Engineering Task Force (IETF) mail archives10, it appears that assertions
claims, including the iss and jku parameters, are considered to be self asserted until
verified by a trusted key. To solve this issue, additional constraint could be added to
the key’s origin verification. For instance, using a standard /.well-known [43] path
for the jku URL also matching the iss domain would prevent attacker from specifying
any key. We note that similarly, the WebRTC identity specification specifies that the
identity’s origin and IdP proxy’s origin must match and be served with the HTTPS
protocol. Imposing the same constraint for JWT verification should provide a similar
security level.

Secondly, assertions manipulated by the javascript client code and returned by the
API’s promise response are added to the page’s global scope. The assertion could thus be
read, and used, by a malicious cross-origin script embedded on the same page. This issue
is similar to what can happen on an OAuth 2 implicit flow, where the client directly
receives an access token. In OAuth 2, the code flow lets the client exchange a code
and authentication with the token endpoint to get the access token, and the ID token
in OIDC. But as in our solution, the RP/client cannot be authenticated by the IdP,
the code flow cannot be used. An alternative solution could be to use a sort of code
exchange, leveraging Transport Layer Security (TLS) mutual authentication between the
RP and IdP. Alternatively, the browser could protect the assertion from the JavaScript
code and transmit it directly to the RP sever. Action 10 and 1 from Figure 4.7 would
be replaced by a single message from the User-Agent to the Site Server. The website
redirection Uniform Resource Identifier (URI) would be passed as a parameter to the
connect function during action 2 on Figure 4.7.

Usability

From the end-user perspective, the overhead is quite limited. Compared to current
authentication process, users have to register their identity cards on their browsers.
This configuration can be done in a single action with the register function of the
API. Identity selection on login request is also similar to current SSO solutions, for
instance comparing to Google’s identity selection interface in Figure 3.8. If that is an
issue, preferences storage by the browser may help reduce it further. However, the user
experience does not constitute our field of expertise and we did not conduct user studies.

On the developer side of things, we also evaluate the additional work to be limited.
Table 4.3 compares the number of new code lines for our prototype implementation

https://www.ietf.org/mail-archive/web/jose/current/msg03929.html
https://www.ietf.org/mail-archive/web/jose/current/msg03929.html
https://www.ietf.org/mail-archive/web/jose/current/msg03929.html

98 CHAPTER 4. CONTROLLING THE WEBRTC IDENTITY PARAMETERS

Figure 4.9: Prototype user
interface for the Authentica-
tion web API.

(a): The IdP profile page
allows the user to config-
ure a new identity cards
to WebConnect. Click-
ing on register calls the
WebConnect.register func-
tion.

(b): On the visited web-
site, the user can click on
connect to authenticate. This
opens the WebConnect user
interface and allows the user
to choose the identity the
user wants to authenticate
with.

(a) IdP profile page with the WebConnect register button.

(b) Web Connect identity selection interface

4.2. WEBCONNECT 99

Module Total code lines New code lines

Firefox Addon 0 417
IdP Proxy 0 197
Client site (.js) 693 66
Client site (.conf) 457 70
Passport JWS 1242 60

Total 2392 810

Table 4.3: Code lines written
for the prototype implemen-
tation

compared to the total code lines of each module. In proportion, the biggest tasks are to
develop the browser modification and the IdP Proxy, which are new concepts. We note
that these developments would be done once by browser makers and IdP developers and
not by web developers. For client website developers, the main task is to configure the
new authentication method and verify the assertion authenticity. However, as we noted,
library for JSON Web Token Signature (JWS) and OIDC ID Token support already
exists. Modifying the existing JWS verification library required 60 new lines over a
total 1242 code lines, while configuring the new strategy required 70 code lines, mostly
copy-pasted from other strategies.

The objective of an Identity Metasystem is to offer a simple API to access multi-
ple identity services. On the long run, the adoption of a web API for authentication
delegation should reduce the amount of work for web developers.

4.2.3 Validation

We present a prototype of a user-to-server authentication mechanism reusing already im-
plemented IdP Proxy. Integrated into an identity selector interface provided by the web
browser, it effectively allows users to select trusted IdP for authentication on compati-
ble websites. Due to the identity continuity principle (see Section 1.3.4), such freedom
of choice would extend to user-to-user authentication in WebRTC context. Through
experiment, we answer RQ3.4 and demonstrate that the WebRTC identity architecture
can be leveraged to build a user-to-server authentication mechanism. We thus believe
that a web Identity Metasystem such as WebConnect is a good way to give users more
control over which identity services they want to use both in WebRTC and on the Web
in general.

Nonetheless, some control may have to remain in the hands of RP websites. In
Section 3.3 we classified at least 58% of observed RP websites as authentication or
profile. Websites from this class could request user’s authentication without any scope
or authorization constraints. We also observed that some RP websites may have a
trust relationship with some IdP. Our conclusion stated that “a solution to simplify the
discovery and registration of IdP endpoint should nonetheless give RP the option to
control the range of compatible IdP and the authentication strength”.

The request parameter of the WebConnect.connect() function allows RP websites
to specify constraints on the range of compatible IdP when calling the API. This pa-
rameter thus serves as a hook for future extensions allowing to specify:

• trusted IdP’s origin,

• authentication strength requests,

• and required scopes for authorization.

100 CHAPTER 4. CONTROLLING THE WEBRTC IDENTITY PARAMETERS

These constraints would then be used by the WebConnect interface to only display to the
user a range of compatible IdP. Note that the IdP’s origin and authentication strength
constraints are similar to how we described users negotiating authentication of the other
peers in Section 4.1.

4.3 Summary

In some WebRTC scenarios, users may not trust their communication service or the signalling layer.
Using the WebRTC identity architecture, users instead rely on IdP to bind the signalling to a peer-
to-peer authentication. In such case, users trust in these IdP and their authentication process is
necessary for the communication to be trusted. In this chapter, we have looked at solutions to give
users more control over WebRTC identity parameters: their peer authentication and their own IdP.

Firstly, we presented ACOR, a SDP extension to negotiate the Authentication Class and the IdP’s
Origin for the authentication of the other party during a WebRTC call. We implemented our
solution in a WebRTC service and tested it using Firefox to answer RQ2.1. Our tests reveal that
while it is possible to request identity parameters to the other peer, obtaining feedback on the peer’s
authentication class is not possible at the moment. We believe that this missing feature may be
useful even outside of a negotiation use case and that it could easily be supported by the WebRTC
identity architecture.

We then presented WebConnect, a web identity metasystem to let users select their trust IdP.
WebConnect answers RQ3.4 and shows that the WebRTC identity architecture can be leveraged
to build a user-to-server authentication mechanism. We implemented a prototype version based
on a Firefox extension and reusing IdP Proxy implemented in Section 3.1. We believe that a web
Identity Metasystem such as WebConnect is a good way to give users more control over which
identity services they want to use both in WebRTC and on the Web in general.

101

Chapter 5

WebRTC Trust and Security
Model

In this chapter, we propose a trust and security model of a WebRTC ses-
sion. Our model integrates into a single metric the security parameters used
to establish the session, the media encryption parameters, and user’s trust
in actors of the WebRTC session. The first objective of our model is to an-
swer RQ1: “What are the risks for the user of a WebRTC session and which
abstractions can we use to show these risks to the user”? In particular, we
intend our model to help advanced users: i. e. users that would be suscepti-
ble to look under the hood, but without expertise in web security. We first
present our methodology to build our model in Section 5.1, and then detail
our WebRTC trust and security model in Section 5.2. The model evaluates
security with regards to the risk presented on the confidentiality and integrity
of the communication and shows which trust relations must be valid in order
for the security level to be trusted too. In order to validate our approach,
we present in Section 5.3 a preliminary study on the understanding of our
model by advanced users. This study is based on a survey containing a dy-
namic implementation of our model which allows modifying the trust and
security parameters.

Identity
Architecture

Model

Control

RQ3

RQ2

RQ1

Contribution 1

Contribution 3

Contribution 2

Figure 5.1: Overview of our
Contributions: Modelling the
WebRTC Trust and Security.

102 CHAPTER 5. WEBRTC TRUST AND SECURITY MODEL

Figure 5.2: Javed et
al. TrustCall architec-
ture [152].

1: This idea of representing
trust, distrust, and uncertainty
was first defined by Josang[166]
as subjective logic.

5.1 Methodology
As we stated in our Introduction chapter:

“Our intuition is that users should be given more information and control
over the security and trust level of their communications. This is our global
objective. For this to be possible, we need to build a model that could represent
the communication setup, the different channels, protocols, and the actors in
operation. This model would allow us to forge a single metric characterising
the risk of using the communication system, i. e. the trust and security level.”

Several methods and models have already been proposed to model the security or
trust of a communication system. We reported in our state of the art (see Section 2.2)
that Beltran et al. [146] propose a trust model of the WebRTC identity architecture in
a single Communication Service (CS) scenario. Building on this work, Javed et al. [149,
150, 152] work on reputational trust models for WebRTC representing trust, distrust,
and mistrust1. In their last proposed model [152], the user’s reputation is the weighted
sum of the user’s behavioural trust and a measure of its authenticity as presented in
Figure 5.2. They explicitly refer to trust visualisation and help to users’ decision as
possible uses of their trust model. However, their approach does not completely fit our
objective of a security and trust model. Indeed, security considerations in their model
are quite limited and only consider the authenticity of the other peer, a remark we also
made on their earlier work [150] in our state of the art. Furthermore, in this model
the authenticity of a peer is actually a reputation score rather than a measure of actual
authentication. While it would be acceptable to aggregate authentication score from
multiple recommenders, i. e. identity providers, the model does not discuss the binding
of these identity assertions with the actual WebRTC session. It seems that authenticity
is here used with a different meaning as the one we use in this thesis.

We also reported on a model by Alia et al. [128] which propose a component-based
adaptation model to manage the trade-offs between Quality of Service (QoS) and Se-
curity. They model an adaptable Voice over IP (VoIP) system as a composition of
components each providing different QoS and security properties. A utility function
aggregating QoS and security dimensions, shown in Figure 5.3, allows discriminating be-
tween different configurations. Considered dimensions are the latency and video scheme
quality for QoS and the confidentiality, anonymity, and authentication for security. Their
model also uses user’s preferences as weight in the utility function and risk context as
minimal required value for each security dimension. While we do not consider QoS in
our approach, we pursue a similar long-term objective of managing the security level.
However, in our view, this model also shows a limited security model. For instance, the
confidentiality function (presented in Table 5.1) only considers security over the media

5.1. METHODOLOGY 103

U = W lat.F (lat) +W qua.F (qua) +W conf .F (conf)+
W anon.F (anon) +W auth.F (auth)

Figure 5.3: Overall utility
function [128] where F (k) are
the utility functions and W k

user preference weights for di-
mensions k as latency, video
scheme quality, confidential-
ity, anonymity, and authenti-
cation.

Encryption Algorithm Key Length F (conf) Performance Overhead

DES 56 0.2 0.2
AES 128 0.3 0.3
Blowfish 128 0.4 0.4
Blowfish 448 0.5 0.5

Table 5.1: Confidentiality
utility function F (conf) and
performance overheads from
Alia et al. [128].

path. Other parameters of the session setup, such as the security of the signalling path
or the authenticity of the other peer, would have a major impact on the confidentiality
level but are not considered in this function. We also note that the value attributed to
the utility functions seems arbitrarily defined. This is, for instance, the case with the
confidentiality function shown in Table 5.1 which follows a linear increase.

Another methodology for modelling security of systems is to build attack trees. These
models are an analytical approach towards identifying possible attack vectors. Our re-
searches on the state of the art (see Section 2.2) and specific research on “WebRTC attack
tree” did not reveal any publication of a WebRTC attack tree. While the STREWS D1.2
document [140] and STREWS D1.1 document [139] refer to an attack tree as a step of
their methodology to map threats to WebRTC assets, no such tree has been published
in these documents.

As described by Bruce Schneier [167], creating an attack tree is an iterative process
starting with the identification of possible attack goals. Then for each goal, possible
attacks are added to the tree which will, in turn, require the completion of new attack
goals for the attacker. By default, the relation between an attack goal and its sub-goals
is defined as an OR relation, i. e. at least one of the subgoal must be accomplished for the
parent goal to succeed. Some other relations can be defined with an AND operator. In
these cases, each subgoal must be accomplished for the parent goal to succeed. Various
values can be further derived from an attack tree by assigned value to leaf or nodes of
the tree. For instance, these values may be the cost, difficulty, or conditions required to
accomplish an attack. This allows for instance to compute the cheapest possible attacks
requiring no special equipment, as in Figure 5.4. This decomposition process is iterated
as necessary until no more attacks are found.

To build our trust and security model we follow an iterative decomposition process, in
a similar way to attack tree decomposition. However, the intent of the model is to inform
the user of the security of its communication setup. It needs to be instantiated with
measurable security properties. We thus stop the decomposition of security properties
at measurable elements or where policies can be defined.

In Section 4.1 we discussed which actor would be best suited to provide trusted
identity recommendation and negotiation capabilities. We concluded that between the
Identity Provider (IdP), CS, and Browser, no actors appeared clearly more suited to
evaluate and negotiate over the other party authentication. The other peer authentica-
tion is only a subset of the security parameters that need to be monitored, but in our
opinion, a similar reasoning applies to the overall WebRTC security parameters. We

104 CHAPTER 5. WEBRTC TRUST AND SECURITY MODEL

Figure 5.4: Cheapest attack
requiring no special equip-
ment against a safe [167].
The black ark denotes an
AND relation, empty arks de-
note OR relations.

Open Safe
NSE/$20K

Learn Combo
NSE/$20K

Pick Lock
SE/$30K

Cut Open
Safe

SE/$10K

Install
Improperly
NSE/$100K

Find Written
Combo

NSE/$75K
Get Combo
NSE/$20K

Blackmail
NSE/$100K

Threaten
NSE/$60K

Eavesdrop
SE/$60K

Bribe
NSE/$20K

Listen
Conversation

SE/$20K

Get Target to
StateCombo
NSE/$40K

thus suppose that the browser is instantiating the trust and security model and consider
only elements that can be observed by the browser.

We previously cited Jøsang and Presti defining trust as “the extent to which one
party is willing to depend on something or somebody in a given situation with a feeling
of relative security, even though negative consequences are possible” [18]. To build our
model, we start from a high-level trust property node: the trust of the user Alice in
the confidentiality of her communication. We then iteratively decompose nodes into
their dependencies which are either other high-level trust, security properties or trust
relations with other actors. We note trust as TX(Y) where X is the truster and Y is a
trusted property (for high-level trust properties) or a trusted actor (for trust relations).
The decomposition process is carried on until a satisfying level of details is reached.
Dependencies in attack trees are represented either using an OR or AND relations as
explained previously and we use the same logic in our decomposition. Note that as we
model security rather than attacks, for the same scenario the signification of operators
is the reciprocal of the equivalent attack tree. For instance, if each attack subgoals must
be accomplished as represented by an AND operator, our security model would use the
OR operator meaning that at least one defence dependency must hold. We both model
our security and trust tree in graphical and outline form. Graphically we use the same
representation as in Figure 5.4 while in outline form we use the postfix decomposition
operators ⊗ and ⊕ respectively for AND and OR.

As we model the trust and security from an end-user point of view, not all security
properties are visible and leaves of this model are thus either security properties or trust
relations. For instance, the secure connection between both CSA and CSB is not visible
by Alice. Thus Alice can monitor her secure connection with CSA but must trust CSA

for the rest of the signalling path. In order to offer an alternative omniscient model, we
continue the decomposition process from terminal trust relations to observe the trust
and security model beyond. We define terminal trust relations as being transitive trust
relations from trust in an actor to trust in a security context. Graphically, such transitive
trust relations are represented as dashed lines while in outline form we use a grey font
to represent this omniscient model and → as the transitive operator.

5.2. BUILDING THE WEBRTC TRUST AND SECURITY MODEL 105

WebRTC Session
Confidentiality

Bob
Authenticity

Media
Confidentiality

(a) Graphical representation.

TA(conf(SessionA,B,M)) ⊗
TA(auth(B))

TA(conf(M))

(b) Outline form.

Figure 5.5: Alice’s trust in
the confidentiality of her We-
bRTC session.

2: The session architecture is
similar to the one presented in
Figure 1.14a.

5.2 Building the WebRTC Trust and Security Model
In this section, we model the trust of Alice in the confidentiality of her WebRTC session
with Bob. In this scenario, Alice and Bob setup their WebRTC connection each on a
different communication service, respectively CSA and CSB and both use an Identity
Provider, respectively IdPA and IdPB

2. We do not consider attacks conducted by the
web application such as interception or redirection attacks. Similarly, we do not consider
User-Agent and Operating System trust relationships with users in our model. As the
WebRTC specification considers the User-Agent to be the Trusted Computing Base, we
adopt the same point of view. Clearly, if the Trusted Computing Base or lower stack
software and hardware are corrupted, the whole communication is at risk.

5.2.1 Session Confidentiality
In order to trust that the communication setup ensures the confidentiality of the com-
munication, Alice must have trust in the two following properties:

• The other peer’s authenticity, i. e. that Bob is who he claims to be and that no
man-in-the-middle is present on the wire.

• The confidentiality of the peer-to-peer communication between Alice and Bob,
i. e. that an attacker cannot decrypt the media stream.

Attacks against both these properties are described in the STREWS D1.2 docu-
ment [140]. As both properties must hold, the trust of Alice in the confidentiality of her
WebRTC session is equal to the minimum trust in each of these properties. We represent
this relation graphically as in Figure 5.5a and in outline form in Definition 5.5b. With-
out explicit authentication, the other peer’s authenticity depends on actors operating
on the signalling path.

5.2.2 Signalling Path Security
Alice relies on the signalling path to establish a peer-to-peer session with Bob. She
must trust both communication services, CSA and CSB , to correctly route call offers
and answers to Bob. The risk faced is that a man-in-the-middle may be set up, either
by one of the communication service or by an external attacker leveraging an insecure
signalling path. We decompose trust in the signalling path as in Figure 5.6.

To trust the signalling from Alice to Bob, Alice has to trust the security of the
first link, i. e. the Transport Layer Security (TLS) connection between her and CSA,
as well as the remaining of the signalling path from CSA to Bob. To this end, Alice
has to trust CSA to behave honestly and securely. The rest of the signalling process is
however invisible from Alice’s point of view and could not be instantiated. Nonetheless,

106 CHAPTER 5. WEBRTC TRUST AND SECURITY MODEL

Figure 5.6: Alice’s trust in
Bob’s authenticity resulting
from the signalling process.

Bob
Authenticity

Fingerprint
Binding

Signalling
Alice -> Bob

Signalling
CSA -> Bob

Signalling
CSB -> Bob

TLS
A-CSA

TLS
CSA-
CSB

Bob
3rdP AAL

TLS
CSB-B

FnP Bob
3rdP AAL

TA -> CSA

TCSA -> CSB

(a) Graphical representation.

TA(auth(B)) ⊕
TA(sig(A,B)) ⊗
TLS(A,CSA)

TA(CSA)→
TCSA

(sig(CSA, B)) ⊗
TLS(CSA, CSB)

TCSA
(CSB)→

TCSB
(sig(CSB , B)) ⊗

TLS(CSB , B)

TCSB
(3pAAL(B))

TA(binding(FnPB , B)) ⊗
FnPB

TA(3pAAL(B))

(b) Outline form.

we represent it in our model for later discussions using dashed lines in graphical form
and grey font in outline form. In the simplest scenario, two users setup their WebRTC
connection using a single communication service operating in silo. With multiple CS
as we consider in this case, the user chooses its own service but may not know through
which service the call signalling transits. Communication services may be federated
around a unique signalling federation or operate using a circle of trust model. For Alice,
its trust relationship with the other party service, CSB , transits through its own service
CSA. Thus we then consider CSA trust in the remaining of the signalling path from
CSB to Bob. Similarly to Alice’s trust, CSA has to trust CSB to behave honestly and
that CSB uses a secure connection to Bob. CSA does not authenticate Bob and thus
has to rely on CSB trust in Bob’s authenticity. In our case, this last property relies on
CSB using an authentication delegation protocol with a third-party IdP.

As explained previously, Bob’s fingerprint, noted FnPB , binds his Datagram Trans-
port Layer Security (DTLS) key used in the media plane to the signalling plane [56].
Optionally, the WebRTC specification also allows binding this fingerprint to a third
party identity assertion. If such an identity assertion is provided, this binding has to
be broken in order to set up a man-in-the-middle attack. Thus the fingerprint binding
depends on both the strength of the fingerprint and on the third party authentication
noted 3pAAL(B). We detail this part of the model in the following section.

5.2.3 Identity Path Security

As we explain, the WebRTC identity assertion mechanism binds Bob’s fingerprint re-
ceived over the signalling path to an identity assertion issued by Bob’s identity provider
IdPB . This assertion is verified by the browser instantiating an IdP Proxy (see Sec-
tion 1.3.4). The security of this process relies on four dependencies presented in Fig-
ure 5.7.

5.2. BUILDING THE WEBRTC TRUST AND SECURITY MODEL 107

Bob
3rdP AAL

TLS
A-

IdPB
Tkn

TLS
IdPB-

B
Auth

AAL

TA -> IdPB

(a) Graphical representation.

TA(3pAAL(B)) ⊗
TLS(A, IdPB)

TknB

TA(IdPB)→
TIdPB

(AAL(B)) ⊗
Auth(B)

TLS(B, IdPB)

(b) Outline form.

Figure 5.7: Alice trust in
Bob’s identity path.

Regarding the verification of the identity assertion, Alice must be able to communi-
cate securely with IdPB . This includes the download of the IdP Proxy over HyperText
Transfer Protocol Secured (HTTPS), a policy enforced by the WebRTC specification,
but also subsequent communications between the IdP Proxy and the IdP server. The
verification of the identity assertion must also be secure against integrity attacks. We
note the trust in the identity assertion as TA(TknB) although the exact nature of the
identity assertion depends on the protocol implemented by the IdP. For instance, one
of our implementation presented in Section 3.1.2 uses a JSON Web Token (JWT) con-
taining the user’s fingerprint. Compromising the integrity of the JWT could allow an
attacker to impersonate one of the peers and mount a Man-in-the-Middle (MitM) attack.

Alice also needs to trust Bob’s IdP, noted TA(IdPB), and its authentication of Bob.
However, this process is not visible from Alice. Nonetheless, we represent it in dashed
lines in graphical form and grey font in outline form. In some cases, the IdP may rec-
ommend Bob’s authentication strength, for instance using the OpenID Connect (OIDC)
Authentication Context Class Reference (ACR) claim. We note this recommendation
TIdPB

(AAL(B)) which depends on the authentication strength of Bob and the presence
of a secure connection between Bob and his IdP.

Supposing that CSB authenticated Bob using an authentication delegation protocol,
the same decomposition could be applied to the trust of CSB in Bob’s authenticity
noted TCSB

(3pAAL(B)) and presented in Figure 5.6. As we remarked in Section 1.3.4,
in most cases the same IdP would be used by Bob to authenticate to CSB and Alice.

5.2.4 Media Path Confidentiality
The confidentiality of the media path is ensured by the Secure Real-time Transport
Protocol (SRTP) protocol using DTLS for handshake and keying and vulnerabilities or
weak security level on either of these protocols could lead to a compromised encryption of
the media path. The WebRTC security architecture [50] mandates the implementation
of DTLS 1.0 and recommends the implementation of DTLS 1.2. Guidelines regarding
the implementation of cypher suites and SRTP profiles are also given. The trust of Alice
in the media path confidentiality thus depends on the strength of the protocols and the
cypher suite in use as presented in Figure 5.8.

5.2.5 Overall Trust and Security Tree, Instantiation and Com-
putational Models

Combining the previous subtree, we reconstruct the whole trust and security tree as
presented in Figure 5.9. Leaves of the decomposition tree are either security elements

108 CHAPTER 5. WEBRTC TRUST AND SECURITY MODEL

Figure 5.8: Alice’s trust
in the confidentiality of the
peer-to-peer media streams.

Media
Confidentiality

DTLS SRTP

(a) Graphical representation.

TA(conf(M{A,B})) ⊗
DTLS

SRTP

(b) Outline form.

3: Although this model also
has its limits as add blockers
gain a powerful and somewhat
illegitimate position.

e. g. TknB , or trust in actors of the communication setup e. g. TA(IdPB). In order
to instantiate the model, it is necessary to assign values to these leaf elements and a
computational model to ⊗ and ⊕ nodes. The model can then be evaluated to return an
overall value representing the security of the WebRTC session to the user.

In Section 1.4, when introducing the concept of trust, we explained that trust mod-
els are generally categorised between policy and reputation-based trust. Supposing the
definition of some policy rules, trust in actors could be represented as a boolean. Users
could configure such policies in their browsers for instance as a list of trusted actors.
A similar functionality is already implemented by browsers for the management of web
Application Programming Interface (API) authorization granted to web origins. Alter-
natively, trust model can rely on reputation trust, often represented as a continuous
score, for instance on [0; 1]. This is the approach followed by the many reputation mod-
els such as from Javed et al. [149] which suppose either a centralised recommendation
source or a distributed reputation model based on users’ opinions. However, manag-
ing too many permissions may be difficult for users and their permanent nature may
result in vulnerabilities as reported by the STREWS project [140]. The web browser
or a third-party could also provide such recommendation lists, for instance in a similar
fashion to add-blocking extensions3.

Regarding values for security elements, we reported in the state of the art (Sec-
tion 2.1) how national security agencies publish recommendations on security algorithms
implementation and usages based on prior work by Lenstra [125]. As with trust, policies
can define good enough security level, for instance, based on implemented cypher suites
and Authentication Assurance Levels (AAL). While compliance with such policies can
be represented as boolean values an alternative is to use numerical values. For instance,
Alia et al. [128] use such values for their security utility functions, although apparently
arbitrarily defined. In order to derive numerical values for a security utility function,
a solution is to divide the implemented key length by the recommended key length
bounded to one:

Figure 5.10: Comparative se-
curity utility function with k
the actual key size and r the
recommended key size both
expressed in bits.

F (k, r) =

{
2k−r if k ≤ r

1 else.

Table 5.2 gives an example instantiation of such function over a WebRTC setup. In
this example, Alice uses the Chrome web browser to visit a WebRTC website and con-
nect to Bob. The website CSA provides a “Let’s encrypt certificate” and the connection
is encrypted using the AES symmetric encryption algorithm. The ANSSI recommends
a 100 bits key size for symmetric encryption algorithms [126] and in this instance, a
256 bits key is used. DTLS and SRTP are then used to establish the WebRTC session.
More particularly, only the DTLS ECDHE key exchange and the ECDSA authentication
mechanism are used with the P-256 curve, meeting the recommended key size for elliptic
curves. The certificate’s fingerprint is a SHA256 hash which also meets the recommen-

5.2. BUILDING THE WEBRTC TRUST AND SECURITY MODEL 109

WebRTC Session
Confidentiality

Bob
Authenticity

Fingerprint
Binding

Signalling
Alice -> Bob

Signalling
CSA -> Bob

Signalling
CSB -> Bob

TLS
A-CSA

TLS
CSA-
CSB

Bob
3rdP AALTLS

CSB-B

FnP
TA -> CSA

TCSA -> CSB

Media
Confidentiality

DTLS SRTP

Bob
3rdP AAL

TLS
A-

IdPB
Tkn

TLS
IdPB-

B
Auth

AAL

TA -> IdPB

(a) Graphical representation.

TA(conf(SessionA,B,M)) ⊗
TA(auth(B)) ⊕
TA(sig(A,B)) ⊗
TLS(A,CSA)

TA(sig(CSA, B)) ⊗
TA(CSA)

TLS(CSA, CSB)

TCSA
(sig(CSB , B)) ⊗

TCSA
(CSB)

TLS(CSB , B)

TCSB
(3pAAL(B))

TA(binding(FnPB , B)) ⊗
FnPB

TA(3pAAL(B)) ⊗
TA(IdPB)

TLS(A, IdPB)

TA(TknB)

TIdPB
(AAL(B)) ⊗

auth(B)

TLS(B, IdPB)

TA(conf(M{A,B})) ⊗
DTLS

SRTP

(b) Outline form.

Figure 5.9: Overall trust of
Alice in the confidentiality of
her WebRTC session.

dations. Once the connection is established Alice asks Bob to authenticate using the
solution described in Section 4.1. The TLS session between Alice and IdPB uses the
same configuration as for CSA. Finally, the identity assertion is a JWT signed with the
RS256, i. e. RSASSA-PKCS1-v1_5 using SHA256 which also meets the recommenda-
tions.

The operator ⊗ represents weakest link dependencies, i. e. all trust or security de-
pendencies must hold for the parent property to hold. The value of an ⊗ node is thus the
minimum value of each of its dependencies. Symmetrically, the operator ⊕ represents
situations where at least one dependency must hold for the parent property to hold. We
thus define the value of an ⊕ node as the maximum value of each of its dependencies.
These two operators allow us to represent the trust and security view from the user’s
point of view, i. e. limited to what the browser can monitor. However, we also extended
our trust and security tree to relations between other actors, e. g. Bob’s authentication
by his IdP in Figure 5.7. These extensions are characterised by transitive trust relations,
e. g. Alice’s trust in Bob’s IdP in Figure 5.7. To evaluate such transitive trust, we use
the trust relationship as a weight to its dependency value. Figure 5.11 presents the
overall formula for evaluating the trust of Alice from both her point of view and from
an omniscient point of view.

110 CHAPTER 5. WEBRTC TRUST AND SECURITY MODEL

Table 5.2: Security element
instantiation based on ANSSI
recommendations [126].

Security Element Key Length Category (rec) Value

TLS A− CSA/A− IdPB
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

256 Sym (100) 1

DTLS
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

P-256 EC (200) 1

SRTP
AES_CM_128_HMAC_SHA1_32

128 Sym (100) 1

FnPB
SHA256

256 Hash (200) 1

TknB
RSASSA-PKCS1-v1_5 using SHA256

256 Hash (200) 1

4: The survey is accessible
at http://kcorre.github.io/
webrtcsurvey.

5.3 Validation

Our WebRTC trust and security model is designed to help end-users understand the
security of their communications and how their trust in actors of their WebRTC setup
may influence their security. Similarly to the secure connection indications implemented
by web browser, i. e. the HTTPS green lock, our model can be instantiated and evaluated
to return a single value. It could also be presented in an instantiated graphical form
to provide a detailed view of the situation intended for advanced users, again similarly
as to how web browser display details on HTTPS certificates. While the usage of a
coloured icon as a way to provide a security indicator is already deployed in browser,
this is not the case of our trust and security decomposition model. In this section, we
intend to answer the following questions:

• RQ1.2 How do users understand the definition of trust in actors of the communi-
cation setup?

• RQ1.3 Does our trust and security model helps users understand the security of
their WebRTC communication?

5.3.1 WebRTC Trust and Security Model Survey

To this end, we conducted an online survey that we distributed to researchers in our
team. Compared to a more generic end-user population, we believe that this population
is more concerned with the security of their communications and as such more susceptible
to search for a detailed view of a communication security setup. However, compared to
security experts, communication security is not an area of focus for our research team.
We thus estimate that this population corresponds to the category of end-users that
would like to understand what’s happening “behind the hood” but may need the help
of an high-level model to grasp the situation. As the size of the surveyed population is
however quite limited, we do not claim any representativity of our results but we see
them as preliminary. More investigations may be needed.

One of the design goals of our survey is that we want participants to express their
own intuitive understanding of the trust and security setup helped by our model. The
difficulty lies in how we explain our model and WebRTC security, without influencing too
much the participants. For instance, giving a crash course on WebRTC basically saying
“WebRTC is secure if a third-party IdP is used” would help participants understand the
WebRTC security architecture, but it would not reveal if this understanding was due to
our model or not. Throughout the survey, we thus walk a narrow line where we provide
a limited description of the VoIP or WebRTC scenarios and architectures.

The survey is organised in four successive page4. On the first page, we recall how web
browser asserts the confidentiality and authenticity of HTTPS connection to website by

http://kcorre.github.io/webrtcsurvey
http://kcorre.github.io/webrtcsurvey

5.3. VALIDATION 111

TA(SessionA,B,M) =

MIN(

MAX(

MIN(

TLS(A,CSA),

TA(CSA)

),

MIN(

FnPB ,

TLS(A, IdPB),

TknB ,

TA(IdPB)

)),

DTLS,

SRTP

)

(a) Alice’s point of view.

TA(SessionA,B,M) =

MIN(

MAX(

MIN(

TLS(A,CSA),

TA(CSA) ∗MIN(

TLS(CSA, CSB),

TCSA
(CSB) ∗MIN(

TLS(CSB , B),

TCSB
(IdPB) ∗MIN(

Auth(B),

TLS(B, IdPB))))

),

MIN(

FnPB ,

TLS(A, IdPB),

TknB ,

TA(IdPB) ∗MIN(

AAL(B),

TLS(B, IdPB))

)),

DTLS,

SRTP

)

(b) Omniscient point of view.

Figure 5.11: Overall com-
putational formula for Alice
trust in her WebRTC session.

displaying a green lock icon. We then briefly explain our objective and that the survey
will be used to evaluate the interest, usefulness, and clarity of our security model. The
intended duration of the survey, ten minutes, is also stated. The last page is used to let
participants qualify their expertise in the fields of web technologies, computer security,
and real-time communication technologies. For each field of expertise, participants are
instructed to choose an expertise level between end-user, intermediate, and expert. The
bulk of the survey’s questions are on page two and three which we detail below.

In the second page, the survey focuses on trust in audio and video communications.
We first present the role of CS in VoIP services and their responsibility of the signalling
and authentication of participants. After defining WebRTC illustrated with a basic
WebRTC architecture, we explain how identity providers allow users to authenticate
by exchanging identity assertions. We then define several real-time communication sce-
narios and request participants to evaluate their trust in such scenarios regarding the
confidentiality of their communications. We propose a trust scale between 0 and 10 in
the context of communication confidentiality and privacy, defined as follows:

“On this scale, 10 represents an absolute trust that actors in the communica-
tions setup or external attackers are not breaching, or are not able to breach,

112 CHAPTER 5. WEBRTC TRUST AND SECURITY MODEL

the confidentiality and privacy of your communication. While 0 stands for a
total distrust. i.e. an attack could be mounted as with a weak security level.”

Formulated as such, trust is a subjective measure. Our intent here is both to exemplify
various real-time communication deployments and to see if users feel comfortable in
attributing trust score to VoIP scenarios and their underlying communication services.
The scenarios described in our survey are:

• A national mobile phone call.

• An international mobile phone call.

• A well-known web communication service, e. g. Skype, Messenger, or Whatsapp.

• A web meeting service provided by your company.

• A web service for hosting work meeting and discussions, e. g. Slack, Fleep, Ap-
pear.in.

• A WebRTC enabled webpage providing a call widget to a customer service; e. g. a
banking website.

• An untrustedWebRTC communication service with a third-party identity assertion
from a known identity.

• A Real-Time Communication service using an old plugin and unspecified security
parameters, e. g. with a Flash plugin.

Basically, these scenarios describe three communication service categories: legacy
phone services, web Over The Top (OTT) services, and ubiquitous WebRTC services.
Comparisons can be drawn between scores attributed to scenarios in the same categories
and between categories. In scenarios describing mobile phone services, we insist on the
difference between national and international call. As we explained previously, the telco
model relies on trust circles to integrate multiples operators. While telco operators are
not explicitly visible when receiving a call, national operators are at least known to the
users which may less be the case for international operators. In scenarios describing
web OTT services, we insist on three categories of services: big OTT player often feared
and criticised for their dominant position, smaller communication services which may
benefit from a better image, and services officially recommended or provided by the user’s
company. These scenarios are thus intended to reveal trust based on subjective opinion
rather than technical setup. In the WebRTC service category, we intend to see how
users may intuitively trust the WebRTC identity architecture. The WebRTC enabled
webpage scenario is exemplified with a banking website which should suggest high-
security standards and thus trust. On the contrary, in the second WebRTC scenario,
we specifically describe an untrusted WebRTC CS, although backed by a trusted IdP.
In the WebRTC security architecture [50], such scenario is used to justify the use of the
third party IdP. Finally, the last scenario suggests a service using a weak security level
or with existing vulnerabilities.

Submitted results are presented in Table 5.3. As the surveyed population is not
representative we do not draw any conclusions but bring some remarks to the reader’s
attention. We expected attributing trust values to be a clearly subjective task. However,
as we observe that trust values in a given scenario are quite different for each participant,
we also observe that participants use different trust scales. This may reveal that a single
trust value may not have the same meaning for two users. We also note that each
participant who rated the insecure scenario with a trust value superior to 0 also qualified
their experience with computer security as ”end-users”. Another interesting observation

5.3. VALIDATION 113

Figure 5.12: Survey: Trust in Communication Scenarios.

114 CHAPTER 5. WEBRTC TRUST AND SECURITY MODEL

Table 5.3: Survey results:
trust in audio and video com-
munications.

Scenario u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 Mean

Mobile 3 6 9 9 3 6 6 7 7 0 5.6
Int. Mobile 2 4 7 4 3 5 5 4 6 0 4

Big OTT 3 6 6 6 3 6 6 6 7 3 5.2
Small OTT 3 6 4 6 4 8 8 5 4 3 5.1
Company 4 6 6 7 3 9 8 8 8 0 5.9

WebRTC 3 3 3 5 5 8 8 5 2 3 4.5
WebRTC IdP 2 1 5 6 3 6 0 5 1 3 3.2

Insecure 1 2 0 3 3 0 0 0 0 0 0.9

Trust scale 1-4 1-6 0-9 3-9 3-5 0-8 0-8 0-8 0-8 0-3 -

is the mean trust of the WebRTC IdP scenario. With the exception of the insecure
scenario, the WebRTC IdP scenario has the lowest mean trust. Further investigation
may thus show that providing an identity assertion may not be enough for users to trust
any WebRTC enabled website.

In the third page of the survey, we let participants play with a dynamic implementa-
tion of our trust and security model in graphical form as presented in Figure 5.13. The
model represents high-level trust property as coloured nodes depending on their actual
trust values, and security properties as small black nodes. A panel in the top-left corner
let participants define various trust relations. Similarly, a list of radio button elements
corresponding to communication scenarios on the previous page let participants select
trust configurations. In this mode, the actual trust values depend on the trust values
previously defined by the participant. For instance, if one participant set a trust value
of 6 to the WebRTC IdP scenario, selecting this scenario on the dynamic trust model
would set the following trust relations: TA(CSA) = 0 and TA(IdPB) = 0.6. Partici-
pants can also interact with black security nodes by double-clicking on them in order
to modify the nodes’ value. In order to explain the model, a limited description of the
modelled WebRTC scenario is provided as reproduced in Figure 5.14a. The dynamic
model also displays tip note when hovering over high-level and security nodes, mainly
used to explain acronyms.

Finally, participants are invited to evaluate their interest for the presented WebRTC
security model and the trust layer, as in Figure 5.14b. The proposed values for both
questions are Interesting, Slightly interesting, and Not interesting. Participants are also
instructed to state up to which decomposition level are they able to understand the
model. The proposed values are I don’t understand the model, Top value, One or two
level, and The whole tree. The survey also offers a text box for comments and we
gathered other feedbacks in face to face discussions. Results of this part of the survey
are presented in Table 5.4.

Again, our results are not representative and we limit ourselves to observations.
Although the survey is anonymous, rating the interest of the model in such manner
probably gives biased results probably. It is thus more interesting to look at the eval-
uation of the interest in conjunction with the level of decomposition the participants
were able to understand the model. Three answerers -u6, u7, u9- declared that they
understood the whole model and that it is an interesting representation of WebRTC
security and trust relations. None of these declared themselves an expert in any cate-
gories. Other participants -u1, u2, u5, u10- found an interest in the model but did not
understand the whole decomposition declared. Finally, some participants -u3, u8- only

5.3. VALIDATION 115

Figure 5.13: WebRTC Trust and Security Model implementation in D3.js.

116 CHAPTER 5. WEBRTC TRUST AND SECURITY MODEL

(a) Description of the WebRTC scenario of
the dynamic model. (b) Survey Questions

Figure 5.14: Survey: Interest in the WebRTC Trust and Security Model.

5.3. VALIDATION 117

Interest u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

WebRTC model 2 2 1 1 2 2 2 1 2 2
Trust layer 2 2 1 1 1 2 2 1 2 2

Detail level Some Some Top Some Some All All Top All Some
.

Table 5.4: Survey results: In-
terest of the trust and se-
curity model. Interest for
the WebRTC model and trust
layer correspond to Interest-
ing (2), Slightly interesting
(1), and Not interesting(0).
On the detail level line, Top
stands for only the top value,
Some stands for only one
or two decomposition level,
and All stands for the whole
model

understood the top value and only found a slight interest in the model -u3, u4, u8-. The
comments and discussions also indicated that the meaning of lower decomposition levels
where difficult to understand and not adapted for end-users. Even with the help of tip
notes to explain nodes. It is also interesting to see that participants who declared to
understand the whole tree -u6, u7, u9- did not rate themselves as web technologies ex-
perts on the contrary to some participants who did not understand the whole model -u1,
u2, u5, u10-. As a participant reported “the model [...] is interesting for people who do
not have much knowledge in the field but still are interested in knowing how it roughly
works.” On the other hand, it may not be satisfying for people with more experience in
web technologies who would have higher expectations before declaring themselves able
to understand the model.

5.3.2 Discussions

As we explain, the validation of our WebRTC trust and security model is limited to
a preliminary experiment. In the future, we intend to conduct further investigation
on a larger population. Evaluating trust in a survey’s artificial setting is a complex
and difficult task. Nevertheless, the preliminary study helped in identifying avenues for
refinement.

In the survey, we explicitly instructed participants to consider trust in the context
of the confidentiality and privacy of their communications. However, some participants
reported a difficulty to contextualise this trust without visible communication scenario.
We envision that rather than explaining the WebRTC architecture, our large-scale survey
should include an instance of a WebRTC communication service. This communication
service would give a sense of context for the model and its trust and security parameters
to the participants. Similarly, the expression of context in the model is limited to some
high-level trust nodes. In Section 1.4 we explained that a trust relation depends on a
specific context and that recommendations may allow transitivity from one trust context
to others. A more explicit representation of trust context and context transitivity may
help in understanding the model. We thus intend to explore how a coloured trust
tree could be used to explicitly represent trust context in the model. We also observe
a variation in the numerical trust scales used by users. While this variation may be
due to different perception of trust for a single scenario, it may also reveal that users
do not agree on the meaning of numerical trust values. Although our model uses a
numerical representation of trust, it may be preferable to let users define trust using
natural language. This questions the practicality of trust value provided by reputation
systems; as a single trust value may not have the same meaning across the whole user
population. This may be worth exploring in future research.

In the survey, and in particular on dynamic model, we represented the whole decom-

118 CHAPTER 5. WEBRTC TRUST AND SECURITY MODEL

5: about:webrtc

6: chrome://webrtc-
internals/

position tree including transitive relations. From the interest and understanding scores,
we observe that different level of details caters to the expectations of three categories
of users. In the perspective of a larger scale study, a functionality to let users expand
the decomposition tree will be implemented. This would let participants select their
preferred level of details and focus on what they are able to understand. The dynamic
model also reveals that in practice, the confidentiality utility function presented in Ta-
ble 5.2 is equivalent to a boolean policy. Indeed, slight change in key size results in
large decrease in the security value. Moreover, cypher suites key size implementations
generally vary by more than a few bits. Instantiating the model’s security properties
using WebRTC security statistics seems a more practical approach. Building the survey
and the dynamic model around an actual WebRTC communication service will help
the implementation of this approach. However, this requires access to those security
statistics provided by browser. At the time of writing, Firefox does not publish security
statistics for WebRTC session5. On Chrome, these statistics are accessible from the
browser WebRTC statistics6 but not from JavaScript code as in Figure 5.15.

Figure 5.15: This
JavaScript code prints
RTCTransportStats. How-
ever, on Firefox it returns
no element, and on Chrome
the returned stat does
not include dtlsCipher or
srtpCipher elements.

var pc = new RTCPeerConnection()
[...]
pc.getStats()
.then(stats => {

stats.forEach(stat => {
if(stat.type == ’transport’)
console.log(stat)

})
})

Finally, we remark that Alice’s IdP does not appear in the trust and security model,
neither from Alice’s point of view or from an omniscient point of view. On an untrusted
CS, Alice’s IdP may be the only actor in the communication setup trusted by Alice.
This is paradoxical but easy to explain: as Alice authenticates with her IdP, for all she
knows she may be authenticating to a MitM attacker. It is Bob’s IdP that proves to
Alice that the communication is secure. For this reason, it is important that Alice trusts
Bob’s IdP, for instance through a negotiation process as we presented in Section 4.1. An
alternative solution could be to use a confirmation mechanism so that Alice’s IdP may
be enough for Alice to trust the session. Such mechanism could draw from ZRTP (see
Section 1.3.6) or simply be a modification of the existing WebRTC identity validation
protocol.

about:webrtc
chrome://webrtc-internals/
chrome://webrtc-internals/

5.4. SUMMARY 119

Summary

In our previous contributions, we have implemented the WebRTC identity architecture and proposed
solutions for users to have more control over the WebRTC identity parameters. We believe that
for users to understand, and trust, the security of their communications, they should have more
information about the security of their communications. Web browsers are currently pushing for a
secure web and are educating users to look for website security configurations. However, the security
of WebRTC is more difficult to understand as it involves more actors than a simple client-server
connection. In this chapter, we have proposed a model representing the security of a WebRTC
session.

We presented our methodology based on an iterative decomposition process. Our model uses the
security parameters of the signalling process, media encryption, but also trust parameters configured
by the user. It is a representation of the user’s trust in the confidentiality of its session, from its
own point-of-view. However, we also consider the transitive nature of trust relations and propose
an omniscient view of the session confidentiality model. We then discuss an instantiation of our
model and propose a utility function for security parameters.

To validate our model, we conducted a preliminary experiment on non-experts users. In this study,
we evaluated how users understand the definition of trust in actors of the communication setup and
how our trust model helps them understand the security of their WebRTC communication. This
study was based on an online survey offering participants to interact with a dynamic implementation
our model. This survey helped identify potential difficulties for the understanding of the model and
the measure of users perception.

120 CHAPTER 5. WEBRTC TRUST AND SECURITY MODEL

121

Part III

Conclusion and Perspectives

123

Chapter 6

Conclusion

In this thesis, we have studied how users can control the trust and security level of their Web Real-Time Commu-
nications. WebRTC is a standardisation effort for interoperable real-time communication in the Web, in line with
the specifications of HTML5 technologies. These specifications aim to provide for dynamic webpages, running
in a compatible browser, and suitably authorized by the user, with the capability to set up audio, video, or data
communication. We first conducted a research survey on Voice over IP (VoIP) and WebRTC security research
and observed that the WebRTC identity architecture attracted a lot of interest from the community. This archi-
tecture decouples the signalling path from the identity path by binding media session security certificates to an
identity asserted by an Identity Provider (IdP). The claim of the specification is that this architecture allows users
to trust the security of their sessions even if the Communication Service (CS) is not trusted. However, we noted
that the security and privacy of the specification have only been studied from a theoretical point of view [143].
In particular, the cross-implementation issues between Single Sign-On (SSO) protocol and WebRTC are rarely
considered [145, 143]. The specification itself only sketches an implementation with the OAuth protocol in its
annexe [50]. We neither observed research considering the IdP as a possible attacker of the user’s privacy.

Paradoxically, the WebRTC identity path is left for the CS to configure and control as it is the CS who sets
the IdP to use. From our point of view, it is not clear if the identity path can be trusted independently of the
CS. Our intuition is that users should have more information and control over the security and trust level of their
communications. With this objective in mind, we studied the following research questions:

• RQ1: What are the risks for the user of a WebRTC session and which abstractions can we use to show
these risks to the user?

– RQ1.1: Are there any security vulnerabilities in the identity path of the WebRTC security architec-
ture?

– RQ1.2: How do users understand the definition of trust in actors of the communication setup?
– RQ1.3: Does our trust and security model helps users understand the security of their WebRTC

communication?

• RQ2: Can we act on a WebRTC session to raise the trust and security level?

– RQ2.1: How to let users negotiate the other peer’s identity parameters?

• RQ3: Can we let users choose actors they trust to participate in the communication setup?

– RQ3.1: Do RP require specialised API?
– RQ3.2: Is dynamic discovery and registration commonly available for RP?
– RQ3.3: Do RP requires a trust relationship with the supported IdP?
– RQ3.4: Can we leverage the WebRTC identity architecture to let users chose their IdP for user-to-

server authentication?

To answer these research questions, we have proposed three main contributions.

124 CHAPTER 6. CONCLUSION

In our first contribution (in Chapter 3), we have studied additional privacy implications focusing on the
WebRTC identity architecture and on the role of the IdP.

We first presented our implementation of the WebRTC identity architecture and in particular the integration
of the IdP Proxy component with the OpenID Connect (OIDC) protocol. This work reveals that while OIDC
facilitates the creation and signature of WebRTC identity assertion, its integration is not straightforward. In
particular, although WebRTC offers an abstract authentication delegation interface it is not particularly suited
to manage authorization delegation. We then answered to RQ1.1 by showing additional privacy risks that IdP
should take in consideration to implement the WebRTC identity architecture. We also showed how the IdP can
compromise users’ privacy without their explicit consent. The central role and responsibility of IdP is reinforced
by their inclusion in WebRTC call setup.

We then focused on answering RQ3 to find if we can let users chose actors they trust to participate in the
communication setup. We conducted a survey of the top-500 websites’ usage of OAuth 2 and OIDC to identify
possible reasons for this situation. We classified Relying Party (RP) by the types of authorization they request
to users. Our results show that a majority of RP, 58% of 103, do not require specialised data. However, we also
observed that OIDC proposes standardised profile claims, scopes, endpoint, and data format but is implemented
by only a few IdP. Similarly, OIDC offers optional standards for dynamic discovery and registration of RP but
these are not implemented at all on surveyed IdP. This may be due to necessary trust relations between IdP
and RP but our survey did not allow us to answer for that matter. Finally, we conducted a survey, targeted at
developers, to identify important IdP’s properties in the developer’s opinion. Our results show that a consensus
exists on the need for a strong authentication and well-crafted user experience but not on other properties. Our
conclusion on RQ3.1 and RQ3.2 is that while technical solutions for allowing users to choose their IdP exist,
these are not implemented by IdP and RP alike.

In our second contribution (in Chapter 4), we have looked at solutions to give users more control over
WebRTC identity parameters: their peers’ authentication and their own IdP.

We first proposed Authentication Class and Origin Request (ACOR), a Session Description Protocol (SDP)
extension to negotiate the Authentication Class and the IdP’s Origin for the authentication of the other party
during a WebRTC call. We implemented our solution in a WebRTC service and tested it using Firefox to answer
RQ2.1. Our tests revealed that while it is possible to request identity parameters to the other peer, obtaining
feedback on the peer’s authentication class is not possible at the moment. We believe that this missing feature
may be useful even outside of a negotiation use case and that it could easily be supported by the WebRTC
identity architecture.

We then presented WebConnect, a web identity metasystem to let users select their trusted IdP. WebConnect
answers RQ3.4 and show that the WebRTC identity architecture can be leveraged to build a user-to-server
authentication mechanism. We implemented a prototype version based on a Firefox extension and reusing IdP
Proxy implemented in Section 3.1. We thus believe that a Web Identity Metasystem such as WebConnect is a
good way to give users more control over which identity services they want to use both in WebRTC and on the
Web in general.

In our third contribution (in Chapter 5), we have proposed a model representing the security of a WebRTC
session so that users may have more understanding of the security of their WebRTC session.

We presented our methodology based on an iterative decomposition process. Our model uses the security
parameters of the signalling process, media encryption, but also trust parameters configured by the user. It is a
representation of the user’s trust in the confidentiality of its session, from its own point-of-view. In addition, we
considered the transitive nature of trust relations and proposed an omniscient view of the session confidentiality
model. We then discussed an instantiation of our model and propose an utility function for security parameters.

To validate our model, we conducted a preliminary experiment on non-experts users. In this study, we
evaluated how users understand the definition of trust in actors of the communication setup and how our trust
model helps them understand the security of their WebRTC communication. This study was based on an online
survey offering participants to interact with a dynamic implementation of our model. This survey helped to
identify potential difficulties for the understanding of the model and the measure of users perception.

125

Chapter 7

Perspectives

In this chapter, we present some research directions emerging from the work
presented in this thesis. A few of these perspectives were already envisioned
as long-term objective at the start of our work. However, other unveiled
from our research results and we believe that researching them may yield
interesting contributions. We already started exploring some of these direc-
tions. We first expose how we would like to extend our WebRTC trust and
security model in Section 7.1. Then we propose ways to continue work on
the WebRTC IdP Proxy interface in Section 7.2. Finally, in Section 7.3 we
argue for a comparison of our WebConnect solution with the work of the
W3C WebPayment working group.

7.1 On the WebRTC Trust and Security Model

Instantiation @Runtime

We discussed in Section 5.3.2 of how we intend to conduct a larger scale survey to
validate our trust model. One of our objective is to integrate the model into a running
WebRTC service to give a sense of context to participants. Ultimately, the model is
to be used by the browser to display a trust and security indicator to the users. In
both situations: the Communication Service (CS) or the browser running the model,
we need to instantiate the model from the actual security configuration, i. e. we need to
access relevant WebRTC statistics. We have proposed what we call an omniscient view
of our WebRTC trust and security model. To instantiate this omniscient model on an
actual WebRTC service, we need to implement a trusted introspection function in the
communication setup. This function would let actors feed their own security information
to the model. The question of trust in these inputs may pose a difficult challenge to
solve.

Our contributions focused on “manual” reconfiguration of the identity parameters,
i. e. negotiation and free choice of used Identity Provider (IdP) and authentication level.
Our work opened the possibility to work on automatic reconfiguration of a WebRTC
session for an increased security level. It should be our next step in the direction of
allowing users to control their WebRTC security. For instance, we believe that our
trust and security model and identity negotiation solution could be integrated with the
approach from Alia et al. [128] for dynamic reconfiguration of the security and Quality
of Service (QoS) parameters. We believe that setting up this work on a given signalling
architecture rather than on a signalling-agnostic approach may help in determining
reconfiguration options.

126 CHAPTER 7. PERSPECTIVES

Figure 7.1: One-Shot Proto-
cols Architecture

Service

OneShot Protocol Stubs

Trust Contextualisation

Another way to contextualise the WebRTC trust and security model could be to ex-
plicitly add context information to the trust and security decomposition. For instance,
we considered the possibility to represent explicit context information using a coloured
tree in the graphical representation. Using such formalism means that the decompo-
sition nodes in the model are actually typed. Firstly, this would allow to express the
exact purpose of a trust relation between two actors. Secondly, the typed decomposition
nodes and typed security properties could be extracted from the model. We believe that
researching this direction could open the path of a protocol composition language. Such
protocol composition language could be used to build on demand security mechanisms
based on high-level requirements.

One possible application of a protocol composition language may be to implement
protocol diversification @Runtime. Automatic diversification techniques [168] aim at re-
ducing software mono-culture and its inherent weakness, i. e. break-once break-everywhere
vulnerabilities. The idea of automatic protocol diversification is thus to generate pro-
tocols on-the-fly for each opened connection. Whether such architecture would actually
increase communication security is an open question.

7.2 On the IdP Proxy Interface

Loopback Interface

In some scenarios, especially those for which the WebRTC identity architecture is de-
signed, Alice’s IdP may be the only trusted actor in the communication setup. Observing
our WebRTC trust and security model, we remarked that Alice’s IdP has no influence
on Alice’s trust in her security. This is a quite important paradox. Of course, it is the
responsibility of Bob’s IdP to authenticate Bob, but what if this IdP is also not trusted?
In Section 4.1, we proposed a solution to let Alice negotiate which IdP may be used
by Bob. However, if Alice authenticates too, Alice’s IdP Proxy will be instantiated on
Bob’s browser. This is an important asset that could be leveraged so that Alice’s IdP
participates in Alice’s trust.

Inspired from the ZRTP protocol, a loopback feature, as presented in Figure 7.2,
could be implemented so that Alice’s IdP confirms who verified the identity assertion.
As Alice’s IdP does not know Bob, this pose some interesting challenges that need to
be solved first. Ultimately, Alice’s IdP may not authenticate Bob on a first call. Never-
theless, supposing a first secure call, Alice’s IdP may re-authenticate Bob on subsequent
call. A simple solution to implement such mechanism would be to use cookies, as we
described in Section 3.2.2. Obviously, this implies that the IdP Proxy interface would

7.2. ON THE IDP PROXY INTERFACE 127

have to be modified to incorporate this functionnality. While the WebRTC identity
architecture aims at offering an abstract identity interface, this raise the question as to
whether such an interface is possible and how it should be designed.

We would also like the opportunity to explore other mechanisms to authenticate the
other peer. In particular we would like to explore the possibility to fingerprint the other
peer’s browser through its WebRTC media, stream, and network parameters. For in-
stance during the Session Description Protocol (SDP) negotiation, offered and selected
Interactive Connectivity Establishment (ICE) candidates, offered codecs or other pa-
rameters may allow to establish a fingerprint of the browser. It would be interesting to
know if such fingerprint could be used in a peer authentication use case or even in a
generic web fingerprinting script as in the work of Laperdrix et al. [91].

Alice Bob

ID Generation

Signalling

IdP A

IdP Proxy IdP Proxy

ID Validation

ID Loopback

1

2

3

4

Figure 7.2: ID Loopback Se-
quence

WebID TLS Implementation

WebID [157] is a distributed identification mechanism which enables each user to control
its identity and link to other identities forming a decentralised social network. A WebID
document contains claims of an identity in the resource description framework format
and is hosted on a secure domain. WebID-TLS [169] is an authentication protocol that
leverages WebID and Transport Layer Security (TLS) client authentication. In order to
use this protocol, a user first installs its public/private key pair and certificate referring
to the WebID document in its browser. The public key is also added to the user’s
WebID document. When a website requires WebID-TLS authentication, the user select
its certificate and the browser performs a TLS client authentication with it. As the
certificate refer to the WebID containing the certificate’s public key, the protocol proves
to the website that the user is in control of the WebID document, i. e. it is authenticated.

Work from the WebID W3C working group seems to have ceased. However, as
WebID-TLS lets users control their identity and authentication it may be a practical
solution to privacy issues related to the role of IdP on the Web. We started working on
an integration of WebID-TLS with the WebRTC identity architecture during our thesis.
Our idea is to host an IdP Proxy on the same domain as the WebID, without using
any IdP. Implementing a WebID-TLS IdP Proxy would allow users to easily host their
identity for WebRTC, for instance on their own blog.

The main difficulty of this scenario is that the IdP Proxy must be able to access
cryptographic material from the browser stored in client certificates. For the moment
we did not manage to solve this issue and we would like to continue to work on this
implementation if given the opportunity. An alternative solution could be to relax the
use of the WebID-TLS protocol and instead rely on WebID-TLS-like approach. For

128 CHAPTER 7. PERSPECTIVES

instance, the IdP Proxy could use the WebCrypto API [170] to generate, import, and
export the private key necessary to sign the identity assertion. This key could then
be stored in the browser storage [171]. However, this solution requires to deploy in
the WebID host some JavaScript code capable of managing the private key lifecycle,
loosing the benefits of the simple WebID-TLS solution. Ultimately, it may be preferable
to integrate the WebCrypto API with the browser exposed interface for TLS client
certificates selection.

7.3 On WebConnect and the WebPayment Working
Group

In Section 3.1 we have demonstrated that the WebRTC identity architecture can be
implemented with OpenID Connect or with a more ad-hoc solution, in Section 4.1 we
have proposed a solution for negotiating the other party identity parameters and in
Section 4.2 we have adapted the architecture to a user-to-server authentication scenario.
As we explained in the previous section, we were not able to implement IdP Proxy with
the WebID-TLS protocol and in each other of our solutions we have encountered small
issues that restrict some functionalities. For instance, compared to OpenID Connect,
the WebRTC identity architecture does not allow to obtain an authentication strength
information or to authenticate the validating party. In our opinion, to what extent is the
WebRTC identity architecture a generic authentication protocol and what features can
be implemented with it is an interesting and open question.

Web Connect is our solution for letting user choose their identity provider on the
Web. The work by the World Wide Web Consortium (W3C) Web Payment working
group recently came to our attention. This working group proposes a WebPayment
Application Programming Interface (API) [172] that would let browsers expose an API
for installing payment application. Web sites can then use this API to request payment
to users through the payment application of their choice. Figure 7.3 shows a sequence
diagram for a payment. The proposed architecture is actually quite similar to the
WebConnect architecture, i. e. the payment app is equivalent to the IdP Proxy, the
mediator to the browser, and the payment network to the IdP. If the web payment
architecture gains traction, it may mean that a similar interface for authentication may
benefit from some support.

Offering an Identity Metasystem through the WebPayment API

In order to promote our solution for freely choosing an IdP, it may be interesting to
explore the similarities between the IdP Proxy/WebConnect and the WebPayment API.
The parallel between payment and authentication protocol are already known. For in-
stance the Diameter protocol for authentication, authorization, and accountability can
be extended with credit control applications, while spending bitcoins on a blockchain
first requires authentication through a private key. Starting from the idea that emitting
a bank cheque with a null value and identity claims is similar to emitting an identity as-
sertion, we would like to test if an authentication protocol can actually be integrated and
served through the WebPayment API. This would demonstrate the feasibility of the idea
and serve to measure the interest of extending the WebPayment API for authentication
scenarios.

Going further, the coupling of identity and payment functions in a single API may
have additional uses than simply choosing the IdP. For instance, some solutions against
SPam over Internet Telephony (SPIT) propose that users pay an initial fees on first
call to deter spammers. In such solution, if the call is SPIT the money is kept by
the callee and the caller is added to a blacklist, if the caller is genuine the money is

7.3. ON WEBCONNECT AND THE WEBPAYMENT WORKING GROUP 129

Figure 7.3: Payer Makes a
Purchase.

paid back. Supposing that the same interface would offer payment application and peer
authentication in WebRTC, such anti-SPIT systems may be quite easy to setup.

A generic API for authorization, authentication, and payment

In this thesis, we have questioned the WebRTC identity architecture as a generic in-
terface for authentication. We have tested its practical implementation with existing
protocols and proposed extensions to other use cases. In Telco architectures, authen-
tication, authorization, and accounting are regrouped under the term AAA and often
provided by the same protocols. As we remark the similarity between authentication and
payment, authentication and authorization are also similar functions as demonstrated
by OpenID Connect being an extension to OAuth 2. We believe that the practicality
of a generic interface for all-three AAA functions, for instance considering authentica-
tion and accounting as a special case of authentication, may be an interesting research
direction.

130

131

Remerciements

Ce n’est qu’aujourd’hui, amarré et débarqué,
Que je mesure l’étendue de la traversée.
J’aimerais donc par ces quelques mots ordonnés,
Remercier, vous qui avez permis mon succès.

Une soutenance passe finalement trop vite, je tiens donc en tout premier lieu à remercier Maryline, Yvon,
Walter et Dominique. Merci pour vos relectures attentives, vos commentaires, remarques et questions. J’ai eu
un réel plaisir à échanger avec vous.

Ce travail de recherche est issu d’une collaboration entre Orange Labs et l’IRISA et j’ai particulièrement
apprécié avoir un pied dans ces deux laboratoires. Je tiens donc à remercier chaleureusement mes encadrants
pour avoir permis ce projet. Vincent, merci pour la confiance que tu m’as accordée ainsi que pour ta vision de la
recherche à Orange. Olivier, merci pour l’énergie débordante et communicative dont tu fais preuve, je suis très
fier d’avoir travaillé avec toi. Gerson, merci pour tous tes conseils! Un grand merci à Simon, même si tu aimes
le PHP, c’était vraiment chouette de bosser avec toi.

Merci au vieux Fabien, mémoire vivante de l’équipe, pour toutes ces pizzas, soirées, et soirées pizza. Merci
à Pierre pour ton aide inestimable et à Paul pour l’esprit d’équipe dont tu fais preuve. J’ai adoré partager ton
bureau pendant quelques mois. Plus généralement, un grand merci à l’ensemble de l’équipe DiverSE dont je suis
particulièrement fier d’avoir fait partie.

Mentions spéciales à l’algorithme "Flow" de Deezer pour m’avoir fait découvrir Queens of the Stone Age ainsi
que Stupeflip, la Trinacria pour ses pizzas incomparables, et L’Ankou de Rennes pour le plaisir que j’y prends.
Fauche! Fauche! Fauche!

Merci à Pap’s pour sa sagesse et Maman pour avoir ramené mon premier ordinateur et m’avoir permis de
trouver ma voie. Merci à Violette et Quentinou pour tout ce qu’on partage! Merci à Etienne, un voisin sans nul
autre pareil, même à 800 kilomètres de distance. Enfin, et parce que sans elle la vie ne serait pas aussi belle,
merci à Tamara pour son soutien sans faille pendant ces quatre années!

132

133

Author’s Publications

[4] Kevin Corre, Simon Bécot, Olivier Barais, and Gerson Sunyé. “A WebRTC Extension to Allow Identity
Negotiation at Runtime”. Web Engineering - 17th International Conference, ICWE 2017, Rome, Italy,
June 5-8, 2017, Proceedings. Ed. by Jordi Cabot, Roberto De Virgilio, and Riccardo Torlone. Vol. 10360.
Lecture Notes in Computer Science. Springer, 2017, pp. 412–419.

[5] Kevin Corre, Olivier Barais, Gerson Sunyé, Vincent Frey, and Jean-Michel Crom. “Why can’t users choose
their identity providers on the web?” PoPETs 2017.3 (2017), pp. 72–86.

[6] Rebecca Copeland, Kevin Corre, Ingo Friese, and Saad El Jaouhari. Requirements for Trust and Privacy in
WebRTC Peer-to-peer Authentication. Internet-Draft draft-copeland-rtcweb-p2p-idp-auth-00. IETF Sec-
retariat, 2016.

[7] Kevin Corre and Vincent Frey. “Method of managing the authentication of a client in a computing system”.
WO2017006013 A1 Patent App. PCT/FR2016/051,601. 2016.

[8] Rebecca Copeland, Ahmed Bouabdallah, Ibrahim Javed, Eric Paillet, Simon Bécot, Ewa Janczukowicz,
Kevin Corre, Jean-Michel Crom, Paulo Chainho, Felix Beierle, Sebastian Göndör, Frédéric Luart, Adel
Al-Hezmi, Andreea Ancuta Corici, Marc Emmelmann, Ricardo Lopes Pereira, Ricardo Chaves, and Nuno
Santos. Framework Architecture Definition. Deliverable D2.1. reThink Project, 2015.

[9] Jean-Michel Crom, Kevin Corre, Simon Bécot, Ingo Friese, Felix Beierle, Sebastian Göndör, Ahmed Bouab-
dallah, Marc Emmelmann, Andrea Ancuta Corici, Ricardo Chaves, and Ricardo Pereira. Management and
Security features specifications. Deliverable D4.1. reThink Project, 2015.

[10] Jean-Michel Crom, Kevin Corre, Simon Bécot, Felix Beierle, Sebastian Göndör, Ahmed Bouabdallah, Saad
El Jaouhari, Rebecca Copeland, Marc Emmelmann, Ricardo Chaves Andrea Ancuta-Corici Robert Ende,
and Ricardo Pereira. Implementation of Governance and identity management components for phase 1.
Deliverable D4.2. reThink Project, 2016.

[11] Jean-Michel Crom, Kevin Corre, Ingo Friese, Felix Beierle, Sebastian Göndör, Ahmed Bouabdallah, Hao
Jiang, Rebecca Copeland, Ibrahim Tariq Javed, Marc Emmelmann, Andrea Ancuta Corici, Robert Ende,
Ricardo Chaves, Nuno Santos, and Ricardo Pereira. Implementation of Governance and identity manage-
ment components for phase 2. Deliverable D4.3. reThink Project, 2017.

[12] Ibrahim Tariq Javed, Rebecca Copeland, Noël Crespi, Marc Emmelmann, Ancuta Corici, Ahmed Bouab-
dallah, Tuo Zhang, Saad El Jaouhari, Felix Beierle, Sebastian Göndör, Axel Küpper, Kevin Corre, Jean-
Michel Crom, Frank Oberle, Ingo Friese, Ana Caldeira, Gil Dias, Nuno Santos, Ricardo Chaves, and
Ricardo Lopes Pereira. “Cross-domain identity and discovery framework for web calling services”. Annales
des Télécommunications 72.7-8 (2017), pp. 459–468.

134 AUTHOR’S PUBLICATIONS

135

Bibliography

[1] 18th International Conference on Intelligence in
Next Generation Networks, ICIN 2015, Paris,
France, February 17-19, 2015. IEEE, 2015.

[2] Emmanuel Bertin, Noël Crespi, and Roch H.
Glitho, eds. Proceedings of the 1st Workshop
on All-Web Real-Time Systems, AWeS@EuroSys
2015, Bordeaux, France, April 21, 2015. ACM,
2015.

[3] IEEE Symposium on Security and Privacy, SP
2016, San Jose, CA, USA, May 22-26, 2016.
IEEE Computer Society, 2016.

[13] Perseus - Latin Word Study Tool. communicatio.

[14] Oxford Dictionaries. communication.

[15] Simon Singh. The code book: the secret history
of codes and code-breaking. 2000.

[16] Mozilla Security Blog. Communicating the Dan-
gers of Non-Secure HTTP.

[17] D Harrison McKnight and Norman L Chervany.
“The meanings of trust” (1996).

[18] Audun Jøsang and Stéphane Lo Presti.
“Analysing the Relationship between Risk and
Trust”. Trust Management, Second International
Conference, iTrust 2004, Oxford, UK, March 29
- April 1, 2004, Proceedings. Ed. by Christian
Damsgaard Jensen, Stefan Poslad, and Theo-
dosis Dimitrakos. Vol. 2995. Lecture Notes in
Computer Science. Springer, 2004, pp. 135–145.

[19] Roy T. Fielding, James Gettys, Jeffrey C.
Mogul, Henrik Frystyk Nielsen, Larry Masin-
ter, Paul J. Leach, and Tim Berners-Lee. Hyper-
text Transfer Protocol – HTTP/1.1. RFC 2616.
http://www.rfc-editor.org/rfc/rfc2616.
txt. RFC Editor, 1999.

[20] Huahong Tu, Adam Doupé, Ziming Zhao, and
Gail-Joon Ahn. “SoK: Everyone Hates Robo-
calls: A Survey of Techniques Against Telephone
Spam”. IEEE Symposium on Security and Pri-
vacy, SP 2016, San Jose, CA, USA, May 22-26,
2016. IEEE Computer Society, 2016, pp. 320–
338.

[21] 33700 SPAM. 33700, la plateforme de lutte con-
tre les spams vocaux et SMS.

[22] ARCEP. Observatoire des marchés des commu-
nications électroniques en France.

[23] David Gelles and Vindu Goel. Facebook Enters
$16 Billion Deal for WhatsApp.

[24] Matt Rosoff. Microsoft Insider: Here’s Why We
Bought Skype.

[25] J. Rosenberg and C. Jennings. The Session Ini-
tiation Protocol (SIP) and Spam. RFC 5039.
http://www.rfc-editor.org/rfc/rfc5039.
txt. RFC Editor, 2008.

[26] Martin Thomson and Keith Griffin. Screen Cap-
ture. W3C Editor’s Draft. W3C, 2017.

[27] François Toutain, Emmanuel Le Huérou, and
Eric Beaufils. “On webco interoperability”. Pro-
ceedings of the 1st Workshop on All-Web Real-
Time Systems, AWeS@EuroSys 2015, Bordeaux,
France, April 21, 2015. Ed. by Emmanuel
Bertin, Noël Crespi, and Roch H. Glitho. ACM,
2015, 5:1–5:6.

[28] Matrix.org. Matrix Specification.

[29] reThink H2020 project. reTHINK - Deliverables.

[30] Harald Alvestrand. Overview: Real Time Pro-
tocols for Browser-based Applications. Internet-
Draft draft-ietf-rtcweb-overview-18. http : / /
www . ietf . org / internet - drafts / draft -
ietf- rtcweb- overview- 18.txt. IETF Sec-
retariat, 2017.

http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc5039.txt
http://www.rfc-editor.org/rfc/rfc5039.txt
http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-overview-18.txt
http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-overview-18.txt
http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-overview-18.txt

136 BIBLIOGRAPHY

[31] Daniel Burnett, Taylor Brandstetter, Adam
Bergkvist, Bernard Aboba, Anant Narayanan,
and Cullen Jennings. WebRTC 1.0: Real-time
Communication Between Browsers. W3C Work-
ing Draft. https://www.w3.org/TR/2017/WD-
webrtc-20170822/. W3C, 2017.

[32] Daniel Burnett, Anant Narayanan, Bernard
Aboba, Cullen Jennings, and Adam Bergkvist.
Media Capture and Streams. Candidate Recom-
mendation. http://www.w3.org/TR/2016/CR-
mediacapture-streams-20160519/. W3C, 2016.

[33] Justin Uberti, Cullen Jennings, and Eric
Rescorla. JavaScript Session Establishment Pro-
tocol. Internet-Draft draft-ietf-rtcweb-jsep-22.
http://www.ietf.org/internet- drafts/
draft-ietf-rtcweb-jsep-22.txt. IETF Sec-
retariat, 2017.

[34] Mark Handley and Van Jacobson. SDP: Session
Description Protocol. RFC 2327. http://www.
rfc-editor.org/rfc/rfc2327.txt. RFC Edi-
tor, 1998.

[35] J. Rosenberg. Interactive Connectivity Establish-
ment (ICE): A Protocol for Network Address
Translator (NAT) Traversal for Offer/Answer
Protocols. RFC 5245. http://www.rfc-editor.
org/rfc/rfc5245.txt. RFC Editor, 2010.

[36] J. Rosenberg, R. Mahy, P. Matthews, and
D. Wing. Session Traversal Utilities for NAT
(STUN). RFC 5389. http://www.rfc-editor.
org/rfc/rfc5389.txt. RFC Editor, 2008.

[37] R. Mahy, P. Matthews, and J. Rosenberg.
Traversal Using Relays around NAT (TURN):
Relay Extensions to Session Traversal Utilities
for NAT (STUN). RFC 5766. http://www.rfc-
editor.org/rfc/rfc5766.txt. RFC Editor,
2010.

[38] Standards. 2017.

[39] Javascript APIs Current Status. 2017.

[40] A. Barth. The Web Origin Concept. RFC 6454.
http://www.rfc-editor.org/rfc/rfc6454.
txt. RFC Editor, 2011.

[41] Tim Berners-Lee, Roy T. Fielding, and Larry
Masinter. Uniform Resource Identifier (URI):
Generic Syntax. STD 66. http://www.rfc-
editor.org/rfc/rfc3986.txt. RFC Editor,
2005.

[42] Mike West. Content Security Policy Level 3.
W3C Working Draft. W3C, 2016.

[43] M. Nottingham and E. Hammer-Lahav. Defin-
ing Well-Known Uniform Resource Identifiers
(URIs). RFC 5785. http://www.rfc-editor.
org/rfc/rfc5785.txt. RFC Editor, 2010.

[44] Robert Braden. Requirements for Internet Hosts
- Communication Layers. STD 3. http://www.
rfc-editor.org/rfc/rfc1122.txt. RFC Edi-
tor, 1989.

[45] E. Rescorla. HTTP Over TLS. RFC 2818. http:
//www.rfc- editor.org/rfc/rfc2818.txt.
RFC Editor, 2000.

[46] T. Dierks and E. Rescorla. The Transport Layer
Security (TLS) Protocol Version 1.2. RFC 5246.
http://www.rfc-editor.org/rfc/rfc5246.
txt. RFC Editor, 2008.

[47] Cormac Herley. “So long, and no thanks for
the externalities: the rational rejection of secu-
rity advice by users”. Proceedings of the 2009
Workshop on New Security Paradigms, Oxford,
United Kingdom, September 8-11, 2009. Ed. by
Anil Somayaji and Richard Ford. ACM, 2009,
pp. 133–144.

[48] J. Callas, L. Donnerhacke, H. Finney, D. Shaw,
and R. Thayer. OpenPGP Message Format.
RFC 4880. http://www.rfc-editor.org/rfc/
rfc4880.txt. RFC Editor, 2007.

[49] Niels Ferguson, Bruce Schneier, and Tadayoshi
Kohno. Cryptography engineering: design prin-
ciples and practical applications. John Wiley &
Sons, 2011.

[50] Eric Rescorla. WebRTC Security Architec-
ture. Internet-Draft draft-ietf-rtcweb-security-
arch-13. http://www.ietf.org/internet-
drafts/draft-ietf-rtcweb-security-arch-
13.txt. IETF Secretariat, 2017.

[51] Ilya Grigorik. High Performance Browser Net-
working. OReilly.

[52] M. Baugher, D. McGrew, M. Naslund, E. Car-
rara, and K. Norrman. The Secure Real-time
Transport Protocol (SRTP). RFC 3711. http:
//www.rfc- editor.org/rfc/rfc3711.txt.
RFC Editor, 2004.

[53] H. Schulzrinne, S. Casner, R. Frederick, and V.
Jacobson. RTP: A Transport Protocol for Real-
Time Applications. STD 64. http://www.rfc-
editor.org/rfc/rfc3550.txt. RFC Editor,
2003.

[54] J. Postel.User Datagram Protocol. STD 6. http:
// www .rfc- editor .org/rfc/ rfc768.txt.
RFC Editor, 1980.

http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-jsep-22.txt
http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-jsep-22.txt
http://www.rfc-editor.org/rfc/rfc2327.txt
http://www.rfc-editor.org/rfc/rfc2327.txt
http://www.rfc-editor.org/rfc/rfc5245.txt
http://www.rfc-editor.org/rfc/rfc5245.txt
http://www.rfc-editor.org/rfc/rfc5389.txt
http://www.rfc-editor.org/rfc/rfc5389.txt
http://www.rfc-editor.org/rfc/rfc5766.txt
http://www.rfc-editor.org/rfc/rfc5766.txt
http://www.rfc-editor.org/rfc/rfc6454.txt
http://www.rfc-editor.org/rfc/rfc6454.txt
http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.rfc-editor.org/rfc/rfc5785.txt
http://www.rfc-editor.org/rfc/rfc5785.txt
http://www.rfc-editor.org/rfc/rfc1122.txt
http://www.rfc-editor.org/rfc/rfc1122.txt
http://www.rfc-editor.org/rfc/rfc2818.txt
http://www.rfc-editor.org/rfc/rfc2818.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc4880.txt
http://www.rfc-editor.org/rfc/rfc4880.txt
http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-security-arch-13.txt
http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-security-arch-13.txt
http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-security-arch-13.txt
http://www.rfc-editor.org/rfc/rfc3711.txt
http://www.rfc-editor.org/rfc/rfc3711.txt
http://www.rfc-editor.org/rfc/rfc3550.txt
http://www.rfc-editor.org/rfc/rfc3550.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc768.txt

BIBLIOGRAPHY 137

[55] Jon Postel. Transmission Control Protocol. STD
7. http://www.rfc-editor.org/rfc/rfc793.
txt. RFC Editor, 1981.

[56] J. Fischl, H. Tschofenig, and E. Rescorla. Frame-
work for Establishing a Secure Real-time Trans-
port Protocol (SRTP) Security Context Using
Datagram Transport Layer Security (DTLS).
RFC 5763. RFC Editor, 2010.

[57] E. Rescorla and N. Modadugu. Datagram Trans-
port Layer Security Version 1.2. RFC 6347.
http://www.rfc-editor.org/rfc/rfc6347.
txt. RFC Editor, 2012.

[58] D. McGrew and E. Rescorla. Datagram Trans-
port Layer Security (DTLS) Extension to Es-
tablish Keys for the Secure Real-time Transport
Protocol (SRTP). RFC 5764. http://www.rfc-
editor.org/rfc/rfc5764.txt. RFC Editor,
2010.

[59] R. Stewart. Stream Control Transmission Proto-
col. RFC 4960. http://www.rfc-editor.org/
rfc/rfc4960.txt. RFC Editor, 2007.

[60] Ewa Janczukowicz, Arnaud Braud, Stéphane
Tuffin, Ahmed Bouabdallah, and Jean-Marie
Bonnin. “Evaluation of network solutions for im-
proving WebRTC quality”. 24th International
Conference on Software, Telecommunications
and Computer Networks, SoftCOM 2016, Split,
Croatia, September 22-24, 2016. IEEE, 2016,
pp. 1–5.

[61] Ewa Janczukowicz, Arnaud Braud, Stéphane
Tuffin, Gaël Fromentoux, Ahmed Bouabdallah,
and Jean-Marie Bonnin. “Specialized network
services for WebRTC: TURN-based architec-
ture proposal”. Proceedings of the 1st Workshop
on All-Web Real-Time Systems, AWeS@EuroSys
2015, Bordeaux, France, April 21, 2015. Ed. by
Emmanuel Bertin, Noël Crespi, and Roch H.
Glitho. ACM, 2015, 3:1–3:6.

[62] Net neutrality - The current regulatory frame-
work - September 2015. 2015.

[63] Gergely Alpár, Jaap-Henk Hoepman, and Jo-
hanneke Siljee. “The Identity Crisis. Security,
Privacy and Usability Issues in Identity Man-
agement”. CoRR abs/1101.0427 (2011).

[64] Abhilasha Bhargav-Spantzel, Jan Camenisch,
Thomas Groß, and Dieter Sommer. “User cen-
tricity: A taxonomy and open issues”. Journal of
Computer Security 15.5 (2007), pp. 493–527.

[65] Natsuhiko Sakimura, J Bradley, Mike Jones, B
de Medeiros, and C Mortimore. Openid connect
core 1.0. Tech. rep. 2014.

[66] Information technology – Security techniques
– Entity authentication assurance framework.
Standard. Geneva, CH: International Organiza-
tion for Standardization, 2013.

[67] Julien Hatin, Estelle Cherrier, Jean-Jacques
Schwartzmann, V. Frey, and Christophe Rosen-
berger. “A Continuous LoA Compliant Trust
Evaluation Method”. Proceedings of the 2nd
International Conference on Information Sys-
tems Security and Privacy, ICISSP 2016,
Rome, Italy, February 19-21, 2016. Ed. by
Olivier Camp, Steven Furnell, and Paolo Mori.
SciTePress, 2016, pp. 355–363.

[68] Ahmad Montaser Awal and Abdullah Almak-
sour. “Classification et extraction des docu-
ments complexes à partir des images issues
d’un périphérique mobile : application aux doc-
uments d’identité”. CORIA 2016 - Conférence
en Recherche d’Informations et Applications-
13th French Information Retrieval Conference.
CIFED 2016 Colloque International Franco-
phone sur l’Ecrit et le Document, Toulouse,
France, March 9-11, 2016, Toulouse, France,
March 9-11, 2016. Ed. by Sylvie Calabretto,
Bertrand Coüasnon, Lorraine Goeuriot, and
Sabine Barrat. ARIA-GRCE, 2016, pp. 575–588.

[69] Ronan Sicre, Ahmad Montaser Awal, and Teddy
Furon. “Identity Documents Classification as an
Image Classification Problem”. Image Analysis
and Processing - ICIAP 2017 - 19th Interna-
tional Conference, Catania, Italy, September 11-
15, 2017, Proceedings, Part II. Ed. by Sebastiano
Battiato, Giovanni Gallo, Raimondo Schettini,
and Filippo Stanco. Vol. 10485. Lecture Notes
in Computer Science. Springer, 2017, pp. 602–
613.

[70] Audun Jøsang. “Identity management and
trusted interaction in internet and mobile com-
puting”. IET Information Security 8.2 (2014),
pp. 67–79.

[71] M. Jones, J. Bradley, and N. Sakimura. JSON
Web Token (JWT). RFC 7519. http://www.
rfc-editor.org/rfc/rfc7519.txt. RFC Edi-
tor, 2015.

[72] T. Bray. The JavaScript Object Notation
(JSON) Data Interchange Format. RFC 7159.
http://www.rfc-editor.org/rfc/rfc7159.
txt. RFC Editor, 2014.

http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc6347.txt
http://www.rfc-editor.org/rfc/rfc6347.txt
http://www.rfc-editor.org/rfc/rfc5764.txt
http://www.rfc-editor.org/rfc/rfc5764.txt
http://www.rfc-editor.org/rfc/rfc4960.txt
http://www.rfc-editor.org/rfc/rfc4960.txt
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc7159.txt
http://www.rfc-editor.org/rfc/rfc7159.txt

138 BIBLIOGRAPHY

[73] M. Jones, J. Bradley, and N. Sakimura. JSON
Web Signature (JWS). RFC 7515. http://www.
rfc-editor.org/rfc/rfc7515.txt. RFC Edi-
tor, 2015.

[74] M. Jones and J. Hildebrand. JSON Web Encryp-
tion (JWE). RFC 7516. RFC Editor, 2015.

[75] BrowserID: Specifications for Mozilla’s Identity
Effort.

[76] Johann Vincent, Sahin Kale, and Vincent Frey.
TIM: Trusted Identity Module.

[77] E. Hammer-Lahav. The OAuth 1.0 Protocol.
RFC 5849. http://www.rfc-editor.org/rfc/
rfc5849.txt. RFC Editor, 2010.

[78] D. Hardt. The OAuth 2.0 Authorization Frame-
work. RFC 6749. http://www.rfc- editor.
org/rfc/rfc6749.txt. RFC Editor, 2012.

[79] F. Andreasen, M. Baugher, and D. Wing. Ses-
sion Description Protocol (SDP) Security De-
scriptions for Media Streams. RFC 4568. RFC
Editor, 2006.

[80] Oscar Ohlsson. Support of SDES in We-
bRTC. Internet-Draft draft-ohlsson-rtcweb-sdes-
support-01. http://www.ietf.org/internet-
drafts / draft - ohlsson - rtcweb - sdes -
support-01.txt. IETF Secretariat, 2012.

[81] P. Zimmermann, A. Johnston, and J. Callas.
ZRTP: Media Path Key Agreement for Unicast
Secure RTP. RFC 6189. http : / / www . rfc -
editor.org/rfc/rfc6189.txt. RFC Editor,
2011.

[82] Dominik Schürmann, Fabian Kabus, Gregor Hil-
dermeier, and Lars C. Wolf. “Wiretapping End-
to-End Encrypted VoIP Calls: Real-World At-
tacks on ZRTP”. PoPETs 2017.3 (2017), p. 4.

[83] Audun Jøsang and Simon Pope. “Semantic Con-
straints for Trust Transitivity”. Conceptual Mod-
elling 2005, Second Asia-Pacific Conference on
Conceptual Modelling (APCCM2005), Newcas-
tle, NSW, Australia, January/February 2005.
Ed. by Sven Hartmann and Markus Stumptner.
Vol. 43. CRPIT. Australian Computer Society,
2005, pp. 59–68.

[84] Donovan Artz and Yolanda Gil. “A survey of
trust in computer science and the Semantic
Web”. J. Web Sem. 5.2 (2007), pp. 58–71.

[85] Lik Mui, Mojdeh Mohtashemi, and Ari Hal-
berstadt. “A Computational Model of Trust
and Reputation for E-businesses”. 35th Hawaii
International Conference on System Sciences
(HICSS-35 2002), CD-ROM / Abstracts Pro-
ceedings, 7-10 January 2002, Big Island, HI,
USA. IEEE Computer Society, 2002, p. 188.

[86] Audun Jøsang, Stephen Marsh, and Simon Pope.
“Exploring Different Types of Trust Propa-
gation”. Trust Management, 4th International
Conference, iTrust 2006, Pisa, Italy, May 16-19,
2006, Proceedings. Ed. by Ketil Stølen, William
H. Winsborough, Fabio Martinelli, and Fabio
Massacci. Vol. 3986. Lecture Notes in Computer
Science. Springer, 2006, pp. 179–192.

[87] Mozilla developer’s blog. Battery Status API.

[88] R. Shirey. Internet Security Glossary, Version 2.
RFC 4949. http://www.rfc-editor.org/rfc/
rfc4949.txt. RFC Editor, 2007.

[89] Céline Castets-Renard. “Quels liens établir entre
les USA et l’UE en matière de vie privée et pro-
tection des données personnelles ?” Dalloz IP/IT
(2016), p. 115.

[90] A. Cooper, H. Tschofenig, B. Aboba, J. Peter-
son, J. Morris, M. Hansen, and R. Smith. Pri-
vacy Considerations for Internet Protocols. RFC
6973. RFC Editor, 2013.

[91] Pierre Laperdrix, Walter Rudametkin, and
Benoit Baudry. “Beauty and the Beast: Di-
verting Modern Web Browsers to Build Unique
Browser Fingerprints”. IEEE Symposium on Se-
curity and Privacy, SP 2016, San Jose, CA,
USA, May 22-26, 2016. IEEE Computer Soci-
ety, 2016, pp. 878–894.

[92] European Parliament. “Regulation (EU)
2016/679 of the European Parliament and of
the Council of 27 April 2016 on the protection
of natural persons with regard to the processing
of personal data and on the free movement of
such data, and repealing Directive 95/46”. Of-
ficial Journal of the European Union (OJ) 59
(2016), pp. 1–88.

[93] Aaron Johnson, Rob Jansen, Nicholas Hopper,
Aaron Segal, and Paul Syverson. “PeerFlow: Se-
cure Load Balancing in Tor”. PoPETs 2017.2
(2017), pp. 74–94.

[94] James Ball, Glenn Greenwald, and Bruce
Schneier. NSA and GCHQ target Tor network
that protects anonymity of web users. 2013.

http://www.rfc-editor.org/rfc/rfc7515.txt
http://www.rfc-editor.org/rfc/rfc7515.txt
http://www.rfc-editor.org/rfc/rfc5849.txt
http://www.rfc-editor.org/rfc/rfc5849.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.ietf.org/internet-drafts/draft-ohlsson-rtcweb-sdes-support-01.txt
http://www.ietf.org/internet-drafts/draft-ohlsson-rtcweb-sdes-support-01.txt
http://www.ietf.org/internet-drafts/draft-ohlsson-rtcweb-sdes-support-01.txt
http://www.rfc-editor.org/rfc/rfc6189.txt
http://www.rfc-editor.org/rfc/rfc6189.txt
http://www.rfc-editor.org/rfc/rfc4949.txt
http://www.rfc-editor.org/rfc/rfc4949.txt

BIBLIOGRAPHY 139

[95] Justin Uberti and Guo-wei Shieh. WebRTC IP
Address Handling Requirements. Internet-Draft
draft-ietf-rtcweb-ip-handling-04. IETF Secre-
tariat, 2017.

[96] T. Bray. Anticounterfeiting on the Dark Web.
Anticounterfeiting Committee, 2015.

[97] Jukka K Nurminen, Antony JR Meyn, Eetu
Jalonen, Yrjo Raivio, and Raúl Garcıa Marrero.
“P2P media streaming with HTML5 and We-
bRTC”. Computer Communications Workshops
(INFOCOM WKSHPS), 2013 IEEE Conference
on. IEEE. 2013, pp. 63–64.

[98] Christian Vogt, Max Jonas Werner, and Thomas
C. Schmidt. “Leveraging WebRTC for P2P con-
tent distribution in web browsers”. 2013 21st
IEEE International Conference on Network Pro-
tocols, ICNP 2013, Göttingen, Germany, Octo-
ber 7-10, 2013. IEEE, 2013, pp. 1–2.

[99] Roberto Roverso and Mikael Högqvist. “Hive.js:
Browser-Based Distributed Caching for Adap-
tive Video Streaming”. 2014 IEEE Interna-
tional Symposium on Multimedia, ISM 2014,
Taichung, Taiwan, December 10-12, 2014. IEEE
Computer Society, 2014, pp. 143–146.

[100] Liang Zhang, Fangfei Zhou, Alan Mislove, and
Ravi Sundaram. “Maygh: building a CDN from
client web browsers”. Eighth Eurosys Confer-
ence 2013, EuroSys ’13, Prague, Czech Repub-
lic, April 14-17, 2013. Ed. by Zdenek Hanzálek,
Hermann Härtig, Miguel Castro, and M. Frans
Kaashoek. ACM, 2013, pp. 281–294.

[101] Brice Nédelec, Julian Tanke, Davide Frey, Pascal
Molli, and Achour Mostefaoui. “Spray: an Adap-
tive Random Peer Sampling Protocol”. PhD the-
sis. LINA-University of Nantes; INRIA Rennes-
Bretagne Atlantique, 2015.

[102] Angelos D. Keromytis. “A Comprehensive Sur-
vey of Voice over IP Security Research”. IEEE
Communications Surveys and Tutorials 14.2
(2012), pp. 514–537.

[103] Jonathan Zar, D Endler, D Ghosal, R Jafari, A
Karlcut, M Kolenko, N Nguyen, and W Walkoe.
“VoIP security and privacy threat taxonomy”.
Public Release 1 (2005), p. 24.

[104] Christoph Sorge and Jan Seedorf. “A Provider-
Level Reputation System for Assessing the Qual-
ity of SPIT Mitigation Algorithms”. Proceedings
of IEEE International Conference on Commu-
nications, ICC 2009, Dresden, Germany, 14-18
June 2009. IEEE, 2009, pp. 1–6.

[105] Kumar Srivastava and Henning G Schulzrinne.
“Preventing spam for sip-based instant messages
and sessions” (2004).

[106] N Croft and M Olivier. “A model for spam pre-
vention in voice over IP networks using anony-
mous Verifying Authorities”. Proceedings of the
5th Annual Information Security South Africa
Conference (ISSA). 2005.

[107] C. Perkins and JM. Valin. Guidelines for the Use
of Variable Bit Rate Audio with Secure RTP.
RFC 6562. RFC Editor, 2012.

[108] Andrew M. White, Austin R. Matthews, Kevin
Z. Snow, and Fabian Monrose. “Phonotactic Re-
construction of Encrypted VoIP Conversations:
Hookt on Fon-iks”. 32nd IEEE Symposium on
Security and Privacy, S&P 2011, 22-25 May
2011, Berkeley, California, USA. IEEE Com-
puter Society, 2011, pp. 3–18.

[109] Carlos Aguilar Melchor, Yves Deswarte, and
Julien Iguchi-Cartigny. “Closed-Circuit Unob-
servable Voice over IP”. 23rd Annual Com-
puter Security Applications Conference (ACSAC
2007), December 10-14, 2007, Miami Beach,
Florida, USA. IEEE Computer Society, 2007,
pp. 119–128.

[110] Ge Zhang and Simone Fischer-Hübner. “Peer-
to-Peer VoIP Communications Using Anonymi-
sation Overlay Networks”. Communications and
Multimedia Security, 11th IFIP TC 6/TC 11 In-
ternational Conference, CMS 2010, Linz, Aus-
tria, May 31 - June 2, 2010. Proceedings. Ed. by
Bart De Decker and Ingrid Schaumüller-Bichl.
Vol. 6109. Lecture Notes in Computer Science.
Springer, 2010, pp. 130–141.

[111] Mudhakar Srivatsa, Ling Liu, and Arun Iyengar.
“Preserving Caller Anonymity in Voice-over-IP
Networks”. 2008 IEEE Symposium on Security
and Privacy (S&P 2008), 18-21 May 2008, Oak-
land, California, USA. IEEE Computer Society,
2008, pp. 50–63.

[112] Stephan Heuser, Bradley Reaves, Praveen
Kumar Pendyala, Henry Carter, Alexandra
Dmitrienko, William Enck, Negar Kiyavash,
Ahmad-Reza Sadeghi, and Patrick Traynor.
“Phonion: Practical Protection of Metadata in
Telephony Networks”. PoPETs 2017.1 (2017),
pp. 170–187.

140 BIBLIOGRAPHY

[113] Christoph Fuchs, Nils Aschenbruck, Felix Leder,
and Peter Martini. “Detecting VoIP based DoS
attacks at the public safety answering point”.
Proceedings of the 2008 ACM Symposium on In-
formation, Computer and Communications Se-
curity, ASIACCS 2008, Tokyo, Japan, March
18-20, 2008. Ed. by Masayuki Abe and Virgil
D. Gligor. ACM, 2008, pp. 148–155.

[114] Ming Luo, Tao Peng, and Christopher Leckie.
“CPU-based DoS attacks against SIP servers”.
IEEE/IFIP Network Operations and Manage-
ment Symposium: Pervasive Management for
Ubioquitous Networks and Services, NOMS
2008, 7-11 April 2008, Salvador, Bahia, Brazil.
Ed. by Marcus Brunner, Carlos Becker West-
phall, and Lisandro Zambenedetti Granville.
IEEE, 2008, pp. 41–48.

[115] William Conner and Klara Nahrstedt. “Pro-
tecting SIP Proxy Servers from Ringing-Based
Denial-of-Service Attacks”. Tenth IEEE Inter-
national Symposium on Multimedia (ISM2008),
December 15-17, 2008, Berkeley, California,
USA. IEEE Computer Society, 2008, pp. 340–
347.

[116] Sven Ehlert, Dimitris Geneiatakis, and Thomas
Magedanz. “Survey of network security systems
to counter SIP-based denial-of-service attacks”.
Computers & Security 29.2 (2010), pp. 225–243.

[117] Dimitris Geneiatakis, Georgios Kambourakis,
and Costas Lambrinoudakis. “A Mechanism for
Ensuring the Validity and Accuracy of the
Billing Services in IP Telephony”. Trust, Privacy
and Security in Digital Business, 5th Interna-
tional Conference, TrustBus 2008, Turin, Italy,
September 4-5, 2008, Proceedings. Ed. by Steven
Furnell, Sokratis K. Katsikas, and Antonio Lioy.
Vol. 5185. Lecture Notes in Computer Science.
Springer, 2008, pp. 59–68.

[118] Prateek Gupta and Vitaly Shmatikov. “Secu-
rity Analysis of Voice-over-IP Protocols”. 20th
IEEE Computer Security Foundations Sympo-
sium, CSF 2007, 6-8 July 2007, Venice, Italy.
IEEE Computer Society, 2007, pp. 49–63.

[119] Humberto J. Abdelnur, Radu State, Isabelle
Chrisment, and C. Popi. “Assessing the secu-
rity of VoIP Services”. Integrated Network Man-
agement, IM 2007. 10th IFIP/IEEE Interna-
tional Symposium on Integrated Network Man-
agement, Munich, Germany, 21-25 May 2007.
IEEE, 2007, pp. 373–382.

[120] Salman Baset and Henning Schulzrinne. “An
Analysis of the Skype Peer-to-Peer Internet
Telephony Protocol”. INFOCOM 2006. 25th
IEEE International Conference on Computer
Communications, Joint Conference of the IEEE
Computer and Communications Societies, 23-29
April 2006, Barcelona, Catalunya, Spain. IEEE,
2006.

[121] Tom Berson. “Skype security evaluation”. ALR
31 (2005).

[122] Danny Dolev and Andrew Chi-Chih Yao. “On
the security of public key protocols”. IEEE
Trans. Information Theory 29.2 (1983), pp. 198–
207.

[123] Claude E Shannon. “Communication theory of
secrecy systems*”. Bell system technical journal
28.4 (1949), pp. 656–715.

[124] Thorsten Kleinjung, Arjen K. Lenstra, Dan
Page, and Nigel P. Smart. “Using the Cloud
to Determine Key Strengths”. Progress in Cryp-
tology - INDOCRYPT 2012, 13th International
Conference on Cryptology in India, Kolkata,
India, December 9-12, 2012. Proceedings. Ed.
by Steven D. Galbraith and Mridul Nandi.
Vol. 7668. Lecture Notes in Computer Science.
Springer, 2012, pp. 17–39.

[125] Arjen Lenstra. Handbook of Information Secu-
rity. Wiley, 2004.

[126] Agence nationale de la sécurité des systèmes
d’information. Le Référentiel général de sécurité
(RGS). Tech. rep. 2014.

[127] National Institute for Standards and Technol-
ogy. Recommendation for Key Management.
Tech. rep. 2016.

[128] Mourad Alia, Marc Lacoste, Ruan He, and Frank
Eliassen. “Putting together QoS and security
in autonomic pervasive systems”. Q2SWinet’10,
Proceedings of the Sixth ACM Symposium on
QoS and Security for Wireless and Mobile Net-
works, Bodrum, Turkey, October 20-21, 2010.
Ed. by Mario Gerla, Matteo Cesana, and Jalel
Ben-Othman. ACM, 2010, pp. 19–28.

[129] J. Rosenberg, H. Schulzrinne, G. Camarillo, A.
Johnston, J. Peterson, R. Sparks, M. Handley,
and E. Schooler. SIP: Session Initiation Proto-
col. RFC 3261. http://www.rfc-editor.org/
rfc/rfc3261.txt. RFC Editor, 2002.

http://www.rfc-editor.org/rfc/rfc3261.txt
http://www.rfc-editor.org/rfc/rfc3261.txt

BIBLIOGRAPHY 141

[130] Feng Cao and Cullen Jennings. “Providing Re-
sponse Identity and Authentication in IP Tele-
phony”. Proceedings of the The First Interna-
tional Conference on Availability, Reliability and
Security, ARES 2006, The International De-
pendability Conference - Bridging Theory and
Practice, April 20-22 2006, Vienna University
of Technology, Austria. IEEE Computer Society,
2006, pp. 198–205.

[131] Mario Di Mauro and Maurizio Longo. “A deci-
sion theory based tool for detection of encrypted
WebRTC traffic”. 18th International Conference
on Intelligence in Next Generation Networks,
ICIN 2015, Paris, France, February 17-19, 2015.
IEEE, 2015, pp. 89–94.

[132] Mario Di Mauro and Maurizio Longo. “Reveal-
ing Encrypted WebRTC Traffic via Machine
Learning Tools”. SECRYPT 2015 - Proceedings
of the 12th International Conference on Secu-
rity and Cryptography, Colmar, Alsace, France,
20-22 July, 2015. Ed. by Mohammad S. Obai-
dat, Pascal Lorenz, and Pierangela Samarati.
SciTePress, 2015, pp. 259–266.

[133] Cullen Jennings, Ted Hardie, and Magnus West-
erlund. “Real-time communications for the web”.
IEEE Communications Magazine 51.4 (2013),
pp. 20–26.

[134] Richard L. Barnes and Martin Thomson.
“Browser-to-Browser Security Assurances for
WebRTC”. IEEE Internet Computing 18.6
(2014), pp. 11–17.

[135] Salvatore Loreto and Simon Pietro Romano.
“Real-Time Communications in the Web: Issues,
Achievements, and Ongoing Standardization Ef-
forts”. IEEE Internet Computing 16.5 (2012),
pp. 68–73.

[136] Salvatore Loreto and Simon Pietro Romano.
“How Far Are We from WebRTC-1.0? An Up-
date on Standards and a Look at What’s Next”.
IEEE Communications Magazine 55.7 (2017),
pp. 200–207.

[137] Md Habibur Rahaman. “A Survey on Real-Time
Communication for Web”. Scientific Research
Journal (Scirj) 3.VII (2015), pp. 39–45.

[138] Alessandro Amirante, Tobia Castaldi, Lorenzo
Miniero, and Simon Pietro Romano. “On the
seamless interaction between webRTC browsers
and SIP-based conferencing systems”. IEEE
Communications Magazine 51.4 (2013), pp. 42–
47.

[139] Philippe De Ryck, Wouter Joosen, Frank
Piessens, Martin Johns, Elwyn Davies, Bert
Bos, Thomas Roessler, Lieven Desmet, Sebas-
tian Lekies, Jan Tobias MÃŒhlberg, et al. Web-
platform security guide: Security assessment of
the web ecosystem. Deliverable D1.1. STREWS
Project, 2013.

[140] Bert Bos, Elwyn Davies, Lieven Desmet,
Stephen Farrell, Martin Johns, and Rigo Wen-
ning. “Case study 1 Report: WebRTC”. D1.2
(2014).

[141] Andreas Reiter and Alexander Marsalek. “We-
bRTC: your privacy is at risk”. Proceedings of
the Symposium on Applied Computing, SAC
2017, Marrakech, Morocco, April 3-7, 2017. Ed.
by Ahmed Seffah, Birgit Penzenstadler, Carina
Alves, and Xin Peng. ACM, 2017, pp. 664–669.

[142] Nasser Mohammed Al-Fannah. “One Leak Will
Sink A Ship: WebRTC IP Address Leaks”.
Vol. abs/1709.05395. 2017. arXiv: 1709.05395.

[143] Willem De Groef, Deepak Subramanian, Martin
Johns, Frank Piessens, and Lieven Desmet. “En-
suring endpoint authenticity in WebRTC peer-
to-peer communication”. Proceedings of the 31st
Annual ACM Symposium on Applied Comput-
ing, Pisa, Italy, April 4-8, 2016. Ed. by Sascha
Ossowski. ACM, 2016, pp. 2103–2110.

[144] J Muranyi and I Kotuliak. “Identity manage-
ment in WebRTC domains”. Emerging eLearning
Technologies and Applications (ICETA), 2013
IEEE 11th International Conference on. IEEE.
2013, pp. 289–293.

[145] Li Li, Wu Chou, Zhihong Qiu, and Tao Cai.
“Who Is Calling Which Page on the Web?” IEEE
Internet Computing 18.6 (2014), pp. 26–33.

[146] Victoria Beltran, Emmanuel Bertin, and Noël
Crespi. “User Identity for WebRTC Services: A
Matter of Trust”. IEEE Internet Computing 18.6
(2014), pp. 18–25.

[147] Victoria Beltran and Emmanuel Bertin. “Unified
communications as a service and WebRTC: An
identity-centric perspective”. Computer Commu-
nications 68 (2015), pp. 73–82.

[148] Victoria Beltran and Emmanuel Bertin. “Iden-
tity management for Web business communica-
tions”. 18th International Conference on Intelli-
gence in Next Generation Networks, ICIN 2015,
Paris, France, February 17-19, 2015. IEEE,
2015, pp. 103–107.

http://arxiv.org/abs/1709.05395

142 BIBLIOGRAPHY

[149] Ibrahim Tariq Javed, Khalifa Toumi, and Noel
Crespi. “Browser-to-browser authentication and
trust relationships for WebRTC”. UBICOMM
2016 : 10th International Conference on Mobile
Ubiquitous Computing, Systems, Services and
Technologies. Venice, Italy, 2016, pp. 9–16.

[150] Ibrahim Tariq Javed, Khalifa Toumi, Noël
Crespi, and Amir Mohammadinejad. “Br2Br:
A Vector-Based Trust Framework for WebRTC
Calling Services”. 18th IEEE International Con-
ference on High Performance Computing and
Communications; 14th IEEE International Con-
ference on Smart City; 2nd IEEE International
Conference on Data Science and Systems, HPC-
C/SmartCity/DSS 2016, Sydney, Australia, De-
cember 12-14, 2016. Ed. by Jinjun Chen and
Laurence T. Yang. IEEE, 2016, pp. 522–529.

[151] Rebecca Copeland and Michael Copeland.
“A Question of Quality–VoIP, WebRTC or
VoLTE?” 19th Conference on Innovations in
Clouds, Internet and Networks, ICIN 2016,
Paris, France, March, 2016. 2016.

[152] Ibrahim Tariq Javed, Khalifa Toumi, and Noël
Crespi. “TrustCall: A Trust Computation Model
for Web Conversational Services”. IEEE Access
5 (2017), pp. 24376–24388.

[153] Anna Vapen, Niklas Carlsson, Anirban Ma-
hanti, and Nahid Shahmehri. “Information Shar-
ing and User Privacy in the Third-Party Iden-
tity Management Landscape”. ICT Systems Se-
curity and Privacy Protection - 30th IFIP TC
11 International Conference, SEC 2015, Ham-
burg, Germany, May 26-28, 2015, Proceedings.
Ed. by Hannes Federrath and Dieter Goll-
mann. Vol. 455. IFIP Advances in Information
and Communication Technology. Springer, 2015,
pp. 174–188.

[154] Alan Johnston, John Yoakum, and Kundan
Singh. “Taking on webRTC in an enterprise”.
IEEE Communications Magazine 51.4 (2013),
pp. 48–54.

[155] Kundan Singh, John Yoakum, and Alan John-
ston. “Enterprise WebRTC Powered by Browser
Extensions”. Proceedings of the Principles, Sys-
tems and Applications on IP Telecommunica-
tions, IPTComm 2015, Chicago, IL, USA, Oc-
tober 6-8, 2015. ACM, 2015, pp. 1–6.

[156] San-Tsai Sun, Eric Pospisil, Ildar Muslukhov,
Nuray Dindar, Kirstie Hawkey, and Konstantin
Beznosov. “What makes users refuse web single

sign-on?: an empirical investigation of OpenID”.
Symposium On Usable Privacy and Security,
SOUPS ’11, Pittsburgh, PA, USA - July 20 - 22,
2011. Ed. by Lorrie Faith Cranor. ACM, 2011,
p. 4.

[157] Manu Sporny, Toby Inkster, Henry Story, Bruno
Harbulot, and Reto Bachmann-Gmür. Webid
1.0: Web identification and discovery. W3C Ed-
itor’s Draft. W3C, 2011.

[158] Nat Sakimura, John Bradley, M Jones, and
Edmund Jay. OpenID Connect Discovery 1.0.
OpenID Specification. OpenID Foundation,
2014.

[159] N Sakimura, J Bradley, and M Jones. OpenID
connect dynamic client registration 1.0. OpenID
Specification. OpenID Foundation, 2014.

[160] P. Jones, G. Salgueiro, M. Jones, and J. Smarr.
WebFinger. RFC 7033. RFC Editor, 2013.

[161] J. Richer, M. Jones, J. Bradley, M. Machulak,
and P. Hunt. OAuth 2.0 Dynamic Client Regis-
tration Protocol. RFC 7591. RFC Editor, 2015.

[162] Kim Cameron. “The laws of identity.” Microsoft
Whitepaper (2005).

[163] David Chappell. “Introducing Windows
CardSpace, April 2006”. Microsoft Whitepaper
().

[164] Mike Jones. “Microsoft’s vision for an identity
metasystem”. Microsoft Whitepaper (2005).

[165] Pietraszak Mike. Browser Extensions. Commu-
nity Group Draft Report. W3C, 2017.

[166] Audun Jøsang. “Artificial reasoning with subjec-
tive logic”. Proceedings of the second Australian
workshop on commonsense reasoning. Vol. 48.
Perth:[sn]. 1997, p. 34.

[167] Bruce Schneier. “Attack trees”. Dr. Dobb’s jour-
nal 24.12 (1999), pp. 21–29.

[168] Simon Allier, Olivier Barais, Benoit Baudry, Jo-
hann Bourcier, Erwan Daubert, Franck Fleurey,
Martin Monperrus, Hui Song, and Maxime Tri-
coire. “Multi-tier diversification in Web-based
software applications”. IEEE Software 32.1
(2015), pp. 83–90.

[169] WebID-TLS, WebID Authentication over TLS.
W3C Editor’s Draft. W3C, 2013.

[170] Mark Watson. Web Cryptography API. W3C
Recommendation. https://www.w3.org/TR/2017/REC-
WebCryptoAPI-20170126/. W3C, 2017.

BIBLIOGRAPHY 143

[171] Ian Hickson. Web Storage (Second Edition).
W3C Recommendation. http://www.w3.org/TR/2016/REC-
webstorage-20160419/. W3C, 2016.

[172] Domenic Denicola, Marcos Caceres, Adrian
Bateman, Roy McElmurry, and Zach Koch.
Payment Request API. Candidate Recom-
mendation. https://www.w3.org/TR/2018/CR-
payment-request-20180123/. W3C, 2018.

144 BIBLIOGRAPHY

145

Glossary

3GPP The 3rd Generation Partnership Project is a
cooperation organisation between telecommunication
standard organisations.

AAA Authentication, Authorization, and Accounting
AAL Authentication Assurance Level
ACME The Automatic Certificate Management En-
vironment is a protocol that a certification au-
thority (CA) and an applicant can use to auto-
mate the process of verification and certificate is-
suance [I-D.ietf-acme-acme].
ACOR Authentication Class and Origin Request is our
proposed extension to SDP for the negotiation of iden-
tity parameters.
ACR Authentication Class Request is a parameter of
out ACOR extension to SDP.
ACR Authentication Context Class Reference (OIDC
claim)
API An Application Programming Interface is a partic-
ular set of rules and specifications that a software pro-
gram can follow to access and make use of the services
and resources provided by another particular software
program that implements that API.
ARCEP Autorité de Régulation des Communications
Électroniques et des Postes is the French regulation au-
thority for postal and electronic communications.
AS Authorization Server (OAuth 2 role)

CA Certification Authority are responsible for signing
and issuing cryptographic certificates.
CDN A Content Delivery Network is constituted of
proxy servers geographically distributed to be as close
to clients as possible in order to transparently provide
high availability and performance.
CORS Cross-Origin Resource Sharing is a web secu-
rity mechanism to allow resources on a webpage to be
requested from an origin outside of the webpage’s origin
(see RFC6454 [40]).
CS Communication Service
CSCF Call Session Control Function

CSP Content Security Policies is a mechanism by which
web developers can control the resources which a par-
ticular page can fetch or execute, as well as a number
of security-relevant policy decisions [42].
CSRF Cross-Site Request Forgery is a type of vulner-
ability allowing an attacker to issue unauthorized com-
mands in name of the user.
CVE The Common Vulnerabilities and Exposure
database references public security vulnerabilities.

DDoS Distributed Denial of Service
DHT A Distributed Hash Table is a distributed storage
infrastructure providing a key/value lookup functional-
ity.
DoS A Denial of Service attack targets the availability
of a machine or network, usually by flooding the target
with illegitimate requests.
DTLS The DTLS protocol provides communications
privacy for datagram protocols. The protocol allows
client/server applications to communicate in a way that
is designed to prevent eavesdropping, tampering, or
message forgery. The DTLS protocol is based on the
Transport Layer Security (TLS) protocol and provides
equivalent security guarantees. Datagram semantics of
the underlying transport are preserved by the DTLS
protocol (see RFC6347 [57]).

Ecma The European association for standardizing in-
formation and communication systems is a standardis-
ation organisation responsible in particular for the EC-
MAScript language, i. e. JavaScript.
EU European Union.

GDPR The General Data Protection is an European
Union regulation on the protection of natural persons
with regard to the processing of personal data and on
the free movement of such data.
GUID Globally Unique IDentifier (reThink project)

HTTP The Hypertext Transfer Protocol is an
application-level protocol for distributed, collaborative,

146 Glossary

hypermedia information systems. It is a generic, state-
less, protocol which can be used for many tasks beyond
its use for hypertext, such as name servers and dis-
tributed object management systems, through exten-
sion of its request methods, error codes and headers
(see RFC2616 [19]).
HTTPS HyperText Transfer Protocol Secured (see
RFC2818 [45]).

ICE Internet Connectivity Establishment is a proto-
col for Network Address Translator (NAT) traversal for
UDP-based multimedia sessions established with the
offer/answer model. ICE makes use of the Session
Traversal Utilities for NAT (STUN) protocol and its
extension, Traversal Using Relay NAT (TURN). ICE
can be used by any protocol utilizing the offer/answer
model, such as the Session Initiation Protocol (SIP) (see
RFC5245 [35]).
IdP Identity Provider
IETF The Internet Engineering Task Force (IETF) is
the premier Internet standards body, developing open
standards through open processes.
IMS The IP Multimedia Subsystem aims at merging
telecommunication technologies under an all-IP envi-
ronment.
IP The Internet Protocol provides for transmitting
blocks of data called datagrams from sources to desti-
nations, where sources and destinations are hosts iden-
tified by fixed length addresses (see RFC791 [RFC791
]).

JKU JSON Key URL (a JWT header parameter).
JOSE JavaScript Object Signing and Encryption
JSEP JavaScript Session Establishment Protocol al-
lows a JavaScript application to control the signaling
plane of a multimedia session via the interface specified
in the W3C RTCPeerConnection API, and discusses
how this relates to existing signaling protocols [33].
JSON JavaScript Object Notation is a lightweight,
text-based, language-independent data interchange for-
mat derived from the ECMAScript (see RFC7159 [72]).
JWE JSON Web Token Encryption
JWS JSON Web Token Signature
JWT JSON Web Token is a compact, URL-safe means
of representing claims to be transferred between two
parties. The claims in a JWT are encoded as a JSON
object that is used as the payload of a JSON Web Sig-
nature (JWS) structure or as the plaintext of a JSON
Web Encryption (JWE) structure, enabling the claims
to be digitally signed or integrity protected with a Mes-
sage Authentication Code (MAC) and/or encrypted
(see RFC7519 [71]).

LTE The Long Term Evolution mobile network is a
standard for high-speed mobile networks designed by
the 3GPP.

MitM A Man-in-the-Middle attack is a kind of cryp-
tographic attack where the attacker is setup between
two communicating parties and secretly intercepts and
relays their messages.

NAT A Network Address Translator re-maps an IP ad-
dress into another by modifying packet headers while in
transit. It is usually used to hide an private IP address
space into a single public IP address.

OIDC OpenID Connect 1.0 is a simple identity layer
on top of the OAuth 2.0 protocol [65].
OR Origin Request is a parameter of our ACOR ex-
tension to SDP.
OS Operating System
OSN An Online Social Network is a platform where
users build social relations based on personal or profes-
sional interests.
OTT Over The Top services are provided on top of
existing internet service providers networks.

P2P Peer-to-Peer
POSIX The Portable Operating System Interface is
a set of standards of compatibility between operating
systems.

QoS Quality of Service is the description or measure-
ment of the performance of a service, in particular as
seen by the user.

RFC Request For Comments are memorandum pub-
lished by the Internet Engineering Task Force (IETF).
RO Resource Owner (OAuth 2 role)
RP A Relying Party is an OAuth 2 client using OpenID
Connect.
RS Resource Server (OAuth 2 role)
RTCP The RTP Control Protocol is a protocol for con-
trolling RTP sessions (see RFC3550 [53]).
RTP The Real-time Transport Protocol provides end-
to-end network transport functions suitable for applica-
tions transmitting real-time data, such as audio, video
or simulation data, over multicast or unicast network
services (see RFC3550 [53]).

SAS Short Authentication String
SCTP The Stream Control Transmission Protocol is
designed to transport Public Switched Telephone Net-
work (PSTN) signalling messages over IP networks, but
is capable of broader applications (see RFC4960 [59]).

Glossary 147

SDES The Session Description Protocol Security De-
scriptions serves to configure security for a unicast me-
dia stream in either a single message or a roundtrip
exchange (see RFC4568 [79]).
SDK A Software Development Kit is a set of tools and
libraries facilitating the development of applications.
SDP Session Description Protocol is intended for de-
scribing multimedia sessions for the purposes of session
announcement, session invitation, and other forms of
multimedia session initiation (see RFC4566 [RFC4566
]).
SIP The Session Initiation Protocol is an application-
layer control (signaling) protocol for creating, modify-
ing, and terminating sessions with one or more partic-
ipants. These sessions include Internet telephone calls,
multimedia distribution, and multimedia conferences
(see RFC3261 [129]).
SPIT SPam over Internet Telephony
SRTP The Secure Real-time Transport Protocol is a
secure profile for the RTP protocol (see RFC3711 [52]).
SRTP profile for DTLS is an extension of the Data-
gram Transport Layer Security (DTLS) protocol to es-
tablish keys for Secure Real-time Transport Protocol
(SRTP) (see RFC5763 [56]).
SSO Single Sign-On systems permit users to log in with
a single identifier and password to access a set of sys-
tems.
STUN Session Traversal Utilities for NAT is a proto-
col that serves as a tool for other protocols in dealing
with Network Address Translator (NAT) traversal (see
RFC5389 [36]).

TCB Trusted Computing Base
TCP The Transmission Control Protocol (TCP) is in-
tended for use as a highly reliable host-to-host protocol
between hosts in packet-switched computer communi-
cation networks, and in interconnected systems of such
networks (see RFC793 [55].
TLS Transport Layer Security provides communica-
tions security over the Internet. The protocol allows
client/server applications to communicate in a way that
is designed to prevent eavesdropping, tampering, or
message forgery (see RFC5246 [46]).

TURN Traversal Using Relays around NAT allows the
traversal of NAT router through a TURN server relay
(see RFC5766 [37]).

UA A User-Agent is an HTTP client.
UDP The User Datagram Protocol provides a proce-
dure for application programs to send messages to other
programs with a minimum of protocol mechanism. The
protocol is transaction oriented, and delivery and dupli-
cate protection are not guaranteed (see RFC768 [54]).
UE User Equipement (LTE role)
UI User Inteface
UICC The Universal Integrated Circuit Card is a
smart card used for mobile phones authentication and
security, often referred as the SIM card.
URI A Uniform Resource Identifier is a compact se-
quence of characters that identifies an abstract or phys-
ical resource (see RFC3986 [41]).
URL Uniform Resource Locator (see RFC3986 [41]).

VBR Variable Bit-Rate files vary the amount of output
data per time segment, as opposed to constant bit-rate.
VoIP Voice over IP designates the techniques to com-
municate using voice or voice and video over any com-
patible IP networks.
VoIPSA The VoIP Security Alliance aims to fill the
void of VoIP security related resources through a unique
collaboration of VoIP and Information Security ven-
dors, providers, and thought leaders.
VoLTE Voice over LTE is an architecture for VoIP over
4G mobile networks.
VPN A Virtual Private Network extends a private net-
work through a public network, often over a secure tun-
nel established with TLS.

W3C The World Wide Web Consortium (W3C) is an
international community where Member organizations,
a full-time staff, and the public work together to de-
velop Web standards.

XSS Cross-Site Scripting is a vulnerability of web
applications allowing an attacker to inject malicious
scripts from a domain into another.

148 Glossary

149

List of Figures

6 A Scytale 1
7 Browser Security Indications 2
8 Overview of our Contributions 5

1.1 WebRTC deployment with two browser
endpoints and two signalling servers [30]. 12

1.2 WebRTC browser endpoint model [30]. . 12
1.3 Session Description Protocol syntax . . 13
1.4 Example of a SDP message (answer) . . 14
1.6 Cross-site Request Example 15
1.5 Percentage of recorded browsers visiting

w3schools.com and amiunique.org in
June 2017. 15

1.7 Web Browser Security Indications 17
1.9 Public-key encryption of m from Alice to

Bob [49]. 17
1.8 X.509 Certificate 18
1.10 Public-key signature of a message m

from Alice to Bob [49]. 18
1.12 WebRTC Protocol Stack [51]. 19
1.11 Cypher Suit Example 19
1.13 WebRTC Man-in-the-Middle Attack . . 22
1.14 WebRTC Identity Architecture 23
1.15 Interface Exposed by Identity Providers

in WebIDL. 23
1.16 Evolution of standards and technologies

for user identity management, updated
from Jøsang’s 2014 survey [70]. 24

1.17 A JWT Example: OIDC ID Token . . . 25
1.18 OAuth 2 Process Example 26
1.19 Abstract Oauth 2 code flow taken from

RFC 6749. 27
1.20 Phone-X application displaying the

ZRTP SAS. 29
1.21 Trust representation 30

a Trust relationship 30
b Trust transitivity 30

1.22 Tor Onion Encryption 34
1.23 Silo Architecture 35
1.24 Simplified VoLTE Architecture 36
1.25 E2E and E2AE IMS Encryption 37

1.26 Matrix Messaging Federation 38
1.27 Simplified reThink architecture 39
1.28 reThink Identity Discovery 40
1.29 Spray Architecture 40

2.1 Classification tree [102] 44
2.2 VBR Transcripts Reconstruction 46
2.3 Denial of Service Flooding Attack 47
2.4 Alia et al. [128] Utility Function 49
2.5 Paper collection search strings used on

Scholar. 50
2.6 Javed et al. [150] WebRTC trust model. 55
2.7 Service Mode decision process based on

context and QUSA profiles. 56
2.8 Overview of our Scientific Methodology 63

3.1 Overview of our Contributions: Study of
the WebRTC Identity Architecture. . . . 65

3.2 Local Authentication Architecture . . . 66
3.3 RTCIdentityAssertionResult specifica-

tion in WebIDL 67
3.4 RTCIdentityValidationResult specifica-

tion in WebIDL. 67
3.5 Local Identity Assertion Generation . . 68
3.6 Local Identity Assertion Verification . . 69
3.7 OIDC Assertion Generation 71
3.8 Google Identity Selection Page 73
3.9 JS Code for WebRTC Identity Collection 74
3.10 Example of an OAuth 2 request collected

by our extension. 75
3.11 Classification of RP-IdP relationships. . 77
3.12 BreizhCamp Developer Survey 82
3.13 Mean, minimum, and standard deviation

of the trust survey results. 83

4.1 Overview of our Contributions: Control-
ling the WebRTC Identity Parameters. . 85

4.2 SDP Offer 89
4.3 SDP Answer 90
4.4 Identity negotiation interface on a We-

bRTC service. 91

w3schools.com
amiunique.org

150 LIST OF FIGURES

4.5 CardSpace User Interface 93
4.6 WebConnect Architecture 94
4.7 WebConnect identity assertion manage-

ment sequence diagram. 95
4.8 WebConnect interface specification in

WebIDL. 96
4.9 Prototype user interface for the Authen-

tication web API. 98

5.1 Overview of our Contributions: Mod-
elling the WebRTC Trust and Security. . 101

5.2 Javed et al. TrustCall architecture [152]. 102
5.3 Alia et al. [128] Overall Utility Function 103
5.4 Attack Tree Example 104
5.5 Alice’s trust in the confidentiality of her

WebRTC session. 105
5.6 Alice’s trust in Bob’s authenticity result-

ing from the signalling process. 106
5.7 Alice trust in Bob’s identity path. . . . 107
5.8 Alice’s trust in the confidentiality of the

peer-to-peer media streams. 108

5.10 Comparative Security Utility Function . 108
5.9 Overall trust of Alice in the confidential-

ity of her WebRTC session. 109
5.11 Overall computational formula for Alice

trust in her WebRTC session. 111
5.12 Survey: Trust in Communication Sce-

narios. 113
5.13 WebRTC Trust and Security Model im-

plementation in D3.js. 115
5.14 Survey: Interest in the WebRTC Trust

and Security Model. 116
5.15 This JavaScript code prints

RTCTransportStats. However, on Fire-
fox it returns no element, and on Chrome
the returned stat does not include
dtlsCipher or srtpCipher elements. . . 118

7.1 One-Shot Protocols Architecture 126
7.2 ID Loopback Sequence 127
7.3 Payer Makes a Purchase. 129

List of Tables

2.1 Classification of VoIP security papers re-
turned by our search. 51

2.2 User privacy properties in identity pro-
vision model [146]. 54

2.3 Reviewed WebRTC Papers 57

3.1 JS code lines for local IdP Proxy 72
3.2 Observed Relying Parties’ Classes 78
3.3 Observed OIDC and discovery features

Implementations 80

4.1 Comparison of communication setup ac-
tors to act as an identity recommenda-
tion source. 87

4.2 Capability to Implement the Proposed
Solution 91

4.3 Code lines written for the prototype im-
plementation 99

5.1 Alia et al. [128] Confidentiality Utility
Function 103

5.2 Security element instantiation based on
ANSSI recommendations [126]. 110

5.3 Survey results: Trust in Audio and Video
Communications 114

5.4 Survey results: Interest of the Trust and
Security Model 117

151

Titre : Niveau de Confiance et de Sécurité des Communications Temps-Rééel
Controlé par l’Utilisateur

Mot clés : Le Web, Voix sur IP, Sécurité Informatique, Droit à la vie privée, Authentification, WebRTC

Resumé : Dans cette thèse, je propose trois contri-
butions principales. J’étudie l’architecture d’identité We-
bRTC et plus particulièrement son intégration aux algo-
rithmes de délégation d’authentification existants. Cette
intégration n’a pas encore été étudiée jusqu’à présent.
Dans cette perspective, j’implémente les composants de
l’architecture d’identité WebRTC ce qui permet de montrer
que cette architecture n’est pas particulièrement adap-
tée à une intégration aux protocoles de délégation d’au-
thentification existants tels qu’OpenID Connect. Je montre
ensuite comment la position centrale des fournisseurs
d’identité dans l’écosystème du Web est renforcée par
leur intégration à l’établissement de session WebRTC.

Dans ma seconde contribution, je cherche à donner plus
de contrôle à l’utilisateur. Pour ce faire, je propose une
extension de la spécification WebRTC afin de permettre
la négociation des paramètres d’identité ainsi qu’une API
Web permettant aux utilisateurs de choisir leur fournisseur
d’identité. La faisabilité de chacune de ces solutions est
démontrée par une implémentation. Enfin, dans ma troi-
sième contribution, je propose un modèle de sécurité et
de confiance d’une session WebRTC afin d’aider les uti-
lisateurs non-experts à mieux comprendre la sécurité de
leur session WebRTC. Afin de valider cette approche, je
présente les résultats d’une étude préliminaire de la com-
préhension de ce modèle.

Title : User Controlled Trust and Security Level of Web Real-Time Communi-
cations

Keywords : Web, Voice over IP, Computer Security, Privacy, Authentication, WebRTC

Abstract : In this thesis, we propose three main contri-
butions. In our first contribution we study the WebRTC
identity architecture and more particularly its integration
with existing authentication delegation protocols. This in-
tegration has not been studied yet. To fill this gap, we im-
plement components of the WebRTC identity architecture
and comment on the issues encountered in the process.
We then study this specification from a privacy perspec-
tive an identify new privacy considerations related to the
central position of identity provider. In our second contri-
bution, we aim at giving more control to users. To this end,
we extend the WebRTC specification to allow identity pa-
rameters negotiation. We then propose a web API allo-

wing users to choose their identity provider in order to au-
thenticate on a third-party website. We validate our propo-
sitions by presenting prototype implementations. Finally,
in our third contribution, we propose a trust and security
model of a WebRTC session to help non-expert users to
better understand the security of their WebRTC session.
Our proposed model integrates in a single metric the se-
curity parameters used in the session establishment, the
encryption parameters for the media streams, and trust in
actors of the communication setup as defined by the user.
We conduct a preliminary study on the comprehension of
our model to validate our approach.

1

	Abstract
	I Context
	WebRTC Trust and Security Architecture
	WebRTC Overview
	Security on the Web
	The HyperText Transfer Protocol Secure

	WebRTC Security
	Availability of the Communication
	User Authenticity
	WebRTC Identity Path
	Considered Protocols for WebRTC Peer Authentication
	Alternative Key Management Protocols

	Trust
	Introduction on Trust
	The WebRTC Trust Model

	Privacy of the Call-Session
	Attack and Threat Mitigation
	Regulations

	Signalling Architectures
	Voice over LTE and WebRTC Interconnectivity
	reThink
	Distributed Signalling Architectures

	Summary

	State of the Art
	VoIP Security Research - 2012
	Threats Classification and Methodology

	VoIP and WebRTC Security Research - 2012+
	Methodology
	Observations on VoIP Security Research since 2012
	Survey of WebRTC Security Research

	Summary

	II Contributions
	Foreword on Methodology
	Privacy Implications of the WebRTC Identity Architecture
	WebRTC Identity Architecture Implementation
	Local Authentication Implementation
	IdP Proxy with OpenID Connect
	Observations

	RQ1.1 Additional Privacy Considerations
	IdP in a Central Position

	Why Can't Users Choose their Identity Providers on the Web?
	The Study: OAuth Request Collection
	RQ3.1: Do RP require specialised API?
	RQ3.2: Is dynamic discovery and registration commonly available for RP?
	RQ3.3: Do RP require a trust relationship with the supported IdP?
	Developer Survey

	Summary

	Controlling the WebRTC Identity Parameters
	An SDP Extension to Allow Identity Negotiation
	Recommendation Sources
	SDP Extension
	Validation on the current specification

	WebConnect
	Analysis
	Validation

	Summary

	WebRTC Trust and Security Model
	Building the WebRTC Trust and Security Model
	Session Confidentiality
	Signalling Path Security
	Identity Path Security
	Media Path Confidentiality
	Overall Trust and Security Tree, Instantiation and Computational Models

	Validation
	WebRTC Trust and Security Model Survey
	Discussions

	Summary

	III Conclusion and Perspectives
	Conclusion
	Perspectives
	On the WebRTC Trust and Security Model
	On the IdP Proxy Interface
	On WebConnect and the WebPayment Working Group

	Afterwords
	Author's Publications
	References
	Glossary
	List of Figures
	List of Tables

