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Résumé en francais

Le cerveau humain est un systeme interconnecté tres comipledantification de réseaux
cérébraux fonctionnelet | analysede leurs dynamiques est un enjeu important non
seulement pour comprendre le fonctionnement normal du cerveau mais aussi pour
développer des méthodes diagnostiques dans les désordres neurologiques. Les études
récentes montrent que de tels désordres sont le plus souvent associés a a des anomalies
dans la connectivité cérébrale qui entrainent des altérations dans des réseaux cérébraux
«large-échelle impliquant des régions distantes.e§l particulierement le cas pour

| épilepsie et les maladies neurodégénératives (Alzheimer, Parkigsorgonstituent,

selon IOMS, un enjeu majeur de santé publique. Dans ce contexte, la dechinie est

tres forte pour de nouvelles méthodes capables d'identifier des réseaux pathologiques,

simple a mettre eceuvreet surtout non invasives.

L’objectif principal de cettethése est de développer des méthodes d’identification de

réseaux pathologiques a partir de I'électroencéphalographie a haute réatibn

spatiale (EEG-hr, 256 électrodes) qui bénéficie, par ailleurs, et intrinsequement, de

I excellente résolution temporellele FTEEG (~1ms).

Durant cette these, deux questions principales ont été abordées :

1- Comment suivre la dynamique spatio-temporelle des réseaux cérébra@xrout

d abord des données EEG enregistrés chez des sujets sains en états de repos
(resting-state) ont été analysées. Une méthode dévelapgee Iéquipe dite
« connectivité de sources» a été utilisée pour identifier les réseaux cérébraux au
niveau cortical a partir des enregistrements EEG de scalp. Nous avons eu une
attention particuliere pourl aspect dynamique de ces réseaux et leur
reconfiguration en fonction du temps a une échelle temporelle trés courte (centaine
de millisecondes). En profitant de la résolution temporefferte par IEEG
(milliseconde), nous avons pu développer des méthodes pour suivre les dynamiques
spatiotemporelles des réseaux cérébraux fonctionnels. Cela a été fait en étendant la
meéthode « connectivité de sources» afin de générer des réseaux dynamiques en
utilisant une approche basée sur des fenétres glissantes. Ensuite, nous avons
exploité la topologie de ces réseaux dynamiques en utilisant la théorie de graphe.

Les résultats ont montré la capacité dapproche proposéeour suivre les



dynamiques spatiotemporelles des réseaux cérébraux impliqéést alé repod.a
présence des régions cérébrales considérées comme des « Hubs » a été aussi
abordée. Les résultats ont également révélé que les mémes régions cérébrales
peuvent alterner dynamiquement et jouer le réle de hubs provinciaux (locaux) ou de
connecteurs (globaux).

Ensuite, une nouvelle méthode, qui vise a explorer les changements dynamiques
des structures modulaires du cerveau, a été aussi proposée. La méthode proposée
peut étre appliquée pendant I'état de repos ou pendant une tache cognitive. La
méthode a été validée sur des données simulées, et des données
d'électroencéphalographie (EEG) et magnétoencéphalographie (MEG) enregistrées
pendant le repos et pendant I'exécutiamétachecognitive (dénomination dbjet

et tdche motrice). Les résultats ont montrédpacité de hlgorithme proposé a

identifier les structures modulaires avec une bonne précision spatiotemporelle.

Comment élaborer de nouveaux neuromarqueurd Les méthodes développées et
testées sur des sujets sains en états de repos ont été évaluées dans le contexte des
désordres neurologiques.

La premiereapplication clinique est la maladieAdzheimer. Lobjectifici est de
proposer des nouveaux neuromarqueurs du déclin cognitif calculés sur les réseaux
cérébrauxidentifiés a létat de reposNous avons commencé par analyser les
changements topologiques qui se produisent dans les réseaux dynamiques des
patients qui souffrent dlzheimer. Des données EEG ont été enregistrées chez 20
participants (10 patients et 10 sujets sainsgtatl de repos.

Les résultats ont démontré que les réseaux pathologiques, sont caractérisés par un
traitement global de l'information (intégration) plus faible et un traitement de
l'information locale (ségrégation) plus élevé comparés aux réseaux normaux. Les
résultats ont également montré une corrélation entre les altérations des réseaux
cérébraux des patiendsuffrants dAlzheimeret leurs scores cognitifs.

La ™ application clinique estépilepsie. Lobjectifici estd identifier les réseaux
épileptogenes a partir des signaux EEG-hr de scalp. Les réseaux identifiés a partir
de |EEGhr ont été comparés aux enregistrements intracérébraux (stéréo-EEG,
SEEG) enregistrés chez les méme patietsapproche appliquée ici est
principalement basée sur des paramétres de graphe qui quantifient les réseaux

cérébraux locaux. Inspirée de la compréhension actuelle des réseaux épileptogenes,
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notre approche soutient I'hypothése suivante: une région cérébrale, qui montre une
fonctionnalité locale significativement élevée, joue un rble central dans le réseau
épileptogene. Les résultats ont été validés par la comparaison entre les positions des
régions cérébrales déteciépar IEEG de scalp a la position des électrodes

intracérébrales.



Abstract

The brain is organized into large-scale functional netwénks can flexibly reconfigure
their connectivity patterns. Thus, the identification and the analysis of their dynamic
functional connectivity can help to better understand the neurological diseases, the general
functioning of the brain and to develop new diagnostic methods. It is now recognized that
neurological pathologies are due to alterations in these brain networks. Today, a number of
modalities and techniques are proposed to identify and analyze these networks to observe
their alterationsThe main objective of my thesis is to develop methods to identify
these pathological networks from electroencephalography (EEGyith high spatial
resolution (dense-EEG, 256 electrodes) in addition to the excellent temporal resolution (~
1ms).
In this thesis, two main challenges were addressed:

1- Tracking dynamics of functional brain networks
First, dense-EEG data recorded in healthy subjects at rest were analyzedn#ly rec
developed method called “EEG source connectivity” was ts@tentify brain networks at
the cortical level from scalp EEG recordings.
| was more interested in studying the dynamic behaviors of brain networks and their
reconfiguration on a very short time-scale (sub-second). This was done by extending the
"source connectivity" method to generate dynamic networks using a sliding window
approach. The topology of the obtained networks was then analyzed using graph theory.
Results showed the ability of the method to follow the spatiotemporal dynamics of brain
networks involved in the resting state. The existence of brain regions considered as "Hubs"
has been investigated. Results also revealed that the same brain regions can alternate

dynamically and play the role of provincial (local) hubs or (global) connectors.

In addition, a new method, which aims to explore the dynamic changes of the modular
structures of the brain, was proposed. The method presents two algorithms that can be
applied during a resting state paradigm, or during a task-directed paradigm (cognitive
task). The method was validated on simulated data, and EEG/ MEG) data recorded at rest
and during cognitive tasks. Results showed the capacity of the proposed algorithm to

identify fast modular structures with good space/time accuracies.



2- Developing EEG network-based neuromarkers of brain disorders
The first clinical application is in the context of Alzheimer's disease (AD). The main
objective of this work was to explore the topological changes that occur in the dynamic
networks of AD patients. EEG data were recorded in 20 participants (10 patients and 10
healthy subjects) at rest. Results revealed that pathological networks are characterized by
lower global information processing (integration) and higher local information processing
(segregation) compared to healthy networks. Results also showed a significant correlation

between the alterations of the brain networks of AD patients and their cognitive scores.

The second clinical application is epilepsy. The objective of this work was to identify
epileptogenic networks from scalp EEG signals. The networks identified from dense-EEG
were compared to intracerebral recordings (stereo-EEG, SEEG) recorded for the same
patients. The approach applied here was mainly based on graph parameters that quantify
the local functional networks. Inspired by the current understanding of epileptogenic
networks, our approach supports the following hypothesis: a brain region, which shows
significantly high local functionality, plays a central role in the epileptogenic network.
Results justify the utility of our hypothesis by comparing the positions of the nodes
detected using EEG to that of intracerebral recordings. We showed that the proposed
approach is very promising in matching cortical brain regions located in the neighborhood
of the SEEG implementation.
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Chapter 1.
INTRODUCTION

“Everything appears to be connectin ways that were absolutely
unpredictable just ten years ago, or even five years ago”.

-Professor Marc Vidal

We are all part of multiple complex networks: a network of interacting particles in the
universe, a network of city streets on the Eartburface and a network of friends,- co
workers, neighbors and family. Interestingly, one of the most important networks that we
engage with, in our everyday life, is the network of the brain.

It is now well recognized that the brain is a coherent connective system composed of

multiple individual units (from cells to areas) interacting with each other.

1.1. Concept: The brain as a dynamic network

Emerging evidence show that most cognitive states and behavioral functions depend on the
activity of many brain regions operating as a large-scale netwe@l. (Lo understand this
network, it is insufficient to study the activity of a brain region in isolation, but to study the
ways in which the brain regions interact and communicate. As many brain responses only
last on the order of milliseconds to seconds-{), the brain dynamically reconfigures its
network organization at sub-second temporal scale to guarantee an efficient cognitive
function. Accordingly, several studies have been conducted to assess the spatiotemporal
dynamics of functional brain networks during cognitive processed 8)3This dynamical
behavior is even present in the pattern of intrinsic or spontaneous brain activity (i.e when
the person is at rest) (17;:2Z8). Relying on this conceptual understanding, network
neuroscientists endeavor to explore the dynamics of the brain connectivity patterns and
how they are linked to cognitive and resting conditions. Still, an accurate tracking of the
spatiotemporal dynamics of large-scale networks remain an unsolved issue (13).

On the other hand, a large body of studies revealed that neurological disorders (including

Epilepsy, Alzheimer, Parkinsonetc.) are associated with disruptions in the structural and



functional organization of the brain (24,25). The identification of the related brain
networks alterations will help to better understand tleeiral mechanisms underlying
brain disorders, and hence to better monitor and treat patients. From a clinical perspective,
the demand is high for non-invasive and easy-to-use methods to identify the pathological
networks. More precisely, novel ,neuromarkesble to characterize network alterations
and associated cognitive deficits are needed.
In this thesis, two main challenges are addressed:

1- Tracking the dynamic changes of brain networks during rest and task at sub-second

time scale.
2- Characterizing and identifying the pathological brain networks using a non-

invasive technique.

To address both issues, we made use of the electro-encephalography (EEG) which is a
non-invasive technique offering an excellent temporal resolution that is not reachable using
other techniques such as the fMRI+{28). The approach adapted is based on a recently

developed method called “EEG source connectivity” combined with graph theory.

This chapter presents the background for the understanding of the work, and is organized
as follows. First, we start by defining the networks and describing some of the most
important network measures derived from graph theory. We then move on to the concept
of brain connectivity, focusing on the key distinction between functional, structural and
effective brain networks. Afterwards, we introduce the non-invasive neuroimaging
techniques used to reconstruct the functional brain networks. Finally, the approach based
on “EEG/MEG source connectivitys described.

1.2. Networks and graphs: Definition

By rendering the brain into a network, network science offers a powerful framework to
infer the quantitative organizational properties of brain networks using a branch of
mathematics known as graph theory.

A graph is the mathematical representation of a network. It is basically composed of nodes
interconnected with edges. Nodes constitute the elementary components of the system such

as airports in the airline network. Edges represent the connections or the interactions
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between the nodes such as flights between airports. Two connected nodes are often named
as “neighbors(29). Depending on the nature of edges, a graph can be categorized into one
of four types: directed/undirected and weighted/binary graph (Figure 1.A).

A Graph can be also represented by a connectivity matrix, referrad tadjacency

matrix” where nodes are represented by rows or coluamd edges are represented by
matrix elements. In weighted networks, matrix elements are continuous values and can
range from strong (highest number) to weak (lowest number). In contrast, in binary matrix,
elements are either O (connection does not exist) or 1 (connection exists). The undirected
graphs are illustrated by a symmetrical matrix. Figure 1.B presents the adjacency matrices

of each graph type.

Figure 1. The four types of graph and their corargting adjacency matrix.

1.3. Network measures

In practice, graph theory offers many quantitative tools to characterize global and local
network properties. In this section, we describe the most used graph or network measures

in the context of brain networks analysis (Figure 2).

1.3.1.Degree, in-degree, out-degree and strength:
The simplest measure thatnche captured is the nodedegree, which is the number of

edges attached to a particular node (30). In directed graphs, the in-degree and out-degree

are the number of incoming and outgoing connections, respectively (29). For weighted
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networks, another measure can be examined which is thesrgigength(31). It is defined

as the sum of all edges weights connected to a node. These four measures indicate how
influential an element is with respect to other elements. Generally, nodes with high degree

or strength values are considered to have high number of interconnected nodes. High in-

degree nodes are influenced by many other nodes while high out-degree nodes are

interpreted as influencer elements in the system.

1.3.2.Clustering coefficient:
The clustering coefficient of a node evaluates the density of connections formed by its

neighbors (32). It is calculated by dividing the number of existing edges between the
nodes neighbors to the number of possible edgas¢an exist between them. The average

of all nodes clustering coefficients is the mean clustering coefficient of the avhol
network. The clustering coefficient is one of the measures used to quantify the local
neighborhood and the specialization inforimatin a network, often referred to “local

segregation’(33).

1.3.3.Path length, distance and global efficiency:
In a network, a node can be directly linked to another node using an edge, or indirectly

linked using one or many intermediate nodes. Thus, the communication between each pair
of nodes is underlined by either short or long path length. In a binary network, the path
length between two nodes is the number of connecting edges. In a weighted network, the
length of a path represents the sum of the edge weights. The topological distance between
two nodes is the length of the shortest path length linking them. Generally, the
communication along short paths is thought to be more effective since it is faster, more
direct, and less corrupted by noise effects. The global efficiency is the average of the
inverse of the distance matrix (34). A network with high global efficiency indicates that, on
average, nodes are reached by short communications. The efficiency is then used to
guantify the global communication of a netwod€fen referred to “global integration”

(33).
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1.3.4.Modularity, within-degree module, participation coefficient:
The modularity shows the tendency of a network to be partitioned into modules or

communities of high internal connectivity and low external connectivity (35,36). Once a
network is composed into modules, many graph metrics can be derived. One of the
interesting measures is the within-degree module that assesses the connectivity of each
node within its same community. Another measure is the participation coefficient that
computes how much a node is connected to nodes of other communities. The within-
degree module and the participation coefficient illuminate about the extent to which
information is segregated and specialized into modules, and the extent to which

information is distributed and shared between modules (37).

1.3.5.Hubs:
Hubs are components or nodes that play a key role in establishing and maintaining an

efficient communication in a network (38). The identification of hubs can infer from many
graph measures including the degree, the strength, the betweenness-centrality and the
vulnerability (3942). In addition, hubs can be classified into provincial and connector
hubs (37,38,4345). The main difference is that provincial hubs are mostly connected to

nodes within their own module while connector hubs attempt to connect several modules.
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Figure 2. Some of the network measures used to tifyathe characteristics of an undirected
binary graph: degree, clustering coefficient, pethgth, modularity and hubs.
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1.4. Brain connectivity

Brain connectivity refers to a set of connections linking neural elements. Given the broad
range of neuroimaging techniques used to record the brain activity, it is expected to have
different ways to analyze the brain connectivity. Mainly, the major distinction is between
the structural connectivity, the functional connectivity and the effective connectivity
(33,46-48).

Structural connectivity is defined as the physical or anatomical connections between units
of the brain. This type of connectivity is generally inferred by the white matter tracts
imaged using the diffusion tensor imaging. Structural networks are static networks at the
short time scale (seconds to minutes), but can be dynamic at longer time scale (from hours
to years). Numerous studies have analyzed the brain topology of structural brain networks
at rest (4953). It has been also revealed that structural connectivity analysis is sensitive to

detect alterations of brain networks associated with brain disorde&0(54

Functional connectivity refers to the statistical dependencies between neuronal
populations. Functional brain networks are derived from electrophysiological time-series
using electro-encephalography (EEG), magneto-encephalography (MEG) and functional
magnetic resonance (fMRI). This type of network is time-dependent and modifies on short
time scale. The temporal correlation can be measured using linear correlation, non-linear
correlation, coherence, phase locking value and many other metrics (see Section 1.6.2).
The functional connectivity was shown as a powerful tool to understand the mechanism
underlying the information processing during rest (19,21,2B8&land task (14,16,67

71). Many studies have also explored the functional disruption of the brain networks in
brain disorders (~3B4).

The way in which the functional networks are computed in our work will be fully
described in section 1.6.

Effective connectivity describes the direct interactions between neural elements. Many
methods are proposed to construct the effective networks based such as granger-causality
(85) and Dynamic Causal Modeling (86). Like functional connectivity, effective
connectivity is dynamic and is derived from time-series data.

Figure 3 illustrates the difference between structural and functional/effective connectivity.

15



Figure 3. Principal elements of the connectivityabmis. A) structural networks refer to
anatomical connections between neural elementsh @& synapses linking neurons, or fiber
tracts connecting large brain regions. B) functionatworks as well as effective networks are
derived from electrophysiological data time seridaunctional networks present statistical
dependencies between brain areas while effectivisvarks show causal interactions between

brain areas.
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1.5. Neuroimaging techniques

As we are interested in studying the dynamic changes of the brain at very shatalme-
we particularly focus in this section on the neuroimaging techniques used to construct the

functional brain networks.

1.5.1.Functional magnetic resonance imaging (fMRI):
fMRI is a neuroimaging technique used to map the brain activity by detecting changes of

the blood oxygenation (87). In other werdMRI measures thebfood oxygen level-
dependent(BOLD) signals based on the fact that increased activity in a particular part of
the brain increases oxygenated blood flow. This technique is characterized by an excellent
spatial resolution. However, its temporal resolution is limited since the BOLD response
inferred from the hemodynamic changes takes time (in the order of seconds) (88). In
addition, although this technique is based on the correlation between blood flow and the
neuronal activity, it is considered as a non-direct measure of the neural acigure £A

shows example of fMRI acquisition.

1.5.2.Electro-encephalography/ Magneto-encephalography (EEG/MEG):
EEG and MEG are non-invasive techniques used to record the brain activity using sensors

placed on or near the scalp of the head (27,89), as illustrated in Figure 4.B and Figure 4.C.
These techniques provide direct observation of the neuronal activity by recording signals
corresponding to the electrical/magnetic activity generated by the large neuronal

population.
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Figure 4. Examples of brain activity recordings. #)ri acqusition. B) meg acquisition. C)
traditional EEG and dense-EEG acquisitions (>128ratels)

EEG/MEG signals can be composed to different oscillations named rhythms (90). These
rhythms have distinct properties in terms of spatial and spectral localization. There are six

classical brain rhythms as illustrated in Figure 5:

a. Delta rhythm: It is a slow rhythm (1-4 Hz), with relatively large amplitude, and is
mainly observed during deep sleep.

b. Theta rhythm: It is a slightly faster rhythm (4-7 Hz), found during drowsiness.

c. Alpha rhythm: Alpha rhythms are oscillations, located between 8-12 Hz. It appears

when the subject has closed eyes or is in a relaxation state.
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d. Beta rhythm: This is a relatively fast rhythm, belonging to the 13-30 Hz frequency
band. It is observed in awaken and conscious persons. This rhythm is affected by the
performance of movements.

e. Gamma rhythm: This rhythm concerns frequencies above 30 Hz. Gamma rhythm is
characterized by a maximal frequency around 80 Hz or 100 Hz. It is associated to

various cognitive and motor functions.

Figure 5. Characteristics of EEG/MEG rythms

The main advantages of using EEG/MEG techniques are: i) the non-invasiveness, ii) the
direct recording of brain activity, iii) the excellent temporal resolution (at millisecond time
scale) and iv) the ease of use. On the other hand, they are characterized by a relatively low
spatial resolution compared to fMRRecently, a method known as “EEG/MEG source
connectivity” hasbeen proposed in order to increase the spatial resolution when applied on
dense-EEG (Figure 4.C) and MEG data (91).
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1.6. EEG/MEG source connectivity

Most MEG/EEG functional connectivity studies were performed at the sensor/electrode
level. However, the interpretation of the sensor based recorded signals is not
straightforward due to the volume conduction effect as well as the field spread problem
(review in (91)). Interestingly, the past years have seen a noticeable increase of interest for
functional connectivity at the level of cortical sources reconstructed from EEG/MEG
signals. In this context, EEG/MEG source connectivity is an emerging technique that
allows overcoming the problem of the volume conduction that corrupts the sensor-level

recordings. It also helps to reduce the effect of the field spread (review in (92)).

The method involves two main steps: i) solving the EEG inverse problem in order to
estimate the cortical sources and reconstruct their temporal dynamics and ii) measuring the
functional connectivity between the reconstructed time-series. Figure 6 illustrates the
different steps that should be performed to obtain the functional cortical networks from
scalp EEG.
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Figure 6. The full pipeline that shows the diffetesteps performed to obtain a functional
network from EEG data. A) EEG time series recor@gtdhe level of the scalp. B) solving the
inverse problem to obtain the regional time seri€3.computing the functional connectivity
matrix. The matrix can be thresholded to removergps connections. D) the resulted adjacency
matrix will be presented as a graph composed ofesadvhere nodes represent the brain regions)
and edges (where edges represent the functionalexivity values).
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1.6.1.Solving the inverse problem:

According to the dipole theory, EEG/MEG signals, , measured from sensors can be

expressed as linear combinations of time-varying current dipole sources

is the estimation of dipolar source parameters (typically, the position, orientation and
magnitude), where and are respectively the matrix containing the lead fields of the
dipolar sources and the additive noise. Generally, the lead field matrix can be computed
using a multiple layer head model (volume conductor) and the electrodes positions. The
head model explains how the electric currents or the magnetic fields flow from the electric
generators in the brain (source space) through the different tissues of the head (brain, skull
and skin), to finally reach the sensors. The simplest head models are the spherical head
models that consider that the head is composed of concentric spheres, where each sphere
represents a specific tissue type (93). To compute more accurate and realistic head models,
many numerical methods have been proposed such as the Boundary Element Model
(BEM) (94,95) and the Finite Element Model (FEM) (96). In brief, these methods compute
the individual specific head model by taking into account detailed features of the head

anatomy.

Mathematically, the inverse problem is an ill-posed problem as the solution is not
unique . For this reason, solving such problems will imply the use of a priori
information to limit the approximate solutions. This means that some constraints on the
cortical sources properties (amplitude, position, orientation) should be acdsEkVEwW

in (97) for more detailed comparison tiveen inverse solutios assumptions and
constraints.Overall, two families of solutions were proposed in the past decade: i)
the dipole fitting methods (these methods estimate the position and the amplitude of a
limited number of dipoles) and ii) the distributed methdqtteese methods consist of
defining of a priori dense grid of dipoles and then estimating their activity from the

recordings).

Once the sources are computed on a high resolution mesh surface (usually between 8000
and 15000 vertices), one should estimate the time courses of a set of predefined brain

regions or regions of interests (ROIs). A typical way is to use one of the available
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anatomical and/or functional brain atlases such as Desikan Killiany composed of 68 ROIs
(98), the Destrieux composed of 148 ROIs (99) or the Brainnetome composed of 246 ROIs
(100). Then, the regional time series can be computed by averaging the source time series
across ROIls. Besides averaging, many other strategies can be applied to estimate the
activity associated with a ROI. Some proposed to extract the time series Bomgle
representative dipole within the ROI (101,102). The selectigheofepresentative dipole

is mainly based on ground truth data (103), or data driven methods (selecting the dipole
with the highest power (104), or the largest singular value bas@drow singular vector

(102), or the highest cross-talk function (CTF) index the regions (105), or the
resolution index closest to 1 in the ROI (106). Othatso proposed the use of
dimensionality reduction methods such as the principal comparelysis.

The connectivity analysis will be ultimately performed between the estimated regional

time series.

1.6.2.Functional connectivity estimation

Measures of functional connectivity compute statistical dependencies between signals.
These measures can be linear or non-linear, phase or amplitude-based, and timeabr spectr

measures. Table 1 shows the properties of the most used functional connectivity metrics.

Linear correlation coefficient

Partial correlation

Amplitude coupling Amplitude envelope correlation

Leakage controlled amplitude

envelope correlation

Linear . Phase difference derivative
Phase coupling

Weighted phase lag index (WPLI)

Imaginary coherence

Spectral coherence Magnitude squared coherence

Partial coherence
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Amplitude coupling Non-linear correlation coefficient

_ Phase-lag index
Non Linear Phase coupling

Phase-locking value

Phase or amplitude coupling Mutual information

Table 1. Overview of the properties of differenhfional connectivity measures.

Connectivity values are estimated between all pairs of ROIs using one of the connectivity

measurements.

This leads to an adjacency matrix (i.e connectivity matrix) of dimeri$icnN whereN

denotes the number of ROIs. In order to remove the spurious connections, a threshold is
generally applied on the obtained matrix. Empirical, proportional or statistical threshold
can be applied. This procedure will enhance the contrast between relevant and irrelevant
connectivity values. However, one should be prudent in choosing the threshold approach
depending on the data treated. It is recommended to choose a proportional threshold when
comparing connectivity between two or more groups (107), and to choose a statistical
threshold in other cases (108). Network measures are shown to be stable across statistical

and proportional thresholds contrary to absolute thresholds (109).

The adjacency matrix can be considered as a weighted undirected graph composed of
nodes representing the brain regions, and edges representing the functional connectivity

values.

1.7. Dynamic functional networks

To generate dynamic functional networks, we adopted a sliding window approach. This
approach was widely used by many studies (:2123,68,110112). The connectivity
dynamics are assessed as follows:
- The regional time series are segmented into overlapping or non-overlapping time
windows of length L.
- At each window, a functional matrix is computed..
- The window is moved forward to compute the connectivity in the next window.

Finally, the process will generate the dynamic connectivity tensor (NxNxL matrix).
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Figure 7 illustrates the steps performed to generate the dynamic functional connectivity.

Figure 7. The steps performed to assess the dynamictional connectivity of the regional time
series using a sliding window approach.

1.8. Thesis objective

Many previous studies have successfully constructed valuable brain networks using

EEG/MEG source connectivity method. However, most of these studies have analyzed the
brain in a stationary way. Recently, many studies have been elaborated to study the brain
networks in a dynamic way, benefiting from the high temporal resolution provided by EEG

and MEG (Cohen, 1972; Penfield & Jasper, 1954). Some have proposed to group the
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temporal networks into states, where each state reflect unique spatial connectivity pattern.
These brain states were generated using Hidden Markov model approaches (17,21), K-
means clustering (14,15,19,113), or independent component analysis (114). Other studies
have tried to investigate the dynamic topological changes using graph theoretical analysis
(23).

Our objective in this thesis is to more investigate to what extent the dynamic behavior of
the brain can uncover insights about its characteristics during rest and task, in healthy and
pathological brain networks. For this end, we extend the use of EEG source connectivity to

track dynamic functional brain networks at a short temporal scale.

First, we started by assessing the performance of the EEG source connectiwty in
estimating” reference larggcale networks modeled at neocortical level in the context of
epilepsy. The different combinations of inverse solutions/connectivity measures were
evaluated using a biophysical/physiological model and real epileptic data. Based on the
previous work in addition to the findings obtained in (14,115), the wMNE/PLV
combination was chosen to construct the cortical network in the following works. Second,
we investigated the dynamic behavior of the fun@idorain networks during rest over

a very short time scale (sub-second). This was doneombining the EEG source
connectivity analysis with graph theoretical studyeixplore the dynamics of node
characteristics (centrality, vulnerability, strengtid clustering), networks and modules
over hundreds of milliseconds. We also showed tti@aisame regions can play the same

role (provincial or integrator) during a given tinperiod. In a third step, the previous
approach was applied to explore the disruptions in thetifonal networks of Alzheimes

disease (AD) patients. Using EEG data recorded during resting state paradigm, we studied
the dynamic topological changes of AD networks in terms of integration and segregation.
The correlation between the brain network disruption and the cognitive score of the AD
patients was also assessed. Third, the dynamic functional connectivity was used to identify
the epileptogenic networks from EEG signals recorded from spontaneous brain activity
regardless of the presence/absence of epileptiform events. Intracerebral SEEG recordings
were used to evaluate the accuracy of epileptogenic networks identified from scalp EEG
data. Finally, we proposed an algorithm aiming to elucidate the main modular brain
structures that fluctuate over time during rest and task conditions. These modular structures

can be considered as modular states (MS). The method is based on categorizing the
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modular structures that share the same topology by quantifying the similarity between the
temporal modular structures. Our algorithm was tested on simulated data, and on three

datasets recorded from real EEG and MEG acquisitions.
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Chapter 2.
RESULTS

In this chapter, we present a brief resume of our studies. In the end of this manuscript, the

complete version of the corresponding articles will be provided.

Study 1: Identification of interictal epileptic networks from
dense-EEG
Mahmoud Hassan, Isabelle Merlet, Ahmad Mheich, Aya Kabbara, Arnaud Biraben, Anca

Nica, Fabrice Wendling
Article published in Brain Topography (2017), 30(1):60-76

Abstract:

Epilepsy is a network disease. The epileptic network usually involves spatially distributed
brain regions. In this context, noninvasive M/EEG source connectivity is an emerging
technique to identify functional brain networks at cortical level from noninvasive
recordings. In this paper, we analyze the effect of the two key factors involved in EEG
source connectivity processing: (i) the algorithm used in the solution of the EEG inverse
problem and (ii) the method used in the estimation of the functional connectivity. We
evaluate four inverse solutions algorithms (dSPM, wMNE, sLORETA and cMEM) and
four connectivity measures (r 2, h 2, PLV, and MI) on data simulated from a combined
biophysical/physiological model to generate realistic interictal epileptic spikes reflected in
scalp EEG. We use a new network-based similarity index to compare between the network
identified by each of the inverse/connectivity combination and the original network
generated in the model. The method will be also applied on real data recorded from one
epileptic patient who underwent a full presurgical evaluation for drug-resistant focal
epilepsy. In simulated data, results revealed that the selection of the inverse/connectivity
combination has a significant impact on the identified networks. Results suggested that
nonlinear methods (nonlinear correlation coefficient, phase synchronization and mutual
information) for measuring the connectivity are more efficient than the linear one (the
cross correlation coefficient). The wMNE inverse solution showed higher performance
than dSPM, cMEM and sLORETA. In real data, the combination (WMNE/PLV) led to a
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very good matching between the interictal epileptic network identified from noninvasive
EEG recordings and the network obtained from connectivity analysis of intracerebral EEG
recordings. These results suggest that source connectivity method, when appropriately
configured, is able to extract highly relevant diagnostic information about networks

involved in interictal epileptic spikes from non-invasive dense-EEG data.

Study 2: The dynamic functional core network of the human
brain at rest
A. Kabbara, W. EL Falou, M. Khalil, F. Wendling & M. Hassan

Article published in Scientific reports 7 (1), 2936

Abstract:

The human brain is an inherently complex and dynamic system. Even at rest, functional
brain networks dynamically reconfigure in a well-organized way to warrant an efficient
communication between brain regions. However, a precise characterization of this
reconfiguration at very fast time-scale (hundreds of millisecond) during rest remains
elusive. In this study, we used dense electroencephalography data recorded during task-
free paradigm to track the fast temporal dynamics of spontaneous brain networks. Results
obtained from network-based analysis methods revealed the existence of a functional
dynamic core network formed of a set of key brain regions that ensure segregation and
integration functions. Brain regions within this functional core share high betweenness
centrality, strength and vulnerability (high impact on the network global efficiency) and
low clustering coefficient. These regions are mainly located in the cingulate and the medial
frontal cortex. In particular, most of the identified hubs were found to belong to the Default
Mode Network. Results also revealed that the same central regions may dynamically

alternate and play the role of either provincial (local) or connector (global) hubs.
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Study 3: Reduced integration and improved segregation of
functional brain networks in Alzheimer’s disease
A Kabbara, H Eid, W EIl Falou, M Khalil, F Wendling, M Hassan

Article published in Journal of neural engineering 15 (2), 026023

Abstract:

Objective: Emerging evidence shows that cognitive deficits in Alzheimer's disease (AD)
are associated with disruptions in brain functional connectivity. Thus, the identification of
alterations in AD functional networks has become a topic of increasing interest. However,
to what extent AD induces disruption of the balance of local and global information
processing in the human brain remains elusive. The main objective of this study is to
explore the dynamic topological changes of AD networks in terms of brain network
segregation and integratiolpproach: We used electroencephalography (EEG) data
recorded from 20 participants (10 AD patients and 10 healthy controls) during resting state.
Functional brain networks were reconstructed using EEG source connectivity computed in
different frequency bands. Graph theoretical analyses were performed assess differences
between both groupsMain results: Results revealed that AD networks, compared to
networks of age-matched healthy controls, are characterized by lower global information
processing (integration) and higher local information processing (segregation). Results
showed also significant correlation between the alterations in the AD patients' functional
brain networks and their cognitive scor8ggnificance: These findings may contribute to

the development of EEG network-based test that could strengthen results obtained from

currently-used neurophysiological tests in neurodegenerative diseases.
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Study 4. Dense scalp-EEG source connectivity predicts depth-
EEG exploration in epilepsy
Aya Kabbara, Mahmoud Hassan, Mohamad Khalil, Arnaud Biraben, Anca Nica, Isabelle

Merlet and Fabrice Wendling

Submitted

Abstract:

Objective:Most brain disorders, including drug-resistant epilepsies, are network diseases.
Thus, from a clinical perspective, the demand is high for non-invasive, network-based and
easy-to-use methods to identify these pathological brain networks.

Methods: In this paper, we introduce a novel methodological framework to identify
epileptogenic networks from scalp dense-electroencephalography (EEG). The proposed
approach combines the emerging technique called ,EEG source conneutithitgraph

theory. We used depth-EEG and scalp dense-EEG data at rest (regardless of the
presence/absence of epileptiform activity) from 18 patients. Depth-EEG data were used to
evaluate the accuracy of epileptogenic networks identified from scalp data. The method
performance was quantified by its capacity to identify pathological brain networks in the
region explored by depth-EEG in epileptic patients. This quantification was done using
hemispherical and lobar accuracies as well as the distance between depth-EEG electrode
positions and estimated networks.

Results: Results showed that the proposed approach was able to predict the brain
hemisphere (accuracy= 97+9%) and the lobe (accuracy=91+19%) where SEEG
exploration was performed a posteriori (averagedistance= 13+11 mm). Results showed
also the high advantage of network segregation measures (local functional connectivity)
compared to global measures (p<0.01, corrected) in revealing epileptogenic networks.
Interpretation: These results may promote the noninvasive dense-EEG as a
complementary tool in pre-surgical evaluation in order i) to define of the best depth-
electrode placement (hemisphere and lobe) and ii) to highlight cortical regions that may be

overlooked during pre-surgical planning.
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Study 5: Tracking fast modular brain states in rest and task
A. Kabbara, M. Khalil, F. Wendling & M. Hassan

Submitted

Abstract:

The human brain is a dynamic networked system that permanently reconfigures its
connectivity patterns during time. Thus, developing approaches able to adequately detect
the fast brain dynamics is critical. Of particular interest are the methods that study the
modular structure of brain networks, i.e. the presence of clusters of regions that are
densely inter-connected. In this paper, we propose a novel framework to identify fast
modular states that dynamically fluctuate over time during rest and task. We validate our
method using MEG data recorded during a finger movement task, identifying modular
states linking somatosensory and primary motor regions. The algorithm was also validated
on dense-EEG data recorded during picture naming task, revealing the transition between
several modular states which relate to visual processing, semantic processing and
language. Next, we validate our method on a dataset of resting state dense-EEG data
recorded from 124 parkinsonians patients of different cognitive phenotypes. Results
disclosed the brain modular states that differentiate cognitively intact patients, patients
with moderate cognitive deficits and patients with severe cognitive deficits. Our new
approach tracks the brain modular states on an adequate task-specific timescale.
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Chapter 3.
DISCUSSION

There is growing evidence suggesting that the brain is a networked system of interacting
functional regions. This complex system is dynamic and flexibly changes its functional
organization of resting (21,23,113,116) and task-evoked connectivity (13,14,114,117).

In addition, progress in the field of network science field has revealed that brain disorders
are related to alterations in the functional brain connectivity, disrupting the large-scale
network organization and function (Stam 2014, Fornito, Zalesky et al. 2015). Therefore,
from a clinical perspective, the demand is high for novel ,neuromarlsdiie to
characterize the pathological networks using direct, non-invasive, and easy-to-use
methods. We also speculate that an accurate description of the dynamics of brain networks
over time not only helps to understand the cognitive functions, but also allow to investigate

subtle alterations related to brain disorders.

Among the neuroimaging techniques that allow for extracting relevant information about
functional brain networks, Electro-encephalography (EEG) has significantly progressed
over the past years. This promising technique offers the opportunity to non-invasively
track the temporal resolution of the brain networks. To generate accurate results, EEG

signals should be carefully processed.

For many years, functional connectivity analyses using EEG were performed at the sensor
level. However, scalp EEG signals are severely corrupted by i) the ,volume tonduc
effect due to the conduction propertiéstee head and ii) the ,field spregaroblem caused

by the fact that many sensors may collect the same activity of a single brain source (Nolte,
Bai et al. 2004, Van Diessen, Numan et al. 2015). These two limitations make the

interpretation of scalp-based networks a difficult issue.

Recently, aremerging method named “EEG source connectivity” has seen a considerable
progress (91). It was shown that this method can successfully identify the brain networks at
the level of cortex with a good spatial resolution and an excellent temporal resolution. It

also helps to reduce the effects of the volume conduction and the field spread problems.
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Still, several methodological issues should be considered when reconstructing the brain

sources from scalp signals, and assessing their connectivity.

The main achievements of the thesis can be summarized as follows:

The dynamic analysis of the resting state networks at sub-second time-scale
revealed several new characteristics of functional brain networks in terms of
centrality and hubness. We showed that the human brain holds a dynamic
functional core network of a set of central brain regions that dynamically warrant
both segregation and integration processes. By classifying the brain regions into
local and global hubs, we showed that the same brain region can dynamically
switch its function between provincial (segregation) and connector (integration)
hubs.

A novel framework to explore reconfiguration of fast modular brain structures was
developed in order to extract functional modular states during both task-free and
task-related paradigms. We validate the new framework using MEG data recorded
during a finger movement task, identifying modular states linking somatosensory
and primary motor regions. The algorithm was also validated on dense-EEG data
recorded during picture naming task, revealing the sub-second transition between
several modular states which relate to visual processing, semantic processing and
language.

By investigating the dynamic topological alterations in Alzheismedisease
networks, we showed that AD networks are characterized by lower global
information processing (integration) and higher local information processing
(segregation), compared to networks of age-matched healthy controls.

In the context of epilepsy, results showed that network segregation measures (local
functional connectivity) compared to global measures in matching intracerebral
EEG sites. The local network measures were able to match the brain hemisphere
(accuracy= 97+9%) and the lobe (accuracy=91+19%) where SEEG exploration was

performed posteriori (average distance= 1311 mm).

3.1. Dynamic functional networks at rest and task
Tracking the temporal dynamics of brain networks is an important issue that helps to

improve our knowledge about the cognitive and behavioral tasks, and the
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neuropathological diseases. Studying the dynamic brain networks reconfiguration can
include longitudinal studies aiming to explore the slow changes of brain topology with the
normal aging. It also includes the investigation of fast spontaneous or evoked changes in
response to external stimuli. In particular, tracking the spatiotemporal dynamics of large
scale networks over a very short time duration is a very challenging issue in task and rest
(13,19). Thanks to the excellent temporal resolution of electrophysiological modalities
(such as EEG and MEG), we have a unique opportunity to access how the functional
connectivity evolves in short-time (sub-second) and how it may be perturbed by brain

disease.

The use of the dynamic functional connectivity has revealed potential impact for basic
neuro-scientific and clinical studies. Importantly, several resting studies showed that some
crucial regions play a key role in maintaining efficient temporal communication in the
whole brain (23,116). Other studies focused on assessing the temporal transitions between
resting state networks (21). The importance of uncovering the dynamic behavior of the
brain was also demonstrated in many cognitive tasks (14,17,18,45). While these studies
differ in the way in which the functional networks were analysed, they succeeded to
characterize the temporally-evolving networks that rapidly dissolve during tasks.
According to clinical applications, dynamic connectivity was important to relate brain
behavior to pathology in anesthesia (118), epilepsy (119), Parkinson (82), and depression
(120).

To measure the dynamics of large scale functional networks using EEG and MEG, several
methods have been developed and proposed during the last decade. Some of these studies
proposed to group the temporal networks into states, where each state represent a
distinctive connectivity pattern. These brain states were mainly generated using Hidden
Markov model approaches (17,21), K-means clustering (15,19,113) or independent
component analysis (114). However, a precise characterization of the dynamic
reconfiguration of the brain at very fast time-scale has rarely been studied. Tothéckle
issue, we developed methods to track the dynamic aspects using graph theoretical analysis,
in order to investigate the dynamic topological changes during rest (Study 2, Study 3,
Study 4) and task (Study 5). Particularly, the sliding window approach was used. The key
contribution of the developed methods is that they went beyond the state of the art

techniques by looking at the temporal transition between brain regions, network hubs, and
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modules over sub-second time scale. Results obtained from the resting state study revealed
the existence of a functional dynamic core network formed of a set of key brain regions
that ensure segregation and integration functions. One of the primary benefits of the
method is that it was capable to show that the same central regions dynamically alternate
its function between provincial (local) or connector (global) hub. In addition, the method
proposed to elucidate the main modular brain structures that fluctuate over time has
revealed applicability in rest and task paradigms. In particular, it was able to automatically
decipher functional modular brain states i.e. subset of brain modules implicated in a given

brain function at adapted time period.

A challenge that future studies may need to address is how to dynamically regulate the
sliding window width instead of predefining it. Another important issue that could be
tracked in the future is the development of electrophysiological models that allow
researchers to compare experimental results to computational results, and to more relate

the functional networks to the mechanism that drive brain connectivity.

3.2. Toward EEG network-based neuromarkers of brain
disorders

Brain disorders are often associated with alterations of large-scale functional brain
networks. Methods able to identify these pathological networks from easy-to-use and non-
invasive techniques are clinically needed. From theoretical point of view, network
neuroscience has offered the opportunity to more understand and quantitatively assess the
characteristics of brain networks. Hence, multiple studies have explored the functional
connectivity in brain disorders using MEG/EEG (121). However, most of these studies
were performed at the sensor-based level where signals are corrupted by the volume
conduction and the field spread problems. As an emerging technique, MEG/EEG source
connectivity allows reconstructing the functional brain networks at the level of cortical
sources from sensor level recordings (91). The main key advantages of MEG/EEG systems
is the non-invasiveness, the ease of use and the excellent temporal resolution that help to
analyze fast dynamical changes that may occur in brain disorders such as epileptic
seizures. In addition, MEG and EEG directly measure the neuronal activity in contrast with

blood-oxygen-level-dependent (BOLD) signals.
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Recently, MEG/EEG source connectivity has revealed valuable information about the
functional networks involved in brain disorders. Promising results were obtained in
characterizing the networks involved in epilepsy (77,80;128), Alzheimer and
Parkinson diseases (82,84,3291). Besides identifying the pathological brain networks,
many studies were interested in assessing an association between the degree of cognitive
deficits and the alterations of functional connectivity in the context of neurodegenerative
diseases (82,129). Thus, we speculate that this potential technique will have high clinical
impact not only for accurately identifying pathological networks, which is crucial in some
disorders like epilepsy, but also offering the possibility to develop neuromarker for
neurodegenerative diseases ( nheuromarkerdgnitive impairment in Parkinsandisease

and Alzheimers disease The reported results showed that this objective can be achieved
by appropriate processing techniqgues and sufficient database. This can offer the

opportunity to develop new start-ups in order to provide easy to use tools for clinicians.

In the context of epilepsy, MEG/EEG source connectivity could be used to help in

developing new therapeutic approaches based on neurostimulation by optimizing the brain
stimulation protocols. Indeed, the technique could aid to know when and where the
stimulations should be applied (central namte,hubs may be the major targeb be

stimulated).

3.3. Methodological consideration

3.3.1. Source leakage:

While the functional connectivity at the source level reduces the effect of the field spread,

it doesnt totally suppress its effec{91). The main outcome of the source leakage is that
spurious connections can occur between adjacent regions. To overcome this problem,
several techniques have been initially proposed to solve the problem at the sensor level,
such as the imaginary coherence (132) and the phase lag index (133). Others have
suggested to track the problem at the source level before performing any connectivity
analysis (134,135). All the proposed approaches are based generally on ignoring zero-lag
interactions among signals, by supposing that their contributions are only due to the source
leakage. Other studies proposed to only keep the long-range connections (22,23,116).
Although these approaches have some advantages, they may suppress important

correlations that occur at zero-lag (67) or even among close regions (136).

37



Since“EEG source connectivityis a relatively young field, such problems are still under

discussion and more efforts are needed to completely address the source leakage problem.

It is also noteworthy that the number of regions of interests (ROIs) may be related to the
effect of the “mixing sourceg’as the reconstructed signals that belong to a single ROI will

be averaged. This means that choosing a low number of large ROIs could help in removing
spurious links that occur between spatially adjacent sources. However, it may cause a low
spatial resolution. There is, so far, no clear consensus about how to select the appropriate
number of nodes that represent the large-scale networks. Hence, one should adapt
a compromise between low and high number of ROIs to attempt good spatial resolution
and reduced spatial leakage between the regional time series.

In this thesis, we used 68 anatomical ROIs (Study2, Study3 and Study5) to define the
nodes in the brain network. We assume that 68 regions were sufficient to investigate the
global characteristics of the brain networks while minimizing the problem of spurious
connections between ,very close sourcas defining epileptogenic networks from dense-

EEG requires higher “granularity”, i.e. spatial precision and accurate chearation of

the network local properties, the number of anatomical ROIs was increased to 221 ROIs.

3.3.2. The ill-posed inverse problem

It is likely that the selection of a source imaging method to solve the inverse problem has a
remarkable effect on the accuracy of the reconstructed source signals, and ultimately on the
brain networks obtained. From a methodological point of view, as the number of source
dipoles (in thousands) is much larger than the number of sensors (in hundreds), the inverse
problem is ill-posed. This implies that adding physical and mathematical constraints is
necessary to solve the inverse problem. These constraints can be applied on the spatial,
temporal, or spatio-temporal properties of dipoles distributions (97). Thus, depending on
the imposed hypothesis, each brain imaging method has its strengths and weaknesses. A
detailed comparison between different brain imaging methods developed in the context of
EEG/MEG source connectivity was reported by (97). The review describes the hypotheses,
the advantages and drawbacks of seven algorithms (SLORETA, MCE, MNE, VB-SCCD,
STWV-DA, Champagne, and 4-ExSo-MUSIC). It also provides a quantitative evaluation

of the seven methods performance tested on simulated data for an example of epileptic

EEG activity, by assessing the distance of Localization Error and the CPU runtime.
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In this thesis, we used the weighted minimum norm estimate (WMNE) as an inverse
solution. Based on (97), the main assumption of the weighted minimum norm estimate was
to find a solution with lowest energy. This assumption can be generally explained by the
economic energy cost of the brain during information processing. Compared to other
inverse solutions, the wMNE implies relatively few hypotheses and presents acceptable

distance of localization error and CPU runtime (97).

3.3.3. Effect of the inverse/connectivity measure:

Extracting valuable information about brain networks from noninvasive neuroimaging
techniques such as MEG and EEG is challenging but reachabley UHHG source
connectivity”, one should select one of several inverse solutions and conneutasyres

to construct the functional brain networks. In this context, the obvious question that is
raised is: what is the best inverse/connectivity combination that allows constructing
accurate brain networks that actually correspond to those activated during considered brain
processes?

For this purpose, previous studies performed in the team have been conducted to compare
different combinations of inverse/connectivity methods in situations where ground truth
data is available. The objective was to determine the optimal combination providing brain
networks, from dense-EEG, as close as possible to reference networks. . In the first study,
real data recorded during a cognitive task was used (14,115). Interestingly, a large number
of combinations between the inverse solution and functional connectivity measures were
tested. The objective was to estimate the networks involved during a picture naming task
for which a solid background was available regarding activated brain regions and
networks. In brief, a comprehensive literature review on these networks was mainly
obtained from neuroimaging techniques such as fMRI, MEG, depth EEG and PET. From
this review, a “reference” netwomkas determined and used as a ground truth to define a
performance criterion about the accuracy of networks obtained fi6EG source
connectivity combinations For one combination (WMNE/PLV), the estimated network,
activated during the cognitive task (500-700 ms), was found to spatially match the
reference network. The above described work was then extended from static to dynamic

analysis during the same cognitive task. EEG source connectivity method applied using
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WMNE/PLV combination was able to track the spatiotemporal dynamics of activated brain
networks from the onset (presentation of the visual stimuli) to the reaction time
(articulation). Estimated dynamic networks were also found to match previously-reported

regions/networks, as identified with other techniques such as depth-EEG and MEG.

In this thesis, a study was performed in the context of epilepsy where a physiologically-
plausible computational model of epileptogenic networks was used as a ground truth
(Study 1). Simulated scalp-EEG signals were used to evaluate the performance of EEG
source connectivity methods in term of “&stimating” reference larggcale networks
modelled at neocortical level. Again, the combination that showed the highest similarity
between reference and estimated networks was the wMNE/PLV, used in our following

works.

Nevertheless, other combinations or strategies that showed accurate construction of
cortical networks from sensor level recordings could be also investigated and compared
such as the use of beamforming combined with amplitude correlation between band-

limited power envelops as reported in several studies (18,134,135,137,138).

3.1.4. Selecting the sliding window length:

Choosing the suitable window width is a crucial issue in constructing the dynamic
functional networks. On one hand, choosing short windows may underlie errors in the
generated networks. On the other hand, large windows may fail to capture the temporal
changes of the brain networks. Hence, the ideal is to choose the shortest window that
guarantees a sufficient number of data points over which the connectivity is calculated.
This depends on the frequency band of interest that affects the degree of freedom in time

series.

In this thesis, we are mainly quantifying the phase synchronization using the phase locking

value metric (PLV). Hence, we adapted the recommendation of Lachaux et al. (139) in

selecting the smallest appropriate window length that is equat-te———— where 6 is

the number of ,cyclesat the given frequency band/e also validated the reproducibility

of resting state results whilst changing the size of the sliding window (Study 2).
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3.1.5. Thresholding the connectivity matrix:

A threshold is commonly applied to remove weak connections from functional
connectivity data. However, there is no current consensus on what threshold to use on the
functional connectivity matrix. Thresholds can be absolute (correlation-based),
proportional (density-based) or statistical (sparsity-based). Each threshold approach has its
advantages and disadvantages depending on the data treated.

Absolute thresholds consist on setting a value for the connectivity matrix, above which the
connections are considered and below which the connections are removed. The absolute
thresholding is the simplest approach to apply. However, absolute thresholds may
eliminate strong and significant connections in low-average connectivity networks, or
overemphasize weak connections in high-average connectivity networks (140).

Proportional thresholds keep a percentage of the strongest connections (edges), such as
maintaining only the top 10% of correlation values of the connectivity matrix. (109)
showed that network measures are stable across proportional thresholds. In group
comparison, a proportional threshold ensures equal density between groups (same number
of nodes and edges, network size (107).

Statistical thresholds require converting the connectivity matrix psvalue map. The
connectivity values whosg-values passed the statistical FDR threshold are then retained
(40,108,141). Such thresholds are beneficial as they perform multiple testing to adjust
thresholds by controlling false-positive rate.

In this thesis, we used a proportional threshiplidhest 10% of the edge weights)in
studying the resting state networks characteristics (Study 2), and in group comparison
analysis (Study 3 and Study 5). According to previous studies, the 10% threshold provides
an optimal trade-off between retaining the true connections and reducing spurious
connections (142). The consistency of resaltsoss a range of proportionthresholds
(ranging from 5 to 20%) was considered in this work. The statistical threshold was also

applied on the functional connectivity matrices of epileptogenic networks (Study 4).

3.4. Future directions
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In this thesis, we investigated the capability of “EEG source conrgttivitrack the fast

dynamic changes of brain networks at very short time scale. This investigation was
performed by extracting dynamic characteristics and topologies of networks using graph
theory. The proposed methods were applied on three clinical applications (Epilepsy,

Alzheimers disease and Parkinserdisease).

In future works, a new clinical application will be also considered. We are going to study
the functional alterations occurred in the brain networks of patients with major depression.

EEG data will be collected in Mazloum Hospital in Tripoli, Lebanon

Second, in this thesis, we only investigated the functional connectivity methods. We
speculate that effective connectivity could add additional information about the
directionality of the functional interactions between brain regions. This issue could be
addressed by testing various effective connectivity measures derived from Granger

causality as already reported in a number of studies (101,123)

Third, one can notice that the presented studies used to consider a predefined frequency
range depending on the analyzed data (motor task, naming task, resting state). However,
multiple studies indicate that network integration exists across a wide range of frequencies
(143-145). Using MEG, recent studies reported that frequency band specific networks
arent wholly identical, but share a common mode of connection patterns dueeto int
bands coupling (145). Our ongoing work is to investigate the dynamic changes of modular
network organization spanning over hundreds of millisecond time scale within and
between EEG frequency bands. We hypothesized that the brain modular networks are
reshaping during transitions between frequency bands whilst some common characteristics
remain unchangeable over all bands. To extract both the individual and the common
characteristics over the classically defined EEG bands, we are going to use the multi-slice

modularity technique (Figure 8).

42



Figure 8. The proposed pipeline for the study of fhequency-dependant properties of brain netwoms.
multi-slice modularity will be applied, where easkice will represent a frequency band. B) the modula
allegiance will be formed. C) nodes will be classif into three main classes: 1) stable integrat@s,
stable loners, 3) non stable.

Further work will be also to evaluate the effect of the number of channels and the number
of ROIs on the identified networks properties. This evaluation will be performed on

simulated and real data.
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Abstract Epilepsy is a network disease. The epilepticnetworks. Results suggested that nonlinear methods (non-
network usually involves spatially distributed brain linear correlation coefcient, phase synchronization and
regions. In this context, noninvasive M/EEG source con-imutual information) for measuring the connectivity are
nectivity is an emerging technique to identify functional more ef cient than the linear one (the cross correlation
brain networks at cortical level from noninvasive record-coef cient). The wMNE inverse solution showed higher
ings. In this paper, we analyze the effect of the two keyperformance than dSPM, cMEM and sLORETA. In real
factors involved in EEG source connectivity processing:.data, the combination (WMNE/PLV) led to a very good
() the algorithm used in the solution of the EEG inversematching between the interictal epileptic network ideat
problem and (ii) the method used in the estimation of thefrom noninvasive EEG recordings and the network
functional connectivity. We evaluate four inverse solutionsobtained from connectivity analysis of intracerebral EEG
algorithms (dSPM, wMNE, sLORETA and cMEM) and recordings. These results suggest that source connectivity
four connectivity measuresq h?, PLV, and MI) on data method, when appropriately cogured, is able to extract
simulated from a combined biophysical/physiological highly relevant diagnostic information about networks
model to generate realistic interictal epileptic spikesinvolved in interictal epileptic spikes from non-invasive
re ected in scalp EEG. We use a new network-basedlense-EEG data.
similarity index to compare between the network ideet
by each of the inverse/connectivity combination and theKeywords Epilepsy Dense-EEG source connectivity
original network generated in the model. The method will Epileptic networks
be also applied on real data recorded from one epileptic
patient who underwent a full presurgical evaluation for
drug-resistant focal epilepsy. In simulated data, result$ntroduction
revealed that the selection of the inverse/connectivity
combination has a signtant impact on the idented Epilepsy is a network disease (Engel Jr et24l13. Over
the two past decades, the concept of “epileptic focus” has
progressively evolved toward that of “epileptic network”
Electronic supplementary material The online version of this (Kramer and Cast?012 Laufs 2012. Indeed, with the
aice (o1 1007110545 010 017 conans SWPemeNary  progress of functional neuroimaging techniques, many
studies conrmed that the epileptic zone (EZ) can rarely be
& Mahmoud Hassan reduced to a circumscribed brain area (Bartolomei et al.
mahmoud.hassan@univ-rennesL.fr 2007 as it very often involves distinct brain regions gen-
erating both interictal (Bourien et alk0095 and ictal
activity (Bourien et al.2004). Among the investigation
techniques classically used in the diagnostic of epilepsy,
Neurology Department, CHU, Rennes 35000, France electrophysiological recordings (typically, magneto- and
4 AZM Center-EDST, Lebanese University, Tripoli, Lebanon electro-encephalography including depth-EEG, referred to

1 INSERM, U1099, Rennes 35000, France

LTSI, Universitede Rennes 1, Rennes 35000, France
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as M/EEG) are still extensively used to localize and Although these approaches all include two steps (M/
delineate the EZ in a patient-speci context. Regarding EEG inverse problem followed by source connectivity
the numerous methods proposed to process the recordedtimation), they strongly differ from a methodological
data; those aimed at characterizing brain connectivity argiewpoint. Indeed, various algorithms were used to
particularly suitable to identify networks involved during reconstruct brain sources and both functional and effective
epileptiform activity (both interictal and ictal). connectivity measures were utilized to assess statistical

In the context of invasive EEG signals (intracranial couplings among time series associated with reconstructed
EEG, stereo-EEG and electrocorticoGraphy —EcoG-pources. Therefore, a central issue is the impact of selected
recorded in patients candidate to surgery, these “conneanethods (EEG inverse solution and connectivity measure)
tivity” methods have been a topic of extensive researchon the topological/statistical properties of idergd
[see van Mierlo et al. 2014 for recent review]. For epileptic networks activated during paroxysmal activity.
instance, the coherence function was shown to localize the In this paper, we report a quantitative comparison of
seizure onset (GotmalR87), similarity indexes were used methods aimed at identifying cortical epileptic networks
to distinguish a preictal state from the ongoing interictalfrom scalp EEG data. The novelty of this work is twofold.
activity (Le Van Quyen et aR005 Mormann et al2000.  First, our comparative study includes simulated dense
Nonlinear regression analysis was applied to intracerebr&8EGs generated from physiologically- and biophysically-
signals to characterize connectivity patterns at the seizurplausible models of distributed and coupled epileptic
onset (Bourien et aR004). Readers may refer to previous sources. To our knowledge, no previous study has reported
reviews for more detailed information about brain con-results on the performance of source connectivity methods
nectivity methods applied to non-invasive (van Mierlo based on a “ground truth” provided by realistic computa-
et al. 2014 and invasive EEG signals (Wendling et al. tional models of interictal EEG signals (recorded later in
2010 in drug-resistant focal epilepsies. time than the dense EEG recordings). Second, in line with a

In the context of scalp M/EEG recording, connectivity recent analysis performed on MEG data (Malinowska et al.
methods have received less attention as compared witb014), networks estimated from real scalp dense EEG are
invasive EEG. A number of studies performed at the levecompared with those obtained from depth-EEG recordings
of electrodes and focused on ictal periods have bee(SEEG).
reported aiming at analyzing seizure propagation (Gotman
1983 or to determine the seizure onset side (Caparos
et al. 2009, for instance. For interictal periods, few Materials and Methods
connectivity studies made use of dense EEG and phase
synchronization (Ramon and Holme&X13 to identify  Inverse Solution Algorithms
epileptic sites. One reason for this paucity of studies may
lie in the intricate interpretation of connectivity measuresGiven the equivalent current dipole model, EEG signals
obtained from scalp recordings. Indeed, this interpretatiorX(t) recorded from M channels can be considered as linear
is not straightforward as signals are severely corrupted bgombinations of P time-varying current dipole sources S(t):
the effects of volume conduction (Schoffelen and Grosg«t) = GS@) + N(Y)

2009.

Interestingly, some recent studies showed how to overwhere G[M, P]is the leadeld matrix and N(t) is the noise.
come this limitation. In line with previous cognitive studies AS G is known, the EEG inverse problem consists of
(Astol et al.2007 Babiloni et al.2005 Betti et al.2013  estimating the unknown sourcé¥tb from X(t). Several
Bola and Sabe2015 David et al.2003 David et al.2002  algorithms have been proposed to solve this problem based
de Pasquale et a01Q Hassan et al20153 Hassan et al. on different assumptions about spatial and temporal prop-
2014 Hassan and Wendlin015 Hipp et al. 2011,  erties of sources and regularization constraints. Here, we
Hoechstetter et aR004 Liljestrom et al.2015 Schoffelen chose to evaluate the four algorithms implemented in
and Gross2009, the basic principle is to estimate func- Brainstorm (Tadel et al2011).
tional connectivity at the level of brain sources recon-
structed from scalp signals. These methods, referred to a/eighted Minimum Norm Estimate (WMNE)

“source connectivity” were applied to both interictal EEG

(Coito et al.2015 Song et al.2013 Vecchio et al.2014  Minimum norm estimates (MNE) originally proposed by
and MEG signals (Dai et a2012 Malinowska et al2014  (Hamdainen and Iimoniemil994 are based on a search
as well as to EEG signals recorded during seizures (Dindpr the solution with minimum power using the L2 norm to
et al. 2007 Jiruska et al2013 Lu et al. 2012 or resting regularize the problem. A common expression for MNE
states (Adebimpe et a016 Coito et al.2016). resolution matrix is
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Sne ¥ GTaGG b kCb *G reference distribution in which source intensities are
organized into cortical parcels showing homogeneous

wherek is the regularization parameter and C representgctivation state (parallel cortical macro-columns with

the noise covariance matrix. The weighted MNE (WMNE) synchronized activity). In addition a constraint of local

algorithm compensates for the tendency of MNE to favorspatial smoothness in each parcel can be introduced

weak and surface sources ‘{Hdainen 2003. This is  (Chowdhury et al2013.

achieved by introducing a weighting matrix \n

Sumne Y2 8BTWx G p kCb 1GTWy X Connectivity Measures

that adjusts the properties of the solution by reducing theve selected four methods that have been widely used to
bias inherent to the standard MNE solution. Classically estimate functional brain connectivity from electrophysio-
Wy is a diagonal matrix built from matrix G with non-zero logical signals (local eld potentials, depth-EEG or EEG/
terms inversely proportional to the norm of the leagld MEG) (see (Wendling et al2009 for review). These

vectors. measures were chosen to cover the main families of con-
nectivity methods (linear and nonlinear regression, phase
Dynamical Statistical Parametric Mapping (dSPM) synchronization and mutual information).

Brie y, concerning the regression approaches, the linear
The dSPM is based on the MNE solution (Dale eP&l0Q.  cross-correlation coetient is only limited to the detection
For dSPM, the normalization matrix contains the minimumof the linear properties of the relationships between time
norm estimates of the noise at each source (Caparos et akries. However, mechanisms at the origin of EEG signals
2006, derived from the noise covariance matrix, ded were shown to have strong nonlinear behaviors (Pereda
as: et al. 2009. Thus, we have selected three nonlinear con-
nectivity measures. The nonlinear regression where the

Susewm Vs WaserSune basic idea is to evaluate the dependency of two signals
where Wegpy, ¥4 diagS e ConeP from signal samples only and independently of the type of
relation between the two signals. Concerning the phase
Standardized Low Resolution Brain Electromagnetic synchronization measure, the method estimates the
Tomography (sSLORETA) instantaneous phase of each signal and then computes a

guantity based on co-variation of extracted phases to
SLORETA uses the source distribution estimated fromdetermine the degree of relationship. Finally, the mutual
MNE and standardizes it a posteriori by the variance ofinformation method is based on the probability and infor-
each estimated dipole source: mation theory to measures mutual dependence between

two variables. More technical details about the four
ésLORETA Ya WSLORETAS\/INE

methods are presented hereafter:
where W orera Y4 diaghSy eGP Ydiaghs,, GG b

CHY,\eP The SLORETA inverse method has been origi-Cross-Correlation Coetient ()

nally described using the whole brain volume as source

space (Pascual-Marqu002). For the present study, in The cross-correlation coefient measures the linear cor-

order to ease the comparison with other methods, wéelation between two variablesandy as a function of their

restricted the source space to the neocortical surface.  time delay §). Referred to as the linear correlation coef-
cient, it is de ned as:

Standard Maximum Entropy on the Mean (CMEM) r)z(y ” maxcovza(ap’ y&p shp
The Maximum Entropy on the Mean (MEM) solver is T s

based on a probabilistic method where inference on thevherer and cov denote the standard deviation and the
current source intensities is estimated from the data, whicbovariance, respectively.

is the basic idea of the maximum of entropy. Thest

application of MEM to electromagnetic source localization Nonlinear Correlation Coefcient (If)

was reported in (Clarke and Janda989. The main fea-

ture of this method is its ability to recover the spatial extentThe nonlinear correlation coefient () is a non-para-

of the underlying sources. Its solution is assessedry+  metric measure of the nonlinear relationship between two
ing the closest distribution of source intensities to atime seriesx andy. In practice, the nonlinear relation
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between the two time series is approximated by a piecewiséig. 1 Structure of the investigatiora Simulated epileptic spikes:

linear curve. model used to generate epileptic spikes (s8arfulationssection for
detailed description)b Identi cation of interictal epileptic network:
2, vargyd p skexadbp rst, a network is generated by the model and considered as the
hxy /a msax 1 vardy(tp sbb ‘ground truth’. By solving the forward problem, synthetic dense EEG

data are generated. These signals are then used to solve the inverse
where vady& p sbexdbb arg min E¥t p sb f&xdpBp  Problem in order to reconstruct the dynamics of sources using three
f

. . . . . . different inverse solutions (WMNE, sLORETA, dSPM and cMEM).
andf() is the linear piecewise approximation of the non- The statistical couplings are then computed between the reconstructed

linear regression curve. sources using three different method$, (PLV, h?> and MI). The
identi ed network by each combination (inverse/connectivity) was
Mutual Information (MI) then compared with the original network using a ‘network similarity’

algorithm [13] andc Intracerebral recordings: the positions of the
. . . . intracerebral SEEG signals used in the real application. The
The mutual information NIl) between signak andy is  corrdinates of the electrode’s contacts was obtianed by the CT/MRI

de ned as: coregistrationwMNE weighted minimum norm estimatsL ORETA
standardized low resolution brain electromagnetic tomograg&M
X pY . . ; : :
1 Xy i dynamical statistical parametric mappir@MEM standard maximum
Miy, s pYlog—— 2 : !
i pXpY entropy on the mean;” linear correlation coefcient, PLV phase

t locking value, h?* nonlinear correlation coetient, Ml mutual
wherep¥ is the joint probability ofx = x, andy = y;. In  information, P pyramidal cells| Inhibitory interneurons

ij
the case of no relationship betweeandy, p’j‘y = p"p]y SO
that theMl is zero for independent processes. Otherwise, ] .
Ml will be positive, attaining its maximal value for physiologically relevant neural mass model reported in
identical signals. (Bourien et al.2005 Wendling et al.200Q 2002.

In brief, this computational model was designed to
Phase Locking Value (PLV) represent a nel_JronaI population .With three subsets of
neurons (pyramidal cells P and interneurons | and I’)
interacting via synaptic transmission (Fitp). Pyramidal
cells (P) receive endogenous excitatory drive (AMPAergic
) , collateral excitation) from other local pyramidal cells and
PLVyy Va bt Uy} exogenous excitatory drive from distant pyramidal cells
(via external noise input p(t)). They also receive inhibitory
drive (GABAergic feedback inhibition) from both subsets
of local interneurons (I and I). In turn, interneurons
receive excitatory input (AMPA) from pyramidal cells.

A Gaussian noise was used as external input to neuronal
population. The mean (m 90) and standard deviation
(sigma= 30) were adjusted to represent randomly varying
density of incoming action potentials (Aps). However, for

For two signals< andy, the phase locking value is deed
as:

where u, &P and u,&p are the unwrapped phases of the
signalsx andy at timet. The hti denotes the average over
time. The Hilbert transform was used to extract the
instantaneous phase of each signal.

The h%, PLV andr? values range from 0 (independent
signals) to 1 (fully correlated signals).

Data the purpose of this study, a modiation was made to this
noise model. Indeed, abrupt increase/decrease of the den-
Simulations sity of Aps can occur in the external input noise at user-

de ned times to mimic transient AP volleys from other
In order to quantitatively assess the performance of sourcerain regions involved in the generation of interictal
connectivity approaches, we generated simulated EE@vents. Thus, in this model, a simulated IES can be viewed
signals following the procedure described in (Cosandieras the responses of a nonlinear dynamical system (com-
Riméé et al. 2008, see Fig.la. The distributed source prising positive and negative feedback loops) to transient
space consisted in a mesh of the cortical surface (800fulses superimposed on a Gaussian noise (classically used
vertices,* 5 mm inter-vertex spacing) that was obtainedin the neural mass modeling approachs).
by segmenting the grey-white matter interface from a As in the standard implementation, the shape (spike
normal subject’'s structural T1-weighted 3D-MRI with component followed by a wave component) can still be
Freesurfer (Fischl2012. Dipoles were located at each controlled by adjusting excitation and inhibition parame-
vertex of this mesh and oriented radially to the surface aters of each population (gains in feedback loops). However,
the midway between the white/grey matter interface andhe aforementioned modtation offers one major advan-
the pial surface. The time-course of each dipole of thaage: as pulses in the noise input are usermaéel, the
source space was generated from a mediversion of the occurrence times of simulated IESs are controlled, in
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contrast with the standard implementation where |IESSSeizures were stereotyped, with a sudden start, febrile
simply result from random uctuations of the noise. The motor automatisms of the upper limb, stretching of the
consequence is that this new model feature allows foneck and torso and no post-ictal motor dé&. The patient
simulation multi-focal IESs with well-controlled time had a comprehensive evaluation including detailed history
shifts. Indeed, as illustrated in Figa, we could generate and neurological examination, neuropsychological testing,
delayed epileptiform activity in multiple distant patches structural MRI, standard 32-channels (Micromed, Italy) as
just by introducing short delays between the pulsesvell as Dense-EEG 256-channels (EGI, Electrical Geo-
superimposed on the respective input noises of neuronalesic Inc., Eugene, USA) scalp EEG with video recordings
populations at each patch. and intracerebral EEG recordings (SEEG). MRI showed a
Finally, from appropriate setting of the input noise, asfocal cortical dysplasia in the mesial aspect of the orbito-
well as excitation and inhibition-related parameters at eaclfrontal region. Dense-EEG was recorded for 1 h, at
neural mass included in simulated epileptic sources, a sdt000 Hz following the procedure approved by the National
of epileptiform temporal dynamics was obtained. TheseEthics Committee for the Protection of Persons (CPP,
dynamics were assigned to a source made of contiguowyreement number 2012-A01227-36). The patient gave his
vertices (active source) manually outlined with a meshwritten informed consent to participate in this study. This
visualization software (Paraview, Kitware Inc., NY, US). recording revealed sub-continuous spike activity at the
Uncorrelated background activities were attributed to themost left frontopolar basal electrodes. From this interictal
other vertices. Once the amplitude of each elementargpileptic activity, 85 spikes were visually selected away
dipole was known, EEG simulations were obtained byfrom the occurrence of any artefacts (muscle activity,
solving the forward problem in a 3-layer realistic headblood pulsation, eye blinks). Each spike was centered in a
model (inner skull, outer skull and the scalp with con-2 s window and all 85 windows were concatenated for
ductivity values of 0.33, 0.0042, 0.33 S/m respectively)further analysis.
using the Boundary Element Method (BEM) with the As part of his presurgical evaluation, the patient also
OpenMEEG (Gramfort et al.2010 implemented in underwentintracerebral SEEG recordings with 9 implanted
Brainstorm software. electrodes (1@ 18 contacts; length: 2 mm, diameter:
We considered two different scenarios. In thest one 0.8 mm; 1.5 mm apart) placed intracranially according to
(single network), EEG simulations were generated from alalairach’s stereotactic method in the left frontal and
single source located in the inferior parietal regiontemporal region, see Figc. The positioning of the elec-
(* 1000 mnf). In the second one (two interconnectedtrodes was determined from available non-invasive infor-
networks) an additional sourc& (1000 mnf) was placed mation and hypotheses about the localization of his
in the middle temporal gyrus. In that case, the temporakpileptic zone. From these data, subsets of 25 out of the
dynamics of the second source were highly correlated 18 original leads were selected. This selection was made
with those of the rst source, but with a minor delay according to the following criteria: i) only contacts show-
(30 ms). This delay of 30 ms was in the range ofing grey matter activity were retained and ii) among them,
10-50 ms delays that are often observed during interictabnly the contact showing the maximal activity was kept
spikes at different intracranial recording location (Alarconwhen similar intracerebral activity was observed on several
et al. 1994 1997 Emerson et al1995 Merlet and Got- contacts.
man 1999 or at different surface sensors (Barth et al.
1984 Ebersole 1994 or between the peaks of dipole Data Analysis
source activity (Baumgartner et all995 Merlet and
Gotman 1999. This delay was usually interpreted as Scalp-EEG Based Interictal Epileptic Networks
re ecting propagation between distant regions in the
brain. For each scenario, 20 epochs of 60 s at 512 HAs illustrated in Fig.1B, source activity was estimated
containing 30 epileptic spikes were simulated. Each epochising four inverse algorithms (dSPM, wMNE, sLORETA
was obtained for a new realization of the input randomand cMEM, see Materials and Methodssection). A
noise leading to a new realization of epileptic spikesbaseline of 1 s length was used to estimate the noise
occurring in background activity. Simulated data werecovariance matrix both on simulated and real scalp EEG

imported in Brainstorm for further analysis. data. For real data, source localization was applied on
averaged spikes, taking as time reference the maximum of
Real Data the negative peak, while for simulated data the source

localization was applied to non-averaged spikes. The cor-
Real data were selected from a patient who underwertical surface was anatomically parcellated into 148 regions
presurgical evaluation for drug-resistant focal epilepsyof interest (ROI) (Destrieux et al2010Q and then
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re-subdivided intor 1500 sub-ROIs using Brainstorm. that applied to the graphs obtained for scalp dense EEG
The 148 ROIs provided initially by the Destrieux Atlas (both simulated and real).

(using Freesurfer) werguasiequally subdivided to obtain

the 1500 sub-ROIs with 1 cfraverage sizes. Time series Scalp-EEG-Based Versus Depth-EEG-Based Epileptic

of the reconstructed source activities were averaged oveédetwork Matching

each of the 1500 ROls.

After the reconstruction of sources (source localizationin order to compare the graphs in the three-dimensional
and estimation of temporal dynamics), functional conneccoordinates system of the cortex mesh, the 3D coordinates
tivity was estimated using four methods’,(h?, PLV, and  of the SEEG were rst estimated by the co-registering the
MI, see “Materials and Methodssection). Each quantity patient’ CT scan and MRI. These points were then pro-
was computed on the set of 2 s single spikes. All connecjected on the surface mesh. The transformation from MRIs
tivity matrices (15009 1500) were thresholded as follows. (voxels) coordinates to surface (SCS/MNI) coordinates was
We computed the strength of each node of the weightedealized in brainstorm. The Scalp-EEG-based and depth-
undirected graph and we kept nodes with the highest 1 %eEG-based epileptic networks were visually compared by
strength values. The same threshold was applied on thaatching the identied regions (nodes) in both networks.
adjacency matrices for all combinations (inverse/connec-
tivity). The strength was deed as the sum of all edge Statistical Analysis
weights for each node; all weights were positive and nor-
malized between 0 and 1. On the simulated data, a Wilcoxon rank-sum test was used

In order to dene the reference networks, all the dipolesto compare between the Sls obtained for each combination
were supposed synchronized and the reference netwodt each trial, corrected for multiple comparison using
re ected a fully connected undirected graph. In the case dBonferroni approach.
double network scenario, a number of 37 sub-regions
(nodes) were considered. The dynamics of the dipoles
associated to these nodes were similar and resulting Results
379 37 fully connected network where connections (local
and remote) between the 37 nodes have the same weigBimulated Data: In uence of the Source
value. Reconstruction/Functional Connectivity

Combination
Quanti cation of Network Similarity

The results obtained in the case of the single network
In order to compare the reference brain network simulatedcenario are illustrated in Fi@, for the 16 different
in the model with the network idented from simulated combinations of the source reconstruction and functional
scalp EEG by each of the inverse/connectivity combinatiorconnectivity methods. The visual investigation of these
(Fig. 1b), we used a network similarity algorithm recently results revealed that networks iderdd using the different
developed in our team (Mheich et &0153, seesupple- combinations of methods were concordant with the refer-
mentary materialsfor more details about the algorithm. ence network (Fig2b). Indeed none of the idengd net-
The main advantage of this algorithm is that it takes intoworks had nodes in a remote region (F2g). The
account the spatial location (3D coordinates) of the nodegualitative analysis also showed that the number of nodes
when comparing two networks, in contrast with otherand the connections between them varied according to the
methods based on the sole statistical properties of concombination of methods used. For a given connectivity
pared graphs. The algorithm provides a normalized Simiapproach, changing the localization method did not dra-
larity Index (SI): 0 for no similarity and 1 for two identical matically modify the network aspect, except for cMEM.
networks (same properties and topology). The connectivitfConversely, for a given source localization approach,
analysis, the network measures and network visualizatioohanging the functional connectivity measure changed,
were performed using EEGNET (Hassan et24l153 b). qualitatively, the network. Although this was ddult to

assess visuallyh? combined with MNE or SLORETA was
Depth-EEG Based Interictal Epileptic Networks giving the network that best matched the reference network

while cMEM/MI provided a result that was different from
Functional connectivity usindy® were directly computed the reference network.
from SEEG signals at the 25 selected intracerebral elec- Quanti cation of these differences is provided in
trode contacts. Adjacency matrices (2525) were Fig. 2c. Overall, values of network similarity were rela-
obtained and thresholded using the same procedure thaively high and ranged from 70 to 82 %. For a given
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Fig. 2 One network scenari@ Brain networks obtained by using the the similarity indices computed between the network idesdi by
different inverse and connectivity methods.The original network  each combination and the model network
(ground truth) is shown andvalues (mearx standard deviation) of

connectivity approach, changing only the localizationh® The combination providing the highest similarity values
algorithm slightly modied Sl values by 3 %hf) to 8 %  between the estimated and the actual network was dSPM/
(MI). For a given source localization approach, the SIsMI (82.2 %) followed by wMNE/MI (82 %) and wMNE-
varied within 9 % (WMNE) to 12 % (dSPM). Results PLV (82 %). The lowest similarity value was obtained with
obtained using M| were on average better than PtAgnd  the dSPMH? combination. The Wilcoxon rank-sum test did
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not reveal any signicant difference between the similarity well retrieved while the temporal source remained almost
values obtained in thisrst study. unobserved. The second example was WMNE/PLV vs.
Results obtained in the case of two interconnected netwMNE, the gure shows that the network-based approach
works for the 16 combinations of the inverse/connectivitywas able to identify a network close to the reference with
methods are reported in Fi§. Results indicate that the no spurious connections in distant regions. The source
networks identied by all the combinations are relatively localization approach idented the two regions different
close to the model network (Figb) since, similarly to the energies at. Moreover, many spurious sources were
previously scenario, there was no node in other distanbbserved in remote regions. Similar results were observed
regions or in the right hemisphere. The networks did nofor single network conguration.
qualitatively change much for a given connectivity mea-
sure except for cMEM. Rather, as observed in thet Real Data: Scalp-EEG-Based Versus Depth-EEG-
scenario, the variability between the different combinationsBased Epileptic Network
was more related to the choice of the connectivity measure,
given a source localization approach. The results of PLVThe results obtained from real data recorded in a patient are
(whatever the inverse solution algorithm) provide thedescribed on Fig5. In this patient, the sources of scalp
closest result to the reference network. cMEM/MI showsEEG interictal spikes were widespread over the left frontal
also a relatively close network to the reference networkand temporal regions. Sources with maximum activity were
while cMEM/h? indicated, visually, the farthest result from found in the left frontal pole and orbitofrontal regions but a
the reference network. substantial activation was also detected in the left temporal
Values of network similarity are reported in Figc. as well as right frontal poles (Fidga, left). When com-
These values were lower than those in the single networkining wMNE and PLV on the same scalp EEG data, the
scenario, ranging from 57 to 73 %. For a particular con-source connectivity approach retrieved a 5-nodes network
nectivity measure, changing the inverse algorithm medi  in the left frontal lobe, involving the mesial (rectus gyrus)
the Sis by 1 % %) to 8 % () while for a given source and lateral orbitofrontal region as well as the anterior
reconstruction algorithm, the Sis varied between 6 %cingulate gyrus (Fig5a, right). This result was concordant
(dSPM) to 13 % (WMNE). The combination providing the with that the network identied directly from intracerebral
result closest to the reference network was wMNE/PLVrecordings by computing the functional connectivity
(73 %). High values were also obtained with SLORETA/among SEEG signals (Figb right). Indeed, the depth-
PLV (68 %) and cMEM/PLV (66 %). The cMEMf EEG based network involved six nodes in the left mesial
combination shows the lowest Sl value (57 %). orbito-frontal (rectus gyrus), and anterior cingulate region.
Interestingly, for scenario 2 results obtained with All these nodes were also idenéid by the visual analysis
WMNE/PLV were signi cantly closest to the actual net- (Fig. 5b, left) as regions involved in the main interictal
work than the other ones (Wilcoxon rank-sum testactivity (rectus gyrus) as well as in the propagated interictal

p\ 0.01, corrected using Bonferroni). activity (cingulate gyrus).

The similarity indices between networks idergd by
EEG Source Localization Versus Functional each of the combination with the depth-EEG-based net-
Connectivity work are presented in Figc. Results showed that the

WMNE/PLYV provides the highest Sl value (70 %) followed
An essential issue that is addressed in this paper relates by WMNE/h? (47 %) and SLORETA/PLV (47 %). The
the difference between the proposed “network-based’cMEM method showed the lowest Sl values whatever the
approach and the classical approach using source locatonnectivity measure (6, 1, 1 and 1 % for cMEM/MI,
ization only. In Fig.4, we show two typical examples of cMEM/PLV, cMEM/h? and cMEM#? respectively).
the difference between the proposed network-based anal-
ysis and the classical localization approach. Thest
example is for cMEM combined with MI vs. cMEM only. Discussion
This Figure shows that the information extracted in both
cases was noticeably different. The source connectivitydentifying epileptic brain networks from noninvasive
approach identied a network close to the reference oneM/EEG data is a challenging issue. Recently, source
(Fig. 4a), with nodes both in the parietal and in the tem-localization combined with functional connectivity analy-
poral region (Fig4b). There were no spurious nodes in sis led to encouragingndings in the estimation of func-
remote regions. In contrast, with the sole source localizational cortical brain networks from scalp M/EEG
tion, after averaging the results over a 50 ms intervarecordings (Coito et al2015 Jiruska et al.2013 Mali-
around each of the epileptic peaks, the parietal source wasowska et al.2014. Nevertheless, the joint use of these
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Fig. 3 Two networks scenarica Brain networks obtained by using deviation) of the similarity indices computed between the network
the different inverse and connectivity methods. The original  identi ed by each combination and the model network
network (ground truth) is shown and values (meart standard

two approaches is still novel and raises a number oEEG signals simulated data from a realistic model of multi-

methodological issues that should be controlled in order tdocal epileptic zone as a ground truth for comparing the

get appropriate and interpretable results. In this paper, wperformance of considered methods. To our knowledge, a
reported a comparative study -in the context of epilepsy- omodel-based evaluation of source connectivity methods
the networks obtained from all possible combinationshas not been performed yet. A second—and still novel—
between four algorithms to solve the EEG inverse problenaspect is the use of depth-EEG signals (intracerebral
and four methods to estimate the functional connectivityrecordings performed during presurgical evaluation of
An originality of this study is related to the use of densedrug-resistant epilepsy) to evaluate the relevance of
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Fig. 4 Source localization versus source connectivétihe reference  Results were averaged over a 50 ms interval around each of the spike
network.b Results obtained by the network-based approach (cMEMfpeaksRedcolor represents the sources with the highest energy (Color
MI and wMNE/PLV). c. Results obtained by the localization based gure online)

approach (cMEM and wMNE) using same window of analysis.

networks identied from scalp EEG data. Overall results parcellation process based on Destrieux atlas. This
obtained on simulated as well on real data indicated thaapproach was frequently used in the context of M/EEG
the combination of the wMNE and the PLV methods leadssource connectivity (de Pasquale et 201Q Fraschini

to the most relevant networks as compared with theet al. 2016 Hassan et al20159. However, such an aver-
ground-truth (simulations) or with the intracerebrally- aging procedure may increase the noise power since its
identi ed networks (patient data). Results are morecomputation is performed over sources that, with some

speci cally discussed hereafter. probability, may not exhibit correlation (Brookes et al.
2014 where the need of alternative approaches such as
Methodological Considerations ipping the sign of the sources in each ROIs before aver-

aging the regional time series (Fraschini et 2016 or

The connectivity matrices were thresholded by keeping theleveloping methods based on probabilistic maps, a widely
nodes with highest strength values (strongest 1 %). Thiapproach used in the fMRI-based analysis, for instance.
procedure was used to standardize the comparison betweenAlthough EEG source connectivity reduced the problem
all the combinations. We were aware about the effect obf volume conduction as compared with scalp EEG con-
this threshold and we realized the comparative study usingectivity, it does not yet provide a perfect solution. The
different threshold values. All threshold values were foundvolume conduction effect is a challenging issue when
to lead to the same differences between the method (irperforming EEG/MEG inverse solution (Schoffelen and
verse/connectivity) combinations. Gross2009. In the connectivity context, the main effect of

In this paper, we have averaged the reconstructethe volume conduction is the appearance of ‘ami@l
sources within the same region of interest ded by the connections among close sources, a problem often referred
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Fig. 5 Application on real dataa Scalp EEG: results of the source computing the functional connectivity between the intracerebral EEG
localization approach using wMNEi¢ht) and source connectivity —signals [eft), ¢ Similarity indices: the Sl values obtained between the
using WMNE/PLV (eft), b Intracerebral EEG: regions visually network identi ed by each of the combination and the intracerebral-
identi ed by the epileptologistright) and the network obtained by EEG-based network

to as ‘source leakage’. The use of a high spatial resolutiohave some advantages, it was shown that, in most cases,
(high number of ROIs) may increase this problem. A fewthey also remove ‘real’ connections (Schoffelen and Gross
approaches have been proposed recently to deal with tH2009. In this context, some connectivity methods such as
source leakage by either normalizing the edges weights byLV have been shown to reduce the volume conduction
the distance between the nodes or removing the edgdslipp et al.2011). This may explain the good performance
between very close sources. Although, these approache$ this method. Indeed, in the double network scenario,
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PLV was able to detect the long-range connections The head model used in this study was computed using
between parietal and temporal networks. the Boundary Element Method (BEM) with three layers
Four inverse/connectivity algorithms were evaluated in(skin, skull and brain). This model was widely used in the
this paper. It is worth mentioning that some other inversecontext of M/EEG source estimation (Fuchs et24l07) as
algorithms like MUSIC-based and beamforming as wella compromise between computational cost and accuracy.
some connectivity measures such as power envelope calevertheless, other methods exist to compute the head
relation (O’Neill et al. 2015 were not included in this model such as the Finite Element Method (FEM) or adding
study. Moreover, we were focusing in this paper on evalother layers such as cerebrospinalid (CSF). These
uating different families of ‘functional’ connectivity methods can possibly have effect of the resultant network
methods regardless the directionality of these connectiongCho et al.2015. The evaluation of the above mentioned
Nevertheless, we consider that the analyses of the ‘effe@arameters/factors may be the topic of further
tive’ connectivity methods that investigate the causalityinvestigation.
between brain regions may be of interest in the context of
epilepsy (Coito et al.2015 2016. In this perspective, Identi cation of Interictal Epileptic Networks
methods such as the granger causality, the transfer entrofisom Scalp Dense-EEG Data
could be added to expand this comparative study. In
addition, all methods evaluated in the paper were bivariatei salient feature of epilepsy in general and epileptic net-
multivariate methods such as those based on the MVARvorks is the increased synchronization among intercon-
model were not included in our study. Different method-nected neuronal populations distributed over distant areas.
ological questions appear when using MVAR-basedThis “hyper’- synchronization often leads to an increase of
approaches. First, the successful estimation of MVAR suclbrain connectivity, not only during the transition to seizures
as Partial Directed Coherence (PDC) or Directed Transfebut also during interictal periods, as shown in many studies
Function (DTF) depends largely on thited MAR model, based on intracranial recordings (see (Wendling et al.
since all information is resulting from the estimated model2010 for review). In this context, the combination of the
parameters. In practice, this issue is difilt and directly M/EEG source imaging with the functional connectivity
related to the choice of an optimal model order and ammeasures has recently disclosed promisingdings to
optimal epoch length. Concerning the optimal model, mosidentify pathological brain networks, at the cortical level
of the criteria were originally proposed for univariate AR (Dai et al.2012 Lu et al. 2012 Malinowska et al.2014
modeling and no consensus was reported about multivarBong et al2013.
ate ones. The second crucial question is how to choose the However, two factors seem to be crucial for reliable
proper window size specially that MVAR model assumesestimation of EEG source connectivity: (i) the number of
that the underlying process is stationary, while neuroscalp electrodes and (ii) the combination between the
physiological activity are transient and may rapidly changeinverse solution algorithm and the functional connectivity
their states representing high nonstationary behaviorsieasure. Concerning the number of electrodes, it was
(Pereda et al.2005. Nevertheless the MVAR (when reported that the increase of the spatial resolution by using
carefully applied) could provide complementary informa- dense EEG may dramatically improve the accuracy of the
tion not only about the link exists between two signals butsource localization analysis (Michel and Murré012
also if one structure drive another of if there is feedbackSong et al.2015. In addition, the use of dense EEG, as
between these structures (Kasal. 2004. The direction- compared to classical montages (32 or 64 electrodes), is
ality could be also dened as ‘time-delay’ between two needed to accurately identify functional brain networks
regional time series which can be computed using linear ofrom scalp EEG (Hassan et #014. To overcome this
nonlinear correlation coetients. As our main objective in issue, dense-EEG (256 electrodes) recordings were used in
this study was to compare inverse algorithms and ‘functhis study. The main feature of this system is the excellent
tional’ connectivity methods using same criteria (here wecoverage of the subject’'s head by surface electrodes
used similarity between reference and estimated undirecteallowing for improved reconstruction of the cortical
graphs), we didn’t investigate the time-delays in the pre-activity from non-invasive scalp measurements, as com-
sented quantitative analysis. In addition this feature canngtared with more standard 32-128 electrode systems (Song
be computed for all the selected methods (the case of thet al. 2015. Regarding the combination of inverse/con-
phase synchronization method for instance). We believaectivity methods, most of reported studies have empiri-
that the directionality, estimated from Granger causality orkcally selected a combination while this selection was
and time delays, is indeed an interesting supplementarghown to have a dramatic impacts on results, in term of
feature in the context of epileptic seizure propagation anddenti ed network topology (Hassan et a014). The
will be a potential element for further analysis. present analysis brings further comation of this high
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variability observed when different inverse solutions and/ocMEM) was applied while both parietal and temporal net-
connectivity measures are being used in the pipelinavorks (as a priori introduced in the EEG generation model)
leading to cortical networks from EEG signals. are retrieved by the connectivity-based approach (cMEM/
A major advantage of the EEG source connectivityh?). Note that we have averaged the source localization
approach as presented here is that reconstructed souraesults in a time window of 50 ms to cover the time delay of
and associated networks were ideetl for the whole 30 ms set in the model between the two brain regions. Dif-
brain. Then graph-based metrics (strength values) werkerent time window were used to avoid the effect of the
computed to characterize the networks and the similarityvindow length. All tested windows (30 ms, 40 ms, 50 ms
index was used to compare the networks obtained fronand 60 ms) showed similar observations i.e. the absence of
various method combinations. In addition, functional con-the temporal sources (not shown here). The fact that epilepsy
nectivity was applied directly to the reconstructed signalds considered as a network disease can explain the low
and not on derived components. In this regard, this studperformance of some of the inverse methods as these
differs from (Malinowska et al2014) where connectivity methods were originally developed to localize ‘local’
was estimated on signals components obtained by ICA&pileptic foci characterized by high-energy sources regard-
decomposition. Although the methodological issue ofless the interrelationships between brain regions. Our results
measuring connectivity betwedndependentomponents show that EEG source connectivity methods are more suited
still holds, a future interesting study will compare the in the case of multi-focal epileptic zone. More generally,
results obtained from the ICA-based approach to thoséhey support the recent tendency in brain disorder research

reported here from source connectivity. which is the necessity to move from localizing ‘pathological
areas’ to identifying ‘altered networks’ (Diessen et20)13

EEG Source Localization Versus Functional Fornito et al.2015.

Connectivity

Epilepsy as a Network Disorder

Source localization methods have been widely applied to
interictal epileptic spikes (Becker et &014). The goal of There is increasing evidence that epileptic activity involves
these approaches is the localization of brain generators difrain networks rather than a single well circumscribed
epileptic activity from scalp recordings. A fundamental region and that these dysfunctional networks contribute to
guestion that is addressed in this paper relates to the diBoth ictal and interictal activity (Bourien et @004 2005
ference between the source connectivity and the sourcgoito et al.2015 Engel Jr et al. 2013; Hipp et aR011).
localization approach. This study indicated that the infor-Functional connectivity was widely applied to depth-EEG
mation extracted from dense-EEG recordings in both casegata to predict seizures (Mormann et2000 and identify
can differ dramatically. First, the connectivity is an addi- epileptic networks in partial epilepsies (Bartolomei et al.
tional step to the simple source reconstruction/localization2007). These studies showed alterations of synchronization
Second, the fundamental difference between both methods brain networks during interictal to ictal transition
is that the source localization ignores all possible com{Wendling et al.2003 as well as during seizures (Diessen
munications between brain regions. When performinget al.2013 Jiruska et al2013 Schindler et al2008. Most
source localization analysis, the sources with highesof these studies were performed using invasively-recorded
amplitude (averaged at given time period or computed atlata in patient's candidate to surgery. Interestingly, our
the instant of peak amplitude of the signal) are classicallyresults show that pathological networks involved during
kept. However, to some extent (depending on thresholdkpileptiform activity can also be identd from scalp EEG.
this approach may neglect the possible contribution of Indeed, we have evaluated the performance of a rela-
‘low energy” sources participating into the network tively new approach aiming at identifying epileptic brain
activity. networks from scalp EEG. The application of the method

Conversely, the hypothesis behind the network-basedn real data showed the good performance of this method
approach (typically when phase synchronization methods term of network identied from scalp EEG as compared
are used as connectivity measure) is that sources can léth those identied from intracerebral EEG. Note that the
synchronized regardless their amplitude. To this extent, weomparison was done only by computihg between the
believe that the network-based approach allows for reveakntracerebral signals based on a large number of studies
ing networks that are more specito epileptic networks, as showing thath? is one of the most adapted metrics to
hyper-synchronization phenomena constitute a typicatompute functional connectivity between intracerebral
hallmark of such networks. An illustrative example in this recordings (Bettus et al2008 Wendling et al.2010.
paper is the poor involvements of the temporal lobe regiorAlthough it is obviously dif cult to conclude on a single
when the sole source localization approach (in the case gfatient analysis, results showed good matching between
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scalp-EEG based networks and both the depth-EEG basé&gdumgartner C et al (1995) Propagation of interictal epileptic activity
networks and the expert judgment. Therefore, future work_ in temporal lobe epilepsy. Neurology 45:118-122

il ist in th licati f the EEG Becker H et al (2014) EEG extended source localization: tensor-based
will consist In the application of the source connec- vs. conventional methods. Neurolmage 96:143-157

tivity on a big database of real dense EEG data recordegetti v, Della Penna S, de Pasquale F, Mantini D, Marzetti L, Romani
from epileptic patients. In these patients candidate to sur- GL, Corbetta M (2013) Natural scenes viewing alters the

gery, we plan to use also intracerebral EEG signals as a dynamics of functional connectivity in the human brain. Neuron
refer,ence to validate the idengd networks. In addition 79:782°197 :
: ' Bettus G, Wendling F, Guye M, Valton L, Regis J, Chauvel P,

due to the excellent temporal resolution of the EEG, the  Bartolomei F (2008) Enhanced EEG functional connectivity in
dynamic behaviors of the epileptic networks will be also ~ mesial temporal lobe epilepsy. Epilepsy Res 81:58-68.10oi:
explored (Hassan et a2015a Mheich et al.2015h. 1016/].eplepsyres.2008.04.020

Finall h . d ib ilenti L. Bola M, Sabel BA (2015) Dynamic reorganization of brain functional
inally, the capacity to describe epileptic activity not networks during cognition. Neurolmage 114:398-413

only according to the sites where epileptiform activity is Bourien J, Bellanger JJ, Bartolomei F, Chauvel P, Wendling F (2004)
generated but also according to the abnormal functional Mining reproducible activation patterns in epileptic intracerebral
relationships between these sites canrdtvely improve EEG signals: application to interictal activity. IEEE Trans Bio-

. . Med Eng 51:304-315. ddi0.1109/TBME.2003.820397
the surgical approach. We speculate that in order to bette‘E‘;ourien J, Bartolomei F, Bellanger JJ, Gavaret M, Chauvel P,

understand and ultimately prevent seizures, it is essential to  wendling F (2005) A method to identify reproducible subsets of
identify and then remove/disconnect pathological nodes of  co-activated structures during interictal spikes. Application to
the network (exhibiting abnormal hyper-synchronization intracerebral EEG in temporal lobe epilepsy. Clin Neurophysiol

I . L 116:443-455. dok0.1016/j.clinph.2004.08.010
capability). The proposed method contributes to this alMBrookes MJ et al (2014) Measuring temporal, spectral and spatial

and reported results constitute ast step toward the changes in electrophysiological brain network connectivity.
development of more etient non-invasive diagnostic Neuroimage 91:282-299
methods for clinical epileptology. Caparos M, Louis-Dorr V, Wendling F, Maillard L, Wolf D (2006)
Automatic lateralization of temporal lobe epilepsy based on
. . scalp EEG. Clin Neurophysiol 117:2414-2423
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: The human brain is an inherently complex and dynamic system. Emet rest, functional brain networks
: dynamically recon gure in a well-organized way to warrant an e cient communication between brain

regions. However, a precise characterization of this recorguration at very fast time-scale (hundreds

. of millisecond) during rest remains elusive. In this study, wased dense electroencephalography data

recorded during task-free paradigm to track the fast temporal gnamics of spontaneous brain networks.
Results obtained from network-based analysis methods revealed thexistence of a functional dynamic

© core network formed of a set of key brain regions that ensursegregation and integration functions.

Brain regions within this functional core share high betweenass centrality, strength and vulnerability
(high impact on the network global e ciency) and low clustering coe cient. These regions are mainly
located in the cingulate and the medial frontal cortex. In particlar, most of the identi ed hubs were

found to belong to the Default Mode Network. Results also revealed thathe same central regions may
: dynamically alternate and play the role of either provincial (loal) or connector (global) hubs.

e human brain is a complex network. Even at rest, siyatiistributed brain regions are functionally con-
nected, in a very organized way, to continuously share information wittogrestt. e intrinsic connectivity
networks (ICNs), also known as Resting State Networks (RSNs), are now watgtyzex and found to be quite

© consistent across subjectd® as well as neuroimaging technigiféé e most commonly known RSNs are the
. default mode network (DMN), the dorsal attention netw@DAN), the ventral attention network (VAN), the

motor network, the visual network (VIS), and the auditory network (AUD).

Several studies have reported the existence of few critical regions that mé&eypleyein establishing and
maintaining an e cient brain communication at rest. e presence of central brain regions or ‘hubs’ aheest
been revealed for structut&f” and functionad®3? connections. In addition to their highly central rolegast

. studies have shown that these brain hubs tend to be densely interconnedtiegcivibther more than expected

by chance, forming the so called rich-club organization of the humar#bfain
Using Magnetoencephalography (MEG) or/and Electroencephalog(&fG), it was shown that these RSNs
have an electrophysiological b&s#&“L In a preliminary studi?, we used dense-EEG recordings to conthe

. existence of brain regions playing the role of hubs intia stzenario. Yet, the main gain of using M/EEG is the
. excellent temporal resolution that allows the tracking of tmpteal dynamics of RSNs at sub-second time scale,

not reachable when using fMRI. Various MEG studies showed the cruciflttwdeDMN, and the cingulate cor-

tex in particular, in maintaining ecient temporal communication in the whole br&if?. Other studies focused
. on assessing the temporal transitions between R $Msvever, none of them looked at the temporal transition

between brain regions, networks and modules over hundreds of milliseconddlme sc
To tackle this issue, we collected dense-EEG data from 20 subjects slitng performing any particular

task. We then reconstructed the functional networks using &fti@e connectivity approach as described in pre-
. vious work?4344 Topologies of the idented networks were characterized in terms of node’s strengtierabil-

ity, betweenness centrality and clustering ogient. In the present study, we extend our previous static afalysis

toward the study of the dynamic interactions between resting state netwerkavé/also explored the dynamic

modularity and classid brain regions into provincial (intra-community) and coete (inter-community)
hubs. Our results revealed the existence of a dynaminetwerk located mainly in the cingulate and the medial

© frontal cortex. We found that a large proportion of the brain hubs leimthe DMN. Results also revealed that
. the same brain hubs might dynamically change their actindslay the role of either provincial (segregation)
. or connector (integration) hubs.

: 1IINSERM, U1099, F-35000, Rennes, Frafidaiversity of Rennes 1, LTSI, F-35000, Rennes, FraAzem Center for

Research in Biotechnology and its Application, EDST, Lebaneaetsity, Beirut, Lebanor:CRSI research center,
Faculty of Engineering, Lebanese University, Beirut, Lebanon. Correspmedend requests for materials should be
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e functional networks were estimated using dense BHGe connectivity method. As recommended in
Hassaret al*4, we combined the weighted Minimum Norm Estimate (wWN)MEd the Phase Locking Value
(PLV) to reconstruct the dynamic of the cortical sources and computerttigoihal connectivity between these
sources. is produced a fully connected, undirected and weighttdiorks (see Materials and Methods for
details about the construction of the functional netwaorks)rder to explore the advantages of the dynamic
analysis, we performed our study in two ways: ‘static’ and ‘dynamitieFstatic approach, the functional con-
nectivity was computed over the entire noise-free epochtidn (40 seconds). To examine the dynamics of
the RSNs, we used a sliding window of 300 millisecondhich PLV was calculated over its data poines (se
Materials and Methods for more details)is value was chosen as it represents the minimal time window size
required to adequately compute PLV as recommended by Laehalik Other time window sizes (1s, 2s, 10s
and 40 s) were also explored and results are reported in FiimedS4in the Supplementary Materials.

We then identi ed the brain hubs by computing the centrality, vulnerabditgngth and clustering coeient
measures of the dérent brain regions. ese measures have been evaluated here since they rapregart
commonly used metrics to detect brain htibjs?% 28 3134424654 | this context, Spornet al®* showed that a
node can be deed as hub if it has an unusually high strength (a langger of connections) and centrality
(the node lies on a high number of shortest paths) aod &llistering coecient (the neighbours of a hub are
not directly connected with each other). We also spéeubased on previous studfe’s 485556 that adding
the vulnerability metric to the spectrum of network me@a@s can provide new insights into the midon of
the hubness. Indeed, a node with high vulnerability is supposed to have a higiicamon the global eiency
of the networR®. In addition, we have classd hubs into provincials and connectors based on a catibin
between the participation coeient and the within-degree modate354570, e full pipeline of our study is
summarized in Fidl.

s aicanalyi . Inthis analysis, we computed the graph metrics (centrality, vulnerabilitygtrand clus-
tering coe cient) using the entire signal length (40 s). We then quedhtihe di erence between nodes distribu-
tions of each graph metric using a Wilcoxon test. Only nodes showingcsighdli erencej< 0.01, Bonferroni
corrected) were retained, see Materials and Method section.

Figure2A presents the results obtained for all subjects. It shows four circtpéotbae ecting from the out-
side inward: centrality, vulnerability, strength anastéring coe cient. e outermost ring shows the 68 brain
regions (obtained from the anatomical parcellation based on Desikaanlilitlasd arranged by their assigned
resting state network (see Tabl| Supplementary Materials). e gure also shows that the central nodes are
L/RIiCC, L/R PCC, L/R paraH, L/R MOF, L/R rACC, L/R LIOFTRI, L pORB and R ENT.e vulnerable nodes
are RiCC, L/R paraH, L/R MOF, L/R rACC, L LOF, RpT pORB and R ENT. e L/RiCC, L/R PCC, R paraH,
L/R MOF, L/R rACC, L LOF are the regions with highest strength while L/R ITG/BRmMMFG are the regions
with highest clustering coecients.

Results also demonstrated that a large proportion of the ightirain regions in terms of centrality (12/13),
vulnerability (10/11) and strength (8/8) belong to the DMN (BB). In contrast, one can notice that the nodes
that have the highest clustering cagents were distributed across the DAN and the SAN, whikgro cant
node was belonging to the DMN. Brain regions were alssi @alsinto provincial hubs, connector hubs and
non-hubs by computing the participation coeient combined with the within-degree z-score of the association
matrix obtained for all subjects (F&A), refer to Materials and Methods section for more details about the mod-
ularity analysis. Figuri@Billustrates the spatial locations of the resultant hubs on the caidate. We observe
that a large number of hubs belong to the DMN (9/12) with the presence of@méelonging to the DAN and
two nodes not belonging to any of thee analyzed RSNs.e PCUN region was depicted as a provincial hub,
while L PCC, R MOF, L/R paraH, L/R rACC, R paraC, R periCal, RiCC, L pORB and L LGFaregitassed
as connector hubs.

Dynamic analysis. To investigate importance of the dynamic analysis, we applied tleeabmve procedure

for each sliding window. e centrality histogram depicts L/R iCC, R PCC, L MOF, and L/R paraH asaigni
regions. Concerning the vulnerability, the sigigint nodes are R iCC, R paraH, L/R MOF and L LG#nodes
having the highest strength values are L/R iCC, LIBOAL/R paraH, L/R MOF, R ENT, L/R LOF and L FUS
regions. Concerning the clustering parameter, L/R LOF, L/R ITG, L pTRI, L/R pORB, LFP, L/R postand. FUS
L IPL regions showed the highest values @Aj. Very similar results were obtained usingegent time win-
dows and thresholds (see Supplementary Materials, FiglieeslS2).

We then investigated how the brain regions characteristicsiateating during time, and which regions are
more frequently involved in the segregation/integration tbtirers. To do that, we extracted at each time window
the nodes with the highest centrality, vulnerability, strength and clusterngc@nt values. We then computed
the transition matrix which represents the number of changing times from oioa teganother for each of the
graph metrics. e transition matrices illustrated in F¢B demonstrate the signtant (color-coded) columns
(p< 0.01, Bonferroni corrected). One can state that the transition to nodes d¢sigreDMN is very frequent
compared to other RSNs. Importantly, results show thatttiee is a high probability of transition to L/R iCC
according to centrality, vulnerability and strength. According to vulnerability, the celgomesponding also to
L pCC and R paraH are signant. Furthermore, the transitions to L LOF, the L/R MOF, L/R paraH are higher in
the strength transition matrix. However, there is no isigant transition to any of the DMN nodes concerning
the clustering coecient, and the single remaining column corresponding to L ITG.

We have also evaluated the fractional occupancy of RSNs durangnitially we extracted the sigeiant
nodes at each time window and then we associated the considered window to thatR&Mains the majority
of these nodes (see TaBlefor nodes aliations). A er that, we computed the occurrence rates of each RSN

Scientific RepoRts | 7:2936| DOI:10.1038/s41598-017-03420-6 2



Figure 1. Structure of the investigatiole. : Pre-processing of the dense-EEG data by interpolating channels
and removing artifactual epochmiddle Estimation of the EEG cortical sources using the weighted norm
estimation method (WMNE). is step was followed by a projection of the source signals on the Desikan-
killiany atlasright: Quanti cation of the functional connectivity between the regional time seriesthsing
phase locking value (PLV). Two analyses were performed: (i) the staticsainalfsch PLV was computed
over a segment of 40 s and (ii) the dynamic analysis in which PLV was compute80fvesssliding window.

e networks were then characterized byedent graph measures (centrality, strength, vulnerability, clustering
coe cient and modularity). e temporal transitions between networks/node’s characteristic across time were
also performed.

across all segments and all participants for the four measueestatistical test using Wilcoxon demonstrates a
signi cant di erence between DMN and other RSNs with regard to centrality and strerg€hQl). However,
no signi cant di erence was found between DMN and AUD according to tieevability measure. For the
clustering coe cient, other RSNs occupancy rate is sigantly di erent from that of DMN, DAN, SAN, AUD
and VIS (Fig5A).

Interestingly, inspection of the transition matrices betwRBNs reveals that there is a preference for the brain
to move the centrality, vulnerability and strength charastierto DMN rather than other networks (FigB).

We also note that the vulnerability transition from thEI® to the AUD network is signicantly considerable.
Consistent with the previous results, the clustering @dent transition to the DAN and ‘Other’ is the highest
among the ve known RSNs.

Finally, we have explored how a brain region can changenittonal role (segregation/integration) over
time. us, we assigned each of the 68 brain regions to one tfrée classes (non-hub, provincial hub, con-
nector hub) at each time window. Fig@& illustrates the results for all subjects. A selected row in thiixmat
presents the role variations of a spedirain region across time windows. A simple examination of thise
reveals that the same node can change its type (provincial/connemtorie time to another. To extract the
brain regions that are sigrdantly behaving as connector or/and provincial hubs, wWenpeed a chi-squared test
and retained the signcant nodesg{< 0.01, Bonferroni corrected). Ten out of the thirteen sicgmt provincial
hubs were found to be in the DMN, two are in the DAW ane was assigned to the VIS network. We also found a
large proportion of connector hubs included in the DMNhwhe presence of two nodes in the DAN, three nodes
in the VIS and three nodes assigned to none oftBdRSNs. A considerable observation here is that some nodes

Scientific RepoRts | 7:2936| DOI:10.1038/s41598-017-03420-6 3
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Figure 2. Static analysis: graph metrio&) (e distribution of the four measures across the 68 brain

regions. e circular barplots resct from the outside inward: centrality, vulnerability, strength and clustering
coe cient. e outermost ring shows the 68 brain regions obtained from the anatomicallgtion based

on Desikan-Killiany atl#$ arranged by their assigned resting state networks: default mode network (DMN),
dorsal attentional network (DAN), salience network (SAN), auditory network (AUD)aMimiwork (VIS),

see Tabl&1lin Supplementary Materials for more details about these assignmentsly\Whawed the bars

for signi cant nodesf{< 0.01, Bonferroni correctedB) e location of the signéant brain regions on the
cortical surface. e color of the node corresponds to which RSN is assigned. Names andatibbsef the

brain regions are listed in Tal#d

may change their function by dynamically alternating between provaribtonnector hubs in the resting net-
work across time. Among these nodes, we cite L/R iCC, L/R paraH, L FUS, L LOF, L/R MOF, L/RORE;, L

Scientific RepoRts |7:2936| DOI:10.1038/s41598-017-03420-6 4
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icc Str, BC, Vuln: static, dynamic DéEg*’, Str2’ DTI
i
P, Z: static, dynamic BE&:53 pL:A7 fMRI
BC, VulIn: static Ded?2"47, Str:27.29 DTI
PCC BC:212227.31,42 fMRI
P, Z: static, dynamic
RC:23 pL#7 MEG
Str: static, dynamic De#4” DTI
rACC BC, Vuln: static BC%3L4953 MRI
P, Z: static, dynamic RE&:24 p, 727
Str, BC, Wuln: static, dynamic Dég*’ DTI
MOF Bc:zl 22,31,42,49 fMRI
P, Z: static, dynamic
P, 2%, PLA7 MEG
Str, Vuln: static, dynamic Dety*’ DTI
LOF BC: static fMRI
BC:ZJ‘ 22
P, Z: static, dynamic MEG
Str, BC, Wuln: static, dynamic B€:RCS? DTI
ParaH - -
P, Z: static, dynamic P, Z fMRI
Strength: dynamic Ded*
FUS . BC:5® fMRI
P, Z: dynamic
PL:47
Deg:m 19,2258 DTI
S'[I'Zzg, Bc:la 19,22
PCUN P, Z: static, dynamic RC:2324%2 pL:47
fMRI
Vuln: 18
P, 7:27,52,58-60
LING P, Z: dynamic Ded, PL47 fMRI
) Deg, Str, B&Y
ParaC P, Z: static DTI
P, z%
. Deg:*’, PL47 DTI
Cunues | P, Z: dynamic
P, Z:#, RC2* fMRI
. . Deg, Str, BCY
periCal | P, Z: static DTI
P, 27"
Str: dynamic
ENT . x x
BC, Vuln: static
Str: static, dynamic
pORB - - x x
P, Z: static, dynamic
Str, Vuln: static, dynamic
pTRI - x x
P, Z: static

Table 1. A comparison between the idergid brain hubs in our study with structural and functional previous
studies. Abbreviations. Deg: degree, Str: strength, PL: path length, BC: betweetraiss Beparticipation
coe cient, Z: within degree module and Vuln: vulnerability.

and L pTRI. Results of sigeiant provincial and connector nodes usingedent time windows are presented in
Supplementary Materials, Figus&

Discussion

ere is growing evidence suggesting that the brain is a compglemsf interacting functional units. is com-
plex network was shown to be dynamic and network’s behaviour charegese. In this context, the recent
past years have seen a sigant increase of interest for dense-EEG analysis of funchicaia networks at the
level of cortical sources.is approach, called EEG source connectivity, is conceptualigttractive as high spa-
tiotemporal resolution networks can be directly ideatl in the cortical source spaceis method was recently
evaluated for its capacity to reveal relevant networkisdicontext of cognitive tasksnd brain disordefs, It
was then extended to track the spatiotemporal dynamics of functional brain nefitie recently, we have
performed a preliminary study using this technique combined waptgtheory to explore the brain network
architecture during rest in a static ViayHowever, the dynamic recoguration of resting brain network and its
associated brain regions over short time scale (hundredglisecond) remains elusive. In this study, we used
the dense-EEG data combined with graph theory analysis to characterizediiedast reconguration of the
brain networks at rest.

Scientific RepoRts |7:2936| DOI:10.1038/s41598-017-03420-6 5



Figure 3. Static analysis: modularith) e scatter plot of the participation coeient and the within module
degree for the 68 brain regions. Based, three main areas can be ideati: Non-hubs, provincial and

connector hubs.R) e spatial locations of the identid hubs on the cortical surface. Names and abbreviations
of the brain regions are listed in TaBle

In this paper, we have investigated the dynamic behaviour of the fundtieimahetworks during rest over a
very short time scalegecond). is has never been done before. We have also gedrkie modular architec-
ture of the dynamic brain networks and have extracted the local (provincia)dadoad (integrator) brain regions
that play a key role in maintaining the communication kesw brain regions. We also showed that the same
regions can play the same role (provincial or integrator) during a given tioe p&gain, these methodological
aspects and the results are novel.

e main originality of this work is the combination of soucoanectivity analysis with graph theoreti-
cal study to explore the dynamics of node’s charatitari@entrality, vulnerability, strength and clusteding
networks and modules over hundreds of milliseconds tica¢esvhich cannot be reached when using fMRI.
Interestingly, the source connectivity method is a recerthrgldoped method used to identify functional networks
at the cortical level from scalp dense-EEG recordings.

Our results showed mainly that the dynamic analysis of the RSNs at few huridndisezonds time scale
revealed valuable characteristics of the brain regiotigatignand ‘hubness’ We showed that the human brain
holds a dynamic functional core network of a set of central brain regions that dgiigrensure both segrega-
tion and integration processes. By classifying the brain regions into locdbbabhybs using the participation
coe cient and the within-module degree, we showed for thetime that same brain region can dynamically
switch its function between provincial (segregation) and cctongintegration) hubs. Results are further dis-
cussed herear.

Network hubs in the brain. Identifying brain regions that have a stronguence on information segre-
gation and integration in the brain network is a key isswh&vacterize the brain functions. To the best of our

Scientific RepoRts |7:2936| DOI:10.1038/s41598-017-03420-6 6



Figure 4. Dynamic analysis: graph metric8) ( e distribution of the four measures across the 68 brain
regions. e four circular barplots resct (from the outside inward): centrality, vulnerability, strength and
clustering coe cient. e outermost ring shows the 68 brain regions (obtained from the anatonicellgt#on
based on Desikan-Killiany atfds arranged by their assigned resting state networks: default mode network
(DMN), dorsal attentional network (DAN), salience network (SAN), auditory network (AUBJaVnetwork
(VIS) (see Tabl81in Supplementary Materials). We only retain the bars for sigmt nodesf< 0.01,
Bonferroni corrected).R) e temporal transitions between the 68 brain regions in terms of centrality,
strength, vulnerability and clustering coeient. Only signicant columns are showp< 0.01, Bonferroni
corrected). Names and abbreviations of the brain regions are listenlé$Ta

Scientific RepoRts |7:2936| DOI:10.1038/s41598-017-03420-6 7
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Figure 5. Dynamic analysis: networks transitioA)( e occurrence rates of the DMN, SAN, DAN, VIS, AUD
and Other RSNs across time windows for all participaB}s. (e temporal transitions between all networks
across time windows for all participants. Only sigahnt columns are showp<€ 0.01, Bonferroni corrected).

knowledge, this is therst attempt to identify functional hubs based on Ef6@rce connectivity using graph
theory approach. It is therefore essential to substantiate its wsgfidy comparing the obtained results to prior
studies. For this end, we have selected all the niedested here as hubs in terms of centrality, vulnkirabi
strength and/or modularity-based method, and compared them to thosegtetet@eviously using other neuro-
imaging techniques (DTI, fMRI, and MEG). We found siderable overlapping between our results and previous
results for most brain regions, while three brain regions were otdgtdd as hubs in our study (Talle e
Tablel shows the brain regions idergid as hubs in our study in both static and dynamic approach and the cor-
responding graph measures.e table shows also if these regions were idahis hubs previously using other
neuroimaging techniques.

To identify brain hubs, many graph measures have been usesimplest commonly used way is the detec-
tion of highest-degree nodes.is approach has been used by several st&éié3%4. Others proposed to com-
bine the degree and path length meffi¢§53 6566 Here, we evaluated the most commonly used graph measures
in order to obtain a possible convergence between severalreedsterestingly, Tableshows that the iCC,
paraH and MOF regions are detected in both static and dynamic analysisnddegy of the graph measure
used.

Scientific RepoRts |7:2936| DOI:10.1038/s41598-017-03420-6 8
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Figure 6. Dynamic analysis: modularityAlle : e variations of the node’s type (provincial vs. connector)
across time for each of the 68 brain regidght: e bar plots represent the number of times a node is
considered as provincial hub (blue color) and as connector hub (red cBlor).g spatial distributions of

signi cant provincial hubs, and sigriant connector hubs. Names and abbreviations of the brain regions are
listed in Tables1

We hypothesized that a consistent hub node has ackigtnality (the node lies a high number of shortest
paths), high strength (the hub has a large number ofexions), high vulnerability (the removal of the hub
has a dramatic ect on the e ciency of the network) and low clustering cagéent (the neighbors of a hub are
not directly connected with each other). Based on thigitlen of “hubness’, the R iCC, L/R MOF and R paraH
regions are shown to be the strongest hubs as demonstrated in ounstalymamic analysis.

Several previous studies have also combined the patiticigme cient and the within module degree to
identify brain hub&*33545860  js method also allows the clagsition of hubs into two categories: provincial
and connector. Using this approach, most of the hubs obtained in aly were intersecting with the already
de ned hubs using centrality, vulnerability and strength. Among thedes, we list the L/R iCC, L/R paraH, L/R
MOF, L/R PCC, L/IR rACC, L/R pORB, L/R LOF, L/R RU&eover, combining empirical results from structural
and functional studies demonstrated a strong agreement between thesechtltesm@eviously dened connec-
tor/provincial hubs. e PeriCal has also been detected as a provincial hubimaragt al’’. e paraH was
shown to play the role of connector hub inétel®:. Similarly, the rACC region was idergid as a connector in
various studi€g 53 and paraC was detected as a connector as reportedimadaet al?”. Additionally, while the
PCUN was considered as a provincial hub in some stffieis was identied as a connector hub in oth&r&'

e MOF was identied as provincial in Hagmaret al?” and as connector hub in Meunigtral®®.

Hubs and RSNs. ere is a current debate whether the brain hubs are included inla fsingtional net-
work, or are distributed among multiple RSNs serving aslimies between these functional networks. While
many studies support the'st hypothesi¥ 458 others suggest that hubs form an infrastructure for camm
cation between RSRIs . Our results show that the brain hubs are distributed amoa@MN (the cingulate,
parahippocampal and prefrontal cortex regions), the OjadFsorbitalis, and parstriangularis regions) and the
VIS (cunues, lingual and fusiform). However, one can notice tbaDMN regions provide the largest contri-
bution to the network segregation/integrationis is revealed by a high fractional occupancy associatieel to
DMN compared to other RSNs, suggesting a frequent transition taehigork in the centrality, vulnerability
and strength temporal transition analysis. Having theonitgjof hubs included in the DMN corroborates with
the fact that DMN is the most dominating RSR Similar results were reported in the literatfé ¢ where an
important overlap between hubs and the DMN was observethegfmore, a study that explored the rich club
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organization of the human brain showed that the rich club s@dess-link with the majority of RSNs and that
the largest proportion belong to the DMIN

Dynamic core network. Most studies in RSNs were performed in a static way i.e. networks weresidenti
over the entire recording (called also ‘stationary’yais). e assumption that the connectivity between brain
regions is static throughout the resting recording eréicized in several studi®sin particular, Alleret al®®
reported that the functional connectivity states derived at resttfierdynamic analysis strongly ér from the
patterns obtained using the static approach. Accordingly, Caketoalf® introduced the term “chronnectome” to
describe that the patterns of coupling among brain regions are dynamicresisteat over time.

Performing the analysis over the entire segment (4@dowi length in our analysis) ered a global view
about the characteristics of the RSNs. However, the sole static anelyasigthe exploration of how the brain
regions/networks are recoguring at sub-second time scale. Moreover, examining the transition between nodes
in terms of graph metrics allowed us to investigate how brain hubs are afigibettveen each other with time.
Importantly, a unique nding has also been ered by tracking the dynamics, is the study of the hub’s type vari-
ations over time. In fact, a hub node has been usualljdeoed as either provincial or connector At 3453
5860 However, we revealed that the same brain region can play the maein¢ial hub or connector hub at two
di erent times for same subject at resese ndings are expected since the same regions have been detected as
provincial hubs in some previous studies, and as connector hubseirs oftor example, the PCUN was found
to be a provincial hub in re@®, 58 and a connector hub in re?3, 34. Similarly for the MOF that was idengid
as provincial in ref27 and as connector hub in r&P. A possible explanation of these results is that these hub
regions may participate in both the local segregation of the informatébtha global integration over the whole
network.

Methodological considerations. In this study, we used a proportional threshold (high@%t bf the edge’s
weights) to remove weak connections of the functional connectivity matricessdatial’® showed that net-
work measures are stable across proportional thresholdsacpiitr absolute thresholds. Nevertheless and in
order to ensure that the obtained results are not sensitive to thedliteslue, we performed our analysis across
a range of proportional thresholds (ranging from 5 to 20%) and realized Ibiigystd our results across thresh-
olds (see Supplementary Materials Figsife Results showed slight @rences between the several threshold
values. However, the overall conclusion of the study remains intact.

e time window used in the dynamic analysis corresponds to the aliténgth that can be used to ade-
guately compute PLV, as recommended by Lackaai®. In order to verify the reproducibility of the obtained
results, we repeated our analysis while changing the size of thedseli@cdow (300 ms - 1s - 2s-10s). A high
degree of agreement among these analyses was founghgem&utary Materials Figur&2 S3 One can notice
that most brain hubs were always located in the DMN for all time window sizes.

Here, we presented the results obtained by performingutig sn beta rhythms based on previonslings®
177172 To verify the importance of beta band, we performedaheesanalysis on the broad-band (3-45 Hz),
theta (3—7 Hz), alpha (7—13 Hz) and beta (14—25 Hz) frequency bands/éNerhluated the imence of the fre-
quency band on the DMN occurrence, see Supplementary Materials $Hgure statistical test using Wilcoxon
shows a signicant di erence between the DMN occurrences in beta, comparieta and alpha (9 0.01).
However, no signicant di erence was found between DMN’s occupancy in beta compared to the broad-band.

From a methodological point of view, several issues sheutiiscussed when reconstructing the sources from
scalp EEG signals. In fact, the number of source dipoles is much largdgramumber of electrodes, making the
inverse problem ill-posed. is required adding several physical and mathematical cantsttaisolve the inverse
problem. In the case of choosing the wMNE as an invens@osolthe main assumption was tad a solution
with lowest energy. is assumption is generally explained by the economic energy cost of treubiragrinfor-
mation processing. However, compared to other inverse solutions, the wMNEsinafditavely few hypotheses,
(see review in Becket al™for more detailed comparison between inverse solut@ssmptions). Moreover,
the lead- eld matrix is underdetermined, and an accurate description of the head model witepoaiect the
quality of solutions. Here, we reduced thed of this problem by computing a realistic subj@etes ¢ head
model using each individual anatomical MRI image. In addition, the networks iddnising EEG source con-
nectivity are limited to the cortex as the sub-cortical regions are nigt@astssible from scalp EEG recordings.

As an emerging technique, the evaluation of EEG sourntectvity method is crucial. e question is to
determine to what extent the functional brain networks idesdifrom EEG source connectivity correspond to
those that are actually activated during considered braitegses (resting state, cognitive task). For this peirpos
we used (i) real data recorded during a cognitive’t4sknd (ii) simulated data using biophysical/physiological
modelling and real epileptic d&taln Hassaret al*4, the method was used to estimate the networks involved
during a picture naming task for which a solid backgrowas available regarding activated brain regions and
networks. In brief, we performed a comprehensive literatewregew on these networks mainly obtained from
neuroimaging techniques such as fMRI, MEG, depth BEIZP&ET. From this review, a “reference” network
could be determined. It was used as a ground truth toela performance criterion about the accuracy of net-
works obtained from EEG source connectivity. Interestingly, we testegeanlanber of combinations between
the inverse solution and functional connectivity measufes one combination (WMNE/PLV), the estimated
network, activating during the cognitive task (500-700 ms), was found to gpat#th the reference network.

e above described work was then extended from static to dynamic analysist@usiaige cognitive task. We
showed that the EEG source connectivity method was@bilack the spatiotemporal dynamics of activated
brain networks from the onset (presentation of the visuailsi) to the reaction time (articulation). Estimated
dynamic networks were also found to match previously-reported regions/nehasrientied with other tech-
niques such as depth-EEG and MEG. More recently, a saslperformed in the context of epilepsy where a
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physiologically-plausible computational model of epileptogenic networks was wsgtbasd truth. Simulated
scalp-EEG signals were used to evaluate the penficera EEG source connectivity methods in term of
“re-estimating” reference large-scale networks modelled at neocorticahtgaial.the combination that showed
the highest similarity between reference and estimated networks was the wWMNE#&LX, the present paper.

Regarding the resting state data analyzed in the curapetrpthe only ‘ground-truth’ that could be consid-
ered are the fMRI recordings. Although fMRI data wasawailable for the healthy volunteers of our study, we
didn't ignore this issue and we have compared our resuhishagse reported in literature using fMRI and DTI
(Tablel). Qualitative comparison showed strong matching betwean bubs identied from our EEG-based
methods, on the one hand, and brain hubs reported elsewhere anabdstRI/DTI, on the other hand.

Furthermore, we assumed that by taking into account the wHakeragions without any prior selection of
particular region may give more straightforward results. Here, we useth@finical ROIs to dee the nodes in
the brain network. ere is no clear consensus about how to select thepsigde number of nodes that represent
the large-scale networks. On one hand, choosieg segmentation may increase the spatial resolution. On the
other hand, keeping a reduced number of ROIs may &eipving the spurious links that occur between spatially
adjacent sources. In this regard, we assume that 68 regions weiensto investigate the global characteristics
of the resting state networks while minimizing the problem of spurious connecétwmsén ‘very close sources.
Although the functional connectivity at the souregdl reduces the ect of the eld spread, they do not sup-
press its eects completely. In this context, few strategies haga proposed to remove zero-lag correlations
before performing any connectivity analyé$ Others suggest only keeping the long-range connetiitrig
However, these methods suppress important correlativatsmay occur at zero-l&gor even among close
regions.

In our study, we evaluated the possibleats of the eld spread on our results by assessing the relationships
between the average Euclidian distance of brain regions and their centraligthstrcirstering coecient, par-
ticipation index, and the within-module degree vallk&s.each measure, the Euclidian distance of a node was
calculated by averaging the distance between the nadallasther nodes that act the measurements. Our
results showed that a large proportion of nodes have long coongetith high metrics values. Furthermore,
there was neither sigréant correlation between the betweenness centrality of a nodes@wlihge distance
( = 0.0627p> 0.05), neither for the clustering cogent ( = 0.0374p> 0.05), the participation coeient
( = 0.076p> 0.05) and the within degree module=(0.013p> 0.05). e correlation between the strength
and the distance was statistically sigant with a positive correlation valuex(0.5,p< 0.01). is implies that
the used metrics were notected by the spurious short connections and that a high number of long-ramge co
nections were presented.

Materials and Methods

Data acquisition and pre-processing. e full pipeline of our study is summarized in HigData were
recorded from twenty participants. All experimeneravperformed in accordance with the relevant guidelines
and regulations of the National Ethics Committee for the ProtectioarsbRs (CPP)BrainGraphstudy, agree-
ment number 2014-A01461- 46, promoter: Rennes Univerkipital), which approved all the experimental
protocol and procedures. Written informed consents were obtained frguaréitipants in the study.

Structural MRI and EEG dense recordings (256 channels Higgtrical Geodesic Inc.) were collected for
each subject. During the acquisition, the subjects were astaddx for 10 minutes with their eyes closed without
falling asleep. Electrodes impedances were kept below HEKs were sampled at 1000 Hz, band-pessd
within 3—-45 Hz, and segmented into non-overlapping 40 s long epochsvibual inspection, the segments that
have substantial noise not due to brain activity (amplitudesto86r V) have been marked and excluded from
the analysis. For some subjects, few electrodes with igoat quality have been idenéd and interpolated
using the surrounding channels activitiese artifact-free segments (four segments per subject on average) were
then used for source estimation.e preprocessing steps were performed using EEGlahE Brainstorrf
open source toolboxes.

A realistic head model was constructed by segmertim@/4R| using Freesurfer sware packagé e
individual MRI anatomy and EEGs data were co-registdmexigh the identication of the same anatomical
landmarks (le and right pre-auricular points and nasion).e lead eld matrix was then computed for a cortical
mesh with 15000 vertices using OpenMEEG e regional time series weréered in the beta band [14—-25 Hz],
in which many previous studies have reported its importance in driving lartgespoetaneous neuronal inter-
actiond61%.7172, An atlas-based approach was used to project EEG signadsamtatomical framework consist-
ing of 68 cortical regions identd by means of the Desikan-Killi&hgtlas using Freesurférittp://freesurfer.
net/, see Tabl&1for more details about the names and abbreviations of these regions.

Brainn w rk ¢ n ruci n. Functional networks were computed using a recently propapptbach
called ‘dense-EEG source connectifit}?. It included two main steps: (i) solving the EEG inverse problem to
reconstruct the temporal dynamics of the cortical regionsuatedevel and (i) measuring the functional con-
nectivity between these reconstructed regional time series.

Source estimation.According to the linear discrete equivalent dipole model, EEG signals X(t) recorded from
channels (& 256 in our case) can be expressed as linear combination of P time-varyingdipalersources
S(b):

Xt =G 33+ NJ @
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where G is the leadeld matrix and N(t) is the additive noise. G was corag from a multiple layer head
model (volume conduction) and from the position of the @Ceteles. Here we used the Boundary Element
Method (BEM) as a numerical method to compute realtstiad models. We computed the leaid matrix
using OpenMEE®. In addition, the noise covariance matrix was calculated a long segment of the resting
recordings.

_ A ercalculating G and N(t), the inverse problem consists of estimating the pasaafi¢her dipolar sources
S(t) (notably the position, orientation and magnitude). As this problem is ill-p@edQ), physical and mathe-
matical constraints have to be addedrnd a single solution among the many solutions that minimize the resid-
ual term in the tting of dense EEG signals. Using segmented MRI data, tioe siistribution can be constrained
to a eld of current dipoles homogeneously dispersed oveardtiex and normal to the cortical surface. Precisely,
in the source model, the electrical contribution of each macro-column eleatrodes can be represented by
a current dipole located at the center of gravity of each triangle of the@Dand oriented normally to the tri-
angle surface. Using this source space, the weightéshiinNorm Estimate (WMNE) method only estimates
the moment of dipole sources.e WMNE compensates for the tendency of classical MN#&vto weak and
surface sources (Hamalainen and limoniemi 1994% is done by introducing a weighting matrixW

Swme= GWGH DTG WX @

where matrix W, adjusts the properties of the solution by redudimg bias inherent to MNE solutions.
Classically, Wis a diagonal matrix built from matrix G with non-zero terms inverseipgntional to the norm
of the lead eld vectors. is a regularization parameter computed relatively to theaktg noise ratio (= 0.2
in our analysis).

Functional connectivity. We used the phase locking value metric to compute the faattonnectivity between
the 68 reconstructed regional time-serie®e combination of WMNE/PLV was shown to be vergient to pre-
cisely identify cortical brain networks from scalp EE@rducognitive activit{? 44 As described in Lachaek
al%5 the phase locking value between two signaitgly is de ned as:

1 t+ /2
PLV(t) = |= o exg { () NHd 3)

where (1) and ,(t) are the unwrapped phases of the signafgly at timet. e Hilbert transform was used to
extract the instantaneous phase of each sigdahotes the size of the window in which PLV is calculated.

To explore the advantage of the dynamic analysis, we performed our stutly ‘sidiic’ and ‘dynamic’ ways.
For the static way, the functional connectivity was compated the entire noise-free epoch duration (40 sec-
onds). To examine the dynamics of the RSNs, we used a sliding window in which PLVulesctaleer its data
points. As recommended by Lachaial*, the window length should be largerthan 8 where 6 is the

. . cantral frequency
number of ‘cycles’ at the given frequency band. Havieg&al frequency of 19.5 Hz for the beta band, the small-

est window length can be used is 300 milliseconds. Other frequency bands and other time wénddiatso
described in the study.

Network analysis. Networks can be illustrated by graphs, which are setsdafsnirain regions) and of
edges (connectivity values) between those nodes. We constyragied of 68 nodes (i.e. the 68 previously identi-
ed cortical regions) and used all information from the functional conrigcfphase locking value) matfée,
is gave fully connected, weighted and undirected networkghich the connection strength between each
pair of vertices (i.e. the weight) wasged as their connectivity value.
We quanti ed the network’s nodes using several graph metrics:

Betweenness Centrality. e importance of a node is proportional to the numbigeaihs in which it partici-
pate$®. us, a way tond the critical nodes is to calculate the betweenness centrality of each node:

_ (i, u,j)
gc= W
. ij o @) (4)

where (i, u, j) is the number of shortest paths between nodes|j that pass through node (i, j) is the total
number of shortest paths betweeandj, and the sum is over all pairgof distinct nodes.

Vulnerability. e vulnerability of a spea node can be deed as the reduction in performance when the node
and all its edges are removed:
E E
V= —1
' E ®)
whereE s the global eciency of the network before any attach, Bnid the global eciency of the network ar
attacking the node®.

Strength. e strength of a node is the sum of the weights of its corresponding edges:
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wherew; is the weight of the edge linking the nodethe nodg®.

Clustering coecient. e clustering coecient of a node in a graph quargs how close its neighbors are to
being a cliqu&.

e network measures and visualization were performed usifié’Bad BrainNet viewét, respectively. e
above-mentioned network measures were normalized, thiatjsywere expressed as a function of measures com-
puted from random networks. We generated 500 surrogate random networks derivelddronginal networks
by randomly reshuing the edge weights. e normalized values were computed by dividing the original values
by the average of the values computed on the randomized graphs.

Modularity. Several algorithms have been proposed to decompose a network into modolesnonities of
high intrinsic connectivity and low extrinsic conned(Simon 1962). Due to the so-called degeneracy prob-
lem?, the modules of a same networkeli from a run to another and from a module detectityodthm to
another. With the aim to assess the consistency ofiteed liation, we applied the consensus clustering process
as follows:

Generate a set of partitions of the same network using three community deteetimds 100 times (New-
man algorithn5, Louvain algorithr# and Infomap algorithr¥f).

Compute the association matrix for all possible partifitfls is step results in a 688 matrix where the
elementA, ; represents the number of times the nddasdj are assigned to the same module across the runs
and algorithms.

Compare the consensus matrix to a null model association matrix gehéran a permutation of the orig-
inal partition$? and keeping its signtant value®.

Re-cluster the resultant association matrix using Louvain method.

Once a network has been partitioned, we classify tm®68&s into three main categories (non hubs, pro-
vincial and connector hubs) by considering the variatiwfrtsvo measures used to quantify nodes connectivity
within and between modules. e rst one is the within-module degree z-score that express the number of links
a node makes to other nodes in the same module:

Z = Kl(m) m
k(my) (7)

whereK;(m) is the within-module degree of the nad&(m;) is the mean of within module degree of nodes
assigned to the same community as niod&d ., is the standard deviation. Positive z-scores indicateatha
node is highly connected to other members o% t'?1e same commueijative z-scores indicate the opposite. In
our study, nodes with; > 1 5 were considered as hubs, and nodes ®jith 1 £ were considered as non-hubs.
We then focused on discriminating provincial and connector hubs basedewond metric known as partic-
ipation coe cient. is metric characterizes how edges of a given node are distributed across modules:

M 2
FIJ =1 Kl(m)
m1 K (8)
where M is the number of modulé§(m) is the number of edges between niogied nodes in module m. Based
on the criteria proposed by ré&f7, a provincial hub having most of its links inside its own module Ragadue
lower than 0.3; while a connector hub h&\alue greater than 0.3.is criterion was used in our study.

In addition to the evaluation of the dirence between brain regions according to their hubnesgjene
also interested in examining the drence between RSNs. To do so, we associated aachelgion in the
Desikan-Killiany atlas to its corresponding RSN based on the study desgriBhitdset al® in which authors
identi ed fourteen functional networks: anterior salience network, auditory nietvasal ganglia network, dor-
sal default mode network, higher visual network, language networéeutive control network, sensorimotor
network, posterior salience network, precunues netwmnikyary visual network, right executive control net-
work, ventral default mode network, and visuospatial network. In our stedipaused onve RSNs: the DMN
was obtained by combining the regions of the dorsattendentral default mode network, the SAN was obtained
by associating all the regions in anterior and posterior salience netwagksombination of the higher and pri-
mary visual networks yields to our VIS network.

s ai ical . To statistically identify the signiant nodes in terms of each graph metric, we quedti
the di erence between nodes distributions using a Wilcoxon tespfdgmuous data distribution (metrics dis-
tribution, transition matrices) and a chi-squared test foraby data distribution (aliation of connector/non
connector, provincial/non provincial hubs). All tests were coeébr multiple comparisons using Bonferroni
correction method.
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Abstract
Objective. Emerging evidence shows that cognitive dés in Alzheimets disease (AD)
are associated with disruptions in brain functias@inectivity. Thus, the identtation of
alterations in AD functional networks has becontemc of increasing interest. However, to
what extent AD induces disruption of the balanctoél and global information processing
in the human brain remains elusive. The main objedf this study is to explore the dynamic
topological changes of AD networks in terms of bragtwork segregation and integration.
Approach We used electroencephalography (EEG) data recdrded20 participants (10
AD patients and 10 healthy controls) during resstaje. Functional brain networks were
reconstructed using EEG source connectivity contpintelifferent frequency bands. Graph
theoretical analyses were performed assess diffesapetween both groupdain results.
Results revealed that AD networks, compared to okdsvof age-matched healthy controls,
are characterized by lower global information pesteg (integration) and higher local
information processing (segregation). Results shaalsa signi cant correlation between
the alterations in the AD patiehtisinctional brain networks and their cognitive sor
Signi cance.These ndings may contribute to the development of EEGvoekt-based
test that could strengthen results obtained fromeatly-used neurophysiological tests in
neurodegenerative diseases.

Keywords: EEG signal processing, brain networkgh&lmets disease
[§ Supplementary material for this article is avaiatnline

(Some guresmay appear in colour only in the online journal)

Introduction Emerging evidence show that the progressive evolution in

AD is related to pathological changes in large-scale networks
Worldwide, about 35 million people are estimated to hayBupekaret al 2008 Zhou et al 201Q Pievaniet al 2011).
dementia (World Health Organizatio?012). Alzheimets Therefore, from a clinical perspective, the demand is high for
disease (AD), the most common cause of dementia, isi@n-invasive and easy-to-use methods to identify pathological
neurological disorder essentially characterized by progregterations in brain networks. More precisely, noveluro-
sive impairment of memory and other cognitive functionmarkers able to identify and characterize networks associated

with cognitive decits in AD patients, in particular at early
5These authors contributed equally to this work. stage, are needed.
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In this context, electroencephalography (EEG) has sofftemail et al 2010. Based on Mungasl991), any score
major assets since it is a hon-invasive, easy to use and chynéater than or equal to 24 points out of 30 (MMSE.8)
cally available technique. A potential framework for advancéadicates normal cognitive functions. Below this score indi-
EEG analysis is the emerging technique calld&G/EEG cate cognitive impairment.
source connectivity(de Pasqualetal 201Q Hippetal 2012
Mehrkanoonet al 2014 Hassaret al 2015 Kabbaraet al
2017. As shown by several recent studies (Hag$ah?017a
2017, Engelgtal 2017, this technique could indeed respon@EG signals were recorded using a 32-channel EEG system
to clinical demand, provided that appropriate information prgfwente Medical Systems International-TMSi-, Porti system)
cessing is performed. Previous results, using the EEG soyskged on the head according to theZsystem (Klenetal
connectivity methods, showed alterations in the functione®99. Signals were sampled at 500 Hz and band-pléssd
connectivity at the theta and alpha2 bands in AD patiemistween 0.445 Hz. All subjects underwent 10 min of resting-
compared to controls (Canuet al 2012. Relationships state in which they were asked to relax and keep their eyes
between the dysfunctional connections in AD patients and $esed without falling asleep.
cognitive decline progression were also observed (Bl EEG signals are often contaminated by several sources of
2019. Moreover, Vecchiet al showed, in a large group ofnoise and artifacts. In order to clean raw signals, the pre-pro-
AD patients, changes in topological brain network characteessing followed the same steps as described in several pre-
istics mainly in the clustering coefient and the path lengthvious studies dealing with EEG resting state data (Ogttah
measures (Vecchietal 2014). 2006 Korjusetal 2015 Li etal 2015 Hassaret al 2017h

However, to what extent the AD modis the brain net- Kabbaraetal 2017). Brie y, the bad channels (i.e. displaying
work segregation (local information processing) and integrsignals that are either completelst or are contaminated by
tion (global information processing) remains unclear. This isovement artifacts) wererst identi ed by visual inspection,
the main objective of the paper. More precisely, we addregsnplemented by the power spectral density, when needed.
two questions: (i) do the dynamic brain network segregdhen, these bad channels were recovered using an spherical
tion and integration changes in AD compared to controlgierpolation procedure implemented in EEGLAB (Delorme
And (i) is there a correlation between the network disrupnd Makeig2004). In addition, epochs with voltageauctua-
tions and the cognitive score of the AD patients? To tackle tlisn> +80 V and< 80 V were removed. Consequently,
issue, we combined the use of the EEG source connectiVily each participant, four artifact-free epochs of 40s lengths
with the graph theory based analysis. Resting state EEG dad@e selected. This epoch length was largely used previously
were recorded from 20 participants (10 AD patients and 2Ad considered as a good compromise between the needed
age-matched controls). The functional networks were recagmporal resolution and the reproducibility of the results
structed at the cortical level from scalp EEG electrodes. Tfkabbaraet al 2017). As the recorded EEG data used here
identi ed networks were then analyzed by graph measutgs a very high temporal resolution (~1ms), the number of
that allow the characterization of these networks at differesailable samples is largely sefent to compute statistically-
scales from high-level topology to low-level topology. consistent functional networks. By using a sliding window
approach while calculating the functional connectivity, a high
number of networks were obtained for each 40 s-epoch and
for different frequency bands.

The EEGs and MRI template (ICBM152) were co-reg-
istered after identifying the anatomical landmarks (left and
right pre-auricular points and nasion) using Brainstorm (Tadel
etal 2011). An atlas-based segmentation approach was used
Ten healthy controls (6 males and 4 females, agé&gear) to project EEGs onto an anatomical framework consisting of
and ten patients diagnosed with AD (5 females and 5 malg8, cortical regions idented by means of Desikan-Killiany
age 6681 year) participated in this study. All subjects prqDesikanet al 2006 atlas, see tabl§1 (supplementary mat-
vided informed consent in accordance with the local institgrials ~ tacks.iop.org/JNE/15/026023/mmeliafor more
tional review boards guidelines (CE-EDST-3-2017). Patierdstails about the names and abbreviations of these regions.
were recruited from the memory clinic of Dar al-Ajazghe lead eld matrix was then computed for a cortical mesh
Hospital and from Mazloum Hospital, Tripoli, Lebanon. Agesf 15000 vertices using OpenMEEG (Gramfetral 2010).
matched healthy controls were recruited from Dar Al-Ajaza
Hospital and the local community. For each subject medigthin networks construction. Brain networks were con-
history, a cognitive screening test and EEG recording wettucted using théEEG source connectivitymethod (Has-
performed. The mini-mental state examination (MMSEanetal 2014). It includes two main steps: (1) Reconstruct
was used as an indicator of the global cognitive performanpe temporal dynamics of the cortical sources by solving the
(Folsteinetal 1979. This test has been widely used to chairverse problem, and (2) Measure the functional connectiv-
acterize the overall cognitive level of AD patients and to esiiy between the reconstructed time series. Here, we used
mate the severity and progression of cognitive impairmenht weighted minimum norm estimate (WMNE) algorithm

Data acquisition and preprocessing

Materials and methods
The full pipeline of this study is illustrated igurel.

Participants
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Figure 1. Design of the study. Data were recorded from 10 healthy controls and 10 AD patients during resting state condition (eyes
closed). The cognitive performance was evaluated using MMSE score. The cortical sources were reconstructed using weighted minimum
norm estimate (WMNE) inverse solution. Desikan Killiany atlas was used to anatomically parcellate the brain into 68 ROIs. The dynamic
functional networks were then computed using phase synchrony method combined with a sliding window approach. In order to analyze
the difference between healthy and AD networks, graph measures were extracted: clusteg@ntagibbal efciency and vulnerability

of each node (inuence of each noteattack on the network global efency). Modularity-based parameters (mainly integration and
segragation of networks) were also used. Moreover, the network hubs of each group weeslidedticompared.

as inverse solution (Hamalainen and limoniet@B4). The etal 2009. To describe and quantify the evolution of brain
reconstructed regional time series wettered in different networks as a function of time, we applied the multi-slice
frequency bands (theta-@ Hz); alphal (810 Hz); alpha2 modularity (Bassetet al 2013. In this method, the nodes
(10-13 Hz); beta (1330 Hz)). The functional connectivity across network slices (time windows) are linked via a cou-
was computed, for each frequency band, between the regigtialg parameter using a quality function given by the follow-
time series using the phase locking value (PLV) measumg formula:

(Lachauxet al 1999. The PLV ranges between 0 (no phase

locking) and 1 (full synchronization). Qm = 1 Ajj |@ v+ G (Mi, M) .
Using PLV, dynamic functional connectivity matrices were H ijir 2m
computed for each epoch using a sliding window technique (1)

(Kabbaraetal 2017). It consists in moving a time window of Where nodes andj are assigned to communitié4 and

certain duration along the time dimension of the epoch, anldlj in slicel, respectively.A; represents the weight of the
then PLV is calculated within each window. As recommendedge betweenand;. | is the structural resolution parameter
in Lachauxetal (2000, we chose the smallest window lengtiof slicel. G, is the connection strength between the njode

that is equal tg 6 where 6 is the number tfycles in slicer and the nod¢ in slicel. The structural resolution

at the gi(\q/en freeaﬂagﬁguye%wand. In theta band, as thtgycentral paameter and the inter-slice coupling parameter are set to 1.

quency (Cf) equals to 6 Hzequals 1s. Likewise,= 666 ms ki is the strength of the nodén slicel, the -function (X, y)

in alphal band (Cf 9 Hz), 521ms in alpha2 band (€f is1ifx=yandO0otherwisen= 3 ;Ajandu= 3 k.

11.5 Hz), and 279 ms (Gf 21.5 Hz) in beta band. Functional The multi-slice modularity algorithm was applied with

connectivity matrices were represented as graphs (i.e. iggonal and ordinal inter-slice couplings. Diagonal and

works) composed of nodes, represented by the 68 ROIs, @fftinal coupling means that each node is only connected to

edges corresponding to the functional connectivity valuégelf in the adjacent slices. Here, a slice corresponds to a

computed over the 68 regions, pair-wise. network at a given time period. Hence, the number of slices
Considered values yield, for each epoch, to 33 network@&duals the number of windows at a given frequency band.

in theta band, 66 networks in alphal band, 76 networks inTo deal with the'degeneracy problem, we computed a
alpha2 band and 130 networks in beta band. 68 * 68 association matrix (Sales-Paietal 2007, Rubinov

and Sporn011, Lancichinetti and Fortunat®012 where
Multi-slice networks modularity. The modularity aims at the elementA;; represents the number of times the nades
decomposing a network into different communities of higgnd j are assigned to the same module across 200 runs using
intrinsic connectivity and low extrinsic connectivity (EickhoffLouvain algorithm (Blondelet al 2008. The association
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matrix was then compared to a null-model generated from

100 random permutations of the original partitions. That is, LM y

for each of the 100 partitions, we reassign nodes uniformly at Integration"M; = N nyw. A ®)
random to the modules present in the partition. This generates s
a null model matrix whose elemef; is the number of times Where M is the module of the node N denotes the total

the node andj are randomly assigned to the same communityodes numbery the number of nodes assigned to the module
To remove randomness, we kept the sigant values of the M. Ajj represents the number of times the nadasd j are
original association matrix by setting any elemayjtwhose assigned to the same module across slices and runs. A region
value is less than the maximum value of the random asso#iih high integration value tends to be present in communities
tion matrix to O (Bassettal 2013. Finally, the thresholded other than its own across time (Bassetil 20195.

association matrix was re-clustered using Louvain algorithm.

Hubs identi cation

Network measures Hubnessis a key feature when exploring the brain network

The topological properties of identid networks were char-architecture due to the high imence of hub nodes on net-
acterized using the fo||owing graph measures: work dynamics and information processing (van den Heuvel
and Sporng013. Once modules are idenéd, the 68 nodes

Average clustering coefficient. The clustering coetient Wwere classied into three main categories (non hubs, provin-
of a node represents how close its neighbors tend to clu§tgt hubs and connector hubs) using combination of two mea-
together (Watts and Strogat298. Accordingly, the average sures. The rst one is the within-module degréele ned as:
clustering coefcient of a network is considered as a direct ATVEY

. = . _ Ki(Mi)  K(M)
measure of its segregation (i.e. the degree to which a net- Zi= ———————~,
work is organized into local specialized regions) (Bullmore k(M)
etal 2009. In brief, the clustering <.:oerf:|ent of a nod_e 'S Where K; (M;) is the within-module degree of the node
de ned as the proportion of connections among its neighb

divided by the number of connections that could possibly ex'l%iMi) is the mean of within module degree of nodes assigned
between them (Watts and Stroga@99. to the same community as nodeand v, is the standard
deviation. A positiveZ value indicates that the node is highly

Global efficiency. The global efciency of a network is the Connected to other members of the same community (Gaimer

average inverse shortest path length (Latora and Marchfgrf! 2009. In our study, a node is considered as hub if the
2001). A short path length indicates that, on average, edt{"€SPonding within module degree is greater than 1.5.
node can reach other nodes with a path composed of only ¥V& then focused on classifying hubs into provincial and
few edges (Sporr2010). Thus, the global etiency is one of conne_ctor based_ on a ;econd met_rlc known as participation
the most elementary indicators of netwerkntegration (i.e. CO€f cient @). This metric characterizes how a ntxledges
the degree to which a network can share information betw@&f distributed across modules:
distributed regions). c _ 2
P=1 Ki (M) ‘EM) . (5)
Recruitment. The recruitment of a nodecorresponds to the =1 !
average probability that the node is in the same module ach@gsereC is the number of modulek; (m) is the number of
runs and slices (i.e. time windows). It is calculated as followsgges between nodeand nodes in modulel. Based on the
1 criteria proposed by Guim&rand Nunes Amaral2005, a
Recruitment'M; = o Aij - (2) provincial hub having most of its links inside its own module
Mim has aP; value lower than 0.3; while a connector hub h&% a
WhereM is the module of the nodeny denotes the numberVvalue greater than 0.3. These values were used in our study.
of nodes assigned to the modiMeA;j represents the number
of times t_he nodesand j are gssigrjed to the same MOdulgy» ks on nodes
across slices and runs. A region with high recruitment value
tends to maintain itself in the same community across tirhike any other networked system, the brain network may lose
(Bassetetal 2015. some of its effectiveness as a result of attack. In par-
ticular, attacks on regions playing a key role will lead to sig-
Integration. It re ects how modules are interacting with eachi cant network disruption. For this reason, we quaatithe
other. It is computed as the average number of links each nidportance of each node in terms of its attackience on the
in a given module has with the nodes in the other moduf@ebal network efciency. This quantication is usually done
across runs and slices (i.e. time windows). It is calculatedusing a graph measure known'asinerability . It is de ned
follows: as the reduction in global efiency of the network when the

(4)
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Table 1. Differences among RSNs connectivity between healthy and AD networks in the different frequency bands. Abbreviations:
default mode network DMN, dorsal attention network DAN, salience attention network SAN, auditory network AUD, visual
network= VIS.

Healthy Alzheimer
Frequency band RSN Median SD Median SD p-value
Theta DMN 0.13 0.01 0.09 0.017 0.02
DAN 0.09 0.009 0.08 0.11 0.82
SAN 0.06 0.013 0.08 0.01 0.047
AUD 0.012 0.017 0.03 0.02 0.14
VIS 0.11 0.01 0.12 0.015 0.6
Alphal DMN 0.117 0.018 0.116 0.014 0.68
DAN 0.087 0.0138 0.0975 0.008 0.21
SAN 0.057 0.0101 0.07 0.014 0.17
AUD 0.024 0.011 0.023 0.018 0.75
VIS 0.15 0.017 0.13 0.018 0.11
Alpha2 DMN 0.12 0.008 0.11 0.005 0.03F
DAN 0.095 0.0037 0.091 0.009 0.35
SAN 0.076 0.01 0.071 0.012 0.4
AUD 0.036 0.006 0.033 0.012 0.4
VIS 0.1311 0.1084 0.12 0.019 0.35
Beta DMN 0.12 0.012 0.12 0.007 0.3
DAN 0.091 0.044 0.086 0.011 0.25
SAN 0.069 0.0075 0.074 0.0012 0.16
AUD 0.033 0.013 0.02 0.012 0.09
VIS 0.134 0.014 0.108 0.012 0.003

@ Denotes for signicant effects jp < 0.05).

node and all its edges are removed {@siiteinet al 2004. The parcellation into RSNs
Thus, critical nodes can be idergd from high vulnerability

values as their attack (i.e. node and associated edges remg\{ag t:r.?smcéfggno?]f d;:e RD g,s\l'k;:;ngl?nné;:l:f(z“ Olmlao'ﬂ-
leads to signicant drop of the whole network &iency. . ' -sponding ) k !
which authors identied fourteen functional networks: ante-

rior salience network, auditory network, basal ganglet-
Statistical tests work, dorsal default mode network, higher visuatwogk,

. . anguage network, left executive control networnsorim-
To quantify the differences between healthy and AD networg[s guag

in terms of RSNs connectivity, average clustering ateht or network, posterior salience network, precumetaork,
% 9 g ' primary visual network, right executive controlwetk, ven-

global ef ciency, integration/segregation measures and vﬁ]—I default mode network, and visuospatial netwiere

nerability, statistical tests were performed. For each suqul\c’ focused on ve RSN: the default mode network (DMN)
we averaged all the metrics values obtained from the differ Mained by combining .the regions of the dorsal #rel

networks among all epochs and time windows for each s ntral default mode network, the salience netw@AN)
ject. As data were not normally distributed, we assessed Sained by associating all th’e regions in antesiod pos-
statistical difference between the two groups using the M Dior salience networks. the visual network (Vidyained

Whitney U Test also known as Rank-Sum Wilcoxon teBy combining of the higher and primary visual net

(delgreeho;fre_:;dotm %8)' h idered This same parcellation was also used in our preveiudy
or hubs identication, each group was considered sepgz .o i o, 2017).

rately. First, we concatenated the metrics values (participa-
tion coef cient and within-module degre® from all group
subjects, epochs and time windows. Based on the criteridi§sults

hubs classication (Guime& and Nunes Amar#&005, each

node was assigned to its corresponding category (i.e. gRunsic connectivity of RSNs

vincial, connector or non-hub) for each window. Then, thgst we were interested in evaluating the differences among
brain regions that are sigmiantly behaving as connector orfne RSNs between healthy controls and AD patients. For
and provincial hubs during time were extracted using a Chis reason, we associated each brain region of the Desikan-
squared test (as described in our previous work (Kabbfgiany atlas to its corresponding RSN according to Kabbara
etal 2017). To deal with the family-wise error rate, the stast 5| (2017). Results in tabld show signi cant decreases in
tistical tests were corrected for multiple comparisons usifgN connectivity in AD compared to healthy controls in the
Bonferroni method [gonferroniadusted< %09), With N (68) theta = 0.02,U = 15, r = 0.51) and alpha2pE 0.031,
denotes the number of brain regions. U= 17,r = 0.47) bands. Similarly, reduced visual network
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Figure 2. (A) The association matrices obtained by the multi-slice modularity method for healthy controls and AD patients. (B) A typical
example showing the difference between the inter-modular interactions obtained for the red module in both groups. (C) The bar plots show
the integration values of each grosimodules. The dotted line presents the average integration value across modules.

connectivity was found in beta bang £ 0.003,U = 5, Hubsidenti cation
r= 0.72). Conversely, increased SAN connectivity w.

observed in the theta band 0.047,U = 1551 = 0.5). %he cortical distributions of connector and provincial hubs

identi ed in healthy subjects and AD patients are illustrated
in gure3. A loss in connector hubs number was observed in
Network integration and segregation AD networks, while the number of provincial hubs was found

_ . 1o increase compared to healthy networks. Spedly, only
Here, we explored the difference of brain network dynamigs, et middie orbito-frontal region was conserved in AD

?e;ween t?e. t\/\io g:joqpts n E_erms (.)f si:r?reglati)or: ‘%g'”g CIHzi_'twork as a connector hub, whereas the right middle orbito-
rﬁzgguig: C,'\?g argu m(;?fr;;]r;eus\,lyfs ois?e(r)v: dﬁinn?ll hfrgntal, the left rostral anterior cingulate, the right transverse
. group _ aip ﬁemé)oral, the left posterior cingulate, the right posterior cin-
alpha2 and beta bands. In contrast, in theta band, an mcre%?ate the right isthmus cinaulate and the left precunues
in clustering coefcient (p= 0.006;U = 9,r = 0.57) associ- guiate, 9 tin h Ithg works. | ¢ pt the left
. . : _ I regions were present in healthy networks. In contrast, the le
ated with a decrease in global ekncy (p= 0.03;U = 16, ; : . . .
9 y 6 middle orbito-frontal, the right middle orbito-frontal and the

r = 0.49) was found in AD networks. oht insul q incial hubs | K
To better explore the difference between the two grouﬁ'@, tinsula appeared as provincial hubs in AD networks.
We then investigated the inence of each noteremoval

we clustered the networks into sub-networks (i.e. modules i i "
or communities) for which the integration and the segred? the global efciency of the networks using the vulnerability

tion parameters were extracted. AD networks were charfeEtric. Results are shown igure4. We realized that 11 brain
terized by a low inter-modular activity (low integration) an§€9ions were more vulnerable in healthy networks versus AD
high intra-modular connectivity (high segregation) in theftworks p < 0.05). However, only the right middle orbito-

( gure?), alphal (gure S1, supplementary materials) antjontal and the left lateral orbito-frontal regions have resisted
alpha2 (gure S2, supplementary materials) bands in contr#3¢ Bonferroni correctiontgonteroni adiusted < %g)- While the

with results obtained in beta bandy(re S3, supplementaryll nodes are distributed across several RSNs, the majority of
materials). these regions corresponds to DMN (6/11) including mainly
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Figure 3. (A) Variations of the node type (provincial versus connector) across time and subjects for the 68 brain regions in both groups.
Bar plots represent the number of times a node is considered as provincial hub (blue color) and as connector hub (red color). (B) The spat

distributions of signicant provincial hubs, and sigmiant connector hubs in both grousdaterroni adjusted < %). Bar plots illustrate the
difference in the number of connector and provincial hubs between the two groups.

the isthmus cingulate, the middle orbito-frontal and the rostiére recorded from 20 participants (10 AD patients and 10

cingulate. controls). The cortical functional networks were reconstructed

from scalp signals using the EEG source connectivity method.

_ - A sliding window approach was used to track the dynamics
Correlation between network measures and cognitive scores - .

of networks. To examine the differences between the two

To assess the relationships between functional connectigtpups (AD versus controls), several network measures were
and the AD patien$ cognitive impairment, we have estiextracted. The measures used to quantify the integration of
mated the correlation between the cognitive score (MMSEgtworks are: the network global efency, the inter-modular
and the network measures (clustering coieint, global ef- connections and the connector hubs. To quantify segrega-
ciency and vulnerability). A negative correlation between tii@n we extracted the clustering coeient, the intra-modular
average clustering coafient and MMSE score (= 0.95; connections and the provincial hubs. The nodes resilience
p < 0.001) was found, while a positive correlation betwe@gainst attacks was also analyzed in order to identify the
the network global etiency and MMSE score  0.94; main brain regions potentially affected by AD. Interestingly,
p < 0.001) was obtained gure 5). Concerning the vulner- a general trend is that all metrics showed that AD networks
ability, we focused on the two nodes that showed statistit@ihd to have improved segregation (higher local information
difference between groups. Figuseshows that the MMSE processing) and reduced integration (lower global informa-
score correlates positively with the left lateral orbito-frontdiion processing). Results also showed a sigamt correlation
region ( = 0.84;p= 0.002), and the right middle orbito-between patientxognitive performance (as measured by the
frontal region ( = 0.87;p = 0.001). MMSE score) and network measures. Results are discussed in
detail hereafter.

Discussion

. T . . AD networks: high segregation and low integration
The main objective in this study is to explore the dynamic gh segreg g

topological properties of AD networks compared to healtiBesults indicated that AD networks are characterized by lower
controls. Particularly, we focused on examining the shiftingtegration (revealed by a decrease in the network global ef
balance between brain network integration and segregatiorigncy, the number of connector hubs and the integration
Alzheimer's disease. For this end, resting state EEG signaisasure), and higher segregation (revealed by an increase

7
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Figure 4. Difference between healthy subjects and AD patients in term of node vulnerability. (A) Distribution of vulnerability values for
the 68 ROIs in healthy control networks (black color) and in AD networks (red color). A node is mark&df witthows signi cant

difference between groupp € 0.05, uncorrected) and with if it shows signi cant difference after correction for multiple comparisons.
(B) Cortical distribution of the 11 signtant nodes. The node color corresponds to the matching RSN (sekf@atiROI names and
abbreviations). The nodes with larger size are those who resisted the multiple comparison adjustment.

in clustering coefcient, in the number of provincial hubstriggered by the dysfunctional integration in the AD brain
and in the recruitment measure) compared to healthy contretworks (Afshari and JaliR017). These ndings are in line
networks. One possible interpretation of the increased lowvath studies that revealed decrease in the network global ef
connectivity is a possible compensatory mechanism thatcisncy (Stanetal 2009 Lo etal 2010 Douwetal 2011 Stam
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and van StraateA012 Zhaoet al 2012 Tijms et al 20133 Altered brain networks/regions in Alzheimer ’s disease

Afshari and Jalili2017 and the participation coefient (De on th ide. the detecti f nodal ch |
Haanetal 2012 in AD networks. In line with these studies, h the one side, Ihe detection of hodal changes can revea
Debeuck and coll. Delbeuetal (2003 studied the McGurk important insights about which brain regions are severely

effect in AD and reported that that the integration betwegﬁered by the disease. Our results show a change in hub

auditory and visual speech information was disrupted.TR{aOpertles for R MOF, L rACC, RTT, L/R pCC and L pCUN

increased segregation observed in AD was reported “Sﬁﬁﬁqe tablel for abbreviations). We also hypothesized that the
oval of an important brain region will affect the informa-

. . re
the local efciency and the clustering coefent (Zhaoetal . o .
2012 Afshari and Jalil2017). More importantly, and in line tion processing in the whole network, while an attack to a less

with our ndings, a longitudinal EEG study reported reoluCecdiitical region will have a smaller imence on the global net-

global ef ciency and increased clustering casént during yvork ef clency. We found 13 brain regions that have more
AD progression (Morabitetal 2015, importance in healthy network than in AD networks. One

can realize that some of the affected hulzgi(e 3) coincide
with the 13 nodes (rACC, MOF, pCUN, TT). These affected
EEG frequency bands nodes were also reported in Setgl (2007), Baietal (2009,
Buckneret al (2009, Mormino et al (2011), De Haaret al
EEG is increasingly used to detect cognitivedits in neuro- (2012, Vemuri et al (2012 and Tijmset al (20131. Other
degenerative disorders. One of the main and consisteht studies also reported that amyloid decomposition in AD coin-
ings is the shift to lower frequencies in Alzheihsedisease, cide with hubs location (Bucknetal 2009.
using resting-state recordings (Beneyal 2001). A slowing On the other side, alterations in the default mode network
of EEGs in the theta power was also observed in Alzh&SmeDMN) connectivity in AD patients were reported in sev-
disease at early stage of the disease (Bem22014). Several eral studies (Liet al 2002 Greiciuset al 2004 Wanget al
previous studies have comed the importance of the thet200g Sorgetal 2007, Hedderetal 2009 Shelineetal 201Q
band with regards to cognition, see Klimesd®99 and Drzezgaetal 2011, Morminoetal 2011, Vemurietal 2012).
Axmacheretal (2009 for two reviews. Moreover, the impor-Qur results showed that the majority of the affected nodes in
tance of theta activity in controlling the working memory praerms of vulnerability and hub dys-functionality are associ-
cesses was widely reported (Sarnthetial 1998 Klimesch ated to the DMN. The disruption of DMN was also demon-
1999 Stam200Q Stam and Van DijR002 Sausenget al  strated by its reduced intrinsic connectivity as reported in
2010. Our ndings are in accordance with these studies.tAble1. The increased connectivity of DAN and SAN shown
potential interpretation of thesendings is that disruption of in table1 may be interpreted as a compensatory mechanism

lower frequencies such as theta rhythms is due to degeng® to the DMN alteration (Baital 2011, Damoiseauset al
tion processes in the attentional system (Hassah2017h  2012.

Klimesch1999.

Compared to other frequency bands, here we found signi . .
cant differences in theta band network characteristics in Afy"relation between network measures and AD patient 's
networks, namely, lower integration (low global @éncy), cognitive scores
higher segregation (high recruitment and average clusterirghgle-subject analyses showed sigiint correlation between
a lower number of hubs, a lower effect of nodesnoval and the MMSE score (used here to provide an overall measure of
a disrupted function of DMN. Abnormal EEG correlations iaognitive impairment) and network g|0ba| efency, average
parietal and frontal regions within alpha and theta bands wel@stering coefcient and vulnerability. Although the MMSE
reported in early AD stage (Montetzal 2009. Using brain test has received good acceptance as a diagnostic test in the
network analysis, several previous studies have observed aliffiical and research community (Nieuwenhuis-M2B&0), it
ations in the lower frequency bands in patients with demenig&recommended not to be used as a stand-alone single admin-
These ndings revealed loss in hubs, disruption in functiongltration test (Arevalo-Rodriguestal 2015. Previous studies
connectivity (Bosboonetal 2009, reduction in network et have shown that age, education and socio-cultural variables
ciency (van Dellertal 2015 and a decrease in local integraaffect the effectiveness of MMSE to detect cognitive impair-
tion (Utianskietal 2016 in the alpha2 band. ment (Bleeckeetal 1988 Brayne and Callowa$99Q Crum

Results also depict an opposite uence of the lower fre- 1993, Hence, the demand is high for other tests that provide
quency bands (theta, alphal, alpha2) on the balance of iRigher detection accuracy (Carnero-Paetial 2011, 2014,
gration/segregation compared to the higher frequency bagdwell as more sped scores (semantic, memory related
(beta). A possible explanation is the complementary role gt). In addition, the use of cognitive tasks that stimulate the
frequencies in conducting long/short range connections. dffected networks in the case of AD (the memory network for
fact, while integrated information is mediated by low freinstance) may improve the correlations with network based
quency bands, local information processing is mediated #trics. It is worth noting that the MMSE is not the unique
high frequency bands (Von Stein and SarntRéidQ Buzski  test for AD diagnosis. It is currently used within a set of other
and Draguhr2004 Schroeder and Lakat@909 Canolty and tests including clinical examination (rexes, muscle tone,
Knight 201Q Siegeletal 2012). balance) and brain imaging (such MRI and CT scan) aimed to
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Figure 5. Correlation between the cognitive score (MMSE) and the graph measures for AD patients. (A) Clusteronentaeid (B)
Global ef ciency. (C) Vulnerability of the left lateral orbito-frontal region. (D) Vulnerability of the right middle orbito-frontal region.

pinpoint visible abnormalities related to conditions other thaising other experimental paradigms and additional cognitive
AD (stroke, trauma, etc). However, when MRI is negative (rszores, in order to be able to generalize the conclusions of the
visible anatomical damages), the screening of cognitive pegported analysis.

formance using clinical tests such as MMSE (or other speci Second, the EEG source connectivity was applied here to
cognitive scores) is mandatory. The proposed network-bag2dscalp EEG channels. This method has previously proved
metrics provides additional quantitative indications poteits robustness in exploring resting-state topology using dense-
tially useful for neurologists to complement diagnosis base&G ¢ 128 electrodes) (Kabbaet al 2016 2017, Hassan

on neuropsychological tests. etal 20178. As reported in Hassagt al (2014, the use of

a smaller number of electrodes (in the context of cognitive
task) will result in a reduction in the accuracy of the obtained
results. Nevertheless, several studies showed the possible
First, one of the main limitations of this study is the relativegxtraction of useful information using low number of elec-
low number of patients. Our intent was to show the differentedes (19, 32, 64) (Canuet al 2012 Vecchioet al 2014
between two groups: totally normal (control group) and AR017 Hataet al 2016. This can be explained by the facts
patients witH severé cognitive impairment. Nevertheless, wédhat these studies (as the presented study) focus on the invest-
are aware that the AD is very heterogeneous and may hi@asion of‘large-scalenetworks to compare two groups with
different stages including patients with moderate or mild codpe same conditions. In addition, we conjecture that a compro-
nitive impairment. Detecting thesearly cognitive decits mise between the number of channels and the number of ROIs
is on the major challenges in AD and will certainly be thghould be necessarily respected. Our very recedings
subject of future investigation. These investigations should $fgowed that a high number of electrode8%) is mandatory
performed on larger cohorts of patients in different AD stagés the case of applications that require higlgeanularity, i.e.

Limitations

10
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spatial precision and accurate characterization of the netwth&ir local performance (segregation). We also showed that

local properties, such as the idectition of epileptogenic these network topologies are correlated with the pasienyg-

networks @gnpublished data nitive scores. We speculate that owmdings, when validated
Third, it is important to keep in mind that measuring then larger cohort, could contribute to the development of EEG-

functional connectivity is generally corrupted by the volunmigased tests that could consolidate results of currently-used

conduction problem (Schoffelen and Gr@899. While the neurophysiological tests.

effects of this problem are reduced by the analysis of connec-

tivity at source level, somenixing effects remain (Brookes Acknowledgments

et al 2014. At the source level, few strategies have been

suggested (Brookest al 2012 Colcloughetal 2013. The This study was funded by the National Council for Scienti

pro_posed approa_ches are all basec_i on ignoring zero-l_ag i_nIIQeeréearch (CNRS) in Lebanon. The work has also received a
actions among signals, by supposing that their contributi nch government support granted to the CominLabs excel-

are only due to the source leakage. Although these approa(fgﬁge laboratory and managed by the National Research
have some advantages, they may also remove true Comm}!{BEncy in the'Investing for the Fututeprogram under ref-

cations that occur at zero lag (Fingeal 2019. In our study, o0 o ANR-10-LABX-07-01. It was alsmanced by AZM

we used the phase Iockmg value measure. In a previous St@ﬁter for research in biotechnology and its applications.
we showed that the metrics extracted from the networks con-

structed using PLV (including the within-module degree, clus-
tering coef cient, betweenness centrality and the participatiédRCID iDs
coef cient) were not affected by the spurious short connec-
tions (Kabbaratal 2017. Nevertheless, we believe that furM Hassarn® https://orcid.org/0000-0003-0307-5086
ther methodological efforts are needed to completely solve the
spatial leakage problem. References

Fourth, a proportional threshold of 10% was used to remove
the spurious connections from the connectivity matrices, hari S and Jalilv 2017 Di d functional ”
Here, we preferred using a proportional threshold to absol(fg et disease: gii?fﬁ)tiOlrj‘ln(():;“glr:)?)arllztr\{l\:joioial
threshold to ensure equal density between groups, as reCoM-connectivity measurd&€EE J. Biomed. Health Inform.
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etal (2015 showed that network measures are stable acréssvalo-Rodriguez etal 2015 Mini-mental state examination
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variety of thresholding methods are available, but no method Cochrane Database Syst. RB¥.CD010783

is free o.f bias. It is then recommended to perform studigSmacherN etal 2006 Memory formation by neuronal

across different values of thresholds (in addition to the use of synchronizatiorBrain Res. Re%2 170-82

alternative strategies) to ensure that the obtaimelihgs are BaiF etal 2009 Abnormal resting-state functional connectivity
robust to this methodological factor. of posterior cingulate cortex in amnestic type mild cognitive

; ; ; ; o _impairmentBrain Res1302167-74
Fifth, the choice of the inverse solution/connectivity COMBai F etal 2011 Specically progressive deits of brain functional
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the present paper. Nevertheless, other combinations or strBé#mysk, RondouinG, Vergne<C and Touchod 2001
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from sensor level recordings could be also investigated and Neurophysiol. Clin./Clin. Neurophysi@1 153-60
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; g boomJL W etal 2009 MEG resting state functional
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Acronyms | Name RSN Acronyms | Name RSN
iCC L isthmuscingulate L DMN STG L superiortemporal L AUD
iCCR isthmuscingulate R DMN STGR superiortemporal R AUD
MOF L medialorbitofrontal L DMN CUN L cuneus L VIS
MOF R medialorbitofrontal R DMN CUNR cuneus R VIS
PCCL posteriorcingulate L DMN LOG L lateraloccipital L VIS
PCCR posteriorcingulate R DMN LOGR lateraloccipital R VIS
PCUN L precuneus L DMN FUS R fusiform R VIS
PCUNR precuneus R DMN FUS L fusiform L VIS
rACC L rostralanteriorcingulate L DMN LING L lingual L VIS
rACC R rostralanteriorcingulate R DMN LINGR lingual R VIS
LOF L lateralorbitofrontal L DMN BSTS L bankssts L other
LOF R lateralorbitofrontal R DMN BSTSR bankssts R other
paraH L parahippocampal L DMN ENT L entorhinal L other
paraH R parahippocampal R DMN ENT R entorhinal R other
CACC L cAUDalanteriorcingulate L DAN FP L frontalpole L other
CACCR cAUDalanteriorcingulate R DMN FP R frontalpole R other
ITG L inferiortemporal L DAN IPL L inferiorparietal L other
ITGR inferiortemporal R DAN IPLR inferiorparietal R other
MTG L middletemporal L DAN SFG L superiorfrontal L other
MTG R middletemporal R DAN sFGR superiorfrontal R other
pOPER L | parsopercularis L DAN paraC L paracentral L other
pOPER R | parsopercularis R DAN paraC R paracentral R other
pORB L parsorbitalis L DAN periCAL pericalcarine L other
pORB R parsorbitalis R DAN Ip;eriCAL pericalcarine R other
pTRI L parstriangularis L DAN EostC L postcentral L other
pPTRIR parstriangularis R DAN postC R postcentral R other
INS L insula L SAN preC L precentral L other
INS R insula R SAN preC R precentral R other
rMFG L rostralmiddlefrontal L SAN SPL L superiorparietal L other
rMFG R rostralmiddlefrontal R SAN SPLR superiorparietal R other
SMAR L supramarginal L SAN TP L temporalpole L other
SMAR R supramarginal R SAN TPR temporalpole R other
cMFG L caudalmiddlefrontal L SAN TTL transversetemporal L | other
cMFG R caudalmiddlefrontal R SAN TTR transversetemporal R other

Table S1. Anatomic regions-of-interest (ROIs) included in the analysis, as derived frothe Desikan Killiany
atlas, and their affiliation to RSNs. Abbreviations: Default mode network=DMN, Dorsal attention
network=DAN, Salience attention network=SAN, Auditory network=AUD, Visual network=VIS.



Figure S1. A) The association matrices obtained by the multi-slice modularity method for healthgontrols
and AD patients in the alphal band B) The bar plots show the integration values of each group’s adules.
The dotted line presents the average integration value across modules.



Figure S2. A) The association matrices obtained by the multi-slice modularity method for healthgontrols
and AD patients in the alpha2 band B) The bar plots show the integration values of each group’sadules.
The dotted line presents the average integration value across modules.



Figure S3. A) The association matrices obtained by the multi-slice modularity method for healthy controls
and AD patients in the beta bandB) The bar plots show the integration values of each groupimodules. The
dotted line presents the average integration value across modules.
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Abstract

Objective:Most brain disorders, including drug-resistant epilepsies, are network diseases. Thus,
from a clinical perspective, the demand is high for non-invasive, network-based and easy-to-use
methods to identify these pathological brain networks.

Methods: In this paper, we introduce a novel methodological framework to identify
epileptogenic networks from scalp dense-electroencephalography (EEG). The proposed approach
combineshe emerging technique calleAEG source connectivitywith graph theory. We used
depth-EEG and scalp dense-EEG data at rest (regardless of the presence/absence of epileptiform
activity) from 18 patients. Depth-EEG data were used to evaluate the accuracy of epileptogenic
networks identified from scalp data. The method performance was quantified by its capacity to
identify pathological brain networks in the region explored by depth-EEG in epileptic patients.
This quantification was done using hemispherical and lobar accuracies as well as the distance
between depth-EEG electrode positions and estimated networks.

Results: Results showed that the proposed approach was able to predict the brain hemisphere
(accuracy= 97+9%)and the lobegccuracy=91+19%)where SEEG exploration was performed

a posteriori §veragedistance= 13+11 mm Results showed also the high advantage of network
segregation measures (local functional connectivity) compared to global megst@edl (
corrected in revealing epileptogenic networks.

Interpretation: These results may promote the noninvasive dense-EEG as a complementary tool
in pre-surgical evaluation in order i) to define of the best depth-electrode placement (hemisphere
and lobe) and ii) to highlight cortical regions that may be overlooked during pre-surgical

planning.



Introduction

Drug-resistant epilepsies, which represent 30% of epilepsies, are most often partial or focal, i.e.
characterized by an epileptogenic zone (EZ) that is relatively circumscribed in one of the two
cerebral hemispheres. Resective surgery is currently the only treatment capable aSswyppre

drug-resistant seizures (ANAES, 2004). However, prior to surgery, the crucial issue to be solved
is the identification of epileptogenic networks, in the specific context of each patient. Indeed, the
outcome of this therapeutic approach directly depends on the capacity to accurately localize
epileptogenic networks and subsequently define the optimal resection which maximizes

benefit/deficit ratio for the patient.

Among pre-surgical investigations, intracranial electroencephalography represents, so far, the
‘gold standard’ for identifying epileptogenic networks and for accuratelglifieg the EZ
(Bartolomei et al., 2017). Nevertheless, it remains an invasive technique with limited spatial
resolution and the demand is high for non-invasive, easy-to-use and clinically available methods
able to reveal epileptogenic brain networks. To some extent, functional (fMRI, SPECT)
neuroimaging methods (Schneider et al., 2013; Tavares et al., 2017), including electrical source
imaging (ESI) (Brodbeck et al., 2010; Lantz et al.,, 2001; Lascano et al., 2012; Michel et al.,
1999), are intended to respond to this demand. However, and despite the substantial progress
accomplished in this field (Chiang et al., 2017), information provided by these techniques is not

routinely used during pre-surgical evaluation due to intricate interpretation of localization results.

In this study, we propose a novel framework combining the emergent method called EEG source
connectivity with graph theory. Previous studies already revealed that the brain networks of

temporal lobe epilepsy patients are characterized by small-world topology compared to those of



healthy controls (Bernhardt et al., 2011). Other studies showed alterations in network hubs
(highly connected nodes) around brain regions belonging to the epileptogenic zone (Nissen et al.,
2016; Zhang et al., 2011). However, these studies suffer from three main limitations: i) the

empirical choice of graph metrics used to characterize identified networks, ii) the user-dependent
selection of ictal or interictal periods which requires a demanding preprocessing step and iii) the

lack of ground truth for validating the networks identified from scalp EEG.

These issues were addressed in the present study. First, we devikmal aunctional
connectivity’ network metrics inspired from the pathophysiology of partial epilepsies which
dramatically increases the method performance. Second, epileptogenic networks are identified
from EEG signals recorded from spontaneous brain activity regardless of the presence/absence of
epileptiform events. And third, intracerebral SEEG recordings are being used to evaluate the
accuracy of epileptogenic networks identified from scalp EEG data. The proposed method was
evaluated in 18 patients with partial epilepsy who underwent both dense-EEG (256 electrodes)
and SEEG recordings. Results show excellent spatial concordance between networks identified
from non-invasive data, on the one side, with the region explored by SEEG electrodes, on the
other side, suggesting that proper processing of resting-state dense-EEG epochs can provide

substantial information about the localization of the epileptogenic zone.



Materials and methods

The full pipeline of our study is summarized in Figure 1.
Patients

In total, the study included eighteen patients with drug resistant epilepsy (13 males and 5
females, age 16-40 y). Detailed information about the seizure type, seizure onset, surgery, and
MRI abnormalities of each patient is provided in Table 1.

These patients were diagnosed with drug resistant epilepsy. They underwent full presurgical
evaluation including neurological examination, neuropsychological testing, standard long-term
video EEG recording, structural MRI, dense scalp EEG recording with video recordings, CT
scan and intracerebral EEG recordings. All acquisitions were performed in accordance with the
relevant guidelines and regulations of the National Ethics Committee for the Protection of
Persons (CPP), (agreement number 2012-A01227-36, promoter. Rennes University Hospital),
which approved all experimental protocols and procedures. Written consent was obtained from

patients who were informed that collected data might be used for research purpose.
Data

Dense-EEG signals (256 channels, EGI, Electrical Geodesic Inc.) were recorded at 1000 Hz,
band-pass filtered within 0.3-45 Hz. All subjects underwent resting-state in which they were
asked to relax and keep their eyes closed without falling asleep. For each patrticipant, three non-
overlapping 40-seconds epochs were selected. All epochs were chosen free of artifacts, during
periods of quiet resting. For some patients, few electrodes with poor signal quality could be
identified. For these electrodes, signals were reconstructed by interpolation of signals collected at

the level of the surrounding electrodes.



SEEG recordings (Micromed Inc.) were performed using multi-contact intracerebral electrodes
(10+£18 leads; length, 2 mm, diameter, 0.8 mm; 1.5 mm apart) implanted acdordelgirach’s
stereotactic method (Bancaud et al., 1970). The patient-specific position of depth electrodes was
determined by the neurological team, after detailed analysis of clinical, functional and
anatomical data recorded for each patient. The exact 3D coordinates of each electrode contact
were determined after co-registering the CT scan showing the intracerebral leads onto the
structural MRI image using a 6-parameter rigid-body transformation (Eickhoff et al., 2005;

Studholme et al., 1998).

Reconstruction of functional networks

The functional networks were reconstructed using the EEG source connectivity method. Readers
may refer to (Hassan et al., 2014) for detailed information. In brief, this method requires two
main steps: i) solving the EEG inverse problem to reconstruct the temporal dynamics of the
cortical regions at source level and ii) measuring the functional connectivity between the
reconstructed regional time series. Here, the weighted Minimum Norm Estimate (WMNE) was
used to reconstruct the dynamics of the cortical sources (Hamalainen and lImoniemi, 1994).
Then, the functional connectivity was computed using the phase locking value (PLV) method
(Lachaux et al., 1999). This combination of WMNE/PLV was previously shown to outperform
procedures combining other inverse/connectivity methods, in terms of accuracy and relevance of
cortical brain networks identified from scalp EEG data (Hassan et al., 2016, Hassan et al., 2014).
This combination was also used in the context of Parkinson diseases (Hassan et al., 2017),
cognitive task (Hassan et al., 2014; Mahmoud Hassan et al., 2015) and recently resting state

(Kabbara et al., 2017).



The steps performed to reconstruct the functional brain networks from dense-EEG signals can be
summarized as follows:

- Segment the T1l-weighted anatomical MRI of each patient to build the cortical surface
mesh using FreeSurfer (Fischl, 2012). This latter was then down-sampled into 15000
vertices using Brainstorm (Tadel et al., 2011).

- Compute the lead field matrix using the boundary element method (BEM). Here, we used
the OpenMEEG package (Gramfort et al., 2010) available in Brainstorm.

- For each patient, the noise covariance matrix was estimated using one minute resting
segment.

- Reconstruct the dynamics of EEG sources using the wMNE algorithm where the
regularization parameter was set relatively to the signal to matge ( ~ 0.1 in our
analysis).

- Project the EEG sources onto an anatomical atlas. Here, we used the Desikan-Killiany
atlas (Desikan et al., 2006) sub-divided into 221 regions as described in (Hagmann et al.,
2008). The signals of the sources that belong to each ROI were averaged. This
parcellation produced 221 regional time-series.

- Compute the functional connectivity between the regional time-series using the PLV
(Lachaux et al., 1999). This measure, ranging from 0 (no synchronization) to 1 (full
synchronization), reflects statistical dependences between two oscillatory signals through
the quantification of the phase synchrony. To explore the time dynamics of brain
networks, we used a sliding window over which PLV was calculated. Here, at broad
band. Considering the investigated frequency range (0.3-45 Hz), the duration of the

smallest time window that contains a sufficient number of cycles for PLV computation is



0.3 s, as recommended in (Lachaux et al., 1999). This value of 0.3s was thus retained for
the sliding window.

- Threshold the connectivity matrix using the automatic thresholding algorithm desaribed
(Genovese et al., 2002). According to this method, the connectivity matrix was converted
into ap-value map based on the t-statistics. The compptealues were corrected for
multiple comparisons using the False Discovery Rate (FDR) approgchk 6f05. Then,
the connectivity values whogevalues passed the statistical FDR threshold were retained
(their values remained unchanged). Otherwise, the values were set to zero.

Consequently, at each time window, these steps produce a thresholded weighted connectivity

matrix that is formally equivalent to an undirected weighted functional network.
From graph theory to epileptogenic networks

While functional connectivity provides crucial information about how the different brain regions
are connected, graph theory offers a framework to characterize the network topology and
organization. In practice, many graph measures can be extracted from networks to clearacteriz
global and local network properties. Here, we focused on measures quantifying the local
connectivity of brain regions able to reveal clusters or modules in functional networks
characterized by abnormal segregated neural processing. This choice was motivated by
mechanistic hypotheses regarding the pathophysiology of epileptogenic networks. In particular,
these “hyperexcitablenetworks are likely characterized by abnormally high locahtra-
connectivity and weaker “inteconnectivity’, as reported in a number of studies which
provided both theoretical (Bartolomei et al., 2013; Netoff, 2004) and empirical (Bettus et al.,

2011; Ponten et al., 2009; van Dellen et al., 2009; Van Mierlo et al., 2013) evidence.



Based on this assumption, recently summarize@Bernasconi, 2017) and illustrated in Figure
2A, we hypothesized that an approach aimed at characterizing the modularity of brain networks
(Sporns and Betzel, 2016a) could be relevant for revealing hyperexcitable epileptogenic sub-

networks in large-scale networks. Such a modularity-based approach is illustrated in Figure 2B.

Local network measures (segregation)

1. Within-module degree (Z): As depicted, the computation of the network modularity firstly

includes the decomposition of network into modules, i.e clusters of nodes that are internally
strongly connected, but externally weakly connected. To proceed, many algorithms were
proposed to decompose a network into modules. Given the inter- and intra- algorithm
variability, dissimilar partitions may be obtained when changing the clustering algorithms.
To tackle this issue, it is recommended to combine multiple algorithms of community
detection and multiple runs to obtain the consensus (or the average) representative partition
(Sporns et al., 2016). Here, we adopted the consensus clustering approach: given an
ensemble of partitions acquired from Newman algorithm (Girvan and Newman, 2002) and
Louvain algorithm (Blondel et al., 2008) repeated for 200 runs, we obtainstNa

association matrixN is the number of nodes), which element represents the number of

times the nodesand are assigned to the same module across all runs and algorithms. To
obtain consensus communities, we re-clustered the association matrix using Louvain
algorithm after comparing it to a null model association matrix generated from a permutation
of the original partitions (Bassett et al., 2013) and keeping its significant values (Bassett et
al., 2013). Once modules are detected, the within-module degree (2Z) is extracted to measure
how well a node is connected to other nodes within the same module (Guimera et al., 2005).

The within-module degree (2) is defined as follows:



Where () is the within-module degree of the noge () is the mean of within module

degree of nodes assigned to the same community as,rentt® (  is the standard deviation.

2. Clustering coefficient (CCY We have also extracted the clustering coefficient (CC) which

represents one of the most used metrics to measulectieconnectedness of a node within
a network. This measurequantifies how close the nodeskighbors are inter-connected

(Watts and Strogatz, 1998).

Global network measures (integration)

In order to comparatively assess the performance of the above-described local measures, other
network measures quantifying the global information processing (integration) and the importance

of a node within a network were also computed:

1- The participation coefficient (P) This metric quantifies the integration of a node by

measuring how its edges are distributed across modules:

Where C is the number of modules anq ) is the number of edges between noded

nodes in module M.



2- Betweenness Centrality (C) The importance of a node is proportional to its betweenness

centrality (Freeman, 1977). C measures the proportion of the number of shortest paths in

which the node participates:

(. .)
(.)

Where (, , ) is the number of shortest paths between nodesl that pass through node
, (, ) is the total number of shortest paths betweand , and the sum is over all pairs

, of distinct nodes.

All extracted network measures were normalized with respect to random networks. Thus, for
each time window, we generated 500 surrogate random networks derived from the original
network by randomly reshuffling the edge weights. The normalized values were computed by

dividing the original values by the average values computed on the randomized graphs.
Statistical tests

For each patient, we concatenated the distribution of the nodal metrics of the three epochs, which
led to a distribution of 400 values (humber of epochs * number of windows) corresponding to
each of the metrics extracted. To statistically identify the significant nodes in terms of local
network measures (within-module degree (Z), clustering coefficient (CC)) and global network
measures (centrality (C), and participation coefficient (P)), we quantified the difference between
nodes metrics’ distributions using a Wilcoxdann-Whitney U test. Thus, a 221*22f-value

matrix was generated, where the elementrepresents the statistical difference between the

distributions of nodesand . Thep-values were then corrected for multiple comparisons using



Bonferroni correction method. Afterwards, the nodes that have a numpetabfes above 99%

of the confidence interval were considered as significant.

Noninvasive vs. invasive data

For each patient, significant nodes, as obtained using the EEG source connectivity method
described, above were compared to the position of intracerebral electrode contact positions, as
defined by the epileptologist during the pre-surgical planning procedure. To proceed, the SEEG
electrode contacts were first projected into the same atlas of 221 ROIls: to each intracerebral
contact we assigned the closest ROI from the 221 regions of atlas. Based on this co-registration
in the grey matter, the position of scalp-EEG based significant nodes could be compared to that
of SEEG contacts. This comparison gives an overall indication of the matching between

noninvasive and invasive recordings (same hemisphere, same lobe, same sub-lobar region).

The qualitative results were also quantified using several performance measures:

- The average distance (mm)etween SEEG nodes and EEG nodes. AD is defined as

follows:

ap=—Ltd % &, 1;' &L, (]

Where ) (* , *)) is the euclidian distance between the nddedetected by EEG
method and the nearest SEEG contact denotes the total number of detected EEG
nodes, and| denotes the total number of SEEG contacts.

- The closeness accuracy (%ayhich is defined as:

- ~ - =1 (!"v!#a

where ) s the mean Euclidian distance between EEG and SEEG nodes.



- The hemispherical accuracy (%)which represents the proportion of the EEG nodes

detected in the same hemisphere with the SEEG contacts.

- The lobar accuracy (%) which represents the proportion of the EEG nodes detected in

the same lobe with the SEEG contacts. The lobar partition is illustrated in Figure S5.

- The overall accuracy (%) defined as the arithmetic mean of the three above-described

accuracy values (closeness, hemispherical and lobar).

Software

FreeSurfer (Fischl, 2012) was used for surface parcellation, Brainstorm open MATLAB toolbox
(Tadel et al., 2011) for source reconstruction and EEG preprocessing, OpenMEEG package for
lead field matrix computation (Gramfort et al., 2010), SPM8 (Eickhoff et al., 2005) for the co-

registration of the MRI and CT scan images, IElectrodes (Blenkmann et al., 2017) for contacts

positions extraction, Brain Connectivity Toolbox (BChtjps://sites.google.com/site/bctnédr
graph measures computation (Rubinov and Sporns, 2010) and BrainNetViewer (BNV) (Xia et
al., 2013) for networks visualization. Other homemade codes were also developed for modules

generation, statistical tests, and quantitative evaluation.

Results

For each network measure, we quantified the matching between the scalp-EEG-based networks
and the depth-EEG electrodes positions in terms of spatial Euclidian distance (mm),
hemispherical accuracys), lobar accuracy(%), closeness accuracy (%) and the overall

accuracy (%), which is a combination of the three previous features.

The quantitative comparison between the local and global network measures is presented in

Figure 3. Results demonstrate that the local network measures (Z and CC) achieve higher spatial



precision (reflected by high accuracies associated with low distances between EEG and SEEG)
compared to the global measures (C and P). Particukiggificant differences were found
between Z and both global measures in hemispherical acdurgcy 0.0008; ;= 0.000 2,

lobar accuracy( o =0.0009; (;,=0.0003), closeness accuracy o =0.001;, ;=

0.0006), overall accuracy( o =0.0006; ;=0.0002) and Euclidian distanc¢ o =

0.005; (1=0.0006). In addition, the closeness accuracy rate is statistically higher using CC
than C( =~ =0.004). Figure 3 also reveals a difference between CC and P with respect to the
distance between identified EEG regions and SEEG co(tactg= 0.003) . However, no
significant difference was observed between the local network measures, neither between the
global network measure$ables S1, S2, S3, S4 and S5 report the detailed distance and accuracy

values obtained using the network measures for the 18 patients.

In figure 4 and figure 5, we show the individual results obtained in two patients (P1 and P2)
chosen according to the accuracy detection: patient P1 is characterized by antexcaliacy
detection (overall accuracy = 95 %) while patient P2 is characterized by low acdatacton

(overall accuracy = 61 %). Concerning the patient P1, all regions that showed significant CC and
Z values p<0.01, Bonferroni correctefiwere located in the same hemisphere and in the same
lobe where SEEG exploration was performed (hemispherical accuracy=100%, lobar
accuracy=100%). In contrast, the hemispherical accuracy achieved using the global network
measures dropped down to 60% for C and to 57% for P. Results also indicated that the lobar
accuracies obtained using C and P measures were 40% and 0% respectively. Moreover, one can
state that four EEG nodes detected using local metrics (Z), overlapped with depth-EEG contacts
while six other nodes were found to be close to SEEG contact positions (AD= 5.13 mm,

CA=80%). Using CC, the distance between scalp-EEG-based and depth-EEG-based nodes was



equal to 0 mm leading to a closeness accuracy of 100%. Concerning the global metrics, nodes by
both measures (C and P) were found to be distant from the SEEG contact positions (AD=53.85

mm, 85.95 mm; CA= 37.95%, 22.07%, respectively).

Figure 5 shows results obtained in Patient P2, characterized by poorer results, to some extent. It
is worth noting that this patient had bilateral implantatiowlicative of “clinically-difficult”

cases. In this patient P2 the hemispherical accuracy using the first local measure ¢R@yava
Nevertheless, the second local measure (CC) was found to exhibit higher performance. As
illustrated, all the identified EEG nodes obtained using the CC measure were located in the right
hemisphere (hemispherical accuracy=100%), and near the SEEG contacts implanted (lobar
accuracy=100%). In contrast, and as in patient P1, the global network measures revealed
hemispherical accuracy rates of 50% for C, and 0% for P. Concerning C, only one of four
identified significant nodes was located in the same lobe of SEEG implantation (lobar
accuracy=25%). The barplots in Figure 5 show that CC yields to the lowest distance ast highe
closeness accuracy (AD=16.8 mm, CA=73%) compared to Z (AD=23.38 mm, CA=62.5%), C
(AD=21 mm, CA=67%) and P (AD=39 mm, CA=54%). In other words, results obtained in P2
showed that C led to one EEG node overlapping a SEEG contact while three other detected
nodes were remarkably far from the location of SEEG contacts.

For all other patients (P3 P18), the cortical regions that were identified using the local
network measures are illustrated in supplementary Figures S1, S2, S3, S4. Using Z, it is
noteworthy that for all patients (n=10) who underwent unilateral SEEG implantation (P1, P3, P4,
P8, P10, P13, P15, P16, P17 and P18), the significant ROIs detected from scalp EEG were in the
same hemisphere than SEEG contacts (100% hemispherical accuracy). In patients (n=8) who

underwent bilateral intracerebral electrode implantation (P2, P5, P6, P7, P9, P11, P12 and P14),



the EEG-based method highlights, in six of eight patients, the predominance of one hemisphere
(w.r.t to contra-lateral hemisphere) in terms of Z. For P12, significant EEG nodes were
positioned in both right and left hemispheres. Overall, the average hemispherical accuracy
obtained is 97.78 + 9.42% (Table S1). In terms of lobar accuracy, EEG nodes were detected in
the same lobe of intracerebral electrodes in P1, P3, P5, P6, P7, P8, P9, P10, P11, P13, P15, P16,
P17 and P18 (100% lobar accuracy). Across all patients, the mean lobar accuracy obtained is
91.67% £19.85% (Table S2). Figures S1, S2 show also that for the patient P3, all EEG nodes that
have high Z values matched the SEEG contacts positions (AD=0 mm). For the patients P4, P5,
P6, P7, P8, P9, P11, P12, P15, P16, P17 and P18, a considerable number of the identified EEG
nodes matched with a number of SEEG contacts, while the rest of nodes were observed near the
positions of the SEEG electrodes (AD=10.34 mm, 16.05 mm, 12.57 mm, 3.21 mm, 4.12 mm,
23.95 mm, 22.28 mm, 15 mm, 6.21 mm, 6.14 mm, 5.71 mm,; respectively). Concerning the
patients P10, P13, P14, although no EEG node coincided with a SEEG contact position, all the
identified nodes were located just in proximity of the depth-EEG electrode contacts (AD=16.43
mm, 30.12 mm, 43.01 mm; respectively).

The quantitative evaluation reported an averaged closeness accuracy value equal to 76.23 *
16.14 % (supplementary Table S3), as welbhasaveraged overall accuracy value of 88.55 +
11.85 % (supplementary Table S4). The mean distance between EEG-identified nodes and SEEG
contacts was 14.01 + 11.44 mm (Table S5). Using CC, 12 of the 18 patients (P1, P2, P4, P5, P6,
P7, P9, P12, P13, P14, P15, and P16) revealed hemispherical accuracy of 100%. Among these
patients, seven patients (P1, P2, P4, P5, P14, P15, and P16) showed a lobar accuracy of 100%.
Across all patients, the averaged hemispherical accuracy was 86.6 £ 24.04 % (supplementary

Table S1), the averaged lobar accuracy was 65.11 + 38.7 mm (Table S2), the average overall



accuracy was 85.59 + 4.96 % (Table S4) and an average distance was 25.7 £ 17.75 mm

(supplementary Table S5).

Discussion

Identification of brain functional networks from scalp-EEG signals has been a topic of increasing
interest over the two past decades (Hassan and Wendling, 2018). Emerging evidence shows the
importance of identifying such networks at the cortical level (in the source space, in contrast with
electrode space) using dense-EEG data (Hassan and Wendling, 2018).The approach, called
“EEG source connectivity'has led to novel findings regarding the spatio-temporal dynamics of
functional brain networks, estimated from scalp-EEG data (Coito et al., 2015; M. Hassan et al.,
2015; Lu et al., 2012). Here, we studied the applicahilitpetwork science applied to brain
networks identified from non-invasive dense-EEG recordings at rest, in the aim of predicting
stereo-EEG (SEEG) exploration in patients with refractory epilepsy. Insfpoadthe current
understanding of epileptogenic networks characterized by hyperexcitability and
hypersynchronization (review in (Bartolomei et al., 2017)), our approach was guided by the
following hypothesis: can we identify sub-netwarkeferred to as *“significant nodes”,
characterized by significantly high local functionality while showing low interdependence level
with large-scale networks at rest. Eventually, we substantiate the usefulness of our hypothesis by
comparing the positions ofodes detected by scalp EEG to those of SEEG electrode. We found
that the proposed approach has succeeded to identify significant nodes in the vicinity of the zone
where SEEG implantation was performed. The major advantages of the presented approach are:
i) the non-invasiveness of EEG, ii) the exploration of network dynamics at short time scale
(hundreds of millisecond) and ii) the use of raw interictal recordings without pre-processing

aimed at detecting epileptic events (like spikes or spike-waves). Results are discussed hereafter.



Epilepsy is a network disorder

Source localization methods have been extensively used for the identification of the epileptic
focus (Baumgartner et al., 1995; Boon let ]997; Boon and D’Havé, 1995; Merlet et al., 1996;
Michel et al., 2004). However, it is now well admitted that epilepsy is a network disorder,
characterized by an epileptogenic zone most often organized as a large-scale dysfunctional
network involving multiple regions rather than a single focus (Bartolomei et al., 2001; Engel et
al., 2013; Wang et al.,, 2014). Recent studies that compared network-based and localization-
based approaches showed the advantage of the network approach (Coito et al., 2016; Hassan et
al., 2016; Staljanssens et al., 2017). These studies showed that localization-based approach can
lead to spurious sources (Hassan et al., 2016) and lower accuracy in localizing the seizure onset
zone (Staljanssens et al., 2017). Our findings support that EEG source connectivity
complemented by graph theory leads to sparser networks which are more specific to
epileptogenic networks. One explanation is that the source localization methods ignore the
functional connectivity between brain regions, on one side, and ignore the possible contribution
of brain sources with low energies, on the other side. In contrast, the network approach accounts
for the communication dynamics between regions regardless of their energies.

The current shift from ‘focusto ‘network’ in epilepsy researdimas motivated many researchers

to explore the epileptogenic networks by investigating the interactions between the brain sources
reconstructed from MEG/EEG (Coito et al., 2015; Dai et al., 2012; Ding et al., 2007; Hassan et
al., 2016; Jmail et al., 2016; Lu et al., 2012; Nissen et al., 2016; Song et al., 2013; Vecchio et al.,
2016). Interestingly, a recent work with interictal MEG networks attempted to identify the
epileptogenic zone on the basis of the betweenness centrality graph measure (Nissen et al.,

2016).



In this study, we showed how local network measures may have a potential relation with the
pathophysiology of epileptogenic networks. Indeed, based on the metrics introduced here
(within-module degree (Z) and clustering coefficient (CC)), significant nodes correspond to
pathological regions with high local connectivity. Indeed, both metrics quantify the implication
of nodes within a local network and were able to localize the hemisphere and the lobe of stereo-
EEG sites in most patients (17 of 18 patients for Z, and 15 of 18 patients for CC). To emphasize
that a good identification of epileptogenic network is related to the local properties of the
network, we examined the results obtained by other graph measures related to network global
properties: i) the betweenness centrality (C) which measures the importance of the node, and ii)
the participation coefficient (P) which measures the global functionality of the node. Our results
showed that the identified regions using P and C global measures were distant from the SEEG

contacts positions.

Clinical impact

Stereo-electroencephalography (SEEG) is a gold-standard for pre-surgical evaluation of drug-
resistant epilepsies (Bancaud and Talairach, 1973). Despite the fact that SEEG has dramatically
improved the identification of the area to be resected to maximize the benefit/risk ratio after
surgery, it requiresa priori knowledge about the lateralization and the lobar position of
epileptogenic networks in order to adequately place the electrodes. This decision is usually based
on multiple parameters obtained from clinical (patient history, semiology of seizures),
anatomical (MRI, CT) and non-invasive functional investigations (video-EEG, fMRI, PET).
(Gilard et al., 2016; Kovac et al., 2017). Still in many cases, interpretation of multi-modal data
coming from such investigations may be ambiguous and difficult to interpret, which make the

localization of epileptogenic zones an open and often hard issue. Overall, there is a growing



clinical demand for non-invasive and easy-to-use pre-surgical network identification tools. The
proposed approach meets this demand.

Another clinical need is to investigate the epileptogenic networks through recordings that do not
directly depend on ictal activity. This could dramatically reduce the monitoring period and the
preprocessing steps required to select, segment and clean the epileptiform activity such as
epileptic spikes (Khambhati et al., 2016). Interestingly, an analysis of the brain networks derived
from both ictal and interictal recordings has identified topological similarities, suggesting that
interictal networks topology can predict the brain regions that generate seizures (Khambhati et
al., 2016), even in the absence of interictal spikes (Coito et al., 2016). These findings militate in
favor of pushing the identification of epileptogenic networks using EEG recordings for which the
presence epileptiform events are not a prior.

Thereby, given the above described advantages (i.e. the non-invasiveness, minimal pre-
processing of EEG signals recorded during resting state periods with no absolute necessity of
including interictal epileptiform events), we believe that the proposed approach can bring
relevant and complementary information in the context of pre-surgical evaluation. In particular,
the additional clues provided by the method can be used by epileptologists in the definition of the
best depth-electrode placement (hemisphere and lobe). In addition, due to the fact that SEEG
cannot cover the whole surface of the brain in contrast to EEG, the proposed method may also

highlight cortical regions that may be overlooked by the traditional pre-surgical evaluation.

Limitations and methodological considerations
First, in the current study we restrictedly looked at the positions of SEEG contacts, without
performing any analysis on the underlying networks, as identified from SEEG signals. Our main

motivation was to analyze the matching between the networks identified from scalp-EEG



recordings with the spatial locations of the SEEG contacts decided by epileptologists. Results
indicate that dense-EEG combined with appropriate signal processing could become a tool for
guiding to the SEEG electrodes position. However, we did not investigate the correspondence
between scalp-EEG-based networks and depth-EEG-based networks; this is an important topic
for future study, that can be addressed using data without epileptiform activity (resting state) or
with epileptiform activity (spikes for instance).

Second, while EEG source connectivity has extremely improved the spatial resolution of EEG
(Hassan and Wendling, 2018), the networks identified are still limited to the cortical grey matter.
In fact, the localization of subcortical structures remains difficult using EEG technology, namely
due to anatomical and analytical reasolsilike the layered cortex, a subcortical region would

not have the necessary organization of pyramidal cells to give rise to localizable scalpdrecorde
EEG (Cohen et al., 2011).

Third, the weighted minimum norm estimate was used to reconstruct the source signals
combined with the phase locking value to compute the functional connectivity. The use of
WMNE/PLV combination has previously shown its ability to “estimate” the reference
epileptogenic networks modelled at neocortical level (Hassan et al., 2016) and to reveal relevant
resting state networks from dense-EEG in two recent studies (Hassan et al., 2017; Kabbara et al.,
2017). The good performance of the wMNE/PLV combination (compared to other combinations
as reported in (Hassan et al., 2016) might be related to the fact that wWMNE relies on reasonable
“physiological” hypothesizes (sourceposition and orientation). The only “mathematical”
assumption is that the solution should have lowest energy. It is worth noting that this assumption
could be considered as physiological in term of minimal energetic cost in the brain during rest

(Achard and Bullmore, 2007). Regarding the second step, the PLV method estimates the phase



synchronization between EEG oscillations. Therefore, this method is in line with the concept that
(hyper)synchronization between locally-generated signals is a crucial mechanism in brain
(dys)function. In the context of EEG source connectivity, the PLV method in particular, and
more generally the phase synchronization methods precisely reflect the underlying
synchronization between the brain signals generated by distant sources. Altogether, these
features may explain the good performance of this combination of methods in the assessment of

brain epileptogenic networks at rest.

Fourth, a recurrent problem in the field of M/EEG source space functional connectivity is the
volume conduction effects (Brookes et al., 2014). Connectivity analysis at source level was
shown to reduce the effect of volume conduction as connectivity methods are &pploedl”
time-series (analogous to local field potentials) generated by cortical neuronal assemblies
modelled as current dipole sources. Nevertheless, thessdled-‘mixing effects” can also occur

in the source space but can be reduced by an appropriate choice of connectivity measures.
Indeed, false functional couplings can be generated by some connectivity methods when applied
to mixed signals such as estimated brain sources. To address this issue, a humber of methods
were developed based on the rejection of zero-lag cormlatio particular, “unmixing”
methods, called “leakage correction”, have been reported which force the mectealssignals

to have zero cross-correlation at lag zero (Colclough et al., 2015). Although handling this
problem -theoretically- helps interpretation, a very recent study showed that the current
correction methods also produce erroneous human connectomes under very broad conditions
(Pascual-marqui et al., 2017). In addition, we also showed recently that the graph metrics
including the Z, CC, C and P extracted from the networks constructed using the PLV were not

affected by the spurious short connections problem (Kabbara et al., 2017).



Acknowledgement

This work has received a French government support granted to the CominLabs excellence
laboratory and managed by the National Research Agency in the "Investing for the Future"
program under reference ANR-10-LABX-07-01. It was also financed by the Rennes University

Hospital (COREC Project named conneXion, 2012-14). The study was also funded by the

National Council for Scientific Research (CNRS) in Lebanon.

Author contributions

AK.,, M.H., M.K,, AB., AN, .M. and F.W. took part in the conception and design of the study.
A.N. and .M. contributed in acquiring the data, and A.K., M.H., M.K., A.B., A.N., LM. and

F.W. analyzed the data. A.K. drafted the manuscript and the figures.

References

Achard, S., Bullmore, E., 2007. Efficiency and cost of economical brain functiomainkset PLoS Comput. Biol. 3,
0174-0183.

ANAES, 2004. [Proceedings of the Consensus Conference on Managdreug-Resistant Partial Epilepsy. 3-4
March 2004]. Rev. Neurol. (Paris).

Bancaud, J., Angelergues, R., Bernouilli, C., Bonis, A., Bordas-Ferrer, M., Bréssd@yser, P., Covello, L.,
Morel, P., Szikla, G., Takeda, A., Talairach, J., 1970. Functional stereotaxic exploratidp)(&tpilepsy.
Electroencephalogr. Clin. Neurophysiol. 28:-86.

Bancaud, J., Talairach, J., 1973. Methodology of stereo EEG exploration and surgigahiitn in epilepsy. Rev.
Otoneuroophtalmol. 45, 315.

Bartolomei, F., Guye, M., Wendling, F., 2013. Abnormal binding and disruption in larigensteorks involved in
human partial seizures. EPJ Nonlinear Biomed. Phys. 1, 4.

Bartolomei, F., Lagarde, S., Wendling, F., McGonigal, A., Jirsa, V., Guye, M., Bénar, C., 20ibihdef
epileptogenic networks: Contribution of SEEG and signal analysis. Epilepsia.

Bartolomei, F., Wendling, F., Bellanger, J.J., Régis, J., Chauvel, P., 2001. Neural netwalkkagrthe medial
temporal structures in temporal lobe epilepsy. Clin. Neurophysiol. 112:-17886.

Bassett, D.S., Porter, M.A., Wymbs, N.F., Grafton, S.T., Carlson, J.M., Mucha, P.J., 2018. dedbction of
dynamic community structure in networks. Chaos 23.

Baumgartner, C., Lindinger, G., Ebner, A., Aull, S., Serles, W., Olbrich, A., Lurger, S.,,dzeBlrgess, R.,
Luders, H., 1995. Propagation of interictal epileptic activity in temporal lobe epilepsy.ldpudd, 118-
122,

Bernasconi, A., 2017. Connectome-based models of the epileptogenic netvebek: tAwards epileptomics? Brain.

Bernhardt, B.C., Chen, Z., He, Y., Evans, A.C., Bernasconi, N., 2011. Graph-theoretigsicaeakals disrupted



small-world organization of cortical thickness correlation networks in temporal lobesspi@greb. Cortex
21, 21472157.

Bettus, G., Ranjeva, J.P., Wendling, F., Bénar, C.G., Confort-Gouny, S., Régisu¥elCha Cozzone, P.J.,
Lemieux, L., Bartolomei, F., Guye, M., 2011. Interictal functional connectivity of hiepdeptic networks
assessed by intracerebral EEG and BOLD signal fluctuations. PLoS One 6.

Blenkmann, A.O., Phillips, H.N., Princich, J.P., Rowe, J.B., Bekinschtein, T.A., Muka\@ii., Kochen, S., 2017.
iElectrodes: a comprehensive open-source toolbox for depth and subdural grid electiizdgidocd-ront.
Neuroinform. 11, 14.

Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E., 2008. Fast unfoldingwhcaities in large
networks. J. Stat. Mech. Theory Exp. 10008, 6.

Boon, P., D'Havé, M., 1995. Interictal and ictal dipole madglin patients with refractory partial epilepsy. Acta
Neurol. Scand. 92,-18.

Boon, P., D’'Have, M., Adam, C., Vonck, K., Baulac, M., VandekerckhoyeD& Reuck, J., 1997. Dipole modeling
in epilepsy surgery candidates. Epilepsia 38-208.

Brodbeck, V., Spinelli, L., Lascano, A.M., Pollo, C., Schaller, K., Vargas, M.I., WissimdyeMichel, C.M.,
Seeck, M., 2010. Electrical source imaging for presurgical focus localization in epilepsyspatiemormal
MRI. Epilepsia 51, 58391.

Brookes, M.J., Woolrich, M.W., Price, D., 2014. An Introduction to MEG connectivity inea®nts, in:
Magnetoencephalography: From Signals to Dynamic Cortical Networks. pg3521

Chiang, S., Haneef, Z., Stern, J.M., Engel, J., 2017. Use of resting-state fMRI in plapifépgy surgery. Neurol.
India 65, S25S33.

Cohen, M.X., Cavanagh, J.F., Slagter, H.A., 2011. Event-related potential activity in the bgbaldjHerentiates
rewards from nonrewards: Temporospatial principal components analysisuaoel Isgalization of the
feedback negativity: Commentary. Hum. Brain Mapp.

Coito, A., Genetti, M., Pittau, F., lannotti, G.R., Thomschewski, A., Holler, Y., Trinka, E., WieStie&k, M.,
Michel, C.M., Plomp, G., Vulliemoz, S., 2016. Altered directed functional connectivity incieiripbe
epilepsy in the absence of interictal spikes: A high density EEG study. Epilepsia 541402

Coito, A., Plomp, G., Genetti, M., Abela, E., Wiest, R., Seeck, M., Michel, C.M., Vulliemoz, S., 20i&mi2y
directed interictal connectivity in left and right temporal lobe epilepsy. Epilepsia 562207

Colclough, G.L., Brookes, M.J., Smith, S.M., Woolrich, M.W., 2015. A symmetric multivdeakage correction
for MEG connectomes. Neuroimage 117, -4848.

Dai, Y., Zhang, W., Dickens, D.L., He, B., 2012. Source connectivity analysisMi&@® and its application to
epilepsy source localization. Brain Topogr. 25,4H6.

Desikan, R.S., Sugonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., BuckneDatel.A.M.,
Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J., 2006. An automated labeling systsabftividing
the human cerebral cortex on MRI scans into gyral based regions of interest. Neurdin2g380.

Ding, L., Worrell, G.A., Lagerlund, T.D., He, B., 2007. Ictal source analysis: Localizatidnmaging of causal
interactions in humans. Neuroimage 34,-5586.

Eickhoff, S.B., Stephan, K.E., Mohlberg, H., Grefkes, C., Fink, G.R., Amunts, K., Zille20B5. A new SPM
toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data.ifNageo25,
1325-1335.

Engel, J., Jr., Thompson, P.M., Stern, J.M., Staba, R.J., Bragin, A., Mody, |., 20ih&c@onics and epilepsy.
Curr. Opin. Neurol. 26, 184.94.

Fischl, B., 2012. FreeSurfer. Neuroimage.

Freeman, L.C., 1977. A Set of Measures of Centrality Based on Betweenness. Sociometry

Genovese, C.R., Lazar, N.A,, Nichols, T., 2002. Thresholding of statistical maps inriahogaroimaging using
the false discovery rate. Neuroimage 15,-873.

Gilard, V., Proust, F., Gerardin, E., Lebas, A., Chastan, N., Fréger, P., Parain, D., Derre}6.3Js2@ulness of
multidetector-row computerized tomographic angiography for the surgical planning in
stereoelectroencephalography. Diagn. Interv. Imaging 97388l

Girvan, M., Newman, M.E.J., 2002. Community structure in social and biological netviRydc. Natl. Acad. Sci.
U. S. A 99, 78216.

Gramfort, A., Papadopoulo, T., Olivi, E., Clerc, M., 2010. OpenMEEG: opensoure@snfor quasistatic
bioelectromagnetics. Biomed. Eng. Online 9, 45.

Guimera, R., Guimera, R., Nunes Amaral, L. a, 2005. Functional cartography of compleximettimrks.
Nature 433, 895900.



Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Van Wedeen, J., Spd@@8880OMapping the
structural core of human cerebral cortex. PLoS Biol. 6, 4493.

Hamalainen, M.S., llmoniemi, R.J., 1994. Interpreting magnetic fields of the braimuammnorm estimates. Med.
Biol. Eng. Comput. 32, 3&12.

Hassan, M., Benquet, P., Biraben, A., Berrou, C., Dufor, O., Wendling, F., 2015. Dyeanganization of
functional brain networks during picture naming. Cortex 73-288.

Hassan, M., Chaton, L., Benquet, P., Delval, A., Leroy, C., Plomhause, L., Moonen, Buiitsl. A.A., Leentjens,
A.F.G., van Kranen-Mastenbroek, V., Defebvre, L., Derambure, P., Wendling, F., Dujard01K.
Functional connectivity disruptions correlate with citige phenotypes in Parkinson’s disease. Neurolmage
Clin. 14, 591601.

Hassan, M., Dufor, O., Merlet, I., Berrou, C., Wendling, F., 2014. EEG source coitgentalysis: From dense
array recordings to brain networks. PLoS One 9.

Hassan, M., Merlet, ., Mheich, A., Kabbara, A., Biraben, A., Nica, A., Wendling, F., 2016. Identification of
Interictal Epileptic Networks from Dense-EEG. Brain Topogil7.

Hassan, M., Wendling, F., 2018. Electroencephalography souncectivity: toward high time / space resolution
brain networks. IEEE Signal Process. Mag4.

Jmail, N., Gavaret, M., Bartolomei, F., Chauvel, P., Badier, J.M., Bunar, C.G.,@0farison of Brain Networks
During Interictal Oscillations and Spikes on Magnetoencephalography and Intracerebral EEG. Bygm Top
29, 752-765.

Kabbara, A., Falou, W.E.L., Khalil, M., Wendling, F., Hassan, M., 2017. The dynamic fualatme network of
the human brain at rest. Sci Replé.

Khambhati, A.N., Bassett, D.S., Oommen, B.S., Chen, Stephanie, H., Lucas, T.H., Davis, K.A., LOi&6B., 2
Recurring functional interactions predict network architecture of interictal and ictal stasxortical
epilepsy. Revis. eNeuro.

Kovac, S., Vakharia, V.N., Scott, C., Diehl, B., 2017. Invasive epilepsy surgery evaluation. Seizure.

Lachaux, J.P., Rodriguez, E., Martinerie, J., Varela, F.J., 1999. Measuring phase synchraimysignals. Hum.
Brain Mapp. 8, 194208.

Lantz, G., Michel, C.M., Seeck, M., Blanke, O., Spinelli, L., Thut, G., Landis, T., Rosén, |.,.3de-oriented
segmentation and 3-dimensional source reconstruction of ictal EEG patterns. Clophysiol. 112, 688
697.

Lascano, A.M., Vulliemoz, S., Lantz, G., Spinelli, L., Michel, C., Seeck, M., 2012. A Review onnNasirle
Localisation of Focal Epileptic Activity Using EEG Source Imaging *&0.

Lu, Y., Yang, L., Worrell, G.A., He, B., 2012. Seizure source imaging by means of phtig-semporal dipole
localization and directed transfer function in partial epilepsy patients. Clin. Neurophysidl2¥83]1283.

Merlet, I., Garcia-Larrea, L., Grégoire, M.C., Lavenne, F., Mauguiéere, F., 1996. Sourcegtimpafinterictal
spikes in temporal lobe epilepsy. Correlations between spike dipole modelling andUd&reldoxyglucose
PET data. Brain 119 ( Pt 2, 37972.

Michel, C.M., De Peralta, R.G., Lantz, G., Andino, S.G., Spinelli, L., Blanke, O., Landis, T., Seeck, M., 1999
Spatiotemporal EEG analysis and distributed source estimation in presurgical epilepsy evalu@tion
Neurophysiol.

Michel, C.M., Murray, M.M., Lantz, G., Gonzalez, S., Spinelli, L., Grave De Peralta, R., 2004. EES sour
imaging. Clin. Neurophysiol.

Netoff, T.l., 2004. Epilepsy in Small-World Networks. J. Neurosci. 24, 88083.

Nissen, I.A., Stam, C.J., Reijneveld, J.C., van Straaten, |.E., Hendriks, E.J., Baayen, J.(@ Haenéf, P.C.,
Idema, S., Hillebrand, A., 2016. Identifying the epileptogenic zone in interictal resting-statsddEs-
space networks. Epilepsial2.

Pascual-marqui, R.D., Biscay, R.J., Bosayard, J., Faber, P., 2017. Innovations orthogonalizaiaolution to
the major pitfalls of EEG / MEG *“ leakage correction 20—

Ponten, S.C., Douw, L., Bartolomei, F., Reijneveld, J.C., Stam, C.J., 2009. Indications fokmegutarization
during absence seizures: Weighted and unweighted graph theoretical analyses. Exp. NeGS3-204,,

Rubinov, M., Sporns, O., 2010. Complex network measures of braiectrity: Uses and interpretations.
Neuroimage 52, 1059.069.

Schneider, F., Irene Wang, Z., Alexopoulos, A. V., Aimubarak, S., Kakisaka, Y., Jin, K.PNaitosher, J.C.,
Najm, I.M., Burgess, R.C., 2013. Magnetic source imaging and ictal SPECT in MRI-negetoatical
epilepsies: Additional value and comparison with intracranial EEG. Epilepsia 543659

Song, J., Tucker, D.M., Gilbert, T., Hou, J., Mattson, C., Luu, P., Holmes, M.D., 2013xdddtr examining



electrophysiological coherence in epileptic networks. Front. Neurol. 4 MAY.

Sporns, O., Betzel, R.F., 2016. Modular Brain Networks. Annu. Rev. Psycholl$5640.

Staljanssens, W., Strobbe, G., Van Holen, R., Keereman, V., Gadeyne, S., Carrette, E., Meurs,, k., Pittau
Momijian, S., Seeck, M., Boon, P., Vandenberghe, S., Vulliemoz, S., Vonck, K., van Mierlal P.EED
source connectivity to localize the seizure onset zone in patients with drug regitégostye Neurolmage
Clin. 16, 689698.

Studholme, C., Hawkes, D.J., Hill, D.L., 1998. Normalized entropy measure for multimactagg alignment.
Proc. SPIE 3338, 13243.

Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M., 2011. Brainstorm: A usdy-tmgplication for
MEG/EEG analysis. Comput. Intell. Neurosci. 2011.

Tavares, V., Ribeiro, A.S., Capela, C., Cerqueira, L., Ferreira, H.A., 2017. Epileptogenic focus localg&ation
complexity analysis of BOLD signals, in: ENBENG 2017 - 5th Portuguese Meeting orngBieering,
Proceedings.

van Dellen, E., Douw, L., Baayen, J.C., Heimans, J.J., Ponten, S.C., Vandertop, W.P., Velis, D,NC,B5tam
Reijneveld, J.C., 2009. Long-Term Effects of Temporal Lobe Epilepsy on LocahiNdetivorks: A Graph
Theoretical Analysis of Corticography Recordings. PLoS One 4.

Van Mierlo, P., Carrette, E., Hallez, H., Raedt, R., Meurs, A., Vandenberghe, S., Van Roost, D., Boon, P., Staelens
S., Vonck, K., 2013. Ictal-onset localization through connectivity analysis of intracraniasigiads in
patients with refractory epilepsy. Epilepsia 54, 140018.

Vecchio, F., Miraglia, F., Quaranta, D., Granata, G., Romanello, R., Marra, C., Bramanti, P., Rossi@iQT6M.
Cortical connectivity and memory performance in cognitive decline: A studyrafzh theory from EEG data.
Neuroscience 316, 14350.

Wang, J., Qiu, S., Xu, Y., Liu, Z., Wen, X., Hu, X., Zhang, R., Li, M., Wang, W., Huan@O0R4. Graph
theoretical analysis reveals disrupted topological properties of whole brain functtwatks in temporal
lobe epilepsy. Clin. Neurophysiol. 125, 174456.

Watts, D.J., Strogatz, S.H., 1998ollective dynamics of “smallvorld” networks. Nature 393, 440

Xia, M., Wang, J., He, Y., 2013. BrainNet Viewer: A Network Visualization Tool for Human Brainéggtomics.
PLoS One 8.

Zhang, Z., Liao, W., Chen, H., Mantini, D., Ding, J.R., Xu, Q., Wang, Z., Yuan, C., Chelia&.Q., Lu, G., 2011.
Altered functional-structural coupling of large-scale brain networks in idiopagiierglized epilepsy. Brain
134, 29122928.



Figure 1. The full pipeline of the study.On the left the steps performed to identify the pathological nodes
using EEG network analysis. First, we reconstructed the regional time series using the weightethimum
norm estimate (WMNE) inverse solution. The dynamic functional connectivity matrices were then oputed
using a sliding window approach combined with the phase locking value (PLV) connectivity measure. After
that, the within-degree module and the clustering coefficient were used to quantify the localketwork
property. On the right: the steps performed to extract the SEEG contacts’ coordinatessing the CT scan and
the structural MRI images. Finally, the significant nodes obtained using EEG approach were compared to the
positions of SEEG contacts in terms of hemispherical, lobar and epileptogenic zone detection.



Figure 2. (Up) Organization of the epileptogenic networks in focal epilepsy. The epileptogenic zone (EZ)
network contains brain regions (orange nodes) that may generate seizures. This EZ pipts another set of
brain regions forming the propagation zone network (Green nodes). Adapted frorBernasconi, 2017)

(Bottom) Organization of the brain networks into modules. Networks can be decomposed into modsil&dges
are either linking nodes within modules (Orange, green or purple) or between modules (blaekiges). Highly
connected nodes with other nodes in the same modules nodes are called provincial hub. Adapted f(8porns
and Betzel, 2016b)



Figure 3. Comparison between the local and global network measures in terms of hemigpial, lobar,
closeness, global accuracies and Euclidian distance. * denotes significant differencedg0.01.



Figure 4. Patient P1 (Excellent overall accuracy)

Top) The cortical surface representations of the regions that showed high significant values (€1,
Bonferroni corrected) in local network measures (within-degree module, clustering coefficient) and global
network measures (centrality, and participation coefficient) for the patient P1. A blue node represents SEEG
contact, not detected by EEG approach. A green node represents a node detected by EEG approachode
colored in red represents a node that overlaps between SEEG contact and EEG approach. The barplots of the
distance between scalp and depth EEG and the closeness accuracy for the four network measures.



Figure 5. Patient P2 (good overall accuracy)

Top) The cortical surface representations of the regions that showed high significant values (p€1,
Bonferroni corrected) in local network measures (within-degree module, clustering coefficient) and global
network measures (centrality, and participation coefficient) for the patient P2. A blue node represents SEEG
contact not detected by EEG approach. A green node represents a node detected by Ep@raeach. A node
colored in red represents a node that overlaps between SEEG contact and EEG approach. The barplotshef t
distance between scalp and depth EEG and the closeness accuracy for the four network measures.



Patient Age EZ SEEG implantation MRI
Side Brain areas
(nb electrodes)
P1 (F) 28 R Fr R(9) iFr, mFr, sFr, IOFr, mesOFr, preC, aCing, mCing, R sFr FCD
Ins, mTe, Amy
P2 (M) 36 R Te-Occ R(10) MesFr, iFr, mesOFr, EC, iTe, mTe, ST, Ins, Amy, R iTe and Te-Occ
Hipp, paraHipp, Ling, Fus, Cun, pCing, IOcc, iPA DNET
P3 (M) 27 R Fr R (11) iFr, mFr, sFr, mesFr, aCing, mCing, preC, pC Right mFr DNET
P4 (F) 35 L Te +Ins L(12) mFr, TeP, sTe, mTe, iTe, EC Amy, Hipp, Fus, Ins, T2 signal abnormality in
preC, iPa, L TeP and Ins
P5(M) 19 L Pa-Occ L(10) paraC, pC, mTe, Hipp, Fus, iPa, sPa, preCun, L mes Pa-Occ FCD
pCing, 10cc, Ling, Calc, Cun
R(2) sPa, iPa, pCing
P6(M) 30 L Pa-Occ L(6) mT, sTe, Hipp, Fus, iPa, sPa, pC, preCun, pCing L Pa-Occ post-surgery
cavity
P7 (F) 16 L Fr L(9) iFr, mFr, sFr, mesFr, |IOFr, mesOFr aCing, mTe, L mesOFr FCD
Amy
P8 (M) 19 LC L(11) iFr, mFr, sFr, mesFr, preC, pC, aCing, mCing, -
pCing, Ins
PO (M) 26 R Te +Ins R(9) mFr, preC, iTe, mTe, sTe, Hipp, Amy, EC, Ins, Fus -
L(3) mFr, mTe, preC, Amy, Hipp, Ins
P10 (F) 35 LTe L(5) mTe, sTe, Hipp, Amy, paraHipp Previous L TeP, Amy
and aTe resection
P11 (M) 26 R Fr R(13) iFr, mFr, sFr, mesFr, preC, pC, aCing, mCing, -
pCing, Ins
P12 (M) 33 L Fr R(10) iFr, mFr, sFr, mesFr, aCing, iTe, mTe, sTe, EC, L iFr FCD



P13 (M)

P14 (M)

P15 (F)

P16 (M)

P17 (M)

P18 (M)

25

28

22

23

29

40

+ R Te +R Ins

RC

R Fr-Te + R Ins

LTe+LIns

R Te-Occ

RTe

L Fr

L(4)
R(10)

R(14)

L(11)

R(13)

R(12)

L(11)

Amy, Hipp, Ins,
aCing, preC, mTe, Amy, Hipp, Ins

iFr, mFr, sFr, mesFr, preC, pC, paraC, aCing,
mCing, pCing, Ins, iPa, preCun

iFr, mFr, sFr, mesFr, |IOFr, mesOFr, preC, pC, mTe,
sTe, Amy, paraHipp, Hipp, Ins

mesOFr, preC, TeP, iTe, mTe, sTe, Hipp, EC,
paraHipp, Amy, Ins, iPa

sFr, sTe, mTe, Hipp, paraHipp mCing, pCing, iPa,
sPa, preCun, IOcc, Ling, Calc, Cun

iTe, mTe, sTe, Amy, Hipp, ParaHipp, Ling, 10cc,
Calc, pCing, iPa

iFr, mFr, sFr, mesFr, preC, pC, paraC, aCing,
pCing, Ins, Thal

L sFr abnormal sulcus

Tablel. Demographic of the 18 patients.

Abbreviations: L: left; R: right; i: inferior; m: middle; s: superior; a: anterior, p: pos terior; mes: mesial; I: lateral; Fr: frontal, OFr: orbito-frontal;

Cing: cingulate gyrus; C: central; Ins: Insula; Te: temporal; TeP: temporal pole, Pa:Parietal; Occ: Occipital; Amy: amygdala; Hipp: hippocampus;
EC: entorhinal cortex; Fus: fusiform gyrus; Ling: Lingual gyrus; Calc: calcarin sulcus; Cun: cuneus DNET: Dysembryplastic Neuroepithelial Tumor;
FCD : Focal Cortical dysplasia.
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Abstract

The human brain is a dynamic networked system that continually reconfigures its connectivity
patterns over time. Thus, developing approaches able to adequately detect fast brairsdgnamic
critical. Of particular interest are the methods that analyze the modular structure of brain
networks, i.e. the presence of clusters of regions that are densely inter-connected. In this pape
we propose a novel framework to identify fast modular states that dynamically fluctuate over
time during rest and task. We validate our method using MEG data recorded during a finger
movement task, identifying modular states linking somatosensory and primary motor regions.
The algorithm was also validated on dense-EEG data recorded during picture naming task,
revealing the sub-second transition between several modular states which relate to visual
processing, semantic processing and language. Next, we validate our method on a dataset of
resting state dense-EEG signals recorded from 124 parkinsonians patients of different cognitive
phenotypes. Results disclosed brain modular states that differentiate cognitively intact patients,
patients with moderate cognitive deficits and patients with severe cognitive deficits. Our new

approach tracks the brain modular states on an adequate task-specific timescale.



Introduction

The human brain is a modular dynamic system. Following fast neuronal actfyithe
functional organization of resting’ and task-evoked connectivify** are in constant flux.
Hence, an appropriate description of time-varying connectivity is of utmost importance to
understand how cognitive and behavioral functions are supported by networks.
Electro/magneto-encephalography (EEG/MEG) are unique noninvasive techniques, which allow
for the tracking of brain dynamics on a millisecond time-scale, a resolution not reachable using
other techniques such as the functional Magnetic Resonance Imaging (fRI)in this

context, several methods have been proposed to reveal when, and how the functional connections
between brain regions vary during short-time (sub-second) experiments. Some of these studies
proposed to group the temporal networks into states, where each state reflect unique spatial
connectivity pattern. These brain states were mainly generated using Hidden Markov model
approache$*® K-means clustering®*’ or independent component analysisOther studies

have tried to investigate the dynamic topological changes using graph theoretical aalysis

Due to the modular organization of the human brain netfonkethods for detecting network
communities (or modules) are of particular inter@stThese methods decompose the network

into building blocks or modules that are internally strongly connected, often corresponding to
specialized functions. Importantly, brain modularity has been revealed to be related to behavior

involved in learnind®, remembering, attention and integrated reaséhing

To detect modules, many community detection methods have been préfidseding the most
widely applied community detection methods, brain networks are often analyzed as static

arrangements of nodes and edges with a number of studies starting to explore how the modular



organization shapes the dynamics of neural actifify"***> One of the algorithms used to
characterize the flow of communities across time is multi-slice modularity (also called multi-
layer modularity}®, which has been used to follow changes of the modular architecture across
time %° 2. However, it does not automatically decipher functional modular brain states i.e. subset

of brain modules implicated in a given brain function at a given time period.

Here, we propose a novel framework aiming to elucidate the main modular brain structures,
called ‘modular states’ (MSwhich fluctuate over time during rest and task. The new method is
based on temporally categorizing the modular structures that share the same topology by
guantifying the similarity between their partitions (Figure 1). The proposed framework was
validated in simulation and on three different MEG/EEG datasets, recorded in rest and task from
healthy and/or patients. Our method revealed both time-varying functional connectivity and the
corresponding spatial patterns. We are able to track the space/time dynamic of brain networks in

task-adapted timescale.



Results

The proposed algorithm is illustrated in Figure 1. The dynamic functional connectivity matrices
were obtained using a sliding window approach giving a weighted network at each time window.
By applying a community detection algorithm (Louvain method), each network was then
decomposed into modules (i.e clusters of nodes that are internally strongly connected, but
externally weakly connected). The similarity between the temporal modular structures was then
calculated (Figure 1B). Finally, the modular states (MS) were obtained by applying community
detection algorithm to the similarity matrix (Figure 1 C).

We propose two different frameworRs“categorical” where the objective is to find the main
modular structures over time, without any interest in their sequential amdar) “consecutive”

where the objective to find the modular structures in a successive way.

Validation on simulated data

We first evaluate the performance and the space/time precision of the algorithm using simulated
data. Briefly, an adjacency tensor was simulated over a time-course spanning 60 seconds by
combining four network structures: M1, M2, M3 and M4 (illustrated in Figure 2.A). The onset as
well as the duration of each modular structure is illustrated in Figure 2.B. Random Gaussian
noise was added to the adjacency tensor, and the standard deviation of the noise was allowed to

vary between 0.2 and 0.5 (see Methods section for more details about the simulation).



Figure 1. The algorithm procedure.A) Computation of modules for each temporal network. B) Assessment of the
similarity between the dynamic modular structures. C) €tirgg the similarity matrix into “categorical Modules”.



Figure 3 shows the results of the categorical method applied on the dynamic networks generated
by the simulation scenario ( . Four modular states were obtained: MS1, MS2,
MS3 and MS4. Figure 3.A illustrates the modular statiese courses, showing the most likely

state at each time-window whilst Figure 3.B shows the 3D representation of the MS. Clearly, the
four simulated modular structures have been successfully reconstructed. However, one time
window that actually belongs to the background (i.e. random) has been wrongly affiliated to
MS2. Moreover, MS3 state time course presented two false time window detection: one belongs
to MS4, and the other belongs to the background. To quantitatively validate the obtained results,
we compared the simulated structures (M1, M2, M3 and M4) to the reconstructed structures
(MS1, MS2, MS3 and MS4) in terms of spatial and temporal similarities. The spatial similarities
between the simulated and the reconstructed data are 0.99, 0.98, 0.99 and 0.98 for MS1, MS2,
MS3, and MS4 respectively. The temporal similarities are 0.79, 0.83, 0.9 and 0.71 for MS1,

MS2, MS3, and MS4 respectively.



Figure 2. The simulation scenario.A) Left: the adjacency matrix of the constructed networks, Right: the 3
cortical presentation of the modular structures of the simulated networkse Bjrgh axis showing the beginning
and the end of each network.



Using the consecutive method, the algorithm has successfully segmented the similarity matrix
yielding to the detection of five modular states (Figure 4.A). Their 3D representations are shown
in Figure 4.B. One can remark that MS1 (spatial similarity=0.94; temporal similarity=0.88), MS2
(spatial similarity=0.99; temporal similarity=0.94), MS3 (spatial similarity=0.97; temporal
similarity=0.77), MS4 (spatial similarity=1; temporal similarity=0.88), and MS5 (spatial
similarity=0.95; temporal similarity=1) matched, temporally and spatially, the simulated

networks generated at the corresponding time-windows.

Results corresponding to are illustrated in the supplementary

materials. In brief, results show that using the categorical algorithm, the spatial characterizations
of the four modular states were successfully detected. However, the state time-course of MS3
failed to detect the second corresponding segment (Figure S1, S2). Using the consecutive

algorithm, the five MS were temporally detected (Figure S3, S4).



Figure 3. Results of the categorical method applied on simulated data) the time course of the four modular
structures reconstructed. The grey square indicates false time-window detectgih.r&)resentation of the four
modular structures states.



Figure 4. Results of the consecutive method applied on simulated datd) The results of the segmentation
algorithm used to derive the consecutive modular structures from thiargymmatrix by: 1) Thresholding the

matrix using FDR, 2) applying a median filter on the thresholded matdx33 extracting the most significant
segments (See methods section for more details about the consecutive algte$)mB) The 3D representation of
the five consecutive modular structures obtained. C) The difference betheesimulated time axis and the

obtained time axis.



Real data
Dataset 1-self paced motor task for healthy participants (MEG data):

Here, MEG data were recorded from 15 participants during a self-paced motor task, i.e.
participants that were asked to periodically press a button. The source time courses were
reconstructed using a beamforming approach. The consecutive algorithm was also applied on the
computed dynamic connectivity matrices averaged over all trials and subjects. The dynamic
functional connectivity matrices were calculated using a sliding window approach based on
envelope correlation (see Methods section). The same dataset and methods was previously used
in %29 The algorithm results in one significant MS found between -0.5s and 1.5 s (Figure 5).
As illustrated, this module implicates the sensory motor area, the post and pre-central regions of

both hemispheres.

Figure 5. The MS of the MEG motor task obtained using theconsecutivé method.



Dataset 2-picture naming task for healthy participants (dense-EEG data):

This dataset consists of dense-EEG (256 channels) data recorded from 21 healthy subjects asked
to name displayed pictures. The objective of using this dataset was to track the fast space/time
dynamics of functional brain networks at sub-second time scale from the onset (presentation of
the visual stimuli) to the reaction time (articulation). Hence, the consecutive version was applied

on the dynamic connectivity matrices averaged over subjects.

The same dataset was previously used by Hassan®earal it consists of dense-EEG data
recorded. The source time series were reconstructed using the weighted minimum norm solution
(WMNE). The dynamic functional connectivity matrices were computed using the inter-trial
version of the phase locking value (see Methods section for more details). Figure 6A shows the
obtained results revealing that the cognitive process can be divided into five modular structures:
The first MS corresponds to the time period ranging from the stimulus onset to 130 ms and
presents one module located mainly in the occipital region. The second MS is observed between
131 and 187 ms, and involves one module showing occipito-temporal connections. The third MS
is identified between 188 and 360 ms, and illustrates a module located in the occipito-temporal
region, and another module located in the fronto-central region. This structure was then followed
by a fourth MS, found over the period 361-470 ms. MS4 was very similar to the previous MS but
with additional fronto-central connections. The last MS is observed between 471 and 500 ms and
it shows a module connecting the frontal, the central and the temporal regions. It is worth noting
that these MS denotes the transitions from the visual processing and recognition the semantic

processing and categorization to the preparation of the articulation pfd&&ss



Figure 6. The sequential MSs of the EEG picture naming task obtained using the consecutive mettzoai
their corresponding cognitive functions.

Dataset 3-resting state in Parkinson's disease patients (dense-EEG data):

This dataset consists of dense-EEG data recorded from 124 patients with idiopathic Parkinson's
disease and separated (based on their neuropsychological tests) into three groups: G1)
cognitively intact patients (N=63), G2) patients with mild cognitive deficits (N=46) and G3)

patients with severe cognitive impairment (N=15). &&*°for more details about the database.

Our objective here is to validate the usefulness of the categorical version in detecting the
modular alterations between G1, G2 and G3. To do that, the dynamic functional connectivity of
each patient was calculated using a sliding window approach automatically selected based on
phase locking value (see Methods for more details). Then, the dynamic connectivity matrices of

the three groups were concatenated over time, forming a single data tensor of dimension N x N X



T, where N is the number of ROIs, and T is equal to the number of time-windows * the number
of patients (Figure 4). The algorithm was then applied to identify the modular structures that are

common to the three groups, and those who are specific to each group.

Results are illustrated in Figure 7. Five modular structures were identified (MS1, MS2, MS3,
MS4 and MS5). Three MSs were found for G1 and G2. However, the number of MS decreased
from three to two MSs in G3. Results revealed that MS1 was found to be present in the three
groups while MS1 and MS2 were present only in G1 and G2. The modular structure MS2
(absent in G3) is illustrated in Figure 7 and includes two modules involving mainly fronto-
central and occipito-temporal connections. The difference between G1 and G2 was reflected by
the absence of the structure MS3 replaced by the structure MS4 in G2. Results in Figure 7
showed that the difference is mainly the fronto-temporal. The difference between G2 and G3 was
reflected by the absence of the structure MS4 from G2 and the presence of the structure MS5 in
G3. Figure 7 showed that the functional disruptions between G2 and G3 are mainly fronto-
temporal connections. It is worth noting that the fronto-temporal disruptions were widely
reported in mild cognitive impairments®**>*4while the central disruptions are widely observed

in severe cognitive impairmeftsand dementid’.



Figure 7. The analysis pipeline and the results of the categorical method applied Barkinson’s disease EEG
dataset. A) The dataset composed of 124 patients partitioned into three groupso@iijively intact patients
(N=63), G2) patients with mild cognitive deficits (N=46) and G3) patients sétere cognitive impairment
(N=15). B) The functional dynamic connectivity matrices of the threapgr@oncatenated over time. C) The five
modular structures obtained after applying the categorical algorithm on batepnated tensor. D) The modular
differences between G1 and G2, G1 and G3, G2 and G3.



Discussion

In this paper, we have developed a novel framework aims to explore the fast reconfiguration of
the functional brain networks during rest and task. The new method can be used to track the
sequential evolution of brain modules during a task-directed paradigm or to identify the
dominant brain modules that arise at rest. The simulation-based analysis showed clearly the
ability of the method to “restimate” the modular netwlostructures over time.

The new framework was validated in simulation and on three different EEG/MEG datasets i)
MEG data recorded from 15 healthy subjects during a self-paced motor task , ii) Dense-EEG data
recorded from 21 healthy subjects during a picture naming task and iii)Dense-EEG data recorded
at rest from 120 Parkinson’s disease patients with different cognitive phenoi@pesesults

show that our method has the flexibility to not only track the fast modular states of the human
brain network at sub-second time scale, but also highlights its potential clinical applications,

such as the detection of the early cognitive declinberParkinson’s disease.
“Categorical” and “consecutive” processing schemes

The two processing schemes proposed here are both derived from the similarity matrix between
the temporal modules (Step B in Methods section). However, each version highlights a
specific characterization of the modular structures, which can be then exploited depending on the
application (time/condition dependent). . In particular, the results of the categorical algorithm on
the simulated data reveal high spatial resolution and relatively low temporal resolution compared
to those obtained using the consecutive algorithm. The low temporal resolution of the categorical
version is reflected by the false (Figure 2) as well as the missed time-windows detection (Figure

S1, Figure S2). In contrast, these time-windows were correctly detected by the consecutive



version despite their short length (Figure 3, Figure S3 and Figure S4). Yet, the low spatial
resolution of the consecutive version can be illustrated by MS5 (Figure 3, Figure S3, Bigure S
that should represent M2 (Figure 1). This is probably due to the categorical version using the
maximum number of available data points to generate their corresponding MS, whilst the
consecutive version treats each temporal segment solely.

We suggest using the consecutive version where sequential order of MSs is interesting to
investigate such as the tracking of cognitive tasks. When the temporal aspects are not necessary,

we would recommend the categorical version.
Tracking of fast cognitive functions

As many brain responses only last on the order of milliseconds to seconds, the brain dynamically
reconfigures its functional network structure on sub-second temporal scales to guarantee efficient
cognitive and behavioral functioffs Tracking the spatiotemporal dynamics of large scale
networks over this short time duration is a very challenging iSsuén this paper, we aimed at
examining how fast changes in the modular architecture shape the information processing and
distribution in i) motor task and ii) picture naming task.

Concerning the self-paced motor task, it is a simple task where only motor areas are expected to
be involved over time. Our results showed indeed that motor module is clearly elucidated related
to the tactile movement of the button press. The spatial and the temporal features of the obtained
module are very close to the significant component obtained by ID'&tedl. ° using the
temporal ICA method.

The different MSs obtained in the EEG picture naming task are temporally and spatially
analogous to the network brain states detected using other approaches such as K-means

clustering by®. In particular, the first MS representing the visual network is probably modulated



by the visual processing and recognition proced$&s.The second MS reflects the memory
access reflected by the presence of the occipital-temporal connetidnsother words, the

brain tries to retrieve the information related to the picture illustrated from the mémbryhe

third and the fourth MSs, we notice the implication of a separated frontal module. This module
may be related to the object category recognition (tools vs. animals) and the decision making
process®**!. After taking the decision, the speech articulation and the naming process is
prepared and startéd This is reflected by the MS5 that combines the frontal, the motor and the

temporal brain areas.

Modular brain states and cognitive phenotypes in Parkinson’s

disease

Emerging evidence show that Parkinson’s disease (P&¥sisciated with alteration in structural

and functional brain networks. Hence, from a clinical perspective, the demand is high for a
network-based technique to identify the pathological networks and to detect early cognitive
decline in PD.

Here, we used a dataset with a large number (N=124) of PD patients categorized in three groups
in term of their cognitive performance :G1- cognitively intact patients, G2- patients with mild to
moderate cognitive deficits and G3- patients with severe cognitive deficits in all cognitive

domains See*>***>for more information about this database.

The obtained MSs presented in Figure 7 show that while some MSs remain unchangeable during
cognitive decline from G1 to G3, others are altered and replaced by new MS. More specifically,
the number of MS detected in G3 has decreased compared to G1 and G2, MS3 in G1 was

replaced by MS4 in G2 while MS4 in G2 was replaced by MS5 in G3. In addition, the alterations



in G3 involve more distributed modules (central, fronto-temporal) than the alterations occurring
between G1 and G2 (fronto-temporal modules) where the impairment still moderate.
Interestingly, the underlying modular differences between the MSs of groups are consistent with
the previously reported studies that explored the networks changes > #4047
Particularly, the loss of fronto-temporal connections in PD is supported by several EEG and
MEG studies®*®**" Similarly, results of structural MRI studies reveal frontal and temporal
atrophies in PD with mild cognitive impairmefit® Other functionaf® and structurat® studies
showed that Alzheimer’'s disease networks are characterized by-feonporal alterations. In
addition, the brain regions involved in the modular alterations in G3 found in our study are in
line with findings obtained by EEG edge-wise analysisnd by structural MRI studies showing

widespread atrophy associated with PD patients related derfientia

Methodological considerations

First, we used a template anatomical image generated from MRIs of healthy controls for
EEG/MEG source functional connectivity analysis. The template-based method is common
practice in the absence of individual anatomical images and was previously employed by
multiple EEG and MEG source reconstruction studies, because of non-availability of native
MRIs >32484% Eyrthermore, a recent study showed that there are few potential biases introduced
during the use of a template MRI compared to individual MRI co-registration

Second, the connectivity matrices in Datas€éParkinson’s disease analysisgre thresholded

using a “proportional threshold” approaichcontrast to other datasets (Picture naming and self-
paced motor tasks) where a statistical threshold (FDR) approach was used (see Methods). The
reason is that in dataset 3, three groups were analyzed and the proportional threshold approach,

compared to other threshold approaches, ensures equal density between the analyzéll groups



Moreover, studies suggests that FDR controlling procedures is effective for the analysis of
neuroimaging data in the absence of inter-groups compansbrf.

Third, in each dataset we adopted the same pipeline (from data processing to networks
construction) used by the previous studies dealing with the same dataset. We did this to avoid
influencing factors caused by changing the source connectivity method, the number of ROIs, the
connectivity measure or the sliding window length. By relying on previous stéidfiéd we

provide appropriate input -already tested and validated - to the algorithm, regardless of how they

were obtained.

Methods

Our main objective is to develop a framework to track of the brain modules over time. We have
developed two algorithm versions i) “categorical” wheve aim to find the main modular
structures over time, with nioterest in their sequential order and ii) “consecutive” where the
objective to find the modular structures in a successive way. The two versions are described

hereafter.
Categorical version

It includes four main steps:

1- Compute the dynamic functional connectivity matrices between the regional time-series
using a sliding window approadtt*'” Consequently, a weighted network is generated at
each time window (Figure 1. A).

2- Decompose each network into modules (i.e clusters of nodes that are internally strongly

connected, but externally weakly connected) (Figure 1. A). To do that, different



modularity algorithms were proposed in the literatth®°. In our study, we adopted

the consensus clustering approach which was previously used in many Sttidgisen

an ensemble of partitions acquired from the Newman algofiffand Louvain algorithm

>8 repeated for 200 runs, an association matrix is obtained. This results in a N*N matrix

(N is the number of nodes) and an elementrepresents the number of times the nodes

and are assigned to the same module across all runs and algorithms. The association
matrix is then compared to a null model association matrix generated from a permutation
of the original partitions, and only the significant values are retdinetio ultimately

obtain consensus communities, we re-clustered the association matrix using Louvain
algorithm.

Assess the similarity between the temporal modular structures (Figure 1. B). In this
context, several methods have been suggested to compare community strtidtlees

we focused on the pageunting method, which daes a similarity score by counting
each pair of nodes drawn from the N nodes of a network according to whether the pair
falls in the same or in different groups in each partitibtWe considered the z-score of
Rand coefficient, bounded between 0 (no similar pair placements) and 1 (identical
partitions). This yield a T*T similarity matrix where T is the number of time windows.
Cluster the similarity matrix into “categorical” modular states (MShgishe consesus
clustering method (Figure 1. C). This step combine similar temporal modular structures
in the same communityHence, the association matrix of each “categorical” community

is computed using the modular affiliations of its corresponding networks.



Consecutive version:

The difference between the two versions of the algorithm is essentially in the fourth step, in

which the final communities were defined. Particularly, the similarity matrix is segmented in a

sequential way using the following steps:

Threshold the similarity matrix using an automatic thresholding algorithm described in
(Genovese et aff. Briefly the matrix was converted intopavalue map which is then
thresholded based on the false discovery rate (FDR) controlling.

In order to get smoother presentation of the similarity matrix, a median filter is applied.
Segment the matrix in a sequential way following the algorithm illustrated in the
flowchart of Figure 8. In brief, the method group similar consecutive modular structures.
As these modular structures show high similarity values with each other, the algorithm
detect the squares located around the diagonal of the similarity matrix. As presented in
Figure 8, the condition for which two consecutive structures are associated to the same

state is the following:

Where ; " #
where ¢ enotes the similarity value between the modular structure correspondiregtime
window $and that corresponding to the time wind®w

is the “accuracy parameter”, strictly bounded between 0 and 1. It reguleste
temporal-spatial accuracy of detected modular states. We recommend choosing an
adaptive value of . In this paper, we choose equals to the average of the similarity
matrix. A segment is considered as relevant if the number of included time-windows is

greater thang (the minimal size allowed for a segment).



Figure 8. The flowchart of the segmentation algorithm.

The algorithm is illustrated in Figure 9. (I): starting with " ; and considering that
. is lower than , we obtained ~ (, and the algorithm will move to the next

time window . (I): as y) is greater than, is incremented by 1. (Il):

* * *
+Y +7

having - - > | the second and the third time windows are associated to

the segment. (IV): the algorithm succeeded to add also the fourth time window as

yy ——t——— (V) Then, for , we  obtain

. This means that the fifth time window differs

from the previous windows in his modular structure. Afterwards, the algorithm moves

toward finding another segment by incrementiagd repeating the process (1V).



- For each detected segment, the modular structure is obtained after computing the

association matrix of the corresponding time windows modular affiliations.

Figure 9. An illustrative example describing the segmentation algorithm



Simulated data

We simulated adjacency tensdata following the methodology applied in O'Neét al °.

Briefly, four N*N adjacency matrice® were constructed, where3 !'" 4#d N is the number

of ROIs. We used an anatomical atlas of 221 ROIs with the mean of Desikan-Killiany atlas sub-
divided by Hagmann et af’ vyielding to N=221. The adjacency matrices and the 3D
visualization of the networks are presented in Figure 2.A. Following this step, the time evolution
of dynamic connectivity in each network is given by:

5 67 8 67 9 867
8 67 is the modulation function, which was represented by Hanning window of unit amplitude.
8 67 represents uncorrelated Gaussian noise added to the simulated time-coursesych@d
are scalar values set to 0.45 and 0.15 @il et al.®,
In our study, 5 67 is sampled at ‘- Hz (to obtain a sliding window of 0.3s as in real data). The
onset as well as the duration of each module structure is illustrated in Figure 2.B. We then
combined the four network matrices in order to generate single adjacency matrix at each time
point 7over a time-course spanning 60 seconds. As a final step, we added a random Gaussian
noise to the adjacency tensor, and the standard deviation of the noise was allowed to vary
between 0.2 and 0.5.
Validation
On the simulated data, we evaluated the performance of the method by computing the similarity
between the reconstructed and the simulated (reference) networks, taking into account both
spatial and temporal similarities. The spatial similarity is given by the z-score of Rand
coefficient between the simulated and the constructed modular structures, while the temporal

similarity represents the rate of the correct affiliation of time windows.



Real data

Dataset 1-Self paced motor task for healthy participants (MEG da®agviously used iff%*2°

this dataset includes 15 participants (9 male, 6 female) asked to press a button using the index
finger of their dominant hand, once every 30 seconds. Using a 275-channel CTF MEG system
(MISL; Coquitlam, BC, Canada), MEG data were recorded at a sampling rate of 600Hz. MEG
data were co-registered with a template MRI. The cortex was parcellated using the Desikan-
Killiany atlas (68 regions). The pre-processing, the source reconstruction and the dynamic
functional connectivity computations were performed similarly &'ieill et al.®. Briefly, the
pre-processing comprises the exclusion of trials (t= -1262s) contaminated by noise. Then,
source time courses were reconstructed using a beamforming approach (pleasé fefendooe

details). Afterwards, the regional time-series were symmetrically orthogonalized following the
method proposed iff to remove the effects ¢$ignal leakage”. The amplitude envetspof the

time courses were obtained using Hilbert transform. Finally, the dynamic connectivity was
estimated by the Pearson correlation measure using a sliding window approach of 6 s of length.
The sliding window was shifted by 0.5 s over time. The number of connectivity matrices
obtained for each trial was then 49. The consecutive scheme of the proposed method was tested.
Dataset 2-Picture naming task for healthy participants (dense-EEG datajenty one right-

handed healthy subjects (11 women and 10 men), with no neurological disease participated in
this study. In a session of about eight minutes, each participant was asked to name 148 displayed
pictures on a screen using EPrime 2.0 software (Psychology Software Tools, Pittsburtfh, PA)
Oral responses were recorded to set the voice onset time. This study was approved by the
National Ethics Committee for the Protection of Persons (CPP), conneXion study, agreement

number (2012- A01227-36), and promoter: Rennes University Hospital. All participants provide



their written informed consent to participate in this study. A typical trial started with the
appearance of an image during 3 sec followed by a jittered inter-stimulus inteR/ak & sec
randomly. Errors in naming were discarded from the analysis. A total of 2926 on 3108 events
were considered.

Dense-EEG data were recorded using a system of 256 electrodes (EGI, Electrical Geodesic Inc.).
EEGs were collected at 1 kHz sampling frequency and band-pass filtered between 3 and 45 Hz
The pre-processing and the computation of the functional connectivity followed the same
pipeline applied in (Hassan et dl.) In brief, each trial (t=0 600ms) was visually inspected,

and epochs contaminated by eye blinks, muscle movements or other noise sources were rejected.
As described in the previous stuflythe source connectivity method was performed using the
WMNE/PLV combination, and the dynamic functional connectivity was computed at each
millisecond. Authors also used the Destrieux atlas sub-divided into 959 régiimslly, a

tensor of dimension 959 x 959 x 600 was obtained and analyzed using the consecutive scheme of
our algorithm.

Dataset 3-resting state in Parkinson's disease patients (dense-EEG ddts)dataset includes

124 patients with idiopathic Parkinson's disease defined according to the UK Brain Bank criteria
for idiopathic Parkinson's disea¢ These patients were separated into three groups: G1)
cognitively intact patients (N=63), G2) patients with mild cognitive deficits (N=46) and G3)
patients with severe cognitive impairment (N=15). All participants gave their informed consent
to participation in the study, which had been approved by the local institutional review boards
(CPP Nord-Ouest IV, 2012-A 01317-36, ClinicalTrials.gov Identifier: NCT01792843). Dense-
EEG were recorded with a cap (Waveguard®, ANT software BV, Enschede, the Netherlands)

with 122 scalp electrodes distributed according to the international system®{0Eb&ctrodes



impedance was kept below kO. Patients were asked to relax without performing any task.
Signals were sampled at 512 Hz and band-pass filtered between 0.1 and 45 Hz.

The data were pre-processed according to (Hassan €¥ aldaling with the same dataset.
Briefly, EOG artifact detection and correction was applied following the method developed in
(Gratton et al)®. Afterwards epochs with voltage fluctuation >+90/ and <90 V were
removed. For each participant, two artifact-free epochs of 40s lengths were selected. This epoch
length was used previously and considered as a good compromise between the needed temporal
resolution and the reproducibility of the results in resting State

To compute the dynamic functional connectivity, the steps adopted here are the same used in
many previous studies®*“*® First, EEG data were co-registered with a template MRI through
identification of the same anatomical landmarks (left and right pre-auricular points and nasion).
Second, the lead field matrix was computed for a cortical mesh with 15,000 vertices using
OpenMEEG packag® available in Brainstorm. The noise covariance was estimated using one
minute resting segment. After that, the time-series of EEG sources were estimated using the
WMNE algorithm where the regularization parameter was set according to the signal to noise
ratio ( = 0.1 in our analysis)An atlas-based segmentation approach was used to project EEGs
onto an anatomical framework consisting of 68 cortical regions identified by means of Desikan-
Killiany °’ atlas. The dynamic functional connectivity was then computed using a sliding
window over which PLV was calculated. In the previous study? the disruptions of the

functional connectivity were found in the alpha2 band (10-13 Hz). For this reason, we considered

the same frequency band in our analysis. To obtain a sufficient number of cycles at the given

frequency band, we chose the smallest window length that is equgl;tgm@g%E:xF

recommended in (Lachaux et &) This yields to a sliding window of 0.52 s. We then adopted a



proportional threshold of 10% to remove spurious connections from the connectivity matrices.
These steps produce, for each epoch, a connectivity tensor of dimension N x N x T where N is
the number of ROIs (68 regions), and T is the number of time windows (77 time-windows). This
tensor is formally equivalent to dynamic functional connectivity matrices, and was analyzed

using the categorical version of the proposed algorithm.
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Supplementarymaterials

Figure 1. Results of the categorical method applied on simulated data . A) the time course
of the four modular structures reconstructed. The grey square indicates the missed time-window detectid)
3D representation of the four modular structures states.



Figure 2. Results of the categorical method applied on simulated data . A) the time course of
the four modular structures reconstructed. The grey square indicates the missed time-window detectid).
3D representation of the four modular structures states.



Figure 3. Results of the consecutive method applied on simulated data . A) The different
steps of the segmentation algorithm that ended to find 5 modular stuctures. B) The 3D representation of the
six consecutive modular structures obtained. C) The difference between the simulated time axis and the

obtained time axis.



Figure 4. Results of the consecutive method applied on simulated data . A) The different
steps of the segmentation algorithm that ended to find 5 modular stuctures. B) The 3D representation of the
six consecutive modular structures obtained. . C) The difference between the simulated time axis and the

obtained time axis.



