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Abstract

Approaches for studying uncertainty are of great necessity in all disciplines. While the

forward propagation of uncertainty has been investigated extensively, the backward prop-

agation is still under studied. In this thesis, a new method for backward propagation of

uncertainty is presented. The aim of this method is to determine the input uncertainty

starting from the given data of the uncertain output.

In parallel, sensitivity analysis methods are also of great necessity in revealing the influ-

ence of the inputs on the output in any modeling process. This helps in revealing the

most significant inputs to be carried in an uncertainty study. In this work, the Sobol

sensitivity analysis method, which is one of the most efficient global sensitivity analysis

methods, is considered and its application framework is developed. This method relies

on the computation of sensitivity indexes, called Sobol indexes. These indexes give the

effect of the inputs on the output. Usually inputs in Sobol method are considered to vary

as continuous random variables in order to compute the corresponding indexes. In this

work, the Sobol method is demonstrated to give reliable results even when applied in the

discrete case. In addition, another advancement for the application of the Sobol method

is done by studying the variation of these indexes with respect to some factors of the

model or some experimental conditions. The consequences and conclusions derived from

the study of this variation help in determining different characteristics and information

about the inputs. Moreover, these inferences allow the indication of the best experimental

conditions at which estimation of the inputs can be done.

Keywords: Uncertainty quantification, Backward uncertainty propagation, sensitivity

analysis, Sobol method.
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Résumé

Dans de nombreuses disciplines, les approches permettant d’étudier et de quantifier l’influence

de données incertaines sont devenues une nécessité. Bien que la propagation directe

d’incertitudes ait été largement étudiée, la propagation inverse d’incertitudes demeure un

vaste sujet d’étude, sans méthode standardisée. Dans cette thèse, une nouvelle méthode

de propagation inverse d’incertitude est présentée. Le but de cette méthode est de déter-

miner l’incertitude d’entrée à partir de données de sortie considérées comme incertaines.

Parallèlement, les méthodes d’analyse de sensibilité sont également très utilisées pour

déterminer l’influence des entrées sur la sortie lors d’un processus de modélisation. Ces

approches permettent d’isoler les entrées les plus significatives, c’est a dire les plus in-

fluentes, qu’il est nécessaires de tester lors d’une analyse d’incertitudes. Dans ce travail,

nous approfondierons tout d’abord la méthode d’analyse de sensibilité de Sobol, qui est

l’une des méthodes d’analyse de sensibilité globale les plus efficaces. Cette méthode repose

sur le calcul d’indices de sensibilité, appelés indices de Sobol, qui représentent l’effet des

données d’entrées (vues comme des variables aléatoires continues) sur la sortie. Nous dé-

montrerons ensuite que la méthode de Sobol donne des résultats fiables même lorsqu’elle

est appliquée dans le cas discret. Puis, nous étendrons le cadre d’application de la méthode

de Sobol afin de répondre à la problèmatique de propagation inverse d’incertitudes. Enfin,

nous proposerons une nouvelle approche de la méthode de Sobol qui permet d’étudier la

variation des indices de sensibilité par rapport à certains facteurs du modèle ou à certaines

conditions expérimentales. Nous montrerons que les résultats obtenus lors de ces études

permettent d’illustrer les différentes caractéristiques des données d’entrée. Pour conclure,

nous exposerons comment ces résultats permettent d’indiquer les meilleures conditions

expérimentales pour lesquelles l’estimation des paramètres peut être efficacement réalisée.

Mots clés: Quantification d’incertitude, Propagation inverse d’incertitude, Analyse de

sensibilité, Méthode de Sobol.
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General Introduction

Nowadays, no one can doubt the basic role of modeling in any scientific process. In short,

a model is a systematic description of the relationship between input and output. It

aims to imitate, translate, or predict the behavior of real systems. However, undesirable

disturbances may prevent a model from achieving its aim perfectly. Indeed, scientists can

not be completely accurate during the modeling process, while constructing the model

and collecting the input data. This leads to the presence of uncertainty, indicating a state

of being unsure about the correctness of the performance of the model. Consequently,

it is becoming no longer acceptable to submit any scientific project without providing a

comprehensive assessment of the reliability and validity of the results under the effect of

uncertainty. For that, studying uncertainty is becoming of a great interest in almost all

disciplines, considering it an essential procedure for robust modeling. This manuscript

presents our work in developing new methods to deal with uncertainty, and applying such

methods in different domains.

The input of a model usually consists of variables and parameters. The variables are

said to be uncertain if it is not sure that the values given to run the model are the actual

true ones. Mainly, variable uncertainty appears due to imperfect measurements, inherent

variability, and incomplete data collection. In addition, the model is said to have pa-

rameter uncertainty if its parameters are not surely characterizing the real system. Such

uncertainty arises due to poor calibrations, imprecise estimations, or bad curve fittings.

Moreover, the model is said to have structural uncertainty if we cannot be confident that

the form of the model is accurately imitating the real studied system. Usually, structural

uncertainty appears due to ambiguity in the definitions of the given concepts, limitations

of the acquired knowledge in the studied domain, or difficulties in some systems to be

represented as equations or codes.

- 1 -



Introduction

Whenever there is uncertainty in the input or the model structure, the output of course

will be uncertain, hence the obtained results can not be trusted. Moreover, this output

uncertainty may end up with severe consequences, especially in some sensitive domains

like risk assessment and decision making. A simple example in this manner is the un-

certainty in the construction of an airplane. This may happen due to uncertainty in the

global process from the pre-design step up to the final manufacturing and assembling.

Such uncertainty, combined to unpredicted meteorological configurations, can be a reason

for airplane crashes and crises. As a consequence, scientists insist that uncertainty cannot

be tolerated or ignored, and it should be studied carefully.

The methods developed in this manner are of different concerns, depending on the source

of the uncertainty (input, parameter, or model structure) and on the aim of the mod-

eler. Some methods are concerned just with structural uncertainty. Other methods are

dedicated for parameter and input variable uncertainty. Generally, these methods can be

classified into three groups:

1. Structural Uncertainty Assessment: Methods in this group are applied only in case

of structural uncertainty. They seek an optimal model representation of the real system

with a reduced structural uncertainty as much as possible.

2. Uncertainty Quantification: Methods in this group are mainly applied in the case of

input uncertainty. Their goal is to find a quantitative characterization of the uncertainty.

Two types of uncertainty quantification methods exist: forward uncertainty propagation

and backward uncertainty propagation. In the forward uncertainty propagation the un-

certainty of the output is to be quantified by propagating the uncertainty of the input. In

the backward uncertainty propagation, the input uncertainty is to be determined starting

from the given output uncertainty.

3. Sensitivity Analysis: Methods in this group are applied in the case of input uncer-

tainty. Their aim is to find which input elements have the genuine output impact. This

helps in indicating whether an uncertain input element will cause a significant uncertainty
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in the output or not.

Note that the methods of sensitivity analysis are even applied in the case of absence

of uncertainty. Indeed, their main goal is to detect the effect of each input on the output

by studying the output variation with respect to the variation of the inputs. However,

in an uncertainty study a sensitivity analysis is first done to detect the influence of each

uncertain input according to its variation on its range of uncertainty. Then, for a model

having several inputs, only the most influencing inputs are taken into account in the un-

certainty study while the others are fixed at some specific values.

Relative to the methods of the groups considered above, the backward propagation of

uncertainty is the one with least consideration in literature. In addition, rare studies

have conducted input variable uncertainty, knowing that this uncertainty is frequently

encountered especially in problems where the input variable is an experimental data. For

that, in this thesis we focus on deriving a new backward uncertainty propagation method

applied mainly for input variable uncertainty. In parallel to this, we followed a new man-

ner while applying Sobol method which is an already existing sensitivity analysis method.

The applications are done on two real models in order to keep the context of our work

and the obtained conclusions realistic. This work is presented in this dissertation which

is organized as follows:

In Chapter 1 we give a general review of the main methods in structure uncertainty

assessment, uncertainty quantification, and sensitivity analysis. This will provide the nec-

essary background concepts needed to study and understand uncertainty. There will be a

clear focus on the uncertainty quantification and sensitivity analysis methods since these

two topics are the main concern of our work. The methods are thoroughly described with

their applicability and limitations.

In Chapter 2 we present a new derived backward uncertainty propagation method. The

aim of this method is to determine the input uncertainty starting from the given data

of the uncertain output. The main idea is to partition the output uncertainty between

the inputs using the probabilistic representation of uncertainty. This partition helps in
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generating a nonlinear system of equations whose unknowns are the uncertainties of the

inputs. The system can be solved solved numerically as a non linear least square problem,

and the input uncertainty is obtained. The method is mainly applied in case of having

input variable uncertainty, especially for problems with inputs coming from experimental

data. Different examples are also presented in this chapter in order to see how the method

is applied in reality. In general, the method is simple, however the partition of the output

uncertainty becomes more complicated in the case of having a big number of inputs with

a complex form of the model. In this case, sensitivity analysis can be used to detect

the most impacting inputs, so that the backward propagation can be restricted to these

important inputs. In this work we consider one of the sensitivity analysis methods, called

Sobol method, and develop the way of applying it and analyzing its results. These ideas

are presented in detail in the next chapters.

In Chapter 3 we present our first application of the Sobol sensitivity method. The

aim of this application is to examine the performance of the Sobol method in case of hav-

ing a model whose explicit form is unknown, plus having a limited number of data points

to apply the sensitivity method numerically. The model considered in this application is

from the domain of force spectroscopy, in which we study the sensitivity of an experimen-

tal curve called Electrostatic Force Distance Curve (EFDC). This curve is obtained by a

microscopic scanning technique, which uses a very thin tip to scan surfaces. The EFDC

plots the electrostatic force between this tip and a scanned dielectric. The EFDCs for dif-

ferent experimental settings are given as experimental data, then using this we study the

sensitivity of this curve with respect to the variation of the settings which are considered

as inputs. To derive the conclusions concerning the performance of the Sobol method we

use Design Of Experiment (DOE). DOE is a methodology for designing experiments that

allows, by some special plots, the analysis of the effect of the experimental factors on the

response. For that we validate the sensitivity results of the Sobol method by the plots

of DOE. All these notions are presented in detail in this chapter as well as the obtained

conclusions and consequences.

In Chapter 4 we present a different framework for the application of the Sobol sensitivity
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method from the already existing ones. Usually with the Sobol method the sensitivity

is studied by computing for each input a sensitivity index that reflects the effect of this

input on the output. Our idea in this chapter is to extend this by studying the evolution

of these indexes with respect to an outside factor or an experimental condition like time,

distance, and temperature. The aim of this extension is to detect the most convenient

conditions at which conclusions about the impact of each input can be derived. In addi-

tion, studying the variation of Sobol indexes helps in giving more information about the

inputs, which helps also in the backward propagation of uncertainty. In this manner we

consider two different models.

The first model is from the domain of computer vision, which is a programming represen-

tation of a 3D reconstruction method called Shape-From-Template (SFT). This method

uses a single 2D image and a 3D template to recover a deformed 3D surface. We study the

sensitivity of this model with respect to the depth of the surface in front of the camera,

its orientation, and the focal length of the camera by which the image is taken. The

sensitivity indexes are then computed and analyzed as a variation of the depth. This

helps in revealing how, at each depth, the position of the surface affects the quality of the

reconstruction. All these specific points, the description of the SFT method, its sensitivity

study and the conclusions derived are presented in this chapter.

The second considered model is a model for charge transport in dielectrics. This model

is usually modeled using a set of partial differential equations however in this work we

consider it as a black box model. We study its sensitivity with respect to four of its

main inputs. The sensitivity indexes are studied under the variation of three experimen-

tal conditions: the temperature, the time and the intensity of the applied electric field.

The aim of this study is to find the experimental conditions at which each input has the

significant impact on the output. This highlights the experimental conditions that should

be followed in order to acquire a data suitable for estimating each input. The details of

these ideas and the results obtained are all presented in this chapter.

Finally we close up with the Conclusion chapter that gives a full summary of the

work with the conclusions drawn and the future perspectives.
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Note that we try to keep this manuscript self-contained as it may include some con-

cepts from statistics (chapters 1 and 2), force spectroscopy (chapter 3), and computer

vision (chapter 4). We try to make the information presented completely sufficient to

understand how uncertainty is studied. However for further details, readers are invited

to consult the references that will be mentioned in each chapter.
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1.1 Introduction

Methods for studying uncertainty are of great necessity in all disciplines. These methods

are categorized into three main groups: structural uncertainty assessment, uncertainty

quantification, and sensitivity analysis. In this chapter, we provide a literature review of

these three groups. First, we start by giving the general notation of a model that will be

used throughout this manuscript. Next, we briefly present the concept of the structural

uncertainty assessment. Then we focus on the main methods of uncertainty quantifica-

tion and sensitivity analysis. To ease the explanation of these methods we introduce the

notion of the input uncertainty representation. Then we start by reviewing some forward

uncertainty propagation methods, which are divided into two groups, probabilistic meth-

ods and non probabilistic methods. After that, we continue by reviewing some sensitivity

analysis methods which are also divided into two main groups: local and global. For each

presented method, we give its basic idea and then discuss its applicability and limitations.
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Lastly, we present the state of the art of the backward uncertainty propagation methods

and then we finish off with a conclusion.

1.2 General notation of a model

Any model can be expressed formally as

F (x, α) = y (1.1)

The symbols x, y and α refer to the model input variable, output, and parameter. The

model input variable x is a vector of n components in D, where D is the domain of F and

D ⊆ Rn (n ≥ 1). x is the part of the model that varies in D at each model run to generate

a new output. The parameter α is a vector in Rm (m ≥ 0). α is the part of the model that

defines its characteristics. It does not change with each model run, however it is given

an initialization value once at the beginning of the model use. Both x and α are called

the input of the model. The F in the above notation represents the model’s structure,

it could be mathematical equation(s), computer code(s), or visual representation(s). The

output y is the response of the input by F . It is considered here as a scalar, y ∈ R, since

same results hold for a multi-scalar output, by considering each component alone. In a

modeling process, the parts of the model that can be uncertain are the input x, α and/or

the model structure F .

It is important to note that, throughout this manuscript the model structure F is as-

sumed to be deterministic and not stochastic i.e. it produces the same output when it is

run exactly with the same input. In addition, the notation of the model that will be used

is F (x) = y, the parameter symbol α is removed for simplicity as x plays the same role.

In the next section we give a brief overview of the concepts of structural uncertainty and

the methods used in this manner.
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1.3 Structural uncertainty assessment

Structural uncertainty usually represents the lack of confidence that the structure of the

constructed model reflects adequately the studied real system. In such cases, a modeler

could not be sure that the output would be correct, even if the true values of all the inputs

and parameters are known. To clarify this type of uncertainty, consider for example the

case study of having the corresponding data points of a studied system and the aim is to

find its structure. As shown in Fig. 1.1, the data points can be fitted by a logarithmic

function and by a 4th root function. In this case it is not sure which formula is the true

representation of the model, and hence there is a structural uncertainty.

Figure 1.1: The data fitted to a logarithmic function and to a 4th root function.

During modeling, several factors may lead to structural uncertainty. One of these factors

is the simplifications and scientific judgments made when constructing and interpreting

the model. Other factors are the incomplete understanding of the system under study

and the inappropriate equations used to express this system. Even though these causes

were taken in consideration, the definite elimination of structural uncertainty was impos-

sible, however the emphasis was to reduce this uncertainty as much as possible. Methods

of structural uncertainty assessment try to find the optimal model structure that best

represents the real studied system.

Multi-model analysis [Lu et al., 2013] is mainly applied in this domain, in which plausible
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models are built representing all the possible emulations of the true structure. Then a

strategy is used to derive the aspect of the final model from the set of possible models.

Model Selection [Leeb et Pötscher, 2005] and Model Averaging [Strong et al., 2009] are

the two most popular and broad approaches used in this context. In Model Selection, an

optimal model from the set of models is selected according to some criteria provided by

experts. Some criteria that are proposed in [Bojke et al., 2009] include Residual Mean

Squared Error, Finite-Prediction-Error, Minimum Variance Criteria, and subjective prob-

abilities. On the other hand, in Model Averaging, instead of choosing one single model,

the weighted average of the proposed models is taken. In this case, a suitable weight is

assigned to each plausible model according to how much it matches reality.

Another method to cope structural uncertainty more flexibly is known as "Parameteriza-

tion of structural uncertainty" [Strong et al., 2012]. The idea is to describe the uncertainty

of the model by introducing new uncertain parameters, for instance correction factors,

boolean elements, or exogenous variables. Thus a single general model is constructed in

such a way that every other plausible model is considered as a particular case of this

general model. In such a situation, the general model is considered to be studied under

the effect of only input uncertainty with no structural uncertainty.

Although these strategies seem straightforward and really helpful in reducing and study-

ing structural uncertainty, they still have some limitations. Indeed, using Model Selection

may be disadvantageous in several cases. This is because selecting one model will prob-

ably discard important eventualities from other alternative models. On the other hand,

the Model Averaging strategy allows the collection of all possible models, however, when

using large models with with highly computational cost, it becomes difficult to find the

average. Parameterization of structural uncertainty is practical when dealing with struc-

tural uncertainty, however not all structural uncertainties are that easy to be represented

by a parameter. As a conclusion, a modeler should be cautious while choosing the appro-

priate approach to reduce the structural uncertainty.

In this section, a general idea about methods that deal with structural uncertainty was

presented. Although different methods exist in this manner, but none of them can guar-

antee that the true model can be attained. Thus the goal was to achieve the best level of

confidence while choosing the structure of the model.
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In the following sections, we continue with the methods of uncertainty quantification and

sensitivity analysis, which are the main focus of our work. However in the sequel we will

assume that we are dealing with an exact true model that has no structural uncertainty.

1.4 Input uncertainty representation

For the sake of clarity, it is important to note that methods that study input uncertainty

rely first on finding a representation of the uncertainty. Several ways have been proposed.

However, the most practical and used one is the probabilistic way. In the following para-

graph, in each method of uncertainty quantification and sensitivity analysis the associated

representation way of uncertainty will be introduced. In exception, the probabilistic way

is introduced here since its notion is used in most methods and in Chapter 2.

The uncertainty at an input point a = (a1, · · · , an) is represented probabilistically by a

random vector (vector of random variables) which will be denoted by X = (X1, · · · , Xn).

Each Xi represents the uncertainty at ai. The uncertainties at ai’s are assumed to be

independent, and hence the random variables X1, · · · , Xn are mutually independent. The

realizations of each random variable Xi are the uncertain values xi supplied to F that are

supposed to be equal to ai. These realizations are collected in a set denoted by Ωi. Then

the collection of the realizations of the random vector x is the set Ω = Ω1 × · · · × Ωn.

To clarify this notation of uncertainty consider the following example. Let

F (x1, x2) = πx1x
2
2 (1.2)

be the function that gives the volume of some liquid in a cylinder. The first input x1

represents the height attained by the liquid in the cylinder in mm, and the second input

x2 represents the radius of the cylinder also in mm. Suppose that for a certain liquid the

values of x1 and x2 are 9.762 and 3.91 respectively, but these true exact values are not

known. Thus to get the volume of the liquid, measurements for x1 and x2 should be done.

The measurement process is pictured in Fig. 1.2.

Note that with the measurements of Fig. 1.2 we can not be sure about the exact values

of x1 and x2 for the given liquid. This implies that there is input uncertainty for both
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Figure 1.2: The measurements of the height x1 and the radius of the cylinder x2.

variables x1 and x2. Let X1 be the random variable representing the uncertainty at x1,

and let X2 be the random variable representing the uncertainty at x2. Then the input

uncertainty of F at the point (9.762, 3.91), which we suppose is not known, is represented

by the random vector (X1, X2). Note that the realizations of the random vector X1 are

all the possible true values for x1 and they are collected in a set Ω1. Similarly for X2,

its realizations are all the possible true values of x2 and they are collected in a set Ω2.

From Fig. 1.2, one can define the sets Ω1 and Ω2 by Ω1 = [9.5, 10] and Ω2 = [3.5, 4]. We

associate here intervals to the sets Ω1 and Ω2 since x1 and x2 take real values. So any

real value between 9.5 and 10 is a possible true value for x1, and this gives an interval,

and similarly for x2 its possible true values are collected in an interval.

Actually what we present here is a very simple example of uncertainty that one may face.

However in big problems, uncertainty could be much more complicated and it cannot be

eliminated even with highly accurate measurements.

Now we continue with the probabilistic representation of the input uncertainty. Each

random variable Xi, as a representation of the input uncertainty, is associated with a

probability distribution which specifies the probability of each possible value xi to be the

true value ai. Here we distinguish two cases:

1. If Ωi is not finite, Xi is a continuous random variable and its probability distribution

is characterized by a probability density function. A simple example of this continuous
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case, is the uncertainty presented in the inputs of the example of Fig. 1.2. Realizations

in this example are real numbers taken between two limits and Ωi is an interval, thus

it is not finite. In this case each Xi is characterized by a probability density function.

Fig. 1.3(a) shows the probability density function of the height presented in the example

above.

2. If Ωi is finite, Xi is a discrete random variable and its probability distribution is charac-

terized by a probability mass function. An example of this discrete case, is an uncertainty

in an input which represents the number of items sold by a store per year. Realizations

in this example are natural numbers and could not be real numbers, and so the Ωi is for

sure finite. In this case the random variable is characterized by a mass function (see Fig.

1.3(b)).

(a) (b)

Figure 1.3: Probabilistic presentation of input uncertainty: (a) continuous distribution,
(b) discrete distribution .

Usually input uncertainty is represented by a discrete random variable if the input itself

represents a number of something, like items, so that the input takes only natural numbers

(or integer values). In this case, the realizations of the associated random variable are

integer values and hence the associated set of possible values is definitely finite. However

continuous random variables are used to represent the input uncertainty for inputs taken

from measurement or experiments. In this case, the possible true values are real numbers

forming an infinite set, and in fact this is the most popular case.

In this work, we assume that the random variables X1, · · · , Xn are continuous, however
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the techniques presented are equally applicable for discrete distributions. The probabil-

ity density functions of X1, · · · , Xn are denoted by p1(x1), · · · , pn(xn). Accordingly, the

probability distribution of the random vector X is pX(x) = ∏n
i=1 pi(xi).

Usually, the probability distributions of the random variables are selected based on either

prior data or subjective judgments of experts. In [Hammonds et al., 1994], the authors

proposed some simple guidelines to derive the appropriate continuous distribution. These

guidelines state that when the data are limited and the uncertainty range is relatively

small, a uniform distribution can be used and the associated support interval is charac-

terized by the uncertainty range. If there is more knowledge about a most likely value

or midpoint, in addition to the range of the uncertainty, a triangular distribution may be

assigned. When the range of the uncertainty is very large, a log-uniform or log-triangular

distribution may be more appropriate than the uniform or the triangular distribution.

The assumption of normal, log-normal, or empirical distributions usually depends on the

availability of the relevant data, where a fitting process is usually used to guess such

probability density functions. In addition to this, the authors in [Hammonds et al., 1994]

indicated that other continuous distributions can be also used such as Gamma, Beta, and

Poisson. Note that, analogous guidelines can be derived for the discrete case.

With this probabilistic representation of the input uncertainty at a, the corresponding

output uncertainty at F (a) is represented by a random variable denoted by Y . This

random variable is defined as Y = F (X1, · · · , Xn), and its probability density function is

denoted by pY . Note that the random variable Y and the random variables X1, · · · , Xn

are dependent, as y is a function of the other random variables.

The best estimate of the true value of a is given by the mean of X which will be denoted

by µX = (µ1, · · · , µn). Similarly, the best estimate of the true value of F (a) is given by

the mean of Y which will be denoted by µY .

Concerning the quantity of uncertainty at a, it is usually represented by the variance of

X, denoted by V = (V1, · · · , Vn). However, for some specific distributions, other sta-

tistical parameters can be used to represent the quantity of uncertainty. For instance,

for a uniformly distributed random variable, the radius of the support vector could be

used to represent the quantity of uncertainty since it gives the dispersion of the values

around the expected value. Similarly, the quantity of the output uncertainty is usually
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represented by the variance, which will be denoted by V ar(Y ). However, the quantity of

the output uncertainty can also be represented by other statistical parameters depending

on the associated distribution. In the following , whenever the probabilistic point of view

is used to represent uncertainty, the representative of the quantity of the uncertainty will

be stated explicitly.

1.5 Forward uncertainty propagation

Forward Uncertainty Propagation is performed to investigate the uncertainty in the

model’s output that is generated from the uncertainty in the model’s input [Marino et al.,

2008]. The idea is to associate a representation for the input uncertainty, then accordingly

try to find the output uncertainty in the same representation type. Methods in this group

are classified as either probabilistic and non probabilistic, according to the way the input

uncertainty is represented. Probabilistic methods use the probabilistic point of view to

represent the input uncertainty (see section 1.4). Then through propagation, the proba-

bilistic presentation of the model output is to be determined. Mainly, we seek the mean

µy and the variance V ar(Y ) of the the random variable Y which represents the output

uncertainty. The non probabilistic methods, however, use a non probabilistic forms to

represent the input uncertainty. Then, according to the used form, the associated output

representation is to be determined. In the following two subsections, classical methods

from both categories are presented.

1.5.1 Probabilistic methods

In the probabilistic uncertainty propagation methods, each uncertain input is represented

by a random variable and it is specified by a probability density function. Then, model

output, as a function of the model input, is also a random variable whose statistical mo-

ments are to be determined. Fig. 1.4 illustrates the probabilistic mode of the forward

propagation of uncertainty.

The main concern is to find the first and the second moments of the output i.e. the

mean and the variance. This task is devoted mainly to the propagation techniques. Dif-

- 15 -



1.5 Forward uncertainty propagation

Figure 1.4: Probabilistic propagation of input uncertainty.

ferent techniques are widely known in this manner, and the following is a summarized

explanation of three of them. The first is called Monte Carlo, which is a simulation

based technique. The second, generally known as Spectral Method, is based on functional

expansion. The last one is the Perturbation Method, which is a local expansion based

method.

Monte Carlo

Monte Carlo is one of the oldest and most popular simulation based methods in uncer-

tainty propagation. It is used in order to estimate the mean value µY and the variance

V ar(Y ) as well as the probability density function of Y . First, M samples of input data

values {xk = (x(k)
1 , · · · , x(k)

n )}k=1···M are drawn randomly from the distributions of Xi,

according to their probability density functions. These sample points are then run by the

model F to obtain their corresponding output values. The obtained values of the output

are then collected to find its statistical characteristics. For instance, the computation of

the expectation and variance of the output Y is done using the approximation formulas:

µY = 1
M

M∑
k=1

F (X(k)) (1.3)

V ar(Y ) = 1
M − 1

M∑
k=1

(F (X(k))− µY )2 (1.4)

On the other hand, the distribution of Y can also be derived simply by using the obtained

output data in a fitting process.

As it can be seen, the method is simple from a theoretical point of view, universally
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applicable and does not require any assumptions on the model form as linearity or con-

tinuity. Moreover, the number of sample points M needed in the simulation is generally

independent of n, the size of the input vector x [Helton et Davis, 2002]. However, it

is important to note that the method converges to the exact stochastic solution as the

number of samples goes to infinity, so thousands or millions of samples may be required

to obtain accurate estimations [Iaccarino, 2009]. This could be problematic in the case of

computationally expensive models and/or in the case of important size of input vector.

Several methods have been developed to accelerate the convergence of the Monte Carlo

approach. Indeed, in the basic Monte Carlo simulation, random sampling is used. How-

ever by using other sampling techniques, a faster convergence can be achieved. Examples

of such sampling techniques are: stratified sampling, Latin Hyper cube sampling, sam-

pling based on Sobol’s sequences [Burhenne et al., 2011]. For instance, in Latin Hyper

cube sampling the range of each input random variable Xi is divided intoM equiprobable

intervals. Then, M random samples are drawn, by collecting for each sample one element

from each of the equiprobable intervals. Thus each sampled point is associated with one

of the rows and one of the columns. This ensures more coverage of the range of the inputs

than the case of just random sampling. Fig. 1.5 shows the difference between the random

sampling (basic Monte Carlo) and the Latin Hyper cube sampling for eight samples for

two inputs.

(a) (b)

Figure 1.5: Scatter plot of sampling techniques: (a) Random sampling, (b) Latin Hyper
cube sampling.

In Fig. 1.5, the Latin Hyper cube sampling shows some gaps and clusters like the random

sampling because the sample size is too small. Note that as the number of samples in-
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creases, the number of rows and columns increases, and hence there will be more coverage

of the range of inputs.

To conclude, the Monte Carlo method is a practical method for propagating uncertainty,

however its performance depends on the number of samples available. With the devel-

opment of high performance software, computation of big samples becomes more easy.

However it remains a problem for the models with high computation cost.

Spectral Methods

Spectral methods represent an alternative strategy for uncertainty propagation. Their

basic idea is to write the model as an infinite sum of some basis functions. Indeed, this

expansion eases the derivation of the moments (mean and variance) of the output random

variable Y . Different basis functions have been used for such expansion, depending on the

distribution of the input random variables X1, · · · , Xn. However the most used basis are

polynomials. Several approaches with different polynomial basis have been used [Gilli,

2013]. The most known one in this manner is the Polynomial Chaos Expansion (PCE),

defined using multidimensional orthogonal polynomials as representative basis. Here, we

give a general overview about the Polynomial Chaos Expansion, considering it as a typical

illustration of the expansions of the spectral methods.

The first proposed Polynomial Chaos expansion employed the Hermite polynomials in

terms of Gaussian random variables to generate the expanded series. According to [Lee

et Chen, 2009], its expression is:

u = a0H0 +
∞∑
i1=1

ai1H1(φi1) +
∞∑
i1=1

i1∑
i2=1

ai1i2H2(φi1 , φi2)

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3H3(φi1 , φi2 , φi3) + ...

(1.5)

for an arbitrary random variable u, where {φi1}∞i=1 is a set of standard normal variables,

Hi is a generic element in the set of multidimensional Hermite polynomials of order i, and

ai are coefficients to be determined. For convenience, the expression was rewritten in a

more compact way:

u =
∞∑
i=0

biΨi(φ) (1.6)
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where bi and Ψi(φ) correspond to ai1i2...ip and Hp(φi1 , φi2 , ..., φip) respectively. Note that

the orthogonality property with respect to the standard normal probability density func-

tion of the Hermite polynomials implies that

E[ΨiΨj] = E[Ψ2
i ]δij and E[Ψi] = 0 for i 6= 0 (1.7)

where E represents the expectation. Hence, the set {Ψi} forms an orthogonal basis of the

space of functions having normally distributed variables.

In practice, when there are n uncertain inputs standard normally distributed, the output

response can be approximated by n-dimensional PCE, truncated at some order p [Lee et

Chen, 2009]. In this case, the number of terms in PCE becomes P + 1 where P is given

as

P =
p∑
s=1

(n+ s− 1)!
s!(n− 1)! (1.8)

Thus, the model output approximation is given by

Ỹ =
P∑
i=0

biΨi(X) (1.9)

with X = (X1, X2, ..., Xn). The derivation of the coefficients can be carried out analyti-

cally [Schick, 2011], otherwise by utilizing sampling or projection techniques [Le Maître

et Knio, 2010].

Since the above procedures are only compatible with standard normal variables, the way

of treating other random variables became an important issue. To cope with this prob-

lem, a generalized PCE was proposed based on different polynomial basis, where each

corresponded to a set of orthogonal polynomials related to the underlying probability

density function of the random vector. With the generalized PCE, non-normal distribu-

tions such as beta, gamma, and uniform distributions could be used as a standard input

vector [Lee et Chen, 2009]. Accordingly, Gaussian variables ware best approximated by

Hermite polynomials. Legendre polynomials accounted for the best approximation of a

uniformed distributed variable, whereas Jacobi polynomials should be used for Beta dis-

tributions [Sepahvand et al., 2010].

Unfortunately, this generalization maintained the property that only identical random
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variables can be involved in the same expansion. Thus, later, the approach was extended

by assuming that the input vector components are independent distinct random variables,

where a multi-dimensional basis is constructed as a simple product of the corresponding

constructed one dimensional orthogonal polynomials.

Once the expansion of the model function is obtained, the moments (mean and variance)

of the output can be derived. While the accuracy of the generalized PC approach can be

improved by increasing the polynomial order of truncation, it should also be noted that

as the number of inputs and the expansion order increase, the number of unknown co-

efficients to be determined increases exponentially, thereby increasing the computational

costs [Kewlani et al., 2012]. Thus this method is suitable for models with a small number

of uncertain inputs.

Perturbation Method

The Perturbation method is an alternative way for uncertainty propagation, based on

local expansion of the model function [Sudret, 2007]. The idea is to consider the trun-

cated Taylor expansion of the model F in the neighborhood of µX the mean of the input

random vector X:

F (X) = F (µX) +
n∑
i=1

∂F

∂Xi

∣∣∣∣
X=µ

(Xi − µi)

+1
2

n∑
i=1

n∑
j=1

∂2F

∂Xi∂Xj

∣∣∣∣
X=µ

(Xi − µi)(Xj − µj) + o(‖ X − µX ‖2)
(1.10)

Then the expectation of Y is:

µY = E[Y ] = E[F (X)] ≈ F (µ) +
n∑
i=1

∂F

∂Xi

∣∣∣∣
X=µ

E[(Xi − µi)]+

n∑
i=1

N∑
j=1

∂2F

∂Xi∂Xj

∣∣∣∣
X=µ

E[(Xi − µi)(Xj − µj)]
(1.11)

Note that E[(Xi − µi)] = 0 for every i, and E[(Xi − µi)(Xj − µj)] = Cov(Xi, Xj).

However, the assumption of independence between the inputs uncertainties implies that
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Cov(Xi, Xj) = 0 for all i 6= j. Hence, the expectation of Y is simplified into:

µY = E[F (X)] ≈ F (µ) +
n∑
i=1

∂2F

∂2Xi

∣∣∣∣
X=µ

Vi (1.12)

As it can be seen, the expectation of the uncertain output is approximated by two terms.

The first term is F (µX), the value of the model F at the mean of the uncertain input,

which is called the first order approximation of µY . The second term is a second order

correcting term which depends on the variances of the inputs and the partial derivatives

of the model form F . In a similar manner, the variance of Y can be approximated. So

starting from the formula:

V ar(Y ) = E[(Y − E(Y ))2] ≈ E[(Y − F (µ))2] (1.13)

Using the Taylor expansion, then V ar(Y ) is approximated by:

V ar(Y ) ≈ E

 n∑
i=1

∂F

∂Xi

∣∣∣∣
X=µ

(Xi − µi)
2

≈
n∑
i=1

n∑
j=1

∂F

∂Xi

∣∣∣∣
X=µ

∂F

∂Xj

∣∣∣∣
X=µ

E[(Xi − µi)(Xj − µj)]
(1.14)

As E[(Xi − µi)(Xj − µj)] = 0 for all i 6= j, V ar(Y ) ends up with:

V ar(Y ) ≈
n∑
i=1

 ∂F

∂Xi

∣∣∣∣
X=µ

2

Vi (1.15)

An interpretation of this approximation implies that the variance of the response is the

sum of contributions of each input, where each contribution is a mix of the variance of

this input and the gradient of the response with respect to this input.

This method appears quite general and it is applied at a low computational cost, espe-

cially if the gradient of the model response is available. However, it can be applied only

for models with small uncertainties, due to the local nature of the Taylor expansion ap-

proximation.

Note that the choosing between spectral method and perturbation method for uncer-
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tainty propagation, is the same as choosing between high accuracy and less cost. Spectral

methods rely on complete expansion of the model while the perturbation method relies

on the local expansion of the model. The first costs more, but give more accurate results

than the second. Thus in applications one should compromise between cost and accuracy.

In this subsection, three different uncertainty propagation methods were revised. The

common point between these methods is that they rely on the probabilistic representa-

tion of uncertainty. Their main goal is to find the probabilistic moments of the output

uncertainty. This is done either numerically by simulation (Monte Carlo method) or by

using an expansion of the output formula (spectral and perturbation methods). In gen-

eral, these methods are considered simple from a theoretical point of view. In the next

section, non probabilistic methods for uncertainty propagation are presented. The con-

cept of some of these methods may be considered as generalization of the probabilistic

approach, however some other methods have completely different notions.

1.5.2 Non-Probabilistic methods

As discussed in the previous section, the probabilistic uncertainty propagation methods

are usually applied when the information about the uncertain inputs are sufficient to con-

struct a probabilistic distribution. However, if the information of the uncertain element

is insufficient, the non-probabilistic approaches can be used [Gao et al., 2011]. Below,

alternative approaches to the probabilistic approach of uncertainty presentation are dis-

cussed, including Interval theory, Fuzzy theory, Possibility theory, and Evidence theory.

The way the uncertainty is propagated using these uncertainty presentation approaches

is also discussed.

Interval Analysis

Interval analysis [Moore et al., 2009] is one of the simplest ways to propagate uncertainty

in data-poor situations. In interval analysis, it is assumed that nothing is known about

the uncertain input except that it lies within certain bounds. Each uncertain input is

represented by an interval. An interval here refers to a close set in R, which includes the

possible values of a number. An interval is usually expressed as [a, b] = {c ∈ R, a ≤ c ≤ b},
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where the real numbers a and b are the lower and upper limits of the interval. According

to the author of [P Swiler et al., 2009], the problem of uncertainty propagation can be

turned into an interval analysis problem: given the inputs’ uncertainties represented by

intervals, what is the corresponding interval of the output uncertainty?

The interval of the output uncertainty is determined by finding the infimum and supre-

mum attained by the model when the uncertain inputs vary entirely over their associ-

ated intervals. When the model is a simple expression with simple arithmetic operations

(+,−,×,÷), then the output interval is determined by extending these elementary arith-

metic operations to intervals. Such extension is as follows

I op J = {c op d such that c ∈ I, d ∈ J} (1.16)

where I and J are two intervals, and op refers to one of the arithmetic operations. How-

ever, the determination of the output interval becomes much more complicated if the

model has a complex form. Non linear optimization problems might be used to determine

the upper and the lower limits of the output interval. This probably requires a large

number of model evaluations. Furthermore, most optimization solvers are local, and thus

the global optima is not guaranteed. Which means that it is not easy to find the infimum

and supremum. Hence, to solve interval analysis problems properly, global methods must

be used, and usually these approaches can be very expensive.

In brief, interval analysis is suitable for propagating uncertainty in problems where the

model has an elementary form, with a small number of inputs.

Fuzzy Set Theory

Another approach to represent the uncertainty of the input is the Fuzzy Set Theory. In

the Fuzzy Set Theory, an uncertain input is treated as fuzzy number, and its correspond-

ing uncertainty is characterized by membership functions. Such membership functions

associate a weight between 0 and 1 to every possible value of the uncertain input. Then,

to propagate the input uncertainty and find the output uncertainty, the output member-

ship function is to be determined. To this end, some procedures are carried. Here, we

give a quick review of the notions of the Fuzzy Set theory as it is used in uncertainty

propagation.
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The starting point will be the definition of the widely used term "Fuzzy Set". Let U be a

universe set of τ values (elements), set A is called a fuzzy set if it is composed of ordered

pairs in the following form:

A = {(τ,ΦA(τ)) | τ ∈ U, ΦA(τ) ∈ [0, 1] } (1.17)

where ΦA(τ) is the degree of membership of τ in A. The function ΦA is called the mem-

bership function of A.

A special case of fuzzy sets are the so-called fuzzy numbers. According to [Schulz et Huwe,

1999], a Fuzzy number A is a fuzzy set satisfying the following :

1. The membership function ΦA is piecewise continuous, and the elements τ are real

numbers, i.e. A = {(τ,ΦA(τ)) | τ ∈ U ⊆ R, ΦA(τ) ∈ [0, 1] }.

2. A is normal, i.e. there exists at least one (τ,ΦA(τ)) ∈ A such that ΦA(τ) = 1.

3. A is a convex set, i.e. for any (τ1,ΦA(τ1)), (τ2,ΦA(τ2)), and (τ3,ΦA(τ3)) ∈ A, the

following implication holds:

τ1 < τ3 < τ2 ⇒ ΦA(τ3) ≥ min{ΦA(τ1),ΦA(τ2)} (1.18)

This simple concept of fuzzy numbers permits its application in the domain of uncertainty

propagation. Indeed, an uncertainty at one real valued input point ai of point a =

(a1, · · · , an) is represented by a fuzzy number Ai with a specific membership function

Φi. The elements τ of Ai are the uncertain values supplied to F that are supposed to be

equal to ai. The membership function Φi is usually constructed based on the available

information about the uncertain input. In this manner, a general followed guidance is:

the closer Φi(τ) is to 1, the more the element τ is accepted as a true value for ai, and

the closer it is to 0, the less it is accepted. Several forms of the membership function of

a fuzzy numbers has been developed and used in the domain of uncertainty [Wierman,

2010], including triangular and trapezoidal shaped membership functions. Illustrations
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of such membership functions are given in Fig. 1.6 to represent the uncertainty of a

measured quantity around the value 10.

(a) (b)

Figure 1.6: Fuzzy membership functions: (a) Triangular, (b) Trapezoidal.

After associating to each uncertain input a fuzzy number, the propagation of uncertainty is

performed using the extended principle of fuzzy set theory [Maskey et al., 2004]. According

to this principle, the membership function of the output y is given by:

Φy(y) =


sup{min(Φ1(x1), · · · ,Φn(xn)) y = f(x1, ..., xn)

0 if no (x1, · · · , xn) exist such that f(x1, · · · , xN) = y

(1.19)

Thus, the uncertain output is represented by a fuzzy number {(y,Φy(y))}. Its member-

ship function is determined at each possible value y of F (a) by applying the formula

(1.19). This indicates the spread of the output uncertainty as well as the most probable

true value F (a).

This method of uncertainty propagation has been applied in various domains, examples

are in [Schulz et Huwe, 1999 ; Maskey et al., 2004], where usually the number of uncertain

parameters is small, or the model form is monotone with respect to the inputs. In cases

where more complex models have to operate on fuzzy numbers, the above procedure re-

sults in nonlinear numerical optimization problems at each possible value of the output,

and hence this would be computationally expensive.

The Dempster-Shafer Theory

The Dempster-Shafer Theory(DST), also known as evidence theory, is an uncertainty

propagation method used when the available information is mostly provided by experts.
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Unlike probability theory, in DST there are two measures of likelihood and not a single

probability distribution function. These two measures are called belief and plausibility.

The following paragraph is a description of the derivation of such measures as well as

their role in uncertainty propagation. Readers interested in more details about DST are

referred to [Baraldi et Zio, 2010].

As a first step for quantifying the input uncertainty in DST, a finite set Ωi is assigned

to each uncertain input xi at the uncertain point ai consisting of all the uncertain values

supplied to F that are supposed to be equal to ai. Then a mass function is associated

with each set Ωi, called the Basic Belief Assignment (BBA) and denoted by Bi. The BBA

is a mapping Bi : P(Ωi) 7−→ [0, 1] satisfying:

Bi(φ) = 0 and
∑
A⊂Ωi

Bi(A) = 1 (1.20)

where P(Ωi) is the power-set of Ωi i.e. the set of all subsets of Ωi. For every A ⊂ Ωi,

the value Bi(A) indicates how likely the true value of the uncertain input falls within the

subset A. Each A ⊂ Ωi with Bi(A) > 0 is called a focal element of Bi. Note that, as∑
A⊂Ωi Bi(A) = 1, the BBA function has a finite number of focal elements. Moreover, a

BBA function is completely defined by these focal elements and their associated masses

according to [Limbourg, 2008].

In DST, the function Bi is not the fundamental measure of likelihood. Rather, this BBA

is used to derive the two measures of likelihood: the belief and the plausibility. According

to [Helton et al., 2004], the belief, Bel(A), and the plausibility, Pl(A), for a subset A ⊂ Ωi

are defined by:

Beli(A) =
∑
C⊆A

Bi(C) (1.21)

and

Pli(A) =
∑

C∩A6=∅
Bi(C) (1.22)

Observe that these two summations can be simply computed since Bi has a finite number

of focal elements. Further more, the belief Beli(A) is commonly considered as a lower

bound of the probability that the true value of xi is within A. On the other hand, the

plausibility Pli(A) is considered as an upper bound for this probability. Thus, together,
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belief and plausibility define an interval-valued probability distribution [Beli(A), P li(A)],

and not a single probability distribution [Giunta et Swiler, 2007].

Now, as the uncertainty of each input xi is characterized by Beli and Pli, it is now the

question about the uncertainty of the output. In fact, to propagate the uncertainty using

DST theory, it is required to find the belief and plausibility functions of y, denoted Bely
and Ply respectively. In [Helton et al., 2004], the author indicated a practical way to

find both Bely and Ply. First a generalization of the BBA denoted by Bx is defined on

Ω = Ω1 × · · · × Ωn by:

Bx(A) =
n∏
i=1

Bi(Ai) (1.23)

where A = A1 × · · · × An ⊆ Ω and each Ai ⊆ Ωi. Then, the image of Ω by the model

function F is by definition

F (Ω) = {F (x), for every x = (x1, · · · , xN) ∈ Ω1 × Ω2...× ΩN} (1.24)

This F (Ω) represents the set of all possible values of the uncertain output y. Accordingly,

for every A ⊆ F (Ω), the two measure functions of its belief and plausibility are defined

as follows:

Bely(A) = Bely(F−1(A)) =
∑

C⊆F−1(A)
Bx(C) (1.25)

and

Ply(A) = Ply(F−1(A)) =
∑

C∩F−1(A)6=∅
Bx(C) (1.26)

where F−1(A) = {x ∈ Ω;F (x) ∈ A}. These functions Bely and Ply characterize the

uncertainty in the output y.

Despite the simplicity of the concept of this method, its application in practice depends

on the number of the uncertain inputs involved in the analysis. In addition, it depends

on the number of possible values of each uncertain element. Moreover, the evaluation of

Ω, its image by F , and then the two measures become more complex as the number of

uncertain inputs increase.

Possibility Theory

Possibility theory provides another alternative to probability theory for uncertainty rep-
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resentation. As Dempster-Shafer Theory, possibility theory involves two measures for

likelihood, a necessity and a possibility. The following is a summary of how necessity and

possibility are derived, and their contribution in uncertainty propagation.

In any modeling process, where the available data is incomplete to assign a random vari-

able for an uncertain input xi at an input point ai in a probabilistic mode, possibility

theory can be used instead of probability theory. A possibility function Posi is defined on

Ωi, the set of all possible values xi. This function assigns to each element ξ in Ωi a degree

in the interval [0, 1]. Such a function specifies which values are possible to be the true ones

and which are less possible. It also differentiates between the values that are surprising

to be true and the values that are expected to be true. More precisely, if for some ξ ∈ Ωi,

Posi(ξ) = 0, this means that ξ is impossible and totally surprising to be true. On the

other hand, if Posi(ξ) = 1, then ξ is considered as totally possible and unsurprising to be

true, however it could not be true at all. Indeed, Posi(ξ) = 1 is a much weaker property

than saying probability is 1 [Ripamonti et al., 2013]. Analogously to the Dempster-Shafer

Theory, possibility theory introduces two likelihood measures, possibility and necessity.

For any A ⊆ Ωi, the possibility and necessity for A are defined as follows [Ripamonti

et al., 2013]:

Pi(A) = sup
ξ∈A

Posi(ξ) (1.27)

and

Ni(A) = 1− Pi(Ac) = 1− sup
ξ /∈A

Posi(ξ) (1.28)

where Ac = Ωi \A. After finding the Pi and Ni of each uncertain input, then, in a similar

way to Dempster-Shafer method, the possibility and necessity of y are derived. These

two measures Py and Ny characterize the possibility of each of the possible values of the

outcome. Moreover, as the number of the inputs increase, it become more expensive to

compute such measures.

In this section several non probabilistic approaches for forward uncertainty propagation

were presented. The idea is first to find a representation of the input uncertainty and then

find output uncertainty according to this representation. In this manner, some methods

adopt simple representations like interval theory, and other methods use more compli-
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cated concepts like fuzzy set theory. In addition, some non probabilistic methods use a

generalization of the probabilistic representation to propagate uncertainty. Nevertheless

the probabilistic approaches are still considered to be more practical than the non prob-

abilistic methods, for that, probabilistic representation is more preferred in applications.

In the next section we give the state of art of the backward propagation of uncertainty

and see how it differs from the forward propagation.

1.6 Backward uncertainty propagation

The basic idea of the Backward uncertainty propagation is to start from some output

data in order to quantify the input uncertainty [Chantrasmi et Iaccarino, 2012]. Due

to confusion, it should be noted that backward propagation differs from the well known

topics Parameter Calibration and Inverse Problem. Indeed, Parameter Calibration and

Inverse Problem are concerned in estimating the parameters of a model, and not the

uncertainty, starting from output data. Methods for backward propagation are the least

developed among the methods that are derived to study uncertainty [Chen et al., 2015].

Even more, there are no clear guidelines in literature for the applications done in this

manner. Maybe this is because the backward propagation problem can be an ill posed

problem in some cases, since different partitions of the input uncertainties may give the

same output uncertainty. This makes the problem more challenging.

The first attempt for a backward propagation method was to find an inverse of the model

and then apply a forward propagation procedure. In this way the input uncertainty can

be derived by propagating the output uncertainty as in [Chen et al., 2015]. One of the

big obstacles for this approach is that most models cannot be easily inverted, especially

complicated black box models. In some applications, modelers try to find a meta model of

the initial model, in which this meta model can be inverted. For instance, in [Baumgärtel

et al., 2014] the model is approximated by a Gaussian process. Then using this Gaussian

process the mean and the variance of the input uncertainty are computed. Another ex-

ample in [Chantrasmi et Iaccarino, 2012], where a non continuous model is approximated

by a fraction of polynomials. Then using this approximation, the backward propagation

is done. Unfortunately, not all models can be easily approximated into simpler ones and
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get their inverse and then apply a forward propagation of uncertainty. Thus a backward

propagation method adapted to deal with the model itself, not its inverse, is really needed.

In the few other applications done in backward propagation domain, the main concept

that is used is the Bayesian Inference. In statistics, inference refers to the process of

deducing the properties of a probability distribution by the analysis of data [Keeping,

1962]. Bayesian inference, which is one of the approaches of statistical inference, is used

to quantify the input uncertainties in a probabilistic framework based on the available

output data. However, it is also required to have at least a basic idea about the input

uncertainty. In the following paragraphs, we give the general formalism of the Bayesian

inference used in the backward uncertainty propagation.

Bayesian Inference

The basic idea of the Bayesian inference is to use the output data and prior information

about the input uncertainty in order to give a probabilistic characterization of the input

uncertainty. In this method, quantification of the input uncertainty is done as an update

of the already acquired information.

First, the prior information of the input uncertainty is used to drive a probabilistic dis-

tribution of the random variable X called prior distribution. This prior distribution

represents the probability distribution of the input uncertainty before any output data is

collected. Usually, this distribution is extracted from physical constraints, expert knowl-

edge, and previous experimental data [Nagel, 2017]. For instance, uniform distributions

are often chosen for inputs that can be bounded from above and below, as having some

physical constraints. Gaussian or lognormal distributions are often used for parame-

ters that are unbounded or strictly positive. Alternatively, the Principle of Maximum

Entropy [Jaynes, 1957] provides an objective method to determine suitable prior distribu-

tions that yield optimal representation of the uncertainty given the available information.

The backward propagation of uncertainty is done by updating the prior distribution using

the output data. The new updated distribution is called the Posterior distribution. It is

- 30 -



Chapter 1 : Literature Review

defined as the probability distribution of X conditioned to the given data represented by

Y . Its formula is given by the well known Bay’s Law:

pX(x|y) = PXY (x, y)
pY (y) = pY (y|x)pX(x)

pY (y) (1.29)

In the above equation, pY (y|x)is known as likelihood function. This function is considered

as the connection between the output and the input uncertainty. pY (y) is the distribution

of Y , and it can be computed using the following formula:

pY (y) =
∫
pY (y|x)pX(x)dx (1.30)

where dp refers to integration over the probability space of X. An illustration of this

backward propagation method is given in Fig. 1.7 :

Figure 1.7: Bayesian inference for backward uncertainty propagation: prior distribution
and output data are used to derive a posterior distribution.

In Fig. 1.7, both the prior and the posterior distributions are normal distributions.

However in reality the posterior is a complex probability distribution even if the prior

distribution is a simple one [Nagel, 2017]. Moreover, the posterior and the prior distribu-

tions need not to be of the same family. If the prior and the posterior distributions are

in the same family, then they are are called conjugate distributions.

Note that the posterior probability density function holds all the information of the input

uncertainty. So for instance, the mean value which represents the best estimate of the

uncertain input is computed by :

E[X|y] =
∫
xpX(x|y)dx (1.31)

- 31 -



1.7 Sensitivity analysis

Even the covariance matrix of X = (X1, · · · , Xn) can be computed using the formula:

Cov(X|y) =
∫

(x− E[X|y])(x− E[X|y])TpX(x|y)dx (1.32)

where (x−E[X|y])T refers to the transpose of the vector (x−E[X|y]). By the assumption

that the Xi’s are mutually independent, the covariance matrix is a diagonal matrix, where

the diagonal elements are the associated variances representing the quantity of the input

uncertainty. Even though formulae (1.31) and (1.32) are used in the derivation of input

uncertainty, the computation is usually done numerically without finding the explicit

formula of the posterior distribution.

As it can be seen, Bayesian inference for backward propagation depends mainly on the

prior distribution. This initial guess of the input uncertainty cannot be easily established.

In chapter 2, we introduce a new backward propagation method that does not rely on

the prior distribution of the input uncertainty. Instead the input uncertainty is computed

by decomposing the variance of Y in terms of the statistical moments of the Xi’s. Note

that the problem of backward propagation becomes more difficult as the number of inputs

increases. In such a case, sensitivity analysis is used in order to detect the most important

inputs and hence involve them in the uncertainty study. In the next section we give

the general idea of sensitivity analysis and then we detail the most common sensitivity

methods. The focus will be on the Sobol method, which constitutes the cornerstone of

the work of chapter 3 and 4.

1.7 Sensitivity analysis

The modeling of complex systems usually requires a large number of inputs. Carrying an

uncertainty analysis involving all these inputs would be a real burden. However, in most

real world problems, only a limited number of inputs happens to influence the response

significantly [Sudret, 2007]. Thus, it is essential to determine which inputs contribute

most to the output variability and which of them are insignificant so that they can be

ignored during investigation. In this manner, sensitivity analysis has gained considerable

attention, as it assesses how variations in the model output can be apportioned to dif-

ferent input sources [Marino et al., 2008]. So, sensitivity analysis indicates how much
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each uncertain input contributes to the output uncertainty. This helps in detecting the

essential inputs.

Sensitivity analysis was firstly performed qualitatively [Gan et al., 2015], in which a

statement of confidence as "low", "moderate", "high" was given to describe the impact

of an uncertain input on the output. Unfortunately, such statements are difficult to be

interpreted practically. Later, quantitative methods appeared substantially, giving a new

form for the sensitivity analysis. In quantitative sensitivity analysis methods, an index

is assigned to each input, reporting how much the output responds to the changes in the

values of this input. In fact, these methods enable analysts to rank the inputs according

to their impact on the output, and thus improving the state of knowledge in order to

reduce output uncertainty more effectively.

Quantitative sensitivity analysis methods are divided into two main categories: local

and global [Saltelli et al., 2000]. Local sensitivity analysis methods derive the sensitivity

index of each input by computing or approximating the partial derivative of the model

function in a specific neighborhood of the input. On the other hand, global sensitivity

analysis methods derive the sensitivity indexes by allowing inputs to vary over the whole

range of their possible values [Tong, 2007]. In the next two subsections, methods from

both categories are represented. Recall that the model is assumed to be deterministic,

i.e. it gives identical results when it is run with exactly the same set of input values.

1.7.1 Local sensitivity analysis

Local sensitivity analysis concentrates on the local impact of the inputs on the model’s

output [Cacuci, 2003]. It is based on the computation of the partial derivatives of the

model with respect to each input at some specific value of the input. Here we will assign

the value at which the partial derivative is computed by a, so this is to say the sensitivity

of the model F is studied locally at a. The idea behind using the partial derivative to

study sensitivity comes from the fact that: varying a single input xi in the vicinity of ai,

while keeping other inputs fixed, will provide a comprehensive assessment of the effect of

xi on the model’s output. The partial derivative then is called the sensitivity index of
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F at ai. Numerous techniques have been developed to compute the gradient of a model

efficiently, here the main ideas of the direct method, indirect method, and the automatic

differentiation methods will be represented consecutively.

When the considered model is expressed as an explicit algebraic equation, a symbolic

computation of the partial derivatives of this equation can produce the sensitivity index.

Such a method is usually referred to as the direct method. Moreover, to ensure a more

comparable concept, normalized sensitivity coefficients can be computed instead. The

idea is just to multiply the partial derivative by the ratio of the value of an input over

the value of the output. So the normalized sensitivity index of F at ai is:

Si = ∂F

∂xi
(a)× ai

F (a) (1.33)

The advantage of the normalized sensitivity coefficients is that they are dimensionless,

this facilitates identifying the most sensitive inputs. Note that these methods cannot be

applied to models with non specified mathematical equations, like computer codes. In

addition, it may become troublesome when having models with complicated expressions.

In such situations, symbolic computation of the partial derivatives becomes inefficient

even with the use of the modern computer algebra systems such as Mathematica and

Maple. In these cases, numerical methods are much preferred.

One of the most applicable numerical methods for deriving partial derivatives is the finite

difference method, also known as the indirect method or the Brute Force method. The

model is solved first at the specified value of the inputs, then a perturbation is added just

to one input element and the model is resolved. This generates sensitivity indexes in the

following form

Si = F (a1, · · · , ai + ∆xi, · · · , an)− F (a1, · · · , ai, · · · , an)
∆xi

(1.34)

Thus for computing sensitivity indexes for n inputs, this method requires at least n + 1

model evaluations. Hence, one should be cautious in the case when n is large.

Despite the large applicability of the indirect method, it is usually associated with the

challenge of selecting the input step size ∆xi. As the indirect finite difference method

intended a local investigation of sensitivity, then by choosing a large step size this aim will
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not be satisfied. On the other hand, if the step size is too small, the difference between

the original and perturbed solutions can be so small, leading to serious numerical errors

in the solution.

To overcome such limitations of the numerical methods, more sophisticated techniques

have been instituted, named under Automatic Differentiation (AD) [Sandu, 1997]. In

general, AD is a way to give numerical values of the derivatives while using algebraic ma-

nipulation steps for the computation, thus giving more accurate values than the numerical

methods. Moreover, unlike the direct method which uses symbolic computation just for

models formulated under explicit mathematical expressions, AD techniques differentiate

computer codes. Indeed, in AD a compiler analyses the code of the model, then adds

some instructions to the code, which are needed to compute derivatives, in a manner that

reduces complexity and saves computational time. Then, the new expanded code can

automatically evaluate the partial derivatives of the output with respect to the inputs

with minimum human effort. The basic idea of such a process lies within the fact that

any computer program, no matter how complicated, performs a sequence of binary ( +,

-, ×, ÷) or/and unitary (sin, power, square root, log) operations. Thus, by applying the

chain rule successively to these operations, derivatives of arbitrary order can be computed

automatically, exactly up to machine error, and using more arithmetic operations than

the original program.

Two main modes are usually used in the AD techniques, the forward mode and the back-

ward mode. In the forward mode, chain rule is applied from inside to outside while in

the backward mode, chain rule is applied from outside to inside. So for example, if some

function Υ(t) = g(h(t)), then by chain rule ∂Υ
∂t

= ∂g
∂h

∂h
∂t
, thus in the forward mode ∂h

∂t
is

computed first, while ∂g
∂h

is firstly computed in the backward mode. Although, this method

is much more effective than other differentiation methods, it is given less attention. This

is mostly because it is poorly understood, plus it is frequently confused with the better

known symbolic and numerical differentiation methods.

In addition to the above three differentiation techniques, several alternative methods ex-

ist to find local sensitivity indexes, such as the Green function methods and polynomial

approximation. However all such methods only investigate the behavior of the model in a
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small neighborhood of ai, which may not take into account all the possible values of the

uncertain input ai. In addition, these methods do not taking into consideration the effect

of inputs’ interactions on the output. In order to generalize the concept of sensitivity

analysis and overcome the limitation of local sensitivity analysis, the notion of global sen-

sitivity analysis methods were developed. The next section details thid notion for better

investigation of sensitivity analysis.

1.7.2 Global sensitivity analysis

In global sensitivity analysis methods, inputs are varied simultaneously over their entire

range of possible values [Bokov, 2012]. The effects on the output of both individual in-

puts and interactions between them are assessed in terms of sensitivity indexes. Several

approaches have been dedicated to derive such indexes, each based on different concepts.

In general, all these approaches are based on the probabilistic framework in representing

uncertainty. So the uncertain output is represented by Y random variable, and each un-

certain input is represented by random variable Xi.

The elementary techniques for global sensitivity analysis are specified for the linear case.

For instance, if the studied model depends linearly on its input, then Correlation coeffi-

cients (CC), Partial correlation coefficients (PCC), or Standardized Regression coefficients

(SRC) are used as sensitivity indexes. Note that such linearity can be easily detected by

examining scatter plots, in which two dimensional graphics are plotted representing the

variation of Y with respect to Xi. Actually, these plots give a full understanding of the

relationship between y and each xi including monotonicity and dependency.

The Correlation Coefficient (CC), also called Pearson Correlation Coefficient, provides a

measure of the strength of the linear relationship between Xi and Y [Helton et al., 2006].

According to [Marino et al., 2008], it is defined as follows:

C(Xi, Y ) = Cov(Xi, Y )√
V ar(Xi)

√
V ar(Y )

(1.35)

The CC has a value between -1 and +1. A positive value of CC indicates that Xi and Y

either increase together or decrease together. However, a negative value of CC indicates

that Xi and Y tend to move in opposite directions [Helton et al., 2006]. On the other
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hand, values of CC close to 0 indicate a weak (linear) relationship between Xi and Y

whereas values close to -1/1 indicate the relationship is strong. Thus, taking the absolute

value of the CC would be an appropriate indication of the effect of Xi on Yi, and hence

the sensitivity of Y with respect to Xi.

Although CC considers the effect of Xi on Y , it does not take into account the possible

effects on Y due to other uncertain inputs. A more thorough representation is the Partial

correlation coefficients (PCC) [Marino et al., 2008]. The Partial correlation characterizes

the linear relationship between the input Xi and the output Y after the linear effects of

the remaining inputs on Y are discounted. This is done using a sequence of regression

models. First, the following two regression models are introduced:

X̂i = a0 +
n∑
p=1
p6=i

apXp and Ŷ = c0 +
n∑
p=1
p6=i

cpXp (1.36)

Then the CC between the two residuals Xi − X̂i and Y − Ŷ is the PCC of Xi. Indeed

these two residuals remove the linear effect of the other inputs on Y . So PCC represents

the sensitivity of Y due to only Xi.

Another convenient indication for sensitivity assuming linearity is the Standardized Re-

gression Coefficient (SRC) [Saltelli et al., 1993]. Practically, a least square procedure is

usually used to construct a regression model describing the relation between the output

and the inputs:

Y = b0 +
n∑
i=1

biXi (1.37)

Then the regression coefficients b0, · · · , bn can characterize the influence of each input on

Y . However, a drawback of these coefficients is that they depend on the units in which the

Xi’s and Y are expressed. To cope with this problem, a normalized form of the regression

is adopted, having the following expression :

Y − µY
V ar(Y ) =

n∑
i=1

(bi
Vi

V ar(Y ))Xi − µi
Vi

(1.38)

where µi and µY are the means (averages) of the Xi and Y values respectively, V ar(Y )

and Vi are the variances of the Y and Xi respectively. The coefficient bi Vi
V ar(Y ) is called

the Standardized Regression Coefficient (SRC) of Xi. According to the author of [Helton
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et Davis, 2002], the absolute values of the SRCs can be used to provide a measure of the

inputs’ importance.

While the above three coefficients CC, PCC, and SRC are well behaved sensitivity indexes

in the linearity case, they perform poorly in the nonlinear case [Helton et Davis, 2002].

However, if the relationship between the input and the output is still monotone, a rank

transformation can be used to reduce the effect of non linearity [Helton et Davis, 2002].

In rank transformation, the sampled data are replaced by their corresponding ranks,

and then the usual regression and correlation procedures are performed on these ranks.

Specifically, the smallest value of each variable is ranked by 1, the next smallest value is

ranked by 2, and so on up to the largest value, which is ranked by the value of the sample

size. To clarify this, consider the following example. A model with two inputs X1 and

X2, having samples {(α1, β1), (α2, β2), (α3, β3), (α4, β4)}, such that α4 < α1 < α3 < α2

and β3 < β2 < β4 < β1. Then, their corresponding ranking is {(2, 4), (4, 2), (3, 1), (1, 3)}.

Considering the corresponding outcomes :

X =



α1 β1

α2 β2

α3 β3

α4 β4


−→



F (α1, β1) = Y1

F (α2, β2) = Y2

F (α3, β3) = Y3

F (α4, β4) = Y4


(1.39)

such that Y3 < Y1 < Y4 < Y2, the new ranked data is



2 4

4 2

3 1

1 3


−→



2

4

1

3


(1.40)

The analysis is then performed with these ranks used as the values for the input and

output variables. The sensitivity indexes of such analysis are the Ranked Correlation

Coefficients (RCCs), the Partial Ranked Correlation Coefficients (PRCCs), and the Stan-

dardized Ranked Regression Coefficients (SRRCs) instead of CCs, PCCs, and SRCs, re-

spectively [Pereira et Broed, 2006]. As for the linear case, the absolute values of such

coefficients may give a convenient degree of the importance of each input. Note that, the
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use of rank transformed data results in an analysis based on the strength of monotonic

relationships rather than on the strength of linear relationships [Helton et Davis, 2002].

Since linearity and monotonicity are specific for a limited number of models, more so-

phisticated methods have been investigated to derive sensitivity indexes for general cases.

The most popular approaches in this manner are the ANOVA methods, an abbreviation

of Analysis of Variance methods. The basic idea of such methods is to decompose the

total variance of the output into a sum of partial variances. Each partial variance corre-

sponds to an input or group of inputs. Such decomposition indicates the contributions

of each input variable or group of inputs in the output variance. The sensitivity indexes

are derived as the ratios of the partial variances over the total variance of the output.

In the following subsection, one of the main ANOVA methods, called Sobol method, is

presented in detail, as it is a cornerstone in the applications presented in chapters 3 and

4.

1.7.3 Sobol Method

A very powerful sensitivity analysis technique that is gaining popularity in many fields

is the Sobol method [Sobol, 1993]. It is based on the decomposition of the variance of

the output into a sum of partial variances, each contributing either to an individual in-

put or a group of inputs. Then sensitivity indexes, called Sobol indexes, are introduced

as the fraction of each of these partial variances over the total variance. The following

paragraphs form a detailed description of the concept behind the formulation of Sobol

indexes, as well as the strategies applied to compute them.

Consider the random variable Y = F (X1, · · · , Xn), where X = (X1, X2, ..., Xn) is a

random vector of independent inputs. Each random variable Xi is characterized by prob-

ability density function pi(xi). In the sequel, and for simplicity, the notation dpi will be

adopted instead of pi(xi)dxi when integrating over the probability space associated to

Xi. Moreover, dp will represent the product of all the density measures ∏n
i=1 dpi, and the

notation dp∼i will refer to the product of all density measures accept dpi.

A starting point for the Sobol method was to consider the ANOVA decomposition of
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F [Sobol, 1993]. Indeed, whenever F is integrable, it can be written as summands of

increasing dimensions as:

F (X1, X2, ..., Xn) = F0 +
n∑
i=1

Fi(Xi) +
n∑

1≤i<j≤n
Fij(Xi, Xj) + · · ·+ F1···n(X) (1.41)

where F0 is a constant, and

∫
Fi1···is(Xi1 , Xi2 , ..., Xis)dpik = 0 for 1 ≤ k ≤ s (1.42)

The classical properties for this decomposition, as stated in [Sudret, 2007], are:

1. The constant F0 is equal to the mean of Y :

F0 =
∫
F (X)dp (1.43)

2. The summands are orthogonal to each other in the following sense:

for {i1, i2, ..., is} 6= {j1, j2, ..., jt},

∫
Fi1i2...is(Xi1 , Xi2 , ..., Xis)Fj1j2...jt(Xj1 , Xj2 , ..., Xjt)dp = 0 (1.44)

Accordingly, the terms of the above decomposition can be determined as follows:

F0 =
∫
F (X)dp = E[Y ] (1.45)

Fi(Xi) =
∫
F (X)dp∼i − F0

= E[Y/Xi]− E[Y ]
(1.46)

Fij(Xi, Xj) =
∫
F (X)dp∼i,j − Fi(Xi)− Fj(Xj)− F0

= E[Y/Xi, Xj]− E[Y/Xi]− E[Y/Xj] + E[Y ]
(1.47)

Analogously one can proceed for the higher order terms.

Now, squaring both sides of the decomposition formula (1.41), and then integrating over
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all the input spaces and by the orthogonality property, one ends up by:

∫
F 2(X)dp = F 2

0 +
n∑
i=1

∫
F 2
i (Xi)dpi+

n∑
1≤i<j≤n

∫
F 2
ij(Xi, Xj)dpidpj + · · · +

∫
F 2

12···n(X)dp1dp2 · · · dpn
(1.48)

Note that ∫
F 2(X)dp− F 2

0 (1.49)

is the variance Y , denoted V ar(Y ). Moreover
∫
F 2
i (Xi)dpi is the variance of Fi(Xi) and it

is denoted by V ar(Fi). Also,
∫
F 2
ij(Xi, Xj)dpidpj is the variance of V ar(Fij(Xi, Xj)) and

it is denoted by V ar(Fij), and so follows for the the higher order terms.

Thus the variance of Y , can be written as a sum of partial variances:

V ar(Y ) =
n∑
i=1

V ar(Fi) +
n∑

1≤i<j≤n
V ar(Fij) + · · ·+ V ar(F1···n) (1.50)

According to this variance decomposition, the author in [Sobol, 1993] defined Sobol in-

dexes as:

Si1···is = V ar(Fi1···is)
V ar(Y ) (1.51)

The First-order Sobol index, Si, estimates the main effect of Xi on Y . On the other hand,

the Higher-order Sobol indexes, Si1···is , estimate the corresponding effect of interaction

between the inputs Xi1 , · · · , Xis on Y . Note that, by dividing both sides in (1.50) by

V ar(Y ), we find that the sum of the all first and higher order Sobol indexes is equal to

1. Fig. 1.8 is an illustration of the Sobol indexes for model with two variables.

To illustrate Sobol’s point of view of using variance decomposition to get the impact

of each input on the output, consider the following clarification. If one predicted the

influence of a certain input Xi on Y , he could measure the variation of Y while fixing

Xi at a specific possible value a and keeping the other inputs to vary randomly. If the

variation of Y stays the same as when all inputs vary, this means that Xi has no influence

on the output. However if the variation is smaller than that when all inputs vary, this

means that Xi is influencing the output. Note that, the scientific description of the

variation of Y while fixing Xi at a specific possible value a is nothing but V ar(Y/Xi = a).
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Figure 1.8: Output variance decomposition for model of two variables representing the
concept of the Sobol’s method for the derivation of the sensitivity indexes.

Due to uncertainty, no special value can be given for Xi. Thus it is preferable to take

the mean of this variance over the whole space of possible values of Xi to get better

understanding of the influence of Xi. In other words, E[V ar(Y/Xi)] represent a reference

of the sensitivity of Y to Xi. Indeed, comparing with the values of V ar(Y ), small values

of E[V ar(Y/Xi)] indicates that Xi highly affects Y , while large values indicates that Xi

has no strong effect on Y .

Knowing that:

V ar(Y ) = E[V ar(Y/Xi)] + V ar(E[Y/Xi]) (1.52)

then V ar(E[Y/Xi]) can be also a reference of the sensitivity of Y with respect toXi, where

V ar(Y ) is a constant quantity. So large values V ar(E[Y/Xi]) indicate high sensitivity,

and small values indicate much less sensitivity. In fact, first order Sobol indexes are the

indirect translation of this notion. Enough to see that V ar(Fi) is exactly V ar(E[Y/Xi]),

as Fi(Xi) is E[Y/Xi]− E[Y ]. Similar deduction can be done for the higher order terms.

In addition to the above effective indication for sensitivity, other proposed interesting

sensitivity indexes are the Total Sobol indexes ST [Homma et Saltelli, 1996]. Such in-

dexes describe the total contribution of an input Xi, including all its interactions, on the

output Y . So for the input Xi, the total Sobol index ST i is defined as the sum of all Sobol

sensitivity indexes involving Xi, and it can be written as:

ST i =
V ar(Fi) +∑

j 6=i V ar(Fij) + · · ·+ V ar(F1···n)
V

=
∑
{i}⊆J

SJ (1.53)
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where this last sum is overall J ⊆ {1, · · · , n} such that i ∈ J . The advantage of this Total

Sobol index is that it can be numerically computed with no need to compute all second

and higher order Sobol indexes.

In general, in applications where Sobol indexes are applied to study sensitivity, the under-

study models may have complex forms. Thus, computing Sobol indexes, which requires,

as we see, integrating the model function, may be a hard mission. In fact, practically,

only numerical methods are used. More precisely, according to the distribution each in-

put, a sampling is done to end up with a sample space {X(k) = (X(k)
1 , · · · , X(k)

n )}k=1,··· ,M .

Then using this sample, different formulae can be used to approximate the the Sobol

indexes [Saltelli et al., 2010]. For example, if the mean of Y is estimated by:

F̄0 ≈ E[Y ] = 1
M

M∑
k=1

F (X(k)) (1.54)

then, the total variance V can be estimated by:

V ar(Y ) ≈ 1
M

M∑
k=1

F 2(X(k))− F̄0
2 (1.55)

On the other hand, the partial variances are usually approximated by another set of

formulas. Noting that, in most applications the analyst often computes the first-order

Sobol indexes, and sometimes the second order ones corresponding to the interaction of

every two inputs. The following is one of the approximating formulas mentioned in [Saltelli

et al., 2010], it depends on approximating the partial variances using two different samples:

{X(k) = (X(k)
1 , X

(k)
2 , · · · , X(k)

n )}k=1,··· ,M , {X̃(k) = (X̃(k)
1 , X̃

(k)
2 , · · · , X̃(k)

n )}k=1,··· ,M (1.56)

Considering V ar(Fi) = V ar(E[Y/Xi]), one may write

V ar(Fi) =
∫
E2[Y/Xi]dpi −

( ∫
E[Y/Xi]dpi

)2
(1.57)

But ∫
E[Y/Xi]dpi =

∫ ( ∫
F (X)dp∼i

)
dpi =

∫
F (X)dp = F0 (1.58)
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and so this part can be approximated by F̄0 in (1.54). On the other hand, E[Y/Xi] can

also be written as ∫
F (X)dp∼i (1.59)

where Xi is considered in this integral as a constant and integrating is over the dummy

variable X∼i. Thus, it is possible to write:

∫
E2[Y/Xi]dpi =

∫ ∫ F (Xi, X∼i)dp∼i
∫
F (Xi, X̃∼i)dp∼i

dpi (1.60)

Rearranging this formula gives:

∫
E2[Y/Xi]dpi =

∫ ∫
F (Xi, X∼i)F (Xi, X̃∼i)dpdp∼i (1.61)

Hence, the proposed estimator for V ar(Fi)is written as:

V ar(Fi) ≈
1
M

M∑
k=1

F (X(k)
i , X

(k)
∼i )F (X(k)

i , X̃
(k)
∼i )− F̄0

2 (1.62)

where Xi, X∼i, X̃∼i are taken from the two different samples defined above. Similar ap-

proximation formulas are also defined to any higher order Sobol indexes as well as to the

total order Sobol indexes.

Thus, with these numerical approximations, Sobol indexes can be efficiently computed.

However, one should pay attention to the computational cost of such approximations,

especially for models with a large number of inputs.

In this section the concepts of sensitivity analysis and some common sensitivity methods

were revised. Two main groups of sensitivity methods were considered: the local methods

and the global methods. The local sensitivity methods use mainly the partial derivative

as an indication of the sensitivity of the output with respect to each input. Thus this

kind of methods provides information only at the base point where the partial derivative

is computed and do not take into account the rest of the variation ranges of the model in-

puts. On the other hand, global sensitivity methods give a more thorough comprehension

of the sensitivity of the output with respect to the inputs, as they take into account the
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interaction and the global ranges of variation of the inputs. These global methods rely

on the probabilistic point of view to describe the variation of each input. In this manner,

the ANOVA method, Sobol method is considered as one of the strongest methods, and we

rely mainly on it in our applications where we develop its usage. Note that all sensitivity

analysis methods aim to detect the influence of the inputs of a model on its output. This

in fact plays an important role in an uncertainty analysis, since it restricts the study to

the significant inputs and this simplifies the uncertainty study. In particular this helps

a lot in the backward propagation of uncertainty, since as the number of the uncertain

inputs increases the complexity of the problem increases.

1.8 Conclusion

In this chapter, several methods that deal with uncertainty during modeling are revised.

First the concepts of the structural uncertainty assessment methods are briefly reviewed.

Then different methods for forward uncertainty propagation are described in detail. Then,

the state of art of the backward propagation methods is presented. A little consideration

of these methods has been taken in account in literature. Actually, this was our main

motivation for deriving a new backward propagation method which is presented in chapter

2. In addition, various sensitivity analysis techniques have been reported and discussed in

this chapter. The main focus was on the Sobol method, which is the main method used

in our work presented in chapters 3 and 4.
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2.1 Introduction

One of the remaining challenges in modeling under uncertainty is the inability to quan-

tify the input uncertainty given the output uncertainty. In most problems which rely on

simulations and experiments, different outcomes are obtained even when the experiment

is carried out at a supposed same value of the input. This is usually due to a hidden

disturbance in the values of the input, which is indeed an unknown input uncertainty. So

given the data of the obtained uncertain output, how the input uncertainty, that causes

this output uncertainty, can be quantified and apportioned between different elements

of the input. This type of problems has been rarely tackled in the domain of studying

uncertainty, one cause for that would be the difficulty of such problems. Another reason

could be the inability to guarantee solutions for such problems that can be ill posed in

some cases since several solutions for the input uncertainty may correspond to the same

output uncertainty. In this chapter we present a new backward uncertainty propagation
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method, concerned with finding the input uncertainty starting from the data of the un-

certain output.

The method uses the probabilistic point of view to represent uncertainty. In addition,

it consists of two main steps. Its basic idea is to solve a nonlinear least square problem

whose residues are defined using the formula that expresses the variance of the output in

terms of the statistical moments of the inputs. The solution of this problem gives directly

the quantification of the input uncertainty. Unlike most previously proposed backward

propagation methods, this method does not rely on any prior data or information about

the input uncertainty. In addition, it is applied for both cases, whether the input uncer-

tainty is represented by a normal distribution or a uniform distribution. Even more it is

applied in the case when the uncertain inputs are not represented by the same distribution.

In following paragraphs, we first introduce again the problem of the backward propa-

gation using the probabilistic notation. Then the two main steps of the method are

presented. After that some numerical examples are described to prove the validity of the

method. The chapter ends with the derived conclusions as well as the obtained notes.

2.2 Problem definition and notation

Let a = (a1, · · · , an) be an input point in D the domain of F . Given the data of several

samples of the output, coming from some experiments or measurements, in which unequal

outcome values correspond to the input point a. This variety in the outcomes indicates

that the output is uncertain, i.e. we are not sure what the true value of F (a) is. Since

the model is assumed to be deterministic, this implies that the only source of this output

uncertainty is the input. It is to say that the values given to F to produce F (a) are

not surely equal to a. Therefore, there is an input uncertainty at a causing an output

uncertainty at F (a). The aim of our new method is to find this input uncertainty using

the given output data.

In this work, the probabilistic point of view is used to represent the uncertainty, as
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described in section 1.4 of chapter 1. The input uncertainty at a is represented by the

random vector X = (X1, · · · , Xn) and the output uncertainty at F (a) is represented by

the random variable Y . The expectation of X, denoted by µX = (µ1, · · · , µn), is equal to

the best estimate of the true input value. Since the runs of the model are supposed to be

performed at the same input point (a) then we take µX = a. On the other hand, the expec-

tation of Y , denoted by µY , which represents the best estimate of F (a) is computed from

the given data. The quantity of the output uncertainty at F (a) is represented here by the

variance of Y which is denoted by V ar(Y ) and it is computed from the given output data.

Concerning the quantity of the input uncertainty, the representation is more specific.

Indeed, in uncertainty analysis, the uncertain inputs are mostly considered as either nor-

mally distributed or uniformly distributed, depending on the way measurements and

experiments are done. For that we restrict our method here to these two types of dis-

tributions. Accordingly, if Xi has a normal distribution, the quantity of the uncertainty

is best represented by the variance of Xi denoted by Vi. However, if Xi has a uniform

distribution, then Xi is associated by a support interval centered at its mean µi. So let

[µi − ri, µi + ri] be the support interval of Xi if it is uniformly distributed. In this case,

the quantity of uncertainty is best represented by the radius of the support interval ri,

which indicates the dispersion of the values around µi.

For that we consider the two sets I1 and I2 defined by:

I1 = {i ∈ N | 1 ≤ i ≤ n and Xi has normal distribution} (2.1)

I2 = {i ∈ N | 1 ≤ i ≤ n and Xi has uniform distribution} (2.2)

Let V = {Vi}i∈I1 be the set of the variances of all normally distributed Xi’s and let

R = {ri}i∈I2 be the set of the radii of the support intervals of all uniformly distributed

Xi’s. Thus the elements of V and R represent the quantity of the input uncertainty. In

our study case, the input uncertainty is unknown, and so the elements of the two sets V

and R are unknown.

So to do a backward propagation of uncertainty, we should start with the given data of the

uncertain output in order to quantify the input uncertainty. Using the notation defined
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in this section, the backward propagation problem can be defined as follow: starting from

the values of µX , µY and V ar(Y ) the elements of V and R are to be determined.

2.3 Backward propagation: Variance Partitioning

The idea of the presented backward propagation method is to consider the elements of

V and R as unknowns. Then, we solve a nonlinear least square problem to find these

unknowns. The residues of the least square problem are generated using the formula of

V ar(Y ). The execution of this method is done in two main steps. The first step is to

write the output variance V ar(Y ) in terms of the elements of V and R. The second step

is to generate the least square problem using the derived expression of V ar(Y ).

2.3.1 Step 1: Output variance in terms of V and R

To derive an explicit expression of the output variance V ar(Y ) in terms of the elements

of V and R the formula of the model F is used. In this manner, two different cases

are distinguished: F is a multivariate polynomial in x1, · · · , xn and F is a smooth non

polynomial function.

CASE 1:

If F is a multivariate polynomial in x1, · · · , xn, then it can be written in the following

form:

F (x) =
K∑
j=1

qj Qj(x1, · · · , xn) (2.3)

where each of Q1, · · · , QK is a monomial in x1, · · · , xn and K is the number of terms

of F . In addition, the qj’s are the coefficients associated with the monomials Qj’s. To

clarify this notation, consider an example of F a polynomial of three inputs defined by

F (x1, x2, x3) = x2
1+4x1x2+x2x

2
3. ThenK = 3 and q1 = 1, q2 = 4 and q3 = 1. Furthermore,

the monomials are Q1 = x2
1, Q2 = x1x2, Q3 = x2x

2
3.

According to the formulation of F in (2.3), the expression of the random variable Y in
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terms of the random vector X is given by:

Y = F (X) =
K∑
j=1

qjQj(X1, · · · , Xn) (2.4)

So Y is the sum of K different random variables each of the form Qj(X1, · · · , Xn), where

Qj is a monomial of X1, · · · , Xn. Note that these K random variables are obtained from

various multiplications of the random variables X1, · · · , Xn. For simplicity, each random

variable Qj(X1, · · · , Xn) is used in the sequel as Qj. Recall that, the variance of the sum

of different random variables is the sum of the covariances of each couple of these random

variables. Applying this to the Y in (2.4), then V ar(Y ) is written as:

V ar(Y ) = V ar
( K∑
j=1

qjQj

)
=

K∑
j,k=1

qjqkCov
(
Qj, Qk

)
(2.5)

However, according to the simplified formula, each covariance is decomposed into:

Cov
(
Qj, Qk

)
= E[Qj ∗Qk]− E[Qj]E[Qk] (2.6)

where E[.] stands for the expected value of a random variable. Note that, sinceX1, · · · , Xn

are mutually independent, then Qj and Qk are independent if they have no Xi in common

with any degree. But if Qj and Qk are independent, the product of their expectation

is equal to the expectation of their product, and so their covariance is equal to zero.

However, if Qj and Qk have at least one of the variables X1, · · · , Xn in common with

any degree, they are dependent. In addition, their covariance is expressed in terms of the

non central moments of the variables X1, · · · , Xn. To explain how this is done, consider

a generic case of two dependent random variables Qk and Qj such that Qk = Xu
l X

v
i and

Qj = Xs
hX

t
i , where u, v, s, t ∈ N∗. Qk and Qj are dependent since Xi is a common random

variable in their expressions. Using the fact that X1, · · · , Xn are mutually independent,

the expectations of Qk ∗Qj, Qk, and Qj are decomposed into:

E[Qj ∗Qk] = E[Xu
l X

v
i ∗Xs

hX
t
i ] = E[Xv+t

i ] ∗ E[Xu
l ] ∗ E[Xs

h]

E[Qj] = E[Xu
l X

v
i ] = E[Xv

i ] ∗ E[Xu
l ]

E[Qk] = E[Xs
hX

t
i ] = E[X t

i ] ∗ E[Xs
h]

(2.7)
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Recall that any expectation of the form E[Zz], where Z is a random variable, is called the

non central moment of Z of order z. We say non central because the random variable is not

centered by its mean, so the central moment of Z of order z has the form E[(Z −E[Z])z].

So the expectations which appeared on the right hand side in (2.7) are the non central

moments of the random variables Xl, Xh and Xi with different orders.

Substituting the expectation decomposition of (2.7) in the formula (2.6) implies that the

covariance of the two dependent random variables Qk and Qj is written in terms of the

non central moments of X1, · · · , Xn. Hence, any non zero covariance in (2.5), which is

in fact the covariance of two dependent random variables, is written in terms of the non

central moments of X1, · · · , Xn. Consequently, V ar(Y ) is expressed in terms of the non

central moments of X1, · · · , Xn.

Note that, for any Xi, the first order non central moment is the expected value µi.

Furthermore, the higher order moments are defined as follows:

• If Xi has a normal distribution: the non central moments are expressed as polynomials

in terms of the first and second moments, the mean µi and the variance Vi, using the

Moment Generating Function. See Appendix A for details.

• If Xi has a uniform distribution: the t-th non central moment of Xi is defined by the

following formula:

E[X t
i ] = 1

2ri

∫ µi+ri

µi−ri
xtidpi = 1

t+ 1

((µi + ri)t+1 − (µi − ri)t+1

2ri

)
(2.8)

This expression of E[X t
i ] can be simplified into:

E[X t
i ] = 1

t+ 1

( t∑
k=0

(µi + ri)k(µi − ri)t−k
)

(2.9)

So the moments of a uniformly distributed Xi are expressed in terms of µi and ri.

Accordingly, the moments ofX1, · · · , Xn are expressed in terms of the elements of µX = (µ1, · · · , µn),

V , and R.

So to sum up, the non zero covariances in (2.5) are written in terms of the non central

moments of X1, · · · , Xn. In addition, the moments of X1, · · · , Xn are expressed in terms

of the elements of µX , V , and R. Thus V ar(Y ), which is known, is expressed in terms of
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µX and the elements of V and R that we are searching for.

CASE 2:

If F is not a multivariate polynomial, then by Weierstrass Theorem F can be approx-

imated by a multivariate polynomial [Reimer, 2012]. This well known theorem states

that any continuous function on a closed and bounded domain in Rn is approximated

by a multivariate polynomial. So whenever the model F is continuous, we may select a

bounded and closed subset of D and approximate F to a polynomial on this set. In our

method, a bounded and closed subset of D is sufficient to do a backward propagation,

since we are using a finite number of input points of F .

So theoretically, F can be approximated by a polynomial, however it is important to see

how this is done practically. One of the simplest ways is to use the multivariate version

of Taylor’s expansion. However such polynomial expansion is done locally, in a small

neighborhood of an input point. In addition, it requires the computation of the partial

derivatives of F , which are used as the coefficients of the polynomial. More sophisticated

and general approximations are the multivariate polynomial interpolation methods. These

methods use a finite set of points of the model to construct a polynomial approximation

that matches the model at the given points. They mainly rely on some polynomial basis

to construct the approximations. For instance the Lagrangian interpolation, which is ini-

tially defined for the case of one variable, is generalized to the multivariate case. In [Sauer

et Xu, 1995], the algorithms of two methods to find the coefficients of the polynomial ap-

proximation using multivariate Lagrangian interpolation are presented. In [Duchoň, 2011]

a multivariate polynomial approximation using the Bernstein basis is proposed as a gen-

eralization of the univariate case.

Note that approximating a function by a polynomial in the univariate case is much simpler

than the multivariate case. For that most methods are first developed for the univariate

case, and then generalized to the multivariate case.

Thus, whenever the model F is continuous, it is approximated by a polynomial, and so

we are again in case 1.
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Therefore as a conclusion of the above two cases, whenever F is a continuous function,

the variance of the output can be expressed in terms of µX , V and R as

V ar(Y ) = G
(
µX ,V ,R

)
(2.10)

for some algebraic function G. µX which is the best estimate of the input point is actually

the input point a. However the elements of V and R are unknown. The expression (2.10)

is the key point in generating the residues of the least square problem that is solved in

step 2. Figure 2.1 is a flowchart that summarizes all the procedures of Step 1. In the

flowchart, the term poly(.) refers to a polynomial of the inside indicated variables, and

Mi refers to the moments of the random variable Xi of any order.

2.3.2 Step 2: Solving nonlinear least square problem

In order to do a backward propagation of uncertainty we should find the elements of V

and R. So here we have n unknowns. However, we just have one equation involving

these unknowns which is (2.10). To cope wih this problem we consider the uncertainty at

different input points in D.

Note that, input uncertainty usually comes from some inaccurate measurement instru-

ments or improper experimental procedures. So the uncertainty at different input points

is due to carrying the same experiments and procedures with different configurations.

Thus, it can be assumed that the input uncertainty is a function of the input point. To

clarify the idea of taking the input uncertainty as a function of the input point consider

the following simple example:

Consider a balance that measures the human’s weight, labeled by ±0.01Wm, where Wm

here refers to the measured weight. This label means that this balance has an uncertainty

defined by the interval [−0.01,+0.01] ×Wm. Clearly, one can see that this uncertainty

is a function of the measured weight Wm. So for a man weighing 70 kg on this balance,

his real weight is a value in the interval [70− 0.7, 70 + 0.7] and not exactly 70. Thus the

uncertainty here is 0.7kg. However, for a man weighing 100 kg, the real weight is in the

interval [100−1, 100+1], and so the uncertainty here is 1kg. This evolution of uncertainty

is illustrated graphically in Fig. 2.2.
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Y = F (X)

F polynomialF non
polynomial

Y = ∑
qjQj(X1, · · · , Xn)

V ar(Y ) = ∑
qjqkCov

(
Qj, Qk

)

Cov
(
Qj, Qk

)
= 0 Cov

(
Qj, Qk

)
=

poly(M1, · · · ,Mn)

V ar(Y ) = ∑
qjqk poly(M1, · · · ,Mn)

Mi = poly(µi, Vi) Mi = poly(µi, ri)

V ar(Y ) = G
(
µX ,V ,R

)

Case 1

Case 2

approximation

Qj, Qk independent Qj, Qk dependent

Xi normal Xi uniform

Figure 2.1: Flowchart that summarizes Step 1.
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Figure 2.2: Uncertain real weight (WR) in terms of the measured weight (Wm).

As it can be seen in this example the input uncertainty is a linear function of the input

value Wm. So with this example it is clear how input uncertainty can be expressed as a

function of the input point. Accordingly, we define the input uncertainty at any point

x = (x1, · · · , xn) ∈ D as a functions of x:


V(x) = {Vi(xi) | i ∈ I1}

R(x) = {ri(xi) | i ∈ I2}
(2.11)

So to find the input uncertainty at all the input points, we should find the function

representations Vi’s and ri’s.

In this manner, a first approximation of these functions can be derived, by assuming these

functions as constant. This means that the quantities of the uncertainty at different input

points are equal and independent of the chosen input point i.e. V(x) = V and R(x) = R.

It is to say that the same quantity of uncertainty arises whenever the measurements or the

experiments are carried out. So to find the input uncertainty we should find the elements

of V and R, which are n constant quantities corresponding to the input uncertainty for

any x ∈ D. For that we select n different points in D denoted a(1), · · · , a(n). Then by
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step 1, the corresponding output variances of the selected points are decomposed into :



V ar(Ya(1)) = G
(
a(1),V ,R

)
...

V ar(Ya(n)) = G
(
a(n),V ,R

) (2.12)

This is a system of n unknowns, and its solution gives the values of the elements of V and

R. To solve (2.12) we consider the least square problem:

min
V,R

n∑
i=1
‖∇i||2 (2.13)

whose residues that should be minimized are

∇i = V ar(Ya(i))−G
(
a(i),V ,R

)
(2.14)

By solving this least square problem we obtain the values of the elements of V and R,

and hence the values of the input uncertainty. Note that the problem (2.13) is non linear,

thus it is best to be solved numerically.

To be satisfied by this first approximation of the input uncertainty, which is represented

by the obtained values of the elements of V and R, we use the following test. We select

new points from D the domain of F and a tolerance, ε = 10−6 for instance. Then we

compute the residues of the new points using the obtained values of the elements of V

and R and the formula: ∇x = V ar(Yx)−G
(
x,V ,R

)
. If for any x ∈ D, ∇x ≤ ε , then we

are done and the quantity of the input uncertainty is the obtained values of the elements

of V and R.

If for some x ∈ D, we get ∇ > ε, then the obtained uncertainty is not promising. For

that we resolve a least square problem, however this time we relax the assumption that

the uncertainty at different input points is constant. We assume that the uncertainty is a

linear function of the input point. So for an arbitrary input point x = (x1, · · · , xn) ∈ D
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the corresponding input uncertainty is defined by:


Vi(xi) = Aixi + Bi if i ∈ I1

ri(xi) = Aixi + Bi if i ∈ I2

(2.15)

where I1 and I2 are as defined in 2.1, and A1, · · · ,An, B1, · · · ,Bn are constants to be

determined. Thus the expression of the output variance at the input point x becomes a

function of A1, · · · ,An,B1, · · · ,Bn, and it can be written as:

V ar(Yx) = H
(
x,A1, · · · ,An,B1, · · · ,Bn

)
(2.16)

So, to determine the input uncertainty it is enough to find A1, · · · ,An, B1, · · · ,Bn, which

are 2n unknowns. For that we select different 2n points a(1), · · · , a(2n) from D, and we

define new residues by:

∇i = V ar(Ya(i))−H
(
a(i),A1, · · · ,An,B1, · · · ,Bn

)
(2.17)

Then by solving the associated least square problem with the new residues, we get the

values of A1, · · · ,An, B1, · · · ,B. This gives the input uncertainty as a linear function of

the input point using the expressions in (2.15). In fact this can be considered as a first

order approximation of the uncertainty of the inputs. However, for most experimental

instruments the uncertainty presented can be assumed to take constant values or at most

linear since the manufacturing error of the instruments is usually constant or linear.

In the following section, three different examples for the application of our method are

presented. In the first example the model is a polynomial function with mixed distribu-

tions of the uncertain inputs. In the second example, we consider a model presented ??,

where the input uncertainty is computed by inverting the model. The results obtained

by our method are compatible with the results presented in the above reference.
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2.4 Applications

In each of the following two examples we perform a reverse computation of the input

uncertainty. So we take the model F , which has in both cases two variables, and we

specify the input uncertainty by the associated random variable of each input. Then we

run a Monte Carlo simulation in order to get the data of the uncertain output. After

that, our method is applied on the obtained data to find again the input uncertainty. The

results obtained are then compared to the initially chosen values of the inputs uncertainty.

In addition, we present the convergence of the results as a function of the number of the

generated data points used in the Monte Carlo simulation.

2.4.1 First example

Consider the model F to be a polynomial of two variables defined as:

F (x1, x2) = x1 ∗ x2 (2.18)

The input uncertainty of x1 is assumed to have a normal distribution with variance V =

0.7, and the input uncertainty of x2 is assumed to have a uniform distribution such that

the radius of its support interval is r = 0.25. Then, using these assigned values the output

data is generated at two input points a = (0,−2) and b = (3, 6). Then, based on the

obtained data V ar(Ya) and V ar(Yb) are computed. To perform step 1 of the method, we

use the expression of F to derive an expression of the output variance. Indeed, the output

variance is written as:

V ar(Y ) = V ar(X1∗X2) = E[X2
1 ∗X2

2 ]−E[X1]2∗E[X2]2 = E[X2
1 ]∗E[X2

2 ]−µ2
1∗µ2

2 (2.19)

Using the moments of the normal and the uniform distributions, and with some compu-

tations, V ar(Y ) becomes:

V ar(Y ) = 1
3(V + x1)(3x2

2 + r2)− x2
1 ∗ x2

2 (2.20)

In step 2 of the method, we use the expression of the output variance to derive the residues

of the least square problem. Thus, here we first assume that the uncertainty is constant
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over the input range. Then we derive the residues ∇a and ∇b using equation (2.20):

∇a = V ar(Ya)−
1
3(V )(3(−2)2 + r2)− 0

∇b = V ar(Yb)−
1
3(V + 3)(3(6)2 + r2)− (3)2 ∗ (6)2

(2.21)

Then we solve the least square problem using these two residues. The results obtained

for V and r as a function of the number of sample points are presented in Fig. 2.3.

Figure 2.3: The obtained values of V and r as a function of the number of sample points
used.

As it can be seen from Fig. 2.3, the method detects the input uncertainty as we get

very near values. However as the number of the data points increases the accuracy of the

obtained values increases.

In the following we consider another example which is already considered in a previous

publication to compare the results of our method to already existing methods.

2.4.2 Second example

In this example we consider a model presented in [Chen et al., 2015], that is defined by:


F1(x1, x2) = x2

1 + ex2

F2(x1, x2) = sin(x1) + x2

(2.22)

So this model takes two inputs x1 and x2 and gives two outputs. According to [Chen et al.,

2015], the uncertainties of both inputs are considered to be uniformly distributed and it

is given that at the point a = (1, 0.7) the radii of the associated intervals of distributions

are r1 = 0.867 and r2 = 0.6922. Starting from this, we generate the data of the uncertain

output, and then this data is used by our method to find again r1 and r2. In [Chen et al.,

2015] the method used to detect the input uncertainty is the reversal workflow solver,
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which is restricted to models assembled as a computational workflow.

Concerning the first step of our method, we find a polynomial approximation of order 4

for each of ex2 and sin(x1). Then using these approximations we decompose the output

variance in terms of x1, x2, r1 and r2.

Concerning the second step of our method, we consider only the input point a given above.

This is because we have two outputs, giving two equations, with two unknowns r1 and r2.

Thus substituting one point in the decomposition is enough to find the solution.

The following plots represent the values obtained of r1 and r2 as a function of the number

of samples of the output data used:

Figure 2.4: The obtained values of r1 and r2 as a function of the number of sample points
used.

So our method detects the input uncertainty by giving very near values for r1 and r2. The

results obtained validate the efficiency of our method, however the accuracy depends on

the number of sample points used.

2.5 Conclusion

In this chapter, we establish a new method for the backward propagation of uncertainty.

The method aims at quantifying the input uncertainty starting from the data of the

uncertain output. We use the probabilistic representation in order to derive the input

uncertainty. To clarify the concepts of the method we split it into two steps. In a first step

we derive an expression of the variance of the output in terms of the statistical moments

of the inputs. Then using this expression, in a second step, we construct a system of

equations whose unknowns are the uncertainties of the inputs. The obtained system is

nonlinear and it is solved numerically as a least square problem giving a quantification

of the input uncertainty. Two applications were considered to validate the method, and
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the results showed that the method gives the values of the input uncertainty. However,

the accuracy of the results depends on the number of the sample points used in the data

of the uncertain output. In general, the method is considered as simple as it relies on

some concepts from probability theory, however the decomposition of the output variance

becomes more difficult as the number of the variables increase. In such a case, sensitivity

analysis can be used in order to detect the most important inputs and hence involve them

in the uncertainty study. In the next two chapters we consider one of the most important

sensitivity analysis methods, called Sobol method, and we develop the way it is applied.
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3.1 Introduction

Sensitivity analysis methods are mainly used to detect the impact of the inputs on the

output in a model. This assists in detecting the most influencing inputs. Accordingly it

is possible to determine whether an uncertain input will cause a significant uncertainty

in the output or not. Thus in an uncertainty analysis one may restrict the study to only

the most influencing uncertain inputs. Several sensitivity analysis methods were revised

in chapter 1, in which the Sobol method is considered as the strongest among them.
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The Sobol method is based on the derivation of sensitivity indexes, called Sobol indexes,

that indicate the impact of the inputs on the output. The computation of these indexes is

done either symbolically according to the formula (1.51) or numerically using a simulation

technique. To compute the indexes symbolically the expression of the model F should

be given, and to compute them numerically many data samples of the model are needed.

The goal of this chapter is to examine the performance of the Sobol method in case of

having no evidence about the expression of the model F plus having a limited number of

data points coming from experiments.

To reach our goal we apply the Sobol method to study the sensitivity of an experimental

curve, called Electrostatic Force Distance Curve (EFDC) [Villeneuve-Faure et al., 2014],

with respect to some experimental factors. The following sections present in detail this

sensitivity study. First, we introduce the concept of the EFDC and how it is obtained.

After that, in section 3.3 we indicate the experimental factors that are considered as the

input of the model and that their impact on the EFDC is studied by the Sobol method.

Then in section 3.4, we describe the experimental procedures and materials that are used

to acquire the data of the EFDCs. This is important in order to understand the sensitivity

results from a physics point of view. In order to apply the Sobol method, the output of

the considered model should be a scalar. For that, the EFDC is fitted by a 4 parameter

logistic law in section 3.5. This enables us to investigate the sensitivity of the EFDC

by studying the sensitivity of the associated four logistic parameters and the sensitivity

results obtained are presented in section 3.6. Then, to validate the results we present an

effect detecting technique used in experiments called Design of Experiment (DOE) which

is introduced in section 3.7. Lastly in section 3.8, we construct an approximation model,

called the matrix model, for the four logistic parameters giving an approximating formula

for the electrostatic force.

3.2 What is an EFDC

To best describe EFDCs, it is important to know first how these curves are traced. Indeed,

the main technique used in this manner is the Atomic Force Microscopy(AFM). AFM is a

kind of Scanning Probe Microscopes (SPM), which are microscopic techniques designed to
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detect the local properties of materials, at a microscopic scale, by scanning with a probe.

AFM has been initially developed as an imaging technique to study the topography of

surfaces and materials. However, its ability to detect and measure the interaction forces

between the probe and the sample surface makes it a powerful tool to disclose much more

than just the chemical and mechanical properties of the sample. In this manner, AFM

is used to find the electrostatic force caused by charge accumulation in dielectrics. In

this section we explain how AFM is used to compute the electrostatic force and how the

EFDCs are extracted, readers interested in more details about the general procedures of

AFM are referred to [Cappella et Dietler, 1999].

3.2.1 The AFM process

The AFM operator consists of three main parts: a probe, a detector, and a scanner (see

Fig. 3.1):

• The probe is formed of a very sharp thin tip (typically less than 5µm tall and often

less than 10nm in diameter at the apex [Cappella et Dietler, 1999]) attached to the

free-swinging end of a small spring-like cantilever that is usually 100− 500µm long.

• The detector records the deflection and the motion of the cantilever as the tip scans

the sample. Usually, a laser beam with a photo-detecto are used as a detector (as in

Fig. 3.1), however other deflection detecting methods can be used as Piezoelectric

detection [Giessibl, 1998], Optical Interferometry [Rugar et al., 1989], and Scanning

Tunneling Microscope [Binnig et al., 1986].

• The scanner controls the probe-sample displacement both vertically and laterally,

in order to allow the probe to scan the sample in all directions. As illustrated in

Fig. 3.1, the drive is attached to the sample, however it can be also attached to the

cantilever while keeping the sample fixed.

There are two principle modes in which AFM operates: the contact mode and the dy-

namic mode [Binnig et al., 1986]. This depends on how the probe scans the sample. For

acquiring the EFDCs, the contact mode is used, in which the tip makes a soft contact

with the sample at a particular location of the sample surface.
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Figure 3.1: Schematic of the AFM parts: 1.Piezoscanner 2.Sample 3.Tip 4.Cantilever
5. Laser emitter 6.Photo-detector.

In this mode, the process starts by the tip and the sample at a rest state in which a large

distance separates them so that no interaction forces are presented (Fig. 3.2(a)). Then

the scanner starts to move vertically upward, bringing the sample very close to the tip.

As the sample approaches the tip, the cantilever remains at an equilibrium state, until

the sample comes close enough to the tip so that the tip experiences the attractive Van

der Waals force. So the tip snaps into surface forming the jump to contact point (Fig.

3.2(b)), and the cantilever bends slightly towards the surface. As the scanner continues

to move upward, the cantilever deflects away from the surface (Fig. 3.2(c)). Whenever

the Van der Waals force force is detected, implying that the tip is in contact with the

surface, the scanner begins to retract. However, the interaction forces between the tip

and the sample hamper the retraction, making a gradual withdrawal of the tip from the

sample (Fig. 3.2(d)). Lastly, the tip withdraws and loses its contact with the sample

(Fig. 3.2(e)). These different phases of the AFM are illustrated in the Fig. 3.2.

During all these phases, the deflection of the cantilever is recorded by the detector. Note
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(a) (b) (c) (d) (e)

Figure 3.2: The tip-sample positioning during the different phases of AFM.

that this deflection is due to the net vertical forces acting on the tip, which are in fact

the interaction forces between the tip and the sample. So the quantity of these forces at

each moment can be computed using the Hooke’s law:

F = k δc

where k is the spring constant of the cantilever defined by the manufacturer, and δc is

the deflection of the cantilever from its equilibrium position calculated using the records

of the detector. Plotting F as a variation of the sample-tip distance gives the well known

Force Distance Curve (FDC). Fig. 3.3 shows a typical FDC illustrated with the associated

phases of the tip-sample positioning.

Figure 3.3: A typical AFM Force Distance Curve showing the approach stage, the contact
stage, and the retract stage. The labels (a), (b), (c), (d), and (e) refer to the phases of
the tip-sample positioning of Fig. 3.2.

The FDC provides direct measurement of interaction forces between the AFM tip and

the sample surface. Note that the tip sample interaction forces may include other forces
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than just the Van der Waals force. This depends on the materials used as well as the

supplement settings added to the AFM setup. For instance, if the tip is grounded, and

a dielectric sample is scanned by the tip, in which charges are injected on the surface of

the sample or an electrode is buried in the sample, which induces an electrostatic force.

Indeed, in the case of a buried electrode, when a voltage is supplied to the electrode, the

electrical potential difference between the electrode and the tip induces an electrostatic

force. However in the case of injected charges, the charge density is trapped in the dielec-

tric layers, and this charge density induces electrostatic force on the tip. This induction of

the electrostatic force in both cases affects the tip-sample interaction during the different

phases of the AFM operation. This idea plays a basic role in deriving the EFDC, which

is our concern in this work.

3.2.2 Acquiring the EFDC

In fact, EFDCs are obtained by two steps. The first step is to record the FDC over the

considered sample. The second step is to record the FDC again after either injecting

some charges in the sample or supplying a buried electrode in the sample by a potential.

Then the EFDC is obtained as the difference between the two obtained FDCs in the

approach and contact stage [Villeneuve-Faure et al., 2014]. This implies that the EFDC

represents only the action of the electrostatic force on the tip-sample position, without the

consideration of the other forces. Fig. 3.4 shows the two obtained FDCs while scanning an

oxy-nitride dielectric. The black curve corresponds to a blank FDC, however the gray one

corresponds to the FDC after injecting charges on the surface of the oxy-nitride sample.

Charges are injected on the surface of this dielectric for obtaining the second FDC. The

insert in the graph is the difference between the two FDCs curves which represents the

EFDC. So as we see the EFDC is based on the measurements of the electrostatic force

between the AFM tip and the sample. In the next section we indicate the motivation

for studying the sensitivity of the EFDC from the physics point of view. This enables us

to indicate the experimental factors that are of scientific interest in this manner. These

factors will be the inputs of our considered model, in which their impact is to be studied

using the Sobol method.
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Figure 3.4: The FDCs while scanning an oxy-nitride dielectric (before and after the effect
of the electrostatic force). Their difference produces the EFDC. This figure is extracted
from [Villeneuve-Faure et al., 2014].

3.3 The model inputs

All solid dielectrics have the property of being able to accumulate electrical charges under

electrical stress beyond an electric field threshold [Villeneuve-Faure et al., 2014]. The

accumulation of electrical charges induces a local increase of the electric field, and this may

lead to a failure of the system containing the dielectric and/or a premature of dielectric

breakdown [Normand et al., 2003]. Consequently, it is important to quantify the density

of accumulated charges and their localization in dielectric layers to improve the reliability

of devices and systems.

Several methods for charge detection in insulators have been proposed; see [Rezende

et al., 2009] for a review of these methods. In the same manner, in [Villeneuve-Faure

et al., 2014] a recent method has been proposed that totally relies on the Electrostatic

Force Distance Curve (EFDC), from which the method takes its name as it is also called

the EFDC method. This method aims to detect the 3D localization of charges across

dielectrics [Boularas et al., 2016]. It is specialized for thin dielectric films with a thickness

of less than 200nm.
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It has been demonstrated experimentally that EFDCs are sensitive to charge localization

in three dimensions [Villeneuve-Faure et al., 2016]. So studying their sensitivity can be

a first step in detecting the charge spatial localization in dielectrics. For that, we study

the sensitivity of the EFDC with respect to the charge position and density in dielectrics

using the global sensitivity analysis method of the Sobol method.

In our case study, the considered EFDCs are obtained by AFM scanning a dielectric with

a buried electrode. Indeed, from an experimental point of view the potential is easier to be

controlled than charge distribution. Accordingly, the electrical potential localization and

density can be represented by three elements: the width of the electrode w, the depth of

electrode d, which in turn represents the electrode’s position, and v the potential applied

on the electrode. So the inputs of our model are w, v and d of which we study the impact

on the EFDC using Sobol method. In the next section, we give more details about the

experimental procedures and the materials used to derive the EFDCs that we use in our

sensitivity study.

3.4 Experimental procedures

As stated in the previous section, the considered EFDCs are obtained by AFM scanning

a dielectric with buried electrodes. In detail, the sample structure of the considered di-

electric consists of aluminum electrodes embedded in a SiNx layer as shown in Fig. 3.5.

Since the considered inputs are w, v and d, different samples are designed by varying w,

v and d, then their EFDCs are recorded.

Figure 3.5: Sample scheme (electrode is represented in black).

To manufacture these samples, a 270nm-thick SiNx dielectric layer was deposited using

High Frequency Plasma Enhanced Chemical Vapor Deposition [Zaghloul et al., 2010]
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over a highly doped silicon substrate. For the embedded aluminum electrode fabrication,

a lift-off process was used. First, a 2.5µm-thick N-LOF photoresist was deposited and

patterned by photolithography. After this step, SiNx was chemically etched to a depth

of 70nm and filled with aluminum. The combination of etching and electrode deposition

with the same photoresist layer ensures an intimate metal/dielectric contact and a small

surface roughness. Finally, the electrodes were embedded at different depths d depositing

a SiNx cover layer of different thickness.

The AFM measurements were done using a Bruker Multimode 8 apparatus. To avoid cap-

illarity parasitic effect all measurements were done under N2 atmosphere after drying the

samples at 100◦C for 15 min to remove the water layer. In addition, these measurements

were done using a Pt-coated silicon tip provided by Bruker (SCM-PIT) for which the

spring constant of the cantilever was calibrated combining photodiode sensitivity mea-

surement and thermal tune mode. Moreover, all measurements were performed at the

middle of the electrode width. Moreover, during the experiments the cantilever remains

parallel to electrode to minimize parasitic effect [Negoescu et Axinte, 2007a].

The different values taken by w, v and d to obtain the samples are:

• w = 6µm, 20µm, 40µm.

• v = 4V, 6V, 8V, 10V, 15V.

• d = 10nm, 50nm, 100nm.

Accordingly, 45 different samples were scanned. Implying that 45 different EFDCs were

obtained. These EFDC are used in our sensitivity study.

Fig. 3.6 shows some EFDCs obtained for different configurations according to the above

explained experimental procedures. In general, these curves start from their negative

initial values and then undergo a logarithmic growth. There is rapid progress at the be-

ginning, but continue to progress slowly until they approach their horizontal asymptotes.

Fig. 3.6(a) displays EFDCs for different values of the electrode’s width w. However Fig.

3.6(b) displays EFDCs for different values of the electrode’s depth d.

As it can be seen from these two figures, the variation of d and w, respectively, leads to

an apparent modification in the plot of the EFDC. Even though this influence is clearly

visible from these plots, its quantification is not straightforward. So quantifying this
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(a) (b)

Figure 3.6: Evolution of EFDC as function of electrodes parameters: (a) Width w (bias
v and depth d are fixed at 15v and 100nm respectively) and (b) Depth d (bias v and
width w are fixed at 15v and 20µm respectively).

influence could be a key point in using the EFDC for detecting the charge position in

3D [Palleau et al., 2010]. With this in mind, we use the Sobol sensitivity method to thor-

oughly understand and quantify this influence. However, to apply the Sobol sensitivity

method, the output should be a scalar. For that, in the next section a representative

model of the EFDC is introduced, in order to prepare the requirements for applying the

Sobol sensitivity method.

3.5 EFDC as a logistic law

Recall that from chapter 1, the Sobol method is a global sensitivity analysis applied to

study the sensitivity of a model with respect to its input variable. In this manner, the

output of the studied model should be a scalar. So for studying the sensitivity of the

EFDC with respect to d, v, and w, it is needed to find a representative model that takes

d, v, and w and link them to the EFDC, while giving a scalar output.

Since we are dealing with graphs, at first sight one would think of consulting analytical

geometry to find the link between the graphical features of the curve and the values of d,

v, and w, for instance take the curvature as an output. However, the data of the curves

is derived from experimental procedures, and hence it is surely infected by random noise.

This leads to EFDCs with almost perturbed plots, and so it would be problematic to

carry a geometric procedure directly. For that, a more systematic way to deal with such
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noisy curves is used.

The clue here is that these curves have a sigmoid shape compatible with the logistic law

curves. So, according to [Villeneuve-Faure et al., 2014], the best experimental data fitting

for an EFDC matches a 4 parameter logistic law (or 4PL for short), which is defined by

the following expression:

f(z) = D + A−D

1 +
(
z
C

)B (3.1)

where the four parameters A, B, C, and D characterize the curve’s sigmoid shape. As

shown in Fig. 3.7, parameters A and D are the curve’s minimum and maximum value

respectively, either taken at some values of z or attained asymptotically by the curve.

The parameter B is called the Hill slope, which is responsible for the steepness of the

bending of the curve. C is called the mean response point, it is the z value at which the

curve is at its midway between the min and max. Note that if B ≤ 1 the first bending of

the curve almost disappears. In fact, this is the case of the EFDC as shown in Fig. 3.6.

Figure 3.7: The illustration of the logistic curve f(z).

The main advantage of fitting by the 4PL law compared to more general laws (like polyno-

mials) is that the 4PL fits accurately the EFDC over a large distance range. The plots in

3.8 compare the regression residues of fitting the EFDC by 4PL and by a polynomial for

different degrees. In the ordinate, we have the residuals after fitting (using least-square)

the experimental EFDCs with polynomial expression and 4PL. In the abscissa, we have

the degree of the polynomial used in the fitting.

Residuals coming from polynomial regression are always higher than those coming from

logistic Law regression. This demonstrates that the logistic Law is better than polyno-

mial expression to fit the EFDCs. Regression using polynomial order higher than 13 has
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Figure 3.8: Residuals of the polynomial and logistic regressions.

not been performed since the fitting algorithm was not able to converge. Moreover, using

polynomial expression of order more than 13 to fit the EFDCs curves does not make sense

physically. For that, we choose the 4PL as a representative formula for the EFDC.

After fitting the experimental EFDCs by 4PL curves, for each value of the triplet variables

(d, v, w), there will be corresponding values for the logistic parameters A, B, C, and D.

Hence, studying the effects of the d, v, w on the EFDCs can be exchanged by studying

the effect of (d, v, w) on each of logistic parameters A, B, C, and D, which are scalars.

Starting from this point, the mission is to study the sensitivity of the logistic parameters

(A,B,C,D) with respect to (d, v, w). For that we consider the model whose inputs are

d, v, and w, and outputs are A, B, C, and D. This model is called a Fitted-4PL and it

is schematized in Fig. 3.9.

Figure 3.9: The model Fitted-4PL
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Note that the model Fitted-4PL is not defined explicitly, however by the fitting of the

EFDC by 4PL, data points of Fitted-4PL can be acquired. Thus the 45 EFDCs cor-

responding to the different values of d, v, and w defined in Section 3.4, give 45 different

values for A, B, C, and D. Hence, we have 45 data points to be used in the the sensitivity

study.

3.6 Sobol indexes of the logistic parameters

Recall that sensitivity analysis studies how the variation in the output can be apportioned

to the variation of the inputs. This leads to the determination of how the output is

dependent on each of the inputs. Thus, sensitivity analysis allows the identification of

the input (or set of inputs) that has the greatest influence on the output. In this manner,

our aim is to find qualitative information about the influence of each of d, v, and w on

the logistic parameters A, B, C, and D. In this application we use the Sobol sensitivity

method. As explained in chapter 1 this method assigns a sensitivity index to each input

d, v, and w. These indexes, called Sobol indexes, indicate quantitatively how much each

input affects the output. Here we have several outputs: A, B, C, and D, so the sensitivity

of each one is studied separately.

Note that, the forms of A, B, C, and D in terms of d, v, and w are unknown. This implies

that the Sobol indexes should be found numerically. However only 45 different samples

are given from the experiments, which is a small number for a sampling. For that, in

this case, we consider the following: in fact d, v, and w take only discrete values in the

experiments (see section 3.4) even though they are considered as continuous variables.

Thus the expectation and variance formulas of discrete random variables can be used to

derive the Sobol indexes. Practically, formulae (1.45)-(1.47) are computed according to a

discrete random variable and then substituted in (1.51) to get the Sobol indexes. In the

next paragraph we present the obtained first order Sobol indexes d, v, and w concerning

the outputs A, B, C, and D.

- 75 -



3.6 Sobol indexes of the logistic parameters

3.6.1 First order Sobol indexes

The general formula of the first order Sobol index of an arbitrary input xi is given by:

Si = V ar(Fi)
V ar(Y ) (3.2)

where V ar(Fi) is defined by:

Fi(Xi) = E[Y/Xi]− E[Y ] (3.3)

For each output A, B, C, and D and for each of the inputs d, v, and w, the first order

Sobol indexes are computed by substituting the above formulas according to a discrete

random variables. So for instance, for the output A and the input d we have:

Sd = V ar(Ad)
V ar(A) (3.4)

where

V ar(Ad) = V ar(E[A/d]− E[A]) = V ar(E[A/d])

= V ar(E[A/d = 10], E[A/d = 50], E[A/d = 100])

= 1
3

((
E[A/d = 10]− E[A]

)2
+
(
E[A/d = 50]− E[A]

)2
+
(
E[A/d = 100]− E[A]

)2
)

(3.5)

Analogously the other first order Sobol indexes are computed. The results obtained are

represented as a bar diagram in Fig. 3.10. For each output A, B, C, and D there are

three bars representing the values of the first order Sobol indexes of the three inputs d, v,

and w. As depicted in Fig. 3.10, A (i.e. maximum electrostatic force) is mainly influenced

by applied bias v and electrode depth d. Contrary to A, D (i.e. electrostatic long range

force)is influenced mainly by the electrode width w and equally in the same amount by

the applied bias v and the electrode depth d. Moreover, B and C (i.e. curve bending

and shape) are more influenced by the applied bias v, however as less influence is by the

electrode depth d on B and electrode width w on C. According to these first results, the

applied bias v seems to be the main influence for the parameters on of EFDC curve [Al-

hossen et al., 2016]. This highlights the Sobol method interest in this sensitivity study
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Figure 3.10: The first order Sobol indexes of d, v, and w. The indexes Sd, Sv, and Sw
represent the influence of d, v, and w, respectively, on A, B, C, and D.

because this effect was not highlighted in preliminary experimental studies [Villeneuve-

Faure et al., 2014].

However, although the first order Sobol indexes show that that B and C are poorly influ-

enced by w, the experimental results [Villeneuve-Faure et al., 2014] tend to demonstrate

that B is strongly influenced by w. This can be justified by the fact that B could be

affected by an interaction of w with another factor d or v, and B is not directly affected

by w. For that, the effect of w did not appear in the first order Sobol indexes. This

encourages the computation of the second order Sobol indexes of d, v, and w concerning

all the outputs A, B, C, and D. Similarly as in for the first order, the formulas of discrete

random variable are used, and with only the 45 acquired data points. The results of the

second order Sobol indexes are presented in the next subsection.

3.6.2 Second order Sobol indexes

The general formula of the first order Sobol index of an arbitrary input xi is given by:

Sij = V ar(Fij)
V ar(Y ) (3.6)
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where V ar(Fij) is the defined by:

Fij(Xi, Xj) = E[Y/Xi, Xj]− E[Y/Xi]− E[Y/Xj] + E[Y ] (3.7)

For each output A, B, C, and D and for each of the inputs d, v, and w, the second order

Sobol indexes are computed by substituting the above formulas according to a discrete

random variables. So for instance for the output A and the second order Sobol index of

the inputs d and w is:

Sdw = V ar(Adw)
V ar(A) (3.8)

where

V ar(Adw) = V ar(E[A/d,w]− E[A/d]− E[A/w] + E[A]) = V ar(E[A/d,w]− E[A/d]− E[A/w])

= V ar
(

(E[A/d = 10, w = 6]− E[A/10]− E[A/6]),

(E[A/d = 10, w = 20]− E[A/10]− E[A/20]),

(E[A/d = 10, w = 40]− E[A/10]− E[A/40]),

(E[A/d = 50, w = 6]− E[A/50]− E[A/6]),

(E[A/d = 50, w = 20]− E[A/50]− E[A/20]),

(E[A/d = 50, w = 40]− E[A/50]− E[A/40]),

(E[A/d = 100, w = 6]− E[A/100]− E[A/6]),

(E[A/d = 100, w = 20]− E[A/100]− E[A/20]),

(E[A/d = 100, w = 40]− E[A/100]− E[A/40])
)

(3.9)

Analogously the other second order Sobol indexes are computed. The results obtained

are represented as a bar diagram in Fig. 3.11. For each output A, B, C, and D there are

three bars representing the values of the second order Sobol indexes of the inputs d, v, and

w. As depicted in Fig. 3.10, most second order Sobol indexes have very small quantities.

Apparent effect is for the interaction between v and w on D, its associated second order

Sobol index is about 0.4. The output C is slightly affected by the interaction between the

inputs where its associated second order Sobol indexes are all about 0.2. Similarly the

output B is slightly affected by the interaction between the inputs where its associated

second order Sobol indexes are all about 0.07. The interaction between the inputs appears
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Figure 3.11: The second order Sobol indexes of d, v, and w. The indexes Sdw, Sdv, and
Svw represent the influence of the interactions between d and w, d and v, and v and w,
respectively, on A, B, C, and D.

to have no effect on A as all second order Sobol indexes are approximately zero.

To confirm the results of the Sobol indexes as computed by the formulas of the discrete

random variables, we use Design of Experiment (DOE) that is an influence detecting

method specialized for experimental model. In the next section we introduce briefly the

notion of DOE, then we present the results obtained by using DOE to detect the effects

of d, v, and w on A, B, C, and D as stated in [Alhossen et al., 2016].

3.7 Design Of Experiment (DOE)

To validate the results obtained above using Sobol method we use a graphical way from

Design Of Experiments (DOE). In general, DOE is an effective strategy to examine the

behavior of a simulation model when changing its input values in order to detect their

effect [Wakeland et al., 2004]. This helps in understanding the input-output relationship

and in identifying the relative importance of the inputs. DOE has a property of expressing

the results graphically, which allows scientists to directly analyze of the effect of each in-

put. Hence, applying a DOE technique to the present case study, allows the identification
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of the impact of each of the inputs d, v, and w on the logistic parameters (outputs) A,

B, C, and D.

3.7.1 The basics of DOE

To start, first we introduce some fundamental terms used when dealing with DOE tech-

niques as mentioned in [Telford, 2007]. The Factors are the inputs of the experimental

model, they are the elements that are varied when the experiment is conducted. A factor

may assume at least two distinct values during an experiment, such values are called Lev-

els. So, Levels are the different possible taken values of the factors. The Response is the

output of the experimental model; it describes how the system responds under a certain

configuration of the input factors. Thus, concerning our study case, the factors are the

three inputs d, v, and w. According to the conducted EFDC measurements, the levels

of w are 6µm, 20µm and 40µm, the levels of v are 4V, 6V, 8V, V10 V and 15 V, and

lastly the levels of d are 10nm, 50nm and 100nm. In addition, the response in this case

is the four logistic parameters A, B, C, and D.

To proceed in studying the factor-response model with DOE, one should select a DOE

technique that holds behind the procedures in which the experimental data is collected,

as well as the tests required to analyze this data.

Several techniques of DOE have been developed [Cavazzuti, 2012], each is applied to some

particular problems depending on the required purpose of the experiment. Among those,

Factorial Design is considered as one of the most efficient experimental designs for assess-

ing the effects of the experimental factors on the response. In particular, a Full Factorial

Design of experiment allows not only the detection the individual effects of the factors on

the response (' first order Sobol indexes), but also the interaction between the factors

and its effect on the response ( ' second order Sobol indexes). By this DOE technique,

all the possible combinations of the selected levels of the factors are taken in account.

Although this collection could be costly for complex experiments, however it enables the

broad investigation of the effects of the factors as well as their interactions. Thus, results

obtained by Full Factorial DOE are expected to be more robust than the results obtained

by any fraction Factorial DOE, in which a fractional number of combinations of the factor
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levels is taken.

The data executed from the full Factorial DOE is usually interpreted graphically using

the Factorial Plots. These plots mainly depend on showing the contrasts of the averages

of the response at different configurations of the factors to derive conclusions. The two

frequently used factorial plots are the Main Effect Plots and the Interaction Plots.

The main effect plots are the factorial plots responsible for visualizing the individual

effects of the factors on the response. The interaction plots are the factorial plots respon-

sible for visualizing the effects of the interaction of the factors on the response. In the

next subsections we detail how these plots are done and the associated factorial plots of

our study case.

3.7.2 The main effect plots

The main effect plots are formed by plotting the different averages of the response while

fixing one of the factors at a certain level. To see this practically, consider the Fig. 3.12

which displays the main effect plots of the logistic parameters A, B, C, andD with respect

to the factors d, v, and w.

Fig. 3.12 represents the mean of A, B, C, and D as function of the levels of d, v, and

w. At each level, the corresponding factor is fixed, and then the mean of the response

is computed and plotted as a dot. After performing this at all the levels of the factors,

the plotted points of each factor (d, v, and w) are joined by a line. Then accordingly, the

dependence of A, B, C, and D (linear, quadratic, · · · ) to each of d, v, and w is derived.

Analyzing the main effect plots of Fig. 3.12 we see:

• Fig. 3.12(a) shows that parameter A (i.e. the minimum value of the electrostatic

force) (i) increases as the depth d increases, (ii) decreases quadratically as the bias

v increases and (iii) decreases slowly as the width w increases.

• Fig. 3.12(b) shows that parameter B (curve bending): (i) increases slowly as the

depth d increases, (ii) decreases with as the bias v increases and (iii) is quite constant

with respect to the width w.

• Fig. 3.12(c) shows that parameter C increases slightly as the depth d increases

and the applied voltage v increases. However C seems to vary as the the width w
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(a) (b)

(c) (d)

Figure 3.12: The main effect plots of depth d, width w and applied voltage v for each of
the 4PL parameters: (a) A, (b) B, (c) C and (d) D.

increases. But it is important to notice that the variation of C remains small until

the voltage reaches around 12v.

• Fig. 3.12(d) shows that parameter D (the maximum value of the electrostatic force)

increases as the depth d increases, and decreases as the bias v and the electrode width

w increase.

In general, these results validate the results obtained by Sobol sensitivity method. As it

appears, A is mostly affected by d and v, and this is compatible with the bar diagram

3.10. Also, compatible results obtained for D as it approximately equally affected by d,

v, and w. Moreover, the main plots shows that B is mostly affected by v and this is in

agreement with the obtained Sobol index of v which is around 0.8. Similarly for C, which

appears to be mostly affected by v. Now we proceed to check the compatibility between

the interaction plots and the second order Sobol indexes.
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3.7.3 The interaction effect plots

The interaction effect plots indicate whether the effect of a factor on the response changes

depending on the setting of another factor. These plots display by lines all the main effect

plots of one factor at every level of another factor. The connecting lines in every plot lead

to the understanding of how the interactions between the factors affect the response. If

the lines are parallel, this means that the effect of the indicated factor on the response

is identical across all the levels of the other factor. Hence, the effect does not depend on

the level of the other factor, and so no interaction occurs. However, when the lines are

not parallel, the effect of one factor depends on the setting of the other factor, and so in

this case there is an interaction effect.

To see this practically, consider the matrix plot in Fig 3.13 which represents the inter-

action effects matrix plot of the parameter A. This is a multi-plot per figure, displaying

the original main effect plots of A on the diagonals, and all of the two-factor interaction

effect plots of A on the off-diagonal positions. For instance, the first plot in the first row

presents the main effect plot of d on A. On the other hand, the second plot in the first

row presents six traces for the effect of d on A, each trace corresponds to a level of v.

Analogously the other plots can be seen.

In general, despite the slight non parallelism in some interaction plots of A, most traces

possess approximately parallel lines. This shows that no serious interaction between d, v,

and w affects the parameter A. As a conclusion, all the contributions of d, v, and w in

the formula of A are individual contributions, where the multiplied ones can be neglected.

This confirms the results of the second order Sobol indexes, where the indexes associated

to a are all about zero.

Note that the interpretation of d-v plot (first raw second trace in Fig 3.13) or v-d plot

(second raw first trace in Fig 3.13) provides the same results. For that, only one-way

interaction plots are presented in Fig. 3.14 for the parameters B, C, and D (d-v plots,

d-w plots and v-w plots).

Fig. 3.14(a) shows the interaction effects plots of the parameter B. Contrary to A,

more crossed lines appear especially in the d-v plot and in the v-w plot. Nevertheless

these lines possess a slight non parallelism. For the d-w plot, all the lines are quite similar
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Figure 3.13: The Interaction Effects Matrix plot of the parameter A.

indicating poor influence of the interaction of d and w on B. Recall that all second order

Sobol indexes corresponding to B have a value about 0.07, which is compatible with the

obtained interaction plots of B.

Fig. 3.14(b) shows the interaction effects plots of the parameter C. Crossed lines ap-

pear especially in the d-w plot and in the v-w plot. For the d-v plot, all the lines are

quite similar indicating a poor influence of their interaction on B. This is also com-

patible with obtained second order Sobol indexes associated to C, where Sdv ≈ 0.1 and

Sdw ≈ Svw ≈ 0.2.

Fig. 3.14(c) shows the interaction effect plots of the parameter D. In this plot the

crossed lines appear much moreclearly than the interaction plots of B and C, which in-

dicates that the influence of d, v and w on D is cross-linked. Consequently, D which
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(a)

(b)

(c)

Figure 3.14: one-way interaction plots for the parameters: (a) B, (b) C, and (d) D, in
the order : d-w plots, d-v plots and v-w plots.

represents the minimum electrostatic force is the most strongly influenced parameter by

the interaction effects, as obtained by the second order Sobol indexes.

These results, as the second order Sobol indexes, show that the influence of electrode

depth d, width w and applied bias v on the logistic parameters B, C, and D is not

straightforward and the interaction effects present a contribution in this manner. Indeed,

as some effects are cross-linked, A, B, C, and D cannot be simply interpreted by additive

formula of the individual contributions of d, v and w, but they need a model to be in-

terpreted thoroughly. For that we propose as a continuation of our work a representative

model, called matrix Model, for the logistic parameters A, B, C, and D in terms of d, v

and w. The next section presents the details of this representative model.
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3.8 Matrix Model

To continue investigating the relationship between the logistic parameters A, B, C, and

D and the experimental variables d, v and w, we proceed in finding an approximation

formula of each of A, B, C, and D in terms of d, v and w. This helps also in finding an

approximating expression of the electrostatic force in terms of d, v and w by substituting

A, B, C, and D in the formula of the logistic law (3.1). The proposed model that we

use is known as the matrix Model [Negoescu et Axinte, 2007b] that allows us to find a

multivariate polynomial approximation using little experimental data. This is favorable

in our case since we have a limited number of data points for A, B, C, and D (only 45).

In addition, the coefficients in this model are computed by formulas similar to those that

express the mean average in the discrete case, which we have acquired from the compu-

tation of the Sobol indexes and the effects in DOE.

The matrix model is expressed with different orders, depending on how many contribu-

tions of the inputs are needed in the approximation formula. So for instance, the first order

matrix model considers only the individual contributions of the inputs and it is formed of

the sum of univariate polynomials of the inputs. Second order Matricidal model includes

the second order interaction of the inputs and it is formed of the first order matrix for-

mula plus bivariate polynomials of the inputs. Analogously higher order matrix models

are defined.

Since three factors are involved in the experiments of our study case (d, v, and w) then

a general response symbolized by y is considered, written as y = M(d, v, w) for some

unknown formula M. M here represents the unknown expression of the model to be

approximated which is in our case the logistic parameters A, B, C, and D.

The following subsections represent the results obtained when applying a first and a

second order matrix approximations for A, B, C, and D in terms d, v and w [Alhossen

et al., 2016]. This includes a confirmation of the results obtained by DOE and Sobol

method.
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3.8.1 First order matrix model

The First order matrix Model M̃1 which approximatesM is defined by:

M̃1(d, v, w) = ȳ +
[
Id1(d) Id2(d) · · · Idl(d)

]


Ed1

Ed2

...

Edl



+
[
Iv1(v) Iv2(v) · · · Ivm(v)

]


Ev1

Ev2

...

Evm


+
[
Iw1(w) Iw2(w) · · · Iwn(w)

]


Ew1

Ew2

...

Ewn



(3.10)

where ȳ is the total average of the response, and l, m, and n are the number of levels of

d, v, and w respectively. Id, Iv, and Iw are polynomials associated to the levels of the

factors and called indicators. For instance, the indicator of the factor d at level i, denoted

by Idi(d), is a polynomial in d and it is given by:

Idi(d) =
∏
k 6=i

(
d− dk

)
(
di − dk

) (3.11)

where dk is the kth level of d in the given data. Moreover, in formula (3.10) Ed, Ev, and

Ew are constants associated to the levels of the factors and called the first order effects.

Practically, the first order effect of the factor d at the ith level, denoted by Edi , can be

easily computed using the following formula:

Edi = Mean of y when d is fixed at di − Total mean (3.12)

According to [Pillet, 1997] the expression M̃ in equation (3.10) is a first order approx-

imation of M, since it contains only the first order effects of the factors. In several

study cases, the first order matrix Model is sufficient to get a good approximation of the

initial model. Thus, to check this in the case of the logistic parameters, each of A, B,

C, and D is written as a First order matrix approximation in terms of the factors d, v,
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and w. Then, these approximations are plugged in the logistic curve formula (3.1), and

thus forming an approximation expression for the electrostatic force in terms of d, v, and

w. Then we compare the EFDCs that are obtained experimentally to those obtained

using the matrix approximation of A, B, C, and D. Fig. 3.15 presents the comparison

between the plot of EFDCs and the approximated model for the values of the triplets

(d, v, w): (a) (10nm, 6 v, 6µm) , (b) (100nm, 8 v, 40µm), (c) (50nm, 6 v, 6µm), and

(d) (10nm, 15 v, 40µm).

(a) (b)

(c) (d)

Figure 3.15: The difference between the EFDCs obtained experimentally (blue) and the
EFDCs obtained using the first order matrix approximation models of A, B, C, and
D (red). Different values of (d, v, w) are considered: (a) (10nm, 6 v, 6µm) , (b)
(100nm, 8 v, 40µm), (c) (50nm, 6 v, 6µm), and (d) (10nm, 15 v, 40µm).

As it can be seen in Fig.3.15, a good agreement between the two plots of the EFDCs is

found but not for all cases. Indeed, disagreement is observed for the maximum attained

asymptotic (Fig. 3.15(c)) or at the bending of the curve (Figure 7.d). These two dis-

crepancies are related directly to D and the couple B-C respectively. They show that

the approximation model is missing some information. By referring to the results of the

interaction plots of DOE (Fig. 3.14) and the second order Sobol indexes (Fig. 3.11), this

defect can be justified. Indeed, the interaction plots demonstrate the importance of the

interaction between d, v, and w and its influence on the logistic parameters especially B
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and D. Thus, to avoid this drawback in the approximation, the interaction factors should

be involved in the formula. This is done by considering a second order matrix model.

3.8.2 Second order matrix model

The second order matrix model add second order interactions of the inputs to the first

order matrix model. This is done by adding to formula (3.10) new terms of the following

form:

[
Id1(d) Id2(d) · · · Idl(d)

]


Ed1v1 Ed1v2 · · · Ed1vm

Ed2v1 · · · ...
... ... ...

Edlv1 Edlv2 · · · Edlvm





Iv1(v)

Iv2(v)
...

Ivm(v)


(3.13)

where Edivj is the interaction effect between d and v at levels i and j respectively. Its

formula is given by:

Edivj = Mean of y when d and v are fixed at di and vj −Total mean−Edi −Evj (3.14)

Analogously to equation (3.14), the interaction effects Ediwj and Eviwj are defined.

Fig. 3.16 represents the EFDCs computed using the second order matrix model for ap-

proximating the parameters A, B, C, and D of the logistic law curve, compared to the

experimental EFDCs for the same values of (d, v, w) used in Fig. 3.15.

As it can be seen from Fig. 3.16, the approximated EFDCs computed when using the

second order model exhibit a very good agreement with the experimental EFDCs. These

results are promising as they are compatible with what obtained suing DOE and Sobol

method.

Usually in approximating expressions, attention should be paid to the cost of each in-

teraction term added to formula (3.10). So compensation usually is taken between the

efficiency of the constructed model and the computational cost. For the EFDC mea-

surements, the price of getting the 45 trials, compared to the results of the second order

matrix Model, is acceptable according to the experts. The second order Matricidal model

permits a precise computation of EFDCs for whatever values of (d, v, w), which will be
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(a) (b)

(c) (d)

Figure 3.16: The difference between the EFDCs obtained experimentally (blue) and the
EFDCs obtained using the second order matrix approximation models of A, B, C, and
D (red). Different values of (d, v, w) are considered: (a) (10nm, 6 v, 6µm), (b)
(100nm, 8 v, 40µm), (c) (50nm, 6 v, 6µm), and (d) (10nm, 15 v, 40µm).

powerful for charges localization investigation in thin dielectric film [Boularas et al., 2016].
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3.9 Conclusion

In this chapter we check the use of Sobol indexes if they are computed using the formulas

of discrete random variables. Usually when the Sobol method is applied, Sobol indexes

are computed numerically and the sampling is taken according to continuous random

variables (normal, uniform, · · · ). In this chapter we show that the Sobol method may

give robust results even for sampling of discrete random variables.

To this end, we study the sensitivity of the experimental curve EFDC from the domain

of force spectroscopy. The inputs of the model are the experimental factors d, v, and

w. The output of the model considered should be scalar to allow the application of the

Sobol method. For that, the EFDC is fitted by 4PL logistic law, which allows the EFDC

to be represented exclusively by the four logistic parameters A, B, C, and D. Then the

sensitivity of each of A, B, C, and D with respect to d, v, and w is studied by deriving

the corresponding Sobol index.

By definition, the inputs d, v, and w can take continuous values, however due to the cost

of each experiment run, limited data is given corresponding to the limited discrete values

taken by d, v, and w . This gives only 45 different combinations. So we deal with the

inputs d, v, and w as discrete variables and we compute the corresponding Sobol indexes

using the formulas of discrete random variables. Two kinds of Sobol indexes are consid-

ered as the first order Sobol indexes and the second order Sobol indexes. The results are

then validated using the factorial plots of Design Of Experiments (DOE). The main effect

plots of DOE confirm the results obtained by the first order Sobol indexes. In addition,

the interaction effect plots also confirm the results obtained by the second order Sobol

indexes.

Moreover, we propose an approximation model, called matrix model, of the logistic pa-

rameters of A, B, C, and D in terms of d, v, and w. Using this approximation we show the

importance of taking into account the interaction between the inputs, while comparing a

first order approximation by a second order one relative to the experimental results.

The final words concerning the application done in this chapter are to take advantage

of the obtained results in the domain of force spectroscopy. According to experts, the

constructed matrix model can be used to characterize the charge localization as it in-
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cludes the three main variables: the depth d and the width w, hence the position and

volume of the charge, and the voltage v, meaning the density of the charge.

In the next chapter we will continue with the Sobol method, but we extend its basic appli-

cation into studying the variation of the Sobol indexes with respect to some active factors

or experimental conditions. Accordingly, new conclusions and scientific consequences will

be derived.
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4.1 Introduction

In this chapter we continue with the Sobol sensitivity analysis method and we present a

new framework for its application. In the previous chapter we consider the Sobol method

- 93 -



4.1 Introduction

in a particular manner and we examine its performance in the discrete case. However here

we consider it in a general manner and we study the variation of the Sobol indexes with

respect to some external factors or experimental conditions. The aim of studying this

variation is to reveal the optimal settings at which conclusions and information about the

inputs can be derived. This helps in the case of uncertainty study as it indicates the best

configurations for analyzing and quantifying of the input uncertainty. In this manner, we

consider two different models and we study the evolution of their corresponding Sobol

indexes with respect to some factors, in order to see how conclusions about the inputs

can be derived.

The first considered model is from the domain of computer vision. It represents mainly

the functioning of a 3D reconstruction method called Shape-From-Template (SfT) [Bartoli

et al., 2015]. This method uses a single 2D image and a 3D template to reconstruct a 3D

deformed surface. An important factor in the 3D reconstruction process is the depth of

the 3D deformed surface in front of the camera, so for that we study the evolution of the

Sobol indexes concerning the SfT method as a function of the depth. To keep the concepts

clear, we start by recalling in section 4.2 the mathematical model of image formation by

a camera and the parameters involved in this process. Then in section 4.3, we present the

details of the 3D reconstruction method SfT. In section 4.4, we introduce the inputs of

our considered model according to the concern of the SfT method. After that in section

4.5, we explain how we construct our model while including the numerical solution of the

SfT method and getting a scalar output to be adapted to apply Sobol method. Keeping

in mind that the solution of the SfT is theoretical and that in reality 3D reconstruction

is always accompanied by noise, for that we modify the constructed model by adding

noise to imitate reality. The procedures done are detailed in section 4.6. To conclude, we

describe in section 4.7 how Sobol indexes are computed as a variation of the depth and

the conclusions derived from these variations.

The second model considered in this chapter is a charge transport model for dielectrics.

This model describes how a dielectric may conduct charges under the effect of high electric

fields. We deal with it here as a black box, and we study the variation of its corresponding

Sobol indexes as a function of time, temperature and the strength of the applied electric

field. In section 4.9, we define the inputs and the outputs of the considered charge
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transport model. In this manner, we will see how studying the variation of the Sobol

indexes helps in deriving the best configuration for applying an optimization process to

find the inputs.

4.2 Image formation: from 3D into 2D

In this section, we review the mathematical formulation of a camera in order to form the

2D image of a 3D object. First of all, it is important to note that the cameras used in

our daily life are accompanied with lenses to focus light. However, all cameras follow the

same concept as the pinhole camera in image formation. Thus the pinhole camera model

is presented with the associated notations that are used throughout this manuscript.

A pinhole camera is a black box that is punctured from one side forming a small hole.

The rays of light coming from the outside world pass through the hole and fall on the

opposite side of the box, forming a 2D image of the 3D outside scene. Fig. 4.1 is an

illustration of the pinhole camera.

Figure 4.1: The pinhole camera.

Observe that the real pinhole image is an upside down image of the scene. However the

virtual image, which is usually seen on a photograph or on a computer screen, corresponds

to the projection of the scene onto a hypothetical plane. This hypothetical plane is sit-

uated in front of the camera at the same distance from the hole to the opposite wall on

which the image is actually formed (see Fig. 4.2).

The distance from the hole to the opposite wall on which the image is formed is called the

focal length of the camera, and it is denoted throughout this manuscript by f . In addition,

the ’hole’ of the camera is called the camera center and it is denoted by C, whereas the
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Figure 4.2: Real vs virtual image by a pinhole camera.

hypothetical plane in front of the camera is called the image plane.

To see geometrically how the 3D object is projected into the image plane, we follow

the procedure explained in [Moons et al., 2008]. Consider an orthogonal reference frame

I = {C; X,Y,Z} centered at the camera center C, and whose positive Z axis is directed

towards the scene. This frame induces another orthogonal frame J = {O; U,V} on the

image plane as shown in Fig. 4.3. So any point in the image plane with coordinates (a, b)

in J, has (a, b, f ) coordinates in the camera frame I.

Figure 4.3: Geometric model of the 2D image formation by a pinhole camera.

Concerning the 2D image formulation, for any point M in the 3D object, having coordi-

nates (XM ,YM ,ZM) in the frame I, let (D) denote the straight line passing through M
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and C. The equation of (D) is defined by

(D) = {(x = XM t, y = YM t, z = ZM t) | t ∈ R} (4.1)

In addition, (D) intersects the image plane, and let m be the point of intersection. As

m ∈ (D) then the coordinates of m in I are (XM tm,YM tm,ZM tm) for some tm ∈ R. But

m also belongs to the image plane, thus its third coordinate should be equal to the focal

length f , and so ZM · tm = f . This implies that tm = f
ZM , and so the coordinates of

m in I are (f XM
ZM , f

YM
ZM ), and the coordinates of m in J are ( f

ZM XM , f
ZM YM). Thus the

image of the 3D point M is the 2D point m whose coordinates in the image plane are

( f
ZM XM , f

ZM YM).

Applying this to all the points (X,Y,Z) in the 3D scene, the 2D image is formed on the

image plane and the corresponding coordinates of the points are (f X
Z , f

Y
Z ). Accordingly, we

define the projection function of a camera Π ∈ C∞(R3,R2) defined for any M = (X,Y,Z)

by:

Π(M) = f

Z(X,Y). (4.2)

Usually, images we use in daily life have a common measurement unit called ’pixel’. How-

ever the unit used in the orthogonal frame J = {O; U,V} is millimeter (mm). For that, a

new frame P = {Op; Up,Vp} is attached to the image plane with a new coordinate system

called the pixel coordinate system.

Figure 4.4: The pixel coordinate system P = {Op; Up,Vp} vs the image plane frame
J = {O; U,V}.
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The change of units between J and P is done according to the following transformation:

1−→U = αu
−→
Up

1−→V = αv
−→
Vp

(4.3)

for some positive values αu and αv. Let the coordinates of O in the pixel coordinate system

P be (Upo, Vpo), then a point m having coordinates (f X
Z , f

Y
Z ) in J, its pixel coordinates are

derived as follows:

−−→
Opm = −−→OpO +−−→Om =

(
Upo
−→
Up + Vpo

−→
Vp
)

+
(f

ZX
−→
U + f

ZY
−→
V
)

=
(
Upo
−→
Up + Vpo

−→
Vp
)

+
(f

ZXαu
−→
Up + f

ZYαv
−→
Vp
)

=
(
Upo + αuf

X
Z
)−→
Up +

(
Vpo + αvf

Y
Z
)−→
Vp

= m1
−→
Up +m2

−→
Vp

(4.4)

So the coordinates of m in the frame P are Upo+αuf
X
Z and Vpo+αvf

Y
Z . These coordinates

can be derived in a compact way using a matrix expression:

Z


m1

m2

1

 =


αuf 0 Upo

0 αvf Vpo

0 0 1




X

Y

Z

 (4.5)

The above matrix is called the characteristic matrix of a camera and it is usually denoted

by K. In addition, αuf, αvf, Upo, and Vpo are called the internal parameters of the camera.

In this section we see how a 2D image of a 3D object is formed using the camera pa-

rameters. Each point in the 3D object undergoes a simple geometric transformation to

get its pixel coordinates in the 2D image:

M = (X,Y,Z)

3D camera frame

m = (f X
Z , f

Y
Z )

2D image plane

m = (Upo+αuf
X
Z , Vpo+αvf

Y
Z )

2D pixel frame
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In the next section, the reverse operation is considered i.e. we go from a 2D image

into recovering the 3D object. This is a much more complicated process than the simple

image formation.

4.3 Shape-from-Template: 3D reconstruction

3D reconstruction is the process of reproducing the shape and the appearance of a 3D

object starting from acquired information. Mainly, the starting point is a given 2D im-

age of the scene. So for a 2D point in the image plane having coordinates (a, b), 3D

reconstruction is to recover its corresponding 3D point (X,Y,Z) in the scene. Note that

if the focal length of the camera f and the depth of the scene Z are known, then the 3D

reconstruction problem can be directly solved. This is because the remaining unknowns

are X and Y, and they can be derived using f and Z by:

X = Z
f
a and Y = Z

f
b (4.6)

So the 3D reconstruction problem can be defined as a problem of finding the focal length

f and the depth Z. Note that, this is not an easy mission and it cannot be solved by a

single 2D image. For that, this topic has occupied a broad research area in the domain

of computer vision. Various methods exist in this manner [Moons et al., 2008]. Simple

methods start by using multiple 2D images (at least two) to drive the depth geometrically,

while other methods use videos instead. In some problems, the used camera is calibrated,

i.e. its intrinsics are known, and so its focal length is known. In this case, the 3D recon-

struction problem is reduced to the problem of finding the depth Z only. In some other

problems, the scene is a non rigid object, i.e. it deforms and changes its shape with time.

This makes the problem more complicated in reconstructing the deformed object.

In this work our concern is the method Shape-from-Template (SfT for short) [Bartoli

et al., 2015 ; Salzmann et Urtasun, 2011 ; Moreno-Noguer et Porta, 2016 ; Agudo et

Moreno-Noguer, 2017]. This method recovers a 3D deformed surface using one 2D image

and a 3D template of the surface. This template is a 3D reference shape that under a

specific deformation gives the 3D object. An example in this manner is the template
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paper presented in Fig 4.5. This template, which is a 3D deformation, becomes a cylinder

under enrollment.

The basic idea of the SfT method is to use the deformation constraint with the image

Figure 4.5: A paper template deformed into a cylinder.

projection formula in order to form a system of partial differential equations. Some refor-

mulations and a change of variables are done to the system, allowing it to be solved locally.

Then the obtained solution of the system is found analytically and it gives the depth of

the deformed surface that is the main unknown in the 3D reconstruction problem. Both

isometric and conformal deformations are treated by the SfT method, however we focus

here on the method presented in [Bartoli et al., 2015] which is an analytical, isometric,

and local method. The following paragraphs give a detailed presentation of the concept

of the SfT method in the case of an isometric deformation as described in [Bartoli et al.,

2015].

4.3.1 Problem definition

The reconstruction problem to be solved by SfT is summarized in Fig. 4.6 with the

notation

In Fig. 4.6 the sketched forms are described in the following manner:

• S ⊂ R3 is the unknown 3D deformed surface.

• J ⊂ R2 is the given 2D image of S .

• T ⊂ R3 is the given 3D template of S .
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Figure 4.6: The 3D reconstruction model in SfT.

• L ⊂ R2 is the known flattening of the 3D template T into R2.

In addition, the labeled arrows represent functions that are characterized as follows:

• Π ∈ C∞(R3,R2) is the known camera projection function.

• Ψ ∈ C1(T ,R3) is the unknown isometric deformation function.

• ∆ ∈ C1(L,R3) is the known template embedding function, it is an invertible func-

tion that maps the 3D template to its flattening.

• ∆−1 ∈ C1(T ,R3) is the known flattening function of the 3D template.

• η ∈ C1(L,R2) is the known warp function mapping the flattened template into the

2D image.

• ϕ ∈ C1(L,R3) is the unknown embedding into the deformed surface.

• γ ∈ C1(L,R+∗) is the depth function, mapping each point in the flattened template

to the depth of its point in the 3D deformed surface.

Remember that to do a reconstruction, the depth Z is to be determined. According to

the notation provided in Fig. 4.6, the function γ is to be determined. The SfT method
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reconstructs the 3D deformed surface based on a single image and a 3D template. This

gives two constraints: the reprojection constraint and the deformation constraint.

The reprojection constraint represents the compatibility of the projection of the deformed

surface with the given image data. This is expressed by:

Π ◦Ψ ◦∆ = η (4.7)

The deformation constraint represents the restrictions of the deformation done on the 3D

template. Here the focus is on isometric deformations, which means that the distance

between any two points on the surface is preserved. This implies that:

J>ΨJΨ = I3 (4.8)

where JΨ is the Jacobian matrix of the unknown function Ψ and I3 is the identity matrix

of size 3. The symbol > raised on the Jacobian matrix refers to its transpose.

Note that the above two constraints form a first order system of partial differential equa-

tions whose main unknown is the function Ψ:


Π ◦Ψ ◦∆ = η (reprojection constraint)

J>ΨJΨ = I3 (deformation constraint)
(4.9)

It is a first order system since it includes JΨ the first derivative Ψ. In addition, system

(4.9) is a system of nonlinear partial differential equations of dimension 5: two equations

from the reconstruction constraint and three equations from the deformation constraint.

This system is the starting point of the SfT method.

Indeed, the SfT method proceeds in finding the unknown depth function γ by reformu-

lating system (4.9) two times, and then by doing a change of variable. The idea of these

reformulations is to introduce γ as the unknown of the system instead of Ψ, and to get a

simpler system with a lower dimension.
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4.3.2 First reformulation

The first reformulation is done by using the equality:

ϕ = Ψ ◦∆ (4.10)

The idea is to introduce ϕ that is defined on the 2D parameterized space L which is also

the domain of the depth function γ. By (4.10) the reconstruction constraint becomes:

Π ◦ ϕ = η (4.11)

Now, differentiating both sides of (4.10) gives:

Jϕ = (JΨ ◦∆)J∆ (4.12)

Then multiplying each side of equation (4.12) by its transpose and using the deformation

constraint implies:

J>ϕJϕ = J>∆(JΨ ◦∆)>(JΨ ◦∆)J∆ = J>∆I3J∆ = J>∆J∆ (4.13)

Thus system (4.9) becomes:


Π ◦ ϕ = η (reprojection constraint)

J>ϕJϕ = J>∆J∆ (deformation constraint)
(4.14)

This new system (4.14) is also a non linear system of partial differential equations however

of dimension 4: two equations from the first equality and two equations from the second

equality. In addition, its main unknown here is ϕ instead of Ψ.

4.3.3 Second reformulation

In the second reformulation the depth function γ is introduced. Note that, whenever a

point in the 2D image is multiplied by Z
f
, the first two coordinates of its corresponding

3D point, X and Y, are obtained. So if a point in the image of the function η is multiplied
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by Z
f
, the coordinates X and Y of the corresponding point in the deformed surface S are

obtained. To express this symbolically, consider a new function η̃ ∈ C1(L,J × {f})

defined by:

η̃ = [η, f ] (4.15)

where f is the known focal length of the camera. Then the depth function γ is introduced

using ϕ by the equality:

ϕ = 1
f
γη̃ (4.16)

To substitute this new formulation of ϕ in the system (4.14), equation (4.16) is differen-

tiated on both sides:

Jϕ = 1
f

(
η̃Jγ + γJη̃

)
(4.17)

So multiplying each side of (4.17) by its transpose gives:

1
f 2

(
‖η̃‖2

2J>γ Jγ + γ2J>η̃ Jη̃ + γ(J>γ η̃>Jη̃ + J>η̃ η̃Jγ)
)

= J>ϕJϕ (4.18)

Using the deformation constraint of (4.14), a new system is obtained, defined by:

(
‖η̃‖2

2J>γ Jγ + γ2J>η̃ Jη̃ + γ(J>γ η̃>Jη̃ + J>η̃ η̃Jγ)
)

= f 2J>∆J∆ (4.19)

This system is of dimension three. In addition, its main unknown is the depth function γ.

Solving this system gives the solution of the reconstruction problem. However, the non

linearity presented in the system, appeared as γ multiplied by Jγ, harden its solving. For

that, a change of variable is done to eliminate the mixed terms of γ and Jγ.

4.3.4 Change of variable

First, to reduce the form of the expression in (4.19), the authors in [Bartoli et al., 2015]

introduce ρ = ||η̃||2. Note that ρ ∈ C1(L,R+∗) since the third component of η̃ is the focal

length f 6= 0. In addition the derivative of ρ is:

Jρ = 1
ρ
η̃>Jη̃ (4.20)
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This implies that:

ρJρ = η̃>Jη̃ (4.21)

Substituting ρ in (4.19) gives:

ρ2J>γ Jγ + γ2J>η̃ Jη̃ + ρ γ
(
J>γ Jρ + J>ρ Jγ

)
= f 2J>∆J∆ (4.22)

Proceeding into the change of the variable, the unknown γ is substituted by λ ∈ C1(L,R)

defined by:

λ = ργ

f
(4.23)

This implies that:

γ = fλ

ρ
and Jγ = f

ρ2 (ρJλ − λJρ) (4.24)

Substituting γ and Jγ in terms of λ, ρ, Jλ and Jρ in (4.22) gives:

f 2

ρ2

(
ρ2J>λ Jλ + λ2J>ρ Jρ − λρ(J>λ Jρ + J>ρ Jλ)

)
+ f 2λ2

ρ2 J>η̃ Jη̃+

f 2λ

ρ2

(
ρJ>λ Jρ − λJ>ρ Jρ + ρJ>ρ Jλ − λJ>ρ Jρ

)
= f 2J>∆J∆

(4.25)

With simple symbolic computation, equation (4.25) is simplified into:

J>λ Jλ + 1
ρ2

(
J>η̃ Jη̃ − J>ρ Jρ

)
λ2 = J>∆J∆ (4.26)

Which is equivalent to the equation:

J>λ Jλ + ξλ2 = J>∆J∆ where ξ = 1
ρ2

(
J>η̃ Jη̃ − J>ρ Jρ

)
(4.27)

The form of the equation in (4.27) is much simpler than the equation of (4.19). In addition,

it has λ as the main unknown. But λ = ργ
f
, so finding λ is equivalent to find the depth

function γ as ρ is known. In the next paragraph, we give the solution of the equation in

(4.27).
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4.3.5 Analytical solution

The equation in (4.27) has a unique solution, and it can be obtained analytically. To this

end first, Jλ is substituted by an independent vector function β . So the equation (4.27)

becomes:

β>β + ξλ2 = J>∆J∆ (4.28)

Rearrangement of the equation (4.28) gives:

β>βξ−1 = J>∆J∆ξ
−1 − λ2I2 (4.29)

According to [Bartoli et al., 2015], equation (4.29) has a unique solution for λ given by:

λ =
√
λ2
(
J>∆J∆ξ−1

)
(4.30)

where λ2(.) refers to the second eigenvalue of the associated matrix. Substituting λ in

equation (4.28) gives two possible solutions for β:

β = ±
√
λ1(Λ)V1(Λ) (4.31)

where λ1(.) and v1(.) refer to the first eigenvalue and eigenvector of the associated matrix

and

Λ = J>∆J∆ − λ2
(
J>∆J∆ξ

−1
)
ξ (4.32)

4.3.6 Numerical solution

In [Bartoli et al., 2015], a numerical algorithm is proposed to find directly the 3D recon-

structed surface using the analytical solution obtained by the SfT method. Practically,

a set of points in the 2D flattened template L is selected. Then the depth of the corre-

sponding 3D points in the deformed surface S are computed. This is done point by point

independently using the formula:

γ(p) =

√√√√√λ2

J>∆(p)J∆(p)
(
J>η̃ (p)Jη̃(p)−

1
||η̃(p)||22

J>η̃ (p)η̃(p)η̃>(p)Jη̃(p)
)−1

 (4.33)
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where p is a selected point in L. So as it appears, the numerical solution depends mainly

on the warp function η presented in η̃, its Jacobian matrix, and the Jacobian matrix of

the embedding function ∆. Accordingly, a Matlab algorithm called SfT_BGCC12I

has been written to find the 3D reconstructed pointM ∈ S corresponding to the 2D point

p ∈ L. This algorithm executes in the following manner:

The inputs:

• The coordinates of η(p), which are the coordinates of some point m in the image J .

• The 2× 2 Jacobian matrix Jη(p).

• The 2 × 2 matrix J>∆(p)J∆(p). This matrix is taken by default as I2, the identity

matrix of dimension 2.

• The 3 × 3 matrix K−1), which is the inverse of the characteristic matrix of the

camera K. This input is needed if the considered image is taken in pixels and not

in mm.

The output:

• The 3D reconstructed point M ∈ S, which is in fact the image of p by ϕ.

• The two solutions of the 3 × 2 Jacobian matrix Jϕ(p) denoted by J1 and J2. Two

solutions exist for Jϕ since β in (4.29) has two possible solutions as in (4.31). J1

and J2 represent the two possible tangents to the 3D deformed surface S at M .

• The two solutions of the normal vector to the deformed surface S at the recon-

structed point M . These two vectors, denoted by N1and N2, are obtained by the

cross-product of the two columns of J1 and J2 respectively, followed by normaliza-

tion.

The Matlab algorithm SfT_BGCC12I, presented schematically in Fig. 4.7, is the

basic reference that we rely on to study the sensitivity of the SfT method. In the next

sections we indicate the inputs that are considered in our sensitivity study and then

we describe the model that we use to study its sensitivity. This model should take the

indicated inputs and it should involve SfT_BGCC12I which represents the concept of

the SfT method.
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Figure 4.7: A scheme of the algorithm SfT_BGCC12I.

4.4 The model inputs

It was detected experimentally that the quality of the 3D reconstruction by the SfT

method depends on the depth Z of the deformed surface in front of the camera. In

addition, according to the [Chhatkuli et al., 2017], two other parameters may also affect

the results of the SfT reconstruction method: the focal length of the camera f and the

orientation of the 3D deformed surface in front of the camera. The effect of these two

parameters appears either as an independent defect or as an interaction with Z. For that,

we select Z, f , and the orientation of the 3D deformed surface to be the inputs of our

considered model.

In the next section we present how we construct this model, which is used to study the

sensitivity of the SfT method with respect to these indicated inputs.

4.5 The model ZfT_SfT

The main inputs of the SfT_BGCC12I algorithm are the 2D point η(p) and Jη(p), so

at least the depth does not appear as an input, in fact as output. Since our interest is the

sensitivity of the SfT method with respect to the depth, f , and the orientation, another

model that takes these inputs should be constructed, while involving the concept of the

SfT method. For that, we build a new model ZfT_SfT whose inputs are: the depth Z,

the focal length f , and the orientation of the 3D surface.

The model ZfT_SfT is described in the following steps:
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1. We fix as an initialization two coordinates (X0,Y0) of a 3D pointM in the deformed

surface. Then the given input depth denoted ZG is the third coordinate of M , So

M = (X0,Y0,ZG). This point is considered as a reference and it is the point to be

recovered by the SfT reconstruction method.

2. The given focal length f is used to construct the intrinsic matrix K of the camera.

3. The orientation of the 3D deformed surface is given as an angle θ which is used to

indicate the direction of the normal vector to the deformed surface at M . Indeed,

the vector ~M is rotated around the Z direction by the angle θ. The new obtained

vector is normalized and then taken as the normal the normal vector ~N at a point

M ∈ S. This is illustrated in Fig. 4.8.

Figure 4.8: The normal at the point M determined by the angle θ.

4. In this step the 2D point η(p) is determined, in which p is the image of M by ϕ.

Indeed, η = Π ◦ ϕ, so

η(p) = Π(ϕ(p)) = Π(M) (4.34)
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Let m denote the image of M by the camera derived using the characteristic matrix

of the camera K, then η(p) = m.

5. In this step, Jη(p) is determined. As η = Π ◦ ϕ, then

Jη(p) = JΠ(ϕ(p))Jϕ(p) = JΠ(M)Jϕ(p) (4.35)

JΠ(M) can be simply computed since the projection function of the camera Π is

known. So we still have to find Jϕ(p), which can be determined using the normal

vector ~N . Indeed, the Jacobian matrix Jϕ(p) is a 3× 2 matrix, whose two columns,

denoted by U1 and U2, are the generating vectors of the tangent plane at ϕ(p) = M

in S. But ~N is orthogonal to this tangent plane, so ~N is orthogonal to U1 and U2.

Thus, by rotating ~N by 90◦ we obtain U1. Then U2 is obtained as the cross product

of U1 and ~N , i.e. U2 = U1 ∧ ~N . This implies that Jϕ(p) is determined using ~N , and

consequently Jη(p) is found.

6. η(p), Jη(p) and K are now ready, then the algorithm SfT_BGCC12I is run to

reconstruct the point M . Note that in this model we take J>∆(p)J∆(p) = I2, the

identity matrix of dimension 2, as the default case. Let M ′ denote the new recon-

structed 3D point, and let ~N1 and ~N2 denote the two obtained normal vectors from

the SfT_BGCC12I algorithm.

7. In this last step the error which forms the output of the model ZfT_SfT is com-

puted. Indeed, two errors are taken into2 consideration:

• The 3D reconstruction error defined by:

Er = ||M −M ′||2 (4.36)

• The normal error defined by:

EN = min{arccos( ~N · ~N1), arccos( ~N · ~N2)} (4.37)

The model ZfT_SfT defined by the above steps is summarized in the flow chart of Fig.

4.9.
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The model ZfT_SfT presented matches our needs to study the sensitivity of the SfT

Figure 4.9: A scheme of the model ZfT_SfT.

method as it has a scalar output and it takes the indicated inputs. However, while doing

simulations, the obtained errors are very small, and almost negligible. This is because all

the steps and the procedures are a direct implementation of the theoretical concepts, and

this does not reflect reality. Indeed, images taken in reality are exposed to noise whatever

the focal length and the resolution are. For that, we propose a method to add a reasonable

amount of noise on η(p) and Jη(p) simultaneously while running the ZfT_SfT model.

The method of adding noise is explained in the next section, and the modified model of

ZfT_SfT that is associated with noise will be denoted by ZfT_SfT’. This model takes

the same inputs as ZfT_SfT and gives the same outputs, so it is the one used in our

sensitivity study.

4.6 Imitating reality by adding noise

To imitate reality while studying the sensitivity of the SfT method by the ZfT_SfT

model, we add Gaussian noise on the computed η(p) and Jη(p) in the body of the model

before running the SfT_BGCC12I algorithm. This Gaussian noise should be added to

η(p) and Jη(p) simultaneously and in a compatible manner as it happens in reality. For

that, we develop a method that derives a correspondence between the standard deviation

of the Gaussian noise σ and the error in η(p) and Jη(p). This correspondence appears

as a plot of the variation of the error in η(p) and Jη(p) as a function of σ. This helps

in indicating the appropriate value of the σ according to a required amount of error in

η(p) and Jη(p). The following is a detailed description of the method used to derive the

correspondence:
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1. We create a 2D regular grid representing the pixel coordinates (Uref , Vref ) of points

in an initial 2D reference image Iref . Then, using the internal parameters of the

camera, the grid is converted into mm. This obtained grid is considered as a 3D

template Tref whose points have coordinates (Xref ,Yref , 0).

2. A 3D transformation is done to Tref consisting of a rotation and a translation. Then

the grid obtained formed a deformed surface Sdef , whose points have coordinates:

(Xdef ,Ydef ,Zdef ). After that, using the camera internal parameters, the deformed

surface is projected in to a pixel image Idef defined by the points (Udef , Vdef )

3. According to [Faugeras et al., 2004], a homography H exists which maps the points

of Iref into Idef . Thus we compute the H following the normalized direct linear

transformation algorithm proposed in [Hartley et Zisserman, 2003].

4. For a selected value of σ, a Gaussian noise is inserted to the gray level of the

two images Iref and Idef . The obtained noisy images are called INref and INdef
respectively.

5. To detect how much error is obtained on the warp function and its derivative due to

the Gaussian noise associated with the selected σ, we derive an affine approximation

HN of the warp function between INref and INdef . This derivation is done using

the method DIRT explained in [Bartoli, 2008], which needs an initial guess of

HN defined locally in Iref . For that, we select a point q ∈ Iref , and we define a

rectangular patch D ⊂ Iref around q. Then we derive a local affine transformation

G around q that matches H on D. To find this G we use the Taylor Expansion of

H around q which is defined by:

H(q + h) = H(q) + JH(q)h (4.38)

So we define G for any q′ ∈ D by substituting h in (4.38) by q′− q, this implies that:

G(q′) = JH(q)q′ − JH(q)q +H(q) (4.39)

Note that G is well defined according to (4.39), since JH(q) is a 2× 2 matrix and q

and q′ are in D ⊂ Iref ⊂ R2. Once G is found, HN is computed using the DIRT
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method and the error of the warp and its derivative can be derived. Indeed, HN is

an affine map between INref and INdef , approximating the warp function. Thus its

formula consists of the value of the warp and its first derivative.

6. To derive the error of the warp function and its derivative we consider the point

qN ∈ INref corresponding to the point q ∈ Iref . Then we select two different points

in the neighborhood of qN and denote them by q′N and q′′N corresponding to the

points q′ and q′′ in Iref . Then the error is taken as

RMS =
√

1
3

(∣∣∣∣∣∣HN(qN)−H(q)
∣∣∣∣∣∣2

2
+
∣∣∣∣∣∣HN(q′N)−H(q′)

∣∣∣∣∣∣2
2

+
∣∣∣∣∣∣HN(q′′N)−H(q′′)

∣∣∣∣∣∣2
2

)
(4.40)

Accordingly, the error associated to the selected σ is derived. Note that in the

above procedure only one point q is selected to derive the local approximation, but

in practice we choose a set of points of interest, and then for each point of interest

we derive the associated RMS as above. Then totally we take the average of all the

RMS obtained to get a reasonable value of the error of the warp function and its

derivative.

With the above steps we derive a correspondence between the σ of the Gaussian noise

added to the gray levels of the 2D image and the error obtained on η and Jη. In our

case study, the selected value of σ is 1.1155, since according to experts this value gives a

reasonable error on η and Jη. Accordingly, we update the model ZfT_SfT, to obtain a

new model ZfT_SfT’ whose sensitivity is to be studied. Fig. 4.10 represents a scheme

of the model ZfT_SfT’.

In the following section we present the framework we follow when applying the Sobol

sensitivity method.
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Figure 4.10: A schematic of the model ZfT_SfT’.

4.7 Sensitivity analysis of SfT

Recall that our aim is to see how information about the inputs can be extracted by

studying the variation of Sobol indexes of these inputs, with respect to some factors. For

that, the sensitivity of the model ZfT_SfT’ is not studied by just applying basic Sobol

method. Indeed, we extend the application to study the evolution of the Sobol indexes

of Z, f , and θ as a function of the depth Z. The reason behind choosing the variation

factor to be the depth Z is technical. Actually, a basic role of the depth has been detected

experimentally when applying the SfT method, in which three different results obtained

when varying Z. So studying the variation of the Sobol indexes of Z, f , and θ as a function

of the depth Z would give information about the three depth positions that are affecting

the 3D reconstruction by the SfT method. In this way, we keep our study realistic and

the conclusions are derived with scientific significance.

To this end, we first compute the Sobol indexes of Z, f , and θ corresponding to the output

Er. Then, in a next step, we compute the Sobol indexes of Z, f , and θ corresponding

to the output EN . Each of the inputs Z, f , and θ is considered to vary as a uniformly

distributed random variable with a specified interval:

• For θ we consider three different cases with three different intervals: [15◦, 30◦] ,

[30◦, 45◦] , and [45◦, 60◦]. In each of these cases we consider:

– The depth Z as uniformly distributed over the interval [Z0− 5, Z0 + 5] with Z0

varying in the interval [44mm, 2040mm].
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– The focal length f as uniformly distributed over the interval [f0 − 5, f0 + 5]

where f0 = Z0 − 20mm.

The computation of the Sobol indexes is done numerically using the formulas (1.54),

(1.55),and (1.62) of chapter 1. We use the Monte Carlo simulation method with 4000

samples to compute each Sobol index.

We start by the computation of the first order Sobol indexes. Algorithm 1 represents the

steps we follow in this computation.

Algorithm 1: First order Sobol indexes of Z, f , and θ as a function of Z with
[15◦, 30◦] as a sampling space for θ
For Z0 = 40mm upto 2040mm

f0 = Z0 − 20mm
sample spaces:

Z: [Z0 − 5, Z0 + 5]
f : [f0 − 5, f0 + 5]
θ: [15◦, 30◦]

sample1 = {(Zk, fk, θk)}k=1,··· ,4000

sample2 = {(Z̃k, f̃k, θ̃k)}k=1,··· ,4000

Ēr = 1
4000

∑4
k=1 000Er(Zk, fk, θk)

V ar(Er) = 1
4000

∑4
k=1 000E2

r (Zk, fk, θk)− Ē2
r

V ar(ErZ) = 1
4000

∑4000
k=1 Er(Zk, fk, θk)Er(Zk, f̃k, θ̃k)− Ē2

r

V ar(Erf ) = 1
4000

∑4000
k=1 Er(Zk, fk, θk)Er(Z̃k, fk, θ̃k)− Ē2

r

V ar(Erθ) = 1
4000

∑4000
k=1 Er(Zk, fk, θk)Er(Z̃k, f̃k, θk)− Ē2

r

SZ = V ar(ErZ)
V ar(Er) (first order Sobol index of Z)

Sf = V ar(Erf )
V ar(Er) (first order Sobol index of f)

SN = V ar(Erθ)
V ar(Er) (first order Sobol index of θ)

Similarly, the first order Sobol indexes are computed for the cases of θ sampled on the

intervals [30◦, 45◦], and [45◦, 60◦]. Also similarly, the computation is done concerning the

output EN . All the obtained first order Sobol indexes are plotted as a function of depth

in Fig. 4.11. In the figure, the indexes are denoted by SZ and Sf and SN corresponding
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to Z, f , and θ respectively.

(a) (d)

(b) (e)

(c) (f)

Figure 4.11: The variation of the first order Sobol indexes SZ and Sf and SN as a function
of the depth : (a) For Er with θ ∈ [15◦, 30◦] , (b) For Er with θ ∈ [30◦, 45◦], (c) For
Er with θ ∈ [45◦, 60◦], (d) For EN with θ ∈ [15◦, 30◦], (e) For EN with θ ∈ [30◦, 45◦],
(f) For EN with θ ∈ [45◦, 60◦] .

In Fig. 4.11, the plots (a), (b), and (c) display the first order Sobol indexes corresponding

to the output Er while the plots (d), (e), and (f) display the first order Sobol indexes

corresponding to the output EN . Each figure represents the evolution of the value of SZ ,

SN and Sf versus the depth (in mm). These indices determine, for each depth, how much

the errors Er and EN are sensitive to Z, θ, and f . In other words, SZ , SN and Sf indicate,

for each depth, how the variation in Er and EN can be apportioned to the variation of Z,
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θ, and f .

For θ ∈ [15◦, 30◦], the reconstruction error Er (Fig. 4.11(a)) is highly sensitive to Z for

depth greater than 500mm, but has very little sensitivity to θ. In addition, for all the

values of the depth, the influence of the focal length f is constant with a small value of

around 0.2. To conclude, it is possible to extract two separate phases:

• Depth less than 500mm: in this range Er is mostly affected by the variation of Z

and θ, but the influence of Z increases while the influence of N decreases.

• Depth greater than 500mm: in this range Er is highly affected by the variation of

Z while the effects of θ and f are almost negligible.

For θ ∈ [30◦, 45◦], the reconstruction error Er (Fig. 4.11(b)) is also highly sensitive to Z

especially for depth greater than 500mm. In addition, the sensitivity of Er with respect

to the focal length f is very small (about 0.2%), however the sensitivity of Er with respect

to θ varies over the range of the depth. Indeed, SN increases slightly for depth less than

200mm, after that it decreases gradually to reach Sf at 700mm, and then almost vanishes

at depth 2000mm. This enables us to extract three different phases:

• Depth less than 200mm: in this range Er is mostly affected by the variation of Z,

but the influence of θ increases. The influence of f is negligible.

• Depth in [200mm, 700mm]: in this range Er is affected by the variation of Z and

N , but the influence of N decreases. The influence of f is negligible.

• Depth greater than 700mm: in this range Er is highly affected by the variation of

Z. The effects of N and f are negligible.

For θ ∈ [45◦, 60◦], the variation of SZ ,Sf and SN (Fig. 4.11(c)) is analogous to the

previous case. Accordingly, three different phases can be extracted:

• Depth less than 250mm: in this range Er is mostly affected by the variation of Z,

but the influence of θ increases. The influence of f is negligible.

• Depth in [250mm, 1000mm]: in this range Er is affected by the variation of Z and

N , but the influence of N decreases. The influence of f is negligible.
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• Depth greater than 1000mm: in this range Er is highly affected by the variation of

Z. The effects of N and f are negligible.

Concerning EN , for the different cases of θ (Fig. 4.11(d), (e), and (f)), the evolution of

the Sobol indexes is approximately the same. All over the range of the depth, θ has the

most influence on the EN . The effects of SZ and Sf are very small (around 0.15mm),

except for depth less than 250mm where SZ has a slightly more effect than Sf .

These results obtained from the first order Sobol indexes are compromising, however to

check if there is an interaction between Z, f , and θ affecting Er and EN , we compute

the Total Sobol indexes. We apply the same numerical procedures as for the First order

indexes, with 4000 samples in a Monte Carlo simulation. We consider three different sam-

pling intervals for θ: [15◦, 30◦] , [30◦, 45◦] , and [45◦, 60◦]. We use the numerical formula

given in [Saltelli et al., 2010] for the computation of the total Sobol indexes. Algorithm

2 gives the details of the computation in case of sampling interval [15◦, 30◦] for θ.

Similarly, the total Sobol indexes are computed for the other sampling intervals of θ and

for the output EN . Fig. 4.12 presents the results obtained.

As it can be seen, the total Sobol indexes are approximately equal to the first order Sobol

indexes for both outputs ER and Er, this implies that the second order Sobol indexes are

almost zero. Thus we conclude that there is no interaction between Z, f , and θ affecting

Er and EN . So the effect of Z, f , and θ on the reconstruction error Er and normal error

EN are only individual effects.

Accordingly, the three different ranges of the depth can be derived from the sensitivity

reconstruction error Er to the individual effects of Z, f and θ. So conclusions and in-

formation concerning the input Z are derived by considering the variation of the Sobol

indexes of Z, f and θ concerning the SfT method. In the next section, we present another

way in which conclusions about the inputs are detected by studying the variation of the

Sobol indexes. We consider a new model corresponding to charge transport of dielectric

and we study the variation of Sobol indexes of its input as a function of three different

experimental factors.
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Algorithm 2: Total order Sobol indexes of Z, f , and θ as a function of Z with
[15◦, 30◦] as a sampling space for θ
For Z0 = 40mm upto 2040mm

f0 = Z0 − 20mm
sample spaces:

Z: [Z0 − 5, Z0 + 5]
f : [f0 − 5, f0 + 5]
θ: [15◦, 30◦]

sample1 = {(Zk, fk, θk)}k=1,··· ,4000

sample2 = {(Z̃k, f̃k, θ̃k)}k=1,··· ,4000

Ēr = 1
4000

∑4
k=1 000Er(Zk, fk, θk)

V ar(Er) = 1
4000

∑4
k=1 000E2

r (Zk, fk, θk)− Ē2
r

V ar(Er∼Z) = 1
4000

∑4000
k=1 Er(Zk, fk, θk)Er(Z̃k, fk, θk)− Ē2

r

V ar(Erf ) = 1
4000

∑4000
k=1 Er(Zk, fk, θk)Er(Zk, f̃k, θk)− Ē2

r

V ar(Erθ) = 1
4000

∑4000
k=1 Er(Zk, fk, θk)Er(Zk, fk, θ̃k)− Ē2

r

TSZ = V ar(Er)−V ar(ErZ)
V ar(Er) (total order Sobol index of Z)

TSf = V ar(Er)−V ar(Erf )
V ar(Er) (total order Sobol index of f)

TSN = V ar(Er)−V ar(Erθ)
V ar(Er) (total order Sobol index of θ)
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(a) (d)

(b) (e)

(c) (f)

Figure 4.12: The variation of the total order Sobol indexes TSZ and TSf and TSN as a
function of the depth : (a) For Er with θ ∈ [15◦, 30◦] , (b) For Er with θ ∈ [30◦, 45◦],
(c) For Er with θ ∈ [45◦, 60◦], (d) For EN with θ ∈ [15◦, 30◦], (e) For EN with
θ ∈ [30◦, 45◦], (f) For EN with θ ∈ [45◦, 60◦] .
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4.8 Charge transport model as a black box

The charge transport model considered in our work is described in [Le Roy et al., 2003].

Here the model is represented as a black box, having four inputs and two outputs (see

Fig. 4.13). The inputs are the barrier height for injection w, mobility µ, the trapping

Figure 4.13: The charge transport model.

coefficient B and the de-trapping barrier height wtr.

In order to estimate the Sobol indexes, it is necessary to provide the outputs as scalars. For

that, the outputs considered for the charge transport model are the net carrier density Y1

and the current density Y2. Concerning the output Y1, which is a net carrier density profile,

function of the position in the insulation and of the time, it is obtained by integrating the

total charge CT over the space D and the time tpol as follows:

Y1 =
∫
tpol

∫
D
CT dx dt (4.41)

For the current density Y2, the output is obtained by integrating the total flux j over the

time tpol:

Y2 =
∫
tpol

j dt (4.42)

Depending on these indicated configurations of the inputs and outputs the first order

Sobol indexes are computed. Keeping in mind that we are applying Sobol method in a

new framework, we study for this model the variation of the Sobol indexes of w, µ, the B

and wtr as a function of three experimental factors: the temperature T , strength of the

applied electric field E, and the time of application t.

The scientific idea behind studying such variation is indicated as follows. Indeed, most of
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the parameters (inputs) of a charge transport model cannot be determined by independent

experiments and it is a heavy task to estimate their values that best fit the experimental

data. In this manner, optimization algorithms play an important role in systematizing this

part of the modeling activity. However, to facilitate the convergence of the optimization

algorithms, it is important to quantify the effect of each input on the output in order

to limit the optimization to the most influential inputs. Plus, it is important to know

the best experimental configuration at which the data can be collected to be used in an

optimization process. In the next, section we present in detail the sensitivity study carried

out and the obtained results, and then discuss their significance.

4.9 Sensitivity analysis of charge transport model

To carry out a sensitivity study we consider each of the inputs as a uniformly distributed

random variable on a given range. Then, accordingly, the first order Sobol indexes are

computed according to the numerical method defined in chapter 1. The ranges of the

inputs are defined by their lower and upper bound which are indicated in Table 4.1.

Inputs Notation Units Lower bound Upper bound
Barrier height for injection, w X1 eV 1.10 1.20
Mobility, µ X2 m2.V−1.s−1 10−14 10−12

Trapping coefficient, B X3 s−1 5×10−4 10
De-trapping barrier height, wtr X4 eV 0.73 1

Table 4.1: The range of variation of the four inputs.

According to experts, these ranges of variation are chosen for several reasons. Firstly, to

be certain to keep the physical sense to the conditions. Secondly, to have a large range

of inputs in order to assume a broad and consistent representation of the output data.

Lastly to have tractable computation. The computation of the Sobol indexes is done

under the variation of the three experimental factors: the temperature T , strength of the

applied electric field E, and the time of application t. The way this variation is applied

is described in the next paragraph.
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4.9.1 The variation protocols

Three different protocols are applied to the dielectric material used in order to drive the

data used in the computation of the Sobol indexes:

_ First protocol (red curve): Sobol indexes are estimated using experimental data

obtained by using a DC electric field of 30kV.mm−1 applied for charging and dis-

charging times of 20min. The sensitivity analysis is carried out considering that

experimental data can be acquired over a temperature range of [0, 90◦C].

_ Second protocol (blue curve): Sobol indexes are estimated using the same material

under a temperature of 40◦C and for charging and discharging times of 20min. The

sensitivity analysis is performed considering an applied electric field varying over the

range [10, 80kV.mm−1].

_ Third protocol (green curve): Sobol indexes are estimated under a temperature of

40◦C and an applied electric field of 30kV.mm−1. The sensitivity analysis is per-

formed considering charging and discharging times varying over the range [1, 60min].

According to these protocols, the variation of the first order Sobol indexes is studied.

In the analysis of the results, we consider the indexes relatively in % to facilitate the

comparison between the different protocols. Also, we consider the influence of a given

input on charge or current density as negligible if its associated index does not exceed

20% (hatched area on the figures). Indeed, a Sobol index below 20% shows that the

chosen experiment protocol does not give sufficient information to estimate the selected

input with an optimization algorithm. Figures 4.14 to 4.17 show the evolution of the

Sobol indexes of the barrier height to injection, the mobility, the trapping coefficient and

the de-trapping barrier height for the two different outputs: charge density and current

density, respectively. We analyze the result for the first order Sobol indexes of each of the

inputs separately:

4.9.2 Sensitivity analysis of the barrier height for injection

Fig. 4.14 concerns the influence of barrier height for injection w on the current and charge

density. It appears that, for the model and protocol considered, the barrier for injection

- 123 -



4.9 Sensitivity analysis of charge transport model

Figure 4.14: Evolution of the first order Sobol indexes of the injection height barrier w.

does not influence the current density much. For this output, Sobol indexes are below

10% whatever the protocols used. On the other hand, Sobol indexes exceed 50%, meaning

a great influence, on the charge density at low temperature (below 30◦C) or in charging at

short time (less than 10min). For the both cases, it means that the impact on barrier for

injection on the deposited charge is important. The fact that this parameter is influential

at the beginning of polarization is in phase with the experimental observation. Indeed,

when an electric field is applied, charges are injected in the vicinity of the electrodes.

The presence of these charges close to the electrode induces a decrease of the electric field

at the interface over time and so a decrease of the injection flux. So, the influence over

longer times is less important. Roughly, it corresponds to space charge limited process,

which also explains why the barrier to injection is not strongly influential on the external

current, which corresponds to the space-averaged trapped current [Baudoin et al., 2007].

Finally, Fig. 4.14 also shows that the barrier height to injection does not impact the

charge density at T = 40◦C, irrespective of the field. Sobol indexes are always below

10%.
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4.9.3 Sensitivity analysis of the mobility

Fig. 4.15 concerns the influence of the mobility µ on the current and the charge density.

According to the results, it seems difficult to find a suitable experimental protocol for

the optimization purpose (most of the results are in the hatched area). The temperature

seems to be the most impacting protocol factor for the mobility for both outputs: charge

and current density. A temperature higher than 70◦C allows us to achieve a Sobol index

higher than 20%.

Figure 4.15: Evolution of the first order Sobol indexes of the mobility µ.

Experts explain this feature depending on the model of charge transport used. Indeed,

in the considered model two kinds of charge carriers are considered, being either trapped

or mobile, and they are provided only by injection at the electrodes [Le Roy et al., 2003].

Conduction takes place via a constant effective mobility µ, leading to the transport of

carriers through shallow levels that are related to the structural disorder of the dielectric.

Deep trapping, mainly due to chemical disorder in the material, is described using a

unique level of deep traps for each kind of carrier. Charges have a certain probability to
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escape from deep traps by overcoming a de-trapping barrier wtr. Based on this physical

description, results show that this model gives more importance to the charges in shallow

traps than in deep traps at high temperature. Indeed, for a temperature higher than

70◦C, the effective mobility has a greater impact on the outputs (Sobol indexes exceed

20%) which helps to estimate it well by the optimization process. Perhaps this increase is

due to the fact that at high temperature the fraction of charges in shallow traps is higher.

4.9.4 Sensitivity analysis of the de-trapping barrier height

The results related to the deep trap depth, or de-trapping barrier height wtr are sum-

marized in Fig. 4.16. For temperatures higher than 50◦C, the influence of the charge

trapping coefficient decreases considering the output Y1 charge density. The same hap-

pens for the current density Y2 for temperature above 80◦C. From room temperature to

70◦C, the charge density is impacted by the release of charges from deep traps, while for a

temperature higher than 70◦C the charge density is linked to the mobility of the charges

in the shallow traps. For a temperature below 20◦C, the charge density is only related

to the injection phenomena, charges tend to be close to the electrodes and to remain

there. The influence of de-trapping barrier height on the charge density increases over

time to reach 70% at one hour of charging time for a given temperature of 40◦C and a

given applied electric field of 30kV.mm−1. However, this input does not affect the current

density so much. Sobol indexes are below 10% whatever the protocols used except at

high temperature. In general, long charging times are preferred for improving sensibility

to the de-trapping coefficient.

4.9.5 Sensitivity analysis of the trapping coefficient

Fig. 4.17 concerns the influence of trapping coefficient B on current and charge density.

Very clearly here, this input has little effect on the charge or current density. Whatever

the protocols used, Sobol indexes are always below 10%. It is not very easy to explain

this feature because trapping and de-trapping phenomena are obviously linked by nature.

According to experts, an explanation could be provided for the obtained difference between

the effect of the trapping an de-trapping coefficient. One reason could be the chosen ranges

used for each input. Even though these ranges are chosen in a way to keep the physical
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Figure 4.16: Evolution of the first order Sobol indexes of the de-trapping barrier height
wtr.

sense, this may affect the response of each of the input differently. Another option for this

difference could be the fixed trap density used in this model. Indeed, this may represent

a very low density of defects (3.2× 1014/cm2), and this may limit the role of the trapped

charges in the net charge distribution and in the current density.
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Figure 4.17: Evolution of the first order Sobol indexes of the trapping coefficient B.

4.10 Parameter optimization

By analyzing the results obtained from the variation of the Sobol indexes a strategy

of study can be designed for parameter optimization for the charge transport model.

Indeed, optimization algorithms are used to find a set of parameters able to minimize

the deviations between experimental data and simulation data, as shown in Fig. 4.18.

Experimental data are the net density of charge as measured by the pulsed electro-acoustic

method – PEA – and external charging and discharging current measurements [Liu et al.,

1993]. Simulated data are those produced by the designed charge transport model. Based

on the parameter sensitivity analysis it is possible to find suitable experimental conditions

to obtain optimized estimation of the model parameters used in our charge transport

model. The three experimental protocols used with the chosen dielectric material, in film

form of thickness D = 200µm, give the following guidelines to provide a good approach

to the model parameters:

- 128 -



Chapter 4 : The Variation of Sobol indexes and its Significance

Figure 4.18: Principle of the optimization technique.

_ Estimation of the barrier height of injection: a map of the net charge density under

an applied field of 30kV.mm−1, a temperature of 20◦C and charging and discharging

times of 20min.

_ Estimation of the mobility: current measurement with the same experimental proto-

col as the previous, except for the temperature of the dielectric material that should

be higher than 70◦C.

_ Estimation of the de-trapping barrier height: space charge measurement with a

temperature from 30◦C to 70◦C, a field of 30kV.mm−1 or more and a time of 20min

or more.

Then, the obtained experimental results could be inserted into an optimization algorithm

in order to find the new set of parameters. Unfortunately, no straightforward optimal

conditions appear for identifying the trapping coefficient. According to experts, analysis

is in progress to understand why Sobol indexes are so low in this case. Recombination

processes, and electroluminescence as its pending experimental information, are not in-

corporated in the model. This could be a route to resolve the issue.
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4.11 Conclusion

In this chapter we study how the variation of the Sobol indexes helps in deriving con-

clusions concerning the inputs. In this manner we consider two applications, the first is

for a model from the domain of computer vision and the second is for a charge transport

model.

In the first application, we were able to get information concerning the inputs while study-

ing the variation of Sobol indexes. In detail we consider a 3D reconstruction method which

seems to be sensitive to the depth of the 3D surface in front of the camera. We adopt a

model involving this method, which gives a scalar output and imitates reality by adding

noise to images. Then we examine the sensitivity of this model with respect to three

inputs: the focal length of the camera, the depth of the 3D deformed surface, and the

orientation of the surface. Sobol indexes are computed numerically and they vary as a

function of the depth. Plotting the obtained results allows us to visualize clearly how the

effect of the depth can be partitioned into different domains.

Considering the charge transport model, it consists of four inputs and two outputs. We

study the Sobol indexes of the four inputs under three different protocols. Each protocol

accounts for the variation of one of the experimental factor: the temperature, strength of

the applied electric field, and the time of application. Analyzing the results obtained al-

lows us to conclude the most suitable experimental configuration for each input to collect

the data associated with its estimation process.

Final words, extending the application of the Sobol method by considering the examina-

tion of the variation of Sobol indexes has proved its efficiency. Indeed, more than just

information and conclusions concerning the inputs can be derived. Appropriate setting

for doing an uncertainty study can be also deduced from studying this variation and this

would help a lot in the domain of the backward propagation of uncertainty. In addition,

the most favorable ranges for approximating the parameters of a model in an optimization

process can be also detected by this variation study.
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Perspectives

In this dissertation our aim was to make a contribution to the domain of uncertainty

analysis especially for the backward uncertainty propagation. To this end, we studied

different methods in this domain. We concentrated the most on the Sobol sensitivity

analysis method where we developed its application framework. In addition, we derived

a new backward propagation method that, unlike previous methods, does not rely on any

preliminary approximations of the input uncertainty. The fruitful results obtained allowed

us to prepare and publish different papers in different scientific journals. In the following

we give a compact summary of what we did and how the conclusions were derived, and

at the end we set our short and long term perspectives for the future work.

In chapter 1 we focus on giving a general review of different methods considered in the

domain of uncertainty analysis. This helps in preparing the necessary background and

concepts needed in investigating uncertainty. The methods presented were divided into

groups according to the kind and way the uncertainty is studied. Structure uncertainty

assessment methods are specialized for the structural uncertainty of a model. The aim of

these methods is to reduce this kind of uncertainty as much as possible, and eliminate it

if possible. On the other hand uncertainty propagation methods are concerned with the

quantification of the uncertainty. Two types of methods exist in this manner: forward

propagation and backward propagation. The goal of the forward propagation methods

is to quantify the output uncertainty by propagating the input uncertainty through the

model. The goal of the backward propagation methods is to quantify the input uncer-

tainty starting from the given uncertainty of the output. This type of method is the least

considered in literature and for that we focus on it in our work. In the same manner we

recall several methods from sensitivity analysis for their importance in the uncertainty
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study. We focus in this manner on the Sobol sensitivity method which is considered as

one of the strongest sensitivity methods. It performs the sensitivity study by computing

sensitivity indexes, called Sobol indexes, in a probabilistic manner.

In chapter 2 we establish a new method for backward uncertainty propagation. Its aim

is to quantify the input uncertainty starting from the data of an uncertain output. The

method consists of two main steps. The first step is to write the output variance in terms

of the moments of the inputs. The second step is to solve a nonlinear least square problem

generated by the expression of step 1. By solving this least square problem numerically

the input uncertainty is obtained. Applications show that the method gives very near

approximations for the values of the input uncertainty. However the accuracy increases

as the number of samples used increases. This issue could be one of our perspectives for

future work.

In chapter 3 we show that the Sobol method can give reliable results even when ap-

plied in the discrete case. In general, the Sobol sensitivity method is applied to determine

the effect of each of the inputs on the output represented by the Sobol indexes. Usually

inputs in this method are considered to vary as continuous random variables in order to

compute the corresponding indexes. In this chapter, we expand this idea and we applied

Sobol methods for inputs with a discrete representation. To this end, we considered a

model from the domain of force spectroscopy and we studied its sensitivity by deriving

the associated Sobol indexes. The model is a representation of an experimental curve

called the Electrostatic Force distance curve (EFDC). The data was limited in this case

study (only 45 samples) due to the cost of each experimental run. For that, we performed

the computation of the Sobol indexes using the formulas of discrete random variables.

The obtained results of the Sobol method were confirmed using Design of Experiment

(DOE), where a total agreement was noted. In addition to this, we invested the obtained

sensitivity results in constructing an approximating formula that describes the EFDC.

The approximated EFDCs are plotted and compared to the experimental EFDCs. The

results obtained demonstrate a precise compatibility between the two curves.

In addition to their contribution in the area of sensitivity analysis, these results allow the
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EFDC to be a key starting point to detect charge localization in dielectrics. A next step

for this work would check if a similar derivation of the Sobol method can be done for dis-

crete random variables. In addition, future work in the force spectroscopy domain would

progress in deriving a systematic strategy for detecting the charge localization using the

EFDC.

In chapter 4 we continued in developing the framework for the applications of the Sobol

method and we showed how different information and conclusions can be derived for the

inputs by studying the variation of their corresponding Sobol indexes with respect to

some active factors of the model or some experimental settings. In addition, we demon-

strated that studying this variation also allows the determination of the most suitable

configuration for estimating the inputs. This can help in the quantification of the input

uncertainty in a backward propagation process. These deductions are the consequence of

two different applications considered in this chapter.

In the first application we were able to get information concerning the inputs while study-

ing the variation of the Sobol indexes. In detail we considered a 3D reconstruction method

which seems to be sensitive to the depth of the 3D surface in front of the camera. We

adopted a new model involving this method, that at the same time gives a scalar output

and imitates reality by adding noise to images. The strategy we derived to add noise

in the model depends mainly on the gray level of the images. After that we examined

the sensitivity of the model with respect to three inputs: the focal length of the camera,

the depth of the 3D deformed surface, and the orientation of the surface. Sobol indexes

were computed numerically and they varied as a function of the depth, since the depth

is a significant factor in the 3D reconstruction process as it affects the quality of the

obtained reconstruction according to experts. Plotting the variation of the Sobol indexes

with respect to the depth allowed us to visualize clearly how the effect of the depth can

be partitioned into different domains.

In the second application, we considered a charge transport model, it consists of four

inputs and two outputs. We studied the Sobol indexes of the four inputs under three

different protocols. Each protocol accounts for the variation of one of the experimental

factors: the temperature, the strength of the applied electric field, and the time period at
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which the electric field is applied. From this study, we were able to extract for each input

the most suitable experimental configuration in order to collect the data associated with

the inputs estimation process. However, only one of the inputs seems not to be sensitive

in any of the protocols. The future work will focus on how experimental data can be best

derived to be used in an optimization process to approximate this input.

For the variation of Sobol indexes, we concentrated in this work on only first order Sobol

indexes. Our next step would be to study the variation of the second order Sobol indexes

in case of having interaction between the inputs (non zero second order Sobol indexes).

The aim of studying this variation is to try to derive a conclusion or configuration so that

the interaction of the inputs can be minimized.

From here several goals can be set as future work for the short and the long term. As

short term goals, we could seek improvements in the performance of the derived back-

ward propagation method, mainly concerning the number of samples needed. We could

also consider the case study of backward propagation of uncertainty for models that are

not defined explicitly by functions or if the defined function is not continuous. On the

other hand, we can study the variation of the second order Sobol indexes searching for an

indication about minimizing the interaction between inputs. This helps in decreasing the

over all uncertainty of the model by minimizing the interaction between uncertain inputs.

As long term goals, one would consider the case in which the structural uncertainty is

taken into account in the backward propagation of uncertainty. This means that the

output uncertainty is not only due to input uncertainty, the structural uncertainty plays

a role in producing output uncertainty. So how a backward propagation of uncertainty

can partition the output uncertainty between the inputs and the structure of the model.

In general, these goals are ideas that can contribute in solving some of the remaining

issues in the domain of uncertainty.
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APPENDIX A Moments of Normally
Distributed Random
Variables

Let X be a normally distributed random variable with mean µ and variance denoted V .
Then the moment generating function of X is a function MX : [0,+∞)→ R defined by:

MX(t) = E[etX ] =
∫ +∞

−∞

1√
2πV

e
(x−µ)2

2V etxdx (A.1)

With easy symbolic computation, the integral in A.1 can be solved and the moment
generating function ends by:

MX(t) = eµte
1
2V t

2 (A.2)

Recall that whenever the moment generating function exists in some neighborhood of
0, the moments of the random variable are expressed in terms of the derivatives of the
moment function at t = 0 [Heathcote, 2000]. So if mn denotes the n-th non central
moment of X, then mn is written as:

mn = dn

dtn
MX(t)|t=0 (A.3)

Accordingly, the non central moments of X for any order can be directly found using A.3.
To ease the computation proces of the derivatives of the moment generating function one
may use any symbolic computing software such as Mathematica, Maple, and Python. Here
we give the first 10 non central moments of X :
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m1 = µ

m2 = µ2 + V

m3 = µ3 + 3µV
m4 = µ4 + 6µ2V + 3V 2

m5 = µ5 + 10µ3V + 15µV 2

m6 = µ6 + 15µ4V + 45µ2V 2 + 15V 3

m7 = µ7 + 21µ5V + 105µ3V 2 + 105µV 3

m8 = µ8 + 28µ6V + 210µ4V 2 + 420µ2V 3 + 105V 4

m9 = µ9 + 36µ7V + 378µ5V 2 + 1260µ3V 3 + 945µV 4

m10 = µ10 + 45µ8V + 630µ6V 2 + 3150µ4V 3 + 4725µ2V 4 + 945V 5

(A.4)
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