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Boundary control of the wave equation with
in-domain damping

Abstract

This thesis is concerned by the boundary control of the one dimensional wave equation, which can be used to
model a string (like a guitar string). The objective is to act at one boundary to control and stabilize the other
boundary which is considered to be an unstable dynamic boundary condition. This thesis suggests answers to
both following questions:

Consider that the unstable dynamics boundary condition has some unknown parame-
ters. Is a nonlinear adaptive control law still performing efficiently, if the viscous damping
taken equal to zero for its design is no longer neglected?

How can we take into account the in-domain damping in order to stabilize the wave
equation subject to dynamic boundary conditions?

This thesis suggests a method to derive a Lyapunov analysis in order to prove the robustness mismatch of
particular nonlinear adaptive control law as the answer of the first question. Then using infinite dimensional
backstepping technique we develop feedback control law that exponentially stabilize the considered wave equa-
tion.

Résumé

Cette thèse ce concentre sur le contrôle frontière de l’équation d’onde unidimensionnelle, qui peut être utilisée
pour modéliser une corde (comme une corde de guitare). L’objectif est d’agir à une frontière pour contrôler et
stabiliser l’autre frontière qui est considérée comme une condition aux frontières avec une dynamique instable.
Cette thèse suggère des réponses aux deux questions suivantes:

Considérons que la condition à la frontière de dynamique instable a des paramètres
inconnus. Une loi de contrôle adaptatif non linéaire est-elle toujours efficace, si
l’amortissement visqueux pris égal à zéro pour sa conception n’est plus négligé?

Comment peut-on prendre en compte l’amortissement dans le domaine afin de sta-
biliser l’équation d’onde soumise à des conditions aux frontières dynamiques?

Cette thèse suggère une méthode pour effectuer une analyse de Lyapunov afin de prouver la robustesse, vis à
vis d’une erreur de modèle, d’une loi de contrôle adaptatif non linéaire particulière comme réponse à la première
question. Puis, en utilisant une technique de backstepping à dimension infinie, nous développons une loi de
contrôle par rétroaction qui stabilise exponentiellement l’équation d’onde considérée.
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Introduction

In this thesis we focus on the boundary control of the wave equation.

The wave equation is a Partial Differential Equation (PDE) which implies a relation
between second order time derivatives and second order space derivatives. It is classified
as second order hyperbolic PDE. This type of equation is commonly used to model the
propagation of a variable in an elastic media. This concerns the propagation of song in
air and water for example, in this case the variable which propagates is the pressure. The
wave equation is also used to model the elongation in a nonrigid body. This is the case
of a guitar string (or any string instrument). In practice linearity cannot be more that
local, e.g. a simple resistor does not behave as a resistor outside its operative range. The
same is true for the rigidity of body which is at best verified in a working window. For
example earthquake are due to the elasticity of the earth. In the recent decade with the
increasing utilization and democratization of nonrigid body, e.g. robots arm, overhead
crane in industrial facility, numberless studies propose answers to the vibration problem
resulting from the used of nonrigid body. Many approaches with different points of view
have been developed in order to respond to this general problem.

In this dissertation, we consider the subclass of problems which can be modeled by
a one dimensional and scalar wave equation. This type of wave equation is commonly
called string equation. As the considered wave PDE is one dimensional and limited in
space, the wave equation is subject to two boundary conditions at the limits of its domain.
The problem we consider is the stabilization/regulation of the wave equation subject to
an unstable dynamic boundary condition with the actuation at the opposite boundary. The
work presented on this dissertation is a suggested answer to two questions already exposed
in the abstract:

Considering that the unstable dynamic boundary condition has some unknown param-
eters, adaptive control laws have been designed. Nevertheless, in the control design step
the in-domain viscous damping is taken equal to zero, therefore the question is:

Is a nonlinear adaptive control law still preforming efficiently, if the viscous damping
taken equal to zero for its design is no longer neglected?

Considering this idea one can wonder why neglecting the in-domain damping? Can
we generalize the previous work in order to consider the in-domain not as an unmodeled
dynamics but as an inherent feature of the wave equation? To answer to this question the
first step is:

How can we take into account the in-domain damping in order to stabilize the wave
equation subject to an unstable dynamic boundary condition with known parameters?

Applying separation principle, if we are not able to answer to the last question, there
is little chance to establish an adaptive control law which takes into account the in-domain
damping.

In order to answer to these two questions, this thesis consists of nine chapters classified in two parts and a
preliminary chapter. The content of each chapter is explained in the following.
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Chapter 1: The preliminary chapter exposes the general context of this thesis. We deal with the control theory
context and the associated mathematical definitions and notations. First, we present the wave equation in the
physical context. This is followed by the mathematical definitions, and notions we used in this thesis. Finally,
we develop some notions of automatic control. This chapter ends up with a state of the art for the wave equation.

For readers who are familiar with mathematical analysis and control theory notions, we suggest them to read
only Section 1.2 which presents the model and Section 1.5 which consists in the state of the art.

Part I: This part consists of all chapters suggesting in order to answer the first question, and therefore concerns
the model mismatch robustness of adaptive control laws. Note that the adaptive control laws considered are
prediction based control laws and Lyapunov based estimation laws (indirect adaptive control).

Chapter 2: This chapter presents the design idea of the three predictive based adaptive control laws we consider
in this part. These control laws have been designed assuming that there was no in-domain damping. In this
chapter, the core of our method is presented. Our method proposes successive change of variables in order to
perform a Lyapunov analysis. This Lyapunov analysis implies that the closed-loop system consisting of the
considered adaptive control law and the wave equation with in-domain damping performs equivalently if the
in-domain damping is small enough. What we mean by “perform equivalently” will be detailed in theorems
associated with our robust results.

This chapter contains the principal idea of our method, and therefore is the key point of this part.

Chapter 3: The first adaptive control law considered used the measurement of both boundary velocities. It has
been design in [Bresch-Pietri and Krstic, 2014a]. In this chapter, this control law is presented, associated with
the robust result and its proof.

Chapter 4: The second adaptive control law, considered in this dissertation, used the measurement of both
boundary velocities but the boundary velocity opposite to the actuation is delayed from one unit of time. It
is inspired from the design in [Bresch-Pietri and Krstic, 2014b]. In this chapter, this control law is presented,
associated with the robust result and its proof.

Chapter 5: The last adaptive control law considered used the measurement of the boundary velocity located
at the actuation. It has been designed in [Bresch-Pietri and Krstic, 2014b]. In this chapter, this control law is
presented, associated with the robust result with a sketch of proof. The complete proof is given in [Roman et al.,
2017].

Chapter 6: The last chapter of this first part is devoted to simulation. The context of these simulations are the
torsional vibration occurring in drilling facility. The simulations are performed on an associated nonlinear model
for the three considered control laws.

As this chapter contains simulation it can be appreciated without the reading of the four chapter before.

A possible lecture of this part could be done starting with Chapter 6, which presents the application in mind
of the adaptive control laws; and then Chapter 2 in order to get the idea behind the design of the adaptive control
laws; and finally Chapter 3, Chapter 4 and Chapter 5 which contain the proof of the robustness result.

Part II: This part is a collection of suggested answers to the second question. In other words we suggest to
use infinite dimensional backstepping in other to design boundary control exponentially stabilizing the wave
equation subject to unstable dynamic boundary condition opposite to the actuation.

Chapter 7: This chapter presents the design of a backstepping control feedback in order to exponentially sta-
bilize the same wave equation considered in Part I, but assuming that the unstable dynamic boundary condition
parameters are known. As backstepping gives a full state feedback, an observer using both boundary velocities
is also proposed. We compare the design control law with the control law in [Bresch-Pietri and Krstic, 2014a]
the one study in Chapter 3, and with the control law developed in [Sagert et al., 2013]. At the end of this chapter
some numerical simulations on the linear model are performed.

The backstepping method is done with relatively simple computations. Nevertheless, the interesting fact



3

about this chapter is the fact that the exponential stabilization is not done with respect to the origin but for an
attractor for both the system and the observer.

Chapter 8: In this chapter a different wave equation is considered with in-domain velocity and position dis-
tributed terms. Here the propagation may also be unstable. A backstepping design is presented and the well-
posedness of the closed-loop system is proven.

In this chapter, readers who are interested in backstepping, will find an innovative proof using the common
method of successive approximations in order to prove the existence and uniqueness of the backstepping kernel.

Chapter 9: This chapter is the last of this thesis, and we choose to present some works in progress. We consider
the problem of a space depending wave equation with in-domain velocity and position distributed terms subject to
dynamic boundary conditions. By space dependent wave, we mean that the propagation velocity along the wave
is space dependent. The preliminary computation of a backstepping design is presented. And the well-posedness
of the inhomogeneous problem is established.

Some of the results presented in this thesis have been presented in a journal paper and in conferences, as
given below

Conference papers

[Roman et al., 2016a] Roman, C., Bresch-Pietri, D., Cerpa, E., Prieur, C., and Sename, O. (2016a). Back-
stepping observer based-control for an anti-damped boundary wave PDE in presence
of in-domain viscous damping. In IEEE 55th Conference on Decision and Control,
pages 549–554, Las Vegas, NV.

[Roman et al., 2016b] Roman, C., Bresch-Pietri, D., Prieur, C., and Sename, O. (2016b). Robustness of an
adaptive output feedback for an anti-damped boundary wave PDE in presence of in-
domain viscous damping. In IEEE American Control Conference, pages 3455–3460,
Boston, MA.

[Roman et al., 2017a] Roman, C., Bresch-Pietri, D., Prieur, C., and Sename, O. (2017a). Boundary Control
of a Wave Equation With an Anti-Damped Boundary Dynamics in Presence of an In-
Domain Velocity Source Term. In 20th IFAC World Congress, Preprints of the 20th
World Congress, pages 4870–4873, Toulouse, France.

Journal paper

[Roman et al., 2018] Roman, C., Bresch-Pietri, D., Cerpa, E., Prieur, C., and Sename, O. (2018). Backstep-
ping control of a wave PDE with unstable source terms and dynamic boundary. IEEE
Control Systems Letters (L-CSS), 2:459–464.

Conditionally accepted at a journal paper

[Roman et al., 2017b] Roman, C., Bresch-Pietri, D., Prieur, C., and Sename, O. (2017b). Robustness to
in-domain viscous damping of a collocated boundary adaptive feedback law for an
anti-damped boundary wave PDE. Preprint. (submitted)
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It’s the question we can’t answer that teach
us the most. They teach us to think. If you
give a man an answer, all he gains is a little
fact. But give him a question and he’ll look
for his own answers.

The Wise Man’s Fear, Patrick Rothfuss

First, we propose a brief introduction of the mathematical and control theory ideas in Section 1.1. The
wave equation is a partial differential equation which can be used to model various phenomena, from the sound
propagation to electromagnetic field and so light propagation. In this thesis, the wave equation represents mostly
mechanical systems, in particular vibrations in nonrigid body. Mechanical systems are mainly bounded, therefore
in this thesis we are interested in the control of the scalar one-dimensional wave equation with respect to one
boundary. After that, we present the wave propagation and its possible boundary conditions in Section 1.2, the
mathematical notions needed to follow this dissertation are specified in Section 1.3. This allows us to present
some control theory notions in Section 1.4. This first chapter is ended up by a brief state of the art concerning
the well-posedness of the wave equation and some existing boundary control law designs.
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1.1 Mathematical and control context

1.1.1 We need state and state space

Control theory aims at studying dynamical systems.

A system is a set of variables, these variables are referred to as, input, state or output variables. The inputs
are the exogenous variables, they can influence the dynamics of the system. For a fix input the evolution of the
system is only determined by the state variables. The output is the knowledge we have concerning the system
input and state. This is illustrated in Figure 1.1, note that the fact that the system depends on the state variable is
often omitted in this scheme.

System
OutputInput

State

Figure 1.1: Illustration of a system.

All these variables are evolving within a space. In particular, the state variable space is referred to as the state
space. The state represents all the variables that need to be known to predict the future evolution of the dynamic
system. There are two types of input, control input which refers to input we can act on, and disturbance/noise
input which corresponds to the input we cannot act on.

The dynamical behavior is usually classified in three types of systems: continuous time, discreet event, and
the combination of both: hybrid. The three types of dynamics are illustrated in Figure 1.2. In this thesis we
consider continuous dynamics only.

×x(t0)

x(t1)
×

x(t2)
×

x(t3)
×

Continuous-time

×x0

x1×

x2×
x3×

Discreet-event

×x(t0)

x(t−1 )

×

x(t+1 )
×

x(t2)
×

Hybrid

Figure 1.2: Continuous, discreet and hybrid dynamics

The definition of state space is actually intuitive for finite dimensional system, as the state space is the
Cartesian space, the dimension of which is the number of variable state considered. For example, consider the
state x(t) a real value vector of dimension n, the state space is Rn. Assuming that we consider continuous-time
dynamics, given as:

d
dt

x(t) = f (x(t),u(t)), (1.1)

in which
f : Rn×Rp → Rn

(x(t),u(t)) 7→ f (x(t),u(t)),
(1.2)
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where u(t) ∈ Rp is the input space. Given some extra constraints on x(t) and u(t), their associated space could
be a subspace of respectively Rn and Rp. In the representation above we did not represent the output. And we
have assumed that the system is time invariant, indeed f does not evolve with time, opposite to f (t,x(t),u(t)).
In the dissertation, we consider time invariant systems only.

Now as we consider PDE, the state space is no longer a Cartesian space but it is an Hilbert space. The
idea is no longer to describe the evolution of real values, but the evolution of functions. Indeed, for example
consider the state variable to be φ(t) ∈ L2([0,1];R) (which will be denote abusively L2(0,1)), which is the class
of equivalence of square integrable functions. Consider the representation

d
dt

φ(t)+Aφ(t) = 0, (1.3)

where A is an unbounded operator the domain of which is Dom(A)⊂ L2(0,1). The property unbounded means
that the operator acts within the bound of its domain. We speak a little more about unbounded operator in
Section 1.3.5. In PDE system, the state space associated with (1.3) can become quite complicated.

1.1.2 The feedback

In this thesis, we are interesting in feedback control, this means that we can act on the system dynamics by a
control input. Nevertheless, let us speak a little about open-loop control

(i) Open-loop control
The idea is to act on the system control input in a blind way. For example, let us take the microwave oven
system, the state considered is the water temperature for making tea. We are used to this system, as we
drink tea all the time, we known that for our mug in 1:30min at 800W, the water will be hot enough, and
we do not need more information. If we measure the temperature it is no longer a open-loop control it
becomes a feedback control.

(ii) Feedback control
As previously said, the idea is to check the system state, or a image of it (output) in order to compute the
control input. For the microwave system, we actually measure the temperature and if the temperature is
the one we want we stop, if it is too cold we increase the time.

Open-loop control is a blind way to control system, if we have an absolute knowledge of the system or a large
marge of tolerance it is working and it will always be less costly than feedback control. Indeed feedback control
needs some knowledge about the system state, this is done using sensors. Moreover, feedback control can be
more efficient and robust. It can also stabilize unstable systems. Nevertheless ill-designed feedback control may
lead to instability. There is nothing more easy that to make a stable system unstable using feedback. We wish to
certify that the latter will not happen.

The reason we choose feedback control, is first because the system we consider is unstable, then because in
terms of performance. However we need to check that the control law we design/use is robust. This stability
issue are explained in Section 1.4. Nevertheless we start by introducing the system, the class of system we
consider, i.e., the wave equation.

1.2 The wave equation

In this section, we discus about the wave equation, and how it can be obtained for mechanical system. In the
following, we proposed illustration/schema of the one-dimensional wave equation. First, several one dimensional
wave propagation equations are presented in Section 1.2.1, then the main types of boundary conditions are shown
in Section 1.2.2.
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1.2.1 The wave propagation

We mean by wave propagation the equation of the wave within its domain. Indeed the wave can have in-domain
source terms and depending on these source terms the behavior can vary.

B.C.
k km k m k k m k

B.C.

Figure 1.3: A pure wave illustration

In Figure 1.3 an illustration using mass and spring elements are presented. In this figure “B.C.” stand for
boundary condition. The wave equation is the limit solution when the number of mass-spring elements goes
towards infinity. Indeed denoting ui the elongation (difference between the current position of the mass and it
equilibrium position) of the i−th mass, using Newton’s Second Law of motion, it holds

m
d2

dt2 ui(t) = k(ui−1(t)−2ui(t)+ui+1(t)). (1.4)

We want to study this equation for an infinite number of elements. Therefore we need to consider elementary
mass and spring stiffness of elementary length. In mathematical term one can replace ‘elementary’ by ‘non
standard’. The non standard analysis is the rigorous justification of the infinitesimal small quantity, it is based on
the work of Abraham Robinson in 1961. We consider a series where the distance between terms are non standard
and infinity small. As the steps are infinity small ui−1(t)∼ u(x−dx, t). In order world we consider the following
equation

dm
∂ 2

∂ t2 u(x, t) = dk(u(x−dx, t)−2u(x, t)+u(x+dx, t)), (1.5)

where using linear mass and linear stiffness, it holds dk = kl
dx and dm = mldx where dx in the length of the

springs and the masses. It holds

∂

∂ t2 u(x, t) =
kl

ml

∂

∂x2 u(x, t), (1.6)

which is the wave equation. In order to shorten the writing of partial derivative the following notation is com-
monly used in PDE study,

∂

∂ t
u(x, t) = ut(x, t),

∂

∂x
u(x, t) = ux(x, t). (1.7)

Changing the time coordinate, one can normalize the velocity of the wave propagation, i.e.,
√

kl
ml

, and the wave
equation can be expressed as

utt(x, t) = uxx(x, t). (1.8)

Changing the space coordinate one can impose x ∈ [0,1]. At x = 0 and x = 1 the wave is submitted to boundary
conditions.

The different kinds of boundary conditions are presented in the next section. Note that what has been pre-
sented is the simplest wave propagation. In order to get a better approximation of the reality we can add elements.
The main linear propagation and their associated elementary representations are displayed in Table 1.1.
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Elementary scheme Equation Type

dk
dm utt(x, t) = uxx(x, t) Pure wave

dk

dc

dm utt(x, t) = uxx(x, t)+αuxxt(x, t) Kelvin Voigt damping

dk
dm

ki
utt(x, t) = uxx(x, t)+β (x)u(x, t) Position distributed term

dk
dm

ci

utt(x, t) = uxx(x, t)+λ (x)ut(x, t) Viscous distributed term

dki
dmi

utt(x, t) = (a(x)ux(x, t))x Space dependent wave

Table 1.1: Elementary illustration of the wave propagation

In this thesis, we are mostly interested in the viscous distributed term, and Chapter 2, Chapter 3, Chapter 5,
and Chapter 7 are considering only this type of distributed term. In Chapter 8 we consider in addition a position
distributed term. At last, we present ongoing works for a space dependent wave with viscous and position
distributed term in Chapter 9.

1.2.2 The boundary conditions of the wave PDE

As we have seen the wave equation can be seen as the infinite combination of infinity small mass spring elements.
However, the domain is often limited. The number of elements is infinite but the domain remains bounded. There
is the question of how the infinity small elements end up at the boundary. As the wave equation contains a second
derivative in space we need two boundary conditions. Let us imagine the wave as a string, the behavior of the
string changes if the string is fixed or free for example. Of course, the interaction at the boundary can be more
complex than just free of fixed, as illustrated in Table 1.2
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Scheme Equation Type

x

y

u(x, t)

T

u(0, t) = 0 Dirichlet

x

y

u(x, t)
T ux(0, t) = 0 Neumann

x

y

u(x, t)
T Tux(0, t) = ku(0, t) Robin

x

y

u(x, t)

T

Tux(0, t) = cut(0, t)
First order

dd
dynamic boundary

x

y

u(x, t)

T

mutt(0, t) = Tux(0, t)
Second order

dd
dynamic boundary

Table 1.2: Several types of wave equation boundary conditions (inspired from [Graff, 1975] Page 30)

The different boundary conditions in Table 1.2 can be coupled in order to get more precise models. In this
thesis we consider that the control is acting on one boundary condition and that we are trying to stabilize the
other boundary.

In the next section, we discuss about the wave equation with respect to some of its related physical problems.

1.2.3 The wave in Physics

The origin of the wave equation goes back to Pythagoras which studies the link between musical sound and
vibrating string. In [Graff, 1975] on Page 8 a chronological list of the major development concerning the elastic
body is presented, as briefly summarized below

6th B.C. Pythagoras
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1638 Galileo Galilei, the factor influencing the vibrations of string.

1678 R. Hooke, Hooke’s law, the proportionality between stress and strain in elastic bodies. (which we
have used as the characteristic of the spring).

1686 I. Newton, speed of sound in air and speed of water wave.

mid 18th J. D’Alembert, L. Euler and D. Bernoulli, controversy on the solution of the vibrating string (see
[F. Wheeler and P. Crummett, 1987]).

1759 Lagrange, the string as a system of discrete mass particles (the same idea as we have presented to
obtain the wave equation).

For more about non-rigid systems we refer the reader to [Lalanne et al., 1984] and [Graff, 1975]. One can
classify the wave in two kinds, the mechanical wave, and the electromagnetic wave (including light propagation).
The purpose of the next section is to present some physical systems which can be modeled by the wave equation.

1.2.3.1 String wave

The string wave is the one we are interested in this thesis. One interesting topic about one dimensional wave
equation is presented in [F. Wheeler and P. Crummett, 1987], which presents the controversy about the solution
of vibrating string between Jean d’Alembert, Leonhard Euler, and Daniel Bernoulli. J. d’Alembert exposed that
the solution needs to be twice derivable for the wave equation to have sense (1.8), we can extrapolate this as
the case of the strong solution. L. Euler wanted to consider non-differentiable function but integrable function,
which corresponds to the weak solution. D. Bernoulli answers that he could build the solution with the same
method for both cases, we can extrapolate this as the fact that the continuous function are dense in the set of
integrable function. In order words that we can arbitrary approximate an integrable function by a sequence of
continuous functions. This is detailed in [F. Wheeler and P. Crummett, 1987]. This can be considered as the
starting point of problems solved by the development of the Lebesgue integral and the set of integrable function.
These notions are detailed in Section 1.3.

The string wave can be used to model vibrations of three dimensional body with a high degree of symmetric,
as illustrated below through a simple example

Example 1.1 A string wave model of a loudspeaker.

suspension

diaphragm

voice coil

winding

magnet

Figure 1.4: Schematic of a loudspeaker

We consider the circular symmetric of the loudspeaker, the elementary scheme of which is drawn in Figure
1.4.
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dm

dm

dm

Actuation

Figure 1.5: Elementary scheme of a rayon of the loudspeaker’s diaphragm

The elementary scheme in Figure 1.5 can be associated with the following system equation


utt(x, t) = uxx(x, t)+βu(x, t) (1.9a)

ux(1, t) = au(1, t) (1.9b)

utt(0, t) = b1ut(0, t)+b2ux(0, t)+b3u(0, t)+U(t). (1.9c)

The β term represents the Hooke’s law due to the air inside the enclosure of the loudspeaker. The a parameter is
the stiffness of the suspension. The boundary condition at x = 0 represents the dynamics of the voice coil. It has
a mass different from the membrane. F

Example 1.2 Torsional vibrations in a cylinder.
For drilling facility, the torsional vibration can be modeled by the wave equation, which is the application in

mind of this thesis at least for Chapter 3 at Chapter 7.

Note that, there exist plenty of works around this problem in control theory and modelization, let us in-
troduce some of them. The thesis of Jansen [Jansen, 1993] and [Jansen and van der Steen, 1995] consider
finite-dimensional approach, but they also present the control problem that needs to be solved. There is also the
work of [Ritto et al., 2009] which proposes a stochastic computation model to represent model uncertainties in
the bit-rock interaction. A comparative review of modeling and controlling torsional vibration with experimental
point of view is done in [Patil and Teodoriu, 2013]. A overview on control theory in oilwell drilling vibration is
presented in [Saldivar et al., 2016a]. A survey about the drilling structure modeling is given in [Ghasemloonia
et al., 2015]. Let us come back to our example.

First consider the drilling system as illustrated in Figure 1.6.
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θ(ξ ,t)

ξ

ξ = 0

ξ = L
Drill Bit

Drillstring

U(t): Actuation / table

Figure 1.6: Illustration of the drillstring

From Newton’s second law, one gets

dIθ̈(ξ ,t) = ∑
i

dTi(ξ ,t), (1.10)

where dI denotes the elementary inertia moment of the drillstring along the ξ -axis, θ(ξ ,t) is the angular posi-
tion, and dTi(x,t) denotes one elementary torque applied at coordinate ξ . t denotes the time, the time coordinate
is going to change in the latter stage of this example. Under the condition that we have no warping, and that the
drillstring stiffness satisfies Hooke law, it holds

dTintern elasticity(ξ ,t) = dk[θ(ξ −∂ξ ,t)−2θ(ξ ,t)+θ(ξ +∂ξ ,t)], (1.11)

where

dk =
GJ
∂ξ

, (1.12)

in which J is the second moment of inertia, and G is the shear modulus. Considering that the drillstring is subject
to a viscous damping due to the presence of a viscous filed, it holds

dTexternal viscous damping = Λθ̇(ξ ,t)∂ξ , (1.13)

in which Λ represents the linear damping coefficient due to the viscous field presence. Using, dI = I∂ξ , with I
the inertia moment of the drillstring, and gathering the three previous equations, one gets

Iθ̈(ξ ,t) = GJ
∂ 2

∂ξ 2 θ(ξ ,t)−Λθ(ξ ,t). (1.14)

The boundary conditions are also obtained using Newton second law. For the boundary condition at ξ = L
the drill bit has a inertia moment Ib, and is subject to a friction torque due to the contact, with the rock, therefore
it holds

Ibθ̈(L,t) =−GJ
∂

∂ξ
(θ(ξ ,t))−Tfriction(θ̇(ξ ,t)). (1.15)

The boundary condition at ξ = 0 can be taken as a dynamic boundary condition if the inertia of the table is
significant. If we neglect this inertia, the boundary condition can be taken as

GJ
∂

∂ξ
θ(0,t) = cα

(
θ̇(0,t)−Ω(t)

)
. (1.16)
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in which cα denotes the viscous coupling between the input velocity Ω and the boundary velocity. With a
direct change of variables, using the measurement of the boundary velocity, the previous boundary condition is
equivalent to

∂

∂ξ
θ(0,t) =U(t). (1.17)

Using the following change of variables

u(x, t) = θ(L(1− x),L

√
I

GJ
t),

one gets that the drillstring angular position satisfies
utt(x, t) = uxx(x, t)−λut(x, t) (1.18a)

ux(1, t) =U(t) (1.18b)

utt(0, t) = aF(ut(0, t))+aux(0, t), (1.18c)

in which a is a parameters, λ is the in-domain damping normalized coefficient, and F is the normalized friction
term. More information about the change of variable, the relation between parameters, and drilling torsional
vibration are given in Chapter 6, as the Part I results are simulated for drilling inspired models. F

1.2.3.2 Acoustic and water wave

The string wave corresponds to the one-dimensional mechanical wave equation. The two dimensional wave can
be used to model membranes. For example the diaphragm of the loudspeaker Figure 1.4 can be modeled as a
string if it is circularly symmetric, but, in case not, we could model it by a two-dimensional wave. We refer the
reader to [Morse and Ingard, 1968] on Page 191, for an explanation this two-dimensional wave equation

utt(x,y, t) = uyy(x,y, t)+uxx(x,y, t). (1.19)

The three-dimensional wave is mainly used to describe the propagation of the pressure in a medium (air or water
in common cases), the establishment of it is detailed in [Morse and Ingard, 1968] on Page 243. Considering
p(x, t) as the pressure at space x = (x1,x2,x3) ∈ R3, it holds

ptt(x, t) = ∇
2 p(x, t) = ∆p(x, t) = pxx(x, t), (1.20)

where ∇ and ∆ denote the operator nabla and the Laplace, i.e.,

∇ =
[

∂

∂x1

∂

∂x2

∂

∂x3

]
, ∆ =

[
∂ 2

∂x2
1

∂ 2

∂x2
2

∂ 2

∂x2
3

]
. (1.21)

Note that for some case, the wave is not enough to model occurring vibrations, for example the dynamics of a
bar study in [Morse and Ingard, 1968] on Page 178 is

uxxxx(x, t) =−utt(x, t). (1.22)

1.2.3.3 Electronic wave

The wave equation can also be used in Electronics.

Using the first and second law of Krichhoff, one can establish that the voltage and the intensity satisfy a wave
equation for a transmission line. The scheme of the transmission line is presented in Figure 1.7.

dr dl

dc
dgv(x, t) v(x+dx, t)

i(x, t) i(x+dx, t)

Figure 1.7: Elementary schematic of a transmission line
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Consider the linear resistance dr = rldx, the linear inductance dl = lldx, the linear capacity of the dielectric
dc = cldx, and the conductivity of the dielectric dg = gldx. Using Krichhoff laws, it holds the telegrapher
equation, i.e., {

clvt(x+dx, t)+glv(x+dx, t) = ix(x, t) (1.23a)

llit(x, t)+ rli(x, t) = vx(x, t), (1.23b)

in which v(x, t) represents the tension, and i(x, t) the intensity. For more information about this classical result
we refer the reader to the text book [Stratton, 2007] on Page 550. Note that there exist more complete models
relaxing the hypothesis of a “perfect” coaxial cable, [Imperiale and Joly, 2013] and [Beck et al., 2014]. What is
interesting about these works is that the generalized telegrapher equation is derived from the Maxwell equation.

As it is explained in [Bastin and Coron, 2016] on Page 19, these equations can be studied as first order
coupled hyperbolic PDEs. But they can also be studied as two uncoupled one-dimensional wave equations, since
it holds {

vxx(x, t) = llclvtt(x, t)+(rlcl +glll)vt(x, t)+ rlglv(x, t) (1.24a)

ixx(x, t) = llclitt(x, t)+(rlcl +glll)it(x, t)+ rlgli(x, t), (1.24b)

which is also referred to as the telegraph equation in the literature, e.g. [Stratton, 2007] on Page 346, and [Fucik
and Mawhin, 1978].

1.2.3.4 Electromagnetic wave

It is well known that the light can be considered as an electromagnetic wave. Indeed the Maxwell equation can
be reformulated by two coupled wave equations. Let us first recall the Maxwell equation in matter,

(i) Gauss’ law
∇. D(x, t) = ρ(x, t). (1.25)

D is called the displacement field. In the vacuum D = ε0E, where ε0 is the permittivity of the vacuum.

(ii) For the magnetism
∇. B(x, t) = 0. (1.26)

B stands for the magnetic field, the previous equation means that experimentally there does not exist point-
wise source of magnetic field. In the vacuum B = µ0H, where µ0 denotes the permeability of the vacuum.

(iii) Maxwell-Faraday

∇×E(x, t) =− ∂

∂ t
B(x, t). (1.27)

E represents the electric field.

(iv) Maxwell-Ampère

∇×H(x, t)− ∂

∂ t
D(x, t) = j(x, t), (1.28)

in which H is called the magnetizing field.

These equations are commonly known, however they are details in [Stratton, 2007]. Considering a linear relation
between D and E, and H and B, we can get that the field is modeled by a wave equation.

Example 1.3 The electromagnetic wave in a linear homogeneous medium. Consider that D = εE, and B = µH
with ε,µ ∈ R. Using

∇× (∇× (·)) = ∇(∇.(·))−∆(·), (1.29)
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it follows

µε
∂ 2

∂ t2 E(x, t) = ∆E(x, t)−∇

(
ρ(x, t)

ε

)
−µ

∂ j(x, t)
∂ t

, (1.30)

and for the magnetic field

µε
∂ 2

∂ t2 B(x, t) = ∆B(x, t)+∇× (µ j(x, t)). (1.31)

The operator ∇ and ∆ have been defined in (1.21). F

The following example is taken from [Stratton, 2007], and presents a one-dimensional wave equation.

Example 1.4 Plane wave in unbounded, isotropic media
Consider that D = εE, B = µH, j = σE and ρ = 0. One can get that the electric field satisfies

µε
∂ 2E(ξ , t)

∂ t2 =
∂ 2

∂ξ
E(ξ , t)−µσ

∂E(ξ , t)
∂ t

, (1.32)

where ξ denotes the direction of the propagation. For the magnetizing field it holds

µε
∂ 2H(ξ , t)

∂ t2 =
∂ 2

∂ξ
H(ξ , t)−σ µ

2 ∂H(ξ , t)
∂ t

, (1.33)

we refer the reader to [Stratton, 2007] on Page 268 for details on how to obtain both previous equations. F

We have succinctly presented the wave equation for two large fields of physics. Note that in the junction of
quantum physic and relativist mechanic on can find the equation presented in the next section.

1.2.3.5 A third kind meeting

Reading through a world wide of article, one can found that the following equation

φtt(x, t)− c2
φxx(x, t)+ f (φ(x, t)) = 0, (1.34)

which is the Klein’s Gordon equation. This equation describes relativistic particles with zero-spin, like the Higgs
boson. A resolution of the Cauchy problem defined by this equation can be found in [Ginibre and Velo, 1985].
Note that there is recent work on this wave equation see for example [Jang, 2014].

In the next section, we focus on some mathematical notions used throughout this dissertation.

1.3 Notions of Mathematics

First as we are interesting on PDE, some notions of real analysis are presented: (i) the Sobolev spaces, (ii) the
almost everywhere class of equivalence, (iii) the method of successive approximation and fixed point theorem,
(iv) maximal monotone operator and C0-semigroup and finally a note on Barbalat’s lemma.

In the following, let us consider an open interval, possibly unbounded I = (a,b). For our consideration it is
enough to consider I ⊂ R.
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1.3.1 Lp space

This section is largly inspired from the text book [Brezis, 2010].

Definition 1.1 We consider the class of equivalence of integrable function which is denoted L1(I). Consider the
following norm

‖u‖L1 =
∫

I
|u|dµ. (1.35)

u ∈ L1(I) means that ‖u‖L1 < ∞.

Definition 1.2 We consider the class of equivalence of power integrable function Lp(I) with p ∈ (0,∞).

Lp(I) =
{

u : I 7→ R : up ∈ L1

}
. (1.36)

1.3.2 Sobolev space and associated notations

Following the definition in [Brezis, 2010], note that the notation we use slightly differs from [Brezis, 2010].

Definition 1.3 The Sobolev space W1,p, where p ∈ [1,∞], is defined as

W1,p =

{
u ∈ Lp(I) : ∃g ∈ Lp(I) :

∫
I
uφ
′ =−

∫
I
gφ , ∀φ ∈C1

c (I)
}
. (1.37)

For u ∈W1,p(I) we denote
u′ = g (1.38)

It is clear that for u ∈C1(I)∩Lp(I), u′ denote the usual derivative of u.

Definition 1.4 Consider m> 2 and p ∈ [1,+∞], we define by induction the space

Wm,p(I) =
{

u ∈Wm−1,p : u′ ∈Wm−1,p(I)
}
. (1.39)

The more considered Sobolev space is the one associated with L2 for PDE system. Thus we denote for
d ∈ [1,∞)

Hq =Wq,2. (1.40)

The following notation are massively used for PDE dynamics system. Consider z(t)∈H1(I), zx(x, ·) = z′(x), and
for z(t) ∈ H2(I), zxx(x, ·) = z′′(x).

1.3.3 A class of equivalence: almost everywhere

Consider a measure space (X ,Σ,µ), in which X is the space, Σ is a σ−algebra on X and µ a measure from Σ to
[0,∞].

Definition 1.5 A property P(x) is said to hold almost everywhere for x ∈ X, if there exist a set N of null measure
(µ(N) = 0), such that for y ∈ X/N, P(y) holds.
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For example, consider g, f two functions defined on I, it holds

g a.e.
= f ⇔

∫
I
(g− f )dµ = 0. (1.41)

Note that this is often omitted because for g ∈ L1(I), the expression g = 0 is a abusive notation of g = 0L1(I),
which is the same as g a.e.

= 0R

1.3.4 Fixed point and method of successive approximation

This section definitions and theorem are inspired from [Schwartz, 1970].

Consider E to be a complete metric space, f : E→ E

Definition 1.6 f is a contraction if there exists a constant k ∈ [0,1) such that, for all x,y ∈ E it holds

d( f (x), f (y))6 kd(x,y). (1.42)

where d is a distance on E.

Definition 1.7 a ∈ E is a fixed point if it holds f (a) = a.

In the following, one of the fundamental theorem for the study of differential problem, which is at the same
time intuitively easy to understand and still largely used.

Theorem 1.1 [Banach and Picard fixed point theorem]
All contractions on E have an unique fixed point.

The proof of this theorem can be done using the method of successive approximations.

Proof :

(i). Uniqueness: Consider a, b ∈ E to be two fixed point of f , if d(a,b) 6= 0 then

d(a,b)6 kd(a,b)< d(a,b), (1.43)

therefore d(a,b) = 0.

(ii). Existence: the method of successive approximation.
Consider x0 ∈ E, and xn+1 = f (xn), as f is a contraction on E it holds

d(xn+1,xn)6 knd(x1,x0), (1.44)

and it follows

d(xn+p,xn)6
kn

1− k
d(x1,x0), (1.45)

therefore (x)n is a Cauchy sequence and its limit exists. This limit is the fixed point. �

Let us use the method of successive approximations to solve a simple ODE. In the sequel, in particular in
Part II, we use the method of successive approximation like in the following.

Example 1.5 Consider
d
dt

x(t) = Ax(t), x(0) = x0 ∈ Rn, A ∈ Rn×n. (1.46)
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Let us consider the associated integral equation

x(t) =
∫ t

0
Ax(s)ds+ x0. (1.47)

Note that in order for (1.46) to have sense, x needs to be differentiable, whereas x just needs to be integrable for
(1.47) to have sense. We speak of strong solution for (1.46), and of mild solution for (1.47).

Consider now the following sequence (∆x)n+1(t) =
∫ t

0
A(∆x)n(s)ds (1.48a)

(∆x)0(t) = x0. (1.48b)

(i). Existence: As x0 ∈ Rn there exist a ∈ Rn such that it holds

(∆x)0(t)6 a, (1.49)

the symbol 6 means here that each element of a is larger than the respective component of (∆x)0(t). For
this simple example it is direct that

(∆x)n(t)6 a
tn

n!
(1.50)

holds. Therefore the sequence (∆x)n converges exponentially towards zero. Consider the infinite sum of
this sequence

x∗(t) =
∞

∑
i=0

(∆x)n(t), (1.51)

one gets

x∗(t) =
∞

∑
i=0

(∆x)n+1(t)+(∆x)0(t), (1.52)

then using (1.48) and (1.51)

x∗(t) =
∫ t

0
Ax∗(s)ds+ x0, (1.53)

therefore x∗ is solution of (1.47).

(ii). Uniqueness: Consider x and x∗ two solutions of (1.46), x− x∗ is solution of

d
dt
(x(t)− x∗(t)) = A(x(t)− x∗(t)), x(0)− x∗(0) = 0, (1.54)

therefore it holds x(t)− x∗(t) = 0.

Note that if we take a = x0, all inequalities in the existence part are equalities and we find the definition of the
matrix exponential. F

For additional information of the method of successive approximations and the contraction principle see
[Kantorovitch and Akilov, 1981] Page 210 and [Kolmogorov and Fomine, 1977] Page 68, some book about
functional analysis. For a method of successive approximations applied on ODE see [Lindelöf, 1894] and [Cot-
ton, 1928].

1.3.5 Unbounded operator, maximal monotone operator and C0 semigroup

This section gives some definition taken from [Brezis, 2010] and from [Haraux, 1981] for the operator, and
from [Curtain and Zwart, 2012], [Luo et al., 1999] and [Tucsnak and Weiss, 2009] for C0-semigroup.

Definition 1.8 Unbounded operator
Let E and F be two Banach spaces. An unbounded linear operator from E to F is a linear map A : Dom(A)⊂

E→ F. The set Dom(A) is called the domain of A.
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Definition 1.9 Consider A an unbounded operator from E to F.

• The domain of A is
Dom(A) = {u ∈ E : Au exists }. (1.55)

• The graph of A is
Graph(A) = {(u,Au) ∈ E×F : u ∈ Dom(A)}. (1.56)

• The range of A is
Range(A) = {Au : u ∈ Dom(A)} ⊂ F. (1.57)

• The kernel of A is
ker(A) = {u ∈ Dom(A) : Au = 0}. (1.58)

• A is densely defined if Dom(A) is dense in E

Dom(A) = E. (1.59)

• If A is densely defined, the adjoint of A is an unbounded operator denoted A∗ : D(A∗)⊂ E∗→ F∗ such that

(i) Dom(A∗) = {v ∈ F∗ : ∃c> 0, | 〈v ,Au〉6 c‖u‖, ∀u ∈ Dom(A)}.
(ii) ∀u ∈ Dom(A) : v ∈ Dom(A∗), 〈v ,Au〉F∗, F = 〈A∗v ,u〉E∗, E .

• A is bounded (or continuous) if

(i) Dom(A) = E.

(ii) ∃c> 0 : ‖Au‖6 c‖u‖.

Definition 1.10 Monotone and maximal monotone operator
Consider A an unbounded operator from H to H, where H is an Hilbert space associated with the scalar

product 〈· , .〉.

• A is monotone if it holds ∀u ∈ Dom(A)
〈Au ,u〉> 0. (1.60)

• A is maximal monotone if in addition to be monotone, it holds

Range(Id +A) = H, (1.61)

where Id denoted the identity of H.

The real objective, at checking that an unbounded operator is maximal monotone, is the use of the following
theorem

Theorem 1.2 Hille-Yosida [Brezis, 2010]
Let A be a maximal monotone operator. Then given for any u0 ∈Dom(A)⊂ H, there exists a unique function

u ∈C1([0,∞);H)∩C([0,∞);Dom(A)), (1.62)

satisfying the following abstract problem
d
dt

u(t)+Au(t) = 0, t ∈ [0,∞) (1.63a)

u(0) = u0 (1.63b)

Moreover |u(t)|6 |u0|, ∀t ∈ [0,∞).
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The following definitions are taken from the text book [Luo et al., 1999].

Definition 1.11 Let X be a Banach space and let T (t) : X → X be a family of bounded linear operator for
t ∈ [0,∞). T (t) is called a semigroup of bounded linear operators, or simply a semigroup on X, if it holds

(i) T (0) = Id

(ii) T (t + s) = T (t)T (s), t,s6 0

Moreover the semigroup T (t) is called

• uniformly continuous if it holds
lim
t↓0
‖T (t)− Id‖= 0 (1.64)

• strongly continuous (or C0-semigroup) if it holds

lim
t↓0

T (t)x = x, ∀x ∈ X (1.65)

Definition 1.12 Let T (t) be a C0-semigroup on X. The operator A defined by

Ax = lim
t↓0

T (t)x− x
t

, ∀x ∈ Dom(A) (1.66)

is called the infinitesimal generators of C0-semigroup T (t).

In the following a classic example, on the wave equation subject to Dirichlet boundary conditions.

Example 1.6 Consider the following wave equation
utt(x, t) = uxx(x, t) (1.67a)

u(1, t) = 0 (1.67b)

u(0, t) = 0 (1.67c)

u(x,0) = u0, ut(x,0) = v0 (1.67d)

and the associate operator A in the Hilbert space H= {z ∈H1(0,1)×L2(0,1) : z1(0) = 0, z1(1) = 0}, defined as

∀z ∈ Dom(A)⊂ H, A =−
[

0 1
δxx 0

]
(1.68)

in which δxxz1 = z′′1 , and with

Dom(A) = {z ∈ H2(0,1)×H1(0,1) : z1(0) = 0, z1(1) = 0, z2(0) = 0, z2(1) = 0} (1.69)

First, using Poincaré inequality, one can get that for z = (z1,z2) ∈ H

‖z‖H = ‖z′1‖L2 +‖z2‖L2 (1.70)

is a norm of H, we denote 〈· , .〉H its associated scalar product. It is easy to check that

∀z ∈ H, 〈z ,Az〉H > 0 (1.71)

Therefore the operator A is monotone, if in addition it holds

Range(Id +A) = H (1.72)
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then the operator A is maximal monotone. This is equivalent to

∀y ∈ H, ∃z ∈ Dom(A) : z+Az = y (1.73)

in other words {
z1− z2 = y1 (1.74a)

z2− z′′1 = y2. (1.74b)

As z ∈ Dom(A) the previous system can be rewritten as
z1− z′′1 = y1 + y2 (1.75a)

z1(0) = 0 (1.75b)

z1(1) = 0. (1.75c)

This is a classical stationary problem with Dirichlet boundary conditions. Indeed as y1 + y2 ∈ L2(0,1), Ttis
system is well-posed as shown in [Brezis, 2010] on Page 201. This means that for a given y ∈ H it holds a unique
z1 ∈ H2(0,1). Now one checks that the element z = (z1, z2) with{

z1 is solution of (1.75) (1.76a)

z2 = z1− y1 (1.76b)

satisfies (1.74). Moreover one gets that z satisfying (1.76) is in Dom(A). Therefore it holds (1.72).

Using Hille-Yosida theorem, the abstract problem
d
dt

X(t)+AX(t) = 0 (1.77a)

X(0) = X0 ∈ Dom(A) (1.77b)

is well-posed, so is its associated PDE system (1.67). And A is the generator of a C0-semigroup of contraction.
The link between X(t), z and u is:

X(t) = z =
[

z1
z2

]
=

[
u(·, t)
ut(·, t)

]
.

F

1.3.6 Barbalat Lemma

The following lemma is the original Barbalat lemma, it is taken from [Popov, 1973] and [Ioannou and Sun, 1996]
(Lemma 3.2.6 Page 76).

Lemma 1.1 Barbalat’s lemma
If limt→∞ f (t) exists and is finite, and f is uniformly continuous, then limt→∞ f (t) = 0.

Noting that if f and f ′ are uniformly bounded it holds that f is uniformly continuous, one gets the following
lemma, which is referred also as Barbalat’s Lemma in the sequel.

Lemma 1.2 (Lemma 3.2.5 Page 76 [Ioannou and Sun, 1996])
If f ∈W1,∞ (means f , f ′ ∈ L∞) and f ∈ Lp for some p ∈ [1,∞), then f (t)→ 0 as t→ ∞.

To study other variation of Barbalat’s lemma we refer the reader to [Farkas and Wegner, 2014]. As it is explained
in the aforementioned reference, it is usual to call “Barbalat’s lemma” results on the convergence of a function
given some assumption on the function and its derivatives.

The following example presents counter example of Barbalat lemma.
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Example 1.7 Barbalat lemma counter example

• f ′(t)−→
t→∞

0 ; f (t)−→
t→∞

c, c ∈ R.

Consider the following function
f : R → R,

t 7→ sin(log(t)).
(1.78)

The function f has no finite limit, nevertheless it holds

f ′(t) =
cos(log(t))

t
−→
t→∞

0. (1.79)

• f (t)−→
t→∞

c, c ∈ R; f ′(t)−→
t→∞

0 .

Consider the following function
f : R → R

t 7→ sin(t2)
t .

(1.80)

The function f has a finite limit equal to zero, nevertheless it holds

f ′(t) = 2cos(t2)− sin(t2)

t2 , (1.81)

which has no finite limit.

F

1.4 Notions of Automatic control

This section is devoted to some concepts used in the sequel.

Principle: Lyapunov stability
The solutions of a dynamics system are said to be stable around an equilibrium if for any initial condition in

a small enough neighborhood of this equilibrium, all state trajectories are contained in a neighborhood of the
equilibrium, and the more the initial conditions are closed to the equilibrium the more the last neighborhood is
small. �

Principle: Attractivity
The solutions of a dynamics system are said to be attractive toward an equilibrium if for any initial condition

in a small enough neighborhood of this equilibrium, all state trajectories converge toward this equilibrium. �

The term neighborhood has to be understand in a mathematical sense and in its classical sense. For measur-
able space it could be replaced by open set. Usually the equilibrium is a point of the state space, but for the topic
of this thesis we need to consider the equilibrium as a subspace of the state space. Therefore the definition we
use, derived from both previous principles and slightly differs in order to match with the ideas develop in this
thesis. There is nothing new about the concept of Lyapunov stability and attractivity, except that we look at then
with respect to a set opposite to an equilibrium (or the origin given a change of coordinate). If the property holds
for all initial conditions in the state space, then they are said to be “global”.

Note that in the place of “the solutions of the system are stable around this equilibrium”, it is common use to
say “the system is stable” if the equilibrium is the origin of the state space. Moreover “stable” in this thesis stand
for “Lyapunov stable". When one equilibrium is stable and attractive we call the “system is asymptotically sta-
ble”. If the system is asymptotically stable and the state trajectories can be bounded by a decreasing exponential,
we say that the system is “exponentially stable”.
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1.4.1 Stability

The following definitions are fairly common, they have been inspired from [Ioannou and Sun, 1996].

In the following x(t) ∈ H denote a solution of a dynamics system, and d is a distance.

Definition 1.13 A system is said to be stable around I ⊂ H if for arbitrary ε > 0, there exists a δ such that

d(x(0), I)< δ ⇒ d(x(t), I)< ε ∀t > 0. (1.82)

This definition is consistent with the aforementioned Lyapunov stability, if x(t) lies in a measurable space.

Definition 1.14 A system is said to converge (be attractive) towards I ⊂ H if there exists a δ such that

d(x(0), I)< δ ⇒ lim
t→∞

d(x(t), I) = 0. (1.83)

If x(t) lies in a measurable space, the previous definition is consistent with the aforementioned attractivity prin-
ciple. I is called an attractor.

Definition 1.15 A system is said to be asymptotically stable with respect to an attractor I, if it is both stable
around I and attractive towards I.

Note that for time-varying system, δ may or may not depend on time. If δ does not depend on time, we said
uniformly stable, uniformly attractive and uniformly asymptotically stable.

Definition 1.16 A system is said to be exponentially stable with respect to an attractor I, if there exist α > 0,
such that ∀ε > 0 there exists a δ (ε)> 0 such that it holds

d(x(t), I)6 εe−αt , (1.84)

whenever d(x(0), I)< δ (ε).

If δ can go to infinity, in other words, if these definitions hold for all x(0) in the state space, then they are said to
be global, e.g. globally asymptotically stable.

Classically when we consider a point-wise equilibrium, the stability properties can be studied using Lya-
punov functional. In order world, we seek positive definite, decrescent and coercive functional which represents
an evaluation of the distance between points in the state space and the equilibrium. Following the time-domain
evaluation of this functional one can deduce the property of the system:

• If it is not increasing the system is stable.
• If it goes toward zero, the system is convergent (attractivity).
• If it strictly decreases, the system is asymptotically stable.
• If it decreases in an exponential manner, the system is exponentially stable.

In order to specify the terms decrescent and coercive, and for the sequel we defined functions of class K
and K∞.

Definition 1.17 A continuous function φ : R+→ R+ is said to belong in class K if

(i) φ(0) = 0.
(ii) φ is strictly increasing.

in addition if it holds that limr→∞ φ(r) = ∞, φ belong to K∞.
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In order to consider a space equilibrium, let us consider a semi-definite positive functional Γ on a Hilbert
space H. We denote ker(Γ(·)) (or abusively ker(Γ)) the kernel of Γ. Γ is assumed to be coercive and decrescent
in the quotient space H/ker(Γ(·)). This means

(i) (functional)
Γ : H→ R. (1.85)

(ii) (positive functional)
Γ : H→ R+. (1.86)

(iii) (definite) for z ∈ H,
Γ(z) = 0 ⇔ z = 0. (1.87)

(iv) (semi-definite) for z ∈ H,
z = 0 ⇒ Γ(z) = 0. (1.88)

(v) (coercive) it holds,
∃K ∈K∞, ∀z ∈ H, Γ(z)> K(‖z‖). (1.89)

(vi) (coercive in H/ker(Γ(·))) it holds,
∃K ∈K∞, ∀z ∈ H/ker(Γ(·)), Γ(z)> K(‖z‖). (1.90)

(vii) (decrescent) there exist K ∈K such that, for all z ∈ H, it holds
Γ(z)6 K(‖z‖). (1.91)

(viii) (decrescent in H/ker(Γ(·))), if there exist K ∈K such that, for all z ∈ H/ker(Γ(·)), it holds
Γ(z)6 K(‖z‖). (1.92)

Note that if ker(Γ(·))) = {0} we come back to a point-wise equilibrium which is the origin. Note also that
the decrescent and coercive properties are to avoid pathogen problems. The decrescent definition can be found
in [Ioannou and Sun, 1996] on Page 111. Moreover in the manuscript as we are considering functionals which
are semi-norm they satisfy the decrescent and coercive properties on their associated quotient space.

This is quite similar with the quotient space used in order to get that ‖·‖Lp is a norm. Indeed this is a ‖·‖Lp is
a semi-norm on the set of p-th power integrable functions denoted Lp(S,µ) where (S,Σ,µ) is a measure space.
Taking the quotient space Lp(S,µ) = Lp(S,µ)/ker(‖ · ‖Lp), then ‖ · ‖Lp is a norm on Lp(S,µ). Γ has to be seen
as a evaluation of the distance between X (t) ∈ H and ker(Γ(·)); this is illustrated in Figure 1.8.

H

ke
r(Γ
)

×z
Γ
(z)

H/ker(Γ)

×z
Γ
(z)

0

Figure 1.8: Illustration of a semi-definite positive functional on a space H, and on its associated quotient space.

In Figure 1.8 the fact that the quotient operation have put all the kernel of Γ elements equivalent to zero is
illustrated.

Consider the following evolution problem
d
dt

X(t)+AX(t) = 0, (1.93a)

X(0) ∈ H. (1.93b)

The following theorem can be deduced from [Ioannou and Sun, 1996] Theorem 3.4.1 and Theorem 3.4.2.
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Theorem 1.3 Consider a functional Γ semi-definite positive in H, coercive and decrescent in H/ker(Γ), it holds

(i) If there exists K ∈K such that
Γ(X(t))6 K(Γ(X(0))), (1.94)

then the state trajectories of the system are globally stable around ker(Γ(·)). From this characteri-
zation it is obvious that ker(Γ(·)) is an invariant set (positive).

(ii) If
Γ̇(X(t))6 0, (1.95)

then the system is also globally stable around ker(Γ(·)).
(iii) If

Γ(X(t)) →
t→∞

0, (1.96)

then the state trajectories of the system converge towards ker(Γ(·)). Note that in this case ker(Γ(·))
is referred to as an attractor.

(iv) If
Γ̇(X(t))< 0, (1.97)

then the system is globally asymptotically stable with respect to ker(Γ(·)).
(v) If there exist α > 0 such that it holds

Γ̇(X(t))6−αΓ(X(t)), (1.98)

then the system is globally exponentially stable with respect to ker(Γ(·)).

Note that for the Lyapunov derivative, Γ̇(X(t)) denote the left time Dini derivative, i.e.,

Γ̇(X(t)) = lim
h↓0

Γ(X(t +h))−Γ(X(t))
h

. (1.99)

If Γ ◦ X(t) is differentiable, Γ̇(X(t)) denotes its time derivative. It is worth noticing that when we consider
autonomous system, we can consider Γ(X), here Γ̇(X) denotes the derivative along the solution

Γ̇(X) =
∂XT

∂ t
∂Γ(X)

∂X
,

d
dt

Γ◦X(t) =
∂X(t)T

∂ t
∂Γ(X(t))

∂X(t)
. (1.100)

Note also that we will avoid to use Γ(t) to denote Γ◦X(t) since it may lead to confusion.

The following example illustrates the importance of the coercive assumption.

Example 1.8 In order to explain the coercive assumption, let us consider the case of a semi-definite positive
functional Γ on H. Assume that is not coercive on H/ker(Γ), we denote Γmax(z) = lim

‖z‖→∞

Γ(z)

H

ker(Γ−
Γmax )

ke
r(Γ
)

×x
Γ
(x)

H/ker(Γ)

ker(Γ−
Γ

max )

×x
Γ
(x)

Figure 1.9: Non coercive case of a semi-definite positive functional on a space H, and on its associated quotient
space.
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The fact that the functional is not coercive in its associated quotient space means if the initial condition are
within ker(Γ−Γmax) then the condition (1.94) does not imply the stability as ‖z‖ can go to ∞ with Γ(z) bounded.
F

Note that the decrescent property is to avoid decreasing functional with a lower positive bound. It is actually
more important that the coercive property for asymptotic, exponential and attractive system. Indeed as ker(Γ−
Γmax)∩kerΓ = /0 local property can be deduced from decrescent semi-definite positive functional.

Note also that, the stability property we used is quite similar with partial stability, where the stability of some
parts of the system is established, as presented in the text book [Vorotnikov, 1997].

In the following, two simple finite dimensional examples illustrate the effect of damping for system. The
first example presents the overdamping phenomenon: the more the system is damped the more it will approach
the limit of stability. The second presents a system where too much damping can lead to unstability.

These example can seem a little bit out of context, but it is just to show that even in finite cases adding
damping is neither a sufficient nor necessary condition for system stability, furthermore it could go against
stabilization and leads to unstability.

Example 1.9 Overdamping
The damping does not necessarily help the plant to be controllable, there is the case of overdamping: the

more the system is damped the more it will be slow, to the limit case where it will not "move". Indeed consider
the following second order damped ODE:

θ
′′ =−λθ

′−βθ . (1.101)

The state space representation is [
θ ′

θ ′′

]
=

[
0 1
−β −λ

][
θ

θ ′

]
. (1.102)

This system is exponentially stable if λ ,β > 0 as its eigenvalues are (assuming that it holds λ 2 > 4β otherwise
complex conjugate eigenvalues)

κ1 =
−λ −

√
λ 2−4β

2
, κ2 =

−λ +
√

λ 2−4β

2
. (1.103)

However in the limit case where λ goes to infinity

κ2 =−
2β

λ
+o

∞
(

1
λ
)→ 0, (1.104)

and thus the limit case is marginal stable.

Now consider that β < 0 and λ > 0, it follows that κ2 > 0, and thus for any viscous damping λ > 0 the
system is unstable. F

Example 1.10 Unstable damping
Consider the following system {

θ
′′
1 = k(θ2−θ1)−λθ

′
1, (1.105a)

θ
′′
2 = k(θ1−θ2)+qθ

′
2, (1.105b)

in which k is a parameters, λ is the damping and q in an anti-damping. This example is inspired from drilling
models, e.g. [Jansen and van der Steen, 1995]. The state representation is

θ ′1
θ ′2
θ ′′1
θ ′′2

=


0 0 1 0
0 0 0 1
−k k −λ 0
k −k 0 q




θ1
θ2
θ ′1
θ ′2

 . (1.106)
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Note that there is a structural eigenvalue equal to zero, it is associated with the eigenvector θ1 + θ2. We con-
sider the stability with respect to the velocities θ ′1 and θ ′2. Intuitively one can say that if λ is large enough the
system will be stable. Using Routh criterion we show that this is not true. First one computes the characteristic
polynomial of the matrix written above

P(x) = (kλ −qk+2kx−qx2 + lx2 + x3−qλx)x. (1.107)

Taking apart the zero eigenvalue, the Routh criterion gives

x3 1 2k−qλ

x2 λ −q kλ −qk

x1 −q2λ+qλ 2+kq−kλ

q−λ
0

x0 −k(q−λ ) 0

The polynomial P(x)/x is Hurwitz if and only if

λ > b, −q2
λ +qλ

2 + kq− kλ < 0.

One gets that
−q2

λ +qλ
2 + kq− kλ = (q−λ )(k−qλ ).

Therefore if and only if λ ∈ (q, k
q) and k > q2 the polynomial is Hurwitz.

This result is interesting because the system will be asymptotically stable with respect to velocity if and only
if λ ∈ (q, k

q) and k > q2. If k < q2 we cannot make the system asymptotically stable tuning λ . If k > q2 the
system will be asymptotically stable only if λ ∈ (q, k

q), therefore if λ is too large the system will be unstable. F

1.4.2 Robustness I’ve seen men die because they were sure
that what should not happen, would not.

Robert Jordan, the eye of the world

Models can at the best just be approximation of the reality. Indeed even for simple dynamics, parameters
cannot be known perfectly. Moreover some system input can no be controlled, e.g. as noise. The robustness of
a feedback control law is the ability to perform efficiently well with respect to

(i) Input, output disturbance and noises.
(ii) Model mismatch or unmodeled dynamics.

The design of control law staking explicitly into account the robust margin is a difficult problem, even if
there exist many frequency criteria, from the premise of automatic control (see [Popov, 1973]). In this thesis we
consider only the robustness to a parameters. In order words, we study the behavior of control law which were
designed assuming certain parameters to be equal to zero when these parameters are no longer neglected.

In the following we present the backstepping approach.

1.4.3 Backstepping approach

The backstepping is an approach originally designed for nonlinear finite dimensional systems. This approach
can be applied for a class of system which has a cascade feature. The following quote of the 1991 Bode prize
lecture of Petar V. Kokotović describes so well the idea of backstepping.
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“ The key idea of backstepping is to start with a system which is stabilizable with a known
feedback law for a known Lyapunov function, and then to add to its input an integrator. For
the augmented system a new stabilizing feedback law is explicitly designed and shown to be
stabilizing for a new Lyapunov function, and so on...

This idea is so simple that most of you have probably used it without paying much attention
to it. It is, therefore, surprising that the idea has become an explicit tool for systematic nonlinear
design only very recently. At the risk of being unfair to many other author, let me mention the
1988-1991 works of Tsinias, Sontag, Byrnes and Isidori, and my already quoted papers with
Sussmann and Saberi which contains many other references”

P. V. Kokotović, 1991

We refer the reader for example of finite backstepping to the aforementioned lecture [Kokotovic, 1992], or
to the chapter in book [Krener, 1999]. For more details we refer the reader to the text book [Sontag, 1998].

In this dissertation, we are interested in infinite dimensional backstepping for linear systems, therefore what
is the link? First consider the paper [Krstic et al., 1994] where a adaptive control is designed using ideas closed
to backstepping, the interesting fact is that the system control is linear but the proposed control is not. We use
this as a starting point: backstepping can be used to control linear systems, which are actually a simple case of
nonlinear systems. Then if one wants to give the starting point of infinite-dimensional backstepping, we should
consider [Boskovic et al., 2001] and [Balogh and Krstic, 2002]. The former is the more close approach to what
we are now referring as infinite-dimensional backstepping as we can see the typical Volterra transformation
which maps two systems: the original one with a control input and a target one. The latter approach is closer to
finite dimensional backstepping, where the cascade structure of the PDE is explicit.

The key idea of infinite-dimensional backstepping -abusively referred to as simply backstepping in the
following- is to find a map between two systems. The first system -referred to as original system- may be
potentially open-loop unstable, the second system -refereed as target system- is chosen according to closed-loop
system requirement. If such a mapping is found and proven to be invertible, we can deduce the associated control
feedback.

The following example, is inspired by [Krstic and Smyshlyaev, 2008], and illustrates all steps of the back-
stepping design procedure. For more details the reader is referred to the latter book.

Example 1.11 A backstepping procedure
We consider the following heat PDE,

vt(x, t) = vxx(x, t)+λvt(x, t), (1.108a)

v(0, t) = 0, (1.108b)

v(1, t) =U(t). (1.108c)

The zero-input system (U(t) = 0) is unstable.

(i). Let us take an (exponentially) stable system of the same class of the one considered above.

This system is called the target system, it is often chosen by eliminating the unstable, undesired terms of
the original system. The target system tends to be of the same PDE class, in order to ensure inversible
mapping. Indeed, there is little chance to achieve a mapping between the wave equation and the heat
equation. The stability of the target system is usually assured by finding a Lyapunov functional. We
emphasize once again that the closed-loop system resulting from a backstepping control law design has
the same behavior as the target system. Therefore the characteristics of the target system are of first
importance given the considered control objective. For this example let us take the following target system


wt(x, t) = vxx(x, t), (1.109a)

w(0, t) = 0, (1.109b)

w(1, t) = 0. (1.109c)
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(ii). Volterra and Fredholm integral transformation.

It is common to look for Volterra and Fredholm type of transformation, more precisely, for backstepping
we take usually second kind of Volterra linear integral, i.e.,

w(x, t) = u(x, t)−
∫ x

0
k(x,y)u(y, t)dy, (1.110)

or Fredholm second type of linear integral

w(x, t) = u(x, t)−
∫ 1

0
k(x,y)u(y, t)dy, (1.111)

these types of transformation work well for transport and heat equation, nevertheless for higher order time
derivatives, we can consider more complex transformations. Indeed for the wave the basic transformation
is

w(x, t) = u(x, t)−
∫ x

0
k(x,y)u(y, t)dy−

∫ x

0
s(x,y)ut(y, t)dy. (1.112)

Here, for the considered example, as previously said one kernel function k(x,y) is enough (of the Volterra
kind). The Fredholm kind actually gives more degrees of freedom but it may be difficult to prove its
uniqueness and existence. This step is equivalently complex than finding a Lyapunov functional.

(iii). Establishment of the kernel PDE.

Computing the successive derivative of w, and using the fact that u is solution of the original system
and w is solution of the target system. For the backstepping transformation to exist, the kernel needs to
be solution of a PDE. What is to notice is the fact that the kernel satisfies a two-dimensional stationary
PDE, the order of which is related to the order of the space derivative. Therefore even if the backstepping
transformation of the heat equation is closer to the first-hyperbolic equation, the kernel of the heat equation
transformation is similar to the one of the wave equation.

This is actually a procedural step, there is no real difficulty.

(iv). Existence and uniqueness of the kernel

This is the key issue, either one establishes the well-posedness of the PDE the kernel is solution, or it could
come back to the step (ii) or even (i). For simple PDE the kernel can actually be implicit or even constant.
However the existence and uniqueness can be usually proven using the successive approximation method,
but the kernel is to be computed as a solution of the PDE.

(v). Compute the control input

Once the kernel existence and uniqueness is proven, the computation of U(t) can be done. Depending on
the boundary conditions considered several steps are needed, for the considered example, it is straightfor-
ward that:

w(1, t)︸ ︷︷ ︸
=0

= v(1, t)︸ ︷︷ ︸
=U(t)

−
∫ 1

0
k(1,y)v(y, t)dy. (1.113)

(vi). Inverse transformation.

The last step is to find or prove the existence of the inverse transformation. Otherwise there is no guaranty
that stability of the target system is equivalent to the stability of the closed-loop system.

It is worth noticing that for Volterra second kind of integral the inversibility is given. Note that the previous
remark does not hold for (1.112). Therefore for the wave equation we will always prove the existence or
compute the inverse transformation.

F
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In both recent decades, the backstepping approach has became a very effective method in order to design
control and observer for infinite dimensional systems. The reason is it relative simplicity with respect to for
example C0-semigroup control based design. Literature around infinite dimensional backstepping find many
different kind of studies, e.g. higher-dimensional domains, observer design, bilateral backstepping, and some
non-linear problem, let us mention the following few papers among others:

In [Jadachowski et al., 2014] , a backstepping observer for periodic quasi-linear parabolic PDEs is estab-
lished.

In [Jadachowski et al., 2015] , backstepping observers for linear PDEs on higher-dimensionnal spatial do-
mains are studied.

Even if backstepping has been original developed and applied for boundary control problem, in [Wang and
Woittennek, 2013], the authors extend its used to in-domain actuation.

In the three parts article, [Vazquez and Krstic, 2007a], [Vazquez and Krstic, 2007b], and [Vazquez and Krstic,
2007c] the boundary control for parabolic PDEs with Volterra nonlinearities is established.

Bilateral backstepping is investigated for hyperbolic and parabolic PDEs in [Vazquez and Krstic, 2016]

In [Cerpa and Coron, 2013], the rapid stabilization for a Korteweg-de Vries equation is established.

In [Marx and Cerpa, 2018] and in [Hasan, 2016] backstepping observers are proposed for the Korteweg-de
Vries equations.

In [Koga and Krstic, 2017], an observer and a control law have been developed using backstepping method
for the one-dimensional Stefan problem.

The minimum time control of heterodirectional linear coupled hyperbolic PDEs is established in [Auriol and
Meglio, 2016].

The stabilization of coupled linear heterodirectional hyperbolic PDE-ODE systems is studied in [Meglio
et al., 2018].

In [Bribiesca-Argomedo and Krstic, 2015], control and observation problem is studies for a class of hyper-
bolic PDEs with Fredholm integrals.

The adaptive stabilization of linear hyperbolic PDEs subject to a unknown boundary parameters is presented
in [Anfinsen and Aamo, 2017].

For reader who are interested on the control on higher-dimensional system, the book [Meurer, 2012] which
focuses on flatness and backstepping is a good starting point.

1.4.4 Adaptive control

We will start this section with an other quote from the same lecture of P. V. Kokotović,

“ There are many systems with nonlinearities known from physical laws, such as kinematic
nonlinearities, or energy, flow and mass balances nonlinearities. Some of these nonlinearities
appear multiplied with unknown parameters and give rise to the problem of controlling nonlin-
ear systems with parametric uncertainty. [...]

Adaptive state-feedback control of nonlinear plant has a short but eventful history which
involves the names of Taylor, Marino, Kanellakopoulos, Sastry, Isidori, Arapostathis, Nam,
Praly, Pomet, Campion, Bastin, Morse, and many others. ”

P. V. Kokotović, 1991

To mention few references, more information can be found in [Martín-Sánchez et al., 2012] which is a survey
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on optimal adaptive control with 172 references. There is also a survey on multivariable adaptive control in [Tao,
2014]. For adaptive control textbooks and monograph we refer the reader to the Section 3.1.1 of [Tao, 2014].

Nevertheless, we can argue that the starting point of the adaptive control is the integral action. Indeed the
integral action allows to compute dynamically the feedforward term for a closed-loop system and to have the
reference and the measured output equal in steady state. To be fair, the integral control is also the base of robust
control, indeed, input constant disturbance can be canceled using integral control. The latter is linked with the
intern model principle ( [Francis and Wonham, 1976]). Adaptive control and robust control are indeed intrinsi-
cally linked, they respond to the same problem: input, output disturbance and model mismatch. Robustness can
be seen as a static answer to these problems and adaptive control to a dynamic answer. But the robustness of
adaptive control law must be studied to conclude. This thesis suggests a method of analysis to do so for infinite
dimensional system and Lyapunov based adaptive control.

They is two majors class of adaptive design which are referred to as indirect adaptive control and direct
adaptive control. As said in [Krstic, 2006], only indirect approach are considered as direct approach do not
naturally extend from ODEs to PDEs.

• Indirect adaptive control

The control law is computing using a previously established estimation of the unknown parameters of the
system. This estimation is based using the knowledge of inputs and outputs. This approach has been also
refereed to as explicit adaptive control, because the design is based on an explicit system model.

This class uses dynamics law to evaluate the unknown coefficient. These dynamic are refereed to as update
law, estimate law, adaptive law, and identifiers.

• Direct adaptive control

The control law coefficient are evaluated directly using input and output. This approach has been also
refereed to as implicit adaptive control because the design is based on the estimation of an implicit plant
model.

More information about adaptive control and others categories can be found in [Ioannou and Sun, 1996], for
PDE design we refer the reader to [Krstic, 2006] and references within.

Indirect adaptive control can also be split into categories. We follow the classification in [Krstic, 2006],
which corresponds on how the closed-loop system stability in obtained.

• Lyapunov approach

The closed-loop system stability is directly established from a Lyapunov analysis which considers the
extended state of the system, i.e., the state of the system with the estimation-error of the unknown pa-
rameters. The adaptive law and the control law are designed simultaneously. The latter imposes technical
difficulties which are not present in certainty equivalence approach.

• Certainty equivalence approach

The control law is designed considering the unknown parameters to be known, then the parameter estimate
laws are designed without considering the closed-loop system stability. Nevertheless they are designed
such that the parameter estimation error is bounded, and the output estimation together with the estimate
law are square integrable with respect to time. The adaptive control design is simpler than for Lyapunov
approach, nevertheless the difficulty arise for the closed-loop stability analysis. The certainty equivalence
principle has two categories, which are called passivity-based identifiers and swapping identifiers, we refer
the reader to [Krstic, 2006] for details.

The following example, inspired from [Ioannou and Sun, 1996], illustrates the steps of a Lyapunov based
adaptive control law design procedure with normalization. The adaptive control law we study the model miss-
match robustness in the sequel are based on this design.
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Example 1.12 Consider the following first-order plant:

ẋ = ax+u, x(0) = 0, (1.114)

in which the parameter a is constant but unknown, the input u and state x are available from measurement. We
assume that a > 0, and we make no assumptions about the boundness of x and u. The objective is to generate an
adaptive law for a on-line parameters estimation by using the observed signals u(t) and x(t). The adaptive law
for generating the estimate â is driven by the estimation error

x̃ = x− x̂, (1.115)

in which x̂ is the estimated value of x formed by using the estimate â. The estimated state x̂ is usually generated
by an equation that has the same from as the plant but with a replaced by â, e.g:

˙̂x = âx̂+u, x̂(0) = x̂0. (1.116)

The equation (1.116) is known as the parallel model configuration [Landau, 1979] and the estimation method
based on it as the output error method [Landau, 1979], [Narendra and Annaswamy, 1989]. The plant equation,
however, may be rewritten in various different forms giving rise to different equation generating x̂. For example,
we can add and subtract the term amx, where am > 0 is an arbitrary design constant, in (1.114) and rewrite the
plant equation as

ẋ =−amx+(am +a)x+u, (1.117)

in other words, with s the Laplace variable

x =
s

1+am

[
(am +a)x+u

]
. (1.118)

Furthermore, we can proceed and rewrite the equation above as

x = θ
∗>

φ , (1.119)

in which θ ∗ =
[
1,am +a]>, φ =

[
u

s+am
, x

s+am

]>
.

Consider now the first-order plant (1.114) with the following estimated state x̂

˙̂x = âx+u, (1.120)

The derivative of the estimated error is
˙̃x = ẋ− ˙̂x. (1.121)

With the use of equation (1.114) and (1.120), one can write:

˙̃x =−âx+ax, (1.122)

=−ãx, (1.123)

where ã := a− â. Consider the following Lyapunov function:

V (x, x̃, ã) =
x2

2
+

x̃2

2
+

ã2

2
. (1.124)

The derivative of V along the state trajectory is

V̇ (x, x̃, ã) = ẋx+ ˙̃xx̃+ ˙̃aã, (1.125)

= ax2 +ux− ãxx̃− ˙̂aã. (1.126)
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Now one can take as control law
u =−âx−αx, (1.127)

and as adaptive law,
˙̂a =−x̃x+ âx, (1.128)

then the Lyapunov’s functional derivative is

V̇ (x, x̃, ã) =−αx2, (1.129)

and therefore the system is stable. Moreover, from (1.129) time integration, one gets that V is bounded with
respect V (x(0), x̃(0), ã(0)) and that x(t) is square integrable. V bounded implies that x, x̃, and ã are also bounded.
The latter implies that ẋ is also bounded. In Brief x∈W1,∞(0,∞)∩L2(0,∞) using Barbalat lemma (Section 1.3.6)
it holds that limt→∞ x(t) = 0.

This simple example cannot holds the complexity of the systems considered in the sequel. Indeed, here, the
Lyapunov analysis allows to conclude on the boundeness of ã, and therefore ẋ. It could be useful to constrain
the boundeness of ã and ˙̂a to the design. It can be done using respectively projection and normalization.

Let us explain the normalization on this simple example. In order to constrain the boundeness of the adaptive
law, a solution is to choose:

˙̂a =
−x̃x+ âx

1+ x2 + x̃2 , (1.130)

Here ˙̂a is now bounded, we pose N = x2 + x̃2. We propose the associated Lyapunov function

V (x, x̃, ã) = log(1+N)+
ã2

2
. (1.131)

And with the use of (1.130) the derivative of V along the solution trajectory is

V̇ (x, x̃, ã) =
1

2(1+N)

(
ax2 +ux− ãxx̃

)
− ˙̂ax̃ (1.132)

=
−αx2

2(1+N)
. (1.133)

Furthermore, in order to assure that â stays in a interval, [a,a] we can use a projector:

Definition 1.18 Consider â(0) ∈ [a,a] ⊂ R. We define the standard projector operator on the interval [a,a] as
a function of two scalar arguments â(t) (denoting the parameter estimate) and f which denotes the nominal
update law (the nominal dynamics of â(t)) in the following manner:

PROJ[a,a](â, f ) =


0 if â6 a and f > 0,
0 if â> a and f < 0,
f otherwise.

(1.134)

Using ˙̂a(t) = PROJ[a,a](â(t), f ) we assure that â(t)∈ [a,a] if â(0)∈ [a,a]. The reader will find more details about
projection algorithm associated with adaptive control in [Ioannou and Sun, 1996] on Page 791, Appendix B.
Note that, PROJ[a,a](â,PROJ[a,a](â, f )) = PROJ[a,a](â, f ) is enough to prove that PROJ[a,a](â, ·) is a projection.

For the present example, we take as new estimated update law

˙̂a = PROJ[a,ā]

(
â,
−x̃x+ âx

1+N

)
. (1.135)

F
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Even if this example is interesting as an illustration of the different steps usually done in Lyapunov adaptive
control law design. It is not the only way to proceed. In the following an example which matches with the several
designs considered in this thesis.

Example 1.13 Consider the following system

ẋ = ax+b+u, (1.136)

in which a and b are unknown parameters and u is the control input. Assume that a ∈ [a,a] and b ∈ [b,b]. The
control input is taken as

u =−âx− cx− b̂, (1.137)

in which â and b̂ are the estimate of the unknown parameters a and b. c is a tuning parameters. This gives as a
closed-loop dynamics

ẋ = (ã− c)x+ b̃, (1.138)

in which ã = a− â and b̃ = b− b̂. Now consider the following Lyapunov functional

V (x, ã, b̃) = log(1+ x2)+
ã2

γa
+

b̃2

γb
. (1.139)

The derivative along the trajectory of V is

V̇ (x, ã, b̃) = 2

(
xẋ

1+ x2 −
˙̂aã
γa
−

˙̂bb̃
γb

)
. (1.140)

Therefore by taking

˙̂a = PROJ[a,a]

(
â,

γax2

1+ x2

)
,

˙̂b = PROJ[b,b]

(
b̂,

γbx
1+ x2

)
, (1.141)

it holds
V̇ (x, ã, b̃) =−2cx2. (1.142)

From (1.142), one gets that V is bounded with respect to time and that x ∈ L2([0,∞) : R) (integrating directly
(1.142)). V is bounded therefore x, b̃, ã ∈ L∞([0,∞) : R), this implies that ẋ ∈ L∞([0,∞) : R), using Barbalat
lemma (Section 1.3.6) it holds that limt→∞ x(t) = 0.

Notice that we can get that limt→∞ b̃(t) = 0, by contradiction using (1.138) or using the following Lyapunov
functional

V (x, ã, b̃) = log(1+ x2)+
ã2

γa
+

b̃2

γb
+α(b̃− cx)2. (1.143)

with α a parameter to be found. Using an extra variable as in integral control in finite cases for state-space
representation, e.g.

z =−cx+ b̃. (1.144)

z is solution of
ż =−cz− ˙̂b− cãx. (1.145)

The associated Lyapunov functional is

V (x, ã, b̃,z) = log(1+ x2)+
ã2

γa
+

b̃2

γb
+αz2. (1.146)

Using the fact that there exist σ1, σ2 > 0 such that ˙̂b6 σ1|x| and cãx6 σ2|x|, and applying Young and Cauchy-
Schwarz inequalities one obtains that there exist η > 0

V̇ (x, ã, b̃,z)6−η(x2 + z2). (1.147)

It follows that x,z ∈W1,∞(0,∞)∩L2(0,∞) and therefore x(t), z(t) go to zero when t goes to infinity.

Notice that if ã = 0 (i.e., a is knwon), from the previous inequalities one deduces the exponential stability of
the system with respect to the origin. F
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In the following a short discussion about normalization and projection. Consider â is estimation of an
unknown parameters.

• Normalization

– ˙̂a(t) bounded for all t independently of the state.

– Can allow the problem to be global.

– Can improve transients and stability robustness.

As said in [Krstic, 2006], the logarithm (used in Lyapunov functional for the two previous examples)
allows to tolerate the potentially destabilizing effect of the adaptive laws. This is linked with the work
in [Praly, 1992].

• Projection

– â bounded for all t independently of the state.

– â lies in a subset of R defined by a priori knowledge.

– May speeds up convergence rate and reduces large transients.

We refer the reader to [Ioannou and Sun, 1996] on Page 530 and [Rohrs et al., 1985] for the importance of
model mismatch robustness of adaptive control.

1.5 State of the art for the wave equation
In this work, when it shall be found that
much is omitted, let it not be forgotten that
much likewise is performed;

Samuel Johnson 1755

In this section we present several works which concern the wave equation, we have separated them in two
subsections. On the one hand, a mathematical one, in sense that it concerns mainly the well-posedness of the
wave equation and the stability and regularity of its solutions. And on the other hand, a automatic control one,
which concerns the stabilization, regulation, control and control robustness of the wave equation. Both are linked
and such disctinction is somehow abusive. Indeed for example, we need that the well-posedness of the system
we consider before applying a control. Indeed the system we consider models some deterministic behavior.
Moreover, when we perform a feedback control, we impact the dynamics of the system which can lead to it
ill-posedness problem. This is illustrated in Example 1.14. Therefore after the design of the feedback we need
to study the well-posedness of the closed-loop system.

Example 1.14 An ill-posed closed-loop system
Consider the following dynamic system of state x(t) ∈ Rn{

ẋ = u, (1.148a)

x(0) = 0. (1.148b)

We take u = ẍ, the following system is ill-posed {
ẋ = ẍ, (1.149a)

x(0) = 0. (1.149b)

however if we change a little bit the state and state space to (x(t), ẋ(t)) ∈ R2n, the system
ẋ = ẍ, (1.150a)

x(0) = 0, (1.150b)

ẋ(0) = 0. (1.150c)
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is well posed. When a feedback is performed it may change the system, e.g. with the use of delayed control, it
can evolve from a finite dimensional system into a infinite dimensional one. A closed-loop system is a related
yet different system from the original one. The fact that by changing the state space we can obtain a well-posed
system is somehow linked to the Fredholm alternative [Brezis, 2010] on Page 160. F

In the following, we present some related works, some of them are cited afterward along this thesis. The literature
which can be qualified as mathematical are presented in Section 1.5.1. The control problem literatures on the
wave equation are presented in Section 1.5.2.

1.5.1 Stability, regularity, and well-posedness of the wave equation

In this section, we present some work about the well-posedness of the wave equation, and therefore the regularity
of its solutions. The purpose here is to give few interesting references about the wave equation well-posedness.

Note that there exists a least one more type of boundary to be added from the Table 1.2, it is called Wentzell
boundary condition. This is a boundary condition which has a term in uxx among other less order terms. Using the
propagation phenomena one can observe that it is linked with what we called a second other dynamic boundary
condition. It is worth noticing that the origin of Wentzell boundary condition was considering the heat equation
(ut = uxx).

In [Gal et al., 2004] an acoustic wave equation is considered. In more detail two wave equations without
source terms are considered. One which is subject to a Wentzell boundary condition at the domain boundary
and the other subject to what is called an acoustic boundary condition. This type of boundary is more physically
correct that Robin’s boundary which was used beforehand. It allows a better modeling of the boundary condition
for acoustic system behavior. In [Gal et al., 2004] the link between both boundary conditions is established.

In [Favini et al., 2005] a one-dimensional non-autonomous space depending wave equation subject to gen-
eral Wentzell boundary conditions is considered. The well-posedness of such a PDE is proven. One inter-
esting fact about this paper is that they prove that the time-space depending unbounded operator A(t)u :=
(a(x, t)ux)x, a(·, .)> 0 is self-adjoint.

In [Nicaise and Pignotti, 2011] a multidimensional wave equation is considered, subject to Dirichlet and
dynamic boundary conditions, and with general state depending coefficient. In addition the authors consider
delay feedback (delay source term) at the dynamic boundary conditions, the well-posedness of this wave is
established and its stability is studied. The interesting fact is that the study allows Kelvin-Voigt damping source
term (uxxt).

In [Fourrier and Lasiecka, 2013] a viscous damped multidimensional wave equation subject to damped dy-
namical boundary in a measurable partition of the boundary where the remaining partition is subject to Dirichlet
boundary condition is considered. The well-posedness, the regularity and the stability of this wave is proven.

In [Fiscella and Vitillaro, 2015] a semilinear multi-dimensional wave equation subject to semilinear first
order dynamic boundary condition in a measurable partition of the boundary where the remaining partition is
subject to Dirichlet boundary condition is considered. The purpose of [Fiscella and Vitillaro, 2015] is to improve
blow-up criterion for this type of problem.

In [Vitillaro, 2017] the well-posedness of two and more dimensional wave equations subject to non-linear
source term is presented. The boundary of the open bounded subset Ω of Rn with n> 2 is split in two measurable
partitions. One partition is subject to Dirichlet boundary condition, the other is subject to a second order dynamic
boundary condition combined with a Laplace-Beltrami operator.
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1.5.2 Boundary control of the wave equation

The following citations give a general background for the PDE in control theory, [Curtain and Zwart, 2012],
[Tucsnak and Weiss, 2009], [Luo et al., 1999]. There is the survey in [Ervedoza and Zuazua, 2012], which
presents in particular theories developed in order to study the wave controllablility numerically. The idea is to
analyze when discrete (in space) model of the wave equation shares the controllable property. In the same line
of thought and by the same authors there is also the text book [Ervedoza and Zuazua, 2013].

Note that we are considering at this point -except said otherwise- that the wave is one-dimensional (uxx(x, t)=
uxx(x, t), x ∈ I ⊂ R).

Below a short literature review is presented according to the type of method used to design control law. We
are obviously not exhaustive.

1.5.2.1 Lyapunov/energy based method

In [d’Andréa-Novel et al., 1992] the feedback asymptotical stabilization of a overhead crane is established. The
interesting point of this reference is the use of La Salle principle for infinite-dimensional systems. In [d’Andréa-
Novel and Coron, 2000], the design of an exponential feedback law for the same system is obtained. The system
under consideration is a boundary control on a second order dynamical boundary condition of a space depending
wave, the opposite boundary is a Neumann type.

In [Conrad and Mifdal, 1998], with the same idea as [d’Andréa-Novel et al., 1992], an asymptotic feedback is
proposed for an overhead crane which is modeled by a space depending wave with both second order dynamical
boundary conditions.

In [Saldivar et al., 2016b] the wave equation is used to model both torsional and axis vibration occurring
along a oilwell drillstring. The angular position boundary opposite to the actuation is depending on the elongation
of the axial position. A systematic method to design feedback controllers establishing ultimate boundeness is
suggested in [Saldivar et al., 2016b].

1.5.2.2 Flatness based control

Flatness is a property of a system concerning its state and input. Flat systems are a generalization of linear
systems. More information about flatness properties of (finite and infinite dimensional) dynamics systems can
be found in [Martin et al., 2003].

In [Sagert et al., 2013] the wave equation subject to a nonlinear first order dynamics boundary condition
opposite the Neumann actuation is presented. This system is proven flat, and using this property a proportional-
integral control law exponentially stabilizing the system using only the collocated velocity is suggested. This
wave equation can be used to model the torsional vibration of the drillstring which can appear in drilling system,
if the inertia of the bit can be neglected.

Piezoelectric-stack actuator which can be modeled by a pure wave equation with second order dynamic
boundary conditions see [Meurer and Kugi, 2011]. Both boundary dynamics have source term in position with
respect to the other one, and the input considered acts on both boundary conditions (a scalar input which impacts
both boundary dynamics). In [Meurer and Kugi, 2011] the flatness property of this system is established, then
using this characteristic a control law performing asymptotical stability is obtained. In addition, it is worth
noticing that the authors develop a Luenberger observer for the distributed parameters tracking error.
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1.5.2.3 Root-locus design

There is a interesting approach using the root-locus to design boundary control of a pure wave equation with
Neumann actuation opposite to a Neumann boundary condition in [Alli and Singh, 2000]. The stability of the
closed-loop system with respect to the magnitude of the gains is studied using root-locus design technique. The
wave considered in this reference models a flexible bar.

1.5.2.4 Smith predictor

In [Liang and Chen, 2004] the control of a pure wave equation subject to a Neumman actuation opposite to a
Dirichlet boundary condition is proposed. A Smith predictor based control is considered in order to take into
account the delay measurement. Note that the same authors have generalized their approach to wave equation
with fractional time derivative subject to the same boundary in [Liang et al., 2007].

1.5.2.5 Control for flexible system

There are many works concerning flexible systems, and some are linked to the wave equation. We refer the
reader to the two following surveys on the subject [Dwivedy and Eberhard, 2006] and [Benosman and Le Vey,
2004]. We present two methods which are related to the wave equation:

(i). “Absolute vibration suppression” (AVS) is the used of Laplace transformation on the time variable in order
to rewrite the one dimensional wave equation as an ODE in Lapace space. This is used in order to suppress
vibrations in non-rigid bodies.

(ii). The idea of “wave based control” (WBC) is that, for flexible systems, the actuation from one boundary
condition travels toward the other boundary, then is reflected back to the controlled boundary. Therefore
the control is designed in two parts, one for the real actuation desired, and the other for the cancellation of
the reflected input. This was originally developed for lumped linear system. In [O’Connor, 2007] a lump
modeled flexible robot is analyzed and controlled using wave based control. It is worth noticing that this
method has been completed in order to consider the asymmetrical behavior (concerning the direction of
propagation) in a more general framework the unilateral propagation in [Martinec et al., 2018].

In [Peled et al., 2013] the relationship between “wave based control” and “absolute vibration suppression” is
studied.

1.5.2.6 Backstepping based control

In [Krstic et al., 2008] a backstepping based feedback law stabilizing the one-dimensional pure wave equation
subject to a Dirichlet actuation and to a unstable Robin type boundary is developed. They proposed also two
observers: the first on the anti-collocated output (the actuation and the measurement are at opposite bound-
aries), and a backstepping based observer for the collocated output (measurement and actuation are at the same
boundary).

A backstepping based (observer-based) output feedback law for the one-dimensional pure wave equation
subject to an unstable first order dynamical boundary condition opposite to a Neumann or Dirichlet actuation is
established in [Smyshlyaev and Krstic, 2009].

Drilling torsional vibrations can be modeled by a wave equation with in-domain viscous damping subject to
an non-linear dynamical boundary condition opposite to the actuation. In [Sagert et al., 2013] linearizing this
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non-linearity at an unstable operating point, a backstepping control law is proposed. More information on this
control is given in Section 7.7 where it is compared with a design suggested in Chapter 7.

In [Smyshlyaev et al., 2010] the following propagation

utt(x, t) = uxx(x, t)+α(x)ux(x, t)+λ (x)ut(x, t)+β (x)u(x, t) (1.151)

with a Dirichlet actuation opposite to a Dirichlet boundary condition is considered. The authors suggest an
exponentially stabilizing full-state feedback law using backstepping method. Comparing to the previous cita-
tions concerning backstepping based control, here the kernel of the backstepping transformation uniqueness and
existence is obtained using the successive approximation method.

The wave equation can be used to model a hanging cable immersed in water, this is established in [Böhm
et al., 2013]. A backstepping based feedback law is proposed to stabilize the considered wave subject to a
dynamic boundary condition opposite to the actuation Dirichlet actuation. It is worth noticing that the in-domain
damping is neglecting for the wave propagation and its dynamic boundary condition.

Note that when concerning the backstepping method, the wave equation and the heat equation leads to similar
PDE the kernels need to be solution of. Concerning the heat equation control using backstepping method we
refer the reader to [Liu, 2003], [Smyshlyaev and Krstic, 2004], and [Smyshlyaev and Krstic, 2005] as for the
three the resolution of the kernel is interesting.

1.5.2.7 Adaptive and/or robust control

For a text book in finite dimensional system adaptive robust control, we refer the reader to [Ioannou and Sun,
1996].

In [Guo and Guo, 2016] a performance output reference tracking for a pure wave equation subject to general
harmonic disturbance at the Neumann boundary opposite to the Neumann type actuation is solved. According
to the introduction of [Guo and Guo, 2016], even in the finite-dimensional case the output tracking is still not
sufficiently addressed: see for instance the text book [Lewis et al., 2012] on Page 315. Therefore, the infinite-
dimensional case requires much more analysis. An interesting fact about [Guo and Guo, 2016] is the use of
Galerkin method to establish the well-posed of the system under consideration, which is a non-autonomous
nonlinear non-dissipative evolution system. The proof is not fully written but it is similar to the one of [Wei and
Bao-Zhu, 2011].

In [Wei and Bao-Zhu, 2011] a backstepping based control associated with parameters estimation is consid-
ered to stabilize a pure wave equation with stable Robin boundary condition opposite to a Neumann actuation.
An harmonic disturbance is considered in this system and it is collocated with the actuation.

Consider a pure wave equation subjects to an unstable boundary condition of unknown parameters opposite
to the Neumann actuation. In [Bresch-Pietri and Krstic, 2014c] an adaptive control law is proposed which
stabilizes this wave equation.

Anyone who claimed that old age had
brought them patience was either lying or
senile.

Robert Jordan

This ends the first chapter of this thesis. Let us now describe in details our contribution.
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Introduction

In this part, we present the method we have developed to study the robustness of prediction based adaptive
control laws. We study the robustness of these adaptive control laws with respect to model mismatch. This
means that the model used for the control design differs from the actual one the control law is applied on. The
method we present has given birth to two articles:

• [Roman et al., 2016b] conference paper, presented at the American Control Conference, Boston, MA.

• [Roman et al., 2017] journal paper under review, Transactions on Automatic Control 2017.

The considered adaptive control laws are taken from

• [Bresch-Pietri and Krstic, 2014a]

• [Bresch-Pietri and Krstic, 2014b]

The Part is organized as follows. First, in Chapter 2, the system under consideration is presented along
with the prediction-based design methodology. This allows us to present the main differences between the three
control laws we consider. Then, there is a chapter for each control law. Chapter 3 deals with the first control
considered. This work has been presented at the ACC in 2016 [Roman et al., 2016b] but it is detailed here
with more precision. The second adaptive control law and its robustness result are presented in Chapter 4. This
corresponds to an unpublished result. Chapter 5 is dedicated to the last control. This corresponds to an article
under review at TAC, [Roman et al., 2017]. The last chapter, before the conclusion, deals with simulations for
the three control laws on a nonlinear drilling inspired model (Chapter 6).

Disclaimer: Note that the notations between Chapter 3 for one part, Chapter 4 for an other part, and
Chapter 5 are redundant. For example in each part the control U is redefined.
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First the model under consideration is presented, this is a one-dimensional wave equation. Then the main
differences between the adaptive control laws are explained in Section 2.2. The wave is then reformulated using
the Riemann invariant into coupled transport phenomena. This allows us to present the prediction based design
in Section 2.3. The following Section 2.4 is dedicated to the core of our method. The last Section 2.5 presented
in schematic view the different steps we use to build the extended system (the system the stability of which is
studied) for each adaptive control law.

2.1 Model under consideration

We consider the following one-dimensional wave equation with in-domain viscous damping, subject to an anti-
damping boundary, with actuation on the opposite boundary

utt(x, t) = uxx(x, t)−2λut(x, t), (2.1a)

ux(1, t) =U(t), (2.1b)

utt(0, t) = aqut(0, t)+a[ux(0, t)−d], (2.1c)

in which, λ is the in-domain damping coefficient, q > 0 an unknown anti-damping boundary coefficient, d > 0
is an unknown bias coefficient and a is a positive constant. The distributed variable of the system is u(x, t) ∈ R
with x the spatial variable, and t the time variable. The scalar U(t) is the control input. The in-domain damping
in (2.1a) also makes the control design significantly harder by introducing an internal coupling, as appears in the
following sections.

Note that the well-posedness of the zero-input system (U(t) = 0 in (2.1)) is established in Appendix B.

Therefore, we make the following assumption on the system which consider to hold in the sequel of this part.

Assumption 2.1 There exist known constants q, q, d and d such that q < q, d < d and q ∈ [q,q], d ∈ [d,d].

The adaptive control approach considered in this thesis uses estimation of the system parameters, q and d.
As we are considering adaptive control, the state of the system is

X (t) =
[
u(t), ut(t), u(0, t), ut(0, t), q− q̂(t), d− d̂(t)

]
∈ H1(0,1)×L2(0,1)×R4, (2.2)
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in which q̂(t) and d̂(t) are the estimate of the unknown parameters q and d. The remaining state variables are the
state of the wave PDE.

2.2 Three different controls for three different measurements

We suggest to study our robustness method for three different adaptive control laws. The first uses the mea-
surement of both boundary velocities, i.e., ut(0, t) and ut(1, t) and will be referred to as the boundary output
feedback. The second uses also the collocated velocity but the delayed values of the anti-collocated velocity, i.e.,
ut(1, t) and ut(0, t− 1). It will be referred to as the delayed anti-collocated output feedback. The last one uses
only the collocated velocity, i.e., ut(1, t) and thus is called collocated output control or surface based control.
All the previous talk is sum up in the following

1. Boundaries output feedback: ut(1, t) and ut(0, t) as measurement. Two sensors are therefore considered.

Chapter 3.

2. Delay anti-collocated output feedback: ut(1, t) and ut(0, t−1) as measurement. Here two sensors are also
considered, but the information of the sensor which is not located with the actuation is considered delayed.

Chapter 4.

3. Collocated output feedback: ut(1, t) as measurement. For this adaptive control law a only one sensor is
needed and it is collocated with the actuation.

Chapter 5.

The complexities of the presented method increases for each adaptive control law. The boundary output
feedback has been presented in [Roman et al., 2016b]. The presentation of it in this manuscript is self-content
and it is used as a minimal example (i.e., a simple enough case) to present the idea of our method. The delay
anti-collocated corresponds to an unpublished result, but it is a lessen problem with respect to the collocated
output feedback which is under review at TAC, see [Roman et al., 2017]. Indeed the robust result in [Roman
et al., 2017] contains the delay anti-collocated output feedback law model mismatch robustness for in-domain
viscous damping. The delay anti-collocated output feedback mismatch robustness is allowing us to precisely
present the growing of our method and is also self-content. The collocated output feedback mismatch robustness
is presented but without complete development.

In the next section, in Section 2.3 we present the first step used for the control law design in [Bresch-Pietri
and Krstic, 2014a] and [Bresch-Pietri and Krstic, 2014b]. This allows us to emphasize the differences between
the three adaptive control laws other than measurement (which has just been explained above). Section 2.4 is
dedicated to the core of the proposed method, indeed the development of this section is used for each robustness
study.

2.3 Riemann invariant and prediction based design

First, using the following Riemann variables

ζ (x, t) := ut(x, t)+ux(x, t)− d̂(t), (2.3)

ω(x, t) := ut(x, t)−ux(x, t)+ d̂(t), (2.4)
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along with the notations

W (t) :=U(t)+ut(1, t)− d̂(t), (2.5)

v(t) := ut(0, t), (2.6)

one establishes into the following system

v̇(t) = a(q−1)v(t)+a[ζ (0, t)− d̃], (2.7a)

ζt(x, t) = ζx(x, t)− ˙̂d(t)−λ (ζ (x, t)+ω(x, t)), (2.7b)

ζ (1, t) =W (t), (2.7c)

ωt(x, t) =−ωx(x, t)+
˙̂d(t)−λ (ζ (x, t)+ω(x, t)), (2.7d)

ω(0, t) = 2v(t)−ζ (0, t), (2.7e)

in which W is the new control, and v is the x = 0 boundary velocity. d̂ is the estimate of d. And d̃(t) = d− d̂(t)
is the error-estimate of d. This system (2.7) represents two coupled transport equations with source terms,
coupled with the ODE (2.7a). We suggest to illustrate this structure with a schematic view of the interconnection
as initially introduced in [Meglio et al., 2013]. This is done in Figure 2.1. The represents the transport
phenomenon associated to ζ or ω . These two transport phenomena have opposite propagation direction, i.e., ζ

goes from x = 1 to x = 0 refereed to as the forward direction, and ω goes from x = 0 to x = 1, refereed to as
the backward direction. The represents one boundary of the transport phenomenon. The purple circle, i.e.,
represents an ODE, the state of which is written at the center. The pointwise dependence, i.e., expresses
the fact that the ODE is coupled with one transport phenomenon boundary, or the link between two transport
boundaries. The in-domain viscous damping has induced coupling between the two transport phenomena, this
coupling is illustrated in Figure 2.1 by . The input W is pictured with .

ζ (x, t)
W (t)

ω(x, t)

v(t)−λ−λ

Nomenclature
in-domain dependence

transport
ODE

boundary of transport
point-wise dependence

Figure 2.1: Schematic of the Riemann invariant system.

In the case where λ = 0, note that the two transport phenomena (2.7b) and (2.7d) are not coupled anymore.
Then, for any x, the variable ζ (x, t) can be expressed as a delayed value of the boundary (2.7c) (applying Lemma
A.1 in Appendix A.1 to (2.7b)). This enables us to consider (2.7a) as an input-delay system, as studied in
[Artstein, 1982], [Kwon and Pearson, 1980], and [Manitius and Olbrot, 1979] which are related with the early
work of [Smith, 1957] and [Smith, 1959].

In order to explain the prediction-based designs proposed in the following chapters, consider that λ = 0 and
that we know the parameters q and d, e.i., q̂(t) = q and d̂(t) = d in the system (2.7). Thus, from (2.7a) it holds

v̇(t) = a(q−1)v(t)+aW (t−1). (2.8)

Therefore if one assures that
W (t) =−(c0 +q−1)v(t +1), (2.9)
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then the closed-loop system state v satisfies

v̇(t) =−ac0v(t), for t > 1. (2.10)

From (2.8), applying the variations of constant formula, one gets

v(t +1) = ea(q−1)(t+1−τ)v(τ)+a
∫ t+1

τ

ea(q−1)(t+1−s)W (s−1)ds, ∀t,τ ∈ R. (2.11)

This is a classic result for input-delay systems. It means that we can deduce v at time t +1 from the knowledge
of its previous values and the knowledge of the history of the input (inhomogeneous part). In Section 2.2, we
have highlighted that the three control laws have three different measurements. The measurement fixes the value
of τ in (2.11), indeed one gets

1. For the boundary output feedback [Chapter 3], we take τ = t in (2.11) and consequently choose

W (t) =−(c0 +q−1)
(

ea(q−1)v(t)+a
∫ t+1

t
ea(q−1)(t+1−s)W (s−1)ds

)
. (2.12)

This control law is related with the control law U presented in Chapter 3. It is taken from [Bresch-Pietri
and Krstic, 2014a].

2. For the delay anti-collocated output feedback [Chapter 4], we take τ = t−1 in (2.11)

W (t) =−(c0 +q−1)
(

e2a(q−1)v(t−1)+a
∫ t+1

t−1
ea(q−1)(t+1−s)W (s−1)ds

)
. (2.13)

And again (2.9) holds therefore (2.10) follows. This is the idea of the control law design in [Bresch-Pietri
and Krstic, 2014a]. This is analyzed in Chapter 4.

3. Collocated output feedback [Chapter 5]. In this case we propose to use the same control law as (2.13), but
to reconstruct v(t−1) using both transport phenomena, indeed it holds

v(t−1) =
1
2
[ut(1, t)−ux(1, t)+ut(1, t−2)+ux(1, t−2)]. (2.14)

And thus the control law can be computed using only the measurement of the collocated velocity (as
ux(1, t) =U(t) is known). For more details and comments about this design see Chapter 5. This is goal of
the control design proposed in [Bresch-Pietri and Krstic, 2014b].

Note that, for the three cases, in the nominal case where λ = 0, with q̂ = q and d̂ = d, exponential stabilization
is achieved. In the general case, applying the certainty equivalence principle, the different adaptive control laws
follow: Chapter 3 for the boundary output feedback, Chapter 4 for the delay anti-collocated output feedback,
and Chapter 5 for the collocated boundary feedback.

We want to study the robustness of these adaptive control laws designed for λ = 0 when λ > 0. Note that
the main difficulty of the collocated output feedback robust analysis is that when λ 6= 0 (2.14) is no longer true,
therefore there is a error which propagates in the system. More details are given in Chapter 5. The method we
suggest consist of several successive change of variables in order to perform a Lyapunov analysis. The first step
of this change of variable which is similar for the robust analysis of the three adaptive control laws is detailed in
the next section.



2.4. The core of our method: the estimated and auxiliary systems 47

2.4 The core of our method: the estimated and auxiliary systems

The core of our method is to extend the system in order to introduce a dynamics equivalent to the nominal case
(λ = 0). Consider the following set of variables

ζ̂ (x, t) := ζ (x, t)+λ

∫ 1

x
(ζ (χ, t + x−χ)+ω(χ, t + x−χ))dχ, (2.15)

ω̂(x, t) := ω(x, t)+λ

∫ x

0
(ζ (χ, t− x+χ)+ω(χ, t− x+χ))dχ

−λ

∫ 1

0
(ζ (χ, t− x−χ)+ω(χ, t− x−χ))dχ, (2.16)

ζ̃ (x, t) := ζ (x, t)− ζ̂ (x, t), (2.17)

ω̃(x, t) := ω(x, t)− ω̂(x, t). (2.18)

The hat variable dynamics are refereed to as the estimated system. The tilde variable dynamics are refereed to as
the auxiliary system. The following proposition establishes both systems and expresses the dynamics of v with
this set of variables.

Proposition 2.1 v defined in (2.6) satisfies

v̇(t) = a(q−1)v(t)+a[ζ̃ (0, t)+ ζ̂ (0, t)− d̃(t)]. (2.19)

The estimated system satisfies 
ζ̂t(x, t) = ζ̂x(x, t)− ˙̂d(t), (2.20a)

ζ̂ (1, t) =W (t), (2.20b)

ω̂t(x, t) =−ω̂x(x, t)+
˙̂d(t), (2.20c)

ω̂(0, t) = 2v(t)− ζ̂ (0, t), (2.20d)

and the auxiliary system is
ζ̃t(x, t) = ζ̃x(x, t)−λ

[
ζ̃ (x, t)+ ω̃(x, t)+ ζ̂ (x, t)+ ω̂(x, t)

]
, (2.21a)

ζ̃ (1, t) = 0, (2.21b)

ω̃t(x, t) =−ω̃x(x, t)−λ
[
ζ̃ (x, t)+ ω̃(x, t)+ ζ̂ (x, t)+ ω̂(x, t)

]
, (2.21c)

ω̃(0, t) =−ζ̃ (0, t). (2.21d)

Proof : From (2.7a) and the definitions (2.15)-(2.18) one obtains (2.19).

From the definitions (2.15)-(2.16), considering the Riemann invariants (2.7b)-(2.7e) one gets (2.20a)-(2.20d).
(2.21a)-(2.21d) are obtained in a similar manner. �

The system (2.7b)-(2.7e) has been decomposed into two dynamics. The first part (2.20) is referred to as the
estimated system and has the same decoupled dynamics as the nominal system (when λ = 0 in (2.7b)-(2.7e)). It
can be seen as the part the control acts on, while the second part (2.21) encapsulates all the remaining dynamics
not taking in account in the feedback law. This second system is referred to as the auxiliary system. The idea is
that, because the system (2.20), has the same dynamics as the nominal one (system (2.7) with λ = 0) and that it
had been build as the part the control acts on, the control law will stabilize (2.20). However, as the transformation
(2.15)-(2.16) is not invertible, we need to add some ‘information’ to conclude on the original system behavior.
The added ‘information’ is by considering the remaining dynamics, i.e., (2.21). Nevertheless, as far as we see,
there is no particular constraint to chose others variables than the one we take in (2.17)-(2.18).

Figure 2.2 illustrates the system which consists of the estimated system and auxiliary system and the ODE.
Note that a transport phenomenon without source and distributed terms, with zero input converges to zero in finite
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time. The fact that the estimated system does not depend on the auxiliary system is shown in Figure 2.2. The
dependence of the auxiliary system with respect to the estimated system is illustrated with . This dependence
is parametrized by the coefficient λ (see (2.21)). Intuitively, if the coefficient λ is small enough, the estimated
system converges, therefore the auxiliary system also converges and thus the closed-loop system is stable.

As previously said the estimated system can be seen as the system’s part the control acts on. This system
behaves similarly as the nominal system for the control law, therefore the analysis perform for the nominal case
can be applied similarly on the estimated system. This latter point is mandatory, due to the fact that we consider
Lyapunov-based adaptive control design. Indeed, the adaptive laws are computed to cancel error estimate terms
in the Lyapunov analysis (i.e., terms in q̃ and d̃). As the control act in a similar way on the estimated system (this
is its purpose), the error estimate terms resulting from the estimated system are going to be canceled.

v(t)−λ

−λ

−λ

ζ̂ (x, t)
W (t)

ζ̃ (x, t)
0

ω(x, t)

ω̂(x, t)
Nomenclature

in-domain dependence

transport
ODE

boundary of transport
point-wise dependence

Figure 2.2: Illustration of the estimated system and auxiliary system
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2.5 Cartography of the different procedures for each control law

As previously said, the idea of our method is to build a system the stability of which implies the stability of (2.1).
In this section, we emphasize the different steps (presented in the sequel) for each procedure corresponding to a
control law. In the previous section, the first step which is consistent for the three extended system constructions
is presented. The schematic view of these different steps is presented in Figure 2.3.

For example, the boundary output feedback procedure’s steps are shown with .

(i). We start with the Riemann invariants.

(ii). Then the estimated and auxiliary system are computed.

(iii). Finally, we perform a backstepping transformation on the estimated system to get the target system.

The stability of the target system with the auxiliary system implies the stability of the closed-loop system (2.1)
for the boundary output feedback. The details of which are presented in Chapter 3.

For the delay anti-collocated output feedback building of the extended system,

(i). We start once again for the Riemann invariants, then the estimated and auxiliary system.

(ii). Now, as the control law uses the delay of the uncontrolled velocity we enhance the system with the delay
system,

(iii). before performing backstepping transformation (as it is done in the nominal case. [Bresch-Pietri and
Krstic, 2014b])

(iv). Finally, it remains some adaptive error term which are not cancel by the adaptive law. Therefore we
consider a additional state for the extended system to perform the Lyapunov analysis.
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Riemman invariants
(Section 2.3)

Estimate and
auxiliary system

(Section 2.4)

Delay system
(Section 4.3.1.1 )

Target system
(Sections 4.3.1.2 3.3.1 )

Error term
(Section 4.3.1.3 )

Derivative of the
estimate and

auxiliary system

Collocated
output feedback

Delay anti-collocated
output feedback

Boundary
output feedback

Figure 2.3: Cartography of the different procedures with respect to each control law.

We are now ready to start the analysis.
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Chapter closure and opening

In the sequel we study the model mismatch robustness of three adaptive control laws. The preliminary step
is to split the Riemann invariant system into the -refereed as- estimate system and auxiliary system, this has
been presented in Section 2.4. The next steps, which are listed in Figure 2.3, are detailed in the next chapters.
Somehow the splitting can be related to the one often done in robust control design as for example H∞, where
a model with uncertainty is split in both the nominal system and the normalize incertitude. This is illustrated in
Figure 2.4

Estimate
System

outputinput

Auxiliary system

Nominal
System

outputinput

∆

Figure 2.4: Similarity between our method (left) and common finite method (right) for model mismatch robust-
ness

.

In robust control, like in H∞ the model mismatch robustness is often deduced using small gain theorem. In
our method the splitting is effectuated in order to perform Lyapunov stability analysis. An interesting article
is [Zhang et al., 2001] which establishes the link between Lyapunov stability analysis and scaled small-gain
conditions for time-delay system. It will be interesting to study if the suggested method here can be link to the
same gain theorem. Nevertheless let us present the result we have for the adaptive control using both boundary
velocities in the next chapter.

It is important to notice and understand that the successive change of variables we consider does not need to
be invertible, indeed we just need that the stability of the transformed system implies the stability of the original
system. This property is fundamental for our result and therefore is proven in each cases.
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This chapter is dedicated to a first adaptive control law, which makes use of both current boundary velocities.
In Section 3.1, this adaptive control law is presented. Then, a robustness property to distributed damping (λ 6= 0)
is stated in Section 3.2. The proof of this result is established in Section 3.3.

As it has been said, the system under consideration is (2.1), recall
utt(x, t) = uxx(x, t)−2λut(x, t), (3.1a)

ux(1, t) =U(t), (3.1b)

utt(0, t) = aqut(0, t)+a[ux(0, t)−d]. (3.1c)

The outputs considered in this chapter are ut(1, t) and ut(0, t).

3.1 Boundary output adaptive control law

Consider the dynamics (2.1) with the following control law, designed in [Bresch-Pietri and Krstic, 2014a]

U(t) :=−ut(1, t)+ d̂(t)− (c0 + q̂(t)−1)
(

ea(q̂(t)−1)ut(0, t)+a
∫ t

t−1
ea(q̂(t)−1)(t−τ)

(
η(τ)− d̂(t)

)
dτ

)
, (3.2)

in which c0 > 0 is a constant, q̂(t) is an estimate of the unknown parameter q, d̂(t) is an estimate of d, and

η(t) :=U(t)+ut(1, t). (3.3)

The parameter update laws are

˙̂q(t) :=
aγq

1+N(t)
PROJ[q,q]

{
q̂(t), ut(0, t)

(
ut(0, t)+b1(c0 + q̂(t)−1)

∫ t

t−1
e(a(q̂(t)−1)−1)(τ−t+1)

σ(τ, t)dτ

)}
, (3.4)

˙̂d(t) :=
−aγd

1+N(t)
PROJ[d,d]

{
d̂(t), ut(0, t)+b1(c0 + q̂(t)−1)

∫ t

t−1
e(a(q̂(t)−1)−1)(τ−t+1)

σ(τ, t)dτ

}
, (3.5)

N(t) :=ut(0, t)2 +b1

∫ t

t−1
eτ−t+1

σ(τ, t)2dτ +b2

∫ t

t−1
eτ−t+1(2ut(0,τ)−η(τ−1)+ d̂(t))2dτ, (3.6)

53



54 Chapter 3. Boundary output feedback

in which the bounds q, q, d, d are defined in Assumption 2.1, PROJ is the standard projection operator over the
interval [q,q] (or [d,d]) ( see its definition in Section 1.4.4, (1.134)), b1, b2 > 0 are normalization constants, the
update gains γd ,γq > 0 are tuning parameters and, for t > 0 and t−16 τ 6 t,

σ(τ, t) := η(τ)− d̂(t)+(c0 + q̂(t)−1)
(

ea(q̂(t)−1)(τ−t+1)ut(0, t)+a
∫

τ

t−1
ea(q̂(t)−1)(τ−χ)(η(χ)− d̂(t))dχ

)
. (3.7)

The adaptive laws (3.4)-(3.5) result from a Lyapunov-based design, i.e., from indirect adaptive control. More-
over ˙̂d and ˙̂q are bounded by definition, due to the normalization term N in (3.4)-(3.5). Besides, the projector
operator allows to limit the estimated variables within their boundaries (for more details on adaptive control
paradigm see [Ioannou and Sun, 1996]).

Finally, note that the control law is robust with respect to a constant input disturbance, due to the structure
of (3.5), which can be seen as an integral term.

The following theorem states the stability result for the previously presented control law and adaptive laws
for the nominal case (λ = 0).

Theorem 3.1 [Bresch-Pietri and Krstic, 2014a]
Consider the closed-loop system consisting of the plant (2.1) in which λ = 0, the control law U defined in

(3.2) and the parameters update laws (3.4)-(3.4). Define the functionals

ΓO(X (t)) :=ut(0, t)2 +‖ux(t)−d‖2
L2
+‖ut(t)‖2

L2
+(q− q̂(t))2 +(d− d̂(t))2 (3.8)

ϒO(X (t)) :=ut(0, t)2 +‖ut(t)‖2
L2
+‖ux(t)−d‖2

L2
+(d− d̂(t))2 (3.9)

in which X (t) is defined in (2.2).

Then, for all c0 > 0, there exist b2(c0)> 0, b1(c0,b2)> 0, γ(c0,b1,b2)> 0, such that, for

• b2 ∈ (0,b2),
• b1 ∈ (b1,∞),
• γd , γq ∈ (0,γ),

it holds, for suitable R > 0 and ρ > 0,

ΓO(X (t))6 R(eρΓO(X (0))−1), (3.10)

and

lim
t→∞

ϒO(X (t)) = 0. (3.11)

The parameters c0, b1, b2, γq and γd are tuning parameters for the control law and adaptive laws. The scalar
b2, b1, and γ are the parameter bounds.

In indirect adaptive control there are usually two properties, stability, and attractivity (convergence). The
stability property is expressed by the functional ΓO. The expression (3.10) means that the system is stable around
the subspace of the state space define by the kernel of ΓO. The attractivity (convergence) is expressed by the
functional ϒO. The expression (3.11) means that the system converges to the subspace of the state space defined
by the kernel of ϒO.

The next section presents the robust result.

3.2 Model mismatch of boundary output feedback

Using the method we have developed, one can establish the following theorem. It states that the adaptive control
law still stabilizes the system if the coefficient λ is small enough with respect to initial conditions and control
law tuning parameters.
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Theorem 3.2 [Roman et al., 2016b]
Consider the closed-loop system consisting of the plant (2.1), the control law (3.2) and the parameter update

laws (3.4)-(3.5). Under Assumption 2.1, define the functionals Γ, Ξ and ϒ as

Γ(X (t)) :=ut(0, t)2 +‖ut(t)‖2
L2
+‖ux(t)−d‖2

L2
+(q− q̂(t))2 +(d− d̂(t))2, (3.12)

Ξ(X (t)) := max
s∈[0,2]

Γ(X (t− s)), (3.13)

ϒ(X (t)) :=ut(0, t)2 +‖ut(t)‖2
L2
+‖ux(t)−d‖2

L2
+(d− d̂(t))2. (3.14)

Then, for all c0 > 0, there exist b2(c0)> 0, b1(c0,b2)> 0, γ(c0,b1,b2)> 0, such that, for

• b2 ∈ (0,b2),
• b1 ∈ (b1,∞),
• γd , γq ∈ (0,γ),

there exists λ (c0,b1,b2,γ,X (0))> 0 such that, when λ ∈ (0,λ ), it follows, for suitable R > 0 and ρ > 0

Ξ(X (t))6 R(eρΞ(X (0))−1), (3.15)

and

lim
t→∞

ϒ(X (t)) = 0. (3.16)

As in the former theorem (Theorem 3.1) the stability and the attractivity are stated. However, note that
the stability (3.15) is expressed with the delayed functional Ξ. This means that the system is stable with the
subspace defined by the kernel of Ξ. This is due to the PDE coupling introduced by the in-domain damping
which generates distributed delays. To analyze these couplings, the suggested method uses the variables ω̂ and
ζ̂ defined in (2.15)-(2.16) (in Section 2.4). These variables are constructed using space-time integrals. To bound
these integrals we need to consider a delayed functional. Note that the maximal delay is two in (2.16), this is
consistent with the delay of two in (3.13).

Besides, the stability and convergence are semi-global (i.e., λ depends on initial conditions) as a result of
the normalization involved in (3.4) and (3.5).

3.3 Proof of robustness to internal damping

The proof of Theorem 3.2 consists of the following steps. In Section 3.3.1 we extend and transform the sys-
tem (2.1). This enables us to perform a standard Lyapunov analysis on the previously extended system in
Section 3.3.2. In Section 3.3.3 the stability result is expressed in terms of the variables of the original system
(2.1). Finally the convergence is presented in Section 3.3.4. The last Section 3.3.5 is a brief conclusion on the
proof of Theorem 3.2.

3.3.1 Extension of the system

The different steps to build the extended system are the following

• The original system (2.1) is reformulated into (2.7) using the Riemann invariants presented in Section 2.3.

• The system (2.7) is decomposed into both the estimated system and the auxiliary system, as presented in
Section 2.4.

• Then a backstepping transformation is applied on the estimated system (2.20).
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All this procedure has been illustrated in Figure 2.3. The two first steps have been addressed in Chapter 2, we
now detail the third one.

Backstepping transformation

In order to perform the backstepping transformation, some preliminary computations are needed. Indeed,
the previous form of the control and adaptive laws is useful for implementation, but another form is needed for
the analysis.

Claim 3.1 Considering U taken as (3.2), W defined in (2.5) can be rewritten as

W (t) =−(c0 + q̂(t)−1)
(

ea(q̂(t)−1)v(t)+a
∫ 1

0
ea(q̂(t)−1)(1−x)

ζ̂ (x, t)dx
)
. (3.17)

Proof : From (3.2), using definition (2.5)-(2.6) and the change of variables τ = t + x−1 in the integration,
one obtains

W (t) =−(c0 + q̂(t)−1)
(

ea(q̂(t)−1)v(t)+a
∫ 1

0
ea(q̂(t)−1)(1−x)[η(t + x−1)− d̂(t)]dx

)
. (3.18)

Gathering (3.3) and (2.5), one gets
η(τ) =W (τ)+ d̂(τ). (3.19)

Now, we use the fact that the estimated system (2.20) presented in Section 2.4 consists in a pure transport PDE
and thus satisfy, for (x,y) ∈ [0,1]2,

ζ̂ (x, t) = ζ̂ (y, t + x− y)− d̂(t)+ d̂(t + x− y), (3.20)

ω̂(x, t) = ω̂(y, t− x+ y)+ d̂(t)− d̂(t− x+ y). (3.21)

The relationship between transport and delay is detailed in Appendix A.1. Taking y = 1 in (3.20), with the
boundary condition of the first transport phenomenon (2.20b), and matching (2.15), (3.18), and (3.19), one
finally gets (3.17). �

Note that, in the non-adaptive case (that is q̃ = 0 and d̃ = 0), one finds that (3.18) is equivalent to (2.12).

Now consider the following backstepping transformation

Π :
(
ζ̂ (t),v(t)

)
7→ ẑ(t) = Π[ζ̂ (t),v(t)], (3.22)

Π[ζ̂ (x, t),v(t)] := ζ̂ (x, t)+(c0 + q̂(t)−1)
(

ea(q̂(t)−1)xv(t)+a
∫ x

0
ea(q̂(t)−1)(x−χ)

ζ̂ (χ, t)dχ

)
. (3.23)

which enables to obtain
ẑ(1, t) = ζ̂ (1, t)−W (t) = 0. (3.24)

It is similar to the one considered in the nominal case for the establishment of Theorem 3.1 in [Bresch-Pietri and
Krstic, 2014a]. However the Π map is now applied on the estimated variable, ζ̂ instead of ζ in the nominal case.

Note that we do not use the backstepping method to design the control law but only as a mean to study the
stability of the system. Therefore, the control law is known, the backstepping transformation is deduced from it,
and the following proposition establishes the corresponding target system.

Proposition 3.1 The estimated system and the ODE, i.e., respectively (2.20) and (2.19), can then be reformu-
lated reversibly as the following target system,
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

v̇(t) =−c0av(t)+a[ẑ(0, t)+ ζ̃ (0, t)+ v(t)q̃(t)− d̃(t)], (3.25a)

ẑt(x, t) = ẑx(x, t)+ ˙̂q(t)gq(x, t)+
˙̂d(t)gd(x, t)+ [q̃(t)v(t)− d̃(t)+ ζ̃ (0, t)]h(x, t), (3.25b)

ẑ(1, t) = 0, (3.25c)

ω̂t(x, t) =−ω̂(x, t)+ ˙̂d(t), (3.25d)

ω̂(0, t) = (c0 + q̂(t)+1)v(t)− ẑ(0, t), (3.25e)

where

gq(x, t) :=ea(q̂(t)−1)xv(t)+a
∫ x

0
ea(q̂(t)−1)(x−y)

Π
−1[ẑ(y, t),v(t)]dy+(c0 + q̂(t)−1)

(
axe(q̂(t)−1)xv(t)

+a2
∫ x

0
(x− y)ea(q̂(t)−1)(x−y)

Π
−1[ẑ(y, t),v(t)]dy

)
, (3.26)

gd(x, t) :=−1− (c0 + q̂(t)−1)a
∫ x

0
ea(q̂(t)−1)(x−y)dy, (3.27)

h(x, t) :=a(c0 + q̂(t)−1)ea(q̂(t)−1)x, (3.28)

in which Π−1 is the inverse backstepping transformation

Π
−1 :

(
ẑ(t),v(t)

)
7→ ζ̂ (t) = Π

−1[ẑ(t),v(t)], (3.29)

Π
−1[ẑ(x, t),v(t)] := ẑ(x, t)− (c0 + q̂(t)−1)

(
e−ac0xv(t)+a

∫ x

0
e−ac0(x−χ)ẑ(χ, t)dχ

)
. (3.30)

Proof : Computing (3.23) at x = 0, and expressing ζ̂ in terms of v and ẑ in the dynamics of v (2.19), it
follows (3.25a).

Then, from the time derivative of (3.23), using (2.20a), and an integration by parts, one gets

ẑt(x, t) = ζ̂x(x, t)− ˙̂d(t)+ ˙̂q(t)
(
ea(q̂(t)−1)xv(t)+a

∫ x

0
ea(q̂(t)−1)(x−s)

ζ̂ (s, t)ds
)

+(c0 + q̂(t)−1)
((

ax ˙̂q(t)v(t)+a(q−1)v(t)+a[ζ̃ (0, t)+ ζ̂ (0, t)− d̃(t)]
)
ea(q̂(t)−1)x

+a2 ˙̂q(t)
∫ x

0
(x− s)ea(q̂(t)−1)(x−s)

ζ̂ (s, t)ds−a ˙̂d(t)
∫ x

0
ea(q̂(t)−1)(x−s)ds+

[
aea(q̂(t)−1)(x−s)

ζ̂ (s, t)
]x

s=0

+a2(q̂(t)−1)
∫ x

0
ea(q̂(t)−1)(x−s)

ζ̂ (s, t)ds
)
. (3.31)

The space derivative of (3.23) is

ẑx(x, t) = ζ̂x(x, t)+(c0 + q̂(t)−1)
(

a(q̂(t)−1)ea(q̂(t)−1)xv(t)+aζ̂ (x, t)

+a
∫ x

0
a(q̂(t)−1)ea(q̂(t)−1)(x−s)

ζ̂ (s, t)ds
)
. (3.32)

Computing ẑt − ẑx and using Π−1[ẑ(x, t),v(t)] = ζ̂ (x, t) defined in (3.30), one gets (3.25b).

(3.24) is the same as (3.25c), (2.20c) is the same as (3.25d). Finally, computing (3.23) at x= 0, and expressing
ζ̂ in term of v and ẑ in the boundary condition of ω̂ (2.20d), it follows (3.25e). �



58 Chapter 3. Boundary output feedback

v(t)−λ
−λ

−λ

−λ

ẑ(x, t)
0

ζ̃ (x, t)
0

ω̃(x, t)

ω̂(x, t)
Nomenclature

in-domain dependence

transport
ODE

boundary of transport

point-wise to in-domain dependence

point-wise dependence

Figure 3.1: Illustration of the extended system for the boundary output feedback

The idea of the backstepping transformation is to transform the transport phenomenon ζ̂ with the feedback
W to a zero input transport phenomenon. Now, as depicted in Figure 3.1, both transport ẑ and ζ̃ have a 0
input. Figure 3.1 is a schematic view of the target system (3.25) and auxiliary system (2.21) interconnection
(where ζ̂ (x, t) = Π−1[ẑ(x, t),v(t)] has been used to the auxiliary system in order to have consistent state variable).
Without any input the dynamics of v (3.25a) is stable. Moreover, the remaining source terms of the dynamics
of ζ̃ and ω̃ depend linearly on λ ( this is illustrated by and in Figure 3.1). Therefore intuitively if λ is
taken small enough, the extended system is stable.

3.3.2 Stability analysis

This section is dedicated to the stability analysis of the extended system of state

Xe(t) =
[
v(t), ẑ(t), ω̂(t), ζ̃ (t), ω̃(t), q− q̂(t), d− q̂(t)

]
∈ R×L2(0,1)4×R2. (3.33)

Preliminary computations concern the adaptive laws. Similarly for the control law in Claim 3.1, the adaptive
laws can be formulate as space integrals. This is the purpose of the following claim.

Claim 3.2 The adaptive laws (3.4)-(3.5) can be rewritten as

˙̂q(t) =
aγq

1+N(t)
PROJ[q,q]

{
q̂(t),v(t)

(
v(t)+b1(c0 + q̂(t)−1)

∫ 1

0
e(a(q̂(t)−1)−1)xẑ(x, t)dx

)}
, (3.34)

˙̂d(t) =
−aγd

1+N(t)
PROJ[d,d]

{
d̂(t),v(t)+b1(c0 + q̂(t)−1)

∫ 1

0
e(a(q̂(t)−1)−1)xẑ(x, t)dx

}
, (3.35)

N(t) = v(t)2 +b1

∫ 1

0
exẑ(x, t)2dx+b2

∫ 1

0
e1−x

ω̂(x, t)2dx. (3.36)

Proof : First, from (3.19) and (3.20), one obtains

η(x+ t−1)− d̂(t) = ζ̂ (x, t). (3.37)
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From the definition of σ (3.7), one gets

σ(x+ t−1, t) = ζ̂ (x, t)+(c0 + q̂(t)−1)
(

ea(q̂(t)−1)xv(t)+a
∫ x

0
ea(q̂(t)−1)(x−s)

ζ̂ (s, t)ds
)

= ẑ(x, t). (3.38)

From the definition of ζ and ω (2.3)-(2.4), the definition of ζ̃ and ω̃ (2.17)-(2.18), and the boundary condition
(2.21d), one obtains

ω̂(0, t− x) = 2ut(0, t− x)− ζ̂ (0, t− x). (3.39)

Using (3.20)-(3.21), and (3.37), it holds

ω̂(x, t) = 2ut(0, t− x)−η(t− x−1)+ d̂(t). (3.40)

Using change of variables on the integrals, τ = x+ t− 1 for the integral on σ and τ = t− x for the integral in
factor of b2, one can conclude. �

Let us consider the following Lyapunov functional candidate

V (Xe(t)) = log(1+N(t))+
q̃(t)2

γq
+

d̃(t)2

γd
+b3

∫ 1

0
ex

ζ̃ (x, t)2dx+b4

∫ 1

0
e1−x

ω̃(x, t)2dx, (3.41)

in which N is defined in (3.36).

Note that log form of V is related to the form of the adaptive law (3.34) (3.35) which is often used in adaptive
control theory [Ioannou and Sun, 1996] and [Krstic, 2006].

Lemma 3.1 Let us consider the Lyapunov functional candidate V defined in (3.41) with b1, b2, b3, b4 > 0.

For all c0 > 0, there exist b2(c0)> 0, b1(c0,b2)> 0, γ(c0,b1,b2)> 0, such that, for all

• b2 ∈ (0,b2),
• b1 ∈ (b1,∞),
• γd , γq ∈ (0,γ),

there exist bi > 0, i ∈ {3,4} and λ (c0,b1,b2,γ,X (0))> 0, such that, for all λ ∈ (0,λ ), it follows, for a suitable
ς > 0,

V̇ (Xe(t))6−
ς

1+N(t)

[
ẑ(0, t)2 + v(t)2 + ζ̂ (0, t)2 + ζ̃ (0, t)2 +‖ẑ‖2 +‖ζ̂‖2 +‖ζ̃‖2 +‖ω̂‖2 +‖ω̃‖2

]
, (3.42)

and thus
V (Xe(t))6V (Xe(0)), t > 0. (3.43)

Before stating the proof of the Lemma 3.1, consider the following proposition which concerns the computa-
tion of the Lyapunov functional derivative upper bound.

Proposition 3.2 There exist M0, M1, M2, M3, C1 and C2 positive, such that

V̇ (Xe(t))6
1

1+N(t)

(
−ac0v(t)2 +

2a
c0

ẑ(0, t)2 +
2a
c0

ζ̃ (0, t)2

+b1

[
− ẑ(0, t)2− ‖ẑ‖

2

2
+ γqM1(b1)(v(t)2 +‖ẑ‖2)+ γdM2(b1)(v(t)2 +‖ẑ‖2)+M0ζ̃ (0, t)2

]
+b2

[
2e(1+ c0 + q̂(t))2v(t)2− ω̂(1, t)2 +2eẑ(0, t)2−‖ω̂‖2 + γdM3(b1)(v(t)2 +‖ẑ‖2 +‖ω̂‖2)

])
+b3

[
− ζ̃ (0, t)2− (1+2λ )‖ζ̂‖2 +λC1

[
v(t)2 +‖ẑ‖2 +‖ζ̃‖2 +‖ω̂‖2 +‖ω̃‖2

]]
(3.44)

+b4

[
− ω̃(1, t)2 + eζ̃ (0, t)2− (1+2λ )‖ω̂‖2 +λC2

[
v(t)2 +‖ẑ‖2 +‖ζ̃‖2 +‖ω̂‖2 +‖ω̃‖2

]]
.
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Proof : From the definition of V in (3.41), it yields

V̇ (Xe(t)) =
Ṅ(t)

1+N(t)
−

˙̂q(t)q̃(t)
γq

−
˙̂d(t)d̃(t)

γd
+2b3

∫ 1

0
ex

ζ̃t(x, t)ζ̃ (x, t)dx+2b4

∫ 1

0
e1−x

ω̃t(x, t)ω̃(x, t)dx. (3.45)

From the expression of N (3.36), it follows that

Ṅ(t) = 2v̇(t)v(t)+2b1

∫ 1

0
exẑt(x, t)ẑ(x, t)dx+2b2

∫ 1

0
e1−x

ω̂t(x, t)ω̂(x, t)dx. (3.46)

Then, using (3.25a), and Young’s inequality, one obtains

2v̇(t)v(t)6−ac0v(t)2 +
2a
c0

ẑ(0, t)2 +
2a
c0

ζ̃ (0, t)2 +2av(t)(v(t)q̃(t)− d̃(t)). (3.47)

Finally using (3.25b)-(3.25e), Young’s and Cauchy-Schwarz’s inequalities, and one integration by parts, one
obtains the existence of M0, M1 and M2 positive such that

2
∫ 1

0
exẑ ẑtdx6−ẑ(0, t)2− ‖ẑ‖

2

2
+ γqM1(b1)(v(t)2 +‖ẑ‖2)+ γdM2(b1)(v(t)2 +‖ẑ‖2)+M0ζ̃ (0, t)2

+a(c0 + q̂(t)−1)
∫ 1

0
ea(q̂(t)−1)+x ẑ(x, t)[v(t)q̃(t)− d̃(t)]dx, (3.48)

and the existence of M3 positive such that

2
∫ 1

0
e1−x

ω̂ω̂tdx6−ω̂(1, t)2 +2e(1+ c0 + q̂(t))2v(t)2

+2eẑ(0, t)2−‖ω̂‖2 + γdM3(b1)(v(t)2 +‖ẑ‖2 +‖ω̂‖2). (3.49)

From (2.21a)-(2.21b), using the inverse backstepping transformation (3.30) on ζ̂ , there exists C1 > 0

2
∫ 1

0
ex

ζ̃ (x, t)ζ̃t(x, t)dx6−ζ̃ (0, t)2− (1+2λ )‖ζ̂‖2 +λC1

[
v(t)2 +‖ẑ‖2 +‖ζ̃‖2 +‖ω̂‖2 +‖ω̃‖2

]
. (3.50)

Then similarly from (2.21c)-(2.21d), using the inverse backstepping transformation (3.30) on ζ̂ , it holds the
existence of C2 > 0

2
∫ 1

0
e1−x

ω̃(x, t)ω̃t(x, t)dx6−ω̃(1, t)2 + eζ̃ (0, t)2− (1+2λ )‖ω̂‖2

+λC2

[
v(t)2 +‖ẑ‖2 +‖ζ̃‖2 +‖ω̂‖2 +‖ω̃‖2

]
. (3.51)

Gathering (3.45)-(3.51), and using Claim 3.2, one concludes the proof of (3.44). �

It is important to notice that the term N used in (3.4) and (3.5), constraints us to the consideration of the vari-
able ζ̂ and ω̂ (Section 2.4, the dynamics of these variable satisfy (2.20)). Indeed, even if the system considered
in linear (2.1), the dynamics enhanced by the adaptive error term q̃(t) and d̃(t) is nonlinear. These variables have
been chosen in order to have the simplification described in the previous proof between error terms generated by
the system and the adaptive control laws, i.e., the integral term in (3.48) and the last additive term in (3.47).

Proof of Lemma 3.1: From Proposition 3.2, we obtain

V̇ (Xe(t))6 ∑
V ∈S

δV fV (.)V 2, (3.52)

in which

S ={v, ‖ẑ‖, ‖ω̂‖, ‖ζ̃‖, ‖ω̃‖, ẑ|0, ω̂|1, ζ̃ |0, ω̃|1 }, (3.53)
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where ω̂|1 denotes the boundary of ω̂ for x = 1, i.e., ω̂(1, t), and

δV =

{
1

1+N(t) , if V ∈ {z|0, v, ‖ẑ‖, ‖ω̂‖, ω̂|1},
1,

(3.54)

and with

fẑ|0 =−b1 +
2a
c0

+2eb2, (3.55)

f
ζ̃ |0 =−b3 + eb4 +

2a
c0

+b1M0, (3.56)

fv =−ac0 +2b2(1+ c0 + q̄)2 ++b1γqM1 +b1γdM2 +b2γdM3 +λ [b3C1 +b4C2]eV (t), (3.57)

f‖ẑ‖ =−
b1

2
+b1γqM1 +b1γdM2 +b2γdM3 +λ [b3C1 +b4C2]eV (t), (3.58)

f‖ω̂‖ =−b2 +b2γdM3 +λ [b3C1 +b4C2]eV (t), (3.59)

f‖ζ̃‖ =−b3(1+2λ )+λ (b3C1 +b4C2) , (3.60)

f‖ω̃‖ =−b4 (1+2λ )+λ (b3C1 +b4C2) , (3.61)

fω̃|1 =−b4, (3.62)

fω̂|1 =−b2. (3.63)

Note that, we used that 1+N(t)6 eV (t) (from the definition of V (3.41)).

A sufficient condition for the stability of the extended target system of state Xe (3.33) is therefore the
existence of parameters bi, γq, γd , and λ such that

fV (.)< 0, ∀V ∈S . (3.64)

This is the condition we investigate in the following. With this aim in view, the selection procedure is as follows:

b2 → b1 → (γq, γd) → b3→ b4→ λ .

In Appendix A.6 we present a simple example on a simplified list of conditions to highlight the procedure we
use to select the parameters. Nevertheless, the procedure for the case under consideration is detailed below.

For c0 > 0, according to (3.57), b2 is chosen as

b2 <
ac0

2(1+ c0 + q̄)2 . (3.65)

Next from (3.55), b1 is taken as

b1 >
2a
c0

+2eb2. (3.66)

Then γq and γd are chosen according to (3.57), (3.58), and (3.59) such that

γd + γq < min
{

ac0−2b2(1+ c0 + q̄)2

b1M1 +b1M2 +b2M3
,

b1

2(b1M1 +b1M2 +b2M3)
,

1
M3

}
. (3.67)

From (3.56), b3 is fixed as

b3 >
2a
c0

+b1M0. (3.68)

Next according to (3.56), b4 is taken such that

b4 < b3−
2a
c0

+b1M0. (3.69)
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Finally the condition on λ according to (3.57), (3.58), (3.59), (3.60), and (3.61) is chosen as

λ < min
{

ac0−2b2(1+ c0 + q̄)2−b1(γqM1 + γqM2)−b2γdM3

[b3C1 +b4C2]eV (0) ,

b1
2 −b1(γqM1 + γqM2)−b2γdM3

[b3C1 +b4C2]eV (0) ,
b2−b2γqM3

[b3C1 +b4C2]eV (0) ,

b3

b3C1 +b4C2−2b3
,

b4

b3C1 +b4C2−2b4

}
, (3.70)

with C1,C2 > 2 which can be taken as such (as C1 and C2 are upper bound constant, by assuming the latter we
just have a more conservative result).

Using Proposition A.1 in Appendix A.2, with this choice of parameters, one obtains the existence of ϑ > 0
such that fV (.)<−ϑ for all V ∈S . From (3.52), this implies that it holds (3.42). The former concludes the
proof of Lemma 3.1. �

3.3.3 Relation between the functionals Γ(X ) and V (Xe)

We need to establish the stability in terms of Ξ defined in (3.13). In previous section, the stability in terms
of the extended system variables ẑ(t), ω̂(t), ζ̃ (t), ω̂(t), q̃(t), and d̃(t) through a Lyapunov analysis has been
established. The purpose of the current section is to study the relationship between the functional Γ defined in
(3.12) and V defined in (3.41). Using this relationship (presented in the sequel) and the previous stability result
we are able to prove that the stability result (3.15) holds for the system (2.1) extended by the dynamics of the
unknown parameters, i.e., q̃ and d̃. The relationship is expressed in mathematical terms in the following lemma.

Lemma 3.2 Consider the definition of Γ and V (3.12) and (3.41), it holds the existence of R > 0 such that

Γ(X (t))6 R
(

eV (Xe(t))−1
)
, (3.71)

and the existence of ρ > 0 such that

V (Xe(t))6 ρ max
s∈[0,2]

Γ(X (t− s)). (3.72)

Proof :

First, from the definition of the Riemann variables (2.3) and (2.4), and the intermediate variables (2.15)-
(2.18), one gets

ut(x, t) =
ζ̂ (x, t)+ ω̂(x, t)+ ζ̃ (x, t)+ ω̃(x, t)

2
. (3.73)

It yields a similar form for ux(x, t)− d̂(t)

ux(x, t)− d̂(t) =
ζ̂ (x, t)− ω̂(x, t)+ ζ̃ (x, t)− ω̃(x, t)

2
. (3.74)

Therefore, applying Young’s and Cauchy-Schwarz’s inequalities, one can get

‖ut(t)‖2 6 ‖ζ̂ (t)‖2 +‖ω̂(t)‖2 +‖ζ̃ (t)‖2 +‖ω̃(t)‖2, (3.75)

‖ux(t)−d‖2 6
5
4

(
‖ζ̂ (t)‖2 +‖ω̂(t)‖2 +‖ζ̃ (t)‖2 +‖ω̃(t)‖2

)
+5d̃(t)2. (3.76)
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Second, from the backstepping transformation and its inverse, applying Young’s and Cauchy-Schwarz’s inequal-
ities, one can show that there exist positive constants r1, r2 such that

‖ζ̂ (t)‖2 6 r1
[
v(t)2 +‖ẑ(t)‖2], (3.77)

‖ẑ(t)‖2 6 r2
[
v(t)2 +‖ζ̂ (t)‖2]. (3.78)

Consequently, from the definition of V (3.41) and with the previous inequalities, it follows that

‖ut‖2 +‖ux−d‖2 6

(
9
4
(1+ r1)+5γd

)
(eV (t)−1), (3.79)

and also that
v(t)2 6 eV (t)−1, (3.80)

d̃(t)2 + q̃(t)2 6 (γd + γq)V (t). (3.81)

Therefore, we have that, for all t > 0

Γ(t)6
(

1+
9
4
(1+ r1)+ γq +6γd

)
(eV (t)−1). (3.82)

Thus (3.71) holds.

From (3.41) using (3.78) one gets

V (t)6 N(t)+
d̃(t)2

γd
+

q̃(t)2

γq
+ eb3‖ζ̃ (t)‖2 +b4‖ω̃(t)‖2, (3.83)

in which N is defined in (3.36). Finally, by the definition of ζ̃ , ω̃ , ζ̂ , and ω̂ , (2.15)-(2.18) and using the expression
(3.75), one gets

ζ̃ (x, t) =−2λ

∫ 1

x
ut(χ, t + x−χ)dχ, (3.84)

ω̃(x, t) =−2λ

∫ x

0
ut(χ, t− x+χ)dχ +2λ

∫ 1

0
ut(χ, t− x−χ)dχ, (3.85)

ζ̂ (x, t) =ut(x, t)+ux(x, t)− d̂(t)− ζ̃ (x, t), (3.86)

ω̂(x, t) =ut(x, t)−ux(x, t)+ d̂(t)− ω̃(x, t), (3.87)

and concludes, applying Cauchy-Schwarz’s inequality, that

‖ζ̃ (t)‖2 6 4λ
2 max

s∈[0,1]
‖ut(t− s)‖2, (3.88)

‖ω̃(t)‖2 6 8λ
2 max

s∈[0,2]
‖ut(t− s)‖2, (3.89)

‖ζ̂ (t)‖2 64
(
‖ut(t)‖2 +‖ux(t)−d‖2 + d̃(t)2 +4λ

2 max
s∈[0,1]

‖ut(t− s)‖2), (3.90)

‖ω̂(t)‖2 64
(
‖ut(t)‖2 +‖ux(t)−d‖+ d̃(t)2 +8λ

2 max
s∈[0,2]

‖ut(t− s)‖2). (3.91)

Gathering (3.88)-(3.91), one gets (3.72). This concludes the proof of Lemma 3.2. �

Remark 1 One easily gets that eV (0) 6 eρ maxs∈[0,2] Γ(−s) and so the bound λ defined in (3.70) can be expressed in
terms of maxs∈[0,2] Γ(−s) ◦
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3.3.4 Convergence in terms of the functional ϒ

Now we establish the convergence result (3.16).

Lemma 3.3 v(t), ‖ω̂(t)‖, ‖ζ̂ (t)‖, ‖ζ̃ (t)‖, and ‖ω̃(t)‖ tend to zero as t tends to infinity.

Proof : From (3.43), one can easily get that v(t), ‖ẑ(t)‖, ‖ω̂(t)‖, q̃(t), d̃(t), ‖ζ̃ (t)‖, and ‖ω̃(t)‖ are
uniformly bounded for t > 0. Consequently, from (3.77), ‖ζ̂ (t)‖ is also bounded for t > 0.

From there, first we establish that the state Xe is uniformly bounded:

• Applying Young’s inequality to (3.34) and (3.35), one can obtain that ˙̂q(t) and ˙̂d(t) are uniformly bounded
for t > 0.

• Applying Cauchy-Schwarz’s inequality to (3.17), one can obtain that ζ̂ (1, t) is uniformly bounded for
t > 0. Moreover, as ζ̂ (x, t) = ζ̂ (1, t − 1+ x)−d̂(t)+ d̂(t−1+ x), ζ̂ (x, t) is also uniformly bounded for
t > 1− x.

• From the backstepping transformation, using Cauchy-Schwarz’s inequality, one gets that ẑ(x, t) is uni-
formly bounded for t > 0.

• Similarly, from (2.20d) one gets that ω̂(x, t) is uniformly bounded for t > 1+ x.

• Getting ζ̃ (x, t) and ω̃(x, t) uniform boundness requires more computation. The idea is to consider the aux-
iliary system (2.21) as two coupled hyperbolic PDE with uniformly bounded input. Using Proposition A.2
in Appendix A.1 one gets that ζ̃ (x, t) and ω̃(x, t) are uniformly bounded for t > 4.

Second, we establish that the time derivative of the square of some state variable (Xe(t)) are uniformly
bounded. From (3.25) and (2.20)-(2.21) one gets

d
dt

v(t)2 = 2av(t)
(
− c0v(t)+ ẑ(0, t)+ ζ̃ (0, t)+ v(t)q̃(t)− d̃(t)

)
, (3.92)

d
dt
‖ẑ(t)‖2 =−ẑ(0, t)2 +2

∫ 1

0
ẑ(x, t)

(
gq(x, t) ˙̂q(t)+ ˙̂dgd(x, t)+ [q̃(t)v(t)+ ζ̃ (0, t)− d̃(t)]h(x, t)

)
dx, (3.93)

d
dt
‖ω̂(t)‖2 = ω̂(1, t)2− ω̂(0, t)2 +2 ˙̂d(t)

∫ 1

0
ω̂(x, t)dx, (3.94)

d
dt
‖ζ̃ (t)‖2 =−ζ̃ (0, t)2−2λ

∫ 1

0
ζ̃ (x, t)[ζ̂ (x, t)+ ζ̃ (x, t)+ ω̂(x, t)+ ω̃(x, t)]dx, (3.95)

d
dt
‖ω̃(t)‖2 = ω̃(1, t)2− ω̃(0, t)2−2λ

∫ 1

0
ω̃(x, t)[ζ̂ (x, t)+ ζ̃ (x, t)+ ω̂(x, t)+ ω̃(x, t)]dx. (3.96)

Using (3.26)-(3.28) and Cauchy-Schwarz’s inequality and the previous considerations, it follows that the right-
hand terms in the previous equations are all uniformly bounded for t > 4.

Finally, integrating (3.42) from 0 to ∞, it follows that v(t), ‖ẑ(t)‖, ‖ω̂(t)‖, ‖ζ̃ (t)‖, and ‖ω̃(t)‖ are square
integrable. The proof is concluded using Barbalat’s Lemma (in Section 1.3.6 this common used lemma is pre-
sented). �

3.3.5 Conclusion on the proof of Theorem 3.2

Gathering (3.71)-(3.72) from Lemma 3.2, one gets the existence of R > 0 and ρ > 0 such that

Γ(X (t))6 R(eρ maxs∈[0,3] Γ(X (−s))−1). (3.97)
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Then, (3.97) along with (3.43) from Lemma 3.1 give the stability result (3.15) in Theorem 3.2.

From Lemma 3.3 using (3.73) and (3.74), it follows that |ut(0, t)|, ‖ut(t)‖ and ‖ux(t)− d̂(t)‖ tend to zero as
t tends to ∞.
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Chapter conclusion

This chapter focused on an adaptive control law using current boundary velocities. It has been established that
there exist a limit value λ , such that the closed-loop system is still stable and attractive similarly as the nominal
case λ = 0. This limit value of in-domain damping coefficient is depending on the initial state and of the tuning
parameters values.

The purpose of the presented adaptive control law is not to estimate the unknown parameters but to stabilize
the system despite of them. Therefore there is no persistence of excitation condition, and as it is shown in
numerical simulation, the input converge toward a constant value.
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This chapter focuses on the delayed anti-collocated boundary output feedback. The idea behind this set-up
is to allow the anti-collocated measurement to have a delay. We assume that this delay is of one unit, but it is
directly transportable for any delay. As previously the adaptive control law considered here is based on prediction
method. Similarly to the previous chapter, delays will be represented using first-order hyperbolic PDEs. The
adaptive control law under consideration is present in Section 4.1. Then the robust result of this control law is
stated in Section 4.2. The last Section 4.3 contains the proof of it.

The system under consideration is still (2.1), recall
utt(x, t) = uxx(x, t)−2λut(x, t), (4.1a)

ux(1, t) =U(t), (4.1b)

utt(0, t) = aqut(0, t)+a[ux(0, t)−d]. (4.1c)

The outputs considered are ut(1, t) and ut(0, t−1).

4.1 Adaptive control law under consideration

In this chapter we consider that the controlled input U(t) is now defined as follows

U(t) :=−ut(1, t)+ d̂(t)− (c0 + q̂(t)−1)
(

e2a(q̂(t)−1)X(t)+a
∫ t

t−2
ea(q̂(t)−1)(t−τ)

(
η(τ)− d̂(t)

)
dτ

)
, (4.2)

in which c0 > 0 is a tuning constant, q̂ and d̂ are estimates of the unknown parameters q and d, and

X(t) := ut(0, t−1), (4.3)

η(t) :=U(t)+ut(1, t). (4.4)

67
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The parameter update laws are now taken as

˙̂q(t) :=
aγq

1+N(t)
PROJ[q,q]

{
q̂(t),X(t)

(
X(t)+b1(c0 + q̂(t)−1)

∫ t

t−2
e(a(q̂(t)−1)+ 1

2 )(τ−t+2)
σ(τ, t)dτ

)}
, (4.5)

˙̂d(t) :=
aγd

1+N(t)
PROJ[d,d]

{
d̂(t),−X(t)−b1(c0 + q̂(t)−1)

∫ t

t−2
e(a(q̂(t)−1)+ 1

2 )(τ−t+2)
σ(τ, t)dτ

}
, (4.6)

N(t) := X(t)2 +b1

∫ t

t−2
e

τ−t
2 +1

σ(τ, t)2dτ +b2

∫ t

t−1
eτ−t+1(2X(τ)−η(τ−2)+ d̂(t))2dτ, (4.7)

σ(τ, t) := η(τ)− d̂(t)+(c0 + q̂(t)−1)
(

ea(q̂(t)−1)(τ−t+2)X(t)+a
∫

τ

t−2
ea(q̂(t)−1)(τ−χ)(η(χ)− d̂(t))dχ

)
. (4.8)

The tuning parameters of the control are c0, b1, b2, γq and γq.

Except from the adaptive part, the control law U is related to the one we have presented previously (2.13)
(exactly modulo a change of variable). There is a factor two in the exponential factor of X , and the integral term
is on a two-units of time window. This is consistent with the fact that the system can be considered as a delay
input system with now a delay output.

The following theorem is adapted from [Bresch-Pietri and Krstic, 2014b].

Theorem 4.1 [Bresch-Pietri and Krstic, 2014b]
Consider the closed-loop system consisting of the plant (2.1) in which λ = 0, the control law U defined in

(4.2) and the parameters update laws (4.5)-(4.6). Define the functionals

ΓO(X (t)) =
∫ t

t−1
ut(0,s)2ds+ max

s∈[t−1,t]

∫ 1

0
[ux(x,s)−d]2dx

+ max
s∈[t−1,t]

∫ 1

0
ut(x,s)2dx+(q− q̂(t))2 +(d− d̂(t))2, (4.9)

ϒO(X (t)) =ut(0, t)2 +‖ut(t)‖2 +‖ux(t)−d‖2 +(d− d̂(t))2. (4.10)

Then, for all c0 > 0, there exist b2(c0)> 0, b1(c0,b2)> 0, γ(c0,b1,b2)> 0, such that, for

• b2 ∈ (0,b2),
• b1 ∈ (b1,∞),
• γd , γq ∈ (0,γ),

it holds, for suitable R > 0 and ρ > 0,

ΓO(X (t))6 R(eρΓO(X (0)−1), (4.11)

and

lim
t→∞

ϒO(X (t)) = 0. (4.12)

It has been already said in Section 2.2 that in the nominal case (λ = 0) the delay anti-collocated output
feedback and the collocated output feedback are equivalent. However, when we are in presence of in-domain
damping both of them do not lead to the same analysis nor the same stability result. This result is not formulated
as such in [Bresch-Pietri and Krstic, 2014b]. Indeed the framework of this paper is the one of collocated output
feedback, that is the focus of Chapter 5.

Once more we have both stability and convergence but in term of different functionals (at least for stability).
Moreover, contrary to Theorem 3.1 the stability is expressed in terms of a delay functional. This is due to the
fact that we now consider a output delay. However, we do not need these considerations in the definition of ϒO,
because it concerns the convergence property (therefore invariant with respect to a constant change of time).
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4.2 Model mismatch to in-domain viscous damping

In this section, we present the model mismatch robustness result

Theorem 4.2 Consider the closed-loop system consisting of the plant (2.1) satisfying Assumption 2.1, the con-
trol law (4.2) and the parameter estimation laws (4.5)-(4.6). Define the functionals Γ, Ξ and ϒ as

Γ(X (t)) :=ut(0, t)2 +‖ut(t)‖2 +‖ux(t)−d‖2 +(q− q̂(t))2 +(d− d̂(t))2, (4.13)

Ξ(X (t)) := max
s∈[0,3]

Γ(X (t− s)), (4.14)

ϒ(X (t)) :=ut(0, t)2 +‖ut(t)‖2 +‖ux(t)−d‖2 +(d− d̂(t))2. (4.15)

Then, for all c0 > 0, there exist b2(c0)> 0, b1(c0,b2)> 0, γ(c0,b1,b2)> 0, such that, for

• b2 ∈ (0,b2),
• b1 ∈ (b1,∞),
• γd , γq ∈ (0,γ),

there exists λ (c0,b1,b2,γ,X (0))> 0 such that, when λ ∈ (0,λ ), it follows, for suitable R > 0 and ρ > 0

Ξ(X (t))6 R(eρΞ(X (0))−1), (4.16)

and

lim
t→∞

ϒ(X (t)) = 0. (4.17)

Note that Ξ is expressed as a delay functional over a three units of time window. This is consistent with the
fact that the variable ω̂ used in the stability analysis (and defined in (2.16), in Section 2.4) involved an integral,
the maximal window of which is two units of time. Considering in addition the output delay of one unit of time
gives this three units of time window in Ξ

4.3 Proof of robustness

The method proposed in this section to prove Theorem 4.2 is again to define an extended system (of state Xe),
the stability of which implies the stability of the original system in the sense of (4.16) in Theorem 4.2.

The proof is organized as follows. First, in Section 4.3.1, an extension of the system refereed to as the
extended system, is presented. Second, we define a corresponding Lyapunov functional V (Xe), the stability of
which is proved in Section 4.3.2. Then, in Section 4.3.3, two lemmas detail a equivalence properties between
V (Xe)) and Ξ(X ) introduced in (4.14). Finally, the convergence with respect to the functional ϒ, defined in
(4.15), is established in Section 4.3.4, and the proof of Theorem 4.2 is concluded in Section 4.3.5.

4.3.1 Extension of the system

The different steps to build the extended system are listed below.

• Using Riemann invariants, the wave PDE (2.1) is expressed as two transport phenomena plus an ODE in
Section 2.3.

• The two transport phenomena are divided into two dynamics: the estimated system and the auxiliary
system in Section 2.4.
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• Delayed state variables are introduced to handle the fact that the control design involves an output delay
from (4.2) and (4.8) in Section 4.3.1.1.

• A backstepping transformation is performed on a sub-part of the delayed system and the corresponding
target system is computed in Section 4.3.1.2.

• Finally a new state variable is added to handle an adaptive error term in the Lyapunov analysis in
Section 4.3.1.3.

This procedure have been illustrated in Figure 2.3.

The last section, Section 4.3.1.4 is a summary of the extended system.

4.3.1.1 Addition of the delayed variables

As the control law (4.2) uses delay measurements, a one unit part corresponding to the delay output, let us
consider the following delayed variables

δ̂ (x, t) := ζ̂ (x, t−1)+ d̂(t−1)− d̂(t), (4.18)

β̂ (x, t) := ω̂(x, t−1)− d̂(t−1)+ d̂(t), (4.19)

δ̃ (x, t) := ζ̃ (0, t + x−1), (4.20)

α̂(x, t) :=

{
δ̂ (2x, t), x ∈ [0,1/2],
ζ̂ (2x−1, t), x ∈ [1/2,1].

(4.21)

Proposition 4.1 The variables X defined in (4.3), β̂ , α̂ , and δ̃ satisfy

Ẋ(t) = a(q−1)X(t)+a[α̂(0, t)+ δ̃ (0, t)− d̃(t)], (4.22a)

β̂t(x, t) =−β̂x(x, t)+
˙̂d(t), (4.22b)

β̂ (0, t) = 2X(t)− α̂(0, t), (4.22c)

2α̂t(x, t) = α̂x(x, t)−2 ˙̂d(t), (4.22d)

α̂(1, t) =W (t), (4.22e)

δ̃t(x, t) = δ̃x(x, t), (4.22f)

δ̃ (1, t) = ζ̃ (0, t). (4.22g)

Proof : From the definition of X (4.3), and according to the ODE satisfied by v (2.19) one gets (4.22a).

Now, from the definition of β̂ (4.19), using the transport equation (2.20c) and the associated boundary
condition (2.20d) along with the expression (4.3), one gets (4.22b) and (4.22c).

Using the definition (4.18), the transport equation (2.20a), and the associated boundary condition (2.20b),
one gets (4.22d) and (4.22e).

Taking space and time derivatives of definition (4.20), one obtains the transport equation (4.22f) associated
to the boundary condition (4.22g). �

In the following, we give some comments on these additional states. First we consider the dynamics of
ut(0, ·) at t − 1, that is the one of X defined in (4.22a) as a result we introduce the variable δ̃ to represent
ζ̃ (0, t−1) in (4.22a). Similarly the variable β̂ represents the delayed values of the variable ω̂ . Furthermore, the
state variable α̂ represents the history of ζ̂ over a two units of time window. The idea behind gathering ζ̂ and
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δ̂ into (4.21) is to obtain a unique distributed variable to perform a backstepping transformation (see the next
section). However, we still need the variable ζ̂ . Indeed the boundary condition (2.20d), recall

ω̂(0, t) = 2v(t)− ζ̂ (0, t), (4.23)

depends on ζ̂ (0, t). v is defined in (2.6), recall v(t) = ut(0, t)), it holds X(t) = v(t − 1). Using variations of
constant formulas one gets the existence of G1 such that

v(t) = G1[X(t), α̂(x, t), δ̃ (x, t), d̃(t), q̃(t)]. (4.24)

In order to illustrate the interaction of all previously cited variables, we suggest the schematic view in
Figure 4.1. Let us compare this figure with Figure 2.2 which represents only the estimated system and auxilary
system plus the ODE in v. The fact that we now consider an output delay leads us to introduce the system with
delay variables. Note that in the nominal case λ = 0, we do not need to consider ζ̂ , ω̃ , ζ̃ , and δ̃ in Figure 4.1.
However, when considering λ the number of considered variable has more than doubled. Furthermore, these
variables are relatively more coupled than in the nominal case as it is shown in Figure 4.1. For example we have
a loop traveling from X to ω̂ , to ζ̃ , to δ̃ , to X .

X(t)

−λ

−λ

−λ

α̂(x, t)
W (t)

ζ̂ (x, t)
W (t)

δ̃ (x, t)ζ̃ (x, t)
0

ω̃(x, t)

ω̂(x, t)

β̂ (x, t)

Nomenclature

in-domain dependence

transport

ODE

boundary of transport

integral to point-wise dependence

point-wise dependence

Figure 4.1: Illustration of the delayed varaible together with the estimated system and auxilary system for the
delayed anti-collocated output feedback.

4.3.1.2 Backstepping transformation

Before presenting the Target system, the control law is reformulated as follows.

Claim 4.1 Taking U as (4.2), W defined in (2.5) can be expressed as

W (t) =− (c0 + q̂(t)−1)
(

e2a(q̂(t)−1)X(t)+2a
∫ 1

0
e2a(q̂(t)−1)(1−χ)

α̂(χ, t)dχ

)
. (4.25)
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Proof : From (4.2)-(4.4) and (2.5), with the change of variable χ = t +2x−2, one gets

W (t) =− (c0 + q̂(t)−1)
(

e2a(q̂(t)−1)X(t)+2a
∫ 1

0
e2a(q̂(t)−1)(1−x)

×
(
W (t +2x−2)+ d̂(t +2x−2)− d̂(t)

)
dx
)
. (4.26)

Then, applying Lemma A.1 in Appendix A.1 with y = 1 in (4.22d) and using (4.22e), one obtains (4.25). �

Consider the following backstepping transformation

Π : [α̂(t),X(t)] 7→ ẑ(t) = Π[α̂(t),X(t)], (4.27)

Π[α̂(x, t),X(t)] :=α̂(x, t)+(c0 + q̂(t)−1)
(

e2a(q̂(t)−1)xX(t)+2a
∫ x

0
e2a(q̂(t)−1)(x−χ)

α̂(χ, t)dχ

)
, (4.28)

one gets the inverse backstepping transformation

Π
−1 : [ẑ(t),X(t)] 7→ α̂(t) = Π

−1[ẑ(t),X(t)], (4.29)

α̂(x, t) = Π
−1[ẑ(x, t),v(t)] :=ẑ(x, t)− (c0 + q̂(t)−1)

(
e−2ac0xX(t)+2a

∫ x

0
e−2ac0(x−χ)ẑ(χ, t)dχ

)
. (4.30)

Similarly as in the previous chapter, the backstepping transformation is introduce for the purpose of stability
analysis. The target system associated with the backstepping transformation is given in the following proposition.

Lemma 4.1 The backstepping transformation (4.28) together with the control law (4.25) transforms the plant
(4.22a)-(4.22e) into the following target system

Ẋ(t) =−ac0X(t)+a[ẑ(0, t)+ δ̃ (0, t)+X(t)q̃(t)− d̃(t)], (4.31a)

2ẑt(x, t) = ẑx(x, t)+ ˙̂q(t)gq(x, t)+
˙̂d(t)gd(x, t)+

[
q̃(t)X(t)− d̃(t)+ δ̃ (0, t)

]
h(x, t), (4.31b)

ẑ(1, t) = 0, (4.31c)

β̂t(x, t) =−β̂x(x, t)+
˙̂d(t), (4.31d)

β̂ (0, t) = (1+ c0 + q̂(t))X(t)− ẑ(0, t), (4.31e)

in which

gd(x, t) :=−2−4a(c0 + q̂(t)−1)
∫ x

0
e2a(q̂(t)−1)(x−χ)dχ, (4.32)

h(x, t) := 2a(c0 + q̂(t)−1)e2a(q̂(t)−1)x, (4.33)

gq(x, t) := 2e2a(q̂(t)−1)xX(t)+4a
∫ x

0
e2a(q̂(t)−1)(x−s)

Π
−1[ẑ(s, t)]ds

+(c0 + q̂(t)−1)
(

4axe2a(q̂(t)−1)xX(t)+8a2
∫ x

0
(x−χ)e2a(q̂(t)−1)(x−χ)

Π
−1[ẑ(χ, t)]dχ

)
. (4.34)

Proof : From the dynamics of X (4.22a) (respectively, the boundary condition (4.22c)), expressing the
backstepping transformation (4.28) at x= 0, and expressing α̂ in terms of X and ẑ, it follows (4.31a) (respectively
(4.31e)).

The boundary condition (4.31c) follows from the backstepping transformation (4.28). It has been designed
in particular with this property in view.
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From the time derivative of (4.28), using the expressions (4.22d)-(4.22e) and (4.22a), and an integration by
parts one obtains

2ẑt(x, t) =α̂x(x, t)−2 ˙̂d(t)+2 ˙̂q(t)
(

e2a(q̂(t)−1)xX(t)+2a
∫ x

0
e2a(q̂(t)−1)(x−s)

α̂(s, t)ds
)

+2(c0 + q̂(t)−1)
[(
[2ax ˙̂q(t)+a(q−1)]X(t)+a[α̂(0, t)+ δ̃ (0, t)+X(t)q̃(t)− d̃(t)]

)
e2a(q̂(t)−1)x

+4a2 ˙̂q(t)
∫ x

0
(x− s)e2a(q̂(t)−1)(x−s)

α̂(s, t)ds−2a ˙̂d(t)
∫ x

0
e2a(q̂(t)−1)(x−s)ds

+
[
ae2a(q̂(t)−1)(x−s)

α̂(s, t)
]x

s=0
−2a2(q̂(t)−1)

∫ x

0
e2a(q̂(t)−1)(x−s)

α̂(s, t)ds (4.35)

Computing the space derivative of ẑ, it holds

ẑx(x, t) = α̂x(x, t)+(c0 + q̂(t)−1)
(

2a(q̂(t)−1)e2a(q̂(t)−1)xX(t)+2aα̂(x, t)

+4a2(q̂(t)−1)
∫ x

0
e2a(q̂(t)−1)(x−s)

α̂(s, t)ds
)

(4.36)

Computing 2ẑt − ẑx and expressing α̂ with the inverse backstepping transformation it follows (4.31b). To con-
clude, it remains to prove (4.31d), which is just the recall of (4.22b). �

The main purpose of the backstepping transformation used here is to map the transport phenomenon α̂ into
a zero input transport phenomenon ẑ. Note that the backstepping transformation is applied on a sub-part of the
delayed system. The interactions of this transformation are illustrated in Figure 4.2. The main differences with
the previous chapter (Chapter 3) are the fact that the backstepping transformation does not modify the variable
interconnections (illustrated respectively in Figure 4.1 and in Figure 4.2). This is explained by the fact that we
have kept the variable ζ̂ which, in some sense, is redundant with (a part of) ẑ.

X(t)

−λ

−λ

−λ

ẑ(x, t)
0

ζ̂ (x, t)
W (t)

δ̃ (x, t)ζ̃ (x, t)
0

ω̃(x, t)

ω̂(x, t)

β̂ (x, t)

Nomenclature

in-domain dependence

transport

ODE

boundary of transport

integral to point-wise dependence

point-wise dependence

Figure 4.2: Illustration of the target system together with the estimated system and the auxiliary system for the
delay anti-collocated output feedback.
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Compare to Chapter 3, we introduce an additional state variable in order to perform the stability analysis.
This is carried out in the following section.

4.3.1.3 Adaptive error term

Consider the following variable

d̃X(t) :=−ac0X(t)−ad̃(t). (4.37)

We first detail its dynamics, before commenting on its interest.

Proposition 4.2 The dynamics of d̃X is

˙̃dX(t) =−ac0d̃X(t)−a2c0

[
ẑ(0, t)+ δ̃ (0, t)+X(t)q̃(t)

]
+a ˙̂d(t), (4.38)

and v in (2.20d) (recall v(t−1) = X(t) = ut(0, t−1)) can be expressed as

v(t) = G[X(t), ẑ(x, t), δ̃ (x, t), d̃X(t)] :=ea(q−1)X(t)+a
∫ 1

0
ea(q−1)(1−χ)[Π−1[ẑ(χ/2, t)]+ δ̃ (χ, t)]dχ

+

[
c0X(t)+

d̃X(t)
a

][
ea(q−1)−1

q−1

]
, (4.39)

in which Π−1 is the inverse backstepping transformation (4.30).

Note that we denote abusively g(t) the evaluation of G[X(t), ẑ(x, t), δ̃ (x, t), d̃X(t)].

Proof : Computing the time derivative of (4.37) and using (4.31a), one gets (4.38).

Using a prediction of the ODE (4.22a), Lemma A.1 in Appendix A.1 for the transport phenomena (4.22d)
and (4.22f), and thanks to the definition (4.3), one obtains

v(t) = ea(q−1)X(t)+a
∫ 1

0
ea(q−1)(1−χ)[α̂(χ/2, t)+ δ̃ (χ, t)]dχ− d̃(t)

[
ea(q−1)−1

q−1

]
. (4.40)

Finally, using (4.30) and (4.37), one gets (4.39). �

A first objective of this proposition is to reformulate the varaible v in terms of the variables of interest, that is
X , ẑ, β̂ , ζ̂ , ω̂ , ζ̃ , ω̃ , δ̃ , q̃, and d̃. A second objectif is to handle the last term of (4.40) involving a d̃(t). Usually,
the update law ˙̂d could be designed to cope with this term. However, in the nominal case λ = 0 in [Bresch-Pietri
and Krstic, 2014b], the Lyapunov analysis was carried out in a cascaded manner. First, the stability of ẑ, X , β̂ ,
q̃, and d̃ is established. Secondly using Grönwall’s inequality the stability of ω̂ is obtained (for more details
see [Bresch-Pietri and Krstic, 2014b]). The cascade is illustrated in Figure 4.3 for the nominal case (λ = 0). The
dependencies of ẑ and X on d̃ and q̃ are canceled in the Lyauponov analysis. These dependencies are illustrated
by in Figure 4.3. The remaining dependencies which are not canceled are illustrated by

Here, we cannot use the same developments, due to the interconnections between the variables generated
by the in-domain damping. This compels us to perform a Lyapunov analysis of the entire system, and to deal
with the d̃ term appearing in (4.40), as illustrated in Figure 4.4. The additional variable d̃X is thus introduced to
overcome this difficulty.
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X(t)

d̃(t)

q̃(t)

ẑ(x, t)
0

ω̂(x, t)

β̂ (x, t)
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point-wise dependence

ODE

boundary of transport

integral to point-wise dependence

error term

uncanceled dependence

canceled dependence

Figure 4.3: Illustration of the target system when λ = 0 with the error terms for the delayed anti-collocated
output feedback.
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Figure 4.4: Illustration of the target system together with the estimated system, the auxiliary system and the error
term d̃(t) for the delay anti-collocated output feedback.

In Figure 4.3, we see the cascade from X(t), ẑ(t), β̂ (t), d̃(t), and q̃(t) to ω̂(t). This is not the case in
Figure 4.4. Figure 4.4 represents the same system as (4.2) but enhanced by estimate error term d̃. Note that we
have not talked about the dependence of ω̂(0, t) with respect to q̃(t). How can it be? It seems a more difficult
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problem to handle than d̃(t) as it appear to be multiplied by X(t). And thus we cannot perform the same idea
used to take care of d̃(t), i.e., adding the additional variable d̃X . It is because q̃(t) is multiplied by a state variable
that it is handled more easy but also more conservatively: we bound it by a constant.

4.3.1.4 Summary of the extended system

To summarize, the extended system of state

Xe(t) = [X(t), ẑ(t), β̂ (t), δ̃ (t), ζ̂ (t), ω̂(t), ζ̃ (t), ω̃(t), d̃X(t), q̃(t), d̃(t)]T

∈ {R, L2(0,1)7,R3} (4.41)

ζ

ω

v

q̃

d̃

Riemman Invariants
(2.7)

Estimate and
auxiliary systems
(2.20a)-(2.21d)

ζ̂

ω̂

ζ̃

ω̃

v

Delayed
systems
(4.22)

α̂

β̂

δ̃

X

Target system
(4.31)

ẑ

β̂

X

Adaptive
error term

(4.38)

d̃X

Figure 4.5: Schematic view of the successive transformations and extensions to obtain the extended system, the
variables of which are encircled.

Figure 4.5 illustrates the different steps detailed previously to build the extended system.

4.3.2 Stability analysis

This section focuses on the stability analysis of the extended system. First, we express the adaptive laws ˙̂q and ˙̂d
from time integral to spatial integrals. As previously done for the control law in Claim 4.1.

Claim 4.2 The estimation laws (4.5)-(4.6) can be rewritten as

˙̂q(t) =
aγq

1+N(t)
PROJ[q,q]

{
q̂(t),X(t)

(
X(t)+2b1(c0 + q̂(t)−1)

∫ 1

0
e2(a(q̂(t)−1)+ 1

2 )xẑ(x, t)dx
)}

, (4.42)

˙̂d(t) =− aγd

1+N(t)
PROJ[d,d]

{
d̂(t),X(t)+2b1(c0 + q̂(t)−1)

∫ 1

0
e2(a(q̂(t)−1)+ 1

2 )xẑ(x, t)dx
}
, (4.43)

N(t) = X(t)2 +2b1

∫ 1

0
exẑ(x, t)2dx+b2

∫ 1

0
e1−x

β̂ (x, t)2dx, (4.44)

in which β̂ is defined in (4.19) and ẑ in (4.28).

Proof : From the definition of η in (4.4), and applying Lemma A.1 in Appendix A.1 to the dynamic of α̂

(4.22d), it holds
η(2x+ t−2)− d̂(t) = α̂(x, t), (4.45)
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thus from the definition of σ (4.8), and the backstepping transformation (4.28), one gets

σ(2x+ t−2, t) = α̂(x, t)+(c0 + q̂(t)−1)
(

e2a(q̂(t)−1)xv(t)+2a
∫ x

0
e2a(q̂(t)−1)(x−s)

α̂(s, t)ds
)

= ẑ(x, t). (4.46)

From the definition of ζ and ω (2.3)-(2.4), the definition of ζ̃ and ω̃ (2.17)-(2.18), and the boundary condition
(2.21d), one obtains

ω̂(x, t) = 2ut(0, t− x)−η(t− x−1)+ d̂(t), (4.47)

and applying Lemma A.1 in Appendix A.1 to the dynamics of β̂ (4.22b), it holds

β̂ (x, t) = 2X(t− x)−η(t− x−2)+ d̂(t), (4.48)

Using some change of variables in the integral terms, one can conclude. �

Using, the previous claim one is able to establish the following key lemma which state the stability of the
extended system of state Xe defined in (4.41).

Lemma 4.2 Let us consider the Lyapunov functional candidate

V (Xe(t)) =V1(t)+V2(t), (4.49)

with

V1(t) = log(1+N(t))+
q̃(t)2

γq
+

d̃(t)2

γd
+b3

∫ 1

0
ex

ζ̂ (x, t)2dx+b4

∫ 1

0
e1−x

ω̂(x, t)2dx, (4.50)

V2(t) = b5

∫ 1

0
ex

ζ̃ (x, t)2dx+b6

∫ 1

0
e1−x

ω̃(x, t)2dx+b7

∫ 1

0
ex

δ̃ (x, t)2dx+b8d̃X(t)2, (4.51)

in which N is expressed as (4.44), and b3, ...,b8 > 0.

For all c0 > 0, there exist b2(c0)> 0, b1(c0,b2)> 0, γ(c0,b1,b2)> 0, such that, for all

• b2 ∈ (0,b2),
• b1 ∈ (b1,∞),
• γd , γq ∈ (0,γ),

there exist bi > 0, i ∈ {3, ...,12} and λ (c0,b1,b2,γ,X (0)) > 0, such that, for all λ ∈ [0,λ ), it follows, for a
suitable ς > 0,

V̇ (t)6− ς

1+N(t)

[
ẑ(0, t)2 + δ̃ (0, t)2 +X(t)2 + d̃µ(t)2 + ζ̂ (0, t)2 + ζ̃ (0, t)2 +‖ẑ‖2

+‖β̂‖2 +‖ζ̂‖2 +‖ζ̃‖2 +‖ω̂‖2 +‖ω̃‖2 +‖δ̃‖2
]
, (4.52)

and
V (Xe(t))6V (Xe(0)), t > 0. (4.53)

Note that the Claim 4.2 is necessary because the Lyapunov functional uses the expression on N computed in
the claim.

Before stating the proof of Lemma 4.2, one establishes the following proposition which computes the upper
bound of the Lyapunov functional candidate derivative.
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Proposition 4.3 There exist M0, Mi(b1), i ∈ {1,2, ...,6}, Ci, i ∈ {1,2, ...,5} positive, such that

V̇1(t)6
1

1+N(t)

[
−ac0X(t)2 +

2a
c0

ẑ(0, t)2 +
2a
c0

δ̃ (0, t)2

+b1
[
− ẑ(0, t)2− ‖ẑ‖

2

2
+ γqM1(b1)(X(t)2 +‖ẑ‖2)+ γdM2(b1)(X(t)2 +‖ẑ‖2)+M0δ̃ (0, t)2]

+b2
[
− β̂ (1, t)2 +2e(1+ c0 + q̂(t))2X(t)2 +2eẑ(0, t)2−‖β̂‖2 + γdM3(b1)(X(t)2 +‖ẑ‖2 +‖β̂‖2)]

]
+b3

[
− ζ̂ (0, t)2−‖ζ̂‖2 +C1[X(t)2 +‖ẑ‖2]+ γdM4(b1)[X(t)2 +‖ẑ‖2 +‖ζ̂‖2]

]
+b4

[
− ω̂(1, t)2−‖ω̂‖2 +2eζ̂ (0, t)2 +C2

[
X(t)2 + d̃X (t)2 +‖ẑ‖2 +‖δ̃‖2]

+ γdM5(b1)[X(t)2 +‖ẑ‖2 +‖ω̂‖2]

]
, (4.54)

V̇2(t)6b5

[
− ζ̃ (0, t)2− (1+2λ )‖ζ̃‖2 +λC3

(
‖ζ̃‖2 +‖ζ̂‖2 +‖ω̂‖2 +‖ω̃‖2)]

+b6

[
− ω̃(1, t)2 + eζ̃ (0, t)2− (1+2λ )‖ω̃‖2 +λC4

(
‖ω̃‖2 +‖ζ̂‖2 +‖ω̂‖2 +‖ζ̃‖2)]

+b7

[
eζ̃ (0, t)2− δ̃ (0, t)2−‖δ̃‖2

]
+b8

[
−ac0d̃X (t)2 + γdM6(b1)[X(t)2 +‖ẑ‖2]+C5[X(t)2 + ẑ(0, t)2 + δ̃ (0, t)2]

]
. (4.55)

Proof : For simplicity, we only detail the proof of (4.54), as the remaining inequality on V̇2 can be obtained
with similar arguments. From the definition of V1 one gets,

V̇1(t) =
Ṅ(t)

1+N(t)
−2

q̃(t) ˙̂q(t)
γq

−2
d̃(t) ˙̂d(t)

γd
+2b3

∫ 1

0
ex

ζ̂ (x, t)ζ̂t(x, t)dx+2b4

∫ 1

0
e1−x

ω̂(x, t)ω̂t(x, t)dx. (4.56)

From the expression of N (4.44), it follows that

Ṅ(t) = 2Ẋ(t)X(t)+4b1

∫ 1

0
exẑ(x, t)ẑt(x, t)dx+2b2

∫ 1

0
e1−x

β̂ (x, t)β̂t(x, t)dx. (4.57)

Then, using (4.31a), and Young’s inequality, one obtains

2Ẋ(t)X(t)6−ac0X(t)2 +
2a
c0

ẑ(0, t)2 +
2a
c0

δ̃ (0, t)2 +2aX(t)(X(t)q̃(t)− d̃(t)). (4.58)

Finally using (4.31b)-(4.31e), Young’s and Cauchy-Schwarz’s inequalities, and one integration by parts, one
obtains the existence of M0, M1 and M2 positive such that

4
∫ 1

0
exẑ ẑtdx6−ẑ(0, t)2− ‖ẑ‖

2

2
+ γqM1(b1)(X(t)2 +‖ẑ‖2)+ γdM2(b1)(X(t)2 +‖ẑ‖2)+M0δ̃ (0, t)2

+2a(c0 + q̂(t)−1)
∫ 1

0
e2(a(q̂(t)−1)+ 1

2 )xẑ(x, t)[X(t)q̃(t)− d̃(t)]dx, (4.59)

and the existence of M3 positive such that

2
∫ 1

0
e1−x

β̂ β̂tdx6−β̂ (1, t)2 +2e(1+ c0 + q̂(t))2X(t)2 (4.60)

+2eẑ(0, t)2−‖β̂‖2 + γdM3(b1)(X(t)2 +‖ẑ‖2 +‖β̂‖2).

From (2.20a) and (2.20b), it holds the existence of M4 > 0 such that

2
∫ 1

0
ex

ζ̂ (x, t)ζ̂t(x, t)dx6−ζ̂ (0, t)2 + eW (t)2−‖ζ̂‖2 + γdM4(b1)[X(t)2 +‖ẑ‖2 +‖ζ̂‖2]. (4.61)
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From (4.25) and (4.30), one gets the existence of C1 > 0 such that

eW (t)2 6C1[X(t)2 +‖ẑ‖2]. (4.62)

Then finally from (2.20c) and (2.20d) (recall that g(t) = v(t) (4.39)) it holds the existence of M5(b1)> 0

2
∫ 1

0
e1−x

ω̂(x, t)ω̂t(x, t)6−ω̂(1, t)2 +8eg(t)2 +2eζ̂ (0, t)2−‖ω̂‖2 + γdM5(b1)[X(t)2 +‖ẑ‖2 +‖ω̂‖2], (4.63)

using (4.39) there exists C2 > 0 such that

8eg(t)2 6C2[X(t)2 +‖ẑ‖2 +‖δ̃‖2 + d̃X(t)2]. (4.64)

Gathering (4.56)-(4.64), and using Claim 4.2 concludes the proof of (4.54). �

Proof of Lemma 4.2: Gathering both inequalities (4.54)-(4.55) of Proposition 4.3, we obtain

V̇ (Xe(t))6 ∑
V ∈S

δV fV (.)V 2, (4.65)

in which

S ={X , ‖ẑ‖, ‖β̂‖, ‖δ̃‖, ‖ζ̂‖, ‖ω̂‖, ‖ζ̃‖, ‖ω̃‖, d̃X , ẑ|0, β̂ |1, δ̃ |0, ζ̂ |0, ω̂|1, ζ̃ |0, ω̃|1 }, (4.66)

where ω̂|1 denotes the boundary of ω̂ for x = 1, i.e., ω̂(1, t)

δV =

{
1

1+N(t) , if V ∈ {X , ‖ẑ‖, ẑ|0, ‖β̂‖, β̂ |1},
1,

(4.67)

and with

fX (bi,V (t)) =−ac0 +b1γqM1 +b1γdM2 +2eb2(1+ c0 + q̄)2 +b2γdM3

+ eV (t)[b3C1 +b3γdM4 +b4C2 +b4γdM5 +b8γdM6 +b8C5], (4.68)

fẑ|0(bi,V (t)) =
2a
c0
−b1 +2eb2 +b8C5eV (t), (4.69)

f
δ̃ |0(bi) =

2a
c0

+b1M0−b7 +b8C5, (4.70)

fd̃X
(bi) = b4C2−ac0b8, (4.71)

f
ζ̂ |0(bi) =−b3 +2eb4, (4.72)

f
ζ̃ |0(bi) =−b5 + eb6 + eb7, (4.73)

fω̃|1(bi) =−b6, (4.74)

f
β̂ |1(bi) =−b2, (4.75)

fω̂|1(bi) =−b4, (4.76)

f‖ẑ‖(bi,V (t)) =−b1

2
+b1γqM1 +b1γdM2 +b2γdM3 + eV (t)[b3C1 +b3γdM4 +b4C2 +b4γdM5 +b8γdM6], (4.77)

f‖β̂‖(bi) =−b2 +b2γdM3, (4.78)

f‖ζ̂‖(bi,λ ) =−b3 +b3γdM4 +b5λC3 +b6λC4, (4.79)

f‖ζ̃‖(bi,λ ) =−b5(1+2λ )+b5λC3 +b6λC4, (4.80)

f‖ω̂‖(bi,λ ) =−b4 +b4γdM5 +b5λC3 +b6λC4, (4.81)

f‖ω̃‖(bi,λ ) =−b6(1+2λ )+b5λC3 +b6λC4, (4.82)

f‖δ̃‖(bi) =b4C2−b7. (4.83)
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Note that, we used that 1+N(t)6 eV (t) (from the definition of V (4.49)).

A sufficient condition for the stability of the extended target system of state Xe (4.41) is therefore the exis-
tence of parameters bi, γq, γd , and λ such that

fV (.)< 0, ∀V ∈S . (4.84)

This is the condition we investigate in the following. With this aim in view, the procedure we follow to select the
different parameters is

b2 → b1 → b7→ b5→ b6→ (γq, γd) → b3 → b8 → b4

In Appendix A.6 we present the procedure we use to select the parameters on a simple example. In the following
we details the procedure for the considered case.

First, form (4.69) and (4.68) we choose b2 and b1 such that

b2 <
ac0

2e(1+ c0 + q̄)2 , (4.85)

b1 >
2a
c0

+2eb2. (4.86)

Then from (4.70) we choose respectively b7 as

b7 >
2a
c0

+b1M0. (4.87)

b5 is taken, according to (4.73), such that
b5 > eb7, (4.88)

thus we choose b6 as

b6 <
b5

e
−b7. (4.89)

γq and γd are chosen, according to (4.68), (4.77), (4.78), (4.79), and (4.81), as

γq + γd < min
{

ac0−2eb2(1+ c0 + q̄)2

b1M1 +b1M2 +b2M3
,

b1

2(b1M1 +b1M2 +b2M3)
,

1
M3

,
1

M4
,

1
M5

}
. (4.90)

Note that, if bi < 1, i ∈ {3,4,8,9,10}, this implies the existence of M(Xe(0))> 0 independent of
bi, i ∈ {3,4,8,9,10}, such that V (Xe(0)) 6 M(Xe(0)) which is simply denoted M in the following. Conse-
quently, the parameter b3 is fixed, according to (4.68) and (4.77), as1

b3 <min
{

1,
− fX(b3,4,8 = 0,M)

eM[C1 + γdM4]
,
− f‖ẑ‖(b3,4,8 = 0,M)

eM[C1 + γdM4]

}
. (4.91)

Then, b8 is taken according to (4.68)-(4.69), (4.74), and (4.77), as

b8 < min
{

1,
− fẑ|0(b4,8 = 0,M)

eMC5
,
− f

δ̃ |0(b4,8 = 0)

eMC5
,
− fX(b4,8 = 0,M)

eM[γdM6 +C5]
,
− fω̃|1(b4,8 = 0)

C5
, (4.92)

− f‖ẑ‖(b4,8 = 0,M)

eMγdM6

}
.

From (4.68)-(4.71), (4.72), (4.74), (4.77), and (4.83), b4 is chosen with respect to

b4 < min
{

1,
− fX(b4 = 0,M)

C2 + γdM5
,
− fd̃X

(b4 = 0)

C2
,

b3

2e
,

− fω̃|1(b4 = 0)
C2

,
b7

C2,
,
− f‖ẑ‖(b4 = 0,M)

C2 + γdM5

}
. (4.93)

1By fV (b3,4,8,9,10 = 0,M) we mean fV (b1,b2,b3 = 0,b4 = 0,b5,b6,b7,b8 = 0,b9 = 0,b10 = 0,b11,b12,V = M)).
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Finally, an upper bound for λ is found according to (4.79)-(4.82), as

λ < min
{

b3(1− γqM4)

b5C3 +b6C4
,

b5

b5(C3−2)+b6C4
,
b4−b4γqM5

b5C3 +b6C4
,

b6

b5C3 +b6C4−2b6

}
, (4.94)

by assuming that C3 > 2, C4 > 2, C8 > 2 and C9 > 2. They can be taken as expressed previously which can be
taken as such.

Using Proposition A.1 in Appendix A.2, with this choice of parameters, one obtains the existence of ϑ > 0
such that fV (.)<−ϑ for all V ∈S . From (4.84), this implies that it holds (4.52). The former concludes the
proof of Lemma 4.2. �

4.3.3 Relation between the functionals Γ(X ) and V (Xe)

In the previous section the stability of the extended system is established. Now, this section studies the link
between the stability of the extended system and the original system (2.1). In other words, we want to establish
the stability result (4.16), using Lemma 4.2. With this aim in view, first we formulate two lemmas, then the proof
of them follows. The first lemma presents an upper bound of Γ in terms of V

Lemma 4.3 Consider Γ defined in (4.13) and V defined in (4.49). There exists R > 0, such that

Γ(X (t))6R(eV (Xe(t))−1). (4.95)

To establish the main result of this chapter (Theorem 4.2), we also need to upper bound V by a function of Γ.
This is the purpose of this second lemma.

Lemma 4.4 Consider Γ defined in (4.13) and V defined in (4.49). There exists ρ > 0 such that

V (Xe(t))6 ρ max
s∈[0,3]

Γ(X (t− s)). (4.96)

We start by the proof of Lemma 4.3, and right after, the one of Lemma 4.4

Proof of Lemma 4.3: From the definition of v and X respectively in (2.6) and (4.3), using the dynamics
(4.31a), we start by observing that

ut(0,τ) = ea(q−1)(τ−t−1)X(t)+2a
∫

τ+1−t

0
ea(q−1)(τ+1−t−χ)[Π−1[ẑ(χ/2, t)]+ δ̃ (χ, t)− d̃(t)]dχ, (4.97)

which can be obtained by arguments similar to those used to establish (4.40). Therefore, from (4.97), using
Young’s inequality on (4.30), there exists C1 > 0 such that

ut(0, t)2 6C1

[
X(t)2 +‖ẑ‖2 +‖δ̃‖2 + d̃(t)2,

]
(4.98)

which gives, using (4.44) and (4.49), the existence of r1 > 0 satisfying

ut(0, t)2 6 r1(eV (t)−1). (4.99)

Furthermore, from the definition of the Riemann variables, (2.3)-(2.4) and (2.17)-(2.18), one gets

ut(x, t) =
ζ̂ (x, t)+ ω̂(x, t)+ ζ̃ (x, t)+ ω̃(x, t)

2
, (4.100)

ux(x, t)− d̂(t) =
ζ̂ (x, t)− ω̂(x, t)+ ζ̃ (x, t)− ω̃(x, t)

2
, (4.101)
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and, applying Young’s and Cauchy-Schwarz’s inequalities, one can get

‖ut‖2 6 ‖ζ̂‖2 +‖ω̂‖2 +‖ζ̃‖2 +‖ω̃‖2, (4.102)

‖ux−d‖2 6
5
4

(
‖ζ̂‖2 +‖ω̂‖2 +‖ζ̃‖2 +‖ω̃‖2

)
+5d̃(t)2. (4.103)

Therefore, from (4.102)-(4.103), it holds

‖ut‖2 +‖ux−d‖2 6

(
r2 +5γd

)
(eV (t)−1). (4.104)

for a given r2 > 0. Finally, one obtains

d̃(t)2 + q̃(t)2 6 (γd + γd)V (t). (4.105)

Consequently, gathering (4.99), (4.104)-(4.105), we obtain (4.95). This concludes the proof of Lemma 4.3. �

Proof of Lemma 4.4: From the definition of V (4.49), one obtains

V (t)6X(t)2 +2eb1‖ẑ‖2 + eb2‖β̂‖+ eb3‖ζ̂‖2 + eb4‖ω̂‖2

+ eb5‖ζ̃‖2 + eb6‖ω̃‖2 + eb7‖δ̃‖2 +b8d̃X(t)2. (4.106)

Recall the definition of X in (4.3)
X(t) = ut(0, t−1) (4.107)

Then, from the backstepping transformation (4.28) and from the definition of α̂ (4.21), there exists C2 > 0 such
that

‖ẑ‖6 C2

[
X(t)2 + max

s∈[0,1]

[
‖ζ̂ (t− s)‖2 + d̃(t− s)2]]. (4.108)

Besides, according to the definition of β̂ (4.19), one obtains the existence of C3 > 0

‖β̂‖2 6C3

[
‖ω̂(t−1)‖2 + max

s∈[0,1]

[
d̃(t− s)2]]. (4.109)

Furthermore, from the definition of d̃X (4.37) one writes

∃ C4 > 0, d̃X(t)2 6 C4
[
µ(t)2 + d̃(t)2]. (4.110)

Finally, by the definition of ζ̃ , ω̃ , ζ̂ , and ω̂ , (2.15)-(2.18) and using the expression (4.100), one gets

ζ̃ (x, t) =−2λ

∫ 1

x
ut(χ, t + x−χ)dχ, (4.111)

ω̃(x, t) =−2λ

∫ x

0
ut(χ, t− x+χ)dχ +2λ

∫ 1

0
ut(χ, t− x−χ)dχ, (4.112)

ζ̂ (x, t) =ut(x, t)+ux(x, t)− d̂(t)− ζ̃ (x, t), (4.113)

ω̂(x, t) =ut(x, t)−ux(x, t)+ d̂(t)− ω̃(x, t), (4.114)

and concludes, applying Young’s and Cauchy-Schwarz’s inequality, with Fubini’s Theorem that (technical details
are presented in Appendix A.5)

‖ζ̃ (t)‖2 6 4λ
2 max

s∈[0,1]
‖ut(t− s)‖2, (4.115)

‖ω̃(t)‖2 6 8λ
2 max

s∈[0,2]
‖ut(t− s)‖2, (4.116)

‖ζ̂ (t)‖2 64
(
‖ut(t)‖2 +‖ux(t)−d‖2 + d̃(t)2 +4λ

2 max
s∈[0,1]

‖ut(t− s)‖2), (4.117)

‖ω̂(t)‖2 64
(
‖ut(t)‖2 +‖ux(t)−d‖+ d̃(t)2 +8λ

2 max
s∈[0,2]

‖ut(t− s)‖2). (4.118)

Thus, gathering inequalities (4.106)-(4.110), and (4.115)-(4.118), it holds for a suitable ρ > 0 (4.96). This
concludes the proof of Lemma 4.4. �
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4.3.4 Convergence in terms of the functional ϒ

We conclude on the convergence with respect to the functional ϒ defined in (4.15). The following lemma states
that several variables converge toward zero.

Lemma 4.5 v(t), ‖ω̂(t)‖, ‖ζ̂ (t)‖, ‖ζ̃ (t)‖, and ‖ω̃(t)‖ tend to zero as t tends to infinity.

Proof : From (4.53), one can easily get that N(t), q̃(t), d̃(t), and V2(t) are uniformly bounded for t > 0.
Therefore, X(t), ‖ẑ(t)‖, ‖β̂ (t)‖, ‖ω̂(t)‖, ‖ζ̂ (t)‖, ‖ζ̃ (t)‖, ‖ω̃(t)‖, ‖δ̃ (t)‖, d̃X(t) are also uniformly bounded for
t > 0.

From there, we establish that some of the state variables are uniformly bounded:

(i). From the definition of (4.3), v(t) defined in (2.6) is uniformly bounded for t > 0

(ii). Applying Young’s inequality to (4.42) and (4.43), one obtains that ˙̂q(t) and ˙̂d(t) are uniformly bounded
for t > 0.

(iii). Similarly, applying Cauchy-Schwarz’s inequality to (4.25), one can obtain that ζ̂ (1, t) and thus α̂(1, t) are
uniformly bounded for t > 0.

Moreover, using Lemma A.1 in Appendix A.1, ζ̂ (x, t) is also uniformly bounded for t > (1− x) and, in
particular, ζ̂ (0, t) is uniformly bounded for t > 1. Similarly, using Lemma A.1, α̂(x, t) is also uniformly
bounded for t > 2(1− x) and, in particular, α̂(0, t) is uniformly bounded for t > 2.

(iv). From (2.20d) one gets that ω̂(0, t) is uniformly bounded for t > 1 thus applying Lemma A.1 one gets that
ω̂(x, t) is uniformly bounded for t > 1+ x

(v). Getting ζ̃ (x, t) and ω̃(x, t) uniform boundness require more computation. The idea is to consider the aux-
iliary system (2.21a)-(2.21d) as two couple hyperbolic with uniformly bounded input. Using Proposition
A.2 in Appendix A.1 one gets that ζ̃ (x, t) and ω̃(x, t) are uniformly bounded for t > 4.

Further, from (2.20a)-(2.21d), and (2.19)

d
dt

v(t)2 = 2av(t)
(
(q−1)v(t)+ ζ̂ (0, t)+ ζ̃ (0, t)+ v(t)q̃(t)− d̃(t)

)
, (4.119)

d
dt
‖ζ̂ (t)‖2 = ζ̂ (1, t)2− ζ̂ (0, t)2 +2

∫ 1

0
ζ̂ (x, t) ˙̂d(t)dx, (4.120)

d
dt
‖ω̂(t)‖2 = ω̂(1, t)2− ω̂(0, t)2 +2

∫ 1

0
ω̂(x, t) ˙̂d(t)dx, (4.121)

d
dt
‖ζ̃ (t)‖2 = ζ̃ (1, t)2− ζ̃ (0, t)2 +2λ

∫ 1

0
ζ̃ (x, t)[ζ̃ + ω̃ + ζ̂ + ω̂](x, t)dx, (4.122)

d
dt
‖ω̃(t)‖2 = ω̃(1, t)2− ω̃(0, t)2 +2λ

∫ 1

0
ω̃(x, t)[ζ̃ + ω̃ + ζ̂ + ω̂](x, t)dx, (4.123)

d
dt

d̃(t)2 =−d̃(t) ˙̂d. (4.124)

Using (4.42)-(4.42), Cauchy-Schwarz’s inequality and the previous considerations, it is straightforward that
the right-hand terms in the previous equations are all uniformly bounded for t > 2. Finally, integrating (4.52)
from 0 to ∞, it follows that X(t), d̃µ(t), ‖ω̂(t)‖, ‖ζ̂ (t)‖, ‖ζ̃ (t)‖, ‖ω̃(t)‖, and v(t) are square integrable. Moreover,
as d̃X(t) and X(t) are square integrable, so is d̃(t).

We conclude this proof with Barbalat’s lemma (the Section 1.3.6 presents this common used lemma). �
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4.3.5 Conclusion on the proof of Theorem 4.2

Gathering (4.95) from Lemma 4.3 and (4.96) from Lemma 4.4, one gets the existence of R > 0 and ρ > 0 such
that

Γ(X (t))6 R(eρ maxs∈[0,3] Γ(X (−s))−1). (4.125)

Then, (4.125) along with (4.53) from Lemma 4.2 give the stability result (4.16) in Theorem 4.2.

Finally, using Lemma 4.5, (2.3)-(2.4) and (2.17)-(2.18), it follows that ut(0, t) = v(t), ‖ut(t)‖ and ‖ux(t)− d̂(t)‖
and also d− d̂(t) tend to zero as t tends to infinity. In other words, it holds (4.17). This concludes the proof of
Theorem 4.2.
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Chapter conclusion

This chapter focuses on the delayed anti-collocated output feedback. In detail, the adaptive control law consid-
ered in this chapter needs the measurement of ut(1, t) and ut(0, t− 1). The model mismatch robustness of the
adaptive control law has been establish. The general idea is to represent the delay as first-order hyperbolic PDE.
The interesting addition is the consideration of d̃X (see Section 4.3.1.3 and the explication within). This variable
allows us to canceled error term in the Lyapunov analysis.

Even if we consider that the delay for the anti-collocated measurement is of one unit, i.e., ut(0, t− 1), the
generalization to any known delay is direct, i.e., ut(0, t−d), ∀d ∈R+. The velocity propagation of the transport
phenomena added to represent the delay (in Section 4.3.1.1) need to be modified, but the rest is fairly similar.
Following this idea: what is the delay is time variant, i.e., ut(0, t−d(t))? One possible idea to tackle this problem
could be to consider the transport phenomena associated to the maximum delay, and to consider that the input of
the ODE are not at the x = 0 boundary but at a in-domain point x = d(t)

dmax
. With this we can represent the delay,

but now we need to compute somehow a backstepping transformation with a time varying boundary. A related
problem as been study by Shumon Koga and his work on Stefan problem (he consider time dependent boundary
of the integral of his backstepping transformation) PDEs in [Koga and Krstic, 2017].
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We present the robustness analysis of the last adaptive control considered in this part, the collocated bound-
ary output feedback. The main feature of this control law is that it only requires measurement at the actuator
boundary. The control law is presented in Section 5.1. It is followed by its robustness result in Section 5.2.
Section 5.3 is dedicated to the sketch of its proof. The complete proof is given in [Roman et al., 2017].

This chapter still focuses on the system (2.1), recall
utt(x, t) = uxx(x, t)−2λut(x, t), (5.1a)

ux(1, t) =U(t), (5.1b)

utt(0, t) = aqut(0, t)+a[ux(0, t)−d]. (5.1c)

The output of this chapter is ut(1, t).

5.1 Control and adaptive law under consideration

The collocated boundary ouput feedback, which was developed in [Bresch-Pietri and Krstic, 2014b] for the
system (2.1) assuming λ = 0, is

U(t) :=−ut(1, t)+ d̂(t)− (c0 + q̂(t)−1)
(

e2a(q̂(t)−1)
µ(t)+a

∫ t

t−2
ea(q̂(t)−1)(t−τ)

(
η(τ)− d̂(t)

)
dτ

)
, (5.2)

in which c0 > 0 is a tuning constant, q̂ is an estimate of the unknown parameter q, d̂ is an estimate of the unknown
parameters d, and µ and η are defined as

µ(t) :=
1
2

[
ut(1, t)+ut(1, t−2)−ux(1, t)+ux(1, t−2)

]
, (5.3)

η(t) :=U(t)+ut(1, t). (5.4)

The parameter adaptation laws are

˙̂q(t) :=
aγq

1+N(t)
PROJ[q,q]

{
q̂(t),µ(t)

(
µ(t)+b1(c0 + q̂(t)−1)

∫ t

t−2
e(a(q̂(t)−1)+ 1

2 )(τ−t+2)
σ(τ, t)dτ

)}
, (5.5)

˙̂d(t) :=
−aγd

1+N(t)
PROJ[d,d]

{
d̂(t),µ(t)+b1(c0 + q̂(t)−1)

∫ t

t−2
e(a(q̂(t)−1)+ 1

2 )(τ−t+2)
σ(τ, t)dτ

}
, (5.6)

87
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in which

N(t) :=µ(t)2 +b1

∫ t

t−2
e

τ−t
2 +1

σ(τ, t)2dτ +b2

∫ t

t−1
eτ−t+1(2µ(τ)−η(τ−2)+ d̂(t))2dτ, (5.7)

σ(τ, t) :=η(τ)− d̂(t)+(c0 + q̂(t)−1)
(

ea(q̂(t)−1)(τ−t+2)
µ(t)+a

∫
τ

t−2
ea(q̂(t)−1)(τ−χ)(η(χ)− d̂(t))dχ

)
. (5.8)

The tuning parameters of the control law are c0, b1, b2, γq and γd . In the case where the adaptive parameters
are known (i.e., q̂ = q and d̂ = d) and without in-domain damping (λ = 0), c0 represents the closed-loop decay
rate of the velocity ut(0, t).

Note that, if we assume that µ(t) = X(t) = ut(0, t− 1) the previous adaptive control law is the same as in
Chapter 4. The idea is to reconstruct ut(0, t−1) using only a sensor for ut(0, t) (ux(1, t) =U(t)). In the following
we prove that µ(t) defined in (5.3) is equal to ut(0, t− 1) assuming that λ = 0, d̂(t) = d, q̂(t) = q. From the
definition (2.3)-(2.4), one gets

ut(1, t)−ux(1, t) = ω(1, t),

ut(1, t−2)+ux(1, t−2) = ζ (1, t−2),

2ut(0, t−1) = ζ (0, t−1)+ω(0, t−1).

Moreover it holds
ζ (1, t−2) = ζ (0, t−1), ω(1, t) = ω(0, t−1).

Gathering previous equation it follows that µ(t) = ut(0, t−1) when λ = 0, d̂(t) = d, q̂(t) = q. This is still the
case when λ = 0 and it is not the case when λ 6= 0 as it is shown in Section 5.3.

The theorem stating the stability result is

Theorem 5.1 [Bresch-Pietri and Krstic, 2014b]
Consider the closed-loop system consisting of the plant (2.1) in which λ = 0, the control law U defined in

(5.2) and the parameters update laws (5.5)-(5.6). Define the functionals

ΓO(X (t)) :=
∫ t

t−1
ut(0,s)2ds+ max

s∈[t−1,t]

∫ 1

0
[ux(x,s)−q]2dx

+ max
s∈[t−1,t]

∫ 1

0
ut(x,s)2dx+(q− q̂(t))2 +(d− d̂(t))2, (5.9)

ϒO(X (t)) :=ut(0, t)2 +‖ut(t)‖2 +‖ux(t)−d‖2 +(d− d̂(t))2. (5.10)

Then, for all c0 > 0, there exist b2(c0)> 0, b1(c0,b2)> 0, γ(c0,b1,b2)> 0, such that, for

• b2 ∈ (0,b2),
• b1 ∈ (b1,∞),
• γd , γq ∈ (0,γ),

it holds, for suitable R > 0 and ρ > 0,

ΓO(X (t))6 R(eρΓO(X (0))−1), (5.11)

and

lim
t→∞

ϒO(X (t)) = 0. (5.12)

For the nominal case (λ = 0), the stability result associated to this adaptive control law is completely similar
to the one for the delay anti-collocated output feedback (Chapter 4). This is due to the fact that when λ = 0 it
holds µ(t) = ut(0, t−1).
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5.2 Mismatch collocated boundary output feedback

The following theorem we are going to present can be proven using the method we have used so far. It concerns
the model mismatch robustness of the previously presented adaptive control law.

Theorem 5.2 [Roman et al., 2017]

Consider the closed-loop system consisting of the plant (2.1) satisfying Assumption 2.1, the control law (5.2)
and the parameter estimation laws (5.6)-(5.5). Define the functionals Γ, Ξ and ϒ as

Γ(X (t)) :=ut(0, t)2 +‖ut(t)‖2
L2
+‖ux(t)−d‖2

L2
+‖uxt(t)‖2

L2

+‖uxx(t)‖2
L2
+(q− q̂(t))2 +(d− d̂(t))2, (5.13)

Ξ(X (t)) := max
s∈[0,3]

Γ(X (t− s)), (5.14)

ϒ(X (t)) :=ut(0, t)2 +‖ut(t)‖2
L2
+‖ux(t)−d‖2

L2
+(d− d̂(t))2. (5.15)

Then, for all c0 > 0, there exist b2(c0)> 0, b1(c0,b2)> 0, γ(c0,b1,b2)> 0, such that, for

• b2 ∈ (0,b2),
• b1 ∈ (b1,∞),
• γd , γq ∈ (0,γ),

there exists λ (c0,b1,b2,γ,X (0))> 0 such that, when λ ∈ [0,λ ), it follows, for suitable R > 0 and ρ > 0

Ξ(X (t))6 R(eρΞ(X (0))−1), (5.16)

and

lim
t→∞

ϒ(X (t)) = 0. (5.17)

For reason which will be clarify in the sequel, we are constrained to assume more regular solution. Indeed, all
previous theorem (i.e., Theorem 3.1, Theorem 3.2, Theorem 4.1, Theorem 4.2 and Theorem 5.1) are valid for the
weak solution of their respective closed-loop system, i.e., X (t) defined in (2.2) is in H1(0,1)×L2(0,1)×R4.
The following theorem has sense for the strong solution, i.e., X (t) ∈ H2(0,1)×H1(0,1)×R4, because the
functional Γ and a fortiori Ξ have sense for solution in H2(0,1)×H1(0,1)×R4.

It is worth noticing that, if the adaptation parameter q̂ is perfectly known (q̂(t) = q), then the exponential
stability of the closed-loop system (2.1) with respect to the subspace ker(Ξ(·)) follows (by a Lyapunov argument
see Lemma 2 in [Roman et al., 2017]).

5.3 Sketch of proof

A the proof of this result is technical and lengthy, in this section only the major step and idea are presented. The
complete developments are in [Roman et al., 2017].

The first step is to get that µ defined in (5.3) can be expressed as

µ(t) = v(t−1)+
ω̃(1, t)

2
, (5.18)

in which v is defined in (2.6), and ω̃ in (2.18). From the definition (2.3)-(2.4), (2.17)-(2.18) one gets

ut(1, t)−ux(1, t) = ω̂(1, t)+ ω̃(1, t)− ˙̂d(t), (5.19)

ut(1, t−2)+ux(1, t−2) = ζ̂ (1, t−2)+ ζ̃ (1, t−2)+ ˙̂d(t−2), (5.20)

2ut(0, t−1) = ζ̂ (0, t−1)+ ζ̃ (0, t−1)+ ω̂(0, t−1)+ ω̃(0, t−1). (5.21)
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From (2.20a) and (2.20c), one gets

ζ̂ (1, t−2) = ζ̂ (0, t−1)+ d̂(t−1)− d̂(t−2), (5.22)

ω̂(1, t) = ω̂(0, t−1)− d̂(t−1)+ d̂(t). (5.23)

And one obtains (5.18) (recall (2.21b) ζ̃ (1, t) = 0 and (2.21d) ω̃(0, t) =−ζ̃ (0, t)).

The control is acting on µ thus the dynamics of µ is consider as ODE. One gets that the dynamics of µ is

µ̇(t) = v̇(t−1)+
1
2

ω̃t(1, t). (5.24)

Using similar step as done in Section 4.3.1.1 (for the anti-collocated output feedback) the delay system
together with the auxiliary system interconnection can be illustrated as Figure 5.1. The equivalent figure for the
delay anti-collocated output feedback is Figure 4.1. The major difference with the delay system in the delay
anti-collocated design illustrated Figure 4.1 is the loop from ω̃(1, t) and µ . In particular, the boundary of ω̃

depends on µ and the dynamics of µ has for input ω̃(1, t) and ω̃t(1, t).

µ(t)

ω̃t(1, t)

−λ

−λ

−λ

α̂(x, t)
W (t)

ζ̂ (x, t)
W (t)

δ̃ (x, t)ζ̃ (x, t)
0

ω̃(x, t)

ω̂(x, t)

β̂ (x, t)

Nomenclature

in-domain dependence

transport

ODE

boundary of transport

integral to point-wise dependence

point-wise dependence

Figure 5.1: Illustration of the delay system together with the estimated and auxilary system for the collocated
output feedback.

Due to the appearance of ω̃t(1, t) in (5.24), we propose to introduce a term in order to to have negative terms
of ω̃t(1, t) in the Lyapunov analysis: ∫ 1

0
e1−x

ω̃t(x, t)2dx, (5.25)

in the Lyapunov functional. Thus we consider in addition the dynamics of ω̃t . However, this dynamics depends
on ζ̃t , so we also consider the dynamics of ζ̃t(x, t). Now observing that

ω̂t(x, t)+ ζ̂t(x, t) = ζ̂x(x, t)− ω̂x(x, t), (5.26)

it is easier to consider instead the dynamics of ζ̂x(x, t) and ω̂x(x, t) as it does not involve double derivative time
derivative of the estimated parameters, e.g. ¨̂d(t). It remains to compute Ẇ (t), to perform the Lyapunov analysis
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µ(t)

ẑ(x, t)
0

ζ̂ (x, t)
W (t)

ζ̂x(x, t)
Ẇ (t)

ζ̃t(x, t)

δ̃ (x, t)ζ̃ (x, t)
0

ω̃(x, t)

ω̃t(x, t)

G[µ, ẑ, δ̃ , ω̃(1, t)]

ω̂(x, t)

ω̂x(x, t)

β̂ (x, t)
Nomenclature

in-domain dependence

transport

ODE

boundary of transport

integral to point-wise dependence

point-wise dependence

Figure 5.2: Illustration of the extended system for the collocated output feedback.

on this extended system (Figure 5.2 illustrated the interconnection of this system) and the convergence analysis.
The complete proof is detailed in [Roman et al., 2017].

We can compare Figure 3.1, Figure 4.2 and Figure 5.2. They correspond respectively to the extended system,
the system on which the analysis is perform, for the three considered adaptive control laws we have considered.
The graphic complexities go in pair with the complexity of the associated extended system stability analysis.

Note that the additional constraint on the regularity of solution is due to the fact that the derivative of the
estimated and auxiliary system are considered. This is the major differences between the delay anti-collocated
output feedback and the collocated output feedback. One sees this directly looking at Figure 4.2 and Figure 5.2.
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Chapter conclusion

This chapter presents some elements concerning the collocated adaptive control law. The control law using only
the measurement of ut(1, t) (and the knowledge of its past value). The model mismatch robustness for it is stated.
The proof of this result can be found in [Roman et al., 2017].

For the two previous design the presence of in-domain damping introduces a error, a mistake, but the impact
of it is actually relatively simple. For an input to state stability point of view, the auxiliary system seems input to
state stable for the previous system. In the adaptive control considered in this chapter, the derivative of the state
also interact, this is illustrated in Figure 5.3.

Estimate
System

outputinput

Auxiliary system e.s. statea.s. state

Estimate
System

outputinput

Auxiliary system e.s. state
a.s. state +

a.s. state derivative

Figure 5.3: Differences between Chapter 3 and Chapter 4 (left) and Chapter 5 (right) for model mismatch
robustness

.

Therefore, opposite to the robust result in Chapter 3 and in Chapter 4, the theorem stated in this chapter
needs the assumption of more regular solution.

The following chapter illustrates the robust result we state so far with simulations on a nonlinear model.



CHAPTER 6

Numerical simulations

For illustration purposes, the adaptive control laws considered in Chapter 3, Chapter 4, and Chapter 5 are applied
to a nonlinear drilling model in this chapter. The nonlinear model is presented in Section 6.1. The last Section 6.5
concerns a comparison of the three adaptive control laws.

6.1 Modeling of torsional virations during drilling

One of the possible applications of the control laws (3.2), (4.2), and (5.2) associated with the wave equation
model (2.1) is to attenuate the torsional vibrations occurring in drilling facilities (e.g. [Bresch-Pietri and Krstic,
2014a], [Saldivar et al., 2011], and [Sagert et al., 2013]). Such vibrations can lead to the so called stick-slip
phenomenon [Jansen and van der Steen, 1995]. Indeed, the friction at the bottom of the hole, between the rock
and the drillbit, forces sometimes the bit to stop, while the surface is still rotating. After some time, the bit will
start moving again at velocity higher than the top velocity. This is illustrated in Figure 6.1 which represents an
open-loop simulation of the nonlinear model. This torsional dynamics can be modeled by a wave equation with
a nonlinear boundary condition

utt(0, t) = aF
(
ut(0, t)

)
+aux(0, t), (6.1)

accounting for the friction between the drillbit and the rock (see [Saldivar et al., 2016b], [Saldivar et al., 2011]).
Even if there exist phenomenological expressions of this friction F (see [Zhang et al., 2010], [Saldivar et al.,
2011] and [Ritto et al., 2009]), they depend on some parameters, such as the weight on the bit, drilling mud
properties, and the nature of the rock. So they may change during operation. This is the reason why using an
adaptive controller is of high interest for this application.

Following [Saldivar et al., 2011], we consider the drillstring rotatory angle denoted by θ(ξ ,t) at length ξ

and time t. By convention, the top boundary is at ξ = 0 and the bottom boundary at ξ = L (the link with the
considered system (2.1) is detailed in the sequel), and the torsional dynamics can be modeled by


GJθξ ξ (ξ ,t)− Iθtt(ξ ,t)−Λθt(ξ ,t) = 0, (6.2a)

GJθξ (0,t) = cα

(
θt(0,t)−Ω(t)

)
, (6.2b)

Ibθtt(L,t) =−GJθξ (L,t)−TBIT (θt(L,t)), (6.2c)

in which Ω(t) is the angular velocity of the rotatory table rotor which is the actual actuator at time t, TBIT is the
nonlinear rock-on-the-bit friction term and other constants are listed in Table 6.1. Note that there exist alternative
models of this phenomenon, such as [Saldivar et al., 2016b] which takes into account the axial vibrations.

93
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Symbol Description Value

L Length of the drillstring 2000 m
J Drillstring second moment of area 1.19 e-5 m4

G Shear modulus 79.3 e10 N/m2

I Drillstring inertia’s moment per length unit 9.5 e-2 kg.m2

Ib BHA moment of inertia 311 kg.m
Dd p Outer diameter of the drill pipe 1.27 e-1 m
dd p Inner diameter of the drill pipe 1.08 e-1 m
µm Field viscous coefficient {0,10,20} Pa.s
cb Sliding torque coefficient 2 e3 N.m.s/rad

Ttob Torque-on-the-bit parameter 7.5 e2 N.m
α1, α2, α3 Friction parameters 5.5; 2.2; 3500

γ Damping parameter 0.03 N.m.s/rad

These values are taken from [Sagert et al., 2013] and [Jansen, 1993]. The friction phenomenon is described by
the model in [Zhang et al., 2010].

Table 6.1: Parameters values of the nonlinear model used in simulation

Following [Sagert et al., 2013], we consider the change of variables

ξ = L(1− x), (6.3)

t= L

√
I

GJ
t ∆
= ct t, (6.4)

u(x, t) = θ(ξ ,t), (6.5)

U(t) =
Lcα

GJ

(
Ω(ct t)− 1

ct
ut(1, t)

)
, (6.6)

F(·) =− L
GJ

TBIT

(
·
ct

)
, (6.7)

with the following constants

a = L
I
IB
, 2λ =

ΛL√
GJI

. (6.8)

This allows to rewrite (6.2a)-(6.2c) as

utt(x, t) = uxx(x, t)−2λut(x, t), (6.9)

ux(1, t) =U(t), (6.10)

utt(0, t) = aF(ut(0, t))+aux(0, t). (6.11)

Now, we consider a first order Taylor approximation of F(·) around an equilibrium uref
t , i.e.,

F(ut(0, t)) = q(ut(0, t)−uref
t )−d, (6.12)

in which d = −F(uref
t ) and q = Ḟ(uref

t ). Then, assuming uref
t = 0 for the sake of conciseness, the torsional

dynamics model can be reformulated under the form (2.1).

For simulation, the friction term TBIT (.) is taken as (see [Zhang et al., 2010])

TBIT (χ) = γχ +
2Ttob

π

(
α1χe−α2|χ|+ arctan(α3χ)

)
, (6.13)

where the parameter values are gathered in Table 6.1.
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The drill pipe is modeled as hollow cylinder of outer diameter Dd p and inner diameter dd p. The drill is
in contact with a viscous field, of viscous dynamical coefficient µm. Direct computation gives the associated
damping coefficient

Λ = µm
π

2
(D2

d p +d2
d p). (6.14)

Open-loop simulations are performed on the non-linear model (6.2a)-(6.2c), with the input Ω taken constant.
The open-loop of the simulated model in the nominal case (λ = 0) exhibits a limit cycle which corresponds with
the stick-slip phenomenon. This is illustrated in Figure 6.1. In Figure 6.2, the same behavior is presented but with
λ = 0.45 which corresponds to a viscous field coefficient of 10 Pa.s. For the sake of comparison the glycerin
viscosity is 1.4 Pa.s [Haynes, 2014]. Note that the period of the limit cycle is slightly reduced when λ = 0.45
(Figure 6.1). The limit cycle (θt(0,t),θt(L,t)) for a range of λ from 0 to 0.85 is presented in Figure 6.3. The
magnitude of the oscillations is decreasing with respect to λ .

Figure 6.1: Simulations of the top and bottom ve-
locities for λ = 0, for constant input, Ω(t) = cst.

Figure 6.2: Simulations of the top and bottom ve-
locities for λ = 0.45, for constant input, Ω(t) = cst.

Figure 6.3: Limit cycle (θt(L,t),θt(0,t)) for a range of λ = 0 : 0.05 : 0.85.
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Simulations are performed in the sequel for λ = 0 (nominal case), λ = 0.45 and λ = 0.9. The tuning
parameter values are taken as identical for the three control laws and are expressed in Table 6.2.

First Section 6.2 focuses on the simulation results for the boundary output feedback. Second, in Section 6.3,
the simulation results for the delayed anti-collocated output feedback are shown. Third, Section 6.4 concerns the
last control, the collocated output feedback, simulation. Finally, in Section 6.5, we draw a comparison between
these results.

Symbol Description Value

c0 Decay rate 1/a
b2 Adaptive normalization parameter backward transport 10 e-4
b1 Adaptive normalization parameter forward transport 1
γd Update law d̂(t) coefficient 0.5
γq Update law q̂(t) coefficient 0.01

Table 6.2: Tuning parameters values

6.2 Boundary output feedback velocity regulation of the nonlinear model

In this section the control law U (3.2), is considered along with the adaptation laws (3.4)-(3.5). We aim at
stabilizing the velocity towards a reference velocity uref

t . As a result, we use these law in regulation rather than
in stabilization as they were presented, that is, we replace ut by ut−uref

t . The tuning parameters values are given
in Table 6.2 . It is worth noting that the simulations presented below have been performed using the nonlinear
model (6.2) while the adaptive control laws were designed on a linearity version of it. An illustration of the
simulation scheme is provided in Figure 6.4.

System
(6.2)

θt(L,t)

θt(0,t)

Adaptive feedback
(3.2)-(3.5)

ct

ut(1, t)

ct

ut(0, t)

uref
t

ct
θ ref
t

(6.6)

Ω(t)

U(t)

Figure 6.4: Simulation scheme for the boundary output feedback.

For all following simulations:

• The angular velocity reference is θ ref
t = 5 rad/s, this gives uref

t = 5ct .

• Before t = 15 s the input Ω is constant, then the actuation is turned on at t = 15s.

• The initial condition are taken indifferently, as we wait for the limit cycle to be established to start data
storage. This allows to cancel numerical artefacts in the initialization: they appear but not in the time laps
we show.
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Note that, for the considered simulation,

u(x, t) →
t→∞

λuref
t x2 + turef

t +dx+ c, c ∈ R. (6.15)

We do not regulate (stabilize) the system in position, which means that the subspace of convergence is invariant
with respect to constant change of position. This is consistent with Theorem 3.1 and Theorem 3.2.

The evolution from a limit cycle behavior to the convergence toward the desired state of the boundary veloc-
ities in the nominal case (λ = 0) is presented in Figure 6.5. Figure 6.9 shows the time response of the parameter
estimations q̂(t) and d̂(t). The distributed position θ(·,t), velocity θt(·,t) and ‘torque’ or shear stress θξ (·,t)
time responses are presented in Figure 6.6, in Figure 6.7 and in Figure 6.8. The associated time responses of
the input U(t) and Ω(t) are given in Figure 6.10. These figures illustrate Theorem 3.1 from [Bresch-Pietri and
Krstic, 2014a].

As the goal of the presented result is regulation, both control laws go to a constant, as shown in Figure 6.10
for λ = 0, in Figure 6.16 for λ = 0.45, and in Figure 6.22 for λ = 0.9. The goal is to regulate the velocity despite
unknown parameters, it is not the estimation of them. Indeed a trade off between regulation and estimation has
to be made. In general case when we desire the estimation of the parameters, we have a condition of permanent
excitation which goes against regulation. Note that the estimation of d is needed to get the stability result as it
represents a feedforward bias, the result gives the convergence of d̂ towards d, but not for q̂.

Figure 6.11 and Figure 6.15 show the boundary velocities time response when λ is no longer equal to 0 but
to 0.45 and 0.9 respectively. An open-loop limit cycle behavior is still present before t = 15 s. The regulation
is still achieved after the control is turned on. For the case λ = 0.9, presented in Figure 6.17 and Figure 6.21
the open-loop limit cycle vanishes under the effect of damping. However, a steady-state bias appears in open-
loop due to parameters uncertainties and regulation to the desired reference is still achieved with the closed-loop
control.

The distributed position θ(·,t), velocity θt(·,t) and ‘torque’ or shear stress θξ (·,t) time responses are
presented in Figure 6.12, in Figure 6.13 and in Figure 6.14 for λ = 0.45 and in Figure 6.18, in Figure 6.19 and
in Figure 6.20 for λ = 0.9. The associated time responses of the input U(t) and Ω(t) are given in Figure 6.16
and in Figure 6.22.

In the three cases, in Figure 6.9, in Figure 6.15 and in Figure 6.21, one gets that the parameter estimation d̂
converges towards d. This is consistent with Theorem 4.2. However, the parameter estimate q̂ does not converge
toward q and got a steady state bias. This is also consistent with Theorem 4.2, as it already has been said, we did
not established the convergence of q̃ but only its stability (in terms of the functional Ξ (3.13).
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Figure 6.5: Simulation of the top and bottom ve-
locities for λ = 0, the nominal case for which the
control has been developed (see [Bresch-Pietri and
Krstic, 2014a]) for the boundary ouput feedback.

Figure 6.6: Simulation of the distributed position
for λ = 0, the nominal case for which the control
has been developed (see [Bresch-Pietri and Krstic,
2014a]) for the boundary ouput feedback.

Figure 6.7: Simulation of the distributed velocity
for λ = 0, the nominal case for which the control
has been developed (see [Bresch-Pietri and Krstic,
2014a]) for the boundary ouput feedback.

Figure 6.8: Simulation of the distributed shear
stress for λ = 0, the nominal case for which the
control has been developed (see [Bresch-Pietri and
Krstic, 2014a]) for the boundary ouput feedback.

Figure 6.9: Evolution of the parameter estimates d̂
and q̂ for λ = 0 for the boundary output feedback.
(see [Bresch-Pietri and Krstic, 2014a])

Figure 6.10: Input time response U(t) and Ω(t)
for λ = 0 for the boundary output feedback. (see
[Bresch-Pietri and Krstic, 2014a])
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Figure 6.11: Simulation of the top and bottom ve-
locities for λ = 0.45, for the boundary output feed-
back .

Figure 6.12: Simulation of the distributed position
for λ = 0.45, for the boundary output feedback.

Figure 6.13: Simulation of the distributed velocity
for λ = 0.45, for the boundary output feedback.

Figure 6.14: Simulation of the distributed shear
stress for λ = 0.45, for the boundary output feed-
back.

Figure 6.15: Evolution of the parameter estimates
d̂ and q̂ for λ = 0.45 the robust case for the bound-
ary output feedback.

Figure 6.16: Input time response U(t) and Ω(t)
for λ = 0.45 for the boundary output feedback.
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Figure 6.17: Simulation of the top and bottom ve-
locities for λ = 0.9, for the boundary output feed-
back.

Figure 6.18: Simulation of the distributed position
for λ = 0.9, for the boundary output feedback.

Figure 6.19: Simulation of the distributed velocity
for λ = 0.9, for the boundary output feedback.

Figure 6.20: Simulation of the shear stress for
λ = 0.9, for the boundary output feedback.

Figure 6.21: Evolution of the parameter estimates
d̂ and q̂ for λ = 0.9, for the boundary output feed-
back.

Figure 6.22: Input time response U(t) and Ω(t)
for λ = 0.9 for the boundary output feedback.
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6.3 Delayed anti-collocated output feedback velocity regulation of the nonlin-
ear model

In this section, we consider the design of Chapter 4, that is, the control law U (4.2), the adaptation laws (4.5)-
(4.6). The tuning parameters are taken as Table 6.2. Again, we aim at regulating the velocity to uref

t and thus
replace ut with ut(x, t)−uref

t in (4.2)-(4.6). An illustration of the simulation scheme is provided in Figure 6.23.

System
(6.2)

θt(L,t)

θt(0,t)

Adaptive feedback
(4.2)-(4.6)

ct

ut(1, t)

ct

Delay

ut(0, t−1)

uref
t

ct
θ ref
t

(6.6)

Ω(t)

U(t)

Figure 6.23: Simulation scheme for the delay anti-collocated output feedback.

Again for all following simulation:

• The angular velocity reference is θ ref
t = 5 rad/s, this gives uref

t = 5ct .

• Before t = 15 s the input Ω is constant, then the actuation is turned on at t = 15s.

• The initial condition are taken indifferently, as we wait for the limit cycle to be established to start data
storage. This allows to cancel numerical artefacts in the initialization: they appear but not in the time laps
we show.

The time responses from a limit cycle behavior of θt(0,t) and θt(L,t) to an equilibrium for λ = 0 and
λ = 0.45 are depicted respectively in Figure 6.24 and in Figure 6.30. Regulation is achieved in both cases.
The former is the illustration of Theorem 4.1, the latter illustrates Theorem 4.2. As previously, for λ = 0.9 the
in-domain damping is too large for an open-loop the limit cycle to appear. This is shown in Figure 6.36: both
boundary velocities converge toward an equilibrium, but not the desired one. Indeed, the uncertainty leads to a
feedforward bias. After t= 15 s, yet, closed-loop regulation is still achieved.

The distributed position θ(·,t), velocity θt(·,t) and ‘torque’ or shear stress θξ (·,t) time responses are
presented

• for λ = 0 in Figure 6.25, in Figure 6.26 and in Figure 6.27,

• for λ = 0.45 in Figure 6.31, in Figure 6.32 and in Figure 6.33,

• for λ = 0.9 in Figure 6.37, in Figure 6.38 and in Figure 6.39.

The associated time responses of the input U(t) and Ω(t) are given in Figure 6.29, in Figure 6.35 and in
Figure 6.41.

The time responses of the parameters estimates q̂(t) and d̂(t) for λ = 0 and λ = 0.45 are displayed respec-
tively, in Figure 6.28 and Figure 6.34. They are associated respectively with the simulations in Figure 6.24 and
Figure 6.30. It is worth noticing that in both figures, d̂(t) correctly estimate d, whereas q̂(t) converges but once
above and once below q. The latter shows that the control does not need to overestimate q to converge. Both are
consistent with the Theorem 4.2.



102 Chapter 6. Numerical simulations

Figure 6.24: Simulation of the top and bottom ve-
locities for λ = 0, the nominal case for which the
control has been developed for the delayed anti-
collocated output feedback.

Figure 6.25: Simulation of the distributed position
for λ = 0, for the delayed anti-collocated output
feedback.

Figure 6.26: Simulation of the distributed velocity
for λ = 0, for the delayed anti-collocated output
feedback.

Figure 6.27: Simulation of the shear stress for
λ = 0, for the delayed anti-collocated output feed-
back.

Figure 6.28: Evolution of the parameter estimates
d̂ and q̂ for λ = 0, for the delayed anti-collocated
output feedback.

Figure 6.29: Input time response U(t) and Ω(t)
for λ = 0 for the delayed anti-collocated output
feedback.
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Figure 6.30: Simulation of the top and bottom
velocities for λ = 0.45, for the delayed anti-
collocated output feedback.

Figure 6.31: Simulation of the distributed position
for λ = 0.45, for the delayed anti-collocated out-
put feedback.

Figure 6.32: Simulation of the distributed velocity
for λ = 0.45, for the delayed anti-collocated out-
put feedback.

Figure 6.33: Simulation of the shear stress for
λ = 0.45, for the delayed anti-collocated output
feedback.

Figure 6.34: Evolution of the parameter estimates
d̂ and q̂ for λ = 0.45 the robust case for the delayed
anti-collocated output feedback.

Figure 6.35: Input time response U(t) and Ω(t)
for λ = 0.45 for the delayed anti-collocated output
feedback.



104 Chapter 6. Numerical simulations

Figure 6.36: Simulation of the top and bottom ve-
locities for λ = 0.9, for the delayed anti-collocated
output feedback.

Figure 6.37: Simulation of the distributed position
for λ = 0.9, for the delayed anti-collocated output
feedback.

Figure 6.38: Simulation of the distributed velocity
for λ = 0.9, for the delayed anti-collocated output
feedback.

Figure 6.39: Simulation of the shear stress for
λ = 0.9, for the delayed anti-collocated output
feedback.

Figure 6.40: Evolution of the parameter estimates
d̂ and q̂ for λ = 0.9 the robust case for the delayed
anti-collocated output feedback.

Figure 6.41: Input time response U(t) and Ω(t)
for λ = 0.9 for the delayed anti-collocated output
feedback.
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6.4 Collocated output feedback velocity regulation of the nonlinear model

This section focuses on the collocated output feedback, in other words, the control law (5.2) and adaptation laws
(5.5)-(5.5) are considered. Once more the objective is the regulation of the velocities towards uref

t , therefore,
once again, ut is replace by ut(x, t)−uref

t in (5.2)-(5.6). The tuning parameter values are given in Table 6.2. The
simulations presented below have been performed using the nonlinear model (6.2), whose parameters are listed
in Table 6.1. In Figure 6.42, we provide a brief illustration of the simulation scheme.

System
(6.2)

θt(L,t)

θt(0,t)

Adaptive feedback
(5.2)-(5.6)

ct

ut(1, t)

uref
t

ct
θ ref
t

(6.6)

Ω(t)

U(t)

1
ct

µ(t) µun(t)

Figure 6.42: Simulation scheme for the collocated output feedback.

The reference uref
t is taken such that the unnormalized desired velocity is θ ref

t = 5 rad/s. The top and bottom
velocities θt(0,t) and θt(L,t) along with the unnormalized equivalent of µ defined in (5.3) is

µun(t) =
µ(t)

ct
(6.16)

are all displayed in Figure 6.43, Figure 6.49, and Figure 6.55 for λ = 0, 0.45, 0.9 respectively. The time re-
sponse of the parameter estimates of d and q are displayed in Figure 6.47 for the case λ = 0 and in Figure 6.53
for the case λ = 0.45.

One can notice that the oscillations existing in the open-loop phase, i.e., before 15 s in Figure 6.43 and
Figure 6.49, are suppressed by the application of the closed-loop control law and regulation is obtained.

In Figure 6.49, as expected when λ = 0 from (5.18), (6.5), and (6.16), one gets µun(t) = θt(L,t− ct) (if
λ = 0 then ω̃(1, t) = 0). Moreover, the top and bottom velocities θt(0,t) and θt(L,t) reach 95% of the refer-
ence, at respectively 23.54 and 23.37 s, which are reasonable performances compared to the oscillation period.
In Figure 6.49 (λ = 0.45), the top and bottom velocities θt(0,t) and θt(L,t) reach 95% of the reference at
respectively 22.00 and 21.74 s. One observes that these settling times are close to the nominal case. Here, as
expected from (4.41), (6.5), and (6.16), µun(t) is only an approximation of θt(L,t− ct).

The fact that the system for λ = 0.45 in Figure 6.49 has a settling time lower that in the nominal case (λ = 0
in Figure 6.43) can probably be explained by the fact that the respective velocity values are not the same when
the controller is turned on. Moreover, notice that the magnitude of the oscillations before t = 15 s is lower in
Figure 6.49 (case λ = 0.45) than in Figure 6.43 (case λ = 0), which is clearly explained by the fact that the
in-domain damping adds dissipation. This has been already illustrated in Figure 6.3.

In Figure 6.53, as expected, d̂(t) converges to d. Even if velocity regulation is obtained, one can observe
that the estimation q̂(t) does not converge to the value of q. Note that this latter observation does not contradict
the conclusion of Theorem 5.2.

In Figure 6.55, a high damping value is considered (λ = 0.9). Consequently, the open-loop system does
not exhibit an oscillatory behavior. Therefore, the benefits of the feedback controller used after 15 s are quite
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reduced. However, this simulation highlights the robustness capabilities of this adaptive control law as closed-
loop convergence is again achieved.

Figure 6.43: Simulation of the top, bottom and de-
layed bottom estimated velocities for λ = 0, the
nominal case for which the control has been de-
veloped (see [Bresch-Pietri and Krstic, 2014b]).

Figure 6.44: Simulation of the distributed position
for λ = 0, for the collocated output feedback.

Figure 6.45: Simulation of the distributed velocity
for λ = 0, for the collocated output feedback.

Figure 6.46: Simulation of the shear stress for
λ = 0, for the collocated output feedback.

Figure 6.47: Evolution of the parameter estimates
d̂ and q̂ for λ = 0, for the collocated output feed-
back.

Figure 6.48: Input time response U(t) and Ω(t)
for λ = 0 for the collocated output feedback.
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Figure 6.49: Simulation of the top, and bottom and
delayed bottom estimated velocities for λ = 0.45,
for the collocated output feedback.

Figure 6.50: Simulation of the distributed position
for λ = 0.45, for the collocated output feedback.

Figure 6.51: Simulation of the distributed velocity
for λ = 0.45, for the collocated output feedback.

Figure 6.52: Simulation of the shear stress for
λ = 0.45, for the collocated output feedback.

Figure 6.53: Evolution of the parameter estimates
d̂ and q̂ for λ = 0.45, for the collocated output
feedback.

Figure 6.54: Input time response U(t) and Ω(t)
for λ = 0.45 for the collocated output feedback.
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Figure 6.55: Simulation of the top, bottom and de-
layed bottom estimated velocities, for λ = 0.9, for
the collocated output feedback.

Figure 6.56: Simulation of the distributed position
for λ = 0.9, for the collocated output feedback.

Figure 6.57: Simulation of the distributed velocity
for λ = 0.9, for the collocated output feedback.

Figure 6.58: Simulation of the shear stress for
λ = 0.9, for the collocated output feedback.

Figure 6.59: Evolution of the parameter estimates
d̂ and q̂ for λ = 0.9, for the collocated output feed-
back.

Figure 6.60: Input time response U(t) and Ω(t)
for λ = 0.9 for the collocated output feedback.
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6.5 A comparaison of the three controls approaches

In this section, we compare the responses of the closed-loop system for the three adaptive control laws defined
in (3.2), (4.2) and (5.2), and for several different cases of λ (λ ∈ {0,0.45,0.9}). To illustrate this comparison,
we suggest to plot (θt(0,t),θt(L,t)) for the three adaptive control laws for λ ∈ {0, 0.45, 0.9}. Note that the
graph of (θt(0,t),θt(L,t)) (λ = 0) displayed in Figure 6.61 is less smooth than the one obtains in Figure 6.62
(λ = 0.45).

In the previous section, we have presented settling time, but because we have not performed a reference
step, this is not totally rigorous. The graph of (θt(0,t),θt(L,t)) is more interesting than the time response of
the boundary velocities in order to analyze the convergence of a limit cycle toward a equilibrium. Therefore, in
order to characterize the performance of each control for each cases, let our criterion be the time laps between
the turned on of the actuation and the time the trajectory of (θt(0,t),θt(L,t)) reaches a certain distance of the
desired equilibrium. The time spent between the control actuation until the moment the trajectory reaches the
ball of radius (0.01, 0.05, 0.10, 0.15) from the distance associated to the `1-norm, `2-norm, and `∞-norm is
presented in Table 6.3. The reason we chose the radius to be (0.01, 0.05, 0.10, 0.15), is that the two former
represent somehow the precision rapidity of the control law, the two latter represent its rapidity of action.

It is worth noticing that in Figure 6.63, the system (in terms of θt(0,t) and θt(L,t)) has already converged
toward a equilibrium. This has been shown in Figure 6.55, Figure 6.36 and in Figure 6.17 before t = 15 s.
The application of the adaptive control law just changes this equilibrium to (θt(0,t) = 5,θt(L,t) = 5) . In
Figure 6.63 the trajectories that link both equilibrium are not the must direct one. It can be a lost of performance
with respect to other type of control.

Figure 6.61: Graph of (θt(0,t),θt(L,t)) for the three control laws with λ = 0

To compare the three control laws with respect to λ , intuitively it would be better to perform a reference
step. Nevertheless, the system state cannot be the same, cause the dynamics are different, at the exception of
θt(·,t) = 0. When the regulation is performed, even if it is completely transparent (we do neither see it in the
simulation scheme, nor for the model, nor the control, and nor adaptive control law), ux(x, t) converges towards
uref

x (x) = d +2λuref
t x. Thus even if a reference step is preformed, the comparison between different λ cannot be

rigorous.

Note that if the control is turned on in the θt(·,t) = 0 neighborhood it fails due to the fact that we are too far
from the linearized point. Note that the state is not just the velocity at the boundaries.

In conclusion, these were the reasons, we suggest to compare the three adaptive control laws for each λ by
their respective time laps between the limit cycle behavior to the reference (listed in Table 6.3).

(i). First λ = 0, the collocated output feedback and the delayed anti-collocated output feedback are the same
control law. They should have the same time laps. This is not the case. This can only be explained by
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Figure 6.62: Graph of (θt(0,t),θt(L,t)) for the three control laws with λ = 0.45

Figure 6.63: Graph of (θt(0,t),θt(L,t)) for the three control laws with λ = 0.9

the fact that we have numerical mistake when µ is computed. Indeed, the remaining part of both adaptive
control laws are identical. Therefore, the tolerance is a least of 0.05 s. Note that the boundary output
feedback provides a faster time response which is consistent with the fact that it uses extra information.

(ii). Second λ = 0.45, taking apart the time laps for the 0.01 radius the delayed anti-collocated output feedback
is faster than the collocated output feedback, which is faster than the boundary output feedback.

(iii). Third λ = 0.9, it is the collocated output feedback which is the faster. The boundary output feedback
has a higher time laps than the delayed anti-collocated output feedback, neglecting the 0.15 radius for the
`∞-norm.

According to these result, we can conclude that there is no particular inclination to deduce. There is no
particular efficiency of a control law versus an others. Therefore, the measurement of ut(0, t) (or even delay),
does not seem to impact the efficiency of the adaptive control laws.

Even if it is not rigorous and with a few exception, all time laps are smaller when λ = 0.45. Note that for the
boundary output feedback the case λ = 0.9 has more higher time laps than when λ ∈ {0, 0.9}. We are possibly
in presence of overdamping (see Section 1.9 for an explanation of it in a finite case), or we are probably at the
limit of the adaptive control law robustness.
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radius
Boundary
Chapter 3

Delayed
Chapter 4

Collocated
Chapter 5

λ 0 0.45 0.9 0 0.45 0.9 0 0.45 0.9
0.01 18.76 17.79 24.87 29.12 13.04 20.73 29.14 15.22 17.40
0.05 13.70 12.96 16.71 23.71 11.17 14.62 23.74 10.47 12.89

`1 0.10 12.96 10.84 13.20 18.76 10.19 11.97 18.76 9.70 10.89
0.15 8.88 9.63 11.13 14.05 9.54 10.40 14.03 9.25 9.68
0.01 17.93 16.75 23.12 29.72 12.69 19.43 29.77 14.37 16.44

`2 0.05 13.26 11.90 14.95 19.22 10.70 13.30 19.24 10.16 11.90
0.10 11.62 9.80 11.45 17.80 9.64 10.63 17.83 9.34 9.86
0.15 8.75 8.66 9.35 13.62 8.93 9.08 13.62 8.72 8.60
0.01 17.08 15.71 21.54 29.31 12.46 18.26 29.36 11.28 15.58

`∞ 0.05 12.70 10.83 13.37 18.84 10.28 12.14 18.86 9.86 10.03
0.10 8.97 8.89 9.81 13.75 9.08 9.45 13.74 8.84 8.94
0.15 8.65 7.70 7.84 13.16 8.25 7.92 13.15 8.12 7.63

Table 6.3: Time laps in secondes between the actuation of the control law and the time to have all trajectory
(θt(L,t),θt(0,t)) are contained in a ball of `1-norm, `2-norm, and `∞-norm with different radius for the different
control laws, with different λ .
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Chapter conclusion

In this chapter we have provided simulation on a drilling inspired model. The wave equation can be used to
model the torsional vibrations occurring in drilling facility. The three adaptive feedback law can be used to
regulate the angular velocity of the drillbit despite the fact bit-rock friction parameters are unknown. Note that
when λ , the in-domain damping coefficient is too large the system does not exhibit an open-loop limit cycle.
However even in this case the regulation is still achieved.

The first order Taylor approximation seems to be sufficient for the regulation of the considered nonlinear
model. In this case, the unknown parameters of the dynamic boundary condition are the linearization of a
nonlinear function. We can see this as an adaptive gain scheduling as the coefficient of the tangent of the
nonlinearity are adapted. Note that the nonlinear closed-loop system is locally stable on an open set if the
nonlinearity is Lipschitz and the intervals of the estimated parameters are large enough, i.e., encompass the
range of the tangent approximation for this open set.
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Part I conclusion

We have proposed a method to study the mismatch robustness of prediction/backstepping and adaptive con-
trol law. One advantage of this method is that it allows to extend the used of promising control law. Indeed, the
presented control laws are easy enough to implement in practice. Moreover, the needed knowledge is relatively
easy to have in practice. For the drilling application for example, the unstable dynamics boundary condition
parameters are complex to have in practice, as they depend on many physical properties: they are dealt with
adaptive control. An other hard point to have in practice is the in-domain viscous damping coefficient, as the
field consist of mud, water, rock, and gas: this coefficient is dealt through model mismatch robustness. Further-
more, the last studied adaptive control law, the collocated output feedback use only the collocated velocity and
thus is of great interest, in particular for the drilling application. Indeed, so far as we known, an observer using
only the collocated measurement for in-domain damped wave subject to dynamic boundary condition has still
not be presented.

The proposed method seems flexible enough to establish the model mismatch robustness of other backstep-
ping (in particular prediction) and adaptive control law. Moreover, we could use the same method to study
different kind of mismatch robustness. For example it would be interesting to study the robustness with respect
to Kelvin-Voigt damping, i.e., a term in uxxt . It represents the fact that the wave have a diffusion behavior. Note
that in this case the auxiliary system behaves as couple diffusion-advection PDE.

Nevertheless, there are some points which can be improved. The Lyapunov analysis we propose may be
ameliorated with cross term, to have a less conservative result. The simulation -as always- can be complemented
for different tuning parameters, with other setups.

Furthermore, there is the question about the absolute knowledge of the delay, which in our case is transposed
with the perfect knowing of ct defined in (6.4). This latter case seems more problematic.

The following part suggests some developments on what can be achieved taking implicitly λ into account
using backstepping control design.
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Introduction

In this part we present the work we have done concerning backstepping design. We present three different
backstepping control designs for three different wave equations. Each chapter consider a more complete wave
equation that the previous one.

In Chapter 7, we present a backstepping control for the same system to the one studied in Part I. The inter-
esting fact is that the exponential stability of the closed-loop and the estimation-error system (an observer is also
design) are towards an attractor.

In Chapter 8, a wave with position distributed term is considered. We extend the design established in
Chapter 7. Indeed the backstepping control law allows to regulate the position if needed or to regulate only the
velocity as before under minor change. This design requires full-state measurement.

In Chapter 9, we present on-going works. First around well-posedness of wave equation. Then, we consider a
wave equation with space-dependent coefficient. The preliminary computation on a backstepping-based control
law is presented.
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This chapter focuses on an explicit backstepping control law design. This design is qualified as explicit
because the backstepping transformation kernel, and therefore the gains of the control law are explicitly solved
and thus formulated. The design gives rise to a full-state feedback. Therefore, an observer is proposed using
both boundary velocities.

In Section 7.1, the original system is presented and an associated abstract representation is given. Then,
in Section 7.2 the stability result of the target system is proved using a Lyapunov approach. In Section 7.3,
we focus on the statement of the control law, the backstepping transformation, and closed-loop system stability
result. The proof of the latter is established in Section 7.4. In Section 7.5, the observer is presented together with
the observer-based design stability result. Then the equivalence of the developed control law and the prediction
based design in the case without in-domain damping is presented in Section 7.6. We compare this design with
the one proposed in [Sagert et al., 2013] in Section 7.7. This chapter ends up with some simulation results in
Section 7.8.
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7.1 An unstable wave equation with velocity distributed terms

Consider the following original system

(
ΣO1

) 
utt(x, t) = uxx(x, t)−λut(x, t), (7.1a)

ux(1, t) =U(t), (7.1b)

utt(0, t) = b1ut(0, t)+b2ux(0, t), (7.1c)

in which U(t) is the scalar control input, u(x, t)∈R is the variable of the system. The in-domain viscous damping
coefficient is λ > 0. b1 > 0 and b2 > 0 are boundary parameters. λ , b1, and b2 are supposed to be known constant
parameters.

The control objective is to stabilize the system velocity (i.e., ‖ut‖L2) and torque (i.e., ‖ux‖L2)1.

The purpose of the following in to express our control objective in term of an attractor.

The state of this system cannot be given rigorously without considering the abstract form of the system.
Moreover as we consider feedback control, the interesting result is not the well-posedness of (7.1), but the well-
posedness of the closed-loop system (which is stated in Section 7.3.2). Note that for reader interested in the
well-posedness of the open-loop with U(t) ∈W1,∞ the framework of boundary output is introduced in [Curtain
and Zwart, 2012].

Now in order to express the control objective rigorously we suggest to consider the zero input system (7.1).
In other words, let us consider the abstract Cauchy problem resulting from the system

(
ΣO1

)
defined in (7.1)

with U(t) = 0. To this aim, let us define the Hilbert space H1

H1 :=
{
(z1,z2,z3,z4) ∈ H1(0,1)×L2(0,1)×R2 : z3 = z1(0)

}
. (7.2)

H1 is the state space of our system (the zero input system and the closed-loop system). Consider the following
operator (the prime has been defined in (1.38))

A0 :=−


0 1 0 0

δxx −λ 0 0
0 0 0 1

b2δx|0 0 0 b1

 , (7.3)

in which δxxz1 = z′′1 and δx|0z1 = z′1(0) and with Dom(A0) is defined as

Dom(A0) :=
{
(z1,z2,z3,z4) ∈ H2(0,1)×H1(0,1)×R2 : z3 = z1(0), z4 = z2(0), z′1(1) = 0

}
. (7.4)

The strong solution of the system belongs to Dom(A0), whereas the weak solution belongs to H1. The abstract
problem resulting from the system

(
ΣO1

)
(with U(t)=0) defined in (7.1) is

d
dt

X(t)+A0X(t) = 0, X(t) ∈ Dom(A0) , (7.5a)

X(0) = X0. (7.5b)

We could prove that this abstract problem is well-posed (this is established Appendix B). But as it had been said
this is not the purpose here. Finally, let us rigorously express the considered control objective by defining the
desired attractor

S :=
{

z ∈ H1 : z1(·)
a.e.
= C, z2(·)

a.e.
= 0, z3 =C, C ∈ R, z4 = 0

}
. (7.6)

The notation a.e.
= stands for equal almost everywhere and has been defined in (1.41). The control objective is to

stabilize the system
(
ΣO1

)
defined in (7.1) towards the attractor S . Now we need to find a criterion which allows

us to characterize the distance between the state and the attrator. This can be done using the following functional

Γ1(z) :=
∫ 1

0
z′1(x)

2dx+
∫ 1

0
z2(x)2dx+ z2

4. (7.7)

1 Note that these denominations (velocity and torque) are abusive, as the system is normalized and so variables do not have units
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Indeed Γ(·) represents the distance between a point z ∈ H1 and the attractor S . Moreover, it holds

Γ1(z) = 0⇔ z ∈S . (7.8)

The link between X(t), z and u(·, t) is

X(t) = z =


z1
z2
z3
z4

=


u(·, t)
ut(·, t)
u(0, t)
ut(0, t)

 ,
one writes

Γ1(X (t)) =
∫ 1

0
ux(x, t)2dx+

∫ 1

0
ut(x, t)2dx+ut(0, t)2, (7.9)

in which X (t) ∈ H1 is
X (t) = [u(., t), ut(., t), u(0, t), ut(0, t)] . (7.10)

It holds
Γ1(X (t)) = 0⇔‖ux‖L2 = 0, ‖ut‖L2 = 0, ut(0, t) = 0 (7.11)

It is worth noticing that the kernel of the functional Γ is the attractor S .

Before presenting the considered control law, the backstepping transformation, and the stability result, and
the well-posedness of the closed-loop system, the following section is dedicated to the target system. This is
the chronological way to perform the backstepping approach. Note that usually the control, the backstepping
transformation and the stability result are presented before the target system.

7.2 A exponential stable wave equation on a attractor

In this section, the chosen target system is presented. This choice of target systems is a crucial point for the
backstepping control design. Indeed, assuming that we find a backstepping transformation, the closed-loop
system will have the same dynamic as the target system. Consider the following target system

(
ΣT1

) 
wtt(x, t) = wxx(x, t)−λwt(x, t), (7.12a)

wx(1, t) =−c1wt(1, t), (7.12b)

wtt(0, t) =−d1wt(0, t)+d2wx(0, t), (7.12c)

in which λ is an in-domain viscous damping term. c1, d1, and d2 are boundary parameters.

Consider the following Lyapunov functional candidate

V1(Xe(t)) =
∫ 1

0
(w2

x +w2
t )dx+

1
b2

wt(0, t)2 +σ

∫ 1

0
(1+ x)wxwtdx, (7.13)

in which

σ < min
{√

2,
8λ

4λ 2−1
if λ >

1
4
,

2c1

1+ c2
1

}
, (7.14)

and Xe(t) ∈ H1 is
Xe(t) = [w(., t), wt(., t), w(0, t), wt(0, t)] . (7.15)

The functional V is thereby positive and definite on S (7.6). This means

∀z ∈ H1,

{
V (z)> 0,
z ∈S ⇔V (z) = 0.

(7.16)

The proof of the follwing lemma is not the same as the one exposed in [Roman et al., 2016a], and it result
slightly differs from [Roman et al., 2016a]. Indeed, here we do no evaluate the decay rate.
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Lemma 7.1 Adapted from [Roman et al., 2016a]
Consider the target system

(
ΣT1

)
defined in (7.12). If all parameters are positive, i.e., λ > 0, c1 > 0, d1 > 0,

and d2 > 0, there exists ρ1 > 0, such that

V̇1(Xe(t))6−ρ1V1(Xe(t)), (7.17)

in which V1 is defined in (7.13).

Before entering into the details of the proof a proposition is stated. The idea is to use vector notation to get a
more unified way to compute the Lyapunov function candidate derivative.

Proposition 7.1 Consider W (x, t) ∈ Rn with n ∈ N, x ∈ [0,1] and t ∈ [0,∞), whose dynamics is

Wt(x, t) = A1(x)W (x, t)+A2Wx(x, t), (7.18)

in which A1(x)∈Rn×n and A2 ∈Rn×n. Consider also W1(t)∈Rm with n>m∈N and W0(t)∈Rp with n> p∈N,
whose dynamics satisfy

d
dt

W1(t) = A3W (1, t), (7.19)

d
dt

W0(t) = A4W (0, t), (7.20)

in which A3 ∈ Rm×n and A4 ∈ Rp×n. Furthermore, assume that there exist A5 ∈ Rm×n and A6 ∈ Rp×n such that
it holds

W1(t) = A5W (1, t), (7.21)

W0(t) = A6W (0, t). (7.22)

Consider now the following functional

VW (W ) =
∫ 1

0
W T (x, t)P0(x)W (x, t)dx+W T

1 (t)P1W1(t)+W T
0 (t)P2W0(t), (7.23)

in which P0(x) ∈ Rn×n, P1 ∈ Rm×m, and P2 ∈ Rp×p. If

AT
2 P0(x)−P0(x)A2 = 0, (7.24)

then it holds

V̇W (W ) =−
∫ 1

0
W T (x, t)Q0(x)W (x, t)dx−W T (1, t)Q1W (1, t)−W T (0, t)Q2W (0, t), (7.25)

with

Q0(x) =−AT
1 (x)P0(x)−P0(x)A1(x)+P′0(x)A2, (7.26)

Q1 =−AT
3 P1A5−AT

5 P1A3−P0(1)A2, (7.27)

Q2 =−AT
4 P2A6−AT

6 P2A4 +P0(0)A2. (7.28)

Equation (7.26)-(7.28) are similar to Lyapunov equation in finite dimensional case, therefore, we will also refer
to as it. These equations can be used to evaluate the decay rate as it is done for hyperbolic PDEs in [Lamare
et al., 2016] for example. Note that the dynamics under consideration is indeed somehow related to first-order
hyperbolic PDEs.

Proof of proposition 7.1: From (7.23), the derivative along the state trajectory, using the dynamics of W ,
W1, and W0 in (7.18)-(7.20), is

V̇W (W ) =
∫ 1

0

(
W T [A1(x)T P0(x)+PT

0 (x)A1(x)]W +W T
x AT

2 P0(x)W +W T P0(x)A2Wx
)
dx

+W T (1, t)AT
3 P1W1(t)+W T

1 (t)P1A3W (1, t)+W T (0, t)AT
4 P2W0(t)+W T

0 (t)P2A4W (0, t). (7.29)

Using integration by parts, and (7.21)-(7.22), one concludes the proof. �
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Now using Proposition 7.1, the proof of Lemma 7.1 is straightforward.

Proof of Lemma 7.1: First, from (7.12) one observes that[
wtt

wtx

]
(x, t) =

[
0 −λ

0 0

][
wt

wx

]
(x, t)+

[
0 1
1 0

][
wxt

wxx

]
(x, t), (7.30)

and

wtt(0, t) =
[
−d1 d2

][wt(0, t)
wx(0, t)

]
(x, t). (7.31)

Consider P1 as

P1 =

[
p1 p2
∗ p3

]
.

The condition (7.24) is equivalent to p1 = p3. This is the case of the considered Lyapunov functional. Indeed let
us express V1 defined in (7.13) in vector form

V1(Xe(t)) =
∫ 1

0

[
wt

wx

]T [
1 σ(1+x)

2
∗ 1

][
wt

wx

]
dx+

1
d2

wt(0, t)2.

Using Proposition 7.1, one computes the derivative of V1 (defined in (7.13)) along the trajectory of (7.30)-(7.31)

V̇1(Xe(t)) =−
∫ 1

0

[
wt

wx

]T [
2λ + σ

2
λσ(1+x)

2
∗ σ

2

][
wt

wx

]
dx−

[
wt(0, t)
wx(0, t)

]T [σ

2 +2 d1
d2

0
∗ σ

2

][
wt(0, t)
wx(0, t)

]
− [2c1−σ − c2

1σ ]wt(1, t)2, (7.32)

according to the inequality on σ in (7.14), the matrices[
2λ + σ

2
λσ(1+x)

2
∗ σ

2

]
,

[
σ

2 +2 d1
d2

0
∗ σ

2

]
, (7.33)

are symmetric positive definite and
2c1−σ − c2

1σ > 0. (7.34)

Thus (7.17) holds. This concludes the proof of Lemma 7.1. �

7.3 Backstepping state feedback

The backstepping approach is used to design a control law stabilizing system (7.1) towards S defined in (7.6).
The objective is to find a control law U(t) that matches the original system (ΣO1) defined in (7.1) into the target
system (ΣT1) defined in (7.12).

The desired control law U is chosen as

U(ut ,ux) :=−c1ut(1, t)+
1

m(1,1)−1

[∫ 1

0

[
gxy(1,y)− sx(1,y)+ c1(λ (s(1,y)−gy(1,y))+my(1,y))

]
ut(y, t)dy

+
∫ 1

0
[c1(sy(1,y)−gyy(1,y))−mx(1,y))ux(y, t)dy+

[
gx(1,0)+ c1(m(1,0)+b1g(1,0))

]
ut(0, t)

]
, (7.35)

where b1 c1 are the parameters of the wave equation (7.1a) and s, m, and g are the kernels of the backstepping
transformation which is defined as

w(x, t) = u(x, t)−
∫ x

0
s(x,y)ut(y, t)dy−

∫ x

0
m(x,y)ux(y, t)dy−

∫ x

0
g(x,y)uxt(y, t)dy. (7.36)

One may be surprised by the form of this transformation, as the last integral in (7.36) includes only boundary
terms. Indeed, using an integration by parts, one can rewrite the last integral as an integral term of ut(y, t) and
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boundary terms, ut(0, t) and ut(x, t). However, we will see that the existence and uniqueness of the kernel are
more easily proven under this from. This idea of adding integrals term was used in [Smyshlyaev and Krstic,
2009] with a third-order kernel in u, ut , and ux. Here, it is applied to a third-order kernel but in ux, ut , and uxt .
It is worth noting that one may also choose to add an integral term in u in (7.36). However, due to the specific
form of the considered target system, the corresponding kernel would be found equal to zero.

Note that ux(y, t) means the derivative of u by its first variable applied at (y, t). ut denote the derivative of u
with respect to it second variable. For the kernel kx denotes the derivative of k by its first variable, and ky by its
second.

The kernels are defined as  s(x,y)
m(x,y)
g(x,y)

= eH(y−x)F, (7.37)

in which

F =
1
d2

−(b1 +d1)
d2−b2

0

 , (7.38)

H =

0 b1 +λ b1(b1 +λ )
0 b2 b2(b1 +λ )
1 0 b2

 . (7.39)

It is worth noticing that 1−m(1,1) = b2
d2

and cannot be zero since b2, d2 > 0 here. Thus, the control law is
always well defined. Computation of the control law requires the knowledge of ux(·, t), ut(·, t) and the boundary
velocities ut(0, t) and ut(1, t). Moreover, using integration by parts one can express the control law in terms
of u(·, t) and ut(·, t) and their boundary values. Note that the derivatives of s(x,y), m(x,y), and g(x,y) can be
computed explicitly with (7.37).

7.3.1 Closed-loop stability result

Theorem 7.1 [Roman et al., 2016a]
Consider the closed-loop system consisting of the original system (ΣO1) defined in (7.1), together with the

control law (7.35) in which the kernel are defined in (7.37)-(7.39) with c1 > 0, d1 > 0, and d2 > 0. Then there
exist ρ > 0 and R > 0 such that, for all t > 0

Γ1(X (t))6 RΓ1
(
X (0)

)
e−ρt , (7.40)

in which Γ1 is defined in (7.7). Therefore the closed-loop system is exponentially stable with respect to the
attractor S defined in (7.6).

For the case λ = 0, using the fact that a pure wave equation (i.e., without distributed term) can be reformu-
lated as two transport phenomena, one recovers the predictive control in [Bresch-Pietri and Krstic, 2014a] taking
aside the adaptive part. This is detailed in Section 7.6.

The control law (7.35) has a structure similar to the one proposed in [Sagert et al., 2013] and thus re-
quires knowledge of the same variables (namely ut(·, t), ux(·, t) modulo an intergration by part). Section 7.7
is dedicated to the comparison of both controllers. Nevertheless, note that the design approach we propose
here is more straightforward -we are considering another target system which does not require a preliminary
change of variables- and the stability result (Theorem 7.1) is obtained with a more usual norm. Indeed the result
from [Sagert et al., 2013] is expressed in terms of ux(., t), uxx(., t), utx(., t) and ut(0, t) and the evaluation of the
norm requires more regular solution, namely, strong solution.
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7.3.2 Closed-loop system well-posedness

Using the proof of Theorem 7.1, one can establish the closed-loop system well-posedness. This has to be seen
as a complementary result of Theorem 7.1. Consider the following operator

∀z ∈ Dom(A1)⊂ H1, A1 :=−


0 1 0 0

δxx −λ 0 0
0 0 0 1

b2δx|0 0 0 b1

 , (7.41)

in which δxxz1 = z′′1 and δx|0z1 = z′1(0) and with Dom(A1) is defined as

Dom(A1) :=
{
(z1,z2,z3,z4) ∈ H2(0,1)×H1(0,1)×R2 : z3 = z1(0), z4 = z2(0), z′1(1) = U (z)

}
. (7.42)

The strong solution of the system belongs to Dom(A1), whereas the weak solution belongs to H1. The abstract
problem resulting from the system

(
ΣO1

)
defined in (7.1) with U (which is the functional associated with the

control law U defined in (7.35)) is
d
dt

X(t)+A1X(t) = 0, X(t) ∈ Dom(A1) , (7.43a)

X(0) = X0. (7.43b)

The link between X(t), z, and u(·, t) is

X(t) =


X1(t)
X2(t)
X3(t)
X4(t)

= z =


z1
z2
z3
z4

=


u(·, t)
ut(·, t)
u(0, t)
ut(0, t)

 .

Note that the only difference of A1 with A0 defined in (7.3) lies in the definition of their respective domains.

Theorem 7.2 Consider H1, A1, and Dom(A1) receptively defined in (7.2), (7.41), and (7.42).

(i). For all initial data X0 ∈ Dom(A1), the abstract problem (7.43) has a unique strong solution such that{ ∀t > 0, X(t) ∈ Dom(A ),

X1 ∈W1,∞(0,∞;H1(0,1))∩L∞(0,∞;H2(0,1)).

(ii). For all initial data X0 ∈ H1, the abstract problem (7.43) has a unique weak solution{ ∀t > 0, X(t) ∈ H,
X1 ∈W1,∞(0,∞;L2(0,1))∩L∞(0,∞;H1(0,1)).

given by X(t) = S(t)X0, in which S is the C0-semigroup of contraction generated by the unbounded oper-
ator A1.

Proof : The proof of well-posedness is detailed in Appendix B, as it uses ideas developed in Chapter 8
and Chapter 9. �

7.4 Proof of the closed-loop stability

7.4.1 Establishment of the kernel PDE

Lemma 7.2 Consider the backstepping transformation (7.36) which maps the closed-loop system (ΣO1) defined
in (7.1) with the control law (7.35) into the target system (ΣT1) defined in (7.12). The kernel of this backstepping
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transformation is solution of

(
ΣK1

) 
Sxx(x,y) = Syy(x,y), (7.46a)

S(x,x) = F , (7.46b)

Sy(x,0) = HS(x,0), (7.46c)

in which F and H have been introduced in (7.38) and (7.39). And with

S(x,y) =

 s(x,y)
m(x,y)
g(x,y)

 . (7.47)

Proof : From the time derivative of (7.36), using integrations by parts and (7.1a), it holds

wt(x, t) =ut(x, t)+λ

∫ x

0
s(x,y)ut(y, t)dy− [s(x,y)ux(y, t)]

x
y=0 +

∫ x

0
sy(x,y)ux(y, t)dy−

∫ x

0
m(x,y)uxt(y, t)dy

− [g(x,y)uxx(y, t)−gy(x,y)ux(y, t)]xy=0−
∫ x

0
gyy(x,y)ux(y, t)dy+λ

∫ x

0
g(x,y)uxt(y, t)dy. (7.48)

Similarly, one obtains the second order time derivative of w

wtt(x, t) =uxx−λut(x, t)+λ
[
s(x,y)ux(y, t)

]x
y=0−λ

∫ x

0
sy(x,y)ux(y, t)dy−λ

2
∫ x

0
s(x,y)ut(y, t)dy

− [s(x,y)uxt(y, t)− sy(x,y)ut(y, t)]
x
0−

∫ x

0
syy(x,y)ut(y, t)dy− [m(x,y)uxx(y, t)−my(x,y)ux(y, t)]xy=0

−
∫ x

0
myy(x,y)ux(y, t)dy+λ

∫ x

0
m(x,y)uxt(y, t)dy− [g(x,y)uxxt(y, t)−gy(x,y)uxt(y, t)]x0

−
∫ x

0
gyy(x,y)uxt(y, t)dy+λ [g(x,y)uxx(y, t)−gy(x,y)ux(y, t)]x0 +λ

∫ x

0
gyy(x,y)ux(y, t)dy

−λ
2
∫ x

0
g(x,y)uxt(y, t)dy. (7.49)

Now, the first order space derivative of (7.36) can be computed as

wx(x, t) =ux(x, t)− s(x,x)ut(x, t)−
∫ x

0
sx(x,y)ut(y, t)dy−m(x,x)ux(x, t)−

∫ x

0
mx(x,y)ux(y, t)dy

−g(x,x)uxt(x, t)−
∫ x

0
gx(x,y)uxt(y, t)dy, (7.50)

and finally the second order space derivative of (7.36) is

wxx(x, t) =uxx(x, t)− s(x,x)uxt(x, t)− (s′(x,x)+ sx(x,x))ut(x, t)−
∫ x

0
sxx(x,y)ut(y, t)dy

−m(x,x)uxx(x, t)− (m′(x,x)+mx(x,x))ux(x, t)−
∫ x

0
mxx(x,y)ux(y, t)dy

−g(x,x)uxxt(x, t)− (g′(x,x)+gx(x,x))uxt(x, t)−
∫ x

0
gxx(x,y)uxt(y, t)dy. (7.51)

As the considered backstepping transformation relies on Volterra integrals, we standardly solve the kernel
equations on a triangle, i.e., x ∈ [0,1], y ∈ [0,x]. The propagation phenomenon (7.12a) imposes diagonal terms
(e.g. s(x,x)), horizontal terms (e.g. s(x,0)) and surface terms (e.g. s(x,y)), using (7.1a) and (7.1c). Moreover,
the (uncontrolled) boundary at x = 0 of the target system (7.12c) imposes point-wise terms (e.g. s(0,0)), using
(7.1c). The (controlled) boundaries at x = 1 (7.1b) and (7.12b) impose the control law. From (7.48)-(7.51), the
propagation phenomenon (7.12a) is equivalent to the following conditions2

2the nomenclature used here is ”factory term”” : ” ”condition”
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• Kernel surface terms (x,y) ∫
ut(y, t)dy : syy(x,y) = sxx(x,y), (7.52)∫
ux(y, t)dy : myy(x,y) = mxx(x,y), (7.53)∫
uxt(y, t)dy : gyy(x,y) = gxx(x,y). (7.54)

• Kernel diagonal terms (x,x)

ut(x, t) : sy(x,x) =−s′(x,x)− sx(x,x), (7.55)

ux(x, t) : my(x,x) =−mx(x,x)−m′(x,x), (7.56)

uxt(x, t) : gy(x,x) =−gx(x,x)−g′(x,x). (7.57)

• Kernel horizontal terms (x,0)
ut(0, t) : sy(x,0) = (b1 +λ )m(x,0)+b1(b1 +λ )g(x,0), (7.58)
ux(0, t) : my(x,0) = am(x,0)+b2(b1 +λ )g(x,0), (7.59)
uxt(0, t) : s(x,0)−gy(x,0)+b2g(x,0) = 0. (7.60)

• Kernel point-wise terms (0,0): To inspect these terms, note that the boundary condition (7.12c) needs also
to be verified. First one can get the following equation by expressing (7.36), (7.48), (7.49) and (7.50) for
x = 0, and using the uncontrolled boundary condition of the initial system (7.1c)

wtt(0, t) = aqut(0, t)+aux(0, t), (7.61)

wt(0, t) = ut(0, t), (7.62)

wx(0, t) = ux(0, t)− s(0,0)ut(0, t)−m(0,0)ux(0, t)−g(0,0)uxt(0, t). (7.63)

Then for the boundary condition (7.12c) of the target system to be respected, one obtains the following
conditions

ut(0, t) : aw s(0,0) =−(aq+aw qw), (7.64)

ux(0, t) : aw m(0,0) = (aw−a), (7.65)

utx(0, t) : g(0,0) = 0, (7.66)

one can reformulate (7.55)-(7.60), and (7.64)-(7.66) as (7.46).

It remains to show that the control law fixed by the boundary condition (7.12b) and the backstepping trans-
formation (7.36) can be expressed as (7.35). First, let us compute wx(1, t) and wt(1, t). Using integrations by
parts on (7.50), and also (7.46b), one obtains

wx(1, t) =(1−m(1,1))ux(1, t)− (gx(1,1)+ s(1,1))ut(1, t)+gx(1,0)ut(0, t)

+
∫ 1

0
(−sx(1,y)+gxy(1,y))ut(y, t)dy−

∫ 1

0
mx(1,y)ux(y, t)dy, (7.67)

in which, using (7.37), gx(1,1)+ s(1,1) = 0. Then, from (7.48), using integrations by parts and (7.60), one can
write

wt(1, t) =(1−m(1,1))ut(1, t)+
∫ 1

0
(λ s(1,y)+my(1,y)−λgy(1,y))ut(y, t)dy, (7.68)

+
[
gy(1,1)− s(1,1)

]
ux(1, t)+(m(1,0)+b1g(1,0))ut(0, t)+

∫ 1

0
(sy(1,y)−gyy(1,y))ux(y, t)dy.

Now (7.37) allows to state that gy(1,1)− s(1,1) = 0. Matching the expression (7.67) with (7.68), and using
(7.1b), one establishes the control law (7.35). �
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7.4.2 Vector reformulation and explicit solution of the kernel equation

Lemma 7.3 [Roman et al., 2016a]
The kernel PDE (7.46) has a unique solution which is (7.37).

Proof : As (7.46a) is a pure wave equation (i.e., without distributed term), there exist S+ and S− such that

S(x,y) = S+(x+ y)+S−(x− y), (7.69)

by expressing it for y = x and using (7.46b), one gets

S(x,x) = S+(2x)+S−(0) = F, (7.70)

and concludes that S+(x) is constant, so there exists S̃(x− y) such that

S(x,y) = S̃(x− y), (7.71)

and from (7.46b)-(7.46c), for all x ∈ [0,1],

S̃′(x) =−HS̃(x), (7.72)

S̃(0) = F, (7.73)

which is a Cauchy problem. This proves the existence and uniqueness of the kernel. From (7.71)-(7.73) one can
find (7.37). �

The establishment of the kernel uniqueness and existence is not often as easily done, e.g. [Luo et al., 2012],
[Smyshlyaev et al., 2010], [Di Meglio et al., 2018], [Meurer and Kugi, 2009]. In Chapter 8, we present a control
design which results from an implicit kernel whose uniqueness and existence is proven through the method of
successive approximations.

7.4.3 Invertibility of the backstepping transformation

This section completes the preliminary presentation in [Roman et al., 2016a], including the definition of the state
space H1. Let us consider the following map that transforms the original system (7.1) with U defined in (7.35)
into the target system (7.12)

Π : H1 → H1,
(q1,q2,q3,q4) 7→ (z1,z2,z3,z4),

(7.74)

defined as

z1(x) =q1(x)+g(x,0)q4−
∫ x

0
(s(x,y)−gy(x,y)q2(y)dy+

∫ x

0
m(x,y)q′1(y)dy, (7.75)

z2(x) =(1−m(x,x))q2(x)+(−s(x,x)+gy(x,x))q′1(x)+(g(x,0)b1 +m(x,0))q4

+
∫ x

0
(λ s(x,y)+my(x,y)−λgy(x,y))q2(y)dy+

∫ x

0
(sy(x,y)−gyy(x,y))q′1(y)dy, (7.76)

z3 =q3, (7.77)

z4 =q4, (7.78)

where s, m, and g are defined in (7.37). H1 is defined (7.2). We have used the fact that g(x,x) = 0 and (7.60).

Let us check that z ∈ H1. As q1, q2, q′1 ∈ L2(0,1) so is z1, similarly z′(1), z2 ∈ L2(0,1). The following is
obvious z3,z4 ∈ R. As q1(0) = q3 and g(0,0) = 0 then it holds z3 = z1(0). Therefore z ∈ H1.

The existence of the inverse map Π−1 can be obtained by simply replacing bi with di and considering c1 = 0
in the previous analysis. One gets the invertibility of the backstepping transformation straightforwardly.

Π−1 : H1 → H1,
(z1,z2,z3,z4) 7→ (q1,q2,q3,q4),

(7.79)



7.4. Proof of the closed-loop stability 127

defined as

q1(x) =z1(x)+ ğ(x,0)z4−
∫ x

0
(s̆(x,y)− ğy(x,y)z2(y)dy+

∫ x

0
m̆(x,y)z′1(y)dy, (7.80)

q2(x) =(1− m̆(x,x))z2(x)+(−s̆(x,x)+ ğy(x,x))z′1(x)+(ğ(x,0)b1 + m̆(x,0))z4

+
∫ x

0
(λ s̆(x,y)+ m̆y(x,y)−λ ğy(x,y))z2(y)dy+

∫ x

0
(s̆y(x,y)− ğyy(x,y))z′1(y)dy, (7.81)

q3 =z3, (7.82)

q4 =z4, (7.83)

in which  s̆(x,y)
m̆(x,y)
ğ(x,y)

= eH̆(y−x)F̆, (7.84)

where F̆ and H̆ are as

F̆ =
1
b2

−(d1 +b1)
b2−d2

0

 , (7.85)

H̆ =

0 d1 +λ d1(d1 +λ )
0 d2 d2(d1 +λ )
1 0 d2

 . (7.86)

7.4.4 Relationship between Γ1(X (t)) and V1(Xe(t))

To conclude on the exponential stability of the original system (7.1) along with the control law (7.35), the
equivalence between V1(Xe(t)) in (7.13) and Γ1(X (t)) in (7.7) remains to be proved.

Lemma 7.4 [Roman et al., 2016a]
Considering V1 in (7.13) and Γ1 in (7.7), there exist µ1 > 0 and µ2 > 0 such that

µ1Γ1 (X (t))6V1 (Xe(t))6 µ2Γ1 (X (t)) , (7.87)

where X (t) is the state of the original system
(
ΣO1

)
respectively defined in (7.10) and (7.1). Xe(t) is the state

of the target system
(
ΣT1

)
respectively defined in (7.15) and (7.12).

Proof : From the backstepping transformation (7.36), one can write

‖wt‖2 +‖wx‖2 6 α1‖ux‖2 +α2‖ut‖2 +α3ut(0, t)2, (7.88)

wt(0, t)2 = ut(0, t)2, (7.89)

in which α1, α3, and α3 are positive constants. Thus, from the definition of V1 in (7.7), one obtains

V1(Xe(t))6 α1‖ux‖+α2‖ut‖+(α3 +1)ut(0, t)2. (7.90)

Similarly, from the inverse backstepping transformation investigated in Section 7.4.3, one can get

‖ut‖2 +‖ux‖2 6 α4‖wx‖2 +α5‖wt‖2 +α6wt(0, t)2, (7.91)

ut(0, t)2 = wt(0, t)2, (7.92)

in which α4, α5, and α6 are positive constants. Thus, from the definition of Γ1 in (7.7), one obtains

Γ1(X1(t))6 α4‖wx‖+α5‖wt‖+(α6 +1)wt(0, t)2. (7.93)

From both the definition of Γ1 in (7.7) and V1 in (7.13), using (7.90) and (7.93) one obtains (7.87). �
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Remark 2 In mathematical words, (7.87) does not mean that the semi-norms,
√

Γ1(·) and
√

V1(·) are equiva-
lent. Indeed this is not quite the same as

∀z ∈ H1, ∃η1,η2 > 0 : η1Γ1(z)6V1(z)6 η2Γ1(z). (7.94)

Note that this holds. One question is: Given the fact that (7.94) holds, is Lemma 7.4 equivalent to the invertibility
of the backstepping transformation ? ◦

7.4.5 Conclusion of the closed-loop stability result proof

Using Lemma 7.3, there exists a unique solution to (7.46) which is (7.37). From Lemma 7.2, this solution
defines a backstepping transformation which maps the system (7.1) into (7.12) with the control law U defined in
(7.35). Moreover, from Lemma 7.1, one gets that (7.12) is exponentially stable if all its parameters are positive.
Therefore, using Lemma 7.4, one establishes (7.40) and thus Theorem 7.1 holds.

7.5 Observer design

To provide a feedback law which can be implemented using only boundary measurements, we propose here to
associate the full state feedback presented in the Section 7.3 with an observer. The following theorem is the
extension of Theorem 7.1 in the case of observer-based control.

Theorem 7.3 [Roman et al., 2016a]
Consider the closed-loop system consisting of the plant (7.1), the observer

(
ΣOb1

) 
ûtt(x, t) = ûxx(x, t)−2λ ût(x, t), (7.95a)

ûx(1, t) =U(ût , ûx)+ l1(ut(1, t)− ût(1, t)), (7.95b)

ûtt(0, t) = b1ût(0, t)+b2ûx(0, t)+ l2(ut(0, t)− ût(0, t)), (7.95c)

in which l1 > 0 and l2 > b1 and the control law U defined in (7.35) computed with the estimate value of ut and
ux, i.e., ût and ûx and with (7.37)-(7.39) in which c1 > 0, d1 > 0 and d2 > 0. Define the state

X̂ (t) = [û(., t), ût(., t), û(0, t), ût(0, t)] ∈ H1, (7.96)

and the functional Γe

Γe : H1×H1 → R+,

(X (t),X̂ (t)) 7→ Γ1(X (t))+Γ1(X̂ (t)−X (t)),
(7.97)

then there exist ρe > 0 and Re > 0 such that, for all t > 0

Γe(X (t),X̂ (t))6 ReΓe(X (0),X̂ (0))e−ρet , (7.98)

and therefore the extended closed-loop system, whose state is
[
X (t), X̂ (t)−X (t)

]
is exponentially stable for

the attractor S ×S defined in (7.6). Note that

Γe(X (t),X̂ (t)) = 0⇔X (t), X̂ (t)−X (t) ∈S . (7.99)

Note that both the original system state and the observer-error system state are converging toward the same
attractor and not the origin of the state space. Indeed the latter theorem does not imply that u(t)− û(t) a.e.→ 0,
but ut(t)− ût

a.e.→ 0 and ux(t)− ûx
a.e.→ 0. We have in the current case no interest in the position. To illustrate this,

one thinks about the torsional vibration occurring in drilling facility. The objective is the control of the angular
velocity. The angle does not need to converge toward the origin, or toward some fixed value in case of regulation.
We could design such a control law, using the design presented in the sequel, in Chapter 8. But if the control
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objective is the velocity, adding the position would decrease the controller performances. The same idea occurs
for the observer. Indeed, the observer (7.95) lacks the estimation of the position, which could be troublesome for
certain applications.

Proof : Consider the observation-error ũ = u− û, it can be shown that
ũtt(x, t) = ũxx(x, t)−2λ ũt(x, t), (7.100a)

ũx(1, t) =−l1ũt(1, t), (7.100b)

ũtt(0, t) =−(l2−b1)ũt(0, t)+b2ũx(0, t). (7.100c)

Following the same steps as in the proof of Lemma 7.1, the system (7.100) is exponentially stable with
respect to the attractor S defined in (7.6) if l1 > 0 and l2 > b1.

Using Lemma 7.2, the backstepping transformation map the system (7.1) with the control law U(ût , ûx)
(defined in (7.35) but applied on the estimated state û) into the following plant

wtt(x, t) = wxx(x, t)−λwt(x, t), (7.101a)

wx(1, t) =−c1wt(1, t)−U(ũt , ũx), (7.101b)

wtt(0, t) =−d1wt(0, t)+d2wx(0, t). (7.101c)

Following the same computations as the ones given in the proof of Lemma 7.1, and using the Lyapunov function
candidate V1 defined in (7.13) evaluated either for w or considering ũ instead of w, one can get the existence of
ηw > 0 and ηũ > 0 such that, for any α > 0

V̇1(Xe(t))+αV̇1(X (t)−X̂ (t))6−ηwV1(Xe(t))+U(ũt , ũx)
2−αηũV1(X (t)−X̂ (t)), (7.102)

in which V1(Xe(t)) is the Lyapunov function defined in (7.13) computed for the system (7.101) instead of system
(7.12). V1(X (t)−X̂ (t)) is the Lyapunov function defined in (7.13) computed for the system (7.100).

From the definition of U in (7.35), applying Young and Cauchy Schwartz inequalities, there exists ν > 0
such that

U(ũx, ũt)
2 6 νV1(X (t)−X̂ (t)), (7.103)

thus by choosing α < ν

ηũ
, there exists η such that

V̇1(Xe(t))+αV̇1(X (t)−X̂ (t))6−η
(
V1(Xe(t))+αV1(X (t)−X̂ (t))

)
. (7.104)

Finally, using Lemma 7.4, and the fact that the semi-norm
√

Γ1(·) and
√

V1(·) are equivalent (7.94), there
exist µ3 > 0 and µ4 > 0 such that

µ3Γe(X (t),X̂ (t))6V1(Xe(t))+αV1(X (t)−X̂ (t))6 µ4Γe(X (t),X̂ (t)). (7.105)

Gathering the last two equations one concludes the proof. �

Note that the proper estimation of ν in (7.103) and thus η in (7.104) requires the computation of the back-
stepping kernel. According to the version of Lemma 7.1 in [Roman et al., 2016a], the decay rate is depend-
ing on σ , and thus cannot be freely imposed. It seems that we are in presence of the overdamping effect
as σ < 8λ

4λ 2−1 if λ > 1
4 , indeed the decay rate of the Lyapunov function V1 defined in (7.13) decreases as λ in-

creases. Yet, one cannot conclude formally here as Lyapunov approach only gives sufficient conditions. However
the consequence for the considered design is that the decay rate cannot be arbitrarily chosen a priori both for the
target system (7.12) and our observer (7.95).

7.6 Comparison with prediction-based designs

In this section, we want to emphasize the relationship between the prediction based design we have studied in
Part I, Chapter 3, and the current backstepping design. Let us consider the control law U defined in (7.35) with
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λ = 0, c1 = 1, and d2 = b2. In this case, we can compute the eigenvalues of the matrix H and its the exponential
and thus the kernels s, m, and g involved in the control law. Consider

P =

−b2 b1 −b1
−b1 b2 −b2

1 1 1

 , P−1 =


b2

b2
1−b2

2

−b1
b2

1−b2
2

0
1

2(b1+b2)
1

2(b1+b2)
1
2

−1
2(b1−b2)

1
2(b1−b2

1
2

 , (7.106)

and

Hλ=0 =

0 b1 b2
1

0 b2 b2b1
1 0 b2

 , (7.107)

which is H defined in (7.39) but with λ = 0. P is the change of basis matrix, together with its inverse they allow
to diagonalize Hλ=0 as

P−1Hλ=0P =

0 0 0
0 b1 +b2 0
0 0 b2−b1

 , (7.108)

which implies that the control law U defined in (7.35) with λ = 0, c1 = 1, and d2 = b2, can be expressed as

U(t) =−ut(1, t)−
[∫ 1

0
(b1 +d1)e(b1−b2)(1−y)ut(y, t)dy

+
∫ 1

0
(b1 +d1)e(b1−b2)(1−y)ux(y, t)dy+(b1 +d1)e(b1−b2)(1−y)ut(0, t)

]
, (7.109)

with d1 = a(c0− 1), b2 = a, and b1 = aq, one recovers the prediction-based control law (3.2) studied in the
previous Chapter (3). This is interesting because we can link together three approaches.

• The prediction based design, which finds his fondation at Smith predictor [Smith, 1959].

• The finite-dimensional backstepping, which use the cascade feature of system, to control its dynamic.

• The infinite-dimensional backstepping. One can see a PDE as a continuous cascade of subsystems. In
some particular cases, a PDE can model a delay

Therefore, one can see this infinite dimensional backstepping control design as a generalization of the Smith
predictor.

7.7 Comparaison with the backstepping control law in [Sagert et al., 2013]

This section discusses way to compare our control law design in [Roman et al., 2016a] and presented before
(7.35) and the control law design in [Sagert et al., 2013]. We focus on the latter design because, up to our
knowledge, it is the only one which consider the exactly the same dynamics.

7.7.1 Presentation of both control laws

Consider the original system defined in (7.1)

The design in [Sagert et al., 2013] First considering v(x, t) = ux(x, t) and X(t) = ut(0, t), one gets

(ΣV1)


vtt(x, t) = vxx(x, t)−λvt(x, t), (7.110a)

v(1, t) =U(t), (7.110b)

vx(0, t) = b2v(0, t)+(λ +aq)X(t), (7.110c)

Ẋ(t) = b1X(t)+b2v(0, t), (7.110d)
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then this last system is mapped to

(ΣW1)


wtt(x, t) = wxx(x, t)−λwt(x, t), (7.111a)

w(1, t) = 0, (7.111b)

wx(0, t) = e1wt(0, t), (7.111c)

Ẋ(t) =−e2X(t)+b2w(0, t), (7.111d)

through a backstepping transformation. The control law is chosen as

UW (t) =
∫ 1

0
k(1,χ)ux(χ, t)dχ +

∫ 1

0
s(1,χ)uxt(χ, t)dχ + γ(1)ut(0, t), (7.112)

where the gains are computed using 
k(x,y)
s(x,y)

γ(x− y)
γ ′(x− y)

= eM(x−y)E, (7.113)

in which

E =


b2− e1(b1 + e2)

−e1

−b1+e2
b2

λ +b1− (b1 + e2)e1
b1
b2

 , (7.114)

M =


−b2 −b2(λ +b1) b2(λ +b1) 0

0 −b2 b2 0
0 0 0 1

λ +b1 b1(λ +b1) −b1(λ +b1) 0

 . (7.115)

Our control design Let us express the control law U (7.35) under the same form as (7.112), i.e., in term of ut ,
uxt , and ut(0, t).

Proposition 7.2 The control U defined in (7.35) can be expressed as

U(ut ,ux) =
∫ 1

0
k(1,χ)ux(χ, t)dχ +

∫ 1

0
s(1,χ)uxt(χ, t)dχ + γ(1)ut(0, t), (7.116)

where the gain are computed using
k(1,y) = ARS(1,y), (7.117)

s(1,y) =−BRS(1,y)+BRS(1,1)− c1, (7.118)

γ(1) = (CR−BR)S(1,0)+BRS(1,1)− c1, (7.119)

in which

AR =
1

m(1,1)−1
[
−b2c1 b2 b2(b1 +λ −b2c1)

]
, (7.120)

BR =
1

m(1,1)−1

[
c1

b2
b1+λ

0 −b2

]
, (7.121)

CR =
1

m(1,1)−1
[
c1−1 0 b1c1−b2

]
, (7.122)

where S is defined in (7.47), with s, m and g taken as (7.37).
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This proposition underlines that both control laws have indeed the same form.

Proof : First consider

θ1 =
[
1 0 0

]
, θ2 =

[
0 1 0

]
, θ3 =

[
0 0 1

]
, (7.123)

it holds
s(x,y) = θ1S(x,y), m(x,y) = θ2S(x,y), g(x,y) = θ3S(x,y). (7.124)

From the definition of S in (7.37), one gets

Sy(x,y) = HS(x,y), Sx(x,y) =−HS(x,y). (7.125)

Using these notations, one writes the control U defined in (7.35) as

U(ut ,ux) =−c1ut(1, t)+
1

m(1,1)−1

[∫ 1

0
[θ1H−θ3H2 + c1(λθ1 +θ2H−λθ3H)]S(1,y)ut(y, t)dy

+
∫ 1

0
[c1(θ1−θ3H)+θ2]HS(1,y)ux(y, t)dy+(c1(θ2 +b1θ3)−θ3H)S(1,0)ut(0, t)

]
. (7.126)

Using integration by parts, it holds

U(ut ,ux) =−c1ut(1, t)+
1

m(1,1)−1

[[
[θ1−θ3H + c1(λθ1H−1 +θ2−λθ3)]S(1,y)ut(y, t)

]1

y=0

−
∫ 1

0
[θ1−θ3H + c1(λθ1H−1 +θ2−λθ3)]S(1,y)uxt(y, t)dy

+
∫ 1

0
[c1(θ1−θ3H)+θ2]HS(1,y)ux(y, t)dy+(c1(θ2 +b1θ3)−θ3H)S(1,0)ut(0, t)

]
. (7.127)

Note that
AR =

1
m(1,1)−1

[c1(θ1−θ3H)+θ2], (7.128)

BR =
1

m(1,1)−1
[θ1−θ3H + c1(λθ1H−1 +θ2−λθ3)], (7.129)

CR =
1

m(1,1)−1
c1(θ2 +b1θ3)−θ3H. (7.130)

Using that

ut(1, t) =
∫ 1

0
uxt(y, t)dy+ut(0, t), (7.131)

one finally gets

U(ut ,ux) =
1

m(1,1)−1

[∫ 1

0
[BRS(1,1)−BRS(1,y)]uxt(y, t)dy+

∫ 1

0
ARS(1,y)ux(y, t)dy+CRS(1,0)ut(0, t)

+BR(S(1,1)−S(1,0))ut(0, t)
]
− c1

∫ 1

0
uxt(y, t)dy− c1ut(0, t), (7.132)

therefore it follows (7.116). �

In order to compare two control laws, they need to have the same goal, i.e., to ensure the convergence toward
the same attractor. Nevertheless, even if their associated closed-loop system state variables converge towards
the same attractor, the way they approach the attractor can differ. One idea is to compute and compare the
eigenvalues of both target systems. Indeed, like in finite dimensional systems, the distribution of eigenvalues
characterizes the behavior of these dynamical systems. But, on the one hand, there exists an infinite number of
eigenvalues. On the other hand, as usual in backstepping method the target system has some tuning parameters,
for one realization of tuning parameters one gets a set of eigenvalues, i.e., a set of infinite complex numbers.
Therefore we need to compare an infinite family -one for each realization of tuning parameters- of infinite set of
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eigenvalues. This cannot be done numerically, or somehow we need to fix the tuning parameters. For example,
one may fix the tuning parameters by optimize some cost function. The problem is then to define this cost
function because standardly -for example in LQ design for PDE- we need to compute the C0-semigroup which are
not trivial here (see [Curtain and Zwart, 2012] for a introduction on LQ for infinite dimensional system). Indeed,
the computation of C0-semigroup is the generalization of the exponential of finite linear ordinary differential
equation. But, the issue is that we have nor the explicit eigenvalues of the operator A1 (defined in (7.41)) which
is associated to the original system (7.1), neither the ones of both target systems.

Let us review the latter paragraph. To compare two control laws we need to be sure that their associated
closed-loop system state variables converge towards the same attractor. Because otherwise they do not just
answer to the same problem. Then the questions are: are they different? If yes, can we quantify how they differ?

• Looking at closed-loop system eigenvalues.

→ The nice feature about eigenvalues is that they can illustrate how the control law differ. But in the case
under consideration, we did not find a explicit computation of them. Moreover, the change of variables
to get (ΣV1) defined in (7.110), is not invertible. Thus even if one could compute the explicit set of
eigenvalues, the comparison is not straightforward.

• Directly compare and compute the control laws.

→ The control laws are depending on tuning parameters. The exact computation is hard, even if both
kernels have been given explicitly, because the computation of matrix exponential is required. To do it we
need to compute the eigenvalues (coefficient of the diagonal matrices) and the computation of eigenvectors
(which give us the change of basis matrix). If the matrix is not diagonalizable, we can transform the matrix
onto one diagonal and one nilpotent. The issue is that the eigenvalues are not easy computed, i.e., symbolic
root of polynomial of order 3 for our control and 4 for the control in [Sagert et al., 2013]. And this gives
involved eigenvectors.

• The best and most standard way to quantify the differences between control laws is to select some criterion
(settling time, robustness, control law magnitude, ...) and to illustrate how they differ with numerical
simulations. It has not be done here. Because we need to fix somehow the tuning parameters (optimizing
a cost function) and there is not straight way to do it, it requires more work to do it, and there is probably
a lot of issues to be tackle down.

The method we suggest here is linked to the second item. The idea is to compare the differential equation
of the control gains. Indeed if we prove that these differential equation are not the same (using the converse
of the Cauchy problem), we can conclude that both control are different. First, in Section 7.7.2 we ensure that
the control law objectives are the same. Then in Section 7.7.3, we compare the control laws, by comparing the
differential equation the control gains are solution of.

7.7.2 Exponential stability of the control in [Sagert et al., 2013]

We need to define an other space, because the stability result of [Sagert et al., 2013] requires more regularity of
the solution. Define HW as

HW :=
{
(z1,z2,z3,z4) ∈ H2(0,1)×H1(0,1)×R2 ∣∣ z3 = z1(0)

}
, (7.133)

which contains the strong solution state space adapted for the original system (7.1).

The following theorem is the rewritting of the stability result in [Sagert et al., 2013], we have adapted the
notation in order to fit with the current presentation.

Theorem 7.4 Adapted from [Sagert et al., 2013]
Consider the closed-loop system consisting of the original system (ΣO1) defined in (7.1), together with the
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control law (7.112)-(7.115) in which e1 > 0, and e2 > 0. Defining the following functional

ΓW (X (t)) = ut(0, t)2 +
∫ 1

0
ux(x, t)2dx+

∫ 1

0
uxt(x, t)2dx+

∫ 1

0
uxx(x, t)2dx, (7.134)

there exist µ > 0 and M such that, for all t > 0

ΓW (X (t))6MΓW
(
X (0)

)
e−µt , (7.135)

in which X (t) ∈ HW is defined in (7.10).

The regulation leads to
‖ux‖→ 0, (7.136)

‖uxx‖= ‖utt +λut‖→ 0, (7.137)

and so the system is exponentially stable with respect to the attractor

SW :=
{

z ∈ HW : z2(·)
a.e.
= 0, z1(·)

a.e.
= c, z3 = c, c ∈ R, z4 = 0

}
. (7.138)

The first mathematical analysis is the fact that the control law in [Sagert et al., 2013] has a stronger hypothesis
on the state space regularity. It is due to the fact that they consider the space derivative of the state in (7.110). In
order to compare them, let us consider the most restrictive state space, this is HW ⊂ H1, in which H1 is defined in
(7.39), this corresponds to the state space of the weak solution of (7.1).

7.7.3 Gain comparison of the two control laws

Now let us answer to the question: are the gains k, s, and γ defined in (7.113) different from k, s, and γ defined
in (7.117)-(7.119)? The idea is not to compute the gains directly but to look at the differential equations they are
solution of. One gets that k satisfies

ky(1,y) = b2k(1,y)+b2(λ +b1)[s(1,y)− γ(1)], (7.139)

and
ky(1,y) = ARHS(1,y), (7.140)

b2k(1,y)+b2(λ +b1)[s(1,y)− γ(1)] = [b2AR−b2(λ +b1)BR]S(1,y)−b2(λ +b1)(CR−BR)S(1,0)). (7.141)

Thus, a necessary condition for the gains k and k to be equal is

(CR−BR)S(1,0)
?
= 0, (7.142)

which does never holds. Another necessary condition is

ARH ?
= b2AR−b2(λ +b1)BR. (7.143)

This also does not hold. Thus the gains k and k are not solutions of the same differential equation. Therefore using
the contraposition of the Cauchy problem one gets that the gains are different. The control laws are different,
but that does not mean they cannot provide the same equivalent performance for the closed-loop system. It is the
only result we find so far concerning the comparison of both control laws.

7.8 Simulations

We consider here the simulation of the linear system (7.1) with the control law U defined in (7.35).
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7.8.1 Space semi-discretization and eigenvalues

The following simulations are performed with the control design presented previously. The wave equation (7.1)
is semi-discretized in space, i.e.,

Ẋ(t) = AX(t)+BU(t), (7.144)

in which X(t) =
[
u[1 : n] ut [1 : n]

]T , with A ∈ R2n×2n where n is the number of spatial points considered,
B ∈ R2n×1. Under this form, the eigenvalues of the target system (7.12), and the original (zero-input) system
(7.1) and the closed-loop system with the control law (7.35), have been computed for n = 30 in Figure 7.1. The
complete details of the semi-discretization are presented in Appendix C.
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Figure 7.1: Eigenvalues of the target system (7.12), and the closed-loop system (7.1) with the control law (7.35),
for n = 35 and b1 = 0.02, b2 = 0.6, λ = 0.06, c1 = 1, d1 = b1, and b2 = d2.

Figure 7.1 illustrates the fact that the original system (7.1) controlled by the control law (7.35) has the same
behavior as the target system (7.12). Nevertheless, as we have approximated the space derivative, both set of
eigenvalues are not perfectly equal. This means that the discretized systems has not exactly the same behavior.
We suggest to illustrate the design for two sets of parameters, which are given Table 7.1. The eigenvalues of the
target system, the closed loop system and the open-loop system are shown in Figure 7.2 for the first set and in
Figure 7.3 for the second set.

Considering Figure 7.1, Figure 7.2 and Figure 7.3, one can get that the mistake we make at mapping the
discretization of closed-loop system and of the target system are depending on the parameter values of both
systems and on the space discretization n. Note also that both original systems with zero input (U(t) = 0)
are unstable for both sets of parameters. Indeed, they have positive real part eigenvalues in Figure 7.2 and in
Figure 7.3. Moreover 0 is an eigenvalue of the three systems. Furthermore it is a structural eigenvalue, indeed

vec0 =

[
1N,1
0N,1

]
, (7.145)

is an eigenvector of 0 for the three system. Each respective dynamics are invariant to a constant change of
position. This invariant set is generated by vec0 and is related the the attractor S defined in (7.6).

7.8.2 Velocity time response simulations

For the presented simulation we use two sets of parameters, the values of which are expressed in Table 7.1.
Figure 7.4 depicts the evaluation of the boundary velocities (using X(0) =

[
u0[1 : n] u0

t [1 : n]
]T ) of

• The zero-input system, i.e., (7.1) with U(t) = 0 for parameter set 1 (respectively Figure 7.4b for 2 ).
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Figure 7.2: Eigenvalues of the original system with zero input (U(t) = 0), the target system (7.12), and the
closed-loop system (7.1) with the control law (7.35), for the parameters set 1 (see Table 7.1).
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Figure 7.3: Eigenvalues of the original system with zero input (U(t) = 0), the target system (7.12), and the
closed-loop system (7.1) with the control law (7.35), for the parameters set 2 (see Table 7.1).

• The closed-loop system evaluation of the boundary velocities in the case of the full state backstepping
control law U defined in (7.35) for the parameter set 1 is displayed in Figure 7.5 (respectively Figure 7.5b
for 2 )

• The evaluation of the boundary velocities in the case of the observer based control is shown in Figure 7.6
and the evaluation of the associated control law is pictured in Figure 7.7 (respectively Figure 7.6b and
Figure 7.7b for 2 ).

One observe that set of parameters 1 gives eigenvalues with real part lower zero-input system than the set
of parameters 2 as the boundary velocities reach a higher magnitude in Figure 7.4b than in Figure 7.4a. This
observation can be explain by the fact that b2 is smaller for the set 2 . Indeed, it represents the actuation of
the wave propagation on the unstable boundary. The in-domain damping λ has been multiplied by 2, and b2
has been divided by 2, all other parameters being equal (for the original system with zero input), the open-loop
system has higher real part of eigenvalues therefore b2 is more impactful than λ for stability.

In Figure 7.5, the full-state backstepping controller performs relatively well, as both boundary velocities are
converging toward zero. Note that before t = 1 the boundary velocity at x = 0 increases due to the fact that the
wave equation is not controlled for t 6 1. Scrupulously (u(x, t), ut(x, t)) is not controllable for t 6 1− x from
the boundary at x = 1. Indeed, the actuation needs to propagate thought the wave equation.
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Symbol Description Value set 1 set 2
n Number of points of the space discretization 30 40

λ In-domain damping coefficient 0.1 0.2

b2 Uncontrolled boundary coefficient 1 0.5

b1 Anti-damping boundary coefficient 1 1

c1 Control boundary target coefficient 1 1

d2 Anti-collocated boundary target coefficient 1 1

d1 Anti-collocated Boundary damping target coefficient 1 1

l1 Observer ‘controlled’ boundary coefficient 10 2

l2 Observer ‘uncontrolled’ boundary coefficient 120% b1 2 b1

u0[1 : n] Initial data for the state u 0 0

u0
t [1 : n] Initial data for the state ut 1 1

û0[1 : n] Initial data for the estimated state u 0 0

û0
t [1 : n] Initial data for the state estimated state ut 0 0

Table 7.1: Parameter values for the simulation set 1 and 2
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Figure 7.4: Zero-input system boundary velocities time-domain response for non-zero initial conditions

In Figure 7.5b (set 2 ), the full-state backstepping control law performs relatively well but less efficiently
than in Figure 7.5a (set 1 ), as one observes damped oscillations of higher magnitude. It can explained by the
fact that the approximation error of our discretization is greater.

The time response of the observer-based control laws in Figure 7.6, are smoother than in the full-state feed-
back respectively in Figure 7.5. But they have also a higher settling time mostly due to the fact that the observer
has not converged yet. The former explains also the fact that the amplitude of the boundary velocities at x = 0
are more important for the observer-based design.

The differences of the two set of parameters apart from n and l2 are the fact that there is a 0.5 factor between
the b2 (from set 1 to 2 ), and a 0.5 factor between λ (from set 2 to 1 ), and that in set 2 d2 6= b2. The
latter seems to be the reason why the discretized approximation are performing less efficiently: there is slight
oscillation in Figure 7.5b. Nevertheless, note that there is factor h 2 between the magnitude of both control
law time responses in Figure 7.7a and in Figure 7.7b. This is fitting with the factor between the b2, as b2 is the
actuation coefficient of the wave equation to its own boundary. Indeed, as the link is less decent, more energy is
needed from the control law.
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Figure 7.5: Closed-loop boundary velocities time-domain response for non-zero initial conditions. The full-state
backstepping controller stabilizes the system
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Figure 7.6: Observer based-control: closed-loop boundary velocities time-domain response for non-zero initial
conditions.
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Figure 7.7: Control law time-domain response for non-zero initial conditions for the observer based backstepping
controller.
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7.8.3 Frequency response of the discretized system

This section is actually an answer to a question arising at the presentation of this work at CDC 2016 in Las
Vegas:

Is the proposed observer-based control law is robust with respect to output noises?

In order to answer to this question we suggest to draw the bode diagram associated with the numerical model.
Indeed this seems the best way to illustrate the general behavior of the closed-loop system with respect to noises
and disturbance.

It is always interesting (and mandatory) to study the control law robustness, as in practice, models are only
an approximation of the reality. The previous part was focused on the model parameter mismatch. We want now
to show the robustness with respect to signal noises. As we are considering a finite dimensional system, the bode
diagram resulting from this study can be drawn easily. In the observer based design we consider three exogenous
signals, dU , dy|1, and dy|0 that symbolize receptively a actuation perturbation, and measurement perturbations at
the boundary x = 1 and x = 0. Figure 7.8 represents the control scheme.

dU

System

ut(1, t)

ut(0, t)

Observer
dy|1

dy|0
Control

U(t)

Figure 7.8: Control scheme with the exogenous signals.

The bode diagrams for the parameter set 1 are presented in Figure 7.9, with a zoom-in view shown in
Figure 7.11. In Figure 7.11, the frequency response is similar to the Padé approximation of a delay. This is
consistent with

• The observation we have made about the uncontrollably of the wave for t 6 1− x.

• The Riemann invariant for the case without source term, where the wave equation can be reformulated as
two transport.

• The remark we have made about the link between, prediction based control, infinite dimensional backstep-
ping and backstepping in finite cases (in Section 7.6).

What we actually have is the Padé approximation of a wave equation as we have semi-descritized the system
in space. The Padé approximation is the approximation of a function by a rational one. Here it is not strictly
speaking a function but a operator.

Similarly the bode diagram for the set of parameters 2 is shown in Figure 7.10, a zoom of which is depicted
in Figure 7.12. All frequency responses are characterized by a low-pass filter feature. This means that high
frequency noises are not disturbing the behavior of both systems.

The main specificity of the frequency responses is the more accentuated presence of a zero of transmission
in the transfer from dy|1 to ut(0, t), ut(1, t) and a fortiori U(t) for the set 2 . We can see it on Figure 7.10, and
on Figure 7.12. The question is: where does this zero come from? Is it depending on tuning parameters? If it is
the case, then we can design a control law robust to sinusoidal perturbation. There exists a lot of transmission
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Figure 7.9: Observer based design bode diagram with parameter set 1 .

zero on each transfer function. Our initial guess has been that they represent the Padé approximation of the delay
contained in the wave equation. As the wave PDE is normalized, this delay is the unit. However is seemed that
changing the parameters modifies some of these zeros. We may be able to perform robust control directly from
the backstepping controller. Nevertheless, a more promising design will be to adapt the result in [Guo and Guo,
2016] to our system (7.1).

With a quick lecture of the previous paragraph, one can say that it is obvious that the Padé change with λ as
it is a parameters of the operator. But the localization of the zero and the interval of repetition are linked with
the delay inside the wave, which according to Riemann invariants remains the same for any λ .

The bode diagram in Figure 7.9, Figure 7.10, Figure 7.11, and Figure 7.12 can be link together with the bode
in the text book [Lalanne et al., 1984] which considers finite association of mass-spring elements.
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Figure 7.10: Observer based design bode diagram with parameter set 2 .
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Figure 7.11: Observer based design bode diagram zoom with parameter set 1 .
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Figure 7.12: Observer based design bode diagram zoom with parameter set 2 .
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Chapter conclusion

In this chapter, the establishment of a boundary output feedback has been presented. In details, (i) we have stated
the exponential stability of a target system on a attractor, (ii) we have obtained the control law associated to a
unique backstepping transformation which maps the original system into the target system, (iii) we suggest a
boundary velocity observer on the same attractor, (iv) we prove that the full-state closed-loop system is well-
posed. Then the considered control law is compared with two existent and related works. The chapter is closed
with numerical simulation on a linear semi-discretized model.

In the continuity of this work, there are several possible track. We could enhance the design with adaptive
control. We could design an observer using backstepping. But first, we suggest to improve the design, indeed
the only parameter we can not fix is the in-domain damping in the target system, and as we have said the decay
rate is depending on it. We propose a design which answer to this problem in Chapter 8.

Concerning the adaptive control associated to a backstepping design, the difficulty is that the equation of the
kernels should be reevaluated online depending on the adaptive estimates. This can require a large constraint
on computational capabilities. However, note that there has been works to improve the computation of the
backstepping kernel resolution, e.g. [Ascencio et al., 2017].
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This chapter presents the second proposed backstepping control law design. The first objective of this design,
is to allow a change of in-domain viscous damping between the original system and the target system. However,
the systems under consideration have also position distributed term. This allows to have an exponential stability
(toward the origin) of the target system. The original system under consideration is exposed in Section 8.1. In
the same section, we consider the associated homogeneous abstract problem (zero input) in order to specify
the state space of the considered PDE. The target system and its exponential stability analysis are presented in
Section 8.2. Then in Section 8.3, the control law, the backstepping transformation and the exponentially stability
result are presented. The stability result proof is established in Section 8.4. Note that to prove the existence and
uniqueness of the backsteping kernel we use the method of successive approximations, this is the reason why
the current chapter is referred to "implicit". In Section 8.5, we prove the well-posedness of both the closed-loop
system and target system.

This work extends the control design presented in Chapter 7, as it allows a change of velocity distributed
term. However, the goal of the control design presented here is fundamentally different, as we no longer consider
the stabilization towards an attractor but towards the origin of the state space. This could be of interest for
system such as the one presented in [Meurer and Kugi, 2011], where the wave PDE models a piezoelectric
stack actuator and the boundaries have position distributed terms. Nevertheless with a few change (assuming all
position distributed terms to be zero), the present design could achieve the same goal as the previous one.

8.1 An unstable wave equation with velocity and position distributed terms

Consider the following original system

(
ΣO2

) 
utt(x, t) = uxx(x, t)+λut(x, t)+βu(x, t), (8.1a)

ux(1, t) = a1ut(1, t)+a2u(1, t)+U(t), (8.1b)

utt(0, t) = b1ut(0, t)+b2ux(0, t)+b3u(0, t), (8.1c)

145
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in which U(t) ∈ R is the scalar control input, u(x, t) ∈ R is the variable of the system. The in-domain viscous
distributed term coefficient is λ ∈ R. β ∈ R is the in-domain position distributed term. a1, a2 ∈ R are the
controlled boundary coefficients. b1, b3 ∈ R and b2 ∈ R−

{
0
}

are the uncontrolled boundary coefficients.

The control objective is to exponentially stabilize the system toward the origin.

Note that the condition b2 6= 0 is mandatory. Indeed, ux(0, t) can be considered as the input of the boundary:
If b2 = 0, u(0, t) is no longer controllable because the dynamics of u(0, t) ((8.1c)) is in this case an ODE, therefore
u(0, t) is only determined by the values of u(0,0) and ut(0,0).

Note also that this system (opposite to (7.1)) cannot be reformulated as coupled first-order hyperbolic PDE-
ODE using only Riemann invariant. This is due to the presence position source term u(·, t).

In order to express the control objective and the state space, we consider the homogeneous abstract problem
resulting from (8.1). Let us define the following space H2

H2 :=
{
(z1,z2,z3,z4,z5) ∈ H1(0,1)×L2(0,1)×R3 ∣∣ z3 = z1(1),z4 = z1(0)

}
. (8.2)

The set H2 is a Hilbert space with the following scalar product, ∀z,y ∈ H2

〈z ,y〉H2
:=
∫ 1

0
(z1y1 + z′1y′1 + z2y2)dx+ z3y3 + z4y4 + z5y5. (8.3)

Let us consider the following operator

∀z ∈ Dom(A2) , A2z :=−


z2

z′′1 +λ z2 +β z1
z2(1)

z5
b1z5 +b2z′1(0)+b3z4

 , (8.4)

in which Dom(A2) is defined as

Dom(A2) :=
{
(z1,z2,z3,z4,z5) ∈ H2(0,1)×H1(0,1)×R3 : z3 = z1(1), z4 = z1(0),

z5 = z2(0), z′1(1) = a1z2(1)+a2z3
}
. (8.5)

The abstract problem resulting from the system
(
ΣO2

)
with U(t) = 0 defined in (8.1) is

d
dt

X(t)+A2X(t) = 0, X(t) ∈ Dom(A2) , (8.6a)

X(0) = X0. (8.6b)

The proof of the well-posedness of (8.6) can be find with similar argument as the one proposed in Section 9.1.
We are not really interested by the well-posedness of the homogeneous problem. Indeed as we design an feed-
back control law we are more interested on the well-posedness of the closed-loop system, it is established in
Section 8.5.

As previously said, the objective is to stabilize the system
(
ΣO1

)
defined in (8.1) towards the origin. The

considered distance between z ∈ H2 and the origin is

Γ2(z) := ‖z1‖2
H1

+‖z2‖2
L2
+ z2

3 + z2
4 + z2

5. (8.7)

Considering z1(x) = u(x, t), z2(x) = ut(x, t), z3 = u(1, t), z4 = u(0, t), and z5 = ut(0, t), one writes

Γ2(X2(t)) =
∫ 1

0
u(x, t)2dx+

∫ 1

0
ux(x, t)2dx+

∫ 1

0
ut(x, t)2dx+u(1, t)2 +u(0, t)2 +ut(0, t)2, (8.8)

in which X2(t) ∈ H2 is
X2(t) = [u(·, t), ut(·, t), u(1, t), u(0, t), ut(0, t)] . (8.9)
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Remark 3 Note that the state space H2 (8.2) is different from the state space study in Chapter 7, i.e., H1 defined
in (7.2). It is due to the fact that we consider here a first order dynamic boundary condition at x = 1. The
question is about if the following holds

‖z‖L2 = ‖z′‖L2 = 0 ?⇒ z(1) = 0. (8.10)

If it is true we can drop the R space of z3 in the state space, and gets the definition of the vector product by
Poincarè inequality. Nevertheless, the presented idea work whatever (8.10) holds or does not. ◦

8.2 An exponentially stable wave equation with velocity and position distributed
terms

Consider the following target system

(
ΣT2

) 
wtt(x, t) = wxx(x, t)−λwwt(x, t)−βww(x, t), (8.11a)

wx(1, t) =−c1wt(1, t)− c2w(1, t), (8.11b)

wtt(0, t) =−d1wt(0, t)+d2wx(0, t)−d3w(0, t), (8.11c)

in which w(x, t) ∈ R is the variable of the system. λw > 0 is an in-domain viscous damping. βw > 0 is an
in-domain static damping. c1, c2, d1, d2, d3 > 0 are boundary parameters.

Define the following Lyapunov functional candidate, for z ∈ H2

V2(z) :=
∫ 1

0

[
z1(x) z2(x) z′1(x)

]
P0

z1(x)
z2(x)
z′1(x)

dx+ z3P1z3 +
[
z4 z5

]T P2

[
z4
z5

]
, (8.12)

in which P0 ∈ R3×3, P1 ∈ R and P2 ∈ R2×2 are symmetric positive definite matrices.
√

V2(·) is a norm on H2
which is defined in (8.2). Consider

Xe2(t) := [w(., t), wt(., t), w(1, t), w(0, t), wt(0, t)] . (8.13)

Lemma 8.1 [Roman et al., 2018]
Consider the target system

(
ΣT2

)
defined in (8.11). For all λw > 0, βw > 0, ci > 0, and di > 0, there exist P0,

P1 and P2 symmetric positive definite matrices such that, it holds for a suitable ρ > 0

V̇2(Xe2(t))6−ρV2(Xe2(t)), (8.14)

in which V is defined (8.12), H2 3Xe2(t) is defined in (8.13).

We start by rewriting the target system (8.11) equations in a vector form, in order to give Lyapunov equations.
Let us define

W (x, t) :=

w(x, t)
wt(x, t)
wx(x, t)

 , (8.15)

W1(t) := w(1, t), W0(t) :=
[

w(0, t)
wt(0, t)

]
. (8.16)

It holds
Wt(x, t) = A1W (x, t)+A2Wx(x, t), (8.17)

d
dt

W1(t) = A3W (1, t),
d
dt

W0(t) = A4W (0, t), (8.18)
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W1(t) = A5W (1, t), W0(t) = A6W (0, t), W (1, t) = A7

[
w(1)
wt(1)

]
, (8.19)

in which

A1 :=

 0 1 0
−βw −λw 0

0 0 0

 , A2 :=

0 0 0
0 0 1
0 1 0

 , (8.20)

A3 :=
[
− c2

c1
0 − 1

c1

]
, A4 :=

[
0 1 0
−d3 −d1 d2

]
, (8.21)

A5 :=
[
1 0 0

]
, A6 :=

[
1 0 0
0 1 0

]
, (8.22)

A7 :=

 1 0
0 1
−c2 −c1

 . (8.23)

Since wx appears in W and Wx, the following proposition expresses this relation in a vector form.

Proposition 8.1 Define

J1 :=

1 0 0
0 0 0
0 0 0

 , J2 :=

0 0 0
0 0 0
1 0 0

 , J3 :=

0 0 1
0 0 0
0 0 0

 . (8.24)

It holds
W T

x J1 =W T J2, (8.25)

J1Wx = J3W, (8.26)

where W is defined in (8.15). Moreover it follows ∀θ ∈ R3×3

∫ 1

0
W T (x)J1θWx(x)dx =

[
W T (x)J1θW (x)

]1
0−

∫ 1

0
W T (x)J2θW (x)dx, (8.27)

∫ 1

0
W T

x (x)θJ1W (x)dx =
[
W T (x)θJ1W (x)

]1
0−

∫ 1

0
W T (x)θJ3W (x)dx. (8.28)

Proof : One establishes the proof with algebraic manipulations. �

Remark 4 We need some symmetry in the Lyapunov analysis for the wave equation to cancel product three
order derivative, e.g. utuxx or utxut . For example, for the wave without source terms (utt = uxx)

d
dt

(∫ 1

0
[u2

x +u2
t ]dx

)
= 2

∫ 1

0
[utuxx +uxuxt ]dx =

[
2uxut

]1
0, (8.29)

if the coefficients in factor of u2
t and u2

x are not equal, the product three order derivatives utuxx and uxuxt are not
canceled. ◦

Define the complementary of J1 to I3, meaning it holds J1 + J4 = I3

J4 =

0 0 0
0 1 0
0 0 1

 . (8.30)

The idea is to decompose the computation of the Lyapunov functional candidate derivative in J1 and J4 parts. On
the J1 part we can used Proposition 8.1, and the symmetry condition in Remark 4 is used to cancel the J4 part.
This is expressed in the following proposition.
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Proposition 8.2 If
J4(A2P0−P0A2)J4 = 0, (8.31)

then it holds∫ 1

0
(W T

x A2P0W +W T P0A2Wx)dx =
∫ 1

0
W T [J2A2P0− J4A2P0J3 +P0A2J3− J2P0A2J4

]
Wdx

+

[
W T [J4A2P0J1 + J1P0A2J4 + J4P0A2J4]W

]1

0
, (8.32)

where J1, J2, and J3 are defined in (8.24) and J4 is defined in (8.30).

The condition (8.31) is the symmetric condition we mentioned in Remark 4.

Proof : From the definition of J1, J2, and J3 (8.24), for all Θ ∈ R3×3 it holds

Θ = J1Θ+ J4ΘJ1 + J4ΘJ4, (8.33)

Θ = ΘJ1 + J1ΘJ4 + J4ΘJ4. (8.34)

Applying this to A2P0 and P0A2, using Proposition 8.1, and three integrations by parts and (8.31), one obtains
(8.32). �

Proposition 8.3 Consider V2 defined in (8.12) and P0 ∈R3×3, P1 ∈R, and P2 ∈R2×2, symmetric positive definite
matrices, verifying (8.31), it holds

V̇2(Xw(t)) =−
∫ 1

0

[
w(x, t) wt(x, t) wx(x, t)

]
Q0

w(x, t)
wt(x, t)
wx(x, t)

dx−
[
w(1, t) wt(1, t)

]
Q1

[
w(1, t)
wt(1, t)

]

−
[
w(0, t) wt(0, t) wx(0, t)

]
Q2

w(0, t)
wt(0, t)
wx(0, t)

 , (8.35)

in which Q0, Q1 and Q2 are defined as

Q0 =−AT
1 P0−P0A1− J2(A2P0−P0A2J4)− (P0A2− J4A2P0)J3, (8.36)

Q1 =AT
7 (−AT

3 P1A5−AT
5 P1A3− (J4A2P0J1 + J1P0A2J4 + J4P0A2J4)A7, (8.37)

Q2 =−AT
4 P2A6−AT

6 P2A4 +(J4A2P0J1 + J1P0A2J4 + J4P0A2J4), (8.38)

where Ji are defined in (8.24)-(8.30), Ai are defined in (8.20)-(8.23).

Proof : Compute the derivative of the Lyapunov functional candidate V3 (defined in (8.12)) along the state
trajectory. Then applying (8.17)-(8.19), then using (8.31) and Proposition 8.3 one gets (8.35). �

The so called Lyapunov equations are (8.36)-(8.38). As in the previous chapter, a future work could be to
estimate the decay rate with more accurately, using these LMIs. Indeed to estimate the decay rate, one look for
the greatest ρ such that Q0 > ρP0, Q1 > ρP1, Q2 > ρP2 (see [Boyd et al., 1994] for a textbook on LMI). Note
that in the current case the matrices are constants, this is not the case in Section 7.2.

Proof of Lemma 8.1: Let us choose

P0 =

βw σ 0
∗ 1 0
∗ ∗ 1

 , P2 =

[
d3+σd1

d2

σ

d2

∗ 1
d2

]
, (8.39)
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P1 = c2, (8.40)

in which

σ < min{
√

βw,
2d1 +

√
d2

1 +4d3

2
}, (8.41)

such that P0 and P2 are symmetric positive definite matrices. Using Proposition 8.3, it holds

V̇2(Xe2) =−
∫ 1

0

[
w wt wx

]
Q0

w
wt

wx

dx (8.42)

−
[
w(1) wt(1)

]
Q1

[
w(1)
wt(1)

]
−
[
w(0) wt(0)

]T Q2r

[
w(0)
wt(0)

]
,

in which, form (8.36)-(8.38),

Q0 =

2βwσ λwσ 0
∗ 2λw−2σ 0
∗ ∗ 2σ

 , Q1 =

[
2c2σ σc1
∗ 2c1

]
, Q2r =

[
2σd3

d2 0
∗ 2d1

d2
− 2σ

d2

]
. (8.43)

From (8.43) one obtains that if

0 < σ < min
{√

βw, λw,
4βwλw

λ 2
w +2βw

,
4c2

c1
, d1

}
, (8.44)

then Q0, Q1, and Q2 are symmetric definite positive matrices, therefore, (8.14) holds. �

8.3 Backstepping state feedback

The backstepping transformation is chosen as

w(x, t) = u(x, t)−
∫ x

0
KT (x,y)χ(y, t)dy− γ(x)ut(0, t), (8.45)

in which K and χ are defined as

K(x,y) :=

k(x,y)
s(x,y)
m(x,y)

 , χ(x, t) :=

 u(x, t)
ut(x, t)
ux(x, t)

 . (8.46)

The construction of (8.45) is inspired by [Sagert et al., 2013] and by [Smyshlyaev and Krstic, 2009] for the
integral terms.

The kernel (K, γ) of the backstepping transformation (8.45) is chosen as the unique solution (see Lemma 8.3
of Section 8.4.2) of the following equations

(
ΣK2

)



Kxx(x,y)−Kyy(x,y) = BKKy(x,y)+CKK(x,y), (8.47a)

K′(x,x) = DKK(x,x)+EK , (8.47b)[
ky(x,0)
my(x,0)

]
= HKK(x,0), (8.47c)

sxx(x,0) = b2sy(x,0)+HSK(x,0), (8.47d)[
K(0,0)
sx(0,0)

]
= JK , (8.47e)

γ(x) =
s(x,0)

b2
, (8.47f)
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in which
BT

K :=−(Θ2Θ1 +Θ1Θ2 +λwΘ2), (8.48)

CT
K := Θ

2
1 +λwΘ1 +βwI3, (8.49)

DT
K :=

1
2
(Θ2Θ1 +Θ1Θ2 +λwΘ2), (8.50)

ET
K :=−1

2
[
(β +βw) (λ +λw) 0

]
, (8.51)

HK :=
[

λw β − (λw +b1)
b3
b2 b3

1 λ −b1 b2

]
, (8.52)

HS :=
[
0 βw +b3 +λwb1 +b2

1 −(b2λw +b2b1)
]
, (8.53)

where In denotes the identity in Rn×n, and

Θ1 :=

0 1 −1
β λ 0
0 0 0

 , Θ2 :=

1 0 0
0 0 1
0 1 0

 , (8.54)

JK :=− 1
d2


d3 +b3

0
b2−d2

(b1 +d1)b2

 . (8.55)

The PDE (8.47) that the kernel needs to satisfy is different from both [Sagert et al., 2013] and [Smyshlyaev
and Krstic, 2009]. Indeed, both have no distributed terms in (8.47a) as we have. Moreover, both have simpler
boundary conditions. Note that the boundary condition (8.47c) is similar to the one of [Smyshlyaev and Krstic,
2004]. Nevertheless, the condition in [Smyshlyaev and Krstic, 2004] is scalar and has in addition an integral
term. But the recursive assumption we use in the method of successive approximations (Section 8.4.2) needs to
be different from [Smyshlyaev and Krstic, 2004] (otherwise we cannot conclude) and new, up to our knowledge.

Finally, the control law is defined as:

U(t) :=KT (1,1)χ(1, t)+
∫ 1

0
KT

x (1,y)χ(y, t)dy+ γ
′(1)ut(0, t)− (a1 + c1)ut(1, t)− (a2 + c2)u(1, t)

+ c2[γ(1)ut(0, t)+
∫ 1

0
KT (1,y)χ(y, t)dy]+ c1

[
[KT (1,y)Θ2χ(y, t)]1y=0

+
∫ 1

0

[
KT

Θ1−KT
y Θ2

]
(1,y)χ(y, t)dy+ γ(1)Θ3χ(0, t)

]
, (8.56)

in which
Θ3 :=

[
b3 b1 b2

]
. (8.57)

The control law U defined in (8.56) is expressed in terms of u, ut and ux. Note that, using integrations by part,
(8.11b) and (8.47f), one can express U in terms of u and ut .

The stability result is stated in the following theorem

Theorem 8.1 [Roman et al., 2018]
Consider the closed-loop system consisting of the plant (8.1) with b2 6= 0, together with the control law (8.56)

in which the kernel (K, γ) is defined in (8.47) with λw > 0, βw > 0, ci > 0, di > 0. Consider the functional Γ2
defines in (8.7). There exist ρ > 0 and R > 0 such that

Γ2
(
X2(t)

)
6 RΓ2

(
X2(0)

)
e−ρt , t > 0, (8.58)

i.e., the closed-loop system is exponentially stable towards the origin. H2 3X2(t) is defined in (8.9).

Note that
√

Γ2(·) defines a norm of the Hilbert space H2 defined in (8.2). Opposite to the Chapter 7, here the
exponential stabilization is obtained for the position also.
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8.4 Proof of the closed-loop stability result

First, Section 8.4.1 presents the developments needed to get the backstepping kernel PDE (8.47). Second, the
existence and uniqueness of a solution to these equations is proven in Section 8.4.2. In Section 8.4.3, we analyze
the invertibility of the backstepping transformation. Then, in Section 8.4.4, the equivalence between the target
system Lyapunov functional V2 defined in (8.12) and the functional Γ2 defined in (8.7) is established. Finally,
using all previous developments, we conclude the proof of Theorem 8.1 in Section 8.4.5.

8.4.1 Backstepping transformation

This section is devoted to the establishment of (8.47). Before stating the corresponding result, consider the vector
χ(x, t) defined in (8.46). Using the system equation (8.1a) together with the boundary condition (8.1c), it is easy
to show that

χt(x, t) = Θ1χ(x, t)+Θ2χx(x, t), (8.59)

utt(0, t) = Θ3χ(0, t), (8.60)

χt(0, t) = Θ4χ(0, t), (8.61)

χ(0, t) = Θ5χ(0, t), (8.62)

where Θ1, Θ2, and Θ3 are defined in (8.54) and (8.57), and with

χ(0, t) :=
[
u(0, t) ut(0, t) ux(0, t) uxt(0, t)

]T
, (8.63)

Θ4 :=

 0 1 0 0
b3 b1 b2 0
0 0 0 1

 , Θ5 :=

1 0 0 0
0 1 0 0
0 0 1 0

 . (8.64)

Note that Θ1 and Θ2, such that it holds (8.59), are not unique, however with this choice it holds Θ2
2 = I3.

Lemma 8.2 [Roman et al., 2018]
If the kernel (K, γ) of the backstepping transformation (8.45) is solution of the PDE (8.47) then the back-

stepping transformation maps the original system (8.1) with the control law (8.56) into the target system (8.11).

Proof of Lemma 8.2: Consider the time derivative of (8.45)

wt(x, t) = ut(x, t)−
∫ x

0
KT (x,y)χt(y, t)dy− γ(x)utt(0, t). (8.65)

Using (8.59), an integration by parts and (8.60), one can express (8.65) as

wt(x, t) = ut(x, t)−
[
KT (x,y)Θ2χ(y, t)

]x
y=0−

∫ x

0

[
KT

Θ1−KT
y Θ2

]
(x,y)χ(y, t)dy− γ(x)Θ3χ(0, t). (8.66)

Consider the time derivative of (8.66). Using (8.1a), (8.59), knowing that Θ2
2 = I3, plus an integration by parts,

one obtains

wtt(x, t) =uxx(x, t)+λut(x, t)+βu(x, t)−
[

KT (x,y)Θ2χt(y, t)+(KT (x,y)Θ1Θ2−KT
y (x,y))χ(y, t)

]x

y=0

−
∫ x

0

[
(KT

Θ1−KT
y Θ2)Θ1− (KT

y Θ1Θ2−KT
yy)
]
(x,y)χ(y, t)dy− γ(x)Θ3χt(0, t). (8.67)
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Considering now the first and second space derivatives of (8.45), that can be written as

wx(x, t) =ux(x, t)−KT (x,x)χ(x, t)−
∫ x

0
KT

x (x,y)χ(y, t)dy− γ
′(x)ut(0, t), (8.68)

wxx(x, t) =uxx(x, t)− (K′T (x,x)+KT
x (x,x))χ(x, t)

−KT (x,x)χx(x, t)−
∫ x

0
KT

xx(x,y)χ(y, t)dy− γ
′′(x)ut(0, t). (8.69)

Gathering (8.45), (8.66), (8.67), and (8.69) the target system equation (8.11a) holds if the kernel (K, γ)
satisfies the following conditions

KT (x,y)Θ2
1−KT

y (x,y)Θ2Θ1−KT
y (x,y)Θ1Θ2 +KT

yy(x,y)

−KT
xx(x,y)+λwKT (x,y)Θ1−λwKT

y (x,y)Θ2 +βwKT (x,y) = 0, (8.70)

KT (x,x)Θ2χt(x, t)−λΘ6χ(x, t)−βΘ8χ(x, t)+ [KT (x,x)Θ1Θ2−KT
y (x,x)]χ(x, t)−λwΘ6χ(x, t)

+λwKT (x,x)Θ2χ(x, t)−βwΘ8χ(x, t)− (K′T (x,x)+KT
x (x,x))χ(x, t)−KT (x,x)χx(x, t) = 0, (8.71)

γ(x)Θ3χt(0, t)+(−KT (x,0)Θ1Θ2 +KT
y (x,0))χ(0, t), (8.72)

−KT (x,0)Θ2χt(0, t)− γ
′′(x)Θ6χ(0, t)−λwKT (x,0)Θ2χ(0, t)+λwγ(x)Θ3χ(0, t)+βwγ(x)Θ6χ(0, t) = 0

in which
Θ6 :=

[
0 1 0

]
, Θ8 :=

[
1 0 0

]
. (8.73)

Considering BK and CK defined in(8.48)-(8.49), (8.70) can be rewritten as (8.47a). Moreover, using (8.59),
(8.71) can be reformulated as (8.47b). Furthermore, using (8.61) and (8.62) one obtains that (8.72) is equivalent
to the four following scalar conditions

β s(x,0)− ky(x,0)+λwk(x,0)+b3m(x,0)−λwb3γ(x)−b1b3γ(x) = 0, (8.74)

−βwγ(x)− sy(x,0)+ γ
′′(x)+λwm(x,0)−b3γ(x)−λwb1γ(x)+b1m(x,0)−b2

1γ(x) = 0, (8.75)

k(x,0)−my(x,0)+λ s(x,0)+b2m(x,0)−λwb2γ(x)−b1b2γ(x)+λws(x,0) = 0, (8.76)

s(x,0)−b2γ(x) = 0, (8.77)

which can be reformulated as (8.47c), (8.47d), and (8.47f).

Now, the boundary condition (8.11c) gives one last condition on the kernel. As, from (8.45), (8.66), (8.67),
and (8.68), 

wtt(0, t) = Θ3Θ5χ(0, t)− γ(0)Θ3Θ4χ(0, t), (8.78a)

wt(0, t) = Θ6Θ5χ(0, t)− γ(0)Θ3Θ5χ(0, t), (8.78b)

wx(0, t) = Θ7Θ5χ(0, t)−KT (0,0)Θ5χ(0, t)− γ
′(0)Θ6Θ5χ(0, t), (8.78c)

w(0, t) = Θ8Θ5χ(0, t)− γ(0)Θ6Θ5χ(0, t), (8.78d)

in which
Θ7 :=

[
0 0 1

]
, (8.79)

thus a sufficient condition for (8.11c) to hold is
b3 +d3
b1 +d1
b2−d2

0

=−d2


k(0,0)
s(0,0)
m(0,0)

0

+ γ(0)


∗
∗
∗
b2

− γ
′(0)


0
d2
0
0

 , (8.80)

which, using (8.77), is (8.47e).

Finally the control law (8.56) can be obtained from (8.11b), with (8.45), (8.66), (8.68), and using (8.1b). �
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8.4.2 Existence and uniqueness of the solution of (8.47a)-(8.47e)

The PDE (8.47a)-(8.47e) presents two different types of boundary conditions at (x,0), namely (8.47c) and
(8.47d). The key idea in the sequel is to address each condition separately. First, consider the following change
of variable

G(ζ ,η) = e
1
2 BK(ζ−η)K(ζ +η ,ζ −η). (8.81)

The idea behind (8.81) is, on the one hand to gather the high order derivative which appear in (8.47a) (Kxx−Kyy)
into one term (Gηζ ) with x = ζ +η and y = ζ −η , and on the other hand to canceled the term in Ky in (8.47a),
this is done with G = e

1
2 BKyK.

Consider the following definitions

φk,m :=
[

1 0 0
0 0 1

]
, φs :=

[
0 1 0

]
, (8.82)

Kk,m := φk,mK, Gk,m := φk,mG, Ks := φsK, Gs := φsG. (8.83)

One can notice that
G = φ

T
k,mGk,m +φ

T
s Gs. (8.84)

The previous notations allow to apply the method of successive approximations in a compact manner. Indeed,
after addressing the boundary conditions separately we gather then in a vector (using (8.84)). Then the method
of successive approximations is performed to a vector form PDE, opposite to three scalar coupled PDE.

Indeed it holds the following proposition

Proposition 8.4 [Roman et al., 2018]
The two following statements are equivalent

(i). K is a solution of (8.47a)-(8.47e).

(ii). G is a solution of

Gζ η(ζ ,η) =CG(ζ ,η)G(ζ ,η), (8.85a)

G(ζ ,0) = FG(ζ ), (8.85b)

Gk,m
ζ

(η ,η) = HGG(η ,η)+Gk,m
η (η ,η), (8.85c)

Gs(η ,η) = 2
∫

η

0

∫ z

0

[
b2(Gs

ζ
(µ,µ)−Gs

η(µ,µ))+HGSG(µ,µ)
]
dµdz+ JGS(2η), (8.85d)

in which
CG(ζ ,η) := e

1
2 BK(ζ−η)(CK−

1
4

B2
K)e
− 1

2 BK(ζ−η), (8.86)

FG(ζ ) := e
1
2 BKζ FK(ζ ), (8.87)

FK(ζ ) := K(x,x) = eDKxJGK +
∫ x

0
eDK(x−s)EKds, (8.88)

HG := 2HK +φk,mBK , HGS := 2HS−b2φsBK , (8.89)

JGS(x) :=
[
0 1 0 x

]
JK , (8.90)

JGK := K(0,0) = Θ5JK . (8.91)

where BK , CK , DK , EK , HK , JK are defined in (8.48)-(8.55).

Proof : (i)⇒ (ii). The way to get (8.85a) and (8.85b) is straightforward. Besides, from the fact that

s(x,0) =
∫ x

0

∫ s

0
sxx(z,0)dzds+ xsx(0,0)+ s(0,0), (8.92)
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using (8.47d), (8.47f), (8.90), and z = 2µ , one gets

s(x,0) =
∫ x

0

∫ s
2

0

[
2b2sy(2µ,0)+2HSK(2µ,0)

]
dµds+ JGS(x). (8.93)

From (8.81), it holds
Gζ (η ,η)−Gη(η ,η) = 2Ky(2η ,0)+BKK(2η ,0). (8.94)

Thus multiplying (8.94) by φs defined in (8.82), one writes

2sy(2η ,0) = Gs
ζ
(η ,η)−Gs

η(η ,η)−φsBKG(η ,η). (8.95)

Replacing (8.95) into (8.93), for x = 2η , and 2z = s, one obtains

Gs(η ,η) =
∫

η

0
2
∫ z

0

[
b2(Gs

ζ
(µ,µ)−Gs

η(µ,µ)−φsBKG(µ,µ))+2HSG(µ,µ)
]
dµdz+ JGS(2η), (8.96)

and (8.85d) holds. Finally, multiplying (8.94) by φk,m, one gets (8.85c).

(ii)⇒ (i), the change of variable (8.81) is bijective, as it the composition of two bijective change of variables,
a linear one and a exponential one. This concludes the proof. �

Lemma 8.3 [Roman et al., 2018]
The system (8.85) has a unique solution G, given as the cumulative sum of the following sequence,

G(ζ ,η) =
∞

∑
n=0

(∆G)n(ζ ,η), (8.97)

which exponentially converges towards zero, where (∆G)n is

(∆G)n+1(ζ ,η) = F ((∆G)n(ζ ,η)) , (8.98)

(∆G)0(ζ ,η) = φ
T
k,mφk,m[2FG(η)−FG(0)]+φ

T
s
[
JGS(2η)−2b2ηφsFG(0)

]
+FG(ζ )−FG(η), (8.99)

in which φk,m, φs are defined in (8.82), and

F (G(ζ ,η)) :=
∫

ζ

η

∫
η

0
CG(s,z)G(s,z)dzds+φ

T
k,m

[
−
∫

η

0
HGG(s,s)ds+2φk,m

∫
η

0

∫ s

0
CG(s,z)G(s,z)dzds

]
+φ

T
s

[∫
η

0

∫ z

0
4b2

∫
µ

0
φsCG(µ,s)G(µ,s)dsdµdz

+
∫

η

0
4b2φsG(z,0)dz−2b2

∫
η

0
φsG(z,z)dz+

∫
η

0
2
∫ z

0
HGSG(µ,µ)dµdz

]
. (8.100)

Proof : Let us first notice that

G(ζ ,η) =
∫

ζ

η

∫
η

0
Gζ η(s,z)dzds+G(η ,η)+G(ζ ,0)−G(η ,0). (8.101)

On the one hand, the integration of Gζ η(ζ ,η) with respect to η from 0 to ζ gives

∫
ζ

0
Gζ η(ζ ,s)ds = Gζ (ζ ,ζ )−Gζ (ζ ,0), (8.102)

and, according to (8.85c), one can get

d Gk,m(ζ ,ζ )

dζ
=−HGG(ζ ,ζ )+2Gk,m

ζ
(ζ ,ζ ). (8.103)
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Matching both previous equations along with (8.83) and (8.85a), it holds

Gk,m(ζ ,ζ ) =−
∫

ζ

0
HGG(s,s)ds+2Gk,m(ζ ,0) (8.104)

+2φk,m

∫
ζ

0

∫ s

0
CG(s,z)G(s,z)dzds−Gk,m(0,0).

On the other hand, using the fact that

Gζ (η ,η)−Gη(η ,η) = 2Gζ (η ,η)−G′(η ,η), (8.105)

and (8.85d), (8.102), and (8.85a) one finally gets

Gs(η ,η) =4b2

∫
η

0

∫ z

0

∫
µ

0
φsCG(µ,s)G(µ,s)dsdµdz+

∫
η

0
4b2Gs(z,0)ds (8.106)

−4b2ηGs(0,0)−2b2

∫
η

0
Gs(z,z)dz+2b2ηGs(0,0)+2

∫
η

0

∫ z

0
HGSG(µ,µ)dµdz+ JGS(2η),

Thus, gathering (8.101), (8.104), and (8.106), one finally gets

G(ζ ,η) = F (G(ζ ,η))+(∆G)0(ζ ,η), (8.107)

in which (∆G)0(ζ ,η) and F (.) are defined in (8.99) and (8.100).

Now, we use a standard iterative method to prove that (8.107) has a unique solution. This is the method of
the successive approximation, which has been detailed in Section 1.3.4. The initial guess is (∆G)0 defined in
(8.99), and initiates the induction (8.98) for n ∈ N. Define M as

|(∆G)0(ζ ,η)|∞ 6 ‖JGS‖L∞
+(5+2b2)‖F‖L∞

=: M, (8.108)

Assume that there exists κ such that the following inequality is true for a given rank n ∈ N

|(∆G)n(ζ ,η)|∞ 6Mκ
n ζ n +ηn

n!
. (8.109)

From (8.98), it follows

|(∆G)n+1(ζ ,η)|∞ 6‖CG‖L∞

∫
ζ

η

∫
η

0
|(∆G)n(s,z)|∞dzds+ |HG|∞

∫
η

0
|(∆G)n(s,s)|∞ds (8.110)

+2‖CG‖L∞

∫
η

0

∫ s

0
|(∆G)n(s,z)|∞dzds+4|b2|‖CG‖L∞

∫
η

0

∫ z

0

∫
µ

0
|(∆G)n(µ,s)|∞dsdµdz

+4b2

∫
η

0
|(∆G)n(z,0)|∞dz+2|b2|

∫
η

0
|(∆G)n(z,z)|∞dz+2|HGS|∞

∫
η

0

∫ z

0
|(∆G)n(µ,µ)|∞dµdz.

Consequently, using the recursive hypothesis (8.109), it holds

|∆Gn+1(ζ ,η)|∞ 6
Mκn

(n+1)!

(
‖CG‖L∞

(
ηζ

n+1 +ζ η
n+1 +4η

n+2 +8|b2|ηn+3
)

+2|HG|∞η
n+1 +8|b2|ηn+1 +4|HGS|∞η

n+2
)
. (8.111)

From the fact that ζ ,η 6 1, taking κ such that

κ > (5+8|b2|)‖CG‖L∞
+2|HG|∞ +8|b2|+4|HGS|∞, (8.112)

one concludes

|(∆G)n+1(ζ ,η)|∞ 6
Mκn+1

(n+1)!
(ζ n+1 +η

n+1). (8.113)

As the estimate (8.109) is proven for n = 0 in (8.109), it follows by induction that the series (∆G)n exponentially
converges and that the solution of (8.85) is given by (8.97). �
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Remark 5 It is worth pointing out that the upper bound we consider in the induction assumption (8.109) is
not standard. Indeed [Smyshlyaev et al., 2010], [Smyshlyaev and Krstic, 2004], among others, introduce the
following bound

(ζ +η)n

n!
, (8.114)

which cannot be used here1. Indeed the integration of this bound for the specific boundaries (8.85c)-(8.85d)
would cause the recursive method to fail. For example, in order to perform the iterative method, one needs to
integrate ∫

η

0

∫ s

0
|(∆G)n(z,s)|∞dzds, (8.115)

which appear in (8.100) and in (8.111). However, using the previous upper bound, one has∫
η

0

∫ s

0

(z+ s)n

n!
dzds = (2n+1−1)

ηn+2

(n+2)!
. (8.116)

The 2n+1 term is too large to be compatible with the recessive hypothesis. This is why, instead, we suggest to
consider (8.109), which is a smaller bound. However, note that the bound we use fail to establish the kernel
existence and uniqueness of [Smyshlyaev et al., 2010].

Disclaimer: Actually the remark above is false, indeed using the fact that η 6 ζ , one gets (2η)n+1 6
(ζ +η)n+1 (we saw this straightforward relation after the publication of the result, and after the thesis defense).
Nevertheless we choose to keep it that way, because it could be useful for some design, with Freeholm integration
for example where η 6 ζ does not hold anymore. In the case we present we can use either (ζ+η)n

n! or ζ n+ηn

n! . ◦

8.4.3 Invertibility of the backstepping transformation

Let us denote Π the map that transforms the system (8.1) with U(t) defined in (8.56) into the target system (8.11).
It can be expressed as

Π : H2 → H2,
(q1,q2,q3,q4,q5) 7→ (z1,z2,z3,z4,z5),

(8.117)

defined as

z1(x) =q1(x)−
∫ x

0
KT (x,y)

q1
q2
q′1

(y)dy− γ(x)q5, (8.118)

z2(x) =q2(x)−
[
q1(x) q2(x) q′1(x)

]
Θ2K(x,x)−

∫ x

0

[
KT (x,y)Θ1−KT

y (x,y)Θ2
]q1

q2
q′1

(y))dy (8.119)

+(k(x,0)− γ(x)b3)q4 +(m(x,0)− γ(x)b1)q5,

z3 =q3−
∫ 1

0

[
q1 q2 q′1

]
(y)K(x,y)dy− γ(1)q5, (8.120)

z4 =q4, (8.121)

z5 =q5, (8.122)

where K is defined in (8.46) as the unique solution of (8.47a)-(8.47e) and γ in (8.47f), and with Θ1 and Θ2
defined in (8.54). H2 is defined in (8.2)

Let us check that z ∈ H2. As q ∈ H2, using Cauchy-Schwarz’s inequality, it holds z1 ∈ L2(0,1). Similarly, one
gets that z′1 ∈ L2(0,1). Therefore z1 ∈ H1(0,1). Using Cauchy-Schwarz’s inequality on (8.119), one gets that
z2 ∈ L2(0,1). From (8.120), it holds that z3 ∈R. z4, z5 ∈R is obvious. One obtains that z1(1) = z3 as q3 = q1(1).
It holds that z1(0) = z4. Therefore z ∈ H2.

1we were not able to follow the arguments of [Smyshlyaev and Krstic, 2004] which has a boundary condition related to (8.85c)
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Note that by construction γ(0) = 0 and γ(x) = s(x,0)
b2

. They allow the backstepping transformation to map

H2 → H2. Indeed γ(x) = s(x,0)
b2

is a necessary condition for z2 to be in L2(0,1), otherwise a z′1(0) term appears,
which may be unbounded as z′ ∈ L2(0,1) does not implies that z′(0)< ∞. Similarly γ(0) = 0 implies that z5 ∈R.

The existence of the inverse map Π−1 can be obtained by simply replacing λ , β , ai and bi with respec-
tively λw, βw, ci and di in the previous analysis. One gets the invertibility of the backstepping transformation
straightforwardly.

8.4.4 Relationship between funcionals Γ2(X2(t)) and V2(Xe2(t))

To conclude on the exponential stability of (8.1) along with the control law (8.56), the equivalence between
V2(Xe2) in (8.12) and Γ2(X2) in (8.7) is proven in Lemma 8.4.

Lemma 8.4 [Roman et al., 2018]
There exist µ1,µ2 > 0 such that

Γ2(X2(t))6 µ1V2(Xe2(t)), (8.123)

V2(Xe2(t))6 µ2Γ2 (X2(t)) . (8.124)

Proof : Only (8.124) is detailed here, as similar argument holds for (8.123) using the inverse
backstepping transformation (see Section 8.4.3). From (8.45), (8.66), and (8.68), there exist
c1, c2, c3, c4 > 0 such that

‖w‖2
L2
6c1[‖u‖2

H1
+‖ut‖2

L2
+ut(0, t)2], (8.125)

w(1, t)2 6c2[‖u‖2
H1

+‖ut‖2
L2
+ut(0, t)2 +u(1, t)2], (8.126)

‖wt‖2
L2
6c3

[
‖u‖2

H1
+‖ut‖2

L2
+u(0, t)2 +ut(0, t)2], (8.127)

‖wx‖2
L2
6c4

[
‖u‖2

H1
+‖ut‖2

L2
+ut(0, t)2]. (8.128)

From (8.125)-(8.128) and the fact that w(0, t) = u(0, t) and wt(0, t) = ut(0, t) (as γ(0) = 0 from (8.47e)-(8.47f)),
one obtains (8.124). �

8.4.5 Conclusion of the stability result

Using Lemma 8.3, there exists a unique solution to (8.47). From Lemma 8.2, this solution defines a backstepping
transformation which maps the original system (8.1) into the target system (8.11) with the control law U defined
in (8.56). Moreover, from Lemma 8.1, one gets that (8.11) is exponentially stable if all its parameters are positive.
Therefore, using Lemma 8.4, one establishes (8.58).

8.5 Well-posedness of the closed-loop system and the target system

This section is devoted to the well-posedness of the closed-loop system with the control law U defined in (8.56)
and the target system. The idea is to prove that the abstract problem resulting from the target system defined in
(8.11) is well-posed. It is relatively easy to get it because it is stable. Indeed it defines a maximal monotone
operator, which is equivalent to a C0-semigroup of contraction. Then using the inverse backstepping transforma-
tion Section 8.4.3 one concludes on the well-posedness of the closed-loop system with the control law U defined
in (8.56).

Let us start by writing the abstract problem associated with the closed loop system with the control law U
defined in (8.56).
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Let us consider the following operator

A3 :=−


0 1 0 0 0

δxx +β λ 0 0 0
0 δ |1 0 0 0
0 0 0 0 1

b2δx|0 0 0 b3 b1

 , (8.129)

in which δxxz1 = z′′1 , δ |1z2 = z2(1), and δx|0z1 = z′1(0) with Dom(A3) defines as

Dom(A3) :=
{
(z1,z2,z3,z4,z5) ∈ H2(0,1)×H1(0,1)×R3 : z3 = z1(1), z4 = z1(0),

z5 = z2(0), z′1(1) = a1z2(1)+a2z3 +U(z)
}
, (8.130)

the abstract problem resulting from the system
(
ΣO2

)
defined in (8.1) with U defined in (8.56) is

d
dt

X(t)+A3X(t) = 0, X(t) ∈ Dom(A3) , (8.131a)

X(0) = X0. (8.131b)

The link between X(t), z and u(·, t) is

X(t) =


X1(t)
X2(t)
X3(t)
X4(t)
X5(t)

= z =


z1
z2
z3
z4
z5

=


u(·, t)
ut(·, t)
u(1, t)
u(0, t)
ut(1, t)

 .

Theorem 8.2 Consider H2, A3, and Dom(A3) receptively defined in (8.2), (8.129), and (8.130). The two state-
ments below are true

(i). For all initial data X0 ∈ Dom(A3), the abstract problem (8.6) has a unique strong solution such that{ ∀t > 0, X(t) ∈ Dom(A3),

X1 ∈W1,∞(0,∞;H1(0,1))∩L∞(0,∞;H2(0,1)).

(ii). For all initial data X0 ∈ H2, the abstract problem (8.6) has a unique weak solution{ ∀t > 0, X(t) ∈ H2,

X1 ∈W1,∞(0,∞;L2(0,1))∩L∞(0,∞;H1(0,1)).

given by X(t) = S(t)X0, in which S is the C0-semigroup of contraction generated by the unbounded oper-
ator A3.

In the light of the abstract formulation (8.131) one gets that, (8.58) can be expressed as

‖X(t)‖2
H2
6 R‖X(0)‖2

H2
e−ρt , (8.134)

in which ‖.‖H2 is the associated norm of (8.3). We refer the reader to [Curtain and Zwart, 2012] for more
information about C0-semigroup.

We first prove that the target system is well-posed. To do so two lemmas are stated. This proof of well-
posedness is adapted from [d’Andréa-Novel et al., 1992]. Consider λw βw c1, c2, d1, d2, d3 positive real. It is
easy to check that H2 defined in (8.2) is an Hilbert space for the following scalar product, adapted for the target
system

∀z,y ∈ H2, 〈z ,y〉T =
∫ 1

0
(βwz1y1 + z′1y′1 + z2y2)dx+ c2z3y3 +

d3

d2
z4y4 +

1
d2

z5y5. (8.135)
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Let us define the following unbounded operator

∀z ∈ Dom(Ae2)⊂ H, Ae2z =−


0 1 0 0 0

δxx−βw −λw 0 0 0
0 δ |1 0 0 0
0 0 0 0 1

d2δx|0 0 0 −d3 −d1

 , (8.136)

in which δxxz1 = z′′1 , δ |1z2 = z2(1), and δx|0z1 = z′1(0), and where

Dom(Ae2) =

{
z = (z1,z2,z3,z4,z5) ∈ H2(0,1)×H1(0,1)×R3| z3 = z1(1), z4 = z1(0),

z5 = z2(0), z′1(1) =−c1z2(1)− c2z3

}
.. (8.137)

We are interested in the following abstract problem
d
dt

X(t)+Ae2X(t) = 0, X(t) ∈ Dom(Ae2) , (8.138a)

X(0) = X0. (8.138b)

This is equivalent to (8.11).

Lemma 8.5 Consider H2, Ae2 , and Dom(Ae2) defined in (8.2), (8.136), and (8.137).

(i). For all initial data z0 ∈ Dom(Ae2), the abstract problem (8.138) has a unique strong solution such that{ ∀t > 0, z(t) ∈ Dom(Ae2),

z1 ∈W1,∞(0,∞;H1(0,1))∩L∞(0,∞;H2(0,1)).

(ii). For all initial data z0 ∈ H2, the abstract problem (8.138) has a unique weak solution{ ∀t > 0, z(t) ∈ H2,

z1 ∈W1,∞(0,∞;L2(0,1))∩L∞(0,∞;H1(0,1)).

given by z(t) = Te(t)z0, in which Te is the C0-semigroup of contraction generated by the unbounded oper-
ator Ae2 .

Lemma 8.6 The linear unbounded operator Ae2 defined in (8.136) is maximal monotone on H2 (8.2)

Proof : Computing 〈z ,Ae2z〉T , and using the fact that z ∈ Dom(Ae2), one obtains

〈z ,Ae2z〉T =
∫ 1

0
λwz2

2dx+ c2
1z2(1)+

d1

d2
z2

5 > 0. (8.141)

Thus the operator Ae2 is monotone (see [Brezis, 2010] Chapter 7). In addition if we establish that

R(Id +Ae2) = H2, (8.142)

then the operator A is maximal monotone (see [Brezis, 2010] Chapter 7, R stand for the range of the operator).
Let y ∈ H2, we have to solve

z ∈ Dom(Ae2), z+Ae2z = y, (8.143)
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in other words

z1− z2 =y1, (8.144)

z2− z′′1 +λwz2 +βwz1 =y2, (8.145)

z3− z2(1) =y3, (8.146)

z4− z5 =y4, (8.147)

z5 +(d3z4−d2z′1(0)+d1z5) =y5, (8.148)

using the fact that z ∈ Dom(Ae2) one gets

z1(1+λw)− z′′1 +βwz1 = y1(1+λw)+ y2, (8.149)

z′1(1)+(c1 + c2)z1(1) =−c1y3, (8.150)

−d2z′1(0)+ z1(0)(1+d3 +d1) = y4(1+d1)+ y5. (8.151)

This is a classical stationary problem with Robin boundary conditions, using standard result (as done in [Brezis,
2010] p. 226 Example 6) one gets that as y1(1 + λw) + y2 ∈ L2(0,1), (8.149)-(8.151) has a unique solution
z1 ∈ H2(0,1). Now one can check that the element z = (z1, z2, z3, z4, z5) with

z1 is solution of (8.149)-(8.151) (8.152a)

z2 = z1− y1, (8.152b)

z3 = y3 + z2(1), (8.152c)

z4 =
y4(1+d1)+d2z′1(0)

1+d3 +d1
, (8.152d)

z5 =
−y4d3 +d2z′1(0)

1+d3 +d1
, (8.152e)

satisfies (8.144)-(8.148). Moreover using (8.149)-(8.151) on (8.152) one gets that z satisfying (8.152) is in
Dom(Ae2). �

Proof of Lemma 8.5: Consider H2, Ae2 , and Dom(Ae2) defined in (8.2), (8.4) with U defined in (8.56), and
(8.5). From Lemma 8.6, using Hille-Yosida Theorem (see [Brezis, 2010] Theorem 7.4), and argument of density
of C1 into W 1,∞ (resp. C0 into L∞) as standarly used one establishes Lemma 8.5. �

Proof of Theorem 8.2: From Lemma 8.5, using the fact that the backstepping transformation is an invertible
maps on H2 (see Section 8.4.3), one establishes Theorem 8.2. �
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Chapter conclusion

In this chapter, we have considered a wave PDE which has velocity and position source terms. An exponentially
stable target has been presented. Then, a backstepping transformation which maps the considered original system
into the target one is obtained along with an associated control law. The well-posedness for the strong solution
and weak solution has been established.

However, the designed control law is a full-state feedback. There are few possibilities that any application
could provide full-state measurement. In order to relax this constraint, a future direction of work is the devel-
opment of an observer for the considered wave equation. An observer considering both boundary measurements
should be acceptable, but a collocated one would be more interesting.
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This chapter presents some on-going work we have done so far around backstepping method and around
well-posedness. First in Section 9.1, the well-posedness of an inhomogeneous wave equation with two dynamics
boundary conditions with potential anti-damping source terms is presented. Then, we improve the wave model by
considering that the propagation is space dependent. In Section 9.2 we establish the exponential stability of such
a wave. Then in Section (9.3.2) we compute the PDE the kernel of the considered backstepping transformation is
solution. However, the proof that there exists a unique solution to this PDE on a triangular domain is still under
development.

In both Chapter 7 and Chapter 8, we have considered the homogeneous abstract problem in order to specify
the control objective of the considered stabilization problem. The respective well-posedness can be deduced
from the proof exposed in Section 9.1. The interesting fact of the considered system is that even if the input
is at the boundary we do not need to consider the framework of boundary input system (which is introduced
in [Curtain and Zwart, 2012]).

9.1 Well-posedness of a unstable inhomogeneous wave PDE

Consider the following system

(
ΣO3

) 
utt(x, t) = uxx(x, t)+λut(x, t)+βu(x, t), (9.1a)

utt(1, t) = a1ut(1, t)−a2ux(1, t)+a3u(1, t)+U(t), (9.1b)

utt(0, t) = b1ut(0, t)+b2ux(0, t)+b3u(0, t). (9.1c)

The only assumption we make is a2 > 0 and b2 > 0. Note that the fact that the coefficient of ux(1, t) is −a2, is
mandatory for the establishment of the well-posedness result in the sequel. If all parameters are taken positive
the wave is unstable. This have has been referred as inhomogeneous because the input is considered as a given
function of W1,∞([1,∞);R).

Consider the following space

H3 =

{
z = (z1,z2,z3,z4,z5,z6) ∈ H1(0,1)×L2(0,1)×R4; z3 = z1(1), z5 = z1(0)

}
. (9.2)

163
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It is easy to check that H3 is an Hilbert space for the following scalar product (bilinear symmetric, positive,
definite)

∀z,y ∈ H3, 〈z ,y〉T =
∫ 1

0
(z1y1 + z′1y′1 + z2y2)dx+ z3y3 +

1
a2

z4y4 + z5y5 +
1
b2

z6y6. (9.3)

Let us define the following unbounded operator

A4 =−



0 1 0 0 0 0
δxx +β λ 0 0 0 0

0 0 0 1 0 0
−a2δx|1 0 a3 a1 0 0

0 0 0 0 0 1
b2δx|0 0 0 0 b3 b1

 , (9.4)

in which δxxz1 = z′′1 , δx|1z1 = z′1(1), and δx|0z1 = z′1(0). Moreover the domain of A4 is

Dom(A4) =

{
z = (z1,z2,z3,z4,z5,z6) ∈ H2(0,1)×H1(0,1)×R4;

z3 = z1(1), z5 = z1(0), z4 = z2(1), z6 = z2(0)
}
. (9.5)

We are interested on the following abstract Cauchy problem, for X(t) ∈ Dom(A4)
d
dt

X(t)+A4X(t) = U (t), on [0,T ], (9.6a)

X(0) = X0, (9.6b)

in which

U (t) =



0
0
0

U(t)
0
0

 . (9.7)

The abstract Cauchy problem (9.6) is equivalent to the system (9.1). The link between X(t), z, and u(·, t) is

X(t) =



X1(t)
X2(t)
X3(t)
X4(t)
X5(t)
X6(t)

= z =



z1
z2
z3
z4
z5
z6

=



u(·, t)
ut(·, t)
u(1, t)
ut(1, t)
u(0, t)
ut(0, t)

 .

Theorem 9.1 Consider H3, A4, and Dom(A4) defined respectively in (9.2), (9.4), and (9.5). The statement
below are true

(i). For all initial data X0 ∈ Dom(A4) and U ∈ C1(0,∞), the abstract problem (9.6) has a unique strong
solution such that { ∀t > 0, X(t) ∈ Dom(A3), (9.8a)

X1 ∈C1([0,∞];H1(0,1))∩C([0,∞];H2(0,1)). (9.8b)
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(ii). For all initial data X0 ∈ H3 and U ∈W1,∞(0,∞), the abstract problem (9.6) has a unique weak solution{ ∀t > 0, X(t) ∈ H, (9.9a)

X1 ∈W1,∞([0,∞];L2(0,1))∩L∞([0,∞];H1(0,1)). (9.9b)

given by X(t) = T3(t)X0, in which T3 is the C0-semigroup of contraction generated by the unbounded
operator A4.

Note that this result is fundamentally different from that the one in Section 8.5, because there U is chosen as
a specified state feedback. Here, we consider it as a general function in W1,∞(0,∞).

Even if the input act at the boundary of the PDE, it leads to a bounded input operator. Therefore the well-
posedness analysis is much simpler, should we have considered an unbounded input operator.

The idea of the proof is to decompose the operator A4 into one m-accretive part and a remaining part, then
to perform a bijective change of variable which cancels the remaining part. Finally, we conclude using the
following theorem

Theorem 9.2 [Inhomogenous Abstract Problem, theorem 7.10 in [Brezis, 2010] ]

Consider, in a Banach space E, the problem
dX
dt

(t)+A X(t) = f (t), (9.10a)

X(0) = X0. (9.10b)

Assume that A is m-accretive (equivalent to maximal monotone in a Hilbert space). Then for every X0 ∈
Dom

(
A
)

and every f ∈C1([0,T ];E), there exists a unique solution X of (9.10) with

f ∈C1([0,T ];E)∩C([0,T ];Dom
(
A
)
) (9.11)

Consider the following operator

G =−



0 1 0 0 0 0
δxx−1 1 0 0 0 0

0 0 0 1 0 0
−a2δx|1 0 −a2 0 0 0

0 0 0 0 0 1
b2δx|0 0 0 0 −b2 0

 , (9.12)

and the following matrix

H =



0 0 0 0 0 0
−β −1 −λ −1 0 0 0 0

0 0 0 0 0 0
0 0 −a3−a2 −a1 0 0
0 0 0 0 0 0
0 0 0 0 −b3−b2 −b1

 . (9.13)

The domain of G is equal to the domain of A4. One gets

A4 = G +H . (9.14)

G is the m-accretive part, this is established in the following lemma

Lemma 9.1 The linear unbounded operator G defined in (9.12) is maximal monotone on H3 defined in (9.2).
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Proof : Computing

〈z ,G z〉T =
∫ 1

0
[−z1z2− z′1z′2 + z2(−z′′1 + z2 + z1)]dx− z3z4 + z4z′1(1)+ z4z3− z5z6− z6z′1(0)+ z6z5 (9.15)

=
∫ 1

0
z2

2dx−
[
z2z′1

]1
0 + z2(1)z′1(1)− z2(0)z′1(0), (9.16)

using the fact that z ∈ Dom(A4), one obtains

〈z ,G z〉T =
∫ 1

0
z2

2dx> 0 (9.17)

Thus the operator G is monotone (see [Brezis, 2010] Chapter 7). In addition if we establish that

R(I +G ) = H3, (9.18)

then the operator G is maximal monotone (see [Brezis, 2010] Chapter 7, R stand for the range of the operator).
Let y ∈ H3, we have to solve

z ∈ Dom(A4), z+G z = y, (9.19)

which means that

z1− z2 =y1, (9.20)

z2− z′′1 + z2 + z1 =y2, (9.21)

z3− z4 =y3, (9.22)

z4 +a2(z′1(1)+ z3) =y4, (9.23)

z5− z6 =y5, (9.24)

z6 +(−b2z′1(0)+b2z5) =y6, (9.25)

using the fact that z ∈ Dom(A4) one gets

3z1− z′′1 = 2y1 + y2, (9.26)

a2z′1(1)+(1+a2)z1(1) = y3 + y4, (9.27)

−b2z′1(0)+ z1(0)(1+b2) = y5 + y6. (9.28)

This is a classical stationary problem (e.g. see [Brezis, 2010]) with Robin’s boundaries conditions, using standard
result (as done in [Brezis, 2010] p. 226 Example 6) one gets that as 2y1+y2 ∈ L2(0,1), (9.26)-(9.28) has a unique
solution z1 ∈ H2(0,1). Now one can check that the element z = (z1, z2, z3, z4, z5, z6) with

z1 is solution of (9.26)-(9.28), (9.29a)

z2 = z1− y1, (9.29b)

z3 = y3 + z2(1), (9.29c)

z4 = y4−a2(z′1(0)+ z3), (9.29d)

z5 = y5− z2(0), (9.29e)

z6 = y6 +b2(z′1(0)− z5), (9.29f)

satisfies (9.20)-(9.25). Moreover using (9.26)-(9.28) on (9.29) one gets that z satisfying (9.29) is in Dom(A4) �

Now, we are ready to state the proof of the well-posedness of (9.6).

Proof of Theorem 9.1: Consider the bijective change of variable

Xe(t) = X(t)eH t . (9.30)

X is solution of (9.6) is equivalent to, Xe ∈ Dom
(
A4
)

is solution of
dXe

dt
(t)+G Xe(t) = U (t)eH t , (9.31a)

Xe(0) = X0, (9.31b)
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where H is defined in (9.13) and G is defined in (9.12).

From Lemma 9.1, using Theorem 9.2 on (9.31), and the change of variable (9.30), one establishes (i). Using
argument of density of C1 into W1,∞ (resp. C into L∞), one obtains (ii). �

9.2 Exponentially stable space depending wave equation with distributed terms

Consider the following system which is going to be used as target system in Section 9.3,

(
ΣT3

) 
wtt(x, t) =

(
a(x)wx(x, t)

)
x−λw(x)wt(x, t)−βw(x)w(x, t), (9.32a)

wtt(1, t) =−c1wt(1, t)− c2wx(1, t)− c3w(0, t), (9.32b)

wtt(0, t) =−d1wt(0, t)+d2wx(0, t)−d3w(0, t), (9.32c)

in which the coefficients a(x), λw(x), βw(x), ∀x ∈ [1,0], c1, c2, c3, d1, d2, and d3 are positive. a(x) expresses
the fact that the propagation velocity along the wave is not constant with respect to space, e.g. [d’Andréa-Novel
et al., 1992] where the wave PDE models an overhead crane. To illustrate it, one can see the wave equation as an
infinite combination of spring-mass elements, a(x) represents the fact that these elements are not constant with
respect to space.

Consider the following Lyapunov functional candidate, for z ∈ H3

V3(z) =
∫ 1

0

 z1(x)
z2(x)

a(x)z′1(x)

T

P0

 z1(x)
z2(x)

a(x)z′1(x)

dx+
[

z3
z4

]T

P1

[
z3
z4

]
+

[
z5
z6

]T

P2

[
z5
z6

]
, (9.33)

in which P0 ∈R3×3, P1 ∈R2×2, and P2 ∈ R2×2 are symmetric positive definite matrices.
√

V3(·) is a norm on H3,
the latter is defined in (9.2). Consider

Xe3(t) = [w(·, t), wt(·, t), w(1, t), wt(1, t), w(0, t), wt(0, t)] . (9.34)

Lemma 9.2 Consider the system (9.32). For all x ∈ [0,1], a(x) > 0, λw(x) > 0, βw(x) > 0, ci > 0, and di > 0,
there exist P0(x), P1 and P2 symmetric positive definite matrices such that, it holds for a suitable ρ > 0

V̇3(Xe3(t))6−ρV3(Xe3(t)), (9.35)

in which V3 is defined (9.33), H3 3Xe(t) is defined in (9.34).

Before establishing the proof of the above lemma, we start by rewriting the system (9.32) equations in vector
form. In order to simplify the computation of the Lyapunov functional candidate derivative along the state
trajectory. However, note that we do not consider wx(x, t) as the third coordinate but a(x)wx(x, t). The reason is
the simplicity it leads for the vector equation. As ∀x ∈ [0,1], a(x) > 0 there is no problem with this change of
variable. Let us consider

W (x, t) =

 w(x, t)
wt(x, t)

a(x)wx(x, t)

 , W1(t) =
[

w(1, t)
wt(1, t)

]
, W0(t) =

[
w(0, t)
wt(0, t)

]
. (9.36)

It holds
Wt(x, t) = A1(x)W (x, t)+A2(x)Wx(x, t), (9.37)

d
dt

W1(t) = A3W (1, t),
d
dt

W0(t) = A4W (0, t), (9.38)

W1(t) = A5W (1, t), W0(t) = A5W (0, t), (9.39)
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in which

A1(x) =

 0 1 0
−βw(x) −λw(x) 0

0 0 0

 , A2(x) =

0 0 0
0 0 1
0 a(x) 0

 , (9.40)

A3 =

[
0 1 0
−c3 −c1 −c2

]
, A4 =

[
0 1 0
−d3 −d1 d2

]
, A5 =

[
1 0 0
0 1 0

]
. (9.41)

Similarly to Section 8.2, since wx is in W and Wx. The following proposition expresses this in vector form.
However, note that opposite to Section 8.2 there is a a(x) factor appearing in the relation.

Proposition 9.1 Consider

J1 =

1 0 0
0 0 0
0 0 0

 , J2 =

0 0 0
0 0 0
1 0 0

 , J3 =

0 0 1
0 0 0
0 0 0

 . (9.42)

It holds

W T
x J1 =

1
a(x)

W T J2, (9.43)

J1Wx =
1

a(x)
J3W, (9.44)

in which W is defined (9.36).

Moreover it follows, ∀θ(x) ∈ R3×3

∫ 1

0
W T J1θ(x)Wxdx =

[
W T J1θ(x)W

]1
0−

∫ 1

0

1
a(x)

W T J2θW +W T J1θ
′(x)Wdx, (9.45)

∫ 1

0
W T

x θ(x)J1Wdx =
[
W T

θJ1W
]1

0−
∫ 1

0

1
a(x)

W T
θ(x)J3W +W T

θ
′(x)J1Wdx. (9.46)

Proof : The establishment of the proof is the rewriting of scalar. �

Consider the complementary of J1 to I3, meaning it holds J1 + J4 = I3

J4 =

0 0 0
0 1 0
0 0 1

 . (9.47)

The idea is to decompose the computation of the Lyapunov functional candidate derivative in J1 and J4 parts.

Proposition 9.2 If
J4(AT

2 P0−P0A2)J4 = 0, (9.48)

then it holds∫ 1

0
(W T

x AT
2 P0W +W T P0A2Wx)dx =

1
a(x)

∫ 1

0
W T [J2AT

2 P0− J4AT
2 P0J3 +P0A2J3− J2P0A2J4

]
Wdx

+
∫ 1

0
W T [− J1(AT

2 P0)xJ4− J4(P0A2)xJ1− J4(AT
2 P0)xJ4

]
Wdx

+

[
W T [J4A2P0J1 + J1P0A2J4 + J4P0A2J4]W

]1

0
. (9.49)
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Proof : From the definition of J1, J2, and J3 in (9.42), and J4 in (8.30), for all Θ ∈ R3×3 it holds

Θ = J1Θ+ J4ΘJ1 + J4ΘJ4, (9.50)

Θ = ΘJ1 + J1ΘJ4 + J4ΘJ4. (9.51)

Applying this to A2P0 and P0A2, one gets∫ 1

0
(W T

x AT
2 P0W +W T P0A2Wx)dx =

∫ 1

0
W T

x (J1AT
2 P0 + J4AT

2 P0J1 + J4AT
2 P0J4)Wdx

+
∫ 1

0
W T (P0A2J1 + J1P0A2J4 + J4P0A2J4)Wxdx. (9.52)

using Proposition 9.1, integration by parts and (9.48), one obtains (9.49). �

It is worth noticing that, considering P0 as

P0 =

p1 p2 p3
∗ p4 p5
∗ ∗ p6

 ,
the condition (9.48) with A2 defined in (9.40) is equivalent to a(x)p4 = p6.Therefore the constraint of (9.48) is
only on one parameter.

Proposition 9.3 Consider V defined in (9.33). It can be rewritten as

V3(Xe3(t)) =
∫ 1

0
W (x, t)T P0(x)W (x, t)dx+W1(t)T P1W1(t)+W0(t)T P2W0(t), (9.53)

with P0(x) ∈ R3×3, P1 ∈ R2×2, and P2 ∈ R2×2, symmetric positive definite, assuming that P0 verifies (9.48), it
holds

V̇3(Xe3(t)) =−
∫ 1

0
W (x, t)T Q0(x)W (x, t)dx−W (1, t)T Q1W (1, t)−W (0, t)T Q2W (0, t), (9.54)

in which Q0, Q1 and Q2 are defined as

Q0(x) =−
1

a(x)

[
J2(A2(x)T P0(x)−P0(x)A2(x)J4)+(−P0(x)A2(x)+ J4A2(x)T P0(x))J3

]
−A1(x)T P0(x)−P0(x)A1(x)+ J1(AT

2 (x)P0(x))xJ4 + J4(P0(x)A2(x))xJ1 + J4(A2(x)T P0(x))xJ4, (9.55)

Q1 =−AT
3 P1A5−AT

5 P1A3− (J4A2(1)T P0(1)J1 + J1P0(1)A2(1)J4 + J4A2(1)T P0(1)J4, (9.56)

Q2 =−AT
4 P2A5−AT

5 P2A4 + J4A2(0)T P0(0)J1 + J1P0(0)A2(0)J4 + J4A2(0)T P0(0)J4, (9.57)

where J1, J2, J3 are given (9.42), J4 is given in (9.47), Ai are defined in (9.40)-(9.41).

Proof : Derivation (9.53) along the trajectory, then applying (9.37)-(9.39), then using (9.48) and Proposi-
tion 9.3 one gets (9.54). �

Here the Lyapunov equations (9.55)-(9.57) are more complex than in both previous cases (Section 7.2 and
Section 8.2). Indeed, the derivative of A2 and P0 need to be considered in addition. An open question is: How
can we optimize the evaluation of the decay rate for the target system (which is equivalent to the closed-loop
system, changing both the target system parameters and the positive definite matrices P0, P1, and P2?

Now we finally state the proof of the lemma, using all previous propositions
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Proof of Lemma 9.2: Consider V3 defined in (9.33), with

P0(x) =

βw(x) σ 0
∗ 1 0
∗ ∗ 1

a(x)

 , P1 =

[
c3+σc1

c2

σ

c2

∗ 1
c2

]
, P2 =

[
d3+σd1

d2

σ

d2

∗ 1
d2

]
, (9.58)

in which

σ < min
x∈[0,1]

{√
βw(x), λw(x),

4βw(x)λw(x)
λw(x)2 +4βw(x)

, c1, d1

}
. (9.59)

One gets that P0(x), P1, and P2 are positive definite. Moreover the condition (9.48) is satisfied. Therefore using
Proposition 9.3, it holds

V̇3(Xw3(t)) =−
∫ 1

0
W (x, t)T Q0(x)W (x, t)dx−W1(t)T Q1W1(t)−W0(t)T Q2W0(t), (9.60)

where

Q0(x) =

2βw(x)σ λw(x)σ 0
∗ 2λw(x)−2σ 0
∗ ∗ 2σ

a(x)

 , Q1 =

[
2σc3

c2 0
∗ 2c1

c2
− 2σ

c2

]
, Q2 =

[
2σd3

d2 0
∗ 2d1

d2
− 2σ

d2

]
. (9.61)

Note that (AT
2 (x)P0(x))x = 0. From (9.59), it holds that Q0(x), Q1, and Q2 are positive definite. It follows (9.35).

�

9.3 Backstepping transformation on a space depending wave equation

In this section, the on-going work on backstepping control design is presented. We are currently working on the
well-posedness of the kernel PDE. Indeed all previous technique, change of variable used in order to perform the
method of successive approximation fails. Therefore in the following is just presented the establishment of the
kernel PDE.

9.3.1 Problem statement

We want to design a backstepping transformation for a space depending wave PDE in order to control it. The
reason are mainly that there exists a class of application which are space dependent.

We wish to find a backstepping transformation which maps into the target system (ΣT3) defined in (9.32) the
following original system

(
ΣO4

) 
utt(x, t) =

(
a(x)ux(x, t)

)
x +λ (x)ut(x, t)+β (x)u(x, t), (9.62a)

utt(1, t) = a1ut(1, t)+a2ux(1, t)+a3u(1, t)+U(t), (9.62b)

utt(0, t) = b1ut(0, t)+b2ux(0, t)+b3u(0, t), (9.62c)

in which, ∀x ∈ [0,1], a(x)> 0 is an in-domain coefficient. λ (x) is an in-domain source dependent viscous source
term coefficient. β (x) is an in-domain source dependent position source term coefficient. a1, a2 6= 0, a3, b1,
b2 6= 0, and b3 are boundary parameters. λw(x) is an space dependent viscous damping coefficient. βw(x) is an
in-domain space dependent static damping coefficient. c1, c2, c3, d1, d2, d3 > 0 are boundary parameters.

The suggested backtepping transformation is

w(x, t) = u(x, t)−
∫ 1

0
KT (x,y)χ(y, t)dy− γ(x)ut(0, t), (9.63)



9.3. Backstepping transformation on a space depending wave equation 171

in which

K(x,y) =

k(x,y)
s(x,y)
m(x,y)

 , χ(x, t) =

 u(x, t)
ut(x, t)

a(x)ux(x, t)

 . (9.64)

Note that we use a(x)ux(x, t) is place of ux(x, t) due to the computation simplicity it leads.

9.3.2 Backstepping transformation

This section is devoted to the establishment of the kernel (K, γ) partial differential equation. Before stating the
corresponding result, consider the vector χ(x, t) defined in (9.64). Using the system equation (9.62a) together
with the boundary condition (9.62c), it is easy to show that

χt(x, t) = Θ1(x)χ(x, t)+Θ2(x)χx(x, t), (9.65)

utt(0, t) = Θ3χ(0, t), (9.66)

χt(0, t) = Θ4χ(0, t), (9.67)

χ(0, t) = Θ5χ(0, t), (9.68)

with
χ(0, t) :=

[
u(0, t) ut(0, t) ux(0, t) uxt(0, t)

]T
, (9.69)

and where

Θ1(x) =

 0 1 −
√

a(x)
β (x) λ (x) 0

0 0 0

 , Θ2(x) =

√a(x) 0 0
0 0 1
0 a(x) 0

 , (9.70)

Θ3 :=
[
b3 b1

b2
a(0)

]
, Θ4 :=

 0 1 0 0
b3 b1

b2
a(0) 0

0 0 0 a(0)

 , Θ5 :=

1 0 0 0
0 1 0 0
0 0 a(0) 0

 . (9.71)

Note that Θ1 and Θ2, such that it holds (9.65), are not unique. The choice made in (9.70) however guarantees
that Θ2

2 = a(x)I3.

Consider

(
ΣK3

)



a(x)Kxx(x,y)−a(y)Kyy(x,y) = BK(x,y)Ky(x,y)+CKK(x,y), (9.72a)

K′(x,x) = DKK(x,x)+E(x), (9.72b)[
ky(x,0)
my(x,0)

]
= HKK(x,0), (9.72c)

sxx(x,0) = b2sy(x,0)+HSK(x,0), (9.72d)[
K(0,0)
sx(0,0)

]
= JK , (9.72e)

γ(x) =
a(0)
b2

s(x,0), (9.72f)

in which
BT

K(x,y) =−Θ2(y)Θ1(y)−Θ1(y)Θ2(y)+2Θ
′
2(y)Θ2(y)−λw(x)Θ2(y), (9.73)

CT
K(x,y) = Θ1(y)2−Θ

′
2(y)Θ1(y)+Θ

′
1(y)Θ2(y)+Θ

′′
2(y)Θ2(y)+λw(x)[Θ1(y)−Θ

′
2(y)]+βw(x)I3, (9.74)

DT
K(x) =

1
2a(x)

[
Θ2(x)Θ1(x)+Θ1(x)Θ2(x)−Θ

′
2(x)Θ2(x)+λw(x)Θ2(x)

]
, (9.75)

ET
K (x) =−

1
2a(x)

[
β (x)+βw(x) λ (x)+λw(x) 0

]
, (9.76)
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HK(x) =
1

a(0)

[
a′(0)

2 +λw(x)
√

a(0) β (0)
√

a(0)−a(0)(λw(x)b3 +b1b3)
1
b2

a(0)b3

1 λ (0)−b1 a′(0)+b2

]
(9.77)

HS(x) =
1

a(x)

[
(b2(a(0)−1) 1√

a(0)
b2

1 +λw(x)+βw(x)−b2 +b3 −b2(λw(x)+b1)
]
, (9.78)

JK =− 1
d2


b3 +d3

0
b2

a(0) −d2
b2(b1+d1)

a(0)

 . (9.79)

Lemma 9.3 Consider the kernel of the backstepping transformation (9.63) to be solution of (9.72). Then the
backstepping transformation maps the closed-loop system (9.62) (with the corresponding backstepping control
law which remains to be computed) into the target system (9.32).

Note that if β (x) = β , λ (x) = λ , λw(x) = λw, βw = βw and a(x) = 1 it holds

• (9.32a) is the same as (8.11a).
• (9.32c) is the same as (8.11c).
• (9.62a) is the same as (8.1a).
• (9.62c) is the same as (8.1c).

The difficulty we have not solve so far in the current design is to prove that the system (9.72) is well-posed.
Indeed we cannot use the same change of variable (8.81) as in Chapter 8. On the one hand BK is depending on
x, this cause the exponential part of (8.81) to not simplify the Ky term. And on the other hand the coefficient a
before Kxx and Kyy cause that the standard change of variable x = ζ +η , y = ζ −η fails to regroup the higher
order derivative in one term Gζ η = Kxx−Kyy.

Proof of Lemma 9.3: Consider the time derivative of (9.63)

wt(x, t) = ut(x, t)−
∫ x

0
KT (x,y)χt(y, t)dy− γ(x)utt(0, t). (9.80)

Using (9.65), an integration by parts and (9.66), one can express (9.80) as

wt(x, t) =ut(x, t)−
[
KT (x,y)Θ2(y)χ(y, t)

]x
y=0 (9.81)

−
∫ x

0

[
KT

Θ1(y)−KT
y Θ2(y)−KT

Θ
′
2(y)

]
χ(y, t)dy− γ(x)Θ3χ(0, t).

Consider the time derivative of (9.81). Using (9.62a), (9.65), and an integration by parts, one obtains

wtt(x, t) =uxx(x, t)+λut(x, t)+βu(x, t)

−
[

KT (x,y)Θ2(y)χt(y, t)+
[
KT (x,y)Θ1(y)−KT

y (x,y)Θ2(y)−KT (x,y)Θ′2(y)
]
Θ2(y)χ(y, t)

]x

y=0

−
∫ x

0

[
(KT

Θ1(y)−KT
y Θ2(y)−KΘ

′
2(y))Θ1(y)

−
[
KT

y Θ1(y)−KT
Θ
′
1(y)−KT

yyΘ2(y)−2KT
y Θ
′
2(y)−KT

Θ
′′
2(y)

]
Θ2(y)

]
χ(y, t)dy− γ(x)Θ3χt(0, t).

(9.82)

Considering now the first and second space derivatives of (9.63), which can be written as

wx(x, t) =ux(x, t)−KT (x,x)χ(x, t)−
∫ x

0
KT

x (x,y)χ(y, t)dy− γ
′(x)ut(0, t), (9.83)

wxx(x, t) =uxx(x, t)− (K′T (x,x)+KT
x (x,x))χ(x, t)

−KT (x,x)χx(x, t)−
∫ x

0
KT

xx(x,y)χ(y, t)dy− γ
′′(x)ut(0, t). (9.84)



9.3. Backstepping transformation on a space depending wave equation 173

Gathering (9.63), (9.81), (9.82), and (9.84) the target system equation (9.32a) holds if the kernel (K, γ)
satisfies the following conditions

(KT (x,y)Θ1(y)−KT
y (x,y)Θ2(y)−K(x,y)Θ′2(y))Θ1(y)

−
[
KT

y (x,y)Θ1(y)−KT (x,y)Θ′1(y)−KT
yy(x,y)Θ2(y)−2KT

y (x,y)Θ
′
2(y)−KT (x,y)Θ′′2(y)

]
Θ2(y)

−a(x)KT
xx(x,y)+λw(x)

[
KT (x,y)Θ1(y)−KT

y (x,y)Θ2(y)−KT (x,y)Θ′2(y)
]
+βw(x)KT (x,y) = 0, (9.85)

KT (x,x)Θ2(x)χt(x, t)−λ (x)Θ6χ(x, t)−β (x)Θ8χ(x, t)

+ [KT (x,x)Θ1(x)Θ2(x)−KT
y (x,x)Θ2(x)2−KT (x,x)Θ′2(x)Θ(y)]χ(x, t)−λw(x)Θ6χ(x, t) (9.86)

+λw(x)KT (x,x)Θ2χ(x, t)−βw(x)Θ8χ(x, t)−a(x)(K′T (x,x)+KT
x (x,x))χ(x, t)−a(x)KT (x,x)χx(x, t) = 0,

γ(x)Θ3χt(0, t)+(−KT (x,0)Θ1(0)Θ2(0)+KT
y (x,0)Θ

2
2(0)−KT (x,0)Θ′2(0)Θ2(0))χ(0, t)−KT (x,0)Θ2χt(0, t)

−a(x)γ ′′(x)Θ6χ(0, t)−λw(x)KT (x,0)Θ2χ(0, t)+λw(x)γ(x)Θ3χ(0, t)+βw(x)γ(x)Θ6χ(0, t) = 0, (9.87)

in which
Θ6 :=

[
0 1 0

]
, Θ8 :=

[
1 0 0

]
. (9.88)

Following the definitions in (9.73)-(9.74) of BK and CK , (9.85) can be rewritten as (9.72a). Moreover, using
(9.65), (9.86) can be reformulated as (9.72b). Furthermore, using (9.67) and (9.68) one obtains that (9.87) is
equivalent to the four following scalar conditions

β (0)
√

a(0)s(x,0)−a(0)ky(x,0)+λw(x)
√

a(0)k(x,0)+a(0)b3m(x,0)−λw(x)b3γ(x)

−b1b3γ(x)− a′(0)
2

k(x,0) = 0, (9.89)

a(x)γ ′′(x)−βw(x)γ(x)−a(0)sy(x,0)+λwa(0)m(x,0)−b3γ(x)−λwb1γ(x)+b1a(0)m(x,0)−b2
1γ(x)

+
√

a(0)k(x,0)+a(0)
3
2 k(x,0) = 0, (9.90)

k(x,0)−a(0)my(x,0)+λ (0)s(x,0)+b2m(x,0)−λw(x)b2γ(x)
1

a(0)
−b1b2γ(x)

1
a(0)

+λw(x)s(x,0)

+a′(0)m(x,0) = 0, (9.91)

a(0)s(x,0)−b2γ(x) = 0, (9.92)

which can be reformulated as (9.72c), (9.72d), and (9.72f).

Now, the boundary condition (9.32c) gives one last condition on the kernel. As, from (9.63), (9.81), (9.82),
and (9.83), 

wtt(0, t) = (Θ3Θ5− γ(0)Θ3Θ4)χ(0, t), (9.93a)

wt(0, t) = (Θ6− γ(0)Θ3)Θ5χ(0, t), (9.93b)

wx(0, t) = (Θ7−KT (0,0)− γ
′(0)Θ6)Θ5χ(0, t), (9.93c)

w(0, t) = (Θ8− γ(0)Θ6)Θ5χ(0, t), (9.93d)

in which Θ7 :=
[
0 0 1

]
thus a sufficient condition for (9.32c) to hold is

b3 +d3
b1 +d1
b2

a(0) −d2

0

=−d2


k(0,0)
s(0,0)
m(0,0)

0

+ γ(0)


∗
∗
∗
b2

− γ
′(0)


0
d2
0
0

 , (9.94)

which, using (9.92), is (9.72e).

Finally the control law can be obtained from (9.32b), with (9.63), (9.81), (9.83), and using (9.62). �
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Chapter conclusion

First, we have considered a particular boundary input PDE where the associated abstract problem could be
deduced without using boundary input system theory. Therefore, the time derivative of the input does not need
to be considered in the proof of system well-posedness. This allows us to present idea which can be used to
study the well-posedness of the homogeneous abstract problem we consider in Chapter 7, Section 7.1 and in
Chapter 8, Section 8.1.

Consider the backstepping on-going design. The final pieces of this design are to prove that the kernel is
unique and exist, to compute the control law and to prove that the backstepping transformation is invertible. The
key point is the well-posedness of the kernel PDE, we have several idea on this, (i) trying to find a change of
variable which maps the kernel PDE towards a simpler PDE, (ii) there exist more developed method than the
method of successive approximation to study PDE well-posedness, therefore the proof might be deduced using
an other method.



Part II conclusion

We have presented two backstepping designs, and the preliminary computations of a third one. The more
finalized one is the first, because we proposed an additional observer for the original system (Chapter 7). In
Chapter 8 we have presented a generalized design. Indeed, the design in Chapter 7 is a particular case of the
design in Chapter 8. But there does not exist an observer for this case in general. There are several results which
can be deduced directly using together Chapter 7 and Chapter 8 and ideas within. For example, considering
in-domain damping, we could design observer using both boundary velocity and position. The idea is similarity
between the target system and observer-error system, as we have done in Chapter 7. Note that, we can also mix
control boundary between the first and second design.

As the stabilization and the observation problem are dual, intuitively these considered systems should be
observable at the x = 1 boundary. This is the case if the operator is auto-adjoin ( [Curtain and Zwart, 2012]
and controllability and observability gramian). This is often the case when the wave have no distributed terms.
Therefore we need to check if it is the case for the considered wave equation. For obvious reason, we aim for
a collocated observer but there is no reason that it is possible. As far as we know there is a the moment no
collocated observer for the wave PDE (7.1), (8.1), and (9.62).

An interesting extension is to consider adaptive control on the system coefficient parameters. Indeed, the
estimation of the wave parameters has to be done before applying these controllers. Using adaptive control we
can relax this preliminary estimation. However the design of an observer seems more crucial. Nevertheless the
design of both can be done separately, gathering them using the separation principle. Note that assuming an
observer-based adaptive control law could be designed, we may study its robustness toward model mismatch as
done in Part I.

An other but more direct extension of the Chapter 7 and Chapter 8, is the control of coupled one-dimension
wave PDE. Indeed, the crucial part of backstepping control design method is the establishment of the kernel
existence and uniqueness. Therefore, it seems to have no problem to design control of coupled one-dimensional
wave equations, considering u(x, t)∈Rn and matrix parameters. The practical interest of this could be the control
of both torsional and axis vibrations occurring in drilling facility, as considered for example in [Germay et al.,
2009], [Saldivar et al., 2016b].
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Thesis conclusion and perspective

We started this thesis with two questions, let us recall them

Does a nonlinear adaptive control law still preform efficiently, if the viscous damping taken equal to zero for
its design is no longer neglected?

How can we take into account the in-domain damping in order to stabilize the wave equation subject to a
unstable dynamic boundary condition with known parameters?

For the first question we have suggested a method, using successive change of variables in order to perform
a Lyapunov analysis, where some features / characteristics of the Lyapunov function are kept. This is the case
of the log form of the Lyapunov function. This point is really important and this is the notable feature of our
method. Therefore, the answer to this question is: using our method the considered adaptive control laws are
robust with respect to in-domain damping model mismatch, if the coefficient of the viscous damping is small
enough. Nevertheless, as we are using Lyapunov functional the result is conservative. Note also that for one of
the considered control law we have to assume more regular solutions.

For the second question we proposed two backstepping based control laws. Each one can be seen as a
generalization of the adaptive control law using the measurement of both boundary velocities and taking apart
the adaptive. Nevertheless, these approaches do not work for space depending viscous in-domain damping.
Therefore the work in progress is mainly focused on the last presented idea of design. The missing part is the
establishment of the kernel existence and uniqueness.

Several studies can be followed from the thesis result:

Input-to-state stability: In recent year an enormous effort has been done to adapt the input-to-state stability
idea and result to infinite dimensional systems. We believe that it could be interesting to study the robustness of
nonlinear adaptive control law with this point of view.

Adaptive control on the nonlinear boundary condition: The following comes from a remark of Giorgio
Valmorbida in the early work of this thesis concerning the adaptive control law. If we known the equation of
the nonlinear at the dynamics boundary, and that this nonlinearity depends on parameters, we could perform
adaptive control on these parameters, and somehow respect the form of the nonlinearity.

Comparison between second and first order hyperbolic: For numerous authors some wave equations can
be reformulated into two coupled hyperbolic PDEs. But, rigorously speaking, this is not a reformulation as the
position is lost during the transformation. There is no problem according to this point in the thesis since all
results are written in the point of view of the wave equation. But we believe that some clarification is needed:
What wave equation can be property described by first order coupled hyperbolic?

Robustness with respect to general unmodeled dynamics: In our robust study, we have just looked at the
robustness with respect to in-domain viscous damping. But using the same idea, i.e., splitting the dynamics in
both, it will be interesting to study the robustness with general unmodeled dynamics, in other words, consider
the same adaptive control laws but applied on the wave propagation

utt(x, t) = uxx(x, t)+F(u(x, t)), (9.95)

where F can be a differential operator.
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Backstepping design: It seems that we can go further in the backstepping design, given that we establish the
design, the idea of which is presented in Chapter 9. It could be really interesting to try to solve the stabilization
of the nonlinear wave equation

utt(x, t) = [a(x,u(x, t))]xx. (9.96)

Indeed since the premise of infinite-dimensional backstepping the idea to use it to control nonlinear PDE is
present in [Balogh and Krstic, 2002] sixteen year ago. So far as we known, at this day, there is no work concern-
ing the control of this kind of nonlinear (at the propagation) PDE using infinite-dimensional backstepping. This
is actually a really hard problem.

Still concerning backstepping transformation, it will be interesting to look at fractional derivative PDE, as it
seems more simpler, as the system stays linear, the kernel will also stay linear. This gives birth to new questions:

Can we approximate a nonlinear dynamics system by a linear fractional evolution system? If yes, can we
choose arbitrary the approximation error? Is the converse true?

A last point concerning backstepping, is that so far as we know that the only method used to prove the
existence and uniqueness of the kernel solution is the successive approximation method. There exist a handful
of method to study the well-posedness of stationary PDE. We believe this idea could lead to really successful
results.

Observer design: As backstepping design gives full state feedback, an observer is needed and has to be
developed. An interesting idea is to use the history of the measurement (delay) to enhance the performance of
the observer. Note also that what seems to be the best idea is to design a control law on the adjoint problem.

Backstepping adaptive control: This is actually, one of the objective we wish to answer to. The idea is to
use the backstepping control we have designed, assuming that the parameters of the wave PDE are unknown and
compute adaptive law by Lyapunov design. Nevertheless, this should be done after the design of observer.

Experimentation: The final actual objective of all the work, is to experiment the different presented laws
and many others on a real system. The manipulations we have in mind are listed in [Patil and Teodoriu, 2013],
and concern torsional vibrations.

“ The key problem of all these interesting studies is the time, and the time, the key of these
problems. ”

Christophe Roman, in his thesis, 2018

This end this dissertation, in the following you will find the appendices and the references.



APPENDIX A

Intermediate results

A.1 Relationship between tramsport and delay

Lemma A.1 Consider

ft(x, t)+ c fx(x, t) = F (x, t), (A.1)

f (0, t) = f̄ (t) if c > 0, and f (1, t) = f̄ (t) if c < 0, (A.2)

f (.,0) = f0, (A.3)

in which F ∈ L2((0,∞)×(0,1)), f̄ ∈ L2(0,∞), f0 ∈ L2(0,1), and c∈R\{0}. There exists a unique weak solution
f ∈ L2((0,∞)× (0,1)) for the abstract Cauchy problem resulting from (A.1)-(A.3). This solution satisfies, for
all x ∈ [0,1], t ∈ [0,∞), and s such that 06 c(s− t)+ x6 1

f (c(s− t)+ x,s) = f (x, t)+
∫ s

t
F (c(τ− t)+ x,τ)dτ. (A.4)

Note that we can deduce for any x the value of the distributed state f (x, t) with the knowledge of its boundary
and F .

Proof : Without lack of generality, consider c < 0 and the following variable

m(x, t) = f (x, t)−
∫ x

0

1
c
F (s, t +

s− x
c

)ds. (A.5)

One gets that, if F ∈ L2((0,∞)× (0,1)),

m ∈ L2((0,∞)× (0,1))⇔ f ∈ L2((0,∞)× (0,1)). (A.6)

Moreover, m satisfies

mt(x, t)+ cmx(x, t) = 0, (A.7)

m(1, t) = f̄ (t)−
∫ 1

0

1
c
F (s, t +

s−1
c

)ds, (A.8)

m(x,0) = f0(x)−
∫ x

0

1
c
F (s,

s− x
c

)ds, (A.9)

which is a standard transport equation. Following [Curtain and Zwart, 2012] Example 2.2.4 or Exercise 3.14,
this system is well-posed and its solution satisfies m(x, t) = m(1, t− x

c) which, in turns, implies (A.4). �

A.2 Intermediate result for Lyapunov stability

Proposition A.1 Consider xi ∈ L2(R), (i 6 m, i, m ∈ N), and V a positive definite functional of
(
x2

i
)

i=1...m.
Assume there exists a increasing function K such that

∀t > 0, V̇ (t)6−
m

∑
i=1

(ai−K(V (t))xi(t)2, (A.10)
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in which ∀i ∈ J0,mK, ai > 0.

If ∀i, ai−K(V (0))>0 then ∀i, ∀t > 0, ai−K(V (t))> 0.

Proof : For the sake of simplicity, take p = 1 (similar arguments hold for the general case). By contradic-
tion, assume the existence of t0 > 0 such that a1−K(V (t0))6 0. By continuity, there exists at least one t ∈ [0, t0]
such that a1−K(V (t)) = 0. We denote t1 > 0 the smallest. One has

∀t ∈ [0, t1[, a1−K(V (t))> 0, (A.11)

and thus V (t1) < V (0) according to (A.10). Consequently, a1 = K(V (t1)) < K(V (0)) as K is an increasing
function, which is a contradiction. �

A.3 Generalized Young inequality

Proposition A.2 one gets (
n

∑
i=1

ai

)2

6 n
n

∑
i=1

a2
i , (A.12)

and for all ε > 0 (
n

∑
i=1

ai +b

)2

6 n(1+ ε)
n

∑
i=1

a2
i +(1+

1
ε
)b2. (A.13)

Proof : (
n

∑
i=1

ai

)2

=
n

∑
i=1

ai

n

∑
j=1

a j, (A.14)

applying Young’s inequality, one gets(
n

∑
i=1

ai

)2

6
n

∑
i=1

n

∑
j=1

(
a2

i +a2
j

2

)
=

n
2

(
n

∑
i=1

a2
i +

n

∑
i=1

a2
j

)
= n

n

∑
i=1

ai. (A.15)

�

A.4 Complement on the uniform boundness of coupled hyperbolic PDE with
uniform bounded input

Lemma A.2 Consider

ft(x, t) =
[

1 0
0 −1

]
fx(x, t)+B f (x, t)+F(x, t), (A.16)[

1 0
]

f (1, t) = F1(t), (A.17)[
0 1

]
f (0, t) = F0(t)+

[
1 0

]
f (0, t), (A.18)

f (.,0) = f0, (A.19)

in which f ∈ L2((0,1)×(0,∞))2 is the vector state of the system. F ∈ L∞((0,1)×(0,∞))2 is the vector in-domain
input. F1, F0 ∈ L∞(0,∞) are the boundary scalar inputs. B ∈ R2×2 is the matrix representing the coupling of
source terms. f0 ∈ L2(0,1)2 is the initial condition. The abstract Cauchy problem resulting from the previous
system is well-posed, moreover f (x, t) is uniformly bounded for t > 2.
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Proof : Considering g(x, t) = eBx f (x, t), derivating g by space, using (A.16), then derivating g by time one
gets

gt(x, t) =
[

1 0
0 −1

]
gx(x, t)+ eBxF(x, t), (A.20)[

1 0
]

g(1, t) = e−BF1(t), (A.21)[
0 1

]
g(0, t) = F0(t)+

[
1 0

]
g(0, t), (A.22)

g(x,0) = eBx f0(x). (A.23)

From Lemma A.1 applying on the above form one gets the well-posedness. Using (A.4) one gets the uniform
boundness of g(x, t) for t > 2 and concludes on this proof. �

A.5 Fubini’s theorem computation details for relationship between functional
V and Γ Section 3.3.3 and 4.3.3.

Proposition A.3 Consider

ζ̃ (x, t) =−2λ

∫ 1

x
ut(χ, t + x−χ)dχ, (A.24)

one gets
‖ζ̃ (t)‖2 6 4λ

2 max
s∈[0,1]

‖ut(t− s)‖2. (A.25)

Proof : one gets

‖ζ̃ (t)‖2 =
∫ 1

0
ζ̃ (x, t)2dx6 4λ

2
∫ 1

0

∫ 1

x
ut(χ, t + x−χ)2dχdx. (A.26)

Using Fubini’s theorem, it holds∫ 1

0

∫ 1

x
ut(χ, t + x−χ)2dχdx =

∫ 1

0

∫
χ

0
ut(χ, t + x−χ)2dxdχ, (A.27)

using s = x−χ , we obtain ∫ 1

0

∫
χ

0
ut(χ, t + x−χ)2dxdχ =

∫ 1

0

∫ 0

−χ

ut(χ, t + s)2dsdχ. (A.28)

Then one can write ∫ 1

0

∫ 0

−χ

ut(χ, t + s)2dsdχ 6
∫ 1

0

∫ 0

−1
ut(χ, t + s)2dsdχ, (A.29)

and thus conclude the proof. �

A.6 Minimal example for a set of conditions

Consider
V (x) = b1x2

1 +b2x2
2 +b3x2

3 +
x4

γ
. (A.30)

Defining

f1(b,γ) =−c+b1γ +b2γ +b2c2 +b3eV (x), (A.31)

f2(b,γ) =
1
c
−b1 +b2 +b3eV (x), (A.32)

f3(b,γ) =−b1 +b1γ +b2γ +b3eV (x), (A.33)

f4(b,γ) =−b2 +b2γ, (A.34)

f5(b,γ) =−b3 +b3γ, (A.35)
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we want to find b1, b2, b3, and γ > 0 such that fi < 0

First let us take
b2 <

1
c
, (A.36)

then
b1 >

1
c0

+b2, (A.37)

now we choose

γ < min
{

c−b2c2

b1 +b2
,

b1

b1 +b2
,1
}
. (A.38)

Finally taking M = eV when b3 = 1, one gets that if

b3 < min

{
1,

c0−b1γ−b2γ−b2c2

eM ,
b1− 1

c +b2

eM ,
b1−b1γ−b2γ

eM

}
, (A.39)

with (A.36)-(A.38) then f1, f2, f3, f4, and f5 < 0 .



APPENDIX B

Proof of the closed-loop wave equation
without position distributed term

well-posedness

This appendix deals with the well-posedness of the closed-loop system defined in Chapter 7, in details, here the
proof of Theorem 7.2 is established. Note that this proof is valid with c1 = 0 and d1 ∈R and therefore establishes
also the well-posedness of the zero-input system (2.1).

The idea is to prove that the target system is well-posed and then using the fact that the backstepping transfor-
mation is an invertible maps. Similarly as it has been done in Chapter 8, in order to prove that the target system
is well-posed, we suggest to use the same idea exposed in Chapter 9, to add positions terms. These position
distributed terms will allows to prove that given a change of variable we have a monotone operator.

First let us consider the abstract problem associated with the target system defined in (7.12). Consider the
following operator

∀z ∈ Dom(Ae1), Ae1z =−


0 1 0 0

∂xx −λ 0 0
0 0 0 1

d2δx|0 0 0 −d1

 , (B.1)

Dom(Ae1) :=
{
(z1,z2,z3,z4) ∈ H2(0,1)×H1(0,1)×R2 : z3 = z1(0), z4 = z2(0), z′1(1) =−c1z2(1)

}
, (B.2)

in which ∂xxz1 = z′′1 , δx|0z1 = z′1(0). We are interested to the following abstract problem
d
dt

X(t)+Ae1X(t) = 0, X(t) ∈ Dom(Ae1) , (B.3a)

X(0) = X0. (B.3b)

This is equivalent to the target system defined in (7.12).

The following lemma state the well-posedness of the previous abstract problem defined in (B.3)

Lemma B.1 Well-posedness of the target system
Consider H1, Ae1 , and Dom(Ae1) defined in (7.2), (B.1), and (B.2).

(i). For all initial data z0 ∈ Dom(Ae1), the abstract problem (B.3) has a unique strong solution such that{ ∀t > 0, z(t) ∈ Dom(Ae1),

z1 ∈W1,∞(0,∞;H1(0,1))∩L∞(0,∞;H2(0,1)).

(ii). For all initial data z0 ∈ H1, the abstract problem (B.3) has a unique weak solution{ ∀t > 0, z(t) ∈ H1,

z1 ∈W1,∞(0,∞;L2(0,1))∩L∞(0,∞;H1(0,1)).

given by z(t) = Te(t)z0, in which Te is the C0-semigroup of contraction generated by the unbounded oper-
ator Ae1 .
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In order to prove the above Lemma B.1, as it has been said, we preform a change of variable to get a maximal
monotone operator. Consider the following operator

∀z ∈ Dom(Ae1), G1z =−


0 1 0 0

∂xx−1 −1 0 0
0 0 0 1

d2∂x|0 0 −1 0

 , (B.6)

and the following matrix

H1 =


0 0 0 0
−1 +λ −1 0 0
0 0 0 0
0 0 −1 −b1

 , (B.7)

one gets
Ae1 = G1 +H1, (B.8)

G is a maximal monotone part of Ae1 , this is established in the following lemma.

Lemma B.2 The linear unbounded operator G1 defined in (B.6) is maximal monotone on the Hilbert space H1
defined in (7.2)

Proof : Consider the following scalar product

∀z,y ∈ H1, 〈z ,y〉T1
=
∫ 1

0
(z1y1 + z′1y′1 + z2y2)dx+

1
d2

z3y3 +
1
d2

z4y4. (B.9)

Computing 〈z ,G1z〉T1
, and using the fact that z ∈ Dom(G1), one obtains

〈z ,G1z〉T1
=
∫ 1

0
z2

2(x)dx−
[
z2z′1

]1
0 + z′1(1)z2(1) (B.10)

=
∫ 1

0
z2

2(x)dx+ c1z2(1)2 (B.11)

> 0. (B.12)

Thus the operator G1 is monotone (see [Brezis, 2010] Chapter 7). In addition if we establish that

R(Id +G1) = H1, (B.13)

then the operator G1 is maximal monotone (see [Brezis, 2010] Chapter 7, R stand for the range of the operator).
Let y ∈ H1, we have to solve

z ∈ Dom(G1), z+G1z = y, (B.14)

in other words

z1− z2 =y1, (B.15)

z2− z′′1 + z2 + z1 =y2, (B.16)

z3− z4 =y3, (B.17)

z4 + z3−d2z′1(0) =y4, (B.18)

using the fact that z ∈ Dom(Ae1) one gets

2z1− z′′1 + z1 = 2y1 + y2, (B.19)

z′1(1) =−c1z2(1) =−c1(z1(1)− y1(1)), (B.20)

−d2z′1(0)+2z1(0) = y3 + y4. (B.21)
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This is a classical stationary problem with Robin’s boundaries conditions, using standard result (as done in
[Brezis, 2010] p. 226 Example 6) one gets that as 2y1 + y2 ∈ L2(0,1), (B.19)-(B.21) has a unique solution
z1 ∈ H2(0,1). Now one can check that the element z = (z1, z2, z3, z4) with

z1 is solution of (B.19)-(B.21), (B.22a)

z2 = z1− y1, (B.22b)

z3 =
y4 + y3 +d2z′1(0)

2
, (B.22c)

z4 =
y4− y3 +d2z′1(0)

2
, (B.22d)

satisfies (B.15)-(B.18). Moreover using (B.19)-(B.21) on (B.22) one gets that z satisfying (B.22) is in Dom(Ae1).
�

Proof of Lemma B.1:

Consider the bijective change of variable

Xe(t) = X(t)eH1t , (B.23)

in which X is solution of (B.3) is equivalent to, Xe ∈ Dom
(
A4
)

is solution of
dXe

dt
(t)+G1Xe(t) = 0, (B.24a)

Xe(0) = X0, (B.24b)

where H1 is defined in (B.7) and G1 is defined in (B.6).

From Lemma B.2, using Hille-Yosida Theorem (see [Brezis, 2010] Theorem 7.4), on (B.24), and the change
of variable (B.23), one establishes (i). Using argument of density of C1 into W1,∞ (resp. C into L∞) as standardly
used, one obtains (ii). �

Proof of Theorem 7.2: From Lemma B.1, using the fact that the backstepping transformation is an invert-
ible maps on H1 (see Section 7.4.3), one establishes Theorem 7.2. �





APPENDIX C

Linear simulation of the wave equation

The purpose of this appendix, is to detail the simulation scheme. Because without it, it will be lucky to get the
same simulation presented, especially the computation of the eigenvalues.

C.1 Space semi-discretization

The idea of the space semi-discretization is to have an approximation of the operator associated to the PDE
system. Let us denote

Par =
[
a1 a2 b1 b2 b3 λ β

]
, (C.1)

and

Σn(Par) :


utt(x, t) = uxx(x, t)+λut(x, t)+βu(x, t), (C.2a)

ux(1, t) = a1ut(1, t)+a2u(1, t)+U(t), (C.2b)

utt(0, t) = b1ut(0, t)+b2ux(0, t)+b3u(0, t). (C.2c)

And so Σn(a1,a2,b1,b2,b3,λ ,β ) is the original system (8.1), and Σn(0,0,b1,b2,0,−λ ,0) is the original system
(7.1). Moreover Σn(−c1,0,−d1,d2,0,λ ,0) is the target system (7.12), and Σn(c1,c2,d1,d2,d3,λw,βw) is the
target system (8.11)

C.1.1 "Sound good, doesn’t works"

Let us discretize this PDE, denoting u[i] the state at the i-th coordinate for i ∈ N, i ∈ J1,NK. The propagation
phenomenon ∀i ∈ J2,N−1K

utt [i] =
u[i−1]−2u[i]+u[i+1]

dx2 +λut [i]+βu[i]+O(dx2), (C.3)

the controlled boundary

uxx[N] =
ux[N]

dx
+

u[N−2]−u[N]

2dx2 +O(dx), (C.4)

therefore one gets

utt [N] =
u[N−2]−u[N]

2dx2 +(λ +
a1

dx
)ut [N]+ (β +

a2

dx
)u[N]+

U
dx

+O(dx). (C.5)

For the uncontrolled boundary

utt [1] = b1ut [1]+
b2

dx
(u[2]−u[1])+b3u[1]. (C.6)

Consider the finite dimensional approximation of the wave PDE for the current numerical scheme

ẊN(t) = AdN XN(t)+BdNUNXN(t), (C.7)
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188 Appendix C. Linear simulation of the wave equation

with

AdN =


0N,N IN

AN [1]
...

AN [N]

 , BdN =


0
...
0
1
dx

 , (C.8)

in which

Ad [i] =


i = 1,

[
− b2

dx +b3
b2
dx 01,N−2 b1 01,N−1

]
,

i ∈ J2,N−1K,
[
01,i−2

1
dx2 − 2

dx2 +β
1

dx2 01,N−3 λ 01,N+2−i
]
,

i = N,
[
01,N−3

1
2dx2 0 − 1

2dx2 +β + a2
dx 01,N−1 λ + a1

dx .
] (C.9)

The control gain UN computation is done in Section C.2. 0p,m is the origin of Rp×m.

Consider the original system Σn(0,0,0.02,0.6,0,−0.06,0) with the feedback control law (7.35) with maps
the original system to the target system Σn(−1,0,−0.02,−0.6,0,−0.06,0). In Figure C.1, the eigenvalues dis-
tribution for N = 30 of both closed-loop and target system is presented for the current scheme.
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Figure C.1: Eigenvalues of the closed-loop system (Σn(0,0,0.02,0.6,0,−0.06,0)), and of the target system
(Σn(−1,0,−0.02,−0.6,0,−0.06,0)) for N = 30 and the derivative approximation in Section C.1.1.

In Figure C.1, both the closed-loop system and the target system discretization are unstable, as they both have
positive real part eigenvalues. But by construction the target system should be stable. The current numerical
scheme is not efficient at approximating the infinite behavior. Note that Figure C.1 is realized for the same
parameter set as Figure 7.1.

C.1.2 Ghost points

The idea is to apply the boundary condition outside the domain, i.e., our domain is i ∈ J1,NK the boundary
conditions implies a condition on the position at 0 and N +1. ∀i ∈ J1,NK

utt [i] =
u[i−1]−2u[i](t)+u[i+1](t)

dx2 +λut [i]+βu[i]+O(dx2). (C.10)

For the controlled boundary
ux[N] =U(t), (C.11)

From the center derivative approximation, it holds

ux[N](t) =
u[N +1]−u[N−1]

2dx
+O(dx2), (C.12)
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therefore one gets

utt [N](t) =
2u[N−1](t)−2u[N](t)

dx2 +(λ +
2a1

dx
)ut [N](t)+(β +

2a2

dx
)u[N]+

2U(t)
dx

+O(dx). (C.13)

For the uncontrolled boundary

utt [1] = b1ut [1]+
b2

2dx
(u[2]−u[0])+b3u[1]+O(dx2), (C.14)

one gets
b2

2dx
u[0] = b1ut [1]+

b2

2dx
u[2]+b3u[1]−utt [1]+O(dx2), (C.15)

in other words
u[0]
dx2 =

2b1

b2dx
ut [1]+

u[2]
dx2 +

2
b2dx

b3u[1]− 2
b2dx

utt [1]+O(dx), (C.16)

moreover from the propagation

utt [1](t) =
u[0](t)−2u[1](t)+u[2](t)

dx2 +λut [1](t)+βu[1](t)+O(dx2), (C.17)

and so

utt [1](
2

b2dx
+1) =

−2u[1](t)+2u[2](t)
dx2 +(

2b1

b2dx
+λ ))ut [1](t)+(

2b3

b2dx
+β )u[1](t)+O(dx). (C.18)

We can just postulate the reasons why this representation is better. On the one hand for the computation of
i = 1 and i = N we are using both the boundary conditions at x = 1 and x = 0 and the propagation phenomenon.
On the other hand all of derivative approximation are centered. The fact that the current scheme is more efficient
at approximating the wave PDE is shown in Section C.1.3.

Consider the finite dimensional approximation of the wave PDE for the current numerical scheme

ẊN(t) = ANXN(t)+BNUNXN(t), (C.19)

with

AN =


0N,N IN

Ag[1]
...

AN [N]

 , BN =


0
...
0
2
dx

 (C.20)

in which

Ag[i] =


i = 1,

[
−2b2

dx + 2b3
b2dx +β

2b2
dx 01,N−2

2b1
b2dx +λ 01,N−1

]
b2dx

2+b2dx ,

i ∈ J2,N−1K,
[
01,i−2

1
dx2 − 2

dx2 +β
1

dx2 01,N−3 λ 01,N+2−i
]
,

i = N,
[
01,N−3

2
dx2 0 − 2

dx2 +β + 2a2
dx 01,N−1 λ + 2a1

dx .
] (C.21)

The control gain UN computation is done in Section C.2.

C.1.3 Comparison of both derivative approximation scheme

The eigenvalues of the closed-loop, the target and the open-loop system for the finite approximation presented in
Section C.1.1 are shown in Figure C.2. The same eigenvalues but for the finite approximation in Section C.1.2
are presented in Figure C.3. These two figures illustrate the fact that the scheme presented in Section C.1.2 is
the best approximation of the wave PDE. Indeed, the backstepping maps the closed-loop system to the target
system, therefore they have the same eigenvalues. The differences we observer in Figure C.2 and in Figure C.3
are only due to the space discretization. Note that in Figure C.2, there are several eigenvalues with positive real
part, this cause the closed-loop simulation to be unstable. Where the same closed-loop system discretize with
the other scheme have all its eigenvalue with positive real parts in Figure C.3. This is the reason, the simulations
in Chapter 7 have been realized with the derivative approximation in Section C.1.2.
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Figure C.2: Eigenvalues of the original system (Σn(0,0,2,0.6,0,−0.08,0,U(t) = 0)), the closed-loop system,
and the target system (Σn(−1,0,−2,0.6,0,−0.08,0,0)) and for N = 35 and the derivative approximation in
Section C.1.1.
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Figure C.3: Eigenvalues of the closed-loop system (Σn(0,0,2,0.6,0,−0.08,0)), the closed-loop system, and the
target system (Σn(−1,0,−2,0.6,0,−0.08,0,0)) and for N = 35 for N = 35 and the derivative approximation in
Section C.1.2.

C.2 Discretized feedback gain computation

In this section, we just compute the control law with the same framework used in this appendix. Recall the
control law (7.35)

U(ut ,ux) :=−c1ut(1, t)+
1

m(1,1)−1

[∫ 1

0

[
− sx(1,y)+gxy(1,y)+ c1(λ s(1,y)+my(1,y)−λgy(1,y))

]
ut(y, t)dy

+
∫ 1

0
[c1(sy(1,y)−gyy(1,y))−mx(1,y))ux(y, t)dy+

[
gx(1,0)+ c1(m(1,0)+b1g(1,0))

]
ut(0, t)

]
. (C.22)

It holds

s(x,y) = θ1S(x,y), m(x,y) = θ2S(x,y), g(x,y) = θ3g(x,y), (C.23)

in which

θ1 =
[
1 0 0

]
, θ2 =

[
0 1 0

]
, θ3 =

[
0 0 1

]
. (C.24)
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one gets

U(ut ,ux) :=−c1ut(1, t)+
1

θ2S(1,1)−1

[∫ 1

0

[
θ1H−θ3H2 + c1(λθ1 +θ2H−λθ3H)

]
S(1,y)ut(y, t)dy

+
∫ 1

0
[c1(θ1H−θ3H2)+θ2H]S(1,y)ux(y, t)dy+

[
−θ3H + c1(θ2 +b1θ3)

]
S(1,0)ut(0, t)

]
, (C.25)

using integration by parts

U(ut ,u) :=−c1ut(1, t)+
1

θ2S(1,1)−1

[∫ 1

0

[
θ1H−θ3H2 + c1(λθ1 +θ2H−λθ3H)

]
S(1,y)ut(y, t)dy

−
∫ 1

0
[c1(θ1H−θ3H2)+θ2H]HS(1,y)u(y, t)dy+

[
[c1(θ1H−θ3H2)+θ2H]S(1,y)u(y, t)

]1

y=0

+
[
−θ3H + c1(θ2 +b1θ3)

]
S(1,0)ut(0, t)

]
. (C.26)

Let us denote

UT
dN

=



−[c1(θ1H−θ3H2)+θ2H]S(1,0)
0N−2,1

[c1(θ1H−θ3H2)+θ2H]S(1,1)[
−θ3H + c1(θ2 +b1θ3)

]
S(1,0)

0N−2,1
−c1

+
 UintN [1]

...
UintN [2N]

 , (C.27)

in which

UintN [i] =



i = 1, [c1(θ1H−θ3H2)+θ2H]HS(1,0)dx
2 ,

i ∈ J2,N−1K, [c1(θ1H−θ3H2)+θ2H]HS(1, i−1
N−1)dx,

i = N, [c1(θ1H−θ3H2)+θ2H]HS(1,1)dx
2 ,

i = 1+N,
[
θ1H−θ3H2 + c1(λθ1 +θ2H−λθ3H)

]
S(1,0)dx

2 ,

i ∈ JN +2,2N−1K,
[
θ1H−θ3H2 + c1(λθ1 +θ2H−λθ3H)

]
S(1, i−1

N−1)dx,

i = 2N,
[
θ1H−θ3H2 + c1(λθ1 +θ2H−λθ3H)

]
S(1,1)dx

2 .

(C.28)
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Boundary control of the wave equation with
in-domain damping

Abstract

This thesis is concerned by the boundary control of the one dimensional wave equation, which can be used to
model a string (like a guitar string). The objective is to act at one boundary to control and stabilize the other
boundary which is considered to be an unstable dynamic boundary condition. This thesis suggests answers to
both following questions:

Consider that the unstable dynamics boundary condition has some unknown parame-
ters. Is a nonlinear adaptive control law still performing efficiently, if the viscous damping
taken equal to zero for its design is no longer neglected?

How can we take into account the in-domain damping in order to stabilize the wave
equation subject to dynamic boundary conditions?

This thesis suggests a method to derive a Lyapunov analysis in order to prove the robustness mismatch of
particular nonlinear adaptive control law as the answer of the first question. Then using infinite dimensional
backstepping technique we develop feedback control law that exponentially stabilize the considered wave equa-
tion.

Résumé

Cette thèse ce concentre sur le contrôle frontière de l’équation d’onde unidimensionnelle, qui peut être utilisée
pour modéliser une corde (comme une corde de guitare). L’objectif est d’agir à une frontière pour contrôler et
stabiliser l’autre frontière qui est considérée comme une condition aux frontières avec une dynamique instable.
Cette thèse suggère des réponses aux deux questions suivantes:

Considérons que la condition à la frontière de dynamique instable a des paramètres
inconnus. Une loi de contrôle adaptatif non linéaire est-elle toujours efficace, si
l’amortissement visqueux pris égal à zéro pour sa conception n’est plus négligé?

Comment peut-on prendre en compte l’amortissement dans le domaine afin de sta-
biliser l’équation d’onde soumise à des conditions aux frontières dynamiques?

Cette thèse suggère une méthode pour effectuer une analyse de Lyapunov afin de prouver la robustesse, vis à
vis d’une erreur de modèle, d’une loi de contrôle adaptatif non linéaire particulière comme réponse à la première
question. Puis, en utilisant une technique de backstepping à dimension infinie, nous développons une loi de
contrôle par rétroaction qui stabilise exponentiellement l’équation d’onde considérée.
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