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Introduction

After losing a fortune by misinvesting in the 1720 South Sea Bubble, Isaac Newton wrote the following
words: "I can calculate the motion of heavenly bodies, but not the madness of people" [69, 88]. Three
hundred years later, we have sent robots to Mars and detected gravitational waves but predicting human
collective behavior is still an arduous task. The complex interactions between individuals can lead to
unforeseen collective outcomes, not only in financial markets but also in the physical motion of human
crowds, which modelling is essential for communities as diverse as risk management, event planning, or
even the motion picture industry. For the past two decades, mathematicians, ethologists and physicists
have come to grips with this issue, trying to construct predictive models of crowd dynamics. The
main challenge in understanding the dynamics of human crowds lies in the difficulty to obtain quality
experimental data. In this Chapter, we give a broad and unavoidably biaised overview of four major
lines of research in the domain of pedestrian dynamics. Two of them are experimental approaches.
They consist in measuring pedestrian motion, either in a natural or in a controlled environment. The
two others are theoretical. They consist in modelling pedestrian behavior, either at the individual or
at the collective level. For each of these four research axis we will illustrate key results by discussing
the corresponding articles. We summarize the key results at the beginning of each section.

1 Field measurements

An intuitive way to acquire experimental crowd dynamics data is to film pedestrians in their natural
environment. Such field measurements can be conducted in a street, a train station, a concert hall, or
any location where one can set a camera.

1.1 Low density measurements, non-local interactions

Summary of this section: The experimental observations of Karamouzas et al. [51] show that pedes-
trian binary interactions in dilute environments are non local. More precisely, instead of being short
ranged they depend on a complex combinaison of relative distance and velocity: the anticipated time
to collision.

At low densities, where individual tracking is possible, the trajectories of the pedestrians can pro-
vide insight into their walking dynamics [53] and pair interactions [51]. For instance, Karamouzas et
al. [51] conducted a quantitative anaylsis on six datasets, from four different papers. Four datasets
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Introduction

correspond to individuals interacting in the street (Fig. 1a) and two to model experiments of pedestri-
ans going through a bottleneck (model experiments will be detailed later on in this Chapter). They
analysed the pair correlation function g(r) in each dataset and noted that the structural correlations
vary with the relative approach speed between individuals (Fig. 1b). In other words, the interactions
between individuals do not depend on the relative distance r only but also on relative velocity. This
is not surprising: two individuals walking side by side have no reason to avoid each other, and two
individuals walking towards each other should change their trajectory in anticipation to avoid colliding
(Fig. 1a). In contrast, they found that the probability to find two individuals about to collide in a
time τ , g(τ), was independent of the relative approach speed (Fig. 1b). Consequently, they assumed
that the interaction rules between individuals were only functions of the anticipatory time to collision
τ , which is a nonlinear combinaison of relative distance and velocity.
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Figure 1 | Interactions among pedestrians are non-local (all adapted from [51]). (A) Image from a
field measurement at low density. Pedestrians that are projecting a collision change their trajectory
in advance (left), but pedestrians that walk side by side don’t (right). (B) Pair correlation function
(left) and probability do find two pedestrians about to collide in a time τ (right) at different approach
speeds.
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1. Field measurements

1.2 High density measurements, a rich phenomenology

Summary of this section: The qualitative observations made by Helbing et al. [43] shed a unique
light on large-scale pedestrian behavior in extreme events. They show a rich panel of dynamics, from
laminar flow to instability propagation under the form of velocity waves and irregular movements bursts
implying all length scales. They are, however, unlikely to be repeated: extreme events are rare and
unpredictable, and often occur in complex geometrical settings. Without a previous understanding of
human flows it is then delicate to infer generic laws from these observations.

High density field measurements are ideal candidates to obtain large statistics on human collective
motion. As they are difficult to implement, though, such measurements are scarce. One way to bypass
the technical difficulties of filming large human gatherings is to use the immense video resources now
offered by social media, Youtube or Instagram, e.g., of concert audiences, readily available publicly
[83, 6]. Although promising, this approach is for now limited by the low quality of the available re-
sources, which makes their quantative exploitation delicate.

The most influential analysis of large human crowds comes from video recordings of the crowd dis-
aster that took place in Mina/Makkah during the 2006 Hajj [43]. During this event, thousands of
pilgrims went through the 44-meter-wide entrance to the Jamarat bridge (Fig. 2a). Helbing et al.
analyzed a video recording of a 12 × 20m2 area in front of this entrance, and after successive image
processing procedures obtained individual positions and velocities of the visible pilgims. From these
measurements, they computed the velocity and density fields as a function of time and evidenced a
rich phenomenology. Helbing et al. found that the relation between local density and velocity, usually
called the “fundamental relation”, did not fall on previous measurements made in the street [61, 75, 30]
or in controlled experiments [82] (Fig. 2b). They showed that the density could be arbitrarily rescaled
to make the fundamental relations from these different experiments agree (Fig. 2b inset), but noted
that in contrast with theoretical predictions [99] the local velocity did not go to zero at a given density
(Fig. 2b). Instead, velocity reaches a plateau at extreme density values, higher than 9 people per square
meter. Helbing et al. suggested that such high density flow was associated to some complex crowd
behavior.

In fact, as density increased on their footage, they evidenced three distinct behaviors. At lower densi-
ties, the pilgrims were going on the bridge smoothly, displaying a laminar flow. As density increased,
the flow became intermittent and nonlinear excitations nucleate and propagate backwards in the crowd
(Fig. 2c). Eventually this transitionned to an irregular flow pattern, in which the pilgrims were being
physically pushed around in any direction in a turbulent-like pattern (Fig. 2a). More quantitatively,
they showed that within this phase the displacement amplitude distribution decay as a power law,
implying that all length scales were involved in this dynamics (Fig. 2d).
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Figure 2 | Experimental data of the 2006 Hajj (all adapted from [43]). (A) Image from the video
footage of the entrance of the Jamarat bridge, during the occurence of the so-called crowd turbulence.
Color codes for displacement intensity (B) Fundamental relation: local speed as a function of the local
density. Red stars are from the Hajj measurements [43], black triangles [30], green circles [61] and
purple squares [75] from street measurements and blue dots from a controlled experiment [82]. Solid
blue line is a theoretical fit [99]. Inset: scaling the density by a factor of 0.7 for [43] and a factor
of 0.6 for [61], the rescaled fundamental relations are compatible with the theoretical fit [99]. Same
color codes. (C) Kymograph of the local density. After 11:50, density oscillations start to appear and
propagate in the crowd. (D) Distribution of displacements in the “turbulent” phase.

2 Controlled laboratory experiments

To avoid the complexity of natural environments, a remedy is to conduct controlled laboratory experi-
ments. In these experiments, up to a hundred of participants are placed in a well-defined setup, e.g., a
gymnasium with moveable cardboard walls, and instructed what-to-do. Instructions can be on where
to go and how to go there, and techniques are available to enable accurate individual tracking. As
they are highly adjustable and provide quality trajectories, controlled laboratory experiments are very
well suited to investigate specific pedestrian behaviors. We will here present experimental results of
pedestrian behavior in three different controlled environments: when they are instructed to move as a
group, when they are placed in a unidimensional configuration and when they attempt to exit a room
through a narrowing.
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2. Controlled laboratory experiments

2.1 Group-following behavior

Summary of this section: Rio et al. [78] showed that when following a group, pedestrians adjusted
their orientation and speed to match the one of their visible neighbors, akin to flocking systems in
which local orientational alignement of every agent with the average orientation of its neighbors makes
the group spontaneously go in a unique direction [95].

An innovative way to control the environment around a pedestrian is to construct it numerically.
Participants can then be projected in this environment with a virtual reality setup. Recently, Rio et
al. [78] used such a technique to obtain quantitative data on human interactions when they move as a
group. They immersed a participant in two circles of virtual pedestrians walking in the same direction,
and gave him or her the instruction to stay within the group (Fig. 3a). They could then change the
speed and orientation of a subset of virtual pedestrians at will and investigate the response of the human
participant. More specifically, in each experiment Rio et al. used a unique perturbation, either in speed
or in orientation, and varied which virtual pedestrians were subject to it. They repeated this type of
experiment with several participants, and evidenced three main features of the participants following
behavior. Firstly, they showed that the participants adjusted their orientation and speed proportion-
ally with the number of perturbed pedestrians, implying additivity of interactions (Fig. 3b). Secondly,
they found that the participants responded stronger to closer perturbed pedestrians, suggesting that
the interaction strength decayed with distance. It is unclear, however, if this dependence comes from
the distance between pedestrians or from the obstruction from the closer pedestrians. At last, they
demonstrated that as long as the perturbed pedestrians were in the visual field of the participant, their
angular location with respect to the participant had no significant influence on his or her response. To
confirm these results, Rio et al. then conducted an additional controlled experiment, without virtual
reality. They instructed two groups of 16 and 20 participants to walk together for a few minutes, and
measured the individual trajectories. They found that the spatial distribution of absolute orientation
difference between the central participant and the other participants isotropically increased with dis-
tance (Fig. 3c), qualitatively supporting two of the conclusions reached by the virtual reality setup: the
decay of the interaction strength with distance and the lack of angular dependence.
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Figure 3 | Swarming experimental results (all adapted from [78]). (A) Participants (green dot) are
immersed in two circles of virtual pedestrians. (B) The mean lateral deviation of participants in-
creases linearly with the number of perturbed neighbors. (C) Spatial distribution of the mean absolute
orientation difference between the central participant and the other participants in the human swarm.
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2.2 Unidimensional flow

Summary of this section: The controlled unidimensional setup used by Jelic et al. [50] and Lemercier
et al. [56] evidenced a robust velocity-density relation, and the appearance of spontaneous velocity waves
within a given density range.

A simple way to investigate unidirectional human flows, often encountered in everyday life, in a sys-
tematic and repeatable manner is to create a unidimensional setup [50, 56, 82]. More specifically,
pedestrians are usually placed in a single lane on a ring, to create periodic boundary condtions. Such
setups have been used to characterize two main phenomena: the relation between velocity and density,
and the appearance of spontaneous density-velocity waves. We here present two papers based on the
same experimental data: Jelic et al. [50], which focuses on the velocity-density relation, and Lemercier
et al. [56], which focuses on the spontaneous emergence of density-velocity waves. The joint experi-
mental setup is the following: 28 participants are instructed to follow each other without overpassing
in a circular setup (Fig. 4a). To vary the overall density, the researchers changed the number of par-
ticipants or made them walk either on the inner or outer boundary of the setup (Fig. 4a). They used
an optoelectronic capture motion system to obtain accurate trajectories of each individual.

Jelic et al.[50] investigated in details the relation between velocity and density, commonly referred
to as the “fundamental diagram”. Qualitatively, velocity decreases with increasing density: the more
people on the ring the slower they walk. To characterize the so-called fundamental relation more pre-
cisely, Jelic et al. differentiated three ways to evaluate both density and velocity. First, density and
velocity can be averaged over space and time, giving a macroscopic fundamental diagram. Second, they
can be evaluated locally on a small portion of the circle, as done in previous work by Seyfried et al. [82].
At last, density and velocity can be estimated instantaneoulsy, at every time step, for every individual.
Jelic et al. showed that the velocity-density relations obtained with these three measurements methods
were alike, and consistent with the one obtained by Seyfried et al. [82] (Fig. 4b). They noted that
instantaneuous measurements probe a wider range of density values, and found that even at relatively
high densities the velocity does not go to zero, in agreement with the global velocity-density relation
obtained by Helbing et al. [43] at the 2006 Hajj (Fig. 2b). Jelic et al. investigated the velocity-density
relation in greater details by looking at the inverse of the density: the distance between successive pedes-
trians. They showed that the instantaneous distance between successive pedestrians varied piecewise
linearly with the instantaneous velocity. More precisely, they identified three regimes: at low density,
the individual velocity v was found to be insensitive to variations in the distance between pedestrians
dx. At intermediate and high densities, the velocity changed linearly with inter-participant distance
following two distinct slopes, corresponding to two different adaptation times (Fig. 4c). Jelic et al.
then compared these results, obtained from French participants, with the ones of German and Indian
participants walking on a circle [17]. They found no discrepancy between the three samples: all showed
a linear relation between velocity and inter-participant distances at high densities, with similar adap-
tation times. They concluded that this behavior should be a universal feature of single pedestrian lanes.

Lemercier et al. [56] analysed the same experimental data as Jelic et al.[50], but focused on the
fluctuations around the mean state. In a certain global density range, between 1 and 1.6 participant
per meter, they observed strong fluctuations in density and velocity which translated into backwards
propagating density-velocity waves (Fig. 4d). Such waves spontaneously appeared and vanished in an
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2. Controlled laboratory experiments

unpredictable way, but consistently propagated backwards at a velocity of about 0.6 meters per second.
To characterize the way these waves disappeared, they defined a damping parameter from their typical
life time and found it to be of the order of 0.01 m.s−2. We do not know, however, if these waves have
the same properties as the ones qualitatively observed at the 2006 Hajj [43]. In Chapter 2 we evidence
and quantitatively characterize another type of waves: we observe velocity excitations that faithfully
propagate at a velocity of the order of 1m.s−1 over hundreds of meters.

DC

BA

Figure 4 | Experimental results from unidimensional flows in a controlled setup . (A) Picture of the
experimental setup. Participants are placed in a circular setup and instructed to follow one another
without overtaking (adapted from [56]). (B) Fundamental relation between velocity and density. Blue
dots are gobal measurements, red diamonds averaged over a segment of the setup and green squares
are instantaneous measures. Black triangles are from averages over a segment of another setup [82]
(adapted from [50]). (C) Instantaneous inter-pedestrian distance (dx = 1/ρ) as a function of velocity v.
Light blue stars are for a binning over the distance and dark blue diamonds a binning over the velocity.
(adapted from [50]). (D) Positions of pedestrians on the ring as a function of time as a velocity wave
propagates and is damped. Color codes for the instantaneous velocity (adapted from [56]).
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2.3 Flow at constrictions

Summary of this section: flows at constrictions exhibit the same global phenomenology for pedestri-
ans, sheeps and grains. Instead of speeding the flow up, increasing the eagerness to exit creates longer
lasting clogs, which eventually slows the exiting process down. Interestingly, such a similarity is not
unique to flows at constrictions. As we mention later on in Chapter 1, bidirectional flows of pedestri-
ans [55] army ants [20], complex plasmas [87] and colloidal mixtures [57] have all been evidenced to
consistently form lanes.

Akin to unidirectional scenarii, flows at constrictions come about constantly. Whenever a class, a
subway ride, or a concert is over, participants at some point have to go through a narrowing to exit the
location. There, the flow slows down, leading to a density increase and sometimes to clogging. Some
parameters, such as the door width or the eagerness of pedestrians to exit, are specific to each situation
and affect the exiting dynamics. Controlled laboratory experiments are then ideal candidates to iso-
late the different variables and investigate their influence on pedestrian flow. Using such experiments,
Pastor et al. [71] focused on the so-called “faster is slower” effect. This phenomena, which had been
predicted numerically [41] but not characterized experimentally, states that the faster the pedestrians
want to exit, the slower the flow. Pastor et al. conducted experiments with groups of 95 participants,
who were instructed to exit a room through a 69 cm wide door (Fig. 5a). To change the desired exiting
speed of the participants, they gave three sets of instructions. Pastor et al. asked the participants to
exit the room as fast as possible while, in increasing level of competitivity, (i) avoiding touching anyone
else, (ii) allowing soft contacts with other participants and (iii) gently pushing their way through. They
observed that, in this specific order, the different instructions resulted in an increase in the initial speed
to reach the door, an increase in the density in front of the door and an increase in the physical pressure
exerted on the door frame (Figs. 5a and 5b). In other words, the directives were effective in affecting
the motivation of the participants to exit. They quantified the exiting dynamics by measuring the time-
lapse between consecutive exits, τ . Pastor et al. confirmed the existence of the faster is slower effect by
showing that the average time between two exits 〈τ〉 increased with the eagerness to exit, implying a
slowdown of the flow with increased motivation to exit (Fig. 5c). More quantitatively, they computed
the cumulative probability density function of the time-lapse τ , p(t ≥ τ), and found that it displayed
power-law tails p(t ≥ τ) ∝ τ−α with a decay exponent α that decreased with increasing competitivity
(Fig. 5d). To put it differently the time-lapse between exits are distributed over all scales, and when
pedestrians try to exit faster the probability of large time-lapses, i.e. clogging, increases. These results
confirm the numerical hypothesis that when pedestrians want to exit faster, they might slow the flow
down by creating jams in front of the exit. Pastor et al. then conducted similar experiments on sheeps
and changed the animals activity by carrying experiments on hot and cold days. They also found an
increase of the average time-lapse 〈τ〉 with the activity (Fig. 5c) and a power-law decay of the time-lapse
cumulative probability density function (Fig. 5d), implying that this phenomenology is not specific to
human behavior.

These experiments, however, are limited in size and repeatability. To investigate the “faster is slower”
effect in greater details, Pastor et al. studied an equivalent setup with glass beads. They placed
500 beads on an inclined vibrating plate, made them flow through a constriction, and computed the
time-lapse between two exiting beads at different plate inclinaisons. Since the inclinaison changes the
effective gravity acting on the beads, it is used as the equivalent of the eagerness to exit. They showed
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3. Microscopic models

that a stronger incline increased the flow in between clogs but also increased clogs’ lifespan, thereby
decreasing the overall flow (Figs. 5c and 5d). This suggests that the “faster is slower” effect comes from
the formation of clogs that last longer with increasing activity, and that this phenomenon is universal
to any granular system of frictional particles that are driven out of equilibrium through a constriction.

2.4 Discussion

From an engineering point of view, controlled laboratory experiments, whether they reproduced a con-
striction situation or investigated the specifics of a unidirectional lane of pedestrians, provided useful
insight into pedestrians dynamics. The concept of fundamental relation is frequently used to design
urban facilites, and the analogy between grain and pedestrian flows at constrictions gave birth to a
design solution used to fluidify exiting flow. In both pedestrian and grain flows, it has been shown that
placing an obstacle in front of the exit can reduce the formation of clogs and thereby fluidify the flow
[105, 39].

From a fundamental perspective, however, the current state of experimental knowledge is not sufficient
to infer the local symetries of pedestrian interactions. In the aforementioned experiments, pedestrian
behavior seems to be highly context-dependent. When following a group, individuals seem to behave
like a flocking system, but when exiting a room they display a phenomenology similar to grains. In
addition, as noted by Jelic et al. [50], the shape of the fundamental diagram strongly depends on the
geometry of the experimental setup (see Fig. 1b), implying that the results obtained for single lanes
do not necessarily extend to other configurations. Similarly, the propagation speed, damping rate, and
even the nature of the waves obtained from the controlled experiment of Lemercier et al. [56] might not
be the same as the stop and go waves observed in the field measurement of Helbing et al. [43]. A rea-
son for this drawback is that controlled laboratory experiments are necessary small scale. Akin to any
physical system with a small number of particles, they are therefore sensitive to boundary conditions.

3 Microscopic models

A second strategy to elucidate pedestrian behavior in controlled environments is to use numerical sim-
ulations. The striking resemblance between human and grain flows inspired physicists to construct
numerous microscopic models of pedestrian dynamics. After all, human crowds are essentially com-
posed of interacting individuals, so understanding the local interaction rules should provide sufficient
information to fully describe global dynamics. This idea has been intensively exploited by the scientific
community, and the current litterature is now populated with a large diversity of microscopic models
[23, 80, 26]. We will not provide an exhaustive description of all existing models, but instead present
two different ones, one from the physics community and one from the social sciences community, with
the aim to render the current diversity of pedestrian models.

3.1 Social-force model

Summary of this section: the social-force model, inspired by the modelization of Newtonian parti-
cles, qualitatively reproduces a number of qualitative experimental observations of pedestrian behavior
in controlled environments.
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Figure 5 | Evidence of the “faster is slower” effect in systems of pedestrians, sheeps and grains (all
adapted from [71]). (A) Images of the experimental setup when participants are instructed to leave
with low (left) and high (right) competitivity. (B) Pressure exerted on the door frame for all the
conducted experiments, orderd in level of competitivity. (C) Average time between two consecutive
exits in systems of pedestrians, sheeps and grains, respectively as a function of intructed competitivity,
approach speed and effective gravity. (D) Cumulative probability density function of time between two
consecutive exits in systems of pedestrians, sheeps and grains. All exhibit law tails.
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The first significant model, commonly referred to as the social force model, was developped by Helbing
et al. [45] on the basis of a universal principle: momentum conservation. Like any other physical object,
the rate of momentum change of a pedestrian results from a force balance. The two main forces acting
on each pedestrian are the frictional contact with the ground and occasionally physical encounters with
external bodies. The equation of motion for the position ri of an individual of mass mi then takes a
simple form:

mir̈i = F i +
∑
j 6=i

fpij , (1)

where F i is the friction with the ground and fpij the physical interactions with the walls or other
pedestrians. In dilute environments, where pedestrians move freely, the friction with the ground F i

encapsulates all the complex cognitive processes of deciding what trajectory to follow. Helbing et
al. postulated that this “social” force could be separated into two parts: the will to reach a given
destination, and collision avoidance. More specifically, they suggested that any pedestrian relaxes its
velocity to a so-called desired velocity νi in a finite time mi/αi, and avoid collision with obstacle j
through a social force f sij that depends on the relative distance rij = (ri − rj):

F i = −αi [ṙi − νi] +
∑
j 6=i

f sij(rij). (2)

The orientation of the desired velocity ν̂i points towards the location pedestrian i wants to reach, and the
magnitude of the desired velocity νi translates the eagerness to reach it. By postulating plausible forms
for these repulstive forces and reasonnable coefficient values, Helbing et al. showed that numerically
solving the equations of motion Eqs. (1) and (2) qualitatively reproduced some hallmarks human
collective motion, such as lane formation in a bidirectional flow (Fig. 6a), and clogging at constrictions
(Fig. 6b) [45, 40]. In addition, this model predicted the so-called "faster is slower" effect, which was
only evidenced experimentally afterwards [71]. Helbing et al. also showed that adding an orientational
coupling between the individuals, through the desired velocity νi lead to flocking behavior.

A B

Figure 6 | The social force model qualitatively reproduces some large scale phenomena. (A) Lane
formation in bidirectional flows (adapted from [45]). (B) Clogging at constrictions (adapted from [41]).
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3.2 Heuristic-based model

Summary of this section: the heuristic-based model of Moussaid et al. [66] also reproduces several
qualitative behavior of pedestrians in controlled environment, but shows a stronger descriptive power
than the social force model. Its predictive power, however, remains difficults to assess, in particular
because its computational cost prohibits quantitative comparison with large-scale phenomena.

In the social sciences community, noting that the social force model produced trajectories that resem-
ble more grains that pedestrians [80, 51, 78], Moussaid et al. proposed a cognitive science approach.
Instead of postulating the existence of social forces, which form was never successfully identified from
experimental data [64, 66, 51], they constructed a minimal model based on behavioral heuristics [66].
In their model, the motion of every pedestrian is still described by a force balance, but, in contrast with
the social force model, pedestrians do not adapt their motion through interaction forces. Alternatively,
pedestrians only change their desired orientation ν̂i or speed νi to navigate. The interaction forces fij
and fiW only enter into account in very dense crowds as an elastic repulsion. Additionally, Moussaid et
al. assumed that the estimated time to collision with surrounding obstacles was the only information
used by pedestrians to adapt their motion. In this sense, they anticipated the experimental observations
of Karamouzas et al. [51]. The equations of motion for every pedestrian i then take the following form:

mir̈i(t) = −αi [ṙi − νi(τ)] +
∑
j 6=i

fpij(rij) +
∑
W

fpiW (riW ). (3)

The orientation of the desired velocity ν̂i is a trade-off between maximizing the potential collision time
τ and minimizing the deviation from the desired destination. Given this orientation, the magnitude of
the desired velocity νi is set as to avoid collisions. The interaction forces are purely physical and only
enter into account in very dense setups. Moussaid et al. assessed the validity of their model by solving
the equations of motion Eq. (3) in several different configurations. They showed that bidirectional flows
reproduced the lane formation process and unidirectional flows could give rise to stop and go waves
and “turbulence” [sic], two phenomena that were qualitatively described experimentally [43].

In addition to these qualitative verifications, Moussaid et al. conducted thorough comparisons with
quantitative experimental data. At the individual level, they showed that trajectories of obstacle avoid-
ance obtained from their model were close to recent experimental trajectories (Fig. 7a). At a larger
scale, they demonstrated that unidirectional flow could give a velocity-density relationship compatible
with some experimental data (Fig. 7b). Moussaid et al. also investigated very dense setups at con-
strictions. In this scenario the system is clogged and movements occur by bursts, in agreement with
some field observations [43]. More quantitatively, their model gave the same algebraic relation between
bursts frequency and amplitude as the field data in the 2006 Hajj (Figs. 2d and 7c).

3.3 Discussion

The two models described above are in essence profoundly different. Except when an orientational
coupling is added, the social force model describes pedestrians as passive particles, driven to a des-
tination by an external force: the so-called desired velocity. In the heuristic model, the direction of
this desired velocity is an independant degree of freedom, making pedestrians active particles. In the
social force model, avoidance interactions only depend on inter-pedestrian distance. In the heuristic
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Figure 7 | Quantitative comparisons between the heuristic model and experiments (all adapted from
[66]). (A) Trajectory comparison of obstacle (top) and pedestrian (bottom) avoidance in a narrow
corridor. Light grey: experiments (from [64]). Dark grey: model. (B) Speed-density comparison
between numerical simulations of 6 to 96 pedestrians in a unidirectional corridor and field measurements
(from [70]). (C) Frequency-amplitude of displacement bursts comparison between numerical simulations
of 360 pedestrians at a bottleneck and field measurements (from [43]).

model, they are non-local and function of a non linear combinaison of relative distance and velocity
through an anticipation collision time. In the social force model, repulsive interactions add-up, while the
heuristic model is constructed to avoid this feature. Despite these differences, both models effectively
render hallmark pedestrian behavior, such as clogging at constrictions and lane formation in bidirec-
tional flows. In dense constrictions, the heuristic-based model quantitatively reproduced the power
law decay of displacements probability experimentally observed by Helbing et al. [43]. But at such
densities, elastic repulsions are the dominant interactions in this model and it is impossible to know if
this power-law is specific to the heuristic-based model and human systems or if it is a universal feature
of out-of-equilibrium clogged particle systems. These hallmark phenomena therefore cannot be used to
discriminate between different microscopic models. They all have numerous adjustable parameters, and
we do not know which ones are important to correctly reproduce the observed collective phenomena.
We show in Chapter 1 that bidirectional active and passive systems both form lanes, but that activity
gives rise to a critical phase transition between a fully-laned state and a mixed state, absent in passive
systems. Such a difference would, however, be difficult to observe experimentally: avoiding finite-size
effects would require observing bidirectional human flows on very large scales.

4 Macroscopic models

As several microscopic models with different local symetries are capable to reproduce the hallmark
experimental observations of crowd dynamics, it is for now impossible to definitely identify any mi-
croscopic model as the model of pedestrian behavior, provided that such a model exists. A way to
circumvent this issue is to construct macroscopic models, only valid at long-time and large-length
scales. Such models can only be meaningfully confronted to large-scale experimental data, for now
scarcely avaible, but should be an effective way to describe human flows involving many individuals
without having to identify the details of the local interactions.
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4.1 Kinetic model

One direct way to obtain a macroscopic model is paradoxically to start from microscopic interactions. A
few papers have used such an approach for pedestrian systems [24, 5]. We will here present a Boltzman-
type approach, as conducted in Bellomo et al. [5] (and in Chapter 1). We derive a set of macroscopic
equations from a description in terms of probability densities. We define ψ(t,x,v) the probability to
find a pedestrian at velocity v at location x at time t. We assume that only advection and interactions
between individuals can affect this probability:

∂tψ + ∇ · [vψ] = I, (4)

where I carries all the informations and symetries of the interactions. From this description, time
evolution of quantities such as density ρ(t,x) =

∫
ψ(t,x,v)dv and momentum p =

∫
vψ(t,x,v)dv

can be obtained by appropriately integrating Eq. (4). Integrating once over the velocity, we obtain the
mass conservation equation

∂tρ+ ∇ · p = 0, (5)

imposing
∫
Idv = 0. Similarly, we derive the time evolution of momentum

∂tp + ∇ ·Q =

∫
(vI) dv, (6)

where Q =
∫

vvψ(t,x,v)dv is a higher order moment of the velocity. With the same procedure, another
equation could be obtained for the time evolution of the nematic tensor Q which would depend again
on a higher order moment and so on, giving a hierarchy of equations. At this point, two supplementary
imformations are needed to obtain a macroscopic description of the density and momentum fields. First,
the generic form of the interactions has to be determined. Second, the hierarchy of equations has to be
closed with an appropriate closure relation. These two parameters are going to determine the form of the
macroscopic equations. To do so Bellomo et al. [5] decoupled the interaction term into local interactions
I∗ happening with an equal probability within an interaction domain Ω(x) and small deviations from
the local interactions (I − I∗). They assumed that local interactions made the system locally relax
towards a kinetic equilibrium ψe(ρ), with a relaxation rate that depends on the local density only
I∗ = −ν(ρ)(ψ − ψe(ρ)). They estimated the expression for the non-local interactions by conducting a
first-order expansion around the interaction domain. At lowest order, after some lengthy calculus, they
obtained a pressure term that was function of the density gradient in the momentum balance equation
Eq. (6). As for the closure relation, Bellomo et al. separated the higher order term into an advection
term ρ(qq) (where q = p/ρ is the velocity field) and a pressure tensor P =

∫
(v − q)(v − q)ψdv, and

assumed the distribution in the pressure term was at local equilibrium P = Pe(ρ). Eventually, they
obtained a momentum balance equation of the form

∂tq + (q ·∇)q = −ν(ρ) [q− qe(ρ)]− p(ρ)∇ρ, (7)

where p(ρ) is the total pressure coefficient. The balance equations Eqs. (5) and (7) form a macroscopic
model that couples the velocity and the density fields. It states that mass is conserved, and that the
velocity relaxes towards an equilibrium velocity that is itself a function of the local density. This model
is in fact equivalent to the so-called “Payne -Whitham second-order model” for car traffic [72]. It is
based on the idea that drivers try to attain a given velocity which is density-dependent qe(ρ): the
equivalent of the fundamental diagram we mentionned previously. This model is known to give rise
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to nonlinear velocity waves, called jamitons, that propagate upstream a constant speed with a specific
shape [28]. Although this model was shown to be linearly stable within a given density range [42],
traffic waves are usually considered as intrinsically nonlinear and we have not found any study of linear
wave propagation. As a side note, we should mention that the lack of Galilean invariance in human
crowds, akin again flocking systems, could allow the advection term (q ·∇)q to be weighted with a
coefficient different from unity [92].

4.2 Hydrodynamic model

Another way to obtain a macroscopic model is to derive it phenomenologically from empirical consid-
erations, conservation laws and symetry principles. Perhaps the most widely used phenomenological
model of crowd dynamics is the one constructed by Hughes [47]. Hughes based his model on three
hypothesis. First, that the speed of pedestrians was a function of the local density. Second, that
the orientation of the pedestrians minimized some potential. Third, that this potential was a balance
between minimizing travel time and avoiding high density areas. Hughes then postulated that these
three behavioral hypothesis could be included in a mass conservation equation

∂tρ+ ∇ · [ρv] = 0, (8)

where the norm of velocity field v, v(ρ) depends on the local density only and its orientation minimizes
a given potential φ: v = v(ρ)(−∇φ/|∇φ|). Hughes then suggests that the exact form of both the
potential and the density-dependent velocity may vary with each situation, and he proposed a solution
that is conformally mappable. This model is a bidimensional version of so-called “first-order” models
in vehicular traffic, where v(ρ) would be the so-called fundamental relation. Akin to these models, it is
a hyperbolic conservation equation and can sustain the propagation of shock waves. In particular, this
model was used to explain the process of queue formation at bottlenecks [44].

4.3 Discussion

Interestingly, the macroscopic model Eq. (8) is nothing but the hydrodynamic limit of the kinetic
model derived by Bellomo et al. Eqs. (5) and (7). At long times and large lengths scales, the velocity
field relaxes quickly towards the equilibrium velocity field, q = qe(ρ), making the density the only
hydrodynamic variable. From a fundamental perspective, as discussed more carefully in Chapter 2,
this is not surprising. In human crowds, only mass is a conserved quantity. In the absence of Goldstone
modes and critical behavior, there should be only one hydrodynamic variable. Which approach to
use, between a “first-order” or a “second-order” model, should mostly depend on the considered time
and length scales. To the best of our knowledge, however, no large-scale experimental data in simple
geometries exist to confront and test these macroscopic models.
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5 Outline of this thesis

The initial goal of this thesis was to fill in this gap by conducting field measurements of large human
crowds in a simple and predictable setting: marathon races. Implementing such experiments required
some planning, during which we could conduct a numerical and theoretical project on the lane formation
process in bidirectional active flows. We here present both projects in chronological order.

5.1 Part 1: Numerical study of bidirectional active flows

As a first project, we focused on the lane formation process in bidirectional flows, a hallmark phe-
nomenon of pedestrian dynamics, and investigated it from an active-matter point of view. For that
purpose, we built a minimal model of active particle populations targetting opposite directions and
solved the equations of motion numerically at different density and repulsion rates. We first evidenced
the existence of two distinct phases: one fully laned and one homogeneously mixed, separated by a crit-
ical phase transition, unique to active systems. We then found that the mixed phase displayed algebraic
structural correlations, akin to systems of passive particles driven in opposite directions. We explained
this similarity by constructing a hydrodynamic theory, through which we identified the physical mech-
anisms responsible for these long-range correlations and demonstrated they were a universal feature of
any system of oppositely moving particles. We end this part by reproducing the paper corresponding
to this work and its associated supplementary materials.
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Figure 8 | Numerical simulations of active populations targetting opposite directions show two disctinct
phases, a laned phase and a mixed phase, separated by a critical phase transition. The mixed phase
displays algebraic structural correlations.
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5.2 Part 2: Experimental study of unidirectionally polarized crowds

As a second project, we conducted numerous field measurements of a massive crowd in a unidirectional
setup. More specifically, we filmed the starting corrals of major road-race events from highly-located
hotel rooms, catching thousands of participants at once on every frame. We investigated the crowd
response to boundary perturbations, and established how information is conveyed in large polarized
crowds: speed and density information propagate freely in the direction of polarization while orienta-
tional information is overdamped over short distances. We then constructed a hydrodynamic theory of
polarized crowds that is fully consistent with all our experimental observations, and found it to be valid
for time scales larger than a few seconds and length scales larger than ten meters. After presenting this
work, we detail the methods used in this experimental work. We then reproduce a submitted paper
and add a thorough derivation of the hydrodynamic theory. Both the methods and the hydrodynamic
theory sections were submitted as supplementary information of the associated paper. We here place
the methods before the paper to emphasize the experimental aspect of this work.

Figure 9 | Image of an experimental setup: the starting area of the 2017 Bank of America Chicago
Marathon.
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Part 1
Numerical study of bidirectional active flows

1 Introduction

Lane formation is among the most robust phenomena in crowd dynamics. It occurs whenever two
pedestrian groups flow in opposite directions. Millions of people experience this situation on a daily
basis, e.g., in crowded subway stations, and it has been reproduced and studied in controlled experiments
(Fig. 1.1a) [55]. This feature, however, is not unique to human flows. Systems as diverse as army ants
[20], complex plasmas [87] and colloidal mixtures [57] (Fig. 1.1b) also form lanes when forced in opposite
directions. The ability of finite lanes to emerge from systems with different interaction rules and at
different scales suggests that it is a universal behaviour of oppositely moving populations.

A B

Figure 1.1 | Universality of the lane formation process. Finite lanes spontaneously emerge in systems
as diverse as (A) oppositely moving human crowds (adapted from [55]) and (B) driven mixtures of
oppositely charged colloids (adapted from [97]).
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2 Passive systems

A natural way to investigate the lane formation process is to numerically solve the equations of motion
of a model system. Most of the existing litterature is focused on the overdamped dynamics of passive
particles driven in opposite directions by an external field. Within this framework, the position of every
particle ri evolves in time as

ṙi =
∑
j 6=i

Fij + Fd + ξi. (1.1)

The first term on the right hand side of Eq. (1.1) is the repulsion force between all particles, and usually
derives from a repulsive potential. The second term is the external drive Fd = ±Fd x̂ , pointing left or
right for one in every two particle. The last term is a white gaussian noise which translates random
fluctuations of a particle’s position, e.g., thermal fluctuations in colloidal systems.

To the best of our knowledge, two significant results emerge from the current litterature on bidi-
rectional passive systems. First, large two-dimensional simulations evidenced that lane formation is a
smooth crossover [34]. Any non-zero external forcing causes finite lanes to form, and the size of these
lanes increases continuously with the intensity of the driving field (Fig. 1.2a). Second, theoretical and
numerical work proved that density is infinitely correlated in the forcing direction [76]. In any dimen-
sion, at any non-zero forcing, density correlations decay algebraically in the driving direction with a
dimensionally dependent coefficient, equal to 3/2 in two dimensions (Fig. 1.2b). These two key results
should be generic to any system of passive particles driven in opposite directions.
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Figure 1.2 | Two key results emerge from the litterature on passive systems. (A) Lane size ξ increases
continuously with the driving force (the external drive is by definition proportionnal to the Peclet
number Pe). Adapted from [34]. (B) The density correlation function g(x, y) decays algebraically in
the forcing direction, as x−3/2 in two dimensions. Here h(x, y) = [g(x, y)− 1] is numerically shown
to rescale as x3/2h(x, y) = f(yx−1/2), with f(u) a generic function, proving the long-range correlation
[g(x, y)− 1] ∝ x−3/2. h11 and h21 respectively denote the correlations between particles travelling in
the same and in opposite directions. Adapted from [76].
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3 A model bidirectionnal active system

Populations of living creatures, however, are commonly modeled as active systems: every individual
has an orientational degree of freedom along which it self-propells [21, 58, 78]. This additional degree of
freedom is known to give rise to new collective phenomena, such as flocking and motility-induced phase
transition [91, 11]. To investigate if counterflows of active fluids have different dynamics than their
passive counterparts, we constructed a simple model that isolates the orientational degree of freedom.
We considered particles that self-propell at constant speed along their orientation p̂i = (cos θi, sin θi)
without drifting

ṙi = p̂i. (1.2)

The positional degrees of freedom are slaved to the orientations θi, which evolve in time as

θ̇i =
∑
j

Bij − ∂θiV(θi). (1.3)

The first term on the right hand side of Eq. (1.3) corresponds to repulsive torques between all particles,
and is a function of both interparticle distance and orientation. The orientational dependence derives
from an angular potential which is minimal when particles turn their back to each other (Fig. 1.3). The
interaction rate decays with interparticle distance, and vanishes outside an interaction radius a. The
second term on the right hand side of Eq. (1.3) derives from a harmonic potential V(θi) = H(θi−Θi)

2,
with H a constant and Θi = 0 or π for one in every two particle. The bidirectional nature of the flow
is enforced by this potential, and particles naturally align their orientation either to the right or to the
left (Fig. 1.3a).

We defined the time unit in the equations of motion Eqs (1.2) and (1.3) as the inverse relaxation
time of the orientational confinement H−1, and the length unit as the effective particle size a. Particles
then self-propell at velocity aH, and the only free parameters left are the repulsion rate B and the
total density.

4 Critical phase transition

Probing total surface occupations from 10% to 70% and repulsion rates in the range B ∈ [1, 10] (in H
units), we evidenced two macroscopic steady states (Fig. 1.4). First, at low densities and low repulsion
rates, particles phase separate into system-spanning lanes (Figs. 1.4a and 1.4b). Second, at high
densities or high repulsion rates particles form a mingled state in which each population has a net flow
along its preferred direction but is homogeneously distributed in space (Figs. 1.4b and 1.4c). This
phenomenology is a priori similar to the one exhibited in driven passive systems, in the sense that lanes
spontaneously form in some range of the parameter space. To characterize further the lane formation
process, we investigated the transition from laned to mingled states at constant density through a
dynamic order parameter

〈W 〉 = 〈1− cos(θi −Θi)〉i. (1.4)

This order parameter characterizes the global alignment of both populations with their respective pre-
ferred direction, left or right. It vanishes when every particle is aligned with its preferred direction,
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BA

B
B

Figure 1.3 | Schematic description of the individual dynamics. (A) Illustration of the equations of
motion Eqs. (1.2) and (1.3) for two particles of opposite species. Each particle travels at constant
speed along its preferred direction (black arrow). Their respective orientations change via a repulsion
torque B (red arrows) and the alignment on an external field V (blue arrows). (B) Trajectories of two
particles interacting solely via a repulsive torque as defined in Eq. (1.3). The post-collision orientations
p̂i(t) are along the center to center axis rij .

and is finite otherwise. Increasing the repulsion rate B at a constant density, we evidenced a critical
second-order phase transition: the order parameter 〈W 〉 goes through a bifurcation point and both the
time fluctuations and the correlation time of the order parameter diverge as power laws at a critical
repulsion rate Bc. Both the form of the bifurcation curve and the value of the critical repulsion rate
are independent of system size, excluding finite-size effects (Fig 1.4d).

This phase transition is in stark contrast with the smooth crossover occuring in driven passive sys-
tems: below a critical repulsion rate, the two populations self-organize into system-spanning lanes.
This fully laned phase has not been evidenced in passive systems, suggesting that the lane formation
process is sensitive to the microscopic details of the system.

5 Universal long-range correlations

5.1 Numerical evidence of long-range correlations

The mingled phase, however, is reminiscent of the high-temperature phases of passive systems: both
populations are homogeneously mixed but each displays a net flow. To examine this similarity in
greater details, we numerically computed the density correlation of the mingled phase, far from the
critical repulsion rate Bc. At first glance, the two-dimensional point correlation function g(x, y) looks
similar to a classic anisotropic fluid (Fig. 1.5a). Its longitudinal component g(x, 0), however, decays
algebraically with an exponent |1− g(x, 0)| ∼ x−3/2, exaclty like passive driven systems (Fig. 1.5b).

This similarity points toward a universal property of oppositely moving populations. We elucidated
this universality with a hydrodynamic description of the active binary fluid.
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5.2 Hydrodynamic description, universal long-range correlations

In the spirit of active hydrodynamics, we described the mingled phase with sets of density (ρright, ρleft),
velocity (vright,vleft), and polarization fields (pright,pleft). Since the particles advance at constant speed
Eq. (1.3), the polarization and velocity fields are identical. We are therefore left with four coupled dy-
namic fields, as in driven passive systems. In this section, we highlight the generic ideas that lead
to long-range density correlations in both active and passive systems. A complete derivation of the
hydrodynamic equations of an active binary liquid in the low and high density limits is provided in the
Supplementary informations (6).

The sole conserved quantity here is density. Momentum is conserved neither in active nor in driven
liquids, and unlike flocking systems the orientation of the velocity field is not a soft mode. The only true
hydrodynamic variables are therefore the density field of each population, and the velocity fluctuations
around the mingled state are slaved to the density fluctuations. We can describe the mingled state as
homogeneous ρright = ρleft = ρ0 and partly polarized vright = −vleft = v0 x̂. For linear fluctuations
around this state, mass conservation takes the following form:

∂tδρα + v0∂xδρα + ρ0∇ · δvα = 0, (1.5)

where the α and β indices are generic notations to denote the two different populations. We can
phenomenologically express the density-induced velocity fluctuations up to the first order in gradient
as: ρ0δvα = − [vsx̂ +Ds∇] δρα − [vcx̂ +Dc∇] δρβ . The two constants vs and vc translate the speed
change due to an excess or a lack of density, respectively from the same or the crossed species. Similarly,
Ds and Dc translate the effect of the density gradients of each population on the velocity fluctuations.
Replacing the velocity fluctuations into the mass conservation Eq. (1.5), we obtain the coupled density
conservation laws

∂tδρα + ∇ · (Jα + Jc) = 0, (1.6)

where Jα = [(v0 − vs)x̂−Ds∇] δρα is the mass flux due to convection and interactions between par-
ticles of the same species, and Jc = [−vcx̂−Dc∇] δρβ is the mass flux induced by cross-population
interactions. To calculate the density correlations, we assumed that density fluctuations respond to
an uncorrelated conserved white noise through the mass conservation equations Eq. (1.6). Going to
Fourier space, and after lenghty but straightforward algebra, we obtain in the long wavelength limit
the following structure factor:

〈|δρα(q)|2〉 ∝
D2

s q
4
y + (v0 − vs)

2 q2
x

[D2
s −D2

c ] q4
y + [(v0 − vs)2 − v2

c ] q2
x

, (1.7)

where q = (qx, qy) is the spatial wave vector. At vanishing wave vector, the obtained structure factor
is non-analytic: its value depends on the way the q → 0 limit is taken. This non-analycity is at
the origin of the long-range density correlations: the inverse Fourier transform of the structure factor
leads to density correlations that decay algebraically as 〈|ρα(0, 0)ρα(x, 0)|〉 = |1 − gαα(x)| ∼ x−

3
2 .

Consequently, these long-range density correlations are a universal feature of any system of oppositely
moving populations, passive or active. They will be present as long as there is a coupling between the
two populations, either as a transverse diffusivity Dc or a longitudinal convection vc.
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6 Discussion and perspectives

We investigated a model system of active counterflows, and revealed a critical phase transition between
a fully laned phase and a mingled phase. Deep in the mingled phase, we numerically evidenced long-
range density correlations, and elucidated their origin from a hydrodynamic description. We showed
that these correlations were universal to driven and active counterflows. The mingling phase transition,
on the contrary, has no known counterpart in passive systems. At this point, two natural perspectives
emerge.

The first one is experimental. Measuring the density correlations in experimental setups of oppo-
sitely moving populations would be a powerful way to validate or invalidate our universality claims.
We do not know, however, if it is technically feasible as it requires observations on very long length
scales. Additional experimental works could also provide useful insights into the lane formation process.

The second perspective is theoretical. As mentionned in [76], there is an apparent contradiction in
passive driven systems between the continuous increase of lane size and the algebraic decay of the
density correlations: infinite density correlation suggests that no length scale can be defined. A com-
prehensive theoretical framework could solve this contradiction and potentially explain the critical
phase transition observed in active systems.
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Ensembles of driven or motile bodies moving along opposite directions are generically
reported to self-organize into strongly anisotropic lanes. Here, building on a minimal
model of self-propelled bodies targeting opposite directions, we first evidence a critical
phase transition between a mingled state and a phase-separated lane state specific to
active particles. We then demonstrate that the mingled state displays algebraic structural
correlations also found in driven binary mixtures. Finally, constructing a hydrodynamic
theory, we single out the physical mechanisms responsible for these universal long-range
correlations typical of ensembles of oppositely moving bodies.

Introduction

Should you want to mix two groups of pedestrians, or two ensembles of colloidal beads, one of the
worst possible strategies would be pushing them towards each other. Both experiments and numerical
simulations have demonstrated the segregation of oppositely driven Brownian particles into parallel
lanes [27, 57, 97, 54, 34]. Even the tiniest drive results in the formation of finite slender lanes which
exponentially grow with the driving strength [34]. The same qualitative phenomenology is consistently
observed in pedestrian counterflows [70, 60, 46, 55, 63]. From our daily observation of urban traffic
to laboratory experiments, the emergence of counter propagating lanes is one of the most robust phe-
nomena in population dynamics, and has been at the very origin of the early description of pedestrians
as granular materials [45, 41]. However, a description as isotropic grains is usually not sufficient to
account for the dynamics of interacting motile bodies [59, 104, 11]. From motility-induced phase sep-
aration [11], to giant density fluctuations in flocks [91, 93, 59], to pedestrian scattering [65, 66], the
most significant collective phenomena in active matter stem from the interplay between their position
and orientation degrees of freedom.

In this communication, we address the phase behavior of a binary mixture of active particles tar-
geting opposite directions. Building on a prototypical model of self-propelled bodies with repulsive
interactions, we numerically evidence two nonequilibrium steady states: a lane state where the two
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populations maximize their flux and phase separate, and a mixed state where all motile particles min-
gle homogeneously. We show that these two distinct states are separated by a genuine critical phase
transition. In addition, we demonstrate algebraic density correlations in the homogeneous phase, akin
to that recently reported for oppositely driven Brownian particles [76]. Finally, we construct a hydro-
dynamic description to elucidate these long-range structural correlations, and conclude that they are
universal to both active and driven ensembles of oppositely-moving bodies.

Results

A minimal model of active binary mixtures

We consider an ensemble of N self-propelled particles characterized by their instantaneous positions
ri(t) and orientations p̂i(t) = (cos θi, sin θi), where i = 1, . . . , N (in all that follows x̂ stands for x/|x|).
Each particle moves along its orientation vector at constant speed (|ṙi| = 1). We separate the particle
ensemble into two groups of equal size following either the direction Θi = 0 (right movers) or π (left
movers) according to a harmonic angular potential V(θi) = H

2 (θi − Θi)
2. Their equations of motion

take the simple form:

ṙi = p̂i, (1.8)

θ̇i = −∂θiV(θi) +
∑
j

Tij . (1.9)

In principle, oriented particles can interact via both forces and torques. We here focus on the impact
of orientational couplings and consider that neighbouring particles interact solely through pairwise
additive torques Tij . This type of model has been successfully used to describe a number of seemingly
different active systems, starting from bird flocks, fish schools and bacteria colonies to synthetic active
matter made of self-propelled colloids or polymeric biofilaments [96, 59, 13, 22, 9, 18, 86, 10]. We
here elaborate on a minimal construction where the particles interact only via repulsive torques. In
practical terms, we choose the standard form Tij = −∂θiEij , where the effective angular energy simply
reads Eij = −B(rij)p̂i .̂rij . As sketched in Fig. 1.6a, this interaction promotes the orientation of p̂i
along the direction of the center-to-center vector rij = (ri − rj): as they interact particles turn their
back to each other (see also e.g. [9, 12, 35, 98]). The spatial decay of the interactions is given by:
B(rij) = B (1− rij/(ai + aj)), where B is a finite constant if rij < (ai + aj) and 0 otherwise. In all
that follows we focus on the regime where repulsion overcomes alignment along the preferred direction
(B > 1). The interaction ranges ai are chosen to be polydisperse in order to avoid the specifics of
crystallization, and we make the classic choice a = 1 or 1.4 for one in every two particles. Before
solving Eqs. (1.8) and (1.9), two comments are in order. Firstly, this model is not intended to provide
a faithful description of a specific experiment. Instead, this minimal setup is used to single out the
importance of repulsion torques typical of active bodies. Any more realistic description would also
include hard-core interactions. However, in the limit of dilute ensembles and long-range repulsive
torques, hard-core interactions are not expected to alter any of the results presented below. Secondly,
unlike models of driven colloids or grains interacting via repulsive forces [27, 34, 76], Eqs. (1.8) and (1.9)
are not invariant upon Gallilean boosts, and therefore are not suited to describe particles moving at
different speeds along the same preferred direction.
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Figure 1.6 | Phase behavior. (a) Trajectories of two particles interacting solely via a repulsive torque as
defined in Eq. (1.9) with B = 5. The post-collision orientations p̂i(t) are along the center to center axis
rij . (b) and (d) Snapshots of a square window at the center of the simulation box (Lx = 168, N = 1973,
πρa2 = 0.65), respectively in the lane (B = 2) and the homogeneous (B = 5) states. The arrows indicate
the instantaneous position and orientation of the particles. Dark blue: right movers. Light blue: left
movers. (c) Phase diagram. πρa2 is the particle area fraction. Filled symbols: homogeneous state.
Open symbols: lanes. (e) Probability distribution of the density difference ρ̃ = ρr − ρl. Light orange
line: B = 2, πρa2 = 0.65. Dark blue line: B = 5, πρa2 = 0.65. Dashed line: best Gaussian fit. (f)
P.d.f. of the orientational fluctuations around the preferred orientation (lin-log plot). Same parameters
and colors as in (e). Inset: orientational diffusivity Dθ in the homogeneous state at a fixed repulsion
magnitude (B = 5) and different particle area fractions πρa2. Dθ is defined as the decorrelation time of
the particle orientation. In the mingled state, the velocity autocorrelation decays exponentially at short
time, Dθ is therefore defined without ambiguity, see also Supplementary Note 1 for a full description of
the numerical computation of Dθ. Dashed line: best linear fit.
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Critical mingling

Starting from random initial conditions, we numerically solve Eqs. (1.8) and (1.9) using forward Euler
integration with a time step of 10−2, and a sweep-and-prune algorithm for neighbour summation. We
use a rectangular simulation box of aspect ratio Lx = 2Ly with periodic boundary conditions in both
directions. We also restrain our analysis to H = 1, leaving two control parameters that are the repulsion
strength B and the overall density ρ̄. The following results correspond to simulations with N comprised
between 493 and 197, 300 particles.

We observe two clearly distinct stationary states illustrated in Figs. 1.6b and 1.6d. At low density
and/or weak repulsion the system quickly phase separates. Computing the local density difference
between the right and left movers ρ̃(r, t) = ρr(r, t) − ρl(r, t), we show that this dynamical state is
characterized by a strongly bimodal density distribution, see Fig. 1.6e. The left and right movers
quickly self-organize into counter-propagating lanes separated by a sharp interface, Fig. 1.6b. In each
stream, virtually no particle interact and most of the interactions occur at the interface. As a result the
particle orientations are very narrowly distributed around their mean value, Fig. 1.6f. In stark contrast,
at high density and/or strong repulsion, the motile particles do not phase separate. Instead, the two
populations mingle and continuously interact to form a homogeneous liquid phase with Gaussian density
fluctuations, and much broader orientational fluctuations, Figs. 1.6d, 1.6e, and 1.6f. This behavior is
summarized by the phase diagram in Fig. 1.6c. Although phase separation is most often synonymous
of first order transition in equilibrium liquids, we now argue that the lane and the mingled states are
two genuine non-equilibrium phases separated by a critical line in the (B, ρ̄) plane. To do so, we first
introduce the following orientational order parameter:

〈W 〉 = 〈1− cos(θi −Θi)〉i. (1.10)

〈W 〉 vanishes in the lane phase where on average all particles follow their preferred direction, and takes
a non zero value otherwise. We show in Fig. 1.7a how 〈W 〉 increases with the repulsion strength B at
constant ρ. For πρa2 = 0.65 the order parameter averages to zero below Bc = 2.17± 0.02, while above
Bc it sharply increases as W ∼ |B −Bc|β , with β = 0.33± 0.07, Fig. 1.7b. This scaling law suggests a
genuine critical behavior. We further confirm this hypothesis in Fig. 1.7c, showing that the fluctuations
of the order parameter diverge as |B − Bc|−γ , with γ = 0.64 ± 0.07. Deep in the homogeneous phase
the fluctuations plateau to a constant value of the order of 1/N . Finally, the criticality hypothesis is
unambiguously ascertained by Fig. 1.7d, which shows the power-law divergence of the correlation time
of 〈W 〉(t): τW ∼ |B −Bc|−zν with zν = 1.21± 0.16.

We do not have a quantitative explanation for this criticla behavior. However, we can gain some
insight from the counterintuitive two-body scattering between active particles. In the overdamped limit,
the collision between two passive colloids driven by an external field would at most shift their position
over an interaction diameter [52]. Here these transverse displacements are not bounded by the range
of the repulsive interactions. For a finite set of impact parameters, collisions between self-propelled
particles result in persistent deviations transverse to their preferred trajectories illustrated in Fig. 1.8
and Supplementary Note 2. This persistent scattering stems from the competition between repulsion
and alignement. When these two contributions compare, bound pairs of oppositely moving particles
can even form and steadily propel along the transverse direction ŷ, Figs. 1.8a and 1.8b. We stress
that this behavior is not peculiar to this two-body setting: persistent transverse motion of bound pairs
is clearly observed in simulations at the onset of laning. We therefore strongly suspect the resulting
enhanced mixing to be at the origin of the sharp melting of the lanes and the emergence of the mingled
state.
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Figure 1.7 | Critical transition from laned to homogeneous liquid states. (a) and (b) Linear and log plots
of the order parameter 〈W 〉 defined in Eq. (1.10). (a): πρa2 = 0.65, the bifurcation curves collapse for
five system sizes. (b), (c) and (d) Log plots at five densities for a box of length Lx = 336 (N ranges from
5462 to 7892). (c) Fluctuations of the order parameter plotted versus B −Bc for the same densities as
in (b). The fluctuations are defined as ∆〈W 2〉c ≡ 〈W 2〉c(B) − 〈W 2〉c(B → ∞). (d) Correlation time
τW plotted against B−Bc. The correlation time is defined as 〈W (t+τW)W (t)〉c = 1

2〈W
2(t)〉c. All error

bars correspond to two standard deviations. The error on the estimate of the exponents correspond to
one standard deviation after considering linear fits for each density.
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Figure 1.8 | Collision between left and right movers. (a) and (b) Trajectories of two colliding particles
in the presence of an alignment field. The trajectories before contact are prolongations of the incom-
ing orientations, both interactions and alignment field are only turned on at contact. (a) Scattering
trajectory for B = 5, and yin = 0.75. yin (resp. yout) is the initial (resp. final) vertical position of
the right mover with respect to the contact point. yin (resp. yout) is represented by the dashed line
(resp. plain line). (b) Example of collision resulting in a strong and persistent deviation along the
transverse direction (B = 5, yin = 0.125). (c) The transverse displacement yout is plotted as a function
of the impact parameter yin as defined in (a), for different values of the repulsion strength B. Initial
conditions: a right mover with an orientation θr = 0 and a left mover with θl = π− π/10 are vertically
placed at +yin and −yin. Their x coordinate is chosen so that they start interacting at t = 0.

Long-range correlations in mingled liquids

We now evidence long-range structural correlations in this active-liquid phase, and analytically demon-
strate their universality. The overall pair correlation function of the active liquid, g(r), is plotted in
Fig. 1.9a. At a first glance, deep in the homogeneous phase, the few visible oscillations would suggest
a simple anisotropic liquid structure. However, denoting α and β the preferred direction of the popula-
tions (left or right), we find that the asymptotic behaviors of all pair correlation functions gαβ(x, y = 0)
decay algebraically as |1 − gαβ(x, 0)| ∼ x−νx with νx ∼ 1.5, Fig. 1.9b. This power-law behavior is
very close to that reported in numerical simulations [54] and fluctuating density functional theories of
oppositely driven colloids at finite temperature [76].
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ba

c d

Figure 1.9 | Structural correlations. (a) Overall pair correlation function deep in the homogeneous
phase (B = 5). (b) Plot of the longitudinal decay of the density auto- (light orange) and cross- (dark
blue) correlation functions at y = 0. Black lines: algebraic decay x−

3
2 . (c) and (d) Collapse of the pair

correlations once rescaled by the universal x−3/2 power law and plotted as a function of the rescaled
distance y/

√
x. Insets: bare correlations. The good collapse of the rescaled curves supports the validity

of the scaling deduced from the linearized fluctuating hydrodynamics. B = 5, πρa2 = 0.65 and Ly = 84
for all panels. N = 197, 300 particles in (b) and N = 31, 566 in (a), (c) and (d).
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Hydrodynamic description

In order to explain the robustness of these long-range correlations, we provide a hydrodynamic descrip-
tion of the mingled state, and compute its structural response to random fluctuations. We first observe
that the orientational diffusivity of the particles increases linearly with the average density ρ in Fig. 1.6f
inset. This behavior indicates that binary collisions set the fluctuations of this active liquid, and hence
suggests using a Boltzmann kinetic-theory framework, see e.g [74, 89] from an active-matter perspec-
tive. In the large B limit, the microscopic interactions are accounted for by a simplified scattering
rule anticipated from Eq. (1.9) and confirmed by the inspection of typical trajectories (see Fig. 1.6a).
Upon binary collisions the self-propelled particles align their orientation with the center-to-center axis
regardless of their initial orientation and external drive. Assuming molecular chaos and binary collisions
only, the time evolution of the one-point distribution functions ψα(r, θ, t) reads:

∂tψα + ∇ · [p̂ψα] + ∂θ

[
∂θ

(
p̂ · ĥα

)
ψα

]
= Icoll

α . (1.11)

The convective term on the l.h.s stems from self-propulsion, the third term accounts for alignment
with the preferred direction ĥα = x̂ (resp. −x̂) for the right (resp. left) movers. Using the simplified
scattering rule to express the so-called collision integral on the r.h.s, we can establish the dynamical
equations for the density fluctuations δρα around the average homogeneous state (see Methods for
technical details). Within a linear response approximation, they take the compact form:

∂tδρα(r, t) + ∇ · (Jα + J̃) = 0, (1.12)

where Jα describes the convection and the collision-induced diffusion of the α species, and J̃ is the
coupling term, crucial to the anomalous fluctuations of the active liquid:

Jα = v0ĥαδρα −D ·∇δρα, (1.13)

J̃ = −ṽĥαδρ− D̃ ·∇δρ, . (1.14)

The two anisotropic diffusion tensors D and D̃ are diagonal and their expression is provided in Supple-
mentary Note 3 together with all the hydrodynamic coefficients. J̃ is a particle current stemming from
the fluctuations of the other species and has two origins. The first term arises from the competition
between alignment along the driving direction ĥα and orientational diffusion caused by the collisions:
the higher the local density ρ, the smaller the longitudinal current. The second term originates from
the pressure term ∝ ∇ρ: a local density gradient results in a net flow of both species (see Methods
for details). This diffusive coupling is therefore generic and enters the description of any binary com-
pressible fluid. Two additional comments are in order. Firstly, this prediction is not specific to the
small-density regime and is expected to be robust to the microscopic details of the interactions. As a
matter of fact, the above hydrodynamic description is not only valid in the limit of strong repulsion and
small densities discussed above but also in the opposite limit, where the particle density is very large
while the repulsion remains finite as detailed in the Supplementary Note 5. Secondly, the robustness
of this hydrodynamic description could have been anticipated using conservation laws and symmetry
considerations, as done e. g. in [91] for active flocks. Here the situation is simpler, momentum is
not conserved and no soft mode is associated to any spontaneous symmetry breaking. As a result the
only two hydrodynamic variables are the coupled (self-advected) densities of the two populations [16].
The associated mass currents are constructed from the only two vectors that can be formed in this

40



Article: Critical mingling and universal correlations in model binary active liquids

homogeneous but anisotropic setting: hα and ∇δρα. These simple observations are enough to set the
functional form of Eqs. (1.12), (1.13) and (1.14).

By construction the above hydrodynamic description alone cannot account for any structural corre-
lation. In order to go beyond this mean-field picture we classically account for fluctuations by adding a
conserved noise source to Eqs. (1.12) and compute the resulting density-fluctuation spectrum [59]. At
the linear response level, without loss of generality, we can restrain ourselves to the case of an isotropic
additive white noise of variance 2T (see Supplementarty Note 4). Going to Fourier space, and after
lengthy yet straightforward algebra we obtain in the long wavelength limit:

〈|δρα(q)|2〉 ∝
q4

y(Dy + D̃y)2 + q2
x(v0 − ṽ)2

q4
yDy(Dy + 2D̃y) + q2

xv0(v0 − 2ṽ)
(1.15)

with δρ(q) =
∫
δρ(r) exp(−iq·r)dr, and where 〈·〉 is a noise average. The cross-correlation 〈δρα(q)δρβ(−q)〉

has a similar form, see Supplementary Note 4. Even though the above hydrodynamic description qual-
itatively differs from that of driven colloids, they both yield the same fluctuation spectra [76]. A
key observation is that the structure factor given by Eq. (1.15) is non analytic at q = 0. Approach-
ing q = 0 from different directions yields different limits, which is readily demonstrated noting that
〈|δρα(qx, qy = 0)|2〉 and 〈|δρα(qx = 0, qy)|2〉 are both constant functions but have different values. The
non analyticity of Eq. (1.15) in the long wavelength limit translates in an algebraic decay of the density
correlations in real space. After a Fourier transform we find: 〈|ρα(0, 0)ρα(x, 0)|〉 = |1− gαα(x)| ∼ x−

3
2 ,

in agreement with our numerical simulations of both self-propelled particles, Fig. 1.9b, and driven col-
loids, see [54, 76]. Beyond these long-range correlations it can also be shown (see Supplementary Note
4) that the pair correlation functions take the form |1− gαβ(x, y)| ∼ x−3/2C(y/x1/2) again in excellent
agreement with our numerical findings. Figs. 1.9c and 1.9d indeed confirm that the pair correlations
between both populations are correctly collapsed when normalized by x−3/2 and plotted versus the
rescaled distance y/x1/2.

Discussion

Different non-equilibrium processes can result in algebraic density correlations with different power
laws, see e.g. [36]. We thus need to identify the very ingredients yielding universal x−

3
2 decay, or

equivalently structure factors of the form 〈|δρα(q)|2〉 ∝ (q4
y +a2q2

x)/(q4
y +b2q2

x) found both in active and
driven binary mixtures. We first recall that this structure factor has been computed from hydrodynamic
equations common to any system of coupled conserved fields in a homogeneous and anisotropic setting
(regardless of the associated noise anisotropy, see [36] and Supplementary Note 4). The structure
factor is non-analytic as q → 0, and the density correlations algebraic, only when a 6= b. Inspecting
Eq. (1.15), we readily see that this condition is generically fulfilled as soon as the coupling current J̃ is
non zero. In other words, as soon as the collisions between the particles either modify their transverse
diffusion (D̃ ·∇δρ), or their longitudinal advection (ṽĥαδρ). Both ingredients are present in our model
of active particles (see Eq. (1.12)) and, based on symmetry considerations, should be generic to any
driven binary mixtures with local interactions. Another simple physical explanation can be provided
to account for the variations of the pair correlations in the transverse direction shown in Figs. 1.9c and
1.9d and also reported in simulations of driven particles [76]. Self-propulsion causes the particles to
move, on average, at constant speed along the x-direction while frontal collisions induce their transverse
diffusion. As a result the x-position of the particles increase linearly with time, and their transverse
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position increases as ∼ t1/2. We therefore expect the longitudinal and transverse correlations to be
related by a homogeneous function of y/x1/2 in steady state as observed in simulations of both active
and driven particles. Altogether these observations confirm the universality of the long-range structural
correlations found in both classes of non-equilibrium mixtures.

In conclusion, we have demonstrated that the interplay between orientational and translational de-
grees of freedom, inherent to motile bodies, can result in a critical transition between a phase separated
and a mingled state in binary active mixtures. In addition we have singled out the very mechanisms
responsible for long-range structural correlations in any ensemble of particles driven towards opposite
directions, should they be passive colloids or self-propelled agents.

Methods

Boltzmann kinetic theory

Let us summarize the main steps of the kinetic theory employed to establish Eqs. (1.12), (1.13)
and (1.14). The so-called collision integral on the r.h.s of Eq. (1.11) includes two contributions which
translate the behavior illustrated in Fig. 1.6a:

Icoll
α = Dinρα(r)ρ(r− 2ap̂)−Doutρ(r)ψα(r, θ). (1.16)

The first term indicates that a collision with any particle located at (r− 2ap̂) reorients the α particles
along p̂(θ) at a rate Din. The second term accounts for the random reorientation, at a rate Dout, of
a particle aligned with p̂(θ) upon collision with any other particle. Within a two-fluid picture, the
velocity and nematic texture of the α particles are given by vα = ρ−1

α 〈p̂〉θ and Qα = ρ−1
α 〈p̂p̂ − 1

2I〉θ.
The mass conservation relation, ∂tρα + ∇ · (ραvα) = 0, is obtained by integrating Eq. (1.11) with
respect to θ and constrains (2πDin) = Dout ≡ D. The time evolution of the velocity field is also readily
obtained from Eq. (1.11):

∂t(ραvα) + ∇ ·
[
ρα

(
I
2

+ Qα

)]
= Fα, (1.17)

where the second term on the l.h.s is a convective term stemming from self-propulsion. The force field
Fα on the r.h.s of Eq. (1.17) reads: Fα = ρα

( I
2 −Qα

)
· ĥα − (aDρα)∇ρ− (Dρ)ραvα. The first term

originates from the alignment of particles along the ĥα direction, the second term is a repulsion-induced
pressure, and the third one echoes the collision-induced rotational diffusivity of the particles. An
additional closure relation between Qα, vα and ρα is required to yield a self-consistent hydrodynamic
description. Deep in the homogeneous phase, we make a wrapped Gaussian approximation for the
orientational fluctuations in each population [9, 81]. This hypothesis is equivalent to setting Qα =
|vα|4(v̂αv̂α − 1

2I) [9, 8]. As momentum is not conserved, the velocity field is not a hydrodynamic
variable; in the long wavelength limit the velocity modes relax much faster than the (conserved) density
modes. We therefore ignore the temporal variations in Eq. (1.17) and use this simplified equation to
eliminate vα in the mass-conservation relation, leading to the mass conservation equation Eq. (1.12).
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Supplementary Note 1: Orientational Diffusivity

We explain the method used to measure the orientational diffusivity shown in Fig. 1f in the main
document. This measurement is reported only for particles in the homogeneous mingled state. The
results below correspond to B = 5 and πρa2 ≥ 0.3. We first compute the autocorrelation function of
the particle orientation: 〈p̂i(t+T ) · p̂i(t)〉i,t where the average is performed both over the particles and
the reference time t. This function decays exponentially with the lag time T as shown in Supplementary
Figure 1.10a. Dθ is therefore unambiguously defined from the associated decorrelation time from an
exponential fit. Repeating the same measurement for different densities we find that Dθ increases
linearly with ρ, as shown in Supplementary Figure 1.10b.

a b

Lane Phase Mingled Phase

Figure 1.10 | Computation of the orientational diffusivity. (a) Log-lin plot of the orientational diffusivity.
Dark blue circles: Numerical time autocorrelation function of the unit orientation vector p̂ averaged
over all the particles, in the mingled phase at repulsion magnitude B = 5 and density πρa2 = 0.65.
Light blue line: best exponential fit. (b) Orientational diffusivity Dθ as a function of the particle area
fracion πρa2, at constant repulsion magnitude B = 5. It is very nicely approached by a linear fit
starting from the origin. The orange area represents the location of the lane phase.

Supplementary Note 2: Persistent transverse scattering

In this section we study the scattering dynamics of two self-propelled particles of unit radius. For this
purpose, let us consider a left mover l and a right mover r, and place the origin of time when contact
starts, i.e. when the two interaction disks are tangent. The equations of motion, Supplementary
Equations (1.18) and (1.19), which we recall below, tell us that the scattering dynamics are fully
determined by the magnitude of the repulsive interactions B, the initial orientation of each particle,
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θr(t = 0) and θl(t = 0), and by the initial orientation of the center-to-center vector rrl(t = 0).

ṙi = p̂i, (1.18)

θ̇i = −∂θiV(θi) +
∑
j

Tij . (1.19)

Since we assume the particles to be tangent, we are free to place the origin of the y−coordinate
y = 0 halfway between the two particles, making the orientation of the center-to-center vector simply
equivalent to the initial vertical position of the right mover: yin = yr(0) = [yr(0)− yl(0)] /2, see
Supplementary Figure 1.11a. We are therefore left with a four dimensional parameter space.

A. Frontal collision

As a first approach it is instructive to restrain ourselves to frontal collisions, corresponding to θr(0) = 0
and θl(0) = π. This situation is particularly relevant to very dilute systems, where the particles have
time to perfectly realign with their respective external fields between each collision. The sole impact
parameter in this case is the initial vertical distance. Solving the equations of motion, we notice that
when the repulsion magnitude increases, so does the final vertical position yout = yr(t→∞). Moreover,
in contrast with what is expected for hardcore repulsion or oppositely driven colloids, it is almost always
different from one particle radius (i.e. yout = 1), see Supplementary Figure 1.11b. This can be explained
by the competition between the colliding and alignment along the external field. Since no exclusion
process is implemented, a weak repulsion implies that the particles realign faster than they deviate
from the external field, which results in a small vertical displacement yout < 1. Conversely, strong
repulsion implies that the particles persist in their deviation for a longer period of time before they
realign with the field, leading to yout > 1. For yin > 1 however, no collision occurs and we simply
recover yin = yout. Overall, the transverse scattering of opposite self-propelled particles is strongly
enhanced by the magnitude of the repulsive torque B.

B. Transverse motion

This is, however, just a part of the story. Let us now assume that the collision is not frontal, but that
the left mover has an incoming angle of θl(0) = π − ε. Solving the equations of motion numerically,
we find that the two particles can effectively stick to each other and travel upwards or downwards as
a bound pair, as illustrated in Supplementary Figures 1.11c and 1.11d. This counterintuitive behavior
can be however easily explained. Bound pairs form when the two particles turn together either upwards
or downwards to avoid each other. In such cases alignement and repulsion compete, and the particles
get stuck in this movement until an external event (such as another collision) breaks the pair. The
existence of this peculiar solution can be found analytically by looking at the steady state solution of
two interacting particles. The θr = θl = ±π

2 solution always exists, and it is quite straightforward to
show that it is stable for a range of parameters that increases with the magnitude of the interaction B.
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a b c d

Figure 1.11 | Persistent transverse scattering. (a)Typical scattering trajectory for two particles targeting
opposite directions (B = 5, ε = π

10 and yin = 0.75). The initial and final vertical positions yin and yout

are defined in the main text, Fig. 3a. ε is the incoming deviation of the left mover. (b) Final vertical
position yout as a function of the initial vertical position yin for a left and a right mover experiencing
a frontal collision (ε = 0) at different values of the repulsion magnitude B. The transverse scattering
is always different from the expected value for hard-core collisions (green line), and grows with the
repulsion magnitude. (c) Final vertical position yout as a function of the initial vertical position yin at
a high repulsion magnitude B = 5 for different impact angles ε. At a sufficiently high impact angle,
the particles can stick to each other and travel upwards or downwards, as pictured in (d). (d) Two
particles travelling upwards together (B = 5, ε = π

10 and yin = 0.125)

Supplementary Note 3: Linearized hydrodynamics in the dilute limit

The hydrodynamic equation for the velocity field, Eq. (1.17) in the main text is closed assuming wrapped
Gaussian angular fluctuations. This equation admits a constant and homogeneous solution defined by:
ρα = ρβ = ρ0 and vα = v0ĥα = −vβ , with the condition 4Dρ0v0 = (1 − v4

0). In the long wavelength
limit, the linear perturbations to this solution ρα = (ρ0 + δρα), and vα = (v0ĥα + δvα) obey:

∂tδρα(r, t) + v0(ĥα ·∇)δρα + ρ0∇ · δvα = 0, (1.20)

and
Wα · δvα = −

[
A ·∇δρα +

(
ρ0B

2
∇ +Dρ0v0ĥα

)
δρ̄

]
(1.21)

where we have ignored the fast relaxation of the velocity field and discarded its time derivatives. The
hydrodynamic coefficients are defined by: Wα = [v0Mα + ρ0(H + ρ̄0DI)], B = aD, and

Mα = ρ0v
3
α

(
2∂x ∂y

−2∂y ∂x

)
, H = v3

0

(
2 0
0 1

)
and A =

1

2

(
1 + v4

0 0
0 1− v4

0

)
. (1.22)

Eliminating the velocity field from the linearized equations, we find that the large-scale density fluctu-
ations evolve according to:

∂tδρα(r, t) + ∇ · (Jα + J̃) = 0, (1.23)
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where the two currents are given by:

Jα =
(
v0ĥα − ρ0(W−1

α ·A) ·∇
)
δρα (1.24)

J̃ = −ρ0W
−1
α ·

(
Dρ0v0ĥα +

ρ0B
2

∇
)
δρ. (1.25)

The matrix Wα is readily inverted going to Fourier space. Noting q the spatial wavevectors we recover
the simple expressions provided in the main text:

Jα(q, t) = v0ĥαδρα − (D · q)δρα, (1.26)

J̃(q, t) = −ṽĥαδρ− (D̃ · q)δρ, (1.27)

where the anisotropic diffusivity are diagonal

D =
1

2

(
1+v40
∆x

0

0
1−v40
∆y

)
, D̃ =

1

2

 ρ0B
2∆x
− 2Dρ0v40

∆2
x

0

0 ρ0B
2∆y

+
2Dρ0v40
∆x∆y

 (1.28)

with ∆x = 2v3
0 + 2Dρ0 and ∆y = v3

0 + 2Dρ0 and ṽ = Dρ0
∆x

v0.

Supplementary Note 4: Long-range density correlations

The structural correlations are found adding a conserved δ-correlated noise ξα to Supplementary Equa-
tion (1.23):

(iωI + R).

(
δρα
δρβ

)
= −

(
iq · ξα
iq · ξβ

)
, (1.29)

where the linear response matrix R takes the rather compact form

R =

(
iqx(vα − ṽα) + (Dx + D̃x)q2

x + (Dy + D̃y)q2
y −iqxṽα + D̃xq

2
x + D̃yq

2
y

iqxṽα + D̃xq
2
x + D̃yq

2
y −iqx(vα − ṽα) + (Dx + D̃x)q2

x + (Dy + D̃y)q2
y

)
(1.30)

when defining the hydrodynamics coefficients

D̃x =
1

2

(
ρ0B
2∆x

− 2Dρ0v
4
0

∆2
x

)
; D̃y =

1

2

(
ρ0B
2∆y

+
2Dρ0v

4
0

∆x∆y

)
Dx =

1

2

(
1 + v4

0

∆x

)
; Dy =

1

2

(
1− v4

0

∆y

)
.

The density fluctuations are readily computed within this linear response framework.

〈|δρα(q)|2〉 = C0(q)


[
q2

x(D̃x +Dx) + q2
y(D̃y +Dy)

]2
+ [qx(v0 − ṽ)]2[

q2
xDx + q2

yDy

] [
q2

x(2D̃x +Dx) + q2
y(2D̃y +Dy)

]
+ q2

xv0(v0 − 2ṽ)

 (1.31)
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a b

c d

Figure 1.12 | Density correlation functions evaluated at a fixed values of x plotted versus the distance
in the transverse direction y. Simulations performed deep in the homogeneous phase (B = 5 and
πρa2 = 0.65). (a) Bare pair correlation functions functions for particles of the same population gll(x, y)
(left movers). (b) Bare pair correlation function for particles belonging to different populations glr(x, y).
(c) and (d) Collapse of the pair correlations once rescaled by the universal x−3/2 power law and plotted
as a function of the rescaled distance y/

√
x. The good collapse of the rescaled curves supports the

validity of the scaling deduced from the linearized fluctuating hydrodynamics.

and

〈δρα(q)δρβ(−q)〉 = C0(q)


[
q2

xD̃x + q2
yD̃y − iqxṽα

] [
q2

x(D̃x +Dx) + q2
y(D̃y +Dy)− iqx(vα − ṽα)

]
[
q2

xDx + q2
yDy

] [
q2

x(2D̃x +Dx) + q2
y(2D̃y +Dy)

]
+ q2

xv0(v0 − 2ṽ)


(1.32)

with

C0(q) =
q2T

q2
x(D̃x +Dx) + q2

y(D̃y +Dy)
(1.33)

where, for simplicity and with no loss of generality, the added noise is chosen to be isotropic. An
anisotropy would simply write q2

xTx +q2
yTy and not change any of the results. One can readily recognize

in the prefactor C0(q) the density autocorrelation function of an out-of-equilibrium anisotropic system
with conserved dynamics and noise, as described in [36].
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As we are interested in the long distance behavior of the density autocorrelation functions i.e. the limit
q→ 0, we focus on the simpler form they take at lowest order in qx and qy:

〈|δρα(q)|2〉 = C0(q)

(
q4

y(D̃y +Dy)2 + q2
x(v0 − ṽ)2

q4
yDy(2D̃y +Dy) + q2

xv0(v0 − 2ṽ)

)
(1.34)

〈δρα(q)δρβ(−q)〉 = C0(q)


[
q2

yD̃y − iqxṽα

] [
q2

y(D̃y +Dy)− iqx(vα − ṽα)
]

q4
yDy(2D̃y +Dy) + q2

xv0(v0 − 2ṽ)

 . (1.35)

The long wavelength limit of these nonanalytic correlations is not uniquely defined as already pointed
out in [76]. We therefore have to specify the way we take this limit. If we keep both wave vectors qx

and qy of the same order as they go to zero, we obtain 〈|δρα(q)|2〉 ∝ C0(q), yielding an asymptotic
behavior in real space |gαβ(x, 0) − 1| ∼ x−2 [36], not consistent with our numerical findings. This is
not surprising since in this given limit, all the specifities of our system, namely the interactions and
the alignment field, are thrown out of the equations. However, the specific long-range limit qx ∼ q2

y

simplifies the prefactor into C0(q) ∼ T/(D̃y + Dy) and preserves the main ingredients of our system.
〈|δρα(q)|2〉 then has the same analytic expression as that derived for oppositely driven colloids in
[76] and the cross-correlation 〈δρα(q)δρβ(−q)〉 becomes a linear combination of the auto- and cross-
correlation functions derived in [76]. They therefore both have the same asymptotic behavior in real
space: |gαβ(x, 0)−1| ∼ x−3/2 which correctly accounts for our numerical findings as evidenced in Fig. 4b
in the main text. In addition, Fourier transforming Supplementary Equations (1.34) and (1.35), we
find that they are both homogeneous functions obeying |1 − gαβ(x → ∞, y)| ∼ x−

3
2C(yx−1/2), again

in agreement with our numerical simulations as shown in Supplementary Figure 1.12. This emphasizes
the universality of the results obtained by linear perturbation of the kinetic theory.

Supplementary Note 5: Hydrodynamic theory in the large density limit

The hydrodynamic theory exploited in the previous sections was derived using a Boltzmann ansatz valid
in the dilute limit. However the homogeneous mingled state also extends in the high density range.
In order to further establish the robustness of the long-range structural correlation in this dynamical
state, we here establish the hydrodynamic description of the interacting populations in the limit of very
large densities. In order to do so we use a mean-field approach. We first write the continuity equation
for the 2N -point distribution function ψ(2N)(rα1, ..., rαN , θα1, ...θαN , rβ1, ..., rβN , θβ1, ...θβN )

∂tψ
(2N) +

∑
i=α,β

∇i.(p̂iψ
(2N)) +

∑
i=α,β

∂θi

(
θ̇iψ

(2N)
)

= 0. (1.36)

Integrating over all the particles but one, and using the equation of motion Supplementary Equation
(1.19), we obtain a relation respectively between the one-point function, ψα(rα, θα, t), and the two-point
functions ψ(2)

αα′ and ψ
(2)
αβ .

∂tψα + ∇ · (p̂ψα) + ∂θ

[
∂θ

(
p̂ · ĥα

)
ψα

]
= −∂θ

(∫
dr′αdθ

′
αTαα′ψ

(2)
αα′ +

∫
drβdθβTαβψ

(2)
αβ

)
, (1.37)
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within a mean field hypothesis, a priori valid in the limit of infinite densities, we assume the factorization
of the two-point functions:

ψ
(2)
αβ = ψ(1)

α ψ
(1)
β , (1.38)

which yields

∂tψα + ∇ · (p̂ψα) + ∂θ

[
∂θ

(
p̂ · ĥα

)
ψα

]
= −∂θ

(
ψα

[∫
dr′αdθ

′
αTαα′ψα′ +

∫
drβdθβTαβψβ

])
. (1.39)

Integrating this equation once with respect to θ yield the mass conservation equation. Multiplying
Supplementary Equation (1.39) by p̂ before integrating over θ, we obtain a differential equation for the
(non conserved) velocity field

∂t(ραvα) + ∇ ·
[
ρα

(
I
2

+ Qα

)]
= ρα

(
I
2
−Qα

)
·
(
ĥα − B∇ρ

)
(1.40)

where B is a hydrodynamic coefficient which increases with the magnitude of the repulsion between
the motile particles. We shall note that Supplementary Equation (1.40) does not include any collision-
induced diffusion term, unlike what was found in the dilute limit. This result is not surprising as
collision-induced diffusivity arises from local density fluctuations that are discarded by our mean-
field approximations. However, we can add a phenomenological angular diffusion to Supplementary
Equation (1.40) on the basis of our numerical observations of the form (Dρ)ραvα (see Supplementary
Figure 1.10b). The resulting hydrodynamic equations have the very same form as Supplementary
Equations (1.23) to (1.28). Not surprisingly, conducting the same fluctuating hydrodynamic analysis
we find the same density correlations in the (stable) homogeneous state. Supplementary Equations
(1.34) and (1.35) are merely modified by the expressions of the effective anisotropic diffusivities, not
affecting the long range correlations in any way:

D̃x →
1

2

(
ρ0B

1− v4
0

∆x
− 2Dρ0v

4
0

∆2
x

)
and D̃y →

1

2

(
ρ0B

1 + v4
0

∆y
+

2Dρ0v
4
0

∆x∆y

)
. (1.41)
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Experimental study of unidirectionally polarized

crowds

1 A model experiment

Crowd safety is the major motivation behind the study of pedestrian dynamics. Hazardous situations,
such as flow through a constriction (Fig. 2.1a) or extreme density scenarios (Fig. 2.1b), have therefore
focused most of the research community’s efforts. With no prior knowledge of human flow dynamics,
however, the complexity of these setups makes their study difficult. To draw a parallel between human
flows and fluid dynamics, it would be even more difficult to understand turbulence with no knowledge
of the Navier-Stokes equations. Likewise, investigating local interaction rules is comparable to inves-
tigating molecular dynamics. It is insightful at small scales, but long-winded to upscale to complex
large-scale phenomena.

To better understand human flow dynamics, we investigated the equivalent of a fluid at rest, its
response to linear perturbations and the subsequent laminar flows. We found this behaviour in the
starting corrals of road races (Fig. 2.1c). In this setup, common to most large-scale races, thousands of
participants are queuing in a unidirectional corridor. They are separated into several waves, depending
on their expected running time, and walk towards the starting line under the race staff’s guidance (see
Fig. 2.1c). This experiment has the advantages of being predictable, large scale, and geometrically
simple.
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Figure 2.1 | Different experimental setups. (A) Controlled experiment, with traceble participants, to
investigate crowd behaviour at a narrowing. Adapted from [90]. (B) Large field experiment at the 2006
Hajj. The number of participants is very large, but the underlying dynamics are complex. Adapted from
[43]. (C) Image of the starting area of the 2017 Chicago Marathon, taken from an elevated observation
point. The participants are confined in a unidirectional road and are separated into different waves by
lines of race staff (indicated by the white arrows).
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Figure 2.2 | Density measurements in queuing crowds. (A) Velocity and density fields at three successive
times. At t = 0 s the crowd is static and has a uniform density ρ0 ∼ 2 m−2 (blue lines). At t >
0, as the staff members displaces the downstream boundary of the queuing crowd, a hybrid wave
packet coupling velocity and density fluctuations propagates upstream. (B) For all events in which
the density estimation was possible, the density in static crowds is roughly the same and equal to
ρ0 = 2.2± 0.05m−2. The color code for each race is provided in Fig. 2.3c
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2 Specificities of queuing crowds

Even in this simple setup, however, human crowds do not behave like a simple continuous medium.
The ability of crowds to deform and flow through constrictions suggests a fluid description over a solid
one. Their high compressibility rules out a incompressible liquid description, yet crowds do not behave
like a gas: they do not occupy all available space.

To elucidate the specificities of queuing crowds we performed quantitative measurements on the starting
corrals of four different road races: the 2016 and 2017 Bank of America Chicago Marathons, the 2017
Schneider Electric Paris Marathon, and the 2017 ATC Peachtree Road Race. Manually counting the
participants, we found the density of static crowds to be independent of the distance from the starting
line (Fig. 2.2a). Consequently, the will of the participants to take the start cannot be modeled as a
constant force field, which for compressible fluids at rest would result in a density gradient. In addition
we found this static density to be roughly 2 people per square meter in all the studied events (Fig. 2.2b)

Counting pedestrians is cumbersome. We therefore did not address the dynamics of the density field
in greater details. We instead focused on the velocity field, which we measured by a conventional
PIV analysis. Unlike regular fluids, human crowds do not conserve momentum. They constantly ex-
change it with the ground, and can change their mean velocity at will. As a result, velocity is not
expected to be a hydrodynamic variable. In our experimental setup, however, coupled density-velocity
waves propagate over system-spanning scales (Figs. 2.2c and 2.3a). These waves are triggered by the
race-staff’s incremental progress towards the starting line, closely reproduced by the following queuing
crowd (Fig. 2.1c). Qualitatively, any velocity profile imposed by the race staff propagates upstream
through the whole crowd without deforming (Fig. 2.3b). In other words, these waves are linear and
non dispersive. More quantitatively, a spectral analysis evidences that the velocity fluctuations are
underdamped (Fig. 2.3c), suggesting that the velocity would be a soft, or hydrodynamic, mode despite
the lack of associated conversation laws. We resolve this apparent paradox building a hydrodynamic
theory of pedestrian flows.

More details about the image acquisition and correction techniques, the measurement of the density
and velocity fields, and about the spectral analysis are provided in the Methods 4.
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Figure 2.3 | Underdamped propagation of linear and non dispersive velocity waves. (A) Kymograph
of the longitudinal velocity, averaged over the transverse direction (Chicago 2016). The position x
indicates the distance from the starting line. A number of velocity waves are seen to propagate upstream
at the same speed. (B) Black line: velocity of a chain of race-staff members ẋb(t), measured by direct
tracking. The corresponding positions xb(t) are reported as a black line on the kymograph in (A). As
illustrated with the same color code on the the kymograph (A), the colored curves correspond to the
longitudinal velocity field measured along the curves defined by the race staff position xb(t) after four
different waiting times t0: vx(t + t0, xb(t) + c0t0). Independently of the shape of the ẋb(t) signal, the
velocity waves faithfully propagate the information of the boundary speed ẋb(t) over system spanning
scales, at constant speed. (C) Damping rate of the speed waves plotted for all wave vectors along the
direction of propagation θ = π/4. Circles: experimental data. Solid lines: best quadratic fits.
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3 Hydrodynamic theory

A theory of unidirectional human flows has to capture all experimental observations mentionned
above: uniform density at rest, propagation of linear and non dispersive velocity-density waves, and
the softness of the velocity field. To reach this goal we built a hydrodynamic theory on experimental
observations, within an active matter framework. Similarly to active fluids, human crowds are composed
of polar particles. Their dynamics can in principle be described by a density field ρ(r, t), a velocity
field v(r, t) and a polarization field p(r, t). We recall that only density is a conserved quantity,

∂tρ+ ∇ · (ρv) = 0. (2.1)

Linear and angular momentum are constantly exchanged with the ground, in a way we a priori do not
know. We can generically express the rate of momentum change as

∂t(ρv) + (v ·∇)(ρv) = ∇ · σ + Fv ({ρ}, {v}, {p}) , (2.2)

where σ is the stress tensor and Fv the force exerted by the road on the crowd. This force is in principle
a functional of the density, the velocity and the polarization fields. Similarly, we can express the rate
of polarization change in a general form:

∂tp + (v ·∇)p + Ω · p = Fp ({ρ}, {v}, {p}) . (2.3)

The left-hand side of Eq. (2.3) is a kinematic term commonly referred to as the corotational derivative
(Ω is the vorticity tensor defined by: Ωij = 1

2(∂ivj−∂jvi)) [29] and Fp conveys the change of orientation
due to external forcings. The two equations governing the rate of linear and angular momentum change
Eqs. (2.2) and (2.3) are very generic, and we can anticipate the form of the external forcings Fv and Fp

from two key observations. First, unlike flocking systems, queuing crowds do not exhibit orientational
symmetry. Instead, pedestrians spontaneously align with the direction of the road. Consequently, the
polarization field is not a soft mode and we can express the associated forcing as the response to an
external magnetic field

Fp = −α⊥p + hx̂ +O(∇). (2.4)

Second, pedestrians rarely walk sideways but rather in the direction they are facing. In other words, the
orientation of the velocity field quickly relaxes towards the one of the polarization field. This feature
is very well captured by an external force of the form

Fv = −Γ · [v − ν0(ρ)p] +O(∇), (2.5)

where ν0 quantifies the strength of the self-propulsive force in the direction of the polarization and
Γ ≡ Γ‖pp + Γ⊥ (I− pp) is an anisotropic friction coefficient. If we set the transverse relaxation rate
much larger than the longitudinal one Γ⊥ � Γ‖, at time scales longer than Γ−1

⊥ the velocity field is
aligned with the polarization, and the speed flow relaxes in a finite time Γ−1

‖ towards the amplitude
ν0(ρ). For time scales larger than the longitudinal relaxation time Γ−1

‖ we recover the so-called funda-
mental relation v = ν0(ρ).

From the expression of the forces at zeroth order in gradient Eqs (2.4) and (2.5), we can fully character-
ize the stationnary state corresponding to quiescent queuing crowds: they have zero velocity, are fully
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polarized in the direction of the road and exhibit a uniform density, set by the so-called fundamental
relation ν0(ρ0) = 0. These features are in agreement with our experimental observations, where we
found the density of queuing static crowds to be roughly the same in each experimental setup (Fig. 2.2b)
and all participants face the starting line (Fig. 2.1c).

We now focus on small density, velocity and polarization perturbations around this static state: respec-
tively ρ = ρ0 + δρ, v = δv and p = x̂ + δp. Before we linearize the full set of equations, Eqs (2.1) to
(2.5), one comment is in order. As mentionned above, the participants in the starting corrals face the
starting line and do not walk sideways. We therefore constrain the polarization field to be a unit vector
and the velocity field to be aligned with it: p = (cosψ, sinψ) and v = (v cosψ, v sinψ). The crowd
orientation ψ and the flow speed v are both zero in the static state, and otherwise define the linear
perturbations of the polarization and velocity fields: δp = ψŷ and δv = v x̂. We note that the velocity
field is now purely longitudinal, consistently with out experimental finding vx � vy (Fig. 2.4a). We
take advantage of these simplifications to linearize the conservation equations Eq. (2.1), (2.2) and (2.3).
First, linearized mass conservation Eq. (2.1) reduces to

∂tδρ+ ρ0∂xv = 0. (2.6)

Second, we obtain the linearized form of the rate of momentum change Eq. (2.2) by phenomenologically
including all the terms allowed by symetry in the external force Fv. After projection on the longitudinal
direction, we obtain the rate of flow speed change

ρ0∂tv = −Γ‖
[
v − ν ′0(ρ0)δρ

]
+ (−β∂xδρ+ cx∂xv) + γo∂yψ +O(∇2). (2.7)

The first term on the right hand side is the linearized force term, and ν ′0(ρ0) ≡ ∂ρν0(ρ0). The second
term on the right hand side originates from the anisotropic pressure tensor with a compressibility
depending on the magnitude of the flow speed and density. The third term describes flows caused by
gradients in the orientation of the pedestrians. Third, we obtain the rate of orientation change by
applying the same method to Eqs (2.2) and (2.4) and projecting on the transverse direction

∂tψ = −α⊥ψ +Aψ∂xψ +Aρ∂yδρ+Av∂yv +O(∇2). (2.8)

Consistently with our spectral analysis, the orientation of the crowd relaxes towards the direction of the
road in a finite time α−1

⊥ (Fig. 2.4b). At time scales larger than α−1
⊥ , we can consider the orientational

fluctuations to be of order one in gradient ψ = O(∇). In this limit, the contribution of orientational
fluctuations to the rate of momentum change Eq. (2.7) is of second order in gradient. Consequently, at
long time and length scales, the speed flow is slaved to the density fluctuations:

v = ν ′0(ρ0)δρ− β∂xδρ+O(∇2). (2.9)

By injecting this dependence into the linearized mass equation Eq (2.6), we show that both the speed
flow and the density fluctuations follow a transport-diffusion equation

∂tv − c0∂xv +Dx∂
2
xv = 0, (2.10)

where the diffusivity Dx = (ρ0β/Γ‖) is given by the crowd compressibility, and the transport speed
c0 = −ρ0ν

′
0(ρ0) is set by the slope of the so-called fundamental diagram at density ρ0. The sign

of this slope dictates in which direction density and velocity fluctuations propagate. In the oberved
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queuing crowds, coupled velocity and density waves consistently propagate upstream, implying the
so-called fundamental diagram to have a negative slope at ρ0. This feature is intuitive: from the static
state participants only start walking when the density is reduced. Additionally, it is supported by the
velocity-density relation Eq. (2.9) and the sign difference we observe between density and velocity fluc-
tuations (Fig. 2.2c.). The final hydrodynamic equation Eq. (2.10) explains the softness of the velocity
mode: velocity is slaved to the only conserved quantity, the density field.

BA

Ve
lo

ci
ty

 d
is

tri
bu

tio
n

Time (s)
N

or
m

al
iz

ed
 o

rie
nt

at
io

na
l c

or
re

la
tio

ns

Figure 2.4 | (A) Probability distribution function of the longitudinal and transverse components of the
velocity field (Chicago 2016). The longitudinal component dominates. (B) Normalized orientational
correlations plotted versus time for all experiments (θ = π/4, q = 0.5m−1). Same color code as Fig 2.3c.
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Figure 2.5 | Meassurements of the hydrodynamic constants from spectral analysis (details are provided
in Methods 4). (A) Variations of the speed of sound with the direction of the wave vector θ for
all experiments. Circles: experimental data. Solid line: cosine fit. The excellent fit shows that the
dispersion relation is given by ω = cqx. (B)Variations of the speed diffusivity Dx with the direction of
propagation. Circles: experimental data. Solid lines: squared cosine fits. Same color code as Fig 2.3c.
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The hydrodynamic description presented above is in perfect agreement with our experimental obser-
vations: queuing crowds at rest have their density set by the so-called fundamental relation, linear
perturbations propagate upstream at a constant speed and the softness of the velocity fluctuations is
explained by a fast relaxation towards the density. In addition, the theory presented above predicts
propagating and overdamped orientational fluctuations, as well as diffusively damped propagation of
flow speed fluctuations in the longitudinal direction. We recover both properties in the spectral analysis
of all four studied events (Figs. 2.4b and 2.5), and measuring the speed of sound c0 and the diffusivity
Dx in one event is sufficient to quantitatively predict their value in any other. We therefore expect our
model to be predictive for the behaviour of any other large-scale queuing crowd.

4 Discussion and perspectives

We identified three natural perspectives for this work. Firstly, the short-timescales dynamics of the
velocity and polarization fluctuations. The quantitatively predictive power of the hydrodynamic equa-
tion Eq. (2.10) is by definition restricted to long time scales and large waves length, in which all fast
dynamics are discarded. Investigating shorter time-scales would be a direct way to further validate or
not our theoretical descriptions of queuing crowds. As mentionned in the Supplementary Information
4, this requires more quantitative data and is left for future work. Secondly, the non-linear dynamics
of queuing crowds. In our experimental setup, only the linear modes were probed. Investigating non-
linear perturbations, e.g., induced by faster (possibly running) boundary displacements, is critical to
understand crowd dynamics in extreme conditions. At last, complex geometries. The geometry of our
experimental setup is the simplest imaginable. Investigating more complex setups, such as the crowd’s
dynamics in the funnel (Fig. 2.1c), is essential to understand and forecast complex evacuation scenarii
in large-scale events.
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Method 1: Crowd description and image acquisition

All queuing crowds correspond to road-race participants waiting for the race start in corrals. They are
guided towrds the starting line by chains of staff members. In total we filmed four events: the 2016
Bank of America Chicago Marathon, the 2017 Bank of America Chicago Marathon, the 2017 Schneider
Electric Paris Marathon and the 2017 AJC Peachtree Road Race. For short we will refer to these events
by the city name and year of occurrence, e.g., the 2016 Bank of America Chicago Marathon will be
called Chicago 2016. Every event gathered more than 40, 000 participants, see Table 2.1.

Race Number of participants
Chicago 2016 44, 000
Chicago 2017 44, 000
Paris 2017 42, 000
Atlanta 2017 55, 000

Table 2.1 | Number of runners participating to the four races.

We selected these events to observe large-scale crowds from elevated observation spots. For each event,
we booked a hotel room overlooking the starting area of the race and filmed it with telephoto lenses
(Sigma 150-600mm F5-6.3 DG OS HSM | S) mounted on Nikon D500 cameras. The frame rate for every
movie is 30 fps and the resolution 3840 x 2160 pixels (4K movies). Images of the setup corresponding
to the 2016 Bank of America Chicago Marathon are shown in Figs. 2.6a and b, and the specifics of the
observation conditions are provided in Table 2.2

Race Hotel Floor number Distance from the event
Chicago 2016 Fairmont Chicago Millennium Park 17 530 meters
Chicago 2017 Fairmont Chicago Millennium Park 19 530 meters
Paris 2017 Paris Marriott Champs Elysees Hotel 6 75 meters
Atlanta 2017 The Westin Buckhead Atlanta 15 210 meters

Table 2.2 | Specifics of the observation points for each event.
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Starting Area

HotelA B

Figure 2.6 | (A) View of the queuing crowd from the observation point, with a Nikon D500 camera.
(B) The locations of the starting line of the marathon, and of the observation points, are indicated on
a Satellite image of the parks area in Chicago (Google Earth Pro).

A B C

D

Figure 2.7 | Images captured from the observation points for the four experiments. (A) Chicago 2016.
(B) Chicago 2017. (C) Paris 2017. (D) Atlanta 2017.
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Method 2: Correction of perspective distortion

The raw images obtained with our experimental setup (Fig. 2.7) suffer from perspective distortions:
every pixel on the image represents a different metric size. We correct for this effect using planar ho-
mography [38]. In the following, we describe this image correction technique using the images obtained
for Chicago 2016 as a benchmark.

Planar homography

When we take a picture, we assign a pixel position to every visible point in the frame. If we call
(X,Y, Z) (measured in meters) the coordinates of such a point in the reference frame of the road, it is
mapped to (u, v) (measured in pixel units) in the reference frame of the camera sensor. We express this
mapping as (u, v) = F (X,Y, Z), where the function F depends both the optical transforms made by
the camera and the change of reference frame. If we can invert this function, we can map every pixel
from the original image to its real world coordinates, and obtain an image in which every pixel has the
same size. Noting that our images were captured with a long focal length, we neglect the lens optical
distortion and assume our camera can be modeled as a pinhole camera [37]. Given this assumption,
the mapping takes the linear form [38]:

 u
v
1

 = C ·


X
Y
Z
1

 , (2.11)

where the so-called camera matrix C depends on the intrinsic parameters of the camera and on the
precise location of the camera in space, none of which are necessarily known. To obtain real world
coordinates from pixel coordinates, we need to invert Eq. (2.11). This is a priori impossible due to the
3× 4 dimensionality of the camera matrix. If, however, we neglect the spatial extent of the real world
scene in the z-direction, and assume that every point we see on the image belongs to the Z = 0 plane
the mapping reduces to  u

v
1

 = H ·

 X
Y
1

 , (2.12)

where H = (hij), usually called the homography matrix, is a priori invertible [19]. To obtain the real
world coordinates (X,Y ) of every pixel (u, v), we therefore need to estimate the 9 coefficients (hij). We
do so by selecting a set of N points for which we know both pixel and real-world coordinates. Rewriting
Eq. (2.12) in a the more convenient form

u =
h11X + h12Y + h13

h31X + h32Y + h33
, v =

h21X + h22Y + h23

h31X + h32Y + h33
, (2.13)
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we find that the homography coefficients (hij) are solutions of the system



X1 Y1 1 0 0 0 −u1X1 −u1Y1 −u1

0 0 0 X1 Y1 1 −v1X1 −v1Y1 −v1

· · · · · · · · ·
· · · · · · · · ·
XN YN 1 0 0 0 −uNXN −uNYN −uN

0 0 0 XN YN 1 −vNXN −vNYN −vN


(2N,9)

·



h11

h12

h13

h21

h22

h23

h31

h32

h33


(9,1)

= 0(2N,1). (2.14)

The homography vector h, the vector on the l.h.s. of Eq. (2.14), belongs to the kernel of the (At ·A)
matrix:

(At ·A) · h = 0, (2.15)

where A is the 2N × 9 matrix on the left hand side of Eq. (2.14). To close this system, we note that
multiplying H by any scalar leaves Eq. (2.13) unchanged, which has two consequences. Firstly, any
eigenvector associated to the null eigenvalue of (At · A) can be defined as the homography vector.
Second, the homography matrix has (9− 1) = 8 degrees of freedom. A set of 4 points, i.e. 8 equations,
therefore suffices to determine all the homography coefficients.

Image-correction protocol

In practice we use the following procedure. We select a reference image in the marathon, clear of
pedestrians, and choose a set of N > 4 points on the road distributed over the whole waiting area
(Fig. 2.8b). We find their location on a satellite view (from Google Earth Pro) of the same area
(Fig. 2.8a). We then collect their pixel coordinates both on the satellite view (Xi, Yi) and on the raw
image (ui, vi). We construct the matrix (At · A) as defined in Eq. (2.14), numerically compute its
eigenvalues and eigenvectors, and define the homography vector h as the unit eigenvector associated
to the smallest eigenvalue. We then rescale all the raw images from this homography vector using the
projective2d and imwarp MATLAB functions. As a result, all pixels on the rescaled images have the
same size (Fig. 2.8c). Finally, we estimate the metric size of a pixel on the rescaled image (dx, dy) by
measuring the distances between two sets of two selected points using the ruler tool of Google Earth
Pro. The pixel sizes for all races are shown in Table 2.3 and the chosen points for the Chicago 2016
experiment, and the transformed reference images are shown in Fig. 2.8.

Race dx (m) dy (m)
Chicago 2016 0.123 0.013
Chicago 2017 0.159 0.016
Paris 2017 0.135 0.010
Atlanta 2017 0.051 0.013

Table 2.3 | Pixels sizes for each experiment.
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A B C

N

Starting line

N

Figure 2.8 | Image calibration. The blue dots indicate the calibration points: (A) on a satellite image,
(B) on the original picture, (C) on the rescaled picture. Red line: starting line. In (A) and (C) the
red arrows point North.

Error on position measurements: imperfect homography

Although the rescaled calibration points seem to be at the right location (see Fig. 2.8b and c), the
rescaling is not perfect. To estimate the relative error in the distance calculations due to the rescaling
protocol, we calculate the distances between the original calibration points (Fig. 2.8a) and compare
them to the distances between the rescaled calibration points (Fig. 2.8c). We found a maximal relative
error in all races of about 5% in the direction of the flow and of about 10% in the direction transverse
to the flow, see Table. 2.4.

Race max(εx) max(εy)
Chicago 2016 5% 10%
Chicago 2017 3% 9%
Paris 2017 4% 8%
Atlanta 2017 3% 5%

Table 2.4 | Position errors for all races. εx and εy are the relative distance errors in the x and y
directions.
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Error on position measurements: the zero-height approximation

To correct for perspective distortions we made the assumption that all visible pixels on the images
were in the same plane as the road, which is true for the calibration points on the reference images
(Fig. 2.8). When pedestrians are in the image, however, only their feet are on the road. The rest of
their body is rescaled as if it was painted on the road (Fig. 2.9a). Here we estimate the consequences
of this approximation on the accuracy of the absolute and relative position measurements.

Let us call h the height of an individual in the field of view, L its distance from the camera, and H the
height of the observation spot. The length of the individual on the recorded image is l = hL/(H − h).
The people further from the camera appear larger on the image. This error, however does not translates
into distance measurements. If we call ∆x the distance between two people of same height and ∆x′

the projection of this distance on the image (see Fig. 2.9), the scaling ratio ∆x′/∆x is independent of
the distance from the camera

∆x′ = ∆x

(
1 +

h

H − h

)
. (2.16)

The same relation holds for the projected distance between pedestrians on any direction of space.
Consequently, every spatial quantity has to be scaled by a factor (1 − h/H). We set the pedestrian
height to h = 1.75 m and calculated the height of the observation point H from the floor number in
Table. 2.2, assuming the floors were about 4 meters tall. We will discuss how Eq. (2.16) impacts the
velocity measurements we conduct in the following sections.

Method 3: Measurement of the density field

We measured the density field manually. Despite the active development of people-detection algorithms
in the computer vision community [103], to the best of our knowledge no algorithm can reliably and
automatically count the number of people from the type of images we captured [103, 49]. A major dif-
ficulty lies in the occlusion of the pedestrians by each other. To circumvent this issue, we did not count
the number of people on still images, but on animated GIFs of two second loops. Counts performed on
still images only provide a lower bound of the real number of pedestrians on a given picture, but using
the dynamics of the individuals makes it possible to detect more individuals than on the static images.

To estimate the density profile in queuing crowds, we manually counted the participants in a nar-
row band, starting at the entrance of the start funnel. The selected bands are 2.6 meters wide and 185
meters long, and each of them gathered approximately a thousand people. As the counting process is
extremely time consuming, we only performed 3 of such measurements. In each of them, the density
was found to be constant within static crowds and to locally decrease with increasing flow speed (main
text Figure 1c).

Local measurements in 5.2 × 12m2 observation widows were performed in the Chicago 2016, Chicago
2017 and Atlanta 2017 events. All measurements correspond to more than a hundred runners in the
middle of static queuing crowds. We were not capable to count pedestrians for the Paris 2017 event
due to lower image quality. We found the static density to hardy fluctuate from one group of runners
to another, and from one race to another. The average density is of the order of 2 people per squared
meter, as summarized in Table 2.5.
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Figure 2.9 | Error estimation. (A) Error on position measurements. (B) Error on displacement mea-
surements.

Race # of measurements ρ0 (m−2)
Chicago 2016 5 2.2± 0.05
Chicago 2017 3 1.9± 0.1
Atlanta 2017 1 2

Table 2.5 | Density estimates in the static crowds. The errors are computed from the min and max
values.
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Method 4: Definition of the spatial and temporal windows

We restrained our study to a part of the velocity field v(r, t), defined by spatial and temporal windows.
In each race we chose a spatial window with a constant road section, to avoid constriction effects, and
excluding occlusions from external elements. For instance, we removed the area hidden by trees in Paris
2017 and the area covered by traffic lights or by the flag of the United States of America in Atlanta
2017 (which took place on the Fourth of July). The areas kept for the study are shown in Fig. 2.10.

Similarly, we discarded the images corresponding to corrals empty of people, and to periods of time
during which the crowds were at rest: either when the whole crowd stood still or, in 2017 Atlanta, during
the filling of the corrals. These choices were made to reduce noise or the effect of undesired phenomena,
e.g., lone staff members walking in any direction on an empty road. The considered temporal windows
are shown in Fig. 2.11.

Method 5: Measurement of the velocity field

To measure the flow velocity, we do not detect and track individuals. Instead, as one would in conven-
tional fluids, we study the crowd as a continuum media and use a Particle Image Velocimetry (PIV)
toolbox to obtain a velocity field, see e.g. [4]. In this section we describe the basic principles of PIV,
explain how we choose the different parameters and give the set of parameters we used in all our
experiments.

Particle Image Velocimetry

Particle Image Velocimetry is an image correlation based technique to estimate the velocity field of
a flowing liquid [1]. Usually the fluid is filmed after having been seeded with visible particles, which
form spatial patterns on the images. If the size of the particles is carefully chosen, these patterns are
transported by the fluid with almost no deformation. An image correlation algorithm is then used
to identify the displacement of these patterns between two successive images, and multiplying these
displacements by the frame rate gives the velocity field of the flow. In the case of queuing crowds, we
do not need to add particles to the fluid: the features coming from the pedestrians themselves already
form visible patterns on the images. We used the PIVLab toolbox, in which we modified the image cor-
relation algorithm so that the correlation would be averaged over the three color channels of the camera.

In practice, we use the following procedure. We divide the image of the experimental setup into
N boxes of (L× L) pixels of coordinates (x1, ... , xN ). Every image at a time t, I(t), is a snapshot of
the same setup at a different time. The location of the boxes are constant in time, but the patterns in
the boxes change as time goes on. At every time t, the image correlation algorithm estimates where
the patterns defined by the N boxes on image I(t) are on image I(t + ∆t), with ∆t the PIV time
step. This estimation gives N positions on image I(t+ ∆), (x′1(t), ... , x′N (t)), and the velocity field is
calculated at every box location as v(xi, t) = (x′i(t)− xi)/∆t.
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A B
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Figure 2.10 | Observation windows (white boxes) shown on the rescaled images for all experiments: (A)
Chicago 2016. (B) Chicago 2017. (C) Paris 2017. (D) Atlanta 2017.
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Figure 2.11 | Discarded times (purple boxes) shown on the velocity kymographs for all races. (A)
Chicago 2016. (B) Chicago 2017. (C) Paris 2017. (D) Atlanta 2017.
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According to Eq. (2.16), the measured displacement field is proportional to the true displacement field,
and the correction factor is independent of the location of the box in space. Consequently, the estimation
of the velocity field described above only has to be uniformly corrected by a factor of (1− h/H). The
main errors on the local velocity measurements originates from the correlation algorithm and mostly
depends on the image quality. The impact of the image rescaling is dominated by the dispersion of the
individual height on the picture resulting in a dispersion of less than a percent.

Estimation of the PIV parameters

The PIV time step ∆t is different from the inverse frame rate dt, and together with the box size L
consist of the two PIV parameters. To the best of our knowledge, there is no universal way to set these
parameters. Choosing their values is a necessary trade-off between four competing effects. First, we
want the box size L to be smaller than the typical length scale of the spatial features of the velocity
field. Second, the PIV time step ∆t has to be smaller than the deformation time of the spatial patterns
in every box. We do not want the patterns in every box to have time to deform between consecutive
images. Third, we want the PIV time step ∆t to be large enough to have a good resolution on the
velocity field. Since the metric resolution of the displacement field is typically given by the pixel size
(dx, dy), the resolution of the velocity field is (∆vx, ∆vy) = (dx/∆t, dy/∆t). Maximizing this reso-
lution would then have us take ∆t as large as possible. At last, we want the box size L to be much
larger than any measured displacement (∆X, ∆Y ). Otherwise, the image correlation algorithm is not
capable of estimating the displacement field.

Manual measurements gave us a reference velocity for the walking crowd in both directions v0 =
(v0x, v0y) with v0x = 0.3m.s−1 and v0y = 0.05m.s−1, and the kymographs of the speed field showed
patterns of a minimal size of about 20 meters. We used these quantities to set the PIV parameters
∆t and L. The chosen PIV parameters for every race, together with the error estimates, are shown in
Table 2.6.

Race ∆t (s) L (pixels) ∆vx (m.s−1) ∆vy (m.s−1)
Chicago 2016 2 96 0.06 0.007
Chicago 2017 2 96 0.08 0.008
Paris 2017 1 96 0.14 0.005
Atlanta 2017 1 128 0.05 0.007

Table 2.6 | PIV parameters and error estimates for every event.
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Method 6: Velocity correlations

This section is divided into two parts. We first briefly recall two useful spectral formulas, and then
provide details about the actual measurements performed on crowd velocity fields.

Inferring material parameters from fluctuation spectra

Here we recall the formulas for the spectra and correlations of a velocity field v obeying a Langevin
differential equation of the same generic form as the hydrodynamic equation, Eq.(3), presented in the
main text:

∂tv + v0∂xv = −α0v +D∂2
xxv + ξ(x, t), (2.17)

where ξ(x, t) is a Gaussian white noise of zero mean accounting form all possible sources of uncorrelated
disturbances to the mean velocity: 〈ξ(x, t)ξ(x′, t′)〉 ∝ δ(x − x′)δ(t − t′). At every pulsation ω the
spectrum of the velocity field Cv(ω, q) takes the form of a Lorentzian function.

Cv(ω, q) ∝
1

(ω + v0q)2 + (α0 +Dq2)2
. (2.18)

The time correlation function Cv(t, q) is the inverse time Fourier transform of the velocity spectrum
and takes the simple form

Cv(t, q) ∝ e−(α0+Dq2)|t|e−i(v0q)t. (2.19)

Consequently, we can infer Eq. (2.17) by measuring either the spectra or the time correlations of the
velocity fluctuations. In the context of active flows this procedure was successfully used to measure the
material parameters of active colloidal fluids in [32].

Measurement of the spectral properties

With Eqs. (2.17), (2.18) and (2.19) in mind, we now study the spectral properties of flow speed and
orientation fluctuations (v(r, t), v̂(r, t)). In contrast with the toy model Eq. (2.17) presented above,
these two fluctuating fields are two-dimensional in space r = (x, y). The wave vector is then also two
dimensional, and for simplicity we express it in polar coordinates q = (qx, qy) = qeiθ. The wave angle
θ then defines the spatial direction of the Fourier transform. In our reference frame, θ = 0 denotes the
upstream direction of the road (q = qx, qy = 0) and θ = π/2 the direction transverse to the road. In
practice, the velocity field is Fourier transformed in space at every time step using the fft2 MATLAB
algorithm. For wave vectors making a finite angle with the road direction the value of the Fourier com-
ponents is linearly interpolated. For a given wave vector, the Fourier transform in time is performed
using the fft MATLAB routine.

We examine the spectral properties of the velocity fluctuations by looking at every wave angle in-
dependently. Let us, for now, focus on the θ = 0 direction. The flow speed and orientation spectra,
Cv(ω, q, θ = 0) and Cv̂(ω, q, θ = 0), are shown on Fig. 2.12. The flow speed spectral intensity is peaked
on a straight line, indicating a linear dispersion relation. At low pulsations ω, the horizontal lines visi-
ble on the the flow speed spectrum (Fig. 2.12.a) are consistent with the periodicity of the race staff’s
displacements (main text Fig. 2a). Being only interested in the part of the spectrum corresponding to
propagating waves, we filtered out this periodic component specific to the race organization by lowering
the amplitude of the spectrum in the low frequencies |ω| < ωm = 0.2 s−1 by a factor of m = 10. At low
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wave vectors, we made sure that this procedure does not interfere with the peak detection protocol.
From now on, the spectrum we consider is the one obtained after this filtering operation. For the
velocity orientation, Fig. 2.12b, the spectral intensity is not peaked on a straight line. Instead, it is
widely distributed around the origin. This observation indicates a strong damping and the absence of
propagation of the orientation fluctuations. The wide distribution of the power spectrum prevents us
from filtering out the low frequencies, as it would remove part of the signal we are interested in.

A BNormalized speed power spectrum Normalized orientation power spectrum

Figure 2.12 | Power spectra in the direction of the road normalized at every wave vector q. (A)
Normalized speed power spectrum. (B) Normalized orientation power spectrum. Dashed-lines: visual
guide for the spectral width increase as a quadratic function (main text Fig. 3h).

The material parameters were measured from real-time measurements, taking the inverse Fourier trans-
form in time of the power spectra. As shown in the main text, Fig. 3d, the speed modes decorrelate in
time as an exponentially decaying cosine function. Both periodicity and damping rate are dependent of
the wave vector q. Conversely, the orientational modes do not show any sign of oscillation but a strong
damping (main text, Fig. 3g), in agreement with the above spectral observations. Fitting Cv(q, t, θ = 0)
with a exponentially decaying cosine function on the [0, 20] seconds time interval, and Cv̂(q, t, θ = 0)
with a decaying exponential on the [0, 2] seconds time interval, we obtain the transport and damping
properties of the velocity amplitude and orientation (main text, Figs. 3c, 3f and 3j).

Keeping in mind that crowds are here described as continua, the highest value of the wave vector
we used is qm = 0.5m−1 and corresponds to wavelengths of 12m, which is much larger than the typical
distance between the individuals in all our experiments.
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Modeling crowd motion is central to situations as diverse as risk prevention in mass events
and visual effects rendering in the motion picture industry. The difficulty to perform quan-
titative measurements in model experiments has limited our ability to model pedestrian
flows. We use tens of thousands of road-race participants in starting corrals to elucidate
the flowing behavior of polarized crowds by probing its response to boundary motion.
We establish that speed information propagates over system-spanning scales through po-
larized crowds, while orientational fluctuations are locally suppressed. Building on these
observations, we lay out a hydrodynamic theory of polarized crowds and demonstrate its
predictive power. We expect this description of human groups as active continua to provide
quantitative guidelines for crowd management.

Introduction

Mesmerizing impressions of virtually all patterns observed in bird flocks, fish schools, insect swarms
and even human crowds are effectively rendered in silico, by simple algorithms [77, 45]. Going beyond
visual impressions and predicting the collective dynamics of groups of living creatures in response to
physical, social or biological imperatives, however, remains a formidable challenge. Predictive models
of collective motion have been developed following two opposite strategies. One strategy identifies
local interaction rules between individuals [96]. This method has been successful, to some extent,
for some animal groups including bird flocks [13, 14, 73], fish schools [31, 58], sheep herds [33], and
insect swarms [2]. Determining the movement of human crowds, however, remains unsettled. Neither
field measurements [43, 66, 83, 51, 7], nor laboratory experiments [63, 71, 78] have converged towards
a robust set of interaction rules [23]. A different strategy for predicting collective motion ignores the
individual interaction rules, instead describing the large scale motions in creature groups as spontaneous
flows of active materials [59, 48, 68, 67]. Existing active hydrodynamic theories successfully account
for a host of emergent patterns found in assemblies of microscopic motile bodies such as swimming
bacteria [101, 100], cell tissues [25, 79, 3] and synthetic self-propelled particles [104, 62, 32]. The
success of the hydrodynamic approach has been limited to microscopic bodies, and observations of
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large-scale creature groups have not been quantitatively described hydrodynamically.

Results

In order to establish an active hydrodynamic description of spontaneous motion of humans, we made
experimental observations of individuals in a crowd targeting the same direction. We demonstrate that
information propagates over system-spanning scales in the form of hybrid waves combining density and
speed fluctuations in this polarized crowd. Guided by the spectral properties of the velocity waves, we
build on conservation laws and symmetry principles to construct a predictive theory of pedestrian flows
without resorting to any behavioral assumption.

Experimental measurements

A good opportunity to study a polarized crowd in a controlled setting comes from large-scale running
races. We made observations of thousands of runners progressing towards the start of the Bank of
America Chicago Marathon (Fig. 2.13A). Starting areas of road races have a number of advantages,
starting with the simple geometry as for the participants as they are gathered in a 200 m long and 20 m
wide start corral (Fig. 2.13A). The starting areas also offer the possibility to repeat observations either
of the same race across several years, or other races around the world. Finally, these massive polarized
crowds respond to a standard excitation as runners are consistently guided towards the starting line by
staff members performing repeated sequences of walks and stops (Fig. 2.13A, B).

We treated the crowd as a continuum, ignoring any specific behavior or interactions at the individual
level. We characterized their large-scale motion by measuring their local density ρ(r, t) and veloc-
ity field, v(r, t), in response to repeated translations of the boundary formed by the staff members
(Fig. 2.13B).

At rest, we measured the density of queuing crowds to be systematically homogeneous over each entire
observation window (Fig. 2.13C). The average density of ρ0 = 2.2± 0.05 m−2 was remarkably identical
in all corrals and varied little from one race to another (see Methods 4). Boundary motion, however,
triggers density and velocity perturbations that propagate with little attenuation over the whole extent
of the corrals (Fig. 2.13C). We systematically observed this coupled dynamics in response to more
than two hundred walk-and-stop excitations triggered by the race staff, in four different races. We
gathered a total of ∼ 150, 000 individuals. The kymograph (Fig. 2.14A) indicates that, regardless of
the width of the initial perturbation, longitudinal-velocity waves propagate upstream at a constant
speed (Fig. 2.14B). We found that the wave speed c0 = 1.2 ± 0.3 m.s−1 is a robust characteristic
of information transfer in polarized crowds for all two hundreds measurements. We also found that
the shape of both the density and velocity waves were identical to the imposed displacements of the
boundary (Fig. 2.14C). This faithful response to a variety of different signals (in shape and amplitude)
is the signature of the propagation of non-dispersive linear waves. The density and velocity waves we
observed are the result of the linear response of crowds, and are therefore intrinsically different from the
nonlinear stop-and-go waves that have been extensively studied in pedestrian and car-traffic models,
see e.g. [43, 44, 85, 94].
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Figure 2.13 | Hybrid-wave propagation in queuing crowds. (A) Picture of the starting corrals of
the Bank of America Chicago Marathon (2017) taken from an elevated observation point, see Methods 4.
Thousands of runners progress towards the starting line under the guidance of race staff members. (B)
The chain formed by the race staff advances with repeating sequences of walks and stops. (C) Velocity
and density fields at three successive times. At t = 0 s the crowd is static and has a uniform density
ρ0 ∼ 2 m−1 (blue lines). At t > 0, as the staff members displaces the downstream boundary of the
queuing crowd, a hybrid wave packet coupling velocity and density fluctuations propagates upstream.
x0 − x indicates the distance from the starting line located at x0.
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Figure 2.14 | Underdamped propagation of linear and non dispersive velocity waves. (A)
Kymograph of the longitudinal velocity, averaged over the transverse direction (Chicago 2016). x0 − x
indicates the distance from the starting line. A number of velocity waves are seen to propagate upstream
at the same speed. (B) Probability distribution function of wave speed, measured for all the studied
events. The typical wave speed hardly differs from one event to the other. The overall speed distribution
is narrowly peaked around, 〈c〉 = c0 = 1.2± 0.3 m.s−1. (C) Black line: velocity of a chain of race-staff
members ẋb(t), measured by direct tracking. The corresponding positions xb(t) are reported as a black
line on the kymograph in (A). As illustrated with the same color code on the the kymograph (A), the
colored curves correspond to the longitudinal velocity field measured along the curves defined by the
race staff position xb(t) after four different waiting times t0: vx(t+ t0, xb(t) + c0t0). Independently of
the shape of the ẋb(t) signal, the velocity waves faithfully propagate the information of the boundary
speed ẋb(t) over system spanning scales, at constant speed.
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Spectral properties

The velocity fluctuations in the crowds we observed were mainly longitudinal (Fig. 2.15A). This con-
trasts with other examples of polarized ensembles of self-propelled bodies (flocks), in which velocity
fluctuations were mainly transverse [92, 32]. We therefore describe separately the fluctuations in the
speed (where v ∼ vx in our case) and in the orientation, v̂, of the crowd flow. We determine the power
spectrum (Cv(ω, q, θ)) of the speed, where ω indicates the pulsation, q the modulus of the wave vector,
and θ its orientation (4). We found Cv is peaked on a straight line that defines the dispersion relation
of non-dispersive speed waves, ω = c(θ)q. We fitted the angular variations (c(θ)) by c(θ) ∝ cos θ ,
giving the dispersion relation ω = c0qx with the same propagation speed c0 as from the kymograph
(Fig. 2.14B). This confirmed that no speed information propagated in the transverse direction to the
crowd orientation (Fig. 2.15C). In order to check whether this strong anisotropy is caused by the homo-
geneous boundary perturbation, we analyzed separately the dynamics of freely walking crowds in the
absence of guiding staff. They respond to localized and spontaneous congestions forming in the starting
funnel. The corresponding power spectrum (Fig. 2.15B, inset) is identical to that of the runners in the
crowd, establishing that polarized crowds solely support longitudinal modes. Their damping dynamics
is measured from the time decay of Cv(t, q, θ) (4,Figs. 2.15D, 2.15E). For all wave vectors, we defined
a single damping time scale α−1 from a best fit of the form Cv(t, q, θ) ∼ exp[−α(q, θ)t]cos[c(θ)t]. In all
cases, we found diffusively damped speed waves attenuated at a rate that scales as α(q, θ) = D(θ)q2

(Fig. 2.15F). Inspecting the angular variations of D(θ) (Fig. 2.15G) we consistently found that damp-
ing primarily occurs along the x direction as α = (Dx cos2 θ)q2 = Dxq

2
x, where the diffusivity Dx is

a robust material parameter: Dx = 1 ± 0.5 m2.s−1 in all observed crowds. This type of slow dynam-
ics is usually typical of hydrodynamic variables characterized by long lived fluctuations in the long
wave-length limit [16, 59]. This observation is seemingly at odds with the conservation laws obeyed
by pedestrian crowds. Solid friction constantly exchanges momentum between the pedestrians and the
ground. Momentum is not a conserved quantity, unlike in conventional liquids. Therefore, the speed is
expected to be a fast variable.
Before solving this apparent contradiction, let us address the small orientational fluctuations of pedes-
trian flows. The correlations of v̂, Cv̂(t, q, θ), decay exponentially in less that two seconds for all
wave lengths, and do not display any sign of oscillations (Fig. 2.15G).The corresponding damping rate
αv̂(q, θ), varies as αv̂(q, θ) = α⊥ +O(q) (Fig. 2.15H). Unlike the flow speed, orientational information
does not propagate in queuing crowds. Instead it relaxes in a finite time α−1

⊥ , which hardly depends
on the direction of the wave vector (Fig. 2.15I). This behavior contrasts with that observed in bird
flocks [15, 14], and in all active systems where the emergence of directed motion arises from a sponta-
neous symmetry breaking [15, 14]. In the race corrals, all participants are aware of the race direction and
align their body accordingly. Rotational symmetry is explicitly broken and no Goldstone mode exists.
The α⊥ contribution to the damping rate stems from this explicit symmetry breaking. The variations
of αv̂ with q around α⊥, however, are consistent with a quadratic increase of the form α⊥+D(θ)q2 (4,
Fig. 2.15H). Such variations suggest that interactions between pedestrians penalize deformations of the
flow field as would viscosity in a Newtonian fluid, or orientational elasticity in polar active fluids [92].
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Figure 2.15 | Spectral properties of speed waves in queuing crowds. (A) Probability distribution
function of the longitudinal and transverse components of the velocity field (Chicago 2016). The
longitudinal component dominates. (B) Power spectrum of the flow speed, plotted for θ = π/4. The
spectrum is normalized at every wave vector (

∫
Cv(ω, q, θ)dq = 1). Inset: normalized speed spectrum

for a crowd in free flow conditions. Data from the Chicago 2016 experiment. (C) Variations of the speed
of sound with the direction of the wave vector θ for all experiments. Circles: experimental data. Solid
line: cosine fit. The excellent fit shows that the dispersion relation is given by ω = cqx. (D) Normalized
speed correlations plotted versus time for all experiments (θ = π/4, wave vector q = 0.5m−1). (E)
Damping rate of the speed waves, α, plotted for all wave vectors along θ = π/4. Circles: experimental
data. Solid lines: best quadratic fits. (F) Variations of the speed diffusivity Dx with the direction of
propagation. Circles: experimental data. Solid lines: squared cosine fits. (G) Normalized orientational
correlations plotted versus time for all experiments (θ = π/4, q = 0.5m−1). (H) Damping rate of the
orientational fluctuations αv̂ plotted as a function of the wave vector (θ = π/4). Circles: experimental
data. Solid lines: best quadratic fits ∼ α⊥ + Dv̂q

2, with Dv̂ = 1.2± 0.5m2s−1. (I) Inverse relaxation
time α⊥ plotted as a function of the direction of the wave vector θ. No significant angular variation is
observed.
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Hydrodynamic theory

The consistency between data collected from four different crowd gathering events hints towards a
unified hydrodynamic description of density and speed excitations. We elucidate the dynamical re-
sponse quantified in Fig. 2.14 and Fig. 2.15 from this perspective, without resorting to any behavioral
assumption (4). Mass conservation gives the first hydrodynamic equation:

∂tρ+ ∇ · (ρv) = 0. (2.20)

Momentum conservation, at lowest order in gradients, reduces to the balance between the local rate
of change of momentum and the friction experienced by the crowd on the ground, Dt[ρ(r, t)v(r, t)] =
F(ρ,v,p) +O(∇) where Dt stands for the material derivative, and the body force F is a total friction
force that depends in principle on the local crowd density, velocity and orientation (4). Pedestrians
are polar bodies, and we classically quantify the level of local alignment between the individuals by a
polarization field p(r, t) [59]. In (4) we build on a systematic theoretical framework to simplify this
hydrodynamic description. In short, we take advantage of three robust key observations. First, given the
measured densities, the crowd is far from a jammed regime [7, 71]. We therefore ignore elastic stresses
arising from contact interactions. Second, the local direction of the flow, v̂, quickly relaxes towards the
local orientation p̂. Simply put, queuing pedestrians do no walk sideways. Third, the crowd is strongly
polarized, all individuals align towards the x̂ direction. In the hydrodynamic limit, we can therefore
safely assume p̂ = v̂ = x̂. This simplification does not allow the description of orientational fluctuations
which we explain in (4). It conveys, however, a clear picture of the propagation of underdamped density
and speed excitations. To proceed, we need to prescribe the functional form of F, which is a priori
unknown but can be phenomenologically constructed in the spirit of a Landau expansion. At lowest
order in gradients, the frictional body force is given by

F ({ρ}, {v}) = −Γ‖ [v − ν0(ρ)] x̂ +O(∇), (2.21)

and represents the self-propulsion mechanism of the polarized crowd. The density dependent speed
ν0(ρ) quantifies the active frictional force driving the flow along x̂, and Γ‖ is a friction coefficient
that constrains the longitudinal velocity fluctuations to relax in a finite time. In the hydrodynamic
limit, momentum conservation and Eq. (2.21) therefore reduce to the fundamental relation v(r, t) =
ν0(ρ(r, t)) +O(∇) (4). This relation explains two of our main experimental findings. It shows that the
fast variable v inherits the slow dynamics of the conserved density field, and readily implies that the
density of static queuing crowds self-adjusts to a constant value ρ0 = ν−1

0 (0) (Fig. 2.13C). In the limit
of linear-response theory around the quiescent polarized state, the speed and density fluctuations, δρ,
are linearly related by v(r, t) = ν ′0(ρ0)δρ− (β/Γ‖)∂xδρ, where ν ′0(ρ0) = ∂ρν0(ρ0) < 0 and β is the crowd
longitudinal compressibility (4). Together with mass conservation, this constitutive relation defines the
analog of the Navier-Stokes equations for polarized crowds:

∂tv + ρ0ν
′
0(ρ0) ∂xv −

ρ0β

Γ‖
∂2
xv = 0. (2.22)

Eqs. (2.20) and (2.22) effectively predict the dynamical response we observed in our experiments. The
linear stability analysis of Eqs. (2.20) and (2.22) readily shows that polarized crowds support unidirec-
tional and non-dispersive speed wave propagating downstream at a speed c0 = −ρ0ν

′
0(ρ0). Eqs. (2.20)

and (2.22) also predict that their damping rate varies as qx , in agreement with our experimental mea-
surements (Figs. 2.15e and 2.15f). Unexpectedly, unlike in conventional fluids, the (weak) attenuation
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of the speed waves does not originate from viscous stresses but instead from the competition between
substrate friction and compressive stresses in the crowd. In agreement with our observations, these
hybrid waves coupling density and speed fluctuations of opposite amplitude are the sole propagating
modes supported by polarized crowds. In the hydrodynamic limit, the response of polarized crowds
is strongly unidirectional and speed information neither propagates nor diffuses along the transverse
direction (4).
From a more practical perspective, we can infer the full set of hydrodynamic parameters ofEq. (2.22)
from the spectral properties of v. We can show the predictive power of our hydrodynamic model as by
calibrating the celerity of the speed waves and the damping rate on a single race in Paris is sufficient
to quantitatively predict the dynamics of queuing crowds observed in Chicago and Atlanta months
later. In addition, our description of crowds as active continua provides effective guidelines for the
management of crowds. For instance, we show that stimulations from side boundaries are inefficient,
and that optimal information transfer is achieved when guiding a crowd from its forefront. We show
that reorienting the direction of motion of a polarized crowd at once is impossible when relying only
on locally accessible signals. Orientational cues must be provided to the entire assembly to change its
direction of motion. We also predict the time it takes to set in motion, or to stop, a crowd of a given
extent by providing information at its boundary.

Perspectives

Beyond these predictions, we hope the description of crowds as continua to be useful to elucidate their
response to large amplitude perturbations, and their transitions from flowing liquids to amorphous
solids, two situations where crowd dynamics become hazardous.

80



Hydrodynamic theory of polarized crowds

We introduce a hydrodynamic description of crowd flows which accounts for the underdamped prop-
agation of longitudinal waves, and explain how to infer the material parameters of a crowd from its
response to boundary motion. Unlike the previous sections, the following discussion requires a minimal
background in hydrodynamic theories.

Conservation laws, symmetries and phenomenological construction

In conventional fluids, like water, the hydrodynamic variables are associated to two conserved quanti-
ties: mass and momentum [16]. In assemblies of queuing pedestrians the number density is the sole
conserved variable. As they walk pedestrians continuously exchange momentum with the ground. As
momentum is not conserved, velocity should not be a hydrodynamic field, i.e. a field slowly varying in
time and space.

Our experiments reveal, however, that the longitudinal component of the crowd flow is a slow mode:
its excitations relax over an arbitrarily large time scale provided that they correspond to sufficiently
large wave lengths. More quantitatively we find that fluctuations of wave vector q are attenuated over a
time that scales as q2. Elucidating the atypical slow dynamics of these excitations is crucial to explain
and predict crowd flows.

The two standard explanations for the existence of additional slow modes are criticality, and, or, the
spontaneous breaking of a continuous symmetry (Goldstone modes) [16]. The normal diffusive scaling
α ∼ Dq2 does not hint towards criticality as a possible origin of this slow dynamics [13]. Furthermore,
the crowd velocity is not associated to any spontaneously broken symmetry, and hence cannot be a
associated to slow Goldstone modes. We therefore need to investigate the specifics of crowd motion to
elucidate the unanticipated slow dynamics of longitudinal flows.

Let us first identify the minimal set of degrees of freedom required to describe the large scale dy-
namics of pedestrian groups. In addition to the crowd density and velocity fields (ρ(r, t), and v(r, t)),
we also introduce the local polarization of the crowd p(r, t). Pedestrians are polar particles, and p(r, t)
is the average direction they are facing at position r and time t.

The dynamics of the three fields cannot be constructed from entropy production principles as crowds
operate very far from thermal equilibrium [16, 59]. Following the same approach as that introduced by
Toner and Tu in the context of flocking motion [92], we write the most general dynamics for the three
fields. The first equation corresponds to mass conservation:

∂tρ+ ∇ · (ρv) = 0. (2.23)

The second equation corresponds to momentum conservation:

∂t(ρv) + v ·∇(ρv) = ∇ · σ + Fv ({ρ}, {v}, {p}) , (2.24)
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where the left hand side of Eq. (2.24) is the convective derivative of the momentum field, σ is the stress
tensor and Fv is a frictional body force indicating that momentum is exchanged with the ground that
acts as a momentum sink (or source).

The functional form of Fv is phenomenologically constructed from two central observations. Given
the crowd density, the individuals cannot interact via long-range interactions. Therefore, in the spirit
of a Landau expansion, at lowest order in gradients:

Fv ({ρ}, {v}, {p}) = −Γ · [v − ν0(ρ)p] +O(∇), (2.25)

where Γ ≡ Γ‖pp + Γ⊥ (I− pp) is an anisotropic friction coefficient, and ν0 quantifies the strength of
the self-propulsive force in the direction of the polarization. For sake of clarity, we write the form of
the gradient terms only in the linearized version of Eq. (2.25) in the next section. Our experimental
observations put strong constraints on both Γ and ν0(ρ). Firstly, we observe that crowds in corrals
are almost perfectly polarized, |p| ∼ 1 yet in the absence of boundary perturbation, they remain at
rest (v = 0). Unlike hydrodynamic models of flocking, the local velocity cannot be identified with
polarization, in other words ν0 is not a constant. Eqs. (2.24) and (2.25) are compatible with a homo-
geneous steady state at rest only if the function ν0(ρ) vanishes at finite density ρ0. From a different
perspective, strongly polarized queuing crowds self-organize so that their density is homogeneous and
equal to ρ0, which is again consistent with our observations. The density in the corrals was indeed free
to adjust as the pedestrians where not bounded from all sides, yet we measured the same density in all
corals in steady state. Secondly, for time scales larger that a few seconds, all our experimental videos
indicate that the crowd does not drift transversally. The pedestrians do not walk sideways, instead
they proceed in the direction of their orientation p̂. This second observation constrains the friction
tensor, telling us that Γ⊥ � Γ‖. In the limit of very large transverse friction, Eqs. (2.24) and (2.25) re-
duce to a dynamical equation of the flow speed v(r, t) and on a constraint on the flow orientation: v̂ = p̂.

Let us now write the third and last equation of motion corresponding to the polarization dynam-
ics. There is no generic form for this equation. In order to gain more intuition, however, we write it in
the same form as the orientational hydrodynamics of polar mesophases [59]:

∂tp + (v ·∇)p + Ω · p = Fp + hx̂. (2.26)

Given the overdamped nature of the transverse fluctuations (Fig. 3), we ignore the spinning inertia of
the pedestrians [15, 102, 14]. The left hand side of Eq. (2.26) is a kinematic term commonly referred
to as the corotational derivative (Ω is the vorticity tensor defined by: Ωij = 1

2(∂ivj − ∂jvi)). Fp is
a generalized torque that does not necessarily derive from an effective free energy. For instance, Fp

typically includes terms of the form E · p, which translates the alignment of the particles with the
principal orientations of the local strain Eij = 1

2(∂ivj + ∂jvi). Given the number of possible terms
allowed by symmetry, even within a long wave-length approximation, a generic expression for Fp

would not bring additional insight. We will give its explicit form only in the limit of small amplitude
fluctuations around a fully aligned state in the next section. Finally, the last term of Eq. (2.26) is
analogous to a magnetic field constraining p to align along its direction x̂. This last term has a clear
physical meaning: it translates the alignment of the pedestrians with the direction of the race, which
is known by each participant.
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Linearized hydrodynamics around queuing states

We now address the dynamical fluctuations around a quiescent queuing state ρ = ρ0, p = p̂0 = x̂ and
v = 0.

Several simplifications can be made a priori. Given our experimental observations, we neglect the fluc-
tuations in the magnitude of the polarization and only consider its orientational fluctuations writing
p = (cosψ(r, t), sinψ(r, t)). In addition, the friction force Fv defined in Eqs. (2.24) and (2.25) causes
the fast relaxation of v̂ towards the local orientation p̂. We focus here on the long time, long wave-length
limit. We therefore discard the fast relaxational dynamics of v and assume v(r, t) = v(r, t)p̂(r, t). The
direction of the flow is slaved to that of the polarization, but the flow speed can fluctuate.

In all that follows we restrain ourselves to a linear- response framework, considering only leading order
terms in ψ(r, t), v(r, t) and in the density fluctuations δρ(r, t). Their equations of motion are given
by Eq. (2.23), by the projection on the x axis of Eq. (2.24) and on the y axis of Eq. (2.26). To make
these equations explicit we now need writing a generic expression for all generalized forces, performing
a systematic gradient expansion up to the second order.

Let us focus first on the momentum conservation, Eq. (2.24). All terms correspond to the friction
force and gradients of a generalized stress tensor, including anisotropic pressure, bulk viscosity, shear
viscosity and odd stress terms, see e.g. [84], their lengthy generic expression is not insightful. For the
sake of simplicity, we project Eq. (2.24) on the x axis and obtain at lowest orders in gradients:

ρ0∂tv = −Γ‖ (v − ν ′0(ρ0)δρ) + (−β∂xδρ+ cx∂xv)

+
(
ηx∂

2
x + ηy∂

2
y

)
v + γxy∂xyψ + γo∂yψ +

(
Bx∂

2
x +By∂

2
y

)
δρ.

(2.27)

The first term on the right hand side is the linearized force term, and ν ′0(ρ0) ≡ ∂ρν0(ρ0). The second
term on the right hand side originates from the anisotropic pressure tensor with a compressibility de-
pending on the magnitude of the flow speed and density. The third term is a standard viscous term
found in any fluid, and includes both shear and bulk viscosity contributions. The fourth and fifth terms
describes flows caused by gradients in the orientation of the pedestrians. Finally the last term, is a
dissipative term that originates from flows caused by density gradients. In the absence of a microscopic
theory of crowd motion, all parameters are phenomenological constants.

To complete our hydrodynamic description we need an equation for the orientational variable ψ that
requires expanding Fp at second order in gradients. Using the same approach as above we obtain:

∂tψ = −α⊥ψ + (Aψ∂xψ +Aρ∂yδρ+Av∂yv + ξ∂xyδρ+ ζ∂xyv) +
(
κx∂

2
xψ + κy∂

2
yψ
)

(2.28)

In the presence of an external alignment field, the orientational dynamics is fast and relaxes to zero in a
time scale α−1

⊥ . The last term also has a simple interpretation, as it translates the orientational elasticity
of the crowd. When κx, or κy are positive, the crowd has a finite bend and splay elasticity [59]. The
other hydrodynamic parameters have nontrivial interpretations which are not central to our discussion.
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Hydrodynamic limit

In the linear expansion around a quiescent queuing state Eqs. (2.27) and (2.8), flow speed and orien-
tational fluctuations are fast variables and the only bona fide hydrodynamic variable is the density.
Taking the long wavelengths and long time scales limit, orientational fluctuations relax to 0,

ψ = O(∇), (2.29)

and flow speed inherits the slow dynamics of the density fluctuations:

v = ν ′0(ρ0)δρ− β∂xδρ+O(∇2). (2.30)

Coupling Eq. (2.30) with mass conservation Eq. (2.23), we obtain a single hydrodynamic equation for
queuing crowds

∂tv + ρ0ν
′
0(ρ0) ∂xv −

ρ0β

Γ‖
∂2
xv = 0, (2.31)

verified by both flow speed and density fluctuations. This theory predicts that velocity fluctuations
propagate either upstream or downstream depending on the sign of ν ′0, and diffuse only in the longi-
tudinal direction (see main text, Figure 3). The speed of sound c0 = −ρ0ν

′
0(ρ0) is set by the slope of

the so-called fundamental relation, and the diffusivity Dx = (ρ0β/Γ‖) by the crowd compressibility.
Theses prediction are in excellent agreement with our experimental findings which impose ν0 to be a
decreasing function of the density: the denser the crowd the slower. At last, also in consistency with
our experimental observations, Eq. (2.30) constrains speed and density fluctuations to be of opposite
sign: when the crowd moves forward, its density has to be smaller than the density of the static queuing
crowd ρ0 (see Fig. 1 in the main text).

In summary, the hydrodynamic theory defined by Eq. (2.31) correctly accounts for the observation
of a single sound mode propagating at a constant speed away from the starting line. We expect this
behavior to be generic to all queuing crowds.

Orientational dynamics

The orientational dynamics is fast, and may therefore be more sensitive to the very details of the interac-
tions between the individuals forming the crowd. Our experiments however reveal two robust features
common to the four events: (i) At long wavelengths, the damping of the orientational fluctuations
hardly depends on the orientation of the wave vector. (ii) At shorter wave lengths, the damping rate
grows quadratically with the wave vector. Both features are, again, correctly captured by Eqs. (2.23),
(2.24) and (2.26). When linearized around a quiescent queuing state, these three equations reduce to
the linear system

∂t

 δρ
ρ0v
ψ

 = (T + D) ·

 δρ
v
ψ

 , (2.32)

where T gathers the transport terms:

T =

 0 −iρ0qx 0
−iβqx icxqx iγ0qy
iAρqy iAvqy iAψqx

 , (2.33)
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A B C

Wave vector Wave vector Wave vector

Figure 2.16 | (Chicago 2016) Orientational damping rate as a function of the wave vector, in directions
of propagation (A) θ = 0, (B) θ = π/4, and (C) θ = π/2. In every propagation direction, the
orientational damping grows quadratically with the wave vector.

and D the damping terms:

D =

 0 0 0
Γ‖ν ′0(ρ0)−Bxq2

x −Byq2
y −Γ‖ − ηxq2

x − ηyq2
y −γxyqxqy

−ξqxqy −ζqxqy −α⊥ − κxq2
x − κyq2

y

 . (2.34)

There is no simple analytic formula for the eigenvalues of T +D. We can, however, gain some physical
insight focusing on the longitudinal and transverse directions.

In the longitudinal direction (θ = 0), the orientational fluctuations decouple from the other variables
and boevys the linear equation:

∂tψ + α⊥ψ +Aψ∂xψ + κx∂
2
xψ = 0. (2.35)

Orientational waves are obviously overdamped at a rate λ(θ = 0) = α⊥ + κxq
2. The rotational friction

and the orientational elasticity of the crowd (κx) conspire to suppress orientational fluctuations.

In the transverse direction (θ = π/2), orientational fluctuations only decouple from density and speed
modes in the small q limit. The associated damping rate is also quadratic in q:

λψ

(
θ =

π

2

)
= α⊥ +

(
κy −

Avγ0

α⊥ − Γ‖

)
q2. (2.36)

As in the longitudinal case, orientational elasticity (κy term) contributes to damping the orientational
fluctuations. The Avγ0/(α⊥ − Γ‖) term does not have a simple interpretation, as it combines contri-
butions from both the frictional stresses and force and from the convective terms in the orientational
dynamics. We note that in certain situations, this additional term can reverse the sign of λ(θ = π/2)
thereby resulting into a bending instability of the crowd orientation.

The α⊥ + α′q2 scaling was numerically confirmed for all orientations. These results are yet again
in excellent agreement with our experimental findings as shown in (Fig. 2.16) and main text (Figs. 3h,
3i and 3j). The experimental measurements for Chicago 2016 suggest that the diffusive contribution of
the orientational damping varies as Dv̂(θ) ∼ Dx

v̂q
2
x +Dy

v̂q
2
y (Fig. 2.17). The measurements on the other
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events are, however, too noisy to conclude. A confirmation of these variations would further simplify
the complete hydrodynamic description of the crowd as they imply that all terms involving derivatives
of the form ∂xy are associated to vanishingly small material parameters.

A BChicago 2016 Chicago 2017

Direction of propagation Direction of propagation

Figure 2.17 | Orientational diffusivity as a function of the direction of propagation. (A) Chicago 2016.
(B) Chicago 2017.
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Abstract

Modeling crowd motion is central to situations as diverse as risk prevention in mass events and visual
effects rendering in the motion picture industry. The difficulty to perform quantitative measurements
in model experiments, and the lack of reference experimental system, have however strongly limited our
ability to model and control pedestrian flows. The aim of this thesis is to strenghten our understanding
of human crowds, following two disctinct approaches.

First, we designed a numerical model to study the lane formation process among bidirectional flows
of motile particles. We first evidenced the existence of two distinct phases: one fully laned and one
homogeneously mixed, separated by a critical phase transition, unique to active systems. We then
showed with a hydrodynamic approach that the mixed phase is algebraically correlated in the direction
of the flow. We elucidated the origin of these strong correlations and proved that they were a universal
feature of any system of oppositely moving particles, active of passive.

Second, we conducted a substantial experimental campaign to establish a model experiment of
human crowds. For that purpose we performed systematic measurements on crowds composed of tens
of thousands of road-race participants in start corrals, a geometrically simple setup. We established that
speed information propagates through polarized crowds over system spanning scales, while orientational
information is lost in a few seconds. Building on these observations, we laid out an hydrodynamic theory
of polarized crowds and demonstrated its predictive power.

Résumé

Modéliser le mouvement des foules humaines est essentiel pour des situations aussi diverses que la
prévention de risque dans les lieux publics, la planification d’évènements ou la création d’animations
visuelles réalistes. Cependant, la difficulté de mener des expériences quantitatives limite notre com-
préhension de la dynamique des piétons, et le manque de mesures de référence rend impossible une
comparaison poussée des modèles existants. Cette thèse tente d’augmenter notre compréhension des
foules humaines par deux approches distinctes.

Dans un premier temps, nous avons conduit une étude numérique et théorique pour étudier forma-
tion de lignes au sein de flux bidirectionnels d’agents motiles. Nous avons montré qu’une transition
de phase critique du second ordre séparait un état mélangé d’un état constitué de lignes géantes le
long desquelles se déplacent les agents visants une même direction. Cette séparation est caractéristique
des systèmes actifs. Une approche hydrodynamique nous a ensuite permis de prouver que les phases
mélangées sont aussi algébriquement corrélées dans la direction longitudinale. Nous avons expliqué et
montré que ces fortes correlations sont génériques de tous systèmes de flux bidirectionnels, qu’ils soient
constitués de particules forcées ou de particules actives.

Dans un second temps, nous avons mené une campagne expérimentale de grande envergure afin
d’établir une expérience de référence des foules humaines. Nous avons pour cela choisi un système
modèle, la zone d’attente de marathons. Dans ces foules de dizaines de millers d’individus, nous avons
quantitativement établi que les fluctuations de vitesse se propagent sur de grandes échelles, alors que les
variations d’orientation s’évanouissent en quelques secondes. Grâce à ces mesures, nous avons construit
une théorie prédictive hydrodynamique des foules polarisées.
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