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Chapter 1

Introduction

Well Quasi-Ordering (WQO) is a notion from order theory that lies between well-

orders (ordinals) and well-founded quasi-orderings: a well-order is WQO, and a WQO

is well-founded. It enjoys several equivalent definitions (see Section 2.3), and has

therefore been introduced several times independently, as people were interested in

one of the characterization. Higman [1] studied orderings having the finite basis prop-

erty: every subset has a non-empty but finite set of minimal elements (see (WQO4) in

Section 2.3), as a generalization of well-orderings (every subset has exactly one min-

imal element). In the 1940’s, Vazsonyi and Erdös were interested in conjectures of

the form of (WQO1), and thus naturally introduced WQOs with this definition. The

concept of WQOs has also been introduced as a strengthening of well-founded quasi-

orderings: for instance, the powerset of a well-founded order (ordered with the dom-

ination ordering, see Section 7.3) may not be well-founded. But it is if the QO one

started with is WQO (see (WQO7) in Section 2.3). More generally, WQOs enjoy many

more closure properties than well-founded orderings, letting them be easier to work

with. This is I think the reason of the success of this notion in many areas of mathe-

matics and computer science: Combinatorics, Topology, Automata Theory and Formal

Languages, Proof Theory, Term Rewriting, Graph Theory, Program Verification, and

more. See [2] for an early history of the concept and [3] for a recent survey on the

use of WQOs in many areas of mathematics and computer science, written as a report

of a Dagstuhl seminar bringing together researchers from many different communities

of mathematics and computer science around the central notion of WQOs. Note that

even though WQOs enjoy closure properties under many natural operations, a better

notion has been introduced by Nash-Williams in the late 1960’s, which enjoys even

more closure properties. This notion, Better Quasi-Orderings is defined in Section 9.2.

Although WQO have proved their strength in many areas of computer science, our

motivations will mainly come from Program Verification. Nonetheless, the results of

this thesis are general and may be of interest for any computer scientist working with

WQOs.

WQOs in Program Verification The efficiency of well-founded orderings to prove

program termination, already suggested by Turing [4], is widely known. It is thus not a
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surprise that WQOs may be used to show program termination. More generally, several

alternative definitions of WQOs (see Section 2.3) contain a flavor of finiteness, which

is what makes WQOs powerful objects in computer science.

In the 1990’s, Finkel, Schnoebelen, Abdullah and Jonsson introduced a large class

of infinite state systems, Well Structured Transition Systems (WSTS), which can be ver-

ified using generic methods conceptually similar to the ones used to verify finite state

systems (see [5, 6] for surveys). The key ingredient in the notion of WSTS is the pres-

ence of a WQO compatible with the structure of the transition system. The finite basis

property (cf. above) ensures that some infinite sets of states enjoy finite representations,

and under mild effectiveness assumptions, we may perform computations with those

sets, ultimately proving verification properties of the system (coverability, termination,

boundedness, ...). Last year, the main contributors to this generic framework which has

flourished during the last 20 years, have received the CAV award.

Outline. In the first part of this thesis, we define a notion of effectiveness for WQOs,

and proceed to prove that a large class of WQOs is effective in this sense. Our notion

of effectiveness includes most of the requirements needed for generic algorithms. In

the second part, we study some logical aspect of WQOs.

8



Chapter 2

Basics of Order Theory and

Well Quasi-Orderings

This chapter is devoted to defining the terminology we use throughout this manuscript.

We also recall well-known facts from order-theory, along with the main ideas for their

proofs, which are voluntarily kept concise. For a deeper presentation of these notions,

we invite the reader to refer to [7, 2] for instance.

2.1 Preliminaries

Natural Numbers. The set of all natural numbers is denoted N. When used on nat-

ural numbers, ≤ denotes the usual ordering on N. The finite set {1, . . . , n} will be

denoted [n]. A permutation is a bijection from [n] to [n]. The set of all permutations,

denoted Sn, is a group, sometimes called the symmetric group. It has n! elements,

which is asymptotically exponential in n (by Stirling formula: n! ∼
√
2πn

(
n
e

)n
).

Sets. We use standard set-theoretic operations on sets: membership x ∈ S, inclusion

S ⊆ T , union S∪T , intersection S∩T , set difference SrT . Given a set X , the set of

all subsets of X is denoted P(X). When S ∈ P(X) and X is clear from the context,

the set difference X r S, called the complement of S and will be denoted ∁S. If A is

a set of sets,
⋃
A denotes the set

⋃

S∈A S (a notation coming from set-theory).

Relations. A relationR on a setX is a subset ofX×X . As such, we use set-theoretic

operations on relations, e.g. R ⊆ S means ∀x, y ∈ X. xRy ⇒ xSy, where xRy
denotes membership (x, y) ∈ R. Given a relationR on a setX and a function f : X →
Y , we also refer to the image of R by f to denote the relation S

def
= {(f(x), f(y)) |

x, y ∈ X and xRy}.
We sometimes use the functional point of view, for instance the composition of two

relations R1 and R2 is the relation R = R1 ◦R2 defined by xRy
def⇔ ∃z. xR1z∧ zR2y.

A relation is:
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• reflexive if ∀x ∈ X. xRx,

• transitive if ∀x, y, z ∈ X. xRy ∧ yRz ⇒ xRz,

• symmetric if ∀x, y ∈ X. xRy ⇒ yRx,

• antisymmetric if ∀x, y ∈ X. (xRy ∧ yRx)⇒ x = y.

An equivalence relation is a reflexive, transitive and symmetric relation. Let E be

such a relation on X . Elements x and y in X such that xEy are called equivalent.

For every x ∈ X , [x]E , or [x] when E is understood, denotes the equivalence class

of X: [x] = {y ∈ X | xEy}. We say that x is a representant of [x]. Observe that

[x] = [y] ⇐⇒ xEy. As a consequence, two equivalence classes are either equal

or disjoint. It follows that equivalence classes form a partition of X (conversely, any

partition of X defines an equivalence relation).

The quotient of X by E, denoted X/E, is the set of equivalence classes of E.

A relation which is reflexive and transitive is called a quasi-ordering.

We will often use the abbreviations xRy, z and x, yRz to express xRy ∧ xRz and

xRz ∧ yRz, respectively.

Sequences. We assume some familiarity with ordinals. Given an ordinal α, we de-

note by α the set of strictly smaller ordinals, i.e. α
def
= {β | β < α}. A sequence over

X is a function s : α → X for some ordinal α. The length of a sequence s, denoted

|s|, is the ordinal α, if α is its domain. The only sequence of length 0, denoted ǫ, is

also called the empty sequence. The set (or class) of sequences of length α is denoted

Xα, and X<α =
⋃

β<αX
β . The concatenation of two sequences s and t over the

same set X of length α and β respectively is the sequence of length (α + β) denoted

s · t and defined by (s · t)(γ) = s(γ) if γ < α, and (s · t)(α + γ) = t(γ) if γ < β.

This operation is associative.

When (X,≤) is a quasi-ordered set (see below), sequences are quasi-ordered with

the embedding quasi-ordering: if s and t are sequences of length α and β respectively,

then

s ≤ t
def⇔ ∃f : α→ β strictly increasing . ∀γ < α. s(γ) ≤ t(f(γ))

When s ≤ t, the function f is called a witness of the embedding of s in t. A subse-

quence of a sequence t is a sequence s that embeds into t when the order considered

on X is the equality.

A sequence is finite if its length is a natural number. The set of finite sequences over

X is denoted X∗ instead of X<ω , and the embedding quasi-ordering between finite

sequences will be denoted ≤∗. Finite sequences are often described by the ordered list

of their images: u = x1x2 · · ·xn · · · where xi = u(i−1). WhenX is a finite alphabet

(i.e. a finite set ordered with equality), finite sequences over X are often called finite

words. In Section 11.1, we freely use regular expressions like (ab)∗ + (ba)∗ to denote

regular languages. Given a letter a ∈ X , |u|a denotes the number of occurrences of a
in u. A word v is a factor of u if there exist words u1 and u2 such that u = u1vu2.

If furthermore u1 = ǫ then v is a prefix of u, while if u2 = ǫ then v is a suffix of u.
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2.2 Order Theory

Orderings. Let X be a set. A quasi-ordering (abbreviated QO) on X is a reflexive

and transitive relation, often denoted ≤, on X . If x ≤ y, we say that x is smaller than

y, or y is greater than x, which is also denoted y ≥ x. If ≤ is also anti-symmetric, then

it is called a partial-ordering, or often simply an ordering. Every quasi-order (X,≤)
defines a partial-ordering on X/ ≡, where ≡ is the equivalence relation defined by

≡ = ≤ ∩≥.

A quasi-ordering (X,≤) is said to be total, or linear, if every pair of elements

is comparable: ≤ ∪ ≥ = X2. If (X,≤) is not linear, there are some incomparable

elements. We define for this cases the relation ⊥: x ⊥ y
def⇔ x 6≤ y ∧ y 6≤ x. A chain

Y of (X,≤) is a subset of X which is totally ordered, that is (Y,≤Y ) where ≤Y is the

restriction of ≤ to Y , is a total (partial-) order. An antichain of X is a subset S ⊆ X
such that elements of S are pairwise incomparable: ∀x, y ∈ S. x 6= y ⇒ x ⊥ y. A QO

(X,≤) is FAC (for finite antichain condition) if it has no infinite antichains.

Given a QO (X,≤), we define its associated strict ordering, denoted <, by < =
≤ r ≡. The QO is well-founded if there are no infinite strictly decreasing sequences

x1 > x2 > x3 > . . . in (X,≤). If it is also antisymmetric and linear, then we say it

is a well-order. Note that ordinals are exactly equivalence classes of well-orderings for

order-isomorphism equivalence relation (cf. next paragraph).

An extension of a quasi-ordering ≤ on X is a quasi-ordering ≤′ also on X such

that ≤ ⊆ ≤′.

An element x ∈ X is said to be minimal in S ⊆ X if for every y ∈ S, y ≤ x ⇒
x ≤ y. Equivalently, x is minimal if there are no y ∈ S such that y < x. Maximal

elements are defined dually.

Mappings between Quasi-Ordered Sets. A mapping f : X → Y between two

quasi-ordered sets (X,≤X), (Y,≤Y ) is:

• monotone if for every x, y ∈ X , x ≤X y ⇒ f(x) ≤Y f(y).

• a reflection if for every x, y ∈ X , f(x) ≤Y f(y)⇒ x ≤X y

• an embedding of X into Y if it is a monotone reflection, that is for every x, y ∈
X , x ≤X y ⇐⇒ f(x) ≤Y f(y).

• An isomorphism if it is a bijective embedding.

As long as we are only interested in the properties of the quasi-ordering, two iso-

morphic QOs can be considered identical.

Closed Subsets. Given a subset S ⊆ X of a QO (X,≤), we define:

• its downward-closure ↓S def
= {x ∈ X | ∃y ∈ S. x ≤ y}

• its upward-closure ↑S def
= {y ∈ X | ∃x ∈ S. x ≤ y}

• its strict-downward-closure ↓< S
def
= {x ∈ X | ∃y ∈ S. x < y}
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• its strict-upward-closure ↑> S
def
= {y ∈ X | ∃x ∈ S. x < y}

When (X,≤) is not clear from the context, we use the more explicit notation ↑X S
(resp. ↓X S), or ↑≤ S. Sometimes, we only subscript by a symbol that clearly refers to

some specific QO, e.g. if the QO is ≤st, we write ↓st instead of ↓≤st
.

In the case S is a singleton, we write ↑x for ↑{x} and ↓x for ↓{x}, when it causes

no confusion (e.g. not when x is itself a set). With this abbreviation, ↑S =
⋃

x∈S ↑x
and ↓S =

⋃

x∈S ↓x. These relations are particularly interesting when S is a finite set.

A subset U of X is said to be upward-closed when U = ↑U . A subset D of

X is said to be downward-closed when U = ↓U . We denote the set of all upward-

closed sets of X by Up(X) ⊆ P(X) and the set of all downward-closed sets of X by

Down(X) ⊆ P(X). The sets Up(X) and Down(X) are closed under union and inter-

section. Besides, upward- and downward-closed sets are dual in the following sense:

the complement function from P(X) to itself is an isomorphism between (Up(X),⊇)
and (Down(X),⊆), and it is an involution. As such, upward- and downward-closed

sets will share many property, and we will often talk about closed subsets to denote

upward- and (respectively) downward-closed sets.

Irreducible Subsets. A subset S ⊆ X is said to be (up)-directed if for every x, y ∈
S, there exists z ∈ S such that x ≤ z and y ≤ z. Similarly, S is said to be (down)-

directed if for every x, y ∈ S, there exists z ∈ S such that x ≥ z and y ≥ z. When

the adjective directed is used alone, it will always mean (up)-directed. A filter of X
is a non-empty upward-closed (down)-directed subset of X . The set of filters of X is

denoted Fil(X). An ideal of X is a non-empty downward-closed (up)-directed subset

of X . The set of ideals of X is denoted Idl(X). Filters are not complements of ideals,

and vice versa. Observe that for every x ∈ X , ↑x ∈ Fil(X) and ↓x ∈ Idl(X). Such

subsets are respectively called principal filters and principal ideals.

The main property of filters and ideals is their irreducibility in Up(X) and

Down(X) respectively. Formally, an upward-closed set U ∈ Up(X) is irreducible if

it is non-empty, and for every U1, U2 ∈ Up(X), U ⊆ U1 ∪ U2 implies that U ⊆ U1 or

U ⊆ U2. Similarly, a downward-closed set D is irreducible if it is non-empty, and for

every D1, D2 ∈ Down(X), D ⊆ D1 ∪D2 implies D ⊆ D1 or D ⊆ D2. Irreducible

sets are those that cannot be written as a finite union of the others: D ∈ Down(X)
is irreducible if and only if for every D1, . . . , Dn ∈ Down(X), D = D1 ∪ · · · ∪Dn

implies D = Di for some i. The statement also holds for irreducible sets of Up(X).
The following proposition relates irreducibility and directedness:

Proposition 2.2.1. Filters are exactly the irreducible sets of Up(X) and ideals are

exactly the irreducible sets of Down(X).

Proof. We provide a proof that a downward-closed set of X is an ideal if and only if it

is irreducible. The proof for upward-closed sets is dual.

(⇒) Let I be an ideal of X and D1, D2 ∈ Down(X) such that I ⊆ D1 ∪D2. We

show that if I 6⊆ D1, then I ⊆ D2. Let x ∈ I rD1 ⊆ D2 rD1. For any y ∈ I , there

exists z ∈ I such that z ≥ x, y. Since D1 is downward-closed and x 6 inD1, z /∈ D1.

Therefore z ∈ D2, and thus y ∈ D2, since D2 is downward-closed.
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(⇐) By contraposition, let D ∈ Down(X) which is not an ideal, that is there exist

x, y ∈ D such that ↑x ∩ ↑ y ∩D = ∅, or equivalently D ⊆ ∁(↑x ∩ ↑ y). Define D1 =
∁ ↑x and D2 = ∁ ↑ y. Then D1 ∪D2 = ∁(↑x ∩ ↑ y) and thus D ⊆ D1 ∪D2. Besides,

x and y are incomparable, since otherwise max(x, y) would belong to D ∩ ↑x ∩ ↑ y.

Therefore, x ∈ D rD2 and y ∈ D rD1.

2.3 Well Quasi Orderings

A QO (X,≤) is a well-quasi ordering (WQO for short) if and only if one of the fol-

lowing equivalent statements holds:

Every infinite sequence x0, x1, x2, . . . has an increasing pair, that is a pair

xi ≤ xj for i < j. A sequence will be called good if it has an increasing
pair, and bad otherwise. Thus in a WQO, all bad sequences are finite.

(WQO1)

Every infinite sequence x0, x1, x2, . . . has an infinite increasing subse-
quence: ∃i0 < i1 < . . . such that xi0 ≤ xi1 ≤ . . .(WQO2)

(X,≤) is FAC and well-founded.(WQO3)

Every non-empty subset S ⊆ X has a finite basis, that is a finite set B
such that ↑B = ↑S. Intuitively, this can be thought of as “S has finitely

many minimal elements”, which is formally wrong because there might be
infinitely many equivalent elements. We will denote by min(S) any finite
basis of S which is minimal for inclusion. Given any two such finite basis

B1 and B2, there exist a bijection that maps elements B1 to equivalent

elements (for ≤) of B2.

(WQO4)

Every upward-closed set U ∈ Up(X) is a finite union of principal filters.(WQO5)

(Up(X),⊇) is well-founded.(WQO6)

(Down(X),⊆) is well-founded.(WQO7)

Proof. Of equivalence

(WQO2)⇒ (WQO1): trivial.

(WQO1) ⇒ (WQO3): An antichain is a bad sequence, hence cannot be infinite.

Similarly, a strictly decreasing sequence is a bad sequence, hence cannot be infinite.

(WQO3) ⇒ (WQO2): This is the difficult implication. It relies on the Infinite

Ramsey Theorem. Let (xn)n∈N be an infinite sequence of elements of X . We color

the infinite complete graph G = (N, {{i, j} | i, j ∈ N, i 6= j}) with the three colors

{≤, >,⊥}. As expected, a two-element subset {i, j} with i < j ∈ N is colored with

≤ if xi ≤ xj , with > if xi > xj , and with ⊥ otherwise. Now, the Infinite Ramsey

Theorem states that G has an infinite monochromatic clique. An infinite clique of G
colored with > induces a strictly decreasing infinite subsequence of (xn)n∈N, which

is impossible since (X,≤) is well-founded. An infinite clique of G colored with ⊥
induces an infinite antichain in X , which is also impossible. Therefore, there is in G
an infinite clique colored with ≤, i.e. an infinite increasing subsequence of (xn)n∈N.

(WQO3)⇒ (WQO4): Let S be a subset ofX . Since (X,≤) is well-founded, S has

a non-empty subset M of minimal elements, and ↑M = ↑S. Besides, it is easy to see

that if x is minimal in S and y ≡ x, then y is minimal as well. It follows that M is a
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union of equivalence class for ≡. Consider B a set obtained from M by taking exactly

one member of each these equivalence class. Of course, ↑B = ↑M = ↑S. Moreover,

since elements ofB are minimal in S but non equivalent, they form an antichain, hence

B is finite.

Now, letB1 andB2 two finite basis of S that are minimal for inclusion. Let x ∈ B1.

Since ↑B1 = ↑B2, there exists y ∈ B2 such that y ≤ x, and conversely, there exists

z ∈ B1 such that z ≤ y. It follows that z ≤ x. If z 6= x, B1 r {x} is still a finite

basis of S which is in contradiction with B1 being minimal. Therefore z = x which

means that x ≡ y. If there exists y′ ∈ B2 such that y′ ≤ x, the same reasoning leads

to x ≡ y′, hence y ≡ y′, which is impossible by minimality of B2.

It follows that for every x ∈ B1, there exists a unique equivalent y ∈ B2. This

provides an injective mapping of elements of B1 to equivalent elements of B2. By

symmetry between B1 and B2, the mapping is actually bijective.

(WQO3)⇐ (WQO4): Since any subset of X has a non-empty subset of minimal

elements, (X,≤) is well-founded. Besides, for any antichain A, A = min(A), and

thus A is finite.

(WQO4) ⇒ (WQO5): An upward-closed set U is in particular a subset of X .

Therefore there exists a finite basis B such that ↑B = ↑U = U . Since B is finite,

↑B =
⋃

x∈B ↑x is a finite union.

(WQO4) ⇐ (WQO5): Conversely, for an arbitrary subset S ⊆ X , any finite de-

composition of the upward-closed set ↑S =
⋃n

i=1 ↑xi provides a finite basis.

(WQO6) ⇔ (WQO7): follows from the prior observation on ∁ being an isomor-

phism between (Up(X),⊇) and (Down(X),⊆) (cf. end of paragraph on Closed Sub-

sets).

(WQO2)⇒ (WQO6): given a strictly increasing sequence U0 ( U1 ( U2 ( · · ·
of upward-closed sets, define a sequence of elements of X as follows: x0 ∈ U0, and

for all i, xi ∈ Ui r Ui−1. Such a sequence exists since (Un) is strictly increasing.

Moreover, the sequence (xn) is bad, hence finite. Indeed, let i < j, xj ∈ Uj r Uj−1,

and Ui ⊆ Uj−1, thus uj /∈ Ui. But Ui is upward-closed, so xi ≤ xj would imply

xj ∈ Ui.

(WQO7) ⇒ (WQO1): given an infinite sequence (xn)n∈N of elements of X , we

define a decreasing sequence of downward-closed sets Di =
⋃

j≥i ↓xj . The sequence

(Dn)n∈N is decreasing for ⊆ by construction. Thus, there exists i ∈ N such that

Di = Di+1. In particular, xi ∈ Di = Di+1 and therefore xi ∈ ↓xj for some j > i,
which is equivalent to xi ≤ xj .

The property that bad sequences are finite is of course very useful in computer sci-

ence, for instance in the context of proving termination of programs. However, such

a finiteness property already lies in the definition of well-foundedness. What makes

WQO a more practical tool than well-founded orderings is that the notion is preserved

under many operations on quasi-ordered sets. Cartesian products (with component-

wise quasi-ordering [8]) and finite sequences (with the Higman or subword quasi-

ordering [1]) are the most prominent examples. In Part I, many such constructions

will be presented in details. In addition to these, we would like to mention that several

quasi-orderings on trees labeled with elements of a WQO are WQOs themselves. And
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of course, the famous Robertson-Seymour Theorem states that the minor ordering on

graphs (labeled by elements in a WQO) is a WQO [9].

Properties of Closed Subsets of a WQO. The following theorem is due to Bonnet

and proved in [10]. Similar proofs can also be found in [11, 12]. To the best of the

author’s knowledge, the proof presented below is new.

Theorem 2.3.1 (Bonnet). A QO (X,≤) is FAC if and only if every downward-closed

set ofX is a finite union of ideals, if and only if every upward-closed set ofX is a finite

union of filters.

Proof. A QO (X,≤) is FAC if and only if (X,≥) is FAC. Upward-closed sets of

(X,≤) being downward-closed sets of (X,≥), and filters of (X,≤) being ideals of

(X,≤), we only need to show the first equivalence.

(⇐) Let S ⊆ X be an infinite subset of X . If the downward-closure ↓S has an

ideal decomposition ↓S = I1 ∪ · · · ∪ In, then there must be infinitely many x ∈ S
that belong to the same ideal Ii0 . Take x, y two elements of S that belong to Ii0 , by

directedness there exists z ∈ Ii0 such that z ≥ x, y. But Ii0 ⊆ ↓S, therefore there

exists t ∈ S such that t ≥ z ≥ x, y, and S is not an antichain.

(⇒) By contraposition, letD ∈ Down(X) that does not admit a finite ideal decom-

position. We apply Zorn’s Lemma to the quasi-ordered set (P(P(D) ∩ Idl(X)),≤c),
where≤c denotes the covering quasi-ordering defined by: A ≤c B iff

⋃
A ⊆ ⋃B iff

∀I ∈ A. I ⊆ ⋃B. Note that P(D) ∩ Idl(X) = Idl(D,≤), where (D,≤) is the QO

obtained by restricting (X,≤) to D (this relies on the fact that D is downward-closed,

the structure of the ideals of a restriction is more complex in general, see Section 4.3).

Therefore, given A a set of ideals of D,
⋃
A is a downward-closed subset of D, and

≤c corresponds to inclusion for downward-closed sets.

In order to apply Zorn’s Lemma, we show that every chain of P(Idl(D)) has an

upper bound. Given such a chain C, define A =
⋃
C ⊆ Idl(D). For B ∈ C,

B ≤c A since B ⊆ A. Therefore, by Zorn’s Lemma, (P(P(D)∩ Idl(X)),≤c) has a

maximal element M ⊆ Idl(D), that is for every A ⊆ Idl(D), M 6<c A. In particular,

for any I ∈ M , M 6<c (M r {I}), i.e. ∃K ∈ M . K 6⊆ ⋃J∈Mr{I} J . Trivially,

K ⊆ ⋃J∈Mr{I} J for K ∈M r {I}. Therefore, for the above condition to be true,

the following must hold: I 6⊆ ⋃J∈Mr{I} J . In other words, ∀I ∈M . ∃xI ∈ I. ∀J ∈
M . (J 6= I ⇒ xI /∈ J). Using the axiom of choice, we can chose such an element xI
for every I ∈M . The resulting set {xI | I ∈M} is obviously an antichain of (X,≤).
It remains to show that M is infinite. For this, we show that

⋃
M = D, and since we

assumed that D cannot be decomposed as a finite union of ideals, it follows that M is

infinite. For the sake of contradiction, assume
⋃
M is a strict subset of D. Then let

x ∈ D r
⋃
M , we have M <c M ∪ {↓x}, contradicting the maximality of M .

Since a WQO is in particular a FAC QO, it follows that downward-closed and

upward-closed sets of a WQO are finite unions of ideals and filters, respectively. Ac-

tually, there is a more direct and much easier proof of this fact in the case of a WQO.

For upward-closed sets, the decomposition already follows from (WQO5) above. Note

that this even proves that upward-closed sets are finite unions of principal filters, and

indeed, all filters are principal in a WQO.
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For downward-closed sets, the decomposition can be proved by induction on

(Down(X),⊆), which is well-founded when (X,≤) is a WQO (cf. (WQO7)). Actu-

ally, the general case is often proved using this special case (cf. [10, 11, 12]).

Note that the situation is not symmetric between upward-closed and downward-

closed sets of a WQO: unlike for filters, not all ideals are principal. Indeed, (WQO5)

shows that all filters of (X,≤) are principal when (X,≤) is a WQO. Therefore, all

ideals are principal if and only if (X,≥) is a WQO. But ≤ and ≥ are simultaneously

WQOs if and only if X is finite.

Even though not all ideals are principal, principal ideals convey the good intuition:

an ideal is always the downward-closure ↓x of some element x, however sometimes

this element x is not in X: it is a limit point. When X is countable, this intuition can

be made formal: ideals are exactly the downward-closure of chains. That is, ideals

are limits of increasing sequences. More generally, a partially-ordered set (X,≤) can

always be seen as a topological set (Xa,O) equipped with the Alexandroff topology.

In this setting, a topological operation called sobrification that essentially consists in

adding the “missing limits” applied to (Xa,O) corresponds exactly to the set of ideals.

When (X,≤) is WQO, (Xa,O) is Noetherian (for the Alexandroff topology). But

topological spaces can be Noetherian for other topologies, in which case they may

not correspond to some WQO. Noetherian spaces therefore constitute a generalization

of WQOs, closed under more operations (e.g. infinite powerset). For more details,

see [13] and references therein.

Cardinalities Let (X,≤) be a WQO. From the fact that all filters are principal, it

follows that (Fil(X),⊆) is order-isomorphic to (X/≡,≤), where≡ is the equivalence

relation induced by ≤. Besides, the irreducibility of filters (Proposition 2.2.1) entails

that (Up(X),⊆) embeds in (Pf (Fil(X)),⊑H), where Pf denotes the finitary power-

set and ⊑H denotes the Hoare quasi-ordering defined by: For A,B ⊆ Pf (Fil(X)),

A⊑HB
def⇔ ∀F ∈ A. ∃F ′ ∈ B. F ⊆ F ′. Furthermore, (Up(X),⊆) is isomorphic

to the quotient Pf (Fil(X))/≡H, where ≡⊑H
= H ∩ ⊒H. More details on the Hoare

quasi-ordering are given in Section 7.3.

From this isomorphism, it follows that if X/≡ is infinite, Up(X) has the same

cardinality as X . Since Down(X) is isomorphic to Up(X), it also has the same car-

dinality. Finally, (Down(X),⊆) is isomorphic to (Pf (Idl(X))/≡H,⊑H) (cf. Propo-

sition 2.2.1 as well), and thus Idl(X) also have the same cardinality. If X is finite, all

ideals are principal and thus Idl(X) is isomorphic to X/≡.

Theorem 2.3.1 was originally proved to obtain these results on cardinalities [10].

In this manuscript, we are interested in computability properties of WQOs, therefore

all WQOs will be countable (see Section below).

2.4 Notes on Computability

Subsequently, we assume some familiarity with classical computability theory. In this

thesis, our aim is to compute operations within quasi-orders. Notably, given a QO

(X,≤), we want to compute mathematical operations in the QOs (Up(X),⊆) and

16



(Down(X),⊆).
For the following discussion, let us fix a model of computations, e.g. Turing ma-

chines working over a finite alphabet A. In this framework, the notions of decidability

and computability are only defined for subsets of A∗ and functions from A∗ to A∗.

Then, what does it mean that ≤ is decidable on X , for some QO (X,≤) ? To give a

meaning to this expression, we encode X into A∗. Formally, this is done by consid-

ering a recursive subset X̂ of A∗ (this is the syntax of X) and a function J·K from X̂
to X (this is the semantic of the syntax). Elements of X̂ encode elements of X: an

element x ∈ X is encoded (represented) by any x̂ ∈ X̂ such that Jx̂K = x. To say

that X̂ encodes X , we want to make sure that every element of X is actually encoded

in X̂ , that is J·K is surjective. However, we don’t require the semantic function to be

injective, that is an element of X might have several encodings. Note that the semantic

is a surjective function from a countable set to X , hence X is countable.

Now, observe that the quasi-ordering ≤ on X defines a quasi-ordering ≤̂ on X̂ by:

x≤̂y def⇔ JxK ≤ JyK

We can now make formal the statement “≤ is decidable”: it is if ≤̂ is decidable.

Since ≤̂ ⊆ A∗ × A∗, the statement “≤̂ is decidable” is defined in classical theory of

computations. However, the statement “≤ is decidable” is formally defined only once

a syntax for elements of X and a semantic function have been fixed.

Definition 2.4.1. • Given a set X , we say that (X̂, J·K) is a representation (or an

encoding) of X if X̂ is a recursive subset of A∗ and J·K is a surjective function

from X̂ to X .

• Given a representation (X̂, J·K) of a set X , a subset Y of X is said to be decid-

able if {x̂ ∈ X̂ | Jx̂K ∈ Y } is a decidable set of X̂ .

• Given two sets X and Y , and representations (X̂, J·KX) and (Ŷ , J·KY ) of these

two sets, we say that a function f : X → Y is computable if there exists a

computable (in the sense of the model of computations) function f̂ : X̂ → Ŷ
such that for every x̂ ∈ X̂ , Jf̂(x̂)KY = f(Jx̂KX).

According to the equivalence of the main models of computations (Turing ma-

chine, Gödel’s recursive functions, Church’s lambda calculus, . . . ), the definition above

would be equivalent if we replaced encodings into A∗ with encodings into N for in-

stance.

We will say that relation is decidable if it is decidable as a subset of X × X:

classical theory of computations provides ways to encodeX×X , orX∗, etc. given an

encoding of X . These will be used silently in the remainder of this manuscript. More

generally, we will take a step back from the precise model, and only use high-level

structures (pairs, lists, trees, ...) to describe the encodings we will use for the sets we

will encounter. This approach avoids the burden of dealing with technical encodings

into finite words over a finite alphabet (Turing machines) or natural numbers (Gödel’s

recursive functions) for instance; especially since the encodings we will use will always

be very simple.
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Remark 2.4.2. Observe that even if ≤ is a partial-ordering on X , ≤̂ might not be

antisymmetric on X̂ , because J·K is not injective. More precisely, J·K is an embedding

from (X̂, ≤̂) to (X,≤), but not an isomorphism. The reason why we do not require J·K
to be injective might become clearer later.

Given a QO (X,≤) and an encoding of X , it is natural to ask that ≤ is decidable

for this encoding. However, we will not require equality to be. This leads to the some-

what strange behavior that given two encodings x̂, ŷ ∈ X̂ , we cannot tell whether they

represent the same element (Jx̂K = JŷK) or only equivalent ones (Jx̂K ≡ JŷK). In partic-

ular, an encoding of X that makes the quasi-ordering ≤ decidable is also an encoding

of X/ ≡ that makes the partial-ordering ≤ over X/ ≡ decidable. More generally, if

(X,≤X) and (Y,≤Y ) are two QOs such that there exists a surjective embedding f of

X into Y , any encoding of X that makes ≤X decidable is also a valid encoding of Y
that makes ≤Y decidable: the semantic function for Y is obtained by composing the

semantic function for X with f .
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Part I

The Ideal Approach to

Computing with Closed Sets

Joint work with J.Goubault-Larrecq, P. Karandikar, N. Narayan

Kumar and Ph. Schnoebelen
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The general idea behind many generic algorithms from WSTS theory is a fix-point

computation of an infinite closed subset, e.g. the set of coverable configurations. Clas-

sically, these algorithms are described in terms of upward-closed sets, that are repre-

sentable by a finite basis (WQO5). More recently, many results suggested that it was

more beneficial to work with downward-closed sets: the coverability set of a WSTS is

downward-closed, and it is a central object in the theory [14, 15]; and it has been shown

that computing with downward-closed sets provides better running-time in practice,

notably using acceleration techniques [16, 17, 18, 19, 20, 21, 22, 23].

The issue is that downward-closed sets do not enjoy the same property as upward-

closed sets of having a finite basis: for instance in N2 ordered with the product ordering

〈n,m〉 ≤× 〈n′,m′〉 def⇔ n ≤ n′ ∧ m ≤ m′, the subset [0, 3] × N is downward-

closed, but cannot be described as the downward-closure of some finite subset. In

the particular case of Nk, it has first been observed in [16] that downward-closed sets

could be represented as the downward-closure of some finite subset of (N ∪ {ω})k.

Later in [19], a similar property has been observed for the set of finite sequences over

a finite alphabet, ordered with the embedding relation: downward-closed sets can be

represented using simple regular expressions. These two positive examples lead to

a general solution: the notion of Adequate Domain of Limits (see [24]). An adequate

domain of limits essentially is a generalization of the two cases above: it is a set of limit

elements missing fromX to be able to express every downward-closed sets. Assuming

the existence of such an adequate domain of limits, generic algorithms computing with

downward-closed sets can be designed.

Ideals, a frequently rediscovered concept. Although it has long been known that

downward-closed sets of a WQO can be decomposed as finite union of ideals (The-

orem 2.3.1), the notion of ideals has only been brought to the domain of Verification

quite recently, in [13]. In this article, it is proven that the set of ideals is an adequate

domain of limits, and the smallest one, that is any adequate domain of limits embeds

the set of ideals. Moreover, the extra elements introduced to handle downward-closed

sets of Nk and A∗ are exactly the ideals of these WQOs. This is not the first time the

notion of ideals is rediscovered: in [25], one can find a proof that downward-closed

sets are union of ideals which uses a completely different terminology.

Since their appearance in the domain of verification, ideals have several times

proved themselves to be the right notion. Their structure carries more information

than filters, which can be useful to analyze the complexity of algorithms relying on the

well-foundedness of Down(X) [26, 27]. Some important results with difficult and ad-

hoc proofs have successfully been rethought in terms of ideals [28, 26], which leaves

more options for generalizations. Besides, since ideals are intuitively limit elements of

X , the structure of Idl(X) is often close to that of X , this is essential in Section 9.4

for instance. This also offers the possibility to define the completion of a WSTS [29],

whose states are ideals of the original states. Ideals were also applied to separability of

languages [30, 31].

Contributions In WSTS theory, the notion of effective WQO has almost as many

definitions as occurrences. At the very least, elements of an effective WQO can be
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computationally represented and compared (i.e. ≤ is decidable for the chosen repre-

sentation of elements ofX). However, no unified framework has been defined: authors

usually simply gather every assumptions they need for the design of their particular al-

gorithm, and later proceed to show that these assumptions are trivially satisfied in their

application. Our purpose here is to free people from this burden: we define a notion of

effective WQO that should contain most of the ones present in the literature, and prove

that a large class of WQOs, notably including most of the natural WQOs encountered

in computer science, is effective. Our definition entails the computability of several

operations on WQOs and their closed subsets which should be enough for the design

of most of the algorithms that use WQOs.

More precisely, our definition assumes that we can represent elements of X , but

also ideals ofX , and that we can compare them. From there, we can represent upward-

closed and downward-closed sets decomposing them in union of filters/ideals. We

further assume the computability of all set-theoretic operations: union, intersection

and complement.

As stated before, our motivation comes from verification, but the results are appli-

cable anywhere.

Related Work This approach has been developed in [13], and our work is strongly

inspired by it. On the one hand, our work is less general: we deal with WQOs and con-

structions preserving those, while they work with the more general notion of Noethe-

rian spaces, which is preserved under constructions that do not preserve WQOs. On

the other hand, we believe our presentation is more suited for computer scientists: it

deals more specifically with WQOs, hence requires less knowledge of advanced no-

tions from topology, which also allows us to describe more precisely how to compute

set-theoretic operations, and their complexity. That is, we hope our presentation is

closer to an actual implementation, and provide relevant insight to this end.

At the end of some sections, we provide references for earlier related results. When

no such references are given, it means that our results are novel, as far as we know.
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Chapter 3

Ideally Effective Well

Quasi-Orders

As mentioned in the previous chapter, our goal is to represent and compute with closed

subsets of WQOs. In this chapter, we introduce ideally effective WQOs. The idea is

that our definition should meet every ad-hoc assumptions one needs when describing

generic algorithms for the class of WSTS for instance. More precisely, we want to be

able to compare closed-subset, test membership of an element in a closed subset, and

compute unions, intersections and complements of closed subsets.

3.1 Formal Definition

The first step to talk about the computability of some operations over some QO is to fix

the representation (see Section 2.4). Here, we are interested in operations over three

QOs: (X,≤), (Up(X),⊆) and (Down(X),⊆). Usually, upward-closed sets are sim-

ply represented through their finite basis, and recently, ideals have proved themselves

to be the right notion to represent downward-closed sets. We formalize this idea.

Assume we are given a representation forX . Then, since all filters are principal, the

same representation can be used for Fil(X), i.e. ↑x and x share the same encodings.

Now we have seen that upward-closed sets can be decomposed as finite unions of

filters, hence we will represent upward-closed sets as collections of filters, e.g. lists (or

arrays, or trees, ...) of encodings of elements of X .

Observe that whenever≤ is decidable onX , we can also decide inclusion for filters:

↑x ⊆ ↑ y ⇐⇒ x ≥ y

And since filters are irreducible, inclusion of upward-closed sets reduces to a quadratic

number of inclusion tests on filters:

⋃

i

↑xi ⊆
⋃

j

↑ yj ⇐⇒
∧

i

∨

j

↑xi ⊆ ↑ yj
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Therefore, from an encoding of X , we can represent in a generic way Fil(X) and

Up(X). Moreover, the decidability of ≤ entails the decidability of inclusion on both

those sets.

Now for downward-closed sets, we wish to do the same: downward-closed sets

can be decomposed as finite unions of ideals (Theorem 2.3.1). Unfortunately, there is

no generic way to represent ideals from the elements of X . We will therefore need to

assume an encoding of ideals.

This is formalized in the following definition.

Definition 3.1.1 (Ideally Effective WQOs). A WQO (X,≤) further equipped with rep-

resentations for X and Idl(X) is ideally effective if all the requirements below are

satisfied:

The quasi-ordering is decidable.(OD)

Ideal inclusion is decidable.(ID)

and the following functions are computable:

Principal ideals:

{
X → Idl(X)
x 7→ ↓x(PI)

Complementing filters:

{
X → Down(X)
x 7→ X r ↑x(CF)

Complementing Ideals:

{
Idl(X) → Up(X)
I 7→ X r I

(CI)

Intersecting Filters:

{
X ×X → Up(X)
(x, y) 7→ ↑x ∩ ↑ y(IF)

Intersecting Ideals:

{
Idl(X)× Idl(X) → Down(X)

(I, J) 7→ I ∩ J(II)

An ideally effective WQO (X,≤) is moreover said to be polynomial-time if there

exist polynomial-time procedures for all the operations listed above.

Some immediate remarks are in order:

• The encodings of Fil(X), Up(X) and Down(X) are the ones obtained generi-

cally from encodings of X and Idl(X), as described before the definition

• This formal definition indeed captures what we wanted, all the simple set-theoretic

operations on Up(X) and Down(X) that are not explicitly listed follow trivially

from the one listed:

– The counter-part to requirement (PI) for upward-closed set is trivial since

filters share a common representation with the elements of X .

– Membership of an element x ∈ X in closed subsets reduces to membership

in filters and ideals, which itself can be tested by first computing ↑x or ↓x
and using inclusion.
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– Union of closed subsets is trivial with our encoding of Up(X) and Down(X).

– Intersections and complements of closed subsets reduce to intersections

and complements of filters and ideals.

• Note that if≤ is not antisymmetric, filters ofX may have several representations,

since ↑x = ↑ y if x ≡ y. In other words, the semantic function for filters might

not be injective, even when the semantic function for X is.

Similarly, the encoding of a closed subset is not unique. For instance if U =
⋃

i Fi is an upward-closed set, encoded as a union of filters, then U can also be

encoded by (
⋃

i Fi)∪F for any filter F which is a strict subset of one of the Fi.

However, in the case of closed subset, we can define (almost) canonical repre-

sentations that are computable from any other representation. Formally, we say

that a decomposition
⋃

i∈I Fi of an upward-closed set U is canonical if for any

i, j ∈ I , i 6= j implies Fi 6⊆ Fj . Testing whether a given representation is

canonical is decidable since we can decide inclusion of filters, and if Fi ⊆ Fj

for some i, j ∈ I , then Fi can be dropped from the decomposition of U and

we obtain a “simpler” encoding of U . By iterating, we eventually compute a

canonical representation of U .

It is not difficult to show that there is exactly one canonical decomposition of

U as a union of filters. However, this does not mean that we have found a

canonical encoding of U since there might be several encodings for this same

decomposition: for instance if encoding unions as list, the order is irrelevant and

every permutation of the list gives another encoding of the same decomposition.

Moreover, we have seen above that filters may have several encodings, leading

to even more possible encodings of the canonical decomposition of U .

The situation is exactly the same for ideals: there exist a unique canonical de-

composition of any downward-closed set D, that is we can write D as a finite

union of pairwise incomparable (for inclusion) ideals. However, there might be

several encodings of this canonical decomposition.

• The asymmetry in the definition between upward-closed and downward-closed

sets is not surprising expected since WQOs are well-founded but the reverse

orderings need not be.

Alternative Representations of Closed Subsets As noted before, assuming solely

that elements of a WQO (X,≤) can be represented and the decidability of ≤, we can

already represent and compare upward-closed sets, using their finite basis. It is then

always possible to represent downward-closed sets by their complement. We call it the

excluded minor representation: a downward-closed set D is represented by the mini-

mal set of elements it does not contain. This may seem simpler than extra assumptions

on the representability of ideals, but this representation has some drawbacks. First it

breaks the symmetry between upward-closed and downward-closed sets. Moreover,

union of downward-closed subsets then corresponds to intersection of upward-closed

sets, which may be costly, while we would like union to be the most basic operation

on closed subsets. Besides we can show it might not be decidable to distinguish ideals
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among downward-closed sets with this representation. Sometimes, ideals carry valu-

able information that may not be directly read on their complement [26, 27].

Another issue is the size of the representations of closed subsets. For instance

in Section 6.1, we prove that set-theoretic operations require exponential-time to be

computed, by showing that the output of those operations might be exponential. This

comes from our representation as union of filters/ideals that can become quite large.

Many practical tools suffer from this explosion of the size of the representation of

closed subsets, solutions to this problem are investigated in [32].

3.2 Basic Ideally Effective WQOs

We quickly show that the simplest WQOs are ideally effective. They will be used later

as building blocks for more complex WQOs.

3.2.1 Finite Quasi-Orderings

The simplest WQOs one can think of probably are finite alphabets. They consist of a

finite set A ordered with equality. Most of the time it is used as a starting point to build

more complex WQOs, as in the case of finite sequences with the Higman ordering

(Section 6.1), extensively studied in language theory. It is also used in verification to

order states of well-structured transition systems.

The ideals of (A,=) are all principal: indeed since ideals are finite in this case,

they have maximal elements, and by directedness the maximal element is unique (= is

antisymmetric). More generally, one can show that the ideals of a finite WQO (X,≤)
are all principal, which is no surprise: if X is finite then (X,≥) is a WQO as well, of

which the filters are the ideals of (X,≤), hence all principal. Moreover, ideal inclusion

in this case is the same as the ordering: ↓x ⊆ ↓ y ⇐⇒ x ≤ y.

This suggests using the same representations for ideals as for elements, and ele-

ments of (A,=) can for instance be represented using natural numbers up to |A| − 1.

Similarly, for any finite X , we can represent its element using numbers up to |X| − 1.

We claim that for these representations, (A,=), and more generally any finite WQO

(X,≤), are ideally effective.

(OD) In the case of (A,=), deciding equality is trivial. In the general case,≤ is a finite

predicate, hence computable.

(ID) As argued before, inclusion on ideals is the same as the ordering on the elements.

(PI) With our representations, x 7→ ↓x simply is the identity function.

In the case of a finite alphabet, filters are ideals and vice versa: ↑ a = ↓ a = {a}
for any a ∈ A. Therefore, the following equations suffice to conclude:

∁{a} = Ar {a},
{a} ∩ {b} = ∅ when a 6= b,

{a} ∩ {a} = {a}
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In the case of a finite WQO, the four operations can be performed by brute force

enumeration. For instance, to compute ↓x∩↓ y it suffices to test whether z ≤ x∧z ≤ y
for every z ∈ X .

3.2.2 Natural Numbers

The linear order (N,≤) is among the most frequently occurring WQOs in computer

science. Observe that since ≤ is linear, any downward-closed set is actually an ideal,

except the empty set ∅. There are two kinds of downward-closed sets in N: those that

are bounded, i.e. of the form ↓n, and the whole set N itself. The first kind constitutes

all the principal ideals. The second kind is often denoted ↓ω, for instance in [16].

This suggests to represent ideals of N as natural numbers plus a special symbol ω.

Using this representation (and the obvious one for N), (N,≤) is ideally effective.

The natural ordering on N is of course decidable, and ideal inclusion can be decided

as follows: principal ideals are compared as the elements, and ↓ω is greater than all

the others. Hence, ideals of (N,≤) are linearly ordered (and observe that filters are as

well), which makes intersections trivial: it consists of the maximum for filters and of

the minimum for ideals. Finally, complements are computed as follows:

∁ ↑(n+ 1) = ↓n ∁ ↓n = ↑(n+ 1)

∁ ↑ 0 = ∅ ∁ ↓ω = ∅

3.2.3 Ordinals

The prior analysis can be extended to an important class of linear WQOs: ordinals.

For the rest of this section, we assume basic knowledge of ordinals. Given an ordinal

α, we write α for the set of ordinals {β | β ≤ α}, in accordance with the classical

set-theoretic construction of ordinals.

Let (X,≤) = (α,≤). Once again, X being linearly ordered, its ideals are its

downward-closed sets (except ∅). Therefore, there are three types of ideals:

1. I = X ,

2. I has a maximal element β ∈ X , in which case I = ↓β,

3. Or I has a supremum β ∈ X r I , in which case I = ↓< β = β.

Note that in the second case, I = ↓β = ↓<(β + 1) = β + 1. Thus every ideal of

(X,≤) is a β for some β ∈ α+ 1r 0, and ideal inclusion coincides with the natural

ordering on α+ 1.

Now, assuming that we can represent elements of X in a way that makes ≤ de-

cidable, (X,≤) is ideally effective. Indeed, a representation for α and a decision

procedure for ≤ are easily extended to (α + 1,≤) (the smallest ordinal which is not

recursive is a limit ordinal). Therefore, ideal inclusion is decidable forX . Intersections

are computable as the maximum for filters, minimum for ideals. Finally, complements
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are computed as follows:

∁ ↑β = β ∁β = ↑β for β ∈ α

∁ ↑ 0 = ∅ ∁α = ∅

Note that this representation of ideals in the case α = ω is not the same as the

representation for (N,≤) given before: in one case we use ↓< n for principal ideals

while in the other we use ↓n.

Remark 3.2.1. The computability conditions that the ordinal α must satisfy is volun-

tarily vague. Notation systems for high ordinals can be complicated, and it does not fit

our purpose to give a technical and lengthy analysis of this case. We will mostly use

the fact that ω2 is ideally effective in Chapter 8, for which a canonical notation system

is well-known and understood: the Cantor Normal Form with base ω.

3.3 Ideally Effective Constructions

One strength of the notion of WQO is that it is preserved under many constructions:

Cartesian product (Dickson’s Lemma, cf. Section 5.3), finite sequences (Higman’s

Lemma, cf. Section 6.1), finite trees (Kruskal’s Theorem), finite sets (cf. Section 7.3),

etc. Many of the WQOs encountered in practice (in verification, graph theory, seman-

tics, logic, . . . ) are actually built by incremental application of such constructions,

starting from simple WQOs (essentially the ones seen in the previous section). There-

fore, proving that these constructions not only preserve the property of being WQO,

but also ideal effectiveness is a powerful way to prove that most of the WQOs used in

practice are ideally effective. To this end, we introduce the following notions.

Definition 3.3.1. A presentation of an ideally effective WQO (X,≤), is a list of:

− encodings for X and Idl(X),

− algorithms for the seven computable functions required by Definition 3.1.1,

− the ideal decomposition X =
⋃

i<n

Ii of X as a downward-closed set,(XI)

− as well as its filter decomposition X =
⋃

i<n′

Fi.(XF)

A presentation is said to be polynomial-time (resp. exponential-time) if all seven al-

gorithms listed above are polynomial-time computable (resp. exponential-time com-

putable).

Obviously, a WQO is ideally effective if and only if it has a presentation as defined

in Definition 3.3.1, and it is a polynomial-time ideally effective WQO if and only if it

has a polynomial-time presentation.

The notion of presentations as actual objects is needed because they are the ac-

tual inputs of our WQO constructions. This explains why we added (XI) and (XF)

in the requirements. For a given (X,≤), the ideal and filter decompositions of X al-

ways exist and requiring them in Definition 3.1.1 would make no sense (constants are
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always computable). However, these decompositions are needed by algorithms who

work uniformly on WQOs given via their presentations, notably to complement the

empty upward- or downward-closed subset.

Let us informally call order-theoretic construction (construction for short) any op-

erationC that produces a quasi-orderingC[(X1,≤1), . . . , (Xn,≤n)] from given quasi-

orderings (X1,≤1), . . . , (Xn,≤n). In subsequent sections, C will be instantiated with

very well-known constructions, such as Cartesian product with component-wise or-

dering, finite sequences with Higman’s ordering, finite sets with the Hoare quasi-

ordering, and so on. In practice, we will always have n = 1 or 2. We also say that an

order-theoretic construction preserves WQO if C[(X1,≤1), . . . , (Xn,≤n)] is a WQO

whenever (X1,≤1), . . . , (Xn,≤n) are. The constructions we just mentioned are well-

known to be WQO-preserving. We extend this concept to ideally effective WQOs:

Definition 3.3.2. An order-theoretic WQO-preserving construction C is said to be ide-

ally effective if, for every ideally effective WQOs (X1,≤1), . . . , (Xn,≤n),

• C[(X1,≤1), . . . , (Xn,≤n)] is ideally effective.

• A presentation of C[(X1,≤1), . . . , (Xn,≤n)] is computable from presentations

of the ideally effective WQOs (Xi,≤i) (i = 1, . . . , n).

Construction C is moreover said to be polynomial-time if a polynomial-time presenta-

tion of C[(X1,≤1), . . . , (Xn,≤n)] is computable from polynomial-time presentations

of the ideally effective WQOs (Xi,≤i) (i = 1, . . . , n).

Note that a construction C being polynomial-time says nothing about the complex-

ity of producing the polynomial-time presentation of C[(X1,≤1), . . . , (Xn,≤n)] from

polynomial-time presentations of the (Xi,≤i).
In the following chapters, we prove many of the common WQO-preserving con-

structions to be ideally effective. This proves that most of the WQOs we use in prac-

tice are ideally effective. But it also proves that procedures to compute set-theoretic

operations in these WQOs can themselves be automatically computed. Furthermore,

for constructions that are not polynomial, we provide exponential lower bounds.
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Chapter 4

Generic Constructions on

WQOs

Before we proceed to show that natural order-constructions are ideally effective (in the

sense of Definition 3.3.2), we study three more abstract transformations that will be

useful in several subsequent chapters: in the first section we identify conditions for the

extension of an ideally effective WQO to be ideally effective as well, we then study

the particular case of a quotient under an equivalence relation. Finally, we identify

conditions for the subset of an ideally effective WQO to be ideally effective as well.

4.1 Extension of a WQO

Let (X,≤) be a WQO and let ≤′ be an extension of ≤, as defined in Section 2.2.

Then (X,≤′) is also a WQO: an increasing pair for ≤ is in particular an increasing

pair for ≤′. In this section, we investigate the ideals of (X,≤′) and present sufficient

conditions for (X,≤′) to be ideally effective, assuming (X,≤) is.

Note that D ∈ Down(X,≤) might not be downward-closed for ≤′. However,

directedness is preserved. In the other direction, Down(X,≤′) ⊆ Down(X,≤), but a

directed set for ≤′ might not be directed for ≤. This observation leads to the following

proposition:

Proposition 4.1.1. Given a WQO (X,≤) and an extension ≤′ of ≤, the ideals of

(X,≤′) are exactly the downward closures under ≤′ of the ideals of (X,≤). That is,

Idl(X,≤′) = {↓≤′ I | I ∈ Idl(X,≤)} .

Proof. (⊇): Let I be an ideal under ≤. Even though I may not be downward-closed

in (X,≤′), it is still directed. From there, it is easy to establish that ↓≤′ I is directed as

well, non empty, and obviously downward-closed for≤′. Thus it is an ideal of (X,≤′).
(⊆): Let J be an ideal of (X,≤′). Although J may not be directed in (X,≤), it is

still downward-closed under ≤, hence it can be decomposed as a finite union of ideals

29



of (X,≤): J = I1 ∪ · · · ∪ In. Then J = ↓≤′ J = ↓≤′ I1 ∪ · · · ∪ ↓≤′ In. Now by

irreducibility of ideals, we have J = ↓≤′ Ii for some i ∈ [n].

Assuming we have a representation for X and Idl(X,≤), the proposition above

suggests to represent ideals of (X,≤′) using the same representation as for ideals of

(X,≤), but changing the semantic function: an encoding of I ∈ Idl(X,≤) can also

represent the ideal ↓≤′ I ∈ Idl(X,≤′). The proposition ensures we can encode every

ideals of Idl(X,≤′) this way. Note that there might be several ideals I of (X,≤)
representing the same ideal ↓≤′ I of (X,≤′): the representation of an ideal may not be

unique.

Of course, given two ideals I, J ∈ Idl(X,≤), I ⊆ J ⇒ ↓≤′ I ⊆ ↓≤′ J . Unfor-

tunately, the converse is not true. Actually, we can show that with the chosen repre-

sentation of ideals of (X,≤′), ideal effectiveness of (X,≤) does not imply ideal effec-

tiveness of (X,≤′): already ideal inclusion can become undecidable. This is proved in

Section 8.2. Lexicographic product will provide a more natural example of extension

that fails to be ideally effective (see Section 5.4).

Therefore, to obtain effectiveness results on (X,≤′) we need to make some com-

putability assumptions on ≤′.

Theorem 4.1.2. Let (X,≤) be an ideally effective WQO and ≤′ an extension of ≤.

Then, (X,≤′) is ideally effective for the aforementioned encodings of X and

Idl(X,≤′), whenever the following functions are computable:

ClI : Idl(X,≤) → Down(X,≤)
I 7→ ↓≤′ I

ClF : (X,≤) → Up(X,≤)
x 7→ ↑≤′ x

Moreover, under these assumptions, a presentation of (X,≤′) can be computed from

a presentation of (X,≤) and algorithms realizing ClI and ClF. Furthermore, given

polynomial-time algorithms for ClI and ClF, and if the presentation of (X,≤) is

polynomial-time, then the compute presentation of (X,≤′) is polynomial-time.

Note that if I ∈ Idl(X,≤), then ↓≤′ I is also downward-closed for ≤ and thus can

be represented as a downward-closed set of (X,≤). It is precisely this representation

that the function ClI outputs. Same goes for ClF: ↑≤′ x ∈ Up(X,≤). Observe that to

obtain a more symmetrical situation, we could have defined ClF on filters of (X,≤)
by: ClF(F ) = ↑≤′ F . But since filters are principal, F = ↑x for some x ∈ X , and the

expression ↑≤′(↑x) is more simply written as ↑≤′ x.

Note that using functions ClI and ClF, it is possible to compute the downward and

upward closure under ≤′ of arbitrary downward- and upward-closed sets for ≤ using

the canonical decompositions: ↓≤′(I1 ∪ · · · ∪ In) = (↓≤′ I1) ∪ · · · ∪ (↓≤′ In) and

↑≤′(↑x1 ∪ · · · ∪ ↑xn) = ↑≤′ x ∪ · · · ∪ ↑≤′ xn.

Proof. We proceed to show that (X,≤′) is ideally effective.

(OD): One can tests x ≤′ y, since this is equivalent to y ∈ ClF(x). Alternatively,

x ≤′ y can also be tested using the function ClI instead of ClF: x ≤′ y ⇐⇒
x ∈ ClI(↓≤ y).
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(ID): Ideal inclusion can be decided using ClI and the inclusion test for downward-

closed sets of (X,≤): ↓≤′ I1 ⊆ ↓≤′ I2 ⇔ I1 ⊆ ClII2.

(PI): The principal ideal ↓≤′ x of (X,≤′) is represented by ↓≤ x, since ↓≤′(↓≤ x) =
↓≤′ x.

(CF): For x ∈ X , the filter complement X r ↑≤′ x is X r ClF(x) which can be

computed, using (CF) and (II) for (X,≤), as a downward-closed set in (X,≤).
This is represented by an ideal decomposition D =

⋃

i<n Ii which is canonical

in (X,≤) but not necessarily in (X,≤′) since one may have ↓≤′ Ii ⊆ ↓≤′ Ij for

i 6= j. However, extracting the canonical ideal decomposition wrt. ≤′ can be

done using (ID) for (X,≤′).

(II): Intersection of ideals is computed with ↓≤′ I1 ∩↓≤′ I2 = ClI(I1)∩ClI(I2). Here

again, this result in an ideal decomposition that is canonical for ≤ but not for ≤′

until we process it as done for (CF).

(CI), (IF) : dual operations are obtained similarly.

With algorithms for the closure functions ClI and ClF, the presentation above is com-

putable from a presentation of (X,≤). Moreover, this presentation is obviously

polynomial-time when algorithms for ClI and ClF and the presentation of (X,≤) are

polynomial-time.

Regarding (XF) and (XI), we note that filter and ideal decompositions of X for

≤ are also valid decompositions for ≤′. However, these decompositions might not be

canonical for ≤′ even if they are for ≤, in which case the canonical decompositions

can be obtained using (OD) and (ID), as usual.

Observe that in the presentation of (X,≤′) described in the proof above, we often

have to compose functions ClI and ClF with operations in (X,≤). When everything

is polynomial-time, the composition remains polynomial-time. However, when both

operations in (X,≤) and functions ClI and ClF are exponential, it might lead to doubly

exponential procedures. The following Lemma gives sufficient conditions for (X,≤′)
to be an exponential-time ideally effective WQO. It will be used several times in sub-

sequent sections.

Lemma 4.1.3. Let (X,≤) be an ideally effective WQO and ≤′ an extension of ≤.

We denote by ClI and ClF the functions from Theorem 4.1.2. Assume the following

conditions:

1. The WQO (X,≤) is an exponential-time ideally effective WQO,

2. Function ClI and ClF can be computed in exponential-time,

3. For every x ∈ X , every filter from the decomposition of ClF(x) is of polynomial

size in |x|.

4. For every I ∈ Idl(X,≤), every ideal from the decomposition of ClI(I) is of

polynomial size in |I|.
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Then, (X,≤′) is an exponential-time ideally effective WQO.

The notion of size we use comes from the encoding: the size of an object is the size

of its representation (formally the lemma should be stated with encodings and semantic

functions ...).

Proof. We simply show that the presentation of (X,≤′) described in the proof of Theo-

rem 4.1.2 is exponential-time (instead of the a priori doubly-exponential upper bound).

We only present the proof for (IF), the idea being the same for the six other proce-

dures.

Given u, v ∈ X , we have:

↑≤′ u ∩ ↑≤′ v = ClF(u) ∩ ClF(v)
= (↑u1 ∪ · · · ∪ ↑un) ∩ (↑ v1 ∪ · · · ∪ ↑ vm)

=
⋃

1≤i≤n
1≤j≤m

↑ui ∩ ↑ vj

where (↑u1 ∪ · · · ∪ ↑un) is the filter decomposition in (X,≤) of ClF(u) (and respec-

tively for v), and where n and m are at most exponential in |u| and |v|, respectively.

Now, since |ui| and |vj | are polynomial in |u| and |v|, ↑ui ∩ ↑ vj can be computed

in time exponential in |u| and |v|, and finally, computing ↑≤′ u ∩ ↑≤′ v reduces to a

quadratic number of exponential operations.

4.2 Quotienting under a Compatible Equivalence

We now apply the results of Section 4.1 to the most commonly encountered case of

extensions: quotient under an equivalence relation. Given (X,≤) a WQO and E an

equivalence relation on X such that ≤ ◦ E = E ◦ ≤, define ≤E = ≤ ◦E = E ◦ ≤. It

is a relation on X , which we may see as a relation on the quotient X/E if convenient

(hence the name of the section). Here, ◦ denotes the composition of relations, defined

as follows: for all x, y ∈ X , xR ◦ Sy if and only if there exists z such that xRz and

zSy.

The relation ≤E is clearly reflexive, and is transitive since

≤E ◦≤E = (≤◦E)◦(≤◦E) = ≤◦ (E ◦≤)◦ E = ≤◦ (≤◦ E) ◦ E = ≤◦ E = ≤E

Observe that ≤E is an extension of ≤, and thus results on quotients can be seen

as an application of Section 4.1. However, since quotients are of such importance in

computer science (and used more often than mere extensions), we reformulate Theo-

rem 4.1.2 in this specific context: functions ClI and ClF take an interesting form. As

in the case of extensions, elements and ideals of (X,≤E) will be represented using the

data structures coming from a presentation of (X,≤).

Theorem 4.2.1. Let (X,≤) be an ideally effective WQO and E be an equivalence

relation on X compatible with ≤. Then, (X,≤E) is ideally effective for the afore-

mentioned data structures of X and Idl(X,≤E), whenever the following functions are
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computable:

ClI : Idl(X,≤) → Down(X,≤)
I 7→ I

ClF : (X,≤) → Up(X,≤)
x 7→ ↑x

where, given S ⊆ X , S denotes the closure under E of S, i.e., S
def
= {y | ∃x ∈ S :

x E y}. In particular, x simply is the equivalence class of x.

Moreover, under these assumptions, we can compute a presentation of (X,≤E)
from a presentation of (X,≤).

Proof. In the light of Theorem 4.1.2, it suffices to show ↓≤E
F = F and ↓≤E

I = I
for any filter F and any ideal I of (X,≤). The first equality follows from ≤E = ≤
◦ E while the second comes from ≤E = E ◦ ≤. This is why we introduced the

compatibility condition ≤ ◦ E = E ◦ ≤.

In particular, we see that the ideals of (X,≤E) are exactly the closures under E
of the ideals of (X,≤). That is, Idl(X,≤E) =

{
I : I ∈ Idl(X,≤)

}
.

4.3 Induced WQOs

Let (X,≤) be a WQO. A subset Y of X (not necessarily finite) induces a quasi-

ordering (Y,≤ ∩ Y × Y ) which is also WQO. In this section, we investigate the ideal

effectiveness of this WQO.

Any subset S ⊆ X induces a subset Y ∩ S in Y . Obviously, if S is upward-closed

(or downward-closed) inX , then it induces an upward-closed (resp. downward-closed)

subset in Y . However an ideal I or a filter F in X does not always induce an ideal or a

filter in Y . In the other direction though, if J ∈ Idl(Y ), the downward closure ↓X J is

an ideal of X . Therefore, to describe the ideals of Y , we need to identify those ideals

ofX that are of the form ↓X J for some ideal J of Y . This is captured by the following

notion:

Definition 4.3.1. Given a WQO (X,≤) and a subset Y of X , we say that an ideal

I ∈ Idl(X) is in the adherence of Y if I = ↓X(I ∩ Y ).

In particular this implies that I ⊆ ↓X Y (we say that I is “below Y ”) and I∩Y 6= ∅
(we say that I is “crossing Y ”). The converse implication does not hold, as witnessed

by X = N, Y = [1, 3] ∪ [5, 7] and I = ↓ 4.

We now show that the ideals of Y are exactly the subsets induced by ideals of X
that are in the adherence of Y .

Theorem 4.3.2. Let (X,≤) be a WQO and Y be a subset of X . A subset J of Y is an

ideal of Y if and only if J = I ∩Y for some I ∈ Idl(X) in the adherence of Y . In this

case, I = ↓X J , and is thus uniquely determined from J .

Proof. (⇒) : If J ∈ Idl(Y ) then I
def
= ↓X J is directed hence is an ideal of X . Clearly,

J = I ∩ Y , so I is in the adherence of Y .

(⇐): If I ∈ Idl(X) is in the adherence of Y then J
def
= I ∩ Y is non-empty (since I is
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crossing Y ) and it is directed since for any x, y ∈ J there is z ∈ I above x and y, and

z ≤ z′ for some z′ ∈ J since I is below Y .

Uniqueness is clear since the compatibility assumption “I = ↓X(I ∩ Y )” com-

pletely determines I from the ideal J = I ∩ Y it induces.

An alternative definition of adherence often found in the literature (e.g. in [28,

30]) is the following one: an ideal I ∈ Idl(X) is in the adherence of Y if and only

if there exists a directed subset ∆ ⊆ Y such that I = ↓X ∆. The two definitions

are equivalent [30, Lemma 14], so that, notably, Theorem 4.3.2 extends Lemma 4.6

from [28].

that the two notions of adherence coincide.

(⇒) : Assume I = ↓X(I ∩Y ). We show that ∆ = I ∩Y is directed: let x, y ∈ ∆ ⊆ I ,

since I is directed, there exists z ∈ I such that z ≥ x, y. But since I = ↓X ∆, there

exists z′ ∈ ∆ such that z′ ≥ z ≥ x, y, which proves that ∆ is directed.

(⇐): Assume that there exists a directed subset ∆ ⊆ Y such that I = ↓X ∆. Then

↓X(I ∩ Y ) = ↓X(↓X ∆ ∩ Y ) = ↓X(∆ ∩ Y ) = ↓X ∆ = I .

Similarly, we can define a notion of adherence for filters. However, in this case, the

condition F = ↑X(F ∩ Y ) for some filter F = ↑x is actually equivalent to x ∈ Y
(actually to x′ ∈ Y for some x′ ≡X x when ≤ is not antisymmetric). In other words,

filters in the adherence of Y are exactly filters of the form ↑ y for some y ∈ Y . This is

no surprise: (Y,≤) is a WQO and therefore, its filters are principal.

Assuming that (X,≤) is an ideally effective WQO, and given Y ⊆ X , we can

simply represent elements of Y by restricting the data structure for X to Y . This re-

quires that Y is a recursive set. Alternatively, Theorem 4.3.2 suggests that we represent

ideals of Y as ideals of X that are in the adherence of Y . This requires that we can

decide membership in the adherence of Y . As in the case of extensions, the ideal effec-

tiveness of (Y,≤) does not always follow from the ideal effectiveness of (X,≤) (see

Section 8.4). We therefore have to introduce extra assumptions.

Theorem 4.3.3. Let (X,≤) be a WQO and Y ⊆ X . Then (Y,≤) is ideally effective

(for the aforementioned representations) provided:

• membership in Y is decidable over (the representation for) X ,

• the following functions are computable:

SI : Idl(X,≤) → Down(X,≤)
I 7→ ↓X(I ∩ Y )

SF : Fil(X,≤) → Up(X,≤)
F 7→ ↑X(F ∩ Y )

Moreover, in this case, a presentation of (Y,≤) can be computed from a presentation

of (X,≤). Furthermore, if functions SI and SF are computable in polynomial-time,

and (X,≤) is a polynomial-time ideally effective WQO, then so is (Y,≤).
The rest of this subsection is dedicated to the proof of this theorem.

First, let us mention that our first assumption implies that we have a data structure

for elements of Y and that thanks to function SI, we can decide whether an ideal I of

X is in the adherence of Y : it suffices to check that SI(I) = I .

Let us prove that (Y,≤) is ideally effective.
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(OD): since ≤ is decidable on X , its restriction to Y is still decidable.

(ID): Given two ideals I1, I2 that are in the adherence of Y , I1 ∩ Y ⊆ I2 ∩ Y ⇐⇒
I1 ⊆ I2. The left-to-right implication uses that Ii = ↓X(Ii ∩ Y ). Therefore,

inclusion for ideals of Y can be implemented by relying on (ID) for X .

(PI): if y ∈ Y , then ↓X y is adherent to Y and ↓X y ∩ Y = ↓Y y.

For the four remaining operations, we need to be able to compute a representation

of D ∩ Y and U ∩ Y for D ∈ Down(X) and U ∈ Up(X).

Lemma 4.3.4. Let D ∈ Down(X). The canonical decomposition of ↓X(D ∩ Y ) (as

a downward-closed set of X) is a canonical representation of D ∩ Y (as a downward-

closed set of Y ).

Proof. Let
⋃

i Ii be the canonical decomposition of ↓X(D ∩ Y ). Remember that an

ideal J of Y is represented by the unique ideal I of X which is in the adherence of Y
such that J = I ∩ Y . Thus, stating that

⋃

i Ii is a canonical representation of D ∩ Y
means that:

1. D ∩ Y =
⋃

i(Ii ∩ Y );

2. for every i, Ii ∩ Y is an ideal of Y ;

3. Ii ∩ Y and Ij ∩ Y are incomparable for inclusion, for i 6= j.

For the first point,
⋃

i(Ii ∩ Y ) = (
⋃

i Ii) ∩ Y = (↓X(D ∩ Y )) ∩ Y = D ∩ Y .

We now argue that each Ii ∩ Y is a correct representation of an ideal of Y , i.e.,

all Ii’s are in the adherence of Y . One inclusion being trivial, we need to show that

Ii ⊆ ↓X(Ii ∩ Y ), for every i. Let xi ∈ Ii. Since the ideals Ij are incomparable for

inclusion, there exists x′i ∈ Ii such that xi ≤ x′i and for any j 6= i, x′i /∈ Ij (Ii is

directed). Besides, x′i ∈ Ii ⊆ ↓X(D ∩ Y ) and thus there is an element x′′i such that

x′i ≤ x′′i ∈ D ∩ Y . As the sets Ij are downward-closed, x′′i cannot belong to any Ij
with j 6= 0, hence x′′i is in Ii ∩ Y . Therefore, xi ∈ ↓X(Ii ∩ Y ).

Finally, the ideal decomposition D ∩ Y =
⋃

j(Ij ∩ Y ) is canonical since the Ij’s

are incomparable in X (recall the above criterion for inclusion of ideals of Y ).

Observe that if D =
⋃

i Ii then ↓X(D ∩ Y ) =
⋃

i ↓X(Ii ∩ Y ) =
⋃

i SI(I). Thus

the canonical representation of D ∩ Y is indeed computable from D ∈ Down(X).
We now present the dual of the previous lemma:

Lemma 4.3.5. GivenU ∈ Up(X), a canonical representation ofU∩Y (as an upward-

closed set of Y ) can be computed from a canonical representation of ↑X(U ∩ Y ) (as

an upward-closed set of X).

Proof. Let
⋃

i ↑xi be a canonical filter decomposition (in X) of the upward-closed

set ↑X(U ∩ Y ). We first prove that for every i, xi is equivalent to some element of

Y . Indeed, since ↑X xi ⊆ ↑X(U ∩ Y ), there exists y ∈ U ∩ Y with y ≤ xi. But

then, y must be in some ↑X xj . Since the decomposition is canonical, the xj’s are

incomparable, hence we cannot have xj ≤ y ≤ xi for j 6= i. Thus, xi ≡ y ∈ Y .
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Moreover, we can compute a canonical filter decomposition of ↑X(U ∩ Y ) using

only elements in Y : for each xi, it is decidable whether xi ∈ Y (our first assumption

on Y ). If not, we can enumerate elements of Y until we find some yi ≡ xi. Such an

element exists, and thus the enumeration terminates.

We thus obtain a canonical filter decomposition
⋃

i ↑ yi of ↓X(U ∩Y ) with yi ∈ Y .

The rest of the proof is similar to the proof of Lemma 4.3.4.

Here also, a canonical representation of ↑X(U ∩ Y ) is computable from U , using

the function SF.

We can now describe procedures for the four remaining operations:

(CF): Given y ∈ Y , the complement of ↑Y y is computed by using the equality Y r

↑Y y = (X r ↑X y) ∩ Y . The downward-closed set (X r ↑X y) is computable

using (CF) for X , and its intersection with Y is computable using Lemma 4.3.4.

(II): Given two ideals I and I ′ in the adherence of Y , the intersection of the ideals they

induce is (I ∩ Y )∩ (I ′ ∩ Y ) = (I ∩ I ′)∩ Y , which is computable using (II) for

X and Lemma 4.3.4.

(IF): Computing the intersection of filters is similar to computing the intersection of

ideals: given y1, y2 ∈ Y , (↑Y y1) ∩ (↑Y y2) = (↑X y1 ∩ ↑X y2) ∩ Y , which is

computable using (IF) for X and Lemma 4.3.5.

(CI): Given an ideal I in the adherence of Y , Y r (I ∩ Y ) = (X r I) ∩ Y , which is

computable using (CI) for X and Lemma 4.3.5.

Finally, and as always, the above presentation can be computed from a presentation

of (X,≤), thanks to the functions SI and SF. Notably, the ideal decomposition of Y
can be computed as the subset induced by the downward-closed set X of X , using

Lemma 4.3.4, and the filter decomposition of Y can be computed as the subset induced

by the upward-closed set X of X , using Lemma 4.3.5.

Remark 4.3.6. If Y is a downward-closed subset of X , then an ideal I is adherent

to Y if and only if I ⊆ Y , and therefore Idl(Y ) = Idl(X) ∩ P(Y ). Moreover, SI
is computable thanks to (II), and SF(↑x) = ↑x if x ∈ Y , SF(↑x) = ∅ otherwise.

Indeed, if x /∈ Y , then ↑x ∩ Y = ∅.
Similarly, if Y is upward-closed, SF can be computed with (II), and SI(I) = I if

Y ∩I 6= ∅, SI(I) = ∅ otherwise. Again, Y ∩I 6= ∅ if and only if ∃x ∈ min(Y ) : x ∈ I .

Given such an x, then ∀y ∈ I : ∃z ∈ I : z ≥ x, y by directedness. Therefore,

I ⊆ ↓(I ∩ ↑x) ⊆ ↓(I ∩ Y ).

4.4 References and Related Work

The notion of adherence has first been introduced in [28]. In this paper, the authors

use the notion of ideals to “demystify” the data-structures used in the well-known but

obscure proof of decidability of the reachability problem for Petri Nets first shown by

Kosaraju, Lambert and Mayr. Intuitively, they define, using natural constructions on

WQOs, an over-approximation of the set of all runs of a given Petri Net. In the light of
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this section, the ideals of the actual set of runs are the ideals of the over-approximation

that are adherent to the actual set of runs, which motivated the introduction of adher-

ence in the first place. Note that in this setting, SI is not computable.

The notion of adherence has also been successfully applied to separability by piece-

wise testable languages in language theory [30] and [31].
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Chapter 5

Sums and Products of WQOs

The results of this chapter are easily obtained and widely known. They are nonetheless

included here for completeness, since sums and products constitute basic constructions

that naturally appear when working with WQOs (see Section 9.2 for instance). They

also provide warm-up examples to practice our definition.

5.1 Disjoint Sums

The disjoint sum X⊔ = X1 ⊔ X2 of two WQOs (X1,≤1) and (X2,≤2) is the set

{1} ×X1 ∪ {2} ×X2, well quasi-ordered by:

〈i, x〉 ≤⊔ 〈j, y〉 iff i = j and x ≤i y .

This structure is obviously well quasi-ordered when (X1,≤1) and (X2,≤2) are.

We let the reader check the following characterization.

Proposition 5.1.1 (Ideals ofX1 ⊔X2X1 ⊔X2X1 ⊔X2). Given (X1,≤1) and (X2,≤2) two WQOs, the

ideals of (X1 ⊔X2,≤⊔) are exactly the sets of the form I = {i} × J with i ∈ {1, 2}
and J an ideal of Xi.

Thus (Idl(X1 ⊔X2),⊆) is isomorphic to (Idl(X1),⊆) ⊔ (Idl(X2),⊆).
Given data structures forX1 andX2, we use the natural data structure forX1⊔X2.

Moreover, Proposition 5.1.1 shows that ideals of the WQO (X1⊔X2,≤⊔) can similarly

be represented using data structure for Idl(X1) and Idl(X2).

Theorem 5.1.2. With the above representations of elements and ideals, disjoint union

is a polynomial-time ideally effective construction.

Sketch. Let (X1,≤1) and (X2,≤2) be two ideally effective WQOs.

In the following, we write ı̄ for 3 − i when i ∈ {1, 2}, so that {i, ı̄} = {1, 2}. We

also abuse notation and, for a downward-closed subset D =
⋃

a Ia of Xi, we write

〈i,D〉 to denote
⋃

a〈i, Ia〉, a downward-closed subset of X⊔ represented via ideals.

Similarly, for an upward-closed subset U =
⋃

a ↑Xi
xa of Xi, we let 〈i, U〉 denote

⋃

a ↑⊔〈i, xa〉.
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(OD): the definition of ≤⊔ is already an implementation.

(ID): we use 〈i, J〉 ⊆ 〈i′, J ′〉 ⇐⇒ i = i′ ∧ J ⊆ J ′.

(PI): we use ↓⊔〈i, x〉 = 〈i, ↓i x〉 for i ∈ {1, 2}.

(CF): we use X⊔ r ↑⊔〈i, x〉 = 〈i,Xi r ↑i x〉 ∪ 〈̄ı,Xı̄〉. Note that this relies on (CF)

for Xi (to express Xi r ↑i x as a union of ideals) and on (XI) for Xı̄.

(II): we rely on (II) for X1 and X2, using

〈i, I〉 ∩ 〈j, J〉 =
{

〈i, I ∩ J〉 if i = j,

∅ otherwise.

Operations (CI) to complement ideals and (IF) to intersect filters are analogous.

Observe that the presentation of (X1 ⊔ X2,≤⊔) described above is clearly com-

putable from presentations for (Xi,≤i) (i = 1, 2), and is polynomial-time when the

presentations for (Xi,≤i) (i = 1, 2) are. Notably, a filter (resp. ideal) decomposition

of X1 ⊔X2 is easily obtained by taking the union of filter (resp. ideal) decompositions

of X1 and X2, thus establishing (XF) (resp. (XI)).

5.2 Lexicographic Sums

The lexicographic sum X1 +X2 of two WQOs (X1,≤1), (X2,≤2) has the same sup-

port set as for their disjoint sum (i.e., X+
def
= X⊔); only the quasi-ordering is different:

〈i, x〉 ≤+ 〈j, y〉 iff i < j or (i = j and x ≤i y) .

Note that ≤+ extends ≤⊔ (i.e. ≤⊔⊆≤+), thus it is a WQO. Although we could apply

the results obtained in Section 4.1, we rather deal with this case by hand.

Again, the following characterization is easy to obtain.

Proposition 5.2.1 (Ideals ofX1 ⊕X2X1 ⊕X2X1 ⊕X2). Given two WQOs (X1,≤1) and (X2,≤2), the

ideals of X1 ⊕X2 are exactly the sets of the form {1} × J1 with J1 ∈ Idl(X1), or of

the form {1} ×X1 ∪ {2} × J2 with J2 ∈ Idl(X2).

Thus (Idl(X1 ⊕ X2),⊆) is isomorphic to (Idl(X1),⊆) ⊕ (Idl(X2),⊆), which

leads to a simple data structure for the set of ideals1 when X1 and X2 are effective.

Theorem 5.2.2. With the above representations, lexicographic union is a polynomial-

time ideally effective construction.

Sketch. Let (X1,≤1) and (X2,≤2) be two ideally effective WQOs. We reuse the

abbreviations 〈i, U〉, 〈i,D〉, ı̄, . . . , introduced for disjoint sums. Also, we only consider

the case where both X1 and X2 are non-empty (the claim is trivial otherwise).

1 Note that with this representation, a pair 〈i, J〉 where J ∈ Idl(Xi) denotes {1} × J when i = 1, and

{1} ×X1 ∪ {2} × J —and not {2} × J— when i = 2.
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(OD): follows from the definition.

(ID): ideal inclusion can be tested as the lexicographic sum of Idl(X1) and Idl(X2).

(PI): ↓⊕〈i, x〉 is (represented by) 〈i, ↓i x〉.

(CF): the complement X⊕ r ↑⊕〈i, x〉 is (represented by) 〈i,Xi r ↑i x〉 except when

i = 2 and ↑i x = X2, in which case X⊕ r ↑⊕〈2, x〉 is 〈1, X1〉.

(II): intersection of two ideals considers two cases. First 〈1, I〉∩ 〈2, J〉 is (represented

by) 〈1, I〉 for ideals issued from different components in X⊕. For 〈i, I〉 ∩ 〈i, J〉,
i.e., ideals issued from the same component, we use 〈i, I ∩J〉 except when i = 2
and I ∩ J = ∅, in which case 〈2, I〉 ∩ 〈2, J〉 is 〈1, X1〉.

Procedures for the dual operations (CI) and (IF) are similar. Moreover, the presentation

above is obviously computable from presentations for (X1,≤1) and (X2,≤2). Regard-

ing (XI) and (XF), the ideal decomposition of X1 ⊕X2 is the ideal decomposition of

X2 and the filter decomposition of X1 ⊕X2 is the filter decomposition of X1. Finally,

the fact that disjoint sum is a polynomial-time construction is again trivial.

5.3 Cartesian Products and Dickson’s Lemma

Given two QOs (X1,≤1) and (X2,≤2), we define the component-wise quasi-ordering

≤× on the Cartesian productX1×X2 by 〈x1, x2〉 ≤× 〈y1, y2〉 def⇔ x1 ≤1 y1∧x2 ≤2 y2.

Dickson’s Lemma states that (X1 ×X2,≤×) is a WQO when (X1,≤1) and (X2,≤2)
are.

The ideals of (X1 ×X2,≤×) are well known.

Proposition 5.3.1 (Ideals ofX1 ×X2X1 ×X2X1 ×X2). Let (X1,≤1) and (X2,≤2) be two WQOs. A

subset I is an ideal of X1×X2 if, and only if, I = I1× I2 for some ideals I1, I2 of X1

and X2 respectively.

Proof. (⇐): One checks that I = I1 × I2 is non-empty, downward-closed, and di-

rected, when I1 and I2 are. For directedness, we consider two elements 〈x1, x2〉 and

〈y1, y2〉 in I . Since I1 is directed and contains x1, y1, it contains some z1 with x1 ≤1 z1
and y1 ≤1 z1. Similarly I2 contains some z2 above x2 and y2 (wrt. ≤2). Finally,

〈z1, z2〉 is in I , and above both 〈x1, y1〉 and 〈x2, y2〉.
(⇒): Consider I ∈ Idl(X1×X2) and write I1 and I2 for its projections onX1 andX2.

These projections are downward-closed (since I is), non-empty (since I is) and directed

(since I is), hence they are ideals (in X1 and X2). We now show that I1 × I2 ⊆ I .

Consider an arbitrary x1 ∈ I1: since I1 is the projection of I , there is some y2 ∈ X2

such that 〈x1, y2〉 ∈ I . Similarly, for any x2 ∈ I2, there is some y1 ∈ X1 such that

〈y1, x2〉 ∈ I . Since I is directed, there is some 〈z1, z2〉 ∈ I with 〈x1, y2〉 ≤× 〈z1, z2〉
and 〈y1, x2〉 ≤× 〈z1, z2〉. But then x1 ≤1 z1 and x2 ≤2 z2. Thus 〈x1, x2〉 ∈ I since

I contains 〈z1, z2〉 and is downward-closed. Hence I = I1 × I2 and I is a product of

ideals.

40



Thus Idl(X1×X2,⊆) is isomorphic to (Idl(X1),⊆)× (Idl(X2),⊆). If (X1,≤1)
and (X2,≤2) are ideally effective, we naturally represent elements ofX1×X2 as pairs

of elements of X1 and X2, and similarly ideals of (X1 ×X2,≤×) as pairs of ideals of

X1 and X2.

Theorem 5.3.2. With the above representations, Cartesian product is a polynomial-

time ideally effective construction.

Proof. Let (X1,≤1) and (X2,≤2) be two ideally effective WQOs.

Let D1 and D2 be downward-closed sets of (X1,≤1) and (X2,≤2) respectively,

given by some ideal decompositions D1 =
⋃

i I1,i and D2 =
⋃

j I2,j . Then D1 ×D2

is downward-closed inX1×X2, and it decomposes as
⋃

i

⋃

j I1,i×I2,j since products

distribute over unions. The same reasoning holds for upward-closed sets and their filter

decompositions and we rely on these properties in the following explanations.

(OD): the ordering ≤× is obviously decidable.

(ID): I1×I2 ⊆ J1×J2 iff I1 ⊆ J1 and I2 ⊆ J2 (exercise; the non-emptiness of ideals

is required here).

(PI): ↓〈x1, x2〉 = ↓x1 × ↓x2.

(II): to compute intersections, use (I1 × I2) ∩ (I ′1 × I ′2) = (I1 ∩ I ′1)× (I2 ∩ I ′2), and

build the product of downward-closed sets as explained above.

(CF): to complement filters, use (X1 ×X2) r ↑×〈x1, x2〉 =
[
(X1 r ↑x1) ×X2

]
∪

[
X1 × (X2 r ↑x2)

]
and build products of downward-closed sets.

Procedures for the remaining operations are obtained similarly. Note that here too,

the presentation above is computable from presentations for (X1,≤1) and (X2,≤2).
Notably, a filter and ideal decomposition of X1 × X2 is easily obtained from decom-

positions of X1 and X2, by distributing products over unions. Finally, the procedures

described above are obviously polynomial-time when the presentations of (X1,≤1)
and (X2,≤2) are.

References and Related Work The most prominent use of the product quasi-ordering

in verification is with the WQO (Nk,≤×) of vectors of natural numbers. Without ex-

plicitly mentioning the notion of ideals, they have long been used under the form of

omega-vectors (e.g. [16] and successor work), that is vectors of elements of Nω =
N ∪ {ω}. In terms of ideals, we now know that Nω simply is a convenient representa-

tion for Idl(N), and thus Nk
ω is a convenient representation for Idl(Nk). Set-theoretic

operations are not difficult to perform in (Nk,≤×), computational description of these

operations are given in [21] for instance.

It is not difficult to generalize these results to an arbitrary product of WQOs X1 ×
X2. It is therefore difficult to find any reference on that matter. We can simply mention

that the structure of ideals of (Xk,≤×) is given as a lemma to characterize the ideals

of (X∗,≤∗) (see next chapter) in [12].

The results of these sections can be generalized to Noetherian spaces [13]. There,

the fact that ideals of the product are products of ideals is expressed as “Sobrification

commutes with finite products”, and includes a reference to this more general result.
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5.4 Lexicographic Product

Given (X1,≤1) and (X2,≤2) QOs, the lexicographic quasi-ordering ≤lex is the QO

defined on the cartesian product X1 × X2 by 〈x1, x2〉 ≤lex 〈y1, y2〉 def⇔ x1 <1 y1 ∨
(x1 ≡1 y1 ∧ x2 ≤2 y2), where ≡1

def
= ≤1 ∩ ≥1 and <1 = ≤1 r ≡1. Moreover, if

(X1,≤1) and (X2,≤2) are WQOs, then (X1 × X2,≤lex) is a WQO as well, since

≤× ⊆ ≤lex. The other important property of the lexicographic quasi-ordering is that

it is linear when its arguments are. More precisely, the lexicographic product of two

ordinals is by definition their product.

Since ≤× ⊆ ≤lex, we are in the setting of Section 4.1: the ideal effectiveness of

(X1 ×X2,≤lex) comes for free provided the two following functions are computable:

ClI : Idl(X1 ×X2,≤×) → Down(X1 ×X2,≤×)
I × J 7→ ↓lex(I × J)

ClF : (X1 ×X2,≤×) → Up(X1 ×X2,≤×)
〈x, y〉 7→ ↑≤lex

〈x, y〉

The expressions of these two functions in this particular case are given in the next

proposition.

Proposition 5.4.1. Given I ∈ Idl(X1), J ∈ Idl(X2), x ∈ A and y ∈ B:

ClI(I × J) =
{

(↓xI × J) ∪ (↓<1
xI ×X2) when I = ↓xI for some xI ∈ X1

I ×X2 otherwise

ClF(〈x, y〉) = ↑×〈x, y〉 ∪ (↑>1
x×X2)

Proof. Both left-to-right inclusions are trivial. Assume I = ↓xI is a principal ideal of

X1, and let 〈y, z〉 ∈ ↓<1
xI × X2. Since y <1 x, 〈y, z〉 ≤lex 〈x, t〉 for any t ∈ X2.

Since J is non-empty, 〈y, z〉 ∈ ↓lex I × J .

On the other hand, if I is not principal, then I has no maximal element. That is, for

any y ∈ I , there exists a strictly greater x ∈ I . Therefore, for any z ∈ X2, 〈y, z〉 ≤lex

〈x, t〉 for any t ∈ X2, and in particular for some t ∈ J . Thus 〈y, z〉 ∈ ↓lex I × J .

The correctness of the expression for ClF is analogous.

Observe that ↓< x = ↓x ∩ (X1 r ↑x) and ↑> x = ↑x ∩ (X1 r ↓x) for any x ∈
X1. Therefore, these expressions are computable when (X,≤1) is ideally effective.

Moreover, from the filter and ideal decomposition of X2, it is simple to obtain the

actual filter decomposition of ↑>1
x×X2 and the actual ideal decomposition of ↓<1

x×
X2. However, a last obstacle remains to the computability of ClI: we need to be

able to decide whether a given ideal is principal. This is not an assumption listed

in Definition 3.1.1, and does not follow from our definition in general. We provide in

Section 8.3 an ideally effective WQO for which it is undecidable to say whether a given

ideal is principal. Taking a lexicographic over this WQO, we also show that function

ClI is not computable in general.

For a time, I thought that only the shortcut provided by Section 4.1 was made im-

practicable by this result, and that we could prove directly (axiom after axiom) that

(X1 × X2,≤lex) was ideally effective. Unfortunately, this is not the case: Dietrich
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Kuske found a mistake in one of my proofs, and I soon realized it couldn’t be cor-

rected. In the end, the WQO provided in Section 8.3 for which function ClI is not

computable is also a counter example to the ideal effectiveness of the lexicographic

product. In conclusion, the lexicographic product, despite being a natural construction,

is not ideally effective according to our definition.

Nonetheless, in commonly used WQOs, testing whether an ideal is principal is

trivially decidable. We therefore obtain the following weaker result:

Theorem 5.4.2. Given (X1,≤1) and (X2,≤2) ideally effective WQOs such that it is

decidable whether a given ideal of Idl(X1) is principal, then (X1 × X2,≤lex) is an

ideally effective WQO.

Moreover, from (polynomial-time) presentations of (X1,≤1) and (X2,≤2) and a

(polynomial-time) algorithm to test principality of ideals of (X1,≤1), we can compute

a (polynomial-time) presentation of (X1 ×X2,≤lex).

Proof. Follows from Theorem 4.1.2 and the analysis of functions ClI and ClF above.
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Chapter 6

Finite Sequences over WQOs

6.1 Higman’s Quasi-Ordering

A QO (X,≤) is a WQO if and only if (X∗,≤∗) is a WQO as well (Higman’s Lemma),

where as defined in Chapter 2, X∗ is the set of all finite sequences over X , and

≤∗ denotes the embedding quasi-ordering between sequences. We sometimes refer

to (X∗,≤∗) as the Higman extension of (X,≤) and ≤∗ is called Higman’s quasi-

ordering.

Elements of X∗ will be denoted in bold font, such as u,v, ..., while elements of

X are denoted x, y, .... In particular, if x ∈ X , then x ∈ X∗ denotes the sequence of

length one containing only the symbol x. The product (for concatenation) of two sets

of sequences U ,V ⊆ X∗ is denoted U · V def
= {u · v | u ∈ U ,v ∈ V }.

The structure of ideals of (X∗,≤∗) is given in [12] where the following theorem

is proved. An alternative proof is presented at the end of Section 6.1.2.

Theorem 6.1.1. The ideals of (X,≤∗) are exactly the finite products of atoms P =
A1 · · ·An, where atoms are:

• any set of the form D∗ ⊆ X∗ for D ∈ Down(X),

• or any set of the form ↓∗ I = {x ∈ X∗ | x ∈ I} ∪ {ǫ} for I ∈ Idl(X). Subse-

quently, ↓∗ I will be denoted I + ǫ (this notation comes from regular expressions

in language theory).

This theorem states that any ideal of (X∗,≤∗) can be decomposed as a finite

product of atoms. However, for instance for X the finite alphabet {a, b}, we have

(a+ǫ)(a+b)∗ = (a+b)∗. That is to say, ideals of (X∗,≤∗) admit several decomposi-

tions as products of atoms. In Section 6.1.3, we define a canonical atom decomposition

for ideals of (X∗,≤∗) which is easily obtained from any other decomposition (as in the

case of upward- and downward-closed sets, it suffices to remove redundancies). But,

we do not need this canonical decomposition to prove ideal effectiveness, and therefore

we proceed to the main theorem of this section: the ideal effectiveness of the Higman

extension, which is stated and proved in the next subsection. We then give a proof of
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Theorem 6.1.1 in Section 6.1.2, define the canonical decomposition in Section 6.1.3

and provide some references and pointers to related work in Section 6.1.4.

6.1.1 The Higman Extension is Ideally Effective

First, let us a fix a representation for X∗ and Idl(X∗,≤∗): as expected, we will simply

represent finite sequences of elements of X as lists of encodings of X (assuming a

representation for X). Similarly, the theorem above suggests representing ideals as

finite sequences (e.g. lists) of atoms. For that, we need a representation for atoms.

Assuming a representation for X and Idl(X), we represent downward-closed sets of

X as always, which gives us representations for each of the two kinds of atoms. Now

the full set of atoms can be seen as Idl(X) ⊔ Down(X) which we can represent as

we did in Section 5.1. Observe that the empty sequence of atoms, denoted ǫ to avoid

confusion with the empty sequence ǫ ∈ X∗, denotes the singleton ideal {ǫ}.
Theorem 6.1.2. With the above representations, the Higman extension is an ideally

effective construction. It is not polynomial-time in general. Given a polynomial-time

presentation of an ideally effective WQO (X,≤), we can compute an exponential-time

presentation of (X∗,≤∗).

The proof of this theorem being quite long, it is structured in several sub-parts, one

for each of the main operations: (ID), (CF), (II), (IF), (CI). Each of these subsections

will include a description of the operation at hand as well as complexity lower and

upper bounds. The easier requirements from Definition 3.1.1 are shown valid below.

Proof. Let (X,≤) be an ideally effective WQO.

(OD): deciding ≤∗ over X∗ reduces to comparing elements of X , e.g. by looking for

a leftmost embedding.

(PI): given a finite sequence u = x1 · · ·xn, the principal ideal ↓u is represented by

the product (↓x1 + ǫ) · · · (↓xn + ǫ).

The fact that a (exponential-time) presentation of (X∗,≤∗) can be computed from a

(polynomial-time) presentation of (X,≤) will be clear from the procedures described

in the next subsections and their complexity analysis. Notably, for (XF), the filter

decomposition of X∗ = ↑ ǫ is given by the empty sequence (and does not depend on

X), while for (XI) we note that X∗ is already an ideal made of a single atom.

The fact that the Higman extension is not a polynomial-time construction follows

from the complexity lower bounds presented in the next subsections.

Before we move on to the technical part of the proof of the theorem above, let us

introduce some convenient notations.

GivenD =
⋃

i Ii ∈ Down(X), we writeD+ǫ to denote
⋃

i(Ii+ǫ) ∈ Down(X∗).
We will call such subsets generalized atoms. Products of atoms and generalized atoms

are downward-closed sets of X∗. From such a product P describing a downward-

closed sets D of X∗, it is possible to recover the actual ideal decomposition of D by

distributing the products over the unions in P . However, the ideal decomposition of D
might be of size exponential in the size of P .
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We will also use shortcuts to denote upward-closed sets. Given two upward-closed

sets of sequences U =
⋃

i ↑ui and V =
⋃

j ↑vj , the product U · V is upward-closed

and its filter decomposition can be computed by U · V =
⋃

i,j ↑(ui · vj). Moreover,

if U =
⋃

i ↑X xi ∈ Up(X) is an upward-closed set of (X,≤), then we can see U as a

set of sequences of length 1, and ↑∗ U =
⋃

i ↑∗ xi. Therefore, an upward-closed set of

X can always be understood as an upward-closed set of X∗. This will be used silently.

Ideal Inclusion (ID)

Proposition 6.1.3. Inclusion between ideals of (X∗,≤∗) can be tested using a lin-

ear number of inclusion tests between downward-closed sets of X , using a sort of

left-most embedding search. When (X,≤) is an ideally effective WQO, the following

equations implicitly describe an inductive algorithm deciding inclusion between ideals

of (X∗,≤∗):

1. Atoms are compared as follows:

(I1 + ǫ) ⊆ (I2 + ǫ) ⇐⇒ I1 ⊆ I2,
(I + ǫ) ⊆ D∗ ⇐⇒ I ⊆ D,

D∗
1 ⊆ D∗

2 ⇐⇒ D1 ⊆ D2,

D∗ ⊆ (I + ǫ) ⇐⇒ D = ∅.

2. for any ideal P : ǫ ⊆ P ,

3. for any ideal P and atom A: A · P ⊆ ǫ ⇐⇒ A = ∅∗ ∧ P ⊆ ǫ

4. Finally, for any atoms A and B, and any ideals P and Q:

(a) if A 6⊆ B then:

A · P ⊆ B ·Q ⇐⇒ A · P ⊆ Q

(b) if A ⊆ B as in the first equivalence of case 1, i.e. A = (I1 + ǫ), B =
(I2 + ǫ) for some I1, I2 ∈ Idl(X), then:

A · P ⊆ B ·Q ⇐⇒ P ⊆ Q

(c) if A ⊆ B as in any of the three other equivalences of case 1, then:

A · P ⊆ B ·Q ⇐⇒ P ⊆ B ·Q

Proof. The three first cases being trivial, we concentrate on the forth one.

4a It is always true that A·P ⊆ Q→ A·P ⊆ BQ̇. Conversely, let u·v ∈ A·P ⊆
B ·Q. Assuming A 6⊆ B, there exists w′ ∈ ArB and by directedness, there

exists w ∈ ArB such that w ≥ u. Now, if A = I + ǫ for some I ∈ Idl(X),
then w is of length one, is not in B and thus w · v, which is in A · P ⊆ B ·Q
has to actually be in Q. Since Q is downward-closed, u · v ∈ Q.

Otherwise, A = D∗ for some D ∈ Down(X). In this case, w ·w ∈ A and thus

wwv ∈ B · Q. Because w /∈ B, this implies wv ∈ Q, which again implies

uv ∈ Q.
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4b Here also, right-to-left implication is trivial. Conversely, assume A ·P ⊆ B ·Q
and A = (I1 + ǫ) and B = (I2 + ǫ) for some I1 ⊆ I2 ∈ Idl(X). Let u ∈ P .

Pick x ∈ I1: xu ∈ A ·P , thus xu ∈ B ·Q. Therefore, u ∈ Q since sequences

of B have length at most one.

4c Left-to-right implication is trivial. For the other implication, decompose P in

P1 · P2 with P1 ⊆ B and P2 ⊆ Q. Now observe that whenever A ⊆ B but

they are not both atoms of the form I+ǫ for some I ∈ Idl(X), then A ·P1 ⊆ B.

Therefore, A · PB ·Q.

Observe that when (X,≤) is a polynomial-time ideally effective WQO, the algo-

rithm described above runs in polynomial-time.

Complementing Filters (CF)

Proposition 6.1.4. Complements of filters can be inductively computed using the fol-

lowing equations: Given w ∈ X∗ and x ∈ X ,

X∗ r ↑ ǫ = ∅ (empty union)(6.1)

X∗ r ↑x = (X r ↑x)∗(6.2)

X∗ r ↑xw = (X r ↑x)∗ · (X + ǫ) · (X∗ r ↑w)(6.3)

Note thatX might not be an ideal, and thusX+ ǫmight be a generalized atom (not

an actual atom). In this case, to compute the actual ideal decomposition of X∗ r ↑w,

we need to distribute the products over the unions that comes from the ideal decom-

position of X . This step might result in an exponential blow up. For instance, take X
to be the finite ordering that consists of three elements 0, 1 and 1′ with 0 < 1, 0 < 1′

and 1 ⊥ 1′. Then X∗ r ↑ 0n+1 consists of all sequences of length at most n. Thus its

canonical ideal decomposition has size 2n: X∗ r ↑ 0n+1 =
⋃

u∈{1,1′}n ↓u.

Note however that in the commonly encountered case where X is a finite alphabet,

the operation of complementing filters can be performed in polynomial-time. Indeed, if

X = {a1, . . . , an} is a finite alphabet (i.e. ordered with equality), thenX =
⋃n

i=1 ↓ ai,
which is not an ideal for n > 1. But sinceXr↑ ai =

⋃

j 6=i ↓ aj , (Xr↑ ai)∗ ·(X+ǫ) =
(X r ↑ ai)∗ · (ai + ǫ) which is an ideal. In [12], the authors prove this finer expression

to complement filters. for an arbitrary WQO (X,≤):

X∗ r ↑xyw = (X r ↑x)∗ · [↓(↑x ∩ ↑ y) + ǫ] · (X∗ r ↑ yw)

In general, our setting does not guarantee that the expression ↓U is computable for

U ∈ Up(X), but when X is a finite alphabet, the expression (↑x ∩ ↑ y) either denotes

the empty set or (x + ǫ) when x = y. Therefore, using this expression, one directly

obtains the canonical form of the complement of a filter of X∗ in the case of a finite

alphabet.

Proof. (of Proposition 6.1.4)

Equations 6.1 and 6.2 are obvious. For the third equation:
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(⊇) If w′ = uyv with u ∈ (X r ↑x)∗, y ∈ X + ǫ and v ∈ (X∗ r ↑w), then assume

xw ≤ w′, then either x = y and w ≤ v which is a contradiction, or xw ≤ v, which

is also a contradiction.

(⊆) Let w′ /∈ ↑xw. Then either w′ ∈ (Xr↑x)∗, or we can write w′ = uyv with

u ∈ (X r ↑x)∗ and y ≥ x. Moreover, v /∈ ↑w, since otherwise xw ≤ yv ≤ uyv =
w′. Therefore, w′ ∈ (X r ↑x)∗ · (X + ǫ) · (X∗ r ↑w).

Intersecting Ideals (II)

Proposition 6.1.5. The intersection of two ideals of (X∗,≤∗) can be computed induc-

tively using the following equations:

P ∩ ǫ = ǫ

D∗
1 · P ∩D∗

2 ·Q = (D1 ∩D2)
∗ ·
[
((D∗

1 · P ) ∩Q) ∪ (P ∩ (D∗
2 ·Q))

]

(I1 + ǫ) · P ∩ (I2 + ǫ) ·Q =
[
((I1 + ǫ) · P ) ∩Q

]
∪
[
P ∩ ((I2 + ǫ) ·Q)

]
∪

∪
[(
(I1 ∩ I2) + ǫ

)
· (P ∩Q)

]

D∗ · P ∩ (I + ǫ) ·Q =
[
P ∩ ((I + ǫ) ·Q)

]
∪
[(
(D ∩ I) + ǫ

)
· (D∗ · P ∩Q)

]

Note that, in addition to using generalized atoms (I1 ∩ I2 and D ∩ I may not be

ideals), we use expressions that mix unions and products. The actual ideal decompo-

sition is obtained when distributing the products over the unions. This is computable,

but may again result in an exponential blow-up of the ideal decomposition. This is

witnessed by the following example: take X = {a, b} a two-symbol alphabet and

D = ↓(aba)n∩↓(bab)n. Every word u in {ab, ba}n is a maximal element ofD: mem-

bership is obvious, and maximality can be proved using the number of symbols a and b
in u, u has as many a’s as (bab)n and as many b’s as (aba)n. Therefore, D is the union

of exponentially many incomparable ideals (words of the same size are either equal or

incomparable).

Proof. (of Proposition 6.1.5)

The first two equations are obviously correct. The other right-to-left inclusions are

easily checked using Proposition 6.1.3. For the left-to-right directions:

• Let u ∈ (D∗
1 · P ∩ D∗

2 · Q). Let v be the longest prefix of u which is in D∗
1 .

Without loss of generality, we assume that the longest prefix of u which is in D∗
2

is longer than |v|, and thus can be written vw for some w ∈ X∗. Moreover,

there exists t ∈ X∗ so that u = vwt. We have, v ∈ (D1 ∩D2)
∗, wt ∈ P and

t ∈ Q. Therefore, wt ∈ P ∩D∗
2Q.

• Let x · u ∈ (I1 + ǫ) · P ∩ (I2 + ǫ) · Q. Depending on whether x ∈ I1 r I2,

x ∈ I2 r I1 or x ∈ I1 ∩ I2, u is easily proved to be in one of the three sets it

should belong to. In the case x is neither in I1 nor I2, then u belongs to all three

sets.

• The last case is proved similarly.
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Intersecting Filters (IF)

Proposition 6.1.6. The intersection of two filters can be computed inductively using

the following equations, for w,v ∈ X∗ and x, y ∈ X:

↑v ∩ ↑ ǫ = ↑v
↑ ǫ ∩ ↑w = ↑w

↑xv ∩ ↑yw =
[
(↑x) · (↑v ∩ ↑yw)

]
∪
[
(↑y) · (↑xv ∩ ↑w)

]
∪

∪
[
(↑X x ∩ ↑X y) · (↑v ∩ ↑w)

]

The actual filter decomposition of this last upward-closed set can be computed follow-

ing the remark at the beginning of this section.

Proof. The first two equations are trivial. For the third, right-to-left inclusion is obvi-

ous. Left-to-right inclusion: consider u ∈ ↑ av ∩ ↑ bw. Let u′ be the shortest suffix of

u which belongs to ↑ av ∩ ↑ bw. Consider cases depending on whether the first letter

of u′ is above x and y in X .

The naive implementation of this procedure runs in exponential-time, and it is

asymptotically optimal: the canonical decomposition of the upward-closed set ↑ an ∩
↑ bn has at least

(
2n
n

)

minimal elements (this corresponds to all the words in the shuf-

fle product an ✁ bn).

Complementing Ideals (CI)

In this subsection we present a procedure to complement ideals. We first show how to

complement atoms, and then how to complement products of atoms.

• If D ⊆ X is downward-closed, then X∗ rD∗ consists of all words which have

at least one letter not in D. That is, compute X rD = ↑x1 ∪ . . . ∪ ↑xn, using

(CI) for X . Then X∗ rD∗ = ↑x1 + . . .+ ↑xn.

• If I ⊆ X is an ideal, then X∗ r (I + ǫ) consists of all words which have at least

one letter not in I , and all words with at least two letters. The former is obtained

as in the previous case. The latter is ↑∗X ·X , easily computed in a similar way

using (XF) for X .

We now consider products A1 · · ·An of atoms. We know how to compute Ui =
∁Ai. We thus use the relation ∁(A1 · · ·An) = ∁(∁U1 · · · ∁Un), which motivates the

following definition:

Definition 6.1.7. Define the operator ⊙ : Up(X∗)× Up(X∗)→ Up(X∗) as

U ⊙ V := ∁(∁U · ∁V ).

Note that U ⊙V is obviously upward-closed when U and V are. The operation ⊙
is easily shown associative using the associativity of the product, thus U1⊙ . . .⊙Un =
∁(∁U1 · . . . ·∁Un). The previous relation becomes ∁(A1 · · ·An) = U1⊙· · ·⊙Un, and
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it only remains to show that ⊙ is computable on upward-closed sets. In what follows,

we will often use the following obvious characterization: w ∈ S⊙T if and only if for

all factorizations w = w1w2, w1 ∈ S or w2 ∈ T .

We first show that⊙ is computable on filters, and later show that⊙ distributes over

unions.

Lemma 6.1.8. On principal filters, ⊙ can be computed using the following equations:

↑v ⊙ ↑ ǫ = X∗

↑ ǫ⊙ ↑w = X∗

↑va⊙ ↑ bw = ↑(vabw) ∪ (↑v) · (↑X a ∩ ↑X b) · (↑w)

where v,w ∈ X∗ and a, b ∈ X .

Proof. The first two equations are obvious. For the third:

(⊇) If u ≥∗ vabw, then for every factorization of u = u1u2, the left factor u1 is

above va, or the right factor u2 is above bw, and thus u ∈ ↑va⊙↑ bw. If u ≥∗ vcw,

where c ∈ X is such that c ≥ a and c ≥ b, then in every factorization of u = u1u2,

c appears either in the left factor u1 or in the right factor u2, and this suffices to show

that either u ≥∗ va or u ≥∗ bw.

(⊆) Let u ∈ (↑v) ⊙ (↑w). From the factorizations u = u · ǫ and u = ǫ · z we

get va ≤∗ u and bw ≤∗ u. Consider the shortest prefix of u into which va embeds

and the shortest suffix into which bw embeds. If these factors don’t overlap, we get

u ≥∗ vabw. If they overlap, the overlap must have length exactly one (otherwise u

can be split anywhere in the middle of the overlap to obtain a contradiction). Write

u = u1cu2 where c ∈ X is the overlap. Then u1 ≥∗ v, c ≥ a, c ≥ b, and u2 ≥∗ w,

which proves the statement.

It now remains to show that ⊙ distributes over unions.

Lemma 6.1.9. Given U ,U1,U2 three upward-closed sets of X∗, we have:

(U1 ∪U2)⊙U = (U1 ⊙U) ∪ (U2 ⊙U)

U ⊙ (U1 ∪U2) = (U ⊙U1) ∪ (U ⊙U2)

Proof. We actually show the equivalent statement that product distributes over inter-

section for downward-closed sets. Let D = ∁U , D1 = ∁U1 and D2 = ∁U2, we show

that (D1∩D2) ·D = (D1 ·D)∩(D2 ·D), and D ·(D1∩D2) = (D ·D1)∩(D ·D2).
We only show the first equation, the second one being symmetrical. The left-to-

right inclusion is obvious. For the right-to-left inclusion, let w ∈ D1 ·D ∩D2 ·D.

Then w = u1v1 for some u1 ∈D1 and v1 ∈D. Also, w = u2v2 for some u2 ∈D2

and v2 ∈ D. One of u1 and u2 is a prefix of the other. Assume u1 is a prefix of u2

(the other case is analogous). Since D2 is downward-closed and u1 ≤∗ u2, u1 ∈D2.

Thus, u1 ∈D1 ∩D2 and v1 ∈D, w = u1v1 ∈ (D1 ∩D2) ·D.

It follows that computing ∁A1⊙· · ·⊙∁An = (U1⊙· · ·⊙Un) reduces to computing

⊙ on filters, which is computable by Lemma 6.1.8. However, distributing over the

unions can once again lead to an exponential blow-up. This is unavoidable, as shown

below.
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Proposition 6.1.10. The upward-closed set ∁ ↓(ab)n where X = {a, b} is a two-

symbol alphabet has an exponential number (in n) of minimal elements.

Thus, ideals of X∗ cannot be complemented in polynomial-time, even in the simple

case where X is a two-symbol alphabet.

Proof. Since ⊙ is associative, ∁ ↓(ab)n = (∁ ↓(ab)n−1) ⊙ (∁ ↓ ab) = (∁ ↓(ab)n−1) ⊙
(↑ ba ∪ ↑ bb ∪ ↑ aa). This identity suggests to proceed by induction.

Let
⋃m

i=1 ↑ui be the canonical decomposition of ∁ ↓(ab)n. Define the subsets of

indexes Sv = {i ∈ [m] | v is a suffix of ui}.

∁ ↓(ab)n+1 =(∁ ↓(ab)n)⊙ (↑ ba ∪ ↑ bb ∪ ↑ aa)

=(

m⋃

i=1

↑ui)⊙ (↑ ba ∪ ↑ bb ∪ ↑ aa)

=(
⋃

i∈Saa

↑ui)⊙ (↑ ba ∪ ↑ bb ∪ ↑ aa) ∪

(
⋃

i∈Sba

↑ui)⊙ (↑ ba ∪ ↑ bb ∪ ↑ aa) ∪

(
⋃

i∈Sb

↑ bui)⊙ (↑ ba ∪ ↑ bb ∪ ↑ aa)

=(
⋃

i∈Saa

↑uiba ∪ ↑uibb ∪ ↑uia) ∪

(
⋃

i∈Sba

↑uiba ∪ ↑uibb ∪ ↑uia) ∪

(
⋃

i∈Sb

↑uia ∪ ↑uib ∪ ↑uiaa)

This last step follow from the particular form that Lemma 6.1.8 takes when X = A
a finite alphabet: indeed, for a, b ∈ A, either a 6= b and ↑A a ∩ ↑A b = ∅ which means

↑va ⊙ ↑ bw = ↑vabw; or a = b in which case ↑va ⊙ ↑ aw = ↑vaaw ∪ ↑vaw =
↑vaw since vaw ≤ vaaw.

Now, observe that for i ∈ Saa ∪ Sba, uia ≤ uiba; and for i ∈ Sb, uia ≤ uiaa,

thus we obtain:

∁ ↓(ab)n+1 =(
⋃

i∈Saa

↑uibb ∪ ↑uia) ∪ (
⋃

i∈Sba

↑uibb ∪ ↑uia) ∪ (
⋃

i∈Sb

↑uia ∪ ↑uib)

(6.4)

There is one last less obvious redundancy: for n ≥ 2 and i ∈ Sba, there exists u′
i

in the canonical decomposition of ∁(↓(ab)n−1) such that ui = u′
ia. Indeed, we see in

Equation 6.4 that a’s can only be added one by one. Thus, u′
i having b as a suffix, there

exists j ∈ [m] such that uj = u′
ib. This entails j ∈ Sb, and thus ujb = u′

ibb appears
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in the decomposition of ∁ ↓(ab)n+1. Since u′
ibb ≤ u′

iabb = uibb, the element uibb is

not minimal in the decomposition and can be removed. We finally obtain:

∁ ↓(ab)n+1 =(
⋃

i∈Saa

↑uibb ∪ ↑uia) ∪ (
⋃

i∈Sba

↑uia) ∪ (
⋃

i∈Sb

↑uia ∪ ↑uib)(6.5)

(6.6)

We now prove that the decomposition above is indeed minimal. First, uibb ≤ uja
or uibb ≤ ujb imply uib ≤ uj which is impossible since the decomposition

⋃m

i=1 ui
is canonical, i.e. the ui’s are incomparable. Moreover, uibb ≤ ujbb implies ui ≤
uj which implies i = j since

⋃m

i=1 ↑ui is the canonical decomposition of ∁ ↓(ab)n.

Similarly, uia ≤ ujb and uia ≤ ujbb are impossible, and uia ≤ uja implies i = j.
The only non trivial case is when uib ≤ ujbb. This implies that i ∈ Sb and j ∈ Saa,

and of course that ui ≤ ujb. Again, assume n ≥ 2, and denote by u′
i and u′

j the

minimal elements of ∁ ↓(ab)n−1 from which ui and uj are respectively built. Then,

uj = u′
ja and a is a suffix of u′

j . As for ui, it is either equal to u′
ib, and b is a suffix of

u′
i; or to u′

ibb, in which case aa is a suffix of u′
i. In the first case, we have u′

ib ≤ u′
jab

which implies u′
i ≤ u′

j , thus u′
i = u′

j by canonicity of the decomposition at rank n−1,

but this is impossible since one ends with a and the other with b. In the second case,

u′
ibb ≤ u′

jab, which implies u′
ib ≤ u′

j , which leads to the same kind of impossibility.

In conclusion, the decomposition given in Equation 6.5 is canonical, and its number

of element is given by un + vn +wn
def
= |Saa|+ |Sba|+ |Sb|, where the sequences are

inductively defined by:

un+1 = un + vn

vn+1 = wn

wn+1 = wn + un

Thus, Un =





un
vn
wn



 = AnU0 where A =





1 1 0
0 0 1
1 0 1



. This matrix has only one

real eigenvalue λ ≃ 1.75488 > 1 and two conjugate complex eigenvalues 0.122561±
0.744862i of absolute value strictly smaller than λ. As a consequence, λn will asymp-

totically dominate the expression, and the sequences un, vn and wn are exponential in

n.

6.1.2 A proof of Theorem 6.1.1

It is not difficult to see that atoms indeed are ideals (downward-closed and directed),

and that Idl(X∗,≤∗) is closed under products. Therefore, products of atoms all are

ideals, and our objective is to prove the other inclusion: all ideals of (X∗,≤∗) can be

written as a finite product of atoms.

Propositions 6.1.4 and 6.1.5 do not actually rely on the structure of ideals. They

can be understood as:

• The complement of a filter is a finite product of atoms.
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• The finite products of atoms are closed under intersections.

Let I ∈ Idl(X∗,≤∗). Its complement ∁I is upward-closed, and can therefore be

decomposed ∁I =
⋃

i Fi as a finite union of filters. It follows that I = ∁(∁I) =
⋂

i ∁Fi. The downward-closed sets ∁Fi are finite unions of finite products of atoms

(Proposition 6.1.4), and their intersection is also a finite union of finite product of

atoms (Proposition 6.1.5). Finite products of atoms being ideals, I can be written as a

finite union of ideals of (X∗,≤∗). But since ideals are irreducible (Proposition 2.2.1),

I is a finite product of atoms.

6.1.3 Canonical Ideal Decomposition

Note that when X is the finite alphabet {a, b}, then (a + ǫ)(a + b)∗ = (a + b)∗, thus

the representations we use for ideals are not unique. Intuitively, the expression (a+ ǫ)
is subsumed by (a + b)∗. In general, if A is an atom and D is downward-closed in

X such that A ⊆ D∗, then AD∗ = D∗A = D∗. Subsequently, we show that these

are the only cause of non-uniqueness: avoiding such redundancies, every ideal has a

unique representation (assuming unique representations for ideals of X).

Below, we use letters such as A, P, etc to denote sequences of atoms (syntax), and

corresponding letters such as A, P , etc to denote the ideals obtained by taking the

product (semantic). For example if P = (A1, A2, . . . , An), then P = A1A2 . . .An.

Thus it is possible to have P, Q such that P 6= Q but P = Q.

Definition 6.1.11. A sequence of atoms A1, . . . ,An is said to be reduced if for all i,
the following hold:

• Ai 6= {ǫ} = ∅∗.

• If i+ 1 ≤ n and Ai+1 is some D∗, then Ai 6⊆ Ai+1.

• If i− 1 ≥ 1 and Ai−1 is some D∗, then Ai 6⊆ Ai−1.

Every ideal has a reduced decomposition into atoms, since any decomposition can

be converted to a reduced one by dropping atoms which are redundant as per Defini-

tion 6.1.11. It remains to show uniqueness of the reduced representation:

Theorem 6.1.12. If P and Q are reduced sequences of atoms such that P = Q, then

P = Q.

Proof. By induction on |P|+ |Q|. The result is trivial if |P| ≤ 1 or |Q| ≤ 1.

Otherwise, let us write P as A1A2P
′ and Q as B1B2Q

′.

We first show that A1 = B1. If A1 6⊆ B1, since P ⊆ Q, the inclusion test

described in Proposition 6.1.3 gives us P ⊆ B2Q
′ ⊆ B1B2Q

′ ⊆ P , so P = B2Q
′,

and the induction hypothesis then yields P = B2Q
′. Similarly, if B1 6⊆ A1, then

Q = A2P
′. In particular, A1 and B1 cannot be incomparable, otherwise Q = B1B2Q

′ =
B1P = B1A1A2P

′ = B1A1Q, which is impossible since Q and B1A1Q do not even have

the same length. Hence, B1 must contain or be contained in A1. Without loss of

generality, we assume B1 ⊆ A1. For the sake of contradiction, let us assume that

A1 6⊆ B1. In that case, we have seen that P = B2Q
′, which in particular implies
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A1 = B2. Since B1 ⊆ A1 = B2, and Q is reduced, B2 cannot be of the form D∗,

hence is equal to I2 + ǫ for some ideal I2 of X . Since B1 ⊆ B2, B1 cannot be of

the form D∗ either, and must therefore be equal to I1 + ǫ for some ideal I1 of X .

Moreover, I1 ⊆ I2. We apply Proposition 6.1.3 to the inclusion of Q = B1B2Q
′ in

P = A1A2P
′ = B2A2P

′ and we obtain that B2Q
′ ⊆ A2P

′. From the inclusions

B2Q
′ ⊆ A2P

′ ⊆ P = B2Q
′, we deduce that A2P

′ = B2Q
′, hence by induction

hypothesis A2P
′ = B2Q

′. This is impossible since P = B2Q
′, which implies that P =

A2P
′, which contradicts P = A1A2P

′.

We now want to show that A2P
′ = B2Q

′. Since the situation is symmetric, we

only prove one inclusion. We distinguish two cases.

1. If A1 is of the form I + ǫ, then so is B1 and Proposition 6.1.3 directly implies

A2P
′ ⊆ B2Q

′.

2. Otherwise, A1 is of the form D∗, in which case A2 6⊆ A1 = B1, because P is

reduced. Therefore, by Proposition 6.1.3, A2P
′ ⊆ B2Q

′.

By symmetry, we obtain A2P
′ = B2Q

′ and conclude the proof with the induction

hypothesis.

6.1.4 Concluding Remarks

Complexity In conclusion, we have shown that all of the four main set-theoretic op-

erations (intersection of filters and ideals, complements of filters and ideals) require

exponential-time, and already for rather simple WQOs: in the most common case of

sequences over a finite alphabet, already three among these four operations are expo-

nential. Only, the quasi-ordering and ideal inclusion can be decided in polynomial

time.

References and Related Work The quasi-ordering≤∗ was studied by Higman in [1]

where he proved that (X∗,≤∗) is a WQO if and only if (X,≤) is.

The structure of the ideals of (X∗,≤∗) was first studied by Jullien in [33], in the

case where X is a finite alphabet. His proof is essentially the one we sketched at the

end of Section 6.1.2. His results were later generalized to any WQO X by Kabil and

Pouzet in [12]. They present a different proof, and further generalizations of this result

to quasi-orderings that are out of scope of this thesis.

Abdulla, Bouajjani and Jonsson independently implicitly rediscovered the structure

of the ideals of (A∗,≤∗), where A is a finite alphabet, in [17]. They use the fact,

due to Higman, that downward-closed languages are regular, and prove by induction

over regular expressions that for every regular expression recognizing a downward-

closed language, there exists a simple regular expression (SRE) recognizing the same

language, where simple regular expressions are exactly finite unions of finite products

of atoms.

They also provide a linear-time algorithm to decide inclusion between downward-

closed sets represented as SREs, and they define the same normal form as ours for

SREs, which is computable in quadratic-time from any other representation. In [19],

Abdulla et al. prove that downward-closed sets can be represented as SREs using the
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same proof as the one Jullien presented in [33], i.e. which we generalized for any

WQO X at the end of Section 6.1.2. In particular, this proof requires to express ∁ ↑w
as an SRE and to show that SREs are closed under intersection. In other terms, they

essentially prove (CF) and (II).

In [18], Abdulla et al. use the WQO ((A⊛)∗,≤∗), where A is a finite alphabet, and

finite multisets over A (see Section 7.1) are quasi-ordered with ≤emb. They provide a

structure to represent downward-closed sets of (A⊛,≤emb) and ((A⊛)∗,≤∗) which is

essentially the one obtained when composing results from this chapter with Section 7.1.

Here also, these results have been generalized to Noetherian spaces in [13]. The

structure of the ideals then is still the same in this context.

Finally, we would like to point out that some alternative representations of downward-

closed sets are investigated, in particular in the case of finite sequences over a finite

alphabet, since it is the most common case (with motivations coming from language

theory). For instance in [34], the authors represent closed sets with automata, and

study the state complexity of closure operations on regular languages (represented as

deterministic, non deterministic or alternating automata).

6.2 Finite Sequences under Stuttering

Let (X,≤) be a WQO. Its sequence extension under the stuttering quasi-order (or sim-

ply stuttering extension) is (X∗,≤st), where X∗, as before, is the set of all finite se-

quences from X . The quasi-ordering ≤st over X∗ is defined by

x1 . . . xn ≤st y1 . . . ym
def⇔ ∃f : [n]→ [m] increasing . ∀i ∈ [n]. xi ≤ yf(i)

The only difference with ≤∗ is that we do not require the witness f to be strictly

increasing, but only increasing. For instance, if X = {a, b} is a finite alphabet, then

aabbaa ≤st aba ≤st aabbaa but aabbaa 6≤st ab. Or with X = N, 1 · 1 · 1 ≤st 2. Note

that even if (X,≤) is a partial-order, (X∗,≤st) need not be (e.g. 2 · 2 ≤st 2 ≤st 2 · 2).

Another way to define this quasi-ordering is the following: define the stuttering

equivalence relation ∼st on X∗ as the smallest equivalence relation such that for all

u,v ∈ X∗ and a ∈ X , uav ∼st uaav. Informally, this equivalence does not distin-

guish between words which differ only in the number of times consecutive characters

are repeated. Then, ≤st=≤∗ ◦ ∼st, where ◦ denotes the composition of relations, as

defined in Section 4.2. However, the results from Section 4.2 cannot be applied to this

quasi-ordering since ≤st 6= ∼st ◦ ≤∗. If X is a finite alphabet, this equation holds and

(X∗,≤st) can be treated as a quotient. Also observe that ∼st is not the same as the

equivalence relation ≡st=≤st ∩ ≥st induced by the quasi-ordering, even if (X,≤) is

a partial-order ≤. For instance, if a ≤ b in X , then ab ≡st b in X∗, but ab ∼st b does

not hold. However the inclusion ∼st ⊆ ≡st is always valid.

6.2.1 The Stuttering Extension is Ideally Effective

Obviously,≤st is an extension of≤∗, thus≤st is a WQO and Section 4.1 applies. That

is, the ideals of (X∗,≤st) are of the form ↓≤st
I for I an ideal of (X∗,≤∗). Moreover,
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• if D is a downward-closed subset of X , then ↓≤st
D∗ = D∗,

• if I is an ideal of (X,≤), then ↓≤st
(I + ǫ) = I∗,

• if P1 and P2 are ideals of (X∗,≤∗) (cf. Section 6.1), then ↓≤st
(P1 · P2) =

(↓≤st
P1) · (↓≤st

P2).

Therefore, the downward closure for ≤st of an ideal of (X∗,≤∗) can be written as

a product of atoms of the form D∗, the atoms of the form (I + ǫ) being transformed

into I∗.

Lemma 6.2.1. Ideals of (X∗,≤st) are products D∗
1 · · ·D∗

n, for Di ∈ Down(X).

Assuming we have a representation for X and Idl(X), we can use the same repre-

sentation of X∗ as before, and the lemma above suggests a simple representation for

ideals of (X∗,≤st): as lists of downward-closed sets of (X,≤).

Theorem 6.2.2. With the above representations, the stuttering extension is an ideally

effective construction. It is not polynomial-time in general. Given a polynomial-time

presentation of an ideally effective WQO (X,≤), we can compute an exponential-time

presentation of (X∗,≤st).

Proof. Let (X,≤) be an ideally effective WQO. Then (X∗,≤∗) is ideally effective as

well. Therefore, in the light of Theorem 4.1.2, to prove that the stuttering extension

is an ideally effective construction, it suffices to show that the functions ClI and ClF
introduced in Section 4.1 are computable in this particular context. The fact that the

stuttering extension is not a polynomial-time construction follows from the complexity

lower bounds presented in Section 6.2.3. To prove the last part of the theorem, i.e.

that we can compute an exponential-time presentation of (X∗,≤st) when (X,≤) is a

polynomial-time ideally effective WQO, we rely on Lemma 4.1.3.

The function ClI is easily shown computable using the equations above: given a

product of atoms P = A1 · · ·An ∈ Idl(X∗,≤∗),

ClI(P ) = ↓≤st
P = (↓≤st

A1) · · · (↓≤st
An)

and the image of an atom by ClI is obtained by ClI(D∗) = ↓≤st
D∗ = D∗ for D ∈

Down(X) and ClI(I+ ǫ) = I∗ for I ∈ Idl(X). Thus ClI is computable in linear-time.

The function ClF is computable as well, although less straight-forward: given u =
x1 · · ·xn ∈ X∗,

ClF(u) = ↑st u = ↑∗






y1 · · · yk |

0 ≤ k ≤ n
0 = i0 < i1 < · · · < ik = n

∀j ∈ [k]. yj ∈ min(
⋂

ij−1<ℓ≤ij
↑X xℓ)







Intuitively, the set ranges over all ways to cut u in k pieces (factor), and embeds

the i-th piece entirely into the same element yi.
Note that the expression above is the fully generic formula to describe the function

ClF for anyX . Since there are exponentially many families of indexes ij to range over,

this expression is computable in exponential-time. In Section 6.2.3, we show that this
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blow-up is unavoidable, already for a WQO as simple as N2. However, in simple cases,

ClF(w) takes a much simpler form and is computable in linear-time. For instance, for

X = N ordered naturally, ClF(x1 · · ·xn) = ↑∗( max
1≤i≤n

xi), and for X = A a finite

alphabet, ClF(w) = ↑∗ v where v is the shortest (in length) element of the class of w

for ∼st (that is, v is the word w where we remove all stuttering). Indeed, when X is

a finite alphabet, we have seen that ≤st can be obtained as a quotient of ≤∗ with the

equivalence relation∼st. And we have seen in Section 4.2 that in the case of a quotient,

ClF simply outputs the closure of a given filter under the equivalence relation. Here,

any class of ∼st has indeed a unique minimal element for ≤∗, which is obtained from

any member of the class from removing stuttering.

We now prove the correction of the above expression for the function ClF. The

right-to-left inclusion being obvious, we focus on the other inclusion. Given w ≥st

x1 · · ·xn, there exist an increasing mapping p from [n] to [|w|] such that each xi is

associated to a greater element in w. Denoting the image of p by {y1, . . . , yk}, this

entails a decomposition of w = w0y1w1y2 · · · ykwk where the yi’s are in X and the

wi’s in X∗. Further define ij to be the greatest i such that p(i) = j (i.e. the index of

the right-most symbol of x1 · · ·xn to be mapped to yj). It follows that 0 = i0 < i1 <
· · · < ik = n, and for all ℓ ∈ [n] and j ∈ [k], ij−1 < ℓ ≤ ij ⇒ xℓ ≤ yj . Then

w ≥∗ y1 · · · yk which is indeed an element of the set described in the proposition.

In conclusion, the functions ClI and ClF introduced in Section 4.1 are computable,

therefore, by Theorems 4.1.2 and 6.1.2, stuttering extension is an ideally effective

construction. As mentioned at the beginning of the proof, the fact that it is not a

polynomial-time construction will follow from Section 6.2.3 where we provide ex-

ponential lower bounds for several operations in (A∗,≤st), the stuttering extension of

a finite alphabet (A,=). The latter being a polynomial-time ideally effective WQO, it

proves that stuttering extension does not preserve the polynomial-time complexity of

WQOs. Note that per our definition of polynomial-time construction, an exponential

lower bound for only one operation of (A∗,≤st) would have been enough to conclude.

But we provide a complete complexity analysis of a presentation of (X∗,≤st). No-

tably, in Section 6.2.2, we provide polynomial-time upper bounds when possible.

But for now, let us simply prove the last part of the theorem: let (X,≤) be an

ideally effective WQO given by a polynomial-time presentation. Let us prove that the

presentation of (X∗,≤st) implicitly described above (through Theorem 4.1.2 is indeed

exponential-time. It suffices to observe that we are in the setting of Lemma 4.1.3. In-

deed, if we have a polynomial-time presentation of (X,≤), then we can compute an

exponential-time presentation of (X∗,≤∗) using Theorem 6.1.2. Secondly, the func-

tions ClI and ClF described above can obviously be computed in exponential-time.

Thirdly, observe that for any u ∈ X∗, every filter in the filter decomposition of ClF(u)
as an upward-closed set of (X∗,≤∗) is of linear size in |u|: to describe ClF(u) we

used sequences y1 · · · yk for k ≤ n whose elements yi are obtained using a polynomial

number of filter intersection in the polynomial-time WQO (X,≤). Therefore, elements

yi have encodings whose size are bounded by a polynomial in the size of elements of

u. Finally, the function ClI being computable in linear time, its output is of course of

linear size at most.

The four assumptions from Lemma 4.1.3 being fulfilled, we have proved that
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(X∗,≤st) has an exponential-time presentation. However, not all procedures in this

presentation are actually exponential-time. We refine this statement in the next two

subsections, by providing for each operation in (X∗,≤st) either an exponential-time

lower bound (matching the upper bound we have just shown) or a polynomial-time

upper bound.

6.2.2 Better Complexity Upper Bounds

Let (X,≤) be a polynomial-time ideally effective WQO. In this subsection, we provide

better upper bounds for the procedures of the ideally effective WQO (X∗,≤st).
The presentation of (X∗,≤st) we have given in the proof above is obtained from

a presentation of (X,≤) as a somewhat abstract composition of the proof of Theo-

rems 6.1.2 and 4.1.2. But of course, the structure of (X∗,≤st) is quite simple and can

be understood directly.

Notably, the quasi-ordering ≤st can be decided using a linear number of com-

parison in X , searching for the left-most embedding, as we did to decide ≤∗. Sim-

ilarly, ideals of (X∗,≤st) are in particular ideals of (X∗,≤∗) (they are products of

atoms of the form D∗ for D ∈ Down(X)), and thus ideal inclusion can be decided

using the polynomial-time procedures given in Proposition 6.1.3. Finally, the func-

tion that maps u ∈ X∗ to ↓st u is quite simple as well: if u = x1 · · ·xn, then

↓st u = (↓X x1)
∗ · · · (↓X xn)

∗.

Note that there is a more abstract way to understand these three results. Look-

ing closely at the proof of Theorem 4.1.2, one may notice that these three operations

((OD), (ID), (PI)) can be performed using only the function ClI, which can be com-

puted in linear-time here. Moreover, these three operations could also be performed

in polynomial-time in (X∗,≤∗) (remember we assumed (X,≤) is a polynomial-time

ideally effective WQO). Therefore it is no surprise that the composition of the two can

still be performed in polynomial-time.

Next, we give a polynomial-time procedure to complement filters:

Proposition 6.2.3. (CF): X∗ r ↑st(x1 · · ·xn) = (X r ↑x1)∗ · · · (X r ↑xn)∗

Proof. (⊆) Let y1 · · · ym that is not greater than x1 · · ·xn for ≤st. Consider f : [k]→
[m] (for some k < n) the longest left-most embedding of x1 · · ·xn into y1 · · · ym,

that is x1 · · ·xk ≤st y1 · · · ym but x1 · · ·xk · xk+1 6≤st y1 · · · ym. Since this is

the left-most embedding, the elements yi for i < f(1) are not in ↑X x1, and thus

y1 · · · yf(1)−1 ∈ (∁ ↑X x1)
∗. Similarly, yf(1) · · · yf(2)−1 ∈ (∁ ↑X x2)

∗ (consider this

sequence to be empty if f(1) = f(2)). And so on, up to yf(k) · · · ym ∈ (∁ ↑X xk+1)
∗,

since otherwise we would have x1 · · ·xk · xk+1 ≤st y1 · · · ym. In the end we have

shown that y1 · · · ym ∈ (∁ ↑X x1)
∗ · · · (∁ ↑X xk+1)

∗ ⊆ (∁ ↑X x1)
∗ · · · (∁ ↑X xn)

∗.

(⊇) Let v = v1 · · ·vn ∈ (∁ ↑X x1)
∗ · · · (∁ ↑X xn)

∗, where vi ∈ (∁ ↑X xi)
∗ for

i ∈ [n]. Assume x1 · · ·xn ≤st v, consider an embedding f : [n]→ [|v|] that witnesses

this inequality and consider the function g that maps i ∈ [n] to j ∈ [n] if the f(i)-
th element of the sequence v is in vj . Then, because v1 ∈ (∁ ↑X x1)

∗, g(1) > 1.

Moreover, g(2) ≥ g(1) > 1 but v2 ∈ (∁ ↑X x2)
∗ thus g(2) > 2. And so on by

induction we show that g(i) > i, which is impossible for g(n), reaching a contradiction

and proving that x1 · · ·xn 6≤st v.
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6.2.3 Complexity Lower Bounds

Previously, we have exhibited a linear-time procedure for (CF). This proves that

there might exist more efficient procedures than the one obtained by composing Theo-

rems 4.1.2 and 6.1.2. Subsequently, we show that for the three remaining operations,

namely (II), (CI) and (IF), no generic polynomial-time procedure exist. That is, asymp-

totically, the procedures we have obtained in Theorem 6.2.2 are optimal.

Our first observation is that, unlike in the case of (X∗,≤∗), we won’t be able

to provide an exponential-lower bound in the simple case of a two-symbol alphabet.

Indeed, when quotiented by ∼st, the structure of {a, b}∗ is very simple: there are only

two words of any given size n > 0: (ab)(n/2) and (ba)(n/2) if n is even, (ab)ma and

(ba)mb if n = 2∗m+1. As a result, ({a, b}∗,≤st) is isomorphic to 0⊕(N×{a, b},≤lex

). All operations are computable in polynomial-time in this WQO. We thus consider

A = {a, b, c} a three-symbol alphabet, and prove that (II), (CI) and (IF) for (A∗,≤st)
require exponential-time computations.

(II): The canonical ideal decomposition of the downward-closed set

(a∗b∗c∗)n ∩ (b∗a∗c∗)n has exponential size.

Indeed, all ideals of the form x∗1c
∗x∗2 · · ·x∗nc∗ for xi ∈ {a, b} are maximal for

inclusion in (a∗b∗c∗)n ∩ (b∗a∗c∗)n.

(CI): The upward-closed set ∁(a∗(b+c)∗)n has exponentially many minimal elements.

Indeed, we prove that every word x1ax2 · · ·xna for xi ∈ {b, c} is a minimal

element of this upward-closed set.

Let u = x1ax2 · · ·xna be such a word. Observe that u ∈ (a∗(b + c)∗)n if and

only if I
def
= x∗1a

∗ · · ·x∗na∗ ⊆ (a∗(b + c)∗)n. This cannot be the case: there are

n occurrences of a∗ on both sides, hence the a∗ must be mapped to each other.

That leaves no option for x∗1. Therefore, u ∈ ∁(a∗b∗c∗)n.

It remains to show that u is minimal. If v is strictly smaller (for stuttering) than

u, then it belongs to Ii = x∗1a
∗ · · · a∗x∗i x∗i+1a

∗ · · ·x∗na∗ for some i ∈ [n], or to

Ji = x∗1a
∗ · · ·x∗i−1a

∗a∗x∗i+1 · · ·x∗na∗ for some i ∈ [n]. The ideal Ii is I where

we removed an atom a∗ while Ji is I where we removed the atom x∗i . Now,

because a∗a∗ = a∗ and x∗i x
∗
i+1 ⊆ (b + c)∗, all ideals Ii and Ji are subsets of

(a∗(b+ c)∗)n, which proves the minimality of u.

(IF): The upward-closed set ↑st(ac)n ∩ ↑st(bc)n has exponentially many minimal ele-

ments. Indeed, applying Section 4.1:

↑st(ac)n ∩ ↑st(bc)n = ClF((ac)n) ∩ ClF((bc)n)
= ↑∗(ac)n ∩ ↑∗(bc)n

This last set has exponentially many minimal elements (for ≤∗): at least one per

element in an ✁ bn. Moreover, since there is no repetition of a letter in either

(ac)n or (bc)n, none of these minimal elements have repetitions either (i.e. none

can be written u = u1aau2 or u = u1bbu2). Thus, on these words,≤∗ and≤st

coincide, and these exponentially many minimal elements are also minimal for

≤st.
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Finally, we provide an exponential lower bound for the function ClF. In simple

cases, namely when (X,≤) is either (N,≤) or a finite alphabet, the function ClF is

computable in polynomial-time as sketched in the proof of Theorem 6.2.2. We there-

fore look at the stuttering extension of (N2,≤×), which is the next simplest WQO we

could think of.

Proposition 6.2.4. Let wn = 〈0, n〉〈1, n − 1〉 · · · 〈n, 0〉 ∈ (N2)∗ (it consists of all

elements of N2 whose sum is equal to n). The set ↑st wn, where N2 is equipped with

the product ordering, has exponentially many pairwise incomparable minimal elements

for ≤∗. In particular, function ClF requires exponential-time to compute.

Proof. Applying the expression of ClF given in the proof of Theorem 6.2.2:

↑st wn = ↑∗〈n, n〉 ∪
n−1⋃

i=0

↑∗〈i, n〉〈n, n− i− 1〉 ∪
⋃

0≤i<j<n

↑∗〈i, n− 1〉〈j, n− i− 1〉〈n, n− j − 1〉 ∪

. . .
⋃

0≤i1<...
<ik−1<n

↑∗〈i1, n− 1〉〈i2, n− i1 − 1) · · · (n, n− ik−1 − 1〉 ∪

. . .

↑∗ wn

Each line in the above description corresponds to a value of k ∈ [n]: the first line

corresponds to k = 1, wn is decomposed in one piece, the second line to k = 2, wn

is decomposed in two pieces, etc., and the last line is obtained for k = n. We now

argue that this decomposition of the upward closed set ↑st wn is canonical. Because

≤∗ is antisymmetric here, and since all of those sequences are pairwise distinct, it

suffices to show that each sequence is minimal (for ≤∗) in ↑st wn. Let 0 < k ≤ n
and i0 = 0 < i1 < · · · < ik−1 < ik = n, and u = Πk

j=1〈ij , n − ij−1 − 1〉 =
〈i1, n−1〉〈i2, n−i1−1〉 · · · 〈n, n−ik−1−1〉. We show that if v <∗ u then wn 6≤st v.

For any such v <∗ u, there exists an index 1 ≤ ℓ ≤ k such that v is smaller than some

word obtained from u by replacing the ℓ-th symbol by a strictly smaller element. That

is, v is smaller than some 〈i1, n−1〉〈i2, n−i1−1〉 · · · 〈iℓ−1, n−iℓ−2−1〉·x·〈iℓ+1, n−
iℓ − 1〉 · · · 〈n, n − ik−1 − 1〉 for some 1 ≤ ℓ < k and x <× 〈iℓ, n − iℓ−1〉. But then,

wn 6≤st v since letter 〈iℓ, n− iℓ〉 isn’t smaller than any letter in v.

6.3 Finite Sequences on a Circle

Consider a WQO (X,≤), and define an equivalence relation ∼cj on X∗ as follows:

u ∼cj v iff there exist w, t such that u = wt and v = tw. One can imagine an

equivalence class of ∼cj as a word written on an (oriented) circle instead of a line. We
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can now define a notion of subwords under conjugacy via ≤cj
def
= ∼cj ◦ ≤∗, which

is exactly the relation denoted �c in [19, p.49]. We call the QO (X∗,≤cj) the con-

jugacy extension of the QO (X,≤). The conjugacy extension is a WQO-preserving

construction.

6.3.1 The Conjugacy Extension is Ideally Effective

Since ≤∗ ◦ ∼cj =∼cj ◦ ≤∗, the results from Section 4.2 apply to (X∗,≤cj). Notably,

assuming we can represent some set X of a WQO (X,≤) and the set Idl(X) of its

ideals, we know how to represent the elements of X∗ (as usual) and the set of the

ideals of (X∗,≤cj).

Theorem 6.3.1. With the above representations, the conjugacy extension is an ideally

effective construction. It is not polynomial-time in general. Given a polynomial-time

presentation of an ideally effective WQO (X,≤), we can compute an exponential-time

presentation of (X∗,≤cj).

Proof. Let (X,≤) be an ideally effective WQO. Then (X∗,≤∗) is ideally effective as

well. Therefore, in the light of Theorem 4.2.1, to prove that the conjugacy extension

is an ideally effective construction, it suffices to show that the functions ClI and ClF
defined in Section 4.2 are computable in this particular context. The fact that the con-

jugacy extension is not a polynomial-time construction follows from the complexity

lower bounds presented in Section 6.3.2. The last part of the theorem will be trivial

here.

Recall from Section 4.2 that in this context, ClI and ClF simply correspond to clo-

sure under∼cj. Notably, ClF(↑∗ w) = ↑cj w = ↑∗ w, where w denotes the equivalence

class of w ∈ X∗ under ∼cj. Here, the equivalence class of some w ∈ X∗ is given

by {c(i)(w) | 1 ≤ i ≤ |w|}, where c(i) designates the i-th iterate of the cycle opera-

tor c(w1 · · ·wn) = w2 · · ·wnw1, which corresponds to rotating the sequence i times.

Thus, the function ClF is computable in polynomial-time (linear-time if the data struc-

ture used to encode finite sequences allows to compute the cycle operator c in constant

time. However, for linked lists for instance, c has a quadratic cost).

The function ClI is similar: remember ideals of (X∗,≤∗) are finite sequences of

atoms, where atoms are either D∗ for some downward-closed set D of X , or I + ǫ, for

I some ideal of X . Then, given P = A1 · · ·Ak an ideal of (X∗,≤∗):

ClI(P ) = P =
k⋃

i=1

c(i)(P ) · e(Ai)

where e(D∗) = D∗ and e(I + ǫ) = ǫ, and c is here used as the cycle operator on the

set of sequences over atoms. The presence of the extra e(Ai) in the above expression

might become clearer when considering a simple example as P = a∗b∗. Indeed,

aabb ∈ P , thus abba ∈ ClI(P ).
Since the functions ClI and ClF are computable, by Theorem 4.2.1 and Theo-

rem 6.1.2, the conjugacy extension is ideally effective. More precisely, from a

polynomial-time presentation of (X,≤), we can compute an exponential-time presen-

tation of
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(X∗,≤∗) from which we can compute a presentation of (X∗,≤cj) using Theorem 4.2.1.

Moreover, since the functions ClI and ClF are computable in polynomial-time, the latter

presentation is exponential-time as well.

As in the case of the stuttering extension, we can be a little bit more precise,

and mention that we actually obtain polynomial-time procedures to decide the quasi-

ordering ≤cj (OD), inclusion on Idl(X∗,≤cj) (ID), and the principal ideal function

(PI). However, for the four remaining operations, i.e. (CF), (II), (CI) and (IF), we

provide in Section 6.3.2 matching exponential-time lower bounds. In particular, the

conjugacy extension is not a polynomial-time construction.

6.3.2 Complexity Lower Bounds

Exponential lower bounds for (X∗,≤cj) are obtained for the same families that were

used for (X∗,≤∗).

(CF): Filters (for≤∗) of sequences over a finite alphabet can be complemented in poly-

nomial time, hence, so can filters for ≤cj (ClF is computable in polynomial-

time). Consider, as in the case of the Higman quasi-ordering, the finite order-

ing (X,≤) consisting of three element 0, 1 and 1′ such that 0 ≤ 1, 1′. Since

↑cj 0n+1 = ↑∗ 0n+1, X∗ r ↑cj 0n+1 =
⋃

u∈(1+1′)n ↑cj u. Moreover, given two

sequences u,v ∈ X∗ of the same length, u ≤cj v iff u ∼cj v. Thus, the

canonical ideal decomposition ofX∗r0n+1 is obtained by removing equivalent

elements in the expression above. However, there are at most n sequences in

the equivalence class of some sequence u of length n. Thus, the canonical ideal

decomposition of the downward-closed set above has at least 2n/n maximal el-

ements.

(IF): In a similar manner, since ↑cj an = ↑∗ an and ↑cj bn = ↑∗ bn, the canonical filter

decomposition of ↑cj an ∩ ↑cj bn has exponentially many minimal elements.

(CI): Here, we again consider the same example as in Section 6.1: complementing the

family of ideals ↓cj(ab)n.

Let m ∈ N and n = 5m − 1. Subsequently, we exhibit a family F elements of

↓cj(ab)n such that at least exponentially many (in m, and thus in n) members of

F are minimal in ↓cj(ab)n.

Define the family F as the family of sequences u = ak1bk
′
1ak2 · · · akmbk

′
m such

that for all i, ki ≥ 2, k′i ≥ 2 and
∑m

i=1 ki + k′i = |u| = n+m+ 1.

Elements of F are in X∗ r ↓cj(ab)n. Indeed, for p, q ∈ N, apbq ≤cj (ab)
p+q−1

but apbq 6≤cj (ab)
p+q−2. Thus, for u ∈ F , u ≤cj (ab)

∑m
i=1 ki+k′

i−m = (ab)n+1

but u 6≤cj (ab)n. It follows that all elements from F are minimal for ≤cj in

X∗ r ↓cj(ab)n (removing a symbol in u ∈ F would entail u ≤cj (ab)
n).

Moreover, members of F have the same length, hence they are either equivalent

under ∼cj or incomparable with respect to ≤cj. Since equivalence classes are

of linear size in the length of the sequence, and the length of the sequences
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described above are linear in n, it suffices to show that F has exponentially

many elements to conclude.

Observe that we can assign either (2, 3) or (3, 2) to the first m− 1 pairs (ki, k
′
i),

and use the last pair to make the sum equal to n+1+m. Indeed,
∑m

i=1 ki+k
′
i =

5(m − 1) + km + k′m = n − 4 + km + k′m. Therefore, it suffices to chose

km + k′m = 4+m+1, which is always possible. This proves that F has at least

2m−1 elements, among which at least 2m−1

n+m+1 are minimal in ↓cj(ab)n.

(II): Again, the example from Section 6.1 still witnesses an exponential blow-up. We

have:

D = ↓cj(aba)n ∩ ↓cj(bab)n

= ↓∗((aba)n ∪ (baa)n ∪ (aab)n) ∩ ↓∗((bab)n ∪ (abb)n ∪ (bba)n)

We know the decomposition of (aba)n ∩ (bab)n already contains exponentially

many maximal sequences (see Section 6.1). These sequences are still maximal

in D, since all sequences in D have length bounded by 2n. Moreover, since all

these maximal sequences have same length 2n, the family remains exponential

when quotiented by ∼cj.
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Chapter 7

Finite Multisets over WQOs

Given a WQO (X,≤), we consider the set X⊛ of finite multisets over X . Intuitively,

multisets are sets where an element might occur multiple times. Formally, a multiset

M ∈ X⊛ is a function from X to N: M(x) denotes the number of occurrences of x in

M . The support of a multiset M denoted Supp(M) is the set {x ∈ X | M(x) 6= 0}.
A multiset is said to be finite if its support is.

A natural algorithmic representation for these objects are lists of elements of X ,

but keeping in mind that a permutation of a list represents the same multiset. Formally,

this means that X⊛ is the quotient of X∗ by the equivalence relation ∼ defined for all

u,v ∈ X∗ by u ∼ v iff the sequence u can be obtained by permuting the symbols in

v, i.e. formally if u = u1 · · ·un and v = v1 · · · vm,

u ∼ v
def⇔ n = m ∧ ∃σ ∈ Sn. ∀i ∈ [n]. ui = vσ(i)

where Sn denotes the permutation group over [n]. In the rest of this section, we will

use u to denote the closure under ∼ of some U ⊆ X∗. For single words such as

u ∈ X∗, we will denote the equivalence class of u as {|u|}. Finite multisets are

equivalence classes of sequences under ∼, and will be represented by any member

of the class. For instance, if X = {a, b, c} is a finite alphabet, M = {|aac|} is the

multiset such that M(a) = 2, M(c) = 1 and M(b) = 0. Its other representations are

M = {|aca|} = {|caa|}. Sometimes, it will be more convenient to use the functional

point of view, and we will define some multisetM by providing valuesM(x) for every

x ∈ X . It is necessary to check that multisets defined in this fashion are finite.

Below we introduce notations for several natural operations, in particular general-

izations of set-theoretic operations:

• Multiset union: (M1+M2)(x) =M1(x)+M2(x). It is clear from that definition

why we denote this operation with the symbol +, but keep in mind that this

operation simply is the quotiented version of sequence concatenation, that is

{|uv|} = {|u · v|} = {|u|} + {|v|} . As in the case of sequences, we lift this

operation to set of multisets. Recall that if U ,V are sets of sequences, U ·V =
{u · v | u ∈ U ,v ∈ V } . Similarly, given S,T sets of multisets, we note

S ⊕ T = {M + N | M ∈ S, N ∈ T }. In other words, U · V = U ⊕ V .
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We chose the notation ⊕ instead of overloading the symbol + in order to avoid

possible confusion with set union.

• Multiset difference: (M1 −M2)(x) = max(0,M1(x)−M2(x)).

• Membership: x ∈M ⇔ x ∈ Supp(M)⇔M(x) > 0.

• Inclusion: M1 ⊆M2 ⇔ ∀x ∈ X. M1(x) ≤M2(x).

• Set intersection, or infemum: (M1 ∩M2)(x) = min(M1(x),M2(x)).

• Set union, or supremum: (M1 ∪M2)(x) = max(M1(x),M2(x)).

• Cardinality: |M | =∑x∈X M(x), or if w ∈ X∗ is a member of the equivalence

class M , |M | = |{|w|}| = |w|. We will thus often refer to |M | as the length of

M , or its size.

• Restriction: given Y ⊆ X , the restriction of M seen as a function to the domain

Y is defined by:

M|Y (x) =

{
M(x) if x ∈ Y

0 otherwise

• Set Difference: we will write M r Y for M|XrY

We will denote the empty multiset, i.e. the only multiset of empty support, by ∅.

7.1 Multisets under the Embedding Quasi-Ordering

Since X⊛ is the quotient of X∗ under ∼, it is natural to quasi-order it with ≤∗ ◦
∼. We denote by ≤emb this quasi-ordering on X⊛ and immediately observe that the

assumption of Section 4.2 is satisfied: ≤∗ ◦ ∼ = ∼ ◦ ≤∗.

In this particular case, we can also defined ≤emb directly by:

{|x1 · · ·xn|} ≤emb {|y1 · · · ym|} def⇔ ∃f : [n]→ [m] injective s.t. ∀i ∈ [n], xi ≤ yf(i)

As in the case of words, a function f that satisfies the right-hand side of the above

equivalence is said to be a witness of {|x1 · · ·xn|} ≤emb {|y1 · · · ym|}.
We now study the ideal effectiveness of the construction that maps a QO (X,≤) to

the QO (X⊛,≤emb), relying on Section 4.2.

7.1.1 The Finite Multiset Extension with Embedding is Ideally Ef-

fective

Theorem 7.1.1. With the generic representations introduced in Section 4.2, the fi-

nite multiset extension with embedding is an ideally effective construction. It is not

polynomial-time in general. Given a polynomial-time presentation of an ideally effec-

tive WQO (X,≤), we can compute an exponential-time presentation of (X⊛,≤emb).
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Proof. Let (X,≤) be an ideally effective WQO. Then (X∗,≤∗) is ideally effective

as well. Therefore, in the light of Theorem 4.2.1, to prove that the finite multiset

extension with embedding is an ideally effective construction, it suffices to show that

the functions ClI and ClF introduced in Section 4.2 are computable in this particular

context. The fact that this extension is not a polynomial-time construction follows from

the complexity lower bounds presented in Section 7.1.3. To prove the last part of the

theorem, i.e. that we can compute an exponential-time presentation of (X⊛,≤emb)
when (X,≤) is a polynomial-time ideally effective WQO, we rely on Lemma 4.1.3.

Here, the functions ClI and ClF are defined as:

ClI : Idl(X∗,≤∗) → Down(X∗,≤∗)
P 7→ P

ClF : (X∗,≤∗) → Up(X∗,≤∗)
u 7→ ↑∗ u

where, as before, U is the closure under ∼ of U ⊆ X∗. When u is a single sequence,

u is the equivalence class of u under ∼. Although we have introduced the notation

{|u|} for this equivalence class, we rather make the distinction between {|u|} ∈ X⊛ as

an element of X⊛ and u ⊆ X∗ as a subset of X∗.

According to the definition of∼, the equivalence class of a finite sequence u ∈ X∗

consists of all the possible permutations of u, that is:

x1 · · ·xn =
⋃

σ∈Sn

xσ(1) · · ·xσ(n)

Therefore, ClF(x1 · · ·xn) =
⋃

σ∈Sn
↑∗ xσ(1) · · ·xσ(n) is computable.

For the function ClI, remember ideals of (X∗,≤∗) are finite sequences of atoms,

where atoms are either D∗ for some downward-closed set D of X , or I+ ǫ, for I some

ideal ofX . Observe that the atoms are already closed under∼: for anyD ∈ Down(X)
and I ∈ Idl(X), D∗ = D∗ and I + ǫ = I + ǫ. Moreover, given U ,V ⊆ X∗

set of sequences, U · V = V ·U (in other words, the operator ⊕ introduced at the

beginning of this chapter is commutative). It follows that given n atoms A1, . . . , An,

and any permutation σ ∈ Sn, we have A1 · · ·An = Aσ(1) · · ·Aσ(n). Finally, we know

that given D ∈ Down(X), D∗ = D∗ · D∗. Combining the two previous equations,

we get that for any sequence of atoms A1, . . . , An and any downward-closed set D,

D∗ ·A1 ·A2 · · ·An = D∗ ·A1 ·D∗ ·A2 · · ·D∗ ·An .

Let P = A1 · · ·An an ideal of (X∗,≤∗), we define the downward-closed set of X

D
def
=
⋃{

E ∈ Down(X)
∣
∣ ∃i ∈ {1, · · · , n} : E∗ = Ai

}
.

Moreover, define 1 ≤ i1 < i2 < · · · < ik ≤ n the maximal subsequence of 1, . . . , n
such that for all j, Aij is an atom of the form I + ǫ for some I ∈ Idl(X). In particular,

for every i ∈ [n] such that for all j ∈ [k], i 6= ij , the atom Ai is of the form E∗ for

some E ∈ Down(X). Using the equations established before, we conclude that for

every σ ∈ Sk,

P = D∗Aσ(1)D∗ · · ·D∗Aσ(k)D∗
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and thus,

P =
⋃

σ∈Sk

D∗Aσ(1)D∗ · · ·D∗Aσ(k)D∗

=
⋃

σ∈Sk

D∗Aσ(1)D∗ · · ·D∗Aσ(k)D∗

Moreover, it is not difficult to see that
⋃

σ∈Sk
D∗Aσ(1)D

∗ · · ·D∗Aσ(k)D
∗ is closed

under ∼, which finally proves that:

ClI(P ) =
⋃

σ∈Sk

D∗Aσ(1)D
∗ · · ·D∗Aσ(k)D

∗

In conclusion, the functions ClI and ClF are computable, hence (X⊛,≤emb) is

an ideally effective WQO and the finite multiset extension with embedding is ideally

effective.

However, the algorithms implicitly described above to compute the functions ClI
and ClF run in exponential-time, since they enumerate all permutations over a set of

linear size. Assuming (X,≤) is a polynomial-time Since the procedures of the presen-

tation of (X⊛,≤emb) provided by Theorem 4.2.1 compose these functions ClI and ClF
with the procedures from the exponential-time ideally effective WQO (X∗,≤∗), the

naive upper bound for these procedures on multisets is doubly-exponential. To prove

that (X⊛,≤emb) is an exponential-time WQO, we apply Lemma 4.1.3. The verifica-

tion of the hypothesis of the lemma are immediate.

As in the case of the stuttering extension, we now provide a complete complexity

analysis. Over the two next subsections, we provide for each of the seven operations

of an ideally effective WQO either a polynomial-time algorithm or an exponential-

time lower bound. The fact that the finite multiset extension with embedding is not a

polynomial-time construction follows from any of those lower bounds.

Moreover, since finite multisets are an important structure in computer science, we

also provide in the next subsections a better representation of ideals of (X⊛,≤emb)
and explicit procedures for the seven operations, that is procedures that do not rely on

the composition of two abstract constructions.

7.1.2 Better Complexity Upper Bounds

Deciding The Quasi-Ordering ≤emb

A convenient characterization of the quasi-ordering≤emb is obtained using Hall’s Mar-

riage Theorem. Below, we restate Hall’s Theorem. It can be found in any textbook

about graph theory.

Theorem 7.1.2 (Hall). LetG = (V1⊔V2, E) be a finite bipartite graph. E contains the

graph of an injection from V1 to V2 if and only if for every W ⊆ V1, |W | ≤ |NG(W )|.
Here we write NG(W ) for the neighborhood of W : NG(W ) = {y | ∃x ∈W. (x, y) ∈
E}.

Here is how this theorem applies to ≤emb:
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Proposition 7.1.3. Let (X,≤) be a WQO. Let M,N be two finite multisets over X .

N ≤emb M iff ∀S ⊆ N. |S| ≤ |M| ↑Supp(S)|

Proof. Write N = {|x1 · · ·xn|} and M = {|y1, . . . , ym|}. Define the bipartite graph

G = ([n] ⊔ [m], E) where (i, j) ∈ E iff xi ≤ yj . This is the bipartite graph with

elements of N in one bag, elements of M in the other bag, and elements in N are

linked to elements in M that are greater. Then

N ≤emb M iff there is an injection f : [n]→ [m] such that ∀i ∈ [n]. xi ≤ yf(i)
iff there is an injection f : [n]→ [m] such that ∀i ∈ [n]. (i, f(i)) ∈ E
iff E contains the graph of an injection

iff ∀W ⊆ [n]. |W | ≤ |NG(W )|

the last equivalence being by Theorem 7.1.2. Finally, a subset W of [n] defines a

multiset S ⊆ N andNG(W ) represents exactly the sub-multiset of elements ofM that

are greater than some elements of S, i.e. M| ↑Supp(S).

From this characterization, we deduce a polynomial-time procedure to decide≤emb,

assuming (X,≤) is ideally effective.

Corollary 7.1.4. (OD): Let (X,≤) be a QO such that X has a representation that

makes ≤ decidable. Then, the quasi-ordering ≤emb over X⊛ is decidable. If ≤ can

furthermore be decided in polynomial-time, then ≤emb can be decided in polynomial-

time.

Proof. In a graph G = (V,E), a matching is a subset S of E such that all the edges of

S have distinct ending points, that is no vertex is an ending point of two distinct edges

in S. The injectivity condition in our statement of Hall’s Theorem guarantees that the

set of edges S = {(x, f(x)) | x ∈ V1} is a matching. The usual formulation of Hall’s

Theorem gives a necessary and sufficient condition for the existence of a matching that

covers V1.

Given multisets N and M represented as elements of X∗ (cf. beginning of this

chapter), consider the bipartite graphG defined in the proof of Proposition 7.1.3. When

≤ is decidable (on X), this graph is clearly computable using a quadratic number

of call to a decision procedure for ≤. Therefore, if the decision procedure runs in

polynomial-time, G is computable in polynomial-time. Besides, there are polynomial-

time algorithms to compute the maximum size of a matching in a bipartite graph (see

Ford-Fulkerson algorithm, or Hopcroft-Karp algorithm). Thus, the relation ≤emb can

be decided: it suffices to compute the maximal size of a matching inG and test whether

it is equal to |N |. This last part runs in polynomial-time when G is of polynomial size

in |M |+ |N |, notably when ≤ can be decided in polynomial-time.

The Ideals of (X⊛,≤emb)

Let (X,≤) be a WQO.

Following the representation chosen in Section 4.2, we have represented the ide-

als of (X⊛,≤emb) as the closure under ∼ of the ideals of (X∗,≤∗). As we have
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shown in the proof of Theorem 7.1.1, there are potentially exponentially many ideals

of (X∗,≤∗) that share a same closure under ∼. Indeed, recall that for any sequence of

atoms A1, . . . , An and any σ ∈ Sn, A1 · · ·An = Aσ(1) · · ·Aσ(n).

We are going to define a canonical representation for ideals of (X⊛,≤emb) which

is furthermore computable from any other representation when (X,≤) is ideally effec-

tive. This canonical representation will notably allow us to design an efficient inclusion

test for ideals. Recall that the inclusion test provided by the proof of Theorem 7.1.1

works as follows: given two ideals P ,Q ∈ Idl(X∗,≤∗), we check whether P ⊆ Q

by checking whether P ⊆ ClI(Q), and we have seen that in general, the function ClI is

costly. Our canonical representation will allow to test for inclusion without using ClI.
Let P be an ideal of (X⊛,≤emb), where P = A1 · · ·An is some ideal of (X∗,≤∗).

P = A1 · · ·An

=

n⊕

i=1

Ai by definition of ⊕

=
⊕

1≤i≤n
Ai=E∗

E∗ ⊕
⊕

1≤i≤n
Ai=I+ǫ

(I + ǫ)

This last step consists in grouping atoms per kind, as we did in the proof of Theo-

rem 7.1.1. Recall that the atoms of the form E∗ for E ∈ Down(X) are closed under

∼, and thus E∗ = E∗. However, as the notation ⊕ suggests, we want to stress that we

are in the world of multisets (X⊛ = X∗/ ∼) and not of finite sequences. Therefore,

we rather write E∗ = E⊛.

As before, we introduce D to be the union of subsets E ∈ Down(X) such that E∗

is an atom of P , so that
⊕

1≤i≤n
Ai=E∗

E⊛ = D⊛.

Now, given a finite multiset M ∈ X⊛ such that M ∈ P , by definition of ⊕, there

exist M1,M2 ∈ X⊛ such that M =M1 +M2, M1 ∈ D⊛ and

M2 ∈
⊕

1≤i≤n
Ai=I+ǫ

(I + ǫ).(7.1)

As before, let Ai1 , . . . , Aik the atoms of P of the form I + ǫ for I ∈ Idl(X), and

more precisely, write Aik = Iik + ǫ. Moreover, write M2 = {|x1 . . . xp|} for some

p ∈ N. Equation 7.1 reformulates as {|x1 . . . xp|} ∈
⊕k

j=1 Iij + epsilon. Then, a little

combinatorics shows:

{|x1 · · ·xp|} ∈
k⊕

j=1

(Iij + ǫ) iff

∃f : [p]→ [m] injective s.t.∀i ∈ [p]. xi ∈ If(i)
Note that this last expression is very similar to the definition ≤emb, but with ∈ used

instead of ≤. This motivates the following notation:

{|x1 · · ·xp|} ∈emb {|I1 · · · Im|} def⇔ ∃f : [p]→ [m] injective s.t.∀i ∈ [p]. xi ∈ If(i)
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Note that the right-hand side is a finite multiset of ideals of X . Denoting

B = {Ii1 · · · Iik} ∈ Idl(X)⊛ the multisets of all ideals Iij that appear in P (with

multiplicity), we have proved that P = ↓∈ B ⊕ D⊛, where as expected, ↓∈ B =
{M ∈ X⊛ |M ∈emb B}.

Theorem 7.1.5. Let (X,≤) be a WQO. Then:

Idl(X⊛,≤emb) = {↓∈ B ⊕D⊛ | B ∈ Idl(X)⊛, D ∈ Down(X)}

where ↓∈ B = {M ∈ X⊛ | M ∈emb B} and ∈emb is defined as ≤emb, but using ∈
instead of ≤.

Before proving this theorem, we would like to present a convenient characteri-

zation of ↓∈ B ⊕ D⊛ that will be constantly used throughout this section. Given

B ∈ Idl(X)⊛ a multiset of ideals of X and D ∈ Down(X) a downward-closed

set of X:

↓∈ B ⊕D⊛ = {M1 +M2 |M1 ∈emb B ∧ M2 ∈ D⊛}
= {M |M rD ∈emb B}

Indeed, if M is such that M rD ∈emb B, then define M1 = M rD and M2 =
M|D to satisfy M = M1 + M2 ∈ ↓∈ B ⊕ D⊛. For the other direction, for any

decomposition M = M1 +M2 satisfying M1 ∈emb B and M2 ∈ D⊛, M2 must be a

sub-multiset of M|D, and thus M rD ⊆M1. It is thus obvious that M rD ∈emb B.

We are now ready to prove Theorem 7.1.5.

Proof. We know from Section 4.2 that ideals of (X⊛,≤emb) are exactly the subsets P

for P ∈ Idl(X∗,≤∗). We have shown above how for any ideal P ∈ Idl(X∗,≤∗), P is

of the desired form. Conversely, observe that given D ∈ Down(X) and {|I1 · · · Ik|} ∈
Idl(X)⊛, we have ↓∈ B ⊕D⊛ = (I1 + ǫ) · · · (Ik + ǫ) ·D∗.

Alternatively, we can also check “by hand” that ↓∈ B⊕D⊛ is an ideal of (X⊛,≤emb):

• Downward-closed: letM ∈ ↓∈ B⊕D⊛, andN ≤emb M . SinceD is downward-

closed, N r D ≤emb M r D (a witness can be obtained by restricting a

witness for N ≤emb M ). Moreover, composing the embeddings witnessing

N r D ≤emb M r D and M r D ∈emb B, we obtain N r D ∈emb B

(elements of B are downward-closed); hence N ∈ ↓∈ B ⊕D⊛.

• Directed: let M,N ∈ ↓∈ B ⊕ D⊛. Write B = {|I1 · · · Ik|}. Define P =
M|D +N|D + {|z1 · · · zk|} where for all i ∈ [k], zi is greater than every element

of M and N that belong to Ii. Such an element zi exists since Ii is directed, and

M and N are finite. Obviously, P ∈ ↓∈ B ⊕D⊛ and M,N ≤emb P .

Observe that this representation of ideals is not unique: for instance with X = N,

↓∈{| ↓ 3 · ↓ 1|} ⊕ (↓ 2)⊛ = ↓∈{| ↓ 3|} ⊕ (↓ 2)⊛. This form of ideals of (X⊛,≤emb) is

not yet canonical. But already for ideals of this form, we get an efficient inclusion test

(cf. Corollary 7.1.7).
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Proposition 7.1.6. Let (X,≤) be a WQO. Let B1,B2 ∈ Idl(X)⊛ and D1, D2 ∈
Down(X).

↓∈ B1 ⊕D⊛

1 ⊆ ↓∈ B2 ⊕D⊛

2 iff D1 ⊆ D2 and B1 rDown(D2) ⊆emb B2

Proof. Write B = B1 r Down(D2) = {|I1 · · · In · ↓ y1 · · · ↓ ym|}, where I1, . . . , In
are limit ideals (i.e. those that are not principal), and y1, . . . , ym ∈ X .

(⇒) For any x ∈ D1, the multiset with |B2| + 1 copies of x is in ↓∈ B1 ⊕ D⊛

1 ,

hence it must be in ↓∈ B2 ⊕D⊛

2 . However M ∈emb B2 implies |M | ≤ |B2|, thus x
must be in D2, proving D1 ⊆ D2.

If n = 0, then {|y1 · · · ym|} ∈ ↓∈ B1 ⊕ D⊛

1 ⊆ ↓∈ B2 ⊕ D⊛

2 with yi /∈ D2 by

definition, entailing {|y1 · · · ym|} ∈emb B2. This proves B ⊆emb B2.

Otherwise, n 6= 0 and the set A = {{|x1 · · ·xn · y1 · · · ym|} | ∀i. xi ∈ Ii r D2}
is infinite, included in ↓∈ B1 ⊕ D⊛

1 ⊆ ↓∈ B2 ⊕ D⊛

2 and the only way to have A ⊆
↓∈ B2 ⊕D⊛

2 is if ∀M ∈ A, M ∈emb B2. Now consider the set of embeddings from

[n + m] to [|B2|], it is finite, hence infinitely many memberships are witnessed by a

same embedding f . It is easy to see that f witnesses B ≤emb B2.

(⇐) Let M ∈ ↓∈ B1⊕D⊛

1 . Since D1 ⊆ D2, M rD2 ≤emb M rD1. Moreover,

M rD1 ∈emb B1, and therefore M rD2 ∈emb B, by definition of B. We conclude

M rD2 ∈emb B2.

Corollary 7.1.7. If (X,≤) is a polynomial-time ideally effective WQO, then inclusion

of ideals of (X⊛,≤emb) is decidable in polynomial-time.

Proof. If (X,≤) is a polynomial-time WQO, then we can compare downward-closed

sets of (X,≤) in polynomial-time. Moreover, Corollary 7.1.4 applied to the QO

(Idl(X),⊆) entails that ⊆emb can be tested in polynomial-time.

Besides, given P an ideal of (X∗,≤∗), we can compute in polynomial-time D
and B such that P = ↓∈ B ⊕ D⊛, following the implicit procedure described be-

fore Theorem 7.1.5. Then, the right-hand side of Proposition 7.1.6 can be tested in

polynomial-time.

Although we have just seen that rewriting ideals of (X⊛,≤emb) under the form

↓∈ B ⊕D⊛ is enough to get an efficient inclusion test, it is not difficult from there to

get an actual canonical form.

Definition 7.1.8. Let (X,≤) be a WQO. Given B ∈ Idl(X)⊛ and D ∈ Down(X),
we say that the pair (B, D) is reduced if for every I ∈ B, I 6⊆ D.

Proposition 7.1.9. Let (X,≤) be a WQO and I be an ideal of (X⊛,≤emb). Then

there exist a unique B ∈ Idl(X)⊛ and a unique D ∈ Down(X) such that (B, D) is

reduced and I = ↓∈ B⊕D⊛. We say that (B, D) is the canonical representation of I .

When (X,≤) is an (polynomial-time) ideally effective WQO, this unique reduced pair

is computable (in polynomial-time) from any other pair (B′, D′) such that ↓∈ B′ ⊕
D′⊛ = I .

Proof. Uniqueness: if ↓∈ B1 ⊕D⊛

1 = ↓∈ B2 ⊕D⊛

2 and that both representations are

canonical, then by Proposition 7.1.6, D1 = D2, and thus ∀I ∈ Bi, I 6⊆ Di. Therefore,

the second condition directly gives B1 ⊆emb B2 ⊆emb B1, which implies B1 = B2.
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Computability: If (X,≤) is effective, inclusion is decidable, thus one can compute

the canonical representation of an ideal from any other representation by testing for

every I ∈ Supp(B) whether I ⊆ D. If it is the case, removing all copies of I from B

does not change ↓∈ B ⊕D⊛.

Of course, ideals and downward-closed sets ofX might not have unique encodings,

thus canonical representations might also have several encodings at the lowest level.

7.1.3 Explicit Expressions and Complexity Lower Bounds

In this section, we explicitly describe procedures to complement filters and ideals, and

intersect filters and ideals, without relying on Section 4.2. For each of these four opera-

tions, we also provide exponential-time lower bounds. Observe that for a finite alphabet

A, (A⊛,≤emb) is isomorphic to (N|A|,≤×). Thus, we have to turn to more complex

WQOs to provide exponential lower bounds.

To increase readability of the proposition of this section, we will use the symbol ×
to denote iteration of multiset addition, i.e. n ×M = M + · · ·+M

︸ ︷︷ ︸

n times

. We also extend

the definitions of ∈emb and ↓∈ to multisets B ∈ Down(X)⊛ of downward-closed sets

of X (instead of ideals). In this case, ↓∈ B ⊕D⊛ is not an ideal of (X⊛,≤emb), but

it is downward-closed. Besides, if B = {|D1, . . . , Dm|} and for all i, Di =
⋃ni

j=1 Ii,j ,

then

↓∈ B ⊕D⊛ =
⋃

j1∈[n1]
···

jm∈[nm]

↓∈{|I1,j1 · · · Im,jm |} ⊕D⊛

Thus, when a downward-closed set D of (X⊛,≤emb) is given as a union of such sets

↓∈ B ⊕ D⊛, it is possible to compute the actual ideal decomposition of D. Note

however that the ideal decomposition of ↓∈ B ⊕ D⊛ in this setting is polynomial in

|Di| but exponential in m.

Complementing Filters (CF)

Proposition 7.1.10. Let M be a multiset over X ,

X⊛ r ↑M =
⋃

S⊆Supp(M)
S 6=∅

↓∈{| X · · ·X
︸ ︷︷ ︸

|M|S |−1 times

|} ⊕ [X r ↑S]⊛

The above expression is computable, using (XI) and (CF) for X . However, it re-

quires exponential-time to enumerate all the subsets of M . This enumeration is shown

to be unavoidable in the next proposition.

Note that X may not be an ideal, in which case the actual ideal decomposition is

obtained by distributing the ideal decomposition of X as described at the beginning of

this subsection.
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Proof. For T ⊆M , define the downward-closed set

D(T ) = ↓∈{| X · · ·X︸ ︷︷ ︸

|T |−1 times

|} ⊕ [X r ↑Supp(T )]⊛

N ∈ X⊛ r ↑M iff M 6≤emb N

iff ∃T ⊆M. |T | > |N| ↑Supp(T )| (negating Proposition 7.1.3)

iff
∨

T⊆M
T 6=∅

|N| ↑Supp(T )| ≤ |T | − 1

iff N ∈
⋃

T⊆M
T 6=∅

D(T )

Now for T ⊆M , let S = Supp(T ), it is obvious that T ⊆M|S and D(T ) ⊆D(M|S).
We can thus restrict the union above to the union described in the proposition.

Proposition 7.1.11. There exists an ideally effective WQO (X,≤) such that the expres-

sion provided in Proposition 7.1.10 is canonical. In particular, complementing filters

of (X⊛,≤emb) requires exponential-time.

Proof. Our goal is to provide a WQO X and an infinite family (Mn)n∈N such that for

any n ∈ N and any S, T ⊆ Mn, D(S) and D(T ) are incomparable (for inclusion),

provided S 6= T .

One can check that this is not the case for X = N. Indeed, as soon as M has at

least two ordered elements n1 ≤ n2, D({|n1|}) ⊆ D({|n1, n2|}). Since elements of N

are linearly-ordered, we can prove:

N⊛ r ↑M = ↓∈{| X · · ·X︸ ︷︷ ︸

|M |−1 times

|}]⊕ [↓min(M)− 1]⊛

We thus take X = N2 (which is an ideal), and define Mn = {|〈0, n〉〈1, n −
1〉 · · · 〈n, 0〉|}. Now let S and T be two distinct subsets of Mn, we show that D(S) 6⊆
D(T ).

• If |S| ≤ |T |, but S 6= T , there exists x ∈ Supp(T ) r Supp(S), and since

elements of Mn are pairwise incomparable, x /∈ ↑Supp(S). This proves that

∁ ↑Supp(S) 6⊆ ∁ ↑Supp(T ), and by Proposition 7.1.6, D(S) 6≤emb D(T ).

• If |S| > |T | then D(S) 6≤emb D(T ) since there are too many copies of X in

D(S).

Notice that we have actually proved that our expression for X⊛ r ↑M is canonical if

and only if M is an antichain.

73



Complementing Ideals (CI)

The procedure to complement ideals is very similar to the procedure to complement

filters:

Proposition 7.1.12. Given B ∈ (Idl(X,≤))⊛ and D ∈ Down(X,≤),

X⊛ r (↓∈ B ⊕D⊛) =
⋃

S⊆Supp(B)

↑{M | Supp(M) ⊆ US,B,D ∧ |M | = |B|S |+ 1}

where US,B,D = min(X r (D ∪⋃(Supp(B)r S))).

Concretely, minimal multisetsM ofX⊛r↓∈ B⊕D⊛ are multisets of size exactly

|B|S |+1 whose elements are among the minimal elements ofXr(D∪⋃(Supp(B)r
S)), for some S ⊆ Supp(B).

Proof. (⊆) Let M /∈ ↓∈ B ⊕ D⊛. That is to say, M r D 6∈emb B. Adapting

Proposition 7.1.3, the latter is equivalent to the existence of T ⊆ M r D such that

|B|I(T )| < |T |, where I(T ) = {I ∈ Idl(X) | I ∩ Supp(T ) 6= ∅} (understand I(T )
as the set of ideals that contain some element of T ). Let S = Supp(B) ∩ I(T ),
we show that T ∈ ↑{M | Supp(M) ⊆ US,B,D ∧ |M | = |B|S | + 1}. Indeed,

|T | ≥ |B|I(T )|+ 1 = |B|S |+ 1. Moreover, given x ∈ T , x /∈ D since T ⊆ M rD,

and x is not in any ideal I ∈ ⋃Supp(B) r S since by definition, if x ∈ I then

I ∈ I(T ). We just showed that Supp(T ) ⊆ X r (D ∪ ⋃Supp(B) r S). It is then

not difficult to build a multiset N ≤emb T that satisfies the desired conditions.

(⊇) Let M such that Supp(M) ⊆ US,B,D and |M | = |B|S | + 1} for some

S ⊆ Supp(B). First of all M =M rD. Besides, an injective mapping f from M to

B would define a submultiset of B of size |M | = |B|S | + 1. For cardinality reason,

there must be an element x ∈ M whose image f(x) = I is not in S. But it is then

impossible to have x ∈ f(x), and f cannot be a witness of an embedding M ∈emb B.

Therefore, M /∈ ↓∈ B ⊕D⊛.

The above procedure can obviously be implemented in exponential-time. Observe

that this is already unavoidable in the case of (X,≤) = (N2,≤×): consider Bn =
n × {| ↓〈1, 1〉|} and Dn = ↓〈0, 0〉. Indeed, it is immediate to check that any multiset

of size n + 1 whose elements are among 〈0, 1〉 and 〈1, 0〉 is a minimal element of

X⊛ r ↓∈ Bn ⊕D⊛
n . There are 2n such multisets.

Below we present an optimization of the above procedure from which it is simple to

derive a polynomial-time complexity implementation in the case of (X,≤) = (N,≤).

Proposition 7.1.13. Given B ∈ (Idl(X,≤))⊛ and D ∈ Down(X,≤),

X⊛ r ↓∈ B ⊕D⊛ =
⋃

S⊆Supp(B)

G(S) is connected

↑{M | Supp(M) ⊆ US,B,D ∧ |M | = |B|S |+ 1}

where G(S) = (S, E) and E = {(I, J) | I ∩ J r (D ∪⋃B r S) 6= ∅}

74



This proposition claims that it suffices to take the union over subsets S of Supp(B)
that induce a connected graph G(S). Now in the case of N, ideals of B can be sorted,

and it suffices to consider subsets S ⊆ Supp(B) that are convex in the following

sense: if I, J ∈ S and K ∈ B such that I ⊆ K ⊆ J , then K ∈ S as well. It

is obvious that subsets S that are not convex induce a non connected graph G(S).
Thus it suffices to take the union over convex subsets. Moreover, there are only a

quadratic (in |B|) number of convex subsets of Supp(B). Besides, since filters of

N have at most one minimal elements, the expression builds at most one multiset per

subset S ⊆ Supp(B). Therefore, N⊛ r ↓∈ B ⊕D⊛ is computable in quadratic-time.

Proof. Let S ⊆ Supp(B) and M such that Supp(M) ⊆ US,B,D and |M | = |B|S |+
1. We show that if G(S) is not connected then M is not minimal in X⊛r↓∈ B⊕D⊛.

First of all, Supp(M) ⊆ Xr(D∪⋃BrS). Besides, if there exists some x ∈M
such that x ∈ X r (D ∪ ⋃B), then {|x|} ≤emb M and {|x|} /∈ ↓∈ B ⊕ D⊛. This

implies that M is not minimal, except if |M | = 1, which would imply S = ∅∅∅, which

would imply G(S) is connected, which is a contradiction. We can now assume that

Supp(M) ⊆ ⋃S.

Take S1 ⊔ S2 a non-trivial partition of S such that S1 × S2 ∩ E = ∅, i.e. for all

(I, J) ∈ S1 × S2, I ∩ J r (D ∪ ⋃B r S) = ∅. Hence, for every x ∈ M , either

x ∈ ⋃S1 or x ∈ ⋃S2, the two options being mutually exclusive.

Define Mi = M|
⋃

Si
for i = 1, 2. In particular, M = M1 + M2. Moreover,

Mi ∈emb B implies Mi ∈emb B|Si
. It is thus impossible that both M1 and M2 belong

to ↓∈ B ⊕ D⊛: it would imply M = M1 + M2 ∈ ↓∈ B ⊕ D⊛. Without loss of

generality, assume M1 /∈ ↓∈ B ⊕ D⊛. The elements of M1 overall belong to only

m = |B|S1
| ideals of B. Thus, any submultiset N of M1 with m + 1 elements is

already not a member of ↓∈ B ⊕ D⊛, and since |S1| < |S|, such multisets N are

strictly smaller than M .

Intersecting Filters (IF) and Ideals (II)

We now present procedures to intersect filters and ideals of (X⊛,≤emb). To empha-

size the similarities between these two operations, we gather their description in a same

proposition. Remember Sn stands for the group of permutations over [n]. The occur-

rence of Sn in the next formulas is no surprise, since Sn is at the heart of the equiva-

lence relation ∼ from which multisets are built, and thus at the heart of functions ClF
and ClI. Yet, the two following formulas are less redundant than the expression one

would directly get applying Section 4.2.

Proposition 7.1.14. Given M,N ∈ X⊛, B ∈ Idl(X)⊛ and D ∈ Down(X):

(IF): Intersection of filters:

↑M ∩ ↑N = ↑
{

P +M2 +N2

∣
∣
∣
∣

M =M1 +M2, |N1| = |M1|
N = N1 +N2, P ∈M1 ∩̃N1

}
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where

{|x1 · · ·xk|} ∩̃ {|y1 · · · yk|} =
{{|z1 · · · zk|} | ∃σ ∈ Sk. ∀i ∈ [k]. zi ∈ min(↑xi ∩ ↑ yσ(i))}

(II): Intersection of ideals:

↓∈ B ⊕D⊛ ∩ ↓∈ C ⊕ E⊛ =
⋃

B=B1+B2
C=C1+C2

|B1|=|B2|

↓∈[B1 ∩̃C1 +B2 ⊓ E +C2 ⊓D]⊕ (D ∩ E)⊛

where {|I1 · · · Ik|} ∩̃ {|J1 · · · Jk|} =
⋃

σ∈Sk
{|(I1 ∩ Jσ(1)) · · · (Ik ∩ Jσ(k))|} and

{|I1 · · · Ik|} ⊓D = {|(I1 ∩D) · · · (Ik ∩D)|}

These expressions are computable in exponential-time (enumeration of n! and m!
permutations). Here again, it is unavoidable in general, which is proved thereafter in

Proposition 7.1.15.

Proof.

(IF): (⊇) It is immediate that every multiset P +M2 + N2 obtained as described in

the proposition embeds both M and N .

(⊆) Let Q ∈ ↑M ∩↑N . There exist decompositions Q = Q1+Q2+Q3+Q4,

M =M1 +M2 and N = N1 +N2 such that:

– |M1| = |N1| = |Q1| and M1 ≤emb Q1 and N1 ≤emb Q1

– |M2| = |Q2| and M2 ≤emb Q2

– |N2| = |Q3| and N2 ≤emb Q3

Indeed, fix two embeddings f and g witnessing M ≤emb Q and N ≤emb Q.

Then take Q1 to be the intersection of the images of f and g, while Q2 is what

remains of the image of f and Q3 what remains of the image of g. Finally, Q4 is

what is outside both those images.

Now, by the first condition, Q1 must be greater than some P ∈ M1 ∩̃ N1, and

thus P +M2 +N2 ≤emb Q1 +Q2 +Q3 ≤emb Q.

(II): (⊇) Given decompositions B = B1 + B2, C = C1 + C2 with |B1| = |C1|,
we show ↓∈[B1 ∩̃C1 +B2 ⊓E +C2 ⊓D]⊕ (D ∩E)⊛ ⊆ ↓∈ B ⊕D⊛ using

Proposition 7.1.6. The inclusion in ↓∈ C ⊕ E⊛ is analogous.

We have B1 ∩̃C1 ⊆emb B1 and B2 ⊓ E ⊆emb B2, thus

(B1 ∩̃C1 +B2 ⊓ E +C2 ⊓D)rDown(D) ⊆emb B1 ∩̃C1 +B2 ⊓ E
⊆emb B1 +B2 = B
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Moreover, D ∩ E ⊆ D.

(⊆): Let M ∈ ↓∈ B ⊕D⊛ ∩ ↓∈ C ⊕ E⊛. Define M1 =M r (D ∪ E), M2 =
M r (D∪ ∁E), M3 =M r (∁D∪E). Thus, M r (D∩E) =M1+M2+M3.

Moreover, M1 + M2 = M r D ∈emb B, hence we can decompose B in

B1+B2 such that M1 ∈emb B1, M2 ∈emb B2 and |M1| = |B1|. Respectively,

M1 +M3 = M r E ∈emb C and we define C1 and C2 similarly. Therefore,

|B1| = |M1| = |C1| and M1 ∈emb B1 ∩̃ C1. Moreover, Supp(M2) ⊆ E and

M2 ∈emb B2, thus M2 ∈emb (B2 ⊓ E). Similarly M3 ∈emb (C2 ⊓D), which

concludes the proof.

We now prove a lower bound matching the exponential upper bound given above.

We show that intersections of filters and ideals are already exponential in (N2⊛,≤emb).
As stated above, it is obviously polynomial in (A⊛,≤emb), if A is a finite alphabet. It

is also polynomial in (N⊛,≤emb), which will be proved in Proposition 7.1.16.

Proposition 7.1.15. Let (X,≤) = (N2,≤×) and n = 2m + 1 be an odd integer.

Define Mn = {|〈n − 1, 0〉 · 〈n − 2, 1〉 · · · 〈m,m〉|} =
∑m

i=0{|〈n − i − 1, i〉|} and

Nn = {|〈0, n− 1〉 · 〈1, n− 2〉 · · · 〈m,m〉|} =∑m

i=0{|〈i, n− i− 1〉|}. Then:

(IF): The upward-closed set ↑Mn ∩ ↑Nn has exponentially many (in n) minimal ele-

ments.

(II): The downward-closed set ↓Mn ∩ ↓Nn has exponentially many (in n) maximal

elements.

It follows that both these operations require exponential-time computations.

Proof. Recall from Section 5.3 that ↑〈a, b〉 ∩ ↑〈c, d〉 = ↑〈max(a, c),max(c, d)〉 and

↓〈a, b〉 ∩ ↓〈c, d〉 = ↓〈min(a, c),min(c, d)〉. Given σ a permutation of [0,m], define:

M↑
σ =

m∑

i=0

{|〈max(n− i− 1, σ(i)),max(i, n− σ(i)− 1)〉|}

M↓
σ =

m∑

i=0

{|〈min(n− i− 1, σ(i)),min(i, n− σ(i)− 1)〉|}

We now argue that multisetsM↑
σ are minimal elements of ↑Mn∩↑Nn andM↓

σ are

maximal elements of ↓Mn ∩ ↓Nn. This concludes the proof since these two families

are exponential in n.

The multisets M↑
σ are obviously members of ↑Mn ∩ ↑Nn. Assume they are not

minimal, then there exists a multiset P strictly smaller than some M↑
σ which is in

↑Mn∩↑Nn. There are two possibilities for P to be strictly smaller: either it is shorter,

i.e. |P | < |M↑
σ | = m + 1 but then Mn ≤emb P is impossible since |Mn| = m + 1.

Or P ≤emb M↑
σ − {|x|} + {|x − ej |} for some x ∈ M↑

σ and some j = 1, 2 where

e1 = 〈1, 0〉 and e2 = 〈0, 1〉. Without loss of generality, assume j = 0. Besides,

x = 〈max(n − i − 1, σ(i)),max(i, n − σ(i) − 1)〉 for some i ∈ [0,m]. Depending

on whether i ≥ n − σ(i) − 1 this will either violates Mn ≤emb P or Nn ≤emb P
considering the number of elements greater than max(i, n−σ(i)−1) inMn orNn.
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Proposition 7.1.16. There are polynomial-time procedures to intersect filters and ide-

als of (N⊛,≤emb).

Proof.

(IF): Observe that since (N,≤) is linear, multisets of N⊛ can be sorted. In particular,

if M = {|x1 · · ·xn|} and N = {|y1 · · · ym|} with x1 > x2 > · · · > xn and y1 >
y2 > · · · > ym and n < m then M ≤emb N if and only if ∀i ∈ [n]. xi ≤ yi.
Moreover, notice that if |M | ≤ |N |, then ↑M ∩ ↑N = ↑(M + (|N | − |M |) ×
{|0|})∩↑N , i.e. we can pad the shortest multiset with zeros. We can thus restrict

our attention to multisets of the same length.

Given M = {|x1 · · ·xn|} and N = {|y1 · · · yn|} with x1 > x2 > · · · > xn and

y1 > y2 > · · · > yn,

↑M ∩ ↑N = ↑{|max(x1, y1) · · ·max(xn, yn)|}

Indeed, if {|z1 · · · zp|} ∈ ↑M ∩ ↑N with z1 > z2 > · · · > zp, then using the

observation above, zi ≥ max(xi, zi) for i ∈ [n].

(II): Here also, ideals of N are linearly ordered on the one hand, and ideals can be

padded on the other hand. That is, we can restrict our attention to intersections

↓∈ B ⊕D⊛ ∩ ↓∈ C ⊕ E⊛ of ideals of the following shape:

• B = {|I1 · · · In|} with I1 ⊇ I2 ⊇ · · · ⊇ In,

• C = {|J1 · · · Jm|} with J1 ⊇ J2 ⊇ · · · ⊇ Jm,

• We can assume m = n: assume otherwise suppose without loss of gener-

ality that |B| < |C|. We distinguish two cases:

– Either D 6= ∅, in which case D is an ideal (all downward-closed sets

of N are ideals, except ∅), in which case B can be padded with copies

of D (cf. proof of Definition 7.1.8):

↓∈ B ⊕D⊛ = ↓∈[B + (|C| − |B|)× {|D|}]⊕D⊛

.

– Or D = ∅, in which case all multisets M ∈ ↓∈ B ⊕D⊛ have length

bounded by n = |B|. Thus

↓∈ B ⊕D⊛ ∩ ↓∈ C ⊕ E⊛ = ↓∈ B ⊕D⊛ ∩ (N≤n ∩ ↓∈ C ⊕ E⊛)

= ↓∈ B ⊕D⊛ ∩ ↓∈{|J1 · · · Jn|} ⊕ E⊛

where N≤n designates the set of multisets of length at most n of N.

Indeed, for a multiset of length bounded by n to be in ↓∈ C ⊕ E⊛,

only the n greatest ideals of C are relevant.

• For all I ∈ B, D ⊆ I: this is a weak form of the canonical form described

in Definition 7.1.8. Indeed, assuming canonical form for the ideal ↓∈ B ⊕
D⊛ would entail that for all I ∈ B, I 6⊆ D, i.e. D ( I . But because of the

previous step of padding, it might be the case that D ∈ B.

78



• Similarly, for all J ∈ C, E ⊆ J .

It is clear that from any two ideals I,J of (N⊛,≤emb) we can produce in

polynomial-time two ideals (I ′,J ′) that have the specific form described above,

and such that I ∩ J = I ′ ∩ J ′. Now, for ideals ↓∈ B ⊕ D⊛ and ↓∈ C ⊕ E⊛

satisfying the above conditions, we have:

↓∈ B ⊕D⊛ ∩ ↓∈ C ⊕ E⊛ = ↓∈{|(I1 ∩ J1) · · · (In ∩ Jn)|} ⊕ (D ∩ E)⊛

We prove this equation by induction on n. The base case is trivial since D⊛ ∩
E⊛ = (D ∩ E)⊛. For the inductive case, let x ∈ N and M ∈ N⊛ such that

x ≥ y for all y ∈ M , and let I ∈ Idl(N) and B ∈ Idl(N)⊛ such that I ⊇ K
for any K ∈ B, and let J ∈ Idl(N) and C ∈ Idl(N)⊛ such that J ⊇ K for any

K ∈ C. Finally, let D,E ∈ Down(N) and assume that |B| = |C|, that D ⊆ K
for any K ∈ B and that E ⊆ K for any K ∈ C. We have:

{|x|}+M ∈ ↓∈[{|I|}+B]⊕D⊛ ∩ ↓∈{|J |}+C ⊕ E⊛

⇔ x ∈ I ∩ J ∧M ∈ ↓∈ B ⊕D⊛ ∩ ↓∈ C ⊕ E⊛

Left to right implication follows from the fact I and J are greater than ideals

from B and C, and greater than D and E. Right to left implication holds since

x is greater than any elements of M . Now by induction hypothesis, M is in

↓∈{|(I1 ∩ J1) · · · (In ∩ Jn)|} ⊕ (D ∩ E)⊛, assuming B = {|I1 · · · In|} where

elements are sorted, and similarly for C. Thus this is equivalent to {|x|}+M ∈
↓∈{|(I ∩ J) · (I1 ∩ J1) · · · (In ∩ Jn)|} ⊕ (D ∩ E)⊛.

7.1.4 Related Work

The WQO (X⊛,≤emb) appears naturally to order configurations of some Petri Net

extensions. The structure of its ideals and its ideally effectiveness are used in [18] for a

forward algorithm to semi-decide reachability in timed Petri Nets, and in [27] to derive

tight complexity upper bounds of the coverability problem for ν-Petri Nets. In the first

case, (X,≤) is a finite alphabet, while in the second case it is (Nk,≤×).
Here also, these results have been generalized to Noetherian spaces in [13].

7.2 Multisets under the Manna-Dershowitz Ordering

Let (X,≤) be a WQO such that ≤ is antisymmetric. Such an ordering is often called

well partial-order, abbreviated WPO.

The multiset ordering N ≤ms M , on the set X⊛ of finite multisets over (X,≤
), has been introduced by Manna and Dershowitz in 1979 in the context of proving

termination for rewriting systems ([35]). It is also called domination ordering, or the

multiset extension of < (all terms would induce a risk of confusion with the quasi-

orderings of Section 7.1).

It is known that (X⊛,≤ms) is a linear ordering whenever (X,≤) is. More pre-

cisely, if (X,≤) is isomorphic to some ordinal α, then (X⊛,≤ms) is isomorphic to

ωα.
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Before we give the formal definition of ≤ms, let us introduce some notations. Op-

erations + and − on multisets introduced at the beginning of this chapter, do not act

as inverse, and in particular are not associative (as in the case of N). For instance

(A + B) − C 6= A + (B − C). Subsequently, we adopt the convention of a left-

association, i.e. we write A + B − C for (A + B) − C. With this convention for

instance, A+B − C = A− (C −B) + (B − C).

Definition 7.2.1. The multiset ordering is equivalently defined by one of the following

statements. The second formulation is the original definition, while the first one comes

from [36].

(Def 1) ∀x ∈ X. N(x) > M(x)⇒ (∃y > x. M(y) > N(y))

(Def 2) ∃S, T ∈ X⊛. S ⊆M ∧ N =M − S + T ∧ S dominates T
where a multiset S dominates another multiset T if ∀x ∈ T ∃y ∈ S. x < y,

see [35].

(Def 3) M −N dominates N −M

(Def 4) N = {|x1 · · ·xn|},M = {|y1 · · · ym|}, ∃f : [n]→ [m] :
∀i ∈ [n]. ((xi < yf(i)) ∨ (xi ≤ yf(i) ∧ ∀j 6= i. f(j) 6= f(i))).
Intuitively, N ≤ms M if N embeds in M as in the previous section, but we don’t

require that the embedding is injective when an element is mapped to a strictly

greater element.

Proof. Equivalence between the four definitions.

First observe that for any two multisets M and N , we have N =M − (M −N) +
(N −M) (with implicit left parenthesizing). Implication (3) ⇒ (2) directly follow

from this observation.

(1) ⇒ (3) Let M and N as in the first definition. Let x in N −M . Since 0 <
max(0, N(x)−M(x)), we have N(x) > M(x). According to the first definition, this

implies that there exists y > x with M(y) > N(y), which means y ∈ M − N . This

shows M −N dominates N −M .

(2)⇒ (1) Assume N =M − S + T with S ⊆M and S dominates T . Let x ∈ X
such that N(x) > M(x), that is M(x) − S(x) + T (x) > M(x), i.e. T (x) > S(x).
In particular, x ∈ T , hence there exists y ∈ S such that x < y. Take y maximal

in S with this property (S is finite), then T (y) = 0. Indeed, if not, there must be

z ∈ S with z > y, which contradicts the maximality of y. Now since T (y) = 0,

N(y) = M(y) − S(y) < M(y) since y ∈ S, which proves N ≤ms M for the first

definition.

(2)⇒ (4) Let N ≤ms M according to the second definition, there are S, T ∈ X⊛

such that S ⊆ M , N = M − S + T and S dominates T . That is, we can write N =
{|y1 · · · ym · t1 · · · tn|} and M = {|y1 · · · ym · s1 . . . sr|}. Define f : [m+n]→ [m+ r]

by f(i) =

{
i if i ≤ m
ǫi otherwise

, where ǫi for i ∈ [n] is such that ti < sǫi (it exists

by the domination hypothesis). It is obvious that f satisfies the requirements from the
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fourth definition, its restriction to [m] is injective, and its restriction to m + [n] is a

domination.

(4) ⇒ (2) Assume N = {|x1 · · ·xn|} ≤ms M = {|y1 · · · ym|}, and let f : [n] →
[m] be a function satisfying the requirements of the fourth definition. Define S =
{|yj | j /∈ Im(f) ∨ (∃i ∈ [n]. xi < yj = yf(i))|} and T = {|xi | xi < yf(i)|}. Then

obviously S ⊆ M . Moreover, M − S = {|yj | ∃i ∈ [n]. f(i) = j ∧ xi = yj |}, hence

N = M − S + T (indeed, every element in N is either equal to its image or strictly

smaller). Finally, S dominates T , proving that N ≤ms M according to the second

definition.

Note that we require (X,≤) to be a partial-order, and in this case, (X⊛,≤ms) is

a partial-order as well. From the fourth definition, it is obvious that ≤emb ⊆ ≤ms.

Hence, ≤ms is a WQO (when X is) and Section 4.1 applies. However function ClI
is not computable here (this is shown in Section 8.3.2). The reason is the same as in

Section 5.4: we cannot decide in general whether a given ideal is principal. Nonethe-

less, in this case, we can show that (X⊛,≤ms) is ideally effective, but of course, for

a different representation of ideals. Let us now define this representation of ideals.

By Proposition 4.1.1, Idl(X⊛,≤ms) = {↓≤ms
I | I ∈ Idl(X⊛,≤emb)} . This helps

proving the following proposition:

Proposition 7.2.2. Let (X,≤) be a WPO. Then,

Idl(X⊛,≤ms) = {↓msB +D⊛ | B ∈ X⊛, D ∈ Down(X)}

Warning: unlike in the previous section, here B is a multiset of elements of X , not

of ideals. Observe that ↓B +D⊛ = {M1 +M2 | M1 ≤ms B ∧M2 ∈ D⊛} = {M |
M rD ≤ms B}.

Proof. (⊇) We show that given B ∈ X⊛ and D ∈ Down(X), ↓B +D⊛ is an ideal.

• It is downward-closed: let N ≤ms M ∈ ↓B +D⊛. Obviously, this implies that

N rD ≤ms M rD and by assumption M rD ≤ms B. Thus, by transitivity,

N rD ≤ms B.

• It is directed: let M1,M2 ∈ ↓B + D⊛. Let N = B +M1|D +M2|D. Then

N ∈ ↓B +D⊛ and Mi ≤ms N .

(⊆) Let J ∈ Idl(X⊛,≤ms), J = ↓≤ms
I for some I ∈ Idl(X⊛,≤emb), and

I = ↓∈ C ⊕ E⊛ = {M | M r E ∈emb C} for some C ∈ Idl(X)⊛ and E ∈
Down(X). Write C as {|I1 · · · Ik · ↓x1 · · · ↓xm|} where the Ii’s are limit ideals (i.e.

not principal). Define B = {|x1 · · ·xm|} and D = E ∪ I1 ∪ · · · ∪ Ik. We show that

J = ↓≤ms
I = ↓B +D⊛.

• (⊆) It is simple to see that I ⊆ ↓B + D⊛ and since ↓B + D⊛ is downward-

closed, we have one inclusion.
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• (⊇) To show the second inclusion, let M ∈ ↓B + D⊛. Since each ideal Ii is

directed and unbounded, while M is finite, it is possible to pick in each Ii an

element strictly greater than any of the elements in M|Ii . Putting these elements

together, we define a multiset M ′ ∈emb {|I1 · · · Ik|}. Now the following holds:

M ≤ms B+M ′+M|E (cf. definition 4 for instance), and sinceB+M ′ ∈emb C,

it proves that M ∈ ↓≤ms
I .

According to this proposition, we can represent ideals of (X⊛,≤ms) as pairs

(B,D) ∈ X⊛ ×Down(X), the semantic being the set ↓msB +D⊛. Elements of X⊛

are represented as in the previous section. We can now state the main result of this

section.

Theorem 7.2.3. With aforementioned representations, the finite multiset extension with

domination ordering is an ideally effective construction. It is not polynomial-time in

general. Given a polynomial-time presentation of an ideally effective WQO (X,≤), we

can compute an exponential-time presentation of (X⊛,≤ms).

Let (X,≤) designates an ideally effective WPO. The rest of this section is dedi-

cated to the proof of the theorem. Here is the outline:

(OD), (PI) Any of the four equivalent definition of ≤ms provide a procedure to decide ≤ms.

The third one is the most convenient to notice that when (X,≤) is given by a

polynomial-time presentation, ≤ms can be decided in polynomial-time.

(PI) The function M 7→ ↓msM is trivial with our representation of ideals: it outputs

the pair (M, ∅). This procedure obviously runs in polynomial-time when (X,≤)
is given by a polynomial-time presentation.

(ID), In Section 7.2.1, we give a procedure to decide ideal inclusion. This procedure

runs in polynomial time when (X,≤) is given by a polynomial-time presenta-

tion. We will also define canonical representations for ideals of (X⊛,≤ms).

(CF),(II),(IF) In subsections 7.2.2, 7.2.4 and 7.2.5, we give procedures to complement fil-

ters, intersect ideals and intersect filters, respectively. These procedures run in

polynomial-time when (X,≤) is given by a polynomial-time presentation.

(II) In Section 7.2.3, we give a procedure to complement ideals. This procedure runs

in exponential-time when (X,≤) is given by a polynomial-time procedure. In

this same subsection, we prove that a matching lower bound. We also provide a

polynomial-time procedure some specific WQOs.

• It will be obvious that the procedures mentioned above are computable from a

presentation of (X,≤).
(XF) The set of all finite multisets is the upward-closure of the empty multiset.

(XI) As a downward-closed set, X⊛ is its own ideal decomposition, since it is an

ideal.

In the following subsections, (X,≤) always designates a WQO.
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7.2.1 Ideal Inclusion (ID)

Proposition 7.2.4. Given B1, B2 ∈ X⊛ and D1, D2 ∈ Down(X):

↓B1 +D⊛

1 ⊆ ↓B2 +D⊛

2 iff B1 rD2 ≤ms B2 and

D1 ⊆ D2 ∪ ↓< Supp(B2 −B1)

If (X,≤) is an (polynomial-time) ideally effective WQO, the above characterization of

inclusion leads to a (polynomial-time) procedure to decide inclusion.

Proof. (⇒) First, B1 ∈ ↓B1 +D⊛

1 ⊆ ↓B2 +D⊛

2 , thus B1 rD2 ≤ms B2.

For the second part, let x ∈ D1, consider the multiset M = B1 rD2 + {|x · · ·x|}
with |B2| + 1 copies of x. Obviously, M ∈ ↓B1 + D⊛

1 ⊆ ↓B2 + D⊛

2 and thus

MrD2 ≤ms B2. Now, if x /∈ D2, then x ∈MrD2 andM(x) = B1(x)+|B2|+1 >
|B2| ≥ B2(x), thus there exists y > x such thatB2(y) > M(y) = B1(y). This implies

that y ∈ Supp(B2 −B1) and x < y.

(⇐) LetM ∈ ↓B1+D
⊛

1 , i.e.MrD1 ≤ms B1. We want to showMrD2 ≤ms B2.

Decompose M in two parts: M rD2 = (M rD2)rD1+(M rD2)|D1
. For the first

part, (MrD2)rD1 = (MrD1)rD2 ≤ms B1rD2. Besides, by the third definition

of ≤ms, B1 rD2 = B2−S + T for S = B2− (B1 rD2) and T = (B1 rD2)−B2,

and S dominates T .

For the second part, observe that D2 ∪↓< Supp(B2−B1) = D2 ∪↓< Supp(B2−
(B1 r D2)) and thus D1 r D2 ⊆ ↓< Supp(S). It follows that (M r D2)|D1

is

dominated by S, and we obtain:

M rD2 = (M rD2)rD1 + (M rD2)|D1

≤ms B1 rD2 + (M rD2)|D1

= B2 − S + (T + (M rD2)|D1
)

≤ms B2

Computability: Assuming (X,≤) is a (polynomial-time) ideally effective WQO,

the objects B1 rD2 and D2 ∪ ↓< Supp(B2 − B1) can be computed (in polynomial-

time), and ≤ms and ⊆ on Down(X) can be decided (in polynomial-time).

Notice that as in the case of finite multisets with the embedding ordering, this rep-

resentation is not unique, and we now provide a canonical representation for each ideal.

Proposition 7.2.5. For every ideal I of (X⊛,≤ms), there exists a unique representa-

tion I = ↓B +D⊛ such that B|D = ∅.
Besides, when (X,≤) is an (polynomial-time) ideally effective WQO, this canonical

representation is computable (in polynomial-time) from any other representation.

Proof. Given I = ↓B + D⊛, the canonical representation of I is ↓(B r D) + D⊛,

which is obviously computable using |B| · |D| membership tests in (X,≤).
Now for uniqueness, assume ↓B1+D

⊛

1 = ↓B2+D
⊛

2 and for i ∈ {1, 2}, Bi|Di
=

∅. By contradiction, assume there exists x ∈ B1 −B2, and assume x maximal.
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• Either x ∈ D2: but since D2 ⊆ D1 ∪ ↓< Supp(B1 − B2) and x /∈ D1 by

assumption, it implies that there exists y > x such that B1(y) > B2(y). This

contradicts the maximality of x.

• Or x /∈ D2: then since B1 r D2 ≤ms B2, there must be y > x such that

B2(y) > B1(y). Once again, we can pick y maximal.

– Either y ∈ D1: but D1 ⊆ D2 ∪ ↓< Supp(B2 − B1), but by maximality, y
cannot be in ↓< Supp(B2 − B1). On the other hand, y is in B2, and thus

cannot be in D2 either. Contradiction.

– Or y /∈ D1: and since B2 r D1 ≤ms B1, this implies the existence of

z > y > x such that B1(z) > B2(z), contradicting the maximality of x.

Using the symmetry of the situation, we have proved B1 = B2. Thus B1 − B2 =
B2 −B1 = ∅, which entails D1 = D2.

7.2.2 Complementing Filters (CF)

Proposition 7.2.6. Given N ∈ X⊛ and x ∈ X , define Nx = N| ↑ x − {|x|}.
The complement of ↑N is given by:

X⊛ r ↑N =
⋃

x∈Supp(N)

↓Nx + (X r ↑x)⊛

From this expression, we easily derive a (polynomial-time) procedure to comple-

ment filters when (X,≤) is a (polynomial-time) ideally effective WQO.

Proof. (⊆) Let M /∈ ↑N , by negating the first definition, this is equivalent to

∃x ∈ N. N(x) > M(x) ∧ ∀y > x. M(y) ≤ N(y)

Then M ∈ ↓Nx+(Xr↑x)⊛ directly follows from the fact that ∀y ∈ X. M| ↑ x(y) ≤
N(y).

(⊇) Let x ∈ Supp(N) and M ∈ ↓Nx + (X r ↑x)⊛. We show that there exists y
such that N(y) > M(y) and for all z > y, N(y) ≥ M(y). Let S, T be two multisets

such that M| ↑ x = Nx − S + T and S dominates T . We consider two cases:

1. If x is maximal in S, then take y = x. By domination, for any z ∈ T , z 6≥ x,

hence forall z ≥ x, M(z) = Nx(z). In particular, M(x) = Nx(x) < N(x) and

M(z) ≤ Nx(z) = N(z) for z > x.

2. Otherwise, take a maximal y ∈ S such that y ≥ x. In particular, T (y) = 0 and

S(y) ≥ 1, which implies thatM(y) = Nx(y)−S(y)+T (y) < Nx(y) ≤ N(y).
Besides, given z > y, M(z) = Nx(z)− 0 + 0 ≤ N(z).
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7.2.3 Complementing Ideals (CI)

Proposition 7.2.7. Let B ∈ X⊛ and D ∈ Down(X).
Given x ∈ X , define Bx = B| ↑ x + {|x|} Then:

X⊛ r (↓B +D⊛) =
⋃

S⊆Supp(B)

↑{Bx | x ∈ min(X r (D ∪ ↓S))}

The above expression is clearly computable (in exponential-time) when (X,≤) is a

(polynomial-time) ideally effective WQO.

Proof. (⊆) Let M /∈ ↓B +D⊛. Let N = M rD, by assumption N 6≤ms B. Thus,

there exists x ∈ X such that N(x) > B(x) and for all y > x, N(y) ≥ B(y) (negation

of the first definition of ≤ms). Since N(x) > 0, x /∈ D. Let S be the largest subset of

Supp(B) such that x /∈ ↓S. It exists since x /∈ ∅ and the property is stable by union.

The element x is thus in Xr (D∪↓S) and there exists y ∈ min(Xr (D∪↓S)) such

that y ≤ x.

We now prove that By ≤ms M . Observe that, by maximality of S, for all z ∈
Supp(B) r S, x ≤ z. Thus, B| ↑ x = B| ↑ y which proves that By ≤ms Bx. On the

other hand, for any z ∈ X , Bx(z) ≤ M(z). This is immediate for z 6≥ x. For z = x,

M(x) = N(x) > B(x) = Bx(x) − 1. And for z > x, M(z) = N(z) ≥ B(z) =
Bx(z). This proves By ≤ms Bx ≤ms M which concludes this direction of the proof.

(⊇) For any x ∈ X , Bx 6≤ms B: this is immediate by negating the first definition

of ≤ms and instantiating with x. Thus, for any x /∈ D, Bx /∈ ↓B +D⊛, which proves

the desired inclusion.

We now provide a matching lower bound on the operation of complementing ide-

als, proving that the procedure given by Proposition 7.2.7 is asymptotically optimal in

general. Notice that for a finite alphabet A, (A⊛,≤emb) = (A⊛,≤ms), since there

are no elements x, y ∈ A such that x < y. Thus, (A⊛,≤ms) ≡ (N|A|,≤×) and all

operations can be performed in polynomial-time. Besides, as stated in the introduction

of this chapter, (N,≤ms) is isomorphic to the ordinal ωω , for which all operations are

computable in polynomial-time as well.

The next natural candidate would be N2, but then it suffices to take union over

subsets of size 2 of Supp(B) in the formula of Proposition 7.2.7, which results in

polynomial-time complexity. More generally:

Proposition 7.2.8. For (X,≤) = (Nk,≤×), there is a polynomial-time procedure

to complement ideals, described by the following expression: Given B ∈ X⊛ and

D ∈ Down(X),

X⊛ r (↓B +D⊛) =
⋃

S⊆Supp(B)
|S|≤k

↑{Bx | x ∈ min(X r (D ∪ ↓S))}

The only difference with the general expression is that it suffices to take the union over

subsets of Supp(B) that have size at most k, leading to a polynomial-time implemen-

tation.
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Proof. We show that for every minimal elements x of X r (D ∪ ↓S) for some S ⊆
Supp(B) such that |S| > k, x is also a minimal element of X r (D ∪ ↓S′) for some

S′ ⊆ Supp(B) with |S′| ≤ k.

Indeed, denote by ei the element of Nk that has a 1 on the i-th component, zeros

elsewhere. Since x is minimal in X r (D ∪ ↓S), for every i ∈ [1, k], xi = x − ei
is either in D, or in ↓S, or xi /∈ Nk (if the i-th component of x is 0). Therefore, we

can define a subset S′ ⊂ S of size at most k such that for every i ∈ [1, k], xi ∈ D or

xi ∈ ↓S′, or xi /∈ Nk. Obviously, x is still in X r (D ∪ ↓S′), and is still minimal

since for every i, xi ∈ (D ∪ ↓S′) (if xi ∈ Nk).

Finally, the lower bound is proved using the polynomial-time ideally effective

WQO (Pf (N
2),⊑H) (cf. Section 7.3).

Proposition 7.2.9. Let (X,≤) = (Pf (N
2),⊑H) where N2 is ordered with the product

ordering. For n ∈ N, i ∈ [1, n] and U ⊆ [1, n], define:

xi = 〈i− 1, n− i〉
SU = {xi | i ∈ U}
Ti = S[1,n]r{i} = {xj | j 6= i}
B = {|T1 · · ·Tn|}

D = Pf (

n−1⋃

i=1

〈i− 1, n− 1− i〉)

The upward-closed set X⊛ r (↓B + D⊛) has at least 2n − 1 minimal elements.

In particular, any procedure for (CI) runs in exponential-time in the worst case.

Proof. The elements (xi)1≤1≤n form an antichain of size n of N2. The downward-

closed set D is chosen so that any set which is both smaller than S[1,n] and in ∁D is

equal to SU for some U ∈ [1, n].
Recall from Proposition 7.2.7 that minimal elements of X⊛ r (↓B +D⊛) are of

the form BS , where BS = B| ↑S + {|S|}. We here show that multisets BSU
all are

minimal elements of X⊛ r (↓B + D⊛) when U ranges over strict subsets of [1, n].
Given U ⊆ [1, n], BSU

will be denoted BU for readability. Since (xi)1≤i≤n is an

antichain, given U, V ⊆ [1, n], SU⊑HSV ⇔ Su ⊆ SV ⇔ U ⊆ V . Thus BU has one

copy of each Ti such that i /∈ U , and an extra copy of SU .

For any U ( [1, n], SU /∈ D, thus BU /∈ (↓B +D⊛) (cf. second part of the proof

of Proposition 7.2.7). It remains to show that each BU is minimal. Let U ( [1, n]
and M be some multiset such that M <ms BU . According to the second definition of

≤ms, there exists multisets P and Q such that ∅ 6= P ⊆ BU , M = BU − P + Q and

P dominates Q. Without loss of generality, we can assume that Supp(M) ∩ D = ∅.
Subsequently, we show that M ≤ms B. Assume M(S) > B(S) for some S ∈ X . By

case analysis:

• If S ∈ Q, then there exists T ∈ P such that S⊑HT . In particular T ∈ BU .
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1. If T = SU : from S /∈ D and S⊑HSU , we deduce that S = SV for some

V ( U (D has been chosen for this property). Therefore, there exists

i ∈ U r V , hence S = SV⊑HTi, while T = Su 6 ⊑HTi. However,

BU (R) = 0 for any Ti⊑HR, thus M(Ti) = 0 < 1 ≤ B(Ti).

2. Otherwise, T = Ti for some i /∈ U , and we can assume that SU 6= Ti.
Then M(Ti) = 0 < B(Ti) = 1.

• If x /∈ Q, then we have BU (S) ≥ M(S) > B(S) and by definition of BU

this is only possible for S = SU in which case BU (S) = M(S) = B(S) + 1.

From BU (S) = M(S) we deduce that S /∈ P , and P is not empty, thus there

is some i such that Ti ∈ P . Note that this Ti cannot be equal to SU since

BU (SU ) =M(SU ). Thus, SU ⊏H Ti and M(Ti) = 0 < B(Ti) = 1.

In conclusion, the exponential-time procedure described in Proposition 7.2.7 is op-

timal in the general.

7.2.4 Intersecting Ideals (II)

Proposition 7.2.10. Let ↓B0 + D⊛

0 and ↓B1 + D⊛

1 be two ideals given by their

canonical representation, that is for i ∈ {0, 1}, Bi|Di
= ∅. For i ∈ {0, 1}, define

ı̄ = 1− i and:

B′
i = Bi rDı̄ −B0 ∩B1

Si = {x ∈ B′
i | ∃z ∈ B′

ı̄. z > x ∧ ∀t ∈ B′
i. t 6> z}

B = B0 ∩B1 +B′
0|S0

+B′
1|S1

+B0|D1
+B1|D0

D =
⋃

x∈B0−B
y∈B1−B

(↓x ∪D0) ∩ (↓ y ∪D1)

The intersection of two ideals is an ideal:

(↓B0 +D⊛

0 ) ∩ (↓B1 +D⊛

1 ) = ↓B +D⊛

When (X,≤) is an (polynomial-time) ideally effective WQO, this leads to a

(polynomial-time) procedure to intersect ideals, in particular because in this case, we

can compute the canonical representation in polynomial-time.

Fig. 7.1 may help the understanding of the above expression. The multiset B,

depicted by the areas dashed in red on the figure, consists of the intersection B0 ∩B1,

restrictions Bi|Dı̄
, plus the red clouds. Note that, as shown on the picture, these 3 parts

of the definition of B are pairwise disjoint. Indeed, we assume that ideals ↓Bi +D⊛

i

are given by their canonical representations, hence there are no elements from Di in

Bi. Thus B0 ∩ B1 ∩ Bi|Dı̄
⊆ Bı̄|Dı̄

= ∅. The red clouds are disjoint from the two

aforementioned parts by construction: we restrict our attention to what is left of the

two multisets, which we denote B′
i. Of these multisets B′

i, we only keep in B elements

from sets Si. These sets consist of elements of B′
i that are dominated by elements in
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≤

≥
B0|D1

B1|D0

B0 ∩B1

S0 S1

B′
0 B′

1

B0 B1

Figure 7.1: Intersection of Ideals

B′
ı̄ that are not themselves dominated in B′

i. In other words, for every x ∈ Si (point in

the cloud), there exists some y > x which is in B′
ı̄, but not in Sı̄, i.e. not in the other

cloud.

Proof. First of all, notice from the construction that for any x ∈ X ,

B(x) ∈ {B0(x), B1(x)}. Indeed, consider the following cases:

• If x ∈ D0: then B0(x) = 0 since we assumed ideals given by their canonical

representations. Thus B(x) = min(0, B1(x)) + 0 +B′
1|S1

(x) + 0 +B1|D0
(x).

By definition, B′
1(x) = 0 and B1|D0

(x) = B1(x). Thus B(x) = B1(x).

• Similarly if x ∈ D1, B(x) = B0(x).

• Otherwise, x /∈ D0 ∪D1. Note that S0 ∩ S1 = ∅ by construction. Three cases

remain:

– If x ∈ S0, then x /∈ S1 thus B′
0|S0

(x) = B′
0(x) and B′

1|S1
(x) = 0. Thus,

B(x) = (B0 ∩B1)(x) + (B0 rD1)(x)− (B0 ∩B1)(x) = B0(x).

– Similarly if x ∈ S1, B(x) = B1(x).

– Otherwise, B(x) = min(B0(x), B1(x)) ∈ {B0(x), B1(x)}.
(⊆) Let M ∈ (↓B0 +D⊛

0 )∩ (↓B1 +D⊛

1 ). We want to show M rD ≤ms B. Let

x /∈ D such that M(x) > B(x). We distinguish two cases:

1. Either B(x) = max(B0(x), B1(x)). Four possibilities:

(a) x /∈ D0 ∪D1. In that case, since M rD0 ≤ms B0 and M rD1 ≤ms B1,

there exist y > x and z > x such that M(y) < B0(y) and M(z) < B1(z).
Now, if B0(y) > B(y) and B1(z) > B(z) hold simultaneously, then x ∈
↓ y ∩ ↓ z ⊆ D which is a contradiction. Thus, at least one of the previous

inequality does not hold, implying either B(y) > M(y) or B(z) > M(z).

(b) x ∈ D0 rD1. In that case, we only have the existence of z > x such that

B1(z) > M(z). Again, if B1(z) > B(z) then x ∈ ↓ z ∩D0 ⊆ D, which

is a contradiction. Thus B(z) ≥ B1(z) > M(z).
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(c) x ∈ D1 rD0 is symmetrical.

(d) Finally, x ∈ D0 ∩D1 is impossible, since D0 ∩D1 ⊆ D.

2. Or Bi(x) > B(x) = Bı̄(x). Without loss of generality, we assume i = 0. From

B0(x) > B(x) ≥ B0|D1
(x) we deduce x /∈ D1. Since M rD1 ≤ms B1, there

exists y > x such that B1(y) > M(y). If B1(y) > B(y), then y ∈ B1 −B, and

since x ∈ B0−B, this would imply x ∈ ↓x∩↓ y ⊆ D, which is a contradiction.

Thus, B(y) ≥ B1(y) > M(y).

(⊇) We show ↓B+D⊛ ⊆ ↓Bi +D⊛

i , for i ∈ {0, 1}, using Proposition 7.2.4. We

thus want to show that:

1. B rDi ≤ms Bi

2. D ⊆ Di ∪ ↓< Supp(Bi −B)

We prove the result for i = 0, the case i = 1 being symmetrical. To prove the first

point, assume some x /∈ D0 is such that B(x) > B0(x). By our preliminary remark,

it implies B(x) = B1(x) > B0(x), which also implies x ∈ B1, and thus x /∈ D1.

Now, since we are in the case B(x) = max(B0(x), B1(x)) = B1(x), by definition

B′
1|S1

(x) 6= 0, and thus: x ∈ S1, i.e. ∃z ∈ B′
0. z > x, and 6 ∃t ∈ B′

1. t > z. From the

last condition we deduce that B′
0|S0

(z) = 0, therefore B(z) = min(B0(z), B1(z)).

Furthermore, from z ∈ B′
0 we deduce that B0(z) > B1(z), and conclude B0(z) >

B(z).
For the second point, distributing the intersection over the unions leads to four cases

to consider:

1. Given x ∈ B0 − B and y ∈ B1 − B, ↓x ∩ ↓ y ⊆ ↓< Supp(B0 − B) follows

from x 6= y. This itself follows from B0 ∩B1 ⊆ B.

2. Given x ∈ B0 − B, by construction of B, x /∈ D1. Thus for any z in ↓x ∩D1,

z < x, and z ∈ ↓< Supp(B0 −B).

3. Given y ∈ B1 −B, it is obvious that ↓ y ∩D0 ⊆ D0.

4. Finally, D0 ∩D1 ⊆ D0, obviously.

7.2.5 Intersecting Filters (IF)

Proposition 7.2.11. Given two multisets M0 and M1, and i ∈ {0, 1}, we write ı̄ for

1− i, and define Si = {x ∈Mi | ∀z ∈Mı̄ −Mi. z > x⇒ ∃t ∈Mi −Mı̄. t > z}.
The intersections of two filters is a filter:

↑M0 ∩ ↑M1 = ↑(M0|S0
∪M1|S1

)

When (X,≤) is an (polynomial-time) ideally effective WQO, this leads to a

(polynomial-time) procedure to intersect filters.
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It is easier to understand this complicated condition on examples. Take X = N2.

If M0 = [(1, 1)(2, 1)] and M1 = [(1, 2)], then M0|S0
∪M1|S1

= [(1, 2)(2, 1)], which

is indeed greater than both M0 and M1. On the other hand, if M0 = [(1, 1)(2, 2)] and

M1 = [(2, 2)], thenM0|S0
∪M1|S1

= [(1, 1)(2, 2)]. Notice how (1, 1) is not part of the

final result in the second example, while it is in the second. Intuitively, the condition

expresses that an element x from M0 will not be in the final result if it is dominated by

some z ∈ M1 such that z is in the final result. The fact that z is in the final result is

expressed by negating the existence of a t inM0 that dominates z. The condition on the

multiplicities of z and t becomes clear when considering the case M0 = [(1, 1)(2, 2)]
and M1 = [(2, 2)(2, 2)] and comparing it to the second example.

Proof. Define M ′
i = Mi|Si

and M = M ′
0 ∪ M ′

1, that is for all x ∈ X , M(x) =
max(M ′

0(x),M
′
1(x)).

(⊆) Let N ∈ ↑M0 ∩ ↑M1. To prove M ≤ms N , assume N(x) < M(x) =
max(M ′

1(x),M
′
2(x)) for some x. This implies that M ′

i(x) > N(x) for some i ∈
{0, 1}, and without loss of generality, we assume i = 0. This implies M ′

0(x) > 0,

thus x ∈ S0 and M ′
0(x) = M0(x). Since M0 ≤ms N , there exists y > x such that

M0(y) < N(y).
If M ′

1(y) < N(y), then M(y) < N(y), which concludes the proof. We now prove

that the other case, M ′
1(y) ≥ N(y) is impossible. It in particular implies y ∈ S1 and

thusM1(y) ≥ N(y) > M0(y). Recall that x ∈ S0, therefore ∀z ∈M1−M0. z > x⇒
∃t ∈M0−M1. t > z). Instantiated with z = y, it gives the existence of t ∈M0−M1

such that t > y. Besides, we can consider this t maximal. Similarly, we instantiate

with z = t in the condition of y ∈ S1, to obtain the existence of u ∈ M1 −M0 such

that u > t. Now, we instantiate one more time the condition given by x ∈ S0, but

with z = u. This gives the existence of v ∈ M0 −M1 such that v > u > t, which

contradicts the maximality of t. Thus this case is impossible, and M ≤ms N .

(⊇) We show that M0 ≤ms M , the other case being symmetrical. Assume

M0(x) > M(x) = max(M ′
0(x),M

′
1(x)). This implies that M ′

0(x) = 0 and M ′
1(x) <

M0(x). From M ′
0(x) = 0, we deduce the existence of z ∈ M1 − M0 such that

z > x and for any t ∈ M0 −M1, t ≤ z. This last part implies that z ∈ S1, thus

M ′
1(z) = M1(z) and therefore M(z) = max(M ′

0(z),M
′
1(z)) = M ′

1(z) = M1(z) >
M1(z).

7.3 Finitary powerset over X

When (X,≤) is a QO, a natural quasi-ordering on P(X), the powerset over X , is

the Hoare quasi-ordering (also called domination quasi-ordering), denoted ⊑H, and

defined by

S⊑HT
def⇔ ∀x ∈ S : ∃y ∈ T : x ≤ y.

A convenient characterization of this quasi-ordering is the following: S⊑HT iff S ⊆
↓X T .

Note that (P(X),⊑H) is in general not antisymmetric even when (X,≤) is. For

example S ≡H ↓X S for any S ⊆ X . Actually, (P(X)/ ≡H,⊑H) is order-isomorphic

to (Down(X),⊆). It is sometimes stated that (X,≤) is a WQO if and only if
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(P(X),⊑H) is well-founded. With the above remark, this is exactly (WQO7) from

the definition of WQO we gave in Chapter 2. In particular, (P(X),⊑H) needs not be

a WQO, see Section 9.2 for more details. However, (Pf (X),⊑H) is a WQO, where

Pf (X) denotes the set of all finite subsets of X . Indeed, it is the quotient of (X∗,≤st)
(see Section 6.2) by the relation ≃ defined by u ≃ v iff Supp(u) = Supp(v), where

Supp(u) is the finite set of elements of X that appear in the finite sequence u ∈ X∗.

Moreover, ≃ ◦ ≤st=≤st ◦ ≃, and Section 4.2 applies. However, procedures for

this WQO are rather simple to obtain directly, and more efficient than if relying on

Section 4.2.

Since (Pf (X),⊑H) can be obtained as a quotient of (X∗,≤st) its ideals are exactly

the closure under ≃ of the ideals of (X∗,≤st). The latter has been shown to be sets

of the form D∗
1 · · ·D∗

k (cf. Section 6.2), and thus their closure under ≃ is (D1 ∪ · · · ∪
Dk)

∗. In terms of sets, this is exactly Pf (D1 ∪ · · · ∪ Dk), the set of finite subsets of

D1 ∪ · · · ∪Dk.

Lemma 7.3.1. The ideals of (Pf (X),⊑H) are exactly the sets of the form Pf (D),
where D is a downward-closed subset of X .

Proof. In complement of the sketch of proof that precedes the lemma, we present be-

low a direct and simple proof:

(⇐) : ∅ ∈ Pf (D), soPf (D) is nonempty. It is downward-closed, since if S⊑HT ∈
Pf (D), then S ⊆ ↓X T ⊆ ↓X D = D. It is directed, since if S, T ∈ Pf (D), then

S ∪ T ∈ Pf (D).
(⇒) : Let J be an ideal of Pf (X). Let D =

⋃J =
⋃

S∈J S. Then clearly

J ⊆ Pf (D). Since J is downward-closed under ⊑H, D is downward-closed under

≤ and {x} ∈ J for all x ∈ D. Since J is nonempty (it is an ideal), ∅ ∈ J . Finally,

if S, T ∈ J , then there is some U ∈ J such that S, T⊑HU . Thus S ∪ T⊑HU , and

S ∪ T ∈ J . Therefore, J has the empty set and singletons, and is closed under finite

unions, and so is equal to Pf (D).

We now turn to ideal effectiveness. Assume we have encodings for X and Idl(X).
Finite sets of X are represented as the explicit list of the encoding of their elements.

Once again, this corresponds to the representation suggested by Section 4.2: finite sets

are equivalence classes of finite sequences.

Moreover, Lemma 7.3.1 suggests a very simple representation for ideals of

(Pf (X),⊑H): the ideal Pf (D) for some D ∈ Down(X) is simply encoded with the

encoding of D, which we know how to encode whenever we have an encoding for

Idl(X).

Theorem 7.3.2. The Hoare Extension is a polynomial-time ideally effective construc-

tion.

Proof. Let (X,≤) be an ideally effective WQO.

Given S ∈ Pf (X), the notation ↓S could represent the downward-closure of S as

a subset of X , or the downward-closure of {S} as a subset of Pf (X). We therefore

annotate every occurrence of a closure: ↓X S denotes the downward-closure of S as a

subset of X , while ↓H S denotes the downward-closure of S in Pf (X).
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(OD) The quasi-ordering S⊑HT can be tested using at most |S| · |T | comparisons of

elements of S and T .

(ID) Given D1, D2 ∈ Down(X), checking Pf (D1) ⊆ Pf (D2) boils down to check-

ing D1 ⊆ D2.

(PI): Given S ∈ Pf (X), ↓H S = Pf (↓X S) (obvious when considering the alternative

definition of ⊑H given at the beginning of this chapter). Note that ↓X S =
⋃

x∈S ↓x is computable.

(CF): Given S ∈ Pf (X), the complement of ↑H S is given by:

Pf (X)r ↑H S =
⋃

x∈S

Pf (X)r ↑H{x}

=
⋃

x∈S

Pf (X r ↑x)

(II): To intersect ideals: Pf (D1) ∩ Pf (D2) = Pf (D1 ∩D2).

(IF): Filters may be intersected using ↑S ∩ ↑T = ↑(S ∪ T ).

(CI): Given D a downward-closed set of X , Pf (X) r Pf (D) consists of the set that

contain at least one element not in D. That is:

Pf (X)r Pf (D) = ↑H {{x} | x ∈ min(X rD)}

All of the above expressions trivially lead to (polynomial-time) procedures when

(X,≤) is an (polynomial-time) ideally effective WQO. This proves that (Pf (X),⊑H)
is an (polynomial-time) ideally effective WQO when (X,≤) is. Moreover, the proce-

dures above are obviously computable from a presentation of (X,≤). Besides, (XI)

The whole set Pf (X) is an ideal since X is downward-closed, and (XF) the filter de-

composition of Pf (X) is the empty set: ↑H ∅ (not to be confused with the empty filter

decomposition, which denotes the empty upward-closed set of Pf (X)).
Therefore, the Hoare extension is a polynomial-time ideally effective construction.
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Chapter 8

A Minimal Set of Axioms

8.1 Shortly Effective WQOs

The main notion of this part of the manuscript, Ideal Effectiveness (Definition 3.1.1),

is defined through a list of requirements. A question that might occur to the reader, is

whether some of the requirements are unnecessary, that is, whether some requirement

is automatically fulfilled when the others are.

When we are only interested in computability, and not complexity, the answer is

(surprisingly ?) yes. Let us formally prove this.

Definition 8.1.1. A short presentation of a WQO (X,≤) is a list of:

• Representations for X and Idl(X);

• Algorithms for the operations (ID), (PI), (CF), (II);

• The ideal decomposition of X .

We say that a WQO equipped with some representation for X and Idl(X) is shortly

effective if it has a short presentation.

Note that a short presentation of (X,≤) is obtained from one of its presentation by

dropping procedures to decide ≤ (OD), to intersect filters (IF), to complement ideals

(CI) and by dropping the filter decomposition of X .

Theorem 8.1.2. Given a short presentation of a WQO (X,≤), one can compute a

presentation of (X,≤). In particular, a WQO is shortly effective if and only if it is

ideally effective.

Proof. We explain how to obtain the missing procedures:

(OD): The quasi-ordering ≤ can be tested using (ID) and (PI): given x, y ∈ X , x ≤ y
if and only if ↓x ⊆ ↓ y.
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(CI): We actually show a stronger statement, denoted CD, that complementing an ar-

bitrary downward-closed set is computable. This strengthening is necessary for

(IF).

Let D be an arbitrary downward-closed set. We compute ∁D as follows:

1. Initialize U := ∅;
2. While ∁U 6⊆ D do

(a) pick some x ∈ ∁U ∩ ∁D;

(b) set U := U ∪ ↑x
3. Return U .

Every step of this high-level algorithm is computable. The complement ∁U is

computed using the procedure to complement filters composed with the proce-

dure to intersect ideals: ∁
⋃n

i=1 ↑xi =
⋂n

i=1 ∁ ↑xi which is computed with (CF)

and (II) (or with (XI) in case n = 0, i.e., for U = ∅). Then, inclusion ∁U ⊆ D
is tested with (ID). If this test fails, then we know ∁U ∩ ∁D is not empty, and

thus we can enumerate elements x ∈ X by brute force, and test membership in

U and in D. Eventually, we will find some x ∈ ∁U ∩ ∁D.

To prove partial correctness we use the following loop invariant: U is upward-

closed and U ⊆ ∁D. The invariant holds at initialization and is preserved by the

loop’s body since if ↑x is upward-closed and since x /∈ D and D downward-

closed imply ↑X ⊆ ∁D. Thus when/if the loop terminates, one has both ∁U ⊆
D and the invariant U ⊆ ∁D, i.e., U = ∁D.

Finally, the algorithm terminates since it builds a strictly increasing sequence of

upward-closed sets, which must be finite by Eq. (WQO6).

(IF): This follows from (CF) and CD, by expressing intersection in terms of comple-

ment and union.

(XF): Using CD we can compute ∁∅.

Remark 8.1.3 (On Theorem 8.1.2). The above methods are generic but in many cases

there are simpler and more efficient ways of implementing (CI), (IF), etc. for a given

WQO. This is why Definition 3.1.1 lists eight requirements instead of just four: we

wanted to provide efficient procedures for all main operations in concrete cases. In

particular, this theorem does not state that a polynomial-time presentation can be com-

puted from a polynomial-time short presentation.

As seen in the above proof, the fact that (CF), (II), (PI) and (XI) entail (CI) is

non-trivial. The algorithm for CD computes an upward-closed set U from an oracle

answering queries of the form “Is U ∩ I empty?” for ideals I . This is an instance of

the Generalized Valk-Jantzen Lemma [37], an important tool for showing that some

upward-closed sets are computable.

The existence of such a non-trivial redundancy in our definition led us to the ques-

tion of whether there are other redundancies. The following proposition answers neg-

atively.
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Proposition 8.1.4. A presentation of a WQO cannot be computed from a short pre-

sentation where one component (other than the encodings of X and Idl(X) has been

dropped. In other words, the requirements listed to define short effectiveness are mini-

mal to capture the notion of ideal effectiveness.

Proof. To prove this proposition, we prove the following statement:

(ID) There exists a WQO (X,≤) such that there exist algorithms to perform opera-

tions (PI), (CF) and (II), but ideal inclusion is undecidable.

(PI) There exists a WQO (X,≤) such that there exist algorithms to perform opera-

tions (ID), (CF) and (II), but function x 7→ ↓x is not computable.

(CF) There exists a WQO (X,≤) such that there exist algorithms to perform opera-

tions (ID), (PI) and (II), but there are no algorithm to complement filters.

(II) There exists a WQO (X,≤) such that there exist algorithms to perform opera-

tions (ID), (PI) and (CF), but there are no algorithm to intersect ideals.

(XI) There are no algorithm such that for all WQO (X,≤), given a list containing

encodings for X and Idl(X) as well as procedures for (ID), (PI), (CF) and (II),

the algorithm computes the ideal decomposition of X .

Observe that the first four statements are stronger than the statement we need to

prove. Indeed, there cannot be an algorithm that produces an algorithm for (ID) given

the rest of a short presentation for any WQO (X,≤), since there is a specific WQO for

which this algorithm does not even exist.

In the case of (XI) however, we cannot prove such a stronger statement since for

each specific WQO, the ideal decomposition of the whole set is a constant, hence al-

ways computable.

Before we proceed to prove the five statements above, let us introduce the general

idea, as well as some notations. In this remainder of this chapter, we build WQOs

equipped with encodings for X and Idl(X) for which some operation is not com-

putable. To prove non-computability of an operation, we always reduce the halting

problem for Turing machines. More precisely, from now on we fix an enumeration

(Ti)i∈N of Turing machines, such that there is a universal Turing Machine that can

simulate Ti when given i as input. We use the following version of the halting prob-

lem: given i, decide whether Ti halts on the empty input (i.e. starting with an empty

tape). This problem is well-known to be undecidable. Also define ti ∈ N ∪ {ω} to be

the halting time of machine Ti (on the empty input). For illustration purposes, we will

assume that our enumeration is such that T0 and T1 halt (t0 < ω, t1 < ω) but not T2
(t2 = ω).

All the WQOs given subsequently are built along the same idea: an element of

the WQO intuitively corresponds to some execution step of some Turing machine Ti.
Elements are ordered such that an element corresponding to step t of the execution of

machine Ti is greater or equal to an element corresponding to step t′ of the execution

of machine Tj whenever i > j or i = j and t′ > t. The simplest WQO satisfying these

conditions is the ordinal ω2 (equivalently, the lexicographic ordering over N2). WQOs
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presented in this chapter are often obtained by modifying the shape of ω2 around ele-

ments corresponding to steps ti (halting steps), so that some set-theoretic operation on

the WQO is able to spot the difference: it is then possible to compute ti using an ora-

cle for this operation, which proves the operation to be non computable. This is often

done by quotienting the natural ordering on the ordinal ω2 by a well-chosen equiva-

lence relation. Therefore, it is advised to read Section 3.2.3 and Section 4.2 before the

remainder of this chapter.

In all our examples, it is crucial that despite being undecidable, the halting problem

is semi-decidable. In particular, given a time t and a machine number i, one can decide

whether t ≤ ti. It suffices to simulate the machine Ti for t steps: if it halted before,

then ti < t, otherwise t ≤ ti.
The remainder of the proof of Proposition 8.1.4 is split over the five next subsec-

tions, one for each of the five statements from the beginning of the proof.
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8.1.1 Ideal Inclusion (ID)
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Figure 8.1: WQO for

(ID), (CF) and (PI)

Let X = ω2. According to the Cantor Normal form, elements

ofX can be written ω ·i+j for some i, j ∈ N. We let≤ denote

the usual linear ordering on ordinals.

Define E as the smallest equivalence relation such that:

(ω · i+ t)E(ω · i+ t+ 1) when t 6= ti

As in Section 4.2, this defines a quasi-ordering ≤E=≤ ◦E
over X . Note that E is indeed compatible with ≤, that is to

say ≤E=≤ ◦E = E◦ ≤).

For a visual definition of E, see Fig. 8.1: an edge be-

tween two points means these two elements are equivalent with

respect to ≤E , otherwise, greater elements are drawn above

smaller elements.

Here is an intuition behind the definition of the structure

(X,≤E). Associate to each Turing Machine Ti a copy of N

where each natural number represents an execution time of the

machine Ti. The WQO X is made of ω copies (one per Turing

machine) on top of one another: this is a countable lexico-

graphic sum, otherwise seen as the lexicographic product of ω
by N. In this QO, we interpret the ordinals ω ·i+t as the Turing

machine Ti running for t steps. Then, the equivalence relation

E is gluing some elements together in each copy of N so that

each copy has only one or two equivalence class(es): the class

of all elements smaller or equal to ti, and if ti is finite, the class

of all elements strictly above. Therefore, the copy associated

with Ti has two equivalence classes if and only if Ti halts (and

one otherwise).

Below, we show that the WQO (X,≤E) is almost shortly

effective: (ID) cannot be decided, but (PI), (CF) and (II) are

computable. This proves that in general, a procedure to de-

cide ideal inclusion cannot be computed from procedures to

compute (PI), (CF) and (II). The representations we use for

elements of X is clear: elements of X are of the form ω · i+ t.
For ideals, we rely on the standard representation of ideals of

a quotient defined in Section 4.2, that is ideals of (X,≤E) are

represented as ideals of (ω2,≤), but denote their closure under

E. Remember the ideals of ω2 are exactly sets α = {β | β < α} for α < ω2 + 1.

(OD): Let us mention that the quasi-ordering is decidable: ω · i + t ≤E ω · i′ + t′ iff

i < i′; or i = i′ and t, t′ < ti; or i = i′ and ti ≤ t, t′. Conditions t, t′ < ti and

ti ≤ t, t′ are decidable by simulating Ti for max(t, t′) steps.

(PI): Ideals of (X,≤E) are encoded as ideals of (ω2,≤) and thus ↓≤E
x for x ∈ X is

encoded as ↓≤ x which is computable according to Section 3.2.3.
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(CF): Given ω · i+ t ∈ X , it is possible to test whether t ≤ ti. If t ≤ ti, then ω · i+ t is

in the lower equivalence class of the i-th copy of N (the upper equivalence class

might be reduced to ∅ if Ti does not halt). Therefore:

X r ↑≤E
ω · i+ t = ω · i

Otherwise, t > ti, and ti has been found (we run Ti for t steps, and Ti halted in

less than t steps). Therefore we can output:

X r ↑≤E
ω · i+ t = ω · i+ ti

(II): Ideals are linearly quasi-ordered by inclusion, thus intersection consists in taking

the minimum for inclusion. Although we cannot decide inclusion of ideals of

(X,≤E), observe that it suffices to always output the minimum for inclusion of

ideals of (ω2,≤). In other words, given I, J ∈ Idl(ω2,≤) and denoting S the

closure under E of some S ⊆ X , we have:

I ∩ J = I ∩ J

Finally, observe that machine Ti does not halt if and only if ω · i+ 1 = ω · (i+ 1).

Therefore, there can be no algorithm to decide ideal inclusion.

8.1.2 Complementing Filters (CF)

The WQO for which we cannot compute (CF), but for which we can decide (ID) and

compute (PI) and (II) is the same WQO (X,≤E) as before ! Only, we change our

representation of its ideals. This (surprising) result shows the importance of the chosen

encoding of sets when dealing with computability questions.

As observed in the previous subsection, each copy of the natural numbers has only

one or two equivalence classes for ≡E=≤E ∩ ≥E . Therefore, the only limit ideal of

(X,≤E) is the whole set X itself. All other ideals are principal. We thus encode ideals

of (X,≤E) using encodings of elements of X , plus an extra symbol for the ideal X
itself.

With these representations of X and Idl(X), we now show that (ID), (PI) and (II)

are computable.

(OD): Note that we have not changed our representation of X , and thus the quasi-

ordering ≤E is still decidable.

(ID): Inclusion is now decidable since it is essentially the same as the quasi-ordering,

with the extra element ω2 which is greater than any other.

(PI): With our representation of ideals, the function x 7→ ↓x is the identity function.

(II): Ideals are linearly quasi-ordered by inclusion, and thus, intersection consists of

taking the minimum for inclusion, which is now decidable.
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However, assume we have an algorithm to complement filters: on input ↑(ω·(i+1))
for some i ∈ N, it returns some ↓(ω · i+ t) For this algorithm to be correct, it must be

the case that ↓≤E
(ω · i+ t) = ↓≤E

(ω · i+ t′) for all t′ ≥ t, i.e. ω · i+ t and ω · i+ t′

are equivalent. Thus, ti < ω if and only if ti < t, and the halting problem could be

decided by bounded simulation.

8.1.3 Principal Ideals (PI)
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〈3, 〈1, 0〉〉

Figure 8.2: WQO for (II)

For (PI), we again consider the same WQO (X,≤E), tak-

ing yet another representation of its ideals. If the ordi-

nals α and β are E-equivalent, then ↓α and ↓β are two

representations of the same ordinal. We thus make repre-

sentations of ideals unique by allowing only two types of

ideals:

• the limit ordinals of ω2 + 1, that is ω2 = X and

ω · i = {α | α < ω · i} for i ∈ N;

• and the successor ordinals of the form ω · i+ti+1
for i ∈ N.

The set of ideals is still recursive, since given i and t, it

is possible to check whether t = ti + 1. Ideal inclusion

corresponds to a sub-order of the natural ordering on ordi-

nals, and is thus decidable. The inclusion on ideals being

linear, intersecting ideals again corresponds to taking the

minimum, and hence is computable.

However, we now have a procedure for (CF):

• X r ↑(ω · i+ t) = ω · i if t ≤ ti.

• X r ↑(ω · i + t) = ω · i+ ti + 1 if t > ti. Note

that if t > ti, then ti has been found, and thus it can

be output.

But there are no procedures for (PI) anymore: if there

were, one could compute ↓ω · i that should be mapped to

ω · i+ ti + 1 if Ti halts, and to ω · (i+ 1) otherwise.

8.1.4 Intersecting Ideals (II)

Let Y = (N ⊔ N) + (1 ⊔ 1) quasi-ordered with the sum

quasi-orderings introduced in Chapter 5. The set Y con-

sists of two copies of N, augmented with two top elements

that will be denoted 〈1, ω〉 and 〈2, ω〉, that are incompara-

ble with each other, but greater than any other element of

Y . In particular, note that for any a ∈ {1, 2} and n ∈ N,
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〈i, 〈a, ω〉〉 > 〈i, 〈3− a, n〉〉. In other words, Y is not quasi-ordered as ω+1⊔ω+1,

although it has the same support.

Define X = N × Y equipped with the lexicographic quasi-ordering ≤lex defined

in Section 5.4. Intuitively, X is the WQO obtained by putting ω copies of Y on top of

each other. Elements of X are of the form 〈i, 〈a, n〉〉 where i ∈ N designates the copy

of Y (the floor of the tower), a ∈ {1, 2} designates the disjoint copy (left or right) and

n ∈ (ω+1). Due to space constraints, only the left copy is labeled on Fig. 8.2). Once

again, we extend the quasi-ordering by an equivalence relation E defined by :

• 〈i, (a, n)〉E〈i, (b,m)〉 for i ∈ N, a, b ∈ {1, 2} and n,m ∈ N and n,m < ti.

• 〈i, (a, n)〉E〈i, (a,m)〉 for i ∈ N, a ∈ {1, 2} and n,m ∈ N and n,m ≥ ti.

Note that each copy of Y has either 3 or 5 equivalence classes (depending on whether

Ti halts).

The representation of the elements of X is the one described above. For ideals, we

again rely on the fact that the equivalence relation E is “gluing” many elements, and

thus there are no infinite strictly increasing sequence of elements within a copy of Y .

Thus, the only limit ideal is X itself. All other ideals are principal, hence represented

by ↓x for x ∈ X .

We now show that for these representations, the operations (ID), (PI) and (CF) are

computable, but not (II).

(OD): The quasi-ordering is decidable, as in previous cases by bounded simulations

of Turing machines.

(ID): Inclusion is then trivially decidable: it is the same as the quasi-ordering (plus the

maximal element X).

(PI): Computing principal ideals is again the identity function.

(CF): To complement filters:

∁ ↑〈0, 〈a, n〉〉 = ∅ when n ∈ N and n < t0 and a ∈ {1, 2}.
∁ ↑〈i + 1, 〈a, n〉〉 = ↓〈i, 〈1, ω〉〉 ∪ ↓〈i, 〈2, ω〉〉 when n ∈ N and n ≤ ti+1

and a ∈ {1, 2}.
∁ ↑〈i, 〈a, n〉〉 = ↓〈i, 〈3− a, n〉〉 when ω ≥ n ≥ ti and a ∈ {1, 2}.

Finally, observe that ↓〈i, 〈1, ω〉〉 ∩ ↓〈i, 〈2, ω〉〉 is an ideal if and only if Ti does not

halt. Thus, if intersections were computable, the size of the ideal decomposition of the

result would decide the halting problem.

8.1.5 Ideal Decomposition of X (XI)

As mentioned at the beginning of this subsection, the result for (XI) is a little weaker,

as for a given X , its ideal decomposition is a constant, hence computable. Thus we

here provide an infinite collection of WQOs (Xi,≤i)i∈N such that one cannot compute
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Figure 8.3: Xi when Ti halts.

(Xi,≤i ◦Ei) is isomorphic to 1⊕ (1⊔1).
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Figure 8.4: Xi when Ti does not halt.

(Xi,≤i ◦Ei) is isomorphic to 1.

the ideal decomposition of Xi given i ∈ N, while (PI), (CF) and (II) are computable

for each Xi.

Define Xi = N ⊔N with the natural ordering extended with relation Ei defined by

(cf. Figures 8.3 and 8.4):

• 〈a, n〉Ei〈b,m〉 for a, b ∈ {1, 2} and n,m < ti.

• 〈a, n〉Ei〈a,m〉 for a ∈ {1, 2} and n,m ≥ ti.
First of all, for any i ∈ N, (Xi,≤i) is ideally effective, where the representation

for X is the usual one for disjoint sum, and we represent ideals as elements, since they

are all principal (Xi/ ≡i is a finite WQO for every i).

(OD): As in the other cases, the quasi-ordering is decidable by bounded simulations.

(ID): Ideal inclusion is then the same as the quasi-ordering on Xi.

(PI): The ideal ↓x has the same representation as x, for x ∈ Xi.

(CF): Complements of filters are computed using:

∁ ↑〈a, n〉 = ∅ if n < ti

∁ ↑〈a, n〉 = ↓〈3− a, ti〉 if n ≥ ti

(II): Ideal intersections are computed using:

↓〈a, n〉 ∩ ↓〈a,m〉 = ↓〈a,min(n,m)〉;

↓〈a, n〉 ∩ ↓〈3− a,m〉 =
{
↓〈1,min(n,m)〉 when min(n,m) < ti
↓〈1, 0〉 otherwise.

However, the function that maps i ∈ N to the ideal decomposition of Xi is not

computable, since otherwise it would decide the halting problem. Indeed, Xi is an

ideal if and only if Ti does not halt.
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8.2 Effective Extensions

Given (X,≤) an ideally effective WQO and ≤′ an extension of ≤, we have given in

Theorem 4.1.2 sufficient conditions for (X,≤′) to be ideally effective. In this section,

we prove the following stronger theorem:

Theorem 8.2.1. Let (X,≤) be an ideally effective WQO and ≤′ an extension of ≤.

Then, (X,≤′) is ideally effective (for the encodings of X and Idl(X,≤′) described in

Section 4.1), whenever the following function is computable:

ClI : Idl(X,≤) → Down(X,≤)
I 7→ ↓≤′ I

Moreover, under these assumptions, a presentation of (X,≤′) can be computed from a

presentation of (X,≤) and algorithms realizing ClI.

Proof. It suffices to show that, under these assumptions, we can compute function ClF:

ClF : (X,≤) → Up(X,≤)
x 7→ ↑≤′ x

Indeed, if ClF is computable, we can conclude with Theorem 4.1.2. The idea to com-

pute ClF using only ClI and operations in (X,≤) is quite similar to the algorithm to

compute CD using the other operations presented in the proof of Theorem 8.1.2. In

particular, our algorithm relies on brute force enumeration of elements of X , and we

will not get a complexity upper bound for ClF, even if ClI is polynomial-time. This is

why we dropped the conclusion about polynomial-time presentation in the formulation

of the theorem above (compared to Theorem 4.1.2).

Let x ∈ X . We can compute ↑≤′ x as follows:

1. Initialize U := ↑≤ x

2. While ClF(x) 6⊆ U do:

(a) find y ∈ ClF(x)r U ,

(b) set U := U ∪ ↑≤ y

3. Return U .

Every step of this high-level algorithm is computable. Step 1 can be performed us-

ing (PI) for (X,≤). To test the conditional part of the while loop, we use the following

equivalence: for any x ∈ X and U ∈ Up(X,≤),

ClF(x) 6⊆ U ⇐⇒ ↑≤′ x 6⊆ U
⇐⇒ X r ↑≤′ x 6⊇ X r U

⇐⇒ X r ↑≤′ x 6⊇ ClI(X r U)

⇐⇒ ↑≤′ x 6⊆ X r ClI(X r U)
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Observe that the implication X r ↑≤′ x 6⊇ ClI(X rU)⇒ X r ↑≤′ x 6⊇ X rU holds

because X r ↑≤′ is already downward-closed for ≤′. For a downward-closed set D, it

is equivalent to contain an arbitrary subset S or its downward-closure ↓S.

Now, we can test this last condition ↑≤′ x 6⊆ X r ClI(X r U) by computing

a finite basis of the upward-closed set (for ≤) X r ClI(X r U) =
⋃

i∈I ↑xi and

testing whether x ≥′ xi for some i ∈ I . Computing such a finite basis is possible

since U ∈ Up(X,≤), on which we can perform complements ((CF) and (II)), then we

can compute function ClI which outputs a downward-closed set of (X,≤),on which

we know how to compute complements ((CI) and (IF)). Finally, the ordering ≤′ is

decidable using x ≤′ y ⇐⇒ x ∈ ClI(↓≤ y).
Therefore, if entering the while loop, it means that ClF(x) 6⊆ U , and there exists

some y ∈ X such that y ∈ ClF(x)rU . To find such an element, it suffices to enumerate

elements of X and for each test whether it is greater than x for ≤′ (possible since ≤′ is

decidable) and if it belongs to U .

Besides, observe that since at step 2b we know that y /∈ U , the sequence of upward-

closed sets built by the while loop is strictly increasing, therefore finite (Eq. (WQO6)).

Thus, the program terminates.

To prove correction, observe that U ⊆ ClF(x) is an invariant of the program, and

whenever the program terminates (and it will), the conditional of the while loop is false,

that is ClF(x) ⊆ U . Therefore, the return value U is indeed the upward-closed set of

ClF(x) ∈ Up(X,≤).

We have just proved that function ClF can be computed from function ClI. The

asymmetry between upward- and downward-closed sets of a WQO strikes again, and

we can show that the converse is not true: we cannot compute ClI from ClF. Indeed,

consider again the WQO (X,≤E) from Section 8.1.1. It is obtained as a quotient of the

ordinal (ω2,≤), which is ideally effective. Below, we show that function ClF : ω2 →
Up(ω2,≤) is computable. Of course ClI cannot be computable, otherwise (X,≤E)
would be ideally effective for the representations we used in Section 8.1.1.

Remember that given x ∈ ω2, ClF(x) is the filter decomposition of ↑≤E
x, where

x is the equivalence class under E of x. Here, since the ordering ≤ is linearly ordered,

x has a unique minimal element. Let x = ω · i+ t ∈ ω2. If t ≤ ti then x = {ω · i+ j |
0 ≤ j ≤ ti}, in which case ClF(x) = ↑≤E

ω · i+ t = ↑≤ ω · i. Otherwise, when t > ti,
x = {ω · i + j | j > ti}, and ClF(x) = ↑≤E

ω · i + t = ↑≤ ω · i + ti + 1. Therefore,

ClF is computable.

Let us also mention that removing any assumption in Theorem 8.2.1 breaks the

theorem. In particular, the situation above provides an example of an ideally effective

WQO (X,≤) and a decidable relation E such that (X,≤ ◦ E) is not ideally effective.

This legitimate the introduction of the function ClI.
On the other hand, function ClI is not a necessary condition in the following sense:

there exists an ideally effective WQO (X,≤) such that the function ClI associated to

the extension from (X⊛,≤emb) to (X⊛,≤ms) is not computable (see Section 8.3.2),

but the WQO (X⊛,≤ms) is still ideally effective. However, note that (X⊛,≤ms) is

ideally effective for another representation of ideals than the one fixed in Section 4.1.

Otherwise, ClI is really necessary: let (X,≤) be an ideally effective WQO and ≤′ an
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extension of ≤. Assume (X,≤′) is ideally effective when representing its ideals as

ideals of (X,≤). Then given I ∈ Idl(X,≤), we can enumerate D ∈ Down(X) and

check whether D = ClI(I) as follows: with (ID) for ≤′ we can check that ↓≤′ I =
↓≤′ D, and with (CI) for ≤ and ≤′ we can check that X rD = X r (↓≤′ I). If it is

the case, it means X rD is upward-closed for ≤′, and thus D is downward-closed for

≤′.

Last remark: as in the case of Theorem 8.1.2, we have presented only Theo-

rem 4.1.2 in Section 4.1 (and not the version above without the function ClF) for com-

plexity reasons. In practical cases, it is important to have an efficient version of ClF.
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8.3 Deciding whether an Ideal is Principal
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Figure 8.5: WQO for

Subsection 8.3

We prove that in general, one cannot decide whether an ideal

of an ideally effective WQO is principal. The counter-example

is again built following the same idea. Define X = ω2, and

extend the natural ordering so that for any given i ∈ N, ele-

ments ω · i+ t for t ≥ ti form an equivalence class (Fig. 8.5).

We show that (X,≤E) is ideally effective using Section 4.2.

• ClI(ω · i+ j) = ω · (i+ 1) if j > ti,

• ClI(ω · i+ j) = ω · i+ j otherwise.

• ClF(ω · i+ j) = ω · i+ ti if j ≥ ti,

• ClF(ω · i+ j) = ω · i+ j otherwise.

The functions ClI and ClF being computable, (X,≤E) is ide-

ally effective. However, ω · (i+ 1) is a principal ideal if and

only if Ti halts, hence, one cannot decide whether an ideal is

principal.

This is yet another independence result: one could add the

axiom “principality of ideals is decidable” to our definition of

ideal effectiveness, and the axiomatic system would still be

minimal (no axiom is implied by the others). Note that to actu-

ally prove this statement, one should also check that the other

axioms remain independent in the presence of the new one.

This is the case: for every WQOs considered in the proof of

Proposition 8.1.4, it is decidable whether a given ideal is prin-

cipal.

Nonetheless, we decided not to include this as an axiom:

a priori, deciding whether an ideal is principal does not seem

related to our original motivation: handling closed subsets. It

turned out to be sometimes related, for instance in Section 5.4

where it is crucial to be able to decide whether an ideal is prin-

cipal to prove ideal effectiveness of the lexicographic quasi-

ordering. This is further discussed in Section 8.3.1. Another

case where the inability to test whether an ideal is principal af-

fected our work is discussed in Section 8.3.2. Because of these

two examples mostly, we considered adding this requirement

to our definition. However, the WQO defined above is obtained as a quotient of an

ideally effective WQO, that in addition satisfies the extra assumptions of Section 4.1.

This proves that the ability to decide ideal principality is not preserved under quotient.

We favored the generality of our results on quotient over the specific lexicographic

quasi-ordering, and decided to exclude this axiom from Definition 3.1.1.
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8.3.1 The Lexicographic Quasi-Ordering Is Not Ideally Effective

In this section, we prove that the lexicographic quasi-ordering introduced in Section 5.4

is not ideally effective in general. More precisely, in Section 5.4 we proved that (X1×
X2,≤lex) is ideally effective provided that (X1,≤1) and (X2,≤2) are ideally effective

WQOs, and that we can decide whether an ideal of X1 is principal. Subsequently, we

justify the necessity of this last assumption.

Let (X1,≤1) be the WQO defined in the previous section, in particular it is un-

decidable given I ∈ Idl(X1) whether I is principal. Let X2 be the finite set {a, b}
ordered with equality. What matters most here is that X2 is not an ideal.

Lemma 8.3.1. Given I ∈ Idl(X1), the downward-closed set I × X2 is an ideal of

(X1 ×X2,≤lex) if and only if I is not principal.

Proof. (⇒) By contraposition, if I = ↓x is a principal ideal for some x ∈ X1, then

the elements 〈x, a〉 and 〈x, b〉 have no common upper bound in I ×X2.

(⇐) Let 〈x, c〉, 〈y, d〉 ∈ I ×X2. Since I is not principal (but directed), there exists

z ∈ I such that z is strictly greater than both x and y. Then 〈z, a〉 ∈ I × X2, and is

greater for ≤lex than both 〈x, c〉, 〈y, d〉.

Theorem 8.3.2. Let (X1,≤1) and (X2,=) be the two WQOs defined above. We rep-

resent elements of X1 ×X2 as pairs of encodings of X1 and X2. Then, for any repre-

sentation of ideals of (X1 ×X2,≤lex), the lexicographic product (X1 ×X2,≤lex) is

not ideally effective.

Proof. Fix some representation of ideals of (X1 ×X2,≤lex).
Recall that both (X1,≤1) and (X2,=) are ideally effective. Therefore, given I ∈

Idl(X1), we can compute its complementU
def
= X1rI . We can then compute V

def
= U×

{a}∪U×{b} ∈ Up(X1×X2). Indeed, ifU =
⋃

i∈I ↑1 xi, then V =
⋃

i∈I ↑lex〈xi, a〉∪
↑lex〈xi, b〉. Assuming (X1 × X2,≤lex) is ideally effective, we can compute (X1 ×
X2)rV = I×X2. In particular, we can decide whether I×X2 is an ideal. According

to the previous lemma, this is impossible.

8.3.2 The Domination Ordering on Multisets Does Not Effectively

Extend the Embedding Quasi-Ordering

Let (X,≤) be a WPO. Recall from Section 7.2 the definition of its finite multiset

extension under the domination ordering (X⊛,≤ms). Also, remember that ≤ms is

an extension of ≤emb, where (X⊛,≤emb is the finite multiset extension under the

embedding ordering, shown ideally effective in Section 7.1.

Proving (X⊛,≤ms) to be ideally effective following the approach of Section 4.1

would require to show that the functions ClI and ClF associated to this extension are

computable. Subsequently, we show that this is not the case in general. This justifies

that ideal effectiveness was shown from scratch in Section 7.2, with a better encoding

of ideals of (X⊛,≤ms) than the one from Section 4.1.

Recall that ideals of (X⊛,≤emb) are elements ↓∈ B ⊕ D⊛ for B ∈ (Idl(X)⊛

and D ∈ Down(X), where ↓∈ B ⊕ D⊛ = {M | M r D ∈emb B}. Observe that
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when characterizing ↓ms[↓∈ B⊕D⊛] in Proposition 7.2.2, it was crucial to distinguish

principal ideals from limit ideals. Suppose B = {| ↓x1, . . . , ↓xn, I1, . . . , Im|} where

I1, . . . , Im are limit ordinals, then it was proved in Proposition 7.2.2 that ↓ms[↓∈ B ⊕
D⊛] = ↓ms{|x1 · · ·xn|}+ (D ∪ I1 ∪ · · · ∪ Im)⊛.

Applying this to the WQO X from Section 8.3:

ClI(↓∈{|ω · (i+ 1)|}) =
{
↓ms{|ω · i+ ti + 1|} if Ti halts

[ω · (i+ 1)]⊛ otherwise

=

{
↓∈{|ω · (i+ 1)|} ∪ [ω · i+ ti]

⊛ if Ti halts

[ω · (i+ 1)]⊛ otherwise

8.4 Deciding whether an Ideal is Adherent

Finally, we show that adherence cannot be decided in general. Remember from Sec-

tion 4.3 that given Y ⊆ X , an ideal I ∈ Idl(X) is adherent to Y if and only if

↓X(I ∩ Y ) = I .

Below, we define a WQO (X,≤) and a recursive subset Y ⊆ X such that deciding

whether a given ideal of X is adherent to Y is undecidable. Moreover, we show that

this WQO is not ideally effective, proving that some extra assumptions are necessary

for induced WQOs to be ideally effective (however, this does not prove that the extra

assumptions made in Section 4.3 are necessary).

Define X = ω2 ordered by the natural ordering. (X,≤) is ideally effective since

it is an ordinal, as proved in Section 3.2.3. Consider the subset Y = {ω · i + t |
i, t ∈ N, t ≤ ti}. This is a recursive subset of X Observe that the ideal ω · (i + 1)
is adherent to Y if and only if Ti halts. Therefore, adherence to Y is undecidable.

Moreover, Y r ↑Y ω · (i+1) gives the halting time ti of Ti, hence (Y,≤) is not ideally

effective.
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Chapter 9

Toward Ideally Effective BQOs

We motivate our introduction of Better Quasi-Orderings with yet another construction:

that of taking infinite sequences over a WQO (X,≤). By infinite, we mean sequences

of length ω.

9.1 Infinite Sequences of WQOs

Let (X,≤) be a QO. We consider the QO (Xω,≤ω) where Xω denotes the set of infi-

nite sequences overX , and≤ω denotes the embedding relation introduced in Chapter 2

restricted to Xω . Formally, if u = (ui)i∈N and v = (vi)i∈N, we have:

u ≤ω v
def⇔ There exists a strictly increasing mapping f : N→ N. ∀i ∈ N. ui ≤ vf(i)

If |X| > 1, the set Xω has uncountably many elements, and thus we cannot rep-

resent all its elements algorithmically. However, if (X,≤) is a WQO, then (Xω,≤ω)
has countably many equivalence classes for ≡ω . This relies on the following charac-

terization of ≤ω over Xω .

For the remainder of this section, let (X,≤) designates a WQO.

Proposition 9.1.1. Given u = (ui)i∈N ∈ Xω , define the tail of u as D(u) =
⋂

i∈N

⋃

j≥i ↓uj , and the head of u as the finite prefix h(u) = u0 · · ·uj of u, where j
is the smallest natural number such that ∀k > j. uk ∈ D(u).

Then, for all u ∈ Xω: ↓u = (↓∗ h(u)) ·D(u)ω .

Corollary 9.1.2. Given u,v ∈ Xω ,

u ≤ω v ⇔ h(u) ∈ (↓h(v)) ·D(v)∗ ∧D(u) ⊆ D(v)

Proof. Of Proposition 9.1.1 and Corollary 9.1.2.

Let u = (ui)i∈N ∈ Xω . Intuitively, D(u) consists of all elements of X that will be

covered infinitely often in u. The sequence Di =
⋃

j≥i(↓uj) is a decreasing sequence

of downward-closed subsets of (X,≤). Thus since (X,≤) is WQO, (Di)i∈N stabilizes

to some element Di0 , and its limit is D(u) = Di0 6= ∅. Hence, h(u) is well defined.
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Let u = (ui)i∈N,v = (vi)i∈N ∈ Xω . We show the following:

u ∈ ↓v ⇐⇒ u ∈ (↓h(v)) ·D(v)ω.

(⇒) Assume u ≤ω v and let f : N → N be a witness of this embedding. Let i0
be the greatest index such that f(i) ≤ |h(v)|. Then u1 · u2 · · ·ui0 ≤∗ h(v) ( ≤∗ is the

embedding quasi-ordering on X∗, see Section 6.1). Moreover, by definition of h(v):
for every i > i0, vf(i) ∈ D(v). Thus ui ∈ D(v).

(⇐) Assume u ∈ (↓h(v)) · D(v)ω . Let u = u1u2 with u1 ∈ ↓h(v) and u2 ∈
D(v)ω . We define f : N → N that witnesses u ≤ω v. For indexes up to |u1|, f is

defined as a witness of u1 ≤∗ h(v). The remainder of f is defined inductively: for

every i > |u1|, pick for f(i) an index j such that j > max{i, f(1), f(2), . . . , f(i−1)}
and vj ≥ ui. Such an index j exists since ui ∈ D(v) and D(v) consists of all the

elements of X that are covered infinitely often in v, that is: x ∈ D(v) ⇔ ∀i ∈
N. ∃j > i. x ≤ vj .

Proof of Corollary 9.1.2

u ≤ω v ⇔ ↓u ⊆ ↓v
⇔ (↓h(u)) ·D(u)ω ⊆ (↓h(v)) ·D(v)ω

⇔ (↓h(u)) ·D(u)ω ⊆ (↓h(v)) ·D(v)∗ ·D(v)ω

⇔ h(u) ∈ ↓h(v) ·D(v)∗ ∧D(u) ⊆ D(v)

Corollary 9.1.3. The set Xω/ ≡ω is countable.

Proof. It follows from Proposition 9.1.1 that

u 6≡ω v ⇔ h(u) 6= h(v) ∨D(u) 6= D(v)

Since X∗ and Down(X) are countable (X is assumed countable), so is Xω/ ≡ω .

Finally, one last property is directly implied by Proposition 9.1.1:

Corollary 9.1.4. (Xω,≤ω) is a WQO if and only if (Down(X),⊆) is.

Note that (WQO7) in Section 2.3 only gives well-foundedness of (Down(X),⊆).
And indeed, (Down(X),⊆) may not be a WQO. Hence, neither is (Xω,≤ω). This

matter is discussed in Section 9.2.

9.1.1 Encodings for Xω and its Ideals

Subsequently, let (X,≤) designates an ideally effective WQO such that (Down(X),⊆)
is also a WQO. In this setting, (Xω,≤ω) is a WQO as well.

We have argued that it is hopeless to represent every element of Xω , and we

will therefore focus on the ideal effectiveness of its quotient (Xω/ ≡ω,≤ω). The

above results suggest to represent equivalence classes of Xω/ ≡ω as pairs from X∗ ×
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Down(X). Intuitively, we want a pair 〈u, D〉 ∈ X∗ ×Down(X) to encode the equiv-

alence class of infinite sequences that have head u and tail D. There are three issues

with this representation:

1. If D = ∅, there are no infinite sequences with tail D. We therefore define

Down ′(X) = Down(X)r {∅}, the set of non-empty downward-closed subsets

of X . Note that working with X∗ × Down(X) amounts to represent X≤ω , the

set of sequences of length at most ω. Subsequently, we will restrict our attention

to X∗ ×Down ′(X).

2. If u has a non-empty suffix in D, then there are no infinite sequence of head u

and tail D, since we defined the head to be as small as possible. We therefore

want 〈u, D〉 to denote any infinite sequence in u ·Dω .

3. However, all the elements of u · Dω do not belong to the same equivalence

class. For instance, if X = {a, b, c} is a finite alphabet, and if u = aaba
and D = {a, c}, then aaba(a+ c)ω contains the word aabaaω , which is strictly

smaller than aaba(ca)ω for instance. The reason is thatD(aabaaω) = {a} ( D.

The solution is to restrict our attention to the maximal elements of u ·Dω: they

are all equivalent, and thus represent a unique element of Xω/ ≡ω . This is

proved in the next proposition.

Proposition 9.1.5. 1. Let u,v ∈ Xω . If u ≡ω v, then h(u) = h(v) and D(u) =
D(v). We can thus define the head and tail of an equivalence class S ∈ Xω/ ≡ω .

They will be denoted h(S) and D(S) respectively.

2. Given an equivalence class S of Xω/ ≡ω , S consists exactly of the maximal

elements of h(S) · (D(S))ω .

3. Given 〈u, D〉 ∈ X∗ × Down ′(X), the maximal elements of u · Dω all are

equivalent for ≡ω . Let S be the equivalence class they all belong to. We have

D(S) = D and h(S) = u1, where u = u1u2 and u2 is the longest suffix of u

which is in D∗.

According to the third point of the proposition above, we let 〈u, D〉 ∈ X∗ ×
Down ′(X) represent the equivalence class S ∈ Xω/ ≡ω to which every maximal

element of u · Dω belongs. Note that in general the maximal elements of u · Dω are

strictly included in S. For instance, in the case introduced before: if X = {a, b, c} is

a finite alphabet, and if u = aaba and D = {a, c}, the infinite sequence aab(ca)ω is

equivalent to maximal elements of u ·Dω , but does not belong to it.

Moreover, an equivalence class S has several representations. In light of the propo-

sition, we define 〈h(S), D(S)〉 to be its canonical representation. According to the

third point, this representation is computable from any other representation 〈u, D〉: it

suffices to remove the suffix of u which is in D.

Proof. Of Proposition 9.1.5

1. According to Corollary 9.1.2, we immediately get that D(u) = D(v) by double

inclusion. Moreover, we have h(u) ∈ ↓h(v) ·D(u)∗, but by definition of h(u),
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its last symbol is not in D(u). Therefore h(u) ≤∗ h(v). By symmetry we get

h(u) = h(v).

2. Any element u ∈ Xω belongs to h(u)·D(u)ω . Therefore, elements of S belong

to h(S)·D(S)ω . Conversely, if u ∈ h(S)·D(S)ω then h(u) ∈ (↓h(S))·D(S)∗

andD(u) ⊆ D(S). Therefore, by Corollary 9.1.2, u is smaller than any element

of S.

3. Given u ∈ X∗ and D ∈ Down ′(X), decompose u = u1u2 where u2 is the

longest suffix of u which is in D. Any maximal word v of u · Dω can be

written u1v
′ with v ∈ Dω . Since u1’s last element is not in D, h(v) = u1

and D(v) = D. Therefore, they are all equivalent, and we denote by S their

equivalence class. We have proved that S is the class of elements of head u1 and

tail D.

The decidability of≤ω on this representation follows from Corollary 9.1.2, and the

computability of the canonical representation, the quasi-ordering≤ onX , the inclusion

of ideals of (X∗,≤∗) and the inclusion of downward-closed subsets of X .

We denote by the same symbol≤ω the quasi-ordering on X∗×Down ′(X) defined

by: 〈u, D〉 ≤ω 〈v, E〉 if all the equivalent maximal sequences of u · Dω are smaller

than all the equivalent maximal sequences of v · Eω . This new quasi-ordering ≤ω

is decidable since we can always compute the canonical representations, and then use

Corollary 9.1.2. Instead, we prove that Corollary 9.1.2 is also valid in this more general

setting:

Proposition 9.1.6. Given two pairs 〈u, D〉, 〈v, E〉 ∈ X∗ ×Down ′(X),

〈u, D〉 ≤ω 〈v, E〉 ⇐⇒ u ∈ (↓v) · E∗ ∧D ⊆ E

Proof. Let S and T be the two equivalence classes of Xω/ ≡ω represented by 〈u, D〉
and 〈v, E〉 respectively. By Proposition 9.1.5, we know that D = D(S) and E =
D(T ) on the one hand, and that u = h(S) · u′ and v = h(T ) · v′ for some u′ ∈ D∗

and some v′ ∈ E∗.

(⇒) If 〈u, D〉 ≤ω 〈v, E〉, by Corollary 9.1.2:

h(S) ∈ (↓h(T )) ·D(T )∗ ∧D(S) ⊆ D(T ),

which is equivalent to h(S) ∈ (↓h(T )) · E∗ ∧ D ⊆ E. The left conjunct implies

h(S)u′ ∈ (↓h(T )) · (↓u′) · E∗, and since u′ ∈ D∗ ⊆ E∗, this simplifies to u ∈
(↓h(T )) · E∗ ⊆ (↓v) · E∗.

(⇐) Conversely, because u = h(S)u′ and u′ ∈ D∗ ⊆ E∗, u ∈ (↓v) · E∗

implies h(S) ∈ (↓h(T )v′) · E∗. But since v′ ∈ E∗, the right-hand-side simplifies to

(↓h(T )) · E∗, entailing the desired condition:

h(S) ∈ (↓h(T )) ·D(T )∗ ∧D(S) ⊆ D(T )
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9.1.2 Ideal Effectiveness of the Infinite Sequences Extension

It follows from the previous proposition that the relation ≤ω on X∗ × Down ′(X)
extends the classical product ordering ≤× (it is actually be obtained as a composition

with an equivalence relation, as defined in Section 4.2). Therefore, Section 4.1 applies

to the quasi-ordering ≤ω , and we therefore once again turn to the functions ClI and

ClF.

Lemma 9.1.7. Given I ∈ Idl(X∗,≤∗), J ∈ Idl(Down(X),⊆), u ∈ X∗ and D ∈
Down(X):

ClI(I × J ) def
= ↓ω(I × J ) = (I · (

⋃

J )∗)× J

ClF(〈u, D〉) def
= ↑ω〈u, D〉 =

⋃

u=u1u2

↑×〈u1, D ∪ ↓Supp(u2)〉

Proof. Let 〈u, D〉 ∈ I ×J and 〈v, E〉 ≤ω 〈u, D〉, that is v ∈ (↓u) ·D∗ and E ⊆ D.

Since D ∈ J and u ∈ I which is downward-closed, v ∈ I · (⋃J )∗. Finally, since J
is downward-closed, E ∈ J and 〈v, E〉 ∈ I · (⋃J )∗)× J .

Conversely, given 〈v, E〉 ∈ I · (⋃J )∗) × J , decompose v = uw with u ∈ I

and w ∈ (
⋃J )∗. Since w is finite, it actually belongs to a finite union (

⋃

iDi)
∗ of

downward-closed sets of J . Since J is directed, D
def
= E ∪⋃iDi is in J . Therefore,

〈v, E〉 ≤ω 〈u, D〉 ∈ I × J .

Let 〈v, E〉 ≥ω 〈u, D〉, that is u ∈ (↓∗ v) ·E∗ and D ⊆ E. Decompose u = u1u2

with u1 ≤∗ v and u2 ∈ E∗: 〈u1, D ∪ ↓Supp(u2)〉 ≤× 〈v, E〉.
Conversely, if u = u1u2, then trivially u ∈ (↓∗ u1) · (↓Supp(u2))

∗ and D ⊆
D∪↓Supp(u2). Thus, according to Corollary 9.1.2, 〈u1, D∪Supp(u2)〉 ∈ ↑ω〈u, D〉.

Now according to Sections 4.1, 5.3 and 6.1, (Xω,≤ω) is ideally effective provided

that:

1. (X,≤) is ideally effective,

2. (Down ′(X),⊆) is ideally effective,

3. Functions ClI and ClF are computable.

The first condition is the basic assumption we have made throughout other sections.

The second one however is novel: indeed, (Down(X),⊆) might not even be a WQO

in general, making its ideal effectiveness a non-relevant question. The necessity of

this extra assumption will be further discussed in the next section. Finally, we could

neither prove that the third condition follows from the two first conditions, nor that it

was independent. The two operations we use in Lemma 9.1.7 whose computability

does not follow a priori from the two first conditions listed above are
⋃J (used in

the expression of ClI) and ↓Supp(u) (used in the expression of ClF). We have already

used the second one earlier, and it seems obviously computable, since Supp(u) (for

u a finite word) is a finite set, ↓Supp(u) =
⋃

x∈Supp(u) ↓x. However, this expres-

sion will output a downward-closed set represented as a list of ideals of X . But, we
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need this downward-closed set to be represented according to the encoding chosen to

show that (Down(X),⊆) is ideally effective. Indeed, assuming that both (X,≤) and

(Down ′(X),⊆) are ideally effective is not enough, we need to ensure that the represen-

tations used for downward-closed sets of (X,≤) can be translated into representations

of elements of Down ′(X).
In other words, we want to assume that the following transfer function is com-

putable:

{
Down(X) → Down ′(X)

D 7→ D

Similarly, the operation
⋃J is a way to link the representations in the other di-

rection: going from ideals of Down ′(X) back to ideals of X . We thus assume the

computability of the flattening function:

{
Idl(Down ′(X)) → Down(X)

J 7→ ⋃J

Finally, we obtain the following theorem:

Theorem 9.1.8. Let (X,≤) a WQO such that (Down(X),⊆) is a WQO.

Then (Xω/ ≡ω,≤ω) is an ideally effective WQO provided that:

• (X,≤) is ideally effective for some representations of X and Idl(X),

• (Down ′(X),⊆) is ideally effective, for some representations of Down ′(X) and

Idl(Down ′(X)),

• The transfer function is computable. It maps a non-empty list [I1, . . . , In] of

ideals of X (encoded according to the representation of the first condition) to an

element D ∈ Down ′(X) (encoded according to the representation of the second

condition) such that D =
⋃n

i=1 Ii.

• The flattening function is computable. It maps J ∈ Idl(Down ′(X)) to a list

[I1, . . . In] of ideals of X (encoded according to the first condition) such that
⋃J =

⋃n

i=1 Ii.

The next chapter is devoted to a deeper understanding of the assumptions that

(Down(X),⊆) is a WQO, and furthermore an ideally effective one.

Remark 9.1.9. It is natural to assume that we represent the elements of Down ′(X)
using the same representation we have used so far, thus rendering the transfer function

trivial. Note that in the expression of ClF, we also perform unions of downward-closed

sets, which is trivial with our usual representation, but might not be for an arbitrary

one. Thankfully, union of downward-closed sets corresponds to intersection of filters:

↑D1 ∩ ↑D2 = ↑(D1 ∪D2)

Unions of downward-closed sets are therefore computable when Down ′(X) is ideally

effective.
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However, even if we assume the usual representation for Down ′(X), we could not

prove that the computability of the flattening function is implied by the other assump-

tions (namely ideal effectiveness of both X and Down(X)). Nor could we prove that

it is independent (in the fashion of Chapter 8).

However, we would like to point out that the flattening function allows to test

whether an ideal is principal: J ∈ Idl(Down(X)) is principal if and only if
⋃J ∈

J . This does not suffice to prove that the flattening function is not computable in

general since the counter-example for deciding whether an ideal is principal given in

Section 8.3 takes place in a more general setting. In other words, the flattening function

allows to decide whether an ideal is principal only in WQOs that are the ideal space

of another WQO.

Furthermore, assume we represent downward-closed sets as finite sets of ideals.

Then, the flattening allows to decide whether an ideal of X is principal. Indeed, given

an ideal of X , one can compute ↓( I
def
= {J ∈ Idl(X) | J ( I}. Indeed, this set can

be obtained as ↓Idl(X) I ∩ (Idl(X) r ↑Idl(X) I). We claim that
⋃
(↓( I) = I if and

only if I is not principal in Idl(X). Indeed, if I is principal, I = ↓x for some x ∈ X .

Then for every J ∈ ↓( I , x /∈ J , and therefore x /∈ ⋃ ↓( I , but x ∈ I . Conversely, if

x ∈ I but x /∈ ⋃(↓( I), then ↓x ⊆ I but ↓x 6( I , i.e. ↓x = I .

Once again, this is not enough to conclude that the flattening function is not com-

putable in general: it might be the case the the assumption Down ′(X) is ideally ef-

fective implies that we can test whether an ideal of X is principal. In particular, for

all ideally effective WQOs (X,≤) we know of such that we cannot decide whether an

ideal is principal, Down ′(X) is not ideally effective.

9.2 Better Quasi-Orderings

Chapters 5 to 7 provide an effective algebra of ideally effective WQOs: any WQO

obtained as sums of products of finite sequences of finite subsets of finite multisets

of ordinals and/or finite WQOs is an ideally effective WQO. And procedures for set-

theoretic operations in this WQO do not only exist, they can be computed from the

structure of the WQO.

However, the operations of taking the infinite sequences of a WQO (quasi-ordered

with embedding), or the infinite powerset (quasi-ordered with⊑H) are not a priori part

of this algebra. Indeed, these two operations do not preserve the WQO property. This

was first proved by Rado in [38]: he exhibited a WQO (X,≤) such that (Xω,≤ω) is

not WQO. This WQO is now commonly known as Rado’s structure. Moreover, this

counter example is minimal: given a WQO (X,≤), (Xω,≤ω) is WQO if and only if

(X,≤) does not embed Rado’s structure.

Inspired by this characterization, Nash-Williams [39, 40] defined the notion of Bet-

ter Quasi-Orderings (BQO), that notably satisfies the following property: if (X,≤) is a

BQO, then the ordinal sequences overX , quasi-ordered with embeddability is a WQO.

Alternatively, Section 9.1 has shown that P(X) is WQO if and only if Xω is, and thus,

Rado provided a sufficient and necessary condition for P(X) to be WQO. What Nash-

Williams intended are conditions on (X,≤) such that P(X), P2(X)
def
= P(P(X)),
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P3(X), and so on iterating transfinitely all are WQOs.

Many positive results on BQOs followed, the intuitive rule being that whenever an

order-construction preserves WQO, its infinitary version preserves BQO: if (X,≤) is

WQO, then the set of finite sequences overX is WQO (Higman’s Theorem), while if it

is BQO, the set of sequences over a countable ordinal is BQO. Similar results for sets

and trees have been proved.

Of course, BQOs are better WQOs, that is a BQO is in particular a WQO, and

indeed the original definition was given in a similar way: (X,≤) is BQO if any appli-

cation f : B → X from a barrierB toX is good, that is there exists s⊳t ∈ B such that

f(s) ≤ f(t). The formal definitions of barriers and ⊳ are too technical and out of the

scope of this thesis, and will therefore not be given, we simply stress the similarities

with (WQO1): the application f : B → X is a generalization of an infinite sequence

(application from N to X). For that matter, N is a barrier on which ⊳ coincides with the

natural ordering, which proves that any BQO is WQO.

Jullien [41] later provided an alternative definition of BQOs, which is proved equiv-

alent in [42, 11]. This definition uses the notion of indecomposability of an ordinal

sequence (which we solely call sequence from now on, see Chapter 2 for definitions,

terminology and notations. In particular, in what follows, ≤ denotes sequence embed-

ding). A sequence s is said to be indecomposable if for any sequences s1, s2 such

that s = s1 · s2 and s2 6= ǫ, s ≤ s2, that is indecomposable sequences embed in

all their non-empty suffixes. Note that an indecomposable sequence necessarily has an

indecomposable length, where an ordinal α is indecomposable if it cannot be written

α = β + γ with 0 6= γ < α, or equivalently, α = ωβ for some ordinal β.

Definition 9.2.1. Jullien [41] A QO (X,≤) is BQO if any non-empty sequence s over

X of countable length can be written s = s1 · s2 with s2 non-empty and indecompos-

able, i.e. s has an indecomposable suffix.

In this chapter, we are looking for sufficient conditions on (X,≤) to ensure that

(Xω,≤ω) is an ideally effective WQO. In particular, we need (Down(X),⊆) to be

WQO (cf. Corollary 9.1.4). Note that since every construction presented in the pre-

vious chapters that preserve WQOs also preserve BQOs, and since our basic WQOs

(namely natural numbers and finite quasi-orderings) are BQOs, our effective algebra

of WQOs is actually an algebra of BQOs. Thus, we can also close this algebra under

the construction of the infinite sequences (which preserves BQO), or the full powerset

construction. But what about effectiveness ? To prove that (Xω,≤ω) is an ideally ef-

fective WQO, we need that (Down(X),⊆) is not only a WQO, but an ideally effective

one. In other words, we want to show that Down is an ideally effective construction on

BQOs. It cannot be an ideally effective construction on WQOs since it does not even

preserve WQOs. In Section 9.4, we will actually show a stronger statement. But first,

we introduce a finer notion than BQO.

9.3 α-WQO

Observe that Definition 9.2.1 can be naturally layered: X is a BQO if all ordinal se-

quences over X satisfy some property. In the following definition, we only ask that

115



this property holds for ordinal sequences up to some length. The following definition

can be found in [11]:

Definition 9.3.1. [11], Chapter 8

Given an indecomposable ordinal α, a QO (X,≤) is α-WQO if any β-sequence s over

X for β ≤ α can be written s = s1 · s2 with s2 non-empty and indecomposable.

Note that the notion of α-WQO when α is not indecomposable coincides with the

notion β-WQO if there exists γ such that α = γ + β. Indeed, if (X,≤) is β-WQO,

then any sequence s ∈ Xα can be decomposed s = uv with v ∈ Xβ , and thus v has

an indecomposable suffix. This is the reason we are only interested in α-WQOs for

indecomposable ordinals α.

With this definition, a QO is BQO if and only if it is α-WQO for every countable

ordinal α. Moreover, the notion of WQO coincides with ω-WQO, which provides a

simple proof that BQOs are WQOs.

Proposition 9.3.2. (X,≤) is WQO if and only if it is ω-WQO.

Proof. Observe that ω-sequences have been introduced in the previous chapter.

(⇒) If (X,≤) is WQO, and s is an ω-sequence, then the decomposition of s is

given by its head and tail which were introduced in Proposition 9.1.1. Indeed, let s′ be

the ω-sequence such that s = h(s) · s′. It is not hard to see that s′ is indecomposable

since it is made of elements that are covered infinitely often in s.

(⇐) If (X,≤) is ω-WQO, and s ∈ Xω , let s = s1s2 be the decomposition given

by Definition 9.3.1, and let x be the first element of s2. Since s2 is indecomposable, x
must be smaller than some subsequent element of s2.

We are mainly interested in this finer definition for the following property:

(Down(X),⊆) is WQO if and only if (X,≤) is ω2-WQO. This is proved in the fol-

lowing proposition, among other characterizations:

Proposition 9.3.3. Let (X,≤) be a QO. The following are equivalent:

1. (X,≤) is ω2-WQO,

2. (Idl(X),⊆) is WQO,

3. (Down(X),⊆) is WQO,

4. (Up(X),⊇) is WQO,

5. (P(X),⊑H) is WQO,

6. (P(X),⊑S) is WQO,

7. (Pf (X),⊑S) is WQO,

8. (Xω,≤ω) is WQO,

9. X<ω2

is WQO for the sequence embedding quasi-ordering,
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10. Xω2

is well-founded for the sequence embedding quasi-ordering,

11. (X,≤) is a WQO and does not contain Rado’s structure,

where ⊑S is the Smyth quasi-ordering on P(X), defined by: S⊑ST
def⇔ ∀y ∈ T. ∃x ∈

S. x ≤ y.

Proof. 2 ⇐⇒ 3: follows from the isomorphism between (Down(X),⊆) and

(Pf (Idl(X))/≡H,⊑H), and the fact that (Y,≤) is WQO if and only if (Pf (Y ),⊑H)
is.

5 ⇐⇒ 3 ⇐⇒ 4: also follows from aforementioned isomorphisms (notably at

the end of Chapter 2).

4 ⇐⇒ 6 ⇐⇒ 7: dual of ⊑H which coincides with inclusion for downward-

closed sets, ⊑S coincides with ⊇ for upward-closed set: S⊑ST if and only if ↑S ⊇
↑T . Besides, any subset S is equivalent for ⊑S to its upward-closure, which is equiv-

alent to its finite basis.

3 ⇐⇒ 8: follows from Corollary 9.1.4

9⇒ 8: Xω is a subset of X<ω2

.

8⇒ 9: The embedding quasi-ordering onX<ω2

is an extension of Higman’s quasi-

ordering on (Xω)∗, which is a WQO by Higman’s Lemma.

10⇒ 1: Let s ∈ Xω2

. Consider the set of all non-empty suffixes of s. Since Xω2

is well-founded, this set has a minimal element. It is simple to see that this minimal

element is an indecomposable suffix of s.

1⇒ 8: Let Y be the set of indecomposable sequences of Xω . We show that Y is a

WQO. It follows that X∗ × Y is a WQO, since by Proposition 9.3.2, (X,≤) is WQO.

Moreover, since (X,≤) is ω2-WQO, any ω-sequence s can be decomposed s = s1s2
with s2 indecomposable. Therefore, Xω is isomorphic to an extension of X∗×Y , and

as such is WQO.

We proceed to show that Y is WQO. An infinite sequence S = (si)i<ω of elements

of Y can be flattened as a sequence s =
∏

i<ω si ∈ Xω2

. This sequence can be written

s = uv with v indecomposable, and we can further assume that the length of u is a

multiple of ω, that is u = s0s1 · · · sn for some n < ω. Now we can unflatten v to

see it back as an ω-sequence V = sn+1sn+2 · · · over Y . Since v is indecomposable,

sn+1 embeds in some finite prefix of what remains of V , i.e. sn+1 ≤ sn+2 · · · sm for

some m < ω. But since sn+1 is an infinite sequence, by the pigeon-hole principle

an infinite suffix of sn+1 embeds in si for some n + 2 ≤ i ≤ m, and since sn+2

is indecomposable, sn+1 ≤ si. This is an increasing pair of S, which proves Y is a

WQO.

3⇒ 10: This implication follows from an analysis of the embedding relation be-

tween ordinal sequences which is very similar to the one we conducted in Proposi-

tion 9.1.1, but we failed to provide a proof that uses this analysis without replaying

it. As previously observed, the “unflattening” defines a reflection from Xω2

to (Xω)ω

which is in general not an embedding. Therefore, the image of the embedding quasi-

ordering on Xω2

is an extension of the embedding on (Xω)ω . However, if exten-

sions of a WQO are WQOs, extensions of a well-founded quasi-orderings may not be
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well-founded. As a result, we cannot deduce the well-foundedness of Xω2

from the

well-foundedness of (Xω)ω (which follows from Section 9.1 when Xω is a WQO).

Given a sequence s ∈ Xω2

, we denote by si ∈ Xω the ω-sequences such that

s = s1s2 · · · , that is ∀i, j ∈ N, si(j) = s(ω · i + j). Recall from Section 9.1 the

notion of tail of an ω-sequence. The tail of a sequence s ∈ Xω2

, denoted D(s) ∈
Down(Down(X)), is defined by D(s) =

⋂

i<ω

⋃

j≥i ↓D(si), where ↓D denotes

{E ∈ Down(X) | E ⊆ D}, that is the downward-closure is taken over

Down(Down(X)), and ↓D is a principal ideal of downward-closed sets. Assuming

Down(X) is a WQO, Down(Down(X)) is well-founded ((WQO7)) and a infinite

increasing subsequence can be extracted from the ω-sequence (D(si))i<ω , implying

thatD(s) 6= ∅. It remains to show that whenever two ω2-sequences s and t are ordered

s ≤ t, then D(s) ⊆ D(t). Let s, t be such two sequences and f : ω2 → ω2 be a

witness of the embedding s ≤ t. Let i ∈ N. The image of f(ω · (i + 1)) is in ω2,

thus it is some ω · n + m. This means that si ≤ t0t1 · · · tntn+1. Therefore, by the

pigeon-hole principle, there exists j ≤ n + 1 and an infinite suffix s′i of si such that

s′i ≤ tj . Observe that D(s′i) = D(si), and by Proposition 9.1.1, D(s′i) ⊆ D(tj).
In the end, if D ∈ D(s), it is covered by infinitely many D(si), and thus by

infinitely many D(tj), and is thus a member of D(t).
Lastly, for Item 11, we cannot provide a proof since we did not define Rado’s

structure. 11 ⇐⇒ 8: is proved in the Rado’s original article [38]. The right-to-left

direction can also be found in [43, 11] (with a nice illustration of Rado’s structure

in [43]). Otherwise, a direct proof of 11 ⇐⇒ 6: can be found in [44].

Many of the equivalences above generalize to countable ordinals.

Proposition 9.3.4. Given an indecomposable countable ordinal α, (X,≤) is α-WQO

if and only if (X<α,≤) is WQO [11, 45].

The above generalizes items 1 and 9. Items 2, 3,4, 5, 6 and 7 are generalized as the

equivalence between [46]:

• (X,≤) is (α · ω)-WQO,

• (Idl(X),⊆) is α-WQO,

• (Down(X),⊆) is α-WQO,

• (P(X),⊑H) is α-WQO,

• (P(X),⊑S) is α-WQO,

• (Pf (X),⊑S) is α-WQO,

• (Up(X),⊇) is α-WQO.

The generalization of Item 11 is what led Nash-Williams to the original definition

of BQOs, with the notion of blocks. This intuition of blocks is formalized in [42],

Theorem III-3.3. Concerning Item 10, the implicationXα well-founded⇒X α-WQO

is proved in [11], the general proof being as simple as the one above. However, we

were unable to find mention of the converse implication in the literature, and have been
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unable to prove it or disprove it. It seems possible to generalize the proof given above

for α = ω2 to indecomposable ordinals of the form ωα+1. Indeed, we essentially

used that if X is ωα+1-WQO, then Y
def
= Xωα

is WQO, and then Xωα+1

can be

approximated by Y ω . But in the case X is ωλ-WQO, with λ a limit ordinal, we cannot

use the same methods.

Finally, let us mention that all the order-constructions mentioned in the previous

chapters that preserve WQO also preserve α-WQO. For α = ω2, this will be a trivial

consequence of our analysis in the next section. In the general case, and for more

details on BQO theory, we redirect the reader to the following surveys [43, 45, 42, 11].

9.4 Ideally Effective ω2-WQOs

In this section, we extend our notion of effectiveness to ω2-WQOs.

If (X,≤) is an ordinal, then so is (Idl(X),⊆) (Section 3.2.3), and therefore it is

ideally effective (successor of a recursive ordinal is recursive). Similarly, if (X,≤) is

finite, then (Idl(X),⊆) is isomorphic to (X,≤) and is thus ideally effective. Recall

that (Down(X),⊆) is ideally effective whenever (Idl(X),⊆) is (Section 7.3). Thus

in these cases, (Xω,≤ω) is ideally effective. It remains to show that the constructions

we have considered will preserve these properties. The properties we are formally

interested in are formalized in the next definition.

Definition 9.4.1. A ω2-WQO (X,≤) further equipped with representations for X ,

Idl(X) and Idl(Idl(X)) is Idl2-effective if:

• (X,≤) is an ideally effective WQO for the given representations ofX and Idl(X),

• (Idl(X),⊆) is an ideally effective WQO for the given representations of Idl(X)
and Idl(Idl(X)).

• The flattening function defined below is computable:
{

Idl(Idl(X)) → Idl(X)
J 7→ ⋃

J

The basic WQOs from Section 3.2 are examples of Idl2-effective ω2-WQOs.

• For a finite WQO (X,≤), ideals of X are isomorphic to X itself, and thus so

are ideals of ideals. This proves that (X,≤) is an ω2-WQO. We thus represent

the three setsX , Idl(X) and Idl(Idl(X)) using the same encoding, computabil-

ity of set-theoretic operations then follow from the ideal effectiveness of finite

WQOs. Finally, the flattening function is the identity.

• The set of ideals of an ordinal (α,≤) ordered with inclusion is isomorphic to

α + 1. Therefore, the set of ideals of ideals of α is isomorphic to α + 2,

and (α,≤) is indeed a ω2-WQO. According to Section 3.2.3, both (α,≤) and

(α + 1,≤) are Idl2-effective. For the flattening function, given a successor

ordinal β + 1 ∈ α+ 2,
⋃
(β + 1) = β, and given a limit ordinal λ ∈ α+ 2,

⋃
λ = λ.
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Next, we prove that when (X,≤) is an Idl2-effective ω2-WQO, (Xω,≤ω) is an

ideally effective WQO. The previous definition has been designed to this end.

Proposition 9.4.2. Let (X,≤) be an Idl2-effective ω2-WQO. Then (Down(X),⊆),
(P(X),⊑H)) and (Xω,≤ω) are ideally effective WQOs.

Proof. The ideal effectiveness of (Down(X),⊆) follows from the isomorphism be-

tween the latter and (Pf (Idl(X)),⊑H), as a result of Section 7.3. In this same section,

we have also argued that (P(X)/ ≡H,⊑H) is isomorphic to (Down(X),⊆).
To establish the ideal effectiveness of (Xω,≤ω), we use Theorem 9.1.8. Obvi-

ously, (X,≤) is ideally effective, and (Down(X),⊆) as well according to what pre-

cedes. Since we have shown that (Down(X),⊆) is ideally effective using the standard

representation for downward-closed sets (i.e. finite sets of ideals), the transfer function

is trivial. Finally, we have to show that the following function is computable:

{
Idl(Down(X)) → Down(X)

J 7→ ⋃
J

However, Definition 9.4.1 only provides the computability of this function:

{
Idl(Idl(X)) → Idl(X)

J 7→ ⋃
J

Recall from Section 7.3 that ideals of Down(X) ≡ Pf (Idl(X)) are of the form

Pf (D) for D ∈ Down(Idl(X)), and therefore simply encoded as elements of

Down(Idl(X)). Let J be an actual ideal of Down(X) (i.e. its semantic), and D be

its representation (its syntax). Then,
⋃
J =

⋃
D. Indeed, D stands for Pf (D) =

{E ∈ Pf (Idl(X)) | E ⊆ D}, and an element E ∈ Pf (Idl(X)) actually stands for
⋃
E, that is the downward-closed set obtained as the union of the ideals members of

E. Therefore, J = {⋃E | E ∈ Pf (Idl(X)) and E ⊆ D}.
Let x ∈ ⋃J , there exists a downward-closed set F ∈ Down(X) such that x ∈

F ∈ J . Therefore, x is in some ideal I ∈ Idl(X) which appears in the canonical

decomposition of F , and by definition, I ∈D. Thus x ∈ I ∈D, proving
⋃
J ⊆ ⋃D.

For the other direction, let x ∈ D, there exists I ∈ Idl(X) such that x ∈ I ∈ D.

Therefore {I} ⊆ D and the downward-closed set I is a member of J . It follows that

x ∈ I ∈ J and
⋃

D ⊆ ⋃J .

It now remains to prove that
⋃
D is computable. Remember D ∈ Down(Idl(X)),

and it therefore has an ideal decomposition D = I1 ∪ · · · In for some I1, . . . , In ∈
Idl(Idl(X)). We can similarly prove

⋃
D =

⋃n

i=1

⋃
Ii, and given I ∈ Idl(Idl(X)),

⋃
I is computable by Definition 9.4.1.

We now want to show that our algebra of ideally effective WQOs is actually an

algebra of Idl2-effective ω2-WQOs. In particular, this would imply that (Xω,≤ω)
is ideally effective for every WQO (X,≤) in our algebra. Since we have shown that

our basic WQOs introduced in Chapter 3 are Idl2-effective ω2-WQOs, it now suffices

to show that each of the constructions introduced in the previous chapters not only

preserve WQOs and ideal effectiveness, but also ω2-WQOs and Idl2-effectiveness.
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Definition 9.4.3. An order-theoretic WQO and ω2-WQO-preserving construction C is

said to be Idl2-effective if, for every Idl2-effective ω2-WQOs (X1,≤1), . . . , (Xn,≤n):

• C[(X1,≤1), . . . , (Xn,≤n)] is an Idl2-effective ω2-WQO, and

• Presentations ofC[(X1,≤1), . . . , (Xn,≤n)] and Idl(C[(X1,≤1), . . . , (Xn,≤n)])
are computable from presentations of the (Xi,≤i) and the (Idl(Xi),⊆) (i =
1, . . . , n).

• The flattening function for C[(X1,≤1), . . . , (Xn,≤n)] is computable from flat-

tening functions for the (Xi,≤i) (i = 1, . . . , n).

Theorem 9.4.4. The following constructions are ω2-WQO-preserving and Idl2-effective:

• Disjoint Sum (Section 5.1),

• Lexicographic Sum (Section 5.2),

• Cartesian Product with Dickson’s quasi-ordering (Section 5.3),

• Finite Sequences extension with Higman’s quasi-ordering (Section 6.1),

• Finite Sequences extension with Stuttering quasi-ordering (Section 6.2),

• Finite Multisets extension with Embedding quasi-ordering (Section 7.1)

• Finite Powerset with Hoare quasi-ordering (Section 7.3),

Proof. First, observe that proving that a construction C is ω2-WQO-preserving and

Idl2-effective is equivalent to proving the conjunction of the following statements:

1. C is WQO-preserving.

2. C is ideally effective.

3. C is ω2-WQO-preserving.

4. For every Idl2-effective ω2-WQOs (X1,≤1), . . . , (Xn,≤n),
Idl(C[(X1,≤1), . . . , (Xn,≤n)]) is an ideally effective WQO.

5. A presentation of Idl(C[(X1,≤1), . . . , (Xn,≤n)]) is computable from presen-

tations of the (Xi,≤i) and the (Idl(Xi),⊆) (i = 1, . . . , n).

6. For every Idl2-effective ω2-WQOs (X1,≤1), . . . , (Xn,≤n), the flattening func-

tion for Idl(C[(X1,≤1), . . . , (Xn,≤n)]) is computable.

7. A procedure for this flattening function is computable from procedures for the

flattening functions for (Idl(Xi),⊆)
(i = 1, . . . , n).
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For each of the constructions C mentioned in the theorem, the first two statements

are already proved in the section dedicated to construction C. We therefore focus, for

each construction, on proving statements three to seven. Statement three will always be

proved by showing that Idl(C[(X1,≤1), . . . , (Xn,≤n)]) is a WQO when the (Xi,≤i)
are ω2-WQOs. Statements five and seven will always be trivial from the rest, and we

will not mention them.

Let (X,≤), (X1,≤1) and (X2,≤2) be ideally effective ω2-WQOs. In particular,

(Idl(X),⊆) and (Down(X),⊆) are ideally effective.

Disjoint Sum: In Section 5.1 we have proved that the set Idl(X1 ⊔ X2,⊔) ordered

with inclusion is isomorphic to the disjoint sum of Idl(X1) and Idl(X2). Therefore, it

is a WQO, and the disjoint sum construction is ω2-WQO-preserving. Moreover, since

Idl(X1) and Idl(X2) are ideally-effective, Section 5.1 proves that (Idl(X1 ⊔ X2),⊆
) ∼= (Idl(X1),⊆) ⊔ (Idl(X2),⊆) is ideally effective as well. Finally, the flattening

function for the sum simply is the sum of the flattening functions forX1 andX2: given

an ideal of Idl(Idl(X1 ⊔ X2)), it is of the form 〈i, I〉 for some i ∈ {1, 2} and some

I ∈ Idl(Idl(Xi)). Therefore,
⋃〈i, I〉 = 〈i,⋃ I〉.

Lexicographic Sum: Here also, the lexicographic sum is ω2-WQO-preserving and

the ideal effectiveness of Idl(X1 ⊕ X2) ∼= Idl(X1 ⊆) ⊕ Idl(X2,⊆) follows from

Section 5.2. The flattening function is exactly the same as before, but keep in mind that

the representation 〈2,⋃ I〉 actually stands for the set X1 ∪
⋃
I .

Cartesian Product with Dickson’s Quasi-Ordering: Again, Cartesian Product is

ω2-WQO-preserving and Idl2-effective because this construction commutes with the

ideal construction: Idl(X1 × X2) ∼= Idl(X1,⊆) × Idl(X2,⊆). For the flattening

function: given I ∈ Idl(Idl(X1)) and J ∈ Idl(Idl(X2)),
⋃
(I×J) = (

⋃
I)×(⋃J).

Finite Sequences with Higman’s Quasi-Ordering: In this case, the set Idl(X∗) is

in bijection with (Idl(X) ⊔ Down(X))∗, but inclusion on the former does not corre-

spond to the natural quasi-ordering ≤∗ (≤⊔) on the latter, instead it corresponds to an

extension of this natural QO.

The Atom Construction Preserves Ideal Effectiveness: We first deal with the

atoms Atm(X) (see Section 6.1 for the definition): the set of atoms is isomorphic

to an extension of (Idl(X) ⊔ Down(X),⊆⊔). Actually, the atom ∅∗ can always be

removed from an atom decomposition of an ideal of Idl(X∗) (see Definition 6.1.11).

We therefore work with (Idl(X) ⊔ Down ′(X),⊆⊔) instead, where Down ′(X)
def
=

Down(X) r {∅}. Let ⊑ be the image of the inclusion quasi-ordering on the atoms of
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X∗ by the isomorphism above, that is:

〈1, I〉 ⊑ 〈1, J〉 ⇐⇒ I + ǫ ⊆ J + ǫ ⇐⇒ I ⊆ J
〈1, I〉 ⊑ 〈2, D〉 ⇐⇒ I + ǫ ⊆ D∗ ⇐⇒ I ⊆ D
〈2, D〉 ⊑ 〈2, D′〉 ⇐⇒ D∗ ⊆ D′∗ ⇐⇒ D ⊆ D′

〈2, D〉 ⊑ 〈1, I〉 ⇐⇒ D∗ ⊆ I + ǫ which is never true (D 6= ∅
With this notation, (Atm(X),⊆) is isomorphic to (Idl(X) ⊔ Down(X),⊑). We

show that the latter is ideally effective using Section 4.1, since ⊆⊔ ⊆ ⊑: it suffices

to show that function ClF and ClI are computable. To compute ClF, use the following

equations:

ClF(〈1, I〉) = ↑⊔〈1, I〉 ∪ ↑⊔〈2, I〉
ClF(〈2, D〉) = ↑⊔〈2, D〉

Regarding function ClI, recall from Section 5.1 that the set of ideals of (Idl(X) ⊔
Down(X),≤⊔) is the disjoint sum of the set of ideals of Idl(X) and of the set of

ideals of Down(X), that is, an ideal of (Idl(X)⊔Down(X),≤⊔) is either of the form

〈1, I〉 for I ∈ Idl(Idl(X)) or of the form 〈2,J〉 for J ∈ Idl(Down(X)). Note that

Down(X) is ideally effective according to Proposition 9.4.2.

We can now show that ClI is computable:

ClI(〈1, I〉) def
= ↓⊑〈1, I〉 = 〈1, I〉

ClI(〈2,J〉) def
= ↓⊑〈2,J〉 = 〈2,J〉 ∪

n⋃

i=1

〈1, Ii〉

where
⋃n

i=1 Ii is the ideal decomposition of
⋃

J where J is seen as an ideal of

Pf (Idl(X)).
Let us argue the correctness and computability of the second equation. The ideal

J ∈ Idl(Down(X)) is actually encoded as an element of Idl(Pf (Idl(X))), according

to our representation of downward-closed sets of X . Therefore,
⋃

J =
⋃

S∈J S is

a downward-closed set of ideals of X , which admits a decomposition into ideals of

ideals of X . This is precisely the decomposition
⋃n

i=1 Ii we use in the equation above.

It remains to show that this particular decomposition can be computed from the

actual encoding of J . Remember from Section 7.3 that the ideals of Pf (Idl(X)) are of

the form Pf (D) for D ∈ Down(Idl(X)), and therefore J is actually encoded as D

(as in the proof of Proposition 9.4.2). We now prove that semantically, D =
⋃

S∈J S,

which concludes the proof since the ideal decomposition of D can be computed.

Let I ∈ D, then S
def
= {I} ∈ Pf (D) = J which proves that I ∈ S ∈ J .

Conversely, given some I ∈ J , there exists some S ∈ J = Pf (D) such that I ∈ S ⊆
D. Therefore, I ∈D.

In conclusion, functions ClI and ClF being computable, (Atm(X),⊑) is ideally

effective.

Back to the Idl2-effectiveness ofX∗, the ideals ofX∗ are finite sequences of atoms.

Unfortunately, the quasi-ordering on these sequences does not coincide with one of the
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three quasi-ordering on X∗ that we have shown to be ideally effective. Indeed, when

embedding a sequence of atoms into another, we are allowed to stutter (in the sense of

Section 6.2) on atoms of the form 〈2, D〉 for D ∈ Down(X), but not on atoms of the

form 〈1, I〉 for I ∈ Idl(X). Hence, we introduce a quasi-ordering on sequences which

generalizes both the Higman quasi-ordering and the stuttering quasi-ordering. We call

it the partial stuttering quasi-ordering, and we now show that it is an ideally effective

construction (for any ideally effective WQO (X,≤), not only for atoms, which is the

case we are ultimately interested in).

The Partial Stuttering Quasi-Ordering is Ideally Effective: Given an ideally

effective WQO (X,≤) and an upward-closed set A ⊆ X , define the partial stuttering

quasi-ordering on A by:

x1 · · ·xn ≤A
st y1 · · · ym

def⇔ ∃f : [n]→ [m]. ∀i ∈ [n]. xi ≤ yf(i)
and ∀i 6= j ∈ [n]. f(i) = f(j)⇒ yf(i) ∈ A.

This QO generalizes both the Higman quasi-ordering (from Section 6.1) and the

stuttering quasi-ordering (from Section 6.2): ifA = ∅, then≤A
st=≤∗ and whenA = X ,

≤A
st = ≤st. In all generality, the following holds: ≤∗ ⊆ ≤A

st ⊆ ≤st. In particular, this

QO is an extension of ≤∗, and we can use Section 4.1 to prove it ideally effective.

Since A is upward-closed, ≤A
st is transitive: it suffices to compose the witnesses of

the embeddings. Moreover, it is also still possible to concatenate witnesses, that is if

u ≤A
st u

′ and v ≤A
st v

′ then u · v ≤A
st u

′ · v′ (≤A
st is compatible with concatenation). In

particular, it is still the case that (↓Ast P1) · (↓Ast P2) = ↓Ast(P1 · P2), for P1,P2 ideals

of (X∗,≤∗). Therefore, it only remains to compute ClI on atoms.

ClI(I + ǫ) = I∗ when I ∩A 6= ∅
ClI(I + ǫ) = I + ǫ otherwise

ClI(D∗) = D∗

Proof. If A ∩ I 6= ∅ then:

• ↓Ast I ⊆ I∗: if u ≤A
st x for some x ∈ I , then u ∈ (↓x)∗ ⊆ I∗. The case u ≤A

st ǫ
is trivial.

• I∗ ⊆ ↓Ast I: given u ∈ I∗, since u is finite and I is directed, we can find x ∈ I
such that x is greater than every element of u. Moreover, since I is directed,

there exists z ∈ I which is greater than all elements of u (greater than x) and

which is in A (pick any y ∈ A ∩ I). It satisfies u ≤A
st z.

If A ∩ I = ∅ then: for any u ≤A
st x for some x ∈ I , since x /∈ A, |u| ≤ 1 and

therefore u = ǫ, or u = y for y ≤ x ∈ I . The other inclusion is trivial. So is the third

equation.

Observe that the condition I∩U 6= ∅ for I ∈ Idl(X) and U ∈ Up(X) is decidable.

Indeed, I ∩↑x 6= ∅ ⇐⇒ x ∈ I: the right-to-left direction is trivial, and if there exists

y ∈ I ∩ ↑x, then x ≤ y ∈ I which implies x ∈ I since I is downward-closed.
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Emptiness of the intersection with an upward-closed is then tested by distributing the

intersection over the unions. Therefore, ClI is computable.

As in Section 6.2, function ClF is more complicated: let u = x1 · · ·xn,

ClF(u) = ↑st u = ↑∗







y1 · · · yk |
0 ≤ k ≤ n

0 = i0 < i1 < · · · < ik = n
∀j ∈ [k]. yi ∈ min(

⋂

ij−1<ℓ≤ij
↑X xℓ)

∀j ∈ [k]. (ij = ij−1 + 1 ∨ yj ∈ A)







Remember the intuition given in Section 6.2: if u ≤st bw, we can extract the image

v = y1 · · · yk of an embedding witnessing u ≤st w (v is a subsequence of w). This

induces a factorization u = u1 · · ·uk of u where ui ≤st yi for all i ∈ [k]. Now

for ≤A
st, we must also ensures that either yi ∈ A (it can embeds several elements), or

|ui| = 1. The proof is left to the reader.

In conclusion, ClF is computable as well, which proves that (X∗,≤A
st) is ideally

effective for any A ∈ Up(X) whenever (X,≤) is ideally effective. In our case,

(Idl(X∗),⊆) is isomorphic to (Atm(X)∗,≤〈2,Down′(X)〉
st ), where as expected,

〈2,Down ′(X)〉 designates {〈2, D〉 | D ∈ Down ′(X)} ∈ Up(Atm(X)). The latter is

ideally-effective according to what precedes.

To establish the Idl2-effectiveness of (X∗,≤∗), it remains to prove the computabil-

ity of the flattening function. Let P ∈ Idl(Idl(X∗)). It is encoded as an ideal of

(Atm(X)∗,≤〈2,Down′(X)〉
st ). These ideals are themselves encoded as sequences of

some particular atoms of Atm(X), which we will subsequently call higher atoms.

Given I ∈ Idl(Idl(X)), then 〈1, I〉 ∈ Idl(Atm(X)) and 〈1, I〉 + ǫ is a higher atom.

If D ∈ Down(Idl(X)), then 〈1,D〉 ∈ Down(Atm(X)) and 〈1,D〉∗ is a higher

atom. Lastly, given E ∈ Down(Down(X)), 〈2,E〉 ∈ Down(Atm(X)) and 〈2,E〉∗
is a higher atom. Moreover, these are the only types of higher atoms.

Now, any P ∈ Idl(Idl(X∗)) is encoded as a product A1 · · ·An of higher atoms,

and the flattening of P is the product of flattening of its higher atoms:

⋃

P = (
⋃

A1) · · · (
⋃

An)

It thus remain to prove that the flattening of higher atoms is computable. Let A be an

higher atom.

• If A = 〈1, I〉+ ǫ, then
⋃
A = 〈1,⋃ I〉.

• If A = 〈1,D〉∗, then
⋃
A = 〈1,⋃D〉∗. Indeed, if u ∈ ⋃A then there

exists some ideals I1, . . . , In ∈ D ⊆ Idl(X) for n = |u| such that u ∈ (I1 +
ǫ) · · · (In + ǫ). But since for every i, Ii ⊆

⋃
D, u ∈ (

⋃
D)∗.

Conversely, let u = x1 · · ·xn ∈ (
⋃
D)∗. In particular, for each i, xi ∈

⋃
D,

and there exists an ideal such that xi ∈ Ii ∈D. Therefore, u ∈ (I1+ǫ) · · · (In+
ǫ) ∈ 〈1,D〉∗.

Besides, we can compute D = I1∪· · ·∪Im the ideal decomposition of D, with

Ii ∈ Idl(Idl(X)), and we have

⋃

D = (
⋃

I1) ∪ · · · ∪ (
⋃

Im)
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This last expression is computable using the flattening function for Idl(Idl(X)).

• Lastly, if A = 〈2,E〉∗ for some E ∈ Down(Down(X)), then
⋃
A = 〈2,⋃E〉∗.

The proof is similar to the previous one. Besides, the expression
⋃
E for E ∈

Down(Down(X)) has already been shown computable in Proposition 9.4.2.

Finite Sequences with Stuttering: In this case, Idl(X∗,≤st) is isomorphic to

(Down(X)∗,⊆st). which is ideally effective since (Down(X),⊆) is (cf. Section 6.2).

Note that the quasi-ordering ≤A
st on X∗ introduced in the previous paragraph gen-

eralizes both ≤∗ (A = ∅) and ≤st (A = X). Therefore, the Idl2-effectiveness of

these two constructions follows from the Idl2-effectiveness of (X∗,≤A
st), which can

be proved following the lines of the previous case.

Finite Multisets with the Embedding Quasi-Ordering: In this case, Idl(X⊛,≤emb)
is isomorphic to an extension of (Idl(X)⊛ ×Down(X),≤×). The latter is ideally ef-

fective according to Sections 5.3 and 7.1. We show that its extension is ideally effective

using Section 4.1.

Let ⊑ denotes the image of ⊆ by the function that maps an ideal I ∈ Idl(X⊛) to

〈B, D〉 ∈ Idl(X)⊛ ×Down(X) where I = ↓∈ B ⊕D⊛, that is:

〈B, D〉 ⊑ 〈C, E〉 def⇔ B r E ⊆emb C ∧D ⊆ E
Function ClF is easily seen computable: given 〈B, D〉 an ideal of (Idl(X)⊛ ×

Down(X),≤×),

ClF(〈B, D〉) =
⋃

C⊂B

↑×〈C, D ∪ ↓Supp(B −C)〉

For function ClI: recall from Section 5.3 that ideals of (Idl(X)⊛×Down(X),≤×)
are pairs of ideals of Idl(X)⊛ and of ideals of Down(X). Using the results of Sec-

tion 7.1, the ideals of Idl(X)⊛ are of the form ↓∈ B⊕D⊛ for (B,D) ∈ Idl(Idl(X))⊛×
Down(Idl(X)). Let 〈↓∈ B ⊕D⊛, I〉 be an ideal of (Idl(X)⊛ ×Down(X),≤×):

ClI(〈↓∈ B ⊕D⊛, I〉) = 〈↓∈ B ⊕ (D ∪ ↓⊆{I1, . . . , In})⊛, I〉
where I1 ∪ · · · ∪ In is a decomposition of the downward-closed set

⋃
I , and ↓⊆ here

designates the downward-closure of a set of ideals within Down(Idl(X)), i.e. ↓⊆ S =
{I ∈ Idl(X) | ∃J ∈ S. I ⊆ J}. It has been shown before that the expression

⋃
I is

computable for I ∈ Idl(Down(X)).

Proof. Let B ∈ ↓∈ B⊕D⊛ ⊆ Idl(X)⊛ andD ∈ I ⊆ Down(X), so that ↓∈ B⊕D⊛

is an element of Idl(X⊛). Let ↓∈ C ⊕ E⊛ ⊆ ↓∈ B ⊕ D⊛ be a smaller ideal. Then

by Proposition 7.1.6, C r Down(D) ⊆emb B and E ⊆ D. Let I1 ∪ · · · ∪ In be

the ideal decomposition of the downward-closed set
⋃

I . Since C is a multiset of

ideals, C r Down(D) = C r Idl(D). Indeed, remember that since D is downward-

closed, its ideals are exactly the ideals of X that are subsets of D. Moreover, since

D ∈ I , then D ⊆ ⋃ I = I1 ∪ · · · ∪ In. That is, Idl(D) ⊆ ↓⊆{I1, . . . , In}. Hence,

C ∈ ↓∈ B ⊕ (D ∪ ↓⊆{I1, . . . , In})⊛ and obviously E ∈ I .

The other inclusion is clear.
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Regarding the flattening function: let J ∈ Idl(Idl(X⊛)). It is encoded as 〈↓∈ B⊕
D⊛, I〉 where B ∈ Idl(Idl(X))⊛, D ∈ Down(Idl(X)) and I ∈ Idl(Down(X)).

We claim that:

⋃

J = ↓∈{|
⋃

I1, . . . ,
⋃

In|} ⊕ (
⋃

D ∪
⋃

I)⊛

where B = {|I1, . . . , In|}, for some I1, . . . , In ∈ Idl(Idl(X)).
Indeed, let M ∈ ⋃J , there exists an ideal of X⊛ ↓∈ B ⊕ D⊛ ∈ J such that

M ∈ ↓∈ B⊕D⊛. By definition of J ,D ∈ I and B ∈ ↓in B⊕D⊛. DecomposeM =
M1+M2 withM1 ∈emb B andM2 ∈ D⊛. Firstly, sinceD ∈ I ,M2 ∈

⋃
I . Secondly,

decompose B = B1 + B2 with B1 ∈emb B and B2 ∈ D⊛. Further decompose

M1 = M ′
1 +M ′′

1 such that M ′
1 ∈emb B1 and M ′′

1 ∈emb B2. Composing embeddings

that witness M ′
1 ∈emb B1 and B1 ∈emb B, it follows that M ′

1 ∈ {|
⋃
I1, . . . ,

⋃
In|}.

Indeed, if an element x ∈ M ′
1 belongs to an ideal I ∈ B1, which itself belongs to an

ideal of ideals J ∈ B, then x ∈ ⋃J .

Finally, for every x ∈M ′′
1 , there exists an ideal I ∈ B2 such that x ∈ I , and since

B2 ∈D⊛, I ∈D. Therefore x ∈ ⋃D and M ′′
1 ∈ (

⋃
D)⊛.

Conversely, let M = M1 + M2 + M3 with M1 ∈emb {|
⋃
I1, . . . ,

⋃
In|} and

M2 ∈ (
⋃
D)⊛ and M3 ∈ (

⋃
I)⊛. Let k = |M1| ≤ n, write M1 = {|x1 · · ·xk|} such

that for every i ∈ [k], xi ∈
⋃
Ii. Thus, for each i, there exists Ii ∈ Ii such that xi ∈ Ii.

Define Ij to be an arbitrary ideal of Ij for j ∈ [k+1, n], and define B = {|I1, . . . , In|}.
We have M1 ∈emb B ∈emb B.

Moreover, let M2 = {|y1 · · · yℓ|} and B′ = {| ↓ y1, . . . , ↓ yℓ|} ∈ (Idl(X))⊛. Since

M2 ∈ (
⋃
D)⊛, B′ ∈ D⊛, and B + B′ ∈ ↓∈ B ⊕D⊛. Finally, we can similarly

prove that there exists D ∈ I ⊆ Down(X) such that M3 ∈ D⊛, ultimately proving

that M ∈ ⋃J .

Finite Powerset with Hoare Quasi-Ordering: In this case, Idl(Pf (X),⊆) is iso-

morphic to (Down(X),⊆), which has been shown to be ideally effective in Proposi-

tion 9.4.2. The computability of the flattening function has also been proved there.

Unfortunately, we did not finish our investigation in time to include all the results

in this manuscript, but we have recently obtained that:

• Under extra assumptions, (X,≤′) is Idl2-effective when (X,≤) is, where ≤ ⊆
≤.

• These extra assumptions are met in the case of (X∗,≤cj) which is thus Idl2-

effective.

• The domination ordering on finite multisets is also Idl2-effective.

Remark 9.4.5. As the reader may have noticed, constructions that “commute” with

the ideal constructions are particularly easy to show Idl2-effective. For instance, for

the cartesian product, Idl(X1 × X2) = Idl(X1) × Idl(X2) and therefore, the Idl2-

effectiveness comes for free with the ideal-effectiveness.
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In the case of sequences, we have seen that ideals of X∗ are some kind of “higher”

sequences as well, but the ordering on these sequences is not the classical embedding

ordering. Therefore, we introduced a quasi-ordering≤A
st on sequences that generalizes

the Higman quasi-ordering, and that almost commutes with the ideal construction.

In particular, Chapter 6 should have presented (X∗,≤A
st) first, and proved its ideal

effectiveness. Then, the ideal effectiveness of (X∗,≤∗) and (X∗,≤st) would have

been obtained as a corollary.

The answer to the Idl2-effectiveness of extensions (≤ ⊆ ≤′, see Section 4.1) fol-

lows a similar path: the ideals of (X,≤′) is not an extension of the ideals of (X,≤),
essentially because the support of the QO is not the same: Idl(X,≤) 6= Idl(X,≤′).
What we found to be the good notion that generalizes extensions is the setting where

there exists a surjective and monotone function f : (X,≤X)→ (Y,≤Y ). In this case,

(X,≤X) is ideally effective, and functions ClI and ClF (similar definitions) are com-

putable, then (Y,≤Y ) is ideally effective. Moreover, it is now possible to show that this

setting is preserved under the ideal construction: the existence of f always imply the

existence of a surjective and monotone map g : Idl(X,≤X)→ Idl(Y,≤Y ). Thanks to

this more general notion, we were able to show that (X∗,≤cj) is Idl2-effective.

9.5 Perspectives

In conclusion, we have provided an effective algebra of ideally effective ω2-WQOs,

whose set-theoretic operations in these ω2-WQOs can be automatically computed.

Most of the commonly used WQOs fall in this algebra, but this inductive approach

becomes particularly handy for WQOs that consist of a high number of iterations of

these constructions. This is for instance the case of the quasi-ordering used for priority

channel systems [47], which essentially is the n-th iteration of Higman’s extension of

the one element WQO, for a fixed n ∈ N.

Note that this algebra is not closed under taking infinite sequences. Indeed, this

construction is not Idl2-effective as it does not even preserve ω2-WQOs. However,

given any quasi-ordering in this algebra, the set of infinite sequences over this WQO

is ideally effective, and procedures for set-theoretic operations can be computed. The

same can be said for taking the powerset (P(X),⊑H) of a quasi-ordering in this al-

gebra. This has applications in verification: some algorithms to verify WSTS [48, 49]

rely on (P(X),⊑H) being an effective WQO. Also in [29], the authors define the

completion of a WSTS which is a transition system whose states are the ideals of the

original set of states. For this system to be well-structured, we need that the original

WQO is ω2-WQO, and to apply e.g. forward analysis, it is crucial that Idl(X) be an

ideally effective WQO.

Extending the Algebra One of the most natural extension of our work would be

to add more classical constructions to our algebra, the most relevant being trees and

graphs. In these two cases, the objects at hand are more complex, and therefore so

are the ideals, and a fortiori operations manipulating them. Already characterizing the

structure of the ideals is difficult, and finding convenient representations becomes tough

as well. Moreover, there are several classes of trees to consider, each of which can be

128



quasi-ordered with several variants (bounded/unbounded width, bounded/unbounded

height, ranked/unranked trees, etc.). The case of graphs is no simpler: already the

minor relation is not simple to manipulate, and in practice many variants of this quasi-

ordering are used, that are sometimes only WQOs on certain classes of graphs.

In conclusion, a complete investigation of these two cases would be long and dif-

ficult, and the results would be quite technical. In the case of trees, some cases have

been shown effective (in some sense close to ours) in [13] and [30] for instance.

Infinite Sequences. If we want the infinite sequences construction to be part of our

algebra, we need a class of WQOs that is preserved by this construction. Section 9.1

shows that this is the same as being preserved by the construction Down . From Propo-

sition 9.3.4 we deduce that the smallest such class is that of α-WQOs for α < ωω .

This motivates the following inductive definition:

Definition 9.5.1. Given n ∈ N, (X,≤) is Idln-WQO if:

• (X,≤) is ωn-WQO,

• (X,≤) is an ideally effective WQO,

• (Idl(X),⊆) is Idln−1
-effective,

• The representation of ideals of X coincides in the two lines above.

• The flattening function from Idl(Idl(X)) to Idl(X) is computable.

(X,≤) is Idlω-effective if it is Idln-effective for every n ∈ N.

Note that from Proposition 9.3.4, it is simple to derive that if (X,≤) is ωn-WQO,

then Idln(X) is a WQO, where Idln(X) is the n-th composition of the ideal comple-

tion of X . Note that X ωω-WQO is not equivalent to X being ωn-WQO for every n.

Indeed, Proposition 9.3.4 shows that if X is ωn-WQO for every n, then so is Idl(X).
However, Idl(X) is ωω-WQO if and only ifX is ωω+1-WQO. Therefore, the two con-

ditions are not equivalent since it is proved in [45] that α-WQO and β-WQO are two

different notions when α and β are two distinct indecomposable countable ordinals.

However, for our purpose, being ωn-WQO for every n ∈ N seems sufficient: it

allows any finite number of application of the infinite sequences construction to a WQO

of our algebra, provided all of our constructions are Idln-effective (similar definition)

Disjoint and lexicographic sums, and cartesian products are obviously Idlω effec-

tive. But this is less clear for finite sequences for instance, since Idl(X∗) is not directly

expressible with our constructions (we had to use an extension).

A promising first step would be to generalize Section 4.1 to Idln-effective WQOs.

Does assuming the computability of ClI and ClF at the first level is enough to show

that an extension is still Idln-effective, or do we need such functions for each level

Idlm(X) for m ≤ n ?
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Ideally Effective BQOs. What about a notion of effectiveness for BQOs? The char-

acterization X ωn-WQO if and only if Idln(X) WQO is convenient to inductively de-

fine Idln-effectiveness. But does it generalizes further ? There is a classical definition

of the transfinitely iterated powerset Pα(X) in BQO theory, which can be adapted to

Idlα(X), and it is well known thatX is BQO if and only ifPω1(X) is WQO. However,

we did not find any layered version of this theorem, that is: X ωα+1-WQO if and only

if Pα(X) WQO. With such a property, we could for instance define Idlα-effectiveness

as Idlβ(X) being ideally effective for every β ≤ α. It would probably also be neces-

sary to assume that representations used for each Idlβ(X) are compatible, in the sense

that the representation for ideals of Idlβ(X) is the same as the representation for the

elements of Idlβ+1(X); and to have some uniformity assumptions of the form: the

function that to β ∈ α associates a full presentation of Idlβ(X) is computable.

Minimality of the Definition Is Definition 9.4.1 minimal ? Does there exists a ω2-

WQO (X,≤) such that (Idl(X),⊆) is not ideally effective ? A starting point would be

to investigate the domination ordering on finite multisets or the lexicographic product,

since we were unable to prove these constructions to be Idl2-effective.
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Part II

First-Order Logic over an

Ideally Effective WQOs

Joint work with Ph. Schnoebelen and G. Zetzsche
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Results on the expressiveness and decidability of first-order theories, and in particu-

lar first-order theories over some fixed structure abound. One of the simplest structures

one can think of are quasi-ordered sets, and indeed many such structures have been

studied in the last decades (see [50, 51, 52, 53, 54, 55, 56] and references therein). In

the following chapters, we investigate first-order logics over well quasi-ordered sets.

More precisely, given a WQO (X,≤), we consider the first-order logic with ≤ as the

only predicate, denoted FO(X,≤), where≤ is interpreted as the quasi-ordering≤ over

X . We can for instance express the following properties:

• ∀x, y, z. x ≤ y ∧ y ≤ z → x ≤ z. This expresses that ≤ is transitive, which is

true for any QO (X,≤)

• ∀x, y. ∃u. x ≤ u∧ y ≤ u∧ [∀z. (x ≤ z ∧ y ≤ z)→ u ≤ z]. This expresses that

(X,≤) is a semi-lattice. This formula is for instance satisfied on the structure

(Nk,≤×) but not on (A∗,≤∗).

• ∃x, y, z, u, v, w. x ≤ u ∧ x ≤ v ∧ x 6≤ w ∧ y ≤ u ∧ y 6≤ v ∧ y ≤ w ∧ z 6≤
u ∧ z ≤ v ∧ z ≤ w ∧ x ⊥ y ∧ x ⊥ z ∧ y ⊥ z ∧ u ⊥ v ∧ u ⊥ w ∧ v ⊥ w, where

x ⊥ y is an abbreviation for x 6≤ y ∧ y 6≤ x. This formula expresses that some

finite ordering embeds into (X,≤). For instance, this particular finite ordering

does not embed into N2, but does embed into Nk for k ≥ 3.

We also consider formulas that include constants from X , that is we consider the

first-order theory with ≤ as the only predicate, and a (potentially infinite) set of con-

stants X, interpreted over X . This logic will be denoted FO(X,≤, X). For instance, the

formula

∀x. (x ≥ 〈2, 3〉 ∧ x ≥ 〈3, 2〉)↔ x ≥ 〈3, 3〉
expresses that over N2, ↑〈2, 3〉 ∩ ↑〈3, 2〉 = ↑〈3, 3〉.

More generally, we can represent any upward-closed set U =
⋃n

i=1 ↑xi as a for-

mula ϕU (x) =
∨n

i=1 x ≥ xi with one free variable x, such that for any element x ofX ,

x ∈ U if and only if X,x 7→ x |= ϕ(x). Therefore, the logic provides a representation

for upward-closed sets, and also for downward-closed sets using the excluded minor

representation. Moreover, the logic can express that a “set” (represented as a formula

with one free variable) is closed, or directed:

∀x, y. ϕ(x) ∧ y ≥ x⇒ ϕ(y)

∀x, y.ϕ(x) ∧ ϕ(y)⇒ ∃z. ϕ(z) ∧ z ≥ x ∧ z ≥ y

As a result, if FO(X,≤, X) is decidable, we can compute unions, intersections and

complements of closed subsets. In the following chapters, we investigate connections

between this representation of closed subsets and the notion of effectiveness introduced

in the first part. Of course, the decidability of the full logic FO(X,≤, X) seems to be

a much stronger property, and this is confirmed by the undecidability of Σ2(A
∗,≤∗),

proved in [55] already for A a two-elements alphabet. In the following chapters, we

thus mostly study sub-fragments of the existential fragment Σ1(X,≤, X). The exis-

tential fragment of a structure remains an important piece of the logic, notably due to
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the success of SMT solvers over the past decades. It corresponds to constraint solving,

which has many applications in theorem proving and rewriting theory for instance [50].

In Chapter 10, we prove that the positive existential fragment of FO(X,≤, X) is

decidable for any ideally effective WQO (X,≤). In [50], it is shown that the positive

existential fragment of first-order logic interpreted over terms on a finite signature,

and where the only predicate ≤ is interpreted as tree embedding, is decidable. In these

terms, we extend this result to the case where the set of terms is generated by an infinite

signature, but with no symbols of arity greater than 0 (i.e. only constants). In this case,

the ordering on terms (trees) coincides with the ordering over the elements.

In Chapter 11, we show that our result cannot be extended to the full existential

fragment, since Σ1(A
∗,≤∗, A

∗) is already undecidable for a two-symbols alphabet A,

while (A∗,≤∗) is ideally effective (Section 6.1).

The first-order structure of words (over a finite alphabet) is of particular impor-

tance in computer science, and it has been studied for various orderings, although the

most studied structure on words probably is (A∗, ·,=) where · is interpreted as con-

catenation. Its Σ2 fragment is undecidable [57, 58], but its existential fragment has

been shown decidable by Makanin [59], and has been intensively studied since, no-

tably because its exact complexity is still an open problem [60, 61]. In [54], first-order

logics over A∗ with several orderings are considered. It is in particular shown that

Σ3(A
∗,≤∗) is undecidable. This result is improved in [55]: Σ2(A

∗,≤∗) is undecid-

able. Note that in the case of A∗, it is possible to define constants (up to permutation

of the letters of A) in the Σ2 fragment, as shown in [55]. However, without constants,

Σ1(A
∗,≤∗) is decidable (this is discussed in Section 10.3). In Section 11.1, we close

the gap, showing that in the presence of constants, Σ1(A
∗,≤∗, A

∗) is undecidable.

Chapter 11 is based on the article [62]: only parts of the article are rewritten here.

A brief overview of the results of [62] that are not presented in this thesis is given in

conclusion.
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Chapter 10

Constraints Solving on an

Ideally Effective WQO

10.1 Definitions

In this section, we define formally all the notions discussed in the previous introduction

that will be used in the subsequent sections of this chapter. The main object is the first-

order logic over the structure (X,≤) with constants, denoted FO(X,≤, X).

Syntax. The syntax of this logic consists of all first-order formulas over the signature

with predicate ≤ and a constant symbol u for each u ∈ X . We use the font u to

distinguish constants from variables in the formulas. These formulas are generated by

the following grammars:

• Terms: t ::= x | u
where u ∈ X and x ∈ Var, a countably infinite set of variables.

• Formulas: ϕ ::= t ≤ t | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x. ϕ

The notation FO(X,≤) denotes the first-order logic over X without constant sym-

bols, i.e. where terms are restricted to be variables from Var.

Semantic. We interpret these formulas over a WQO (X,≤): a valuation is a function

from Var toX . A formulaϕ is said to be satisfied by a valuation V : Var→ X , denoted
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by X,V |= ϕ, if:

X,V |= t1 ≤ t2 def⇔ V(t1) ≤ V(t2), where V is extended to constants by V(u)
def
= u

X,V |= ¬ϕ def⇔ X,V 6|= ϕ

X,V |= ϕ1 ∧ ϕ2
def⇔ X,V |= ϕ1 and X,V |= ϕ2

X,V |= ϕ1 ∨ ϕ2
def⇔ X,V |= ϕ1 or X,V |= ϕ2

X,V |= ∃x. ϕ def⇔ there exists z ∈ X such that X,V ⊎ (x 7→ z) |= ϕ

where V ⊎ (x 7→ z) denotes the valuation such that for any y ∈ Varr {x}, V ⊎ (x 7→
z)(y) = V(y) and V ⊎ (x 7→ z)(x) = z.

Truth Problems. A formula is said to be:

• satisfiable if there exists a valuation V : Var→ X such that X,V |= ϕ;

• valid if for any valuation V : Var→ X , X,V |= ϕ

The set of free variables of a formula ϕ will be denoted fv(ϕ). We sometimes write

ϕ(x1, . . . , xn) to emphasize that fv(ϕ) = {x1, . . . , xn} where the xi’s are distinct.

When such an enumeration x1, . . . , xn of fv(ϕ) is understood, we denote the solutions

of ϕ by JϕK, defined by:

JϕK
def
= {(z1, . . . , zn) ∈ Xn | X,

⊎

i∈[n]

(xi 7→ zi) |= ϕ}

Note that with this definition, a formula ϕ is satisfiable if and only if JϕK 6= ∅; and

valid if and only if JϕK = Xn. As a consequence, observe that a formula is satisfiable

if and only if its negation is not valid.

A formula is said to be closed if it has no free variables. In this case, satisfiabil-

ity and validity coincide (the only valuation being the empty valuation), and the two

notions will be used interchangeably.

In the remainder of Part II, we study satisfiability and validity over fragments of

(X,≤): given a fragment (i.e. subset) F of FO(X,≤, X), define the following prob-

lems,

SATISFIABILITY OF THE F FRAGMENT

INPUT: A first-order formula ϕ ∈ F
QUESTION: Is ϕ satisfiable ?

VALIDITY OF THE F FRAGMENT

INPUT: A first-order formula ϕ ∈ F
QUESTION: Is ϕ valid ?

If F consists of closed formulas only (and it will always be the case), then the two

problems coincide, and we will say that F is decidable (resp. undecidable) to express

that both problems are decidable (resp. undecidable).
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Equivalence and Normal Forms Two formulas ϕ and ψ are said to be equivalent,

denoted ϕ⇔ ψ, if JϕK = JψK.

We assume the reader is familiar with the following normal forms:

• Alpha-renaming: if ϕ is quantifier-free and y /∈ fv(ϕ), then the formulas ∃x. ϕ
and ∃y. ϕ[x ← y] are equivalent, where ϕ[x ← y] denotes the syntactical sub-

stitution of variable y for variable x in ϕ. In particular, we can always assume

that a variable is not quantified twice in a first-order formula.

• Prenex normal form: any formula ϕ is equivalent to a formula in prenex normal

form, that is with all quantifiers in front; i.e. of the form Qx1. Qx2 . . . Qxn. ψ
where ψ is quantifier-free and Q ∈ {∃, ∀}. Given a formula, one can compute

an equivalent formula in prenex normal form.

• Finally, quantifier-free formulas can be put in disjunctive (resp. conjunctive) nor-

mal form, that is as a disjunction of conjunctions of litterals, where a litteral is

either an atomic formula or its negation.

Since the problems we study are closed under equivalence, we can always assume

that the input formulas of our problems are given in such forms.

Fragments. The main fragments we are interested in are fragments where the quan-

tifier alternation is controlled. Let Σi be the set of closed formulas in prenex normal

form that start with a certain number of consecutive existential quantifiers, then a cer-

tain number of consecutive universal quantifiers, and so on alternating at most i times

between consecutive blocks of each type of quantifiers. The fragment Πi is defined

analogously, but we ask that formulas start with universal quantifiers. By convention,

Σ0 = Π0 is the set of quantifier-free formulas.

The fragment Σi of FO(X,≤, X) will be denoted Σi(X,≤, X).

Syntactic Sugar. In the subsequent chapters, we will use the usual syntactic abbre-

viations for logical operators (notably for the universal quantification ∀), as well as the

following shortcuts:

• Not smaller: x 6≤ y def⇔ ¬(x ≤ y).

• Order equivalence: x ≡ y
def⇔ x ≤ y ∧ y ≤ x. The symbol ≡ will be denoted =

if (X,≤) is anti-symmetric.

• Incomparability: x ⊥ y def⇔ x 6≤ y ∧ y 6≤ x.

• Membership in an upward-closed set: if U =
⋃

i ↑ui, x ∈ U
def⇔ ∨

i x ≥ ui.

• Membership in a downward-closed set: if D is downward-closed, its comple-

ment ∁D = XrD is upward-closed, and the previous abbreviation can be used:

x ∈ D def⇔ ¬(x ∈ ∁D).
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10.2 Positive Existential Fragment

We begin our investigation with a very simple fragment of FO(X,≤, X), which we call

the extended positive existential fragment. As its name indicates, it is a sub-fragment

of the more common existential fragment Σ1(X,≤, X). In this section, we show the

decidability of the extended positive existential fragment, under the assumption that

(X,≤) is an ideally effective WQO.

Definition 10.2.1. The extended positive existential fragment of FO(X,≤, X) is defined

by the following grammar:

ϕ ::= u ≤ x | u 6≤ x | x ≤ u | x 6≤ u | x ≤ y | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x. ϕ

where c ∈ X and x, y ∈ Var.

We call it extended due to the presence of negation in some atomic formulas. Ob-

serve that it suffices to add the predicate “x 6≤ y” to this grammar to generate the full

existential fragment of FO(X,≤, X).

Theorem 10.2.2. If (X,≤) is an ideally effective WQO, then the extended positive

existential fragment of FO(X,≤, X) is decidable.

Our first observation is that the four atomic formulas x ⊲⊳ u (for x ∈ Var a variable,

u ∈ X a constant and ⊲⊳ ∈ {≤,≥, 6≤, 6≥}) can be reformulated as x ∈ U for some

upward-closed set U ⊆ X or as x ∈ D for some downward-closed set D ⊆ X .

Indeed:

u ≤ x⇔ x ∈ ↑u u 6≤ x⇔ x ∈ ¬↑u
x ≤ u⇔ x ∈ ↓u x 6≤ u⇔ x ∈ ¬↓u

Since (X,≤) is an ideally effective WQO, we can compute these sets (which actually

are principal ideals and filters). We push this approach beyond atomic formulas: given a

closed formula of the extended positive existential fragment, we can compute its prenex

normal form, and put the quantifier-free part of the formula in Disjunctive Normal

Form. We obtain a formula ϕ = ∃x1 · · · ∃xk.
∨p

i=1

∧qi
j=1 ϕi,j where the ϕi,j are

atomic. Moreover, since (X,≤) is ideally effective, we can compute intersections of

closed subsets. Thus for each i ∈ [p] and each j ∈ [qi], there exist formulas ψ1 and

ψ2 such that
∧qi

j=1 ϕi,j is equivalent to ψ1 ∧ ψ2, ψ1 is a conjunction of exactly one

constraint of the form x ∈ Ux ∩Dx per x ∈ Var(ϕ), for some upward-closed set Ux

and some downward-closed set Dx, and ψ2 is a conjunction of constraints of the form

x ≤ y for some x, y ∈ Var(ϕ). In the end, satisfiability of a conjunction
∧qi

j=1 ϕi,j

reduces to the following problem we call Partial-Embeddability under constraints:

PARTIAL-EMBEDDABILITY UNDER CONSTRAINTS

INPUT: A finite quasi-ordering (V,≤), a collection of upward-closed sets (Uv)v∈V

of X , and a collection of downward-closed sets (Dv)v∈V of X .

QUESTION: Does there exist a monotone f : V → X such that

∀v ∈ V. f(v) ∈ Uv ∩Dv ?
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Indeed, we take V =
⋃qi

j=1 fv(ϕi,j); ψ2 induces a quasi-ordering on V , that is,

x ≤ y in V if and only if x ≤ y is a conjunct of ψ2. Finally, ψ1 gives a collection

of upward-closed sets (Uv)v∈V and a collection of downward-closed sets (Dv)v∈V .

Subsequently, we show that this problem is decidable, which proves the decidability of

the extended positive existential fragment since it then suffices to solve an instance of

the Partial-Embeddability under constraints problem for each
∧qi

j=1 ϕi,j .

Lemma 10.2.3. The Partial-Embeddability under constraints problem is decidable.

Proof. The algorithm to solve the Partial-Embeddability under constraints problem is

based on the following observation: given v1, v2 ∈ V such that v1 ≤ v2, the function

f we seek to define must satisfy the following conditions:

1. f(v1) ≤ f(v2) (f is monotone),

2. f(v1) ∈ Uv1 ∩Dv1
,

3. f(v2) ∈ Uv2 ∩Dv2
.

But, 1 and 3 together imply that f(v1) ∈ Dv2 , and 1 and 2 together imply that f(v2) ∈
Uv1 . That is to say, our instance is equi-satisfiable with the same instance where Dv1

is replaced by Dv1 ∩Dv2 and Uv2 is replaced by Uv2
∩ Uv1

.

This motivates the following definition: an instance of the Partial-Embeddability

problem under constraints is said to be resolved if:

R1: for every v1, v2 ∈ V , v1 ≤ v2 ⇒ Uv2 ⊆ Uv1 ,

R2: for every v ∈ V , Uv is a filter,

R3: for every v1, v2 ∈ V , v1 ≤ v2 ⇒ Dv1
⊆ Dv2 ,

R4: for every v ∈ V , Dv is an ideal.

Observe that the satisfiability status of a resolved instance

I = (V,≤, (↑xv)v∈V , (Iv)v∈V ) is immediate, hence the name:

I is a yes-instance ⇔ ∀v ∈ V. ↑xv ∩ Iv 6= ∅
⇔ ∀v ∈ V. xv ∈ Iv

This last condition is decidable. The left-to-right direction of the first equivalence is

trivial. For the left-to-right direction of the second equivalence: if there exists some

y ∈ ↑xv ∩ Iv , then in particular xv ≤ y ∈ Iv , thus xv ∈ Iv since Iv is downward-

closed. Finally, if xv ∈ Iv for every v ∈ V , then the mapping f(v) = xv is a solution

to I. Indeed:

• for v ∈ V , xv ∈ ↑xv ∩ Iv .

• given v1, v2 ∈ V , if v1 ≤ v2 then ↑xv2 ⊆ ↑xv1 ,

i.e. xv1
= f(v1) ≤ xv2 = f(v2).
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Now to conclude the proof, we show how to reduce the satisfiability of any instance

to the satisfiability of a finite number of resolved instances. This process is essentially

the one described in our first observation: if an instance is not resolved, then there

exists a pair (v1, v2) ∈ V 2 such that v1 ≤ v2 and either Uv2 6⊆ Uv1
or Dv1

6⊆ Dv2 ,

or both. In this case, we can update Uv2 to Uv2
∩ Uv1 ⊆ Uv1

(respectively Dv1
to

Dv1 ∩Dv2 ⊆ Dv2 ). In this instance, the pair (v1, v2) no longer violates conditions R1

and R3 of the definition of resolved (we will deal with conditions R2 and R4 later).

However, this new instance might not be resolved because of another pair (v3, v4),
and it might be the case that v3 or v4 is actually equal to v1 or v2. Then, performing

the same update for (v3, v4) might break again the property Uv2
⊆ Uv1

∧Dv1
⊆ Dv2 .

Therefore we must be careful in which order the updates are performed.

Observe that the update for a pair (v1, v2) does not change Dv2 and Uv1 . We thus

have to consider the upward-closed sets and the downward-closed sets independently,

and update upward-closed sets following a non-decreasing order with respect to (V,≤),
while updating downward-closed sets following a non-increasing order with respect to

(V,≤).
Besides, to ensure conditions R2 and R4, we use the decomposition of upward-

closed sets (resp. downward-closed sets) as a union of filters (resp. ideals). If U =
⋃

i Fi and D =
⋃

j Ij , then x ∈ U ∩ D is equivalent to
∨

i,j x ∈ Fi ∩ Ij . Because

of this disjunction, one instance will be reduced into several, which will all be further

reduced until all the instances are resolved. The original instance is satisfiable if and

only if one of the resulting resolved instances is satisfiable.

Formally, given an unresolved instance (V,≤, (Uv)v∈V , (Dv)v∈V ), let n = |V |
and label the elements of V as v1, . . . , vn such that ∀i, j ∈ [n], i < j ⇒ vi 6≥ vj . In

other words, v1 4 v2 4 · · · 4 vn is a linearization of ≤. We then run the following

algorithm:

1. Let L be a singleton list containing the original instance.

2. Let L′ be an empty list, that will be used as a temporary variable.

3. for j = 1 to n:

(a) for each instance I in L:

i. Update Uvj := Uvj ∩
⋂

i<j Uvi in I.

ii. For each x ∈ min(Uvj
), add a version of I updated with Uvj := ↑x

to L′.

(b) L := L′.

4. for i = n down to 1:

(a) for each instance I in L:

i. Update Dvi
:= Dvi

∩⋂i<j Dvj in I.

ii. For each ideal I in the canonical ideal decomposition of Dvi
, add a

version of I updated with Dvi := I to L′.

(b) L := L′.
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5. Return L.

As observed at the beginning of this proof, steps 3(a)i and 4(a)i preserve satisfiability,

and steps 3(a)ii and 4(a)ii simply transform unions into disjunction over multiple in-

stances. The first loop (at line 3) updates upward-closed sets, while the second loop (at

line 4) updates downward-closed sets. After the first loop is executed for index j, the

following holds for every instance of L:

∀v ∈ V. v ≤ vj ⇒ Uv ⊆ Uvj
, and the upward-closed sets Uv for v ≤ vj will no

longer be modified. Moreover, Uvj
is a filter, and will no longer be modified. Thus

conditions R1 and R2 hold at the end of the algorithm. A similar invariant holds for the

second loop. Hence, at the end of the algorithm, all instances in L are resolved, and the

original instance is satisfiable if and only if one of the resolved instances of L is.

10.3 Full Existential Fragment

In the previous section, we have established the decidability of a sub-fragment of the

existential fragment of FO(X,≤, X). As observed earlier, it suffices to add the predicate

x 6≤ y to the grammar of Definition 10.2.1 to obtain a grammar for the full existential

fragment of FO(X,≤, X) (this grammar produces existential formulas whose negations

have been pushed down to the atoms).

The same approach we used for the extended positive existential fragment can be

applied to the full existential fragment:

• push the negations of ϕ in,

• convert predicates x ⊲⊳ c into constraints x ∈ U and x ∈ D,

• put in prenex normal form, with the quantifier-free part in DNF.

We obtain a formula

ϕ = ∃x1 · · · ∃xk.
p
∨

i=1

(
∧

x∈Var

x ∈ U i,j
x ∩Di,j

x

)

∧ ψi,j

for some collections of upward-closed sets (Ux)x∈Var and downward-closed sets

(Dx)x∈Var. However this time, formulas ψi,j are conjuncts of predicates of the form

x ≤ y for some x, y ∈ Var (as before) but also of the form x 6≤ y. Thus, if we

interpret ψi,j as a quasi-ordering on Var, some monotone mapping from Var to X
might actually not satisfy ψi,j . We need the stronger notion of embedding: x ≤ y if

and only if f(x) ≤ f(y). We obtain a reduction to the following problem:

EMBEDDABILITY UNDER CONSTRAINTS

INPUT: A finite quasi-ordering (V,≤), and two collections (Uv)v∈V and (Dv)v∈V

of upward-closed and downward-closed sets of X respectively.

QUESTION: Does there exists an embedding f : V → X such that

∀v ∈ V. f(v) ∈ Uv ∩Dv ?

Note that since ψi,j might not fully define a quasi-ordering on Var (i.e. ψ does not

enforce exactly one among x < y, x = y or x ⊥ y ), we have to make an additional
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disjunction in ϕ over all finite quasi-orderings satisfying ψi,j before reducing to this

problem.

Replacing the monotone mapping by an embedding induces some changes: we

say that an instance (V,≤, (Uv)v∈V , (Dv)v∈V ) of the Embeddability under constraints

problem is resolved if:

1. for every v1, v2 ∈ V , v1 ≤ v2 ⇒ Uv2 ⊆ Uv1 ,

2. for every v ∈ V , Uv is a filter,

3. for every v1, v2 ∈ V , v1 ≤ v2 ⇒ Dv1
⊆ Dv2 ,

4. for every v ∈ V , Dv is an ideal.

5. for every v1, v2 ∈ V , v1 6≤ v2 ⇒ Uv2
6⊆ Uv1

Once again, a resolved instance I = (V,≤, (↑xv)v∈V , (Iv)v∈V ) can be easily

solved:

I is a yes-instance if and only if ∀v ∈ V. ↑xv ∩ Iv 6= ∅
if and only if ∀v ∈ V. xv ∈ Iv

Indeed, if ∀v ∈ V. xv ∈ Iv , then the mapping f(v) = xv is a solution to instance I.

Here again, f(v) ∈ ↑xv ∩ Iv by construction. Moreover, it is an embedding:

• if v1 ≤ v2, then ↑xv2 ⊆ ↑xv1 , i.e. xv1 ≤ xv2 .

• if v1 6≤ v2, then ↑xv2 6⊆ ↑xv1 , i.e. xv1 6≤ xv2 .

Now, to reduce an unresolved instance to resolved instances as in the previous

section, we need to handle pairs of elements of V such that v1 6≤ v2. This was not the

case with the Partial-Embeddability problem since monotone mappings may lose that

information. Observe that given a pair (v1, v2) ∈ V 2 such that v1 6≤ v2, and Uv2 ⊆
Uv1

, if Uv2
is a filter (say Uv2

= ↑x2) then we can update Uv1 with Uv1
∩ ∁(↓x2).

This operation is sound and complete. Indeed, if the original instance has a solution f ,

then f(v2) ≥ x2. Therefore, if f(v1) ∈ ↓x2, then f(v1) ≤ f(v2), and f would not be

a solution. Thus, f(v1) ∈ Uv1 ∩ ∁(↓x2).
At this point, one can see how this affects the rest of the proof: while in the case

of partial-embeddability, we could update upward-closed sets in a certain order on

V that was ensuring termination, here there could be a pair (v1, v2) ∈ V 2 such that

v1 6≤ v2 6≤ v1 for which the sequence of updates described above never reaches a

resolved instance. This suspicion will be confirmed in the next chapter, where the

following is proved:

Theorem 10.3.1. For (X,≤) = (A∗,≤∗), where (A,=) is a two-symbol alphabet and

≤∗ is the Higman quasi-ordering introduced in Section 6.1: Σ1(A
∗,≤, A∗) is undecid-

able.

This result contrasts with the NP-completeness of Σ1(A
∗,≤∗), proved in [54].

Note that more generally, the decidability of Σ1(X,≤) reduces to the embeddability

problem without constraints, that is given a finite quasi-ordering, does it embed in

(X,≤) ? This problem in the case of (Nk,≤×) is called the dimension problem [63].

In the case of (A∗,≤∗) for a finite alphabet A, every instance is positive [54].
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Chapter 11

First-Order Logic over the

Subword Ordering

11.1 Undecidability of Σ1(A
∗,≤∗, A∗)

This section is dedicated to the proof of undecidability of the existential fragment of

FO(A∗,≤∗, A
∗) whereA = {a, b} is a two-symbol alphabet, i.e. ordered with equality.

More precisely we prove the following:

Theorem 11.1.1. For each recursively enumerable set S ⊆ N, there is a Σ1 formula

ϕ over the structure FO(A∗,≤∗, A
∗) with one free variable such that JϕK = {ak | k ∈

S}. In particular, Σ1(A
∗,≤∗, A

∗) is undecidable.

To prove Theorem 11.1.1, we use the following result on recursively enumerable

sets:

Theorem 11.1.2 ([64]). Let S ⊆ N be a recursively enumerable set. Then there is a

finite set of variables {x0, . . . , xm} and a finite set E of equations, each of the form

xi = xj + xk xi = xj · xk xi = 1

with i, j, k ∈ [0,m], such that

S = {y0 ∈ N | ∃y1, . . . , ym ∈ N : (y0, . . . , ym) satisfies E}.
Proof. Of Theorem 11.1.1

The proof consists in building more and more complex predicates that can be ex-

pressed in the existential fragment of FO(A∗,≤∗, A
∗). The new predicates we express

are described in the meta language of mathematics. For each of them, we provide an

existential first-order formula in our logic extended with the predicates built so far.

Recall that A = {a, b}. As in the rest of the manuscript, elements in A∗ are denoted

u,v, ... in bold font. For variables in the formulas, we use letters x, y, z, u, v, w. When

proving the correctness of the formulas we provide, we identify a variable and its val-

uation, infringing the previous rule.

The following predicates can be expressed in Σ1(A
∗,≤∗, A

∗):
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1. Simple languages membership: x ∈ ua∗vb∗w, or simply x ∈ ua∗v.

In the rest of the proof, we will write ∃x ∈ L for several languages L of the form

ua∗vb∗w, for some u,v,w ∈ A∗ and a, b ∈ A. This can indeed be expressed in

our logic since we have seen that we can express membership in upward-closed

sets and downward-closed sets, and ua∗vb∗w = ↑(uvw)∩(↓u)a∗(↓v)b∗(↓w)
(see Section 6.1 for the structure of downward-closed sets of (A∗,≤∗)). Simi-

larly, ua∗v = ↑(uv) ∩ (↓u)a∗(↓v).
2. Occurrence comparison (strict): |u|a < |v|a.

Recall |u|a denotes the number of occurrences of a in u.

∃x ∈ a∗ : x ≤∗ v ∧ x 6≤∗ u.

The correctness of this expression follows from the observation that for x ∈ a∗,

x ≤∗ u is equivalent to |x| ≤ |u|a.

3. Successor (weak version 1): ∃n : u = an ∧ v = an−1b.

u ∈ aaa∗ ∧ v ∈ a∗b ∧ ∃x ∈ a∗baa : |v|a < |u|a ∧ v 6≤∗ x ∧ u ≤∗ x.

Note that the above formula is actually equivalent to “∃n ≥ 2: u = an ∧ v =
an−1b”, from which it is not difficult to build a formula for the actual predicate

we want to express.

Correctness:

(⇒) If u = an and v = an−1b for some n ≥ 2, then the formula is satisfied with

x = an−2baa.

(⇐) Conversely, suppose the formula is satisfied with u = an, x = aℓbaa and

v = amb for some ℓ,m, n ∈ N. Then |v|a < |u|a ∧ v 6≤∗ x ∧ u ≤∗ x translates

as m < n ∧ ℓ < m ∧ n ≤ ℓ + 2, i.e. ℓ < m < n ≤ ℓ + 2 which implies

n = m+ 1 = ℓ+ 2.

4. Letter occurrence comparison (equality, weak version): u, v ∈ A∗b∧|u|a = |v|a.

∃x ∈ a∗ : ∃y ∈ a∗b :
[
∃n : x = an ∧ y = an−1b

]

∧ y ≤∗ u ∧ y ≤∗ v ∧ x 6≤∗ u ∧ x 6≤∗ v.

Correctness:

(⇒) If u, v ∈ A∗b with |u|a = |v|a, then the formula is satisfied with n =
|u|a + 1.

(⇐) Suppose the formula is satisfied. Then an−1b ≤∗ u and an 6≤∗ u together

imply |u|a = n − 1. Moreover, if u ended in a, then an−1b ≤∗ u would entail

an ≤∗ u, which is not the case. Since |u| ≥ 1, we therefore have u ∈ A∗b. By

symmetry, we have |v|a = n− 1 and v ∈ A∗b. Hence, |u|a = n− 1 = |v|a.

5. Successor (weak version 2): ∃n : u = aabanb ∧ v = aban+1b ∧ w = ban+2b.

u ∈ aaba∗b ∧ v ∈ aba∗b ∧ w ∈ ba∗b
∧ [u, v, w ∈ {a, b}∗b ∧ |u|a = |v|a = |w|a] .
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6. Successor (weak version 3): ∃n : u = banb ∧ v = ban+1b.

∃x, y, z :
[
∃m : x = aabamb ∧ y = abam+1b ∧ z = bam+2b

]

∧ u, v ∈ ba∗b ∧ u ≤∗ y ∧ u 6≤∗ x ∧ v ≤∗ z ∧ v 6≤∗ y.

Again, observe that the formula only works for n ≥ 1.

Correctness:

(⇒) If u = banb and v = ban+1b for some n ≥ 1, then the formula is satisfied

with m = n− 1.

(⇐) Suppose the formula is satisfied for u = bakb and v = baℓb. Then u ≤∗

y ∧ u 6≤∗ x imply k = m+ 1; and v ≤∗ z ∧ v 6≤∗ y imply ℓ = m+ 2

7. Successor: ∃n : u = an ∧ v = an+1.

∃x, y, z :
[
∃m : x = bamb ∧ y = bam+1b

]

∧
[
∃k : y = bakb ∧ z = bak+1b

]

∧ u, v ∈ a∗ ∧ u ≤∗ y ∧ u 6≤∗ x ∧ v ≤∗ z ∧ v 6≤∗ y.

Correctness of the above formula (for n ≥ 1) is similar to the previous one. Note

that because of the word y, k has to be equal to m+ 1.

8. Occurrence comparison (equality): |u|a = |v|a.

∃x, y :
[
∃n : x = an ∧ y = an+1

]
∧ x ≤∗ u ∧ y 6≤∗ u ∧ x ≤∗ v ∧ y 6≤∗ y

As for the second predicate, correctness relies on the equivalence

x ≤∗ u⇔ |x| ≤ |u|a for x ∈ a∗.

9. Unary concatenation (weak version): u ∈ a∗ ∧ v = bu.

u ∈ a∗ ∧ v ∈ ba∗ ∧ |v|a = |u|a.

The predicate u ∈ a∗ ∧ v = ub is similarly expressible.

10. Addition: |w|a = |u|a + |v|a.

∃x, y ∈ a∗ : |x|a = |u|a ∧ |y|a = |v|a
∧∃z ∈ a∗ba∗ : xb ≤∗ z ∧ xab 6≤∗ z ∧ by ≤∗ z ∧ bya 6≤∗ z

∧ |w|a = |z|a

Note that we can define xa and ya thanks to Successor and xb, (xa)b, by and

b(ya) thanks to Unary concatenation (Items 7 and 9).

Correctness:

(⇒) Obvious.

(⇐) the constraints on the second line enforce that z = xby and hence |z|a =
|x|a + |y|a = |u|a + |v|a.
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11. Longest unary suffix: v is the longest suffix of u which is in a∗, which we will

later denote by v = ls(u, a).

v ∈ a∗ ∧ ∃x ∈ b∗a∗ : ∃y ∈ b∗a∗ :
|x|b = |y|b = |u|b ∧ |y|a = |x|a + 1

∧ x ≤∗ u ∧ y 6≤∗ u ∧ |v|a = |x|a.

Correctness: there are two cases: either u ∈ a∗, or u = u′ban for some u′ ∈ A∗

and n ∈ N. The first case is left to the reader.

(⇒) If v = an, then the formula is satisfied with x = b|u
′|bban and y = xa.

(⇐) Suppose the formula is satisfied, then v = am, x = bkam, y = bkam+1 for

k = |u|b and for some m ∈ N. Moreover, since x ≤∗ u, m ≤ n. And since

y 6≤∗ u, m+ 1 6≤ n, from which we derive m = n, and v = an.

12. Unary concatenation: v ∈ a∗ ∧ w = uv.

v ∈ a∗ ∧
∧ ∃x, y ∈ a∗ : x = ls(u, a) ∧ y = ls(w, a)

∧ |w|b = |u|b ∧ u ≤∗ w(11.1)

∧ |y|a = |x|a + |v|a ∧ |w|a = |u|a + |v|a(11.2)

Correctness:

(⇒) If v ∈ a∗ and w = uv, then the formula is satisfied with x = ls(u, a) and

y = ls(w, a).

(⇐) Let v = an, x = ap and y = aq . The implication being clear if |u|b = 0
or |w|b = 0, we write u = u′bak and w = w′baℓ. The second line implies

that k = p and ℓ = q. Moreover, y = xv (forth line), and thus w = w′bxv.

Hence, u ≤∗ w implies u ≤∗ w
′bx. Thus, w and uv have the same number of

occurrences of both a and b, and one is subword of the other: they are therefore

equal.

13. Perfect alternation: u ∈ (ab)∗.

∃v : v = uab ∧ v = abu

Note that the equation v = uab can be obtained using twice Item 12.

Correctness:

(⇒) Obvious.

(⇐) Assume abu = uab. If u = ǫ, then u ∈ (ab)∗. Otherwise, u = abu′ for

some u′ ∈ A∗, and the equation becomes ababu′ = abu′ab, which is equivalent

to abu′ = u′ab. By induction, we can prove that u ∈ (ab)∗.

14. Occurrence comparison of different letters: |u|a = |v|b.

∃x ∈ (ab)∗ : |u|a = |x|a ∧ |v|b = |x|b.
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15. Multiplication: ∃m,n : u = an ∧ v = am ∧ w = am·n.

u, v, w ∈ a∗
∧ ∃x : [∃y, z : y = bu ∧ z = yx ∧ z = xy]

∧ |x|b = |v|a ∧ |w|a = |x|a.

Here again y = bu, z = yx and z = xy results from several applications of

Item 12.

Correctness:

(⇒) The formula is satisfied with x = (bu)m.

(⇐) The conditions in brackets require (bu)x = x(bu). As in Item 13, a simple

induction proves that this implies x ∈ (bu)∗. If u = an and v = am, then the

condition |x|b = |v|a entails x = (bu)m. Finally, |w|a = |x|a = |u|a ·m = n·m.

16. Recursively Enumerable sets: ϕS(u) = ∃n ∈ S : u = an, for any set S ⊆ N

which is recursively enumerable.

We use the fact that every recursively enumerable set of natural numbers is Dio-

phantine. Applying Theorem 11.1.2 to S yields a finite set E of equations over

the variables {x0, . . . , xm}. The formula ϕS is of the form

∃x1, x2, . . . , xm ∈ a∗ : ψ,

where ψ is a conjunction of the following formulas:

• for each equation xi = 1, we add xi = a;

• for each equation xi = xj + xk, we add a formula expressing |xi|a =
|xj |a + |xk|a,

• for each equation xi = xj ·xk, we add a formula expressing xi = a|xj |·|xk|.

Then we clearly have JϕSK = {ak | k ∈ S}.

11.2 Alternation Bounded Fragments of FO(A∗,≤∗, ...)
In this section, we refine the usual Σi fragments (i ∈ N) with the notion of letter

alternation. A language L ⊆ A∗ over some alphabet A = {a1, . . . , an} is alternation-

bounded if L ⊆ (a∗1 · · · a∗n)ℓ for some ℓ ∈ N. Intuitively, the number of alternations

between two distinct letters of a word of L is bounded by ℓ·n. Equivalently, the number

of factors of the form ab for a, b ∈ A, a 6= b is bounded by ℓ · n.

The motivation behind this notion is the observation that if all variables of a Σ1 for-

mula are restricted to belong to an alternation-bounded language, then the validity of

such formulas reduces to Presburger arithmetic, the first-order theory of natural num-

bers with addition. Indeed, a word of (a∗1 · · · a∗n)ℓ can be encoded using ℓ · n integer

variables, one for each maximal factor of the form a∗, for a ∈ A. It is thus of interest

to investigate the effect of letter alternation on decidability: while Σi bounds the quan-

tifier alternation of a formula, the fragment Σi,j also bounds the number of variables

whose (letter) alternation is not bounded.
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Before defining the Σi,j fragments, we need to formalise the possibility to restrict

quantified variables to alternation-bounded languages. In this section, we will therefore

use first-order logic formulas over the following extended syntax:

ϕ ::= t ≤ t | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x. ϕ | ∀x. ϕ
| ∃x ∈ (a∗1 · · · a∗n)ℓ. ϕ | ∀x ∈ (a∗1 · · · a∗n)ℓ. ϕ

Note that the language (a∗1 · · · a∗n)ℓ is downward-closed, therefore this extended

logic is not more expressive than the one we used until now.

Definition 11.2.1. Given a closed first-order formula ϕ and a variable x ∈ Var,
we say that x is alternation-bounded in ϕ if all quantifications over x occurring in

ϕ are guarded by a language (a∗1 · · · a∗n)ℓ for some ℓ, that is are of the form Qx ∈
(a∗1 · · · a∗n)ℓ. ψ for Q ∈ {∀, ∃}. Otherwise, x is said to be alternation-unbounded.

The fragment Σi,j consists of all Σi closed formulas with at most j alternation-

unbounded variables.

In the next subsection, we formalise the intuition given above, proving that Σ1,0 is

decidable. We then prove the decidability of Σ1,1 in Section 11.2.2, by reduction to

Σ1,0.

11.2.1 Decidability of Σ1,0

Theorem 11.2.2. The Σ1,0 fragment is decidable.

We reduce Σ1,0 to existential Presburger arithmetic, the first-order theory of natural

numbers with ordering and addition (but no multiplication). This logic has been proved

decidable by Mojzesz Presburger in his Master thesis in 1929.

Let ϕ be a closed formula in Σ1,0, and ℓ be the greatest alternation-bound appearing

in ϕ. A word in u ∈ (a∗1 · · · a∗n)ℓ can be uniquely written u =
∏ℓ

j=1 a
x
j
1

1 a
x
j
2

2 · · · a
xj
n

n .

Therefore, a variable x in ϕ will be encoded by ℓ ·n Presburger variables (xji )i∈[n],j∈[ℓ]

following this decomposition. For variables with alternation bound k < ℓ, it suffices to

add the constraints xji = 0 for i ∈ [n] and k < j ≤ ℓ. In the other direction, given x =

〈x11, . . . , xℓn〉 ∈ Nℓ·n, we denote by wx the associated word wx =
∏ℓ

j=1 a
x
j
1

1 · · · a
xj
n

n .

Since ≤∗ is the only predicate in our logic, it suffices to build Presburger formulas

for x ≤∗ y and x 6≤∗ y with the above encoding of variables (notice that we can

also use this encoding for constants). The rest of the reduction is straightforward: we

replace every occurrence of x ≤∗ y or x 6≤∗ y in ϕ by the adequate Presburger formula

to obtain a Presburger formula which is equivalent to ϕ.

Proposition 11.2.3. There are existential Presburger formulas ψ≤∗ and ψ 6≤∗ such that:

ψ≤∗(x
1
1, . . . , x

ℓ
n, y

1
1 , . . . , y

ℓ
n) ⇐⇒ wx ≤∗ wy,

ψ 6≤∗
(x11, . . . , x

ℓ
n, y

1
1 , . . . , y

ℓ
n) ⇐⇒ wx 6≤∗ wy.

Proof. Let I = [n] × [ℓ] and order the pairs (i, j) ∈ I lexicographically: (i′, j′) �
(i, j) if j′ < j or j = j′ and i′ < i. This captures the order of the a

x
j
i

i factors in
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wx. We first define formulas τ and η that use extra free variables ti,j,k and ei,j,k for

(i, j, k) ∈ [n]× [ℓ]× [ℓ]
def
= J :

τ
def
=

∧

(i,j,k)∈J

ti,j,k =

{

0 if ei′,j′,k′ > 0 for some (i′, j′) � (i, j) and k′ > k

yki −
∑j−1

j′=1 ei,j′,k otherwise

η
def
=

∧

(i,j,k)∈J

ei,j,k = min

(

ti,j,k , x
j
i −

k−1∑

r=1

ei,j,r

)

These expressions define the leftmost embedding of wx into wy: the variable ti,j,k

describes how many letters from a
yk
i

i are available for embedding the a
x
j
i

i factor of wx.

The variable ei,j,k counts how many of these available letters are actually used for the

a
x
j
i

i factor in the left-most embedding of wx into wy .

We are now ready to define ψ≤∗
and ψ 6≤∗

:

ψ≤∗

def⇔ ∃(ti,j,k)J∃(ei,j,k)J : τ ∧ η ∧
∧

(i,j)∈I

(

xji ≤
ℓ∑

k=1

ei,j,k

)

ψ 6≤∗

def⇔ ∃(ti,j,k)J∃(ei,j,k)J : τ ∧ η ∧
∨

(i,j)∈I

(

xji >

ℓ∑

k=1

ei,j,k

)

Since formulas τ and η are inductive equations that uniquely define the values of

ti,j,k and ei,j,k as functions of the x and y vectors, ψ is equivalent to the negation

of ϕ (quantifying universally or existentially on the ti,j,k and ei,j,k yields equivalent

formulas). Moreover, ϕ expresses that there is enough room to embed each factor a
x
j
i

i

in wy , i.e., that wx ≤∗ wy as claimed.

11.2.2 Decidability of Σ1,1

Theorem 11.2.4. The Σ1,1 fragment is decidable.

Decidability is obtained by reduction to Σ1,0. In the fashion of a quantifier elimi-

nation procedure, we show that formulas of the form ∃t : ϕ where ϕ ∈ Σ1,0 and t is the

only alternation-unbounded variable, are equivalent to some computable Σ1,0 formula

(next proposition). To compute an equivalent Σ1,0 formula to any Σ1,1 closed formula

ψ, it then suffices to proceed by induction.

Proposition 11.2.5. Let ϕ be a Σ1,0 formula with a single free variable t. Then ∃t : ϕ
is equivalent to ∃t ∈ (a∗1 · · · a∗n)p : ϕ for some computable p ∈ N.

Proof. To prove this proposition, we exhibit a natural number p, computable from ϕ,

such that for any word u ∈ A∗, if u /∈ (a∗1 · · · a∗n)p and u ∈ JϕK, then there exists

v ∈ JϕK whose alternation is strictly smaller than u’s (but not necessarily smaller than

p). Thus, starting from any u ∈ JϕK, and by iterating the aforementioned property, we

eventually get a solution to ϕ which is of alternation at most p.

148



However, the alternation decrease in each step are so small that we need a finer

notion of alternation to prove that the alternation strictly decreases at each step. Any

word u ∈ A∗ can be factored into blocks of repeating letters, i.e. u =
∏k

i=1 ai
ℓi with

ℓi > 0 and ai 6= ai+1 for all i. By an a-block of u, we mean an occurrence of a

factor aℓii with ai = a. Subsequently, we use the number of blocks of a word as a

measure of alternation of the word. Note that if a word has k blocks, then it belongs

to (a∗1 · · · a∗n)k. Conversely, a word in (a∗1 · · · a∗n)ℓ has at most ℓ · n blocks. Therefore,

alternation-bounded languages are the same for the two notions.

Without loss of generality, we assume ϕ to be in prenex form: ϕ = ∃z1 . . . ∃zk : ψ.

Further assume that ψ has no sub-formula of the form t ⊲⊳ u for any constant u. This

can be assumed since we can always introduce a new alternation-bounded variable

which is equal to u. Let (t, z1, . . . , zk) ∈ JψK be a solution to ψ. Let ℓ be the maximal

number of blocks of the words z1, . . . , zk. We now show that if t has more than

p
def
= k · ℓ + n blocks, then there exists t′ such that (t′, z1, . . . , zk) ∈ JψK and t′ has

strictly fewer blocks than t.

Given u ∈ A∗, we write Imu for the image of the left-most embedding of u into

t. This is a set of positions in t and, in case u 6≤∗ t, these positions only account for

the longest prefix of u that can be embedded in t. In particular, | Imu| = |u| if and

only if u ≤∗ t (and | Imu| < |u| otherwise).

Formally, if u = u1 · · ·un and t = t1 · · · tm, define the left-most embedding f as

follows: f(1) is the smallest natural number k in [1,m] such that u1 = tk, if it exists,

f(1) is left undefined otherwise. For i ∈ [2, n], if f(j) as been defined up to i − 1,

let f(i) be the smallest k in [f(i − 1),m] such that ui = tk, if it exists. In any other

case, f(i) is left undefined. In the end, Imu is the set of all indexes f(1), . . . , f(n)
that have been defined.

Let b0 be an a-block of t. This block is said to be irreducible if and only if:

1. either it is the last, i.e. right-most, a-block of t,

2. or writing t under the form t = t0b0t1b1t2 where b1 is the next a-block, i.e.

a /∈ t1, one of the following holds:

• there is some i ∈ [k] such that:

zi ≤∗ t and b0 ∩ Im zi 6= ∅ and t1 ∩ Im zi 6= ∅.

• there is i ∈ [k] such that:

zi 6≤∗ t and b0 ∩ Im zi = ∅ and t1 ∩ Im zi 6= ∅ and b1 ∩ Im zi 6= ∅.

Otherwise b0 is said to be reducible.

The whole point of reducible blocks is that they can be swapped to the right: if b0
is a reducible a-block of t, then t can be decomposed t = t0b0t1b1t2 as above, and

the word t′ = t0t1b0b1t2 satisfies the conditions we want. Indeed, since b0 and b1 are

both blocks of the same letter, b0b1 is now a single block of t′, which means that t′

has strictly less blocks than t. Moreover, (t′, z1, . . . , zk) ∈ JψK: we show that for any

i ∈ [k], zi ≤∗ t if and only if zi ≤∗ t′.
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• Let i ∈ [k] such that zi ≤∗ t, there is a unique decomposition zi = u0u1u2u3u4

of zi such that Imu0 ⊆ t0, Imu1 ⊆ b0, Imu2 ⊆ t1, Imu3 ⊆ b1 and

Imu4 ⊆ t2. Since b0 is reducible, one of Imu1 or Imu2 is empty. Thus

one of u1 or u2 is the empty word, entailing zi ≤∗ t′.

• Let i ∈ [k] such that zi 6≤∗ t. Assume, by way of contradiction, that zi ≤∗ t′.

Let u1 be the maximal prefix of zi that embeds into t. We proceed to show that

b0 is irreducible (a contradiction).

– Firstly, b0 ∩ Imu1 = ∅. Otherwise, since a /∈ t1, the left-most embedding

of u1 into t′ = t0t1b0b1t2 does not use t1 at all and we would have zi ≤∗

t0b0b1t2 ≤∗ t.

– Secondly, t1 ∩ Imu1 is not empty. If it were, since a /∈ t1, the left-most

embedding of u1 into t0t1b0b1t2 would not use t1 and again we would

have zi ≤∗ t0b0b1t2 ≤∗ t.

– Lastly, b1 ∩ Imu1 6= ∅. Otherwise, the already established condition b0 ∩
Imu1 = ∅ implies that zi embeds not only in t′ but in t0t1t2, which is a

subword of t.

Now to conclude the proof, it remains to show that t indeed has a reducible block.

This results from our choice of p: every irreducible block is either a right-most a-block

for some a (n possible blocks), or can be associated with a block alternation in some

zi (ℓ · k possible blocks). Thus there are at most ℓ · k + n = p irreducible blocks in t.

Since we assumed that t has more than p blocks, t must have some reducible blocks.

11.3 Concluding Remarks

Other Results from [62]. In the previous Section, we have introduced new frag-

ments Σi,j of the logic FO(A∗,≤∗, A
∗) that refine the usual fragments Σi. We proved

the decidability of Σ1,0 by polynomial-time reduction to the existential fragment of

Presburger’s arithmetic, hence proving a NP upper bound for this fragment. The

two problems are actually inter-reducible, settling the NP-completeness of Σ1,0. The

inter-reducibility further carries over any quantifier rank, and Σi,0 is inter-reducible

with the Σi fragment of Presburger Arithmetic (see [62] for details). Recent results

of Haase [65] on these fragments then settle the complexity of Σi,0 presented in Ta-

ble 11.1. The notation ΣEXP

n used in this table denotes the n-th level of the weak EXP

hierarchy, which lies between NEXP and EXPSPACE [66, 67].

We then provided a polynomial-time reduction from Σ1,1 to Σ1,0 from which we

derive that Σ1,1 is NP-complete as well. A careful analysis of the proof of undecidabil-

ity of Σ1 in Section 11.1 actually reveals that already Σ1,3 is undecidable. The gap is

closed in [62]: Σ1,2 is also decidable. However, only a NEXP upper bound is known,

for the same NP lower bound. The exact complexity of this fragment remains an open

problem.
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Σi,j 0 1 2 3

1 NP NP in NEXP U

i ≥ 2 ΣEXP

i−1 U U U

Table 11.1: The cell in row i and column j shows the decidability/complexity of the

fragment Σi,j , where U denotes undecidability.

All other fragments are undecidable, which follows either from the aforementioned

undecidability of Σ1,3 or from the undecidability of Σ2,1, which is proved in [62].

These results are compiled in Table 11.1.

Perspectives. In Section 11.1, we proved that Σ1(A
∗,≤∗, A

∗) was already undecid-

able for A a two-symbol alphabet. This implies the undecidability for any alphabet

of two or more symbols. We actually proved that it also implies the undecidability of

Σ1(X
∗,≤∗, X

∗) for any finite ordering (X,≤) in which there exists an incomparable

pair of elements a ⊥ b.
Therefore, the only finite orderings for which the decidability status of

Σ1(X
∗,≤∗, X

∗) is not settled are the linear orderings. Observe that if X is a singleton,

FO(X∗,≤∗, X
∗) is the theory of integers with ordering, which is PSPACE-complete [68,

69]. Otherwise, X embeds the linearly-ordered set ({0, 1}, 0 ≤ 1). We conjecture that

Σ1({0, 1}∗,≤∗, {0, 1}∗) is undecidable, which would imply that Σ1(X
∗,≤∗, X

∗) is

undecidable for any order (X,≤) with |X| ≥ 2. However, we could only prove that

Σ2({0, 1}∗,≤∗, {0, 1}∗) is undecidable, which already means that Σ2(X
∗,≤∗, X

∗) is

undecidable for any partial order (X,≤) with |X| ≥ 2.

From the perspective of Chapter 10, Theorem 11.1.1 shows that Σ1(X,≤, X) can-

not be decided in general for an arbitrary ideally effective WQO (X,≤). In order

to find an extra sufficient criterion for an ideally effective WQO to have a decidable

existential fragment, a promising angle would be to study other order constructions

that preserve ideal effectiveness. This would once again result in an algebra of WQOs

whose existential fragment is decidable. For instance, the Cartesian product preserves

Σ1 decidability. Another construction that would in addition be interesting in practice

would be finite multisets. Since (A⊛,≤emb) when (A,=) is a finite alphabet is iso-

morphic to (Nk,≤×), its first-order theory is decidable (using Presburger arithmetic).

What about Σ1(N
⊛,≤emb) for instance ?

In the case some constructions turn out to preserve Σ1 decidability, one can wonder

about higher quantification alternation. For instance, is Σ2(X×Y,≤×, X×Y) decidable

whenever Σ2(X,≤X , X) and Σ2(Y,≤Y , Y) are ?

Finally, what about the converse implication ? The natural way to represent

downward-closed sets in logic is with “excluded minors”, and as shown in Section 8.2,

this representation may fail to distinguish ideals. However, directedness is a Π2 for-

mula, and therefore if Π2(X,≤, X) is decidable, then it is decidable whether JϕK is an

ideal. But otherwise, this is unlikely that decidability of the existential fragment, or

positive existential fragment, imply ideal effectiveness in a general way. In particular

because our definition requires downward-closed sets to be represented as finite union

151



of ideals. This raises the question: can we find a non effective WQO whose first-order

theory is decidable ? Or simply its existential fragment, or even positive existential

fragment ?
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Résumé

Avec des motivations venant du domaine de la Vérification, nous définissons une

notion de WQO effectifs pour lesquels il est possible de représenter les ensembles clos

et de calculer les principales opérations ensemblistes sur ces représentations. Dans

une première partie, nous montrons que de nombreuses constructions naturelles sur les

WQO préservent notre notion d’effectivité, prouvant ainsi que la plupart des WQOs

utilisés en pratique sont effectifs. Cette partie est basée sur un article non publié dont

Jean Goubault-Larrecq, Narayan Kumar, Prateek Karandikar et Philippe Schnoebelen

sont co-auteurs.

Dans une seconde partie, nous étudions les conséquences qu’a notre notion sur la

logique du première ordre interprété sur un WQO. Bien que le fragment existentiel

positif soit décidable pour tous les WQOs effectif, les perspectives de généralisation

sont limitées par le résultat suivant: le fragment existentiel de la logique du première

ordre sur les mots finis, ordonnés par plongement, est déjà indécidable. Ce résultat a

été publié à LICS 2017 avec Philippe Schnoebelen et Georg Zetzsche.

Abstract

With motivations coming from Verification, we define a notion of effective WQO

for which it is possible to represent closed subsets and to compute basic set-operations

on these representations. In a first part, we show that many of the natural constructions

that preserve WQOs also preserve our notion of effectiveness, proving that a large

class of commonly used WQOs are effective. This part is based on an unpublished

article with Jean Goubault-Larrecq, Narayan Kumar, Prateek Karandikar and Philippe

Schnoebelen.

In a second part, we investigate the consequences of our notion on first-order logics

over WQOs. Although the positive existential fragment is decidable for any effective

WQO, the perspective of extension to larger fragments is hopeless since the existential

fragment is already undecidable for the first-order logic over words with the subword

ordering. This last result has been published in LICS 2017 with Philippe Schnoebelen

and Georg Zetzsche.


