
HAL Id: tel-01944111
https://theses.hal.science/tel-01944111

Submitted on 4 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploration of multicore systems based on silicon
integrated communication networks

Charles Emmanuel Effiong

To cite this version:
Charles Emmanuel Effiong. Exploration of multicore systems based on silicon integrated communica-
tion networks. Micro and nanotechnologies/Microelectronics. Université Montpellier, 2017. English.
�NNT : 2017MONTS064�. �tel-01944111�

https://theses.hal.science/tel-01944111
https://hal.archives-ouvertes.fr

RAPPORT DE GESTION

2015

THÈSE POUR OBTENIR LE GRADE DE DOCTEUR

DE L’UNIVERSITÉ DE MONTPELLIER

En Université Montpellier

École doctorale Information, Structures, Systèmes (I2S)

Unité de recherche Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM)

Présentée par Charles Emmanuel EFFIONG

Le 16 Novembre 2017

Sous la direction de Abdoulaye GAMATIE

et Gilles SASSATELLI

Devant le jury composé de

Pierre BOULET, Professeur, Université de Lille, Sciences et Technologies, FRANCE

Abdoulaye GAMATIE, Directeur de Recherche au CNRS, LIRMM - UM, FRANCE

Gilles SASSATELLI, Directeur de Recherche au CNRS, LIRMM - UM, FRANCE

Guy GOGNIAT, Professeur, Université Bretagne Sud – UBL, FRANCE

Alberto GARCIA-ORTIZ, Professeur, University of Bremen, GERMANY

Lionel TORRES, Professeur, LIRMM – UM, FRANCE

Président du jury

Co-directeur de thèse

Co-directeur de thèse

Rapporteur

Rapporteur

Examinateur

Explorat ion of Manycore Systems based on S i l icon

Integrated Communicat ion Networks

EXPLORATION OF MANYCORE SYSTEMS

BASED ON

SILICON INTEGRATED

COMMUNICATION NETWORKS

Presented by

Charles EFFIONG

Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier

Université de Montpellier

This dissertation is submitted for the degree of Doctor of Philosophy

November 2017

Dedicated to my Beloved Parents

v

Acknowledgements
This research work was carried out at the Laboratoire d’Informatique, de Robo-

tique et de Microélectronique de Montpellier (LIRMM), France in fulfillment of a

Ph.D. degree in Microelectronics. During the course of my research at the lab, I re-

ceived tremendous support from people who contributed to my research work.

First and foremost, my sincere gratitude goes to my thesis supervisor, Prof. Ab-

doulaye GAMATIE, who provided me with much guidance throughout my research

work. I am thankful for all his ideas, encouragement and support. He kept me mo-

tivated and inspired during the course of my research activities. I am also thankful

for his help in reviewing my slides, conference/journal manuscripts, and my Ph.D.

thesis. I have learned to be thorough, to stay motivated and pay attention to detail

from him.

On a similar note, my appreciation goes to my thesis co-supervisor Prof. Gilles

SASSATELLI for his professional advice during my Ph.D. He literally made a re-

searcher scientist out of me. I have learned to broaden my horizon and better carry

out my research activities from him. His suggestions and support helped me bring

my Ph.D. research ideas to life. He believed in me even when the going was tough

and kept looking at the bright side of things. His optimism stood out to me and kept

me going through my research.

Special thanks to my thesis reviewers, Prof. Guy GOGNIAT and Prof. Alberto

GARCIA-ORTIZ, for reviewing my Ph.D. manuscripts and offering interesting feed-

backs for improving the manuscript. Their feedback helped me better prepare for

the defense. I am also thankful to all the members of the jury for making my defense

a memorable one.

Special thanks to all my colleague at the lab who contributed in one way or the

other to my thesis.

I would like to especially thank my parents Mr. and Mrs. Effiong for their con-

sistent support and prayers for me. They have always been there for me at all times.

Their labors of love will not be in vain. Thanks to all my families, friends and loved

ones for their moral support.

Above all, I am grateful to God the giver of life and good things. I am thankful

for His unfailing love and compassion towards me. He heard and answered my

prayers and showered His blessings upon me.

Charles EFFIONG

Montpellier

November 2017

vii

Résumé

De nos jours, manycores de calcul sont intégrés sur une seule puce pour satisfaire

les demandes toujours croissantes des applications des systèmes haute performance

et basse consommation. Cela a conduit au passage des systèmes mono-cœur (com-

posés d’un cœur de calcul sur une puce qui peut exécuter seulement un processus à

la fois) aux systèmes multi-cœurs composés de deux à huit cœurs et récemment aux

systèmes manycores composés de dizaines voire de centaines de cœurs intégrés sur

une seule puce.

Comme le prévoit l’ITRS, le nombre de cœurs de calcul sur une puce contin-

uera d’augmenter, ouvrant la voie à des systèmes encore plus avancés. Cette tran-

sition a conduit au développement d’architectures de calcul plus efficaces offrant

de meilleures performances et une consommation d’énergie plus faible pour répon-

dre aux différentes demandes d’applications, car les tâches peuvent être exécutées

en parallèle contrairement à un système mono-cœur. On a observé qu’un processeur

de 2 cœurs exécutant plusieurs applications est 1,5 fois plus rapide qu’un processeur

mono-cœur. Une manière classique d’améliorer la performance des systèmes mono-

cœur est d’augmenter la fréquence d’horloge, ce qui entraîne une exécution plus

rapide du programme. Cependant, la fréquence d’horloge ne peut être augmen-

tée au-delà d’un certain seuil (4GHz pour la plupart des processeurs disponibles

dans le commerce) à cause du taux de dissipation de puissance insoutenable. Par

conséquent, l’augmentation des performances des processeurs mono-cœur est lim-

itée par la dissipation de puissance. Contrairement à un processeur mono-cœur,

chaque cœur d’un processeur manycores peut fonctionner à une fréquence d’horloge

inférieure, répartissant ainsi la puissance consommée parmi les cœurs, ce qui en-

traîne une consommation d’énergie plus faible et des performances supérieures. Des

études ont montré que l’utilisation d’un processeur double cœurs à une fréquence

d’horloge réduite de 20

De nombreux cœurs de calcul sont maintenant intégrés sur une puce afin d’obtenir

un degré encore plus élevé de traitement en parallèle. Un exemple est le processeur

Intel Xeon Phi avec 64 cœurs de calcul, une fréquence de base de 1,30 Ghz et gravé

en technologie 14 nm. Selon les exigences de l’application, les systèmes multi-cœurs

peuvent être composés de cœurs de calcul homogènes ou hétérogènes. Un exemple

est un système sur puce, constitué de cœurs de calcul spécifiques à des applica-

tions (tels que le cœur de traitement de signal numérique (DSP) pour l’exécution

viii

d’applications multimédia avec des calculs mathématiques intensifs). Une telle ar-

chitecture permet d’exécuter différentes applications sur le système.

L’augmentation croissante du nombre de cœurs de calcul est proportionnelle à

la demande de réseaux d’interconnexions évolutifs sur puce pouvant fournir une

communication à grande vitesse entre les différents cœurs. Des études ont montré

que, au fur et à mesure que le nombre de cœurs augmente, l’interconnexion entre ces

cœurs devient un facteur dominant, ce qui impose des contraintes de performance

et de puissance importantes sur l’ensemble des performances du système. Ainsi, la

nécessité d’une interconnexion évolutive sur puce pouvant fournir un transfert de

données à large bande passante entre les cœurs de calcul est essentielle.

Le bus d’interconnexion est un moyen de communication partagé par les cœurs

de calcul d’un système pour le transfert des données. Un bus peut être conçu de

manière simpliste (car il est composé principalement de fils et d’un arbitre pour

contrôler l’accès au bus) de sorte à avoir un moyen de communication peu coûteux

en terme de conception. Cependant, on observe une dégradation des performances

et une forte consommation électrique du bus d’interconnexion avec l’augmentation

du nombre de cœurs de calcul. L’une des raisons est qu’un seul bus partagé ne

peut pas assurer de transfert de données simultané. Ainsi, les accès au bus sont

bloqués jusqu’à la fin d’une transaction en cours, ce qui entraîne une dégradation des

performances. En outre, un bus plus grand signifie une longueur de fil plus longue

et des retards de fil associés qui limitent la bande passante du bus. Par conséquent,

il n’est pas évolutif et est inadapté pour les SoCs à multi-cœurs.

Afin de surmonter les limites du bus d’interconnexion, l’interconnexion crossbar

a été adoptée. On le retrouve dans le processeur 8-cœurs Sun Niagara. L’interconnexion

crossbar assure un transfert de données point à point à grande vitesse entre les

cœurs de calcul. Contrairement au bus d’interconnexion, le transfert de données

simultané est possible à travers l’interconnexion crossbar puisque chaque nœud est

connecté à tous les autres nœuds du réseau. Ainsi, le transfert de données en par-

allèle peut s’effectuer entre manycores de calcul, ce qui entraîne une faible latence.

L’amélioration de la performance à travers l’interconnexion crossbar est cependant

avec coût significatif en raison d’un grand nombre de fils. Aussi, l’arbitrage de-

vient plus difficile avec l’augmentation croissante du nombre de cœurs de calcul.

L’interconnexion crossbar convient à un petit nombre de nœuds, mais elle n’est pas

évolutive, car le coût du fil devient encore plus coûteux avec un grand nombre de

nœuds.

Contrairement à l’interconnexion traditionnelle sur puce, les Network-on-chip

(NoCs) sont apparu comme une interconnexion alternative mature pour manycore

ix

architectures car il offre une évolutivité améliorée et une efficacité énergétique ac-

crue. Le Réseau-sur-puce (NoC) assure une communication parallèle sans une aug-

mentation de coût significative comme dans l’interconnexion crossbar. Le NoC est

utilisé dans le processeur 64-coeurs Tilera TILE64. Contrairement aux bus et cross-

bar interconnexion, le Réseau-sur-puce offre une diversité de chemins car plusieurs

chemins existent entre les cœurs de calcul source et destination. La diversité de

chemins peut être exploitée pour atténuer les pertes de performance causées par

des conflits de réseau élevés, car des chemins de réseau alternatifs peuvent être util-

isés. Par conséquent, cette thèse porte sur le NoC. Le NoC est composé de routeurs,

interconnectés par des liens de données point à point. Les routeurs jouent le rôle

essentiel du routage des données des nœuds source vers les nœuds de destination

dans le réseau.

Le routeur standard bufférisé d’un NoC est composé de buffers d’entrée et / ou

de sortie qui sont utilisés pour stocker temporairement des paquets qui ne peuvent

être acheminé à leur sortie souhaitée en raison de conflits de réseau. Le stockage

du paquet dans les buffers est bénéfique car il garantit que les lignes du réseau sont

disponibles pour les autres paquets. D’autre part, des études ont montré que les

buffers sont la composante la plus chère en termes de surface de silicium et de con-

sommation d’énergie dans un routeur NoC. Bien que les buffers soient très coûteux,

des études ont montré qu’ils sont souvent inutilisés (c’est-à-dire inactifs ou sous-

utilisés), en particulier lorsqu’ils exécutent des applications avec un comportement

de trafic non uniforme et / ou des comportements en rafale. La raison en est que les

routeurs typiques bufférisée allouent un ensemble de buffers à leurs ports d’entrée

et / ou de sortie et ces buffers ne peuvent être exploités que par des flux de données

traversant ces ports. Cela entraîne une dégradation des performances pour le trafic

non uniforme car seule une fraction du nombre total de tampons est disponible pour

l’exploitation par les paquets.

Afin de maximiser l’utilisation des ressources buffer, cette thèse propose une

nouvelle architecture de routeur NoC inspirée des ronds-points de circulation à

plusieurs voies de la vie réelle. Ce routeur s’appelle R-NoC et sert d’architecture

de routeur initial ou de base. Le concept R-NoC fournit une architecture hautement

adaptable, qui permet au routeur d’être configuré pour répondre à de nombreuses

topologies de réseau et demandes d’applications. Le concept R-NoC permet de

partager les ressources disponibles par plusieurs ports. Le partage des ressources

disponibles parmi plusieurs ports permet de prendre en charge les applications

présentant des caractéristiques de trafic différentes. L’architecture du routeur R-

NoC peut être facilement adaptée pour prendre en charge manycores de traitement

sans entraîner d’importantes modifications du routeur. La connexion de manycores

à un routeur réduit le nombre de routeurs nécessaires dans le réseau et participe à

x

une diminution de la latence puisque le nombre de paquets de données traversant

le réseau est réduit.

Les architectures de routeur inspirées des ronds-points sont particulièrement

attrayantes car elles offrent un partage de ressources intrinsèque et efficace pour

améliorer les performances du réseau. Cependant, ils sont enclins aux blocages dus

à leurs architectures en anneau / cyclique. Afin d’éviter de tels blocages, un algo-

rithme capable de générer des configurations de routeur R-NoC sans blocage est

proposé. La principale contribution ici réside dans la réalisation d’une nouvelle ar-

chitecture de routeur inspirée des ronds-points offrant des améliorations de perfor-

mance par rapport aux routeurs standards à l’entrée bufférisée sans compromettre

le coût de la surface de silicium et la consommation d’énergie. Ce travail diffère de

Rotary, qui est aussi un routeur inspiré des ronds-points et qui offre une améliora-

tion de la performance du réseau mais qui introduit également des coûts supplé-

mentaires en termes de surface de silicium et consommation d’énergie associés au

contrôle de flux utilisé pour éviter les pannes.

Cette thèse a ensuite exploré d’autres façons d’améliorer les performances du

routeur R-NoC de base sans compromettre du surface de silicium et puissance. Pour

ce faire, l’impact de l’introduction de buffers supplémentaires et l’utilisation de voies

supplémentaires sur les performances et la surface est d’abord étudié. Cependant,

d’autres recherches révèlent que les améliorations de performance sont accompag-

nées d’un coût de surface supplémentaire associé aux buffers. La contribution prin-

cipale ici est d’exploiter la topologie hautement adaptable du routeur R-NoC pour

produire des configurations de routeurs offrant des compromis topologiques variés

pour améliorer considérablement les performances du réseau sans compromettre du

surface de silicium et puissance.

Étant donné que la topologie du réseau affecte de manière significative la per-

formance globale du réseau, la puissance, la fiabilité et le coût, cette thèse étend le

routeur R-NoC à d’autres topologies de réseau pour d’autres améliorations de per-

formance sans introduire de coût importants en terme de surface/ puissance par

rapport aux routeurs standards bufférisés en entrées et / ou sorties. À cette fin, des

ports supplémentaires sont ajoutés à la configuration initiale du routeur R-NoC afin

de réaliser différentes configurations de routeurs pour différentes topologies. Bien

que plusieurs topologies de réseau puissent être prises en charge, cette thèse étudie

R-NoC pour la topologie du réseau maillé diagonalement, nommé R-NoC-D et la

topologie de maille. Par rapport au routeur standard bufférisé en entrée, le R-NoC-

D routeur réalisent des améliorations significatives de la performance sans impact

important en termes de surface de silicium et consommation d’énergie. Cela est

possible en exploitant la topologie hautement adaptable de R-NoC.

En résumé, l’évaluation montre que R-NoC peut fournir des performances améliorées

xi

sur un routeur tamponné typique. L’amélioration des performances ne se fait pas au

détriment de la surface et de l’alimentation, ce qui rend le R-NoC adapté au NoC

avec des contraintes d’alimentation étroites. De plus, R-NoC peut être étendu à

d’autres topologies de réseau pour améliorer les performances et réduire la consom-

mation d’énergie.

Mots-clés : réseau sur puce, partage de ressources, routeur, topologie circulaire

de NoC, performance, bande passante, surface, consommation énergétique.

xiii

Abstract

More computing cores are now being integrated on a single chip in order to meet

the ever-growing application demands for high performance and low power com-

puting systems. As the number of cores continues to grow, so is the demand for

scalable on-chip communication networks that can deliver high-speed communica-

tion among the cores. Contrary to traditional on-chip networks, Networks-on-Chip

(NoCs) have emerged as a mature alternative interconnect for manycore architec-

tures since it provides enhanced scalability and power efficiency.

Typical NoC routers consist of buffers which serve as temporary data storage.

However, studies have shown that buffers are often unutilized (i.e. idle or under-

utilized) especially when executing applications with non-uniform traffic patterns

or bursty behaviours. This is because most typical routers dedicate a set of buffers

to their input and/or output ports and these buffers can only be exploited by data-

flows using them, which leads to significant performance degradation. Therefore,

router architectures capable of maximizing buffer utilization for performance gains

are indispensable.

In order to maximize buffer resource utilization, this thesis proposes a novel

NoC router concept called Roundabout NoC (R-NoC) that is inspired by real-life

multi-lanes traffic roundabout. Contrary to existing approaches, R-NoC provides

intrinsic and effective resource utilization. However, roundabout-inspired routers

are susceptible to deadlocks due to their ring-like architecture. Contrary to existing

solutions, R-NoC achieves deadlock-freeness and enhanced network performance

over typical NoCs without compromising network area/power. This thesis further

exploits R-NoC highly parametric architecture in order to produce different router

configurations with varying topological trade-offs for performance gains without

sacrificing area.

Keywords: Network-on-Chip, resource sharing, router, deadlock-freeness, cir-

cular NoC topologies, performance, throughput, area, power consumption.

xv

Contents

Acknowledgements v

Résumé vii

Abstract xiii

1 Introduction 1

1.1 Scalable on-chip communication fabric 2

1.2 NoC design challenges . 5

1.3 Buffer resource sharing in NoC . 5

1.4 Thesis objectives and contributions . 6

1.5 Thesis organization . 8

2 Networks-on-Chip (NoCs) design 11

2.1 General introduction to NoCs . 12

2.1.1 Routing . 13

2.1.2 Flow-control . 15

2.1.3 Buffer management . 19

2.1.4 Router pipeline . 21

2.1.5 Network traffic and Performance metric 22

2.2 Networks-on-Chip (NoCs) design challenges 23

2.2.1 Power consumption . 23

2.2.2 Quality-of-Service . 24

2.2.3 Latency . 24

2.2.4 Synchronization . 25

2.2.5 Traffic Variability and Network topology 25

2.3 Resource sharing in NoCs . 26

2.3.1 Underutilization of NoC resources 26

2.3.2 Benefits of resource sharing in NoCs 27

2.3.3 Some resource sharing challenges 28

Deadlock freeness/avoidance . 28

Design complexity . 29

2.3.4 Motivation for roundabout-inspired router in NoCs 30

xvi

Improved network performance 31

Enhanced scalability . 31

2.3.5 Desirable design mechanisms . 32

2.4 Summary . 32

3 State of the art in NoC routers 35

3.1 Introduction . 36

3.2 Input buffered NoC routers . 38

3.2.1 Virtual-cut-through based routers 38

3.2.2 Wormhole router . 38

3.2.3 Virtual-channel router . 41

3.3 Bufferless router . 43

3.4 Minimal buffered router . 45

3.5 Shared-buffer routers . 47

3.5.1 Deadlock-freeness challenge in resource sharing 47

3.5.2 Shared-buffer routers . 51

3.5.3 Roundabout-inspired routers . 54

3.6 Summary . 55

4 The Roundabout concept for effective buffer resource sharing 57

4.1 Introduction . 58

4.2 General principle . 59

4.3 Avoiding deadlock in R-NoC . 61

4.3.1 Topology generation algorithm 63

4.3.2 Application to mesh-based topology 65

Properties of the deadlock-free R-NoC topology 67

4.3.3 Application to diagonally-linked mesh-based topology 69

R-NoC-DM router for DMesh network topology 72

4.4 Discussion . 72

5 Implementations of Roundabout Network-on-Chip 73

5.1 Introduction . 74

5.2 Synchronous elastic implementation . 74

5.2.1 Elastic synchronous design . 75

5.2.2 R-NoC synchronous elastic building blocks 78

5.3 Asynchronous implementation . 83

5.3.1 Asynchronous circuit design . 84

Handshake protocol control signaling 85

5.3.2 Bundled-data protocol . 86

Network-on-Chip routers based on Bundled-data protocol . . . 86

xvii

5.3.3 Delay-insensitive protocol . 87

Network-on-Chip routers based on 4-phase dual-rail protocol . 88

Level-Encoded Dual-Rail (LEDR) protocol 88

Network-on-Chip router base on LEDR 89

5.4 R-NoC delay-insensitive implementation 89

5.4.1 4-phase dual-rail input controller 92

5.4.2 4-phase dual-rail output and path controllers 92

5.5 Summary . 93

6 Evaluation of Roundabout Mesh Network topology 95

6.1 Introduction . 96

6.2 Synchronous elastic evaluation . 98

6.2.1 Synchronous elastic router . 98

6.2.2 Baseline synchronous elastic network 101

6.2.3 Exploring further synchronous elastic router topologies 102

6.3 Asynchronous evaluation . 107

6.3.1 Asynchronous router . 108

6.3.2 Baseline asynchronous network 109

6.3.3 Exploring further asynchronous router topologies 110

6.3.4 Comparison with existing solutions 111

6.4 Discussion: synchronous elastic vs. asynchronous 113

7 Evaluation of further network topologies 115

7.1 Introduction . 116

7.2 R-NoC-DM configurations . 116

7.3 Evaluation of R-NoC-DM configurations 118

7.3.1 Exploring R-NoC-DM NoCs . 118

7.3.2 Comparison with existing solutions 122

7.4 Summary . 123

8 Conclusion 125

8.1 Future works . 127

8.2 Publications . 128

Bibliography 131

xix

List of Figures

1.1 Generic Systems-on-Chip (SoC) architecture 3

1.2 Salability of bus versus Network-on-Chip [4] 4

2.1 Mesh topology with input buffered router architecture 13

2.2 Deterministic vs. Adaptive routing . 14

2.3 Deadlock and starvation scenario . 14

2.4 Bufferless flow-control . 15

2.5 Store-and-forward vs Cut-through flow-control 16

2.6 Store-and-forward, cut-through and wormhole flow-control 17

2.7 Wormhole versus virtual-channel flow-control 18

2.8 Buffer management between communicating nodes 19

2.9 Credit-based buffer management. CN: credit number 20

2.10 On/Off buffer management . 20

2.11 Different types of router pipelines . 21

2.12 Latency vs. offered traffic in networks 23

2.13 64-node on-chip network using (a) 2D mesh and (b) concentrated mesh.

C: concentration . 27

2.14 Typical input buffered vs shared-buffered routers 27

2.15 % of idle buffers for different traffic patterns [102] 28

2.16 RoShaQ [101] router microarchitecture 29

2.17 Data-flows in a generic roundabout-inspired router 30

2.18 Data-flows in typical shared buffer and Roundabout-inspired router

architectures. Shaded box: buffers . 31

3.1 Conceptual buffered vs bufferless router 36

3.2 Hermes router architecture [74] . 39

3.3 Æthereal router architecture [28] . 39

3.4 DyAD router architecture . 40

3.5 Hermes router with two VCs . 41

3.6 MANGO router architecture . 42

3.7 Overall structure of DeC [106] . 43

3.8 SCARAB router showing the signaling between allocation, data and

NACK networks . 44

xx

3.9 CHIPPER architecture: a permutation network replaces the traditional

arbitration logic and crossbar [39]. 44

3.10 MinBD router pipeline [38] . 45

3.11 Router pipeline for DeBAR. HEU-Hybrid Ejection Unit, FPU-Flit Pre-

emption Unit, DIU-Dual Injection Unit, PFU-Priority Fixer Unit, QRU-

Quadrant Routing Unit, PDN-Permutation Deflection Network, BEU-

Buffer Ejection Unit, CBP-Central Buffer Pool. A, B, and C are pipeline

registers. [55] . 46

3.12 Dateline deadlock-avoidance technique [66] 47

3.13 Local bubble scheme deadlock-avoidance [66] 48

3.14 Critical bubble scheme technique [66] 49

3.15 Deadlock with variable-sized packets in LBS [66] 49

3.16 Flit-bubble flow-control localized (FBFC-L) [66] 50

3.17 Flit-bubble flow-control critical (FBFC-C) [66] 50

3.18 DPSB Router East Input Port [44]. 52

3.19 Dual-lane router architecture with two shared buffers and two inter-

connect links on each lane [102]. 52

3.20 Flexible router architecture [91]. 54

3.21 Rotary router architecture [2] . 55

4.1 The R-NoC architecture configurations 59

4.2 The initial deadlock-prone R-NoC topology 60

4.3 Data-flow scenarios in deadlock-prone R-NoC topology 60

4.4 Unidirectional ring with two VCs [32] 61

4.5 Channel dependency graphs (CDG) for Fig. 4.4 62

4.6 CDG of deadlock-prone R-NoC topology 62

4.7 R-NoC application example for Mesh network topology 65

4.8 Generated R-NoC topology . 66

4.9 CDG of deadlock-free R-NoC topology 67

4.10 Packet flow scenarios in deadlock-free R-NoC configuration. PX→Y: a

packet from X input port and destined for Y output port. 68

4.11 Data-flow example on a 2x2 mesh network topology. PXY→Z: X is

packet number, Y is packet source node and Z is packet destination

node . 69

4.12 Adaptive routing in Diagonally-linked mesh topology. SRC: source.

DST: destination . 69

4.13 R-NoC application example for DMesh network topology 70

4.14 DMesh network topology and R-NoC-DM architecture 71

4.15 Packet flow scenarios in R-NoC-DM. PX→Y: a packet from X input port

and destined for Y output port. 72

xxi

5.1 Synchronous elastic communication . 75

5.2 Example of synchronous elastic handshake 75

5.3 Flip-flop and latch based EB implementations 76

5.4 Elasticization of synchronous systems 77

5.5 A 4-lane R-NoC topology . 78

5.6 R-NoC packet format. 79

5.7 R-NoC Lane 0 pipeline . 79

5.8 First-come-first-serve (FCFS) /round-robin (RR) and static-priority ar-

biter . 81

5.9 R-NoC output port block . 82

5.10 Synchronous vs. Asynchronous communication 83

5.11 Handshake push vs. pull channel . 84

5.12 Asynchronous circuit implementation 84

5.13 Two-phase handshake protocol control signaling 85

5.14 Four-phase handshake protocol control signaling 85

5.15 Bundled-data asynchronous protocol . 86

5.16 4-phase dual-rail asynchronous protocol 87

5.17 Four-phase 1-of-4 protocol data encoding 87

5.18 Transition of two logical bits from (1,1) to (1,1) using dual-rail 1-of-2

and 1-of-4 protocol. Shaded box represent signal transition 87

5.19 Level-encoded dual-rail (LEDR) encoding 88

5.20 Transition of two logical bits from (1,0) to (0,1) using LEDR and 1-of-2

protocol. Shaded box represent signal transition 88

5.21 Muller gate symbol, truth table and gate-level implementation 90

5.22 VHDL description of a C-gate . 90

5.23 4-phase dual-rail completion detector 91

5.24 4-phase dual-rail half-buffer . 91

5.25 R-NoC input controller . 92

5.26 R-NoC output controller . 93

6.1 R-NoC-SE elastic design flow . 97

6.2 A conceptual 4-lane R-NoC topology . 98

6.3 A packet from east port to north port: (a) without lane switching, (c)

with lane switching. A packet from east to south: (b) without lane

switching (d) with lane switching. 99

6.4 Power consumption based on paths taken in the router 100

6.5 Performance of base R-NoC-SE vs. Hermes for a similar configuration 101

6.6 Blocked packet caused by different arrival times 102

6.7 Considered R-NoC-SE configurations . 102

6.8 Performance and area-overhead of R-NoC-SE routers (H: Hermes) . . . 104

xxii

6.9 Comparison w.r.t. different buffer counts. Number represents per-

centage increase . 104

6.10 Comparison w.r.t. different traffics and buffer counts 105

6.11 Considered R-NoC-A configurations . 108

6.12 Performance of two and four lanes R-NoC-A NoCs. Base [xL] + yB

denotes R-NoC-A version with x number of lanes + y additional buffers)109

6.13 Performance exploration of R-NoC-A asynchronous NoCs 110

6.14 R-NoC-A performance/area trade-offs. Marker number: the no. of

buffers available in the router version. Here, router versions with the

same topology but different number of buffers same colours is com-

pared. 111

7.1 Considered R-NoC-DM configurations 117

7.2 Router area. (Numbers: overheads introduced by additional ports) . . 118

7.3 Performance of R-NoC routers. (H: Hermes) 119

7.4 Performance comparison for R-NoC-DM configurations and Hermes

(H) routers for uniform traffic. 119

7.5 Performance comparison for R-NoC-DM configurations and Hermes

(H) routers for transpose traffic. 120

7.6 Network-level power consumption comparison 120

7.7 Routers performance for application traffic. Number on bars: % de-

crease in average package latency. (+ve value shows % increase) 121

xxiii

List of Tables

2.1 Flow-control summary . 18

3.1 State of the art in Network-on-Chip. T: topology 37

3.2 Deadlock-free flow-control techniques. DL: Dateline [24], LBS: Local

bubble scheme [18], CBS: Critical bubble scheme [20], WBFC: Worm-

bubble flow-control [19], FBFC-L: Flit-bubble flow-control localized

[66], FBFC-C: Flit-bubble flow-control critical [66] 48

4.1 XY routing algorithm possible source and destinations 65

4.2 Quasi-minimal adaptive routing algorithm possible source and destina-

tion ports . 70

6.1 Performance of 34-bits R-NoC-SE routers. 98

6.2 Impact of lane switching on latency . 99

6.3 Comparison of Hermes and base R-NoC-SE 101

6.4 R-NoC-SE configurations (P/S denotes the ratio of primary to sec-

ondary lanes) . 103

6.5 Comparison of Hermes and R-NoC-SE 105

6.6 Comparison of R-NoC-SE (C1) and Rotary [2] 106

6.7 Network saturation throughput (%) of virtual-channel (VC) based routers

and R-NoC-SE (C1) for uniform traffic pattern. 107

6.8 Performance of 34-bits R-NoC-A routers. Base [xL] + yB denotes x

lanes router with y additional buffers. 108

6.9 Performance and area comparison of R-NoC-A with existing solutions. 112

6.10 Comparison of R-NoC-SE and R-NoC-A routers using same 4-lanes R-

NoC topology displayed in Fig. 6.2 . 113

7.1 R-NoC configurations. DLM: diagonally-linked mesh 117

7.2 Real application characteristics . 121

7.3 Comparison of Hermes and R-NoC-DM router 122

7.4 Comparison of R-NoC-DM and DMesh router [50] in terms of cost of

adapting to DMesh network topology 122

xxv

List of Abbreviations

2D Two Dimensional

3D Three Dimensional

AFC Adaptive Flow-Control

BE Best Effort

BFC Bubble Flow-Control

CBS Critical Bubble Scheme

CDG Channel Dependency Graph

CMOS Complementary Metal-Oxide Semiconductor

DI Delay-Insensitive

DL DateLine

DMESH Diagonally-Linked Mesh

DOR Dimension-Ordered Routing

DSP Digital Signal Processing

DVFS Dynamic Voltage and Frequency Scaling

EB Elastic Buffers

FBFC-C Flit Bubble Flow-Control Critical

FBFC-L Flit Bubble Flow-Control Localized

FIFO First-In-First-Out

FSM Finite State Machine

GALS Globally Asynchronous Locally Synchronous

GS Guarantee Service

HOL Head-On-Line Blocking

IBR Input Buffered Router

IP Intellectual Property

LBS Local Bubble Scheme

LEDR Level-Encoded Dual-Rail

MANGO Message-passing Asynchronous NoC providing Guaranteed Services

MMS MultiMedia System

MWD Multi-Window Display

NMAP Near Mapping

NoC Network-on-Chip

QoS Quality-of-Service

xxvi

R-NoC Roundabout Network-on-Chip

R-NoC-A Roundabout Network-on-Chip Asynchronous

R-NoC-DM Roundabout Network-on-Chip Diagonally-linked Mesh

R-NoC-SE Roundabout Network-on-Chip Synchronous Elastic

RC Route Computation

RMAP Random Mapping

RR Round Robin

RTL Register Transfer Level

SA Switch Allocation

ST Switch Traversal

SoC System-on-Chip

VA Virtual-channel Allocation

VC Virtual Channel

VCT Virtual-Cut-Through

VHDL Very High Speed Integrated Circuit Hardware Description Language

VLSI Very Large Scale Integrated Circuit

VOPD Video Object Plan Encoder

WBFC Worm Bubble Flow-Control

1

Chapter 1

Introduction

2 Chapter 1. Introduction

«"Writing is an exploration. You start

from nothing and learn as you go."»

E. L. Doctorow

Contents

1.1 Scalable on-chip communication fabric 2

1.2 NoC design challenges . 5

1.3 Buffer resource sharing in NoC . 5

1.4 Thesis objectives and contributions 6

1.5 Thesis organization . 8

1.1 Scalable on-chip communication fabric

The advancement in Very Large Scale Integrated circuit (VLSI) process technology,

coupled with the ever-increasing demand for more efficient computing systems, has

led to the transition from single core systems (consisting of one core on a chip that

can run only one process at a time) to multi-core with two to eight cores and recently

to many-cores consisting of tens, hundreds or thousands of cores integrated on a

single chip. As predicted by International Technology Roadmap for Semiconductors

[52], the number of cores on a chip will continue to increase, paving the way for even

more advanced systems. This transition has led to the development of more efficient

computing architectures that deliver better performance and power characteristics

for meeting varying applications demands since tasks can be executed in parallel

contrary to a single core system.

A classical way of improving the performance of single core systems is by in-

creasing the clock-frequency, which leads to faster program execution. However,

the clock frequency cannot be increased beyond a certain threshold (4GHz for most

commercially available processors) due to unsustainable rates of power dissipation

[83]. Hence, increasing performance of single core processor is limited by power dis-

sipation. Contrary to a single core processor, each core in multi/manycore proces-

sors can operate at a lower clock-frequency, thereby distributing power consump-

tion among the cores, which leads to lower energy consumption and higher per-

formance. Studies have shown that operating a dual-core system at 20% reduced

clock frequency leads to almost 2 times performance improvement and consumed

approximately similar power to that of a single core processor operating at maxi-

mum frequency [104]. Many processing cores are now being integrated on a chip

in order to achieve an even higher degree of parallel processing. An example is the

Intel R© Xeon PhiTM Processor with 64 processing cores, a processor based frequency

1.1. Scalable on-chip communication fabric 3

of 1.30 GHz and based on 14 nm process technology [51]. Depending on application

requirements, manycore systems can be composed of homogeneous or heteroge-

neous cores. Fig. 1.1 shows the architecture of a System-on-Chip, which consists

of dedicated application specific cores (such as digital signal processing cores (DSP)

for executing multimedia applications with intensive mathematical computations).

Such an architecture allows varying applications to be executed on the system [83].

INTERCONNECT

CPU DSPMemory

I/ODMA
Custom

Logic

FIGURE 1.1: Generic Systems-on-Chip (SoC) architecture

A key component of the manycore system is the on-chip interconnect, which con-

nects all the cores together. The interconnect is considered the backbone of many-

core systems, ensuring inter-core communication. Studies have shown that as the

number of cores continues to grow, the interconnect becomes a dominating factor,

imposing significant performance and power constraints on the overall system per-

formance [15]. Thus, the need for scalable on-chip interconnect that can deliver high

bandwidth and low latency inter-core data transfer is critical.

Bus interconnect

The bus interconnect provides a shared communication medium for inter-core data

transfer. A bus can be simply designed (since it is made up of mostly wires and an

arbiter to controls access to the bus) and provides a low-cost communication fabric.

However, the bus interconnect suffers from poorer performance and higher power

consumption with increasing number of cores. One reason is that a single shared

bus does not provide concurrent data transfer. Thus, accesses to the bus are blocked

until an ongoing transaction completes, which leads to performance degradation in

manycore systems. In addition, larger bus means longer wire length and associated

wire delays which limit the bus bandwidth. Hence, it is not scalable and unsuitable

for manycores SoCs [47]. Techniques such as bridging shared buses have been in-

troduced to improve performance. An example is the AMBA bus from ARM [65].

However, they still suffer poor performance with increasing number of cores [47].

4 Chapter 1. Introduction

Crossbar interconnect

In order to overcome the limitations of the bus interconnect, the crossbar intercon-

nect was adopted. The crossbar is used in 8-core Sun Niagara [59]. The crossbar

interconnect provides high-speed point to point data transfer between cores. Unlike

the shared bus interconnect, crossbar provides parallel data transfer since each node

is connected to every other node in the network. Thus, parallel data transfer can

occur for varying destination cores, which leads to lower latency. However, perfor-

mance improvement of the crossbar over the bus comes at a significant cost due to

a large number of wires. In addition, the crossbar becomes more difficult to arbi-

trate with increasing number of cores. The crossbar is suitable for a small number of

nodes but not scalable as wire cost becomes even more expensive with manycores

[1].

Network-on-Chip (NoC) interconnect

The Network-on-Chip (NoC) provides parallel communication but without signifi-

cant cost overhead as in the crossbar interconnect. The NoC is used in 64-core Tilera

TILE64 [8]. NoC uses shorter wires, which helps to reduce the overall total-wire

length in the chip, and supports the distributed nature of modern chip architecture

[9]. Contrary to bus and crossbar interconnects, NoC provides path diversity as sev-

eral paths exist between a source and destination cores. The path diversity can be

exploited to mitigate performance loss caused by high network contentions since

alternative network paths can be utilized. Thus network-on-chip has emerged as

alternative on-chip interconnect for manycores systems.

FIGURE 1.2: Salability of bus versus Network-on-Chip [4]

Fig 1.2 shows the scalability of SPIN NoC and the bus interconnects. It is ob-

served that the bus suffers poor performance as the number of cores increases. Con-

versely, NoC provides better scalability as the number of cores grow [4]. Thus, NoC

is more suitable for manycores system.

1.2. NoC design challenges 5

1.2 NoC design challenges

Although NoC is a viable alternative on-chip interconnect for systems with multiple

cores, there exist some challenges with its design. This section gives an overview

of some of the key NoC design challenges, while detailed presentation is given in

Chapter 2, section 2.2. Some of the key challenges facing NoC design are described

next.

• Power consumption is one of the biggest challenges facing NoC design. It has

been observed that current NoCs still consume significant power in manycores

systems [15]. Previous work [15] showed that manycore communication net-

work can consume up to 500mW power at each node. Existing power manage-

ment techniques such as sleep-states incur latency overhead, which degrades

system performance [15]. Therefore, techniques to reduce as much as possi-

ble the power consumed by NoCs without impairing system performance are

necessary [15, 75].

• Another challenge facing NoC design is quality-of-service (QoS), which refers

to predictable NoC services (e.g. bandwidth, latency). Most existing tech-

niques for providing QoS are expensive in terms of design complexities [79].

A classical way of providing QoS is by creating a connection between source

and destination nodes (i.e. circuit switching) before actual data transfer. This

method is used in Æthereal [90] and aSoC [64]. However, it has been observed

that this method leads to poor scalability since router area growth is propor-

tional to the number of required connections [69]. Also, managing circuits

introduces additional latency.

• Latency is another challenge facing NoC design. This is because NoCs are

required to provide low latency under stringent power, area and delay con-

straints. Adaptive routing techniques have been proposed to provide faster

data routing in NoC. However, this often requires additional complexity in

terms of area and resolving issues such as deadlocks, livelocks and starvation [24,

89] (discussed in Chapter 2) and power consumption. Thus, techniques to pro-

vide low latency without compromising NoC area and power is an important

goal in NoC design [79].

1.3 Buffer resource sharing in NoC

Most typical NoC routers dedicate a set of buffers to their input and/or output ports

(such routers are normally called input or output buffered routers). The buffers are

used to temporarily store packets that cannot proceed to their desired output ports

6 Chapter 1. Introduction

due to network contentions. Storing packets in buffers ensures that the router link

bandwidth is not unnecessarily consumed, thus available for use by other packets.

On the other hand, studies have shown that buffers are often unutilized (i.e. idle

or underutilized) especially when executing applications with non-uniform traffic

patterns. The reason being that most typical routers dedicate a set of buffers to their

input and/or output ports and these buffers can only be exploited by data-flows

using them. This leads to performance degradation since only a fraction of the total

buffering resource are available for use.

In order to improve network performance, router architectures capable of max-

imizing the use of buffering resource are necessary. Router architectures capable of

sharing the buffering resources in the router for performance gains are particularly

of interest. Such routers decouple the buffers from a specific port, thus allowing

several ports to share the router buffers.

Unlike most typical shared buffer routers, roundabout or ring-like inspired router

architectures are attractive because they provide intrinsic resource sharing, which

improves network performance and reduces design complexity. An example is the

Rotary router [2] which consists of dual-rings shared by multiple input ports. How-

ever, such routers are susceptible to deadlocks due to their ring-like or cyclic archi-

tecture. In order to avoid deadlocks, the Rotary router used a combined virtual-

cut-through and bubble flow-control known as (local-bubble-scheme), where at least an

empty packet-sized buffer is maintained in the ring for achieving deadlock-freeness.

This introduces additional area/power overhead (associated with large buffers), and

also incur higher packet injection latency. Therefore, roundabout-inspired routers

capable of providing performance improvement without compromising area and

power consumption are attractive.

1.4 Thesis objectives and contributions

The main goal of this thesis is to design a novel scalable, high performance and

power efficient on-chip interconnect network, named Roundabout NoC (R-NoC), for

systems with many intellectual property cores.

Objective 1 The first objective of this thesis is to answer the following questions:

How to maximize NoC resource utilization for improving network perfor-

mance, without introducing significant area/power overheads? How to re-

solve issues such as deadlocks associated with resource sharing without com-

promising area and power?

In order to meet Objective 1, a NoC router architecture inspired by real-life multi-

lane traffic roundabouts is considered. This router is called R-NoC router and serves

1.4. Thesis objectives and contributions 7

as the initial or base router architecture. As stated earlier, roundabout-inspired

router architectures are particularly attractive as they provide intrinsic and effec-

tive resource sharing for enhancing network performance. However, such architec-

tures are deadlock-prone. In order to avoid such deadlocks, an algorithm capable of

generating deadlock-free R-NoC router configurations is proposed. The main contri-

bution here lies in realizing a novel roundabout-inspired router architecture offering

performance improvements over typical input buffered routers and without com-

promising area and power consumption. This work differs from Rotary [2], which is

a similar roundabout-inspired router that provides network performance improve-

ment but also introduces significant area and power overheads associated with the

flow-control utilized for deadlock-avoidance. This work is supported by the follow-

ing publications:

• [36]: Charles Effiong, Gilles Sassatelli, Abdoulaye Gamatie. Scalable and Power-

Efficient Implementation of an Asynchronous Router with Buffer Sharing. In

Euromicro Conference on Digital System Design (DSD 2017), Vienna, Austria, Septem-

ber 2017.

• [35]: Charles Effiong, Gilles Sassatelli, Abdoulaye Gamatie. Roundabout: a

Network-on-Chip Router with Adaptive Buffer Sharing. In IEEE International

NEW Circuits And Systems (NEWCAS 2017), Strasbourg, France, June 2017.

Objective 2 The second objective of this thesis is to explore alternative ways of

improving the performance of base R-NoC without area/power degradation.

In order to achieve Objective 2, the impact of introducing additional buffers and

using additional lanes on performance and area is first investigated. The evaluation

shows that network performance can be significantly improved through the use of

additional buffers in the router. However, further investigations reveal that the per-

formance improvements come with an additional area cost associated with buffers.

The main contribution here is in exploiting the highly-adaptive R-NoC topology in

order to produce router configurations offering varying topological trade-offs for

significantly improving network performance without sacrificing area. This work is

supported by the following publication:

• [34]: Charles Effiong, Gilles Sassatelli, Abdoulaye Gamatie. Distributed and

Dynamic Shared-Buffer Router for High-Performance Interconnect. In The In-

ternational Symposium on Networks-on-Chip (NOCS), Seoul, South Korea, Octo-

ber 2017.

Objective 3 The third objective of this thesis is to answer the following question:

8 Chapter 1. Introduction

Can the R-NoC router architecture be extended to other network topologies for

further performance improvements without introducing significant area/power

overheads compared to typical input buffered routers?

For this purpose, additional ports are added to the initial R-NoC router config-

uration in order to realize varying router configurations for various topologies. Al-

though several network topologies can be supported, this thesis considers R-NoC for

diagonally-linked mesh network topology, named R-NoC-D. Compared to typical in-

put buffer router, R-NoC-D routers achieve significant performance improvements

without significantly impacting area and power overhead. This is made possible by

exploiting R-NoC highly-adaptive topology.

1.5 Thesis organization

The remainder of this thesis is organized as follows:

• Chapter 2 gives an overview of Networks-on-Chip (NoCs) concepts in terms

of topology, flow-control, switching and routing. It then discusses the problem

of resource underutilization in NoCs, which motivates the need for resource

sharing. Challenges such as deadlocks and design complexity to realizing

deadlock-free NoC router architectures are also covered. The motivation for

router architectures with inherent resource sharing and desirable mechanisms

are presented in this chapter.

• Chapter 3 provides an exhaustive review of existing NoC such as buffered,

bufferless, minimum buffers (i.e. min-buffered routers), shared buffers and

roundabout-inspired architectures. The analysis of state-of-the-art deadlock-free

flow-control techniques such as dateline, local bubble scheme, flit-bubble flow-

control is covered in this chapter.

• Chapter 4 presents the general principles of the proposed R-NoC router. It be-

gins with presenting the benefits of the approach, after which the operation of

the initial/base topology is presented. The deadlock problem in the base topol-

ogy is identified. Then, an algorithm to generate deadlock-free R-NoC router

configurations is presented. Finally, the algorithm is then applied to realizing

deadlock free R-NoC router configuration for different network approaches.

• Chapter 5 presents the synchronous elastic and asynchronous based imple-

mentations of R-NoC. The chapter ends with a discussion on both implemen-

tation styles.

• Chapter 6 presents the synchronous and asynchronous evaluation of the base-

line R-NoC. The chapter also evaluates further synchronous and asynchronous

1.5. Thesis organization 9

R-NoC topologies. It ends with a quantitative comparison of both versions (i.e.

synchronous and asynchronous).

• Chapter 7 presents the evaluation of R-NoC for the Diagonally-linked mesh

network topology (i.e. R-NoC-D). A quantitative comparison of the considered

topologies is carried out in the chapter.

• Chapter 8 provides a global discussion on all presented results and gives fu-

ture research directions.

11

Chapter 2

Networks-on-Chip (NoCs) design

12 Chapter 2. Networks-on-Chip (NoCs) design

«"Don’t be afraid to give up the good to go

for the great."»

John D. Rockefeller

Contents

2.1 General introduction to NoCs . 12

2.1.1 Routing . 13

2.1.2 Flow-control . 15

2.1.3 Buffer management . 19

2.1.4 Router pipeline . 21

2.1.5 Network traffic and Performance metric 22

2.2 Networks-on-Chip (NoCs) design challenges 23

2.2.1 Power consumption . 23

2.2.2 Quality-of-Service . 24

2.2.3 Latency . 24

2.2.4 Synchronization . 25

2.2.5 Traffic Variability and Network topology 25

2.3 Resource sharing in NoCs . 26

2.3.1 Underutilization of NoC resources 26

2.3.2 Benefits of resource sharing in NoCs 27

2.3.3 Some resource sharing challenges 28

2.3.4 Motivation for roundabout-inspired router in NoCs 30

2.3.5 Desirable design mechanisms 32

2.4 Summary . 32

2.1 General introduction to NoCs

Compared to traditional bus and crossbar interconnects, Network-on-Chip (NoC)

is the most suitable interconnect for manycores system as discussed in Chapter 1.

NoC provides enhanced scalability, uses shorter wires, which help to reduce the

overall total-wire length in the chip (thereby reducing wire delays), and supports

the distributed nature of modern chip architecture. This section discusses some of

the factors that influence NoC performance.

NoC consists of routers interconnected by data-links. Routers play a key role of

routing packets from source to destination nodes in the network, while the links are

sets of wires that connect the routers together. The manner in which the routers are

arranged in the network is governed by the topology. Popular topologies include

mesh, torus, and ring. NoC topologies are often represented by a graph G(N, C),

2.1. General introduction to NoCs 13

where N is the set of routers and C specifies the sets of communication channels.

The network topology significantly affects the overall network performance (since

it determines the number of intermediate routers i.e. hops from source to destina-

tion nodes. Longer route means more latency and energy consumption), reliability

(since it specifies the number of alternative paths for avoiding faults or network con-

tention) and cost (number of routers affect area/power cost) [24, 29].

Allocator

Route computation

Input buffers

Input buffers
Crossbar

Output 0

Output 4

.

.

.

Input 0
.

.

.
Input 4

R

Core

R

R

Core

Core

R

Core

R

R

Core

Core

R

Core

R

R

Core

Core

R RouterCore IP core Link

FIGURE 2.1: Mesh topology with input buffered router architecture

Fig. 2.1 shows mesh network work topology and typical input buffered router

architecture such as the Hermes router [74]. The router consists of 5 input/output

ports i.e. west, south, east, north and local. The local port connects the router to

the local core via a network interface, while other ports connect to neighbouring

routers. The input buffers are used to store data that cannot proceed to their desired

output port due to network contentions. The router employs several strategies (such

as routing, switching) in order to route data. These strategies are discussed next.

2.1.1 Routing

When data enters the router, the router needs to decide which of the output ports

to forward the data. This decision is based on the routing algorithm implemented

in the router. The goal of the routing algorithm is to ensure even distribution of

the network traffic so as to avoid hotspot regions in the network and also to reduce

network contentions, thus enhancing network performance [29]. Routing algorithm

can be classified into two i.e. dimension-ordered (DOR) and adaptive routing. In

DOR, the paths taken by data is fixed, so data always take the same paths regardless

of the network conditions (i.e. it is deterministic in behaviour). Example of DOR

is the XY routing, which is commonly used in Mesh network topology. In XY rout-

ing, data is first routed in the X-dimension (if the destination node X-dimension is not

equal to that of the current node. Otherwise, its takes the Y-dimension to the destina-

tion), then the data is routed along the Y-dimension to the destination node. [12, 24,

29]. XY routing is illustrated in Fig. 2.2a. Deterministic routings are very simple to

14 Chapter 2. Networks-on-Chip (NoCs) design

implement and use less routing area resource [89]. However, they suffer from per-

formance loss when network contention is high since data cannot take alternative

paths to their desired destination.

(A) Deterministic routing (B) Adaptive routing

FIGURE 2.2: Deterministic vs. Adaptive routing

Conversely, data are allowed to take alternative paths to their destinations in

adaptive routing. This provides reliability since alternative paths can be utilized to

avoid faults or network congestions. Fig. 2.2b shows an example of adaptive rout-

ing. This often requires some monitoring of channels and/or buffers to determine

when to re-route data. Adaptive routing is more complex to implement compared to

deterministic routing. Also, additional care needs to be taken to avoid deadlock, live-

lock, and starvation of data. Deadlock occurs when data cannot progress because they

are occupying network resources and requesting for resources occupied by other

data. Thus, forming a cycle of dependencies as shown in Fig. 2.3, where the packet

cannot advance to their desired destination.

P0

P1
P2

P3
PLow

PHigh

Starve

Deadlock Starvation

FIGURE 2.3: Deadlock and starvation scenario

Mechanisms such as dropping and re-transmitting data can help avoid dead-

locks. However, this introduce additional design complexity and incurs latency

overhead. Livelock is a special kind of deadlock where a data keeps traversing the

network without ever reaching its destination. In order to avoid livelock, data can

be removed from the network after a period of time. An alternative approach would

be to revert to deterministic routing after a certain period of time, which will ensure

that data will get to their destination. Starvation occurs when data with low priority

2.1. General introduction to NoCs 15

are denied of network resources because higher priority data are always utilizing the

resources [89]. This is illustrated in Fig. 2.3, a where low priority packet is denied

access to resources because of a high priority packet. Implementing mechanisms to

avoid these adverse effects introduce additional complexity and area [89]. Routing

algorithms can also be classified as source routing and destination tag routing [89].

In source routing, the sender determines all the paths the packet will follow to its

destination. This information is typically stored in the packet header. Intermedi-

ate nodes read the information and forwards the packet accordingly. Conversely, in

destination-tag routing, the packet only carries the routing address. The intermedi-

ate nodes take routing decisions, which allows for alternative paths to be used as

opposed to source routing.

2.1.2 Flow-control

Flow-control determines the manner in which network resources are allocated. Be-

fore discussing the various flow-control it is important to introduce the concept of

message, packets and flits. A message is the actual data to be transmitted from a source

to a destination core. A message is usually broken-down into packets. Each packet

has header information used for reconstructing the initial message at the receiving

end. Packets belonging to a message can be routed differently to the destination.

A packet may be further broken into smaller units known as flit (i.e. flow-control

units). Flits of a packet typically follow each other in a chain-like fashion.

Bufferless flow-control

In bufferless flow-control (also known as bufferless routing), flits that cannot imme-

diately advance to their desired output ports are either dropped and re-transmitted

or deflected to an available output port (as shown in Fig. 2.4) since there are no

buffers in the router to temporarily store packets [75]. This leads to significant area

and power savings since buffers are eliminated. However, it results to additional

energy consumption and higher packet latency at high traffic injection rates due to

increase in packet deflections that unnecessarily consumes link bandwidth [75, 101].

Go east

Go east

Deflected

FIGURE 2.4: Bufferless flow-control

16 Chapter 2. Networks-on-Chip (NoCs) design

Circuit switching

Circuit switching is a connection-oriented flow-control, meaning a connection (i.e. cir-

cuit) is first established between a source and destination nodes before actual data

transfer takes place. Circuit switching is used for providing guaranteed services

where system predictability is required. As an example, circuit switching is used in

the Æthereal NoC [90] to provided guaranteed packet throughput. Circuit switching

provides contention free data-transfer since a network path is completely isolated.

However, it leads to reduced link utilization since the same link cannot be used by

multiple flows. In addition, it incurs the overhead of setting-up and tearing-down

circuits.

Store-and-forward

In store-and-forward flow-control, the router waits until an entire packet is received

before transmitting the packet to the next node. Hence, resource (buffers and chan-

nels) are allocated to an entire packet. This leads to higher per-packet latency, which

makes it unsuitable for delay-critical on-chip networks [12]. Also, store-and-forward

requires large buffers (capable of storing an entire packet), which leads to additional

area/power overheads associated with large buffers especially with long packets

[75].

Virtual-cut-through (VCT)

In order to reduce the delay associated with store-and-forward, VCT flow-control

was proposed. Unlike store-and-forward, VCT transmits packets without waiting

for the arrival of the entire packet. Thus, per-packet latency is drastically reduced.

However, a packet is still transmitted if there exist enough storage to hold the entire

packet (i.e. buffers and channels are allocated to an entire packet), which also leads

to area overhead and power consumption associated with buffers [24].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Cycle

Store and

forward

Cut-through

H B B B T
H B B B T

H B B B T

Node 0

Node 1

Node 2

H B B B T
H B B B T

H B B B T

Node 0

Node 1

Node 2

FIGURE 2.5: Store-and-forward vs Cut-through flow-control

2.1. General introduction to NoCs 17

Fig. 2.5 illustrate packet transmission for store-and-forward and cut-through

flow-controls for 14 clock cycles. Store-and-forward incurs significant delay since

an entire packet must be received before the packet is transmitted. Contrary, to

store-and-forward, cut-through incurs much lower latency since packet transmis-

sion occurs before the entire packet is received.

Store and

forward

Cut-through

Wormhole

Advanced when entire packet is buffered +

packet length free flit buffer at next node

Can advance when packet length

free flit buffers at next node

Can advance if at least one

flit buffer is available

FIGURE 2.6: Store-and-forward, cut-through and wormhole flow-
control

Wormhole

In order to reduce the area/power overheads associated with VCT flow-control,

wormhole flow-control was proposed. In wormhole flow-control, packets are broken

down into flits. Thus, buffers are allocated not to an entire packet, but to individual

flits as illustrated in Fig. 2.6. Thus, the number of buffers required in the network

is drastically reduce compared to VCT. The head-flit carries the routing information,

while other flits follow the head-flit in sequence. If the head-flit is blocked, the other

flits stop. Wormhole provides lower latency and allows for better buffer utilization.

However, it suffers from head-on-line (HOL) blocking, which leads to poor link band-

width utilization and reduced packet throughput.

Fig. 2.7a shows an example of HOL blocking in wormhole network. A packet B

using north output of node 1 cannot advance because no free buffer is available at the

receiving end. Packet A destined for node 2 is blocked even though the links between

nodes 1, 2 and 3 are free. Thus, packet A needs to wait until packet B is completely

transmitted.

18 Chapter 2. Networks-on-Chip (NoCs) design

A
Idle Idle

Node 0 Node 1 Node 2

B

B

Node 0

A

B

Node 1

A

Node 2

A

B

(A) Head-on-line blocking in wormhole

A
Idle Idle

Node 0 Node 1 Node 2

B

B

Node 0

A

B

Node 1

A

Node 2

A

B

(B) Avoiding head-on-line block using virtual-channels

FIGURE 2.7: Wormhole versus virtual-channel flow-control

Virtual channel (VC)

In order to overcome HOL blocking in wormhole flow-control, the physical links (or

channels) can be multiplex to 2 or more virtual-channels [23]. As shown in Fig. 2.7b,

the input buffers in the router consist of multiple buffers sharing a single physical

channel. Thus, packet A can still utilize the network links even though packet B

is blocked. This leads to improved link usage. VC can also be used for deadlock

avoidance. This is achieved by switching to different sets of virtual channels on

some turns in order to break possible cyclic dependencies. As an example, VC is

used to avoid cyclic dependency in networks using Dateline. In Dateline, each node

has two virtual channels i.e. low and high. Packet switches from low to high VC when

they pass certain point (i.e. the dateline) in order to avoid cyclic-dependencies in the

network [24]. VC can also be used to prioritize traffic. As an example, a set of VC is

dedicated to guaranteed throughput traffic while others are dedicated to best effort

traffic in the MANGO NoC router [13] (see Fig. 3.6). Table 2.1 provides a summary

of the flow-control discussed.

2.1. General introduction to NoCs 19

TABLE 2.1: Flow-control summary

Flow-control Properties Buffer requirement

Bufferless No buffer in router. Packets are deflected

if desired output port is not available

or dropped and retransmitted. Leads to

poorer performance and higher power at

high traffic injection

Lowest

Circuit switching. Connection between source and destina-

tion node is first set up before actual data-

transfer. Leads to poor scalability

High

Store-and-forward Receive entire packet before forwarding.

Poor per-packet throughput

Highest

Virtual-cut-through Can forward part of a packet before

receiving the entire packet if receiving

buffer has enough storage for the entire

packet

High

Wormhole Packets are broken down into smaller

units (i.e. flits). A flit can advance if there

is a flit size storage. Suffers from head-

on-line blocking

Low

Virtual-channels (VC) Multiplex physical channels to multiple

virtual channels. Can provide QoS, avoid

deadlock and Removes HOL blocking

Low

2.1.3 Buffer management

Sender Receiver

Data

Bu�er status

Bu�ers

FIGURE 2.8: Buffer management between communicating nodes

Fig. 2.8 shows two communicating nodes i.e. the upstream node (i.e. the sender)

and downstream node (the receiver). The upstream node needs to know if the down-

stream node has enough storage position to store data before attempting to send

data. The buffer information (i.e. buffer status in Fig. 2.8) of the downstream node

needs to be communicated to the upstream node. This is achieved using some buffer

management mechanisms which are discussed next.

In credit-based buffer management technique, each upstream node keeps a record

of the available buffer positions in the downstream node, typically by means of a

20 Chapter 2. Networks-on-Chip (NoCs) design

Router 0 Router 1

Flit

Credit

Router 0 credit

Router 0 data

Router 1 control

Time (cycles)

CN=3 CN=2 CN=1 CN=0 CN=0 CN=1 CN=1 CN=2

Flit 0 Flit 1 Flit 2 Flit 3 Flit 4 Flit 5

C C C C

Flit 0 Flit 1 Flit 2 Flit 3 Flit 4Router 1 data
1 2 3 4 5 6 7 8

FIGURE 2.9: Credit-based buffer management. CN: credit number

counter (i.e. the credit). The downstream node signals the upstream node to incre-

ment the counter when a buffer is freed. The upstream node decrements the counter

each time its communicates with the downstream node. This leads to significant

signaling of the nodes [24]. Fig. 2.9 shows an example of credit-based buffer man-

agement. In this example, Router 0 (i.e. the upstream node) can keep sending data

as long as Router 1 (i.e. the downstream node) has free buffer slots to receive data

(i.e. credit is not 0).

Router 0 Router 1

Flit

ON/OFF

Flit 0 Flit 1 Flit 2

OFF

Flit 0 Flit 1 Flit 2

ON

Flit 3 Flit 4

Flit 3 Flit 4 Flit 5

Router 0 data

Router 1 control

Router 1 data

Time

FIGURE 2.10: On/Off buffer management

In order to reduce the overhead associated with credit-based buffer management,

the on/off technique was proposed [24]. In this mode, the downstream node keeps

track of its buffering positions. When the number of available buffering positions

reaches a certain threshold, it signals off to the upstream node to stop sending pack-

ets. Similarly, the downstream signals on when it can start receiving packets as

shown in Fig. 2.10. The on/off technique reduces the amount of signaling which

saves power since the router switching activity is reduced. However, it requires

more buffers and can lead to poor buffer utilization [24].

Router architectures that use elastic-buffers (EB) [17, 73] do not have implicit input

buffers. Such routers utilize EBs, which are basically buffers (latches or flip-flop) that

implement elastic FIFOS. Such routers use handshaking protocol to control data-

flows in the router. An example of such protocol is the Ready/Valid handshake which

is similar to asynchronous Req/Ack handshaking protocol [96]. In the Ready/Valid

protocol, the upstream node must have valid data and the downstream node must

2.1. General introduction to NoCs 21

be ready to accept the data before a data-transfer transaction can be successful. This

is extensively covered in Chapter 5.

2.1.4 Router pipeline

An input buffered router typically has four pipeline stages i.e. Route computation

(RC), Virtual-channel allocation (VA), Switch allocation (SA) and Switch traversal (ST),

assuming a router with input virtual channels (VCs) discussed in Subsection 2.1.2.

Fig. 2.11a shows the pipeline stages of a typical input buffered router. The head-flit

goes through all the stages, while the body/tail flits go through only the SA and ST

stages. When the head-flit enters the router, the RC stage is executed to compute

the packet output channel in the current router. The head-flit then competes for VCs

corresponding to the assigned output channel in the VA stage. Since flits from other

VCs shares similar physical channels, a flit must compete for access to the allocated

output physical channel. This is done in the SA stage. Finally, a flit is transmitted to

the next router in the ST stage. Notice that two bubbles are introduced by the header

flit because it performs two more stages as shown in Fig. 2.11a.

Head

Flit

Body/tail flit

RC VA SA ST

Bubble Bubble SA ST

Head

Flit

Body/tail flit

NRC/

VA
SA ST

Bubble SA ST

(A) Typical input virtual-channel router
pipeline

Head

Flit

Body/tail flit

RC VA SA ST

Bubble Bubble SA ST

Head

Flit

Body/tail flit

NRC/

VA
SA ST

Bubble SA ST

(B) Router pipeline with look-ahead routing

Head

Flit

Body/tail flit

NRC/

VA/SA
ST

SA ST

Head

Flit

Body/tail flit

NRC/VA

/SA+ST

SA+ST

(C) Speculative router pipeline (look-ahead
and speculation)

Head

Flit

Body/tail flit

NRC/

VA/SA
ST

SA ST

Head

Flit

Body/tail flit

NRC/VA

/SA+ST

SA+ST

(D) Speculative router pipeline (single
stage/cycle)

FIGURE 2.11: Different types of router pipelines

In order to reduce the number of bubbles introduced by the head-flit and the

router pipeline, look-ahead routing was proposed. In look-ahead routing, the RC

stage of the next router is performed by the current router i.e. one hop in advance.

Thus, reducing the total pipeline to three stages with only a bubble as shown in

Fig. 2.11b [42]. In order to further decrease the router pipeline, speculative routers

performs the VA and SA stages in parallel. This is shown in Fig. 2.11c, where

look-ahead and speculation are combined to reduce the pipeline stages. Speculative

routers partially remove the bubbles introduced by the VA stage. The speculation

might be successful when network contention is low. However, if the VA fails, the

allocated output channels becomes un-utilized. Recent works [46, 21, 91] propose to

follow an aggressive speculation approach shown in Fig. 2.11d, where VA, SA and ST

22 Chapter 2. Networks-on-Chip (NoCs) design

are performed in parallel. Thus, realizing a single-cycle router. However, it can lead

to un-utilized resource and retries in cases of failures.

2.1.5 Network traffic and Performance metric

For the purpose of benchmarking the NoC performance and power consumption

against the literature, this thesis considers both well-known experimental traffics and

also traffic from real-world applications.

Network traffic

NoC traffic can be typically classified as either synthetic or application traffic. Ap-

plication traffics are traces from real-life application workloads. Examples include

telecom, networking and consumer applications from the E3S benchmark suite [27].

On the other hand, synthetic traffics are experimental traffics used for benchmark-

ing the communication architecture and they attempt to mimic real-world applica-

tion traffics. Synthetic traffic can be uniform (also known as regular) or non-uniform

(also known as irregular).

An example of a regular traffic is the random (or also called uniform) traffic pattern,

where each node communicates with every other node with equal sending proba-

bility. An example of irregular traffic pattern is transpose, where each node commu-

nicates with its transpose. As an example, consider a 2x2 mesh network topology

with 4 nodes with (x,y) coordinates [(0, 0), (1, 0), (0, 1), (1, 1)]. Node (0,0) communi-

cates with its transpose i.e. node(1, 1) and vice versa. Hotspot is another example of

an irregular traffic pattern, where all the nodes communicate with one node i.e. the

hotspot node in the network. Irregular traffic pattern creates more network contention

compared to a regular traffic pattern, which creates communication bottleneck in the

network. Techniques such as adaptive routing can help mitigate performance loss

caused by irregular traffic pattern. However, as discussed earlier in this chapter,

adaptive routing is generally more complex to implement [89].

Network performance metrics

Two important performance metrics considered in this thesis are latency and through-

put. Latency is defined as the time lapse between when a packet is to be transmitted

from the source node and received at the destination node. The clock cycles is consid-

ered as the unit of latency for evaluating synchronous networks, while nanoseconds

is considered for evaluating clockless networks. Instead of a single latency, the aver-

age latency of the entire network is normally considered [24]. The latency depends

on network contention and the distance between a source and a destination node.

Hence, high network contention and/or longer distance will produce more latency.

2.2. Networks-on-Chip (NoCs) design challenges 23

A
v
e
ra

g
e
 l
a
te

n
c
y

 (
c
lo

c
k
 c

y
c
le

s
)

Offered Traffic (bits/sec)

Saturation

throughput

Zero-load

latency

FIGURE 2.12: Latency vs. offered traffic in networks

Fig. 2.12 shows the latency vs. offered load (also called injection rates) of an intercon-

nect network. The zero-load latency is the optimal delay of the network, where the

source nodes communicate with the destination nodes without any contention. The

offered throughput (also refers to as offered traffic or offered load) refers to the amount of

traffic sent to the network per unit time. As the nodes keep injecting traffic into the

network, it reaches a saturation throughput, which defines the maximum amount of

traffic that can be sustained by the network [24].

2.2 Networks-on-Chip (NoCs) design challenges

As stated in Chapter 1, although NoC has become the pervasive on-chip interconnect

for manycores systems, there exist numerous challenges with its design. This section

provides a more detail description of some of the challenges facing NoC designs.

2.2.1 Power consumption

Power consumption is one of the biggest challenges facing today’s NoC intercon-

nect. Today’s NoC consumes a significant portion of the total system power. The

NoC consumes 28% of the total chip power in the Intel Terascale 80-chip chip [48],

36% for MIT RAW [98] and 10% in the Intel 48-core SCC chip [14]. Current power

management techniques such as clock-gating or sleep-states incur wake-up latency,

which leads to performance loss [15]. Since a large percentage of the total power con-

sumption is associated with NoC router buffers, techniques to remove router buffers

in order to save power exist. However, they often lead to higher energy consump-

tion and performance degradation under high traffic. Thus, techniques to reduce

power consumed by NoC without compromising performance are desirable [75].

24 Chapter 2. Networks-on-Chip (NoCs) design

2.2.2 Quality-of-Service

Quality-of-Service (QoS) is an important aspect of NoC design. QoS generally refers

to proving system predictability or service guarantees. Generally, NoC provides two

main service types: guaranteed services (GS) and best-effort (BE). Thus the traffic in

NoCs can either be one of the two types. Providing GS in NoC typically requires con-

nection establishment (core-to-core resource reservation) before actual data transfer

i.e. connection oriented. As stated earlier, circuit switching is a common way of

providing QoS in NoC, where a connection is first set up between source and des-

tination nodes before actual data-transfer takes place. As discussed in Chapter 1,

circuit switching leads to poor scalability since router area growth is proportional

to the number of required connections [69], and also additional latency in manag-

ing circuits. Virtual-channels (VCs) have been use to provide QoS support in NoCs.

This is normally achieved through allocating priority to the physical channel band-

width. As an example, a set of VC is dedicated to guaranteed throughput traffic

while others are dedicated to best effort traffic in the MANGO NoC router [13] (see

Fig. 3.6). Most NoCs provide only BE service as they only ensure communication

without any performance guarantees. Also, BE NoCs are generally simpler to im-

plement compared to GS NoCs. However, GS service is vital for application with

strict constraints. Examples includes hard real-time in automotive and space control

systems where deadlines need to be met. Most NoC combines both GS and BE traffic

which in many cases requires separate logic to handle both traffic types. This leads

to increase in NoC design complexity. Thus, techniques for providing QoS without

latency and design complexity is an important goal in NoC design [79].

2.2.3 Latency

NoC is required to provide low latency under-stringent power, area and delay con-

straints. Therefore, minimizing delay is a crucial aspect of NoC design, especially

for cache coherence traffic where the NoC is expected to provide faster remote data

read in cases of cache miss. A typical NoC router has a 4 or 5 stages pipeline which

incurs higher latency. Techniques such as speculation have been proposed to reduce

the pipeline to 1 or 2 stages. However, more study is still required to improve the

accuracy and efficiency of such design techniques [79]. As stated earlier, NoC pro-

vides alternative paths between a source and destination IP. Thus, data can be routed

using alternative paths when congestion increases, which help reduce data latency.

However, data may be delivered in a different order in which they are sent (i.e. out-

of-data delivery. Out-of-order delivery often requires large buffers at the receiving

end for buffering and re-arranging data. This, in turn, leads to performance loss and

2.2. Networks-on-Chip (NoCs) design challenges 25

introduces additional area/power overhead associated with buffers. This limits the

use of adaptive routing in NoCs [79].

2.2.4 Synchronization

Globally Asynchronous Locally Synchronous (GALS) paradigm allows synchronous

cores to communicate asynchronously. GALS has become the default design style

due to difficulty in distributing a single synchronized high frequency clocks chip-

wide in purely synchronous systems [107]. GALS is suited for power optimization

technique such as DVFS [107]. It allows heterogeneous cores to operate at their maxi-

mum potential, instead of constraining all the cores to operate at a specific frequency.

GALS paradigm prevents cores with low frequency from slowing down cores capa-

ble of operating at a higher frequency. Synchronous NoCs, with each router operat-

ing at a different clock frequency, has been proposed for GALS. In order to ensure

the correct operation of the system, data crossing different clock domains need to be

synchronized. Hence, the need for synchronization interfaces between the routers

themselves and the IP cores. Synchronization interfaces incur additional area, power

and latency overhead. In order to reduce the overhead, asynchronous NoCs has been

proposed for GALS. Asynchronous NoCs reduce the number of synchronization in-

terfaces to only the interface between each router and its local IP core. However,

asynchronous NoCs incur large area-overhead and design complexity compared to

synchronously designed NoCs. Although, several proposals for synchronization in-

terface such as asynchronous FIFOs [56], bi-synchronous FIFOs [82] exist, further

research is still needed to provide more power efficient and low latency interfaces.

2.2.5 Traffic Variability and Network topology

Different types of traffics can be delivered from different applications or from differ-

ent phases of the same application. The traffic types can include messages that differ

in length, types (data, synchronization), patterns (uniform, non-uniform) and injec-

tion rates (steady or bursty) [79]. Designing NoC to cope with the different types of

traffic is certainly an import consideration in NoC design. The challenging aspect

is in devising NoC router architectures that provide supports for some or all of the

traffic types without compromising efficiency in terms of power/performance [79].

Network topology determines how the nodes are connected in the network. Al-

though several NoC topologies exist in the literature, only very few have been im-

plemented in manufactured chips. For example, Intel Xeon Phi series [88] uses ring

topology. NoC topology affects performance, hence careful consideration needs to

be given to select a suitable topology depending on the application. Authors in [37]

26 Chapter 2. Networks-on-Chip (NoCs) design

studied the impacts of NoC topologies on MPEG4 video application. Further inves-

tigation is needed to determine suitable NoC topology for heterogeneous systems

capable of running different applications.

2.3 Resource sharing in NoCs

This section identifies the problem of buffer underutilization, which leads to per-

formance degradation in NoCs. The benefits and challenges of resource sharing is

presented. The section ends with a discussion on inherent resource sharing in NoCs

and proposes some desirable mechanisms for inherent resource sharing.

2.3.1 Underutilization of NoC resources

As stated earlier, an input buffered router is composed of input and/or output

buffers which are used to temporarily store packets that cannot advance to their

desired output ports due to network contentions. Storing packet in buffers is ben-

eficial as it ensures that the network links bandwidth are available for use by other

packets. On the other hand, studies have shown that buffers are the most expensive

router resource in terms of area/power overheads [102, 38, 101].

Although buffers are very expensive, studies have shown that they are often

unutilized (i.e. idle or underutilized) especially when executing applications with

non-uniform traffic pattern and/or bursty behaviours. The reason being that typical

input buffered routers allocate a set of buffers to their input and/or output ports and

these buffers can only be exploited by data-flows using the ports. Unutilized buffers

lead to significant network performance degradation [102, 101].

The buffer activities were recorded when simulating an 8x8 mesh network topol-

ogy (consisting of typical input buffered routers), for uniform, and non-uniform (trans-

pose and bit-compliment) traffic patterns for 30,000 clock cycles [102]. It was observed

that for uniform traffic pattern, only about 10% of the total buffers in the network

were always empty. Hence, most buffers are utilized for uniform traffic pattern.

On the other hand, it was observed that 47.5% and 45% of the total buffers in the

network were always idle for transpose and bit-compliment traffic patterns respec-

tively [102]. Thus, leading to poor performance especially for applications with non-

uniform patterns or bursty behaviours.

2.3. Resource sharing in NoCs 27

(A) Conventional 2D mesh (B) Concentrated mesh with C = 8

FIGURE 2.13: 64-node on-chip network using (a) 2D mesh and (b)
concentrated mesh. C: concentration

2.3.2 Benefits of resource sharing in NoCs

Area and power reduction

Network resources can be shared in order to exploit their utilization for improving

overall network performance and/or to reduce area overhead and power consump-

tion. Resource sharing can be applied at different granularity level. One possibility is

to share the routers and channels among several processing cores, in order to reduce

the cost of an on-chip network. An example is the so-called concentration networks [58,

93], which has been used to drastically reduce the cost of an on-chip network. As an

example of area reduction using a concentration network, consider an N-node mesh

network topology. This network requires N routers since each router is attached to a

core. The network can be concentrated to reduce as much as possible the area over-

head associated with routers in the network. A concentration of 8 will drastically

reduce the number of routers to N/8 [60] as shown in Fig. 2.13. Similarly, the X-

Mesh network, where each router is connected to four cores for area reduction and

performance gain, has been proposed [93, 105].

Performance improvement

P0

P2

P1 P3

P4

Typical input bu�ered router Shared-bu�ered router

Empty bu�er Occupied bu�ers

FIGURE 2.14: Typical input buffered vs shared-buffered routers

Contrary to concentration networks which mainly target area/power reductions,

the buffers in the routers can be shared for improving network performance in terms

of network saturation throughput. This is the case in shared-buffer routers, where the

28 Chapter 2. Networks-on-Chip (NoCs) design

router buffers are shared by multiple input ports. Fig. 2.14 shows cases of data-flow

in typical input buffered (without resource sharing) and shared-buffered routers. As

illustrated in Fig. 2.14, 3 packets (2 at the south input port and 1 at the east input

port) are waiting to be injected in the router. The packets cannot be injected because

the receiving buffer storage is full although other buffers are idle. The packets wait

until there is room at the receiving buffer before they can be injected into the router.

However, for the case of shared-buffered router, the idle buffers can be utilized for

performance gain.

FIGURE 2.15: % of idle buffers for different traffic patterns [102]

Fig. 2.15 compares the percentage of idle buffers for different traffic patterns

in typical input buffered router (i.e. wormhole in Fig. 2.15) and different versions

of a similar shared buffered routers (i.e. DLABS [102]). It is observed that shared-

buffered routers drastically reduce the number of idle buffers in the router for all

the considered traffic patterns. In terms of performance DLABS [102] reported net-

work performance improvement of 4%, 26% and 64% over typical input buffered

router for uniform, transpose and bit-comp traffic patterns respectively. As dis-

cussed in Subsection 2.1.1, typical input buffered router shares the router link band-

width among several routers. However, head-on-line blocking result in wormhole

networks, which leads to link underutilization and poor performance. In order to

maximize link usage, virtual channels (VC) flow-control was proposed. VC ensures

idle network-links are utilized, which brings improved performance over worm-

hole.

2.3.3 Some resource sharing challenges

Although sharing network resources brings a number of benefits, implementing

such networks is often challenging compared to network without resource sharing.

This section discusses two key challenges with resource sharing, which motivates

some of the contributions in this thesis.

Deadlock freeness/avoidance

One of the main challenges with designing communication architecture with shared

resources is deadlock-freeness. This is because resource sharing often introduces

2.3. Resource sharing in NoCs 29

cyclic-dependencies, which can lead to deadlock [31, 24]. Although, roundabout-

inspired routers such as Rotary [2] provides inherent resource utilization for improv-

ing network performance, the deadlock problem is exacerbated in such routers due

to their ring-like topology. Deadlocks can typically be avoided using either VCT-

based or wormhole based flow-control techniques. Existing VCT based techniques

[24, 18, 20] introduce additional area/power overhead and higher packet injection

latency. On the other hand, existing wormhole based techniques [19, 66] reduces

the router area overhead but also lead to higher packet injection latency, places a re-

striction on the number of input buffers and often introduce additional design com-

plexity compared to true wormhole flow-control. The different deadlock-avoidance

techniques are covered in greater depth in Chapter 3

Design complexity

Designing NoCs with resource sharing often introduce additional design complex-

ities particularly in the NoC router architecture. These complexities can, in turn,

introduce additional area/power and/or performance overheads.

FIGURE 2.16: RoShaQ [101] router microarchitecture

The RoShaQ [101] is a router architecture with shared-queues located between the

input and output router ports as shown in 2.16. The shared-queues can be exploited

by packets from several router input ports. Roshaq provides performance improve-

ments over typical input buffered routers, especially for non-uniform traffic pattern.

However, contrary to typical input buffer architecture, Roshaq is more complex. It

requires one additional crossbar that is used to control access to the output port

from the shared queues. The additional crossbar introduces additional area/power

overhead compared to typical input buffer router. In addition, router pipeline in-

curs three additional clock-cycles in cases of heavy load. Authors [95] proposed a

distributed router with shared output queue, which offers improved network sat-

uration threshold compared to typical input buffer router. However, similar to the

30 Chapter 2. Networks-on-Chip (NoCs) design

Roshaq, this router also needs two crossbars, which leads to increase area and power

overheads.

Router architectures capable of sharing the input port buffers among several

buffers have been proposed [44, 61]. These routers avoid the area and power over-

head associated with an additional crossbar and arbitration complexity by using

adaptive routing [44] or by sharing buffers between two neighbouring input ports

[61]. In any case, these router requires additional control logic to implement the rout-

ing and/or for allocating idle buffers to incoming packets, which incurs additional

area and power overheads.

As stated earlier, concentration networks drastically reduce the network area and

power overhead since the number of routers in the network are reduced. However,

they can lead to additional complexity (bigger crossbars, allocators) due to addi-

tional ports required to implement concentration. In addition, increasing number of

ports can lead to higher contention which can reduce network performance [60, 93].

2.3.4 Motivation for roundabout-inspired router in NoCs

FIGURE 2.17: Data-flows in a generic roundabout-inspired router

Among the possible router architectures supporting resource sharing, roundabout-

inspired or ring architectures are regarded as promising. The reason being that they

do not rely on costly crossbars (that increases with additional ports) and use decen-

tralized arbitration which allows for higher data-rates. Such routers are based on

the principles of real-life traffic roundabout, where arbitration/control is done by

cars (e.g. drivers or packets in NoC terms) and not a centralized unit (traffic light or

crossbar control in NoC terms) as illustrated in Fig. 2.17. Such router architectures

provides inherent resource sharing, which allows the available buffering resources

to be better exploited for performance gains. They consist of lanes or rings that are

shared by multiple input ports for improved router resource utilization as shown

conceptually in Fig. 2.17.

2.3. Resource sharing in NoCs 31

(A) Typical shared buffer router (B) Roundabout-inspired router

FIGURE 2.18: Data-flows in typical shared buffer and Roundabout-
inspired router architectures. Shaded box: buffers

Improved network performance

Typical shared-buffer routers allow data-flows to utilize alternative idle buffers (of

other input ports) if their desired input port buffer is full. This brings performance

improvement in cases of non-uniform traffic, where network contention is high.

However, it can lead to buffer underutilization especially in cases of light network

load (i.e. little or no network contentions) and/or few input ports receiving data-

flows. Fig. 2.18 shows a scenario where the network load is light and only two in-

put ports are receiving data-flows. It is observed that idle buffers exist in the router.

Utilizing those idle buffers can help improve packet throughput. Contrary to typical

shared-buffer routers, the network resources are always shared, leading to improved

packet throughput in roundabout-inspired routers. This is illustrated in Fig. 2.18b,

where the router buffering resources are well utilized for improving network perfor-

mance. Thus, roundabout-inspired routers provide better buffer resource usage for

improving network performance under varying traffic characteristics.

Enhanced scalability

In terms of scalability (i.e. introducing additional ports in the router), roundabout-

inspired router provides enhanced scalability due to its distributed architecture. The

distributed nature allows for additional ports to be added without an increase in

arbitration complexity and significant area and power overheads since it does not

use implicit crossbar(s) and input buffers. Most typical shared buffer routers use

a centralized architecture with one [61, 91] or two [95, 101] crossbars, which intro-

duce arbitration complexity with increasing number of ports. Additional ports also

introduce additional area/power overhead since typical crossbar cost grows as a

square of input and output ports count [71]. Roundabout-inspired router architec-

ture allows for higher data-rates since output port arbitration is localized contrary

to centralized arbitration used in most typical shared-buffer routers.

32 Chapter 2. Networks-on-Chip (NoCs) design

2.3.5 Desirable design mechanisms

An example of a roundabout-inspired router is the Rotary [2], which consists of two

rings that are shared by all the input ports, thereby providing enhanced resource uti-

lization compared to typical shared-buffered routers. As stated earlier, roundabout-

inspired routers are deadlock-prone due to their ring-like architectures which in-

troduce cyclic dependencies among shared resource. In order to avoid deadlock, the

Rotary [2] router utilizes a combined VCT and bubble flow-control. Although this al-

lows for deadlock-free data-flow, it introduces significant area and power overhead

associated with VCT since buffer allocation is carried out at packet-level. Also, a

packet can only advance if there’s enough buffer storage for the entire packet, which

leads to higher in-transit packet latency. The bubble flow-control requires two empty

packet-sized buffers before injecting packet. This can lead to higher per-packet in-

jection latency since a packet injection into the ring is delayed until the minimum

free-buffer requirement is met.

As stated earlier, the Rotary router [2] uses combined VCT and bubble flow-

control (i.e. local bubble scheme), which leads to poor buffer utilization especially

for cache-coherent traffics. The reason being that the majority of such traffics are

short packets (typically single flit packet). The implication is that short packets must

also be regarded as long packets (for coping with variable sized packets). This, in

turn, leads to poor buffer utilization [3]. The Rotary router [2] allows packets to

make multiple turns in the ring (if the desired output is not available) before forcing

the packet to use any available output port. This can lead to significant dynamic

power consumption especially under high traffic injection rates.

In order to reduce the area/power overheads associated with VCT/bubble, router

architectures using flit-based flow-controls such as wormhole and virtual-channels

are desired. The reason being that such flow-controls use fewer buffers since buffers

are allocated to flits instead of packets. This, in turn, leads to low injection and

in-transit packet latency. In addition, such flow-controls lead to better buffer utiliza-

tion for traffics, where the majority of packets are short. In order to further reduce

dynamic power consumption, roundabout-inspired architecture should reduce the

number of turns made by packets in the ring.

2.4 Summary

It is widely admitted that NoC provides better scalability and faster data-transfer

compared to traditional bus/crossbar interconnects. Therefore, it is more suitable

for multi/manycore computing systems. Sharing network resources leads to im-

proved resource utilization, which brings about performance, area/power benefits.

2.4. Summary 33

However, networks with resource sharing are more prone to deadlocks and are more

complex to design.

NoC routers can be shared among several IP cores, which leads to a significant

area and power reduction since the total number of routers required in the network

is drastically reduced. However, it can lead to performance loss due to increase in

network contentions. In addition, sharing routers among several cores introduces

additional design complexity in terms of crossbar cost.

In order to reduce performance loss, routers buffers can be shared among sev-

eral input ports. This leads to performance improvement but can also introduce

additional arbitration complexity and crossbar cost. Roundabout inspired routers

are particularly attractive as they provide inherent resource sharing. They are how-

ever prone to deadlocks due to their ring-like architectures. An existing work [2] uses

combined VCT/bubble flow-control to avoid deadlock. This, in turn, introduces ad-

ditional power/area overheads since VCT requires large buffers. In addition, it can

lead to higher packet injection latency.

In order to reduce area/power cost and reduce packet injection latency, worm-

hole flow-control is suitable for a roundabout-inspired router. However, it is even

more challenging to realize roundabout-inspired router architecture using worm-

hole since wormhole creates additional resource dependencies. One of the major

goals of this thesis is to research novel router architecture that removes the limita-

tions of existing solutions.

35

Chapter 3

State of the art in NoC routers

36 Chapter 3. State of the art in NoC routers

«"Success is when opportunity meets

preparation."»

Anon

Contents

3.1 Introduction . 36

3.2 Input buffered NoC routers . 38

3.2.1 Virtual-cut-through based routers 38

3.2.2 Wormhole router . 38

3.2.3 Virtual-channel router . 41

3.3 Bufferless router . 43

3.4 Minimal buffered router . 45

3.5 Shared-buffer routers . 47

3.5.1 Deadlock-freeness challenge in resource sharing 47

3.5.2 Shared-buffer routers . 51

3.5.3 Roundabout-inspired routers 54

3.6 Summary . 55

3.1 Introduction

Network-on-Chip can implement buffered or bufferless flow-control. The choice of

flow-control, in turn, affects the overall network performance, on-chip area over-

head and power consumption. Buffered flow-control includes store-and-forward,

virtual-cut-through (VCT), wormhole and virtual channel (VC) as discussed in Chap-

ter 2. However, only VCT, wormhole and VC based routers are discussed here since

they are generally preferable in terms of performance and power consumption.

Go east

Go east

De�ected
Stored

Bu ered router Bu erless router

FIGURE 3.1: Conceptual buffered vs bufferless router

In buffered flow-control, the routers contain buffers that are temporarily used to

store packets that cannot advance to their output ports due to network contention.

This is shown in Fig. 3.1. However, these buffers consume a significant amount of

3.1. Introduction 37

the router total area and power consumption and are often unutilized for certain

traffic characteristics [102, 101].

On the other hand, bufferless flow-control/routing advocate completely remov-

ing buffers from the router in order to save power/area. Example of data-flow in a

bufferless router is shown in Fig. 3.1. However, these routers suffer performance loss

and higher dynamic power consumption under high loads due to increase in packet

deflections, which consume the router link bandwidth. In order to reduce perfor-

mance loss and power consumption caused by packet deflections, several techniques

to reduce packet deflections have been proposed. Other works suggest a hybrid so-

lution of adding small buffers (i.e. min buffer) in the router to reduce packet deflec-

tions.

The remainder of this chapter is as follows: VCT, wormhole and VC based routers

are discussed in section 3.2. Bufferless routers are discussed in Section 3.3, while

section 3.4 discusses minimum buffered routers. Section 3.5 discussed shared buffer

routers.

TABLE 3.1: State of the art in Network-on-Chip. T: topology

NoC Topology Routing Flow-control QoS
Kim [57] 2D-Mesh Adaptive VCT No

Hermes [74] 2D-Mesh DOR - XY Wormhole No
Æthereal [28] N/A Contention free Circuit switching Yes

DyAD [49] 2D-Mesh Combined Wormhole No
Hermes [70] 2D-Mesh Adaptive/DOR Wormhole No

MANGO [13] 2D-Mesh Deterministic VC Yes
BLESS [75] 2D-Mesh Deflection Bufferless No
DeC [106] 2D-Mesh Deflection Bufferless No

SCARAB [46] 2D-Mesh Drop/re-transmit Bufferless No
CHIPPER [39] 2D-Mesh Drop/re-transmit Bufferless No

Oxman [80] 2D-Mesh Deflection Bufferless No
MinBD [38] 2D-Mesh Deflection Pseudo bufferless No
DeBAR [55] 2D-Mesh Deflection Pseudo bufferless No
HiPAD [94] 2D-Mesh Deflection Pseudo bufferless No

AFC [54] 2D-Mesh Adaptive Bufferless/Buffered No
RoShaQ15 [101] 2D-Mesh DOR VC No

Soteriou [95] 2D-Mesh DOR - XY VC No
DPSB [44] 2D-Mesh Partial adaptive VC No

DLABS router [102] 2D-Mesh DOR wormhole No
Khalid [61] 2D-Mesh DOR VC No

FlexNoC [91] 2D-Mesh DOR VC No
Rotary [2] T. Agnostic Adaptive LBS No
This work Various Adaptive/DOR Wormhole No

38 Chapter 3. State of the art in NoC routers

3.2 Input buffered NoC routers

This section discusses three different flow-controls used in typical input buffered

routers. They include virtual-cut-through, wormhole and virtual channel. Router

architectures employing these flow-controls are also presented in this section.

3.2.1 Virtual-cut-through based routers

Although Virtual-cut-through (VCT) flow-control allows a packet to transmission

to begin before receiving the entire packet, the allocation of network resources (e.g.

buffers and channel bandwidth) is carried out per packet basis as discussed in Chap-

ter 2. The implication of this is that packets must reserve enough resource to be able

to make forward progress. VCT flow-control places huge demands on silicon area

and power consumption due to large buffers. Hence, it’s not suitable for on-chip

interconnects with tight area and power budgets [84].

An adaptive routing algorithm has been proposed for VCT based router [57] in

order to improve network performance without significantly compromising area

overhead. In the proposed router, a packet requests for output channel is granted

if the channel is free. Hence, if the desired output channel is currently being used

by a different packet, a second choice output channel is requested. The process con-

tinues until an output channel is granted or all permitted output channels are ex-

hausted. In terms of performance, the proposed router achieves higher network

saturation throughput compared to wormhole routing. However, this performance

improvement comes with area overhead associated with large buffers. Although au-

thors did not present result comparing power consumed in the proposed router and

wormhole, the proposed router is expected to consume more power associated with

buffers.

3.2.2 Wormhole router

The wormhole flow-control is considered the most popular switching technique due

to its lower hardware requirement and performance. Wormhole divides packets into

smaller units known as flits (flow-control digits). The first flit (known as the head-

flit) of a packet usually contains the routing information (destination address) and

responsible for reserving network resources as discussed in Chapter 2. Unlike, VCT

which requires buffers to be large enough to accommodate an entire packet, worm-

hole flow-control can use a single flit-size buffer. Hence, wormhole flow-control is

more suitable for an on-chip network with stringent power and area budget com-

pared to VCT. Some state-of-the-art wormhole based routers are presented next.

Fig. 3.2 shows the architecture of the Hermes router [74]. It consists of commu-

nication ports, buffers and control logic. The router consists of five input/output

3.2. Input buffered NoC routers 39

FIGURE 3.2: Hermes router architecture [74]

ports (i.e. west, south, east, north and local). The local port connects the router to its

local core, while the other ports are connected to neighbouring routers. The router

consists of buffers that are used to store packets that cannot advance to their desired

output ports, while the routing and arbitration unit is handled in the control logic

block. When multiple flits (head-flits) enter the router, one of the flits can be pro-

cessed in a given cycle. The arbitration unit is responsible for selecting the flit to be

processed. After selecting a flit, the routing unit executes the XY-routing function to

connect the input port data to the correct output port data. The connection remains

active until all the flits of the packet are completely transmitted.

CONTROLLER

HEADER

PARSING

UNIT

SWITCH

GT

BE

GT

BE

GT

BE

HEADER

PARSING

UNIT

HEADER

PARSING

UNIT

in 0

in 1

in 2

out 0

out 1

out 2

FIGURE 3.3: Æthereal router architecture [28]

The Æthereal [28] router architecture is shown in Fig. 3.3. It provides guaranteed

services (GS) in terms of throughput and latency. Thereby, offering predictability of

the system. In order to provide guaranteed services, uncertainties in data transfer

must be eliminated. The Æthereal router achieves this using a contention-free rout-

ing, which is based on time-division multiplexed circuit-approach. Basically, circuits

(logical connections between source and destination routers i.e. slots) are first setup

in the network before the actual data transfer takes place. This ensures that data

40 Chapter 3. State of the art in NoC routers

transfer occurs without any contention, thereby offering guaranteed packet through-

put and latency (this in Æthereal term is known as guaranteed throughput (GT)). In

order to avoid output ports contentions, the slots are reserved in such a way that

only one GT data transfer is scheduled on an output port of the router or network

interface. Since Æthereal combines BE and GS, the BE data is transferred on slots

not reserved by the GT traffic or on slots which are reserved but not used. In Æthe-

real router, the head-flit carries information about the traffic type (i.e. GT or BE as

shown in Fig. 3.3. When a flit arrives at the router, it is received by the header parsing

unit. The unit moves to flit to either the GT buffer or the BE buffer depending on

the traffic type. The controller is then notified of the presence of flits. The flits are

scheduled for transfer in the next cycle by the controller.

ADDRESS DECODER PORT CONTROLLER

FIFO

CROSSBAR

ADDRESS DECODER PORT CONTROLLER

FIFO

ADDRESS DECODER PORT CONTROLLER

FIFO

ADDRESS DECODER PORT CONTROLLER

FIFO

ADDRESS DECODER PORT CONTROLLER

FIFO

in 0

in 1

in 2

in 3

in 4

Congestion flags from

neighbour routers

out 0

out 1

out 2

out 3

out 4

FIGURE 3.4: DyAD router architecture

The DyAD [49] router uses both deterministic and adaptive routing algorithms

to route packet in the network. The dimension-ordered (XY routing) is used when

network contention is low, while the router switches to the adaptive mode when

network contention increases. In order to avoid deadlocks which may be caused by

packets waiting for each other in a cycle, the DyAD router employs old-even mini-

mal adaptive routing. Generally, packets can take up to 8 turns in a mesh network

topology. Four turns are supported in the clockwise direction, while the other four

turns are for the counter clockwise direction. Each of the four turns combined to

form a cycle with leads to a deadlock situation. Deadlock can be avoided if at least

one turn is disallowed in both clockwise and counter clockwise direction [24]. This

3.2. Input buffered NoC routers 41

is covered extensively in Chapter 4. Basically, the old-even routing forbids certain

turns in the old and even column of the network for avoiding deadlock. Fig. 3.4

shows the DyAD router architecture. Each input port has its own FIFO used to

temporarily store flits. When a head flit is received, the address decoder computes

the packet output port and informs the port controller. The port controller decides

which of the output ports (more than one output port may be available since the

router uses adaptive routing) to forward the packet. The choice is based on the num-

ber of available storage positions in the downstream router input FIFO. The port

controller then informs the crossbar arbiter to create a connection between the input

and the output port for data transfer. DyAD provides improved performance com-

pared to deterministic purely adaptive routers and with a small area overhead. The

router is expected to consume more power compared to wormhole routing based on

deterministic routing algorithm. This may be due to dynamic energy incurred when

switching between deterministic and adaptive modes.

3.2.3 Virtual-channel router

EAST

CROSSBAR 9x9

INPUT

CHANNELS

EAST

WEST

SOUTH

LOCAL

EAST WEST NORTH SOUTH LOCAL

OUTPUT CHANNELS

FIGURE 3.5: Hermes router with two VCs

Although wormhole flow-control leads to less area overhead compared to VCT,

it suffers from lower network saturation throughput caused by blocked flits in the

network which spans across several routers. As discussed in Chapter 2, head-on-

line (HOL) blocking reduces router link utilization which leads to poor link resource

utilization. In order to alleviate the performance loss and provide QoS support,

42 Chapter 3. State of the art in NoC routers

the physical channels can be multiplexed into multiple virtual channels (VC) [23]

as discussed in Chapter 2. On the other hand, VC introduces additional arbitration

complexity due to VC allocation and area overhead. Here, three virtual-channels

with distinct properties are reviewed.

In order to improve network performance, the default Hermes router [74] de-

scribed in Subsection 3.2.2 was extended to support virtual channels (VCs) [70]. Fig.

3.5 shows the Hermes VC router architecture which is similar to the default Hermes

[74] except that the physical channels have been multiplex into two VCs except for

the local port. One can readily observe that VC introduce additional area overhead

associated with larger crossbar size. As an example, the Hermes router without VC

requires 5x5 crossbar, while Hermes VC router, shown in Fig. 3.5 requires 9x9 cross-

bar. Also, it is important to note that the crossbar size grows quadratically with

the number of VCs in the Hermes VC architecture. This is reflected in the results

presented by the authors [74].

FIGURE 3.6: MANGO router architecture

The Message-passing Asynchronous NoC providing Guaranteed services through

OCP interfaces (MANGO) router [13] is a clockless router architecture that provides

both best-effort (BE) and guaranteed service (GS). Fig. 3.6 shows the router archi-

tecture, which is composed of two sub-router components (i.e. BE and GS routers).

One for handling BE traffics and the other for handling GS traffics. In the MANGO

router, a subset of the total VCs is dedicated to routing BE traffic, while the remain-

ing routes only GS traffics. In order to provide GS, a connection must first be estab-

lished between source as destination nodes, before the actual data transfer. For this

reason, a sequence of VCs through the network is first reserved before data transfer.

This guarantees that BE traffics do not interfere with GS traffics. This connection is

programmed by the BE router and fed into the GS router as shown in Fig. 3.6.

3.3. Bufferless router 43

3.3 Bufferless router

As stated earlier, bufferless routing completely removes buffers from the router in

order to eliminate area/power overhead associated with buffers. Bufferless routers

consist of pipeline latches that are capable of holding only one flit. Therefore, flits

are sent to some output port at the end of each clock cycle. In BLESS [75], packets

that cannot advance to their desired output ports are deflected or miss-routed since

there are no buffers in the router to store packets. Therefore, packets are continually

deflected from one hop to another until they finally reach their desired destination

hop.

It has been observed that BLESS [75] consumes far more power and have worse

average packet latency compared to input buffered router (IBR) under high network

load [101, 38]. This is because more packets get deflected further away from their

destination node at high traffic injection rates and these deflected packets unneces-

sarily consume the router link bandwidth. Whereas, link bandwidth is saved since

packets can be stored in buffers when network contention increases in typical IBR

routers. Bufferless routing generally leads to simple flow-control since flow-control

information can be determined locally without the need for inter router communi-

cation. However, large reorder buffers are required at the receiving nodes since flits

of a packet are routed independently from each other due to increase in deflections

[75, 106].

FIGURE 3.7: Overall structure of DeC [106]

Several techniques have been proposed in order to mitigate the latency and power

overhead caused by deflected packets at high traffic injection in BLESS. The Deflec-

tion Containment (DeC) router [106] is composed of two sub-routers connected by

a bypass channel as shown in Fig. 3.7. One of the routers receives input port re-

quest from neighbouring routers, while deflected packets are forwarded to the sec-

ond router via the bypass channel. Both routers use independent output links which

increase path diversity. The forwarded packet can compete for output port only af-

ter a clock cycle. When two packets contend for the same output port, the packet

44 Chapter 3. State of the art in NoC routers

with the highest priority is granted the output port, while the second packet is for-

warded to the second router instead of deflecting it further away from its desired

output port. Compared to BLESS, DeC achieves reduced power consumption due

to reduced deflections. However, the DeC router leads to poor network utilization

under low traffic.

FIGURE 3.8: SCARAB router showing the signaling between alloca-
tion, data and NACK networks

Unlike BLESS routing where packets are miss-routed in the case of contention,

SCARAB [46] proposed to drop and re-transmit packets that cannot be immediately

transmitted. SCARAB [46] uses a negative acknowledgement retransmission net-

work to achieve this goal. SCARAB architecture is shown in Fig. 3.8. However, the

retransmission network introduces additional design complexity. In addition, the

sending back acknowledgement and retransmitting dropped packets increase over-

all network loads and limits packet throughput.

FIGURE 3.9: CHIPPER architecture: a permutation network replaces
the traditional arbitration logic and crossbar [39].

A low-cost bufferless router called CHIPPER was proposed in [39]. CHIPPER

aims to reduce router complexity introduced by crossbar switch and allocators such

as in BLESS [75]. CHIPPER uses a two-stage permutation network requiring smaller

crossbars and arbitration unit compared to BLESS router [75]. Chipper architecture

is shown in Fig. 3.9. Unlike the BLESS router where packet priority is sequenced,

CHIPPER employs random flit priorities. The CHIPPER router design choice leads

to much simpler hardware and reduces the number of miss-routed flits compared to

3.4. Minimal buffered router 45

BLESS since packets are simply dropped and retransmitted instead of miss-routed.

However, it achieves poor performance compared to BLESS [75].

The performance loss incurred in BLESS router is due to increase in network

contentions caused by increased packet deflections. In order to reduce network con-

tention, Authors [80] proposed a method that uses "time average of link utilization"

as a metric to determine heavily utilized links in the network. In this approach,

flit are deflected to only the least congested network links. Intuitively, avoiding

heavily utilized links helps to decrease network contention per time in the network.

Compared to BLESS, this approach brings improved network saturation throughput

since network contention is reduced.

3.4 Minimal buffered router

In order to reduce growing packet deflections especially under high traffic injection,

several existing works proposed hybrid approaches of combining both bufferless

and buffered routings. These techniques are discussed in this subsection.

FIGURE 3.10: MinBD router pipeline [38]

A minimally-buffered deflection (MinBD) [38] router proposed to add small buffers

(called side buffers shown in Fig. 3.10) in the router to temporarily store flits that

would otherwise be deflected. However, only a fraction of the flits is stored in the

buffer, while others are still deflected. The stored flit can re-enter the network (if

there’s a free input slot) and participates in output port contention in the next cy-

cle. In order to prevent starvation of flits stored in the side buffers a buffer redirection

scheme is used. In this scheme, a flit from the router input is randomly chosen

and forced into the side buffer in one cycle, while a flit at the end of the buffer is

forced to inject into the port in the same cycle when starvation occurs. The tem-

porary flit-storage is beneficial as it reduces the number of miss-routed flits which

leads to energy efficiency and performance gains. However, it still provides poorer

performance compared to input buffered router since increasing packet defections

still occurs at high loads.

46 Chapter 3. State of the art in NoC routers

FIGURE 3.11: Router pipeline for DeBAR. HEU-Hybrid Ejection Unit,
FPU-Flit Preemption Unit, DIU-Dual Injection Unit, PFU-Priority
Fixer Unit, QRU-Quadrant Routing Unit, PDN-Permutation Deflec-
tion Network, BEU-Buffer Ejection Unit, CBP-Central Buffer Pool. A,

B, and C are pipeline registers. [55]

The DeBAR router [55] uses a set of centralized buffers (known as central buffer

pool) to store flits that would have otherwise be deflected when flits contend for sim-

ilar output ports. The DeBAR router pipeline is shown in Fig. 3.11. In order to speed

up packets ejection in the router, the router uses a hybrid ejection-unit that can process

two flits ejections in the same cycle. For this reason, the central buffer pool contains

a special flit slot known as ejection bank (EB). If multiple flits from the input port are

requesting the router local output port, one of them is granted while the other is

stored in the EB. In the next cycle, the flit stored in the EB advances to the local out-

put block without any further delay. In order to decrease packet deflections, flits that

have been previously deflected are given priority to use output ports. The DeBAR

router [38] leads to improve average network throughput compared to MinBD [38].

A single cycle router architecture capable of controlling the manner in which

flits are stored in the side-buffers for performance and energy gains, named HiPAD,

have been proposed [94]. Unlike MinBD, where flits cannot always progress to their

desired output ports since all input ports are not connected to output ports, HiPAD

uses a router network that connects all input ports to the output port. This design

choice ensures that flits that would otherwise progress to their desired output ports

are not unnecessarily buffered in the side buffer due to lack of input/output ports

structural connection [94]. Also, ensuring that fewer flits are buffered leads to lower

packet latencies since buffered flits have to be re-injected into the router input port

incurring an extra cycle. Thus, HiPAD leads to reduced average packet latency and

lower packets defection rate.

Adaptive Flow-Control (AFC) [54] proposed to combine bufferless and input

buffered flow control. Basically, AFC works like a typical bufferless router at low

loads but switches to input buffered mode at high traffic injection rates. When the

routing is operating in the input buffered mode, packets that would otherwise have

been deflected are stored in an input buffered similar to a typical input buffer router.

Storing packets leads to performance improvement since router link bandwidths are

3.5. Shared-buffer routers 47

not unnecessarily consumed due to packet deflections. However, AFC incurs higher

energy associated with storing every flit in the router. AFC leads to complex design

since control logic for both forms of routing is present in each router. In addition,

power gating is required to switch off the input buffer mode at low load and switch

it on at high load [38].

3.5 Shared-buffer routers

As stated earlier, resource sharing is beneficial as it ensures that the buffering re-

sources in the router are exploited for improving the overall network performance.

On the other hand, resource sharing can introduce deadlocks caused by cyclic de-

pendencies among shared network resources. This section presents approaches that

are used to avoid deadlocks. Typical shared-buffered routers and roundabout-inspired

routers are also covered in this section.

3.5.1 Deadlock-freeness challenge in resource sharing

Several techniques have been proposed in the literature to tackle the deadlock prob-

lem which in most works arises from the use of adaptive routing techniques or

folded network topologies such as the Torus. These techniques relate to router flow-

control (the manner in which the buffering resources are allocated in the network).

Table 3.2 shows the properties of state-of-the-art deadlock-free flow-control tech-

niques. The presented techniques are mostly divided into two categories i.e. virtual-

cut-through based and wormhole-based. An ideal flow-control requires one virtual

channel per input ports and wormhole flow-control for reducing overheads in terms

of area/power introduced by buffers [19].

dateline

R0VC0i

VC1i

R1 R2 R3VC0i

VC1i

VC0i

VC1i

VC0i

VC1i

FIGURE 3.12: Dateline deadlock-avoidance technique [66]

The Dateline [24] is a classic flow-control technique used to avoid deadlocks in

NoCs. It requires two virtual channels (VCs) (i.e. low i.e. VC0i and high VC1i in

Fig. 3.12) per input port. The "dateline" determines which of the two VCs packets

are allowed to use in order to avoid deadlocks. Basically, packets use the low VCs

(i.e. VC0i) before crossing the "dateline" whereas, only the high VCs (i.e. VC1i) are

used after crossing the dateline as displayed in 3.12. As displayed in Table 3.2, the

Dateline approach is available for both VCT and wormhole. The Dateline technique

48 Chapter 3. State of the art in NoC routers

TABLE 3.2: Deadlock-free flow-control techniques. DL: Dateline [24],
LBS: Local bubble scheme [18], CBS: Critical bubble scheme [20],
WBFC: Worm-bubble flow-control [19], FBFC-L: Flit-bubble flow-

control localized [66], FBFC-C: Flit-bubble flow-control critical [66]

Criteria
Virtual-cut-through Wormhole
DL LBS CBS DL WBFC FBFC-L FBFC-C

No. of VCs 2 1 2 1
Min VC slot for

1 2 1
Depends on

pck injection packet length
Suitable for

Yes Yes
long pcks
Suitable

Yes No Yes Yes
variable pcks

Injection
High Low High

pcks latency
In-transit

High Low
pcks latency

Buffer
Large Small

capacity
Buffer

Low High
utilization

Design
High Higher High Higher

Complexity
True

No Yes No
wormhole

incurs significant area and power overhead associated with VC and also introduces

additional implementation complexity for managing VC allocation.

P0 P1 P2

Occupied packet-size bu�er Free packet-size bu�er (bubble)

FIGURE 3.13: Local bubble scheme deadlock-avoidance [66]

In order to reduce the overheads associated with using two VCs per input port

in Dateline, the bubble flow-control was proposed [18]. Here, a bubble is an empty

packet-sized buffer. It is commonly used in tori networks and requires a bubble to be

maintained in the ring for avoiding deadlock. Bubble flow-control concept is simple

but challenging to implement since each node does not have information about the

other node sharing a similar ring. Therefore, coordinating resource allocation for all

nodes is challenging. In order to avoid the difficulty of gathering global information,

the Local-bubble scheme (LBS) was proposed [18]. A Packet can be injected in LBS

if the receiving VC has enough space for at least two bubbles so as to ensure that

at least one bubble will exist in the VC after injecting a packet. This is illustrated

3.5. Shared-buffer routers 49

in Fig. 3.13, where 3 packets (i.e. P0, P1, P2) are waiting to enter the ring. In this

example, only P0 can be injected since the receiving VC has two empty packet-sized

buffers. This requirement (of having at least two packets sized buffers per input

port) introduces higher VC cost and leads to lower buffer utilization.

Occupied packet-

size bu�er

P0 P1 P2

Free packet-

sized bubble

Critical packet-

sized bubble

FIGURE 3.14: Critical bubble scheme technique [66]

The Critical bubble scheme (CBS) [20] removes the buffer requirement associated

with LBS. It allows each receiving VC to have space for a single packet-sized buffer

for packet injection. In CBS, an empty packet sized buffer is marked as critical the

critical bubble. Packets can be injected as long as the critical bubble is not used. CBS

is illustrated in Fig. 3.14, where 3 packets (i.e. P0, P1, P2) are waiting to enter the

ring. In this example, P1 cannot be injected since its injection will occupy the critical

bubble. However, P2 can be injected although the receiving VC (i.e. VC3) has only

one free empty packet-sized VC. In Fig. 3.14, when P3 advances to VC2, the critical

bubble is displaced backwards i.e. to VC1.

R3VC3

Full-sized bubble Cycle 0

R3VC3

Cycle 1Occupied packet-

size bubble

Free packet-

sized bubble

FIGURE 3.15: Deadlock with variable-sized packets in LBS [66]

Compared to Dateline [24], both LBS and CBS require only one VC per input

port which leads to buffer reduction. However, both LBS and CBS are not suitable

for variable packet size. This is because bubble fragmentation occurs for variable

packets, which in turn leads to deadlock [3, 66]. This is illustrated in Fig. 3.15 for

LBS, where 3 in-transit packets are flowing in the ring. Note that P0 and P2 have

length of 1, while P1 has length of 2. In cycle 0, there are two empty packet-sized

slots in VC2. Next P0 can advance and occupy one of the empty slot in VC2 in cycle

1 as illustrated in Fig. 3.15. However, bubble-fragmentation occurs which leads to

deadlock in the ring. Packet P1 cannot advance since VC2 does not have enough

free-slot to accommodate the packet. In terms of implementation complexity, LBS

50 Chapter 3. State of the art in NoC routers

and CBS eliminates the need to manage VC allocation as they use only one VC per

input port. However, additional logic is required for handling packet injection in

both schemes.

R3VC3

P4(T)

P2 P3

Occupied packet-

size bubble

Free packet-

sized bubble

FIGURE 3.16: Flit-bubble flow-control localized (FBFC-L) [66]

Although the LBS and CBS solve the problem of gathering global information

and they use only one VC, they still require large buffers which introduce power

and area overheads. This is mainly due to the VCT flow-control where buffers are

allocated to packets. In order to reduce buffer cost, the bubble flow-control was ex-

tended to support wormhole. It has been observed that, for wormhole flow-control,

deadlock will not occur in a ring as long as an empty flit-sized buffer slot (i.e. flit

bubble) is maintained. In flit bubble flow-control (FBFC) [66], a packet can be in-

jected only if the receiving VC has enough slot to receive the packet. FBFC in-

cludes the localized scheme (i.e. FBFC-L) and the critical scheme (i.e. FBFC-C). Both

schemes are similar to the LBS and CBS respectively. In order to inject a packet, the

FBFC-L scheme requires the number of free buffer slots in the receiving VC to be

greater than the packet length. This is to ensure that at least a flit-sized bubble will

exist after packet injection. On the other hand, in-transit packets can be forwarded if

the receiving VC has one free buffer slot. This is a typical wormhole requirement for

injecting or forwarding a packet. FBFC-L is illustrated in Fig. 3.16. In this example,

P3 and P4 can be injected since the receiving VCs have more free slots than the packet

length. On the other hand, P2 cannot be injected into the ring. In Fig. 3.16, P1(H)

can advance to VC1 since the buffer requirement for in-transit packet is met.

Occupied buffer slot Free buffer slot Critical buffer slot

P2 P3 P4H

P4B

P4T

Cycle 0

Cycle 1

FIGURE 3.17: Flit-bubble flow-control critical (FBFC-C) [66]

3.5. Shared-buffer routers 51

In order to reduce the minimum buffer requirement for injecting a packet in the

FBFC-L scheme, the FBFC-C was proposed. Similar to CBS, an empty flit-size buffer

slot is marked critical. The critical buffer slot can only be occupied by in-transit

packets. Contrary to FBFC-L, packets can be injected if the number of free slots in

the receiving VC is at least equal to the injecting packet length. However, a packet

cannot be injected if its injection will consume the critical flit-sized bubble as shown

in Fig. 3.17, where P2 cannot be injected into the network. This requirement ensures

that at least a bubble is maintained in the ring for avoiding deadlocks.

Both FBFC-L and FBFC-C are not suitable for long packets. Implementations of

both schemes to support long packets will incur prohibitive buffer cost for worm-

hole. Both schemes claim to support variable packets length. However, the packet

length that can be supported is limited by the number of input VC slots. Conversely,

the number of input VC slots can be less than packet length in a true wormhole.

Additionally, both FBFC-L and FBFC-L suffers from lower buffer utilization. This

is because of the minimum buffer requirement in FBFC-L and the fact that injecting

packet cannot use the critical bubble in FBFC-C.

Contrary to FBFC, input buffer capacity can be smaller than packet length in

Worm-bubble flow-control (WBFC) [19]. However, packets must reserve additional

buffers in the ring before they can be injected. This leads to lower buffer utilization

and higher packet injection latency associated with reserving enough buffer slots be-

fore injecting a packet. Variable-sized packet is also supported in WBFC. However,

the packet length is limited since packet length cannot be more than the number

of available buffering positions in a ring. In terms of implementation complexity,

FBFC-L, FBFC-C and WBFC require additional logic for managing buffer allocation

and resolving starvation that results when a node keeps injecting packets.

In order to remove the limitations of existing approaches, this thesis proposed an

approach that is based on true wormhole flow-control. This provides adequate sup-

port for variable-sized packets, leads to reduce router area overhead, less complex

implementation and enhances buffer utilization.

3.5.2 Shared-buffer routers

Router architectures capable of utilizing the available buffering resources in the

router for performance gains have been proposed. Such routers allow input port

buffers to be shared by multiple input ports. Other approaches dedicate a set buffers

to the input port but allow input ports to share output port buffers.

A distributed and shared-buffered router was proposed in [95]. This router con-

sists of dedicated input buffers and emulates output buffers shared by the input

ports. Compared to input buffered router (IBR), the proposed router [95] provides a

higher throughput. However, this performance gain comes at the expense of higher

52 Chapter 3. State of the art in NoC routers

DPSB East FIFO

Controller

FIFO buffer

R
e
a
d
E
n

W
rite

A
d
d
r

R
e
a
d
A
d
d
r

W
rite

E
n

R
o
u
ti
n
g
 C

o
m

p
u
ta

ti
o
n

ReqInCnt

GntInCnt

Empty

PacketInCnt
M

U
X

EastPacketIn

NorthPacketIn

ReqUpStr

GntUpStr

Full

NorthGrant_from_East

NorthRequest_to_East

EastRequest_to_North

EastGrant_from_North

InPkt_East

ReqInt

GntInt

FIGURE 3.18: DPSB Router East Input Port [44].

power dissipation and area overhead introduced by the additional crossbar and

complex arbitration scheme used in the router.

The RoShaQ15 [101] router is composed of additional queues known as shared-

queues besides input buffers. Combining both queues (i.e. input/shared queues)

leads to much simpler arbitration. The shared queues can be used by packets if

empty or contain packets destined for the same output ports. RoShaQ15 uses a by-

pass technique to allow packets from the input port bypass the queue so as to achieve

reduced zero-load latency. However, RoShaQ15 requires an additional crossbar for

allocating the shared queue which incurs a higher power and introduces additional

area overhead compared to typical input buffer router. RoShaQ15 architecture is

shown in Fig. 2.16.

FIGURE 3.19: Dual-lane router architecture with two shared buffers
and two interconnect links on each lane [102].

The DPSB [44] is a shared router architecture that allows sharing buffering re-

sources between multiple input ports. Its architecture is shown in Fig. 3.18. Contrary

3.5. Shared-buffer routers 53

to existing routers with shared queues [101], DPSB shares buffers between two in-

put ports, thereby eliminating the area and power overhead associated with shared

queues. The DPSB architecture is composed of FIFO buffers that are controlled using

the DPSB controller. Basically, buffering request for a given input port is granted if

the buffer is not full. However, if the input port FIFO is full, the controller checks the

packet destination using the turn model to determine if other input port FIFO can be

used to store the packet. The dual buffer architecture leads to enhanced network per-

formance offering higher throughput and lower latency compared to typical input

buffered router. However, it leads to increase in power and area overheads com-

pared to a conventional router.

The DLABS router [102] is composed of dual-lanes (i.e. router buffers on separate

lanes) as shown in Fig. 3.19. In order to avoid deadlocks, input and output port links

for the router ports connects to separate buffers. This breaks all loop in the router by

ensuring that cyclic dependencies among shared resources do not exist. Data trans-

fer between the different lanes is restricted to a single direction (i.e. unidirectional)

in order to avoid deadlocks. In order to avoid performance loss caused by head-on-

line (HOL) blocking, so common in wormhole router, DLABS uses multiple buffers

for each router lane. Multiple links are also used at each router output port for per-

formance improvements. However, DLABS incurs higher area overhead compared

to typical input buffered routers due to additional buffers and control logic used in

the router.

Authors [61] proposed a router architecture capable of sharing the buffers be-

tween two neighbouring input ports. In the proposed router, a set of buffers is

shared between two input ports. Specifically, a set of buffer is shared between the

north and east input ports, while the other set of buffers is shared between the south

and west input ports. This approach utilizes the idle buffers in the router as op-

posed to introducing additional queues (i.e. shared queues). This approach reduces

the need for complex arbitration and additional crossbar in the router.

Flexible router [91] exploits existing buffers in the router in order to realize a

high network throughput. In the Flexible router, packets are allowed to use other

available input ports if their desired input ports are not available as shown in Fig.

3.20. However, deadlock will occur if packets are allowed to use just any input ports

when contention occurs. In order to avoid deadlocks, packets are allowed to use

only certain input port buffers. This choice is based on the routing function turn-

model. The flexible router provides higher network saturation throughput compared

to typical input buffered router. However, it incurs additional area overhead.

54 Chapter 3. State of the art in NoC routers

SWITCH

(5x5)

East output

port

Flow_ctrl

Data_E
East input

port

Data_E
Flow_ctr

Data_W
Data_N
Data_S
Data_L

West output

port

Flow_ctrl

Data_W

North output

port

Flow_ctrl

Data_N

South output

port

Flow_ctrl

Data_S

Local output

port

Flow_ctrl

Data_L

West input

port

Data_E
Flow_ctr

Data_L

North input

port

Data_E
Flow_ctr

Data_L

South input

port

Data_E
Flow_ctr

Data_L

Local input

port

Data_E
Flow_ctr

Data_L

Communications with

all other router FIFOs

FIGURE 3.20: Flexible router architecture [91].

3.5.3 Roundabout-inspired routers

The Rotary [2] router shares similar traffic-roundabout and ring-like concept with the

proposed the R-NoC router. It consists of two independent rings implemented using

Dual-port FIFO Buffers (DBF) as shown in Fig. 3.21. The input stage determines

which of the two rings to forward a packet when it enters the router. The decision

is made based on the packet distance to a suitable output port at low load and the

ring-occupancy at medium to high loads. The packet continues on the ring to its

desired output port. On reaching the output port, the packet exits the router if the

output port is free. Otherwise, it keeps circulating the ring until another suitable

output port is later found.

A packet in Rotary adaptively uses the first available output port after making

a specified number of turns in the router. This strategy helps to avoid head-on-line

blocking since packets can move to the next DBF from the input port, thereby allow-

ing packets that are behind to make forward progress. The Rotary router is topology

agnostic and uses a low complexity adaptive routing. The Rotary relies on com-

bined virtual-cut-through (VCT) and bubble flow-control (known as LBS) to avoid

deadlocks in the ring. VCT allocates buffers to entire packets, thereby requiring large

buffers in the router. Bubble flow-control is used to control packet injection ensuring

that packets can only be injected into the ring if there exist two free DBFs.

3.6. Summary 55

FIFO

Buffer

Demultiplexer

INPUT

STAGEDual-Port

Fifo Buffer

BUFFERING

SEGMENT

STAGE

Injector

Consumption

South

East

West

North

FIFO

Buffer

OUTPUT

STAGE

Multiplexer

FIGURE 3.21: Rotary router architecture [2]

3.6 Summary

This chapter discusses existing Network-on-Chip router designs including input

buffered, bufferless and shared buffered routers. Analysis of existing works show

that although virtual-cut-through (VCT) based routers provide improved perfor-

mance over wormhole routers, they typically incur area overhead and power con-

sumption caused by large buffers. On the other hand, wormhole based routers re-

quire smaller buffers, which keep area low compared to VCT routers. However,

they suffer from poor performance caused by blocked packets. In order to improve

the performance of wormhole router, the physical channels can be multiplexed into

multiple virtual channels (VCs). VC based routers generally provide improve net-

work saturation compare to wormhole routers since head-on-line (HOL) blocking

is removed and channels bandwidth are better utilized. However, the performance

improvement has associated area cost due to larger crossbars. VC introduces addi-

tional router complexity due to VC allocation and suffers from poor resource utiliza-

tion under low traffic.

In order to reduce on-chip area and power consumption, bufferless routing com-

pletely remove buffers from the router, thereby saving area and power. However,

bufferless routers suffers from poor performance under high traffic due to increased

packet deflections.

In order to maximize buffer resource utilization and to provide low-latency sup-

port for applications with diverse traffic characteristics, the concept of roundabout is

considered. R-NoC architecture provides inherent resource sharing allowing for the

buffering resource and link bandwidth to be shared by several input/output ports

56 Chapter 3. State of the art in NoC routers

for performance gain. Roundabout NoC (R− NoC) provides a highly-adaptive archi-

tecture that allows the router to be configured to provide varying performance/area

trade-offs.

57

Chapter 4

The Roundabout concept for

effective buffer resource sharing

58 Chapter 4. The Roundabout concept for effective buffer resource sharing

«"Success is where preparation and

opportunity meet."»

Bobby Unser

Contents

4.1 Introduction . 58

4.2 General principle . 59

4.3 Avoiding deadlock in R-NoC . 61

4.3.1 Topology generation algorithm 63

4.3.2 Application to mesh-based topology 65

4.3.3 Application to diagonally-linked mesh-based topology . . . 69

4.4 Discussion . 72

4.1 Introduction

The Roundabout NoC (R− NoC) concept draws inspiration from real-life multilane

traffic roundabouts, which allows for distributed control/arbitration contrary to tra-

ditional NoCs. The R-NoC concept provides a highly-adaptable architecture, which

allows the router to be configured to meet numerous network topologies and ap-

plication demands. This is depicted in Fig. 4.1 using highly conceptual diagrams.

Fig 4.1a shows the router concept, where the available resources are shared by mul-

tiple ports. Sharing the available resources among several ports provides support

for applications with varying traffic characteristics. As depicted in Fig. 4.1b, the

architecture can be readily adapted to support multiple processing cores without

incurring significant router modifications and crossbar cost. Connecting multiple

cores to a router reduces the number of routers needed in the network, participates

to decreasing latency since the number of hops in the network is reduced. A prac-

tical application is in the "X-Network" [105], where each router is connected to four

neighbouring cores. This configuration is beneficial in terms of area reduction and

performance.

In terms of network-on-chip topologies, the router concept can be readily ex-

tended to provide support for varying network topologies by the addition of mul-

tiple ports (depending on the targeted network topology) as depicted in Fig. 4.1c.

This provides varying performance/area trade-offs. One of the objectives of this

work is to explore various network topologies for performance improvement. For

this reason, R-NoC is extended to provide support for various network topologies.

R-NoC is scalable in terms of the number of lanes, internal topology as well as in the

use of additional buffering resources that can be arbitrarily distributed over lanes

4.2. General principle 59

PE

North

South

EastWest

PE 2 PE 3

PE 0 PE 1

South

Eaast

N
or

th
W

es
t

N
orth

E
ast

S
ou

th

W
e
st

(A) Basic concept

PE

North

South

EastWest

PE 2 PE 3

PE 0 PE 1

South

Eaast

N
or

th
W

es
t

N
orth

E
ast

S
ou

th

W
e
st

(B) Multiple cores

PE

North

South

EastWest

PE 2 PE 3

PE 0 PE 1

South

Eaast

N
or

th
W

es
t

N
orth

E
ast

S
ou

th

W
e
st

(C) Topologies

PE

North

South

EastWest

PE 2 PE 3

PE 0 PE 1

South

Eaast

N
or

th
W

es
t

N
orth

E
ast

S
ou

th

W
e
st

Buffers

(D) Adaptivity

FIGURE 4.1: The R-NoC architecture configurations

as depicted in Fig. 4.1d. The scalability of the router will be explored in greater

depths in Chapters 6 and 7. R-NoC provides adaptive use of lane resources, where

outer lanes get used as traffic grows. This is depicted in Fig. 4.1d, where outer lanes

resources are utilized by packets.

This chapter introduces the R-NoC concept in detail using the base R-NoC router

topology (i.e. R − NoC with 4 lanes and 5 input/output ports). The deadlock-

proneness of the base topology is identified and an algorithm for generating deadlock-

free R-NoC router for varying network topologies is presented. The proposed algo-

rithm is then applied to two case studies i.e. the mesh and diagonally-linked mesh

R-NoC routers.

4.2 General principle

As stated earlier, the R-NoC router concept is inspired by real-life multi-lanes traffic

roundabouts where cars go on a low-priority lane and switch to a higher priority

lane should they miss their exit. In such traffic roundabouts, cars on the higher pri-

ority lanes have priority over cars on lower priority lanes to use the exit. Similarly,

the R-NoC router consist of multiple lanes shared by multiple input/output ports in

order to maximize buffer resource utilization for improving overall network perfor-

mance.

Fig. 4.2 shows the initial conceptual R-NoC architecture. It consists of N-number

of lanes arranged in increasing order of priorities. The innermost lane (i.e. lane 0

in the Fig. 4.2) has the lowest priority, while the outermost lane has the highest

60 Chapter 4. The Roundabout concept for effective buffer resource sharing

W
E
S
T

E
A
S
T

SOUTH

NORTH

L
O
C
A
L

.
.

.

L
a
n
e
 0

L
a
n
e
 2

L
a
n
e
 1

L
a
n
e
 3

L
a
n
e
 N

FIGURE 4.2: The initial deadlock-prone R-NoC topology

priority. The lanes are grouped into two categories i.e. primary lanes and secondary

lanes depending on the input ports distributions. Similar to the lane priorities of

real-life traffic roundabout, the primary lane resources are exploited at low traffic

whereas the secondary lane resources are exploited at high traffic. The input ports

are distributed only to the primary lanes, while the secondary lanes are exploited only

whenever congestion occurs. In Fig. 4.2, lane 0 is the primary lane since the input

ports are attached to it, while the other lanes are the secondary lanes (i.e. lane 1 to

lane N in Fig. 4.2. The primary lane has the lowest priority in the router topology.

!

(A) Input to output port

!

(B) Lane switching

!

(C) Deadlock config

FIGURE 4.3: Data-flow scenarios in deadlock-prone R-NoC topology

Similar to the outermost lanes in real-life traffic roundabouts, packets on the sec-

ondary lanes are given priority to access shared resources whenever requests for a

shared resource originate simultaneously from both lanes. When a packet enters the

router, it first goes on the lowest priority lane (primary lane) since the input ports

are only distributed to the primary lane. The packet continues on the lane and can

make its way out of the router if the desired output port is free. This is illustrated in

Fig. 4.3a, where a packet from the west input port is flowing out of the router via the

east output port. On the other hand, if the desired output port is not free, the packet

continues on the lane and then switches to a higher priority lane at the packet input

as shown in Fig. 4.3b. Lane switching is beneficial as it frees-up the router resource

for use by incoming packets.

Allowing the lane resources to be shared by all the input ports is beneficial as it

ensures that the buffering resources assembled on the lanes are effectively utilized

4.3. Avoiding deadlock in R-NoC 61

which in turn leads to improved network throughput. However, this form of sharing

can lead to a deadlock situation on any of the router lanes. This deadlock is due

to cyclic dependencies that result when packets are simultaneously occupying lane

resources and requesting for other lane resources occupied by other packets. In the

scenario shown in Fig. 4.3c, none of the packets can make forward progress as their

requested resource are currently held up by another packet.

4.3 Avoiding deadlock in R-NoC

Before describing how deadlock is avoided in R-NoC, this section first provides a

general overview of deadlocks in NoCs and describes a well-known state-of-art

deadlock avoidance technique that has been extensively applied for realizing deadlock-

free adaptive routing in NoCs and deadlock-freeness in ring/tori network topolo-

gies.

FIGURE 4.4: Unidirectional ring with two VCs [32]

Fig. 4.4 shows a unidirectional ring network with four nodes denoted as ni,

where i = {0, 1, 2, 3}. Each node connects to adjacent nodes using a pair of outgoing

channels denoted as C0i and C1i. As discussed in Chapter 2, a network has routing

function that determines the paths taken in the network. A routing algorithm must

be connected meaning that each node in the network must be reachable [32]. As an

example, consider a deterministic routing algorithm that states as follows: If the cur-

rent node ni is equal to the destination node nj, store the packet. Otherwise, use C0i

or C1i, ∀ j 6= i. This means that for example, data from node n3 destined for node

n0 can always use either channel C03 or C13. Similar arguments can be made for

the other nodes in the network. In order to assess the deadlock freeness of this net-

work, a theoretical model for deadlock-avoidance proposed by Duato [32] and also

by Dally [24] is considered. This method relies on building the channel dependency

diagram of the network and checking for cycles. According to Duato’s theorem [32],

a routing algorithm (deterministic) for an interconnection network is deadlock-free

if and only if there are no cycles in the corresponding channel dependency graph

(CDG). The network topology and the routing algorithm (also known as routing

function) are key inputs to building the channel dependency graph. Two resources

62 Chapter 4. The Roundabout concept for effective buffer resource sharing

(channels/buffers) are dependent when a packet can occupy a resource and request

access for the other resource.

C01

C02

C03

C11

C12

C10C00

C01

C02

C03

(A) CDG with cycles

C01

C02

C03

C11

C12

C10C00

C01

C02

C03

(B) CDG without cycles

FIGURE 4.5: Channel dependency graphs (CDG) for Fig. 4.4

Fig. 4.5a shows the CDG diagram for Fig. 4.4. Note that the CDG is simplified

since only the low channels (i.e. C0i) are taken into account. A node on the CDG

represents channels, while the edge represents the dependency. It is obvious from

the CDG that the network is not deadlock-free as a cycle exist in its CDG according

to Duato’s theorem [32]. On the other hand, consider a new routing function for Fig.

4.4 that states as follows: If the current node ni is equal to the destination node nj,

store the packet. Otherwise, use c0i if j < i, or c1i if j > i [32]. Fig. 4.5a shows the new

CDG for the network. It is observed that the network is deadlock-free since its CDG

has no cycles [32]. Note that channels c00 and C13 are never used.

C4

C5

C6
C0

C7

C1

C3

C10

C27

C31

C30

C29

C28

C13

C14

C15

C17
C18

C20

C9

C26 C21

C22

C23

C11

C8

C19

C12

C24

C25

C16

C2

Dependency

ChannelCx

FIGURE 4.6: CDG of deadlock-prone R-NoC topology

Fig. 4.6 shows the CDG for the deadlock-prone topology shown in Fig. 4.2.

It is visible from the graph that cycles (in colors) exist in the CDG. Therefore, the

configuration is not deadlock free. Note that the output ports channels have been

included in the CDG.

4.3. Avoiding deadlock in R-NoC 63

4.3.1 Topology generation algorithm

The initial R-NoC topology shown in Fig. 4.2 is deadlock-prone as cyclic depen-

dencies can occur on the lanes as described in Section 4.2. The algorithm used in

transforming the initial deadlock-prone R-NoC topology to a deadlock-free topology

is presented here. The proposed algorithm is then applied to realize deadlock-free

R-NoC topologies for the mesh and diagonally-linked mesh networks. The proper-

ties of the deadlock-free router for mesh network topology is also presented in this

section.

In order to realize a deadlock-free R-NoC configuration, a combination of input

ports that can share a set of lane resources without introducing cyclic dependencies

in the router and the corresponding network must be obtained. The lanes must also

be distributed such that the network is not disconnected (i.e. valid paths must exist

from input ports to output ports in the router). For this reason, a deadlock-free R-

NoC topology generation algorithm shown in Algorithm 1 is proposed. The goal of

Algorithm 1 is to generate deadlock-free R-NoC configurations for varying network

topologies. The algorithm execution proceeds in several steps.

In Step 1, input data are declared. This algorithm takes a set of lanes (L), a set of

input ports (I) and a set of output ports for a given input port (Oi) as inputs.

In Step 2, sets required to store information about lanes and their shareable input

ports are created.

Step 3 represents the heart of the algorithm. A given lane (i.e. l) is selected from

the set of lanes in line 2. Line 3 selects an input port from the set of input ports and

associates it with the selected lane. In line 4, the path from the selected input port to

all valid output ports is marked. At this stage, no cycle exists in the lane since only

one input port is associated with the selected lane. Next phase is to find other input

ports that can share the selected lane (i.e. l) with the currently selected input port

(i.e. i). For this purpose, the algorithm loops through all the set of input ports in line

5 to line 12. In each iteration, an input port is selected and associated to the lane. The

path from the selected input port (i) to all valid output ports (Oi) is marked in line 6.

Then the algorithm check if any cycle exists in the lane L. If a cycle exists then the

currently selected input port (i) cannot share the selected lane l resources with the

other input port(s). On the other hand, if no cycle exists, then the currently selected

input port can be shared with the other input port(s)). The iteration is repeated (for

all unused input ports) until all the input ports have been successfully attached to a

lane without any deadlock.

Finally, in Step 4, switch links can be added only between lanes that are already

shared. Also, care must be taken to ensure that introducing switch links do introduce

cycles and unreachable output port. For this reason, a switch link can be added if

and only if its addition will not lead to a deadlock or unreachable output port. As

64 Chapter 4. The Roundabout concept for effective buffer resource sharing

Algorithm 1: R-NoC topology generation algorithm
Step 1: Input information. Let us consider the following: L: a set of lanes, I:
a set of input ports, Oi: a set of output ports for a given input port i, SLink:
a set of switch links;

Assumption: Each lane l ∈ L (resp. input port i ∈ I) is associated with a
Boolean attribute called "used". When a lane l (resp. an input port i) has
been used, then l.used (resp. i.used) is set to true, otherwise it is set to false;

Step 2: Local variables. Let us consider the following: Is
l ⊆ I: a set of

shareable input ports, P = {〈l, Is
l 〉}: a set of pairs composed of a lane l

associated with its shareable input ports Is
l ⊆ I,

Step 3: Definition of lanes shared by multiple input ports;
1 do
2 select a lane l ∈ L and set l.used to true ;
3 select i ∈ I, associate i to l (i.e., i ∈ Is

l), then set i.used to true; // i belongs
to the set of shareable input ports associated with l within a pair in P;

4 Label the path along lane l from input port i to all output ports in Oi that
are reachable from i // The path from the selected input port i is to
eligible output ports on the lane l is marked. ;

//Next step is to repeat the above process on other input ports that can
share the selected lane l;

5 foreach i ∈ I s.t. i.used = f alse do
6 Label the path from i to its corresponding valid output ports Oi

attached to the lane l;
//check if cycle exists in created paths;

7 if no cycle exists in combined paths then
//can share lane;

8 set i.used to true and i ∈ Is
l ;

9 else
// input port i cannot share lane l with other input ports;

10 i /∈ Is
l ;

11 Create a pair 〈l, Is
l 〉 and save it in P;

12 while (there exists an input port l ∈ L, s.t. l.used = f alse);
Step 4: Switch links insertion without deadlock or unreachable output port;

13 do
14 Pick a switch link and insert it between two shared lanes if no cycle along

resulting combined paths and no unreachable output port;
15 while (there is any unused switch links in SLink);

Output: Deadlock free R-NoC topology

discussed earlier, CDG can be formally used to check for the presence of deadlocks.

Algorithm 1 assumes a DOR or partially adaptive routing based on turn model.

Also, generated R-NoC router configurations can only be plugged into a deadlock-

free NoC network i.e. network using deterministic or minimal-adaptive routing al-

gorithms. This guarantees deadlock-freeness at network level. The current version

of R-NoC does not support fully adaptive routings as they deadlock-prone.

4.3. Avoiding deadlock in R-NoC 65

4.3.2 Application to mesh-based topology

As stated earlier, the goal of the deadlock-free R-NoC topology generation algorithm

is to generate deadlock-free R-NoC router configurations for various network topolo-

gies. This subsection applies the algorithm in order to realize a deadlock-free R-NoC

router configuration (with 4 lanes) for the mesh network topology using XY routing

algorithm.

TABLE 4.1: XY routing algorithm possible source and destinations

Source (input ports) Destinations (outputs ports)
Local West, South, East, North
West Local, South, East, North
East West, South, Local, North

North South, Local
South North, Local

Table 4.1 gives the list of input ports and their corresponding output ports for

XY routing algorithm. Thus, in step 1 of Algorithm 1, the input information are a set

of 4 lanes, a set of input ports and a set of output port for each input port according

to Table 4.1. Next, step 3 of Algorithm 1 can be applied to devise the list of input

ports than can share the lanes such that cyclic dependencies are avoided on each of

the shared lane.

Win

Lout

Sout

Eout

Nout

EinWout

Lin

(A) West input and possible output ports

Win

Lout

Sout

Eout

Nout

EinWout

Lin

(B) Output ports label for west input port

Win

Lout

Sout

Eout

Nout

EinWout

Lin

(C) Output ports labels for west and east in-
put ports

Win

Lout

Sout

Eout

Nout

EinWout

Lin

(D) Output ports labels for west and local
input ports

FIGURE 4.7: R-NoC application example for Mesh network topology

Assuming that the west input port is selected from the set of inputs port in line

2 of Algorithm 1 and associated to a selected lane (l) in line 3, then the resulting

configuration is shown in Fig. 4.7a, where the west input port and its corresponding

output ports are associated to the lane. Upon executing line 4 of the algorithm, the

66 Chapter 4. The Roundabout concept for effective buffer resource sharing

resulting configuration is shown in Fig. 4.7b with "blue label" indicating the possible

output ports a packet flowing from the west input port can use, as displayed in Table

4.1. It is visible from Fig. 4.7b that no cyclic dependency exists as the path between

north output port to west input port is not labeled.

The next step is to determine the other input ports that can share the selected

lane with the west input port. For this reason, assuming that line 5 (first iteration)

selects the east input port, executing line 6 gives the configuration shown in Fig. 4.7c.

In Fig. 4.7c, the lane has both blue and green labels. The green label represents valid

output ports for packets flowing from the east input port. Next step is to check if a

cycle exists in the lane. It is visible from the figure that the both labels form a cycle

on the lane (i.e. all the paths on the lanes are labelled). Therefore, the west input

port cannot share the selected lane resources with the east input port. A more formal

means of checking for cyclic dependencies is to plot the channel dependency graph

of the lane as explained earlier.

Algorithm 1 control returns to line 5 in order to find possible input ports that can

share the lane resource with the west input port. If the local input port is selected in

line 5 and the lane is labeled "orange" (i.e. line 6), then the resulting configuration is

shown in 4.7d. It is obvious from Fig. 4.7d that no cycle exists in the lane as the path

between the west output port and the east input port is not label. Thus, sharing the lane

between the west input port and the local input port does not result in a deadlock

configuration. Lines 1 to 11 are repeated until all the input ports have been attached

to a lane. If only an input port is left after many iterations, it can be attached to a

single lane.

Switch link

W E

L

N

S

L0

L1

L2

L3

FIGURE 4.8: Generated R-NoC topology

Fig. 4.8 shows the final output of the algorithm. Note that according to step 4

of Algorithm 1, only input ports that share a given lane can switch to a new lane so

as to avoid deadlocks in the secondary lanes. Also, switch links should not introduce

unreachable output ports. Thus, in Fig. 4.8, lane 2 (i.e. L2 in Fig. 4.8) is shared

only between the west and local input ports since they both share lane 0. A similar

4.3. Avoiding deadlock in R-NoC 67

argument can be made for the south, east and north input ports sharing lane 1 and

3. In the topology shown in Fig. 4.8, lane 0 (i.e. L0 in Fig. 4.8) hosts the local and

west input ports, while lane 1 (i.e. L1 in Fig. 4.8 hosts the east, south and north input

ports.

C4

C5

C6C0

C7

C1

C3

C10

C26

C30

C39

C28

C27

C13

C14

C15

C17
C18

C20

C9

C25 C21

C22

C11

C8

C19

C12

C23

C24

C16

C2

Dependency

ChannelCx

FIGURE 4.9: CDG of deadlock-free R-NoC topology

Fig. 4.9 shows the CDG (output channels included) for the deadlock-free R-NoC

topology in Fig. 4.8. The topology is deadlock-free as there are no cycles in its CDG

as shown in Fig. 4.9. Notice that there are no dependencies between lane 1 and lane 3

to the east output port. This is because lane 1 and 3 are shared among the east, north

and south input ports and packets from any of these input ports do not use the east

output port according to the information displayed in Table 4.1. Thus, Algorithm 1

can generate a cycle-free R-NoC topology.

Properties of the deadlock-free R-NoC topology

Fig. 4.10 shows packet flow scenarios in the deadlock-free R-NoC configuration

shown in Fig. 4.8. Here, when a packet flowing on a primary lane is blocked or

not granted access to the output port, it switches to a secondary lane via the switch

link. A scenario where a packet switches to a secondary lane, via a switch link, be-

cause its path is blocked is shown in Fig. 4.10b. In Fig. 4.10c, a packet from the east

input port destined for the local output port switches to a secondary lane because the

path is being used by another packet. This design choice avoids queuing packets on

the lane (if possible) whenever multiple flows compete for shortest path resources,

which increases router resource utilization and packet throughput. Fig. 4.10c shows

a scenario where a packet from the local input port and destined for the west out-

put port switches to a secondary lane because the west output port is occupied by

a packet flowing from east input port to west output port. Packets can only make

forward progress (i.e. continue on a given lane or switch to a secondary lane) if the

68 Chapter 4. The Roundabout concept for effective buffer resource sharing

PW

PL

PS

PE

PN

PE->L

PN->S

PE->W

PL->W

PW->N

PL->W

PW->N

PL->W
PS->N

PW->N

PL->W
PS->N

PE->L

(A) Packet entry

PW

PL

PS

PE

PN

PE->L

PN->S

PE->W

PL->W

PW->N

PL->W

PW->N

PL->W
PS->N

PW->N

PL->W
PS->N

PE->L

(B) Lane switching caused
by blocked path

PW

PL

PS

PE

PN

PE->L

PN->S

PE->W

PL->W

PW->N

PL->W

PW->N

PL->W
PS->N

PW->N

PL->W
PS->N

PE->L

(C) Lane switching when
packet output port is busy

PW

PL

PS

PE

PN

PE->L

PN->S

PE->W

PL->W

PW->N

PL->W

PW->N

PL->W
PS->N

PW->N

PL->W
PS->N

PE->L

(D) Low traffic

PW

PL

PS

PE

PN

PE->L

PN->S

PE->W

PL->W

PW->N

PL->W

PW->N

PL->W
PS->N

PW->N

PL->W
PS->N

PE->L

(E) Medium traffic

PW

PL

PS

PE

PN

PE->L

PN->S

PE->W

PL->W

PW->N

PL->W

PW->N

PL->W
PS->N

PW->N

PL->W
PS->N

PE->L

(F) High traffic

FIGURE 4.10: Packet flow scenarios in deadlock-free R-NoC configu-
ration. PX→Y: a packet from X input port and destined for Y output

port.

desired lane resource is available. Otherwise, they are queued on the lane. The out-

put port is granted in a round-robin manner if two simultaneous request for a given

output port originates from either two primary or two secondary lanes.

More generally, the main properties of R-NoC can be summarized as follows:

1. The router can have N lanes (where N ≥ 2). The lanes are partitioned into

primary and secondary lanes with an arbitrary lane count in each.

2. The output ports are connected to both primary and secondary lanes, while

the input ports are only connected to the primary lanes.

3. Packets can switch from primary to secondary lanes when either their path is

blocked or their output is unavailable.

As shown in Fig. 4.10d to 4.10f, almost all the lane resources can be used when

network load is high.

The deadlock-free topology can be plugged into a mesh network topology using

XY routing without deadlocks. As an example, Fig. 4.11 shows data-flows on a 2x2

mesh network topology. The transpose traffic pattern is considered for this example.

Here, it is assumed that the packets, i.e. P0, P1, P2, and P3 were injected into the

network at the same time. As shown in Fig. 4.11, no deadlock occurs on this network

and all packets will eventually get to their destinations. Notice that P1 destined for

node R2 waits just before the east input port because P3 is currently occupying the

lane. However, after sometime P1 can advance and make its way to the local port

4.3. Avoiding deadlock in R-NoC 69

R0 R1

R2 R3

P0: R0 -> R3

P1: R1 -> R2

P2: R2 -> R1

P3: R3 -> R0

FIGURE 4.11: Data-flow example on a 2x2 mesh network topology.
PXY→Z: X is packet number, Y is packet source node and Z is packet

destination node

of node R2 when P3 is completely transmitted. The packets can successfully make

forward progress and deadlocks do not occur in this network.

4.3.3 Application to diagonally-linked mesh-based topology

The goal of this subsection is to realize a deadlock-free R-NoC router configuration

for the Diagonally-linked mesh (DMesh) [50] network topology using Algorithm 1.

Before applying the algorithm, a general overview of the DMesh network topology

in terms of links and routing function is first provided.

DST

1

2

SRC

FIGURE 4.12: Adaptive routing in Diagonally-linked mesh topology.
SRC: source. DST: destination

Unlike classical mesh network topology with 5 input/output ports, the DMesh

has additional 4 diagonal ports as stated earlier. The diagonal links in the DMesh

provide shorter network paths and help to reduce network congestion which leads

to enhanced network performance [50]. The DMesh uses quasi-minimal adaptive

routing where packets first attempt to use the diagonal ports if available. Fig. 4.12

shows packet flow from a source to destination node. In Fig. 4.12, path 1 is the

minimal path, while path 2 is the non-minimal path. If packets always use the mini-

mal path then the diagonal links will be congested while the non-diagonal links will

70 Chapter 4. The Roundabout concept for effective buffer resource sharing

be left unutilized. Thus, leading to uneven distribution of network loads. For this

reason, a non-minimal path can be used when the minimal path is busy [50].

TABLE 4.2: Quasi-minimal adaptive routing algorithm possible source
and destination ports

Source (input ports) Destinations (outputs ports)
West East, Local
South West, East, North, Local, North-west, North-east
East West, Local

North West, South, East, Local, South-east, South-west

Local
West, South, East, North, North-east
North-west, South-east, South-west

North-east West, South, Local, South-west
North-west East, South, Local, South-east
South-east West, North, Local, North-west
South-west East, North, Local, North-east

Table 4.2 shows the valid input ports and their corresponding valid output ports

for quasi-minimal adaptive routing algorithm. Therefore, in step 1 of Algorithm 1, the

input information are a set of lane, a set of input ports from Table 4.2 and a set of

output port for each input port as displayed in Table 4.2. Given the input informa-

tion, the algorithm 1 can be applied to devise the list of input ports that can share

lanes such that cyclic dependencies are avoided on each of the shared lane.

S
Eo
u
t

Win
Eout

Nout

SWin

NEout

Lout

Wout

Sout S
Eo
u
t

NWout

S
W
o
u
tLin

NEout

(A) South-west input and possible output
ports

S
Eo
u
t

Win
Eout

Nout

SWin

NEout

Lout

Wout

Sout S
Eo
u
t

NWout

S
W
o
u
tLin

NEout

(B) Output ports label for south-west input
port

S
Eo
u
t

Win
Eout

Nout

SWin

NEout

Lout

Wout

Sout S
Eo
u
t

NWout

S
W
o
u
tLin

NEout

(C) Output ports labels for south-west and
local input ports

S
Eo
u
t

Win
Eout

Nout

SWin

NEout

Lout

Wout

Sout S
Eo
u
t

NWout

S
W
o
u
tLin

NEout

(D) Output ports labels for south-west, local
and west input ports

FIGURE 4.13: R-NoC application example for Mesh network topology

Assuming that the south-west input port is selected from the list of inputs in line

2-3 of Algorithm 1, then the resulting configuration is shown in Fig. 4.13a, where the

4.3. Avoiding deadlock in R-NoC 71

south-west input port and its corresponding output ports are attached to the lane.

When line 4 of the algorithm is executed, the resulting configuration is shown in Fig.

4.13b with "blue label" indicating the possible valid output ports for a packet flowing

from the south-west input port as shown in Table 4.2. It’s visible from Fig. 4.13b that

no cyclic dependency exist as the path between local output port to south-west input

port is not labeled.

N
O
R
T
H

W
E
S
T

N
O
R
T
H

E
A
S
T

SOUTHW
EST

S
O
U
TH

EA
S
T

SOUTH

NORTH

E
A
S
T

W
E
S
T

L
O
C
A
L

Mux

Switch link

FIGURE 4.14: DMesh network topology and R-NoC-DM architecture

The next step is to determine the other input ports that can share the selected

lane resources with the south-west input port. For this reason, if we assume that line

5 selects the local input port, executing line 6 results in the configuration shown in

Fig. 4.13c. In Fig. 4.13c, the lane now has both blue and green labels, representing

the valid output ports for packets flowing from the south-west input port and local

input port respectively. Next step is to check if cycle exist in the lane. It is visible

from the figure that both labels do not form a cycle on the lane. This is so as the path

between the local output port and the local input port is not labelled. Therefore, the

south-west input port can share the lane resources with the local input port without

resulting to a deadlock configuration.

The Algorithm 1 control returns to line 5 in order to find other possible input

ports that can share the lane resource with the south-west and local input port. If the

west input port is selected in line 5 and the lane is labeled "orange" (i.e. line 6, then the

resulting configuration is shown in 4.13d. It is visible from the figure that the labels

form a cycle on the lane (i.e. all the paths on the lanes are labelled). Thus, sharing the

lane between the south-west, local and west input port results to a deadlock. Lines

1 to 11 is repeated until all the input ports have been attached to a lane.

72 Chapter 4. The Roundabout concept for effective buffer resource sharing

R-NoC-DM router for DMesh network topology

Fig. 4.14 shows the DMesh network topology and the corresponding router (i.e. R-

NoC-DM). As displayed in Fig. 4.14, the local, south-west, south, south-east input

ports share similar lane resources (i.e. lane 0 and lane 2), while the east, north-east,

north, north-west and west share lane 1 and lane 3. Thanks to the Algorithm 1, the

generated router topology is deadlock-free.

P
N
E->
S
W

PL->NE

PS->NW

PN->SE

P
N
W
->
S
E

(A) Low traffic

P
N
E->
S
W

PL->NE

PS->NW

PN->SE

P
N
W
->
S
E

(B) Medium traffic

P
N
E->
S
W

PL->NE

PS->NW

PN->SE

P
N
W
->
S
E

(C) High traffic

FIGURE 4.15: Packet flow scenarios in R-NoC-DM. PX→Y: a packet
from X input port and destined for Y output port.

Figs. 4.15 shows traffic flow scenarios in R-NoC-DM. As shown in the figure,

packets can switch lanes when their path is blocked by another packet. An example

is in Fig. 4.15(a) where a packet from the north input ports switch to a secondary

lane because the path is blocked by a packet flowing from the north-west input port.

The router offers good resource utilization. This is illustrated in Fig. 4.15c, where

almost all of the lane resources are utilized at very high traffic.

4.4 Discussion

As stated earlier, designing communication architectures with shared resources can

be challenging due to their proneness to deadlocks. The deadlock problem is exac-

erbated in R-NoC due to its ring-like/cyclic topology and the use of wormhole flow-

control. One possible means of avoiding deadlock in R-NoC is to utilize combined

virtual-cut-through (VCT) and bubble flow-control as in the Rotary router [2]. How-

ever, VCT requires large buffering resources as buffers in VCT are allocated to pack-

ets instead of flits (as in wormhole). Large buffers introduce higher silicon-area over-

head and power consumption. Hence it is not suitable for communication architec-

tures with limited power/area budgets.

In order to avoid the power/area overhead associated with VCT, an algorithm

for generating deadlock-free router configurations using wormhole flow-control is

proposed. The algorithm is then applied to realize deadlock-free router configura-

tions for the Mesh and Diagonally-linked mesh network topologies.

73

Chapter 5

Implementations of Roundabout

Network-on-Chip

74 Chapter 5. Implementations of Roundabout Network-on-Chip

«"Action is the foundational key to all

success."»

Pablo Picasso

Contents

5.1 Introduction . 74

5.2 Synchronous elastic implementation 74

5.2.1 Elastic synchronous design 75

5.2.2 R-NoC synchronous elastic building blocks 78

5.3 Asynchronous implementation . 83

5.3.1 Asynchronous circuit design 84

5.3.2 Bundled-data protocol . 86

5.3.3 Delay-insensitive protocol . 87

5.4 R-NoC delay-insensitive implementation 89

5.4.1 4-phase dual-rail input controller 92

5.4.2 4-phase dual-rail output and path controllers 92

5.5 Summary . 93

5.1 Introduction

Having presented the R-NoC router concept in Chapter 4, this chapter provides its

synchronous and asynchronous implementations. R-NoC concept relies on effec-

tive handshaking between individual components assembled in lanes. For this rea-

son, its implementation is based on synchronous elastic design (instead of purely

synchronous design using handshake FIFOs) and asynchronous logic. Synchronous

elastic design is based on elastic buffer flow-control discussed in Chapter 2. EB flow-

control eliminates the need for explicit input and/or output buffers at the router by

using existing pipelined flip-flops in the channels to implement elastic FIFOs [17,

73]. On the other hand, asynchronous logic provides intrinsic flow-control mecha-

nism which makes for a good fit for R-NoC implementation.

The remainder of this chapter is as follows: R-NoC synchronous implementation

is provided in Section 5.2. Asynchronous design principles is presented in Section

5.3, while section 5.4 provides the asynchronous implementation of R-NoC. Section

5.5 summarizes the chapter.

5.2 Synchronous elastic implementation

This section presents the synchronous elastic implementation of the R-NoC router

base on elastic buffers. First, an in-depth coverage of synchronous elastic circuits

5.2. Synchronous elastic implementation 75

is given. Next, the synchronous elastic implementation of the different blocks in

R-NoC is detailed.

5.2.1 Elastic synchronous design

Sender Receiver

Valid

Ready

Elastic Buffer Elastic Buffer

FIGURE 5.1: Synchronous elastic communication

Synchronous elastic communicating blocks, besides the data, carry extra signals

that are required to implement the elastic handshake between sender and receiver

[17, 29, 92]. Fig, 5.1 shows two elastic blocks (i.e. sender and receiver) that have

two additional signals i.e. valid and ready required to ensure reliable data-flow in the

communicating channel. The sender asserts the valid signal indicating the presence

of a valid data on the channel. The receiver can store the data upon seeing the as-

serted valid signal. Similarly, if the receiver cannot accept a new data it needs to

be able to inform the sender to stop sending data. For this purpose, the receiver

de-asserts the ready signal. The sender stops sending data upon receiving the ready

signal. Therefore, data transfer in this channel typically takes place when the sender

is sending a valid data i.e. valid is asserted and when the receiver can accept a new

data i.e. ready is asserted. Otherwise, the channel can be in either an idle or wait

state. The channel is said to be in an idle state if the sender is not providing a data,

while the channel is said to be in a wait state if the receiver is not ready to accept a

new data, although the sender is providing a valid data. When the channel is in a

wait state, the data on the channel must not change until the receiver can accept and

store the data. If a new data is put on the channel when in a wait state, the previous

data would be overridden [29].

1 2 3 4 5 6

Data 1 Data 2 Data 3

Clock

Valid

Data

Ready

FIGURE 5.2: Example of synchronous elastic handshake

76 Chapter 5. Implementations of Roundabout Network-on-Chip

Fig. 5.2 shows an example of handshake communication between a sender and

a receiver for 6 clock cycles. In cycle 1, the channel is in an idle state as the sender is

not producing any valid data. Hence, the valid signal is 0. In cycle 2, the sender is

producing a valid data but the receiver is not ready to receive the data. Hence, the

channel moves into a wait state. It continues in the wait state until the receiver is

able to read the data. This occurs in cycle 3 where both valid and ready signals are

1. Therefore, the channel is in a transfer state. Notice that the data is persisted until

the receiver is able to store the data. The channel returns to an idle state in cycle 4.

The channel moves to transfer state in cycle 5 and continues in that state in cycle 6

[17, 29]

An elastic channel needs to be able to store in-flight data during a stall. This is

achieved by using a special kind of buffers known as elastic buffers (EB) that im-

plement the elastic handshake protocol. Chains of EBs form a synchronous elastic

pipeline that controls data-flow from one pipeline stage to another. Each EB in a syn-

chronous pipeline has the capacity to store two data. When a synchronous pipeline

stalls, the data stored in the EB during the stall must be kept for next cycle (assuming

that it takes a cycle to propagate data from one pipeline stage to another). However,

in-flight data from the previous EB must also be preserved to avoid losing data. The

additional buffer slot is used for storing such an in-flight data during a pipeline stall.

Therefore, a 2-slot EB can either be empty if no data is stored, half-full if it is storing

only one data and full if it is storing two data.

Valid_in
Elastic Bu er

Control
Ready_out

Valid_out

Ready_in

Data_in

Data_out

Auxiliary

Main

en

en0

1

EAUX EMAINsel

(A) Flip-flop based EB

Valid_in
Latch Elastic Bu er

Control
Ready_out

Valid_out

Ready_in

Data_in Data_out

Master

Latch

en

D Q

Slave

Latch

en

D Q

Clock

(B) Latch-based EB

FIGURE 5.3: Flip-flop and latch based EB implementations

Elastic buffer implementation

Although the synchronous implementation of R-NoC could be based on conven-

tional FIFO queues with handshake capability, the efficient elastic buffer (EB) flow-

control is chosen. EB flow-control eliminates the need for explicit input and/or

output buffers at the router by using existing pipelined flip-flops in the channels

to implement elastic FIFOs. Elastic buffers can be implemented using either edge

sensitive flip-flop or level-sensitive latches. Fig. 5.3a shows the flip-flop based im-

plementation of an EB. It consist of two edge-triggered flip-flops (i.e. auxiliary and

5.2. Synchronous elastic implementation 77

main). The EB control provides the enable signal to control which of the two flip-flops

data is to be read from. As discussed earlier, the auxiliary flip-flop is used to store

in-flight data during a stall operation. The mux is used to select data from either the

main flip-flop or the auxiliary flip-flop. Data is written to the main flip-flop (the EB

implements a bypass logic) during a write operation if the EB is empty else data is

written to the auxiliary flip-flop.

An alternative EB implementation is shown in Fig. 5.3b. This uses level-sensitive

latches in series, instead of edge-triggered flip-flops. It works on the principle that

each edge-triggered flip-flop is made up of two level-sensitive latch (i.e. master and

slave latches in Fig. 5.3b) that can store different data if they are controlled differ-

ently. The latch EB control generates the enable signals that are used to drive the

latches. The master latch is transparent on the low clock phase, while the slave latch

is transparent on the high phase of the clock. Each enable signal is emitted on op-

posite phase of the clock and remains stable during at latch active phase [17]. The

latch-based EB provides lower area/power overhead and faster than the flip-flop

based implementation [17]. On the other hand, the flip-flop based is more suitable

for timing analysis and for field-programmable gate arrays (FPGAs) that do not sup-

port latches. The latch based implementation is preferred here because of its area,

delay and power benefits over the flip-flop-based counterpart [17]

Valid_in
Latch Elastic Bu er

ControlReady_out

Valid_out

Ready_in

Data_out
Ghost

Latch

en

D Q

Comb

Logic
Data_in

Synchronous

island

FIGURE 5.4: Elasticization of synchronous systems

Elasticization of synchronous circuits

Synchronous elasticity can be applied at different levels of granularity [41]. One of

such application is to provide elastic communication among existing synchronous

blocks. Fig. 5.4 shows the elasticization of existing synchronous block where the

global clock of the synchronous block is replaced by the gated clock provided by the

EB controller. A "ghost latch" is added to the input of the synchronous block to store

data in-case of pipeline stall or back-pressure. This ghost latch has the same polarity

with the synchronous block and does not introduce any additional delay since they

are redundant during normal system operation [17, 41]. This is adhered to in the

synchronous elastic implementation of R-NoC.

78 Chapter 5. Implementations of Roundabout Network-on-Chip

Another possibility is to apply elasticity at a very low granularity level, where

each gate in a synchronous design is viewed as a separate elastic island and com-

municates with other gates using the elastic handshake protocol. Such finer-grain

application of elasticity would incur a very high cost associated with each gate elas-

tic control circuit [41]. A more intermediate application of elasticity is at the regis-

ter transfer level (RTL), where each sequential element is associated with an elastic

control and can communicate with other sequential element using the handshake

protocol.

Several Network-on-Chip (NoC) routers using the elastic buffer protocol have

been proposed [72, 73, 92]. EB routers do not use explicit input buffers so common

in typical input buffered routers (IBR). The elastic chains of elastic buffers act as dis-

tributed FIFOs producing implicit storage. EB routers realize lower area and energy

compared to IBR and they have far more simpler design [72, 73]. EB router was ex-

tended to support virtual-channels (VCs) [92]. This router is known as ElastiStore.

ElastiStore minimizes the number of buffers per channel and realizes similar perfor-

mance as typical VC router (without EB) but at a lower area and power cost since

the number of buffers per channel is reduced.

5.2.2 R-NoC synchronous elastic building blocks

The R-NoC router is composed of several building-blocks that can be implemented

using synchronous or asynchronous logic design style. First, the general building

blocks are presented, then their synchronous implementation is given. The R-NoC

router utilizes similar packet format regardless of the implementation style, there-

fore the packet format is also presented here.

W
E

S
T

E
A

S
T

NORTH

SOUTH

Input controller

Output controller

Path controller

Buffer

Mux

Switch link

Optional buffers

FIGURE 5.5: A 4-lane R-NoC topology

5.2. Synchronous elastic implementation 79

Fig. 5.5 shows a high level 4-lane R-NoC topology shown in Fig. 4.8. It consists

of several sub-blocks such as controllers (input, output, path), buffers and mux. The

buffers are distributed on the lanes as shown in Fig. 5.5. Thus, packets from several

input ports can exploit the buffering resources on the lanes for performance bene-

fits. Basically, when a packet enters the router, it is received by the input controller.

The route computation and packet output port encoding take place here before the

packet is forwarded to the lane. The path controller switches packet to a secondary

lane if its path is blocked, while the output controller forwards a packet to the router

output port if destined for the corresponding output, hence it is forwarded to the

lane. R-NoC provides a highly distributed and adaptive topology allowing for addi-

tional lanes/ports to be added without incurring a significant increase in arbitration,

area/power overhead. This is explored in Chapter 7

Packet format

33 32 0.

...

Head

Body

Tail Data

Dest Addr Output port Addr

B
O

P

E
O

P

1

0 Data

1

1

0

0

Flits

FIGURE 5.6: R-NoC packet format.

The router employs wormhole flow-control, where the buffering resources are allo-

cated to individual flits of a packet. R-NoC packets consist of N-flits of 32 data-bits,

encoded with two control bits (i.e. the begin-of-packet (BoP) and end-of-packet (EoP

information) as shown in Fig. 5.6. A packet has three types of flits: head, body and

tail. The head flit encodes the destination address and output port in the current

router. The body/tail flits contain actual data. The BoP and EoP information iden-

tify the incoming flit type and help to allocate and deallocate network resources.

Resources allocated by the head-flit are deallocated after the tail flit is transmitted.

West

input

controller

Valid_in

Ready_

out

Local

Output

controller

D
a
ta

_
o
u
t to

o
u
tp

u
t p

o
rt

Local

Path

controller

Req

Data_in

Data_out to

next lane Local

input

controller

ARBITER

DECODER

ENCODER

South

Output

controller

R
e
q

Req

Req

East

Output

controller

R
e
q

North

Output

controller

West

Output

controller

R
e
q

R
e
q

GRANT

Valid

out

Ready

in

Data

out

V
a
lid

_
o
u
t

R
e
a
d
y

in

R
e
q

Lane

out

portOutput

status

Output

logic

Lane

Next

lanePath

Status

Lane

logic
In

In

Path

Computation
In Out

FIGURE 5.7: R-NoC Lane 0 pipeline

80 Chapter 5. Implementations of Roundabout Network-on-Chip

Lane pipeline

The entire pipeline for lane 0 is shown in Fig. 5.7. The blocks (i.e. input, output, lane

controllers) make up the individual pipeline stages and communicate via ready/valid

handshake protocol. Each block incurs only a cycle each, hence the entire pipeline is

only 6 clock cycles for the longest path on the lane (i.e. from west input port to north

output port).

Input controller

As depicted also in Fig. 5.7, the input controller block consists of an EB and a path

computation (PC) block. The area overhead of this block is minimal and this block

incur only one clock-cycle as discussed earlier in this chapter. When a flit arrives

at the input port of the router, it is forwarded to the PC block. The PC block is

responsible for computing the packet output port using XY-routing. If the flit is a

header-flit, the PC block decodes the packet destination address encoded in the flit

and uses this information to compute the packet output port in the current router.

The output port routing information is encoded in the header-flit of the packet before

it is transmitted. The other flits follow the path already reserved by the header-flit

since only the header-flit contains the routing information.

Output and path controllers

The output controller is also displayed in Fig. 5.7. It consists of an elastic-buffer, an

output logic block and a demux. When a flit is received, it is forwarded to the output

logic block. Depending on the packet output information encoded in the packet

header and the output status, the block selects one of two possible paths to forward

the packet.

1. output port address matches and output port is free;

2. output port address matches but output port is busy and is not local;

3. output port address matches but output port is busy and is local;

4. output port address does not match;

5. output port address matches and output port controller is located on the sec-

ondary lanes, i.e., Lane 2 or Lane 3 shown in Fig. 5.5.

For cases (1), (3) and (5) the path labelled "out port" is selected and the flit is

forwarded to the output port. However, the flit is forwarded to the lane for case (3)

if the output port controller is located on lane 1 (see Fig. 5.5). For cases (2) and (4),

the path labelled "Lane" is selected and the flit is forwarded to the lane. The reserved

5.2. Synchronous elastic implementation 81

path is kept active for the other flits transmission. The path controller is similar to the

output controller in terms of functionality. It forwards a packet to the lane if the

packet path is not blocked. Otherwise, it switches the packet to a secondary lane.

Req0 FCFS / RR

ARBITERReq1

Gnt0

Gnt1

Req0 FCFS / RR

ARBITER-0Req1

Req2 FCFS / RR

ARBITER-1Req3

STATIC

PRIORITY

ARBITER

Gnt0

Gnt1

Gnt2

Gnt3

(A) FCFC/RR arbiter

Req0 FCFS / RR

ARBITERReq1

Gnt0

Gnt1

Req0 FCFS / RR

ARBITER-0Req1

Req2 FCFS / RR

ARBITER-1Req3

STATIC

PRIORITY

ARBITER

Gnt0

Gnt1

Gnt2

Gnt3

(B) Static priority arbiter

FIGURE 5.8: First-come-first-serve (FCFS) /round-robin (RR) and
static-priority arbiter

Arbitration

An arbiter is required to grant access to shared network resources. Two kinds of

arbiters are used in R-NoC to grant access to shared resources i.e. lane buffers and the

router output ports. A 2 input-request arbiter is used to control access to shared lane

resource as displayed in Fig. 5.8a. This arbiter operates in two modes i.e. first-come-

first-served mode for sequential requests and round-robin mode for simultaneous

requests. An example is shown in Fig. 5.7, where arbitration between the local lane

controller and the local input controller is provided by an arbiter to control access to

the next shared lane resource (i.e. south output controller buffer). For this purpose,

the arbiter operates in a first-come-first-serve (FCFS) manner or round-robin (RR) if

request from both controllers are simultaneously asserted.

On the other hand, a static priority arbiter is used to control access to R-NoC

output port as shown in Fig. 5.8b. This arbiter is composed of two FCFC/RR ar-

biters and a static priority arbiter that grants the output request base on priority. The

FCFC/RR arbiter-0 arbitrates between requests coming from two primary lanes (i.e.

lane 0 and lane 1), while the FCFC/RR arbiter-1 arbitrates between requests coming

from two secondary lanes (i.e. lane 2 and lane 3) using policies described previously.

As shown in Fig. 5.8b, the outputs of the two FCFC/RR arbiters are fed into the

static priority arbiter. Note that only two inputs (to the static priority arbiter) can be

asserted simultaneously (i.e. outputs of FCFC/RR arbiter-0 and FCFC/RR arbiter-1).

The output port is granted depending on the priority of the request. A request from

FCFC/RR arbiter-1 is given priority over a request from FCFC/RR arbiter-0, even in

cases of simultaneously requests, since a request from FCFC/RR arbiter-1 represents

output port request from a controller located on the secondary lane. The arbiters

are implemented using FSM with a combinational output (Mealy FSM), hence it can

process requests as soon as they arrive without waiting for a clock edge.

82 Chapter 5. Implementations of Roundabout Network-on-Chip

Lane 0

North

output

controller

Lane 1

North

output

controller

Lane 2

North

output

controller

Lane 3

North

output

controller

Data_in

0

Data_in

1

Data_in

2

Data_in

3

Data_out

to router

ARBITER

VALID_OUT

ENCODER

READY_IN

DECODER

Grant

Valid

in

Req

Ready_out

Valid_out

Ready_in

MUX

FIGURE 5.9: R-NoC output port block

Output port structure

Fig. 5.9 shows R-NoC north output port module which is typical of all the output ports

in the router. The block receives data-flows from each north output controller located

on lane 0 to lane 3. As displayed in the figure, the grant signal from the Arbiter is

used to select one of the four data-flows that are inputs to the Mux. The selected data

is forwarded to the input controller (precisely south input controller) of the adjacent

router. Remembering that each block communicates using the ready/valid handshake

protocol, the output port block must ensure the following for the correct functioning

of the circuit:

• only the valid signal of the output controller that has been granted access to the

output port is sent to the receiver

• the receiver’s status (i.e. indicated by the "ready_in" signal) is communicated

to only the output controller that has been granted access to the output port

For this reason, an Encoder is needed to generate the correct valid_out signal,

while the correct ready_out signals is generated using the Decoder circuit as shown

in Fig. 5.9. A possible implementations of the blocks can be found in [53].

5.3. Asynchronous implementation 83

5.3 Asynchronous implementation

The role of the clock in a synchronous circuit is to define time instances where a

signal is stable and valid i.e. all the interacting components assume a common no-

tion of time [96]. Unlike synchronous circuit, asynchronous circuits belong to the

class of sequential circuits that do not rely on a clock for synchronizing events of

communicating blocks [96].

Clock

Sender
Data
out

Data
in

Logic
Receiver

(A) Synchronous communication

Sender

Req

Data
out

Data
in

Logic
Receiver

Ack

Handshake

(B) Asynchronous communication

FIGURE 5.10: Synchronous vs. Asynchronous communication

Fig. 5.10a shows, as an example of synchronous circuit, a 2-stage synchronous

pipeline where data flows sequentially from one memory element (i.e. Sender) to

another (i.e. Receiver). As shown in Fig. 5.10a, a global clock is used to synchronize

the movement of data in this pipeline circuit. Conversely, an asynchronous circuit

(also known as a self-timed circuit) relies on local handshaking for controlling the

movement or flow of data in the circuit.

This is depicted in Fig. 5.10b, where a specific class of asynchronous protocol is

used to control data-flow in the asynchronous pipeline. The handshaking protocol

is similar to the synchronous read-valid handshake discussed previously. Here, the

communication proceeds as follows: the sender issues data and assert the request

signal if the data is valid. Upon receiving the data and request signal, the receiver

stores the data and asserts the ack signal. The sender can then initiates the next data-

transfer request. On the other hand, if the request signal is de-asserted, the receiver

cannot store the data since the data is invalid. Similarly, the sender cannot initiate

the next data transfer if the previous data transfer has not been acknowledged by

the receiver. In general, a stage can accept a new data if its left neighbouring state

is providing a new data and its right neighbouring state has successfully stored the

previous data [96, 77].

Data transfer in asynchronous circuit occurs between communicating blocks us-

ing bundles of wires known as channels [6]. The handshake protocol can be used

for data transfer or to synchronize circuits. An asynchronous channel for data trans-

fer can either be a push or pull channel depending on the flow of data relative to the

request signal as shown in Fig. 5.11. In a push channel, data transfer request is initi-

ated by the sender and the direction of data-flow and request are the same. On the

84 Chapter 5. Implementations of Roundabout Network-on-Chip

Sender Receiver

Req

Ack

(A) Handshake push channel

Sender Receiver

Req

Ack

(B) Handshake pull channel

FIGURE 5.11: Handshake push vs. pull channel

other hand, in a pull channel, the receiver initiates the data transfer and the direction

of data-flow and acknowledgement are the same [6, 86].

Subsection 5.3.1 introduce the general concept of asynchronous logic design pro-

tocols. Subsection 5.3.2 discusses the Bundled-data protocols used in the MANGO

[11] and QNoC [30] NoCs. Subsection 5.3.3 discusses a class of asynchronous proto-

cols known as delay-insensitive (DI) protocols. It presents the 4-phase dual-rail DI proto-

col used in Hermes-A [85], ANoC [7], FAUST [5] NoCs, and Level-Encoded Dual-rail

(LEDR) protocol used in Onizawa [78].

Asynchronous circuit

implementation

Single-rail
Delay

insensitive (DI)

2-phase 4-phase

LEDR LETS 1-of-N m-of-N

1-of-2 1-of-4

4-phase

Bundled

data
E.g. 2-of-4

2-phase

Bundled

data

FIGURE 5.12: Asynchronous circuit implementation

5.3.1 Asynchronous circuit design

The goal of this subsection is to present some of the well-known asynchronous hand-

shake protocols and their practical implementation in Network-on-Chip router. The

focus is not to present all the principles of asynchronous circuits but to give a gen-

eral overview that will enable the reader to appreciate and evaluate our proposal

and that of the related works.

Depending on the data-encoding scheme, an asynchronous circuit can be imple-

mented either as single or delay-insensitive (DI) circuit as shown in Fig. 5.12. In sin-

gle rail implementation style, data is encoded with conventional single rail boolean

logic, while multiple rails are used to encode data in DI circuit implementation [96].

5.3. Asynchronous implementation 85

Req

Ack

Data 1st data 2nd data

1

2

1

2

FIGURE 5.13: Two-phase handshake protocol control signaling

Req

Ack

Data 1st data 2nd data

1

4

3

2

1

2

3

4

FIGURE 5.14: Four-phase handshake protocol control signaling

Handshake protocol control signaling

Generally, asynchronous handshake protocols control signaling can occur in 2-phase

or 4-phase. This is true for both the Bundled-data (where data is bundled with sep-

arate req and ack wires) and DI protocols. An example of both will be provided for

only Bundled-data protocol since it is also applicable to the DI. The difference is

mainly in their data encoding. Fig. 5.13 shows an example of data transfer using the

2-phase control signaling. In the 2-phase mode, the Req and Ack make one transition

each per data transfer. Also, there is no return-to-zero phase where the control sig-

nals are reset before the next data transfer can be initiated. Contrary to the 2-phase

handshake signaling, the 4-phase requires four wires transition events for each data

transfer transaction. Also, each control signals must return-to-zero before the next

data transfer.

In General, the 4-phase protocol is most common due to its ease of design com-

pared to the 2-phase counterpart [96]. The 4-phase uses return-to-zero which intro-

duces lower throughput (control signals are reset to zero before the next data trans-

fer transaction can be initiated) and higher power (switching all the control signals

to zeros before next transaction increases circuit switching activities) compared to

the 2-phase protocol. Conversely, the 2-phase protocol implementation could lead

to faster circuits with lower power consumption. However, implementing control

circuits for the two phase protocol is complex since every wire transition represent

the presence of valid data in the channel and the receiver is expected to respond

86 Chapter 5. Implementations of Roundabout Network-on-Chip

accordingly (be able to respond to the events) [96].

Match delay

Control

Circuit

Control

Circuit

Sender

Req

Data_outData_in
Logic

Receiver

Ack

FIGURE 5.15: Bundled-data asynchronous protocol

5.3.2 Bundled-data protocol

The Bundled-data asynchronous protocol uses one wire to represent one bit of infor-

mation to be transferred on an asynchronous channel, where additional wires (req

and ack) are bundled with the data. The bundled-data protocol is similar to a con-

ventional synchronous circuit in terms of data encoding (i.e. both uses 1 wire to rep-

resent one bit of data) and in structure. In bundle data, the global clock is replaced

by handshaking control circuits as displayed in Fig. 5.15. A possible implementation

of the control circuit is given in [96]. Since the synchronous clock has been replaced

by local handshake, timing information is carried on two separate signals known as

the control signals i.e. the req and ack signals. The req enables a sender to indicate

the availability of valid data while the ack signal enables the receiver to indicate its

readiness to receive and store new data [96, 6]. To ensure proper functioning of the

bundled-data circuit, a delay element (i.e. matched delay in Fig. 5.15) is added be-

tween registers for all computation blocks in the design i.e. logic in Fig. 5.15 and

the delay of the computation block must be smaller than the match delay. This en-

sures that the receiving register does not receive the req signal too early i.e. before a

valid data is produced at the output of the computation block. If req is asserted too

early, the receiving register might latch intermediate (invalid) data produced by the

computation block.

Network-on-Chip routers based on Bundled-data protocol

Several Network-on-Chip (NoC) routers in the literature have been implemented us-

ing the Bundled-data protocol [11, 30, 45]. The Mango [11] clock-less router is based

on the 4-phase Bundled-data asynchronous protocol. The Mango NoC router based

on 120nm CMOS technology provides a reasonably high throughput and a small sili-

con area-overhead since it is based on Bundled-data protocol which leads to reduced

area overhead. However, as will be discussed next, the bundled data protocol is not

timing robust and subject to temperature, voltage variations which can affect signal

integrity [86].

5.3. Asynchronous implementation 87

Sender Receiver

Data, Req

Ack

2n

(A) Communicating chan-
nels

Encoding Value

d

Reset/Empty

Valid 0

Valid 1

Not used

d0 d1

0 0

0 1

1 0

1 1

(B) Data encoding

Valid - 01 Spacer - 00 Valid - 10 Spacer - 00

Ack

Data

(C) Data transition

FIGURE 5.16: 4-phase dual-rail asynchronous protocol

5.3.3 Delay-insensitive protocol

Unlike the Bundled-data protocol, the delay-insensitive (DI) protocol is timing robust

ensuring that two asynchronous blocks can reliably communicate even when delays

are present in the wires connecting them [96]. Fig. 5.16a shows communication

using the 4-phase dual-rail protocol. This protocol does not use separate Req signal

to indicate data validity. Instead, the Req is encoded instead the actual data to be

transferred on the channel. This protocol requires two wires (i.e. d0 and d1 in Fig.

5.16b) to encode 1 bit of data to be transmitted. Hence, sometimes called dual-rail 1-

of-2 protocol. As shown in Fig. 5.16a, 2xn wires are needed to transmit n-data through

the channel. Fig. 5.16b shows data encoding for this protocol. For example, a valid

logic bit 1 is encoded as "10". This protocol forbids the transition from one valid

data to another. Hence, each valid data is separated by an empty data or spacer.

This is depicted in Fig. 5.16c.

Encoding Value

d

Reset/Empty

00

01

10

d0d1

0 0

0 1

1 0

1

d2d3

0 0

0 0

0 0

0 00
1 000

Others
11

Not used

FIGURE 5.17: Four-phase 1-of-4 protocol data encoding

1

0

1

0

0

0

0

0

1

0

1

0

(A) Example of 1-of-2

1

0

0

0

0

0

0

0

1

0

0

0

(B) Example of 1-of-4

FIGURE 5.18: Transition of two logical bits from (1,1) to (1,1) using
dual-rail 1-of-2 and 1-of-4 protocol. Shaded box represent signal tran-

sition

88 Chapter 5. Implementations of Roundabout Network-on-Chip

The 4-phase 1-of-4 protocol is similar to the 4-phase 1-of-2 in terms of data transi-

tioning. However, contrary to the 1-of-2 protocol, this protocol requires 4 wires (i.e.

d0 to d3 in Fig. 5.17) to encode 1 bit of data to be transmitted. Fig. 5.18 shows the

transition of two logical bits (i.e. from [1,1] to [1,1]) using the 1-of-2 and 1-of-4 pro-

tocols. A total of 4 wire transitions occur for 4-phase 1-of-2 as shown in Fig. 5.18a,

while only two wire transitions is observed for 4-phase 1-of-4. Hence, 4-phase 1-of-4

provides lower power consumption (due to fewer signal transitions) compared to

the 4-phase 1-of-2. However, the 1-of-2 is mostly used due to its lower implementa-

tion complexity. The whole class of 1-of-n handshake protocol get very expensive

beyond 1-of-4.

Network-on-Chip routers based on 4-phase dual-rail protocol

Several routers using the 4-phase dual-rail protocol exist in the literature [85, 7, 5, 99].

Similar to the R-NoC (asynchronous implementation), the Hermes-A router [85] uses

distributed routing and independent arbitration at the router ports. The Hermes-A

router [85] achieves a smaller area-overhead compared to R-NoC due to multiple

lanes in R-NoC. However, the Hermes-A router [85] does not support shared-buffer

like the R-NoC.

Encoding Value

d

0

1

0

1

Phase Data rail

0

1

0

1

Parity rail

0

1

1

0

Even

Odd

FIGURE 5.19: Level-encoded dual-rail (LEDR) encoding

1

1

0

0

0

1

1

0

Even Odd

(A) Example of LEDR

1

0

0

1

0

0

0

0

0

1

1

0

(B) Example of 1-of-2

FIGURE 5.20: Transition of two logical bits from (1,0) to (0,1) using
LEDR and 1-of-2 protocol. Shaded box represent signal transition

Level-Encoded Dual-Rail (LEDR) protocol

Contrary to the 4-phase dual-rail protocol that requires resetting all bits to zero (i.e.

return-to-zero) before the next data transfer can be initiated), Level-Encoded-Dual-

Rail (LEDR) is a 2-phase protocol as it completely eliminates the return-to-zero phase

associated with the 4-phase protocol [26]. Similar to 4-phase 1-of-2 protocol, LEDR

uses two wires to encode 1-bit of data to be transmitted. This is shown in Fig. 5.19,

where one wire is used as the parity-rail and the data-rail carries actual data. LEDR

5.4. R-NoC delay-insensitive implementation 89

is an alternating phase protocol requiring data to transition from one phase to the

other. Fig. 5.20 shows the transition of two logical bits (i.e. from [1,0] to [0,1]) using

the LEDR protocol and 4-phase dual-rail 1-of-2 protocol. As shown in Fig. 5.20a, only

one rail changes per 1-bit transition in LEDR, while for each logic bit transition in 1-

of-2, two rails changes due to the additional return-to-zero step. In the example shown

in Fig. 5.20, a total of four rails change is observed for the transaction (i.e. 1-of-2

protocol) as shown in Fig. 5.20b. LEDR leads to higher throughput and lower power

since the communication step is reduced by half and has fewer rails change per

transaction compared to the 1-of-2. However, it is more complex to realize circuits

using the 2-phase protocol [96].

Network-on-Chip router base on LEDR

A Network-on-Chip (NoC) router based on LEDR has been proposed [78]. The

LEDR based router realized a throughput that is almost twice that of their 4-phase

implementation of the same router and dissipates less energy per-flit. Surprisingly,

in terms of head-flit latency, the 1-of-2 based router achieves a shorter head-flit trans-

mission time and reduced power dissipation compared to the LEDR router. Ac-

cording to the authors, the reason for this is linked to the pipeline-latch implemen-

tation. The Level-Encoded-Transaction Signaling (LET) is an extension of LEDR.

Hence LEDR can be seen as 1-of-2 LETS. Compared to LEDR, it has an additional

benefit of lower power consumption since it uses fewer wire transitions for each

data-transfer [68].

5.4 R-NoC delay-insensitive implementation

The asynchronous version of the R-NoC router is implemented using the 4-phase

dual-rail protocol described in Section 5.3. Delay insensitivity and lower imple-

mentation complexity [96] motivate the choice of using this protocol. Unlike syn-

chronous circuit implementation, asynchronous designs provide intrinsic flow-control

properties that make for a perfect fit for R-NoC that heavily relies on dynamic inter-

nal flow routing. This subsection provides an in-depth 4-phase dual-rail implementa-

tion of the different blocks used in R-NoC topology shown in Fig. 5.5.

The muller gate or c-gate is extensively used in asynchronous design. The symbol

for a 2-input c-gate is shown in Fig. 5.21a where, dt and d f are the input and d is

the output of the gate. The output of the c-gate is indicated (output is produced)

only when both input events have taken place. The truth table for a 2 input c-gate is

given in Fig. 5.21. The output of the gate indicates "0" when both inputs are "0" and

a "1" when both inputs are "1". The previous output value is retained for other input

combinations. A possible implementation of a 2-input c-gate is given in Fig. 5.21c.

90 Chapter 5. Implementations of Roundabout Network-on-Chip

d

0

Hold

Hold

1

dt df

0 0

0 1

1 0

1 1

C d
dt

df

d

dt

df

(A) C-gate symbol

d

0

Hold

Hold

1

dt df

0 0

0 1

1 0

1 1

C d
dt

df

d

dt

df

(B) C-gate truth table

d

0

Hold

Hold

1

dt df

0 0

0 1

1 0

1 1

C d
dt

df

d

dt

df

(C) C-gate implementation

FIGURE 5.21: Muller gate symbol, truth table and gate-level imple-
mentation

--use IEEE.std_logic_1164.all;

--use ieee.numeric_std.all;

--

entity cgate2to1 is

 Port (

i0 : in STD_LOGIC;

i1 : in STD_LOGIC;

o : out STD_LOGIC;

Reset : STD_LOGIC

);

end cgate2to1;

architecture cgate2to1_arch of cgate2to1 is

signal and0_out, and1_out, and2_out, or_out : STD_LOGIC;

begin

process (Reset, i0,i1)

begin

if(Reset = '1') then

and0_out <= '0';

and1_out <= '0';

and2_out <= '0';

or_out <= '0';

else

and0_out <= i0 AND or_out;

and1_out <= i0 AND i1;

and2_out <= i1 AND or_out;

or_out <= and0_out OR and1_out OR and2_out;

o <= or_out;

end if;

end process;

end cgate2to1_arch;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

18

20

21

22

23

24

25

26

27

28

29

30

31

32

33

FIGURE 5.22: VHDL description of a C-gate

5.4. R-NoC delay-insensitive implementation 91

Fig. 5.22 displays an HDL description of a typical 2 inputs C-gate used in the design.

Although implementing the entire asynchronous design (using HDL) does not result

in an optimal implementation, it has been used for faster design evaluations.

Individual

Detection

Din[0]_t

Din[0]_f

Ack_out

Din[1]_t

Din[2]_f

C

Din[N-1]_t

Din[N-1]_f

Din[N]_t
C

C
.
.
.

.

.

.

Detection

Tree

Din[N]_f

FIGURE 5.23: 4-phase dual-rail completion detector

As stated earlier, the 4-phase dual-rail protocol uses 2 wires to encode 1-data bit to

be transmitted and each valid data is separated by empty data or spacers. A receiver

detects valid data when all the wire pairs are not empty. This is accomplished with

the completion detection circuit shown in Fig. 5.23. This circuit is composed of OR-

gates used for detecting the validity of individual dual-rail code and a tree of c-gates

used to synchronize the individual detection and to signal a valid data reception.

The output of this circuit gives a logical "1" only when all wire pairs contain valid

data and a logical "0" when all wire pairs are empty. Hence, it is widely used in DI

protocol to signal the receipt of valid or empty data.

Ack_out

Ack_in

C

C

.

.

.
Din[N]_t

Din[N]_f

Dout[N]_t

Dout[N]_f

C

C

Din[0]_t

Din[0]_f

Dout[0]_t

Dout[0]_f

C

C

Din[1]_t

Din[1]_f

Dout[1]_t

Dout[1]_f

C
o
m

p
le

tio
n
 d

e
te

c
to

r (C
D

)

FIGURE 5.24: 4-phase dual-rail half-buffer

Fig. 5.24 shows a 4-phase dual-rail buffer. This buffer is known as half-buffer

because it can store only one token (either a valid data or a spacer). A buffer that

can store both valid data and spacer is known as full-buffer. The buffer is used as

92 Chapter 5. Implementations of Roundabout Network-on-Chip

temporary data storage and communicates with neighbouring buffers using the 4-

phase dual-rail handshake protocol.

5.4.1 4-phase dual-rail input controller

Fig. 5.25 shows the router input controller structure. When a flit arrives at the router

input, the fork block reads the flit type information encoded in the flit. The encoder

uses the information to generate a select signal for the demux. If the flit type is "head",

it is forwarded to the path computation (PC) block. Other flit types i.e. body and tail

flits are forwarded out of the controller since only the head-flit contains the routing

information. A routing algorithm is applied in the PC block to compute the packet

output port destination in the current router. Each output port in R-NoC has a unique

1-bit single-rail address. The output port information is encoded in the flit and then it

is transmitted. The PC block is similar to the one proposed in [85].

C

C

Din[0]_t

Din[0]_f

Ack_out

C

C

Din[N]_t

Din[N]_f

.

.

.

C

C
D

C

C

C

C

.

.

.

C

C

C

C

.

.

.

...

.

.

.

CD CD

C

C

Dout[0]_t

Dout[0]_f

Ack_in

Dout[N]_t

Dout[N]_f

.

.

.

...

P
a
th

 C
o
m

p
u
ta

tio
n

BUFFER FORK

DEMUX

MERGE

C
o
m

p
le

tio
n
 d

e
te

c
to

r

(C
D

)
...

.

.

.

E
n
c
o
d
e
r Sel_f

Sel_t

CD...

..

.

FIGURE 5.25: R-NoC input controller

5.4.2 4-phase dual-rail output and path controllers

Fig. 5.26 shows R-NoC output controller structure. When a flit is received, the first

demux selects one of two paths to forward the flit depending on the flit type. If a

head flit is signaled, it is forwarded to the output logic block. Otherwise, the flit is

forwarded to the lane. When a valid head-flit is detected at the output logic block

(i.e. output of completion detection circuit is ’1’). The block checks if the output port

address (encoded in the flit) matches the current output port and decides where to

forward the flit. The reserved path must be kept for the other flits transmission.

5.5. Summary 93

Hence, last demux is purely combination allowing for transmitting both valid and

spacer data while keeping the select signal of the demux active. The path controller is

similar to the output controller in terms of functionality and circuitry. It forwards a

packet to the lane if the packet path is not blocked on the primary lane. Otherwise,

it switches the packet to a secondary lane.

C

C.
.
.

Din[0]_t

Din[0]_f

Ack_out

C

C

Din[N]_t

Din[N]_f

C

CD

C

C

C

C

.

.

.

C

C

C

C

.

.

.

...

.

.

.

CD CD

C
C

Dout[0]_t

Dout[0]_f

Ack_in lane

Dout[N]_t

Dout[N]_f

.

.

.

...

O
u
tp

u
t lo

g
ic

BUFFER FORK

DEMUX
MERGE

C
o
m

p
le

tio
n
 d

e
te

c
to

r

(C
D

)

...

.

.

.

E
n
c
o
d
e
r

Sel_f

Sel_t

CD...

..

.

D
a
ta

 o
u
t to

 o
u
tp

u
t p

o
rt

.

.

.

Dout[0]_t

Dout[0]_f

Dout[N]_t

Dout[N]_f

.

.

.

D
a
ta

 o
u
t to

 la
n
e

Ack_in out

Select

Ouput

port

status

FIGURE 5.26: R-NoC output controller

5.5 Summary

R-NoC has been implemented using two alternatives design styles: synchronous

elastic (not purely synchronous) and asynchronous because of the underlying spe-

cific intricate flow-control mechanism of R-NoC. The synchronous elastic implemen-

tation is based on elastic buffers that uses existing pipelined flip-flops in the channels

to implement elastic FIFOs [17, 73]. Elastic buffers can be implemented using either

edge sensitive flip-flop or level-sensitive latches. The latch based implementation is

preferred here because of its area, delay and power benefits over the flip-flop-based

counterpart [17]. The asynchronous implementation of R-NoC is based on the 4 phase

dual-rail protocol since the protocol is delay insensitive and allows for less complex

implementation compared to the 2 phase delay insensitive protocol [96].

95

Chapter 6

Evaluation of Roundabout Mesh

Network topology

96 Chapter 6. Evaluation of Roundabout Mesh Network topology

«"Stop chasing the money and start

chasing the passion."»

Tony Hsieh

Contents

6.1 Introduction . 96

6.2 Synchronous elastic evaluation . 98

6.2.1 Synchronous elastic router . 98

6.2.2 Baseline synchronous elastic network 101

6.2.3 Exploring further synchronous elastic router topologies . . 102

6.3 Asynchronous evaluation . 107

6.3.1 Asynchronous router . 108

6.3.2 Baseline asynchronous network 109

6.3.3 Exploring further asynchronous router topologies 110

6.3.4 Comparison with existing solutions 111

6.4 Discussion: synchronous elastic vs. asynchronous 113

6.1 Introduction

This chapter presents the evaluation of the synchronous elastic (R-NoC-SE) and asyn-

chronous (named R-NoC-A) versions of R-NoC. The evaluations are carried out at

router and network levels using the metrics discussed in Chapter 2. Besides perfor-

mance, area and power results are also presented. In addition, this chapter provides

a quantitative comparison of R-NoC-SE and R-NoC-A with existing synchronous and

asynchronous solutions respectively, in order to show the benefits of the proposal.

Fig. 6.1 shows the R-NoC-SE design flow. It begins with laying down the speci-

fication of the system. Then, a register transfer level (RTL) description of the design

is produced in VHDL and simulated using Mentor Graphics ModelSIM simulator

[43]. The functionality of the design is validated using testbench described in VHDL

as shown in Fig. 6.1. If the design is not functionally correct, the flow returns to

the previous stage (i.e. RTL description). This process is iterative and continues

until a functionally correct design is produced. On the other hand, if the design is

functionally correct, the performance results such as latency and throughput discussed

in Chapter 2 is produced at router/network level. The next step is to produce the

gate-level description of the design (i.e. netlist, which is basically a connection of

gates that makes up the design) so as to be able to obtain more realistic evaluations

contrary to using high-level area/power estimators. For this reason, the functional

VHDL description of the design is fed into the synthesis tool which then produces

6.1. Introduction 97

Design

specification

RTL

description
(ModelSIM /

VHDL)

Functional

validation
(ModelSIM)

Logic

synthesis
(Design compiler)

Logic

validation
(ModelSIM)

Power

estimation
(Synopsys

PrimeTIME PX)

Souce files (VHDL)

* Source files (VHDL)

* Standard cell LIB

* Design constraints

* Gate-level (Netlist)

* Standard cell LIB

* SDF file

* Gate-level (Netlist)

* Standard cell LIB

* VCD dump file

Power

results

Area

Result

* Latency

* Throughput

Performance

Simuation
(ModelSIM)

FIGURE 6.1: R-NoC-SE elastic design flow

the design netlist. Two synthesis tools were considered: Synopsys Design Compiler

[97] for 180nm CMOS standard cell library and Cadence RTL Compiler [16] for 45nm

CMOS cell library.

The produced netlist is validated using VHDL testbench in ModelSIM environ-

ment to ensure it is functionally correct. Note that area results are generated from the

functionally correct design netlist. In order to produce the power result, the design

netlist, standard cell library and value change dump (VCD) file is fed into Synop-

sys PrimeTime PX as shown in Fig. 6.1. The VCD file contains information about

the switching activities or signal changes in the design during simulation. Power

results are obtained only for 45nm CMOS cell library. The described design flow is

similar to that of the asynchronous implementation (i.e. R-NoC-A). The main differ-

ence is that in the asynchronous case, the router blocks were back-annotated with

delay values from the synthesis tools for performance simulations. This is because

asynchronous logic works on the principle of propagation delay of individual gates

since there is no clock.

The reminder of this chapter is as follows: section 6.2 presents the evaluation of

the synchronous routers and networks, while section 6.3 presents the evaluation of

the asynchronous routers and corresponding networks.

98 Chapter 6. Evaluation of Roundabout Mesh Network topology

6.2 Synchronous elastic evaluation

This section evaluates the synchronous implementation of R-NoC-SE router and net-

work. This section also explores further R-NoC-SE topologies in terms of area and

performance. R-NoC-SE is also compared to existing wormhole, virtual-channel and

single cycle routers.

6.2.1 Synchronous elastic router

This subsection presents the performance and area evaluation of R-NoC-SE. In terms

of performance, it provides insight into the impact of lane switching on packet la-

tency. The power results for different paths taken in the router is also presented

here.

Performance and Area Evaluation

W
E
S
T

E
A
S
T

SOUTH

NORTH
L
O
C
A
L

L
a
n
e
 0

L
a
n
e
 2

L
a
n
e
 1

L
a
n
e
 3

FIGURE 6.2: A conceptual 4-lane R-NoC topology

For R-NoC-SE area and head-flit latency evaluation, the 4-lanes router version

(i.e. base R-NoC router) with 5 input/output ports shown conceptually in Fig. 6.2.

A more detailed figure and description of router topology have been provided in

Chapter 5.

TABLE 6.1: Performance of 34-bits R-NoC-SE routers.

Head-flit latency (cycles)
Operating freq. (MHz) Total area (mm2)

Min Max
2 6 650 0.03

In Table 6.1, the result for the min and max head-flit latencies are displayed. The

min and max head-flit latencies correspond to latencies incurred when the head-flit

takes a short path (e.g. west input to local output port in Fig. 6.2) and a long path

(e.g. west input to north output port in Fig. 6.2) on a given lane in the router. Thanks

to the short router pipeline, the head-flit latency for the router is only 2 clock cycles

6.2. Synchronous elastic evaluation 99

for short path (a cycle each for input and output controllers). Output port arbitration

is performed in the same cycle when output request is sent by output controllers.

Compared to most typical input buffered NoC router, the router pipeline for a

short path is twice less. As an example, the Hermes [74] router has a router pipeline

of 5 clock cycles which is only one clock cycle less than the pipeline cycle period for

the longest path on a given lane in R-NoC-SE. The 4 or 5 stage pipeline in typical

input buffered routers is often due to series of steps such as buffer allocation, route

computation, switch allocation, switch traversal and link traversal (often requiring

a cycle each) needed to route a packet. On the other hand, single-cycle routers dis-

cussed in Chapter 2 (subsection 2.1.4) can achieve a pipeline stage of one clock cy-

cle especially for light traffic since the possibility of successful speculation is high.

However, the pipeline stage increases when network-traffic is heavy. R-NoC-SE dis-

tributed architecture provides a much simpler design (no centralized crossbar) and

shorter pipeline stages to route a packet. The router is clocked at 500MHz and has

a small area overhead as displayed. The max operating frequency of the design is

reported in Table 6.1.

In order to investigate the impact of lane switching (i.e. switching from primary

to secondary lanes) on the router on performance, the router configurations with

and without lane switching are compared. Unlike the Rotary [2] router which incurs

power and performance overheads caused by allowing packets to make multiple

turns in lanes as discussed in Chapter 4, R-NoC-SE avoids these overheads by allow-

ing packets to immediately switch to secondary lanes via the switch link.

(a) (b)

PE->N PE->S

(d)

PE->SPE->N

(c)

FIGURE 6.3: A packet from east port to north port: (a) without lane
switching, (c) with lane switching. A packet from east to south: (b)

without lane switching (d) with lane switching.

TABLE 6.2: Impact of lane switching on latency

Without lane switching With lane switching
Scenario-A Scenario-B Scenario-C Scenario-D

2 cycles 6 cycles 9 cycles 6 cycles

Fig. 6.3(a) - (d) shows the considered data-flow scenarios, where only primary

lanes are used in Fig. 6.3(a) and (b) i.e. no lane switching, while lane switching

occurs in Fig. 6.3(c) and (d). The head-flit is considered for the experiment. Table

6.2 shows the corresponding latency incurred for transmitting the head-flit for each

100 Chapter 6. Evaluation of Roundabout Mesh Network topology

scenario. Here, two important observations are made: (i) taking longer routes in

the router does not necessarily incur significant latency overhead. As an example,

scenario-B incurred only a small additional latency of 4 clock cycles when compared

to scenario-A where the head-flit took a short route. This observation is also valid for

all the other scenarios, (ii) similarly, lane switching does not incur significant packet

latency overhead. On the contrary, lane switching avoids additional latency incurred

when packets are queued and improves the router throughput since switching lanes

frees up the router resource for use by other packets. The network packet latency at

low-load is expected to be minimal since only few packet will switch lanes. Thus,

lane switching does not significantly impair R-NoC-SE performance.

Power estimation

0 20 40 60 80

Throughput (Gbps)

0

0.5

1

1.5

2

2.5

3

3.5

P
o
w

e
r

(m
W

)

No tra�c

Shortest path
Short path
Long path
Longest path

FIGURE 6.4: Power consumption based on paths taken in the router

R-NoC-SE power estimation was carried out at Gate level using Synopsys Prime-

Time PX and the 45nm CMOS cell library. Fig. 6.4 shows the power results for dif-

ferent packet throughput depending on the paths (i.e. shortest, short, long, longest)

taken by packets in the router. Shortest, short, long, longest paths correspond to a

path from west input to local, south, east and north output ports respectively. The

power results are obtained when the router links are operating at their maximum

throughput. This plot shows one of the interesting benefits of the resource sharing

and adaptive features of R-NoC-SE, where the power consumption does not solely

depend on the packet throughput but also on the path taken by packets in the router.

Hence, less power is consumed for similar packet throughput when shorter paths

are utilized in the router, i.e. under light load. Additionally, it is visible from the

plot that the power consumption increases proportionally with traffic, which is a

desirable feature achieved thanks to the traffic-proportional utilization of lanes and

buffering resources.

6.2. Synchronous elastic evaluation 101

6.2.2 Baseline synchronous elastic network

For network-level performance exploration, a 4x4-mesh network consisting of R-

NoC-SE router is considered. A packet length of 10 flits, with flit size of 32 data bits

is considered for simulations. In the VHDL testbench, processing blocks attached to

the routers local port serve as both producers and consumers of packets. A simula-

tion model where each block keeps sending packets until a stable network reaches a

stable latency is considered.

TABLE 6.3: Comparison of Hermes and base R-NoC-SE

Router Net. Sat. (%) Area (mm2) Power (mW)
Hermes 31 0.05 3.6

R-NoC-SE (C1) 20 0.03
Min Max
1.8 2.6

0 10 20 30 40
0

50

100

150

200

Offered Load (%)

L
a
te

n
c
y

(c
lo

c
k

c
y
c
le

s
)

Hermes

R-NoC

FIGURE 6.5: Performance of base R-NoC-SE vs. Hermes for a similar
configuration

Table 6.3, shows the evaluation of the base R-NoC-SE and Hermes [74]. The

performance result (in terms of network saturation throughput) was obtained for

uniform traffic pattern explained in Chapter 2, subsection 2.1.5. It is observed that

the network performance (4x4 mesh topology) is improved by 55% for a network

consisting of Hermes routers compared to a network consisting of base R-NoC-SE

routers as seen in Fig. 6.5. The main reason for base R-NoC-SE poor performance

and the solution to significantly improving R-NoC-SE performance is presented in

the next subsection (i.e. subsection 6.2.3).

102 Chapter 6. Evaluation of Roundabout Mesh Network topology

6.2.3 Exploring further synchronous elastic router topologies

P0

P1
P0

P1
P0

P1

FIGURE 6.6: Blocked packet caused by different arrival times

The evaluation of a four-lane R-NoC-SE architecture (i.e. base R-NoC-SE) has

been presented in Subsection 6.2.2. The resource sharing feature allows packets to

switch lanes and use secondary lane resources when contention occurs on the lane.

In the topology shown in Fig. 5.5, lane switching frees-up the primary lane resources

for use by incoming packets (assuming the secondary lane is free and packets can

exit). However, packets cannot always switch lanes when contention occurs on the

primary lanes.

Fig 6.6 shows three different scenarios where a packet with a later arrival time

(i.e. P1) is temporarily blocked because the lane is occupied by an earlier packet

(i.e. P0). In the scenarios, the switch links are not available for use by the blocked

packets. This situation occurs because the parallelism level on the primary lanes

is limited. Therefore, the router cannot always support five concurrent data-flows

supported in typical router architecture like Hermes [74].

W L NS E W LNES W LN ES

C0 C1 C2

W L NS E W L NS E W L NES

C3 C4 C5

Primary lane Secondary lane

Depth=4

Lane count=9

FIGURE 6.7: Considered R-NoC-SE configurations

A possible solution to mitigate performance loss caused by temporarily blocked

packet is through the use of additional buffers. Additional buffers can be added to

6.2. Synchronous elastic evaluation 103

the lanes to improve packet throughput. However, this will incur significant area

overhead and latency since packets will have to traverse many buffers assembled

on the lanes. R-NoC is a highly parametric architecture template that can produce

different router configurations i.e. with varying topological trade-offs in terms of

number of primary/secondary lanes, input port distribution on the primary lanes

and the parallelism level on the lanes, etc. Since R-NoC can have N-number of lanes, 9

lanes versions is chosen for exploration because it allows for high level of parallelism

on the primary lanes and a good number of shared secondary lanes.

TABLE 6.4: R-NoC-SE configurations (P/S denotes the ratio of pri-
mary to secondary lanes)

Config. Lane depth Parallelism level P/S (%) No. of lanes
C0 2 2 50 4
C1 3 5 56

9
C2 3 4 44
C3 4 3 33
C4 3 3 33
C5 2 4 44

Fig. 6.7 gives the schematics of the considered R-NoC-SE router configurations.

Configuration C0 is the 4 lanes version shown in Fig. 6.2 with two primary lanes

and two secondary lanes. The west/local input ports are connected to one of the

primary lanes and share one secondary lane, while the other input ports (east, north,

south) are connected to the other primary lane and share one secondary lane. Table

6.4 shows the properties of the different 9 lanes versions of R-NoC-SE. R-NoC-SE

routers can have a maximum of five primary lanes indicated by the parallelism level

column in Table 6.4. A level of 5 means the router has maximum parallelism on the

primary lanes (i.e. a lane is associated with each input port), while the secondary

lanes are shared among packets from input ports. Such a router (e.g., C1) configu-

ration in Table 6.4 behaves like a typical input buffered router at low traffic, while

the secondary lanes are exploited at medium and high traffic. Another parameter

denoted Depth relates to the lane connectivity: in a router of Depth D a packet can at

most be routed on D lanes before leaving the router.

Scalability of R-NoC-SE routers

Area and performance of R-NoC-SE router configurations

Fig.6.8a depicts the performance of different router configurations for uniform traffic

pattern. It shows that having a high-level of parallelism on primary lanes is reward-

ing, since it mitigates performance loss caused by temporarily blocked packets and

avoids unnecessary contentions on the lanes. As displayed in Fig.6.8a, the zero-load

packet latency is also improved for configurations with higher parallelism level.

104 Chapter 6. Evaluation of Roundabout Mesh Network topology

N
e

tw
o

rk
 s

a
tu

ra
ti

o
n

 t
h

ro
u

g
h

p
u

t(
%

)

0

20

40

60

Z
e

ro
-l

o
a

d
 l

a
te

n
cy

 (
cl

o
ck

 c
yc

le
s)

0

20

40

60

Router con guration
H C0 C1 C2 C3 C4 C5

Network saturation
Zero-load latency

(A) Performance of R-NoC-SE
routers

A
re

a
 (

m
m

2
)

0

0.01

0.02

0.03

0.04

0.05

0.06

Router con guration

H C0 C1 C2 C3 C4 C5

(B) Area overhead of R-NoC-SE
routers

FIGURE 6.8: Performance and area-overhead of R-NoC-SE routers (H:
Hermes)

Router configurations with higher level of parallelism outperform those with less

parallelism for similar or even lesser lane depth. Fig. 6.8b shows the corresponding

area overhead for the router configurations. It is observed that the performance of

the routers does not solely depend on the area, but on their topological parameters.

Scalability of R-NoC-SE routers

In order to assess the scalability of R-NoC-SE, the same versions with additional

buffers are considered and their results are compared to that of their baseline (i.e.

versions without additional buffers).

0 100 200 300 400

Number of additional buffers

25

30

35

40

45

50

55

60

65

N
e
tw

o
rk

 s
a
tu

ra
ti
o
n
 t
h
ro

u
g
h
p
u
t
(%

)

HERMES

C1

C2

C3

C4

C5

FIGURE 6.9: Comparison w.r.t. different buffer counts. Number rep-
resents percentage increase

The additional buffers are evenly distributed on the lanes as shown in Fig. 5.5

where the grey lines represent these buffers. Fig. 6.9 shows the performance of

6.2. Synchronous elastic evaluation 105

0 10 20 30 40 50 60

Offered Load (%)

0

200

400

600

800

1000
L

a
te

n
c
y
 (

c
lo

c
k
 c

y
c
le

s
)

H_hotspot

H_transpose

H_baseline

H_80B

H_240B

C0

C1_hotspot

C1_transpose

C1_baseline

C1_80B

C1_240B

66.7%

88.9%

55.6%

76.5%

FIGURE 6.10: Comparison w.r.t. different traffics and buffer counts

the routers with additional buffers for uniform traffic pattern. In the plot, zero-

additional-buffers represent the routers baseline configurations. The network satu-

ration throughput is increased with additional buffers for R-NoC-SE routers. The

figure also shows the corresponding performance of the Hermes router baseline and

with additional buffers. A configuration with a total of 80 buffers for the Hermes

baseline configuration, i.e., 16 slot buffer for each input port FIFO queue is con-

sidered. Similarly to R-NoC-SE, the Hermes router uses wormhole flow-control and

XY-routing. It employs credit-based buffer management scheme. The baseline config-

urations for C1, C2, C3, C4, C5 have a total of 80, 94, 68, 102, 86, and 88 buffers re-

spectively. It is observed that R-NoC-SE offers better scalability than Hermes router

[34].

Comparison of R-NoC-SE (C1) and Hermes

The R-NoC-SE configuration C1 is selected for comparing with Hermes [74]. Both

routers have a buffer count of 80 for a fair comparison.

TABLE 6.5: Comparison of Hermes and R-NoC-SE

Router Area (mm2) Power (mW)
Hermes 0.049 3.6

R-NoC-SE (C1) 0.052
Min Max
2.6 2.9

Table 6.5 shows the area results for both routers. The Hermes router has an area-

overhead that is 5.7% smaller when compared to the R-NoC-SE router. R-NoC-SE

106 Chapter 6. Evaluation of Roundabout Mesh Network topology

additional area is due to its multilanes/distributed design, requiring several mux

and arbiters to control access to shared resources in the router. R-NoC-SE in turn

consumes less power when compared to Hermes due to its input buffers [74]. The

power results for both the shortest (i.e. min power) and the longest (i.e. max power)

path on a given lane in R-NoC-SE is displayed. The power results were obtained for

a single link operation when the routers were operated at similar frequency.

Fig. 6.10 shows the performance of both routers. The performance of the 4

lanes R-NoC-SE is also displayed. As shown in the plot, the Hermes router outper-

forms the R-NoC-SE C0 router, offering better network saturation throughput. As

explained earlier, the Hermes router can always support up to five concurrent data-

flows (for different source-destination pairs) regardless of the packet arrival time.

Conversely, packets for different source-destination pair may compete for channel re-

sources in the R-NoC-SE C0 router. This observation motivated the 9 lanes versions of

R-NoC-SE. The 9 lanes R-NoC-SE (i.e. C1_baseline) provides a performance improve-

ment of over 60% compared to the Hermes baseline router (i.e. H_baseline). In Fig.

6.10, R-NoC-SE (C1) with additional buffers significantly outperform the Hermes

routers (with additional buffers) by up 77% [34].

The routers (Hermes and R-NoC-SE C1) were also simulated using transpose and

hotspot traffic patterns. In transpose traffic pattern, each node communicates only

with destination node with the upper and lower halves of its own address. In

hotspot traffic pattern, all nodes communicate with a specific node i.e. the hotspot

node. This creates a higher network contention when compared to the transpose

and uniform traffic as stated in Chapter 2. It is observed that the network saturation

throughput for R-NoC-SE is improved by 56% and 88% for transpose and hotspot

traffic respectively when compared to the Hermes router. This confirms the intrin-

sic ability of R-NoC-SE to support specific traffic patterns by means of dynamically

allocating buffer resources whenever needed.

Comparison of R-NoC-SE and Rotary

The Rotary [2] shares similar traffic-roundabout concept with the proposed router.

The quantitative and qualitative comparison of both routers is presented here.

TABLE 6.6: Comparison of R-NoC-SE (C1) and Rotary [2]

Router
Head-flit-lat Saturation

Flow-control
Network

(cycles) (%) Topology
Rotary [2] 4 115 VCT/bubble 2D-Torus

C1 2 50 Wormhole Mesh

Table 6.6 shows the comparison of Rotary [2] and R-NoC-SE (C1). The head-flit

travel time for R-NoC-SE is twice less than that of Rotary since it uses shorter router

6.3. Asynchronous evaluation 107

pipeline requiring only two cycles. Table 6.6 also displays the network saturation for

both routers for similar network size. The network saturation threshold for Rotary

outperforms that of R-NoC-SE. However, this performance improvement comes at

a significantly higher area and power cost associated with the use of large buffers.

Besides, Rotary uses Torus network which provides shorter paths between network

nodes. Packets in the Rotary router are allowed to make multiple turns before using

any available output port. This leads to significant dynamic power consumption

especially at high traffic injection rates, caused by an increase in router switching

activities. Conversely, packets in R-NoC-SE can adaptively switch lanes to free up

the router resource for use by other packets.

Comparison of R-NoC-SE and VC-based single cycle routers

TABLE 6.7: Network saturation throughput (%) of virtual-channel
(VC) based routers and R-NoC-SE (C1) for uniform traffic pattern.

Packet length RIVR [24] IVR-SC [76] FOVR-LS [22] C1
4 70% 71% 61% 57%
8 54% 56% 53% 53%
12 48% 49% 51% 50%
16 45% 46% 47% 47%

Table 6.7 shows the performance comparison of R-NoC-SE with state of the art

virtual channel (VC) based routers for similar mesh network topology and buffer

count. The BIVR [24] router represents typical VC routers with 5 pipeline stages,

while the IVR-SC [76] and FOVR-LS [22] are single cycle routers requiring only one

clock cycle for a single flit to travel-through the router. In general, the network no-

load latency for FOVR-LS is lower than that of R-NoC-SE for equal packet length,

while the network no-load latency for IVR-SC is only marginally lower than that of

R-NoC-SE. As shown in Table 6.7, the network-saturation threshold for R-NoC-SE is

highly competitive to that of the VC routers. The R-NoC-SE is expected to provide

improved performance for non-uniform traffic due to its shared-buffer and dynamic

resource allocation features.

6.3 Asynchronous evaluation

This section evaluates the asynchronous implementation of R-NoC router named

R-NoC-A and corresponding network. This section also explores further R-NoC-A

topologies in terms of area and performance besides the base R-NoC-A router con-

figuration. R-NoC-A is also compared to existing asynchronous routers. As stated in

Chapter 5, R-NoC-A is implemented using delay-insensitive 4-phase dual-rail proto-

col.

108 Chapter 6. Evaluation of Roundabout Mesh Network topology

W L NS E

Base[4L]

Primary lane Secondary lane

W L NS E

Base[2L]

W L NS E

Base[6L]

W L NS E L N S EW

Base[8L] v0 Base[8L] v1

FIGURE 6.11: Considered R-NoC-A configurations

Fig. 6.11 shows the R-NoC-A configurations that are considered for exploration.

Note that the Base[4L] configuration is similar to R-NoC (C0) explained earlier in this

chapter.

6.3.1 Asynchronous router

Performance and Area Evaluation

TABLE 6.8: Performance of 34-bits R-NoC-A routers. Base [xL] + yB
denotes x lanes router with y additional buffers.

Router Head flit latency (nsec) Throughput Total area
Version Min Max (M f lit/sec) (mm2)
Base [2L]

0.7 2.1

465

0.14
Base [4L] 0.18
Base [4L] + 20B 0.9 2.6 0.21
Base [4L] + 40B 1.0 2.9 0.25
Base [4L] + 80B 1.1 3.6 0.33

Table 6.8 shows the router versions considered for area and head-flit latency

evaluations. The 2-lanes version i.e. Base [2L] consists of only the first 2-lanes as

displayed in Fig. 6.11. The Base [4L] + 20B, Base [4L] + 40B and Base [4L] + 80B

versions represent 4-lanes R-NoC-A routers with additional buffers. The additional

buffers were uniformly distributed on the lanes as shown in Fig. 5.5, where the

gray lines represent the additional buffers. The 4-lanes version is chosen to facilitate

comparison with R-NoC-SE (i.e. the base synchronous elastic counterpart that also

uses 4 lanes). For performance evaluation of the routers, gate-level simulations of

the router blocks were back-annotated with delay values from the synthesis tool as

stated earlier. It is observed that the area overhead grows with the number of buffers

in the routers. At low traffic, latencies are lower because packets "cut-through" from

6.3. Asynchronous evaluation 109

primary lanes to output ports, whereas they are increased at high traffic because sec-

ondary lanes are taken. The min and max latencies are displayed in Table 6.8. The

router achieves a throughput of 465 Mflit/sec for the 45nm CMOS technology.

6.3.2 Baseline asynchronous network

For network-level performance exploration, a 4x4-mesh network of asynchronous R-

NoC-A routers is considered. Similar to the synchronous evaluation, a packet length

of 10 flits, with flit size of 34 bits is considered for simulations. The simulation model

is similar to the one described in Section 6.2. Fig. 6.12 shows the network latency

and offered load plot for the various R-NoC-A versions. It is observed that, the Base

[4L] router achieves a better network saturation threshold (49Gbps) than the Base

[2L] version (27Gbps) since it has more buffering resources and packets can switch

lanes to avoid contentions [35].

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

Offered Load (Gbps)

L
a
te

n
c
y
 (

n
s
e
c
)

Base [2L]

Base [4L]

Base [4L] + 20B

Base [4L] + 40B

Base [4L] + 80B

FIGURE 6.12: Performance of two and four lanes R-NoC-A NoCs.
Base [xL] + yB denotes R-NoC-A version with x number of lanes +

y additional buffers)

To further explore the proposed router performance, networks consisting of the

three router versions with additional buffers shown in Table 6.8 i.e., Base [4L] + 20B,

Base [4L] + 40B and Base [4L] + 80B is compared to a network consisting of the Base

[4L] router with only 28 buffers in terms of performance. The uniform traffic pattern

was considered for simulations. The performance of the router versions is shown

110 Chapter 6. Evaluation of Roundabout Mesh Network topology

0 10 20 30 40 50 60 70 80 90 100 110
0

50

100

150

200

250

300

Offered Load (Gbps)

L
a

te
n

c
y
 (

n
s
e

c
)

Base [2L]

Base [2L] + 80B

Base [4L]

Base [4L] + 80B

Base [6L]

Base [6L] + 80B

Base [8L] v0

Base [8L] v0 + 80B

Base [8L] v1

Base [8L] v1 + 80B

FIGURE 6.13: Performance exploration of R-NoC-A asynchronous
NoCs

in Fig. 6.12. It is observed that the network saturation threshold is significantly

improved for Base [4L] + 80B when compared the other versions since it has more

buffering resources. This shows that adding more buffers is rewarding. A similar

observation can be made for 6-lanes R-NoC-A (schematic is given in Fig. 6.11) with

additional buffers shown in Fig. 6.13, which not only provide higher bandwidth but

also benefits from additional buffers.

6.3.3 Exploring further asynchronous router topologies

As shown in Subsection 6.3.2, network performance can be significantly improved

through the use of additional buffers. However, additional buffers can introduce ad-

ditional area overhead. The goal of the subsection is to show that the asynchronous

network performance can be significantly improved by exploring different R-NoC-A

topologies and without corresponding area overhead. In order to realize this, two

8-lanes R-NoC-A routers i.e. Base [8L] v0 and Base [8L] v1 with a similar number of

buffers are devised. The schematics are given in Fig. 6.11. Base [8L] v0 has 2 primary

lanes and 6 secondary lanes. Base [8L] v1 has 4 primary lanes and 4 secondary lanes.

Fig. 6.13 shows the performance of the two versions. It is observed that the network

saturation threshold is significantly increased by up to 70% for Base [8L] v1 when

compared to Base [8L] v0. The reason is that Base [8L] v1 allows for more concurrent

6.3. Asynchronous evaluation 111

data-flows on its primary lanes when compared to Base [8L] v0. Increased concur-

rency on primary lanes results in fewer contentions, which improves throughput

and the overall network performance. Note that the overall lower average latency

at low traffic finds root in the overall shorter path taken in the routers.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

15

95

28

102

41

121

54

135

49

129

A
re

a
 (

m
m

2
)

Network saturation throughput (Gbps)

15

95

28

102

41

121

54

135

49

129

15

95

28

102

41

121

54

135

49

129

Base [2L]

Base [2L] + 80B

Base [4L]

Base [4L] + 80B

Base [6L]

Base [6L] + 80B

Base [8L] v0

Base [8L] v0 + 80B

Base [8L] v1

Base [8L] v1 + 80B

FIGURE 6.14: R-NoC-A performance/area trade-offs. Marker num-
ber: the no. of buffers available in the router version. Here, router
versions with the same topology but different number of buffers same

colours is compared.

Lastly, R-NoC-A performance/area trade-offs is explored. For this purpose, Fig.

6.14 shows the area against network saturation threshold for various router versions.

In Fig. 6.14, similar colours represent routers with the same topology but differ in

terms of number of buffers. It is observed that the network saturation threshold

is significantly improved with additional buffers (considering router versions with the

same topology). The Base [8L] v1 version offers good performance and area trade-

off. This plot further suggests the performance scalability of R-NoC-A in which both

buffers and lanes can be tuned for matching the desired level of performance.

6.3.4 Comparison with existing solutions

Table 6.9 shows the performance and area comparison of R-NoC-A against existing

routers [36]. The R-NoC-A results for both 45nm and 180nm CMOS technology is

presented in order to facilitate our comparison with existing works based on old and

more recent CMOS technology nodes. The 2 lanes version of R-NoC-A with 10-bits

112 Chapter 6. Evaluation of Roundabout Mesh Network topology

TABLE 6.9: Performance and area comparison of R-NoC-A with exist-
ing solutions.

Router Area Head-flit Throughput Flit size Tech Router
(mm2) latency (nsec) (M f lit/sec) (bits) (nm) design

Rotary [2] NA 10 400 64 NA Synchronous
Bubble [87] 18.7 22.6 177 64 700 Synchronous

QNoC [30] 1.35 NA NA 8 350 4-phase bundle dataNA 10 208 NA 180
HERMES-A [85] 0.33 NA 90 10 180 4-phase dual-rail
MANGO [11] 0.28 8.2 646 33 120 4-phase bundle data
ONIZAWA [7] NA 2.7 526 34 130 2-phase dual-rail
ANoC [7] 0.25 2.7 250 34 130

4-phase dual-rail

FAUST [5] NA 6 160 NA 130
MAGARI [99] 0.17 2.3 550 32 65
R-NoC-A[2-lanes] 0.12

2.6 406
10

180R-NoC-A[4-lanes] 0.36
R-NoC-A[2-lanes] 0.36 34R-NoC-A[4-lanes] 0.71
R-NoC-A[2-lanes] 0.05

1.8 465
10

45R-NoC-A[4-lanes] 0.07
R-NoC-A[2-lanes] 0.14 34R-NoC-A[4-lanes] 0.18

flit width achieves a smaller area overhead when compared to HERMES-A [85] for

similar technology, asynchronous protocol and flit. R-NoC-A uses compact control

circuits with minimal area overhead and does not use virtual-channels.

R-NoC-A based on the 45nm CMOS technology achieves one of the fastest head

flit transmission time of 1.8ns (Here, the average for all possible path combinations

is considered). R-NoC-A head-flit transmission time is significantly faster than most

existing solutions as can be seen in Table 6.9. In terms of throughput, MANGO [11],

ONIZAWA [7] and MAGARI [99] provide a higher throughput when compared to

R-NoC-A. The MANGO [11] can be simply design since it is base on the bundle data

protocol. However, this protocol is not delay-insensitive. ONIZAWA [7] is based on

2-phase delay-insensitive (DI) protocol, which is generally faster than the 4-phase DI

protocol counterpart. This is because the 2-phase protocol reduces the communication

step by half compared to the 4-phase protocol. However, implementing circuits us-

ing the 2-phase protocol is complex [99]. The implementation in [7] support only a

certain packet structure.

Compared to the synchronous routers, R-NoC-A achieves a higher throughput

than the Rotary [2] and the Bubble [87] routers. Here, a 400MHz clock operating

frequency is assumed for the Rotary router. For the Bubble router, the crossbar has

the longest combinational path due to its arbitration complexity [87]. It imposes a

cycle time of 5.65ns corresponding to a 177M f lit/sec throughput. In summary, R-

NoC-A performance and area results are competitive with existing synchronous and

asynchronous solutions, thereby offering beneficial trade-offs.

6.4. Discussion: synchronous elastic vs. asynchronous 113

6.4 Discussion: synchronous elastic vs. asynchronous

This section provides a quantitative comparison of the synchronous elastic (R-NoC)

and asynchronous (R-NoC-A) versions of the router

TABLE 6.10: Comparison of R-NoC-SE and R-NoC-A routers using
same 4-lanes R-NoC topology displayed in Fig. 6.2

Router Area (mm2) Head-flit Lat. (nsec) Power (mW)
Synchronous (R-NoC-SE) 0.03 6.6 1.88
Asynchronous (R-NoC-A) 0.18 0.7 0.89

Table 6.10 shows the comparison of both routers. It is observed that the syn-

chronous routers leads to significant area overhead reduction compared to the asyn-

chronous router. As explained in Chapter 5, delay-insensitive (DI) often lead to sig-

nificant area overhead due to the its completion detector circuit. On the other hand,

the asynchronous logic provides faster circuit compared to synchronous logic as ex-

plained in Chapter 5, since it is only limited by propagation delay of individual com-

ponents instead of the worst case delay of a global clock [96]. As displayed in Table

6.10, R-NoC-A provides faster data transfer compared to the R-NoC, which is limited

by global clock. Therefore, asynchronous logic provides a good performance/area

trade-off.

One benefit of asynchronous logic as discussed in Chapter 5 is that it provides

almost zero standby or static power consumption [96] which contributes to decreas-

ing the total power consumption. Table 6.10 displays the total power consumed for a

single link operation (i.e. packets from an input port to an output port in the router).

The asynchronous circuit in this case provides lower dynamic power consumption.

115

Chapter 7

Evaluation of further network

topologies

116 Chapter 7. Evaluation of further network topologies

«"Success is walking from failure to

failure with no loss of enthusiasm."»

Winston Churchill

Contents

7.1 Introduction . 116

7.2 R-NoC-DM configurations . 116

7.3 Evaluation of R-NoC-DM configurations 118

7.3.1 Exploring R-NoC-DM NoCs 118

7.3.2 Comparison with existing solutions 122

7.4 Summary . 123

7.1 Introduction

As stated in Chapter 4, the R-NoC concept provides a highly-adaptable architec-

ture, which allows the router to be configured to meet numerous network topologies

and applications demands. This chapter presents the evaluation of R-NoC-DM (i.e.

router for the diagonally-linked mesh network topology described in Chapter 4).

The R-NoC-DM evaluation flow is similar to that of R-NoC-SE discussed in Chapter

6.

The reminder of this chapter is as follows: section 7.2 presents the considered

R-NoC-DM topologies. Section 7.3 evaluates the configurations, while section 7.3.2

provides comparison with existing solutions. Section 7.4 provides a summary of the

chapter.

7.2 R-NoC-DM configurations

As stated in Chapter 4, R-NoC-DM has 4 additional ports (i.e. the diagonals) when

compared to base R-NoC-SE (for mesh network topology). The diagonal links pro-

vide shorter network paths and reduce network congestions [50], which leads to en-

hanced network performance. On the other hand, routers for the diagonally-linked

mesh require 4 additional ports which introduce additional arbitration complexity

and area/power overheads. The goal of this section is to exploit R-NoC highly-

adaptable architecture to realize significantly higher performance for diagonally-

linked mesh network without corresponding area/power cost compared to typical

input buffered router. In order to investigate performance/area trade-off, several

R-NoC-DM router configurations are devised.

7.2. R-NoC-DM configurations 117

Primary lane Secondary lane

N L S SW SE NW NEW E N L S SW SE NW NEW E

DM0

N L S W E NE NW SW SE N L S SW SE NW NEW E

DM1

DM2 DM3

W L NS E

C0

W LNES

C1

FIGURE 7.1: Considered R-NoC-DM configurations

Fig. 7.1 gives the schematics of the considered R-NoC router configurations. Note

that Configurations C0 and C1 are R-NoC-SE configurations for mesh network topol-

ogy. They have been discussed earlier in Chapter 6. Table 7.1 shows the properties

of the considered R-NoC-DM router configures.

TABLE 7.1: R-NoC configurations. DLM: diagonally-linked mesh

Config. No. of ports Parallelism level No. of lanes
C0

mesh (5)
2 4

C1 5 9
DM0

DLM (9)

5 9
DM1 9 11
DM2 9 13
DM3 9 13

Router configurations with an equal number of ports and parallelism level have

maximum parallelism on the primary lanes (i.e. a lane is associated with each input

port), while the secondary lanes are shared among packets from input ports. Such

routers behave like a typical input buffered router at low traffic, while the secondary

lanes are exploited at medium/high traffic. The main difference between DM2 and

DM3 is in their primary lanes. In DM3, a primary lane (with diagonal input port)

is reserved only diagonal output port, while non-diagonal output ports are also at-

tached to primary lanes (with diagonal input ports) in DM2. Router configuration

118 Chapter 7. Evaluation of further network topologies

DM3 is expected to provide better performance since the additional delay for pack-

ets utilizing the diagonal output ports is removed.

7.3 Evaluation of R-NoC-DM configurations

A
re

a
 (

m
m

2
)

Router configuration

0

0.02

0.04

0.06

0.08

0.1

0.12

HERMES DM0 DM1 DM2 DM3

5 PORTS 9 PORTS

78.1% 46.2% 50.0%

86.5%

21.2%

C1

FIGURE 7.2: Router area. (Numbers: overheads introduced by addi-
tional ports)

Fig. 7.2 shows the corresponding area overhead for the routers. The cost in-

curred when additional ports are added to the router configuration is displayed. It

is observed that adding additional ports to Hermes incurs massive cost compared to

most R-NoC-DM router configurations.

7.3.1 Exploring R-NoC-DM NoCs

Performance of R-NoC-DM

Fig. 7.3 depicts the performance of different router configurations for uniform and

transpose traffic patterns.

It shows that the diagonal links significantly leads to improved network perfor-

mance for the considered traffic patterns since they provide shorter paths between

network nodes and more communication links. As displayed in Fig. 7.3, the zero-

load packet latency is also improved for the diagonal links. As shown in Fig. 7.3,

assigning only the diagonal input port and corresponding output port on a lane fur-

ther improves network performance. This is the case with router config DM3 that

further achieves excellent performance for transpose traffics (similar to that of uni-

form), outperforming all other configurations. In addition, it is observed that the

performance of the routers does not solely depend on the area, but on their topolog-

ical parameters.

7.3. Evaluation of R-NoC-DM configurations 119

0 10 20 30 40 50 60
0

50

100

150

200

250

Offered Load (%)

L
a
te

n
c
y
 (

c
lo

c
k
 c

y
c
le

s
)

H_Transpose

H_Uniform

C1_Transpose

C1_Uniform

DM0_Transpose

DM0_Uniform

DM1_Transpose

DM1_Uniform

DM2_Transpose

DM2_Uniform

DM3_Transpose

DM3_Uniform

FIGURE 7.3: Performance of R-NoC routers. (H: Hermes)

Performance scaling through buffer insertion

In order to assess the scalability of R-NoC-DM, the router versions with additional

buffers are compared against their baseline (i.e. without additional buffers). The

additional buffers are evenly distributed on the lanes as shown in Fig. 5.5 where the

grey lines represent these buffers.

S
a
tu

ra
ti

o
n
 t

h
re

s
h
o
ld

 (
%

)

H

C
1

D
M

0

D
M

1

D
M

2

D
M

3 H

C
1

D
M

0

D
M

1

D
M

2

D
M

3 H

C
1

D
M

0

D
M

1

D
M

2

D
M

3

Router con�guration
Baseline Baseline + 80B Baseline + 240B

0

20

40

60

80

100

0

20

40

60

80

100
Saturation threshold
No load latency

6
.3

%

1
0
.5

%

5
.8

% 2
0
.1

%

2
0
.0

%

6
.3

%

1
3
.3

%

2
3
.6

%

2
0
.0

%

2
8
.7

%

2
8
.4

%

2
1
.4

3
%

N
o
 l
o
a
d
 l
a
te

n
c
y
 (

c
y
c
le

s
)

FIGURE 7.4: Performance comparison for R-NoC-DM configurations
and Hermes (H) routers for uniform traffic.

Fig. 7.4 shows the performance of the routers with additional buffers for uniform

traffic pattern, while Fig. 7.5 shows the performance for transpose traffic pattern.

120 Chapter 7. Evaluation of further network topologies

S
a
tu

ra
ti

o
n
 t

h
re

s
h
o
ld

 (
%

)

0

20

40

60

80

100

0

20

40

60

80

100

Saturation threshold
No load latency

0
%

4
.1

%

0
%

9
.9

%

5
.5

%

0
%

0
%

4
.1

%

0
%

3
7

.4
%

5
.5

% 6
.3

%

N
o
 l
o
a
d
 l
a
te

n
c
y
 (

c
y
c
le

s
)

Router con�guration

H

C
1

D
M

0

D
M

1

D
M

2

D
M

3 H

C
1

D
M

0

D
M

1

D
M

2

D
M

3 H

C
1

D
M

0

D
M

1

D
M

2

D
M

3

Baseline Baseline + 80B Baseline + 240B

FIGURE 7.5: Performance comparison for R-NoC-DM configurations
and Hermes (H) routers for transpose traffic.

The network saturation throughput is increased with additional buffers for R-NoC-

DM routers. As displayed in Fig. 6.8, the router configurations with diagonal links

provide better scalability. The figures also shows the corresponding performance of

the Hermes router baseline and with additional buffers.

A configuration with a total of 80 buffers was considered for the Hermes baseline

configuration, i.e., 16 slot buffer for each input port FIFO queue for a fair compari-

son with C1 which also has a total of 80 buffers. The Hermes router uses wormhole

flow-control and XY-routing. It employs credit-based buffer management scheme for

buffer allocation. As discussed earlier in Chapter 6, C1 offers an overall improved

performance over Hermes for uniform traffic and provides better scalability than

Hermes.

Network-level power consumption

0 10 20 30 40
0

2

4

6

Offered Load (%)

N
et

w
or

k
po

w
er

 (
m

W
)

Hermes
C1
DM3

(A) Uniform traffic

0 10 20 30 40
0

2

4

6

Offered Load (%)

N
et

w
or

k
po

w
er

 (
m

W
)

Hermes
C1
DM3

(B) Transpose traffic

FIGURE 7.6: Network-level power consumption comparison

7.3. Evaluation of R-NoC-DM configurations 121

Fig. 7.6 shows the network-level power comparison of R-NoC-SE, R-NoC-DM

and Hermes. Power estimation was carried out at Gate level using Synopsys Prime-

Time PX and the 45nm CMOS cell library as discussed in Chapter 6. A clock fre-

quency of 300MHz was considered for simulation. A network size of 2x2 (for sim-

plicity reason) was considered for uniform and transpose traffic. It is visible from the

plot that the performance improvements of both R-NoC-SE and R-NoC-DM routers

over Hermes are not achieved at the expense of higher power consumption. Both R-

NoC-SE and R-NoC-DM achieve lesser power consumption than Hermes since they

can transmit data faster than Hermes, which leads to reduced network switching

activities in the routers. Note that R-NoC-DM provides overall reduced power con-

sumption because of the shorter network diameter and therefore lesser number of

hops between routers.

Application performance

TABLE 7.2: Real application characteristics
Applications Number of tasks

Video object plan encoder (VOPD) [100] 16
Multimedia system (MMS) [81] 25
WiFi application (802.11) [103] 24

Multi-window display (MWD) [10] 12

L
a
te

n
c
y
 (

c
y
c
le

s
)

HERMES DM3

HERMES DM3 HERMES DM3

(a) video object plan encoder

(c) Wifi application

(b) Multimedia system

(d) Multi-window display

0

10

20

30

40

50 NMAP
RAND

0

10

20

30

40

50
NMAP
RAND

HERMES DM3

0

10

20

30

40

50 NMAP
RAND

L
a
te

n
c
y
 (

c
y
c
le

s
)

L
a
te

n
c
y
 (

c
y
c
le

s
)

L
a
te

n
c
y
 (

c
y
c
le

s
)

0

10

20

30

40

50

6
1

.8
%

7
.9

%

9
.0

%

+
1

.7
%

2
.2

%
5

.8
%

1
7

.5
%

5
.2

%

C1

C1

C1

C1

FIGURE 7.7: Routers performance for application traffic. Number on
bars: % decrease in average package latency. (+ve value shows %

increase)

The network performance for real-world applications traffics was estimated. Ta-

ble 7.2 gives the properties of the considered applications. The applications are

represented as tasks graphs, where the inter-tasks communications require specific

communication bandwidth for meeting application requirements. The method pro-

posed in [101] was followed in order to generate the experimental traffic for the

122 Chapter 7. Evaluation of further network topologies

applications. The random (RAND) and near (NMAP) mappings were considered

and mapped on a 4x4 network. In NMAP, communicating tasks are mapped close

to each other in order to reduce average packet latency. Multiple tasks are mapped

on a single core for MMS and 802.11 application since they have more tasks than

network cores. Fig. 7.7 shows the result of the application mappings in which the

average communication latency is reported. Generally, NMAP intuitively provides

lower latency than RMAP. C1 provides improved performance over HERMES due

to its resource sharing feature. Compared to C1 and Hermes, DM3 provides even

lower latency for both NMAP and RMAP for most applications due to the diag-

onal links that create shorter distances between communicating nodes, as well as

increased total NoC bandwidth.

7.3.2 Comparison with existing solutions

The R-NoC-DM configuration DM3 is selected for comparing with Hermes [74].

TABLE 7.3: Comparison of Hermes and R-NoC-DM router

Router Area (mm2) Power (mW)
Hermes (9 ports) 0.073 3.6

R-NoC-DM (DM3) 0.063
Min Max
3.3 4.0

Table 7.3 shows the area results for both routers. It is observed that the area

overhead R-NoC-DM is 13.7% less than that of Hermes for a similar number of ports.

Hence, R-NoC can provide significant performance improvement at a feasible cost

due to its highly adaptable architecture. Power estimation of the routers at Gate

level was carried out using Synopsys PrimeTime PX and the 45nm CMOS cell library.

The power results for both the shortest (i.e. min power) and the longest (i.e. max

power) path on a given lane in R-NoC-DM is displayed in Table 7.3. The power

results were obtained for a single link operation when the routers were operated at

a similar frequency. R-NoC-DM provides power reduced of 9% over Hermes for the

short path.

TABLE 7.4: Comparison of R-NoC-DM and DMesh router [50] in
terms of cost of adapting to DMesh network topology

Router Power overhead Area overhead
DMesh Router [50] 65% N/A

DM3 37.9% 21.2%

Authors [50] proposed a DMesh router and compared it to that of their mesh

router known as NEPA [50]. Table 7.4 shows the cost of adapting to DMesh network

topology in terms of power and area. As displayed in Table 7.4, the DMesh router

incurs a significant cost in terms of power consumption compared to R-NoC-DM

7.4. Summary 123

since it uses crossbars and input buffers. Thus, adapting to DMesh network topol-

ogy requires larger crossbars which consumes additional power. The result further

supports the claim that R-NoC architecture can be readily adapted for significant

performance improvement without corresponding power overhead.

7.4 Summary

This chapter extended R-NoC to provide support for diagonally linked mesh net-

work topology (DMesh)[50] for performance improvement. As stated in Chapter 4,

routers for the DMesh network have 4 additional ports (i.e. the diagonals) compared

to routers for the mesh network topology. The additional ports introduces additional

router area and power overheads. As shown in the evaluation, extending R-NoC to

support DMesh incurs a small area and power overhead compared to typical input

buffered router. As explained in Chapter 2, R-NoC do not use explicit crossbars due

to its distributed architecture. Therefore, introducing additional ports does not incur

a quadratic cost as is the case with typical input buffered routers that are based on

crossbars. This provides opportunities for extending R-NoC to support concentra-

tion networks (discussed in Chapter 2), where manycores shares a single router, at a

minimum cost and other network topologies such as three-dimensional NoCs.

125

Chapter 8

Conclusion

126 Chapter 8. Conclusion

The demand for more power-efficient and higher performance computing sys-

tems has ushered in the manycore era, where many intellectual property cores (IP

cores) can be integrated on a single chip. This new trend has provided a higher

level of performance for meeting various applications requirements. However, as

the number of cores grows, there is need for scalable on-chip interconnect networks

that can deliver high speed data transfer among the many IP cores. Studies show

that traditional bus and crossbar interconnects do not scale with increasing number

of cores. Conversely, Networks-on-Chip (NoCs) has emerged as an alternative and

scalable interconnect for manycore systems. However, most existing NoCs suffer

performance degradation due to underutilization of NoC resources.

In order to remove the limitation of existing approach, this thesis was set out

with the goal of designing a scalable, high performance and power efficient NoC for

future manycore systems.

A survey of state-of-the-art NoC revealed that roundabout-inspired/ring-like NoC

router architectures are attractive as they provide inherent resource utilization for

improving performance. However, such architectures are susceptible to deadlock

due to their ring-like architectures. In other to avoid deadlock, the Rotary [2], a

roundabout-inspired router, utilized combined virtual-cut-through (VCT) and bub-

ble flow-control known as local bubble scheme (LBS). While LBS can avoid deadlock,

it introduces higher area/power constraints. Therefore, it is not suitable for systems

with tight area/power overheads. In order to remove the limitations of existing

solutions, this thesis first proposes an algorithm capable of generating deadlock-

free roundabout-inspired router architectures that use wormhole flow-control. Thus,

drastically reducing the area/power overhead associated with LBS. The algorithm

was used to generate R-NoC router for various network topologies. The router con-

cept consists of lanes shared by multiple input/output ports in order to improve

resource utilization. R-NoC provides dynamic resource allocation where a subset of

the total number of lanes is used at low traffic, while the others are exploited with

network contention increases.

The initial evaluation of the base R-NoC router, which consists of 4-lanes shared

by multiple inputs/output ports, shows that the router achieves a network zero-load

latency that is 32% less than that of Hermes [74] (a typical input buffered router) and

also provides a smaller area overhead. However, the network saturation throughput

for Hermes [74] is improved by 55% compared to the base R-NoC. The reason being

that the parallelism level in R-NoC is limited, which arises because multiple input

ports are connected to the same lane. This leads to cases where packets with different

arrival times are temporarily blocked on the lanes. Therefore, R-NoC cannot always

support five concurrent data-flows supported in typical router architectures such as

Hermes [74].

8.1. Future works 127

In order to improve network throughput, additional buffers can be added to the

router. However, this will incur additional area and power overheads associated

with buffers. Alternatively, this thesis explores varying R-NoC configurations with

different level of parallelism and lane counts. The evaluation shows that R-NoC con-

figuration with maximum parallelism (meaning that each input port is attached to a

lane, while the other lanes are shared by multiple input ports) provides improved

network performance. A performance improvement of 66% and 88% over Hermes

[74] for uniform and non-uniform traffic patterns respectively is reported. This con-

firms the intrinsic ability of R-NoC to support specific traffic patterns by means of

dynamically allocating buffering resources whenever needed. Also, R-NoC provides

a network power that is less than that of Hermes [74]. Therefore, the performance

improvement of R-NoC is not at the expense of area and power. R-NoC is shown to

provide competitive results for virtual-channels single cycle routers.

One of the objectives of this thesis was to explore other network topologies for

performance improvement without incurring significant area/power overheads. For

this reason, R-NoC-D was proposed for the diagonally-linked mesh network topol-

ogy (DMesh) [50]. R-NoC-D provides significant performance improvements over

Hermes [74] and its mesh counterpart (i.e. R-NoC) and reduced network power con-

sumption. DMesh requires additional ports which introduce additional area and

power overheads. The impact of introducing additional ports on area/power was

studied. The evaluation shows that introducing additional ports in Hermes [74] in-

curs far more area overhead than in R-NoC.

8.1 Future works

1. In-order packet delivery in R-NoC. Packets in R-NoC may be delivered in out-

of-order fashion since packets (not flits) belonging to a particular message may

follow different routes in the router. The current R-NoC implementations are

suitable for connecting high-performance cores with a network stack at the

receiving end for taking care of reordering packets. However, the current im-

plementations are not suitable for universal asynchronous receiver-transmitter

(UART) devices, where data is transmitted sequentially. Another alternative is

to embed all the information to be transmitted in one single packet. However,

this will incur reduced network throughput.

2. Support for virtual-channels (VCs) in R-NoC. Modern high-level protocols

require the use of VCs in the NoC in order to ensure functional correctness.

An example is in coherence protocols that require isolation of request/reply

messages in order to avoid protocol level deadlocks [92]. In cache coherence

NoCs, VCs can be dedicated to each message class. Studies have shown that

128 Chapter 8. Conclusion

the MOESI directory-based cache coherence protocol requires at least three

VCs in order to avoid protocol level deadlocks [67]. Elastic buffer architecture

have been extended to support VCs. The proposed method will be studied in

order to understand the cost of a similar implementation in R-NoC.

3. Extending R-NoC to support other network topologies. In order to improve

network performance R-NoC has been extended to support the diagonally-

linked mesh topology. However, there is room for exploring other network

topologies. Further works will extend to three-dimensional (3D) networks such

as 3D mesh network [33]. 3D can exploit vertical interconnect technology

such as TSVs to provide faster and low power vertical interconnect [40, 25].

R-NoC will be extended to support the so-called concentration networks [58,

93], where multiple cores share a common NoC router for area reduction and

performance benefits. Compared to typical input buffered router, extending

R-NoC to support concentration is expected to incur less area and power over-

head due to its distributed architecture.

8.2 Publications

The list of publications includes:

International Conferences

1. Charles Effiong, Gilles Sassatelli, Abdoulaye Gamatie. Distributed and Dy-

namic Shared-Buffer Router for High-Performance Interconnect. In The Inter-

national Symposium on Networks-on-Chip (NOCS), Seoul, South Korea, October

2017.

2. Charles Effiong, Gilles Sassatelli, Abdoulaye Gamatie. Scalable and Power-

Efficient Implementation of an Asynchronous Router with Buffer Sharing. In

Euromicro Conference on Digital System Design (DSD 2017), Vienna, Austria, Septem-

ber 2017.

3. Charles Effiong, Gilles Sassatelli, Abdoulaye Gamatie. Roundabout: a Network-

on-Chip Router with Adaptive Buffer Sharing. In IEEE International NEW Cir-

cuits And Systems (NEWCAS 2017), Strasbourg, France, June 2017.

Under submission

1. Charles Effiong, Gilles Sassatelli, Abdoulaye Gamatie. High-Performance Network-

on-Chip through Shared and Dynamic Buffer Allocation. [Under submission]

8.2. Publications 129

Other publications

I was also involved in other works which are not directly linked to my PhD. These

works deals with fast and accurate evaluation of manycore systems using high-level

simulation framework [62][63] and process variation impact on 3D-NoC [33]. Re-

lated publications are listed below:

1. Khalid Latif, Manuel Selva, Charles Effiong, Roman Ursu, Abdoulaye Gamatie,

Gilles Sassatelli, Leonardo Zordan, Luciano Ost, Piotr Dziurzanski, and Lean-

dro Soares Indrusiak. 2016. Design space exploration for complex automotive

applications: an engine control system case study. In Proceedings of the 2016

Workshop on Rapid Simulation and Performance Evaluation: Methods and

Tools (RAPIDO ’16).

2. Khalid Latif, Charles Effiong, Abdoulaye Gamatié, Gilles Sassatelli, Leonardo

Zordan, Luciano Ost, Piotr Dziurzanski and Leandro Indrusiak. An Integrated

Framework for Model-Based Design and Analysis of Automotive Multi-Core

Systems, Forum on specification & Design Languages (FDL ’15), Work-in-Progress

Session, Barcelona - Spain, September 2015.

3. Charles Effiong, V. Lapotre, A. Gamatie, G. Sassatelli, A. Todri-Sanial and

K. Latif, "On the Performance Exploration of 3D NoCs with Resistive-Open

TSVs," 2015 IEEE Computer Society Annual Symposium on VLSI, Montpellier,

2015, pp. 579-584.

131

Bibliography

[1] Arteris S A. “From “Bus” and “Crossbar” to “Network-On-Chip””. In: 2009.

[2] Pablo Abad et al. “Rotary Router: An Efficient Architecture for CMP Inter-

connection Networks”. In: SIGARCH Comput. Archit. News 35.2 (June 2007),

pp. 116–125. ISSN: 0163-5964.

[3] N. R. Adiga et al. “Blue Gene/L torus interconnection network”. In: IBM Jour-

nal of Res. and Dev. 49.2.3 (2005), pp. 265–276. ISSN: 0018-8646. DOI: 10.1147/

rd.492.0265.

[4] Adrijean Adriahantenaina et al. “SPIN: a scalable, packet switched, on-chip

micro-network”. In: Proceedings of the conference on Design, Automation and Test

in Europe: Designers’ Forum-Volume 2. IEEE Computer Society. 2003, p. 20070.

[5] A. Alhussien, C. Wang, and N. Bagherzadeh. “A scalable delay insensitive

asynchronous NoC with adaptive routing”. In: 2010 17th Int’l Conf. on Telecom.

2010, pp. 995–1002.

[6] William John Bainbridge. “Asynchronous Systems on Chip Interconnect”.

PhD thesis. Department of Computer Science, The University of Manchester,

2000.

[7] E. Beigne et al. “An asynchronous NOC architecture providing low latency

service and its multi-level design framework”. In: 11th IEEE International Sym-

posium on Asynchronous Circuits and Systems. 2005, pp. 54–63.

[8] S. Bell et al. “TILE64 - Processor: A 64-Core SoC with Mesh Interconnect”.

In: 2008 IEEE International Solid-State Circuits Conference - Digest of Technical

Papers. 2008, pp. 88–598.

[9] L. Benini and G. De Micheli. “Networks on chips: a new SoC paradigm”. In:

Computer 35.1 (2002), pp. 70–78.

[10] D. Bertozzi et al. “NoC synthesis flow for customized domain specific mul-

tiprocessor systems-on-chip”. In: IEEE Transactions on Parallel and Distributed

Systems 16.2 (2005), pp. 113–129.

[11] T. Bjerregaard and J. Sparso. “Implementation of guaranteed services in the

MANGO clockless network-on-chip”. In: IEE Proceedings - Computers and Dig-

ital Techniques 153.4 (2006), pp. 217–229.

https://doi.org/10.1147/rd.492.0265
https://doi.org/10.1147/rd.492.0265

132 BIBLIOGRAPHY

[12] Tobias Bjerregaard and Shankar Mahadevan. “A Survey of Research and Prac-

tices of Network-on-chip”. In: ACM Comput. Surv. 38.1 (June 2006). ISSN:

0360-0300.

[13] Tobias Bjerregaard and Jens Sparso. “A router architecture for connection-

oriented service guarantees in the MANGO clockless network-on-chip”. In:

Design, Automation and Test in Europe, 2005. Proceedings. IEEE. 2005, pp. 1226–

1231.

[14] S. Borkar. “NoCs: What’s the point?” In: NSF Workshop on Emerging Tech. for

Interconnects (WETI). 2012.

[15] Shekhar Borkar. “Thousand Core Chips: A Technology Perspective”. In: Pro-

ceedings of the 44th Annual Design Automation Conference. DAC ’07. San Diego,

California: ACM, 2007, pp. 746–749. ISBN: 978-1-59593-627-1. DOI: 10.1145/

1278480.1278667. URL: http://doi.acm.org/10.1145/1278480.1278667.

[16] Cadence. Cadence RTL Compiler. URL: https://www.cadence.com/.

[17] J. Carmona et al. “Elastic Circuits”. In: IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 28.10 (2009), pp. 1437–1455. ISSN:

0278-0070.

[18] C. Carrion et al. “A flow control mechanism to avoid message deadlock in

k-ary n-cube networks”. In: Proceedings 4th HiPC. 1997, pp. 322–329.

[19] L. Chen and T. M. Pinkston. “Worm-Bubble Flow Control”. In: 2013 IEEE 19th

International Symposium on High Performance Computer Architecture (HPCA).

2013, pp. 366–377.

[20] L. Chen, R. Wang, and T. M. Pinkston. “Critical Bubble Scheme: An Efficient

Implementation of Globally Aware Network Flow Control”. In: IEEE Int’l

Parallel Distributed Processing Symp. 2011, pp. 592–603.

[21] Yancang Chen et al. “A single-cycle output buffered router with layered switch-

ing for Networks-on-Chips”. In: Computers & electrical engineering 38.4 (2012),

pp. 906–916.

[22] Yancang Chen et al. “A single-cycle output buffered router with layered switch-

ing for Networks-on-Chips”. In: Computers and Electrical Engineering 38 (2012),

pp. 906–916.

[23] W. J. Dally. “Virtual-channel flow control”. In: IEEE Transactions on Parallel

and Distributed Systems 3.2 (1992), pp. 194–205. ISSN: 1045-9219.

[24] William Dally and Brian Towles. Principles and Practices of Interconnection Net-

works. San Francisco, CA, USA: Morgan Kaufmann, 2003. ISBN: 0122007514.

https://doi.org/10.1145/1278480.1278667
https://doi.org/10.1145/1278480.1278667
http://doi.acm.org/10.1145/1278480.1278667
https://www.cadence.com/

BIBLIOGRAPHY 133

[25] Florian Darve et al. “Physical implementation of an asynchronous 3D-NoC

router using serial vertical links”. In: VLSI (ISVLSI), 2011 IEEE Computer So-

ciety Annual Symposium on. IEEE. 2011, pp. 25–30.

[26] Mark E. Dean, Ted E. Williams, and David L. Dill. “Efficient Self-timing with

Level-encoded 2-phase Dual-rail (LEDR)”. In: Proceedings of the 1991 Univer-

sity of California/Santa Cruz Conference on Advanced Research in VLSI. Cam-

bridge, MA, USA: MIT Press, 1991, pp. 55–70. ISBN: 0-262-19308-6.

[27] R. Dick. Embedded System Synthesis Benchmark Suites (e3s). URL: http://ziyang.

eecs.umich.edu/dickrp/e3s/.

[28] John Dielissen et al. “Concepts and implementation of the Philips network-

on-chip”. In: IP-Based SoC Design. 2003, pp. 1–6.

[29] Giorgos Dimitrakopoulos, Anastasios Psarras, and Ioannis Seitanidis. Mi-

croarchitecture of Network-on-Chip Routers: A Designer’s Perspective. Springer

Publishing Company, Incorporated, 2014. ISBN: 1461443008, 9781461443001.

[30] Rostislav (Reuven) Dobkin, Ran Ginosar, and Avinoam Kolodny. “QNoC

asynchronous router”. In: Integration, the VLSI Journal 42.2 (2009), pp. 103 –

115.

[31] José Duato. “A Necessary and Sufficient Condition for Deadlock-Free Adap-

tive Routing in Wormhole Networks”. In: IEEE Trans. Parallel Distrib. Syst.

6.10 (Oct. 1995), pp. 1055–1067. ISSN: 1045-9219.

[32] Jose Duato, Sudhakar Yalamanchili, and Lionel M Ni. Interconnection net-

works: an engineering approach. Morgan Kaufmann, 2003.

[33] C. Effiong et al. “On the Performance Exploration of 3D NoCs with Resistive-

Open TSVs”. In: 2015 IEEE Computer Society Annual Symposium on VLSI. 2015,

pp. 579–584.

[34] Charles Effiong, Gilles Sassatelli, and Abdoulaye Gamatie. “Distributed and

Dynamic Shared-Buffer Router for High-Performance Interconnect”. In: In-

ternational Symposium on Networks-on-Chip (NOCS). NOCS’17. Seoul, South

Korea, 2017.

[35] Charles Effiong, Gilles Sassatelli, and Abdoulaye Gamatie. “Roundabout: a

Network-on-Chip Router with Adaptive Buffer Sharing”. In: IEEE Interna-

tional New Circuits and Systems Conference. Newcas’17. Strasbourg, France,

2017.

[36] Charles Effiong, Gilles Sassatelli, and Abdoulaye Gamatie. “Scalable and Power-

Efficient Implementation of an Asynchronous Router with Buffer Sharing”.

In: Euromicro Conference on Digital System Design. DSD’17. Vienna, Austria,

2017.

http://ziyang.eecs.umich.edu/dickrp/e3s/
http://ziyang.eecs.umich.edu/dickrp/e3s/

134 BIBLIOGRAPHY

[37] H. Elmiligi et al. “A delay-aware topology-based design for Networks-on-

Chip applications”. In: 2009 4th International Design and Test Workshop (IDT).

2009, pp. 1–5.

[38] C. Fallin et al. “MinBD: Minimally-Buffered Deflection Routing for Energy-

Efficient Interconnect”. In: 2012 IEEE/ACM Sixth International Symposium on

Networks-on-Chip. 2012, pp. 1–10.

[39] Chris Fallin, Chris Craik, and Onur Mutlu. “CHIPPER: A Low-complexity

Bufferless Deflection Router”. In: Proceedings of the 2011 IEEE 17th Interna-

tional Symposium on High Performance Computer Architecture. HPCA ’11. 2011,

pp. 144–155. ISBN: 978-1-4244-9432-3.

[40] Brett Stanley Feero and Partha Pratim Pande. “Networks-on-chip in a three-

dimensional environment: A performance evaluation”. In: IEEE Transactions

on computers 58.1 (2009), pp. 32–45.

[41] Marc Galceran-Oms. “Automatic Pipelining of Elastic Systems”. PhD thesis.

universitat politècnica de catalunya, 2011.

[42] M. Galles. “Spider: a high-speed network interconnect”. In: IEEE Micro 17.1

(1997), pp. 34–39. ISSN: 0272-1732.

[43] Mentor Graphics. ModemSIM. URL: https://www.mentor.com/products/fv/

modelsim.

[44] H. Hassan, A. Shalaby, and H. Kim. “DPSB: Dual port shared buffer mech-

anism for efficient buffer utilization in Network on Chip routers”. In: 2015

International SoC Design Conference (ISOCC). 2015, pp. 135–136.

[45] F. O. Hatem and T. N. Kumar. “A low-area asynchronous router for clock-less

network-on-chip on a FPGA”. In: 2013 IEEE Symposium on Computers Infor-

matics (ISCI). 2013, pp. 152–158.

[46] M. Hayenga, N. Enright Jerger, and M. Lipasti. “SCARAB: A single cycle

adaptive routing and bufferless network”. In: 2009 42nd Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO). 2009, pp. 244–254.

[47] J. Henkel, W. Wolf, and S. Chakradhar. “On-chip networks: a scalable, communication-

centric embedded system design paradigm”. In: 17th International Conference

on VLSI Design. Proceedings. 2004, pp. 845–851.

[48] Y. Hoskote et al. “A 5-GHz Mesh Interconnect for a Teraflops Processor”. In:

IEEE Micro 27.5 (2007), pp. 51–61. ISSN: 0272-1732.

[49] Jingcao Hu and R. Marculescu. “DyAD - smart routing for networks-on-

chip”. In: Proceedings. 41st Design Automation Conference, 2004. 2004, pp. 260–

263.

https://www.mentor.com/products/fv/modelsim
https://www.mentor.com/products/fv/modelsim

BIBLIOGRAPHY 135

[50] Wen-Hsiang Hu, Seung Eun Lee, and Nader Bagherzadeh. “DMesh: a diagonally-

linked mesh network-on-chip architecture”. In: Network on Chip Architectures

(2008), p. 14.

[51] intel. Intel R© Xeon PhiTM. 2016. URL: https://www.intel.com/content/www/

us/en/products/processors/xeon-phi/xeon-phi-processors/7230f.

html.

[52] ITRS. “The International Technology Roadmap for Semiconductors (ITRS)”.

In: (Jan. 2011).

[53] H. M. Jacobson et al. “Synchronous interlocked pipelines”. In: Proceedings

Eighth International Symposium on Asynchronous Circuits and Systems. 2002,

pp. 3–12.

[54] S. A. R. Jafri et al. “Adaptive Flow Control for Robust Performance and En-

ergy”. In: 2010 43rd Annual IEEE/ACM International Symposium on Microarchi-

tecture. 2010, pp. 433–444.

[55] J. Jose et al. “DeBAR: Deflection based adaptive router with minimal buffer-

ing”. In: 2013 Design, Automation Test in Europe Conference Exhibition (DATE).

2013, pp. 1583–1588.

[56] Daewook Kim, Manho Kim, and Gerald E Sobelman. “Asynchronous FIFO

interfaces for GALS on-chip switched networks”. In: ISOCC (2005), pp. 186–

189.

[57] Ho Won Kim et al. “Adaptive Virtual Cut-Through as a Viable Routing Method”.

In: Journal of Parallel and Distributed Computing 52.1 (1998), pp. 82 –95. ISSN:

0743-7315.

[58] J. Kim, J. Balfour, and W. Dally. “Flattened Butterfly Topology for On-Chip

Networks”. In: 40th Annual IEEE/ACM International Symposium on Microarchi-

tecture (MICRO 2007). 2007, pp. 172–182.

[59] P. Kongetira, K. Aingaran, and K. Olukotun. “Niagara: a 32-way multithreaded

Sparc processor”. In: IEEE Micro 25.2 (2005), pp. 21–29. ISSN: 0272-1732.

[60] P. Kumar et al. “Exploring concentration and channel slicing in on-chip net-

work router”. In: 2009 3rd ACM/IEEE International Symposium on Networks-on-

Chip. 2009, pp. 276–285.

[61] K. Latif, T. Seceleanu, and H. Tenhunen. “Power and Area Efficient Design of

Network-on-Chip Router through Utilization of Idle Buffers”. In: 2010 17th

IEEE International Conference and Workshops on Engineering of Computer Based

Systems. 2010, pp. 131–138.

https://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors/7230f.html
https://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors/7230f.html
https://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors/7230f.html

136 BIBLIOGRAPHY

[62] Khalid Latif et al. “An integrated framework for model-based design and

analysis of automotive multi-core system”. In: Forum on specification & Design

Languages (FDL ’15), Work-in-Progress Session. Barcelona, Spain, 2015.

[63] Khalid Latif et al. “Design Space Exploration for Complex Automotive Ap-

plications: An Engine Control System Case Study”. In: Proceedings of the 2016

Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools.

RAPIDO ’16. Prague, Czech Republic: ACM, 2016, 2:1–2:7. ISBN: 978-1-4503-

4072-4.

[64] Jian Liang, S. Swaminathan, and R. Tessier. “ASOC: a scalable, single-chip

communications architecture”. In: Proceedings 2000 International Conference

on Parallel Architectures and Compilation Techniques (Cat. No.PR00622). 2000,

pp. 37–46.

[65] ARM Ltd. Advanced Microcontroller Bus Architecture. 1996. URL: https://www.

arm.com/products/system-ip/amba-specifications.

[66] S. Ma et al. “Leaving One Slot Empty: Flit Bubble Flow Control for Torus

Cache-Coherent NoCs”. In: IEEE Trans. on Comp. 64.3 (2015), pp. 763–777.

ISSN: 0018-9340.

[67] Milo M. K. Martin et al. “Multifacet’s General Execution-driven Multiproces-

sor Simulator (GEMS) Toolset”. In: SIGARCH Comput. Archit. News 33.4 (Nov.

2005), pp. 92–99. ISSN: 0163-5964.

[68] Peggy B McGee et al. “A level-encoded transition signaling protocol for high-

throughput asynchronous global communication”. In: Asynchronous Circuits

and Systems, 2008. ASYNC’08. 14th IEEE International Symposium on. IEEE.

2008, pp. 116–127.

[69] A. Mello et al. “Evaluation of current QoS Mechanisms in Networks on Chip”.

In: 2006 International Symposium on System-on-Chip. 2006, pp. 1–4.

[70] A. Mello et al. “Virtual Channels in Networks on Chip: Implementation and

Evaluation on Hermes NoC”. In: 2005 18th Symposium on Integrated Circuits

and Systems Design. 2005, pp. 178–183.

[71] L. Mhamdi, K. Goossens, and I. V. Senin. “Buffered Crossbar Fabrics Based on

Networks on Chip”. In: 2010 8th Annual Communication Networks and Services

Research Conference. 2010, pp. 74–79.

[72] G. Michelogiannakis and W. J. Dally. “Elastic Buffer Flow Control for On-

Chip Networks”. In: IEEE Transactions on Computers 62.2 (2013), pp. 295–309.

ISSN: 0018-9340.

https://www.arm.com/products/system-ip/amba-specifications
https://www.arm.com/products/system-ip/amba-specifications

BIBLIOGRAPHY 137

[73] G. Michelogiannakis and W. J. Dally. “Router designs for elastic buffer on-

chip networks”. In: Proceedings of the Conference on High Performance Comput-

ing Networking, Storage and Analysis. 2009, pp. 1–10.

[74] Fernando Moraes et al. “HERMES: An Infrastructure for Low Area Over-

head Packet-switching Networks on Chip”. In: Integr. VLSI J. 38.1 (Oct. 2004),

pp. 69–93. ISSN: 0167-9260.

[75] Thomas Moscibroda and Onur Mutlu. “A Case for Bufferless Routing in On-

chip Networks”. In: SIGARCH Comput. Archit. News 37.3 (June 2009), pp. 196–

207. ISSN: 0163-5964.

[76] R. Mullins, A. West, and S. Moore. “Low-Latency Virtual-Channel Routers for

On-Chip Networks”. In: Sigarch Comp. Archit. News (Mar. 2004). ISSN: 0163-

5964.

[77] S. M. Nowick and M. Singh. “High-Performance Asynchronous Pipelines:

An Overview”. In: IEEE Design Test of Computers 28.5 (2011), pp. 8–22. ISSN:

0740-7475.

[78] N. Onizawa et al. “High-Throughput Compact Delay-Insensitive Asynchronous

NoC Router”. In: IEEE Trans on Comp 63.3 (2014), pp. 637–649.

[79] J. D. Owens et al. “Research Challenges for On-Chip Interconnection Net-

works”. In: IEEE Micro 27.5 (2007), pp. 96–108. ISSN: 0272-1732.

[80] G. Oxman and S. Weiss. “Simple method to reduce congestion in bufferless

network-on-chip”. In: Electronics Letters 50.8 (2014), pp. 581–583. ISSN: 0013-

5194.

[81] M. Palesi et al. “Application Specific Routing Algorithms for Networks on

Chip”. In: IEEE Transactions on Parallel and Distributed Systems 20.3 (2009),

pp. 316–330.

[82] Ivan Miro Panades and Alain Greiner. “Bi-synchronous fifo for synchronous

circuit communication well suited for network-on-chip in gals architectures”.

In: Networks-on-Chip, 2007. NOCS 2007. First International Symposium on. IEEE.

2007, pp. 83–94.

[83] J. Parkhurst, J. Darringer, and B. Grundmann. “From Single Core to Multi-

Core: Preparing for a new exponential”. In: 2006 IEEE/ACM International Con-

ference on Computer Aided Design. 2006, pp. 67–72.

[84] Li-Shiuan Peh, Stephen W. Keckler, and Sriram Vangal. “On-Chip Networks

for Multicore Systems”. In: Multicore Processors and Systems. Ed. by Stephen

W. Keckler, Kunle Olukotun, and H. Peter Hofstee. Boston, MA: Springer US,

2009, pp. 35–71.

138 BIBLIOGRAPHY

[85] Julian J. H. Pontes et al. “Hermes-A - An Asynchronous NoC Router with

Distributed Routing”. In: PATMOS. Vol. 6448. LNCS. Springer, 2010, pp. 150–

159.

[86] JULIAN JOSÉ HILGEMBERG PONTES. “Soft Error Mitigation in Asynchronous

Networks-on-Chip”. PhD thesis. Pontifícia Universidade Católica do Rio Grande

do Sul, 2012.

[87] V. Puente et al. “The Adaptive Bubble Router”. In: J. Parallel Distrib. Comput.

61.9 (Sept. 2001), pp. 1180–1208. ISSN: 0743-7315.

[88] Rezaur Rahman. “Introduction to Xeon Phi Architecture”. In: Intel R© Xeon

PhiTM Coprocessor Architecture and Tools: The Guide for Application Developers.

Berkeley, CA: Apress, 2013, pp. 3–14.

[89] Ville Rantala, Teijo Lehtonen, Juha Plosila, et al. Network on chip routing algo-

rithms. 2006.

[90] E. Rijpkema et al. “Trade offs in the design of a router with both guaranteed

and best-effort services for networks on chip”. In: 2003 Design, Automation

and Test in Europe Conference and Exhibition. 2003, pp. 350–355.

[91] Mostafa S. Sayed et al. “Flexible Router Architecture for Network-on-chip”.

In: Comput. Math. Appl. 64.5 (Sept. 2012), pp. 1301–1310. ISSN: 0898-1221.

[92] I. Seitanidis et al. “ElastiStore: An elastic buffer architecture for Network-on-

Chip routers”. In: 2014 Design, Automation Test in Europe Conference Exhibition

(DATE). 2014, pp. 1–6.

[93] F. N. Sibai. “Resource Sharing in Networks-on-Chip of Large Many-core Em-

bedded Systems”. In: 2009 International Conference on Parallel Processing Work-

shops. 2009, pp. 513–519.

[94] S. Z. Sleeba, J. Jose, and M. M. G. “HiPAD: High Performance Adaptive De-

flection Router for On-Chip Mesh Networks”. In: 2015 Fifth International Con-

ference on Advances in Computing and Communications (ICACC). 2015, pp. 16–

19.

[95] V. Soteriou et al. “A High-Throughput Distributed Shared-Buffer NoC Router”.

In: IEEE Computer Architecture Letters 8.1 (2009), pp. 21–24. ISSN: 1556-6056.

[96] Jens Spars and Steve Furber. Principles of Asynchronous Circuit Design: A Sys-

tems Perspective. 1st. Springer Pub. Company, Inc., 2010. ISBN: 1441949364,

9781441949363.

[97] Synopsys. Synopsys design compiler. URL: https://www.synopsys.com/support/

training/rtl-synthesis/design-compiler-rtl-synthesis.html.

https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html
https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html

BIBLIOGRAPHY 139

[98] M. B. Taylor et al. “The Raw microprocessor: a computational fabric for soft-

ware circuits and general-purpose programs”. In: IEEE Micro 22.2 (2002),

pp. 25–35. ISSN: 0272-1732.

[99] Y. Thonnart, P. Vivet, and F. Clermidy. “A fully-asynchronous low-power

framework for GALS NoC integration”. In: DATE 2010. 2010, pp. 33–38.

[100] Erik B. van der Tol and Egbert G. Jaspers. “Mapping of MPEG-4 decoding on

a flexible architecture platform”. In: vol. 4674. 2001, pp. 1–13.

[101] A. T. Tran and B. M. Baas. “Achieving High-Performance On-Chip Networks

With Shared-Buffer Routers”. In: IEEE Trans on Very Large Scale Integration

(VLSI) Systems 22.6 (2014), pp. 1391–1403. ISSN: 1063-8210.

[102] A. T. Tran and B. M. Baas. “DLABS: A dual-lane buffer-sharing router archi-

tecture for networks on chip”. In: 2010 IEEE Workshop On Signal Processing

Systems. 2010, pp. 327–332.

[103] A. T. Tran, D. N. Truong, and B. M. Baas. “A complete real-time 802.11a

baseband receiver implemented on an array of programmable processors”.

In: 2008 42nd Asilomar Conference on Signals, Systems and Computers. 2008,

pp. 165–170.

[104] Balaji Venu. “Multi-core processors-an overview”. In: arXiv preprint arXiv:1110.3535

(2011).

[105] Xiaofang Maggie Wang and Leeladhar Bandi. “X-Network: An area-efficient

and high-performance on-chip wormhole interconnect network”. In: Micro-

processors and Microsystems 37.8 (2013), pp. 1208–1218.

[106] X. Y. Xiang and N. F. Tzeng. “Deflection Containment for Bufferless Network-

on-Chips”. In: 2016 IEEE International Parallel and Distributed Processing Sym-

posium (IPDPS). 2016, pp. 113–122.

[107] M. K. Yadav, M. R. Casu, and M. Zamboni. “DVFS Based on Voltage Dither-

ing and Clock Scheduling for GALS Systems”. In: 2012 IEEE 18th International

Symposium on Asynchronous Circuits and Systems. 2012, pp. 118–125.

	Acknowledgements
	Résumé
	Abstract
	Introduction
	Scalable on-chip communication fabric
	NoC design challenges
	Buffer resource sharing in NoC
	Thesis objectives and contributions
	Thesis organization

	Networks-on-Chip (NoCs) design
	General introduction to NoCs
	Routing
	Flow-control
	Buffer management
	Router pipeline
	Network traffic and Performance metric

	Networks-on-Chip (NoCs) design challenges
	Power consumption
	Quality-of-Service
	Latency
	Synchronization
	Traffic Variability and Network topology

	Resource sharing in NoCs
	Underutilization of NoC resources
	Benefits of resource sharing in NoCs
	Some resource sharing challenges
	Deadlock freeness/avoidance
	Design complexity

	Motivation for roundabout-inspired router in NoCs
	Improved network performance
	Enhanced scalability

	Desirable design mechanisms

	Summary

	State of the art in NoC routers
	Introduction
	Input buffered NoC routers
	Virtual-cut-through based routers
	Wormhole router
	Virtual-channel router

	Bufferless router
	Minimal buffered router
	Shared-buffer routers
	Deadlock-freeness challenge in resource sharing
	Shared-buffer routers
	Roundabout-inspired routers

	Summary

	The Roundabout concept for effective buffer resource sharing
	Introduction
	General principle
	Avoiding deadlock in R-NoC
	Topology generation algorithm
	Application to mesh-based topology
	Properties of the deadlock-free R-NoC topology

	Application to diagonally-linked mesh-based topology
	R-NoC-DM router for DMesh network topology

	Discussion

	Implementations of Roundabout Network-on-Chip
	Introduction
	Synchronous elastic implementation
	Elastic synchronous design
	R-NoC synchronous elastic building blocks

	Asynchronous implementation
	Asynchronous circuit design
	Handshake protocol control signaling

	Bundled-data protocol
	Network-on-Chip routers based on Bundled-data protocol

	Delay-insensitive protocol
	Network-on-Chip routers based on 4-phase dual-rail protocol
	Level-Encoded Dual-Rail (LEDR) protocol
	Network-on-Chip router base on LEDR

	R-NoC delay-insensitive implementation
	4-phase dual-rail input controller
	4-phase dual-rail output and path controllers

	Summary

	Evaluation of Roundabout Mesh Network topology
	Introduction
	Synchronous elastic evaluation
	Synchronous elastic router
	Baseline synchronous elastic network
	Exploring further synchronous elastic router topologies

	Asynchronous evaluation
	Asynchronous router
	Baseline asynchronous network
	Exploring further asynchronous router topologies
	Comparison with existing solutions

	Discussion: synchronous elastic vs. asynchronous

	Evaluation of further network topologies
	Introduction
	R-NoC-DM configurations
	Evaluation of R-NoC-DM configurations
	Exploring R-NoC-DM NoCs
	Comparison with existing solutions

	Summary

	Conclusion
	Future works
	Publications

	Bibliography

