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Abstract

This manuscript summarizes a three years work addressing the use of ma-
chine learning for the automatic analysis of natural signals. The main
goal of this PhD is to produce efficient and operative frameworks for the
analysis of environmental signals, in order to gather knowledge and bet-
ter understand the considered environment. Particularly, we focus on the
automatic tasks of detection and classification of natural events.

This thesis proposes two tools based on supervised machine learning
(Support Vector Machine, Random Forest) for (i) the automatic classifica-
tion of events and (ii) the automatic detection and classification of events.
The success of the proposed approaches lies in the feature space used to
represent the signals. This relies on a detailed description of the raw acqui-
sitions in various domains: temporal, spectral and cepstral. A comparison
with features extracted using convolutional neural networks (deep learn-
ing) is also made, and favours the physical features to the use of deep
learning methods to represent transient signals.

The proposed tools are tested and validated on real world acquisitions
from different environments: (i) underwater and (ii) volcanic areas. The
first application considered in this thesis is devoted to the monitoring of
coastal underwater areas using acoustic signals: continuous recordings are
analyzed to automatically detect and classify fish sounds. A day to day
pattern in the fish behavior is revealed. The second application targets
volcanoes monitoring: the proposed system classifies seismic events into
categories, which can be associated to different phases of the internal ac-
tivity of volcanoes. The study is conducted on six years of volcano-seismic
data recorded on Ubinas volcano (Peru). In particular, the outcomes of
the proposed automatic classification system helped in the discovery of
misclassifications in the manual annotation of the recordings. In addi-
tion, the proposed automatic classification framework of volcano-seismic
signals has been deployed and tested in Indonesia for the monitoring of
Mount Merapi. The software implementation of the framework devel-
oped in this thesis has been collected in the Automatic Analysis Architec-
ture (AAA) package and is freely available.





Résumé

Ce manuscrit de thèse résume trois ans de travaux sur l’utilisation des
méthodes d’apprentissage statistique pour l’analyse automatique de sig-
naux naturels. L’objectif principal est de présenter des outils efficaces
et opérationnels pour l’analyse de signaux environnementaux, en vue de
mieux connaitre et comprendre l’environnement considéré. On se concen-
tre en particulier sur les tâches de détection et de classification automatique
d’événements naturels.

Dans cette thèse, deux outils basés sur l’apprentissage supervisé (Sup-
port Vector Machine et Random Forest) sont présentés pour (i) la classifi-
cation automatique d’événements, et (ii) pour la détection et classification
automatique d’événements. La robustesse des approches proposées résulte
de l’espace des descripteurs dans lequel sont représentés les signaux. Les
enregistrements y sont en effet décrits dans plusieurs espaces: temporel,
fréquentiel et quéfrentiel. Une comparaison avec des descripteurs issus de
réseaux de neurones convolutionnels (Deep Learning) est également pro-
posée, et favorise les descripteurs issus de la physique au détriment des
approches basées sur l’apprentissage profond.

Les outils proposés au cours de cette thèse sont testés et validés sur des
enregistrements in situ de deux environnements différents : (i) milieux
marins et (ii) zones volcaniques. La première application s’intéresse aux
signaux acoustiques pour la surveillance des zones sous-marines côtières :
les enregistrements continus sont automatiquement analysés pour dé-
tecter et classifier les différents sons de poissons. Une périodicité quoti-
dienne est mise en évidence. La seconde application vise la surveillance
volcanique : l’architecture proposée classifie automatiquement les événe-
ments sismiques en plusieurs catégories, associées à diverses activités du
volcan. L’étude est menée sur 6 ans de données volcano-sismiques enreg-
istrées sur le volcan Ubinas (Pérou). L’analyse automatique a en partic-
ulier permis d’identifier des erreurs de classification faites dans l’analyse
manuelle originale. L’architecture pour la classification automatique
d’événements volcano-sismiques a également été déployée et testée en ob-
servatoire en Indonésie pour la surveillance du volcan Mérapi. Les outils
développés au cours de cette thèse sont rassemblés dans le module Archi-
tecture d’Analyse Automatique (AAA), disponible en libre accès.
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Introduction

The main topic of this PhD and of this manuscript is the automatic
processing of environmental data. In this introduction chapter, I hope
to provide the reader with general pieces of information regarding the
context and content of this thesis. In particular, we will address the
following questions:

What is behind the title and what is this thesis about?

Why should we investigate this particular topic?

Upon which scientific fields is this work built?

And finally, what answers and contributions do we provide to the
scientific community?

We will also give keys to reading the manuscript and detail on its gen-
eral organization. The contributions of this work are detailed at the
end of this introduction chapter, along with a glossary of most impor-
tant terms used in this manuscript. This manuscript is written with
a will to be as clear, easy to read and understandable as possible, and
we hope it will be of use to the greatest number. Enjoy the reading!
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1.1 “Automatic Classification of Natural Signals
for Environmental Monitoring”: an Attempt at
Demystifying the Problem.

Let us consider an environment. It could be an ants terrarium, your back-
yard garden, the Amazonian forest, the bottom of the sea, a volcano, your
favorite mountain or even the Moon. Any environment. As curious living
beings, humans have always – and probably always will – asked questions
and wonder about everything and anything. So let us have a look at a
considered environment (Figure 1). What is happening inside? Is it evolv-
ing? Can we guess how it will look like on tomorrow? To answer those
questions, we look at our environment, we take measurements, and we
study them. From a pluviometry measurement in our backyard garden,
we know whether the night was rainy or not. And from pluviometry mea-
surements over a few years, we know how dry the land is compared to
the previous years, and if the plants need watering. In other words, we
gather knowledge on our environment from a simple parameter. From
this simple parameter evolution, we infer more knowledge on our envi-
ronment. This information is non-trivial since it then helps to predict the
evolution of the environment. For more complex environments and more
tangible problematics, it can even influence our decision making process.
An underlying and key point behind this purposefully extremely simple
example, is that studying some parameters of a given environment allows
us a retrieve information and knowledge on the environment itself. The
monitoring of a environment is done through the study of one or several
parameters. This PhD is built around this idea.

If this example regarding a backyard garden and plants growth is rather
trivial, the situation, issues and more importantly consequences, remain
similar when considering more complex environments. And as it stands,
two main points separate the context of this PhD from this example.

The first one is the concerned environment: in this manuscript we
focus on areas that are difficult to access (i.e., under-water and volcano ar-
eas). Such environments are not only hard to observe, but also difficult to
measure. If an ant terrarium is small and easy to observe, if your backward

Figure 1
Considered and

unknown environment.
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Figure 2
Considered and
unknown environment,
separated from us.

garden is easily accessible, conditions are completely different for the heart
of the Amazonian forest, the Moon, or oceans. The environment is phys-
ically separated from us, and the question of its access is real (Figure 2).
Recording measurements becomes a challenging task. A consequence
and solution to this issue is to make use of technological developments
by working with sensors that collect the wanted data. Once set up, those
sensors can run continuously to send measurements and signals in real
time. If the use of continuous and remote sensors is not exactly new, au-
tonomous recording systems are quite recent and such systems have open
a window on even more remote environment, such as underwater areas
for example. A direct consequence of this point is the frequency rate at
which data are sampled. If manual measurements are relatively sparse, the
use of a sensor lead to a continuous flow of measures. At some point, the
manual analysis is no longer possible.

The second point comes from the environment size. If small and sim-
ple environments can easily be studied by a person, the task is more com-
plex when considering a growth and change of scale. We can either con-
sider the evolution of geographic and/or temporal scales: considering large
and extended environments and/or studying them continuously for years
or decades significantly complicates the task. Instead of considering a plu-
viometry measure once in a while, we consider continuous flows of mea-
surements for several years or decades, possibly on various locations. This
accumulation of data is a well known phenomenon often referred as big
data, and has consequences well beyond the scientific community. Typi-
cally: From storing a few photo albums, we now store gigabytes of numer-
ical photos. From having a nice library of albums, we now access any artist
discography in a few “clicks” and for a few euros. The general trend goes
toward a data accumulation, and if the broader consequences on society
– privacy issues for instance – are well beyond the scope of this work, the
issue of environmental monitoring has clearly been impacted by the big
data phenomenon. A straightforward consequence to this data accumula-
tion is the cost1 needed to store, analyze and process them (Figure 3). In
particular, the information retrieval question is raised: What information
are we looking for among the data? How to proceed to extract such a piece of

1energy, human effort, which eventually lead to an economic cost
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Figure 3
Use of on field data to

gather knowledge about
a considered and

unknown environment.

information? Those questions will be addressed in this manuscript. They
can almost be considered universal to the scientific community: they are
shared by many communities, and are relevant regardless the applicative
field. Research around those questions is of importance, and is therefore
funded. Typically, this PhD has been funded by the DGA/MRIS, and
by the OSUG@2020, and received travel grants from the doctoral school
“Terre Univers Environnement” (TUE), the IDEX, and the Data Institute.

Exposing those two points naturally conducts us to an elucidation of
this manuscript title, and at the same time to state the goal of this PhD.
This is also the opportunity to give the reasons behind and justifications
for this study.

Research in machine learning is today relatively advanced. The origi-
nal theory, ideas and methods emerged a few decades ago, even if more and
more complex methods are still developed [HTF09, GBC16]. Machine
learning has been successful in different fields: human versus computer
games [Sam59, Tes95, Hsu99, SHM+16], computer vision [SZ14, KFF15,
SKB13, GEB15] and speech processing [CCC+17, Wan03]. Machine learn-
ing is those fields that has been widely investigated, is still being improved
and leads to innovative and operational technological achievements. The
reason why those specific tasks were chosen to illustrate machine learning
algorithms is likely related to the availability of datasets, which is today
extremely easy for image and speech data for instance. For applicative
fields where shaped dataset are not common, and/or publicly available,
machine learning is not yet widespread, and operative tools are yet to be
developed. Environmental data register in those applicative fields where
machine learning tools are needed, but not common yet. In this work, we
contribute to the state of the art, by proposing general and robust schemes
for the automatic analysis of natural signals.

Choosing a title of a few words to summarize a three years long project
can be a challenging task. Once settled upon however, it carries quite a
lot of meaning and for this reason, we take the time to detail and expose
the underlying concepts carried by each word of the title. Many concepts
and words will be introduced. Some of them are easily understandable,
but to avoid any confusion and misunderstanding related to the chosen
terminology, a section is dedicated to the concepts and words definitions
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used through this manuscript will follow (Section 1.4).

“Automatic classification of natural signals for environmental
monitoring”

■ Automatic — As previously stated, this study registers within the big
data phenomenon, where we face too many signals to process them
all manually. We are therefore aiming at automatic tools, that will
answer this issue. The use of the word automatic also implies that
the tools we are looking for are somewhere around a field named
machine learning [HTF09].

■ Classification — Up to this point, we purposefully remained vague
on the kind of analysis we are aiming at, simply saying that we want
to process natural signals. By performing an automatic analysis on
a set of signals, we face many various possibilities. This analysis
of automatic processing methods is general to many types of data,
whether natural signals or not. We can distinguish two main types
of analysis [HTF09]. Strictly speaking, all methods do not fit within
this binary view but it is helpful to have a general view of machine
learning approaches. The first type of analysis is to replicate a human
analysis in which typically, a person is looking for something in the
set of signals. This something is referred as elements of a class, and
several classes can be considered. In image processing for example, a
typical classification task would consist in describing an image. Is it
a cat? Is it a dog? Is it something else? Technically speaking, cat
and dog are refer as classes, and more specifically as positive classes.
In this manuscript, classes are written with this specific font.
Elements of a class can be referred as examples, data, elements, or as
observations in the case of natural signals. Something else can be
referred as the negative class, since it does not contain what we are
looking for - in this case cats and dogs. In many applicative fields,
the classification task is very easily done by hand2. But as previously
explained, the task can be time consuming in a context of big data
and methods referred to as supervised machine learning were there-
fore developed. Those methods will be more thoroughly described
in Chapter 2 but the overall idea is to build a prediction model to
replicate a given task. Look for cats and dogs in those images, Is
there a piano playing in this audio recording? Automatic processing
or analysis are very general terms, full of many different possibilities.
Classification is one of them, and is the focus of this work. Those
classification methods (supervised machine learning) [HTF09] can
be summarized as using a large dataset of already classified observa-
tions to teach a machine to classify new observations. We will come

2In computer vision for instance, the human brain very easily describes and sum-
marizes the information. In other fields the data are too complex and machine learning
methods are also used to understand the data, not only to automate a task (remote sensing
for instance)
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back to this point when exposing the objectives of our study. The
second type of analysis is out of the scope of this work and consists
in exploring a set of data. The objective is then to extract informa-
tion from a set of data, without knowing what information we are
looking for. Those methods are referred as unsupervised machine
learning methods [HTF09], and analysis models are built upon a
set of data, without any prior human3 knowledge on those data.
Chapter 2 gives a more thorough background on machine learning
methods.

■ Natural — The context of this PhD is to work with signals that
have a natural cause. This point however, is more to contextualize
the focus of the PhD, since the theory and proposed solutions would
be left unchanged if we were to deal with other types of data. The
word observations is used for to describe the natural data input in
the analysis model, while elements or examples refer to more general
data.

■ Signals — Up to this point, we have used different words to name
the physical quantity that we record and work on (data, signals, ob-
servations, examples, etc.). We here introduce more concepts that
will be used throughout the manuscript, and explain the differences
between all data-related vocabulary. As a precaution, we remind that
terminology related to data in the literature can vary significantly
from one domain to another. A glossary of chosen words used in
this manuscript can be found in Section 1.4. We call recordings the
continuous physical value that is measured on the environment. A
recording is therefore a signal of natural origin, we can for instance
consider acoustic recordings. We refer to an events as something
of interest happening inside the environment and that is relevant
for its monitoring. The events imprint are visible on the recordings,
and are referred as signatures. Events signatures are sorted into the
classes. If the environment is a nearby street and the signals of in-
terest are the acoustic waves recorded at one point of the street. A
passing car for instance, can be considered as an event of one class,
and a barking dog as an event of another class. The sound of the
passing car therefore is the signature of the class presence of car
and the noise of a barking dog the signature of the class presence
of dog. We refer to observation as a small portion of the record-
ing that we want to analyze and classify (typically, recordings can
be analyzed with a sliding window, leading to a large number of ob-
servations). The term data is used in a more generic way. We also
clarify that during this thesis, signals are always digital, and consider-
ation regarding their digitization will not be discussed. But for more
information on the topic, the reader is welcome to read to [RG75].

■ Environmental Monitoring — This part of the title is easily un-
derstandable, but remains purposefully vague. More details on the

3This point is particularly important to understand the philosophy behind machine
learning methods, and in particular to understand their limitations. More details will be
given in Chapter 2.
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kind of monitoring targeted will be given in the chapters dedicated
to the various applications (Underwater acoustic in Chapter 4 and
volcano-seismic in Chapter 5). Purposefully, we remain generic on
the applications considered for this study, for the methods and pro-
posed tools are designed for transient signals, and not for a given ap-
plication. For now, let us simply keep in mind that the overall goal
of the tools build in this PhD is for the environmental monitoring
– even if the same theory and methods could easily be applied on
other types of data and for goals beyond environmental monitoring.
Environmental monitoring of a given environment can be done in
many different way. Typically, the scale at which the environment
is studied is of importance, and sensors are chosen and positioned
according to the targeted goal. An ocean for example can be studied
as a whole (hundred of squared kilometers), regionally (10x10km2),
locally (1x1km2), or at even smaller scales (100x100m2).

Once explained, the title summarizes reasonably well what is the goal
of this work: build tools that automatically classify signals recorded from
an environment, in order to monitor this environment. The main goal
is therefore to build a model that automatically classify the data that are
recorded on the environment into categories that – roughly speaking –
mean something. The main question is how to. This manuscript provides
answers and showcases to this question.

1.2 Objectives, Constraints and Contributions

The main objective of this manuscript is first to give an answer to the au-
tomatic classification issue in the case of environmental data. Secondly,
to give sufficient theoretical materials on those tools to understand their
mechanisms, strengths and limitations. Thirdly, this manuscript is also
written as a tutorial that can be used to deploy the proposed tools for new
applications. Fourthly, tools proposed in this manuscript are used to ana-
lyze various environmental. The analysis of those results is of great impor-
tance to understand and illustrate the use of the proposed tools. Finally,
we took great care to develop tools that can be shared, easily used for other
applications, and useful in operative context. All tools developed within
the frame of this PhD are available on GitHub [Mal18], and contributions
to the code are welcomed.

One of the main constraints on this work is to keep the tools as general
as possible: an incredible amount of studies use machine learning methods
to classify signals of a certain type, and for a given application. Typically,
we chose not to develop the applications context and constraints in this
introduction. We here aim at building tools that can be used regardless of
the application. In order to underline the fact that the proposed tools can
be used for other applications, we therefore present this work by dissociat-
ing theory and applications. The major goal is not to build a model that
has once successfully classified a dataset but to propose a general frame-
work of tools that can be used to analyze data. However, we precise that
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we would not recommend using the tools without taking time to under-
stand the data, the applicative field, and its constraints. Machine learning
is here a tool to understand the data, and to extract relevant information
from a dataset, but knowledge of the applicative expert has always been
present. One of the success of this work is the collaborations it led to, and
we take this opportunity to stress their value (more detail on the applica-
tion can be found Chapter 4 and Chapter 5). Another main constraint
is to put a great importance on building operative tools that can be used
in environmental observatories. A real will and effort was put to develop
tools that can be shared, but also deployed in operational contexts. This
work is difficult and require time: the use of new tools in environmental
observatories is always a tricky stage, including training of the local teams,
and maintenance issues among others.

The main contributions of this work that are described in this
manuscript are:

■ The work on the observations representations or feature vectors. The
final feature vectors are extracted from the observations represented
in several domains, thereby leading to a precise and specific descrip-
tion of the data.

■ The framework for the automatic classification of transient signals.

■ The framework for the automatic detection and classification of tran-
sient signals.

■ The application to the underwater monitoring of coastal areas, with:

– a manual analysis of the dataset content,
– a validation of the proposed models in various recording places,
– a study of the influence of the various parameters used in the

proposed architecture,
– and the automatic analysis of several days of recording, regis-

tered in different underwater areas.

■ The application to volcanic monitoring, with:

– a validation of the proposed models,
– a study of the influence of the various parameters used in the

proposed architecture,
– the automatic analysis of six years of recording of Ubinas vol-

cano, which showed that in crisis period the automatic model
performed better than the human operators, and was able to
detect changes in the observations that were missed by the hu-
man eye.,

– a simulation of the operative monitoring of Ubinas,
– the deployment of the Automatic Analysis Architecture in In-

donesia for the monitoring of the volcano Merapi [Mal18],
with the use of trust index.
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■ The code of all those applications, which is available for real time
or a posteriori analysis, available under CeCILL license and open to
contributions [Mal18].

■ An investigation and first approach on the use of neural networks
for this issue of environmental monitoring.

■ Publications and communications related to this PhD project are
listed in Appendix A.

1.3 General Organization & Keys to Reading the
Manuscript

The work presented in this manuscript is build on many different fields:
signal processing, information retrieval, machine learning, computer sci-
ence, acoustics, seismic, biology and geology. It is my hope that this
manuscript can be read by people with or without a background any of
those fields. To do so, each chapter will propose a very general, simple and
accessible introduction which will give the necessary keys to have a general
understanding of the chapter And each chapter finishes by an easy to read
summary entitled Highlights and Summary. Technical concepts exposed
in this manuscript are first introduced in a popularized way before being
more strictly explained. Depending on his background and his interest,
the reader is welcome to chose which view he prefers to spend reading
time on, and eventually to skip some sections. Introduction and end of
chapter summaries are easily noticeable sections, and are written over a
gray background.

This manuscript can be read under different angles. Depending on the
reader’s interest, not all chapters must be read. If skipping some chapters
however, we would recommend the reader to read the popularized parts
of the skipped chapters: the Introduction and the Highlights and Summary
sections. For readers interested in machine learning, Chapter 2 can be read
independently, as an introduction and tutorial on the subject. For read-
ers interested in under-water acoustic or in volcano-seismic, Chapters 4
and 5 can be read independently. Some of the technical material exposed
in these chapters is reminded if needed (but for a better comprehension,
we would advice to at least read the popularized Introduction and the High-
lights and Summary section of the Chapter 2 and Chapter 3). For readers
interested in the use of convolutional neural networks to represent envi-
ronmental signals, Chapter 4 is advised and can be read independently,
with more information about the data in Chapter 4. Finally, for the even-
tual reader who would read this manuscript top to bottom, you might
find some repetition, which are the natural consequence of the relatively
independent chapters. For this, we apologize, do not hesitate to skip the
material with which you are familiar.

The general organization of the manuscript is as follow:

■ Introduction — The present introduction chapter exposes the gen-
eral context of this PhD and give insights on what to expect in the
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following pages. Some key concepts are also introduced and detail
on the vocabulary used in this manuscript are given.

■ Chapter 2 — This chapter gives all the theoretical material needed
to understand this manuscript. In particular, we focus on the sig-
nals representation issue and on machine learning. Purposefully,
this chapter is not related to the context of this PhD in the sense
that it can be read separately, as a tutorial and article or a course.
Some sections of this chapter are also popularized, with an empha-
sis on high level explanation rather than on the understanding of
the mathematical concepts. And while both views are equally im-
portant, we hope to propose a balance between the overall compre-
hension and the scientific rigor in this chapter. Many documents of
the literature provide many details on the mathematical concepts,
but we judged important to also provide easily understandable ex-
planations of those concepts. This chapter is therefore destined for
readers with or without a background on machine learning or sig-
nal representation. Readers with a strong background can skip this
chapter – we would in this case advice to carefully read the glossary
of Section 1.4 to be sure of the terminology used in the manuscript,
especially regarding the data. This chapter is mainly based on the
literature. For readers without a background on machine learning,
we would advice spending some time on this chapter, at least on
the concepts popularized explanations if not on the more technical
parts. The introduction and easy to read summary propose a con-
densed version of the concepts if you are in a hurry.

■ Chapter 3 — This chapters details the proposed approaches for the
automatic processing of environmental signals. It gathers and ex-
plain the major contributions of this PhD: from the proposed ar-
chitectures to the feature extraction scheme and its consequences.
In particular, the general approach for the analysis of environmen-
tal signals and its consequences is detailed. Both analysis schemes,
namely dedicated to the automatic classification and to the auto-
matic detection and classification of environmental data are pre-
sented. A comparison between both approaches is also proposed.
Finally, a feature extraction scheme for time series is proposed and
explained. This chapter is necessary for the comprehension of this
manuscript. By nature this chapter is bound to be rather technical,
but detailed explanations are given in order to avoid a too heavy re-
sult. All major notions needed to follow through this chapter are
given in the introduction and in Chapter 2.

■ Chapters 4 and 5 — Both chapters are applicative chapters and use
the analysis scheme proposed in Chapter 3 on real world data. Chap-
ter 4 is dedicated to the underwater acoustic and fish sounds while
Chapter 5 focuses on volcano-seismic signals and on volcanic moni-
toring. Both chapter introduce the general applicative context, and
in particular related constraints. A state of the art concerning the
automatic analysis methods in those fields is presented. Precisions
are given on the data used for this study, on the analysis that is
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performed. Results are then detailed, along with an analysis of the
considered environment. Both chapters can be read with or without
any knowledge on the applicative field since the needed general ma-
terial is given in their introduction. Both chapters can also be read
independently, even if Chapter 3 is a recommended prerequisite.

■ Chapter 6 — This last chapter is rather different from the previous
ones, since it does not offer a straightforward answer or application
to the the automatic classification of natural signals issue. It an-
swers some prospects on this work. Namely, it deals with the choice
of signals representation, and question the choice to design features
(chapters 2 and 3). In particular, deep learning models are used to
extract features, and results are compared to the proposed approach.
The study is based upon the use of technical tools that are first in-
troduced, and challenges the work hypothesis of this PhD. The data
used are the one of Chapter 4 This chapter can be considered as
going beyond the strict topic of this PhD and its reading is not
necessary for the comprehension of this work. However working
hypothesis and some of the many questions raised by the previous
chapters are questioned and answered in this chapter. This chap-
ter is interesting for the research point of view and for future de-
velopments. Sections exposing the involved concepts and tools are
technical, but are also popularized in order to be as understandable
as possible. This chapter is build upon all of the previous chapters
and would be better understood if they had been read or reviewed
first. However it is also presented as independent studies that can
be reasonably well understood independently from the rest of this
manuscript.

1.4 Glossary

Machine learning and signal processing methods are used in for wide ap-
plicative fields, each applicative domain using a different terminology. We
here propose a glossary of the terminology used in this manuscript. The
glossary is set into three parts, dedicated to the main terminology used for
the data, for the data representations, and to machine learning in general.
We hope that it will improve the overall comprehension and prevent any
misunderstanding related to the word choice. In the manuscript, words
of the glossary are displayed in blue each time they are used in a new para-
graph.

1.4.1 Data
class – Category in which data are gathered. A class is usually associated to

a physical interpretation. Typically in computer vision, a model
trained to recognize object has learnt hundreds of classes, includ-
ing cats or dogs for example. In this manuscript classes are
written using this font, and are generically noted as ci, with
1 ≤ i ≤ C and C the number of considered classes.. xv, xvii, xix,
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7, 8, 14, 16, 20, 25, 27, 29, 32, 36, 38, 39, 44, 46, 51–53, 60, 75, 82,
104, 106, 107, 137

negative class describes a class which does not contain the objects
targeted by the analysis. In the context of environmental data,
negative classes do not contain event signatures, but can be back-
ground noise for instance. 7, 14, 52, 53, 63, 135

positive class describes a class containing the objects targeted by the
analysis. In the context of environmental data, positive classes
contain an event signature. xvi, 7, 14, 51–53, 63, 77, 78, 135

data – Generic term, which usually refers to a set of signals, which can be
recordings or observations. xv–xvii, 6–8, 10, 14, 20, 23, 25–29, 35,
36, 38, 39, 42, 43, 49, 51, 63, 68, 73, 98, 108, 117, 120, 135

dataset – Wide term referring to an ensemble of data. In this
manuscript, we refer to the dataset as the dataset of observations,
that is as the dataset of labeled signals to be used to build a pre-
diction model. xv, xvi, 6, 14, 16, 17, 20, 26–28, 32, 33, 36, 38, 39,
42, 46, 52, 53, 96, 119, 120, 132

element refers to the various elements of a class. Data or examples can
also be used. 7, 8, 14

event refers to the physical phenomenon related to a class. More precisely,
when an event occurs, its signature can be seen on the recordings.
We distinguish events from signatures: the former refers to the
physical phenomenon, while the latter refers to the signal associ-
ated to the events. xvi, xvii, 8, 14, 15, 51, 53, 55, 63, 106, 135

example refers to the various elements of a class (data or elements can also
be used). 7, 8, 14, 46

observation – Recordings that are used to build a model (learning dataset
of observation), to test it (testing dataset of observation) or to use
it. If the recordings are raw signals, the observations are already
preprocessed. Typically, a filtering or energetic normalization can
have been applied. Finally, an observation does not necessarily
display an event: it can contain only background noise (negative
class), a piece of signature, or even pieces of signatures belonging
to different classes for instance. In this manuscript observations
are specific to environmental data, while data, elements or exam-
ples are more generic terms, used for machine learning methods
in general. They are written sk.. xvi, xvii, xix, xx, 7, 8, 10, 14–16,
26, 49, 51–58, 63, 72, 78–80, 96, 97, 101, 103, 106–108, 110, 117,
124, 132, 135, 136

label – Tag associated to an observation, indicating its class. The la-
beling operation of a dataset is usually done by hand, and is a
necessary requirement to use supervised machine learning meth-
ods. The set of label associated to a dataset of size N is written
Y = yi

N
i=1. xv, 17, 27, 28, 32, 36, 49, 52, 53, 96

recording – Fixed length signal, recorded during a data gathering cam-
paign of an environment. We also refer to a set of recordings, as
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an ensemble of recordings, usually gathered under the same exper-
imental conditions, and at least describing the same phenomenon
(i.e. set of recording of the seismic signals around a volcano). In
this manuscript the set of recordings all come from the same data
gathering campaign. xvi, xvii, xix, 8, 10, 14, 15, 25, 49, 53, 63, 67,
73–75, 79, 83, 98, 99, 135

signal – Wide and generic term referring to row of values recorded from
a physical quantity evolving through time. In this manuscript,
signals are considered to be digitalized, the measure is therefore
discrete and not continuous. Typically a signal can be an acoustic,
pressure, temperature row of values. In this manuscript, a generic
signal of n sample is written as [zi]ni=1. It can reffer to a time or
frequency signal for instance.. xvi, xvii, xix, xx, 5, 7–12, 14, 15, 25,
49–51, 56, 57, 72, 73, 97, 101, 135

signature – The signal associated to an event. Note that a signature does
not necessarily correspond to an observation. xvi, 8, 14, 48, 51, 53,
63, 75

1.4.2 Representing the Data
domain – See space. xx, 10, 16, 56, 97, 135

cepstral domain is a space originally used to represent speech data.
The main idea is to represent the observations in a space underly-
ing the harmonic properties of the signals. To do so, the Fourier
transform is computed twice.4. Observations represented in this
domain are noted Sq = |F

{
Sf

}
|, and the space unit is known as

the quefrency.. 16, 30, 58, 63, 96
spectral domain refers in this manuscript as the module of the Fourier

transform. observations represented in the spectral domain are
noted Sf = |F

{
xi
}
|. 58, 63, 96, 135

feature – Value (or set of values) used to represent an observation. It can
be a physical measurement over the observation, for instance the
mean value. xvii–xx, 15, 16, 25, 27–29, 31, 36, 38, 39, 43, 52, 55, 63,
72, 80, 103, 104, 119–121, 123, 124, 136

high level – In this manuscript we refer to a high level feature as a
features of dimension 1. In practice, it means that the feature vec-
tor associated to an observation can be shifted randomly without
changing the information in contain. This property is of impor-
tance for machine learning algorithms. 15, 26, 30, 31, 55

low level – To the contrary, low level features have a dimension supe-
rior to 1. The feature vector associated to an observation cannot
be randomly shifted without altering the information it contains.
xix, 15, 16, 26, 30, 56–58, 63, 72, 96, 124

4Historically speaking, the cepstral transform is computed using a discrete cosine
transform over the logarithm of the spectrum module. The leading idea being to under-
line lower frequencies and harmonic properties. We here compute the cepstral transform
by applying the Fourier transform over the spectrum module. More details are given in
Chapter 3.2



16 Machine Learning

qualitative – Features are said to be qualitative if they are categorical.
For instance Sunny, Rainy and Windy are quantitative features.
33

quantitative – To the contrary, numerical features are said to be quan-
titative. 16, 33

feature vector – Observation represented in the feature space. In this
manuscrit, we write feature vector as x (bold font for vector nota-
tion). A set of N feature vectors is written X = xi(i = 1)N , with
xi = xji

d

j=1, for 1 ≤ i ≤ N . d refers to the feature vector dimen-
sion, and xj to the j-iest component of the feature vector, for
1 ≤ j ≤ d.. xv, xvi, xix, 10, 15, 16, 25, 26, 29, 37, 49, 52, 54, 56, 59,
63, 81, 82, 96, 117, 125, 132

quefrency – Unit of the cepstral domain. 15, 58, 135

representation – See feature vector. xix, 10, 25, 26, 29, 30, 55–58, 63, 96,
117, 120, 123, 124, 135

space – We refer to space or domain as the mathematical space in which
observations can be represented. It can be a feature space, which
is quite generic, or a more specific space such as the time domain
for instance. The time domain is the original domain of the ob-
servations while spectral, cepstral or feature domains require a
transformation over the observations. Various spaces represent
the same observations differently, thereby underlying different
properties. The transformation can be reversible or not (with or
without loss) depending on the considered space.. 15, 16, 25

feature space – Space of the features. xv, xvi, 16, 25–27, 29, 35, 38, 39,
135

input space refers to the input space of the learning algorithm. It can
be a the feature space (advisable), but also the original observa-
tions space, or a low level domain (non-advisable). 26

temporal – Original domain of the observations. Compared to the record-
ings domain, the observations have already been preprocessed,
and are noted sk. 58, 63, 96, 135

1.4.3 Machine Learning
analysis model – See prediction model. xv–xvii, xx, 8, 17, 20, 23, 26–28,

33, 44, 48, 49, 63, 102, 107, 108

classification models are trained to predict discreet outputs (categories,
classes). xviii, 25, 29, 32, 33, 35, 49, 51, 52, 117, 119, 121, 124

cost function – Function used during the training of a prediction model.
The function measures the prediction errors made by the model
on the learning dataset, and is minimized by the machine learning
algorithm to produce the prediction model. 16, 32

learning – Similar to training. 16, 23, 32, 36, 46
loss function – See cost function. 32
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machine learning is a concept englobing a wide set of methods. The con-
cept is used for many different purposes, and it is difficult to find
two similar definitions of the concept. A definition of machine
learning could be a set of methods aiming at building an analysis
model from a dataset. The analysis can be very varied. A general
introduction on machine learning can be found in chapter 2. xv,
6, 7, 12, 15–17, 20–25, 35, 42, 55, 68, 117, 135, 138

deep learning is a subset of methods based on neural networks with a
large number of hidden layers. Many different network architec-
ture are being used for different various purposes, and this set of
methods has had a great number of success during the last years.
Deep learning is sometimes studied independently from machine
learning, the computational aspect of neural network being rela-
tively different (extremely large dataset, computational cost, use
of low level programming language, GPU servers, etc). 17, 23,
117, 119, 120, 132, 136

supervised machine learning refers to the machine learning methods
building an analysis model from a labeled dataset. xv, xix, 7, 14,
22, 27, 28, 32, 33, 36, 42, 46, 49, 63, 80, 119, 138

unsupervised machine learning refers to the machine learning meth-
ods building an analysis model from a unlabeled dataset. xv, 8,
22, 27, 119

prediction model is build during the training phase. More commonly, we
refer to a prediction model as a model, or as an analysis model. 7,
14, 16, 17, 25, 32, 33, 52–54, 63

regression models are trained to predict continuous outputs. 32, 33, 35

training is the phase during which an analysis model is build by a machine
learning algorithm, using a dataset. 16, 17, 23, 32, 46
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(a) (b)

(c)

Figure 4
Conceptual illustration

of machine learning
methods. A dataset is

considered (a) and from
it an analysis model

separating the data into
two classes is learnt (b).
New data can then be

automatically analyzed
by the model (c).
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Introduction

The term machine learning has become extremely popular during the
last few years. The concept however, remains relatively generic and
covers a wide set of ideas, methods and algorithms. We here propose
to discuss the notion behind the buzz word machine learning and give
a short history of its development and successes. We also give some
explanations and general information regarding the methods. This
short introduction on machine learning aims to be accessible to all,
and thus is convenient for a first approach on the topic. More specific
technical and illustrated material can be found later in the chapter
body.

Learning & Intelligence: Mankind vs Machines

Artificial intelligence is a somehow fascinating field, quickly raising
many expectations and controversies well outside the scientific com-
munity. Typically, many books, magazines, shows or movies have
targeted artificial intelligence, presenting and discussing its numer-
ous outcomes – real, or hypothetical. It is interesting to remark that
fictional ideas well proceed the actual boom of machine learning and
the first tangible results. The first automated chess player for exam-
ple, was exposed to the public by Wolfgang von Kempelen in 1769.
The automaton was referred to as “the Turk”, and fooled many peo-
ple (including Napoleon) before the trick was revealed in 1820. The
Turk was actually maneuvered by a human puppeteer hidden inside it.
Thanks to machine learning, what was a dream, trick and fantasy in
the xviiith century became a reality during the xxth century. Which
of today’s fantasies will tomorrow exist?

One potential explanation for the enthusiasm around machine in-
telligence could be the questions it raises on our own intelligence and
learning mechanisms. What is intelligence? How do we learn? How
fast can we think? If intelligence has been defined as the ability to
adapt oneself, many teachers would tell that the questions regarding
human learning mechanisms are still widely open. A whole research
field named pedagogy is dedicated to that problem. A proof perhaps
of the enthusiasm for the potential of machines would be the numer-
ous fictions raising those questions. The first movie displaying a robot
goes back to 1927, with Metropolis by Fritz Lang and the False Maria
robot. In 1982, Blade Runner raises the issue of machines and emo-
tions and makes us wondered what makes humans human, and what
would it take for a machine to be human. Those questions regarding
intelligence and learning mechanisms are indeed fascinating, but they
are also of great importance when thinking about teaching a machine.
How should we proceed? Where should we start?

The unfortunate truth is that so far, we are not so advanced in the
art of teaching a machine. Despite the common fantasy, machines will
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not replace human for a long, long time.1Nevertheless, some methods
have been developed to teach a machine specific tasks. For example
to replicate a given behavior (supervised machine learning), or else to
organize an extremely large number of data and automatically extract
some knowledge on a given phenomenon, less biased by the human
point of view (unsupervised learning). Those methods are referred to
as machine learning, and are a key component in artificial intelligence.
As a final remark, let us notice that artificial intelligence is perhaps a
strong choice of words.

A Brief History of Machine Learning

The very first machine learning models are relatively old and are al-
most ironically, younger that The Turk automaton. They go back to
the end of the xviiith century with probability theories and in partic-
ular, Bayes theorem [BP63]. The boom of machine learning methods
however, was triggered by the advent of computers during the xxth
century. Among the early pioneers of machine learning, Alan Tur-
ing was one of the first to seriously evoke the possibility of an intelli-
gent machine: “Can machine think?”. In particular, he developed the
premises of the genetic algorithms [Tur50], which would later be used
to estimate the evolution of a data population. He also proposed the
famous Turing test (known as the imitation game) which challenges
a machine to discuss with a human. The test is passed if the machine
fools a human [Tur50]. So far, the test has only been passed in fictions
(e.g., Ex Machina).

The term machine learning, was first used in 1959 by Arthur
Samuel who defined it as a “field of study that gives computers the abil-
ity to learn without explicitly being programmed”. A few years ear-
lier, Samuel had also proposed the first program to automatically
play checkers [Sam59]. With the increasing capacities of comput-
ers and the development of machine learning algorithms, more and
more complex board games have been challenged. In 1963, Don-
ald Michie presented a machine playing Tic-Tac-Toe. In 1992, ma-
chines could also play Backgammon [Tes95]. In 1997, Deep Blue
(IBM) defeated the world chess champion Garry Kasparov [Hsu99].
In 2016 finally, the Go champion, Lee Sedol, was beaten by a
machine, thereby finishing (and winning) the machine vs human
boardgames race [SHM+16]. Incidentally, it is also interesting to no-
tice that Marvin Minsky who developed the first neural network in
1952 [Min52] also published many works concerning human learning
mechanisms [Min85, Min91, Min07]. He thereby stressed the influ-
ence of human learning mechanisms over machine learning. Some
of Minsky writings and ideas also had an impact on a wider pub-
lic. Kubrick for instance visited Minsky while writing 2001, A Space
Odyssey (released in 1968). The idea was to discuss the features of the
movie robot Hal, that could be probable by 2001. Lip reading for
instance was found plausible enough. Reality was not so late with a
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study published in 2016 where a machine beat a human at lip read-
ing [ASWdF16]. This relation between human thinking and artifi-
cial intelligence also inspired what is today known as deep learning
and was originally based on the human brain model published in
1943 [MP43].

Modern Machine Learning Techniques

The xxist century is the time of many more machine learning achieve-
ments, but also challenges which have encouraged the development
and improvement of many methods. In 2006, Netflix launched
a world-wide contest for a model that would drastically improved
the platform movies recommendation system. In 2009, the image
database ImageNet was released, containing millions of images sep-
arated in a thousand categories. In 2010, the Kaggle platform was
opened, proposing hundreds of machine learning related challenges.
The availability of those many datasets lead to some of the great suc-
cesses of machine learning. Among the most striking applications,
we can mention computer vision with automatic objects recogni-
tion [SZ14], images automatic description [KFF15] or the automatic
colorization of grayscale images [SKB13]. Concerning speech pro-
cessing, recognition systems such as Apple Siri [CCC+17] or music
recognition with Shazam [Wan03] are also very popular, and con-
tributed notably to boost the popularity of machine learning to the
public. More exotic applications such as generating the next Game of
Throne chapter or transforming a photo into a Picasso style piece of
art [GEB15] also generate a great interest.

First Definitions on Machine Learning

With applications covering an extremely wide spectrum, machine
learning remains a generic term. It covers many different methods
and algorithms and addresses a large variety of issues. A simple defini-
tion to machine learning can be a set of methods that aims at building
an analysis model from a set of data (referred as learning or training
dataset). Such models can have different purposes, but the general
idea is to use them to position new data and compare them to the
training dataset. And because of computers power, much more data
can be processed than a manual analysis. In the context of big data,
here lies the strength – and the need – of machine learning methods.
The aim of this chapter is not to review all those methods but to give
an introduction on the topic and expose the theoretical and concep-
tual elements used in the remaining chapters. For a more detailed
presentation on those methods, the reader is welcome to consult the
following reference books [DHS01, HTF09].

For now, let us illustrate the very general workflow followed by
machine learning methods. Figure 4(a) illustrates a dataset that con-
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tains two types of data. The first type is represented by circles while the
second type is represented by crosses. As shown by Figure 4(b)), build-
ing a model consists in defining one or several boundaries between the
data (i.e., separating them into different groups). The challenge here
is to build boundaries that best separate data in groups. This is done
learning algorithms. This chapter present some of these algorithms
in detail. Once these boundaries are build, the model can be used
to classify a new data in one of the two groups (Figure 4(c)). Today,
those machine learning methods can be adapted to extract knowledge
and valuable information from large datasets. This is the purpose of
this work.

Synopsis

This chapter contains more technical material on the machine learn-
ing methods, but popularized explanations and simple illustrations
are also provided to support the overall comprehension. We here aim
at exposing the theoretical elements needed through this work and
the proposed material is accessible without any particular background.
The chapter can be read independently and outside the context of this
PhD as a first introduction or tutorial on machine learning. It is or-
ganized into two different sections, both of equal importance. The
first one deals with the issue of representing data: first by explaining
the context and then by giving key elements answering the problem-
atic. The second one focuses on supervised machine learning: from
introducing the general mechanisms to detailing of some of the most
effective algorithms.

1The very competition between humans and machines is not necessarily relevant given
that both are ruled by different mechanisms. The comparison however, is interesting.
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2.1 Signals Representations

Application fields using machine learning methods – including automatic
classification algorithms – can target many different types of data, such
as images, videos, sound, waves, and others. But regardless of the shape
of the original data, the actual algorithms are the same and are designed
to work on data with some specificities. Most of the time, the input and
raw data do not match those requirements, and a first step consists in
transforming the data, and considering a representation in an alternative
space. This new representation of the input data matches requirements of
the learning algorithms, and the considered space is often referred as the
feature space. This standardization step is known as the features extrac-
tion process (Figure 5). The feature vectors are then used as input of the
learning algorithms.

Feature 
Space 

Transform

Figure 5
Uniformization of the
data through the features
extraction process.

2.1.1 The Importance of Signals Representation

Finding an appropriate representation for a set of signals is a very common
task in signal processing. We summarize here this issue, that is the trans-
formation from the raw recordings to the feature vectors, in the context
of machine learning problems.

The main reason to use features is to place the data in a space where
they are separable depending on their classes. The learning algorithm tries
to build boundaries between the data in order to separate them into several
groups of interest. But the learning algorithm and the model only access
the data through feature vectors. So data represented in the feature space
should be as separable as possible for the model to learn a meaningful
boundary. Often the input data are not separable in their original space,
and the transformation used from the original space to the feature space
should separate them as much as possible. This of course is a complex task
because it suggests that the user knows on which criteria the data should
be separated.



26 Chapter 2

Figure 6
Simple dataset to be used

to train a model.

A second argument in favor of the feature space is the curse of dimen-
sionality, originally presented in [Bel56]. Let us consider the following
notation: N represents the dataset size (number of observations), n the
dimension of the data in their original space and d the dimension of the
input data in the feature space (number of features). The number N of
data needed to train a model increases with the dimension of the data
n. Using a feature space with d < n is therefore advisable. The curse of
dimensionality compares the number of data N and the input space di-
mension (i.e., the feature space) d: considering N small compared to d
leads typically to worse performances.

Finally, most learning algorithms cannot represent ordered data. They
consider the various dimensions of the input data in a non ordered way.
The representation used as input of the learning algorithm should there-
fore keep the same informative content if randomly shifted. With this
condition in mind, it is advisable to use feature vectors with indepen-
dent components rather than ordinate representations, such as time se-
ries, spectra or images. In this manuscript, we refer to high level features
as features of dimension 1, which are computed as characteristics on the
input data. The final feature vector is obtained by concatenating all the
features, and the data is therefore represented by a non-ordered vector.
On the contrary, we refer to low level features as ordered feature vectors.
Using high level features raises the abstraction level of the representation
chosen for the data and produces better results in term of classification
accuracy [DHS01, HTF09].

In order to illustrate the impact and importance of the feature space,
we take the example of a very simple dataset, presented in Figure 6. Given
this dataset, several representations can be considered to represent the
data: shape, color or position in the cartesian plan for instance. If con-
sidering the shape representation, the data will be separable as presented
in Figure 7(a). If considering the color representation, data will be sep-
arable as presented in Figure 7(b). Finally, if considering the position
representation, data will be separable as presented in Figure 7(c). Sev-
eral remarks can be done be done on this example. The most impor-
tant one would be that for a given dataset, different representations lead
to different models and decision boundaries. This raises the question
about which boundaries would be built if the chosen representation were
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(a) feature = shape (b) feature = color

(c) feature = position

Figure 7
Illustration of the
importance of the feature
space chosen for a given
dataset. Different feature
spaces lead to different
models. Illustration in
the case of unsupervised
learning.

(′shape′,′ color′,′ position′). This illustration is made in an unsupervised
context: a model is trained by a learning algorithm from the dataset repre-
sented in the feature space. In this context, the question of more complex
representations is indeed raised. Answers to this issue however are beyond
the scope of this chapter, but can be found in [DHS01, HTF09]. With
this issue in mind, the benefit of supervised learning algorithms can be il-
lustrated. A model is also trained by a learning algorithm from the dataset
seen as feature vector, but additional information is also provided. The as-
sociated classes of all the training data is, referred to as labels, is also given
to the learning algorithm. And from this information, a model is build.
In this context (illustrated in Figure 8), the choice of which boundary to
build is driven by the labels. Meaning that labels are a mean to force the
boundary in one direction, but also that different labels lead to different
models. We can also remark that in both supervised and unsupervised
cases, the illustrated boundaries are not unique and that the choice of a
specific boundary depends on the learning algorithm.

This example is visual and simplistic, but it illustrates many aspects:
the importance of the features, the difference between supervised and un-
supervised learning, the benefice of supervised learning, the importance of
labels associated to a dataset and the impact of the learning algorithm. To
conclude this part, let us notice that this reasoning is valid if the features
are correctly chosen, meaning that they separate the data into their classes.
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(a) Discriminating feature = shape (b) Discriminating feature = color

(c) Discriminating feature = position

Figure 8
Illustration of supervised

machine
learningsupervised

learning and the
influence of the labels.
For all three examples,

features = {shape,
color, position} and

the different models come
from the different labels.

The discriminating
feature is deduced by the

learning algorithm.

It therefore raises the question of how to find such representation, which is
the focus of the next part. This conclusion also underline the importance
of the dataset. A model depends most of all on the dataset it is built upon.
Meaning that the same process used on two different datasets will produce
different results. Meaning that a model build on a small dataset will not
be generalizable to slightly different events. And meaning that the model
reproduces what is within the training dataset, raising questions such as
the trust in predictions, or the novelty or anomaly detection. More details
on the learning algorithms is given in Section 2.2.

2.1.2 How to Obtain a Representation for a Signal?

Features such as shape, color or position (introduced in the previous exam-
ple) are quite simplistic for real-world data. Data recorded are often more
complex, noisy, and difficult to be interpreted. The question of how to
find features adapted for a given dataset is therefore challenging. Usually,
two types of representation are considered: learnt features, or handcrafted
(or designed) features [DHS01, HTF09].

Methods to learn representations are often referred to as dictionary
learning, and can be done from the supervised dataset (convolutional
neural networks [LBBH98]), or from the unsupervised dataset (principal
component analysis [TB99], independent component analysis [Com94],



Theoretical Background 29

singular values decomposition [GR70], non negative matrix factoriza-
tion [LS71], and others). The leading idea is to learn a dictionary of el-
ements from the dataset that can be used to reconstruct approximate data.
The data is approximated by a linear combination of the dictionary ele-
ments, and can be identified and represented by the weights associated to
each element in the feature space. The main advantage of those algorithms
is the final representation (i.e. the feature vectors) which is adapted for the
dataset. However, such algorithms can require a large and labeled dataset
to learn the representation and can be very costly (convolutional neural
networks for instance). Furthermore, a learnt representation is not related
to a physical value of the data, which can be an issue. Representations re-
lated to physical values of the data can indeed be used to better understand
the original data (a simple illustration of this statement would be the use
of Fourier transform in signal processing). During the last decade, con-
volutional neural networks have been particularly popular classification
tools. In particular, their ability to learn a representation from a dataset is
very efficient and has led to very good results in many applications, such as
computer vision [GBC16, LBBH98, KSH12, SZ14]. The extremely large
sets of data needed to train such feature extractors however, are one of
the limitations of those tools. Chapter 6 study the possibility to use such
methods on environmental data.

On the other hand, designed or handcrafted representations are based
on the features extraction process, as was illustrated in the previous part.
The main idea is to use descriptors to extract and quantify a physical quan-
tity on the data, referred to as feature. All features are then concatenated
into a feature vector (vector of the feature space) that will represent the
data. The main issue of this method is the difficulty to find features that
will effectively separate the data into their classes. This step involves know-
ing the data, and especially being able to explain why a given data belongs
to a specific class. One advantage of those feature sets is that they can
be generalized: designed for an application, they can be relevant in other
fields where the data have similar properties. Moreover, this technique
can be less constraining on computation times, and allows the data to be
represented by physical quantities which can be of help to understand the
associated physical phenomenon. Such features are used throughout this
work. Another aspect related to handcraft features is the feature selection
problem, which consists in finding the subset of features maximizing the
model performances among a proposed feature set. Several approaches
can be used, including forward selection which iteratively selects relevant
features among the proposed set, and backward elimination, which itera-
tively eliminated irrelevant features of the proposed set [Lan94, DL97].

2.1.3 Representations Used for Transient Signals in the
Literature

In this part, we present a review of the literature regarding the representa-
tions (i.e. the feature vectors) that are or have been used for the automatic
classification of transient signals. Transients are defined as signals whose
Fourier transform has a infinite number of components (by opposition
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to stationary signals) [RG75]. Transient signals are involved in many dif-
ferent applicative fields, including speech, music, environmental sounds
(natural or human induced), seismic signals, and others. We also focus on
hand-crafted features for their help to understand and interpret the data.
The many features that are used can be separated depending on their ab-
straction level: from low level features (i.e. raw time series) to high level
features (i.e. statistical mean or standard deviation).

Originally, low level representations were used. The raw time sig-
nal was traditionally used, for example on seismic waves [FGNS96,
LCMLB16, EGD+08]. The Fourier transform underlines different prop-
erties on the considered signals and can therefore be used for similar
purposes, see for instance [FGNS96, URJ16]. Other law level repre-
sentations are also used, including the signals envelope [FGNS96], the
auto-correlation function [FGNS96, LFT03, LFPT06] or transformations
based on the wavelet transform [AWO+06, LW95, WZ14]. Some fea-
tures are built upon more complex transform, but are still ordinate rep-
resentations and are therefore considered as low level features. The Mel
Frequency Cepstral Coefficients (MFCC) feature set for instance was
originally designed to model speech [ZZS01]. Several implementations
can be used [ZZS01, GFK05] but the general idea is to model the sig-
nal harmonic properties. To do so, the signal energy under several fre-
quency bands is considered. This energetic representation matches the
mel scale, used to model the human hear. The discreet cosine trans-
form is then computed. Actually, the operation consists in studying the
spectrum of the signal spectrum. The final space is known as the cep-
stral domain, and models the periodic properties of the signal spectrum,
meaning the harmonic properties of the original signal. MFCC are low
level features but they are still used in many works, including to distin-
guish speech from music from non vocal sounds in [Foo97], for music
instruments recognition in [EK00], on bio-acoustics data in [PBG+10,
NTSR16, LCHH06, WTP+10, BIDL14] or [GL03], on sounds of human
origin in [LBHL07, MMSFSGSP14, SDC06], or on environmental noises
in [DTL11]. Feature sets based on the concept of MFCC but modified to
fit the frequency range of the considered data are also used in several stud-
ies, including [BRS+07, AGC+12, IBG+09, ZTX+12] for seismic signals,
but also [VFAT15, PBG+10, NTSR16] on underwater bio-acoustics data
and in [CJ06] for bio-acoustics signals. On the same ideas linear predictive
coding coefficients (LPC) model the signals spectral envelope and can be
used as features for classification purposes, for example on seismic signals
in [DPEG+03, GES+09] or [SGE+05]. LPC have been also used in clas-
sification tasks with bird calls [MC97], humpback whales [PBG+10], mu-
sic signals [XMS05, BKK06], and for environmental sounds [CFGM98].
Dynamic time warping (DTW) measures the similarity between transient
signals, and can also be used to represent time series in classification tasks,
see for example [THMP06] and [KM98] for automatic birds recogni-
tion. Autoregressive coefficients are also used as signals representation
in [Che85, KCP94] on underwater acoustic data. Features based on the
energy in various frequency bandwidths can also been considered, for in-
stance on seismic data in [BW08, LFM+09]. Generally speaking, low
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level features can produce correct classification results. However all those
features are ordinate representations and are therefore limited when used
with most of the machine learning algorithms. In 1985 [Che85] states that
“For underwater acoustic transient signal classification, well accepted fea-
tures have not been developed”. This statement about low level features
was made for underwater acoustic transient signals but is generalizable to
transient signals.

High level features are now being used in a number of studies. Orig-
inally only a few were used, seismic signals for example have been rep-
resented by their kurtosis in [SHP02, LMMB14]. On similar data,
other simple features such as the maximum amplitude, or the main fre-
quency can also be used [CMA+11, IvS08] and [CVF+09, HPM+16]
propose to represent the time series by statistical features such as skew-
ness and kurtosis. Similar features along with spectral centroid, band-
width or threshold crossing rate are also used for other applications,
including music classification tasks [SDC06, EKR04, FM00] or bio-
acoustics [HYYC09, Fag07, ZVH+10]. The signals lower and upper fre-
quency are used in [ACBCB+09] for birds and amphibian calls classifica-
tion. Features based information theory with entropy measurements are
also considered in some studies. For instance in [EKR04] and [HMD11]
for frogs sounds classification or in [ZVH+10] for the discrimination of
whale and boats. Some of those features are also sometimes computed
from the spectral domain, for instance in [WX10] for infrasonic data. To
improve the models classification abilities, more detailed representations
are now being used. In particular, feature sets with greater number of fea-
tures are now being presented and show their efficiency in many applica-
tive classification tasks. Some feature set are quite dependent on the appli-
cation, such as the 30 features presented in [KOS10] and re-used [HBO12]
for volcano-seismic signals. This feature set includes features resulting of
trace or polarization analysis of the seismic signals for instance, which
cannot be generalized to other applications. Other feature sets are more
general, see for instance [TB05] who considers more than 20 features in-
cluding signals shape descriptors (i.e. rate of attack and decay, temporal
occurrence of the main peak), statistical moments (e.g., mean, skewness
and kurtosis) and signal power (e.g., peak power, average and power stan-
dard deviation) for the automatic classification of transient anthropic sig-
nals. Similarly [MFH+17] and [PHM17] uses large number of features (40
and 71, respectively), extracted both from time and spectral domains for
the automatic classification of volcano-seismic signals, and [EK00, LR04]
use 20 features for music instrument recognition.

Another approach to extract features from transient signals is to con-
sider image representations. Technically speaking, spectrograms are com-
puted and can be pragmatically considered as images allowing one to
take advantage of the large set of image processing tools available. Ridge
detection and points of interest are for instance used in [DTZ+13] for
bird vocalization retrieval. Similar techniques are proposed for sea mam-
mals detection and classification [EZE14, TKB+12], for musical signals
classification and in [DSN01, YS09] for discrimination of environmental
noises [DTL11].
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2.2 Supervised Machine Learning

2.2.1 An Overview on the Subject

Supervised machine learning algorithms are a set of methods used to build
a prediction model (e.g., regression, classification, etc.) from a labeled
dataset. Usually (but not necessarily), a training stage is usually needed to
produce and/or optimize the model. The process is illustrated in Figure 8.
Formally, the set of data used to build the model is referred to as the train-
ing or learning set and is usually noted X = {xi}Ni=1. For 1 ≤ i ≤ N and
1 ≤ j ≤ d, xi represents the data seen as a feature vector of dimension
d: xi = {xji}dj=1, with xji ∈ R. In a context of supervised learning, the
associated labels describing their classes are also known. They are noted
Y = {yi}Ni=1. The model can be symbolized by a function f , which predict
the output y from the input feature vector x.

f : X → Y

x 7→ y.

A supervised learning algorithm attempts to build a model represented by
f from the labeled dataset {X,Y }. Depending on the algorithm, different
functions fθ (e.g., different parameters θ) are considered. The considered
function f is chosen (optimized) during the learning process. In practice,
a cost function JN (θ) (or loss function) measuring the prediction errors
made by the model on the training set {X, Y } is considered. The loss func-
tion can be the 0-1 function (adds 1 for each data misclassified), equation 2)
or the mean square error (equation 1), depending on the nature of the pre-
diction (classification or regression, respectively). Other loss functions can
also be considered.

JN (θ) =
1

N

N∑
i=1

(
yi − f(xi)

)2 (1)

JN (θ) =
N∑
i=1

1
(
yi, f(xi)

)
with 1(k, l) = 1 if k = l and 0 otherwise, k, l ∈ R

(2)

The cost function JN (θ) depends on the model parameters θ and can
be represented as a surface (or as a curve when θ ∈ R) as seen in Figure 9(a).
During the training stage the model f associated to the minimum of the
cost function JN (θ) is chosen. This is the model minimizing the predic-
tion errors on the training set.

f = f(θmin), with θmin = argmin
θ

JN (θ)

As such, the learning phase can therefore be seen as an optimization
problem. A direct consequence is – in many cases – the impossibility to
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 θ
 θmin

 JN(θ)
N constant

(a) Optimization of JN (θ) during
the training of a model

 N

 JN(θ)

 J(θ)

 θ constant

(b) Impact of the dataset size

Figure 9
Evolution of the cost
function JN (θ). (a) N
constant, evolution with
θ (training of a model).
(b) θ constant, evolution
with N (dataset size), in
this illustration the
dataset is coherent, and
JN (θ) → J(θ)

find an analytical solution and therefore the need to use iterative algo-
rithms in order to approximate the best parameters of the model.

But the cost function JN (θ) is also a function of the dataset size N
(and a function of the dataset in general). Two remarks can here be made:
First, since the cost function depends on N , two different dataset lead to
two different models. This is known as the variance of the learning algo-
rithm. Theoretically, two datasets that differ only by one data (i.e. of size
N and N + 1, with N data in common) will produce two different mod-
els. However it would be beneficial if the two models were similar since
the dataset are very similar. The low variance of a learning algorithm is
therefore a key point. This property is related to the model generalization
capabilities and is necessary to produce efficient models. Secondly, the
dependence of the cost function to N and to the dataset in general can be
interpreted in term of requirements on the dataset. Typically, the bigger
the dataset is, the more stable the model should be: adding one new data
in training should not have a great impact on the model (low variance).
But also, the training dataset should be representative of the phenomenon
to be modelized. A dataset that is too small, or with very similar data
that are not fully representative of the studied phenomenon will lead to a
low minimum on the cost function, but to a model with poor capacities
on real-world data. A example of the cost function dependence on N is
illustrated in Figure 9(b).

Supervised learning algorithms can be separated into two main groups
depending on the nature of the output yi. In the case of regression mod-
els the yi ∈ R are continuous values and the output is said to be quanti-
tative. If the output is qualitative, Y is a discrete set and the function f
is a classification model. Typically, Y = J0, C − 1K, with C the number
of classes In the case of weather prediction for example, the output set
Y = {′sunny′,′ cloudy′,′ rainy′}, which is in practice coded as Y = J0, 2K
corresponds to a classification model2. However if the output refers to
the outside temperature (e.g., a continuous measurement), the model will
be a regression model. In all cases, the models are referred as prediction

2In practice, a label encoder is used on the dataset labels to transform the labels (strings,
non continuous digits, etc) into the standardize set Y = J0, C − 1K
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models, since the output is predicted from the input feature vectors. Su-
pervised learning algorithms are often developed in a specific context (i.e.,
classification or regression) but can usually be adapted to the other.

Machine learning algorithms are extremely numerous and for a full
review the reader is invited to consult references such as [DHS01]
or [HTF09]. We here propose a short history of supervised learning
algorithms that are used today, or are the basis of more complex algo-
rithms. The first models are based on statistics, thereby explaining why
machine learning can also be referred to as statistical learning3. Typically,
a model is build to cover the variability of the data and model their dis-
tributions. The first supervised learning algorithm is based on the Bayes
theorem which was published post-mortem in [BP63] and later formal-
ized in [Lap20]. It relates a posteriori and a priori probabilities, and is
formally known as the naive Bayes classifier. The term machine learn-
ing was obviously not considered, but it is worth noticing that the first
learning algorithm well preceded the birth of computers and the boom of
computational capacities. Another supervised learning algorithm preced-
ing the computer era is the linear regression with the least squares analysis,
building a hyperplan minimizing the distance between the data projected
onto the hyperplan and their original positions. It would have been dis-
covered by Gauss in 1795 who did not publish it until 1809 [Gau09]. In
the mean time, Legendre independently discovered it and published in
1805 [Leg05]. The method ownership is disputed and would have lead to a
few debates [Sti81, Par15, Nie01]. The algorithm was originally developed
for astronomical problem, but was a few years later used for biological
studies by Galton, who also introduced the use of the maximizer of like-
lihood. The development of modern computers from the 1930s (Turing
machine in 1936, ABC in 1937, the Colossus in 1942) gave a kick of interest
and development of statistical and learning algorithms. In 1936, the linear
discriminant analysis was proposed by Fisher [Fis36]. The model is prob-
abilistic and leads to a hyperplan expressed as a linear combination of the
training data to separate them into their classes. Models with inspiration
beyond statistic are also developed. For instance, the view of the human
brain as a network of small units which was proposed by McCulloth and
Pitts in 1943 [MP43] lead to the perceptron. This model goes back to 1957
and is the foundation of neural networks and deep learning. It was pre-
sented by Rosenblatt [Ros57]. Logistic regression was then proposed by
Cox in 1958 [Cox58] to deal with discreet categories (e.g. classification
task) and model life spans. A few years later, the original ideas behind
support vector machines was proposed [VL63]. At the same time, ideas
behind the k-nearest neighbors algorithms were also published: in 1962
by Sebestyen with the proximity algorithm [Seb62] and in 1965 by Nils-
son with the minimum distance classifier [Nil65]. The appellation nearest
neighbor was first proposed with Cover and Hart in 1967 [CH67]. In 1986
Quinlan proposes yet another type of learning algorithm with the use of
decision trees and the CART algorithm [Qui86]. During the last 30 years,
many of those algorithms have been improved, and others have also been

3Strictly speaking, machine learning and statistical learning can be distinguished, but
the issue is debatable, and is well beyond the scope of this chapter.
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developed. Generally speaking though, most of the original ideas behind
today supervised learning algorithms have been developed during the 20st
century.

Over the years, machine learning algorithms have become more and
more complex. In this manuscript, two main algorithms are used, as some
of today’s most effective approaches. Those two algorithms are Random
Forest (RF) and Support Vector Machine (SVM), and we hereafter detail
their mechanisms.
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Figure 10
Illustration of a decision
tree predicting good or
bad hiking condition
from two features: the
weather forecast and the
outside temperature.
Data corresponding to
good hiking conditions
are represented in blue,
while data representing
bad hiking conditions
are in orange. The
partition of the feature
space is illustrated in (a)
and the associated
decision tree is in (b).

2.2.2 Focus on Random Forest Algorithm

Random forest algorithm is based on binary decision trees, originally pre-
sented in [Qui86]. Quinlan presented the CART algorithm, for classifi-
cation and regression trees, which builds a partition on the feature space.
The feature space is therefore separated into various regions. Each region
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is associated to its most present class. Iterative tests are made on the fea-
tures representing a data that needs to be classified, thereby deciding on
the region of the data and therefore of its class. See Figure 10 for an illus-
tration.

CART algorithm explains the learning process to grow a decision tree
from a labeled dataset {X, Y }, with X = {xi}Ni=1 the input feature vectors
of dimension d and Y = {yi}Ni=1 their associated labels (yi ∈ J1, CK). The
leading idea behind the algorithm is to minimize the impurity of each re-
gion, that is to favor regions with data of the same class over regions with
data belonging to different classes. The cost function associated to this
supervised learning algorithm is therefore a measure of the regions impu-
rity, and can either be the Gini index (Equation 3) or the cross-entropy
(Equation 4) [HTF09]. The proportion of data xi belonging to the class
ci for the region Rm is noted pRm,ci . ci ∈ J1, CK are the possible classes
of region Rm and C is the number of classes. The cost function is to be
minimized depending on the model parameters: at each split of the tree,
the choice of the split feature xj and its associated split value referred as
the split point s.

Gini index =
K∑
k=1

pRm,km ·
(
1− pRm,km

)
(3)

Cross-entropy = −
K∑
k=1

pRm,km · log
(
pRm,km

)
(4)

The process to grow a tree is iterative, and is described in the algo-
rithm 1. While the stopping criteria is not reached, a new split is made.
To find the best split, all features are considered. For each feature, all split
points are considered.The selected feature is the one leading to the min-
imum of impurity for the new region. The stopping criteria can be the
tree depth, the misclassification error gain from this split is under a given
threshold, or if the regions size are under a given threshold (smaller than
5 for example in [HTF09]).

The idea beyond decision trees is quite popular for its easy interpre-
tation. Many machine learning algorithms are seen as black boxes, and
decision trees on the contrary, can help understanding the data (features
ranking and easy interpretation of the model). Computation times are
relatively low, which is interesting for real-time systems. The algorithm
is also deterministic, meaning that the same dataset will lead to the same
model. If the tree is deep enough, the model is also unbiased, meaning
that it does not make systematic mistakes. Its variance however is impor-
tant: two slightly different learning datasets can lead to two very different
models. This last point is the main limitation of the algorithm. A model
should indeed be stable if a few training data are added or removed. To
partially improve this point, the tree can be pruned: some of the lower
regions are merged. The misclassification error is often used as a measure
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Algorithm 1: Random Forest learning algorithm
1 while stopping_criteria = false do
2 for each feature xj do
3 for each split point s do
4 Define a pair of half plane (two regions R1 and R2) in

the features space:
5

R1(j, s) = {xi|xji ≤ s}

R2(j, s) = {xi|xji > s}

Define the associate class proportions pR1,c(j, s) and
pR2,c(j, s):

6 ∀c ∈ J1, CK, pR1,c(j, s) =
1

NR1
.
∑

xi∈R1
1
(
yi = c

)
7 ∀c ∈ J1, CK, pR2,c(j, s) =

1
NR2

.
∑

xi∈R2
1
(
yi = c

)
8 Find the best split point:
9 s = argmaxs (maxc pR1,c(j, s) + maxc pR2,c(j, s))

10 Find the best feature xj :
11 j = argmaxj (maxc1 pR1,c1(j, s) + maxc2 pR2,c2(j, s))

of a region impurity to prune a tree [HTF09]. See Equation 5 for the
impurity of a region Rm attributed to the class cm.

impurity of region Rm =
1

NRm

∑
i / xi∈Rm

1
(
yi ̸= cm

)
= 1− pRm,cm (5)

The random forest algorithm was designed in answer to the high vari-
ance of decision trees [Ho95, Bre01]. The main idea is to build a large
number B of binary decision trees and to predict the output from a ma-
jority vote of the tree forest. The idea of using several models for one
task is known as bagging. Typically, a dozen to hundreds of trees can be
considered. Increasing B develops the model generalization capabilities,
but the phenomenon steadies itself at some point. Computation times
also increase with B. In this case, each tree is build from a subset of the
original learning set of data, thereby leading to different trees.4 By doing
so, the final model variance is decreased, but it remains unbiased for deep
enough trees. Typically, N ′ = 1/3 or N ′ = 2/3 of the original dataset is
randomly considered for each tree. Furthermore, each split is also decided
on only a subset of the feature vectors. Usually, m =

√
d of the features

representing a data are randomly considered at each split. By doing so, the
different trees are decorated and performances increased. Trees used in a
random forest are not pruned: the reduce variance come from the large
number of tree considered.

4Building different trees from the same dataset would not make sense since the CART
algorithm is deterministic and would produce the same model.
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(a) The dataset

Margin 

(b) Hyperplan with a small margin

Margin 

(c) Hyperplan with a large margin

Figure 11
Illustration of SVM. (a)
The training dataset is

used to build a hyperplan
separating the two classes.
Two different hyperplan

are illustrated: (b) a
small margin and (c) a

large margin. SVM
algorithm maximizes the
margin, thereby selecting
the margin of panel (c).

The main advantage of random forest is its improved stability com-
pared to decision trees. By using a forest of tree, the features are also
ranked, which can used as tool for features selection. On the downside,
let us remind that random forest have a random component, and are heav-
ier on computation time that the simple decision trees.

2.2.3 Focus on Support Vector Machine Algorithm

The commonly accepted version of Support Vector Machine (SVM) algo-
rithm is presented in [CV95]. SVM history however is quite long and goes
back to the 60s [VL63]. The main idea is to find a hyperplan of the feature
space separating the data into their classes. Originally, the algorithm was
designed for binary classification problems (i.e., two classes only). The
distance between the hyperplan and the closest data is known as the mar-
gin. The closest data to the hyperplan are referred to as the support vector
(i.e., support feature vector). The distance between the margin and the
data can be seen as the inverse of the cost function used during the train-
ing of a SVM model. The distance is maximized, thereby optimizing the
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ture space
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Figure 12
Illustration of the “kernel
trick” in SVM classifier.
The dataset represented
in the feature space (a) is
not linearly separable.
The hyperplan is
therefore built in the
kernel space (b) where
the data are linearly
separable. This trick
allows to separate data
that are separable, but
not linearly. The
hyperplan represented in
the feature space is
therefore not linear (a).

separation between the two classes. By maximizing the margin, SVM op-
timizes the generalization capabilities of the final model. See Figure 11 for
an illustration.

This relatively simple implementation of SVM performs well, but is
limited to data that are linearly separable. For example, in Figure 12, the
data are clearly separable depending on their classes but not linearly. To
overcome such a limitation, the “kernel trick” was proposed [BGV92].
The idea is to use a function to transform the input data (i.e., the feature
vectors {xi}Ni=1) to a space of higher dimension. This space of higher di-
mension is sometimes referred to as the feature space, but for more clarity
and to avoid confusion, we refer to it as the kernel space in this manuscript.
Ideally, features are linearly separable in the kernel space (Figure 12(b)).
The hyperplan is then chosen linearly in the kernel space, and correspond
to a non-linear boundary in the feature space (Figure 12(a)). Several clas-
sical functions can be used to transform the data from the feature space
to the kernel space, including polynomial or even Gaussian functions –
thereby leading to a kernel space of infinite dimension. The additional
computational cost is not heavy since in practice, the data do not need to
be explicitly transform to the kernel space. Only the scalar product of the
data with the hyperplan are computed, thereby leading to a more efficient
model, with reasonable computational cost (more detail in the technical
development of this section). The scalar product between two data in the
kernel space is referred to as the kernel function. This improvement is par-
ticularly helpful on data that are not linearly separable in the feature space,
which is often the case in real-case scenarios.

A second optimization of SVM is the use of a soft-margin [CV95]. By
introducting a cost parameter CSVM , the model tolerates some training
data to be on the wrong side of the support vector hyperplans. The use of
the soft margin is particularly beneficial in real-case scenario, where data
are not separable. It also helps to provide a model with better generaliza-
tion potential.
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The litterature contains several implementions of SVM. We present
here a common resolution in which SVM is a quadratic optimization prob-
lem. Its resolution does not require a greedy search. The hyperplan is
defined in the feature space by the set

{x : g(h(x)) = h(x)⊺β + β0 = 0}

where x represents a point from the feature space, and h(x) represents the
same point from the kernel space. The distance between the hyperplan
and the support vector is defined as the margin M :

M =
|g(h(xSV))|

||β||
.

The support vectors h(xSV) are the closest data to the hyperplan in the
kernel space, and the one defining the hyperplan position. They are the
most difficult data to classify. Typically, h(h(xSV)) = ±1, which leads to
M = 1

||β|| . Maximizing the margin is therefore equivalent to minimizing
||β|| with respect to the correct classification of the training data. More
formally:

min ||β||, (6)

subject to the constraints:

yi(h(xi)
⊺β + β0) ≥ 1− ξi, ∀i,

ξi ≥ 0, ∀i,∑
i

ξi ≤ cst.

where, the slack variables {ξi}Ni=1 describe the amount by which the train-
ing data {h(xi)}Ni=1 can be on the wrong side of the support vector hyper-
plans. Equation 6 and its associated constraints can be rewritten as:

min
β,β0

1

2
||β||2 + CSVM

N∑
i=1

ξi,

with respect to:
yi(h(xi)

⊺β + β0) ≥ 1− ξi, ∀i,

ξi ≥ 0, ∀i.

This formulation of SVM is a quadratic optimization problem (i.e. no
local minima) with constraints. But, by using Lagrange multipliers, this
optimization problem can be seen as an optimization problem without
constraints, in which the Lagrange function Lp needs to be minimized over
β, β0 and ξi:

Lp =
1

2
||β||2+C

N∑
i=1

ξi−
N∑
i=1

αi

[
yi(h(xi)

⊺β+β0)−(1−ξi)
]
−

N∑
i=1

µiξi (7)

where αi > 0 and µi > 0 are Lagrange multipliers. This formulation is
known as the promal form of the optimization problem. By setting the
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partial derivatives of Lp to zero, we obtain the following three conditions:

β =

N∑
i=1

αiyih(xi), (8)

0 =
N∑
i=1

αiyi, (9)

and αi = CSVM − µi, ∀i. (10)

The problem could then be solved in its primal form, but it is usually
considered in its dual form:

max
αi

Ld,

subject to the constraints:

0 ≤ αi ≤ CSVM ,

αiyi = 0,

where, the dual function Ld is obtained by combining the equations 8, 9
and 10 into equation 7:

Ld =
∑
i

αi −
1

2

N∑
i=1

N∑
i′=1

αiαi′yiyi′⟨h(xi),h(xi′)⟩.

Additional constraints are obtained using the Karush-Kuhn-Tucker
conditions [KT14]:

αi[yi(h(xi)
⊺β + β0)− (1− ξi)] = 0, ∀i,

µiξi = 0, ∀i,

yi(h(xi)
⊺β + β0)− (1− ξi) ≥ 0, ∀i.

The dual problem is then solved on the αi, which then solves the SVM
by identifying β and β0. The parameter CSVM is set by the user.

Besides, as the constraint functions are affine, the duality gap is zero
and thus both primal and dual problems have the same solution. The
interest of solving the problem in the dual space is computational. The
solution of the dual problem needs only to compute the inner product
of the data represented in the kernel space. This is the reason why the
kernel trick is computationally realistic. The data do not need to be ex-
plicitly transformed into another space (which would be computationally
expensive as the kernel space can be of an infinite dimension and thus sig-
nificantly complicates the operations on the data). More formally, using
the following notation K(xi, xj) = ⟨h(xi),h(xj)⟩ where K is the kernel
function, the dual function Ld is rephrased as:

Ld =
∑
i

αi −
1

2

N∑
i=1

N∑
i′=1

αiαi′yiyi′K(xi, xi′).
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The function h, transforming the feature vectors into the kernel space, is
typically chosen so that K has a relatively low computational cost. There-
fore, the problem can be solved in the dual space by only computing the
scalar product of the data represented in the kernel space.

An advantage of SVM is its generalization capacities. Since the model
is built on a very small subset of the data (the support vector), it is relatively
resilient to outliers. The soft-margin (regularization) also helps to prevent
over-fitting, which all in all, lead to robust models. The use of the “kernel
trick” is another advantage of SVM, since it leads to better performance,
even if the original feature space chosen by the user does not linearly sep-
arate the data. This is particularly valuable when the data are not known.
However, these two advantages are related to the hyper-parameters that
can notably influence the results. The choice of the hyper-parameters is
therefore crucial as wrong parameters could decrease the efficency of SVM.
Another disadvantage of SVM is its interpretation. Indeed, compared to
other learning algorithms (e.g., Random Forest), it is not easy to interpret
the outcome of the training phase.

2.3 Technical Approach: How to Proceed With
Supervised Machine Learning Algorithms

We here propose a short tutorial on supervised machine learning and give
some technical considerations to have in mind when working with real
data and practical supervised algorithms. This section is more “hands on”
than a formal description.

2.3.1 About the Dataset

It was previously stressed that any machine learning model should be built
from a dataset that is representative of the phenomenon we want to model
(i.e., the data should cover the variability of the phenomenon).Without
such a representative dataset, the model can have a limited interest. An-
other important element in a dataset is the number of data. There is no
generic rule to decide which number is necessary to train a model. It
highly depends on the application. Supervised machine learning create a
model that only replicates the behavior taught during the learning phase.
When using supervised machine learning, a model can only replicate and
somehow generalize the behavior taught during the learning phase. It can
only recognize data similar to the one present in the learning set. The
general rule is therefore to gather for each class as many data as needed to
englobe and represent the variety of a class. If possible, we would there-
fore advise to gather a large number of data, that thoroughly describe the
phenomenon under study. Preferably, the classes should be balanced in
their number of data. 5

However, when dealing with real-case scenario, the proposed dataset
might be subject to constraints. For instance, the dataset can be already

5For machine learning consideration and to train an unbiased model. When analyzing
a phenomenon, unbalanced classes already give us some information.
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established and in this case, it is up to the analyst to “make things work”.
The rule of thumb in this context is to use as many data as possible. Some
tricks can be used to increase the size of the dataset, for example, by dupli-
cating and slightly modifying some data of the original set. This trick is
known as the data augmentation process. It can be used to balance an un-
balanced dataset. Moreover, if a dataset contains less than a few hundreds
data, we would not necessarily recommend the use of machine learning
approaches. Machine learning methods are designed to automatize or an-
alyze large sets of data. Without a large set of data, the interest of machine
learning approaches is disputable.

Another major issue concerning the dataset is the definition of a data
for the wanted application. For example, when working on images for
computer vision purposes, should the images be represented in gray scale
or color? Should their size be standardized? Should their ratio be stan-
dardized? And so on. Before gathering an actual dataset, the very first
question is to define the objects that will be automatically processed, in
other words to define what is a data for a given application. This point
will be detailed in the next chapter.

2.3.2 About the Features

The choice of the features can be done differently. Depending on the
nature of the data, a set of features can already have been established, vali-
dated, and recommended. In this case, the feature set can be used as such
and tests on the considered application will confirm the relevance in us-
ing this specific set of features. One of the contributions of this PhD is
to propose a feature set for transient signals. If no feature set has been es-
tablished and validated for the considered application, it is either possible
to learn the features from the data, or to design them. This choice can be
influenced by the physical meaning of the features. To design a new set
of features for a given application, we would recommend to be familiar
with the data. In particular, to understand why a data belong to a specific
class. Indeed, designing feature is to write with math formulas the reason
why a data belongs to a specific class. Depending on the chosen learn-
ing algorithm, it might be necessary to standardize the features with zero
mean and unit standard deviation (typically, SVM works with distances
and therefore need features with standardized values).

2.3.3 About the Learning Algorithm

To obtain an efficient model, the choice of the learning algorithm is crucial.
There is no generic rule saying which learning algorithm should be chosen.
With the early statistical models, assumptions on the data could help with
this decision. However, with models outside the scope of statistics and
complex data, the choice should be made on empirical results. According
to [HTF09], the usual procedure for the testing strategy is the following.
“If we are in a data-rich situation, the best approach for both problems is to
randomly divide the dataset into three parts: a training set, a validation set,
and a test set. A typical split might be 50 for training, and 25 each for
validation and testing. [...] [cross validation] is designed for situations where
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there is insufficient data to split it into three parts. Again it is too difficult to
give a general rule on how much training data is enough; among other things,
this depends on the signal-to-noise ratio of the underlying function, and the
complexity of the models being fit to the data.” The idea behind the use
of training set, validation set and test set is to train the model with the
train set and to use the validation set to find the model parameters that
maximize the prediction. The test set is then used to estimate the model
performances. If possible, it is crucial to use both validation and test sets
when selecting the models hyper-parameters (typically the SVM kernel for
instance). If a model is too simple, it will not be able to correctly learn the
phenomenon represented by the data. This case is known as under-fitting.
On the contrary if the model is too complex, it will give perfect results
on the test set, but will not be able to generalize well to the independent
data of the test set. This case is known as over-fitting. Avoiding under-
fitting and over-fitting can easily be done by using the three separated sets.
The prediction errors on the validation sets typically decreases with the
model complexity. With the test set however, the prediction errors until
the optimal model, but increases when the model is getting too close to
the learning and validation set and looses its generalization capabilities.
A model over-fitting can therefore be avoided by using a separated test
set and monitoring the error rate. Typically, the error rate of the test set
evolves with the model hyper-parameters by displaying a classical u-shaped
curve (with optimum hyper-parameters at the minimum error). On the
contrary, the error rate of the validation set typically decreases with the
model complexity, and over-fitting is not visible on this plot.

In a situation where the dataset cannot be separated in three parts, it
is advised to use cross-validation process. In this case, the global dataset
is separated in two sets: the training set and the test set. Ratios of 90 -
10 or 2/3 - 1/3 are typically used. Several successive and random trials
of training and test sets are done. Models are trained on the learning sets,
performances evaluated on the test sets. The final results are considered
as mean and standard deviations and can be used to set the models hyper-
parameters and estimate its performances better than when using a single
try-out.

Another point worth noticing, is that some machine learning algo-
rithms such as SVM were originally designed on binary problems. How-
ever, it is possible to use them on a multi-class scenario by combining
multiple binary classifiers with several strategies: one-versus-all strategy
considers one class and gather the remaining classes in a second practical
class while one-versus-one strategy considers several models of two classes,
each grouping the original classes differently.

2.3.4 About the Validation Process

It exists two strategies to validate the performance of a model: (i) testing
the model on the test set (assuming that there is enough data for having a
training set and a validation set) or (ii) performing cross-validation. Both
strategies requires metrics to measure and compare the results. The most
natural metric is the overall accuracy, which measures the number of cor-
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rect predictions, compared to the number to total predictions:

Overall accuracy =
(correct predictions)
(total predictions)

The accuracy can also be evaluated class by class, for example for the class
ci, 1 ≤ i ≤ C:

Accuracyi =
(correct predictions in class i)

(data in class i)

and thus, it is possible to define the mean accuracy to obtain a metric that
is not impacted by unbalanced classes:

 Mean accuracy =
1

C

C∑
i=1

Accuracyi

To measure the false alarm rate in a class ci, the precision can be used:

Precisioni =
(correct predictions in class i)

(predicted as class i)

Similarly to the accuracy, it is possible to define an overall precision and
a mean precision. These metrics can be computed from the confusion
matrix. For a testing process, the confusion matrix is a square matrix of size
the number of classes C. It displays for each class the number of correct
predictions, and the repartition of the wrong predictions on the other
classes. It is a very convenient tool to analyze the results of a prediction
model, in particular to see how it performs, and the main trends on the
errors.

In this manuscript, we mainly use the overall accuracy and the class
by class accuracy as principal metric, the idea is to optimize the good clas-
sification rate. The choice of which metric to use can be disputable, and
depends on the applications. For instance, some applications require very
few false detections (e.g., in medicine), while others prefer to have few
false detections but not to miss any event within the classes. Moreover,
these metrics are linked to each other. For instance, if the overall accuracy
increases, this means that the number of correct predictions increase, and
thus the overall precision increases.

As a final word on the validation process and on the metrics in general,
we would like to say that objective metrics do not give enough informa-
tion to validate or invalidate a process. Indeed, it is possible to obtain a
very good accuray (indicating a very efficient model) with an extremely
small dataset or with a very well chosen test set. Similarly, it is possible
to obtain good results with cross-validation but, by not looking to the
standard deviation of the metrics over the set of trials, the disparity be-
tween the different trials is not mentionned. In this manuscript, we try as
much as we can to present the numerical results of the metrics, but also to
discuss directly confusion matrices, and to analyze the trends behind the
numerical results.
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Highlights & Summary

■ Machine Learning is a very wide topic, including many methods
and algorithms related to the processing of datasets (from hun-
dreds to millions of data). Learning algorithms are divided in two
main groups: unsupervised methods and supervised methods. Unsu-
pervised methods are used to perform an analysis of a dataset by
grouping similar data together. The outcome of this analysis is a
model. This model can then be used to classify the data contained
on another dataset. The analysis is not biased by any human knowl-
edge. Supervised methods on the other hand are used to replicate
and automate a human behavior, typically for automatic classifica-
tion purposes. In this case, a labeled dataset is considered: a data set
containing examples of all the classes. A model is learnt from this
labeled dataset, and used to analyze new data. This stage is known
as training or learning. Throughout this work, we use supervised
machine learning to analyze environmental data.

■ Two main supervised learning algorithms are used in this work:
support vector machines (SVM), and random forest (RF). If the
data are represented in a space where they are as separable as possi-
ble, the learning algorithm should have a limited influence on the
results.

■ The first step to use machine learning algorithms is to transform
data into feature vector. To do so, several methods can be used, in-
cluding dictionary learning and handcrafted feature extraction. In
this work we handcraft features by using their physical meaning on
the data. To this end, we review in the litterature the features used
to represent transient signals. Nevertheless, we explore in Chap-
ter 6, the possibility of using dictionary learning to extract features
from the data.
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Introduction

In this chapter, we propose and explain two automatic processing
schemes of natural signals that have been developed during this PhD.
These two proposed architectures answer the following problems: (i)
automatic classification of environmental data (Section 3.1.1), and (ii)
automatic detection and classification of environmental data (Sec-
tion 3.1.2). Both architectures have been implemented in Python and
are available on GitHub under the name Automatic Analysis Architec-
ture (AAA) [Mal18]. The two automatic analysis architectures along
with the associated code are the major contributions of this PhD and
are illustrated in Figure 13.We present in the following each step of
this workflow, from the recordings to the analysis model:

¶ The first step consists in defining what is considered as data for
the learning algorithm (i.e., the objects on which the models
work). For each new application, what constitutes a data must
be defined. For example, in the context of this PhD, we focus
on environmental monitoring. We therefore work with time se-
ries applied to acoustic (Chapter 4) or seismic (Chapter 5). The
analysis of these data can be carried out in real time, or on a
posteriori recordings. In context of environmental monitoring,
we refer to those data as observations. A recording (i.e. from
the original set of raw time series) is made of a large number
of observations. The transformation from a recording to the
set of observations depends on the analysis scheme. The defini-
tion of an observation is different for the two proposed archi-
tectures. Each analysis scheme is detailed in Section 3.1.1 and
Section 3.1.2.

· A set of data used to train the analysis model should then be
considered. As the proposed analysis architectures use super-
vised learning algorithms, the set of observations needs to be
labeled. This labeling task is often carried out manually by the
experts of the applicative domain, and is time consuming.

¸ Each observation is transformed into a feature vector. The rea-
sons for using an alternative representation for the observations
are exposed in Chapter 2.1. The process we propose to extract
feature is detailed in Section 3.2. This process is one of the con-
tributions of this PhD.

¹ We train an analysis model using supervised machine learning
algorithms (presented in Chapter 2.2).

º We validate the accuracy of the model using validation methods
such as cross-validation (see Chapter 2.3).

» The model is then operational and can be used to analyze an
environment.
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The context of this PhD notably influences the proposed architectures.
In particular, working to develop operative tools for environmental
monitoring means that the system must be validated on real-world
conditions. The method should therefore be reliable, efficient and fast
enough to process continuous flow of newly recorded natural signals.

Synopsis

In this chapter, we fully detail the proposed architecture but we re-
main relatively general with the data: the reader should keep in mind
that the architecture are here proposed for environmental signals (var-
ious applications are considered in Chapters 4 and 5), but can be used
on more general transient signals. For this reason, the illustrations of
this chapter are made on schematic data: continuous data recorded as
times series and displaying various transient events. These data can be
represented as a series (Figure 14(a)) or as a spectrogram (Figure 14(b)).
We first focus on describing the proposed architectures. The emphasis
is then made on the feature space that is proposed for the represen-
tation of transient signals. The last section describe and explains the
code imlementing the Automatic Analysis Architecture.



Proposed Schemes for the Automatic Analysis of Environmental Data 51

3.1 Proposed Architecture Schemes

3.1.1 Model for Static Analysis: Automatic Classification of
Events

The first architecture scheme is dedicated to the automatic classification
of environmental events. Namely, a time series recorded from an envi-
ronment can be seen as a background noise on which occur some events
that are represented by their associated signatures (see the schematic ex-
ample of Figure 14). For instance, on acoustic signals recorded near the
sea coast, one can hear the noise of a wave crushing the coast, or the call
of a seagull. In this case, the wave crushing the coast, or the seagull call
are events associated to their classes. Their sound is the imprint of the
event on the recording (i.e., the signature), and is in this first scheme also
defined as an observation. In this section, we propose an architecture that
builds a model to automatically predict the class on which an observation
belongs. The automatic processing of continuous signals recorded from
an environment is therefore made of a detection stage to extract the ob-
servation1, followed by the automatic classification scheme here proposed.
For this reason, we refer to this model as a static model, to be used on a
discret observations (by opposition to the second scheme exposed in Sec-
tion 3.1.2 where a sliding window is used for the analysis). See Figure 15
for an illustration of the process.
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Figure 15
First step of the workflow
for the first architecture.
An observation is defined
as a portion of a signal,
filtered in its bandwidth.
It contains an event and
is detected manually or
by an external algorithm.

In this context, a set of data is made of observations, and each observa-
tion contains exactly one class (positive). As shown by Figure 15, a frequency
filtering might be necessary to respect such a constraint. Typically, if at a
given time more than one class are present, the signals can be filtered in
the corresponding bandwidths to separate them. An observation is then
defined as the signal filtered in the event bandwidth. In this case, several
events can occur at the same time, but in different frequency ranges. The
condition “each observation contains exactly one class” remains valid. Visu-

1The automatic detection scheme usually depends on the applicative field, for example
STA/LTA methods for seismic events.
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ally, each observation can be represented by a time-frequency area of the
recording.

A dataset of labeled observations is used to train the classification
model. As explained in Chapter 2.3, the dataset (and the features) should
be representative of the studied phenomenon. Typically, the number of
classes present in the training set C corresponds to the number of types
of events denoted (Different Events). It also corresponds to the number
of positive classes, and to the number of classes present in the test set of
observations Ctest (i.e. observations that need to be analyzed).

C = (Different Events) = (Positive Classes) = Ctest

In that respect, the list of considered classes should be exhaustive and rep-
resentative of (i) the observations that are used to train the model, but
also of (ii) the observations that the model will analyze. Going back to
the example of acoustic recordings of a sea coast, a set of classes associated
to a training set of observations could be:

Classes = {wind, seagull, wave, rain}.

In this case however, an observation of thunder would be problematic to
analyze since thunder is not in the list of classes. Again, the condition
“each observation contains exactly one class” should be respected, and an
observation can only contain a class that is present in the training set.

The model is trained from the training dataset of observations repre-
sented as feature vectors. The feature extraction process we propose is a
full contribution of this work, and is detailed in Section 3.2. SVM or RF
can be used as supervised learning algorithms. The classification model
thus produced is then tested (with cross-validation for instance, see Chap-
ter 2.3) and used to analyze newly recorded observations.

When analyzing newly recorded observations, it is possible to add an
extra step to detect anomalies: observations that belong to none of the
classes seen in training. The model output is made of the probabilities
of the analyzed observation belonging to any of the classes. Typically, the
selected and predicted class is the one associated to the highest probability:

cPredicted = argmax
ci∈Classes

p(observation ∈ ci)

It is however possible to apply a threshold on the output probabilities. If
the selected class has a probability higher than the threshold, the predic-
tion is confirmed. If the probability is lower than the threshold however,
the prediction is rejected and an anomaly is detected. We can consider
Anomaly as an extra virtual class that is not in the training set, but that
can be detected in the testing set (and when using the model on real condi-
tions). We refer to the true classes of events as the positive classes. In con-
trast, Anomaly is part of the negative classes. With this trick, the model
aims is still to reproduce what has been taught during the training pro-
cess, but it extends it to also reject observations that are too different from
the training observations. In this scenario, each observation still contains
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exactly one class, but the class can be positive (event classification), or
negative (anomaly detection). In this case :

C = (Different Events)

and,

 Ctest = C + 1 = (Positive Classes) + (Negative Classes)

This architecture is used in Chapter 5 for the automatic analysis of
seismic signals recorded on volcanoes.

3.1.2 Model for a Continuous Analysis: Automatic Detection
and Classification of Events

In this second architecture, we propose to build a model automatically
detecting and classifying environmental events. In this configuration, the
time series recorded from the environment is still seen as a set of event
signatures occurring over background noise. However, the definition of
an observation differ from the one explained in the previous section. We
here propose to continuously cover the recordings with a sliding window
in time-frequency. An observation is therefore an extract of the recording
that does not necessarily contain the signature of an event (i.e., no posi-
tive classes). Instead, the observation only contains background noises, a
section of a signature, or even several incomplete signatures. Therefore,
the prediction model automatically detects if an observation represents an
event, and if it does, to which class the event belongs. As opposed to the
static model, we here propose an analysis with a continuous model. See Fig-
ure 16 for an illustration of the process. With this architecture, the rule
“each observation contains exactly one class” is still valid, but the class can
be positive (the event signatures) or negative (background). A frequency
filtering can also be justified if several classes are present at the same time.
An observation is then defined by the signal within the window, and is
therefore a portion of the recording filtered in a given bandwidth. With
the example of the sea side recordings, the model can classify any portion
of the recording (i.e., any observation) as being background noise, or con-
taining a specific noise.

Similarly to the previous architecture, a labeled dataset of observations
is used to train the prediction model. The dataset still need to represent
all the variability of the studied phenomenon. This means that the dataset
should include (i) observations of all the classes of interest (i.e., positive
classes), and (ii) observations of the background noise. The background
is here part of the negative classes. The number of classes of the training
set C is therefore:

C = (Different Events) + 1

and the number of classes of the test set Ctest (or the number of classes in
real conditions):

Ctest = (Positive Classes) + (Negative Classes).
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Figure 16
First step of the workflow

for the second
architecture. A data of

observation is defined as
a portion of a signal,

filtered in its bandwidth.
The observation can be
represented by a sliding

window of the
time-frequency plan, and

continuously covers the
signal.

In this scenario, the number of classes of the training set is similar to the
number of classes of the test set:

C = Ctest

Likewise, the list of the considered classes should be representative of the
observations that will be analyzed.

The prediction model is trained from the learning algorithm (SVM or
RF) and the training dataset of observations represented as feature vectors.
The feature extraction process is similar to the one used in the previous
section. A detail description of that process is available in Section 3.2. As
shown by Figure 16, the analysis of the recordings are made in two times:
(i) they are scanned by the sliding window in time and in frequency, and
(ii) the model classifies each observation to identify if it contains an event
and if it does, the class on which it belongs to. In addition to the classifi-
cation tasks, a model produced by this second architecture is also able to
perform detection tasks. In that case, an extra class is considered for the
background noise. Besides, the detection stage is performed by opposing
the negative class (i.e., background noise) in which no event is present,
to the positive classes displaying the various type of events. Moreover, it
is also possible to detect anomalies by using a threshold on the output
probabilities of the model. For detection tasks, we consider two negative
classes: background and anomaly. Threfore, the number of classes of the
training set C is equal to:

C = (Different Events) + 1 = (Positive Classes) + (background)

and the number of classes of the test set Ctest to:

Ctest = C + 1 = (Positive Classes) + (Negative Classes)

We present in Chapter 4 an application of this code to analyze under-
water acoustic recordings.
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Architecture 1 Architecture 2

Goal Automatic classification of
events.

Automatic detection and classi-
fication of events.

Observation
Signal within discrete window
of the time-frequency plan:
∆t and ∆f are variable. The
discrete window represents ex-
actly one event (positive).

Signal within a sliding win-
dow of the time-frequency
plan (continuous): ∆t and
∆f are constant. The sliding
window represents exactly one
event (positive or negative).

Training set The number of classes equals
the number of event types:
the positive classes. The train-
ing set excludes mixed obser-
vations.

The number of classes equals
the number of positive event
+ 1: the positive classes and the
background noise. The train-
ing set excludes mixed obser-
vations.

C = (Different Events) C = (Different Events) + 1
Ctest = C Ctest = C

Features Shape descriptors extracted from various domains of the
observations, see Section 3.2.

Training Supervised learning algorithm (e.g., SVM or RF)

Use

1) Classification of events (observations are extracted using the
same process used for the training observations).
2) Extension to anomaly detection possible (threshold on the
output probabilities), and Ctest = C + 1
3) Confidence indicator on the prediction results using the
output probabilities.)

Table 1
Comparaison between
the two architectures
proposed for the
automatic analysis of
environmental signals.

3.1.3 Comparison Between the Two Architectures

In the Table 1, we compare and summarize the two previous architectures.
To do so, we identify six characteristics to describe an achitecture: (i) the
goal of the architecture, (ii) how an observation is defined for an archi-
tecture, (iii) the composition of a training set, (iv), the features, (v) the
algorightm used during the training phase, and (vi) the possible usages of
the model. In particular, we highlight for the two proposed architectures
the points they have in common but we also emphasis their differences.

3.2 Proposed Feature Extraction Process

3.2.1 A Presentation of the Overall Idea

In Chapter 2.1, we explained the importance of choosing alternative rep-
resentations for the observations. Such choice is important for signal pro-
cessing problems but also for machine learning applications. We here pro-
pose a feature extraction scheme to represent transient signals. This feature
extraction process is one of the contributions of the PhD. It is led by the
following ideas:

1. Features used for machine learning application should be high level
features (see Chapter 2.1).
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Shape descriptors

Figure 17
Feature extraction

process.

2. Mathematical transforms can be used on signals to underline some
given properties. For instance, we use Fourier transform to study
the spectral content of a signal and its periodicity properties.

Combining those two ideas, we propose the following feature extrac-
tion scheme, illustrated in Figure 17. From one signal, several low level
representations are considered. Each low level representation is associated
to a classic signal domain and to its mathematical transform. A set of gen-
eral shape descriptors is then extracted from each low level representation.
The shape descriptors extracted from the various representations are then
concatenated into the final feature vector.

3.2.2 Focus on the Shape Descriptors

We list in Table 2 a set of shape descriptors that can be used on transient
signals. All of them have already been used or suggested in several works.
These references can be found in the table. Besides, for each descriptor, we
give its physical interpretation together with its associated formula (and
computational precisions if needed). As we will see in Section 3.2.3, we
can extract all these descriptors from various low level representations of an
observation. All these descriptors have been implemented in the Python
code we release on GitHub [Mal18].

3.2.3 Focus on the Low Level Representations

In signal processing, it is common to study alternative representations of
signals to better display and understand its inherent properties. Fourier
transform is the most common representation, but many others can be
considered (e.g., cosine or wavelet transforms). We here base our feature
extraction scheme on the idea that various low level representations un-
derline distinct and complementary properties of a signal. One represen-
tation is not better than another, they simply highlight different aspects
of a signal. For instance, the same informative content is displayed in



Proposed Schemes for the Automatic Analysis of Environmental Data 57

Feature Description Formula

Mean Mean value of the signal µ =
∑

i zi
n

Standard deviation
[TB05]

Measure of signal mean spread
around µ.

σz =√
1

n−1

∑
i(zi − µz)2

Skewness
[ZVH+10, Lan14] Measure of the signal asymetry 1

n ·
∑

i

(
zi−µz

σz

)3
Kurtosis
[ZVH+10, Lan14]

Measure of the signal peakness
(compared to the Gaussian distri-
bution)

1
n ·

∑
i

(
zi−µz

σz

)4
Centroid
[HYYC09, Fag07]

Point (time, frequency or que-
frency) around which the observa-
tion’s energy is centered

ī = 1
E

∑
i i · Ei

RMS bandwidth
[TB05]

Measurement of the bandwidth
(temporal, spectral or cepstral) in
which the signal’s energy is spread
around ī

RMSi =
√∑

i
i2·Ei

E − ī2

Mean skewness
[TB05]

Skewness measure adjusted to the
signal energy

√∑
i (i−ī)3.Ei

E.RMS3
i

Mean kurtosis
[TB05]

Kurtosis measure adjusted to the
signal energy

√∑
i (i−ī)4.Ei

E.RMS4
i

Shannon entropya

[EKR04, HMD11]
Measure of the informative con-
tent within the signal

−
∑
i

p(zi). log2
(
p(zi)

)
Rényi ‘entropy’b
[HMD11]

More general entropy measure-
ment

1
1−α · log2

(∑
i

p(zi)
α
)

Length [HMG+14] Duration of the event n
Max [Lan14] Maximum amplitude of the signal maxi

(
zi
)

Min [Lan14] Minimum amplitude of the signal mini

(
zi
)

i of max [TB05] Point (time, frequency or que-
frency) of the maximum amplitude argmaxi

(
zi
)

i of min [TB05] Point (time, frequency or que-
frency) of the minimum amplitude argmini

(
zi
)

Rate of attack
[TB05]

Description of the maximum in-
creasing slope in the signal maxi

(
zi−zi−1

n

)
Rate of decay
[TB05]

Description of the minimum de-
creasing slope in the signal mini

(
zi−zi+1

n

)
Threshold crossing
ratec

[HYYC09, Fag07]

Number of time the signal crosses a
given threshold. Helps describing
the signal mean level and its noisy-
ness

#(Threshold Crossing)
n

Silence ratioc

[MZB06]

Ration between the signal length
above and under a given thresholds.
Helps describing the general shape
of the signal.

#(z where z<threshold)
n

Max over mean
[HMG+14]

Comparison between the signal
peak value and its mean level

maxi zi
µz

Min over mean
[HMG+14]

Comparison between the signal
lowest value and its mean level

mini zi
µz

Energy standard
deviationd [Foo97]

Spead of the signal energy around
the mean energy

σE =√
1

n−1

∑
i(Ei − µE)2

Energy skewnessd

[Foo97] Asymetry of the signal energy 1
n ·

∑
i

(
Ei−µE

σE

)3
Energy kurtosisd

[Foo97] Peakness of the signal energy 1
n ·

∑
i

(
Ei−µE

σE

)3
a Various bin numbers can be used for probability estimation (5, 30, 500 for instance.
Experimental results showed the interest of using several estimations
b Similarly to Shannon entropy, various bin numbers can be used for the probability esti-
mation. α can take several values, including α = 2 for the collision entropy, or α = ∞
for the Min-entropy.
c Signal maximum normalized to 1, and different threshold values can be used (0.2, 0.4,
0.6 and 0.8 for instance.
d Energy measurements are features computed from the signal energy Ei = z2i rather than
on the signal itself.

Table 2
General shape descriptors.
The formulas are given
using a generic signal
[zi]

n
i=1, which can be the

observation as one of the
three low level
representation: sk, Sf or
Sq. i can therefore refer
to time, frequency or
quefrency.
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a time signal than in its complex spectrum, but the information is orga-
nized differently and a given property is often not visible in all domains.
The time series is used to study the waveform, while the frequency domain
helps with studying the spectral properties. We here propose to extract the
general shape descriptors we proposed in the previous section. This can
be done from three different low level representations of an observation
[sk]

n
k=1.

■ First representation and temporal properties — The temporal prop-
erties of a given observation are simply best displayed on the obser-
vation itself [sk]nk=1. This first low level representation describes the
waveform of an observation, and is often the first one studied by the
experts of the applicative field.

■ Second representation and spectral properties — The spectral prop-
erties of an observation are displayed using the Fourier transform
F
{
·
}

computed on the original observation. It is often its module
Sf that is considered (Sf = |F

{
sk
}
|). Therefore, thanks to such a

representation, the prediction model is able to use spectral proper-
ties of the set of observations. For instance, the Fourier transform
highlights periodic properties, which is of interest for pattern B of
Figure 14(b) for instance.

■ Third representation and cepstral properties — The final represen-
tation considered for the extraction of the shape descriptors can be
referred to as the cepstral domain. Originally, the cepstral domain
was used in speech processing through the MFCC feature set [?]. The
cepstral domain models the harmonic properties of a given signal
(speech recordings being highly harmonic signals), and several im-
plementations can be used [?, GFK05]. Its variable is known as
the quefrency. In this work, we define the cepstral representation
by computing the Fourier transform twice on the original signal
Sq = |F

{
Sf

}
|, and propose to use it as a general description of

an observation. 2 Shape descriptors are therefore extracted from the
low level representation too.

In addition to the three different low level representations, it is possi-
ble to preprocess the observations before computing the various low level
representations. Indeed, depending on the application, it is important to
normalize the observations in terms of mean or amplitude, to use a log-
arithm scale, or others. For instance, normalizing the energy of the orig-
inal observation to 1 will produce a model invariant to the signal energy.
Therefore, observations will only be classifyied on their shape regardless
their energetic level.

2Among the various implementations considered for the cepstral domain, the DCT
or inverse Fourier transforms can also be considered. Similarly in a context of speech pro-
cessing, it is usual to apply a logarithm on the first Fourier transform in order to highlight
lower frequency. In this work we compared various implementations of the Cepstral do-
main and decided upon using the Fourier transform twice. Typically, applying a logarithm
on the spectrum did not impact the results.
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Similarly, the feature vectors can be normalized in terms of mean and
standard deviation for each feature. This step is not required by all learn-
ing algorithms. But, for some that we are using (e.g., SVM or neural
networks), normalization helps to successfully train models.

3.3 An Overview of the Python Implementation

In this section, we briefly describe the code we wrote to implement the two
proposed architectures. The README is available in Appendix B. The
code is written in Python3 and uses several librairies (e.g., scikit learn for
the learning algorithms). It is publicly available on GitHub [MDMM+ss]
under the name Automatique Analysis Architecture (AAA). It is compatible
with a large number of data formats (e.g., WAV, MP3, DAT). Data can be
either be stored locally for a posteriori processing or accessible remotely
on a server for a real time processing. All the settings for the analysis are
stored in configurations files, which are organized as follow:

General – Which contains general information, such as project name (dif-
ferent name for different applications, different folder results, etc),
path (root, to specific and feature configuration files, to the data,
etc), name and settings of the learning algorithm, choice of the
validation procedure, preprocessing strategy (e.g., energy normaliza-
tion), and threshold values (for anomaly detection).

Specific – Specific setting depending on the type of analyze we want to
do:

usecase1: Continuous Analysis – Used for the automatic and
continuous processing of data. This usecase corresponds to
the architecture presented in Section 3.1.2 (for automatically
detecting and classifying events). This usecase can be used in
an operative context.

usecase2: Offline static Analysis – Used for the automatic and
discrete classification of events. It corresponds to the archi-
tecture proposed in Section 3.1.1 and Section 3.1.2, for signals
that are already read and stored in numpy.ndarray format.

usecase3: Static Analysis – Used for the automatic and discrete
classification of events, and implements the architecture pro-
posed in Section 3.1.1.

Features – Which lists the shape descriptors functions to be extracted
from the various low level representations of the observations, and
lists the low level representations that are to be considered.

Each type of analysis (i.e., Continuous Analysis, Offline static Analysis,
and Static Analysis) is accessible with its own script: a Python playground
(to execute the code line by line, to develop and run more tests, typically
for research purposes), or via a bash script (for operational use for instance).
Typically, the analysis are run as follow:
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■ For the continuous analysis:
1 . / make_useca se1 . sh s e t t i n g _ f i l e a c t i o n v e r b a t im

■ For the offline static analysis:
1 . / make_useca se2 . sh s e t t i n g _ f i l e v e r b a t im

■ For the static analysis:
1 . / make_useca se3 . sh s e t t i n g _ f i l e a c t i o n v e r b a t im

where setting_file is the path to the main configuration file,
verbatim is a digit between 0 and 3 depending on how much infor-
mation we want to display and action is one of the four following
strings: training to train and save a model, analyzing to run an analysis,
make_decision to make decision using the output probabilities obtained
in an analysis, or display to simply display (and save) the results of an
analysis .

For research purposes or to better understand how the code works, it
is possible to start an analysis in a Python playground with the following
commands:

■ For the continuous analysis:
1 py thon3 PLAYGROUND1 . py

■ For the offline static analysis:
1 py thon3 PLAYGROUND2 . py

■ For the static analysis:
1 py thon3 PLAYGROUND3 . py

As previously exposed, the different analysis are build upon similar
steps: feature extraction, training of a model, validation and use of the
model. Therefore, as the aforementioned scripts used the same methods
and functions, they are relatively similar. We give bellow an example for
the playground_1 and the automatic classification of sparse events. The
script is a high level script that uses three main classes (i.e., Python classes,
not classification classes).

Config – which stores all the settings read from the configuration files
(general and specific). The parameters are checked after loading the
setting files.

Analyzer – which is the only object needed to run an analysis. It con-
tains the label encoder, which encode labels (string, non consecu-
tive digits) into digits form 0 to C − 1, the object used to nor-
malize the feature (mean and standard deviation), and the model
itself. The analyzer needs to be trained using the learn method.
During the training of the model, (i) a catalogue of labeled data
is read and loaded, (ii) the data are preprocessed, (iii) features are
extracted and scaled and (iv) the model is trained and tested using
cross-validation. The catalogue containing the labeled data has for
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type pandas.dataframe. Such a type indicates for each labeled ob-
servation the file name where the observation is store, the observa-
tion data and time, and its class.

Dataset – which contains the recording that needs to be analyzed. Each
file that needs to be analyzed is represented by an object of type
Recording. This step works as follow: (i) a dataset is initialized, (ii)
the dataset is analyzed, (iii) the method makeDecision is called to
decide the final classes on which each recording belongs to (using
the class probabilities obtained from the model), and (iv) the results
are displayed graphically with the method display. The method
makeDecision also contains the code related to the anomaly detec-
tion.

1 import j s o n
2 import numpy a s np
3 from os . p a t h import i s f i l e
4 from t o o l s import *
5 from d a t a s e t import Da t a s e t
6 from c o n f i g import Con f i g
7 from r e c o r d i n g import Re co r d i n g
8 from a n a l y z e r import An a l y z e r
9 import p i c k l e

10
11 # Change i f y o u want y o u r s c r e e n t o keep q u i e t
12 # 0 = q u i e t
13 # 1 = i n be tween
14 # 2 = d e t a i l e d i n f o r m a t i o n
15 v e r b a t im = 2
16
17 # I n i t p r o j e c t w i t h c o n f i g u r a t i o n f i l e
18 pa t h = ’ . . / c o n f i g / g e n e r a l / n ew s e t t i n g s _ 1 6 . j s o n ’
19 c o n f i g = Con f i g ( pa th , v e r b a t im=v e r b a t im )
20 c o n f i g . readAndCheck ( )
21
22 # Make o r l o a d a n a l y z e r
23 a n a l y z e r = An a l y z e r ( c o n f i g , v e r b a t im=v e r b a t im )
24 # a n a l y z e r . l o a d ( c o n f i g ) # Comment o r uncomment
25 a n a l y z e r . l e a r n ( c o n f i g ) # Comment o r uncomment
26
27 # Da t a s e t t h a t n e e d s a n a l y z i n g
28 # ( f i l e s t o a n a l y z e a r e s p e c i f i e d i n c o n f i g u r a t i o n f i l e )
29 a n a l y z e d S e t = Da t a s e t ( c o n f i g , v e r b a t im=v e r b a t im )
30 a n a l y z e d S e t . a n a l y z e ( a n a l y z e r , c o n f i g , s a v e=True )
31 a n a l y z e d S e t . makeDec i s i on ( c o n f i g , s a v e=True )
32 a n a l y z e d S e t . d i s p l a y ( c o n f i g , o n l i n e D i s p l a y=F a l s e , s a v eD i s p l a y=True )

As it was previously mentionned, it is easy to re-use this code for a new
application without requiring so much programming knowledge. To do
so, a user has to follow the following steps:

1. Duplicate and adjust the configuration files (i.e., the desired path,
the type of analysis and the features used by the learning algorithm),

2. (Potentially) Write a reading function (if the format of the data is
not supported by the current reading functions).
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3. Organize the labeled catalogue as a pandas.dataframe object con-
taining for each observation the information needed to get the sig-
nal, and the observation class. The observations can be read locally
or remotely.

4. Run the wanted analysis, either in playgrounds scripts for research
and offline analysis purposes, either using the makefiles for a more
operative approach.

For more information on the code and how to use it, the reader is
welcome to consult the project AAA readme in Appendix B, or to consult
the GitHub deposit.
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Highlights & Summary

■ In this chapter, we present and describe three major contributions
of the PhD.

– We propose a scheme for the automatic classification of time
series (the recordings) displaying the signatures of environ-
mental events.

– We propose a scheme for the automatic detection and classi-
fication of environmental events in continuous recordings of
time series.

– Finally, we propose a feature extraction scheme based on the
following idea: a set of general shape descriptors are extracted
from three different low level representations of an observa-
tion. The temporal is used to describe the observation wave-
form ([sk]nk=1). The spectral domain is used to describe the
spectral properties of an observation (Sf = |F

{
sk
}
|). And

the cepstral domain is used to describe the harmonic prop-
erties of an observation (Sq = |F

{
Sf

}
|). The final feature

vector is a concatenation of the shape descriptors extracted
from each of the three low level representations. The general
set of shape descriptors comes from an extensive analysis of
the state of the art in various domains displaying transient
signals. This proposed feature extraction scheme can be used
to represent transient signals (from environmental sources or
not).

■ Both automatic analysis architecture are detailed, explained, and
compared. The code associated to each training scheme is pro-
posed in [Mal18]. The training of prediction models is based on
supervised learning algorithms.

■ In terms of terminology, we consider the positive classes represent-
ing environmental events and the negative classes which are either
the background noise (empty observation), either an anomaly. We
also refer to observation to describe the data used as input in the
analysis model. The definition of an observation in respect to the
original recordings is adjusted depending on the chosen automatic
analysis scheme.
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Introduction

In this first applicative chapter, we focus on monitoring underwater
coastal areas by analyzing continuous acoustic recordings. In particu-
lar, the chapter aims at reviewing the existing methods used for Passive
Acoustic Monitoring (PAM) and see how automatic analysis methods
can be used for this purpose.

Seas & Coastal Areas

The global ecosystem of the Earth is ruled and influenced by many
factors. With water covering around 70 of the Earth’s surface, seas
and oceans have a major role in the regulation of this global ecosys-
tem. From an economical perspective, the value of the services pro-
vided by the seas is estimated at some $33 trillion per year [CddG+97],
and is therefore substantial. From a biological point of view, seas
and oceans are also unique areas hosting more than 240,000 different
species. Given that oceans remain difficult and sometimes impossible
to access however, it is particularly difficult to obtain exhaustive and
reliable description about the underwater life.

In this study, we focus our attention on coastal underwater areas.
Zones of shallow waters (depth < 100m) have been widely studied for
the key role they held in marine environments. Among the various
coastal environments, sea-grass meadows grow at maximum depths
of 40m and are of particular interest. At a local scale, sea-grass mead-
ows are the habitat of many fish species, as an environment that pro-
vides them with a source of food and where they can develop their
nurseries [HHO03]. At a larger scale and because of their role in
photosynthesis, sea-grass meadows are considered to be the lungs of
the oceans. Coastal areas are, by definition, closer to land, and their
ecosystems are particularly exposed and vulnerable to the human fac-
tor, known as anthropogenic stress. A special attention is therefore to
be paid to the evolution of those areas. To do so, monitoring tools
are necessary and are yet to be developed.

Monitoring of Underwater Areas & Acoustic
Solutions

Several methods can be considered to monitor underwater areas, such
as satellite imagery, field surveys or the analysis of acoustic signals.
This chapter focuses on the use of acoustic signals. More precisely,
sounds that can be heard underwater are recorded using hydrophones
and then analyzed. This approach is known as Passive Acoustic Moni-
toring (PAM), in opposition to active methods where a known signal
is emitted and its response studied for gather information on the en-
vironment. The choice of considering acoustics signals as a proxy for
monitoring of sea-grass meadows instead of other approaches can be
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supported by several arguments. First, water is a particularly favorable
environment for sound propagation. Conversely, satellite or airborne
imagery is of limited use due to the difficulty in accessing the required
underwater information. This arises from the limited visibility with
passive optical systems, and the lack of penetration of electromagnetic
waves through the water surface with active acquisition systems. Sec-
ondly, using an acoustic-based approach allows monitoring of large
areas. Indeed, large amounts of data, and even real-time recordings,
are relatively easy to acquire. As the cost of data collection campaigns
is relatively affordable, their use can be considered for monitoring
over wide areas. Acoustic-based approaches are also less invasive and
costly than in situ surveys of the sea floor. Finally, the presence of
biodiversity can be seen as an indicator of the vitality of an area since
fishes and sea animals generally communicate through acoustics. In
this context, analyzing underwater animal sounds is a relevant choice
for monitoring the biodiversity and vitality of a given coastal area.
There are three different sources of underwater sounds: human (boats,
divers, etc), animal (sea mammals, fishes, shells, shrimps, etc.) and
environmental (storms, wind, rain, etc). Those three components are
referred as anthropophony, biophony and geophony. Together they
constitute the underwater acoustic landscape. By studying the acous-
tic landscape, information about the environment are gather, and the
area can be monitored.

Originally, the use of acoustic to monitor underwater areas was
related to active methods and for different purposes. Typically, the
sonar is the most well known technique for underwater monitoring,
and was originally developed for military purposes. Today, passive
methods are also being considered, for applications that are relatively
varied (military or not).

The use of PAM approaches lead to large amounts of data to be
analyzed and registers in the Big Data issue. Machine learning meth-
ods are therefore naturally considered. Despite the need for auto-
matic monitoring tools for underwater areas however, few operative
approaches have been proposed. For this study, we focus on the bio-
phony component of the acoustic landscape, targeting in particular
fish sounds. Among the very few studies dealing with fish sounds
classification, we can mention [VFAT15, NTSR16] and [SCSJ16] in
which results are promising even if the tools are not all tested in an
applicative context of underwater monitoring. The classification of
bio-acoustics data is being developed in the literature, such as the
sounds of sea mammals [ZVH+10], bats, frogs [HYYC09, CCL+12],
birds [Fag07, ACBCB+09, THMP06] and other animals [MZB06].
However, automatic processing tools are not similarly developed in
the different scientific communities. Depending on the field and data
accessibility, the results have been relatively disparate. For instance,
studies on speech recognition are relatively advanced, while automatic
identification of musical instruments is at a more preliminary stage of
development. However, to the best of our knowledge, no functional
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tool on automatic fish sounds classification has been reported to this
date, and thus we propose the present study as an attempt to fill this
gap.

Synopsis

This chapter is built around the paper “Automatic Fish Sounds Clas-
sification” which we published in JASA is 2018 [MMDMG18]. The
preliminary results also received the best paper award and was elected
for a lay language paper at ASA conference 2016 [MDMMG16]. The
chapter proposes to (i) review the state of the art regarding the au-
tomatic classification of acoustic transients (environmental sounds of
natural, animal or human sources, speech, and music) and (ii) to use
supervised machine learning approaches for the automatic detection
and classification of fish sounds. The proposed tools are tested in
various areas and under various experimental settings (learning and
testing in different areas or at different times for instance). Several
days of underwater acoustic recordings are then analyzed using the
proposed tools. This chapter is best understood if the beginning of
this thesis has been read. Nevertheless, this chapter can be read sep-
arately – and to this end some technical aspects are repeated. The
recordings used for this study come from a partnership with the chair
Chorus which studies the underwater soundscape. Thank you also to
Robiah Al Wardah.

http://acoustics.org/3pab4-automatic-classification-of-fish-sounds-for-environmental-purposes-marielle-malfante/
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4.1 State of the Art on Automatic Methods for
Passive Acoustic Monitoring

The literature regarding the automatic classification of fish sounds being
extremely reduced, we here propose a survey of a wider task: the automatic
classification of transient signals, including bio-acoustics, natural, human-
induced, music or speech signals.

By surveying this literature, one can notice that a plethora of descrip-
tors have been used as features for bio-acoustics signal classification. These
features come from different domains such as statistics, information the-
ory, signal and image-processing. Spectral centroid and bandwidth can
be used to classify frog sounds [HYYC09]. [Fag07] also uses spectral
centroid and bandwidth, and for recognition of bird species, they also in-
clude spectral roll-off frequency, spectral flux, and spectral flatness and
duration. For the classification of whales and boats, [ZVH+10] uses en-
ergy centroids, standard deviation, skewness, and kurtosis, all of which
are computed from the time and frequency signals. [ACBCB+09] uses
the minimal and maximal signal frequency in addition to the energy in
different frequency bands to classify frog and bird songs. A threshold
crossing rate is used by [HYYC09] and [Fag07], and along the same
lines, features based on area ratios above or below a given threshold are
used by [MZB06] for the classification of bird, cat, cow, and dog calls.
Regarding underwater acoustics, [NTSR16] introduces the use of Shan-
non entropy and call length for the recognition of fish sounds (in con-
trolled environment though). Descriptors based on information theory
are used in [HMD11], in which the authors implement Shannon and
Rényi entropies to classify frog calls, and in [ZVH+10] for the discrim-
ination of whale and boat based. Low-level coefficients and descriptors
issued from various transforms of the input signals are also considered.
For example, [THMP06] uses dynamic time warping and spectral en-
semble average voice for bird recognition. [CCL+12] uses multistage
average spectrum for frog detection. Linear predictive coefficients are
also used in classification, as for calls from birds [MC97] or humpback
whales [PBG+10]. [Che01] uses feature matrices from time-domain sig-
nal coding for insect and bird recognition. Finally, some studies con-
sider features extracted from spectrograms, which can be pragmatically
considered as images allowing one to take advantage of the large set of
image processing tools available. For bird vocalization retrieval, for ex-
ample, [DTZ+13] extracts features from spectrogram images using ridge
detection and points of interest. [EZE14] also uses image processing tech-
niques for dolphin call classification. Bowhead whale are detected and
localized in [TKB+12], also using features extracted from the spectrogram.
Finally, features can also be learned from the signals instead of handcrafted,
for example as done in [SCSJ16] using principal component analysis for
the classification of a given call of plainfin midshipman into three cate-
gories. Pertaining to the classification procedure, several machine learn-
ing techniques have been employed such as SVM used in [HYYC09,
Fag07, ACBCB+09, MZB06, NTSR16, SCSJ16], neural networks (NN)
are employed in [MC97, Che01, TKB+12] and [ZVH+10] while k-nearest
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neighbor (kNN) are considered in [HYYC09, HMD11, EZE14, NTSR16].
Some studies also propose to use decision trees or linear discriminant
analysis [ACBCB+09], distance measurements [THMP06, DTZ+13] or
k-means [PBG+10]. [NTSR16] also uses Random Forest (RF).

For natural or human-induced sounds classification, very similar fea-
tures are used. Statistical descriptors are used by [GL03] for multiple
sounds retrieval, such as the frequency centroid, bandwidth in various
frequency bands or pitch frequency and energy. To classify underwater
mechanical transients, [TB05] uses a large number of perceptual features,
which included energy standard deviation, skewness and kurtosis over the
time or frequency axes. Image-processing techniques are also found for the
description of these signals, such as by [DTL11] for classification of various
sound events. To classify acoustic noise radiated by boats, [WZ14] extracts
low level features based on Bark wavelet analysis and Hilbert Huang trans-
form. Linear predictive coefficients are also used by [CFGM98] for en-
vironmental noise recognition. Regarding the learning algorithms, SVM
are used in [GL03, DTL11] and [WZ14] along with distance measurements
in [GL03]. kNN are also found in [TB05] and Hidden Markov Models
are tested in [CFGM98].

Automatic classification for music sounds is found in several various
applicative domains (e.g., content retrieval, musical instrument identifi-
cation, musical genre identification), although here again, different fea-
tures can be used to describe signals of interest. Statistical features for
instance are used by [EK00] and [FM00] for musical instrument recog-
nition and for timbre recognition. [EKR04] also uses statistical features
along with entropy for classification of musical genre. Image processing
methods have also been adopted, such as by [YS09] for spectrogram tex-
ture extraction to identify various musical instruments, and [DSN01], for
musical genre classification. Learning algorithms used with musical data
are similar to the ones used for the classification of biological, human or
natural sounds. In particular, kNN is used in [FM00, YS09, DSN01],
SVM is used in [DSN01] and linear discriminant analysis in [EKR04].

Speech classification has been mainly carried out considering Mel Fre-
quency Cepstral Coefficients (MFCCs) as features, which are presented
in Chapter 2.1.3. The success of MFCCs in speech-related studies is such
that they are now considered as a reference set of features for acoustic
classification purposes in general. The state of the art in automatic classi-
fication of fish sounds is very limited but both [VFAT15] and [NTSR16]
use MFCCs for fish call recognition or fish individuals classification. In
bio-acoustics, MFCCs are used by [BIDL14] for anuran sounds classifi-
cation, by [Fag07] for bird call recognition, and by [THMP06] for bird
species recognition. [PBG+10] uses MFCCs for humpback whale identifi-
cation. [LCHH06] and [CJ06] modify MFCCs to fit their data, and they
use them to classify frogs and crickets respectively, and for land mammal
call identification. In acoustics, MFCCs are used by [GL03] and [DTL11]
for multiple sounds identification, and by [LBHL07] for identification
of underwater acoustic transients. They are also used by [WTP+10] for
the identification of environmental sounds, and by [MMSFSGSP14] for
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aircraft take-off noise classification. MFCCs are also used to describe sig-
nals to distinguish speech from music from nonvocal sounds by [Foo97],
for musical instrument recognition by [EK00], and for musical genre
classification by [DSN01]. Similarly to other applications, learning al-
gorithms involved in those studies are mainly based on SVM [Fag07,
GL03, DTL11, DSN01, NTSR16], neural networks [MMSFSGSP14], dis-
tance measurements [THMP06, GL03, LBHL07], k-means [PBG+10],
kNN [DSN01, NTSR16], linear discriminant analysis [LCHH06], hid-
den Markov models [CJ06, VFAT15] or RF [NTSR16]. Fuzzy classifiers
were also used in [BIDL14] and tree bases quantifier in [Foo97].

Feature Definition Ref.

Centroid
[HYYC09, Fag07]

1
E

∑
i i · Ei T1, F1, C1

RMS bandwidth
[TB05]

RMSi =√
1
E .

∑
i i

2 · Ei − ī2
T2, F2, C2

Standard deviation
[TB05]

σz =√
1

n−1

∑
i(s[i]− µs)2

T3, F3, C3

Skewness [ZVH+10] 1
n ·

∑
i

(
zi−µz

σz

)3 T4, F4, C4
Kurtosis [ZVH+10] 1

n ·
∑

i

(
zi−µz

σz

)4 T5, F5, C5
Mean skewness [TB05]

√∑
i (i−ī)3.Ei

E.RMS3
i

T6, F6, C6

Mean kurtosis [TB05]
√∑

i (i−ī)4.Ei

E.RMS4
i

T7, F7, C7

Shannon entropya

[EKR04, HMD11]
−
∑
i

p(zi). log2
(
p(zi)

)
T, F, C 8 to 10 (F8)

Rényi ‘entropy’b
[HMD11]

1
1−α · log2

(∑
i

p(zi)
α
) T, F, C11 to 12 (F11,

F12, C12

Rate of attack [TB05] maxi
(

zi−zi−1

n

)
T13, F13, C13

Rate of decay [TB05] mini

(
zi−zi+1

n

)
T14, F14, C14

Threshold crossing ratec

[HYYC09, Fag07]
#(Threshold Crossing)

n

T, F, C 15 to 18 (T15,
T16)

Silence ratioc [MZB06] #(z where z<threshold)
n

T, F, C 19 to 22 (F22,
F21, F20)

Mean µz =
∑

i zi
n

T23, F23, C23
Max over mean maxi zi

µz
T24, F24, C24

Min over mean mini zi
µz

T25, F25, C25

Energy measurementsd

[Foo97]

Energy standard
deviation, energy
skewness, energy

kurtosis

T, F, C 26 to 28 F28,
T26, F17, F26

a Bin numbers for probability estimation: 5, 30, 500.
b Bin numbers for probability estimation: 30, α = 2 and ∞.
c Signal maximum normalized to 1 and different threshold values: 0.2, 0.4, 0.6 and 0.8

d Energy measurements are features computed from the signal energy E(t) = x(t)2 rather
than on the signal itself.

Table 3
Feature set for a generic
numerical signal [zi]ni=1

composed of n discrete
samples and which

represent an observation
in one of the three

considered low level
domains: time sk,

frequency Sf or cepstral
Sq. E represents the

signal energy. Features
references are referred ’T’,

’F’ or ’C’ depending on
their computation

domain respectively
being time, frequency of

cepstral. For instance,
F28 refers to the energy
kurtosis computed from

the spectral domain.
Features in bold font are

the most valuable
features (see Fig 21).
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4.2 Proposed Approach

The architecture used for this analysis is the detailed in Chapter 3.1.2, for
the automatic detection and classification of events. The anomaly detec-
tion module is also used, thresholding the output probabilities to classify
each observation between: one of the positive classes (fish sounds, pre-
sented in Section 4.3.1), the background noise (i.e., detection task), and
anomalies (i.e. observations not belonging to one of the classes used in
training). For this application, an observation is defined as a 0.5s length
piece of recording, filtered in a bandwidth. This definition is chosen in
order to fulfill the one class per observation clause, detailed in Chapter 3.1.
Illustration of observations are given in Section 4.3.1.

The full list of the features used to represent the observations is given in
Table 3. This feature list is based on Table 2, selecting features not depen-
dent on the time or frequency. Typically, features such as the frequency
centroid are disregarded for this application.

4.3 Presentation of the Dataset

4.3.1 Seacoustic Recording Campaign

The recordings used in this study for the experimental analysis were col-
lected in August 2014 in France during the SEACOUSTIC2014 cam-
paign [LGI15]. The project aimed to collect data to address three issues:
(i) How to determine the vitality of underwater areas; (ii) How to evaluate
the anthropogenic stress on underwater areas; and (iii) To study the link
between vitality of a given underwater area and the anthropogenic stress it
faces. The campaign was based at the STARSEO station, near La Pointe
de la Revelatta in Corsica, France (Mediterranean Sea). For more details
on the SEACOUSTIC2014 project, please refer to [LGI15].

The study presented here is related to issue (i); namely, the develop-
ment of tools to determine the vitality of underwater areas. The data
used to test and evaluate our system are area specific, which means that
self-sufficient recording devices were fastened to the sea floor and left to
record continuous signals (i.e., the recordings). Specifically, between 1
day and 3.5 days of continuous recordings were collected from various ma-
rine areas. Each marine area is characterized by its depth and its sea floor
(i.e., meadow, rock, sand, as given in Table 4) and the development of
automatic models to classify fish sounds can help with the analysis and
characterization of these areas. Hydrophones (HTI92 WB) and recorders

Ref. Area Depth Duration

1 Healthy sea-grass meadow -20m 3.5 days
2 Healthy sea-grass meadow -12m 1 day
3 Lower sea-grass meadow / sand border -38m 1 day
4 Damaged meadow + Rocks -12m 1 day
5 Rock -12m 1 day

Table 4
Description of the
area-specific recordings
used in the present study.
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(a) Area1

(b) Area2

(c) Area3

(d) Area4

Figure 18
Spectrogram of

recordings of the five
different studies areas
(presented in Table 4).

Spectrogram are
computed using Kaiser
window of width 1024.
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(e) Area5

(SDA14; RTSYS) were used, which provided the signals coded on 24 bits at
256 kHz (anti-aliasing filtering was applied). Spectrograms of recordings
of the five areas are presented in Figure 18. We here stress that the record-
ings used in the present study were not labeled, and no ground truth was
available regarding their content. The labeling task was carried out specif-
ically for the present study, and was conducted manually, by reviewing
and labeling the content of part of the recordings. More details are given
in Section 4.3.2.

The underwater recordings collected sounds from three different
sources: animal (biophony), environmental (geophony), and human (an-
thropophony). Together, they form the soundscape of a given area.
In this study, we focus on biophony and more specifically, on fish
sounds. To this day, a direct relationship between fish sounds and in-
dividual fish or fish species has not been established. However, it is
known that specific fish sounds can be associated with specific behaviors,
if the fish species is known – as determined in the fish biology litera-
ture [Amo06, ASH04, DSMM+00, TF02, PVFF06, MHJ08]. An estab-
lished terminology that refers to the different fish sounds is still lacking, as
well as any universally accepted correspondence between fish sounds and
fish behaviors [Amo06]. For this reason, we chose to name (arbitrarily)
the fish sounds in the acquisitions based on their qualitative characteristics.
For the various recordings, four different types of fish sounds (i.e., classes)
that show distinctive acoustic signatures are recognized.Spectrograms of
representative signatures along with descriptions of the four classes are
shown in Figure 19, and are hereafter detailed as:

■ Impulsions — Emissions of short duration that are separated by
lags of the order of seconds.

■ Drums — Periodic pulse trains (around at least 15 pulses) that last
for at least 20 s in most of the recordings.

■ Roars — Wideband signals in their frequency content, which are
usually very energetic. These also last between about 10 s and 30 s,
and occur at a frequency of around two a minute.
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■ Quacks — Short signals with a harmonic structure that are often
present (up to five occurrences per second). Quack sounds are rec-
ognizable by their similarity to frog or duck sounds.

These four classes were manually identified.They are clearly distin-
guishable by a trained ear, and they also match the dedicated literature.
Fish sounds that do not fit into this nomenclature are particularly rare in
these recordings. The proposed classes are related to fish behavior, and to
identify specific species, or even specific individual, the intra-class proper-
ties can be studied. Typically, it would be possible to define sub-classes:
Drums, for example, could be sorted depending on the pulse frequency,
and Impulsions depending on their frequency, which can vary signif-
icantly. Such sub-classes would more likely to be related to species or
identification of individuals [Amo06, MHJ08].

Sounds different from those belonging to the four above mentioned
classes can also be spotted in the recordings. They are mainly due to am-
bient or anthropic noise. Such sounds are referred to as Unknown when a
definite structure cannot be identified by the experts, or as Background
when background noise dominates. The four fish sound classes are referred
as the positive classes, while Background and Unknown represent the neg-
ative classes. More details on how those two classes were handled will be
given with the results in Section 4.4 and 4.5.

According to the literature, the sounds named here as Impulsions and
Drums appear to be related to antagonistic behaviors of fish [DSMM+00,
TF02, ASH04, PVFF06], while Roars and Quacks would be produced
during courtship [DSMM+00, TF02]. Impulsions might also be linked
to feeding activities according to [ASH04]. Drums and Roars could also
be related to courtship behavior [MHJ08]. Additionally, it is worth
noting that the fish sounds listed in the biology literature are generic:
the four classes identified here are not specific to the data used in this
study [Amo06]. As a consequence, the architecture we propose to auto-
matically classify fish sounds can be used for recordings other than those
used in this study.

4.3.2 From Recordings to a Labeled Dataset of Observations

A dataset of observations is needed to train and test any classification
model, with the dataset construction here. A labeled dataset is a database
of signals in which each observation has been assigned to its corresponding
semantic class detailed here. For our application, this meant considering
a large number of fish sounds of each of the four considered classes. To
distinguish fish sounds from uninteresting sounds, we also considered a
fifth class of background noise. Once built, the dataset was used to train
and test the classification model: the model learns to distinguish and rec-
ognize the various classes from the observations of the database. This im-
plies that, ideally, the dataset should contain all of the variability of the
phenomenon under study. As this is physically impossible, the idea was
to gather as many observations as possible, to characterize a given class
as completely as possible. The dataset used to build the model is directly
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(a) Impulsions. Length: 2 ms to 20 ms. Presence: < 5/s. Spectrogram with Gaussian
windows on 8192 points.

(b) Drums. Length: 5 s to 20 s. Presence < 5/min. Spectrogram with Gaussian windows
on 16384 points.

(c) Roars. Length: 10 s to 25 s. Presence: < 2/min. Spectrogram with Gaussian windows
on 16384 points.

(d) Quacks. Length: 150 ms to 300 ms. Presence: < 5/s. Spectrogram with Gaussian
windows on 8192 points.

Figure 19
Description of the four
positive classes (i.e.,
Impulsions, Drums,
Roars, and Quacks), and
their corresponding
spectrograms.
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linked to the model capabilities. Without data covering a wide spectrum
of observations, it is very difficult for the model to analyze newly recorded
data. It is therefore necessary to consider a large dataset that covers the
range of the phenomena under study. Further explanations on supervised
machine learning are given in Chapter 2.

For the present study, 913 observations were manually identified from
the underwater recordings by an expert: 91 Impulsions, 114 Drums, 36
Roars, 205 Quacks, and 467 Background. We hereafter detail the process.
All of these observations were extracted from continuous labeling of 10
min at the Area 3 (sand / sea-grass interface, Table 4). This particular
area was selected because it appeared to host the most varied recordings.
The labeled period was recorded on August 5, 2014, at 10 pm, and was
selected as a particularly rich recording (i.e., gathering many fish sounds).
The recordings were continuously labeled using a sliding window of fixed
length ∆t = 0.5s and two bandwidths. We chose to focus our analysis on
the frequency ranges of 50 Hz to 450 Hz, and 400 Hz to 900 Hz, as most
of the fish sounds in the recording were in these frequency bands. The
original recordings were previously down-sampled from fs = 256kHz
to fs = 10400Hz. Each observation therefore had a fixed length of
∆t = 0.5s, and belonged to one of the two frequency ranges that were
analyzed. The use of a sliding window of fixed size led to some calls be-
ing considered as various observations; e.g., Drums and Roars are long
calls (10-30 s), and were therefore separated into several consecutive ob-
servations. The 0.5s window length was empirically determined as the
minimum duration needed to distinguish the five classes. This was longer
than a single Impulsion or a single Quack, and shorter than either a full
Drum or a full Roar call. However, a minimum of 0.5s is needed to iden-
tify a Drum or a Roar as such. Alternatively, and depending on the data,
the continuous analysis proposed in this study can be carried out on win-
dows of different sizes and in other frequency bands. Any observation
where the class was not clearly identified by the experts belonged to the
Unknown class, and were disregarded for the learning stage (but not for the
testing; see Section 4.5.1). Alternatively, observations that contained no
fish sounds and no unidentified sound were labeled as Background. The
labeling step is illustrated in Figure 20: each observation of the dataset is a
signal of length 0.5 s and filtered in its bandwidth. They can be visualized
as an extract of the spectrogram.

4.4 Validation of the Proposed Approach

4.4.1 Model Validation and Performance Evaluation

In this first part of the study, the proposed architecture is tested using cross-
validation. A total of 913 observations belonging to five classes are con-
sidered: the four positive classes associated to fish sounds (Impulsions,
Drums, Roars and Quacks), and a generic Background class. Cross-
validation with α = 0.7 (50 trials with 70 of the dataset used in training
and 30 in testing) is used to determine the best values for the hyper-
parameters of the learning algorithms, and to validate the model perfor-
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Figure 20
Illustration of the
annotation process. All of
the black boxes have the
same width,
corresponding to 0.5s,
and the same height
corresponding to the
frequency range
(fmax − fmin = 400Hz
in this study). An
observation is a 0.5s
portion of the recording,
filtered between its fmin

and fmax. The
spectrogram was
generated using a sliding
Gaussian window of
16384 points.
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Feature set Dimension d
Accuracy

RF SVM

All 84 96.9± 2.0 96.5± 1.6
Time 28 90.1± 2.0 91.2± 1.8
Frequency 28 91.1± 2.7 90.7± 3.1
Cepstral 28 91.4± 3.0 90.8± 2.7
MVFa 3 91.5± 0.85 91.3± 0.82
VFb 19 95.6± 0.79 94.7± 0.82
MFCC 26 72.5± 3.3 70.0± 6.0

a with MVF for Most Valuable Features.
b with VF for Valuable Features

Table 5
General Results for the

Automatic Classification
of Fish Sounds. Accuracy

results are compared
depending on (i) the

feature set used (time,
frequency, cepstral,

all or MFCC) and (ii)
the learning algorithm

(RF or SVM). Subsets of
the most important

features are also
considered: MVF and VF.
Learning rate α = 0.7.

mances. When using SVM, the best accuracy of the data is obtained with
a Gaussian radial basis function kernel of parameter γ = 2−7, and with a
cost parameter CSVM = 512. These values are obtained after a grid search
for the optimum values, and then they are kept constant. The accuracy of
the results varies smoothly through the grid. For RF, the number of trees
is fixed to 200, as a compromise between performance and computation
time. The entropy is used as impurity measurement since it leads to better
results than Gini index,

√
d features are considered at each node with d

the total number of features, and the trees are not pruned. The overall
accuracy reaches 95.3 ± 0.76 when using all of the features and RF as
classifier, and 95.0± 0.88 when using SVM. These results validate both
the architecture and the features used. Two main conclusions are drawn
from those numbers: first, the overall proposed process to automatically
classify the fish sounds is validated. Second the learning algorithm has, as
was expected, a limited influence on the results.

It is also relevant to discuss the limitations of the propose approach
in order to better evaluate the proposed results. The current main limi-
tation of the method is the use of a fixed window for the analysis: some
observations may contain more than one class. Typically, Quacks and
Impulsions can sometimes be found within the same window. The
model then recognizes properties of both classes and output probabilities
are split between the main classes. However, both are often lower than
the threshold that was fixed, leading to their rejection in terms of classi-
fication. To overcome this limitation, the study could be carried out on
temporal windows of various length: smaller windows would be less likely
to contain more than one class. The use of a sliding window also pre-
vents temporal coherence in the model; e.g., for call counting operations,
a temporal regularization would help to identify complete calls from sev-
eral detected observations. This is particularly relevant for the long calls,
such as Roars and Drums, which are detected as a succession of windows
including the same class.
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Figure 21
Evolution of (a) overall
accuracy when using
feature vectors of
increasing dimension d.
Features individual
weights are shown in (b).
Features are references as
indicated in Table 3. In
red, the Most Valuable
Features (MVF), in blue
the Valuable Features
(VF) and in black the
regular features (RF).
The valuable features are
highlighted in bold font
in Table 3.

4.4.2 Features Selection

In this second experiment, we study the influence of the different features.
In particular, we show that the features have a greater impact on the results
than the choice of the learning algorithm. The accuracy when comparing
the influence of the feature sets (Time, Frequency, Cepstral and All)
and the learning algorithms (SVM, RF) are given in Table 5. The influ-
ence of the feature sets is of particular interest here. When comparing the
accuracy of the results with Time: 90.1± 2.0; Frequency: 90.1± 2.7;
and Cepstral features: 91.4± 3.0, it is interesting to note that the fea-
ture set influence is not so important in this case. Those accuracy values
correspond to RF but SVM leads to the same conclusion: each domain
contains enough discriminative content, but combining the three leads to
better performances. This phenomenon would suggest that the discrim-
inative information needed for the classification is spread in the various
domains. Once again, numbers show that results are steady regarding the
learning algorithm that is used.

As the state of the art in automatic classification of fish sounds is rel-
atively limited, we compare the proposed method in terms of features to
the use of MFCCs as descriptors. As explained in Chapter 2, MFCCs were
originally designed for speech processing purposes [ZZS01, GFK05], but
have since been used in many applications related to automatic classifica-
tion of transient signals. Comparing MFCCs to the All features, we obtain
accuracies when using MFCCs of 72.5 ± 3.3 for RF and 70.0 ± 6.0 for
SVM, while the All features reach 95.3 for RF and 95.0 for SVM.
The feature set we propose for this application thus leads to more accurate
results, and is actually significantly better adjusted. Indeed, MFCCs were
originally developed to represent speech data, which are particularly dif-
ferent from the data used in the present study, in terms of their frequency
range, shape, and other details. MFCCs typically match the Mel scale and
the human perception of sounds. We thereby stress that the features pro-
posed here are generic, and can also be used to represent more general
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Accuracy (%)

Background 72.1 76.0 77.2 78.6 84.2
Impulse 63.5 63.8 67.3 68.5 72.0
Drums 62.8 91.1 91.7 91.8 93.8
Quacks 59.3 57.8 58.2 61.3 65.8
Roars 67.9 92.9 94.3 93.5 95.0

New feature ref. F28 T7 T15 F11 F1

Table 6
Class by class accuracy

for feature vectors made
of the 1st to 5th most
important features,

according to Random
Forest feature weights.

Features are designated
by their references, as

specified in Table 3.

transient signals. The same conclusion can be drawn when comparing the
MFCCs with the Cepstral features, where the accuracy reaches 91.4±3.0
for RF and 90.8± 2.7 for SVM. The comparison between these two fea-
ture sets stands as they both describe the Cepstral domain. However, the
feature set we propose here performs better than the MFCCs, once again
stressing the importance of the feature choice and validating the proposed
features. One reason for this might be that the MFCC is an ordinate repre-
sentation (low level representation), while the Cepstral feature set is not
(high level representation). All of the data related to the use of MFCCs fea-
tures are presented in Table 5, and all 26 MFCC coefficients were considered
in this study.

After having estimated the influence of the features, we propose to in-
vestigate the feature selection issue, and use RF features weight to select
the most important features (technical explanations in Chapter 2). More
specifically, Figure 21 (b) shows the individual importance of the features
and Figure 21 (a) displays the mean evolution accuracy when the dimen-
sion d of the feature vector increases: from the most important feature,
to the two most important, and so on. Analysis of the features weights
leads us to build two subsets of features of decreasing importance: the
most valuable features (MVF) (Figure 21, red dots) and the valuable
features (VF) (Figure 21, blue dots). The MVF and VF are selected as the
minimum features subsets leading to stable results: using more features
does not significantly increase the performance of the classification sys-
tem. The accuracy when using MVF and VF are also reported in Table 5.
The MVF contains only three features: the energy kurtosis computed from
the spectrum (F28), the mean kurtosis computed from the waveform (T7),
and the threshold crossing rate also computed from the waveform (T15).
Considering the mean accuracy over the five classes when using the MVF,
it reaches 91.5 and 91.3 for RF and SVM, respectively. This result
is essential for real-time applications and embedded systems with limited
computational costs and storage capabilities. If we consider the 19 first fea-
tures with VF (including features from MVF), the global accuracy reaches
95.6 and 94.7 for RF and SVM, respectively. Similar numbers are ob-
tained when using the feature set All. This result shows that all of the
features are actually not needed to obtain good classification results, and
it also reflects on correlations between some of the features. Furthermore,
it is worth noting that features of VF contain descriptors computed on the
signals represented in the time, frequency, and cepstral domains, encour-
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aging to consider several representations of each observation.

The impact of the most important features on the class by class accu-
racy is also particularly relevant and is reported in Table 6. In particular,
it reveals that valuable features are not equally important depending on
the considered class. The second most important feature for example (T7,
mean kurtosis computed from the time domain) has a great impact on
Background, Drums and Roars, has no effect on Impulse, but is detri-
mental to Quacks since their accuracy drops from 59.3 to 57.8 when
using a second feature to represent the observations.

4.5 A Posteriori Analysis of the Dataset

4.5.1 Model Validation on Continuous Data from Different
Areas

This section reports on the use of our proposed method to automatically
analyze continuous underwater recordings. The overall goal of this study
is not a real time analysis for continuous monitoring, but an a posteriori
study, used to gather knowledge on a considered environment after a data
gathering campaign.

We train a model on the dataset presented in Section 4.3.2 that
contains 91 Impulsions, 114 Drums, 36 Roars, 205 Quacks and 467
Background observations. These observations are extracted from a con-
tinuous labeling of 10 min of recording on August 5, 2014, at 10 pm. The
model is trained with SVM and the All features, on five classes (four pos-
itive fish sound classes, and the background) . The model is then used in
an applicative context to analyze continuous recordings in two different
configurations. The first one tests the model performance on continuous
recordings: the test signals were recorded on August 5, 2014, between 10:27
pm and 10:37 pm, that is half an hour after the acquisitions used for train-
ing the model. The two data sets (i.e., the one used for training and the
one for test) were recorded on the same area. The second test configura-
tion considers a set of recordings that was randomly selected among the
other recording areas. These were registered in Area 2 given in Table 4

True Class (ground truth) Precision
B D I Q R U

B 969 2 2 - 2 23 97.1
D - 133 1 - - 2 97.8
I - - 208 - - - 100
Q 5 - - 245 - 2 97.2
R - - - - 58 1 98.3

Pr
ed

ic
te

d
C

la
ss

U 39 16 11 40 13 624 84.0

Accuracy 95.7 88.1 93.7 86.0 79.5 95.7

Table 7
The five considered classes
are Background (B),
Roars (R), Drums (D),
Quacks (Q) and Impulses
(I). A sixth class for
rejected observations is
considered and referred
as Unknown (U). The
average accuracy reaches:
93.4. Testing
observations recorded at
a different time than
learning observations.
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(sea grass at 12 m in depth, compared to sea grass/sand interface at a depth
of 38 m, for the learning observations) on August 8, 2014, at 11 pm. In
both configurations, the recordings are continuously processed in the two
bandwidths on which this study is focused (i.e., 50-450 Hz and 500-900
Hz), with a sliding window of duration 0.5 s. To reduce the computa-
tional burden in both the training and validation processes, no overlap is
considered between consecutive windows. The threshold value is empiri-
cally fixed to 0.8 ∈ [0, 1]. Classification results are presented in Tables 7
and 8. In this configuration, class by class accuracy and precision results
are presented, in order to better explicit the false alarm rates.

The first configuration was decided to test the model on continuous
signals that were recorded at a different time than the learning observa-
tions, in order to avoid similarities between the signals. The confusion
matrix of this test is presented in Table 7 and several conclusions can be
drawn. First, very few errors are noticed. Regarding Drums, 133 observa-
tions are correctly detected, and two mislabeled in the Background class.
Similarly, 208 Impulsions are correctly detected, two observations are
confused for Background and one for Drums. Comparable results are
obtained for Quacks and Roars, with 245 and 58 correct detections for no
and two errors, respectively. The associated accuracy is therefore extremely
high going up to 95.7. The study of the Unknown observations (anomaly
detection) is also particularly relevant since we observe 743 observations
for which the model does not reach any decisions. Among those, 624 are
also not identified by experts, either because the observation is too noisy
to be identified, or because it contains more than one class, or because
the sound does not match any of the four positive classes. Between 11
(Impulsions) and 39 (Background) observations per class should have
been attributed to a class, suggesting that the probability threshold could
be decreased, and adjusted to each class. Precision results also lead to
particularly valuable information, since they are systematically above 97
for the four fish sound classes: the false alarm rate is extremely low, which
clearly validates the use of the model in real conditions. Results from the
experiment are particularly conclusive since the overall high performance
and the precision prove the interest of such tools for analyzing continuous
data.

The second set of observations are considered to analyze the model
generalization capacities since the model is tested on recordings from a
different underwater area. Results of this experiment are presented in the
confusion matrix in Table 8 and very similar conclusions can be drawn
from the detected observations. Almost all detected observations are cor-
rectly assigned to their classes. Depending on the class, a maximum of
25 errors out of 885 correct detections are found for the Background class,
and regarding positive classes, 6 errors for 46 detections and 4 errors for
25 detections are made respectively for Impulsions and Drums. It is also
interesting that no Roars are detected, which is confirmed by the analysis
done by experts. Very good detection results are therefore achieved, even
when the model is tested in a different area compared to the learning ob-
servations. It is relevant to notice that in this case, the number of rejected
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observations (Unknown class) is greater: 1024 compared to 743 in the pre-
vious configuration. Out of those observations, 651 are also rejected by
the experts, but the others are missed by the model. Generally speaking,
accuracy and precision rates are lower than when the training and testing
recording places are similar, but still relatively high. A conclusion on those
results is the need to lower the threshold in this configuration: when the
learning and testing areas are different, test observations are less likely to
be similar to the ones used in the training, and the probabilistic outputs of
the model are therefore lower than in the previous configuration. Those
results recommend the use of such a method for the continuous and real-
time analysis of underwater recordings. In particular, large datasets can be
automatically analyzed and conclusions can be drawn regarding the fish
populations, their evolution in time, and their movement from one area
to another. As for the computation times, each set of recordings (i.e., du-
ration of ten minutes) was analyzed in about 4 min on a laptop computer,
thereby validating the use of this method for real-time applications. As a
reminder, all features were used for this analysis, and thus the computa-
tion times could be decreased if only selected features are used.

We now discuss the need to perform anomaly detection when ana-
lyzing continuous recordings, and the difficulty to set the thresholds for
each class. Without thresholding the model output probabilities (i.e., no
anomaly detection), all of the windows are classified between the four pos-
itive classes and Background. However, according to the interpretation
done by experts, some of the windows are `Unknown': if the fish are far
away and the effects of the propagation are non-negligible, if different
classes occur in the same window (sometimes up to three), or if the sound
does not fit in any of the classes (geophony, anthropophony), it is not
possible for the experts to classify these observations. It is therefore nec-
essary to threshold the output prediction probabilities to reject such ob-
servations. The thresholding operation, however, raises the issue of the
threshold choice: if it is too high, only well-defined observations will be
detected, and many will be missed; if it is too low, many observations
that are Unknown for the experts will be forced into a class. Ideally, a
different threshold should be decided upon for each class. A promising

True Class (ground truth) Precision
B D I Q R U

B 885 6 4 - - 21 96.6
D 3 40 - - - 8 78.4
I 16 - 21 - - - 56.8
Q 6 - - 256 - - 97.7
R - - - - - - -

Pr
ed

ic
te

d
C

la
ss

U 207 24 15 127 - 651 63.6

Accuracy 79.2 57.1 52.5 66.8 - 95.7

Table 8
The five considered classes
are Background (B),
Roars (R), Drums (D),
Quacks (Q) and Impulses
(I). A sixth class for
rejected observations is
considered and referred
as Unknown (U). The
average accuracy reaches:
80.9. Testing
observations recorded at
a different time and
place than learning
observations.
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Figure 22
Hourly evolution of the
number of observations

for each class. Recording
area1. For each class,

the threshold are
indicated in the legend
and are fixed to 0.3 for
all the classes except for

roars, where it is fixed to
0.75. Day to day patterns

are revealed.

development of the existing model would be to perform an analysis of the
`Unknown' observations in order to detect new classes of sounds. For ex-
ample, classes related to anthropophony or geophony can be considered,
and we can in particular think of boat, rain, or thunder sounds.

4.5.2 Analysis of Various Recording Areas

The previous experiments have validated, analyzed and tested the model in
various conditions, including testing in a different recording area. The as-
sociated results where quantified, using a ground truth that was necessary
to validate the approach. In this section, we consider the previous model,
and use it to analyze the entire set of recording described in Table 4.

We first focus on the Area1 (Table 4), since it presents the longest
monitoring period, with 3.5 days of continuous recording. Figure 22 is
obtained by counting hourly the number of observations for each class.
The evolution over the recording period is displayed class by class. Sev-
eral conclusions can be drawn from the analysis. A day-to-day pattern is
clearly visible, for all present classes. In particular, Drums and Quacks peak
during the night and remain to lower level during day time. Impulse dis-
play a similar increase during the night time, but with higher level during
the day. A day to day pattern is also visible on the two negative classes:
background and unknown. background appears more during the night,
while unknown observations are predominant during the day. This would
suggest that night time are either composed of fish noises, or of silence,
while day time would display sounds other than the five classes used in
learning. Typically, boats sounds are frequent during the day and have
similar signature to Roars in the considered bandwidths. The question
of the threshold to use for this analysis is crucial, and is currently a major
limitation of the tool. For this experiment, all classes had a threshold of
0.3 except Roars. Increasing the threshold would simply increase the num-
ber of Unknown observation, but the curves of the Background, Impulse,
Drums and Quacks would remain very similar with a lower mean value.
For Roar, the threshold was set high, in order to discriminate them from
boats. The relatively low number of quacks is interesting, and was ex-
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Figure 23
Hourly evolution of the
number of observations
for each class. Recording
area1. Thresholds are
fixed to 0.3 for all the
classes except for roars,
which it fixed to 0.95.
Day to day patterns are
revealed.

pected higher. One possible explanation is that as seen in the previous
experiment, Quacks are relatively sensitive to the change of area. Typi-
cally, this area is analyzed with a model trained on a different area, and
Quacks are probably missing. A study with a model trained on Quacks of
both area could be interesting and relevant. The graph associated to the
remaining areas are displayed in Appendix C.

The proposed tool can be used to study the temporal evolution within
one area, but also to study the spatial evolution of the acoustic landscape.
Figure 23 displays the evolution of the number of Drums observations
across the five recording areas. The curves mean levels are relatively dif-
ferent, which can result either of the threshold settings, either of the dif-
ference between the habitat. Concerning the repartition of drum obser-
vations, areas 1 and 3 have very similar conclusions. Both being close
to sea-grass meadow, the analysis is consistent. It is interesting to see that
conclusions regarding Drum observation are consistent from one area to
the other. Similarly, curves associated to the areas 4 and 5 have similar
repartitions. Both are areas with rocks. The graph associated to the other
classes are displayed in Appendix C.
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Highlights & Summary

■ The study of the acoustic landscape allows to gather information
about an environment by studying the associated sounds (passive
acoustic monitoring). To monitor underwater areas, we consider
the use of machine learning to automatically analyze recordings
made underwater, in coastal areas. We here focus on a specific
component of the acoustic landscape: biophony, and in particular
fish sounds.

■ Four positive classes corresponding to four different behavior of
fish are considered, along with two negative classes: the back-
ground noise, and anomalies. Around a thousand of observations
are considered are were manually identified. This dataset is unique.

■ Automatic detection and classification is applied using the first ar-
chitecture presented in Chapter 3. Anomalies are also detected.
The analysis is carried out using 0.5 time windows, and in two
different bandwidths. Four different fish sounds are considered,
among with the background noise.

■ Results validate the use of such method to analyze large dataset.
Cross-validation results reach 96.9± 2.0, and results in real con-
dition reach 93.4 and 80.9 for a classification tested on the same
area than learning but at a different time, and on different areas, re-
spectively.

■ The influence of the learning algorithm is limited, but the features
have a greater influence on the accuracy levels. The success of the
approach lies in the proposed feature set, where observations are
described by shape descriptors in three different low level represen-
tations (time, spectral and cepstral).

■ Analysis carried out on five different recording areas reveals day to
day pattern in the different fish sounds classes.

■ One of the main limitations of this method is the need to set the
detection threshold. This limitation also underline the importance
to work with the field experts, to compare manual and automatic
results, to adjust the tools. The proposed tools offer an analysis,
but the experts knowledge is needed to interpret such results.
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(a) Mount Merapi at sunset, view from Pos Pengamatan Gunung Merapi Jrakah

(b) Merapi crater

(c) Recording and transmission station below the dome of Mount Merapi

Figure 24
Mount Merapi,

Indonesia. Photos by
Marielle Malfante.
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Introduction

This second applicative chapter focuses on monitoring volcanoes by
analyzing continuous seismic recordings. In particular, the chapter
aims at reviewing the current methods used for the monitoring of
volcanoes and see how automatic analysis methods can fit in existing
monitoring frameworks.

The Volcanic Threat

Generally speaking, volcanoes are a well known and intriguing phe-
nomenon, despite the continuous threat they represent. Several cul-
tures and life habits illustrate this dual facet: captivation, attraction
and even deference or deification of volcanoes are opposed to the fear
and fatalism toward eruptive episodes. Volcanic grounds are particu-
larly fertile for farming which historically, lead to the establishment of
villages and towns in the vicinity of volcanoes, but also to major dis-
asters for the populations. We can quote the most commonly known,
for instance the Vesuve eruption in 79 (Italy), or the Santonin in -1646
(Greece) which incidentally lead to the Atlantis myth. The deadliest
eruption would be the Tambora in 1815 with more that 71,000 victims
(Indonesia) [Opp03]. Worldwide, 29 millions of people life in the
vicinity (< 10km) of one of the 1508 active volcanoes, therefore being
directly exposed to the thread of an eruption [BJS+17]. The need for
an effective monitoring is therefore not to be demonstrated, and the
development of efficient methodologies along with innovative and op-
erational tools to mitigate risks related to volcanic unrest (prevention,
crisis management and recovery) are of key importance [UI15]. This
challenging task has been a concern for the scientific community for
many years.

Volcanoes Monitoring

Historically, volcanic monitoring was mainly visual, with observations
and evolution study of gas clouds exhausting the crater. During the
latest decades, the monitoring of volcanoes has developed itself, and
now includes the study of many parameters including visual indica-
tors (camera, thermal imaging), the evolution of chemical compo-
sition (gas, magma) or geophysical measurements (ground deforma-
tion, inclinometry, or seismic waves for instance) [McN96]. In par-
ticular, seismic waves are used to investigate traces of tectonic events
and events precursors to an eruption. Beneath the volcano, move-
ments of magma or gas regularly occur and eventually lead to magma
rising up the magmatic conduit. Such movements are the source of
seismic waves (i.e. earthquake) that can be recorded on the earth sur-
face, on the volcanoes slopes or vicinity. By recording and analyzing
the seismic recordings, experts are able to propose a physical inter-
pretation for the volcano activity, and to better understand eruptive
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events. More specifically, seismic recordings contain recurrent pat-
terns, which are related to a physical behavior of the volcano. The
monitoring task of the seismic recordings is therefore a detection and
classification task of the various patterns. The overall goal is double:
predicting and prevention eruptions, but also understanding the phe-
nomenon involved in active volcanic episodes. This problem is there-
fore a direct application of the automatic analysis methods proposed
in Chapter 3.

The Interest in Using Machine Learning Methods

A mean of 540 persons per year are killed by volcanoes [BJS+17], and
most of the 1508 worldwide active volcanoes are not monitored. The
monitoring of a volcano is indeed a heavy task, requesting sensors,
communication with the observatories, maintenance and of course,
data analysis. Typically, the monitoring of seismic recordings is
mostly a manual task, and is an obvious limitation. Automatic tools
to analyzing continuous data, and help the experts in the decision
making process concerning safety recommendation could be used.The
easier the monitoring task gets, the more volcanoes can be thoroughly
monitored. It is however very important to underline that all the au-
tomatic processing tools proposed for this purpose aim at helping the
experts, and in no case to replace their knowledge and expertise. The
human brain has an incredible faculty to learn and recognize patterns
and anomalies with a great reliability. Artificial Intelligence tools can-
not and will not replace the human expertise, but they can ease the
monitoring task. In particular, the use of supervised learning tools
is here considered to replicate the classification task, taught to the
machine via a set of examples (labeled set of seismo-volcanic observa-
tions).

One particular challenge when using supervised learning algo-
rithms on volcanic data is the time scale at which we work. A volcano
evolves slowly. A thousands of years can be necessary for a volcano
to grow, and centuries can pass between two eruptions. But as spec-
ified in Chapters 2 and 3, the labeled dataset used to train a predic-
tion model on a given phenomenon must fully describe the consid-
ered phenomenon. This constraint is not fulfilled when using seismo-
volcanic signals. On a similar note, the notion of ground truth is
extremely relative when studying volcanoes. Physical interpretations
relating the classes of observations to a physical behavior of a volcano
are hypothesis, and the absolute ground truth is not known. All the
signals are also relatively similar, and are difficult to classify, includ-
ing by the observatories experts. Furthermore, some classes of obser-
vations occur relatively often (every day), while other are much less
frequent (not every year), which eventually lead to very unbalanced
problems and complicates the problem event more. Finally, the phys-
ical shape and structure of a volcano evolves with time. An eruption
usually changes the dome shape, meaning that the propagation of the
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seismic wave through the volcano is altered, and that the seismic signal
recorded on the various stations evolves, despite having similar causes.
All those specificities make the classification of volcano-seismic obser-
vations a complex and laborious tasks, and need to be considered to
provide accurate, efficient and useful monitoring tools. The classifi-
cation task for volcano-seismic observations is particularly complex:
observations are very similars, and classes are difficult to distinguish.
See for example Figure 33 at the end of this chapter, which illustrates
the difficulty to classify the observations of Mount Merapi.

Synopsis

This chapter contains (i) an analysis of the state of the art in automatic
methods used for the monitoring of volcano-seismic data (automatic
detection of relevant events, and their automatic classification), (ii)
the architecture used for the automatic analysis and its specificities,
and study results on two volcanoes. The first one is Ubinas, in Peru
(Figure 25), which proposes a 6 years of labeled seismic data and is used
to validate the method and to perform an a posteriori study on the
volcano. The second one is Merapi, in Indonesia (Figure 24), which is
monitored by the Balai Penyelidikan dan Pengembangan Teknologi
Kebencanaan Geologi (BPPTKG) for whom we installed the auto-
matic classification architecture in an operative context, for a real
time monitoring. Those two volcanoes are closely monitored: they
are close to cities (Arequipa and Yogyakarta, respectively), and erup-
tions can have dramatic effects. More details about both volcanoes
are given in the body of the chapter.

This chapter is based on two papers that we published in IEEE
Signal Processing Magazine [MDMM+18] and Journal of Geophysi-
cal Research [MDMM+ss], for an analysis of the state of the art and
presentation of the architecture, and for a detailed analysis of Ubinas
volcano respectively. An article regarding the franco-indonesian co-
operation with BPPTKG and Merapi volcano is also to be included
in a book published by the franco-indonesian embassies. This chap-
ter is best understood if Chapters 1, 2 and 3 have been read. However,
reminders of the technical points are made, and most of the chapter
can be read independently from the rest of this PhD thesis.
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(a) Ubinas volcano

(b) Crater of Ubinas volcano

(c) Ubinas volcano during an active phase

(d) Ubinas volcano, from Ubinas village

Figure 25
Ubinas volcano and
Ubinas village, Peru.

Photos by Melquiades
Àlvarez.
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5.1 State of the Art about the Automatic
Monitoring of Volcanoes

The main task concerning the monitoring of volcanoes using seismic
recordings consists in detecting relevant events, and to classify them. Tra-
ditionally, those two steps are done separately and we here review the
main methods used to automatize the tasks. The detection stage is often
done manually, see for example [AWO+06, LFT03, GES+09, FGNS96,
SGE+05, KOS10]. Some automatic detection processes have been proved
to be efficient though, and are relatively commonly used in operative con-
texts. The STA/LTA method (short term average, long term average) is
by far the most popular detection method and was originally presented
in [All78, All82]. It consists in measuring the energy of the considered
observation (short term average), and to compare it to the neighbor en-
ergy level (long term average). It is widely used in operational context
and in published works, including [IvS08, BAMOA13]. Other detection
systems are also considered, among which measurements of the signal kur-
tosis [LMMB14] or optimal filtering [LCMLB16]. Results are satisfactory
or promising but present the same limitation. In particular, they have
been proved to be efficient for well-separated events, or for some specific
volcano-seismic classes. Typically, events which are notable longer than
the average or emergent events are not detected. Those signals are diffi-
cult to detect because their starting and end points are not always clearly
detectable, especially when the analysis is carried out on relatively short
observations. Emergent signatures are also likely to be overlapped with
other events signatures, which also complicates the issue. Another issue of
volcano-seismic events detection is the high variability in events durations:
they can last less than 10 seconds for some to several days. The manual tun-
ing of the methods parameters (setting thresholds, window lengths, etc)
is also a limitation, and many of those approaches are tested on relatively
small datasets (few hundreds or less than a hundred samples in some cases),
or on datasets including only a given class of signals. To our knowledge,
there is no established procedure to detect volcano-seismic events in con-
tinuous recordings when (i) numerous signals occur in a short period of
time (hundreds per hour) which is the case during an eruption: in this
scenario signals associated to different events (not necessarily of the same
type) can occur overlapped in time and show very different amplitudes;
and (ii) for emergent signals, i.e. signals whose amplitude increases and
decreases very slowly.

Once extracted (manually or using an automatic detection algorithm)
volcano-seismic events need to be classified into one of several classes re-
lated to a physical behavior of the volcano. This information is then
used to analyze the volcano and predict eruptions. In many observato-
ries, this classification task is still done manually but the literature offers
some studies on the subject. Hidden Markov Models (HMM) have been
used [AWO+06, GIC+09, CAG+09]. Neural Network are also popu-
lar, but with very various results [LFT03, DPEG+03, LFPT06, IvS08,
CVF+09, GES+09, FGNS96, SGE+05, LFM+09]. Bayesian classifiers
were also tested in [OGDC06], but with limited results. Support Vec-
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tor Machines algorithm also have been used, for instance in [GES+09,
LFM+09, BAMOA13] with excellent results and very similar method
than studies using Random Forests as learning algorithm, see for ex-
ample [MFH+17, HPM+17]. Some studies also tried using unsuper-
vised models, such as [DPEG+03] with Principal Component Analysis
(PCA), [LFM+09, KOS10, EGD+08] with Self Organizing Maps (SOM)
or [LFM+09] Cluster Analysis (CA). Results however, are highly variable.
The main gap in the state of the art regarding the automatic classifica-
tion of volcano-seismic events remains the lack of effective and opera-
tional tools. Operational tools set up in volcanic observatories are only
mentioned in [MFH+17, BRS+07, KOS10]. Many studies provide in-
teresting results, but cannot process continuous recordings or segmented
events, or are validated on rather small datasets. The features used to rep-
resent the observations are reviewed in Chapter 2.1.3. The latest works
show a improvement in using a larger number of high level features, but
a large number of study still use feature set that could be improved. Too
simplistic features struggle to embrace and represent the signals properties.

As previously said, detection and classification are traditionally done
as two separate tasks in volcano-seismic analysis, but a few studies have
developed architecture to process a continuous analysis. Such architecture
are based on HMM, see for instance [IBG+09, BRS+07, Ohr01, HBO12].
Once again however, results are very fluctuating.

5.2 Proposed Approach

The approach proposed for this study targets the automatic classification
task, and aims at being robust and operational in monitoring routines.
We therefore use the architecture for a static analysis, presented in Chap-
ter 3.1.1.

In this scenario, an observation is made of a seismic recording display-
ing a volcano-seismic event. The signal is high-pass filtered above 1Hz, in
order to remove the tide component, but also to match short band sensors.
The signal is also normalized in term of its energy, which is computed and
normalized to 1. This is done to build a model that is available for all
observations, regardless of their amplitude level. It is worth noting that
most state-of-the-art methods are based on the energy levels [LFPT06],
and therefore cannot be used to detect non energetic observations. Those
observations constituting the dataset are extracted by automatic methods
(STA/LTA for instance), or manually. They are manually labelled into
classes of meaningful importance regarding the volcano behavior.

The observations are then transformed into feature vectors. The fea-
tures used to represent the observations are listed in Table 9, along with
their associated reference number (used in Section 5.3.3). Those features
are the one presented in Chapter 3.2. More precisely, the shape descrip-
tors from the table are computed on three low level representations of each
observation [sk]

n
k=1: in time sk, in frequency Sf , and in quefrency Sq. A

classification can then be trained from the labeled dataset of observations.
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Feature Definition Ref.

Length n = length(z) 1
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√
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∑
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ergy ī = 1

E ·
∑

iEi · i 6

RMS bandwidth Bi =
√

1
E

∑
i i

2 · Ei − ī2 7
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8
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√∑

i (i−ī)4Ei

E·B4
i

9

Shannon entropya −
∑
i
p(zi) log2

(
p(zi)

)
10 to 12

Rényi “entropy”b 1
1−α · log2

(∑
i
p(zi)

α
)

13 to 18

Rate of attack maxi
(
zi−zi−1

n

)
19

Rate of decay mini

(
zi−zi+1

n

)
20

Ratios min/mean, max/mean 21 to 22

Energy descriptors
Signal energy, maximum, average,
standard deviation, skewness, kur-
tosis

23 to 28

Specific values
min, max, i of min, i of max,
threshold crossing rate, silence ra-
tio

29 to 34

a Bin numbers for probability estimation: 5, 30, 500.
b Bin numbers for probability estimation: 5, 30, 500, α = 2 and inf.

Table 9
List of features used to
represent volcano-seismic
observations. Features
computed for a signal
[zi]

n
i=1 (which can

correspond to an
observation in temporal,
frequency, or cepstral
domains). E =

∑n
i=1 z

2
i

and Ei = z2i describe the
signal energy and the
energy at sample i,
respectively. Features are
referenced by a
letter-number system, for
instance, feature F3 is
the standard deviation
computed from the
observation spectral
representation.

In the following, we show the relevant of this approach on two volca-
noes. First, a very large database of volcano-seismic signatures of Ubinas
volcano is studied to show the relevance of the proposed approach. Typ-
ically, the approach is tested, validated and studied. In particular, the
impact of the features is detailed. Six years of volcano-seismic recordings
of Ubinas are then analyzed. We then use the dataset to simulate a con-
tinuous and operative monitoring of Ubinas. We typically show that the
approach was validated, and then implemented for the monitoring on
Merapi volcano.

5.3 Ubinas Volcano: Validation of the Approach
and a Posteriori Analysis

5.3.1 Ubinas Volcano

The first application aims at validating the proposed approach for the mon-
itoring of volcanoes, but also to perform an a posteriori analysis over 6
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Figure 26
Map of Ubinas Volcano
with the locations of the
permanent IGP seismic

network indicated (white
triangles). The data used
in this study are recorded
at UBIW station. Insert,

top left: location of
Ubinas Volcano (black
triangle) within Peru.

years of volcano-seismic recordings. The data comes for the observatory
monitoring Ubinas volcano, in Arequipa, Peru (Figure 25). This study
involves the participation of Jean-Philippe Métaxian from IPGP (Paris,
France), Orlando Macedo from the University Nacional San Agustin (Are-
quipa, Peru) and Adolfo Inza, from the Instituto Geofisico del Peru (Are-
quipa, Peru).

Ubinas Volcano is an andesitic stratovolcano in southern Peru, (16◦

22’ S, 70◦ 54’ W; altitude, 5672 m). It is considered to be the most ac-
tive volcano in Peru, and is closely monitored by the Instituto Geofísico del
Perú (IGP). After nearly 40 years of quiescence, Ubinas Volcano erupted
in 2006. Three eruptions have occurred since 2006, from 2006 to 2011,
from 2013 to 2014, and in 2016. Ubinas Volcano is monitored seismically
by the IGP since 2006 [MMT+09], with the cooperation of the VOL-
UME project (funded by the European Commission 6th Framework Pro-
gram) and the Institut de Recherche pour le Developpement (France). The
first permanent telemetric station (i.e., UBIW) was equipped with a short-
period vertical 1-Hz sensor that was installed in May 2006 on the north-
west flank of Ubinas Volcano [MMT+09]. Three additional stations were
added in 2007 (i.e., UBIN, UBIE, UBIS). UBIN was equipped with a broad-
band vertical sensor, and the other stations had short-period sensors. In
addition, UBIN and UBIS were equipped with bi-axial tiltmeters with 0.1
micro-radian resolution [IMM+14]. These four stations have been work-
ing permanently since 2007 (Figure 26). The data are recorded continu-
ously with a sampling rate of 100 Hz, and they are then transmitted in
real time to Cayma Volcanological Observatory in Arequipa (Peru). The
analysis is here based on seismic data from the vertical component of UBIW
station (see Figure 27 for an example of recording).
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Figure 27
Seismic recording of
Ubinas, station ub1.ub,
3/10/2007 at 10am.
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The data used for the present study came from a catalog of N =
109, 609 seismic observations of volcanic events that were recorded be-
tween May 2006 and October 2011. Each observation was manually iden-
tified and extracted by the IGP team in Arequipa Observatory. Six very
heterogeneous classes of signals were defined by the IGP after 10 years
of observations of Ubinas Volcano. Each class is associated to a physical
state or activity of the volcano. These types of signals are observed for
other volcanoes, and have been described for many years in the literature
[LCS+94, Cho96, NLBO00]. All the classes of events that can be recorded
on Ubinas are illustrated in Figure 28 and are listed as follow:

1. Long-period (LP; 95243 observations over 6 years) - This signals
come from fluid processes. They are interpreted as a time-localized
pressure excitation mechanisms, followed by the response of a fluid-
filled resonator [CM13]. Different models have been developed to
explain the resonance observed for LP events, including in particu-
lar the fluid-filled crack model [Cho86] and the fluid-filled conduit
model [NLBO00]. A wide variety of volcanic processes can pro-
duce the excitation mechanism that triggers crack or conduit reso-
nance, in particularly for lava dome growth for andesitic volcanoes
[NLBO00, MMQ+08, CM13].

2. Tremors (TR; 12309 observations over 6 years) - They are defined by
a sustained amplitude that can last from seconds to days, and occur
over a frequency range from 1Hz to 9Hz [McN92]. The literature
reports that many characteristics of LP events, and in some cases
also of explosion quakes (see below), are commonly associated with
TR. Virtually, all eruptions are accompanied by TR [McN92]. Visual
observations at Ubinas volcano suggests that TR are associated with
magma extrusion and sporadic or continuous gas and ash emissions
[MMT+09].

3. Explosions (EXP; 159 observations over 6 years) - Explosions are
associated to sudden magma extrusion, and ash and gas emis-
sion. Physically, they are related to fragmentation processes in the
conduit, as are observed on many andesitic volcanoes [DYB+02,
Ohm06, IYT+08]. For Ubinas volcano, EXP are related to destruc-
tion of the magmatic plug [IMM+11]. Especially, there is an overall
acceleration of the LP rate over the 2 to 3 hours before Vulcanian
EXPs for Ubinas volcano [TLM+11]. This occurrence of a large num-
ber of LP events before EXPs is consistent with the dome growth
process.

4. Volcano-tectonic (VT; 1315 observations over 6 years) - This class is
related to brittle-failure events. They are associated to stress changes
that are induced by magma movement [CM13]. There are relatively
few VT events at Ubinas Volcano, compared to LP events, but their
number increased from 2006 to 2011. VT events are more numerous
at the end of an eruption period.
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Figure 28
Waveform and
spectrogram (Gaussian
window of 512 samples
width) of volcano seismic
signals recorded at
Ubinas Volcano. Six
observations are
displayed. The amplitude
is linear and has been
normalized.

5. Hybrid (HYB; 474 observations over 6 years) - Those observation
have characteristics of both VT and LP events, with high-frequency
of onset followed by low frequencies. HYB events are introduced by
[LCS+94] to describe events observed at Redoubt Volcano. They
have also been observed for Soufrière Hills Volcano, Montserrat Vol-
cano [WMLP98], and Mount St. Helens Volcano [HB07], where
they are related to dome growth.

6. Tornillos (TOR; also known as screw events; 109 observations over
6 years) - They are related to resonating fluid-filled conduits or cav-
ities, and have a very limited distribution of frequencies and a very
slowly decaying coda. TOR can be considered as a specific type of
LP events with a long duration coda that is composed of harmonic
oscillations. They were observed at Galeras Volcano before several
eruptions in 1992 and 1993 [NTG+97]. TOR are rare for Ubinas Vol-
cano, but they appear to be more common at the beginning and end
of eruptive periods.

5.3.2 First Result: Performance Evaluation

In order to validate the methodology and to estimate results that can be
expected by the proposed method, cross-validation is performed on the
dataset. To consider relatively balanced classes, 1 year of observations are
gathered for classes that are highly frequent (i.e., LP, TR, VT events), and
all of the observations available for the less frequent classes (i.e., HYB, EXP,
TOR events). In total, 70, 856 volcano-seismic observations are considered
for this first experiment. For each class, a fraction α of the observations is
used to train the model. Because all the learning data need to be loaded
in the computer memory at the same time, the number of training obser-
vation per class is also limited to Nmax = 800. Therefore for each class ci
with 1 ≤ i ≤ C, Ni,training = min(α ·Ni, Nmax) with 70 (α = 0.7 the
learning rate) of the signals are randomly chosen to train the model. The
remaining Ni,testing = max

(
Ni · (1−α), Ni−Nmax

)
labeled observations

are used to test the model. The process is repeated 50 times to obtain sta-
tistically stable results. In the following, the results are expressed as means
and standard deviation over the 50 trials. Using this process, a comparison
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True Class (ground truth) Precision
LP TR VT EXP HYB TOR

LP 57504 457 4 1 8 - 99.2
TR 3911 4764 - 1 3 1 54.9
VT 372 10 487 5 12 3 54.8
EXP 112 8 6 41 - - 24.6
HYB 128 6 14 1 119 - 44.4

Pr
ed

ic
te

d
C

la
ss

TOR 2 0 3 0 0 28 82.8
Accuracy 92.7 90.8 94.6 84.8 83.6 87.6

Table 10
Confusion Matrix for a

analysis modelmodel
trained with RF, 50-fold

cross-validation with
α = 70. Overall

accuracy: 92.5± 0.45.

is made between 2 learning algorithms: RF and SVM. The observations
are represented using the features of Table 9, extracted from three repre-
sentations of the observations (time, spectral, cepstral), see Chapter 3.2 for
more details. Using RF, the overall accuracy reaches 92.5 ± 0.45 com-
pared to 92.1 ± 0.54 with SVM (RBF kernel, CRBF = 10, γ = 0.01).
Those results validate the effectiveness of the proposed architecture along
with the feature choice, and illustrate the limited influence of the learning
algorithm.

The best model is in this scenario the one trained using SVM. The
associated confusion matrix is proposed in Table 10 provides more details
about the class-by-class results. For instance, the best classified classes are
VT with 487 out of 514 (94.6) and LP, with 57504 correctly classified ob-
servations compared to 62029 considered (92.7).The confusion matrix
can also be used to analyze the model limitations. Most of the predic-
tion errors are divided up between: (i) LP events mixed with TR; (ii) HYB
events mixed with VT and LP events.; and (iii) a bias for EXP and VT toward
LP.Those mistakes are seen through the precision rates which are related
the the false detection rates, and are low for some classes. Physical inter-
pretation of these results is valuable, as all of the errors made by the model
translate into physical similarities between the signals. For example, to
parallel the main three prediction errors above: (i) LP events and TRs are
in the same frequency range and can overlap, and typically a LP event can
be found within a TR. This will confusing the model, which predicts a sin-
gle class at a given time. [MMT+09] also showed that on some occasions,
LP events occur in a repeated way, and can be separated at the beginning
by some tens of seconds, before merging into a TR (e.g., before an EXP).
(ii) HYB events have characteristics of both LP and VT events, and they can
belong to one class or the other. The analysis of this error is thus partic-
ularly valuable, as these results can help volcanologists to better analyze
the seismicity, the relations between classes of events and their evolution
with time. The ability of these methods to process very large datasets of
recordings is essential for volcanic observatories.

5.3.3 Second Result: Features Influence and Selection

The second experiment illustrates the influence of features chosen to rep-
resent the observations. The same cross-validation process is used to com-
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pare the influence that features can have on the classification results. In
particular, the use of several computation domains for the features is stud-
ied. The overall accuracies are reported in Table 11 vary from 78.4±1.0
when using cepstral features and SVM, to 93.5 ± 0.50 when using
frequency features and SVM. It is particularly interesting to note that for
the application, the frequency features appear to be particularly discrimi-
native. The manual classification is often based on the frequency content
of the observations which could explain the results.

As explained in Chapter 2.2, RF model estimates the features weights
and can be used as a feature selection tool. In particular, we investigate the
possibility to reduce the feature vectors dimension given that some features
are strongly correlated. As a reminder, this dimension should be kept as
low as possible to avoid accuracy losses due to the curse of dimensionality
(see Chapter 2.1). We intentionally did not use compression algorithms
(e.g., principal component analysis), so as to maintain the physical mean-
ings of the features. Figure 29 shows the features ranked by importance
using the RF feature weights. It also displays the cross-validation accura-
cies when representing the observations by feature vectors of dimension
d with 1 ≤ d ≤ D, composed of the d most important features. From
this analysis, two subsets of the most important features are extracted: the
three most valuable features (Figure 29, MVF, filled squares) and the
13 valuable features (Figure 29, VF, filled and empty squares, which
include the most valuable features). These features are selected as
subsets leading to a notable gain in accuracy with a reasonably small di-
mension. The accuracy reaches 84.4±0.50 when considering the most
valuable features. This result is interesting, as it shows that good clas-
sification rate can be obtained with a very restrictive number of features.
In particular, this is of importance for real-time or embedded systems and
applications. Indeed, the most valuable features contain the three
most important features (3 of the total features), which are (i) F4: the
spectrum skewness, which measures the spectrum asymmetry; (ii) F5: the
spectrum kurtosis, which measures the spectrum peak-ness; and (iii) T7:
the RMS bandwidth in time, which measures the mean length of the sig-
nal around which the energy is accumulated. The physical analysis of
these features is, as such, a good indicator of the signals for the experts.
In particular, while the feature ranks based on RF can be used to select
such relevant features, these features are themselves interesting to analyze,
as they gather and embody the information-discriminating observation

Features Dimension SVM RF

All 102 92.1± 0.54 92.5± 0.45
Most Valuable Features 3 84.4± 0.50 84.2± 0.75
Valuable Features 13 86.9± 0.60 90.3± 0.52
Time 34 83.9± 0.89 87.2± 0.57
Frequency 34 93.5± 0.50 91.3± 0.45
Cepstral 34 78.4± 1.0 79.3± 0.76

Table 11
Influence of the feature
set used to represent the
observations.
Comparison of the
accuracies when using
random forest versus
support vector machine,
for the different feature
sets.
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Figure 29
Importance and selection

of features. Bottom
subplot: Feature weights
(mean weights on 1-year
cross-validation models,

trained with random
forest on All features;

100 trees; α = 0.7).
Middle subplot: Mean

accuracies (models
trained with random

forest; 100 trees; on the
d-st most important

features with 1 ≤ d ≤ D,
D = 102). Top subplot:

Mean accuracies for each
class ci, 1 ≤ i ≤ C. The

three most valuable
features (MVF; filled

squares) and the 13
valuable features
(VF; filled and empty

squares) are indicated.
Features are referenced by
a letter-number system as

given in Table 9.
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across the classes. Similarly, the 13 most important features were extracted
(13 of the features) for the feature set of the valuable features (which
includes the most valuable features). This feature set is particularly
interesting as it provides a performance that is close to that of the whole
feature set, at 90.3± 0.52 when using RF. It is worth noticing that when
using the valuable features, RF performs notably better than SVM,
which is consistent since RF was used to select the feature set. It is also in-
teresting to note that the valuable features are features from the three
computation domains, as time, frequency, and cepstral, thereby confirm-
ing the interest in considering these three different domains for signal
representation.

5.3.4 Third Result: Analysis Over Six Years of
Volcano-seismic Recordings

Depending on the volcanic activity and the volcano structure which could
significantly evolve with time, observations within a same class can have
a significant variability and change over time. To estimate this evolution,
we consider a RF model trained on the Nmax = 800 first observations
of each class (less if 800 are not available), and to test it on the six years
recordings. The overall accuracy over all the classes is of 59.7, which is
relatively low compare to the previous results. We therefore propose to
study the evolution of the dominant class: Long Period LP, with 95,094
events. The monthly evolution of LP accuracy from 2006 to 2011 is dis-
played in Figure 30. We here remind that the Nmax = 800 first LP obser-
vations are recorded in few days only (June 2006). LP overall accuracy is
of 61.0, which once again is relatively low compared to cross-validation
results, but its evolution is curious and worth analyzing.

In particular, the accuracy collapses in May 2007, which reveals a sig-
nificant change in the signal shapes compared to the training observations
(May 2006). The accuracy drops from more than 95 in average to less
than 10. This period also corresponds to a sharp decrease in the number
of LP events. This result was discussed with the team of Ubinas Volcano
Observatory, in Arequipa. A manual revision of the seismic signals for the
period of May-July 2007 was performed to determine whether the obser-
vatory analysis might have confused LP events with other signals. It turned
out that the classification criteria had been improved since the beginning
of the creation of the catalog in 2006. This evolution in the manual clas-
sification criteria results from the experience acquired during the other
eruptions of Ubinas Volcano, as well as the signal classification of other
volcanoes (Ticsani and Sabancaya). The new criteria used for the manual
classification are now similar to those used for all of Peruvian volcanoes.
This revised analysis thus showed a difference between the two manual
classifications, starting from May 25, 2007. Some of the LP events were
indeed mislabeled, essentially as VT events or TRs, or to a lesser extent, as
HYB events. Part of the accuracy collapse observed from May 25, 2007,
can thus be explained by this confusion between the classes. At the same
time, the new classification showed a similar decrease in the number of
LP events, which would instead suggest a change in activity, and therefore
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Figure 30
Monthly accuracy

evolution for the LP
observations, with the

model trained on the first
800 observations of each

class (all recorded in May
2006 for the LP events).

a change in the characteristics of these signals. [MMT+09] observed a
strong temporal variations of the degassing and seismic activity in a pe-
riod starting in November 2006. A backward migration of magma in
the crater has been observed on images taken in December 2006, com-
pared to previous images taken in April and October 2006 (Figure 5 in
[MMT+09]). The receding of magma in the conduit has been observed
over several months. Other images of the crater taken by IGP Arequipa
Observatory respectively on April 17, 2007, June 8, 2007 and August 26,
2007 show a clear drop of the magma level between April and June 2007.
The backward migration of magma in the conduit implies modifications
of seismic source positions and possibly mechanisms due to the complex-
ity of the geometry of the conduit and time modifications of the coupling
between magma and the conduit walls. Magma migration can also affect
local stress conditions or conduit cavity properties. This can obviously ex-
plain modifications of the characteristics of the LP events. The decrease of
LP accuracy is starting in January 2007 and its strengthening between April
and May 2007, which is coincident with observations of volcanic activity.
The fundamental point is here that Figure 30 is a proof of a change in the
volcano-seismic signals from May 2007, that is physically interpreted as a
volcanic phase leading to a change in Ubinas structure and/or a internal
activity. These modifications were not detected by manual classification,
while the automatic classification perfectly identified them, This result is
therefore particularly important since the use of automatic methods of
classification revealed inconsistencies in the original manual classification.
The use of such methods therefore have an interest beyond the automatic
classification, and can be used as a physical analysis tool to study the evo-
lution of a volcano.



Application: Monitoring of Volcanoes Based on the Analysis of Seismic Recordings 107

5.3.5 Fourth Result: Simulation of an Operative Monitoring

In this last experiment, we focus on simulating an operative monitoring
context, where Ubinas would be continuously monitored throughout the
6 years of recordings. To do so, a new classification model is trained each
month using the past observations (i.e. observations happening before
the considered month). This experiment raises the issue of the number
of observations to use in training, since only a relatively small number
of observations are available for the training stage of the first models (es-
pecially for rare classes). From the previous experiment, we also know
that the labeled dataset present a large number of label mistakes, and that
observations evolve within a given class. This new experiment therefore
raises the ability of the model to follow those changes, and to adapt it-
self to new observation shapes. The models are trained on a maximum
of Nmax = 800 observations per class, which take very duration to collect
depending on the considered class. Typically for very frequent classes such
as LP, only a few days are necessary to gather Nmax observations: new ob-
servations are therefore considered for each newly trained model. For less
frequent classes such as Tr, few months are needed to gather the Nmax

observations: the first models will be then trained on less than 800 exam-
ples, but once this limit is reached, only the 800 most recent observations
will be used for training. Finally, for very sporadic classes such as Hybrids
HYB, the whole dataset does not contain Nmax observations, therefore each
monthly model will be trained on the available observations. For the first
months, the number of observations can be very low (≤ 10).

Overall accuracy over all the classes and the 6 years reaches 80.3 in
this classification, and as in the previous experiment we study the evolu-
tion of the class by class accuracy. Figure 31 displays the evolution for LP
which is the most represented class and can be compared to the previous
experiment results. It is interesting to interpret the performance of the

Figure 31
Accuracy evolution of LP,
from 2006 to 2011. A new
model is trained every
month, on a maximum
of Nmax = 800
observations per class.
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Figure 32
Accuracy evolution of
Hybrid classification,

from 2006 to 2011. A new
model is trained every

month, on the past data
(the maximum limit of

800 observations is never
reached, the class is

particularly sporadic).

evolving model compared with cross validation results and with the static
model of Section 5.3.4. Indeed, the previous section revealed that obser-
vations within a same class do evolve with time. By using a newly trained
model every month, we manage to follow and learn the classes evolutions.
Global performances are indeed much higher in this configuration than in
the previous one. However, the observations evolution is still visible with
sudden accuracy drops in the plot: for example in September 2007, the
accuracy drops from 95 to 38 and increases again to 98 in October.
With the sudden change in signals shapes, observations from September
are predicted with a model trained on data that are no longer representative
of the class. As soon as the model has been updated however (in October),
accuracy increases again. This phenomenon is observed on the six years
and is notably visible between stable phases in the volcanic activity.

Studying the accuracy evolution of sporadic classes is also relevant to
see the influence of the number of observations in training. However it
presents a difficulty since very few observations are available. Typically
for HYB, only six observations are available for the first model including
this class: accuracy levels are then notably low (see Figure 32). With an
increasing number of observations used in training however (blue plot dis-
playing cumulative number of observations), the accuracy level steadily
increases to very good performances (100 in November 2011). For this
class, around 500 observations are needed for the model to learn the vari-
ability of the Hybrids signals.

5.4 Merapi Volcano: an Operative Approach

Merapi is a strato-volcano situated in Yogyakarta province in Indonesia
(Figure 24), and is the most active volcano of Indonesia. It is currently con-
tinuously monitored by the observatory Balai Penyelidikan dan Pengem-
bangan Teknologi Kebencanaan Geologi (BPPTKG) with a minimum
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team of 15 persons. Mount Merapi erupts relatively often (around every 5
years), with typical eruptions consisting in a growth and partial collapse
of the dome, leading to pyroclastic flows. The last erruption of this type
started on August 17th, 2018. The areas surrounding the volcano are highly
populated, and the city of Yogyakarta (400.000 people) is situated at 25km
of the volcano. The monitoring task is therefore if crucial importance in
order to avoid casualties, and regular safety recommendation made by the
BPPTKG to the local authorities. Merapi is currently in an active phase
with several phreatic eruptions since May 11th, 2018.

Mount Merapi has been seismically monitored by the observatory
BPPTKG since 1924 and is therefore a well known volcano. The various
classes of events are well known and well defined, with effective proce-
dures for the manual classification. Those classes are hereafter detailed,
and spectrograms are presented in Figure 33.

1. Tect - Tectonic seisms, of non volcanic origin. They are related to
the subduction, and are produced at hundreds of kilometers from
the volcano. They can be recorded from stations outside of the vol-
cano monitoring sensors.

2. Tectloc - Tectonic seisms, of non volcanic origin, but locally pro-
duced.

3. Tele - Tele-seisms, which are tectonic seisms of very distant source
(thousands of kilometers).

4. Volcano Tectonic of type A or B, which reveal a tectonic fracture.
The two types correspond to a deep (A) or shallow (B) source. Those
events are usually of high energy and are relatively frequent, and last
between 5 to 20 seconds.

5. Low Frequency (LF), which reveal a fluid movement, such as gas
or magma. This class of signal is relatively rare, but should not be
missed for its physical interpretation is important. Usually, LF have
a relatively low amplitude.

6. Multi Phase (MP), which reveal a magma friction in the conduit.
The events are made of several unidentified phases (4 or 5) followed
by a coda and usually last around 5 seconds. VT of small amplitude
could be MP.

7. Rockfall, also known as Guguran, which correspond to rock falling.
The observations are emergent and usually energetic signals. They
last from seconds to minutes and can be very varied depending on
the path taken by the falling rocks.

8. Pyroclastic flow, which usually last around 20 minutes and have
varied shaped depending on the cause. Lava exiting the dome lead
to rather continuous signals, while a collapsed lava dome lead to
more discrete events.
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9. Tremors which are related to the eruption are display continuous
flows of gas and/or magma exiting the dome. They are different
from Explosions, which are extremely rare at Merapi, and not even
considered as a class.

A collaboration was started with Agus Budi Santoso from BPPTKG
and François Beauducel from IPGP to deploy the AAA [Mal18] archi-
tecture for the automatic classification of volcano-seismic observations of
Mount Merapi. Before July 2017, the seismic monitoring was done man-
ually from the paper seismograms, and a record was kept counting how
many observations of each class did occur on each day. Since July 2017, the
monitoring has become mainly numerical with WebObs platform, which
was developed and deployed by François Beauducel and the IPGP team at
BPPTKG. This change of support for the monitoring has a great impact,
since the geochemical and geophysical data are available on a server for
the BPPTKG team. The fact that various physical measurements can be
obtained on the same post and under the same architecture is a great evo-
lution, and opens the door to mome complex analysis. Since the deploy-
ment of WebObs at BPPTKG, a labeled dataset of 1265 volcano-seismic
observations is constituted. The events are detected using STA / LTA meth-
ods and are then classified by the operators. Manual detections can also
be added to the dataset.

The AAA module which is presented in Chapter 3.3 and in Appendix B
was added in March 2018. Nine months of labeled observations to build a
RF classification model. The classification task can therefore be suggested
using the AAA module. For a new detected observation, the latest classi-
fication model is interrogated, and proposes a list of probabilities of the
observation belonging to the classes. In this operative context, it is impor-
tant to leave the final decision to the experts, and the AAA module is used
as an extra tools for the decision making process.

The system is currently used at the BPPTKG observatory, Indonesia.

(a) TECLOC (b) TECLOC

(c) TECLOC (d) ROCKFALL

Figure 33
Spectrograms of

observations of Mount
Merapi. The

spectrograms are
purposefully small in
order to compare the

different observations.
This figure underlines the

difficulty to correctly
classify seismo-volcanic

observations.
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(e) ROCKFALL (f ) ROCKFALL

(g) VTA (h) VTA

(i) VTA (j) VTB

(k) VTB (l) VTB

(m) TECT (n) TECT

(o) TECT (p) TELE

(q) TELE (r) TELE

(s) TELE (t) TPHASE

(u) TPHASE (v) TPHASE
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Highlights & Summary

■ Volcanoes are responsible for the death of 540 persons per year.
The deadliest eruption would be the Tambora in 1815 with more
that 71,000 victims (Indonesia) [Opp03]. Eruptions can also last
several years. Reliable tools for the monitoring of volcanoes are
extremely important, with huge societal, environmental and eco-
nomical consequences.

■ Volcanic monitoring is done by studying the evolution of various
parameters, including the seismicity around and on the volcano.
Seismic recordings bear the signature of various classes of volcanic
events, which are related to the volcano behavior by the experts.
By detecting and classifying the volcano-seismic events, experts
can study and better understand the volcano, and predict erup-
tions. The detection of such event is manual, semi-automatic or
automatic with the use of methods such as STA / LTA (which has
limitation, but is robust enough to be used in applicative contexts)
The classification remains manual in the observatories, even if some
studies have been conducted (but very often on limited number of
events, classes or for a short duration not necessarily representative
of the volcano)

■ The AAA code is used here for the automatic classification of vol-
canic event.

■ The method is validated on 70, 856 volcano-seismic observations
of Ubinas (Peru). The accuracy reaches 92.5± 0.45 with a model
trained using RF algorithm and All features. The influence of the
learning algorithm is limited, but the impact of the feature choice is
illustrated. In particular, feature selection can be considered: and
with 13 of the features (called the Valuable Features), the ac-
curacy drop from 90.3± 0.52.

■ On Ubinas volcano, 6 years of data are analyzed (109, 609 volcano-
seismic observations). Results show that the automatic analysis ex-
ceed the manual one, and reveled inconsistencies in the original
labeled dataset. Those results have been discussed and communi-
cated to the observatory of Arequipa who manually re-analyzed the
dataset. They confirmed the change of behavior of the volcano, that
was missed by the experts and detected by the automatic analysis.

■ Another study is conducted to simulate an operative monitoring:
a new prediction model is trained each month with the available
labeled data. For evolving classes, this allows the model to learn the
observation changes and keep up with the classification task. For
relatively rare classes, the prediction models get better and better
at classifying, with the increasing number of observation available
for training. The study was done on Ubinas volcano, and lead to
a collaboration with the observatory BPPTKG monitoring Mount
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Merapi in Indonesia, where the AAA module was added to We-
bObs, the monitoring software.

■ Given the clear impact that machine learning tools can have on the
day to day monitoring of volcanoes, the many perspectives should
be explored, and lead to effective and operational tools. To this
effect, the AAA code is available on GitHub [Mal18], and is open
both for observatories and for contributions.
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Introduction

This manuscript exposes and gives answer to the issue of environmen-
tal monitoring and the need to develop dedicated and operative tools.
So far, the first chapters were linearly organized. Typically, Chapter 1
presents the issue. Chapter 2 gives the necessary backgrounds in ma-
chine learning and signal processing. Chapter 3 presents the proposed
tools and the contribution of this PhD thesis: the automatic detec-
tion, classification, and anomaly detection schemes. Finally, Chap-
ters 4 and 5 illustrate the proposed analysis schemes onto two differ-
ent applications: underwater acoustic and volcano-seismic. In this
final chapter, we propose to challenge one of our work hypothesis. In
particular, we examine the possibility of using learnt features.

Looking Back on Feature Vectors

The automatic analysis schemes proposed in this manuscript are build
upon the representation used to transform the considered observa-
tions (the data) into feature vectors. The importance of considering
reliable feature vectors is exposed in Chapter 2, and as explained, fea-
ture vectors can either be learnt or hand-crafted (i.e. designed). In
this PhD, we chose to work with hand-crafted features, and the pro-
posed features extraction scheme is one of the main contribution of
this manuscript (fully detailed in Chapter 3). This choice was lead by
the applicative and operational point of view leading this PhD: hand-
crafted features have a physical interpretation which is desirable for
the various experts of the applicative fields. However, it would have
been possible to use learnt features. This open question is the focus
of this chapter: can we learn the representation to be used on the
observations? What would the results be compared to the proposed
feature extraction scheme (i.e., hand-crafted features)? In particular,
the study addresses the use of convolutional neural networks as a fea-
ture extraction process in classification.

Synopsis

In the following, we recall the theoretical backgrounds needed for
introducing deep learning and convolutional neural networks (Sec-
tion 6.1) If the reader is already familiar with those notion, it is possi-
ble to go directly to 6.2. The transfer learning paradigm and the pro-
posed approach are detailed in Section 6.2. Finally, the underwater
acoustic dataset presented in Chapter 4 is used to compare the various
feature extraction schemes. Results are reported in Section 6.3.

Strictly speaking, this study is not necessary for the overall com-
prehension of this manuscript. The main issue and the proposed so-
lutions can be understood without reviewing this last chapter. This
chapter is an investigation of the relevance of using alternative tools
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(namely transfer learning and deep learning tools): a work hypothesis
that was set in Chapter 3 is challenged and we here propose an alter-
native path for the automatic processing schemes. The chapter is rela-
tively independent from the rest of this manuscript. We would never-
theless advice the reader to have a good overall idea of this manuscript,
and to have read the theoretical chapters (Chapters 2 and 3) to better
understand the study that we here propose. For this study, a num-
ber of theoretical elements that were not necessary for the rest of the
manuscript need to be introduced. By nature, this chapter is therefore
both theoretical and applicative. Similarly to Chapter 2, we popular-
ize and illustrate the theoretical concepts on simple examples. We
hope that this approach will help with the overall comprehension of
this study. This chapter can be read as a first introduction on deep
learning tools. Thank you to Omar Mohammed for his collaboration
on this study.

Notations used in this chapters are specific to deep learning and convo-
lutional neural network tools, and can overlap some previous conventions
of notation used throughout this manuscript. Concerned notations are
redefined, and are in accordance with the classic notations used for deep
learning tools.
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6.1 Background on Convolutional Neural Network

A convolutional neural network is a neural network architecture that is
used both (i) to learn (and extract) features from a dataset and then (ii)
to classify the data. It is based on the deep learning paradigm [GBC16].
An incredible amount of resources can be found on the subject, either as
academic material or as online classes or tutorial. This section is a first il-
lustrated introduction on the subject, and for a deeper approach the reader
can refer to [GBC16] for instance.

Neural Networks (NN) are a set of learning algorithms. Each NN is
based on small units called neurons or perceptrons, that are organized in
layers. At each layer, the output y of a neuron is computed as a linear
combination of the outputs of the neurons from the previous layer (a bias
can be added). A non linear function f is also applied:

y = f

(∑
weight.neuron+ bias

)

This layer is known as a dense layer and several stacked dense layers
form a network architecture known as a Multi-Layer Perceptron (MLP)
and is illustrated in Figure 34. In this figure, the input is of dimension 2
x1 and x2 (on the left). Each unit of the input is used with various weights
(i.e. coefficients) and in the non linear function to compute the units h1,
h2 and h3 of the hidden layer. Theoretically, hi = f(x1w

1
i,1 + x2w

1
i,2 + b1i )

for i ∈ {1, 2, 3}. Similarly, each unit of the hidden layer is used with
various weights and in a non linear function to compute the output y1,
here represented of dimension 1: yi = f(h1w

2
1,i+h2w

2
2,i+h3w

2
3,i+ b2i ) for

i = 1. A condensed representation can be used with vector notations: the
input x is linked to the hidden layer h and to the output y : y = f(W⊺h).
The weights of a network are defined and optimized1 during the training
stage. The number of layers, numbers of neurons at each layer and the
choice of the non linear functions define the network structure and are
considered as hyper parameters of the algorithm. NN is a very generic
term, and different NN architectures are used to answer very different
issues. Typically, NN can be used for supervised or unsupervised learning.

The deep learning paradigm is therefore built upon MLP and emerged
with (i) the improvement of training algorithms with stochastic gradi-
ent descent, (ii) the use of GPU as training hardware and (iii) the emer-
gence of huge datasets, and in particular ImageNet [RDS+15]. Deep
Neural Networks (DNN) in particular, refer to neural networks with
a large number of layers, either dense or of other architectures (typi-
cally, the convolutionnal layers that are later explained). The number
of the so called hidden layers (i.e. layers between the input layer and
the output layer) can typically range from a dozen to hundred in some
cases [SZ14, HZRS16, HZC+17, SVI+16]. The training phase of such net-
works is therefore much more complex and computationally costly.

1In a nutshell, a cost function is defined on the network and the weights are iteratively
tuned in order to minimize the cost function. For more detail on the training process of
neural networks, please refer to [GBC16].
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Figure 34
Schematic illustration of
a MLP with the input x,
one hidden layer h and
the output y. Each unit

or neuron of a layer is
linked to the neurons of

the previous layer
through a set of weights.
The condensed view can

be used with matrix
notations . The

nolinearity function is
not represented given the
increasing complexity of

detailed view.

Convolutional Neural Networks (CNN) refer to a neural networks
architecture which is often within the scope of deep learning. We focus of
this particular architecture by explaining and illustrating the mechanisms
of a trained CNN. We then focus on the mechanisms of convolutional
layers and finally we briefly talk about the training procedure.

A CNN is a network architecture based on convolutional lay-
ers. CNNs were originally designed to work on images as input sig-
nals [LBBH98] and part of their success is due to the emergence of Ima-
geNet database and its 14,000,000 images [RDS+15, KSH12, SZ14]. Very
large dataset are indeed requested to train a CNN. CNNs are also par-
ticularly efficient in terms of data representations (please refer to Chap-
ter 2.1 for more information on the importance of the representation cho-
sen for the data). They are as much features learning algorithms than
classifiers [GBC16, LBBH98, KSH12, SZ14]. The architecture of a CNN
is illustrated in Figure 35. An often large number of convolutional layers
Ci are considered, followed by a small number of denses layers Di (two
denses layers are represented in the illustration). The first layers are known
as bottom layers, the last ones as top layers. Convolutional and dense lay-
ers do not have the same purpose: the convolutional layers transform the
input images into features (process hereafter detailed) which are then clas-
sified by the dense layers. Once again, the number of convolutional layers,
number of dense layers, dimension of each layer and non linearity func-
tions define the network structure and are hyper parameters of the CNN
architecture.
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A dense layer can be studied and explained from the scale of a unit
or neuron. A convolutional layer is a dense layer with some constraints,
and is more easily explained from the scale of the layer. Technically speak-
ing, the convolutional layer implements weights sharing, meaning that the
blue weights and green weights from Figure 34 are identical: w1

11 = w1
21,

w1
12 = w1

22 and w1
13 = w1

23. Many of those weights are also set to 0. The
computational cost of training a convolutional layer is therefore drastically
reduced compared to a dense layer (less parameters have to be estimated).
Conceptually speaking, the output of a computational layer is its input
filtered by a set of filters. The filtering is computed by the convolution
between the input signal and the weights which represent the filter, and
explains the name of convolutional layer2. This view of convolutional lay-
ers as filtering the data by given filters is a direct consequence of the weights
sharing. To better understand the process, Figure 36 illustrates and details
the effect of two convolutional layers on a 1D signal3 (a time series for
example).

The input is composed of background noise and given patterns, such
as A, B, AB or AAA. The signal is therefore to be reconstructed from the
basic elements A and B. Let us assume that those basic elements are the
filters of the first layer. The output of the first layer is then made of two
signals: the original signal filtered by A and B. A and B are the features at
this layer. At the second layer, the process is repeated, but the input is
now made of two signals. The filters (and therefore features and weights)
then have a second dimension and are expressed as a combination of the
previous layer features (and therefore filters and weights). Here, two filters
are considered, and since the features from the first layers are very basic, the
second layer features can easily be understood. The first one represents the
AB pattern. The second one represents the AAA pattern. By adding a layer
to the network, we consider features that are combinations of the previous
layers features. The strength and representation abilities of convolutional
networks lies in this point. A direct consequence however, is that finding
out what is represented by a filter after a few convolutional layers is very

2Theoretically, the filtering is implemented using a correlation and not a convolution.
But since the weights are learnt during the training of a CNN, the “mirror” operation
between convolution and correlation does not change the reasoning. The deep learning
community is closer to informatics that to signal processing, which perhaps can explain
the misuse of language for CNN.

3CNNs were originally developed for images but for the sake of clarity, we here present
an example on 1D signals. As explained, the various dimensions involved in a CNN
increase rapidly, the concepts are more easily understood with simple schematic time series.

input –> C1 — C2 — C3 —– ... —– CN−2 — DN−1 — DN –> output

|– Bottom layers — ... —————- Top layers –|

|———– Features extraction ——-| |— Classif. –|

Figure 35
Schematic view of a
CNN, with NL layers
including the
convolutional layers Ci,
with 1 ≤ i ≤ NL − 2
(features extraction) and
the dense layers DNL−1

and DNL
(classification).
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complex. This example also shows the importance of the filters - i.e. of the
weights - which need to be adapted to the signal content. As previously
mentioned, weights are set and optimized during the training procedure,
which we now briefly expose.

Signal — A ——- A — AAA - B —— AB ——– AAA - AB —– A —

Filter 1 Output 1 of layer 1
– A – — ↑ ——- ↑ — ↑↑↑ ———- ↑ ——— ↑↑↑ - ↑ —— ↑ —

Filter 2 Output 2 of layer 1
Fi

rs
tl

ay
er

– B – ————————– ↑ ——– ↑—————– ↑ ———–

Filter 1 Output 1 of layer 2: representation of AAA pattern
– ↑↑↑ – ——————– ↑ ————————– ↑ —————-———

Filter 2 Output 2 of layer 2: representation of AB pattern
– ↑ — ———————————– ↑ ————— ↑ ————Se

co
nd

la
ye

r

— ↑ –

Figure 36
Schematic illustration of
the effect of a CNN on a

1D signal.

The training procedure is conceptually relatively simple, but required
many years and trials before CNNs reached their current success, origi-
nally with AlexNet architecture [KSH12]. GPUs and their computational
power were one of the key points allowing the development and success-
ful training of CNNs, along with the release of massive datasets and in
particular of ImageNet [RDS+15]. At its simplest level, the training pro-
cess of a neural network goes as follows. A cost function is defined for the
network, estimating the classification errors on the training dataset. This
function has the network weights as parameters. The aim of the training
process is to find weights that minimize the cost function. Because of
the non linear functions used in neural networks, the cost function is not
convex4. However, convex optimization methods are used and have led
to very good results (without theoretical support however). In particular,
a stochastic gradient algorithm is used to iteratively update the network
weights. The gradient is often estimated using the back-propagation algo-
rithm [RHW86]. For more details on the subject, please refer to [GBC16].

CNNs that are used today have structures that are built upon the
previously mentioned architecture, but with some improvements and
developments. We can in particular mention pooling layers [KSH12],
dropout, regularization, more complex architectures such as Inception
which created “loops” in some parts of the network thereby confronting
features from different layers [SVI+16], or the efforts that are made to
compress networks and reduce computational costs, for example with Mo-
bileNets [HZC+17].

4Just in case: The question of the function convexity when trying to find a minima in
high dimension is of importance. Analytics solutions are usually not possible to compute,
so iterative algorithms are used to find the minimum. With convex functions (think “u-
shaped” functions), iterative algorithms can be used to find the global minimum (think
“bowl rowling along the side of a bowl”). With a non convex function however, the result
depends on the starting point and may be a local minima.
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One major limitation of CNNs relies the number of weights that need
to be trained (from tens of thousands to millions), and the size of the
involved dataset. During the training process of a neural networks, the
weights of each unit have to be learnt from the input data. In other words,
the filters used to represent the data, along with more general weights of
the classification layers are learnt. When dealing with deep learning mod-
els, the dataset size is the main issue for applications where large labeled
dataset are difficult to obtain, or where the dataset size is small with re-
spect to the number of free parameters in the network. In practice, tricks
such as data augmentation can be used to develop the size of a given
dataset [KSH12]. A second limitation is the computational cost. Even
if GPUs made the training of deep neural networks possible, the involved
computational cost is much greater than when dealing with conventional
machine learning approaches [GBC16].

As a conclusion on CNNs, we underline their great ability to learn
representations from images. They are mainly used for image classifica-
tion, but a key point in their success is their feature extraction process.
Features extracted with CNN are therefore dependent on (i) the dataset
(i.e. different applications lead to different features), (ii) on the network
structure and (iii) on the learning process that is used. However, the con-
straints to train a CNN are such that in this configuration, their use is
limited to huge labeled datasets. This constraint is often not realistic for
environmental applications, and those tools are therefore out of reach.

In the following, we propose to use transfer learning techniques to
benefit from CNNs feature extraction process without needing to train
them.

6.2 Transfer Learning & Proposed Approach

CNNs require extremely large labeled datasets to be trained, it is difficult
for applications beyond image processing to use them. To benefit from
their feature extraction abilities, it is possible to (i) use a network trained
and validated on a given application to another dataset, or (ii) to resume
training of an already trained network, with the new dataset. In the first
case, the top dense layer is removed (since the classification layer is specific
to the training dataset) and the output features can be directly fed into
a classic machine learning algorithm. The second procedure is known
as fine-tuning and allows to adapt a network to a different application
without the constraints on the size of the labeled dataset. In particular,
the top dense layer is removed, and replaced with a new one, adjusted
to the new dataset. This is done in order to define a new cost function,
thereby allowing to resume the network training. Both procedures are
within the scope of transfer learning: how can we use knowledge gained
from training for one application to another application? Both procedures
have also been proved their interest in domains were CNNs could not
be trained from scratch and sometimes have led to interesting discoveries
(DeepArt for instance [GEB15]). In [NPdS17], training from scratch is
compared to fine tuning, and using an already fully trained network to
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extract features from hyperspectral images and remote sensing purposes.

In the following study, we propose to test the first approach to extract
features from environmental data and to consider several already trained
networks that have shown their effectiveness on image vision. To do so,
our process presented in Chapter 3 is adapted as follows:

1. The observations are represented as images using the spectrogram
computation (low level representation).

2. Spectrogram images are then fed to different neural networks (re-
moving the top layer), leading to various possible feature sets. Such
features can be referred as deep features.

3. A learning algorithm is then used to train a classification model, as
done previously.

4. Cross-validation on the labeled dataset is used to select the configu-
ration leading to the best results.

This study is conducted on the underwater acoustic dataset and the
conducted experiments along with their results are presented in the next
section.

6.3 Classification of Underwater Acoustic
Observations Using Deep Features

Three issues are raised and addressed in the following.

1. Comparison between the proposed features and deep features ob-
tained with various deep convolutional networks,

2. Evaluation of the influence of the deep feature vectors dimension
on classification results,

3. Layer selection for the deep feature vectors extraction (on the net-
work leading to the best classification results).

All the following experiments consider the underwater acoustic
datasets described in Chapter 4.Spectrograms are computed using Kaiser
windows of size n = 1024 with on overlap of 90 between two successive
windows. The fast Fourier transform is computed on N = 1.5 ∗ n (with
n the length of an observation) points. The spectrogram are represented
using a decibel scaling.

6.3.1 Deep Features versus Classic Features

In this first experiment, we compare classification results when using
deep features with respect to those obtained by using the previously in-
troduced features (see Chapter 2, 3 and 4). In particular, four differ-
ent CNNs are considered to extract the deep features: VGG16 [SZ14],
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ResNet50 [HZRS16], MobileNet [HZC+17] and InceptionV3 [SVI+16].
Each one was trained on the ImageNet dataset, and the top layer was
removed. Those networks are among the most effective ones among pre-
trained publicly available networks. Keras library is used to extract features
from CNNs and all tests are run using on a M2000 NIVIDIA Quadro
GPU card with 768 cores and 4 GB of memory.

Cross-validation results for SVM (linear kernel) and RF are summa-
rized in Table 12. Several remarks can be made on those results. First,
among the four different CNNs, ResNet50 systematically performs bet-
ter than the others, with 89.5± 1.15 for RF and 93.9± 0.97 for SVM.
The lowest results are obtained with VGG16, with 75.0 ± 1.99 for RF
and 86.8 ± 1.40 for SVM. Secondly, accuracy is repeatedly lower with
deep features than with the proposed features (96.9 ± 2.0 for RF and
96.5± 1.6 for SVM). However, it is worth noting that the dimension of
deep features much greater than the 84 proposed features. At this point,
it is not possible to say if the lower results obtained with deep features are
related to a less informative content or to their high dimension (due to the
curse of dimensionality which could influence the results, see Chapter 2).
Therefore, the issue of the feature vectors dimension and their impact on
the accuracy is raised. In addition, results are systematically greater with
SVM (with linear kernel) than RF. The accuracy gain when using SVM
can vary from 4.4 with ResNet50 to 11.9 with VGG16. It is worth notic-
ing that the network leading to the smaller accuracy difference (ResNet50)
is also the one with the smaller output dimension. This latter point also
rises the question of the feature vectors dimension.

Before discussing the impact of the feature vectors dimension in the
next part, let us notice that computation times for the deep feature ex-
traction and for the models training in high dimension is much higher
than in the previous tests. In particular, the training stage is noticeably
longer for SVM (especially when the dimension is high). As an example, it
took almost 50 minutes to train the SVM model on the InceptionV3 fea-
tures (dimension 131072) against 2min37 with RF. This study is on GPU,
and for theoretical studies those computation times are not a problem. It
might become an issue for real time processing however. Furthermore,
we remind that all the previous experiments were run on CPU only, and
involved much lower computation times. This remark is not essential for
the results interpretation but has a clear impact when considering real time
applications and deployment of the classification tools.

6.3.2 Influence of the Feature Vectors Dimension

In this second experiment, we study the impact of size of the feature vec-
tors (i.e., number of features) have on the classification results. Two main
questions are raised:

1. Is ResNet50 leading to the best results compared to the other three
networks because of its smaller dimension?

2. Is SVM performing better than RF because of the high dimension,
or is SVM more adapted for this dataset?
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Feature set Dim d FCT X-validation

RF SVM

InceptionV3 131072 30s 80.6± 0.93
(157s)

88.4± 1.72
(2876s)

MobileNet 50176 12s 81.9± 1.04
(36s)

91.5± 1.37
(1370s)

ResNet50 2048 23s 89.5± 1.15
(23s)

93.9± 0.97
(24s)

VGG16 25088 32s 75.0± 1.99
(20s)

86.8± 1.40
(755s)

All 84 - 96.9± 2.0 96.5± 1.6

Table 12
Comparison between the

use of All features and
features computed from
various CNNs. Results

are obtained using SVM
and RF algorithms and

cross-validation (α = 0.7
on the learning set, 50

trials). The FTC
(features computation

time) columns indicate
the time needed to

extract the features from
the considered networks.
Learning computation

times are also indicated
between parenthesis.

To answer both questions, we use Principal Component Analysis (PCA)
to compress the feature vectors output by the various CNNs. Five to 500
components are kept as the new feature vectors, and the comparison be-
tween the four CNNs is run again. Results are presented in Figure 37. The
top graph presents results using RF as a classifier, and the lower one when
using SVM. Accuracy values depending on the feature vectors dimensions
(CNNs and PCA) are reported (color dots), and accuracy values from the
previous part (CNNs without PCA) are displayed for reference (colored
triangles).

ResNet50 still performs very well with PCA (red dots), but MobileNet
tends to have better results (green dots). The difference between those two
networks is generally small with 1.85 mean increase in the accuracy from
ResNet50 to MobileNet, but is more pronounced when using RF com-
pared to SVM. When using PCA, ResNet50, Inception and MobileNet
perform better with SVM while results with VGG16 are greater with RF.

Results are in general speaking quite different from RF to SVM. The
general trend for RF accuracy evolution would be to increase with the PCA
dimension. A maximum is reach for feature vectors of 50 features, and ac-
curacy then to decreases. This observation could have been related to the
curse of dimensionality, but the comparison with results from the previous
part rules out this hypothesis (feature vectors of larger dimension leading
to greater accuracy levels). Results without PCA are equivalent (VGG16) or
superiors (ResNet50, MobileNet and InceptionV3) than with PCA and
500 components. There is no clear tendency between accuracy without
PCA and PCA with 50 dimensions (best results are obtained when con-
sidering RF and PCA): ResNet50 and Inception perform better without
PCA, VGG16 has similar results in both configuration, while MobileNet
performs notably better with the use of PCA. There is no clear interpre-
tation on RF and the input data dimension, but the use of PCA with RF
would not necessarily be recommended. If used, the number of princi-
pal components to keep should be considered as a hyper-parameter of the
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Figure 37
Use of PCA on the deep
feature vectors, with
different components
kept as input of the
learning algorithm. RF
is consider on the top
graph, SVM with linear
kernel on the lower
graph. Triangles display
results when using the
full deep feature vectors
(no PCA).
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problem.

This interpretation with SVM as learning algorithm is quite different,
since the general trend is toward better results with higher dimensions,
whether PCA is used or not. This observation could be explained by the
use of a linear kernel: the more separable the input data are, the better
for classification results. With this configuration, the use of PCA which
compacts the data informative content would not be recommended.

6.3.3 Layer Selection for Deep Features Extraction

As explained in the theory of CNNs, features learnt at each layer are built
upon the previous layer features. Meaning that the deeper the layer is, the
more complex the feature are. Some studies have also reported that the
first layers of CNNs often learn the same basic features: first segments,
then edges, then more complex shapes [YCBL14, DJV+14]. The shapes of
interest are mainly built from vertical or horizontal segments when work-
ing with the underwater acoustic dataset. In those conditions, it might be
interesting to use features from the bottom layers (simple shape features)
rather than from the top layers (complex shapes and features).

In this experiment, we compare the features extracted at different lay-
ers from ResNet50. In particular, ResNet50 architecture is made of four
blocks of layers, and features extracted from each of those four blocks are
considered and will be referred as block1 to block4 feature sets. Feature
set block1 being the simplest and block4 the most complex. Results
comparing those four feature vector sets are reported in Figure 38. The fig-
ure displays accuracy levels for each of the four feature sets and put them
in relation with the feature vectors dimensions. block1 and block4 fea-
tures vectors have similar dimensions, 193.600 and 200.704 respectively.
They lead to similar accuracy levels when used with SVM (93.8 ± 1.17
and 94.2±1.14, respectively) but block1 leads to better results with RF
(90.5±1.18 and 83.1±2.07, respectively). The second and third feature
sets perform worse in terms of classification accuracy, but also have larger
dimensions, 774,400 and 401,408 respectively. To compare the effect of
the different feature vectors regardless of their dimensions, the same exper-
iment is conducted after dimension reduction with PCA. block1 features
perform better than the other feature sets regardless of the learning algo-
rithm and the number of components extracted from the PCA. Features
from the bottom layers of ResNet50 therefore seem to be interesting for
this application, even if in this configuration, the best results are obtained
with block4 features and with SVM. In this configuration, the overall
accuracy is almost equal to when using the proposed and handcrafted fea-
tures.
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Figure 38
Layer selection performed
on ResNet50. Dimension

reduction of the deep
features vectors is also

considered with the use
of PCA (50 components).

Results are proposed
using SVM and RF

algorithms and using
cross-validation process.
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Highlights & Summary

■ In this chapter, many notions regarding deep learning are intro-
duced. In particular, Convolutional Neural Networks (CNN) are
presented: CNN are a specific architecture of Neural Network
(NN), particularly efficient to (i) learn representations and (ii) clas-
sify images. The main limitation of CNN however is their training,
which require very large datasets (more than is available for appli-
cations within the scope of this PhD). For this reason, CNN are
not necessarily adapted for to our work conditions (i.e. relatively
small dataset).

■ To benefit from CNNs ability to learn representations, it is possible
to use CNNs that are already trained (and are publicly available).
The network is then used only to extract features, which are then
fed to a classic learning algorithm to build a classification model.
This strategy is used for applications where large enough labeled
datasets are not available. It is part of the transfer learning theory.

■ Different CNNs are therefore consider to extract features that have
been learnt. The idea is to compare this approach to the use of
handcrafted features (which were used in the previous chapters):
does learnt features perform better or worse in term of classification
of transient signals?

■ The study in conducted on the fish sounds database (presented
in Chapter 4). The observations are represented as spectrogram
and fed to an already trained CNN to extract the feature vec-
tors. Among VGG16, ResNet50, MobileNet and InceptionV3,
ResNet50 performs better in terms of classification accuracy. The
size of the feature vectors when using one of those four CNN varies
significantly. A study is therefore conducted when reducing the di-
mension of feature vectors to vectors of similar sizes between the
four networks. The conclusions regarding the benefit of using di-
mensionality reductions tools are unclear (different behavior of RF
and SVM classifiers), and MobileNet tends to better accuracy lev-
els than ResNet50.

■ Systematically, the handcrafted features lead to greater accuracy lev-
els than the deep features. The difference can be important in some
configurations, but not necessarily.

■ Computation times are manageable when using GPUs, but clearly
above the few seconds needed in the proposed configuration of
Chapter 3.
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Conclusion

In this final chapter, we propose to summarize and step back from
the manuscript: what has been done, but also what is yet to do, and
what would future developments include.
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7.1 Three Years in a Nutshell

This PhD work deals with the use of machine learning tools to automati-
cally analyze natural signals, for environmental monitoring purposes. The
leading idea is to take continuous recordings within the considered envi-
ronment. The analysis of the physical value (temperature, acoustic, seis-
mic, etc) that is recorded allows to better understand the environment,
and therefore monitor it. Given the usually large amount of data that
need to be processed, the use of automatic analysis tools are considered.
To this end, this thesis proposes tools for the automatic processing of nat-
ural signals.

Very few operational tools are presented in the literature: the use
of machine learning tools for environmental monitoring is being consid-
ered, but most studies target an a posteriori analysis of an environments.
Datasets tend to be small, and the methods only valid under some specific
constraints that do not usually match real-world conditions. The use of
machine learning for a continuous environmental monitoring is not yet
widespread. A specificity of the work proposed in this thesis is therefore
the exploratory aspect it presents: finding the right theoretical tools, find-
ing how to adapt them for this subject, test them, and finally use them in
operative context.

From the theoretical point of view, this manuscript provides the nec-
essary background in signal processing and machine learning (Chapter 2).
The proposed tools are presented in Chapter 3: an architecture for the auto-
matic classification of environmental observations and an architecture for
the automatic detection and classification of environmental events. Both
architectures rely on the feature space used to represent the observations:
a set of general shape descriptors gathered from the literature in various
applicative fields, and are extracted from three representations of the ob-
servations, namely in time, frequency, and quefrency (frequency of fre-
quency). This feature extraction scheme lead to a precise description of
the observations in various domains, thereby underlying complementary
properties. Both architectures can also be extended to detect anomalies
among the observations. They can be used in a fully automatic mode, or
to suggest the classification results but leaving the final decision to an op-
erator (use of output probabilities). This last feature is required in some
applicative contexts where safety recommendations depend of the analy-
sis results. The Python implementation of the proposed tools is known
as Automatic Analysis Architecture (AAA). It is presented, and is available
on GitHub.

The automatic detection and classification scheme is tested and vali-
dated for the monitoring of underwater coastal areas in Chapter 4. The
soundscape is studied, and reveals numerous information on the area. We
here target the fish sounds frequency band (< 1kHz), where four differ-
ent fish sounds have been manually identified (four positive classes), along
with background noise and anomalies (two negative classes). Around
1.000 observations of 0.5 seconds have been The analysis is done in various
frequency bands. The model is tested using cross-validation and leads to
accuracy level above 96. Further analysis is conducted regarding the in-
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fluence of the features, the learning algorithm, and the model limitations.
The model is then validated on two different areas, the one used to record
the learning observations (but at a different time), and a different one.
Accuracy levels exceed 93 on the same area, and 80 on the different
area. An analysis of the whole set of recordings is then performed (five
recordings areas, several days of measurements), and revealed day-to-day
pattern.

The automatic classification scheme is tested for the monitoring of vol-
canoes using seismic recordings in Chapter 5. The models are validated on
the volcano Ubinas (Perù): first performing cross-validation on one year
of recordings (70, 856 events displayed), then by analyzing six years of
recordings. The study of accuracy levels is particularly relevant: it con-
firmed the use and effectiveness of such methods, but also revealed a large
number of inconsistencies in the original dataset. Many observations had
been wrongly classified, due to a change in the volcano structure. The
information was originally missed by the human analysis, and the auto-
matic classification scheme lead to better classification results in a context
of volcano-seismic crisis. After demonstrating the use of such methods, an
interest for operative tools was strong, and a partnership was developed
with BPPTKG observatory in Indonesia, for the monitoring of Mount
Merapi. Ubinas data were used to simulate and validate the operative
scheme, where a new model is regularly trained on the latest observations
available. Once validates, the scheme was deployed in the observatory,
and is currently under testing.

Finally, a study investigating the possibility and relevance of using fea-
tures extracted using deep learning tools has been investigated in Chap-
ter 6. In particular, convolutional neural networks are explained and used
in a context of transfer learning. Convolutional neural network already
trained and validated on images dataset are used of the observations rep-
resented as spectrogram images. The comparison between the proposed
feature extraction scheme and the use of the so called deep feature is made.
In particular, several networks are compared, and the influence of the final
feature vector size is investigated (curse of dimensionality). Results are in
favor of the handcrafted features, even if deep feature lead to honorable
results. This final study if conducted on the fish sounds set of observations.

This manuscript proposes operational tools and exposes some use-cases
of automatic environmental monitoring. The field being relatively new
and very little explored however this work is a first step, which also opens
many more prospects.

7.2 For Future Developments

7.2.1 About Volcano-seismic Analysis

Regarding the automatic analysis of volcano-seismic observations: this
work illustrates the automatic classification task, where the observations of
volcanic events have been detected, either manually, either using STA/LTA
method. It would be interesting to test the automatic detection and classi-
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fication scheme on the volcano-seismic recordings, and to compare results
(similarly to what was done with the underwater acoustic recordings). The
approach we propose normalizes the observations energy, while manual or
STA/LTA detection are mainly based on the recordings energy. Detection
results using the automatic scheme would likely lead to more detected
events, especially of small energy. This analysis would therefore (i) an-
alyze more observations, perhaps leading to new classes of signals with
new physical interpretations, and (ii) would be independent of any other
methods, the input being the continuous recordings. At the time, one dif-
ficulty for this study would be the validation phase, which would include
the manual review of the detected results. Typically, some observations are
not in the labeled dataset but do correspond to events. This task of course
underline the importance of the expert knowledge in those analysis, but
is obviously limited by the time needed to perform such results review.

7.2.2 About the Time Window and the Various Lengths of
Events

Second, the analysis is today performed using a sliding window, which is
a limitation when dealing with events of very various length. Typically
on the fish dataset, Roars and Impulse have very different lengths. Long
events such as Roars being considered stationary, the use of the current
methods remains effective, but does not answer the counting issue. The
current model cannot make the difference between a continuous call last-
ing on several observation windows and independent calls. A solution
could be to use relatively short analysis window, and to use a time regu-
larization on top of the classification results. Typically, Hidden Markov
Models could be used. This prospect remains true when considering the
volcano-seismic data.

This second prospects introduces the idea of hierarchical models,
where a top model would work on the input of one or several lower mod-
els. This could be used as was explained to train simpler model on what
we could call the elementary units observations, whose prediction results
would in turn be used to train models of a higher abstraction level. This
idea incidentally, is related to the deep learning paradigm. Hierarchical
models could also be used to cover geographical variety: typically for the
volcanoes monitoring using seismic recordings, a model could be trained
on each recording station, and a top model could take the final classi-
fication decision, based on all the lower models outputs. In case of an
eruptions, it is common that stations are damaged one after the other. A
single model needed the input of all the station would therefore be useless
when the first station got damaged and, therefore not be advisable. With
hierarchical models, even the top models would be inefficient with the
first damaged station, but the lower models would still be accessible. This
configuration would also lead to more reliable results since the final clas-
sification decision would be made based on all the stations. Studies going
in this direction would probably lead to very interesting results.
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7.2.3 About the Model Output

Another development would be to modify the learning algorithm, in order
to have non probabilistic outputs. At the moment, the output probabili-
ties of the classes always sum to 1, leading to the limitation that two classes
cannot be detected at the same time. Depending on the application, this
constraint can be limiting. Typically for the fish sounds, the observation
length was set to 0.5s. Consequently, a relatively large number of obser-
vations displayed a mix a several classes (often with incomplete patterns).
The possibility to detect more that one class at a time would be benefi-
cial and is worth investigating. The need for a frequency filtering and an
analysis in various bandwidth in the case of underwater acoustic analysis
could even be challenged. This development is particularly true for pas-
sive acoustic monitoring, but would also be relevant for volcano-seismic
signals, where some observations of long duration can be overlaped with
other events signatures (typically, tremors).

7.2.4 About the Labeling Constraint

The studies presented in this manuscript are mainly based on supervised
learning. But machine learning includes many more techniques with
promising developments. One of the most natural prospects is to consider
the use of semi-supervised learning methods. The current biggest limita-
tion to supervised learning is the need to have labeled dataset to train mod-
els, which is always complicated when dealing with environmental data.
Natural data which are here the main interest are usually not formally
processed, and few labeled datasets of natural signals are available. In the
context of environmental data, the context is relatively different from ma-
chine learning approaches for computer vision or speech processing. The
goal is not the development of new algorithms, but the development of
effective, operational and reliable tools. Lowering the labeling constraint
is therefore a major issue. To this end, semi-supervised learning methods
can be considered: a large set of observations is considered, but they do
not need to all be labeled [ZGL03].

Similarly, the use of transfer learning methods would be worth investi-
gating. Chapter 4 investigated the possibility to record the training dataset
on one location and to use it on observations recorded on a different area
for the automatic classification of fish sounds . Results are satisfactory, but
the accuracy level still dropped of 13 from the known location (learning
area) to the unknown one. Some transfer learning methods where a model
trained on a dataset can be adjusted to another one would be relevant to
consider. This development would also be fitting for volcano-seismic ap-
plications. A majority of volcanoes are not monitored, and require years of
labeled data before considering the automatic monitoring is a very heavy
constraint. Being able to re-use labeled observations from another vol-
cano could be considered. By doing so, a comparison between the various
volcanoes would also be made, which would be relevant for the overall
comprehension of volcanoes in general.
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7.2.5 About Mapping and Unsupervised Analysis

Finally, unsupervised models could also be considered. From the various
studies presented in this manuscript, we would suggest to use supervised
and unsupervised models in parallel: using the supervised model to repro-
duce and automate the human classification, and the unsupervised model
to run an unbiased1 analysis. The studies on volcano-seismic observations
revealed that the human analysis was not always relevant, which consid-
ering the studied phenomenon and the time scale at which they evolve
is relatively understandable. Using both types of analysis would probably
lead to different results, but would be interesting regarding the compre-
hension of volcanoes in general. The use of supervised and unsupervised
models for parallel analysis would similarly be relevant for underwater ap-
plications where some sounds are clearly identified, but where the global
environment has many unknown.

Among the unsupervised analysis, mapping techniques would be par-
ticularly interesting for monitoring applications, or to compare several ap-
plications. Typically, several maps related to different time scales (minute,
hour, day for instance) could be build for the monitoring of a volcano, and
each new observation would be displayed in real time on the maps. This
tool could then be used to compare several unknown volcanoes, to study a
unknown volcano in comparison with a known one, etc. Self-Organizing
Maps could be considered as a first approach [Koh90], along with t-
distributed Stochastic Neighbor Embedding (t-SNE) [MH08]. This idea
could be translated to the underwater monitoring, and in general, to many
applications that require a continuous analysis of the data flow, when the
studied phenomenon is rather unknown.

7.2.6 Finally, About the Data2

We finish this manuscript on a longer term perspective by saying that gen-
erally speaking, the collection of even more data is another highly relevant
development. This remark however requires the data to be well thought
about. This point is perhaps a bit imprecise, but some projects have col-
lected data without enough thinking on the basic requirements of the sig-
nals (e.g., sampling frequency), leading to a set of data that is of little use.
Similarly, the big data tendency have shown that incredible amounts of
data can be gathered. Once again this point is beneficial only if the data
can be analyzed and related to a physical meaning. Among the future and
hypothetical projects, the comparison of all volcanoes signals and behav-
ior would be a nice challenge. It could be use for a better understanding
of the volcano mechanisms, but only in real time, typically to study the re-
lations between physically close volcanoes. On a similar idea, the analysis
of the sea floor at a larger scale would be highly relevant. The presented
and suggested tools could be used as exploration tools, typically to explore
the very deep sea (with all the material constraints of course). Consider-
ing machine learning tools as comparison tools would lead to many other
prospects where an unknown environment would be compared and po-
sitioned to a known one. Such applications would be of use in all the

1less biased by human knowledge at least
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projects related to the exploration of an environment: either a volcano,
the very deep seas, or hypothetically, environments well outside the Earth.

2We finish this manuscript by discussing the data: the need to extract information
from a large amount of data is the foundation of this PhD thesis. It is lead by the data,
it is about “making the data speak”, and it is about great projects and great scientific
questions that can be answered thanks to data. This manuscript opens with a quotation
by G. Box: “All models are wrong, but some are useful”. With the idea in mind, we go from
data to models, and from models to knowledge. Knowledge comes from the data.
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Readme of the AAA module

The following pages contain the Readme associated to the Automatic Anal-
ysis Architecture (AAA) project. The code is available under CeCILL li-
cense on GitHub. More detail on the architecture that are implemented
can be found in Chapter 3. This code was used to perform the studies
on underwater acoustic recordings of Chapter 4 and on volcano-seismic
recording of Chapter 5.



Welcome to this automatic classification scheme! Please carefully read the following before asking
questions :)

This Automatic analysis scheme should be credited as follow:
Automatic Analysis Architecture
Marielle MALFANTE, Jérôme MARS, Mauro DALLA MURA
Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France
Copyright: GIPSA-Lab

This code answers three different purposes:

1. The automatic classification of continuous signals, stored in recording files (.wav, .sac, etc)
2. The automatic classification of discrete (sparse) events, stored as numpy.array objects.
3. The automatic classification of discrete (sparse) events, with real time conditions and data requests.

The roadmap to help you chose a usecase is simple:

If your data are continuous recordings in which you want to detect and classify certain classes of
event, go for Usecase 1.
If your data are already detected events that you want to classify, you have one more question to
answer.

Are you data stored in recordings ? If so, read and shape your data in numpy.array format and go
for Usecase 2.
If you are dealing with real time data request, then go for Usecase 3.

This code was developed under Python 3, and needs the following libraries. Those libraries need to be
previously installed.

numpy==1.13.3

scipy==0.18.1

pandas==0.19.2

matplotlib==1.5.3

numpy

obspy==1.0.2

Automatic Analysis Architecture

What is this code for?

Set up and requierements needed to run the code



python_speech_features==0.4

sympy==1.0

soundfile==0.8.1

scikit-learn==0.18.1

To install the correct version of python, along with the library, you can use miniconda environment manager.

1- Download and install miniconda: https://conda.io/miniconda.html  NB: By installing
miniconda, your .bachrc  will be modified with the following line :

# added by Anaconda3 4.3.0 installer
export PATH="/home/user/anaconda3/bin:$PATH"

We suggest you replace them by

"$PATH:/home/user/anaconda3/bin"

It will leave your computer configuration unchanged (in particular, your previous versions of python will still
be used)

2- Create and activate your working environment (in a terminal session):
conda create -n AAA python=3.6

source activate myEnvName

3- Install the libraries:
pip install --upgrade pip

pip install -r AAA_requierements.txt .

4- Run the code (see next section)

5- Quit the working environment:
source deactivate

Each usecase can be run from two different ways, depending on your preferences and what you intend to
do with this code.

Either using a bash script and path to settings files as input arguments. Bash scripts will run the appropriate
Python scripts and properly save and display results. This method is 'the official one'. In your favorite
terminal window, start by moving to the automatic_processing  folder using cd  command. Then
run one of the usecase makefile as follow:

How to run the code?

Option 1



    bash make_usecase1.sh setting_file action verbatim
or 

    bash make_usecase2.sh setting_file verbatim
or

    bash make_usecase3.sh setting_file action verbatim

setting_file are stored in the configuration folder and contain all settings needed to run an analysis.
Depending on the usecase you have choosen, the information requested in setting_files can change.
Please refer yourself to the setting_file sections for more details.

Either by using Python playgrounds scripts, if you need a playground where to experiment. Those script are
easily found, they all are called something like PLAYGROUND_USECASE1.py  or similarly. Path to settings
and input arguments are 'hard coded' at the beginning of each playground file. To run on of those scripts,
simply go to the automatic_processing  folder and run one on the following commands:

    python3 PLAYGROUND_something_something.py 

Both configurations are basically going torward the same analysis but you might prefer one or the other
depending on what you want to do.

setting_file : path to the setting file. Traditionnaly, setting file are stored in the config  folder.
The next section gives details on the formatting of configuration files.

verbatim :

0 - quiet
1 - some information regarding general steps
2 - more detailed information
3 - all details

action :

training to train and save a model
analyzing to run the analysis
make_decision to make decision from the output probabilities output from the analysis
display if it is of interest to you.

Obviously, the various actions should be run in the order ... analysis cannot be run withour a trained model.

Option 2

More detail on the input arguments



When running the code for a new application, a specific folder is created for all results.

All the settings related to a new project or a new run are indicated in a setting main setting.

It contains information regarding the project paths, the considered application, the signals preprocessing,
the features used (linked to a dedicated feature configuration file), and the learning algorithms.

Extra information regarding the wanted analysis, the data to analyze and display parameters are indicated
in a separate configuration file, which format depends on the usecase.

So, for each configuration, 3 configuration files are considered:

the general setting file, contained in config/general  folder
the feature setting file, contained in config/specific/features  folder
the configuration file specific to the wanted analysis, contained in config/specific/usecaseXX/

Commented examples for each of the setting files are available (but keep in mind that json files do not
support comments, so those files are simply there as examples.)

If you still have questions, try running and exploring the code. The playground files are relatively easy to
play with.

If you still have question, fell free to ask !

Contact: marielle.malfante@gmail.com

Configuration files

More info
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Automatic classification of

fish sounds: a few more
graphs

This annex presents all the graph of the analysis on the fish sounds dataset,
presented in Chapter 4.

C.1 Temporal Evolution

Each figures represents for a considered area the temporal evolution of the
number of classified observations across the six classes.

C.2 Geographical Evolution

Each figure represents for a considered class the geographical evolution of
the number of detected observations across the five areas.
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(a) Drums

(b) Impulse

(c) Quacks

Figure 39
For a considered area,

the temporal evolution of
the number of classified

observations across the six
classes
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(d) Roars

(e) Background

(f ) Unknown
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(a) Area1

(b) Area2

(c) Area3

Figure 40
For a considered class,

the geographical
evolution of the number
of detected observations

across the five areas
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(d) Area4

(e) Area5
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Abstract

This manuscript summarizes a three years work addressing the use of machine learn-
ing for the automatic analysis of natural signals. The main goal of this PhD is to produce
efficient and operative frameworks for the analysis of environmental signals, in order to
gather knowledge and better understand the considered environment. Particularly, we
focus on the automatic tasks of detection and classification of natural events. This thesis
proposes two tools based on supervised machine learning (Support Vector Machine, Ran-
dom Forest) for (i) the automatic classification of events and (ii) the automatic detection
and classification of events. The success of the proposed approaches lies in the feature space
used to represent the signals. This relies on a detailed description of the raw acquisitions
in various domains: temporal, spectral and cepstral. A comparison with features extracted
using convolutional neural networks (deep learning) is also made, and favours the physical
features to the use of deep learning methods to represent transient signals. The proposed
tools are tested and validated on real world acquisitions from different environments: (i)
underwater and (ii) volcanic areas. The first application considered in this thesis is devoted
to the monitoring of coastal underwater areas using acoustic signals: continuous record-
ings are analyzed to automatically detect and classify fish sounds. A day to day pattern
in the fish behavior is revealed. The second application targets volcanoes monitoring: the
proposed system classifies seismic events into categories, which can be associated to dif-
ferent phases of the internal activity of volcanoes. The study is conducted on six years of
volcano-seismic data recorded on Ubinas volcano (Peru). In particular, the outcomes of
the proposed automatic classification system helped in the discovery of misclassifications
in the manual annotation of the recordings. In addition, the proposed automatic classi-
fication framework of volcano-seismic signals has been deployed and tested in Indonesia
for the monitoring of Mount Merapi. The software implementation of the framework
developed in this thesis has been collected in the Automatic Analysis Architecture (AAA)
package and is freely available.

Keywords — Automatic classification, Underwater acoustics, Volcano-seismic, Dimen-
sionality reduction, Supervised machine learning, Deep learning

Résumé

Ce manuscrit de thèse résume trois ans de travaux sur l’utilisation des méthodes
d’apprentissage statistique pour l’analyse automatique de signaux naturels. L’objectif
principal est de présenter des outils efficaces et opérationnels pour l’analyse de signaux
environnementaux, en vue de mieux connaitre et comprendre l’environnement consid-
éré. On se concentre en particulier sur les tâches de détection et de classification au-
tomatique d’événements naturels. Dans cette thèse, deux outils basés sur l’apprentissage
supervisé (Support Vector Machine et Random Forest) sont présentés pour (i) la clas-
sification automatique d’événements, et (ii) pour la détection et classification automa-
tique d’événements. La robustesse des approches proposées résulte de l’espace des de-
scripteurs dans lequel sont représentés les signaux. Les enregistrements y sont en effet
décrits dans plusieurs espaces: temporel, fréquentiel et quéfrentiel. Une comparaison
avec des descripteurs issus de réseaux de neurones convolutionnels (Deep Learning) est
également proposée, et favorise les descripteurs issus de la physique au détriment des ap-
proches basées sur l’apprentissage profond. Les outils proposés au cours de cette thèse
sont testés et validés sur des enregistrements in situ de deux environnements différents :
(i) milieux marins et (ii) zones volcaniques. La première application s’intéresse aux sig-
naux acoustiques pour la surveillance des zones sous-marines côtières : les enregistrements
continus sont automatiquement analysés pour détecter et classifier les différents sons de
poissons. Une périodicité quotidienne est mise en évidence. La seconde application vise
la surveillance volcanique : l’architecture proposée classifie automatiquement les événe-
ments sismiques en plusieurs catégories, associées à diverses activités du volcan. L’étude
est menée sur 6 ans de données volcano-sismiques enregistrées sur le volcan Ubinas (Pérou).
L’analyse automatique a en particulier permis d’identifier des erreurs de classification
faites dans l’analyse manuelle originale. L’architecture pour la classification automatique
d’événements volcano-sismiques a également été déployée et testée en observatoire en In-
donésie pour la surveillance du volcan Mérapi. Les outils développés au cours de cette thèse
sont rassemblés dans le module Architecture d’Analyse Automatique (AAA), disponible
en libre accès.

Mots-clé — Classification automatique, Acoustique sous-marine, Volcano-seismique, Ré-
duction de dimension, Apprentissage statistique supervisé, Apprentissage profond


	Remerciements
	Abstract
	Résumé
	List of Figures
	List of Tables
	Introduction
	Theoretical Background
	Proposed Schemes for the Automatic Analysis of Environmental Data
	Application: Monitoring of Coastal Underwater Areas Based on the Analysis of Acoustic Recordings
	Application: Monitoring of Volcanoes Based on the Analysis of Seismic Recordings 
	Transfer Learning & Deep Learning Tools: An Investigation on their Relevance for the Automatic Classification of Transient Signals
	Conclusion
	List of publications
	Readme of the AAA module
	Automatic classification of fish sounds: a few more graphs
	Bibliography

