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Abstract 

 

Due to the heterogeneous and rapidly-changing cloudiness, tropical islands, such as Reunion 

Island in the South-west Indian Ocean (SWIO), have significant solar resource that is highly 

variable from day-to-day. In this study, we propose a new approach for deterministic prediction 

of  daily surface solar radiation(SSR) maps based on four linear regression models: multiple 

linear regression (MLR), principal component regression (PCR), partial least squares 

regression (PLSR), and stepwise regression (SR), that we have applied on the SARAH-E@5km 

satellite data (CM SAF) for the period during 2007-2016. To improve the accuracy of 

prediction, the multifractal parameters (𝐻𝐻,𝐶𝐶1 and 𝛼𝛼) are proposed to include as new predictors 

in the predictive model. These parameters are obtained from the analysis of SSR intermittency 

based on arbitrary order Hilbert spectral analysis. This analysis is the extension of Hilbert 

Huang Transform (HHT) and it is used to estimate the generalized scaling exponent 𝜉𝜉(𝑞𝑞). It is 

the combination of the Empirical Mode Decomposition and Hilbert spectral analysis 

(EMD+HSA). In a first step, the multifractal analysis is applied onto one-second SSR 

measurements form a SPN1 pyranometer in Moufia in 2016. The mean sub-daily, daily and 

seasonal daily multifractal patterns are derived, and the scaling exponent ζ(q) is analyzed. In a 

second step, the intermittency study is conducted on one-minute SSR measurements from a 

SPN1 network with 11 stations in 2014. The spatial patterns for all the stations with the 

multifractal parameters 𝐻𝐻,𝐶𝐶1 and 𝛼𝛼 are shown. The variability of singularity spectrum width is 

considered to study the spatial intermittency at the daily and seasonal scale. Based on this 

intermittency analysis from measurements at several stations, the universal multifractal 

parameters (𝐻𝐻,𝐶𝐶1 and  𝛼𝛼 ) could be taken as new predictors for indicating the multifractal 

properties of SSR. 

 

Keywords: global solar radiation; mapping prediction; intermittency; multifractality; scaling 

exponent; arbitrary order Hilbert spectral analyses; linear regression model 

 
 
 
 
 
 
 
 



 

 

 
Résumé 

 

Les îles tropicales sont soumises à un ennuagement hétérogène et changeant rapidement. Par 

ailleurs, elles ont une ressource solaire importante mais significativement variable d’un jour à 

l’autre. Dans le sud-ouest de l’océan indien (SWIO), La Réunion fait partie de ces îles 

tropicales ayant un potentiel solaire colossal mais fortement intermittent. Dans cette étude, 

nous proposons une nouvelle approche de prévision déterministe des cartes journalières 

rayonnement solaire (SSR), basée sur quatre modèles de régression linéaire : une régression 

linéaire multiple (MLR), une régression en composantes principales (PCR), une régression des 

moindres carrés (PLSR) et une régression pas à pas (stepwise--SR). Ces quatre régressions sont 

appliquées sur les données satellites SARAH-E (CM SAF) à 5km de résolution entre 2007 et 

2016, en vue d’en effectuer la prévision. Pour obtenir de meilleures performances, nous 

proposons d'inclure les paramètres multi-fractale (𝐻𝐻,𝐶𝐶1 et 𝛼𝛼) comme nouveaux paramètres 

prédictifs. Ceux-ci sont obtenus à partir de l'analyse de l'intermittence du SSR basée sur la 

méthode d’analyse d’ordre spectral arbitraire de Hilbert. Cette analyse qui est une extension de 

la transformation d’Hilbert Huang (HHT) est utilisée afin d’estimer l’exposant d’échelle 𝜉𝜉(𝑞𝑞). 

On effectue la combinaison d’une décomposition en mode empirique et de l’analyse spectrale 

de Hilbert (EMD + HSA). Dans une première étape, l’analyse multi-fractale est appliquée sur 

une mesure du SSR d'une seconde échelle à partir d'un pyranomètre SPN1 à Moufia en 2016. 

La moyenne infra journalière, journalière et saisonnière de la structure multi-fractale a été 

dérivée, et la loi d’échelle d’exposants ζ(q) a été analysée. Dans une seconde partie, l’analyse 

de l’intermittence est effectuée sur les mesures du SSR,  d'une période d’une minute, à partir 

le réseau de SPN1 cotenant 11 stations en 2014. Les modèles spatiaux pour toutes les stations 

avec les paramètres multi-fractales 𝐻𝐻,𝐶𝐶1 et 𝛼𝛼 sont mis en évidence. La variabilité de la largeur 

du spectre de singularité est considérée pour étudier l'intermittence spatiale et la multifractalité 

dans l'échelle quotidienne et l'échelle saisonnière. Sur la base de ces analyses d'intermittence 

faites sur les mesures de plusieurs stations, les paramètres multi-fractaux universels (𝐻𝐻,𝐶𝐶1 et 

α)  pourraient être choisis comme de nouveaux prédicteurs afin d’indiquer les propriétés multi-

fractales du SSR. 

Mots clés: rayonnement solaire global; prédiction de cartographie; intermittence; 

multifractalité; exposant d'échelle; Analyses spectrales de Hilbert d’ordre arbitraire; modèle de 

régression linéaire 
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1.1 Background 

1.1.1 Climate change and sustainable development  

- Anthropogenic forcing: Climate scenarios 

The climate system has been strongly affected by human’s activities in recent years and due 

to anthropogenic emissions of Green-House gases (GHG) that are now higher than at any point  

in history. Climate changes have had widespread impacts on human and natural systems in 

recent years. GHG trap heat and make the planet warmer. The atmosphere and the ocean have 

warmed, the amounts of snow and ice have diminished, and the sea level has risen. Human 

activities are responsible for almost all of the increase in GHG in the atmosphere over the last 

150 years. Anthropogenic GHG emissions have increased since the pre-industrial era, driven 

largely by economic and population growth, and are now higher than ever, leading to 

atmospheric concentrations of carbon dioxide, methane and nitrous oxide that are 

unprecedented in at least the last 800,000 years (IPCC, 2014). The effects of increase GHG, 

together with those of other anthropogenic drivers, have been detected throughout the climate 

system and the increase in GHG emissions is extremely likely to have been the dominant cause 

of the observed warming since the mid-20th century.  

The GHG emissions associated with the provision of energy services are a major cause of 

climate change. Most of the observed increase in global average temperature since the mid-

20th-century is due to the observed increase in anthropogenic GHG concentrations. The global 

average temperature has increased by 0.76 ℃ between 1850 to 1899 and 2001 to 2005, and the 

warming trend has increased significantly over the last 50 years. Climate change is one of the 

great challenges in the 21st-century. The news from NASA point out that: “October 2017 was 

the second warmest October in 137 years of modern record-keeping, according to a monthly 

analysis of global temperatures by scientists at NASA's Goddard Institute for Space Studies 

(GISS) in New York” (https://climate.nasa.gov/news/). Changes in many extreme weather and 

climate events have been observed since 1950 (IPCC, 2014). Some of these changes have been 

linked to human influences, including a decrease in cold temperature extremes, an increase in 

warm temperature extremes, an increase in extreme high sea levels and an increase in the 

number of heavy precipitation events in a number of regions. Climate changes have resulted in 

the changes of nature and human systems all over the world in recent decades, and these effects 

from the climate change feedback also increase the vulnerability of natural and human systems, 

especially for small islands. 
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- Mitigation and adaptation: Island vulnerability 

Islands are heterogeneous in geomorphology, culture, ecosystems, populations, and hence 

also in their vulnerability to climate change. Vulnerabilities and adaptation needs are as diverse 

as the variety of islands between regions and even within nation states, often with little climate 

adaptation occurring in peripheral islands. The small islands face the risks resulting from 

current and future climate changes, including sea level rise, sea surface temperature increases, 

changing rainfall patterns, tropical and extratropical cyclones, and increasing air temperature 

(Nurse et al., 2014).  Given the inherent physical characteristics of small islands, it is confirmed 

that there are high level of vulnerability of small islands to multiple stressors, both climate and 

non-climate. The high diversity of small islands in both physical and human attributes and their 

response to climate-related drivers means that climate change impacts, vulnerability, and 

adaptation will be variable from one island region to another and between countries in the same 

region. In the latest IPCC’s report (IPCC, 2014), it is pointed out that “island vulnerability is 

often a function of four key stressors: physical, socioeconomic, socio-ecological and climate-

induced. Islands faced with multiple stressors can therefore be assumed to be more at risk from 

climate impacts”. GHG emissions from most small islands are negligible in relation to global 

emissions, yet small islands will most probably be highly impacted by climate change 

(Srinivasan, 2010). The combination of island geography and economic types informs the 

extent to which adaptation and mitigation actions might interact (Nunn, 2009). The geography 

and location of islands affect their sensitivity to hydro-meteorological and related hazards such 

as cyclones, floods, droughts, invasive alien species, vector-borne disease, and landslides. The 

capacity of island residents to cope with those hazards is often related to income levels, 

resources endowment, technology and knowledge. Rather, long-term climate impacts depend 

on the type of island and the adaptation strategy adopted. It is necessary and urgent to conduct 

mitigation and adaptation to the risks posed by global climate change in small islands.  

- Mitigation and adaptation: Renewable energy  

The most severe impacts of climate change may still be avoided if efforts are made to 

transform current energy systems. There are multiple means for lowering GHG emissions from 

the energy system, while still providing desired energy services (Dincer, 2000). Renewable 

energy sources have a large potential to displace emissions of GHG from the combustion of 

fossil fuels and thereby to mitigate climate change. Climate changes, energy demands and 

increasing government attention are all driving the development of renewable energy. If 

implemented properly, renewable energy sources can contribute to social and economic 



Introduction 

 4 

development, to energy access, to a secure and sustainable energy supply, and to a reduction 

of negative impacts of energy provision on the environment and human health. Renewable 

energy sources (solar, wind, biomass, tides, geothermal heat….) play a role on providing 

energy services in a sustainable manner and, in particular, in mitigating climate change (Omer, 

2008).  

1.1.2 Renewable energy sources: Solar radiation  

- Clouds trigger space and time scale surface solar radiation 

Renewable energy is energy that is collected from renewable resources, which are naturally 

replenished on a human timescale, such as sunlight, wind, rain, tides, waves and geothermal 

heat (Ellabban et al., 2014). It often provides energy in four important areas: electricity 

generation, air and water heating/cooling, transportation and a variety of commercial and 

industrial uses (REN21, 2010). Among those different kinds of renewable energy resources, 

solar energy is regarded as the most promising renewable energy resources. Solar radiation 

incident at the Earth’s surface is the principal energy source for life on the planet and largely 

determines the climatic conditions of our habitats. It has also major practical implications, 

including solar energy technologies and agricultural productivity (Wild, 2009). According to 

the recent earth energy budget estimates by (Wild et al., 2013; Figure 1.1), 22% of solar 

radiation reaching the top of the Earth’s atmosphere is reflected back to space by clouds and 

23% is absorbed by the clouds, gases and aerosols in the atmosphere. Only 54%of solar 

radiation reaches the Earth’s surface, which will be referred as the surface solar radiation (SSR) 

in this thesis. SSR depends on the geographic location, orientation of the surface, time of the 

day, time of the year and atmospheric components (Boes, 1981). In their paper, Chiacchio and 

Vitolo (2012) indicate that clouds are the primary factor determining the amount of solar 

radiation received at a given point on the Earth’s surface. Clouds modulate solar irradiance in 

all time and space scales. Low, thick clouds primarily reflect solar radiation and cool the 

surface of the Earth. High, thin clouds primarily transmit incoming solar radiation (Graham, 

1999). Figure 1.2 shows the global distribution of cloud cover for January and July afternoon, 

which give a general information about cloud’s distribution and the effects on SSR over the 

year. Those monthly data contain an entrancing record of the annual cycles of the weather: in 

these plots, we can see the development of summer convection across the U.S. Plains, the 

evolution of the India and China monsoons, the onset of “The Wet” in Australia, the annual 

cycle of the Intertropical Convergence Zone (ITCZ) and many other seasonal changes in the 

cloud record. 
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Figure 1.1 Schematic diagram of the global mean energy balance of the Earth. The 

numbers (W/m2) indicate best estimates for the magnitudes of the globally averaged energy 
balance components together with their uncertainty ranges, representing present day climate 
conditions at the beginning of the twenty first century (from Wild et al., 2013). 
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Figure 1.2 Global cloud cover for January and July afternoon as cloudiness derived from 
observations from the Aqua satellite (NASA, 2002-2015). 
 

 

- Beyond seasonal cycle: Solar energy demands 

In the current global energy system, fossil fuels still take the dominated place, even if the 

use of renewable energy has been increasing rapidly in recent years. Renewable energy costs 

are still higher than existing energy prices, but in various settings renewable energy is already 

competitive. Solar energy is one of the most promising resource and its technical potential is 

the highest among the renewable sources. Solar energy can be used directly for heating and 

lighting homes and other buildings, for generating electricity, for hot water heating, solar 

cooling, and for a variety of commercial and industrial uses (Garci, 2003). In recent decades, 
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the solar energy has been used for electricity generation based on photovoltaic (PV) technology. 

At this time, the demand of solar energy is increasing more rapidly than before. 

- Deterministic versus stochastic variability: Intermittency 

As pointed out previously, solar radiation received at the ground is triggered by clouds 

cover which fluctuate on different space and time scales. In addition, cloud cover pattern’s 

complexity increases at small spatial and time scales like for example clouds related to 

turbulent forcing due to dynamic and thermodynamic instability in boundary layers. The 

variability and unpredictability of solar energy makes it belong to intermittent energy sources. 

In complex dynamical systems, intermittency is the irregular alternation of phases of 

apparently periodic and chaotic dynamics or different forms of chaotic dynamics (Edward, 

2002). Different methods used to measure this phenomenon might give different definitions of 

intermittency. In the area of solar radiation, Tarroja et al. (2013) concern the concept of 

intermittency as the same meaning as fluctuation. They define the concept of the intermittency 

as the change in the magnitude of the total irradiation on a surface over a given time interval, 

which agrees with the concept of variability. On the contrary, Davis et al. (1997) imported the 

notion of intermittency from turbulence. They analyzed radiation data artificially generated 

from cloud data. The amplitude of the fluctuations or intermittency of solar irradiation could 

drastically increase in a few seconds or minutes in one place within one hour whereas other 

places would experience low fluctuations. This can take place at different time during the day. 

This is mainly due to intermittent cloud covering triggered by orographic turbulence, lee waves, 

and prevailing trade winds.  

1.1.3 Solar radiation prediction challenge 

The solar irradiance is variable and intermittent. It is not a deterministic variable due to the 

meteorological conditions. Cloud presence is the most important factors for solar radiation 

because the attenuation process by clouds is highly stochastic and it is difficult to predict how 

it will affect solar radiation. Estimating the parameters that would express the characteristics 

of solar energy in the prediction process is the challenge of this work. The intermittency study 

is the important basis for the prediction of solar radiation. There are a lot of limitations for the 

development and the utilization of this intermittent solar energy. A good knowledge of global 

solar radiation variations and accurate solar forecasts are needed. According to the input data, 

or time scale, SSR forecasting can be categorized into different types: 
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- Statistical and stochastic model 

Statistical models based on solar radiation ground-based measurements, which are applied 

for forecast horizon from 5 minutes up to 6 hours. These statistical models are based on linear 

method (Glasbey and Allcroft, 2007; Huang et al., 2003; Voyant et al., 2014) and non-linear 

methods which are based on artificial intelligence techniques (Mellit et al., 2005), such as 

Artificial Neural Network (ANN) (Monjoly, 2017). Kutty et al. (2015) developed a regression 

model to predict the monthly global solar irradiance in Malaysia. Nalina et al. (2014) gives a 

description of regression models for forecast solar radiation at short term and the multivariate 

regression is carried out for to achieve higher accuracy. ANN provides a better way to predict 

solar radiation using more meteorological and geographical parameters as input, under the 

assumption that there exists a non-linear relationship between solar radiation and those 

parameters in the ANN model (Sivamadhavi, 2012). Mohandes et al. (1998), Reddy and Ranjan 

(2003), and Fadare et al. (2010) used the ANN model to predict the global solar radiation and 

justified the application of this non-linear model. ANN is regarded as one of the best tools for 

non-linear prediction (Monjoly et al., 2017; Paoli et al., 2010). 

Kaplanis and Kaplani (2007) suggested a cosine wave correlation for daily global solar 

radiation and later they developed a stochastic model that uses measured solar radiation values 

in early mornings and predicts the radiations for the rest of the day followed by the approach 

in 2007 (Kaplanis and Kaplani, 2010). Hocaoğlu (2011) also proposes a novel stochastic 

method for solar radiation modeling which uses the hidden Markov models. 

- Dynamical model 

Instead of using ground-based and satellite data, atmospheric models have been 

implemented in the solar radiation’s prediction study a lot in recent years. Though the accuracy 

of those dynamical model is significantly less than the current satellite-based techniques 

(Lohmann et al., 2006; Kennedy et al., 2011; Bojanowski et al., 2014), they provide an 

alternative approach for solar radiation prediction. The Numerical Weather Prediction (NWP) 

models (Ruiz-Arias et al., 2011b; Ruiz-Arias et al., 2013a; Diagne et al. 2014) and Regional 

Climate Models (RCMs) are two main types of dynamical models. Using dynamical models to 

study solar radiation has its own advantages compared satellite methods, as they can perform 

longer period simulation with the whole atmospheric system to make a comprehensive analysis. 

- Time scale of interest 

Monjoly et al. (2017) made a hourly forecasting of global solar radiation using hybrid 
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method, in which they categorize forecasting approach of the solar radiation to different types 

based on the time scale of the input data: 1) dynamical models, which are applied fully by 

(Heinemann et al., 1990; Lorenz et al., 2012; Perez et al., 2011). These modelling processes 

have robustness for time scale higher than 6h forecast horizon. 2) Short-term radiation 

forecasting models (forecast horizon from few minutes to hours) based on clouds information 

using sky cameras and satellite images (Bosh et al., 2005; Marquez and Coimbra, 2013; 

Coimbra and Pedro, 2013). 3) Statistical models based on solar radiation ground-based 

measurements, which are applied for forecast horizon from 5 minutes up to 6 hours.  

1.1.4 Surface solar radiation observation and studies 

Solar radiation incident at the Earth’s surface is the principal energy source for life on the 

planet and largely determines the climatic conditions of our habitats (Wild et al., 2009). Surface 

solar radiation as input parameter is critical for the mapping prediction in the photovoltaic 

industry (Hussain et al., 1999; Davy and Troccol, 2012; Monforti et al., 2014). There are 

different ways to predict the surface solar radiation typed by the dataset: 

- Ground-based historical data 

Solar radiation measurements directly from the ground stations in long-term are regarded 

as the most accurate source. However, with the difficulty of maintaining the equipment and the 

funding, the available direct measurements of solar radiation from radiometers are usually not 

sufficient. Figure 1.3 shows the geographical distribution of surface radiative fluxes 

observation sites from the Global Energy Balance Archive (GEBA, Gilgen et al., 1998; 

Ohmura et al., 1989; Wild et al. 2017), and the database of the Baseline Surface Radiation 

Network (BSRN, Ohmura et al., 1998). When the ground stations of solar radiation are sparse, 

there are some methods to obtain solar radiation estimates for locations where it is not directly 

measured. One simple way is to use spatial interpolation methods (Bechini et al., 2000; Ertekin 

and Evrendilek, 2007). However, the density of solar radiation measurements (Wild et al., 

2013) is often not sufficient for reliable interpolation.  
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Figure 1.3 Geographical distribution of surface radiative fluxes observation sites from 
GEBA (760 sites in blue) and from BSRN (42 sites in red). From Wild et al., 2013. 

 

- Satellite historical database 

 Satellite-based techniques have become the most common method for solar resource 

prediction at regional, continental or global scales (Brisson et al., 1999; Laszlo et al., 2008; 

Posselt et al., 2012a; Gueymard and Myers, 2008b) in recent decades. The available satellite 

dataset for solar radiation over South-West Indian Ocean (SWIO) is from the European 

Organization for the Exploitation of Meteorological Satellites (EUMETSAT), which 

established within its Satellite Application Facility (SAF) network a dedicated center, the SAF 

on Climate Monitoring (CM SAF). CMSAF is the dataset used in this study, satellite 

observations from geostationary weather satellites for solar radiation also include the American 

Geostationary Operational Environmental Satellites (GOES), the Indian National Satellite 

(INSAT), the Chinese Fengyun and the Japanese Geostationary Meteorological Satellite (GMS) 

(http://www.cmsaf.eu). 

- Background on solar radiation studies 

The best database would be the long-term measured data at the site of the proposed solar 

system. Solar radiation can be estimated through the empirical models using other available 

meteorological observations when there are not enough measurements (Ulgen and Hepbasli, 

2009; Yohanna et al., 2011; Li et al., 2011; Karakoti et al., 2012). Sivamadhavi (2012) made 

the studies based on empirical models: Veeran and Kumar (1993) developed an Angstrom type 
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regression model correlating global radiation and sunshine hours to estimate the daily SSR at 

two locations in India. Ahmad and Ulfat (2004) employed the regression technique and 

proposed an Angstrom type empirical equation of first and second orders to for determine the 

daily global radiation at Karachi, Pakistan. Chandal et al. (2005) correlated the daily global 

radiation with temperature, latitude and altitude for various places in Egypt, Kuwait, Lebanon, 

Sudan and Saudi Arabia. Sabziparvar (2008) modified three existing radiation models to 

estimate daily global radiation in various cities in central arid desert of Iran by including 

parameters such as altitude, Sun-Earth distance and number of dusty days. A number of 

researchers previously evaluated the ability of high-resolution (~0.5°) regional climate models 

(RCMs) to estimate the mean state and variability of the SSR over the Arctic (Wyser et al., 

2008), North America (Markovic et al. 2008), Europe (Kothe et al. 2011; Chiacchio et al. 2015) 

and West Africa (Kothe and Ahrens 2010). Zamora et al. (2005) and Lara-Fanego et al. (2012) 

tested mesoscale models’ ability for short-term forecasts of global horizontal irradiance with 

high resolution at a few kilometers at some locations in the United States and Spain. 

1.1.5 Reunion Island: Toward a sustainable island 

- Demography and energy demands: Through last decades 

Reunion Island is a French overseas territory and it is the only European region in the 

southern hemisphere. It lies at 20.8° South and 55.5° East, in the South-West Indian Ocean 

(SWIO) and is 800km off the east coast of Madagascar. It has a population of 842,767 in 2016 

with a total area of 2512 km2.  
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Figure 1.4 SWIO area. The star indicates the position of Reunion Island. From Google Maps. 

 

 

 
Figure 1.5 Map of Reunion Island. From Google Maps. 
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- Renewable energy: Solar resource among others  

Even if Reunion Island is a French territory, it is far away from the metropole and any 

European territories or continent territories. So, it is difficult to make use of their energy 

production network, which make Reunion Island’s development deeply relating on its own 

geography characters and energy production. Based on Reunion Island’s location, renewable 

energy is regarded as a sustainable alternative for providing energy service to achieve its 

development. And solar energy is the most promising renewable energy among wind energy, 

ocean energy, hydro energy, biomass energy which are indirectly solar energy forms (Li, 2015). 

The solar technology research could apply to the abundant solar energy resource in Reunion 

Island for improving the energy production. 

- Potential of solar energy 

Figure 1.6 shows Global Horizontal Irradiance (hereafter GHI) (kWh/m2) distribution and 

average annual temperatures on Reunion Island [Météo France, 2011]. Annual sunshine of 

Reunion Island is in the range of 1400-2500 h and can reach the value of 2900 h at the altitude 

lower than 400m. The monthly daily radiation reaches more than 6.5 kWh/m2 during the austral 

summer season in some parts of the coastal region (altitude < 300 m). Daily insulation is 

characterized by a strong evolution due to orographic cloud formations on the mountains. The 

two main applications of solar energy in Reunion are solar water heating and photovoltaic 

electricity (PV). And Reunion is actively engaged in the development and promotion of solar 

thermal and PV energy through various action plans and programs in the context of sustainable 

development, such as GERRI, PRERURE and so on, because of its solar energy potential. 

  

Figure 1.6 a) Annual average of Global Horizontal Irradiance (kWh/m2) distribution. b) Annual 

average temperatures on Reunion Island [Météo France. 2011]. 
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1.1.6 Reunion Island: Synoptic and local cloud covers context 

- Tropical weather: Trade wind versus sea/land breeze 

Reunion Island has a tropical maritime climate marked by two seasons (austral summer: 

November to April; austral winter: May to October) depending on the behavior of the southern 

Hadley cell and the Walker circulation (Baldy et al., 1996). Winter seasons are characterized 

by large-scale atmospheric subsidence and broken low-level cloudiness, while in summer, 

clouds are found both at low and high altitudes (Badosa et al., 2013).  Morel et al. (2014) 

studied the precipitation over the island and indicated that: the prevailing winds named trade 

winds blow from the east and south-east to the west coast and the east coast has more rain than 

the west: average annual rainfall amounts present a marked west-east gradient, reaching 

cumulated values larger than 10-12m in the elevated sectors facing the dominant moisture 

fluxes associated with the trade winds. During the daytime, slope heating and differential sea-

land heating result in anabatic wind and sea breeze that combine to create an inland flow forcing 

air up the slope and cloud formation along. The return flow is created by the combined blocking 

effect of the orography and the inversion layer above, brings clouds aloft towards the coast. 

The night scenario with land breeze and katabatic wind blowing down slop and clearing the 

island of orographic clouds (Badosa et al., 2015). 

- Complex terrain: Leeward/windward/overcast clouds 

Reunion is a mountainous island with very complex topography. It is famous for the two 

volcanos: the ‘Piton des Neiges’ (3070m) and the ‘Piton de la Fournaise’ (2632m, Figure 1.5). 

And there are three major central depressed areas: the Cirques of Mafate in the northwest, 

Salazie in the northeast and Cilaos in the southwest. Due to this complex terrain, Reunion island 

has its own typical synoptic characters as (Badosa et al., 2015) stated: on the windward side of 

the island, the thermal wind blows in a direction opposite to the trade wind, creating a 

convergence zone. The convergence zone is located few kilometers from the coast. On the 

windward side, trade winds slow down and orographic clouds are very frequent. The leeward 

side is not affected directly by the trade winds; thermal onshore winds prevail leading to 

topographic clouds. On the coasts parallel to the synoptic wind direction, trade winds are 

accelerated due to the Venturi effect and clouds tend to be blown away. 

- Marine boundary layer: Turbulence processes  

The marine boundary layer (MBL) structure is important for the marine low cloud processes 

and the exchange of heat, momentum, and moisture between the ocean and the low atmosphere. 
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Clouds, precipitation and aerosol all play important related role on the MBL with turbulent 

energy. Therefore, the MBL also relates with the SSR. The turbulence in MBL trigger dynamic 

and thermodynamic processes like cloud formation and movement. As well known that 

turbulent motions occur over a wide range and long-term time scale. The variation in length 

and time scales is an important characteristic of turbulent flows. In the numerical and 

theoretical analysis of turbulent flows, there is always difficulty to describe that characteristic. 

The scaling laws are regarded as an important tool for describing turbulence, as the turbulence 

is based on order of magnitude estimates which follow from logical applications of scaling 

laws and dimensional analysis. The nature of the scaling behavior for different datasets is 

determined using qth-order structure functions analysis. The nonlinearity and concavity of the 

scaling exponent functions ζ(q) reveal the intermittent and the multifractal properties of 

datasets, which result from the complex interaction of the turbulent atmospheric and the energy 

converter systems. A scaling regime or power law presents the correlation of the form 𝑓𝑓−𝛽𝛽 

over a broad range of time scales. The exponent spectral 𝛽𝛽 is close to the exact 5/3 Kolmogorov 

value in the Fourier analysis, and 1/3 Kolmogorov value for multifractal analysis (Kolmogorov, 

1941; Frisch, 1995; Seuront and Schmitt, 2005). 

1.2 Objectives and strategy of the thesis  

Because of the heterogeneous and rapidly changing cloudiness, tropical islands, such as 

Reunion Island in the SWIO, have significant solar resource that is highly variable from day-

to-day. In this study, the deterministic daily SSR mapping prediction is proposed as a new 

approach. Depending on the results and the quality of the prediction, the intermittency analysis 

with the arbitrary order Hilbert spectral analyses method are applied to get the multifractal 

parameters as new predictors in the new prediction model. It could achieve better mapping 

performance. This is the first step of SSR daily mapping. Nevertheless, there is inherent 

limitation with this deterministic multivariate approach in regard to the SSR intermittency 

component. Obviously, it is expected that the stochastic part of cloud cover pattern form day-

to-day must play a crucial role in SSR daily fluctuations. Thus, the daily stochastic fluctuation 

of SSR must be implemented in the deterministic native mapping model.  This could be 

achieved using additional tools for non-stationary time series (Lyapunov exponents, state-

space reconstruction, multifractal analysis …). In this study, multifractal analysis is performed 

to quantify the intermittency of SSR over Reunion Island.  The log-stable model is used to 

evaluate daily variations of three parameters (𝐻𝐻,𝐶𝐶1 and  𝛼𝛼 ) which characterize the SSR 
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fluctuations observed at La Reunion. These parameters as a potential set of predictors in the 

mapping model prediction take account the daily stochastic fluctuation of SSR. 

1.2.1 Statistical model: Solar radiation regression prediction 

- Mapping approach: One-day ahead prediction 

There are many studies on SSR prediction model which are based on one site time series 

prediction (univariate or multivariate model). The goal of the present work is to build a spatio-

temporal multivariate model for mapping prediction. Each pixel of Reunion map could be 

predicted. So our new concept for one-day ahead SSR prediction is to combine spatial and 

temporal correlation for building a set of daily maps using SSR daily satellite data (CM 

SAF@5km). The regression model, including multiple linear regression (MLR), principal 

component regression (PCR), partial least squares regression (PLSR), stepwise regression 

(SR). Most common ones are tested at the first step in the mapping prediction. 

- Dimensionality reduction 

A regression model needs a set of predictors and predictands as we know. In this study, the 

satellite data used to do prediction is from SARAH-E (CM SAF @5km), which covers Reunion 

Island with 360 pixels. In this sense, there is a large set of predictor and predictands. Building 

a prediction model with satellite data is not easy when the number of variables increases. It 

would cost a large CPU time to perform the regression process. Finding a way to reduce the 

size of the dimension set of the variables could be the first step in the analysis. There are many 

methods of dimension reduction. Some of these are Principal Component Analysis (PCA), 

Canonical Correlation Analysis (CCA), Kernel PCA, and k-Nearest Neighbours (k-NN) 

(Altma, 1992). PCA is commonly used in climate research as a tool to analyse meteorological 

fields with high spatio-temporal dimensionality. PCA aims at finding a new set of variables 

that capture most of the observed variance from the data through a linear combination of the 

original variables (Kutzbach, 1967; Wilks, 1995; Storch, 1993; Storch and Zwiers, 1999; 

Jolliffe, 2002).  

- Stationary/nonstationary fluctuations: predictor set 

As we use the linear regression model to conduct the mapping prediction, one important 

process in the linear model is to add new predictors that take into account the variability of the 

fluctuations. Because solar radiation belongs to nonstationary fluctuations, there are many 

options to set the predictors. The most common are the variance, skewness, kurtosis which are 
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based on second, third and fourth moment of the fluctuations respectively, in time series. 

Nevertheless, this moment based methods are not relevant for nonstationary time series. Thus, 

if the mapping prediction with linear regression model does not give accurate enough SSR 

results, other parameters that take into account the nonstationary processes must be introduced. 

To achieve this goal, the intermittency analysis of SSR needs to be performed. 

1.2.2 Intermittency: nonstationary fluctuations  

- Power law scale: Mono/multifractal processes 

Verifying the existence of the fractal behavior in time series is the way to evaluate the non-

stationarity of those time series. The power law scale is a common approach to characterize 

nonstationary fluctuations. The scaling exponent ζ(q) is used to characterize the scaling 

behaviour or measure the distance between monofractal and multifractal processes. The scaling 

exponent ζ(q) is linear for monoscaling processes and non-linear for multifractal processes. 

Several methods exist for estimating the scaling exponents ζ(q): structure function analysis, 

wavelet-based methods, detrended fluctuation analysis or multifractal detrended fluctuation 

analysis and arbitrary order Hilbert spectral analysis (Huang et al., 2008; Calif et al., 2013). In 

this study, the arbitrary order Hilbert spectral analysis which are the extension of Hilbert Huang 

Transform (HHT) (Huang et al., 1998, 1999) is used to estimate the scaling exponents ζ(q).  

- Multifractal analysis: Log-stable model 

As indicated before, the other parameters should be introduced into the linear regression 

model in order to take into account the nonstationary processes. Multifractal analysis could be 

helpful to give a way of building new predictors. In order to model intermittency or do 

multifractal analysis, many statistical functions have been proposed to fit the scaling exponents 

ζ(q). The log-stable model or universal multifractal proposed by Schertzer and Lovejoy (1987) 

and Kida (1991) is a multifractal model which can give some information about stochastic 

fluctuations. In that model, the scaling exponent is given by: 

ζ(q) = 𝑞𝑞𝐻𝐻 −  𝐶𝐶1
(𝛼𝛼−1) (𝑞𝑞𝛼𝛼 − 𝑞𝑞)  

where H = ζ(1) the Hurst parameter defines the degree of smoothness or roughness of the 

field. The parameter C1 is the fractal co-dimension of the set giving the dominant contribution 

to the mean (q = 1) and bounded between 0 and d (d the dimension space). It measures the 

inhomogeneity mean or the mean intermittency characterizing the sparseness of the field: the 

larger C1, the more the mean field is inhomogeneous. The multifractal Lévy parameter α is 

bounded between 0 and 2, where α = 0 corresponds to the monofractal case and α = 2 



Introduction 

 18 

corresponds to the multifractal lognormal case. The parameter α measures the degree of 

multifractality. The concavity of ζ(q) is a characteristic of the intermittency (Frisch, 1995; 

Schertzer et al., 1997; Vulpiani and Livi, 2004). 

- Daily multifractal parameters as predictors 

The aim of this thesis is to study the daily mapping prediction of SSR over Reunion Island, 

and therefore daily predictors are needed. The CM SAF @5km satellite hourly data is used in 

this study. Therefore, pre-processing the data in daily scale as the first step can extract the infra-

daily information for building daily multifractal parameters.  

1.2.3 A spatio-temporal prediction model 

- Toward a first step of a new mapping prediction 

Based on the multifractal analysis, the multifractal parameters could be obtained with the 

log-stable model for the SSR. Through the mapping prediction work by the linear regression 

model and the intermittency study for the surface solar radiation, the multifractal parameters 

are taken into account of building a new spatio-temporal prediction model. In the first step, the 

multifractal log-stable parameters as the new predictors is used for the model, then the linear 

regression is preformed to do mapping prediction. Thus, the new linear model could integrate 

the multifractal parameters, producing more accurate prediction results. 

- Synopsis of the model of one-day ahead prediction 

Through the statement above, the model of one-day ahead prediction for SSR can be 

summarised as follows: 1) the arbitrary order Hilbert spectral analyses are applied to study the 

intermittency and multifractality of global solar radiation over Reunion Island. The method 

Empirical Mode Decomposition (EMD) (Huang et al., 1998, 1999) is used to decompose the 

input data. Through EMD, we can get the result of Intrinsic Mode Functions (IMFs). Each IMF 

has its own instantaneous frequency and amplitude. In order to analyze the arbitrary-order 

moments, a representation of the joint probability density function (PDF) of the solar radiation 

is estimated (Huang et al., 2008). The Hilbert spectrum is also calculated and the time scaling 

ζ(q) is fitted by a least squared method. After the intermittency or multifractal analysis, three 

multifractal parameters: H, C1 and α are derived for every day and taken to study the 

multifractal process of the global solar radiation, which could be used as the new predictors; 2) 

The prediction is conducted using the linear regression model in which the new multifractal 

predictors are included. SR, MLR, PCR and PLSR which are common linear regression models 
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are applied to compare the prediction results; 3) The mapping is then done again with the 

prediction results.  

- Fourth moment order versus intermittency parameters 

As mentioned before, the variance, skewness, and kurtosis are based on two, three, and four 

moments of the fluctuations respectively in time series sets. Skewness characterizes only the 

shape of the distribution of the values, and the Kurtosis measures the relative peak or flatness 

of a distribution. When the multifractal parameters are considered, moments of order greater 

than four are required. The power law is extracted through the qth-order spatial structure 

function which is from the arbitrary order Hilbert spectral analysis. The scaling exponents ζ(q) 

(arbitrary-order statistical moment q≥ 0) expresses the multifractality, and the ζ(1)-1 is the 

generalized Hurst exponent. As the statement above, the process is stationary if the spectral 

exponent (scaling exponent ζ(q) for Hilbert analysis) is less than 1 in Fourier analysis. So here, 

the generalized Hurst exponent cannot be used for stationarity.  

1.3 Outline of the thesis 

Chapter 2 presents the data and methodology used in this thesis. All the available solar 

radiation observations, which include EUMETSAT satellite data and ground-based data are 

listed and the dataset used in our study is also given. The linear regression model, including 

MLR, PCR, SR, PLSR, the data pre-processing and decomposition methods, and the 

intermittency study method-arbitrary order Hilbert Spectral Analysis are the main methods 

used in the thesis and introduced in detail in that chapter. 

Chapter 3 shows the daily mapping prediction results with four different linear regression 

models: MLR, PCR, SR and PLSR. Initially, the SARAH-E@5km satellite data (CM SAF) is 

pre-processed, then linear regression models are applied to do prediction. Finally, statistical 

analysis using MAE, MSE and RMSE is conducted in order to check the prediction results. 

Chapter 4 studies the intermittency of the surface solar radiation and get the multifractal 

parameters. The analysis results are present in two parts. At first, the multifractal analysis is 

applied on one SPN1 station using second scale dataset. The mean sub-daily and daily and 

seasonal daily multifractal pattern are obtained, and the scaling exponent ζ(q) is analyzed. In 

the second part, the intermittency study is conducted on the SPN1 network using minute scale 

dataset. The spatial pattern for all the stations with the multifractal parameters 𝐻𝐻,𝐶𝐶1 and 𝛼𝛼 are 

presented. 

Chapter 5 gives the conclusion and outlines a new daily mapping prediction model with the 

multifractal parameters obtained from the intermittency study. As this study is based on the 
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linear regression prediction with multifractal parameters, the non-linear prediction models, 

such as ANN can be another way to fulfil the objective, which could be regarded as future 

development of the present work.
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2.1 Data 

The most accurate source of solar radiation data is from direct measurements of solar 

radiation at ground stations, provided that the devices are well maintained and regularly 

calibrated. Various methods have been developed in order to obtain estimates of SSR for 

locations where it is not directly measured. One way is to apply interpolation from nearby 

stations. However, this method depends on the density of solar radiation measurements. 

Satellite observations also give an alternative way to derive solar radiation for over 30 years 

(Pinker and Laszlo, 1992; Gautier et al., 1980; Brisson et al., 1999; Lefévre et al., 2007; Geiger 

et al., 2008; Laszlo et al., 2008). Due to the specific location of Reunion Island, the 

observational networks from which we can get data are rather limited. The available solar 

radiation observations, which include satellite and ground-based measurements and the dataset 

used in this study are presented separately in this section.  

2.1.1 Available solar radiation observations 

2.1.1.1 Satellite : EUMETSAT 

- METEOSAT East: Instruments on board & space/time resolution 

The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) 

is an intergovernmental organization and was founded in 1986. Its purpose is to supply weather 

and climate-related satellite data, images and products -24 hours a day, 365 days a year - to the 

National Meteorological Services of the Member and Cooperating States in Europe and other 

users worldwide. EUMETSAT established within its Satellite Application Facility (SAF) 

network a dedicated center, the SAF on Climate Monitoring (CM SAF, http://www.cmsaf.eu). 

CM SAF provides surface solar radiation climate data record based on observations from the 

eastern METEOSAT satellites situated over the Indian Ocean (these satellites which are 

officially named METEOSAT Indian Ocean Data Coverage (IODC), which are referred to as 

“METEOSAT East”). METEOSAT East covers [70S-70N, 10W-130E] and provides monthly, 

daily, and instantaneous data products. The resulting database consists of hourly values of 

global horizontal and direct normal irradiance at the Earth surface with a spatial resolution 

similar to the native pixel resolution of the satellite images. 

- CMSAF products 

The CM SAF’s project objective is to provide homogeneous datasets relevant for climate 

monitoring, without the need of near real-time delivery of solar radiation estimates. CM SAF 

products are categorised into several groups and types. On one hand, there is the group of 

http://www.cmsaf.eu/
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routinely and near-real time produced data records in support to climate monitoring, called 

“Operational Products” (Envrionmental data record, EDRs and Interim climat data record, 

ICDRs). On the other hand CM SAF offers retroactively produced climate data records based 

on carefully intersensor calibrated radiances, called “Climate Data Records” (Thematic climat 

data record, TCDRs and Fundamental climat data record,  FCDRs).  

Operational Products include cloud products, surface radiation products, radiation fluxes at 

the top of atmosphere and water vapour and temperature products. Climate Data Records 

contain climate data records with DOI, cloud products, surface radiation products, radiation 

fluxes at the top of atmosphere, water vapour and temperature products and miscellaneous. 

- Surface Radiation products 

A 18-year long (1999-2016) surface solar radiation climate data records based on 

observations from the MVIRI instruments onboard the Meteosat First Generation has been 

generated by CM SAF: Surface Solar Radiation Data records – Heliosat (SARAH) - East. Each 

surface radiation parameter including the SIS is gridded onto a regular lat-lon grid with a 

resolution of 0.05 x 0.05° which is approximately  5km x 5km. The avalaible time resolution 

ranges are hourly, daily mean and monthly mean values. All surface solar radiation data records 

are introduced in Table 2.1 with associated acronyms and units. 

Table 2.1 SARAH-East data records 

Acronym Product title Unit 

SIS Surface Indoming Shortwave Irradiance W/m2 

SID Surface Indoming Direct Irradiance W/m2 

DNI Direct Normal Irradiance at surface W/m2 

 

2.1.1.2 Ground-based: pyranometer 

- Technical overview 

There is a relative dense world-monitoring network using relatively inexpensive but reliable 

pyrheliometer and pyranometer instruments for broadband solar radiation measurements from 

the surface, with measurements starting in the 1880s (Roosen et al., 1973; Stothers, 1996). A 

pyranometer is a radiometer used to measure both the solar global horizontal irradiance (GHI) 

and diffuse horizontal irradiance (DHI) arriving at a particular location on the Earth’s surface. 
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A pyranometer needs to be properly calibrated from time to time in order to give the most 

possible accurate measurement results. The frequency at which a pyranometer needs to be 

calibrated depends on the type of pyranometer and environmental conditions that it is under 

use.  A typical pyranometer does not require any power to operate. However, recent technical 

development includes use of electronics in pyranometers, which do require (low) external 

power. 

- Measurement outputs 

Global solar radiation is typically measured by a pyranometer. The global solar radiation 

(SGlobal) detected by a pyranometer on the ground is composed of two components, the diffuse 

radiation (SDif) and the direct radiation (SDir), given by 

𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷+𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷 = ∫ 𝑆𝑆0(𝜆𝜆)𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷(𝜆𝜆, 𝜇𝜇0)𝜆𝜆2
𝜆𝜆1

𝑑𝑑𝜆𝜆 + 𝜇𝜇0 ∫ 𝑆𝑆0(𝜆𝜆)𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷(𝜆𝜆, 𝜇𝜇0)𝜆𝜆2
𝜆𝜆1

𝑑𝑑𝜆𝜆             (2.1)      

where S0(λ) is extraterrestrial solar irradiance at the wavelength λ,  λ1 and λ2 are lower and 

upper spectral limits of the pyranometer, TDif and TDir are the spectral diffuse and direct 

transmittances, and μ0 is the solar zenith angle cosine. The pyranometer usually has a spectral 

response between 0.3 and 3 μm.  

- Calibration process and quality control 

One should always double check with the manufacturer or recommendations of the World 

Meteorological Organization (WMO) to determine the most appropriate calibration frequency 

for a pyranometer under use in a paticular application. For example, International 

Elctrotechnical Commission (IEC, 2017) 61724-1:2017 standard for solar photovoltaic (PV) 

systems performance monitoring specifies that a pyranometer must be calibrated once every 

year for monitoring in utility scale PV systems while once every two years for monitoring large 

commercial PV systems.  

According to the WMO’s Guide to Meteorological Instruments and Methods of 

Observation(CIMO Guide), there are a variety of methods for calibrating pyranometers using 

the sun or laboratory sources. The following six methods ar decribed in the WMO’s CIMO 

Guide(WMO 2008):  

1. By comparison with a standard pyrheliometer for the direct solar irradiance and a 

calibrated shaded pyranometer for the diffuse sky irradiance.  

2. By comparison with a standard pyrheliometer using the sun as a source, with a 

removable shading disc for the pyranometer.  
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3. With a standard pyrheliometer using the sun as a source and two pyranometers to be 

calibrated alternately measuring global and diffuse irradiance.  

4. By comparison with a standard pyrheliometer using the sun as source, under other 

natural conditions of exposure(for example, a uniform cloudy sky and direct solar 

irradiance not statistically different form zero). 

5. In the laboratory, on an optical bench with an arificial source, either normal incidence 

or at some specified azimuth and elevation, by comparison with a similar pyranometer 

previously calibrated outdoors.  

6. In the laboratory, with the aid of an integrating chamber simulating diffuse sky radiaiotn, 

by comparison with a similar type of pyranometer previously calibrated outdoors.  

It is mentioned in the WMO’s CIMO Guide that the above-listed methods 1, 2, 3, and 4 are 

commonly used. However, it is essential that, except for method 2, either the zero irradiance 

signals for all instruments are know or pairs of identical model pyranometers in identical 

configurations are used. Ignoring these offsets and differences can bias the results 

significantely. Method 3 is considered to give very good results without the need for a 

calibrated pyranometer.  

2.1.2 Study dataset 

2.1.2.1 Satellite database: CMSAF SARAH-E 

- Spatial domain and temporal coverage 

In this study, the SARAH-E satellite dataset (Amillo et al., 2014; Huld et al., 2016) from 

CM SAF is used to do daily mapping prediction. The surface incoming shortwave radiation 

(SIS) from SARAH-E is taken as the input data, which covers the time period 1999 to 2016, 

with a spatial resolution of 0.05x0.05 degrees. The data records cover monthly mean, daily 

mean and hourly instantaneous values, which are provided as netCDF (Network Common Data 

Format) files. The total area is METEOSAT East (70S-70N, 10W-130E). In this study, the 

selected domain is (21.55S-20.70S, 55.05E-56E) which covers Reunion island and a small part 

of the surrounding ocean. 

- Solar radiation product: SIS 

Surface solar radiation product SIS from CM SAF (SARAH-E) is used as input data to do 

one-day ahead prediction with linear regression model. Ten years’ product (2007-2016) coving 

Reunion Island and Indian Ocean (21.55S-20.70S, 55.05E-56E) are applied to four different 
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prediction models. The training dataset is from 2007 to 2011 and the test dataset is from 2012 

to 2016. 

- Missing data 

In the SARAH-E (1999-2016) satellite dataset, there are only 16 days have no records, and 

those days have then been regarded as missing data. When using these data, the missing data 

are taken off from the calculation. 

2.1.2.2 Ground-based SPN1 pyranometer: LE2P database 

- Historical database and time resolution 

For the intermittency analysis, the data used is from the LE2P lab in the University of 

Reunion. Since 2010, LE2P has established the RCI_GS solar radiation network to provide 

global horizontal irradiance (GHI) and the diffuse horizontal irradiance (DHI) at 1-minute 

intervals using SPN1, 2-in-1 pyranometer from Delta-T devices. The RCI_GS network consists 

of 12 ground-based stations (with a reference unit dating back to 2008). Each station includes 

meteorological capabilities by WXT520 (Heintz et al., 2015).  

- Located stations  

Figure 2.1 provides a map of the network, the blue star indicates existing stations and the 

yellow star future stations. Figure 2.2 shows the SPN1 and the WXT520 separately and Figure 

2.3 shows the typical station with SPN1 sunshine pyranometer.  
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Figure 2.2 SPN1 (left) and the WXT520 (right), from lab LE2P. 

 

Figure 2.1 LE2P network of stations in Reunion Island. The blue star indicates existing 
stations and the yellow star future stations. 
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SPN1 is fitted with an array of seven miniature thermopile sensors and a specific computer 

-designed shading pattern which allows to measure the global and diffuse components of 

incident solar radiation at the same time. This pyranometer has a spectral response set between 

400 - 2700 nm with a solar radiation measurement range of 0 to > 2000 W/m² and an overall 

accuracy of ± 10 W/m². It is a compact, light-weight, easy-to-use and easy-to-maintain 

instrument with no moving parts for tracking and no shade rings. Data from SPN1 may be 

collected through analogy voltage outputs or digital RS232 signal and the instrument is 

equipped with an internal heater. Its response time is 0.1s and zero off-set response < 3 W/m². 

The pyranometer’s resolution is 0.6 W/m² with non-stability < 1%. The directional response of 

SPN1 is ±20 W/m² and the spectral sensitivity is ±10% (0.4-2.7 mm). Its temperature response 

is ±1%. The achievable uncertainty for SPN1 is 5% (Heintz et al., 2015). 

 

 

 

 

Figure 2.3 Typical station with a SPN1 sunshine pyranometer, from lab LE2P. 
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Table 2.2 SPN1 parameters 

Response Time  0.1s  

Zero off-set response  < 3W/m  

Resolution  0.6 W/m  

Non-stability  < 1%  

Directional response  ±20 W/m  

Spectral sensitivity  ±10%(0.4-2.7 mm)  

Temperature response  ±1%  

Achievable uncertainty  5%  

WXT520 is also a compact and light-weight instrument that measures temperature, 

humidity, barometric pressure, precipitation, and wind speed and direction. The measurement 

range and accuracy are respectively [-52 +60] ±0.3°C for temperature, [0 100] ±3% for 

humidity, [600 1100] ±1 hPa for pressure, cumulative accumulation with 0.01 mm for 

precipitation, [0 60] ± 0.3m/s for wind speed, [0 360] ±3° for wind direction. 

Table 2.3 WXT520 parameters 

Operating temperature  -52 ... + 60°C  

Storage temperature  -60 ... + 70°C  

Operation voltage  5 ... 32 VDC  

Typical power consumption  3 mA at 12 VDC  

Heating voltage  5 ... 32 VDC. / 5 ... 30 VACRMS  

 

- Missing data 

In this study, we have chosen to work with station data for 2014, because that year is 

common to all the stations except that located at Le Port.  Table 2.4 lists the data information 

of the 12 stations in 2014, with the observations’ days and missing days.  
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Table 2.4 Statistics of the station data in 2014 

 Stations Period 
Observation 

Days  

Missing 

Days 

Percentage 

of missing 

data 

1 MOUFIA UR 2008.12~2017.6 365 30 8.2% 

2 
MOUFIA BOIS 

DE NEFLES 
2012.10~present 365 31 8.5% 

3 
LA 

POSSESSION 
2012.10~ present 365 5 1.5% 

4 SAINT LEU 2012.10~ present 365 9 2.5% 

5 

SAINT 

PIERRE LA 

VALLEE 

2012.10~ present 365 7 1.9% 

6 
SAINT 

JOSEPH 
2013.9~2015.6 365 33 9.0% 

7 SAINTE ROSE 2013.9~2016.5 365 5 1.5% 

8 
SAINT 

ANDRE 
2012.10~ present 365 32 8.8% 

9 
CILAOS 

PISCINE 
2013.6~2016.11 365 5 1.5% 

10 BRAS PANON 2010.11~2014.9 260 25 9.6% 

11 TAMPON UR 2012.12~2014.10 293 8 2.7% 

12 Le Port 2010.07~2012.12 0 0 0 
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When using these ground-based measurements to do intermittency analysis, the missing 

data and extreme (outliers) data as presented in Figure 2.4 for 2014 are not considered. The 

extreme and missing data are taken off from the whole data and the normal data for each station 

are taken to do calculation and analysis.  

 

Figure 2.4 The missing data and extreme data 

2.2 Methodology 

2.2.1 Linear mapping regression model 

2.2.1.1 Linear regression model 

- Dependent/independent variables 

There are many traditional models for forecasting: exponential smoothing, regression, time 

series, and composite model forecasts. Regression analysis is a statistical method to analyze 

quantitative data in order to estimate model parameters and make forecasts. In this thesis, the 

linear regression model is applied to predict the one-day ahead SSR.  

The linear regression model is a statistical procedure that allows a researcher to study the 

linear relationship that relates two or more variables. This linear relationship summarizes the 

amount of change in one variable that is associated with changes in another variable or other 

variables. The prediction with the regression model provides an estimate of the future level of 

the independent variable. The prediction of the independent variable is important to an accurate 

forecast of the dependent variable. The independent variable may be regarded as causing 
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changes in the dependent variable, or the changes in the independent variable may occur prior 

to changes in the dependent variable. Normally, the independent variable is labelled the X 

variable, and the dependent variable as Y. The relationship between X and Y is shown on the 

Figure 2.5, with the independent variable X along the horizontal axis, and the dependent 

variable Y along the vertical axis. The objective of the regression model is to determine the 

straight line relationship that connects X and Y that best fits the data set. The straight line 

connecting any two variables X and Y is given by:  

Y = a + bX ,                                                                                                                     (2.2)      

where a is the Y intercept, and b is the slope of the line. 

 

Figure 2.5 Diagrammatic representation of a straight line 

- Linear fitting and parameters estimation 

The regression model is to find a slope and intercept so that the straight line with that slope 

and intercept fits the points in the scatter diagram as closely as possible. The prediction 

procedure is to obtain an estimate of the line that best fits the points using the least square 

criterion. This criterion involves minimizing the sums of the squares of the errors of prediction. 

It is this minimization that produces the line that best fits the observed points. 

When there are N paired data point (xi, yi), a linear regression can be applied to approximate 

their relationship as follows: 

 𝑌𝑌� = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 .                                                                                                              (2.3)      

The errors produced by this linear approximation can be estimated as: 
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 𝑄𝑄 = ∑ ℇ𝐷𝐷2𝑁𝑁
𝐷𝐷=1 = ∑ (𝑦𝑦� − 𝑦𝑦𝐷𝐷)2𝑁𝑁

𝐷𝐷=1   .                                                                               (2.4)      

The least square linear fit chooses coefficients a and b to produce a minimum value of the 

error Q. Thus, the following equations are solved:  
𝜕𝜕𝜕𝜕
𝜕𝜕𝐺𝐺

= 0; 𝜕𝜕𝜕𝜕
𝜕𝜕𝐺𝐺

= 0 .                                                                                                        (2.5)      

By solving these equations, we can get the linear regression coefficients a and b. Then we 

get the linear regression line.  

- Goodness of fit  

In accuracy of the fit or the quality of the linear regression can be obtained by analyzing the 

variance. The root mean square error (RMSE), mean bias error (MAE), the mean square error 

(MSE) and R2 value are four indices used to measure the quality of the fit. The MAE and the 

RMSE are given by: 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ |𝑏𝑏𝑚𝑚𝐷𝐷 − 𝑏𝑏𝑜𝑜𝐷𝐷|𝑛𝑛
𝐷𝐷=1                                                                                       (2.6)     

and  

𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀 = �1
𝑁𝑁
∑ (𝑏𝑏𝑚𝑚𝐷𝐷 − 𝑏𝑏𝑜𝑜𝐷𝐷)2𝑛𝑛
𝐷𝐷=1  ,                                                                             (2.7)      

where N  indicate the number of data, Xm and Xo are the modelled and observed daily 

respectively. 

- Multiple Linear, Principal Component, Stepwise, Partial Least Square regression  

In this study, the Multiple Linear Regression (MLR), Principal Component Regression 

(PCR), Stepwise Regression (SR), Partial Least Square Regression (PLSR) are used to perform 

prediction mapping. We described these briefly. 

1)  Multiple Linear Regression (MLR) 

In the simple linear regression a single predictor variable X is used to model the response 

variable Y. However, in many applications, there is more than one factor that influences the 

response. MLR models thus describe how a single response variable Y depends linearly on a 

number of predictor variables. A MLR model with k predictor variables X1, X2, …, Xk and a 

response Y can be written as: 

 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘 + 𝜖𝜖,                                                                     (2.8)      

where β0, β1, β2, …, βk are coefficients and ϵ is the residual term of the model. 

The MLR could be thought as an extension of simple linear regression. 

2) Principal Component Regression (PCR) 
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PCR is a technique for analyzing multiple regression data that suffer from multicollinearity. 

In PCR, a principal component analysis (PCA) is conducted on the design matrix and then the 

first k principal components are used to do the regression.  

3) Stepwise Regression (SR) 

Stepwise regression is an automated tool used in the exploratory stages of model building 

in order to identify a useful subset of predictors. In each step, a variable is considered for 

addition to or subtraction from the set of explanatory variables based on some prespecified 

criterion. The main approaches include: 1) forward selection, which involves starting with no 

variable in the model, testing the addition of each variable using a chosen model fit criterion, 

adding the variable whose inclusion gives the most statistically significant improvement of the 

fit and repeating this process until none improves the model to a statistically significant extent. 

2) backward elimination, which involves starting with all candidate variables, testing the 

deletion of each variable using a chosen model fit criterion, deleting the variable whose loss 

gives the most statistically insignificant deterioration of the model fit, and repeating this 

process until no further variables can be deleted without a statistically significant loss of fit. 3) 

bidirectional elimination, a combination of the above, testing at each step for variables to be 

included or excluded. 

4) Partial Least Square Regression (PLSR) 

PLSR is a powerful and frequently applied technique in multivariate statistical process 

control when the process variables are highly correlated. It is a technique that reduces the 

predictors to a smaller set of uncorrelated components and performs least squares regression 

on these components, instead of on the original data. PLSR is especially useful when the 

predictors are highly collinear, or when there are more predictors than observations and 

ordinary least-squares regression either produces coefficients with high standard errors or fails 

completely. PLSR does not assume that the predictors are fixed, unlike MLR. This means that 

the predictors can be measured with error, making PLSR more robust to measurement 

uncertainty.  

2.2.1.2 Dimensionality reduction: Principal Component Analysis 

- Definition and properties: Short overview 

Dimensionality reduction or dimension reduction is the process of reducing the number of 

random variables under consideration by obtaining a set of principal variables (Roweis et al., 
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2000). Dimensionality reduction can also be seen as the process of deriving a set of degrees of 

freedom which can be used to reproduce most of the variability of a data set. Principal 

components analysis (PCA, Jolliffe, 1986) is a classical method that provides a sequence of 

best linear approximations to a given high-dimensional observation. It is one of the most 

popular techniques for dimensionality reduction. PCA is appropriate when you have obtained 

measures on a number of observed variables and wish to develop a smaller number of artificial 

variables (called principal components) that will account for most of the variance in the 

observed variables. The principal components may then be used as predictor or criterion 

variables in subsequent analyses.  

PCA was invented in 1901 by Karl Pearson (1901) as an analogue of the principal axis 

theorem in mechanics. It was later independently developed and named by Harold Hotelling in 

the 1930s (Hotelling, 1933). Depending on the field of application, it is also named the 

discrete Karhunen–Loève transform (KLT) in signal processing, the Hotelling transform in 

multivariate quality control, proper orthogonal decomposition (POD) in mechanical 

engineering, singular value decomposition (SVD) of the matrix X (Golub and Van Loan, 1983), 

eigenvalue decomposition (EVD) of the covariance matrix XTX in linear algebra, factor 

analysis (for a discussion of the differences between PCA and factor analysis (Jolliffe, 1986), 

Eckar-Young theorem (Harman, 1960), or Schimidt-Mirsky theorem in psychometrics, 

empirical orthogonal functions(EOF) in meteorological science, empirical Eigen function 

decomposition (Sirovich, 1987), empirical component analysis (Lorenz, 1956), quasiharmonic 

modes (Brooks et al., 1988), spectral decomposition in noise and vibration and empirical 

modal analysis in structural dynamics. 

- Principal component and Empirical Orthogonal Functions 

EOF analysis is a decomposition of a signal or dataset in terms of orthogonal basis 

functions which are determined from the data. It is similar to performing a PCA on the data, 

except that the EOF method finds both time series and spatial patterns. Empirical Orthogonal 

Function technique aims at finding a new set of variables that capture most of the observed 

variance from the data through a linear combination of the original variables. EOF have been 

introduced in atmospheric science since the early 50’s (Obukhov, 1947, 1960; Fukuoka 1951; 

Lorenz, 1956; Craddock, 1973). The EOF terminology is due to Lorenz (1956) who applied it 

in a forecasting project at the Massachusetts Institute of Technology. Since then, EOFs have 

become popular analysis tools in climate research. EOF is commonly used in climate research 

as a tool to analyze meteorological fields with high spatio-temporal dimensionality. The 

https://en.wikipedia.org/wiki/Three-dimensional_space
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leading EOF modes will typically describe large scale dynamical features in the field, and 

reconstruction of the field using a truncated subset of EOF can filter out small scale features or 

noise. Furthermore, EOF truncation may be useful for further statistical analysis by reducing 

the dimensionality of the data.  

Here we present a brief description of EOF method, the covariance matrix is defined by 

Hannachi (2004): 

  ∑ = 1
𝑛𝑛−1

𝑏𝑏′𝑇𝑇 𝑏𝑏′ ,                                                                                                        (2.9)      

where X is data matrix which contains the covariance between any pair of grid points. The 

aim of EOF is to find the linear combination of all the variables, i.e. grid points, that explains 

maximum variance.  

 𝑣𝑣𝑎𝑎𝑣𝑣(𝑏𝑏′𝑎𝑎) = 1
𝑛𝑛−1

‖𝑏𝑏′𝑎𝑎‖2 = 1
𝑛𝑛−1

(𝑏𝑏′𝑎𝑎)𝑇𝑇(𝑏𝑏′𝑎𝑎) = 𝑎𝑎𝑇𝑇 ∑𝑎𝑎 .                                                   (2.10)      

 To make the problem bounded we normally require the vector a to be unitary. Hence the 

problem readily yields:  

 max
𝐺𝐺

𝑎𝑎𝑇𝑇 ∑𝑎𝑎 ,   𝑠𝑠. 𝑡𝑡.𝑎𝑎𝑇𝑇𝑎𝑎 = 1.                                                                                   (2.11)      

The solution is a simple eigenvalue problem (EVP): 

  ∑𝑎𝑎 = 𝜆𝜆𝑎𝑎.                                                                                                   (2.12)      

By definition the covariance matrix Σ is symmetrical and therefore diagonalizable. The kth 

EOF is simply the kth eigenvector ak of Σ, and the corresponding eigenvectors, have been sorted 

in decreasing order. The covariance matrix is also positive semi definite, hence all its 

eigenvalues are positive. The eigenvalue λk corresponding to the kth EOF gives a measure of 

the explained variance by ak, k = 1, . . . p. It is common to write the explained variance in 

percentage as  

 100𝜆𝜆𝑘𝑘
∑ 𝜆𝜆𝑘𝑘
𝑝𝑝
𝑘𝑘=1

% .                                                                           (2.13)      

The projection of the anomaly field X’ onto the kth EOF ak, i.e. ck = X’ak is the kth principal 

component (PC). 

𝐶𝐶𝑘𝑘(𝑡𝑡) = ∑ 𝑥𝑥′(𝑡𝑡, 𝑠𝑠)𝑎𝑎𝑘𝑘
𝑝𝑝
𝑠𝑠=1 (𝑠𝑠).                                                            (2.14)   

- Reduction criteria    

Normally we take all the PCs together which could give 95% explained variance in the EOF 

(Hannachi, 2004). 
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2.2.2 Pre-processing and decomposition method 

2.2.2.1 Stationary/nonstationary time series 

- Definition 

As stated in the introduction, the data need to be pre-processed. So firstly it is necessary to 

do time series analysis. Time series analysis is about the study of data collected through time. 

Generally, a stationary process is one whose statistical properties do not change over time. A 

strictly stationary stochastic process is one where given t1,…,tl, the joint statistical distribution 

of Xt1,…,Xtl is the same as the joint statistical distribution of Xt1+τ,…,Xtl+τ for all l and τ. This 

means that all moments of all degrees (expectations, variances, third order and higher) of the 

process are the same. It also means that the joint distribution of (Xt, Xs) is the same as (Xt+τ, 

Xs+τ) and hence cannot depend on s or t but only on the distance between s and t. Since this 

definition of strict stationarity is too strict, usually the weaker definition of stationarity is used, 

which means that the mean and the variance of a stochastic process do not depend on t and the 

autocovariance between Xt and Xt+ τ only can depend on the lag τ (τ is an integer, the quantities 

also need to be finite). A process is only stationary or non-stationary. If the mean or the variance 

of the time series changes over time, it is non-stationary.  

- Statistical properties 

In statistics, the probability models in the part of time series analysis is the familiarity of 

the concepts like mean and covariance and the whole stochastic process paraphernalia. 

However, there is another way to study time series, which is the spectrum. The frequency or 

spectral approach determines how much energy is contained within a time series as a function 

of frequency (the spectrum). 

- Spectral analysis: Fourier and Hilbert transforms 

In the spectral analysis domain, the Fourier transform (FT) is the dominating tool which is 

better for stationary or linear data. The Hilbert transform is commonly used to study 

instantaneous frequency for non-stationary data. 

------ Fourier Transform (FT) 

The FT decomposes a signal to complex exponential functions of different frequencies, 

defining by the following two equations: 

 𝑏𝑏(𝑓𝑓) = ∫ 𝑥𝑥(𝑡𝑡) ∙ 𝑒𝑒−2𝑗𝑗𝑗𝑗𝐷𝐷𝑗𝑗𝑑𝑑𝑡𝑡… …∞
−∞                                                                               (2.15)      
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 𝑥𝑥(𝑡𝑡) = ∫ 𝑏𝑏(𝑓𝑓) ∙ 𝑒𝑒2𝑗𝑗𝑗𝑗𝐷𝐷𝑗𝑗𝑑𝑑𝑓𝑓… …∞
−∞                                                                               (2.16)      

where t is the time, f is the frequency, and x denotes the signal in time domain, X denotes 

the signal in frequency domain. Equation (2.15) is called Fourier transform of x(t), and equation 

(2.16) is the inverse Fourier transform of X(f). 

------ Hilbert Transform 

The Hilbert transform of the function signal g(t) is defined as:  

 𝐻𝐻𝑔𝑔(𝑡𝑡) = 1
𝑗𝑗

(𝑉𝑉𝑉𝑉)∫ 𝑔𝑔(𝜏𝜏)
𝑗𝑗−𝜏𝜏

𝑑𝑑𝑑𝑑𝑗𝑗
−𝑗𝑗  .                                                    (2.17)      

Because of the possible singularity at τ = t, the integral is to be considered as a Cauchy 

principal value (VP). Hg(t) is a convolution, 1
𝑗𝑗𝑗𝑗
∗ 𝑔𝑔(𝑡𝑡). 

The spectrum of Hg(t) is related to that of g(t). From the convolution equation, 

 ℱ(𝐻𝐻(𝑡𝑡)) = ℱ � 1
𝑗𝑗𝑗𝑗
�ℱ(𝑔𝑔(𝑡𝑡)) ,                                                                              (2.18)      

where Ϝ is the FT. With a real signal g(t) one can associate a complex function with the real 

part equal to g(t) and the imaginary part equal to H(g(t)), h(t) = g(t) – iH(g(t)). In statistical 

signal analysis, this complex function h(t) is known as the analytic signal. Analytic signals are 

important since they possess unique phase ϕ(t) which leads to the definition of the 

instantaneous frequency. If h(t) is represented as 𝑎𝑎(𝑡𝑡) ∙ 𝑒𝑒𝑥𝑥𝑒𝑒{𝑖𝑖𝑖𝑖(𝑡𝑡)}, then the quantity 𝑑𝑑𝑑𝑑
𝑑𝑑𝑗𝑗

 is 

instantaneous frequency of the signal g(t) at time t (Flandrin 1992,1999). 

2.2.2.2 Time-frequency analysis 

- Definition 

The traditional data analysis methods, such as the Fourier transform, use pre-determined 

basis, which provide an effective tool to process linear and stationary data. However, there are 

still some limitations in applying these methods to analyze nonlinear and nonstationary data. 

Time-frequency analysis has been developed to overcome the limitations of the traditional 

techniques by representing a signal with a joint function of both time and frequency. Time-

frequency analysis comprises those techniques that study a signal in both the time and 

frequency domains simultaneously. 

Wavelet analysis opened a new path for time-frequency analysis. A significant 

breakthrough of wavelet analysis is the use of multi-scales to characterize signals. Another 

important approach in the time-frequency analysis which made more substantial progress is 

Empirical Mode Decomposition (EMD). The EMD method provides an effective tool to 
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decompose a signal into a collection of Intrinsic Mode Functions (IMF) that allow well-

behaved Hilbert transforms for computation of physically meaningful time-frequency 

representation.  

- First example: Wavelet Decomposition 

In recent decades, wavelet transforms have become a widely used statistical methods 

(Daubechies, 1990; Grinsted et al., 2004; Du et al., 2006). The wavelet transform is similar to 

the FT (or much more to the windowed FT) with a completely different merit function. The 

main difference is that FT decomposes the signal into sines and cosines; in contrast the wavelet 

transform uses functions that are localized in both the real space and Fourier space. Generally, 

the wavelet transform can be expressed by the following equation: 

𝐹𝐹(𝑎𝑎, 𝑏𝑏) = ∫ 𝑓𝑓(𝑥𝑥)𝜓𝜓(𝐺𝐺,𝐺𝐺)
∗ (𝑥𝑥)𝑑𝑑𝑥𝑥∞

−∞  ,                                                                            (2.19)     

where the * denotes complex conjugate symbol and ψ is some function.  

As it is seen, the Wavelet transform is in fact an infinite set of various transforms, depending 

on the merit function used for its computation. That is why wavelet transform can be applied 

in different types. Normally wavelet transform is divided based on the wavelet 

orthogonality.  The orthogonal wavelets is used for discrete wavelet transform development 

and non-orthogonal wavelets for continuous wavelet transform development. The discrete 

wavelet transform (DWT) returns a data vector of the same length as the input is. The 

continuous wavelet transform (CWT) in contrary returns an array one dimension larger than 

the input data.  

DWT is an implementation of the wavelet transform using a discrete set of the wavelet 

scales and translations obeying some defined rules (http://klapetek.cz/wdwt.html). In other 

words, this transform decomposes the signal into mutually orthogonal set of wavelets. This is 

the main difference with CWT, or its implementation for the discrete time series sometimes 

called discrete-time continuous wavelet transform (DT-CWT). CWT is an implementation of 

the wavelet transform using arbitrary scales and almost arbitrary wavelets. The wavelets used 

are not orthogonal and the data obtained by this transform are highly correlated. For the discrete 

time series we can use this transform as well, with the limitation that the smallest wavelet 

translations must be equal to the data sampling. This is sometimes called Discrete Time 

Continuous Wavelet Transform (DT-CWT) and it is the most used way of computing CWT in 

real applications. In principle the CWT works by using directly the definition of the wavelet 

transform, i.e. we are computing a convolution of the signal with the scaled wavelet. For each 

scale we obtain by this way an array of the same length N as the signal has. By 
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using M arbitrarily chosen scales we obtain a field N×M that represents the time-frequency 

plane directly. The algorithm used for this computation can be based on a direct convolution 

or on a convolution by means of multiplication in Fourier space (this is sometimes called Fast 

Wavelet Transform). The choice of the wavelet that is used for time-frequency decomposition 

is the most important thing. By this choice we can influence the time and frequency resolution 

of the result. We cannot change the main features of WT by this way (low frequencies have 

good frequency and bad time resolution; high frequencies have good time and bad frequency 

resolution), but we can somehow increase the total frequency of total time resolution. This is 

directly proportional to the width of the used wavelet in real and Fourier space. If we use the 

Morlet wavelet for example (real part – damped cosine function) we can expect high frequency 

resolution as such a wavelet is very well localized in frequencies. In contrary, using Derivative 

of Gaussian (DOG) wavelet will result in good time localization, but poor one in frequencies. 

- Second example: Empirical Mode Decomposition (EMD) 

The Empirical Mode Decomposition (EMD) is based on the point that most of the signal is 

multi-component, which means that there exist different scales simultaneously (Cohen, 1995; 

Huang et al., 1998, 1999). The EMD is an iterative process, which decomposes real signals f 

into simpler signals (modes),  

𝑓𝑓(𝑡𝑡) = ∑ 𝜓𝜓𝑗𝑗(𝑡𝑡)𝑀𝑀
𝑗𝑗=1 .                   (2.20)      

Each “monocomponent” signal ψj should be representable in the form  

ψ(t) = r(t) cos θ(t),                                                                           (2.21)      

where the amplitude and phase are both physically and mathematically meaningful. Once a 

suitable polar parametrization is determined, it is possible to analyze the function f by 

processing these individual components.  

In general, EMD may be applied either to sampled data or to functions of real variables by 

first identifying the appropriate time scales that reveals the physical characteristics of the 

studied system, decompose the function into modes ψ intrinsic to the function at the determined 

scales, and then apply the Hilbert transform to each of the intrinsic components.  

According to Huang and collaborators (Robert et al., 2006), the EMD method is motivated 

“from the simple assumption that any data consists of different simple intrinsic mode 

oscillations.” There are three assumptions for EMD method: (1) the signal has at least two 

extrema: one maximum and one minimum; (2) the characteristic time scale is defined by the 

time lapse between the extrema; and (3) if the data were totally devoid of extrema but contained 
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only inflection points, then it can be differentiated once or more times to reveal the extrema. 

Final results can be obtained by integration(s) of the components.  

Norden Huang et al. (1998, 1999) introduced that a function ψ of a real variable t is defined 

to be an IMF, if it satisfies two characteristic properties: (i) the difference between the number 

of local extrema and the number of zero-crossings must be zero or one; (ii) the running mean 

value of the envelope defined by the local maxima and the envelope defined by the local 

minima is zero. The EMD method is used to identify the intrinsic oscillatory modes by their 

characteristic time scales in the data empirically, and then decompose the data accordingly. 

Norden Huang et al. (1998, 1999) introduced the EMD algorithm, termed as “sifting process”. 

The first step of sifting process is to define all the local extrema maxima and minima points 

by using the envelopes. The envelopes are constructed by a cubic spline. Once all the local 

extrema maxima points are identified, a cubic spline connects all the points and the upper 

envelope u(t) is then constructed. Repeat the process to produce the lower envelope l(t) for the 

local minima. Figure (2.6) and (2.7) show extrema maxima, extrema minima and upper and 

lower envelopes. All the data X(t) are covered by the upper and lower envelopes, and X(t) are 

between the envelopes. The mean of these two envelopes is defined as 

𝑚𝑚1(𝑡𝑡) = 𝑢𝑢(𝑗𝑗)+𝐺𝐺(𝑗𝑗)
2

.                  (2.22)      

The first component is then estimated by 

ℎ1(𝑡𝑡) = 𝑏𝑏(𝑡𝑡) −𝑚𝑚1(𝑡𝑡).                (2.23)      
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Figure 2.6 How to find the extrema maxima and upper envelope 
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Figure 2.7 How to find the extrema minima and lower envelope 

 

Ideally, h1(t) should be an IMF, but overshoots and undershoots can also generate new 

extrema, and shift or exaggerate the existing ones. h1(t) described above doesn’t seem to satisfy 

all the requirements of an IMF. An illustration of the first sifting process for a real time series 

is shown in Figure 2.8. It identifies the original time series X(t) is shown as thin solid black 

line; all the local extrema points, and construct the upper envelop emax(t), and the lower 

envelop emin(t) in blue and red line; calculate the running average m1(t) in pink line, and get 

the local detail h1(t) after 1st sifting. In the second sifting process, h1(t) is treated as new time 

series, then  

ℎ11(𝑡𝑡) = ℎ1(𝑡𝑡) −𝑚𝑚11(𝑡𝑡).                (2.24)      

ℎ12(𝑡𝑡) = ℎ11(𝑡𝑡) −𝑚𝑚12(𝑡𝑡).                (2.25)      
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Figure 2.8 Illustration of the sifting processes of EMD algorithm: the original data, in thin 

black line, with the upper and lower envelopes in blue and red lines, and the local mean in pink 

line. 

 After the second sifting, if there are still local maxima below the zero line, repeat the sifting 

process j times, until all the local maxima are positive, all the local minima are negative, many 

waves are still symmetric, and until h1k(t) is an IMF.  

.                (2.26)      

The first IMF component from the data is designated as  

.                                                     (2.27)      

C1(t) should contain the finest scale or the shortest period component of the data. We can 

separate C1 from the rest of the data, then, the residual r1(t)  

 .                 (2.28)     

 

Figure 2.8 Illustration of the sifting processes of EMD algorithm 
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This residue r1(t), still contains information of longer period components, Iterate on h1 if it 

violates the assumptions and restrictions. We repeat this procedure n times until rn (t) becomes 

a monotonic function or at most has one local extreme point. The result is THEN  

 .                 (2.29)  

 

Figure 2.9 Illustration of the residue r1 
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The sifting process is completed when the residual rn is so small that it is less than the 

predetermined value of substantial consequence, or when the residual rn becomes a monotonic 

function from which no IMF can be extracted. The corresponding flow chart of this sifting 

process is shown in Figure 2.11. 

 

Figure 2.10 Some results of sifting process and some residues in different iteration. 
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Finally, we can get n IMFs with residual rn(t). IMF is the residual of mean-spline and input 

signal at each stage. An IMF represents a simple oscillatory mode as a counterpart to the simple 

harmonic function. Instead of constant amplitude and frequency, as in a simple harmonic 

component, the IMF can have a variable amplitude and frequency as functions of time. Figure 

2.12 shows the calculation of IMFs. Note that IMFs are recorded at the bottom of the table.  

 

Figure 2.11 The flowchart describing sifting process for EMD algorithm. 
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To guarantee that the IMF modes retain enough physical sense for both amplitude and 

frequency modulations, the sifting process can be stopped by any of the following 

predetermined criteria: either when the component cn, or the residue rn, becomes so small that 

it is less than the predetermined value of substantial consequence, or when the residue rn, 

becomes a monotonic function from which no more IMF can be extracted. A stopping criterion 

has to be introduced to stop the sifting process. Different stoppage criteria can be used in the 

sifting process such as Cauchy SD convergence, S-method, etc. Their detailed description can 

be found elsewhere (Huang et al, 2003; Huang and Attoh-Okine, 2005; Huang and Shen, 2005; 

Huang et al., 1998, 1999; Rilling et al., 2003). In this study, the job of the stopping criteria is 

accomplished by limiting the size of the standard deviation (SD). SD is computed from the two 

consecutive successive sifting processes as  

 .               (2.30)      

A typical value proposed by (Huang et al., 1998) based on their experience is 0.2~0.3, which 

two Fourier spectra computed by shifting only five out of 1024 points from the same data, can 

have an equivalent SD of 0.2~0.3 calculated point-by-point. Therefore, a SD value of 0.2~0.3 

for the sifting procedure is a very rigorous limitation for the difference between siftings. If a 

calculated SD is smaller than a given value 0.2~0.3, then the sifting stops and gives an IMF.  

 

Figure 2.12 The calculation of IMFs 
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Another widely used criterion is based on 3 thresholds α, θ1 and θ2, which are designed to 

guarantee globally small fluctuations in the mean while taking into account locally of large 

excursions (Rilling et al., 2003). In this study, the first criterion is conducted on the IMF. 

Different versions of (Hilbert Huang transform) HHT algorithms have been implemented 

using various interpolation algorithms in the sifting process to evaluate the envelopes, such as 

Cubic spline interpolation (Huang et al., 1998; Rilling et al., 2003), Akima cubic spline 

interpolation (Radić, Pasarić and Šinik, 2004), etc. Various boundary conditions may also be 

considered during interpolation such as tied to zero, mirroring nearest extrema boundary 

conditions (Rilling et al., 2003), tied to signal, etc. In order to reduce the end point effects due 

to miscalculated boundary conditions during interpolation, several envelope estimation 

algorithms are used in practice including those based on neural networks (Pradhan and Lee, 

2010a),b),c))), etc. Improved algorithms such as Bi-variate EMD (Rilling et al., 2007), 

Complex EMD (Tanaka and Mandic, 2007) and Multivariate EMD (Rehman and Mandic, 2010) 

for multi-channel and multi-dimensional signal analysis, Ensemble EMD for a higher accuracy 

in noisy data (Wu and Huang, 2006), are also available.  

EMD algorithm described above can be considered to be well adapted for nonlinear and 

nonstationary data. More detail about the EMD algorithm can be found in (Huang et al., 1998, 

1999; Rilling et al., 2003; Flandrin et al., 2004; Flandrin and Gonçalvès, 2004; Huang, 2005).  

2.2.3 Fractal and Multifractal 

2.2.3.1 Fractal 

- Brief overview of fractal application domain  

Time series generated by complex systems exhibit fluctuations on a wide range of time 

scales and/or broad distributions of the values. In both equilibrium and non-equilibrium 

situations, the natural fluctuations are often found to follow a scaling relation over several 

orders of magnitude. Such scaling laws allow for a characterization of the data and the 

generating complex system by fractal or multifractal scaling exponents, which can serve as 

characteristic fingerprints of the systems in comparisons with other systems and with models. 

Fractal scaling behavior has been observed in many time series from experimental physics, 

geophysics, medicine, physiology, and even social sciences.  

A fractal is a rough or fragmented geometrical object that can be subdivided in parts, each 

of which is a reduced-size copy of the whole. Fractals are generally self-similar and 

independent of scale. Although the underlying causes of the observed fractal scaling are often 
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not known in detail, the fractal or multifractal characterization can be used for generating 

surrogate (test) data, modelling the time series, and deriving predictions regarding extreme 

events or future behavior (Kantelhardt, 2008). The main application, however, is still the 

characterization of different states or phases of the complex system based on the observed 

scaling behavior (Kantelhardt, 2008). The first scientist who applied fractal analysis to natural 

time series is (Mandelbrot, 1982) who included early approaches by Hurst regarding 

hydrological systems. In the last decade, fractal and multifractal scaling behavior has been 

reported in many natural time series generated by complex systems, including geophysics time 

series (recordings of temperature, precipitation, ozone levels, wind speed, seismic events, 

vegetational patterns, and climate dynamics), astrophysical time series (X-ray light sources and 

sunspot numbers), medical and physiological time series (recordings of heartbeat, respiration, 

blood pressure, blood flow, nerve spike intervals, human gait, glucose levels, and gene 

expression data), technical time series (internet traffic, highway traffic, and neutronic power 

from a reactor), social time series (finance and economy, language characteristics, fatalities in 

conflicts), and so on (Kantelhardt, 2008).  

    - Fractal and dimension 

If one finds that a complex system is characterized by fractal or multifractal dynamics with 

particular scaling exponents, this will help in obtaining predictions on the future behaviour of 

the system and on its reaction to external perturbations or changes in the boundary condition. 

In addition, one could test and iteratively improve models of the system until they reproduce 

the observed scaling behaviour. 

In a strict sense, most time series are one dimensional, since the values of the considered 

observable are measured in homogeneous time intervals. Hence, unless there are missing 

values, the fractal dimension of the support is D(0) = 1. However, there are rare cases where 

most of the values of a time series are very small or even zero, causing a dimension D(0) <1 

of the support. In these cases, one has to be very careful in selecting appropriate analysis 

techniques. Even if the fractal dimension of support is one, the information dimension D(1) 

and the correlation dimension D(2) can be studied. D(2) is in fact explicitly related to all 

exponents studied in monofractal time series analysis.  
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- Hurst exponent: predictability of time series 

When the time axis and the axis of the measured values x(t) are not equivalent, a rescaling 

of time t by a factor a may require rescaling of the series values x(t) by a different factor aH in 

order to obtain a statistically similar picture. In this case the scaling relation  

 𝑥𝑥(𝑡𝑡) → 𝑎𝑎𝐻𝐻𝑥𝑥(𝑎𝑎𝑡𝑡) .                                               (2.31)      

Holds of an arbitrary factor a, describing the data as self-affine. The Hurst exponent H 

characterizes the type of self-affinity. For example, Brownian motion is characterized by H = 

0.5. For a monofractal process, D =2-H. 

The Hurst exponent is a useful statistical method for inferring the properties of a time series 

without making assumptions about stationarity. The Hurst exponent measures a relative 

tendency of a time series either regress strongly to the mean or to cluster in a direction. It is 

related to fractal dimension which gives measure for roughness of the time series. The Hurst 

exponent provides a measure for long-term memory of time series and very useful in 

forecasting (Stan et al., 2013).  

2.2.3.2 Multifractal 

    - Generalized Hurst exponent 

Many records do not exhibit a simple monofractal scaling behaviour, which can be 

accounted for by a single scaling exponent. There might exist crossover time scales separating 

regimes with different scaling exponents. In oth er cases, the scaling behaviour is more 

complicated, and different scaling exponents are required for diff erent parts of the series. In 
even more complicated cases, such different scaling behaviour can be observed for many 
interwoven fractal subsets of the time series. In this case a multitude of scaling exponents is 

required for a full description of the scaling behaviour in the same range of time scales, and a 

multifractal analysis must be applied. A multifractal is a set of intertwined fractals. Self-

similarity of multifractals is scale dependent. A deviation from a strict self-similarity is also 

called intermittency. 

Two general types of multifractality in time series can be distinguished: (1) Multifractality 

due to a broad probability distribution (density function) for the values of the time series, e. g. 

a Levy distribution. In this case the multifractality cannot be removed by shuffling the series. 
(2) Multifractality due to different long -term correlations of the small and large fluctuations. 

In this case the probability density function of the values can be a regular distribution with 

finite moments, e. g., a Gaussian distribution. The corresponding shuffled series will exhibit 
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non-multifractal scaling, since all long-range correlations are destroyed by the shuffling 
procedure. Randomly shuffling the order of the values in the time series is the easiest way of 
generating surrogate data; however, there are more advanced alternatives. If both kinds of 

multifractality are present, the shuffled series will show weaker multifractality than the original 

series (Movahed et al., 2006). A multifractal analysis of time series will also reveal higher 

order correlations. Multifractal scaling can be observed if, e. g., three or four-point correlations 

scale differently from the standard two-point correlations studied by classical autocorrelation 

analysis. In addition, multifractal scaling is observed if the scaling behaviour of small and large 

fluctuations is diff erent. For example, extreme events might be more or less correlated than 

typical events.  

Multifractal processes could be seen as an extension of monofractal processes introduced 

by Mandelbrot and characterized by a single exponent such as Hurst parameter H or Fractal 

dimension D (D =2-H). The Hurst exponent is not sufficient for describing the dynamics of a 

multifractal process, needing a scaling exponent function ζ(q) or K(q). The multifractal 

concepts were introduced with the multiplicative cascade model, to study the energy dissipation 

in the context of fully developed turbulence in the 1980’s (Grassberger and Procaccia, 1983; 

Benzi et al., 1984; Parisi and Frisch, 1985). Let x be a nonstationary signal with stationary 

increments. For a scaling process, its increments ∆𝑥𝑥 = 𝑥𝑥(𝑡𝑡 + 𝑇𝑇) − 𝑥𝑥(𝑡𝑡)  posses scaling 

statistics of the form:  

 < |∆X|𝑞𝑞 >  ~ 𝑇𝑇  ζ(q) ,                                              (2.32)      

where T is the time increment and ζ(q)  is the scale invariant exponent function, which is 

non-linear and concave. The estimation of the (q, ζ(q)) curve for integer and non-integer 

moments, provides a full description of the stochastic process x(t) at all intensities and all scales. 

This function characterizes the nature of its scaling behavior: ζ(q) is nonlinear and concave for 

a multifractal process and linear for a monofractal process. Furthermore, the concavity is an 

indication of intermittency. The parameter H = ζ(1) is the Hurst parameter. Monofractal 

processes correspond to a linear function ζ(q) =qH, where Brownian motion is described by   

H = 1/2, fractional Brownian motion is described by 0 < H < 1 and homogeneous non-

intermittent turbulence is described by H = 1/3. In order to model intermittency, many 

statistical functions have been proposed to fit ζ(q) since the introduction of mulitfractals in the 

turbulence field.  
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   - Log-stable model 

In this study, we focus on the log-stable model or universal multifractal proposed by 

Schertzer and Lovejoy (1987) and Kida (1991): 

ζ(q) = 𝑞𝑞𝐻𝐻 −  𝐶𝐶1
(𝛼𝛼−1) (𝑞𝑞𝛼𝛼 − 𝑞𝑞) ,               (2.33)      

where H = ζ(1) the Hurst parameter defines the degree of smoothness or roughness of the 

field. The parameter C1 is the fractal co-dimension of the set giving the dominant contribution 

to the mean (q = 1) and bounded between 0 and d (d the dimension space, here d = 1). It 

measures the inhomogeneity mean or the mean intermittency characterizing the sparseness of 

the field: the larger C1, the more the mean field is inhomogeneous. The multifractal Lévy 

parameter α is bounded between 0 and 2, where α = 0 corresponds to the monofractal case and 

α = 2 corresponds to the multifractal lognormal case. The parameter α measures the degree of 

multifractility, i.e, how fast the inhomogeneity increases with the order of the moments 

(Seuront et al., 1996 a, b). 

The computation of multifractal indices α, and C1 are obtained from Eq. (2.33) (Schertzer 

et al., 1997). For that, we analyze the following function  

.               (2.34)      

Thus, the function R(q) versus q will have a slope α and C1 can be estimated by the intercept. 

- Singularity spectrum 

Another way to characterize a multifractal process is the singularity spectrum M(γ). The 

singularity spectrum is a function used in multifractal analysis to describe the fractal dimension 

of a subset of points of a function belonging to a group of points that have the same Hurst 

exponent. Intuitively, the singularity spectrum gives a value for how fractal a set of points are 

in a function. Related to the scaling exponents ζ(q) presented above, M(γ) could be present: 

𝛾𝛾 = d ζ(q)/dq.                  (2.35) 

𝑀𝑀(𝛾𝛾) =  𝛾𝛾𝑞𝑞 −ζ(q) +1 .                                                                                           (2.36) 

Based on this, it is a monofractal process, γ = H and M(γ) = 1. 

2.2.4 Intermittency: Multifractal analysis    

The objective of this thesis is to study the intermittency of GHI over Reunion Island and 

the multifractal properties of GHI time series have been highlighted in the introduction. Hence, 

this section will present the main methods of multifractal analysis used in this thesis. 
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2.2.4.1 Hilbert Spectral Analysis (HSA) 

- Hilbert marginal spectrum  

Hilbert spectral analysis (HSA) is associated with EMD. This spectral analysis is known to 

be a Hilbert transform applied to each IMF component extracted from the original signal by 

the EMD method. Thus the original signal X(t) is written as a sum of IMF modes Ci(t) and a 

residual rn(t) which is the mean trend or a constant. Figure 2.13 shows an example of original 

data and IMFs from EMD decomposition.  

 .                                              (2.37)      

Even for data with zero mean, the final residue can still be different from zero. For data 

with a trend, then the final residue should be that trend. The process is indeed like sifting: to 

separate the finest local mode from the data first based only on the characteristic time scale. 

The sifting process, however, has two effects: (a) to eliminate riding waves; and (b) to smooth 

uneven amplitudes. Therefore, the sifting process should be repeated enough times. However, 

if too many times sifting are performed, the amplitude of the IMF modes will become constant, 

and the nonlinear wave profiles is then distorted, which means the modes lose their physical 

meaning (Huang et al., 1998, 1999).  
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Giving Ci (t) to be the IMF mode, HSA acts as a time frequency analysis to extract the 

energy-frequency information from the data (Huang et al. 1998, 1999; Cohen, 1995; Long et 

al., 1995). The Hilbert transform applied to one mode Ci (t) is written as  

 ,                (2.38)                                 

where P indicates the Cauchy principle value (Cohen, 1995; Long et al., 1995). With this 

definition, C and �̃�𝐶 form the complex conjugate pair, so we can construct an analytic signal z 

as  

  ,              (2.39)                      

where C, 𝐶𝐶 � is real and imaginary part of a signal respectively. Theoretically, there are 

infinitely many ways of defining the imaginary part, but the Hilbert transform provides a 

unique way of defining the imaginary part so that the result is an analytic function. A brief 

tutorial on the Hilbert transform with the emphasis on its physical interpretation can be found 

in Bendat and Piersol (1986). The corresponding amplitude and phase functions are defined as,  

    .                                                    (2.40)      

 

Figure 2.13 An example IMFs from EMD decomposition of global solar radiation data. 
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  .                                                                   (2.41)                                

The instantaneous frequency ω is determined from the phase θ(t) in equation. The notion of 

the instantaneous energy or the instantaneous envelope of the signal is well accepted. On the 

other hand, the notion of the instantaneous frequency has been highly controversial. Existing 

opinions range from editing it out of existence (Shekel, 1953) to accepting it but only for special 

“monocomponent” signals (Boashash, 1992; Cohen, 1995). In principle, there are some 

limitations for monocomponent on the data. At any given time, there is only one frequency 

value. Therefore, it can only represent one component, hence “monocomponent”.  

.                                                       (2.42)      

Unfortunately, no clear definition of the “monocomponent” signal was given to judge 

whether a function is or is not “monocomponent”. For lack of a precise definition, “narrow 

band” was adopted as a limitation on the data for the instantaneous frequency to make sense 

(Schwartz et al., 1966). But the bandwidth limitation on the Hilbert transform to give a 

meaningful instantaneous frequency has never been firmly established. In order to obtain 

meaningful instantaneous frequency, restrictive conditions have to be imposed on the data as 

discussed by (Gabor, 1946; Bedrosian,1963; Boashash, 1992): for any function to have a 

meaningful instantaneous frequency, the real part of its Fourier transform has to have only 

positive frequency. This restriction can be proven mathematically as shown in (Titchmarsh, 

1948), but it is still global. (Huang et al., 1998, 1999) modify the restriction condition from a 

global one to a local one, and based on its local properties. They designated as intrinsic mode 

function (IMF) that we calculated above for defining the instantaneous frequency everywhere.  

They consider some simple examples to illustrate these restrictions physically, by 

examining the function,  

.                                                (2.43)     

.                                                     (2.44)      

Its Hilbert transform is simply cos t. The phase plot of x–y is a simple circle of unit radius 

as in figure 2.14 a). The phase function is a straight line as shown in figure 2.14 b) and the 

instantaneous frequency, shown in figure 2.14 c), is a constant as expected.  

 

 



Data and Methodology 

 60 

a)  

 

 

 

 

 

 

 

 

 

 

b) 
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The phase plot of x–y is still a simple circle independent of the value of a, but the center of 

the circle will be displaced by the amount of a as illustrated in figure 2.14 a). If a < 1, the center 

is still within the circle. Under this condition, the function has already violated a restriction, for 

its Fourier spectrum has a DC (Direct Current) term; nevertheless, the mean zero-crossing 

frequency is still the same as in the case for a = 0, but the phase function and the instantaneous 

frequency will be very different as shown in figures 2.14 b, c. If a > 1, the center is outside the 

circle; thus, the function no longer satisfies the required conditions. Then both the phase 

function and the instantaneous frequency will assume negative values as shown in figures 2.14 

b, c, which are meaningless. These simple examples illustrate physically that, for a simple 

signal such as a sine function, the instantaneous frequency can be defined only if we restrict 

the function to be symmetric locally with respect to the zero mean level.  

For general data, any riding waves would be equivalent to the case of a> 1 locally; any 

asymmetric wave form will be equivalent to the case of a < 1, but non-zero, locally.  

Neglecting the residual, the original time series is rewritten as  

c) 

 
Figure 2.14 a) The phase plane for the model functions of x(t) = a + sin t: blue cycle for           
a = 0; (b) green cycle for a < 1; (c) red cycle for a > 1; Figure 2.14 b) The unwrapped phase 
function of the model functions; Figure 2.14 c) The instantaneous frequency computed 
according to equation. 
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 ,                 (2.45)      

where Ai and θi are the amplitude and phase time series of mode i and Re means real part 

(Huang, et al., 1998, 1999). 

For each mode, the Hilbert spectrum is defined as the square amplitude H(ω,t)=A2(ω, t). 

H(ω,t) gives a local representation of energy in the time frequency domain. Then the Hilbert 

marginal spectrum h(ω) is written as  

.                 (2.46)                          

The Hilbert marginal spectrum is similar to the Fourier spectrum, as it corresponds to the 

energy associated to the frequency (Huang et al., 1998, 1999).We do not give the validation 

and calibration detail of the Hilbert-Huang transform here. For details of the validation and 

calibration, we suggest to read the publication of Huang et al. (1998, 1999). 

The Hilbert marginal spectrum is defined as a marginal integration of the Hilbert spectrum 

H(ω,t) over t. They define a joint probability density function (p(ω,A)) of the instantaneous 

frequency ω and the amplitude A (Long et al., 1995; Huang et al., 2008, 2009a) for all the IMF 

modes. Thus the corresponding Hilbert marginal spectrum is rewritten as the marginal integral 

of the joint pdf p(ω, A) over A2. 

 .                 (2.47)      

This expression concerns the second-order statistical moment. 

- Joint probability density function  

The joint probability density function (joint PDF) is a function used to characterize the 

probability distribution of a continuous random vector. It is a multivariate generalization of the 

probability density function (PDF). The generalization works as follows: the integral of the 

density of a continuous variable over an interval is equal to the probability that the variable 

will belong to that interval; the multiple integral of the joint density of a continuous random 

vector over a given set is equal to the probability that the random vector will belong to that set. 

 2.2.4.2 Arbitrary order Hilbert Spectral Analysis  

In order to deal with scaling intermittent multifractal time series, as the extension of HHT, 

arbitrary-order Hilbert spectral analysis was proposed by (Huang et al., 2008, 2009) to 

characterize such scale invariant property of signals. 

- Intrinsic Mode function and HSA 
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The arbitrary-order Hilbert spectral analysis is the combination of the Empirical Mode 

Decomposition (EMD) and Hilbert spectral analysis (HSA). The EMD method provides an 

effective tool to decompose a signal into a collection of Intrinsic Mode Functions (IMF) that 

allow well-behaved Hilbert transforms for computation of physically meaningful time-

frequency representation, which are already stated before in this chapter.  The HSA is 

performed to each obtained IMF component Im(t) extracted by the EMD method. The energy 

in a time-frequency space is estimated from the Hilbert spectrum, H(ω,t) = A2(ω,t). The Hilbert 

spectrum h(ω) being defined as:  

ℎ(𝜔𝜔) = ∫ 𝐻𝐻(𝜔𝜔, 𝑡𝑡)𝑑𝑑𝑡𝑡𝑁𝑁
0  ,                                  (2.48)     

where N the total data length. The Hilbert spectrum H(ω,t) gives a measure of the amplitude 

from each frequency and time, while the marginal spectrum h(ω) gives a measure of the total 

amplitude from each frequency. 

- Generalized Hilbert marginal spectrum 

The second-order statistical moment was expressed by equation 2.45. A generalization of 

this definition is considered to arbitrary-order statistical moment q≥0 (Huang et al., 2008, 2009):  

 .                                             (2.49)      

- Generalized Hurst scaling exponent 

Hence, in the Hilbert space, the scale invariance is written as 
𝐿𝐿𝑞𝑞(𝜔𝜔)~𝜔𝜔−𝜉𝜉(𝑞𝑞) ,                                    (2.50)      

where 𝜉𝜉(𝑞𝑞) is the corresponding generalized scaling exponent in the Hilbert space. This 

scaling exponent function is linked to scaling exponent function ζ(q) of structure functions 

analysis by the expression (Huang et al., 2008, 2009):  

ζ(q)= 𝜉𝜉(𝑞𝑞) − 1.                                          (2.51)                                              

This method provides a way to characterize the scale invariance in an amplitude-frequency 

space (Huang et al., 2008, 2010a, 2009a) and estimate the scaling exponent that characterizes 

intermittency process.  

We do not give the validation and calibration detail of the arbitrary-order Hilbert spectral 

analysis here neither. For details of the validation and calibration, we suggest to read the 

publication of (Huang et al., 2008, 2009).  
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The study dataset, the prediction method and the multifractal analysis method are presented 

in this chapter. They provide the basic information for the results analysis in the following 

section: chapter 3 and 4. 
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Chapter 3 

 

Daily mapping prediction  
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3.1 Data processing 

3.1.1 Missing data: Filling technique 

This chapter presents the daily mapping prediction results with the CM SAF data. The 

SARAH-E satellite data (CM SAF) is used to perform the one-day ahead prediction for surface 

solar radiation (SSR) over Reunion Island. As I indicated in Chapter 2, the spatial resolution 

of this dataset is 0.05°×0.05° and the temporal coverage is from 2007 to 2016. The first five 

years (2007-2011) are used as training data, and the remaining five years (2012-2016) are used 

as test data in the prediction model. The domain used for the prediction is 55.05E~56E, -

21.55S~-20.70S, which covers Reunion Island, as shown in the Figure 3.1.  

 
Figure 3.1 Domain of the CM SAF dataset for the prediction model. 

  
Because those 10-years data are from satellite and there are not much missing data, the days 

for which we don’t have record have been removed. 

Figure 3.2 presents the seasonal mean and standard deviation of SSR in summer, winter and 

inter-season from 2007 to 2016 (10 years) over Reunion Island. From Figures 3.2 a), c), e) and 

h), the obvious seasonal variability can be observed. The austral summer season (DJF: 

December-January-February) obtains more SSR than austral winter season (JJA: June-July-

August) over the whole island. During the inter-season (MAM: March-April-May and SON: 

September-October-November), there is more SSR over the northeast coast than over the 
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inland area, because in this period, strong thermal and wind inversion occur (Badosa et al., 

2013). Turbulent flows and clouds activities over the island are thus exclusively vertical in the 

boundary layer. 

 

a)

 

b)

 
c)

 

d)

 
e)

 

f)
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g)

 

h)

 
Figure 3.2 The seasonal mean (a; c; e; g) and standard deviation (b; d; f; h) of SSR in the 
summer, winter, and inter-season from 2007 to 2016 over Reunion (W/m2).  

 
3.1.2 Daily scale: Detrended and deseasonalized data 

The total amount of solar irradiation received at one place on the Earth's surface and at a 

given latitude varies daily and seasonally. In order to overcome these two-time scale 

variabilities in each day, a filtering process has been applied to the GHI dataset for de-trending 

and de-seasonalizing. The adjusted seasonal index method which is a simple and convenient 

pre-processing method (Brockwell and Davis, 1986), was used. 

Let G(m,d) be GHI solar radiation observed at time m (𝑚𝑚 ∈ [07: 00 − 18: 00]) and day d 

( 𝑑𝑑 ∈ [1/1/2007 − 31/12/2016]). The steps to compute the deseasonalized GHI time series 

using adjusted seasonal index method is as follow: 

Step 1- Compute 𝐺𝐺(𝑑𝑑) which is the GHI daily mean: 

𝐺𝐺(𝑑𝑑)  = 1
𝑀𝑀
∑ 𝐺𝐺(𝑚𝑚, 𝑑𝑑)𝑀𝑀
𝑚𝑚=1  .                                          (3.1)      

Step 2- Compute the modified GHI time series  𝐺𝐺𝑚𝑚(𝑚𝑚, 𝑑𝑑) by dividing the original time 

series  𝐺𝐺(𝑚𝑚,𝑑𝑑)by its daily mean:  

𝐺𝐺𝑚𝑚(𝑚𝑚,𝑑𝑑) = 𝐺𝐺(𝑚𝑚,𝑑𝑑)
 𝐺𝐺(𝑑𝑑)

 ,                   (3.2)      

where 𝐺𝐺(𝑑𝑑) is the GHI daily mean computed in step 1. 

Step 3- Compute 𝐺𝐺(𝑚𝑚) which is the GHI climatologically daily mean of the modified GHI 

time series 𝐺𝐺𝑚𝑚(𝑚𝑚,𝑑𝑑 ):  

𝐺𝐺(𝑚𝑚)  = 1
𝐷𝐷
∑ 𝐺𝐺𝑚𝑚(𝑚𝑚,𝑑𝑑)𝐷𝐷
𝑑𝑑=1 .                              (3.3)      

Step 4- Compute AF the adjusted factor of 𝐺𝐺(𝑚𝑚) : 

 𝑀𝑀𝐹𝐹 = ∑ 𝐺𝐺(𝑚𝑚)𝑀𝑀
𝑚𝑚=1

𝑀𝑀
 .                                (3.4)      
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Step 5- Compute the deseasonalized adjusted GHI time series 𝐺𝐺𝑑𝑑𝐺𝐺(𝑚𝑚,𝑑𝑑)  by dividing 

modified GHI time series  𝐺𝐺𝑚𝑚(𝑚𝑚,𝑑𝑑) (computed in step 2) by the GHI climatologically daily 

mean  𝐺𝐺(𝑚𝑚) (computed in step 3)  corrected by  the adjusted factor AF (computed in step 4):  

𝐺𝐺𝑑𝑑𝐺𝐺(𝑚𝑚, 𝑑𝑑) = 𝑀𝑀𝐹𝐹 𝐺𝐺𝑚𝑚(𝑚𝑚,𝑑𝑑))
 𝐺𝐺(𝑚𝑚)

.        (3.5)      

This adjusted seasonal index method has been used in this study, however, the results 

obtained present the low correlation coefficient (0.2~0.3) between two days. Based on this 

consideration, it is not practical to apply on our satellite dataset (CM SAF). Thus, only the 

normalization has been done for pre-processing.  

3.1.3 Dataset normalization 

We perform normalization over the input data at first for pre-processing. Normalization is 

the process of restructuring a relational database in accordance with a series of so-called normal 

forms in order to reduce data redundancy and improve data integrity, which was first proposed 

by Codd (1970). If there is a dataset with various values on large differences between them, 

then it is better to obtain a more compact dataset through normalization. Normalization reduces 

dispersion of data collected in order to obtain better results (Neelamegam, 2016). Before 

performing the prediction, the training and test dataset are normalized. The Figures 3.3 and 3.4 

give an example of the original and normalized GHI time series separately. 

 
Figure 3.3 The original GHI time series with the trend for the year 2007~2016. 
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Figure 3.4 The normalized daily time series 2007~2016 in one grid point of Reunion. 

 

3.2 Linear models 

3.2.1 Independent/dependent variables  

The aim of this section is to present the dependent variables and independent variables 

which will be used in the each linear prediction model. There are four linear regression models 

used in this study as mentioned in Chapter 2: SR, MLR, PCR and PLSR. 1) SR: the first three 

days’ daily GHI in the domain area (all the grid points) are the independent variable in this 

linear model, and the dependent variable is the fourth day’s daily GHI in the domain area (all 

the grid point); 2) MLR: the independent variables are the first three days’ daily GHI at each 

grid point of the domain, and the dependent variable is the fourth day’s daily GHI at each grid 

point of the domain; 3) PCR: each PC getting from the PCA analysis of GHI data is the 

independent variable and the predicted PC is the dependent variable; 4) PLSR: each PC getting 

from the PCA analysis of GHI data is the independent variable and the predicted PC is the 

dependent variable. 

3.2.2 PCA decomposition 

As explained in Chapter 2, applying linear regression models to do prediction requires to 

choose the independent and dependent variables as predict parameters and predicted value. The 

climate dataset, such as solar radiation data, are usually multi-dimensional: time, latitude, 

longitude……. All these dimensions stand all the variables. To interpret the data in a more 

meaningful form, it is therefore necessary to reduce the number of variables, to a set of 
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interpretable linear combinations of the data. PCA is the most common method for 

decomposition, which reduces the data size and simplifies the calculation. Each linear 

combination corresponds to a principal component with EOF. 

- Hypothesis on EOF 

 PCA analysis could largely reduce the dimensionality for the heavy dataset, like multi-

years GHI. When the PCA is applied in the linear prediction model,   the PCR model is often 

described as follows: 

Y = γ01 + gγ1 + Zγ2 + ε ,                                                                                              (3.6)      

where γ0 is the intercept, and Z is the matrix with each column as one of a few top PCs 

constructed by PCA from GHI daily dataset, or more generally, g is normalized daily 

GHI, and ε is the error term. The null hypothesis for the EOF is all regression coefficients are 

zero (H0: γ1 = 0). The basic idea of PCR is that we use the first few PCs to replace the original 

large GHI variables in model.  

- PC as independent/dependent variables in the linear model 

PCA is applied to the GHI data in 2007~2016 in order to obtain the PCs. The PCs which 

could explain 95% variance are used as the independent variables and the according predicted 

PCs are the dependent variable as output in the linear model. The first 5 PCs with their EOFs 

modes for the SSR data in 2007~2016 from CM SAF (SARAH-E@5km) are presented in 

Figure 3.5. EOF provides us with both the spatial and temporal patterns of the dominant modes 

of variability. The explained variance (%) of each PC is given in Figure 3.6, and 43 PCs 

together can explain 95% variance. In Figure 3.5, it is observed that the leading 3 modes of 

EOF explains 61%, 6% and 6% variance separately, and the first PC gives more contribution 

for SSR over Reunion Island. And these three PCs give obviously different spatial distribution 

of SSR over Reunion Island: first EOF mode shows more (less) SSR over north-west (south-

west) part; Second EOF mode shows more (less) SSR over north (south) part; Third EOF mode 

shows more (less) SSR over north-east (south-west) part. 
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Figure 3.5 The leading five EOF modes (left panel) for GHI for its PCs (right panel) in 2007~2016. 
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Figure 3.6 The explained variance (%) of each PC. 

 
3.3 Results 

3.3.1 Test with SR, MLR, PCR and PLSR models 

Four linear regression models: SR, MLR, PCR and PLSR are used in this study to do 

prediction of SSR in 2007~2016 over Reunion Island. 2007-2011, these five years used as the 

training data and other fives year from 2012~2016 as test data. Figure 3.7 presents the goodness 

of fitting in a plot of prediction against observation (left panel) and comparing the daily 

prediction with observation (right panel) at one grid point over Reunion for example for these 

four linear regression models 2012~2016. From this one grid point example, the four models 

give different prediction comparing to the observations. For this only one grid point, it can be 

seen at first that PCR prediction model fits against the observations better. Even though the 

PCR predicted less SSR in the summer seasons than observation, it gives a quite accurate value 

in the winter seasons as compared to SR (MLR/PLSR) which gives relatively poor prediction 

for both summer and winter. Thus, PCR gives better prediction results than the other three 

models. 
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Figure 3.7 The goodness of fitting in a plot of prediction against observation (left panel) and 
comparing the daily prediction with observation (right panel) at one grid point in 2012~2016 
over Reunion (W/m2).  
 

The re-mapping is conducted to the predicted data for spatial-comparison over the whole 

island. The 3rdJuly and the day on 31 December 2016 are taken as two example to show the 

mapping results (Figure 3.8 and Figure 3.9). These two days stand for the winter and summer 

season, and could feedback the character of seasonal variability. The top mapping in Figure 3.8 

and Figure 3.9 is the observation and the other four mappings in the bottom are prediction 

mapping results from four linear regression models separately: SR, MLR, PCR and PLSR. 

In Figure 3.8, SR, MLR, PCR and PLSR prediction all could present the obvious less SSR 

over the volcano area (Piton de la Fournaise) and the Cirque de Salazie comparing to the 

observation on 3 July 2016. The four models show similar spatial variability of SSR over the 

other areas over the island, and it seems that PCR model give closer SSR distribution (more 

SSR) over southern coastal line as the observation. 
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Figure 3.8 The SSR prediction mapping with four different linear regression methods against 
the original mapping (W/m2) on 3 July 2016. 
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Figure 3.9 The SSR prediction mapping with four different linear regression methods against 
the original mapping (W/m2) on 31 December 2016. 
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Figure 3.9(a) shows the observation of SSR on 31st December 2016. Figure 3.9(b) and (c) 

show the prediction due to SR, MLR, PCR and PLSR models respectively for 31st December 

2016. All the four prediction models present more (less) daily SSR over north-east (three 

Cirques and the Volcano) area compared to the observation.  

Figure 3.10 shows the multi-annual mean of daily SSR mapping prediction with SR, MLR, 

PCR and PLSR models in 2012~2016 comparing to the observation. Four prediction models 

all could present more (less) daily SSR over north-east (three Cirques and the Volcano) area as 

the observation in the five years. PCR seems to give less difference comparing to the 

observation than the other models. 
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Figure 3.10 The multi-annual mean of daily SSR mapping prediction with SR, MLR, PCR 
and PLSR models in 2012~2016 compared to the observation. 
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3.3.2 Score evaluation: MAE, MSE, and RMSE   

Table 3.1 Statistics of linear regression models  
 

 MAE (W/m2) MSE RMSE (W/m2) 

SR 1.142e+3 2.15e+6 1.47e+3 

MLR 1.00e+3 1.58e+6 1.26e+3 

PCR 7.97e+2 9.24e+5 9.61e+2 

PLSR 1.11e+3 1.93e+6 1.39e+3 

 
Based on the mapping prediction results with four linear regression models (SR, MLR, PCR 

and PLSR), the statistical analysis using MAE, MSE and RMSE is conducted. Table 3.1 lists 

the calculation for the four models. Table 3.1 shows that PCR model has smallest MAE, MSE 

and RMSE as compared to the other three models. PCR model seems better for SSR mapping 

prediction over Reunion Island. Although PCR model gives better prediction results, it can be 

seen that (MAE, MSE and RMSE are quite big) the method is not quite accurate. Then, it is 

necessary to find a way to improve the accuracy of this prediction method.  
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Intermittency: multifractal 
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As stated before, the arbitrary order Hilbert spectral analyses are applied in this thesis to 

study the intermittency and multifractality of global solar radiation over Reunion Island. The 

generalized scaling exponents 𝜉𝜉(𝑞𝑞) is estimated through the arbitrary order Hilbert spectral 

analyses which is the combination of the Empirical Mode Decomposition and Hilbert spectral 

analysis (EMD-HSA). Three parameters: Hurst exponent (H), the fractal co-dimension (C1), 

and Lévy parameter (𝛼𝛼) are taken to study the multifractal process of the global solar radiation. 

To achieve this multifractal analysis, we have used one highest available sampling rate of one-

year GHI records (one observation per second) which is located at Saint-Denis (Moufia). In 

addition, we have also used twelve other stations with lower sampling rate of GHI records (one 

observation per minute) and time period greater than one year.  

4.1 Intermittency and multifractality analysis on one SPN1 station 

4.1.1 Mean sub-daily and daily multifractal pattern  

As Moufia measurements are performed by a SPN1 which records the GHI per second from 

May to December in 2016, it is interesting to study the intermittency and multifractality of GHI 

sampling at this high frequency. This SPN1 is the A1211 pyranometer (Delta T Device) which 

is located on the S1 science building of University of Reunion. The datalogger was DLF1 

(CR1000 Campbell Scientific, reference E3636). It gives records in a second rate without 

average. Firstly, we focus on the mean sub-daily and daily multifractal pattern of GHI. It is 

normal that the GHI during the day time (7h-18h) is much higher than at night. So, it is more 

interesting to just focus on the GHI variability within the day time for checking the annual and 

seasonal cycle. The arbitrary order Hilbert spectral analysis (EMD+HSA) is applied to GHI 

time series for obtaining the generalized scaling exponent and log-stable model parameters are 

analyzed. Then the multifractal processes could be found in the sub-daily and daily fluctuations.  

Figure 4.1 gives the studied dataset in this part: daily GHI from May to December in 2016 

sampling in second, which shows the daily variability of GHI for all the days in 2016. And 

Figure 4.2 presents one day’s global solar radiation from 7h to 18h on 1-May-2016 and the 

corresponding normalized time sequence as an example. These two plots show the short time 

scales of this daily global solar radiation and exhibit the fluctuations stochastically distributed 

in time (seconds). The normalized time sequence is used as original data to the intermittency 

and multifractality analysis. This section gives mean sub-daily and daily multifractal pattern of 

global solar radiation at one station with the second dataset.  
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Figure 4.1 The daily global solar radiation GHI from May to December in 2016. 7h to 18h 
is the time period considered in this part. 

 

 



Intermittency: multifractal framework and results 

 86 

 
Figure 4.2 An example of typical daily global solar radiation sequence g(t) (panel up) and 
the corresponding normalized solar radiation sequence gnorm(t) (panel down) from 7h to 
18h on 1-May-2016. 

4.1.1.1 Fourier spectrum analysis: Power law and Kolmogorov spectrum 

In the field of solar energy, the variability of a stochastic process as GHI is often 

characterized by a second order statistic such as the Fourier spectrum E(f) (Lave and Kleissl, 

2010). The power spectral density separates and measures the amount of variability occurring 

in different frequency bands. Scale invariance can be detected by computing E(f). Through this 

Fourier spectrum analysis here, the objective is to detect if there is a law scale in the GHI time 

series. 

For a scale invariant process, the following power law is obtained over a range of 

frequencies f: 

E(𝑓𝑓)~ 𝑓𝑓−𝛽𝛽,                                            (4.1)      

where β is the spectral exponent which contains information about the degree of stationarity 

or non-stationarity inside a time series (Marshak et al., 1994; Telesca et al., 2003): 

• β<1, the process is stationary, 

• β>1, the process is nonstationary, 

• 1< β<3, the process is nonstationary with increments stationary. 
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In Figure 4.3, the Fourier spectrum E(f) of the normalized global solar radiation gnorm(t) 

(represented in Figure 4.2: used for 01-May-2016) is given in log-log scale for four different 

days (01-May-2016, 03-August-2016, 01-October-2016 and 02-December-2016). These four 

days present the summer season (December), summer-to-winter interseason (May), winter 

season (August), and winter-to-summer season (October). All the spectrums for these four days 

display a power law behavior (the dash black line) close to the Kolmogorov spectrum (β=-5/3) 

for frequencies 1.07×10-4 ≤ f ≤ 0.07 Hz, corresponding to time scales 14 ≤ T ≤ 9346s 

(approximately 2.5h). The Fourier spectrum also displays a power law behavior close to the 

Kolmogorov spectrum (red line).  

 

  

  
Figure 4.3 The power density spectrum E(f) of the normalized time sequence on 4 different 
days (01-May-2016, 03-August-2016, 01-October-2016 and 02-December-2016) displaying 
a power law behavior (the dash black line). Fourier spectrum also displaying a power law 
behavior close to the Kolmogorov spectrum (red line).  

 

Figure 4.4 illustrates the histogram of the spectral exponent β estimated separately for the 

whole year 2016. The idea is to emphasize that even if the spectral exponent is highly variable 

throughout the year as shown with 4 selected days of selected season, the distribution is 
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bounded and is centered around a mean value -1.68. The spectral exponent ranges between 1.3 

and 2.75. The Fourier spectrum displays a power law behavior with 1.46< β<1.86 for 60% of 

the time sequences and β>2 for 19% of sequences. It means that the sub-daily fluctuations are 

all the time nonstationary fluctuations (β>1). Figure 4.5 presents the boxplot of the spectral 

exponent β estimated from Fourier spectra for the year 2016, which shows that the spectral 

exponent is centered around 1.7. Ten deciles split the spectral exponent β into 10 groups and 

the ninetieth percentile catches the value of the spectral exponent β is around 2.3 which separate 

the extremes. 

 
Figure 4.4 Histogram of the spectral exponent β estimated from Fourier spectra for the year 
2016. 
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Figure 4.5 The boxplot of the spectral exponent β estimated from Fourier spectra for the year 
2016. 

As the analysis before, the spectral exponent β also presents a power law scale when 

comparing with other well-known nonstationary case as Kolmogorov shown for homogeneous 

turbulence (β=5/3~1.66). However, we still need to go further for checking what kind of non-

stationarity we have in these sub-daily fluctuations with multifractal analysis. 

4.1.1.2 Generalized scaling exponent 𝝃𝝃(𝒒𝒒) 

The arbitrary order Hilbert spectral analysis (EMD+HSA) is one of the well-known 

multifractal analysis techniques (structure function analysis; Multifractal detrended fluctuation 

analysis; wavelet analysis) and is applied in this study to normalized global solar radiation 

fluctuations gnorm(t) for estimating the scaling exponent 𝜉𝜉(𝑞𝑞). The generalized exponent is 

obtained to see whether the sub-daily fluctuations are monofractal or multifractal processes. 

First of all, EMD technique is applied to pre-process global solar radiation sequence and 

have a time-frequency decomposition in the IMF modes. In order to determine the energy-time 

frequency representation from the normalized global solar radiation fluctuations gnorm(t), 

HSA is performed on each IMF component which is extracted from the EMD method. The 

instantaneous frequency and the amplitude of all the IMF modes are used to compute the joint 

probability density function (PDF) by the HSA. The marginal Hilbert spectrum could be 

defined with these frequency and amplitude: 
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𝐿𝐿𝑞𝑞(𝜔𝜔) =  ∫ 𝑒𝑒(𝜔𝜔,𝑀𝑀)𝑀𝑀𝑞𝑞𝑁𝑁
0 𝑑𝑑𝑀𝑀.                                   (4.2)      

If we consider the arbitrary-order statistical moment q ≥ 0, the scaling exponent ζ(q) can be 

obtained by:  

𝐿𝐿𝑞𝑞(𝜔𝜔)~𝜔𝜔−𝜉𝜉(𝑞𝑞).                                          (4.3)      

ζ(q) =  𝜉𝜉(𝑞𝑞) − 1.                                              (4.4)      

As an example, Figure 4.6 displays the EMD decomposition process into IMF modes and 

residual. The decomposition of global solar radiation into multiple time scales using EMD 

shows a decreasing of frequency scales ωm  with the mode index m. As mentioned previously, 

the EMD decomposition is a time-frequency decomposition which decomposes the time series 

into a set of high to low frequency nonstationary signal. Low frequency would reveal some 

daily cycle and its harmonic (e.g. residual and IMF 17). Figure 4.6 gives some idea on how 

intermittency triggers the GHI fluctuations.   
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Figure 4.6 Decomposition of the signal gnorm(t) on 1-May-2016 into 18 IMF modes with 
one residual.  

 



Intermittency: multifractal framework and results 

 93 

 
Figure 4.7 The probability density function, PDF p(ω, A) (in log scale) of the GHI recorded 
on 1-May-2016 in an amplitude-frequency space.  

 

Figure 4.7 presents the PDF, p(ω, A)  of the GHI record on 1 May 2016, which is from all 

the IMF modes. This figure is the first 2D amplitude-frequency representation of the PDF of 

GHI fluctuations, and it can be seen graphically that the amplitudes decrease with increasing 

frequencies with a scaling trend. 
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Figure 4.8 Arbitrary order Hilbert marginal spectrum 𝐿𝐿𝑞𝑞(𝜔𝜔) displaying a scaling in log-log 
 plot in different orders of moments (q=0, 0.5, 1, 1.5, 2, 2.5, 3). For 0 ≤ q ≤ 3 with 0.5 
increment and for frequencies 1.07×10-4 ≤ f ≤ 0.07 Hz, corresponding to time scales 14 s ≤ 
T ≤ 9346 s on 1-May-2016. Power law behavior is observed on the inertial range.  

 

For checking if there is a scaling law in the inertial range, the Arbitrary order Hilbert 

marginal spectrum is displaying a scaling in log-log plot in Figure 4.8. The plots in different 

orders of moment (q=0, 0.5, 1, 1.5, 2, 2.5, 3) are fitted by a least square, which indicate the 

scaling relationships. For frequencies 1.07×10-4 ≤ f ≤ 0.07 Hz (corresponding to time scales 14 

s ≤ T ≤ 9346 s), q=0, 0.5, 1, 1.5, 2, 2.5, 3 with 0.5 increment. The power law behavior is 

observed on the inertial range in the marginal spectrum. Each arbitrary-order statistical moment 

q reveals a law scale in the inertial range with a scaling exponent ζ(q) which corresponds to the 

slope of the straight line in the log-log plane.  

The Hilbert marginal spectrum is also compared to Fourier spectrum in Figure 4.3 on 1-

May-2016. Figure 4.9 shows that the Hilbert marginal spectrum can reproduce well the power 

law as Fourier spectrum which is the reference for spectral analysis. The Hilbert marginal 

spectrum could catch the same spectral feature as Fourier technique. Hilbert marginal spectrum 

could capture the power law behavior (marked by the vertical black lines) on the range of 
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frequency 1.07×10-4 ≤ f ≤ 0.07 Hz as it is done by the Fourier spectrum. This demonstrates the 

ability of Hilbert marginal spectrum to catch the power law inside time series. 

 
Figure 4.9 Comparison of the Hilbert marginal spectrum and Fourier spectrum for the global 
solar radiation at Station Moufia. A power law behavior is observed in the range of frequency 
1.07×10-4 ≤ f ≤ 0.07 Hz, corresponding to time scales 14 ≤ T ≤ 9346s: this range is marked 
by the vertical black lines. 

 

Figure 4.10 shows the scaling exponents 𝜉𝜉(𝑞𝑞) of GHI at station Moufia on 01-May-2016. 

This curve is calculated by the HHT and it is concave, which indicates the multifractal 

properties of the solar radiation. For comparison, a reference line qH+1 with H = 1/3 (dashed 

red line) is shown in the figure, which corresponds to monofractal processes. The scaling 

exponents ζ(q) in this figure is with error-bar plot, which used 95% confidence of the error at 

each q for the scaling exponents ζ(q). This error-bar plot gives the mean of the scaling 

exponents ζ(q) in the middle point with the positive and negative variance in the up and down.  
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Figure 4.10 The scaling exponents calculated by the HHT compared to a non-intermittent 
linear model qH+1 with H = 1/3 (dashed red line) the Hurst exponent.  

4.1.1.3 Log-stable model parameters 𝑯𝑯,𝑪𝑪𝟏𝟏and 𝜶𝜶 

The generalized scaling exponent ζ(q) is obtained through the arbitrary order Hilbert 

spectral analysis in the last section. The multifractal process is detected for this sub-daily GHI 

fluctuation at station Moufia. Then this section is to characterize the concavity of the scaling 

exponent ζ(q) for analyzing the intermittency of GHI. The log-stable model is a well-known 

method on fitting the scaling exponent ζ(q) curve for getting the parameters describing the 

intermittency or multifractality. And also, these parameters: H, 𝐶𝐶1 and 𝛼𝛼 could be used after as 

predictor in linear forecast model. The following is the log-stable model proposed by Schertzer 

and Lovejoy (1987) and Kida(1991): 

ζ(q) = 𝑞𝑞𝐻𝐻 −  𝐶𝐶1
(𝛼𝛼−1) (𝑞𝑞𝛼𝛼 − 𝑞𝑞).                                             (4.5)      

It is well-known that intermittency can be represented with a parametric model used in 

turbulence theory (Lovejoy and Schertzer, 2006; Lovejoy et al., 2001). As presented in the 

equations 2.33 and 2.34 in Chapter 2, the three parameters have physical meaning. Firstly, H-

the Hurst parameter (H = ζ(1)) defines the degree of smoothness or roughness of the field; 
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secondly, C1 measures the inhomogeneity mean or the mean intermittency characterizing the 

sparseness of the field and thirdly, which is bounded between 0 and d (d the dimension space, 

here d = 1); the multifractal Lévy parameter α measures the degree of multifractality, like how 

fast the inhomogeneity increases with the order of the moments. α is bounded between 0 and 

2, where α = 0 corresponds to the monofractal case and α = 2 corresponds to the multifractal 

lognormal case. 

 

 
Figure 4.11 The scaling exponents (HHT) with log-stable fitting (red line) on 01-May-2016: 
H=0.44, C1=0.10, α =1.66. 

Figure 4.11 shows the log-stable fitting of GHI fluctuations for 01-May-2016.  Through the 

log-stable model, H = 0.44, C1 = 0.10, and α =1.66 are estimated. All these analyses are based 

on only one day for sub-daily GHI multifractal pattern. Then, we extend the study to all days 

of the year 2016 record for the daily GHI multifractal analysis, showing that the GHI 

fluctuations are highly variable from day-to day and thus the set of triplet (H, C1,  𝛼𝛼) may be 

sensitive to this variability. 

In order to analyze the distribution of the daily intermittency process, the classification 

method is applied to the daily GHI. Different class could present their intermittency 
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characterization. Many studies proposed their classification methods on solar radiation data. 

Muselli et al. (2000) applied a classification methodology with parameters defined from hourly 

clearness index profiles. Maafi and Harrouni (2003) and Harrouni et al. (2005) use fractal 

dimension and daily clearness index kt as classification parameters. Three classes obtained by 

some specific thresholds of these parameters correspond to clear sky, partially clouded and 

overcast sky, respectively. Soubdhan et al. (2009) classified daily distributions of the clearness 

index kt by estimating a finite mixture of Dirichlet distributions without assuming any 

parametric hypothesis on the daily distributions in order to qualify the fluctuating nature of 

solar radiation under tropical climate. Bessafi et al. (2013) show interest and disadvantages of 

two approaches for classifying curves. The first is based on a vector representation of curves, 

the second offers the D'Urso and Vichi distance incorporating the mathematical properties of 

curves and based on the first and second finite derivatives. These two approaches are applied 

to the classification of sources of solar energy. In this study, the method of Bessafi et al. (2013) 

is chosen to do clustering GHI and analyze the intermittency in different classes. The GHI 

fluctuations at all scales and all classes are studied in this work. This classification would be a 

first step to check the variability of intermittency for each type of weather and thus the range 

value of (H, C1,  𝛼𝛼). 

Here we just use the method of Bessafi et al. (2013) directly. This method uses the direct 

fraction noted as Kb to obtain the different classes.  

,                                                    (4.6)      

where  means the diffuse part of the global solar radiation, and  means the global 

solar radiation. Thus, when direct faction note Kb is closed to 1, it means it is clear sky day and 

the surface could receive more solar energy. Otherwise, the Kb is closed to 0, which means it 

is cloudy day. And three data mining methodologies are applied in the classification: PCA, 

Ward and K-means clustering methods. 

Figure 4.12 is the individual factor map for the GHI in 2016 sampling at SPN1 Moufia got 

from the PCA and the Figure 4.13 is the corresponding dendrogram (clustering tree) of 

hierarchical ascending classification performed on GHI records. The ascending hierarchical 

clustering creates a nested sequence of partitions of the patterns from a dissimilarity matric, 

and proceeds by series of fusions of the n objects into groups (Gong and Richman, 1995). It 

produces a series of partitions of the data, Pn, Pn-1, …, P1. In this study, Pn consists of 238 

single object clusters, and P1 consists of a single group containing the 238 days. At each stage, 



Intermittency: multifractal framework and results 

 99 

the ascending hierarchical clustering regroups the two clusters that are closest according to a 

Euclidean distance metrics. Five classes with GHI and Kb are obtained which are presented in 

Figure 4.14. 

 

 
Figure 4.12 The individual factor map for the GHI in 2016 sampling at SPN1 Moufia. 

 

 
Figure 4.13 Dendrogram (clustering tree) of hierarchical ascending classification performed 
on GHI records on SPN1 Moufia station sampling at second in 2016. 
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Figure 4.14 The classification for the GHI (up panel) and the Kb (down panel). 

 
Class 1 corresponds to a very low level of sunshine all day. This class presents dominant 

local phenomena which include, on one hand, the weak trade winds accompanied by a flow of 
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moisture leading to significant effects of orographic clouds, and, on the other hand, the land 

breeze phenomenon induced by thermal contrasts (Badosa et al., 2013).  

Class 2 has a sunny beginning until mid-morning around 09:00 - 09:30 AM and a cloudy 

afternoon. Diffuse radiation is dominant in the afternoon while the direct component is more 

important in the morning.  

Class 3 corresponds to the days with a huge variability with the variable weather.  

The performance of Class 4 is similar to that of Class 2, but with a stronger sunny regime 

during all morning until early afternoon. DHI predominates later in Class 4 than in Class 2.  

Class 5 corresponds to a regime of good weather throughout the day. Intermittent clouds 

passing over the station do not have a systematic character since direct radiation dominates in 

this class.  

The multifractal parameters (H, C1,  𝛼𝛼) then could be classified into these five classes as in 

Table 4.1. The mean of the multifractal parameters (H, C1,  𝛼𝛼) in five classes are presented in 

the table. The mean value of H for class 1 (0.44) is larger than other classes and it is more 

closer to 0.5, indicating that GHI fluctuations in five classes are anti-persistent in average and 

the class 1 is more closer to random process. The mean values of C1 are all under 0.1 for the 

five classes and the class 2 has larger C1 than other classes indicating that the days in class 2 

are more intermittent. 𝛼𝛼 ∈ [1, 2] for class 1 and 2 indicate that those days are with multifractals 

with Levy generators and unbounded singularities. 

Table 4.1 The mean of the multifractal parameters (H, C1 ,  𝛼𝛼) in five classes 

 Class 1 Class 2 Class 3 Class 4 Class 5 
H 0.44 0.37 0.34  0.37 0.35 
C1 0.08 0.09 0.03 0.06 0.07 
 𝛼𝛼 1.80 1.66 2.4 2.1 2.1 

 

Therefore, Figure 4.15 illustrate the effect of three parameters: the H, C1, and 𝛼𝛼 got from 

the log-stable model with the scaling exponent separately, to present the intermittency and 

multifractal properties of GHI.  According to the classification, the days in Figure 4.15a) is 

sunny day (01-May-2016); the days in Figure 4.15b) and 4.15d) are sunny in the morning and 

cloudy in the afternoon (18-August-2016 and 09-May-2016); the day in Figure 4.15e) is cloudy 

day (18-December-2016), the day in Figure 4.15c) is cloudy in the morning and sunny in the 

afternoon (03-November-2016). 
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a)  

 

b)  

 

 
 
 
 
 
 

Class 5 
H=0.44 
C1=0.1  
𝛼𝛼 =1.66 

Class 4 
H=0.43 
C1=0.07 
𝛼𝛼 =1.78 
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c)   

 
d) 

 
 
 
 
 
 
 
 

Class 3 
H=0.34 
C1=0.04 
𝛼𝛼 =1.97 

Class 2 
H=0.48 
C1=0.07 
𝛼𝛼 =1.85 
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e)  

 
Figure 4.15 A few days of daily GHI sequences illustrating the varying effect of multifractal 
parameters, H, C1, and α. 

The distribution for these three parameters in 2016 (238 days: May to December) is 

presented in Figure 4.16, which could be the statistics for the GHI in 2016. The values of H, 

C1 , and 𝛼𝛼 are grouped by frequency and intensity. The error-bar is also plotted in this figure to 

show the mean variation of these three parameters H, C1 , and 𝛼𝛼. We make the distribution of 

these three parameters H, C1 , and 𝛼𝛼 comparing to the Beta and Gamma distribution. It has 

been found that the Hurst exponent H and parameter C1 closer to Beta distribution, and the 

parameter 𝛼𝛼 closer to Gamma distribution. Husak et al. (2006) used the gamma distribution to 

represent monthly rainfall in Africa for drought monitoring applications, which proved that the 

gamma distribution is suitable for roughly 98% of the locations over all months. Kadilar  and 

Çakmakyapan (2016) proposed a new probability distribution to model the wind speed data 

and the Poisson-Gamma distribution modelled the data sets better. The beta-P distribution is 

examined for modelling hydrologic events by Murshed et al. (2018). Gamma distribution and 

Beta distribution are found in the rainfall, wind power and flood field. Here, it is excited to find 

that the universal parameters H, C1, and 𝛼𝛼 for GHI give the Gamma distribution and Beta 

distribution in the solar energy field. 

Class1 
H=0.36 
C1=0.02  
𝛼𝛼 =2.4 
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a)

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
Figure 4.16 Distribution of parameter H, C1, and 𝛼𝛼 for the 238 days of GHI in 2016 for 
Moufia station and the box-bar for each parameter. 

4.1.2 Seasonal variability of daily multifractal pattern  

After checking the sub-daily and daily GHI multifractal pattern, it would be interesting to 

see the GHI variability throughout the year and especially through the seasonal cycle (month 

by month). This section is to show the multifractal fluctuation of the GHI through the day 

month by month.  
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4.1.2.1 Summer, winter and interseason characteristics 

As mentioned before, Reunion Island is a tropical island on the south hemisphere and 

months from November to April are in austral summer (the warm and humid season), May to 

October are in austral winter (the fresher and drier season). Normally the austral winter comes 

in July and August, and the austral summer reaches its peak in January and February. Because 

second data is only available from May to December in 2016 at station Moufia, the analysis on 

seasonal variability of daily multifractal pattern presented depends on these dataset (month by 

month) only. Figure 4.17 shows the distribution of monthly GHI from May to December in 

2016.  

In Figure 4.17, the lowest monthly value of global solar radiation appears in June and the 

highest in December (missing the data from January to April sampling on second).  

 
Figure 4.17 Monthly mean global solar radiation from May to December during 2016 
(dataset sampling on second). 
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4.1.2.2 Month by month focus 

Figure 4.18 shows the change of the universal multifractal parameter H, C1 , and 𝛼𝛼 in each 

month from May to December in 2016. Firstly, the monthly change for these three parameters 

indicates the seasonal variability of the multifractal pattern for GHI. The monthly mean of H 

in July, September, October and November are lower than 0.5 (anti-persistent), other months 

are bigger than 0.5 (persistent). α ∈ [1, 2] during August to November indicates that those 

months GHI are multifractal with Levy generators and unbounded singularities. The monthly 

C1 are quite small in May and December which are inter-season months, normally they are 

more intermittent, but here they are more homogeneous for GHI than other months. 
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Figure 4.18 Universal multifractal parameter H, C1, and 𝛼𝛼 in each month from May 
to December in 2016. 

 

4.2 Intermittency and multifractality analysis of SPN1 network 

The first part of this chapter focuses on GHI multifractality on one SPN1 station. This part 

we turn to the spatial pattern of GHI intermittency over the island using GHI from 11 stations 

in 2014. The seasonal spatial pattern of intermittency in daily scale is also studied over Reunion 

Island. 

4.2.1 Spatial pattern of intermittency within the daily scale  

4.2.1.1 Regionalization of log-stable parameters 𝑯𝑯,𝑪𝑪𝟏𝟏and 𝜶𝜶 

Based on the analysis of the universal multifractal parameter H, C1, and 𝛼𝛼 for the global 

solar radiation’s intermittency, this part focuses on the regionalization of daily solar radiation’s 

intermittency through the parameters H, C1 and 𝛼𝛼.  
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Table 4.2 Universal multifractal parameter H, C1 , and 𝛼𝛼 value in each station in 2014 
 

Stations H C1 𝜶𝜶 

1 MOUFIA UR 0.34 0.18 1.02 

2 MOUFIA BOIS DE 
NEFLES 0.27 0.12 0.92 

3 LA POSSESSION 
0.27 0.11 1.07 

4 SAINT LEU 
0.27 0.11 1.10 

5 SAINT PIERRE LA 
VALLEE 0.32 0.17 1.00 

6 SAINT JOSEPH 
0.31 0.13 1.05 

7 SAINTE ROSE 0.34 0.15 1.03 

8 SAINT ANDRE 
0.19 0.07 1.65 

9 CILAOS PISCINE 
0.41 0.27 0.71 

10 BRAS PANON 
0.29 0.13 0.98 

11 TAMPON UR 
0.34 0.20 0.77 

 

Table 4.2 presents the universal multifractal parameter H, C1, and 𝛼𝛼 value in each station 

in 2014. The properties of the intermittency could be found from this table. Firstly, when we 

check the value of H, it could be found that all the H is less than 0.5, which indicates that the 

GHI fluctuations from day to day are anti-persistent in average. The value of H at Cilaos station 

is close to 0.5, indicating that the GHI fluctuations there are close to Brownian and random 

process.  

The parameter C1 is the fractal co-dimension measuring the mean intermittency: the larger 

C1, the more the signal is intermittent. Furthermore, 0 < C1 < d with d the dimension space 

(here d = 1) (Calif et al., 2013). All the C1 in the table 4.2 are around 0.15 and the Cilaos station 

gives 0.27, which means GHI over Cilaos is more heterogeneous than other place. 

Lovejoy and Schertzer (2006) state that α values define five qualitative cases: 1) 𝛼𝛼 = 2 

defines multifractals with Gaussian generators; 2) 𝛼𝛼 ∈ [1, 2] defines multifractals with Levy 

generators and unbounded singularities; 3) 𝛼𝛼 = 1 defines multifractals with Cauchy generators; 
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4) 𝛼𝛼 ∈ (0,1) defines multifractals with Levy generators and bounded singularities; 5) 𝛼𝛼 = 0 

defines monofractal processes. In Table 4.2, we find that the stations at Saint Pierre, Moufia, 

La Possession, Saint Joseph, Saint Rose and Bras Panon exhibit α values close to 1 which 

means that the GHI fluctuation there is following a Cauchy process. The station Saint Andre, 

Saint Leu, Cilaos and Le Tampon are closed to Levy process with unbounded or bounded 

singularities. 

a)

 

b)

 
c)

 

d)

 
Figure 4.19 a) the annual mean of global solar radiation in 2014 over Reunion Island (W/m2) 
calculated from CM SAF (SARAH-E@5km); b) the value of parameter H for 11 stations in 
2014; c) the value of parameter C1 for 11 stations in 2014; d) the value of parameter 𝛼𝛼 for 
11 stations in 2014.  

It could be observed that 11 stations have different values of parameter H, C1, and 𝛼𝛼 value 

in 2014, which firstly indicates that the daily global solar radiation’s intermittency varies over 

space. There are two stations located over Moufia, but one (Moufia UR) has higher altitude 

than the other one (Moufia Bois de Nefles). These two stations have large differences for 

parameter H, C1, and 𝛼𝛼 value, which could be explained by the fact that there are more clouds 
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cover in the mountain than closest to sea, so more multifractal or intermittency in the station 

Moufia Bois de Nefles normally. The station La Possession and Saint Leu which are located in 

the west of the island have close H, C1, and 𝛼𝛼 value in the Table 4.2. Western coast of Reunion 

Island usually obtain more surface solar radiation than the inland area as shown in Figure 4.19a): 

the maximum value of surface solar radiation annual mean in 2014 is 4842 W/m2 over the 

coastal area. The southern stations which includes Siant PierreI La Vallee, Saint Joseph show 

the close H, C1, and 𝛼𝛼 value. The station in the Cilaos cirque (Cilaos PiscineI) gives largest 

(smallest) H value (𝛼𝛼 value), so it has roughness field characters and shows less degree of 

multifractal. The station Saint Andre has smallest H value (0.19) and largest 𝛼𝛼 value (1.65), 

indicating the strong intermittency in this location. It is corresponding to the climate that the 

eastern part of the Reunion Island has more cloud weather and more precipitation than other 

places. Because the station Saint Andre is exposed to easterly trade winds that accelerate along 

the coast line and the daytime sea breeze force the moist sea air up on the slopes, frequently 

resulting in cloud formation (Badosa et al., 2013). 

4.2.1.2 Singularity spectrum width by region 

Another way to characterize a multifractal process is the singularity spectrum related to the 

scaling exponents ζ(q). The width of the singularity spectrum measures the multifractality level 

of the signal. The bigger amount of multifractality is present in the signal, the width of 

singularity spectrum becomes wider. The width of the multifractal spectrum reflect the 

temporal variation of the Hurst exponent (Ihlen, 2012). 
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Figure 4.20 The scaling exponents ζ(q) calculated by arbitrary order Hilbert spectral analysis 
(EMD+HSA) for each station in 2014. 

 

Figure 4.21 The singularity spectrum corresponding to the scaling exponents ζ(q) in Figure 
4.22 for each station in 2014. 
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Table 4.3 The width of the singularity spectrum for each station in 2014 

Station 1 2 3 4 5 6 7 8 9 10 11 

WSP 0.22 0.12 0.14 0.14 0.19 0.17 0.17 0.09 0.33 0.17 0.23 

*WSP: width of the singularity spectrum 

Figure 4.20 and 4.21 present the scaling exponents ζ(q) and the singularity spectrum 

separately for the 11 stations in 2014. For moments order 0 ≤ q ≤ 3, all the scaling exponents 

functions observed in Figure 4.20 are nonlinear and concave and the corresponding singularity 

spectrum also show these concave characters, which highlights the multifractal and intermittent 

properties for the global solar radiation in the different regions over Reunion Island. Through 

the calculation of the width of the singularity spectrum for each station in 2014 in Table 4.3. 

The station 9 (Cilaos) has the largest width of the singularity spectrum (0.33) and the station 8 

(St Andre) has the smallest width of the singularity spectrum (0.09), which indicates the 

strongest and weakest multifractality separately in this station network. It also reveals that 

station 3 (La Possession) and 4 (St Leu) present similar multifractality for they have the same 

width of the singularity spectrum (0.14). This is reasonable as La Possession and St Leu locate 

on the western side of the island, receiving more stable GHI relatively. 

4.2.2 Seasonal Spatial pattern of intermittency within the daily scale  

4.2.2.1 Consistency of regionalization of log-stable parameters 𝑯𝑯,𝑪𝑪𝟏𝟏and 𝜶𝜶 through the 

year 

Based on the 11 stations’ spatial pattern analysis of intermittency by the universal 

multifractal parameter H, C1, and 𝛼𝛼, the intermittency of surface solar radiation for the seasonal 

scale over Reunion Island could also be presented spatially. This section is to study whether 

the intermittency indicated by the universal multifractal parameters could be consistent 

throughout the year. 

Table 4.4, 4.5 and 4.6 present the value of parameter H, 𝛼𝛼R, and C1 at each station in each 

month of 2014 separately. Firstly it is observed that austral summer season (November-April) 

for each station has different value range (parameter H, C1, and 𝛼𝛼) with austral winter season 

(May-October). For parameter H, each station in winter has smaller value than in summer in 

general. As stated before, the smaller H, the smother for the solar radiation signal, which 

defines the degree of the roughness of the signal.  
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The Hurst exponent could classify time series into three types: 1) a Brownian time series, 

also known as a random walk. The Hurst exponent is close to 0.5 is indicative of a Brownian 

time series; 2) an anti-persistent time series, also known as a mean-reverting series, an increase 

will most likely be followed by a decrease or vice-versa. A Hurst exponent value between 0 

and 0.5 is indicative of anti-persistent behavior and the closer the value is to 0, the stronger is 

the tendency for the time series to revert to its long-term means value; 3) a persistent time 

series.  In a persistent time series an increase in values will most likely be followed by an 

increase in the short term and a decrease in values will most likely be followed by another 

decrease in the short term. A Hurst exponent value between 0.5 and 1.0 indicates persistent 

behavior; the larger the H value the stronger the trend.  

Firstly, for the Hurst exponent H in the Table 4.4 at 11stations in different month, all the 

value H are less than 0.5. The station Moufia (0.48), Saint Joseph (0.47) and Cilaos (0.47) in 

December, January and February give H value close to 0.5, indicating that the process path is 

similar to that of a Brownian motion. All the other stations in each month throughout the year 

are belong to the anti-persistent process. 

As we stated in 4.2.1, there are five classes for the parameter α: 1) 𝛼𝛼  = 2 defines 

multifractals with Gaussian generators; 2) 𝛼𝛼 ∈ [1, 2] defines multifractals with Levy generators 

and unbounded singularities; 3) 𝛼𝛼 = 1 defines multifractals with Cauchy generators; 4) 𝛼𝛼 ∈ (0,1) 

defines multifractals with Levy generators and bounded singularities; 5) 𝛼𝛼  = 0 defines 

monofractal processes. There are some stations present α value greater than 2 in May to 

October (austral winter) in red, which are also found in the paper of Calif et al. (2013). The 

others are 0 < 𝛼𝛼 < 2 in each month. Almost all of the stations are multifractal with Levy 

bounded and unbounded singularities in Table 4.5.  
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11 TA
M

PO
N

 U
R

 
0.41 

0.39 
0.36 

0.29 
0.24 

0.29 
0.29 

0.33 
0.48 

0.35 
N

aN
 

N
aN

 
 

Table 4.4 H
 value of each station in each m

onth of 2014 
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α 

 
Jan 

Feb 
M

ar 
A

pr 
M

ay 
Jun 

Jul 
A

ug 
Sep 

O
ct 

N
ov 

D
ec 

1 M
oufia 

0.65 
1.26 

0.58 
0.98 

0.67 
1.01 

1.59 
1.70 

0.53 
0.70 

0.72 
1.83 

2 M
O

U
FIA

 B
O

IS 
D

E N
EFLES  

0.19 
1.10 

0.51 
0.60 

1.63 
1.14 

2.01 
1.27 

0.83 
0.80 

0.46 
0.48 

3 LA
 

PO
SSESSIO

N
  

0.85 
1.29 

0.49 
1.18 

1.72 
1.48 

1.45 
0.95 

0.96 
0.49 

1.09 
0.76 

4 SA
IN

T LEU
 

0.73 
1.51 

0.84 
0.86 

2.09 
1.21 

1.66 
1.12 

0.80 
0.22 

1.48 
0.68 

5 SA
IN

T 
PIER

R
E  

0.80 
1.57 

0.59 
1.23 

1.61 
1.18 

2.00 
0.87 

0.35 
0.84 

0.45 
0.52 

6 SA
IN

T 
JO

SEPH
  

0.88 
0.87 

0.62 
1.11 

0.78 
1.75 

2.18 
0.76 

0.73 
0.61 

0.97 
1.29 

7 SA
IN

TE R
O

SE 
0.77 

1.26 
0.58 

0.98 
0.67 

1.01 
1.59 

1.70 
0.53 

0.70 
0.72 

1.83 
8 SA

IN
T 

A
N

D
R

E 
0.54 

1.33 
1.68 

1.21 
2.27 

2.92 
1.68 

1.43 
2.48 

2.10 
0.80 

1.41 
9 C

ILA
O

S 
PISC

IN
E  

0.74 
0.54 

0.23 
0.48 

0.89 
0.92 

0.49 
0.28 

0.62 
0.68 

1.02 
1.56 

10 B
R

A
S 

PA
N

O
N

 
0.83 

1.23 
0.62 

0.61 
1.16 

1.29 
0.77 

1.33 
0.88 

N
aN

 
N

aN
 

N
aN

 
11 TA

M
PO

N
 U

R
 

0.67 
0.73 

0.44 
0.69 

1.45 
0.88 

0.69 
0.37 

0.69 
1.12 

N
aN

 
N

aN
 

 

Table 4.5 𝛼𝛼 value of each station in each m
onth of 2014 
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Table 4.6 C
1  value of each station in each m

onth of 2014 

 
C

1  
 

Jan 
Feb 

M
ar 

A
pr 

M
ay 

Jun 
Jul 

A
ug 

Sep 
O

ct 
N

ov 
D

ec 
1 M

oufia 
0.28 

0.22 
0.18 

0.13 
0.12 

0.12 
0.07 

0.07 
0.22 

0.12 
0.22 

0.14 
2 M

O
U

FIA
 B

O
IS 

D
E N

EFLES  
0.16 

0.11 
0.19 

0.16 
0.05 

0.12 
0.05 

0.06 
0.06 

0.11 
0.18 

0.18 
3 LA

 
PO

SSESSIO
N

  
0.14 

0.06 
0.19 

0.14 
0.04 

0.07 
0.08 

0.12 
0.11 

0.13 
0.10 

0.18 
4 SA

IN
T LEU

 
0.10 

0.03 
0.13 

0.09 
0.04 

0.15 
0.07 

0.13 
0.24 

0.09 
0.04 

0.18 
5 SA

IN
T 

PIER
R

E  
0.24 

0.10 
0.16 

0.12 
0.07 

0.18 
0.04 

0.21 
0.17 

0.16 
0.24 

0.21 
6 SA

IN
T 

JO
SEPH

  
0.28 

0.22 
0.23 

0.13 
0.13 

0.06 
0.01 

0.09 
0.07 

0.23 
0.07 

0.07 
7 SA

IN
TE R

O
SE 

0.18 
0.22 

0.18 
0.13 

0.12 
0.12 

0.07 
0.07 

0.22 
0.12 

0.22 
0.14 

8 SA
IN

T 
A

N
D

R
E 

0.13 
0.13 

0.01 
0.05 

0.01 
0.02 

0.04 
0.06 

0.01 
0.04 

0.07 
0.11 

9 C
ILA

O
S 

PISC
IN

E  
0.24 

0.29 
0.26 

0.27 
0.23 

0.37 
0.33 

0.30 
0.37 

0.35 
0.19 

0.10 
10 B

R
A

S 
PA

N
O

N
 

0.25 
0.19 

0.08 
0.12 

0.03 
0.13 

0.14 
0.07 

0.14 
N

aN
 

N
aN

 
N

aN
 

11 TA
M

PO
N

 U
R

 
0.21 

0.19 
0.26 

0.14 
0.06 

0.18 
0.19 

0.18 
0.29 

0.19 
N

aN
 

N
aN
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Table 4.6 presents the C1 value of each station in each month of 2014. All the C1 belong to 

[0, 1]. And each station seems have bigger C1 value in austral summer (November to April) 

than austral winter (May to October), which indicates that GHI is more intermittent in austral 

summer in the different region of the island. 

Figure 4.22 presents the universal multifractal parameter H, C1 ,  and 𝛼𝛼  on the austral 

summer (DJF), austral winter (JJA) and inter-seasons (MAM and SON) at 11 stations for 

observing the seasonal intermittency of the global solar radiation. All the stations have the 

larger H value in December-January-February than other seasons, corresponding to the summer 

season (the deep convective clouds and low-altitude clouds often prevail during in this season) 

over Reunion Island which are more intermittency. The trade wind is predominant during June-

July-August over Reunion Island, so the larger 𝛼𝛼 is observed in most station in this period 

which marking the degree of multifractal properties 
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Figure 4.22 The universal multifractal parameter H, C1, and 𝛼𝛼 on the austral summer  
(DJF), austral winter (JJA) and inter-seasons (MAM and SON) at 11 stations. 

 

4.2.2.2 Variability of Singularity spectrum width in summer, winter and interseason 

period 

Same as the last section, the singularity spectrum corresponding to the scaling exponents 

ζ(q) on the austral summer (DJF), austral winter (JJA) and inter-seasons (MAM and SON) at 



Intermittency: multifractal framework and results 

 120 

11 stations are studied in Figure 4.23 for seasonal intermittency. Firstly we could find that the 

singularity spectrum in each season for all stations are nonlinear and concave, indicating the 

multifractal and intermittent properties for the global solar radiation.  

Secondly, each station presents different singularity spectrum pattern in summer, winter 

and inter-seasons, which could be explained as the spatial seasonal variability. Thirdly, summer 

season (December-January-February) presents relatively large range difference than other 

seasons. It also highlights the stronger intermittency in summer. The station La Possession and 

St Leu which located in the west coast of Reunion Island present close singularity spectrum 

pattern in different seasons. And the station St Pierre and St Joseph which in the south of 

Reunion Island also show the similar singularity spectrum pattern. These also indicate the 

seasonal spatial variability of surface solar radiation.   

Thirdly, through calculating the width of the singularity spectrum on the austral summer 

(DJF), austral winter (JJA) and inter-seasons (MAM and SON) at 11 stations in Table 4.7, the 

station Cilaos has the largest width of the singularity spectrum (0.37) in the austral winter 

(June-July-August) and inter-season (September-October-November), and the station St Andre 

has the smallest width of the singularity spectrum (0.09) in the austral winter (June-July-August) 

and inter-season (September-October-November), which indicate the strongest and weakest 

seasonal multifractality separately in this station network. And these results are corresponding 

to the mean spatial variability throughout the year. 

In summary, the spatial pattern of the intermittency and multifractality over SPN1 network 

in the seasonal scale and throughout the year could be presented and observed by studying the 

parameters 𝐻𝐻,𝐶𝐶1and 𝛼𝛼 and the singularity spectrum. 

  

 
 
 
 
 
 
 
 



Intermittency: multifractal framework and results 

 121 

1 
MOUFIA  
UR 

  
2 
MOUFIA 
BOIS DE 
NEFLES 

  
3  
LA 
POSSES 
SION  
 

  
4  
SAINT 
LEU 
 

  



Intermittency: multifractal framework and results 

 122 

5 
 SAINT 
PIERRE  
 

  
6  
SAINT 
JOSEPH  
 

  
7 
SAINTE 
ROSE 
 

  
8  
SAINT 
ANDRE 
 

  



Intermittency: multifractal framework and results 

 123 

9 
CILAOS 
PISCINE  
 

  
10 
 BRAS 
PANON 
 

  
11 
TAMPON 
UR 
 

  
Figure 4.23 The singularity spectrum corresponding to the scaling exponents ζ(q) on the austral summer 
(DJF), austral winter (JJA) and inter-seasons (MAM and SON) at 11 stations. 
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Table 4.7 The width of the singularity spectrum on the austral summer (DJF), austral winter 

(JJA) and inter-seasons (MAM and SON) at 11 stations 

                   Seasons  
Stations                             DJF MAM JJA SON 

1. MOUFIA UR 0.33 0.17 0.15 0.23 

2. MOUFIA BOIS DE NEFLES 0.17 0.17 0.14 0.14 

3. LA POSSESSION 0.16 0.18 0.14 0.14 

4. SAINT LEU 0.14 0.14 0.19 0.16 

5.SAINT PIERRE 0.24 0.17 0.23 0.22 

6. SAINT JOSEPH 0.26 0.20 0.10 0.15 

7. SAINTE ROSE 0.28 0.17 0.15 0.22 

8. SAINT ANDRE 0.17 0.06 0.09 0.09 

9. CILAOS PISCINE 0.28 0.28 0.37 0.37 

10. BRAS PANON 0.30 0.10 0.16 0.18 

11 TAMPON UR 0.24 0.19 0.21 0.31 
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The objective of this thesis is to build a daily mapping prediction model through the 

intermittency analysis of global solar radiation with multifractal parameters over Reunion 

Island. In a first study, the deterministic daily surface solar radiation mapping prediction is 

proposed as a new approach firstly in this study. Four different linear regression models are 

applied on the SARAH-E@5km satellite data (CM SAF) during 2007-2016 for prediction. 

Depending on the results and the quality of the prediction, the intermittency analysis with the 

arbitrary order Hilbert spectral analyses are applied to get the multifractal parameters 

(𝐻𝐻,𝐶𝐶1 and 𝛼𝛼) as new predictors for achieving more accuracy mapping performance by the new 

prediction model. The main conclusion and the future work plan are presented in this chapter. 

5.1 Daily mapping prediction: A new reduced dimension approach   

A spatio-temporal multivariate model as a new approach is applied for mapping prediction 

using SARAH-E@5km satellite data (CM SAF) during 2007-2016 over Reunion Island. Four 

linear regression models: SR, MLR, PCR and PLSR are implemented and compared in the 

prediction process. The first five years 2007-2011 are used as the training data and other five 

years from 2012~2016 as test data. PCA as a dimension reduction method is used in PCR and 

PLSR models, which could give PCs (43 PCs could explain 95% variance) as input in the 

prediction model and reduce the dimension of the dataset. Through the goodness of fitting and 

re-mapping results against observation, and also the statistical analysis, PCR model has 

smallest MAE, MSE and RMSE comparing to other three models. PCR model is better for GHI 

mapping prediction over Reunion Island, even with quite big error.  

5.2 Intermittency: A first attempt of spatial and temporal characterization for Reunion 

Island 

The prediction results based on the linear regression model is not so satisfactory, which 

push us to study the intermittency and multifractal characters of GHI for improving the model’s 

quality. The arbitrary order Hilbert spectral analyses which is the combination of the Empirical 

Mode Decomposition and Hilbert spectral analysis (EMD-HSA) are applied to study the 

intermittency and multifractality of GHI over Reunion Island. The generalized scaling 

exponents 𝜉𝜉(𝑞𝑞) is estimated through the arbitrary order Hilbert spectral analyses and three 

parameters: Hurst exponent (H), the fractal co-dimension (C1), and Lévy parameter (𝛼𝛼) are 

taken to study the multifractal process of the GHI. To achieve this multifractal analysis, we 

have used one available highest sampling rate of one-year GHI records (one observation per 

second) which is located at Saint-Denis (Moufia). In addition, we have used also twelve other 



Conclusion and Perspective 

 127 

stations with lower sampling rate of GHI records (one minute per second) and time period 

greater than one year.  

Firstly, the GHI during the day time (7h-18h) sampling on second at one station Moufia 

from May to December in 2016 are applied to obtain the generalized scaling exponent and log-

stable model parameters. The multifractal processes could be found in the sub-daily and daily 

fluctuations. A power law behavior with a spectral exponent β=1.68 close to the Kolmogorov 

spectrum is detected through Fourier spectrum analysis in this GHI time series, which also 

indicates that the sub-daily fluctuations of GHI are nonstationary. The scaling exponent ζ(q) is 

then estimated by the arbitrary order Hilbert spectral analysis and the multifractal properties is 

detected. The log-stable model parameters 𝐻𝐻,𝐶𝐶1and 𝛼𝛼 characterize the concavity of the scaling 

exponent ζ(q) for analyzing the intermittency of GHI. H-the Hurst parameter defines the degree 

of smoothness or roughness of the field; secondly, C1 measures the inhomogeneity mean or the 

mean intermittency characterizing the sparseness of the field and thirdly, and the multifractal 

Lévy parameter α measures the degree of multifractality. The classification method is applied 

to the daily GHI for analyzing the distribution of the daily intermittency process and five 

classes with GHI and Kb are obtained. The multifractal parameters (H, C1,   𝛼𝛼 ) then are 

classified into these five classes which present the variability of intermittency for each type of 

weather and thus the range value of (H, C1,  𝛼𝛼). It has been found that the Hurst exponent H 

and parameter C1 are more close to Beta distribution, and the parameter 𝛼𝛼 is more close to 

Gamma distribution. 

Secondly, the GHI variability throughout the day month by month also presents a 

multifractal fluctuation in the SPN1 network with 11 GHI stations record in 2014. The lowest 

monthly value of GHI appears in June and the highest in December (missing the data from 

January to April sampling on second) through the distribution month by month. The monthly 

change for the universal multifractal parameter H, C1, and 𝛼𝛼 indicates the seasonal variability 

of the GHI multifractal pattern. All the H is less than 0.5, which indicates that the GHI 

fluctuations from day to day are anti-persistent in average. The value of H at Cilaos station is 

close to 0.5, indicating that the GHI fluctuations there are close to Brownian and random 

process. All the C1 are around 0.15 and the Cilaos station gives 0.27, which means the field of 

Cilaos is more heterogeneous than other place. The stations at Saint Pierre, Moufia, La 

Possession, Saint Joseph, Saint Rose and Bras Panon exhibit α value close to 1 which means 

that the GHI fluctuation there is following a Cauchy process. The station Saint Andre, Saint 

Leu, Cilaos and Le Tampon are closed to Levy process with unbounded or bounded 
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singularities. The singularity spectrum related to the scaling exponents ζ(q) is also present to 

characterize the multifractal process of the GHI time series in the station network. The width 

of the singularity spectrum measures the multifractality level of the signal. The bigger amount 

of multifractality is present in the signal, the width of singularity spectrum becomes wider. The 

width of the multifractal spectrum reflect the temporal variation of the Hurst exponent. The 

station 9 (Cilaos) has the largest width of the singularity spectrum (0.33) and the station 8 (St 

Andre) has the smallest width of the singularity spectrum (0.09), which indicate the strongest 

and weakest multifractality separately in this station network. It also reveals that the station 3 

(La Possession) and 4 (St Leu) present the similar multifractality for they have the same width 

of the singularity spectrum (0.14). This is reasonable that La Possession and St Leu locate in 

the west of the island, receiving more stable GHI relatively.  

The intermittency indicated by the universal multifractal parameters is consistent 

throughout the year by the analysis the seasonal spatial pattern of log-stable parameters 

𝐻𝐻,𝐶𝐶1 and 𝛼𝛼. Firstly, the Hurst exponent H are all less than 0.5 for the 11 stations. The station 

Moufia (0.48), Saint Joseph (0.47) and Cilaos (0.47) in December, January and February give 

H value close to 0.5, indicating a Brownian process. All the other stations in each month 

throughout the year are belong to the anti-persistent process. Almost all of the stations are 

multifractal with Levy bounded and unbounded singularities. All the C1 belong to [0, 1]. And 

each station seems have bigger C1 value in austral summer (November to April) than austral 

winter (May to October), which indicates that GHI is more intermittent in austral summer in 

the different region of the island. All the stations have the larger H value in December-January-

February than other seasons, corresponding to the summer season (the deep convective clouds 

and low-altitude clouds often prevail during in this season) over Reunion Island which are more 

intermittency. The trade wind is predominant during June-July-August over Reunion Island, 

so the larger 𝛼𝛼  is observed in most station in this period which marking the degree of 

multifractal properties. When studying the singularity spectrum corresponding to the scaling 

exponents ζ(q) on the austral summer (DJF), austral winter (JJA) and inter-seasons (MAM and 

SON) at 11 stations, firstly we could find that the singularity spectrum in each season for all 

stations are nonlinear and concave, indicating the multifractal and intermittent properties of 

GHI. Secondly, each station presents different singularity spectrum pattern in summer, winter 

and inter-seasons, which could be explained as the spatial seasonal variability. Thirdly, summer 

season (December-January-February) presents relatively large range difference than other 

seasons. It also highlights the stronger intermittency in summer. The station La Possession and 

St Leu which located in the west coast of Reunion Island present close singularity spectrum 
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pattern in different seasons. And the station St Pierre and St Joseph which in the south of 

Reunion Island also show the similar singularity spectrum pattern. These also indicate the 

seasonal spatial variability of surface solar radiation. The station Cilaos has the largest width 

of the singularity spectrum (0.37) in the austral winter (June-July-August) and inter-season 

(September-October-November), and the station St Andre has the smallest width of the 

singularity spectrum (0.09) in the austral winter (June-July-August) and inter-season 

(September-October-November), which indicate the strongest and weakest seasonal 

multifractality separately in this station network. In summary, the spatial pattern of the 

intermittency and multifractality over SPN1 network in the seasonal scale and throughout the 

year could be presented and observed by studying the parameters 𝐻𝐻,𝐶𝐶1 and 𝛼𝛼  and the 

singularity spectrum. 

5.3 Consistency of log-stable parameter to be used as predictors in the daily mapping 

prediction model 

Based on the intermittency study of GHI over Reunion Island, the parameters 𝐻𝐻,𝐶𝐶1and 𝛼𝛼 

could be used as predictors in the daily mapping prediction model to characterize the 

multifractality of GHI. It could be the work in the next step. 

5.4 Future work plan 

- Merge intermittency parameters in linear mapping prediction   
        

Adding the parameters 𝐻𝐻,𝐶𝐶1and 𝛼𝛼 as predictors in the linear mapping prediction model to 

improve the prediction results could be one of the future work. On the basis of the PCR model 

for daily mapping prediction of GHI, the parameters 𝐻𝐻,𝐶𝐶1and 𝛼𝛼 could be the independent 

variable after the PCA and the predicted 𝐻𝐻,𝐶𝐶1and 𝛼𝛼 are the dependent variable as output for 

example. 

- Daily log-stable parameters prediction model 
 
The non-linear prediction models, such as ANN could be another way to achieve the GHI 

prediction quality with the daily log-stable parameters 𝐻𝐻,𝐶𝐶1and 𝛼𝛼. Through the prediction 

network with these parameters, the intermittency and multifractality of the GHI time series 

could be more considered and present. This could be another future work after this thesis.  
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Figure 5.1   Daily log-stable parameters prediction model 
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Appendix A --- List of Acronyms  

AF     Adjusted Factor 

ANN           Artificial Neural Network 

BSRN       Baseline Surface Radiation Network 

C1    Fractal Co-dimension 

CCA        Canonical Correlation Analysis 

CIMO    Commission Instruments and Methods of Observation 

CM SAF   Satellite Application Facility on Climate Monitoring 

CWT    Continuous wavelet transform 

DC    Direct Current 

DJF    Dec-Jan-Feb 

DNI     Direct Normal Irradiance 

DHI     Diffuse Horizontal Irradiance 

DOG    Derivative of Gaussian 

DWT    Discrete Wavelet Transform 

DT-CWT   Discrete-time Continuous Wavelet Transform 

EMD       Empirical Mode Decomposition 

EDR      Environmental Data Record 

EUMETSAT     Exploitation of Meteorological Satellites 

EVD    Eigenvalue Decomposition   

EVP    Eigenvalue Problem 

FCRD     Fundamental Climate Data Record 

FT     Fourier Transform 

GEBA           Global Energy Balance Archive  

GOES        Geostationary Operational Environmental Satellites 

GHG                  Green-House Gases 

GHI     Global Horizontal Irradiance 

GISS         Goddard Institute for Space Studies 

GMS       Geostationary Meteorological Satellite  

H     Hurst exponent 

HHT    Hilbert Huang Transform 

HSA     Hilbert Spectral Analysis 

JJA    Jun-Jul-Aug 

MAM    Mar-Apr-May 

MAE       Mean Absolute Error  
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MBL     Marine Boundary Layer 

MLR       Multiple Linear Regression 

MSE         Mean Square Error  

MVIRI    Meteosat Visible and Infrared Imager 

netCDF   Network Common Data Format 

NWP          Numerical Weather Prediction 

ICDR     Interim Climate Data Record 

IEC     International Engineering Conference  

IMFs        Intrinsic Mode Functions 

INSAT    Indian National Satellite  

IODC    Indian Ocean Data Coverage 

IPCC        Intergovernmental Panel on Climate Change 

ITCZ        Intertropical Convergence Zone 

k-NN       k-Nearest Neighbours 

KLT    Karhunen–Loève Transform 

PCA        Principal Component Analysis 

PCR        Principal Component Regression 

PDF        Probability Density Function 

PLSR      Partial Least Squares Regression 

POD    Proper Orthogonal Decomposition  

PV               Photovoltaic 

RCMs              Regional Climate Models  

RMSE         Root Mean Square Error 

SAF          Satellite Application Facility 

SARAH    Surface Solar Radiation Data Records Heliosat 

SD    Standard Deviation 

SID    Surface Indoming Direct Irradiance 

SIS     Surface Indoming Shortwave Irradiance 

SON    Sep-Oct-Nov 

SR        Stepwise Regression 

SSR          Surface Solar Radiation 

SVD    Singular Value Decomposition  

TCRD     Thematic Climate Data Record 

WMO    World Meteorological Organization 
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Appendix B --- Conferences Attended  

SASEC2015 Third Southern African Solar Energy Conference 11 – 13 May 2015 Kruger 
National Park, South Africa  
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radiation on Reunion Island using Hilbert-Huang Transform. Third Southern African Solar 
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