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Résumé

L’une des difficultés majeures à laquelle font face de nombreuses technologies réside dans
la capacité à manipuler de l’énergie (sous quelque forme que ce soit) avec le plus de pré-
cision possible, tout en limitant les pertes au maximum. Ceci est non seulement vrai à
l’échelle macroscopique, mais aussi à des échelles bien plus réduites où les effets quantiques
ne sont plus négligeables. En effet, suite aux avancées technologiques au cours des dernières
décennies, accompagnées du développement de nouvelles techniques expérimentales, il est dé-
sormais possible de manipuler la matière aux échelles micro- et nanoscopiques. Parmi ces
techniques peuvent être cités les pièges à ions [1], les atomes froids piégés dans des réseaux
optiques [2], ou encore les qubits supraconducteurs [3]. Toutes ces méthodes ouvrent la voie
à de nouvelles études expérimentales plus poussées, ainsi qu’au développement de nouvelles
technologies basées sur des systèmes élémentaires ne faisant intervenir qu’un ou quelques émet-
teurs quantiques [4]. De tels systèmes pourraient, par exemple, être utiles à la réalisation de
communication quantique [5], ou encore au développement de réseaux et/ou de calculateurs
quantiques [6, 7]. Une possibilité alternative est de s’inspirer de systèmes naturels présentant
divers attraits, tels que les complexes photosynthétiques [8–10] qui jouent le rôle d’antenne en
récoltant l’énergie solaire, puis en la transportant de manière remarquablement efficace vers
le centre de réaction, ce qui en l’occurrence fait de ces complexes un modèle particulièrement
intéressant vis-à-vis du développement de capteurs photovoltaïques [11]. Il est aussi possible
d’envisager des systèmes quantiques capables de contrôler les échanges d’énergie au sein de
systèmes biologiques [12].

Le point commun entre toutes ces idées novatrices réside dans le fait qu’elles nécessitent
un certain degré de contrôle de l’énergie à l’échelle quantique. La manipulation d’énergie dans
des systèmes composés de quelques émetteurs quantiques peut prendre divers aspects, et a
été le sujet de nombreuses investigations. Par exemple, le transport d’énergie a été étudié
le long de chaînes de systèmes quantiques à deux niveaux d’énergie [13], ou encore dans des
chaînes d’ions piégés [14, 15]. Des circuits supraconducteurs ont également été proposés dans
le but de reproduire le transport d’excitons au sein des complexes photosynthétiques men-
tionnés précédemment [16]. Ces complexes ont de plus attiré une attention considérable sur
le cas plus général du transport d’énergie dans des systèmes quantiques ouverts, où notam-
ment le lien entre échanges d’énergie par effet de cohérence quantique et dissipation induite
par l’environnement a généré de nombreuses discussions [17]. Les environnements dissipatifs
ont par ailleurs un rôle important dans le fonctionnement des machines thermiques quan-
tiques à absorption, dont il a été montré que certaines sont capables de fournir de l’énergie
de manière continue à un émetteur quantique [18]. Augmenter la distance d’interaction entre

v
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Figure 1: Système étudié dans le Chap. 2 : une chaîne d’atomes à deux niveaux d’énergie qui
se trouve plongée dans un bain thermique et dont de l’énergie est pompée à une extrémité
et extraite à l’autre. On étudie l’efficacité du transport d’énergie de la chaîne. L’interaction
entre chaque atome et le champ électromagnétique environnemental donne lieux à différents
types d’interactions qui modifient l’énergie du système quantique (ou de ses sous-systèmes),
ce qui influence l’efficacité du transport.

deux émetteurs quantiques est également intéressant d’un point de vue du contrôle d’énergie.
Pour ce faire, une méthode souvent employée consiste à coupler les deux émetteurs à travers
l’intermédiaire d’un mode électromagnétique capable transporter l’énergie d’un émetteur à
l’autre [19]. Tous les exemples cités ci-dessus ne sont que quelques propositions tirées parmi
de nombreux travaux de recherche qui pourraient potentiellement apporter des solutions per-
mettant d’augmenter l’efficacité avec laquelle l’énergie est manipulée aux seins de systèmes
quantiques élémentaires. Le développement de toutes ces propositions, et de manière plus
générale, avoir la capacité de fournir ou d’extraire de l’énergie à une sous-partie arbitraire-
ment choisie d’un système quantique, ou encore de pouvoir régler la force d’interaction entre
ses différents composants avec un haut degré de précision, pourraient amener les technologies
reposant sur des systèmes quantiques élémentaires vers un nouveau paradigme.

Cette thèse présente l’étude théorique de trois systèmes physiques différents faisant preuve
de propriétés remarquables en termes de manipulation d’énergie dans le contexte des sys-
tèmes quantiques ouverts. Plus précisément, chacun de ces systèmes est composé de quelques
émetteurs quantiques (“atomes”) à deux ou trois niveaux d’énergie en interaction avec leur
environnement respectif. Dans chacun des cas, le système quantique interagit avec son envi-
ronnement dans la limite de couplage faible, ce qui permet, à l’aide de quelques hypothèses
supplémentaires, de décrire l’évolution temporelle de la matrice densité réduite du système
quantique par une équation maîtresse quantique markovienne. Le premier chapitre contient
le calcul explicite d’une telle équation dans le cas particulier d’une chaîne d’atomes à deux
niveaux d’énergie qui interagissent en couplage faible avec un champ électromagnétique envi-
ronnemental. Les équations maîtresses des chapitres suivants peuvent être facilement adap-
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Figure 2: Système étudié dans le Chap. 3 : une chaîne d’atomes à deux niveaux d’énergie se
situe à l’interface entre un isolant topologique photonique et un milieu opaque. Du fait de la
topologie non-triviale de l’isolant topologique, il existe un plasmon polariton de surface qui
se propage unidirectionnellement le long de la chaîne et qui assiste le transport d’énergie.

tées à partir de celle du premier chapitre. Par ailleurs, la dynamique du système ouvert étant
décrite par une équation maîtresse markovienne, les notions de thermodynamiques quantiques
telles que l’énergie interne du système quantique, ou la notion de chaleur et de travail dans
ce contexte particulier sont également présentées dans ce chapitre.

Le Chap. 2, qui discute des résultats présentés dans la Réf. [20], est dédié à l’étude du
transport d’énergie le long d’une chaîne de N = 2 . . . , 7 atomes à deux niveaux d’énergie (voir
Fig. 1), de fréquence de transition ω0 = 1014 rad · s−1, qui interagissent en couplage faible
avec un rayonnement de corps noir à la température T . Comme indiqué précédemment,
l’évolution temporelle de la matrice densité réduite associée à la chaîne atomique est décrite
par une équation maîtresse markovienne. Le facteur de mérite utilisé pour caractériser les
performances de la chaîne vis-à-vis du transport d’énergie est l’efficacité χ. Pour l’évaluer,
de l’énergie est pompée de manière non-cohérente à un bout de la chaîne, et extraite à
l’autre bout, de façon non-cohérente également. L’efficacité est obtenue en comparant deux
scénarios : le scénario sans pompage, où seule l’extraction est réalisée, et le scénario avec
pompage (et extraction). En notant E (E0) l’énergie1 extraite en présence (absence) de
pompage, et P l’énergie pompée dans la chaîne, l’efficacité s’exprime alors

χ = E − E0
P

. (1)

Avoir χ = 0 signifie que l’énergie extraite en présence de pompage est égale à celle extraite
dans le cas sans pompage (E = E0), traduisant la perte totale de l’énergie injectée dans la
chaîne. En revanche, lorsque χ = 1, la quantité d’énergie supplémentaire extraite en présence
de pompage est exactement la même que celle injectée (E−E0 = P ), indiquant que l’énergie
a été transportée avec 100% d’efficacité.

1Rigoureusement, il s’agit en réalité d’un flux d’énergie.
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Le résultat principal présenté dans ce chapitre est que dans certaines configurations
géométriques et thermiques, l’efficacité peut non seulement atteindre 100% (χ = 1), mais
peut aussi dépasser cette valeur, et être amplifiée jusqu’à atteindre 1400% dans le meilleur
des cas étudiés. Pour expliquer ce résultat, une analyse détaillée des flux d’énergie est effec-
tuée tout d’abord à l’état stationnaire, puis au cours de la dynamique. Cette étude révèle
l’action d’un injecteur d’excitations, qui comme son nom l’indique, absorbe de l’énergie du
champ environnemental et l’injecte dans la chaîne. Il faut noter, d’une part, que cet effet est
déclenché par le pompage, qui induit une redistribution des flux d’énergie, et d’autre part,
que l’amplification de l’efficacité (χ > 1) n’est possible que lorsque les effets thermiques sur
la dynamique de la chaîne deviennent significatifs (ici, approximativement : T > 200K).
Le deuxième résultat important de ce chapitre est que lorsque l’amplification d’efficacité est
réalisée, la distance sur laquelle le transport d’énergie est effectué peut être considérablement
augmentée.

Le Chapitre 3 discute des résultats décrits dans la Réf. [21], et similairement au Chap. 2,
traite du transport d’énergie le long de chaîne d’atomes à deux niveaux d’énergie, qui ont ici
pour fréquence de transition ν0 = 200THz (voir Fig. 2). La spécificité de ce système vient
du fait que la chaîne atomique se trouve à l’interface d’un isolant topologique photonique
(ITP) (avec un milieu opaque), qui a la particularité d’avoir une structure de bandes dotée
d’une topologie non-triviale. Il s’ensuit qu’à l’interface d’un ITP peuvent exister des plasmons
polaritons de surface (PPS) qui se propagent de manière non-réciproque, voire même dans
certains cas, unidirectionnellement. Dans notre cas, il existe un tel PPS (unidirectionnel) qui
se propage le long de la chaîne atomique et qui participe au transport d’énergie. Tout comme
pour le Chap. 2, de l’énergie est pompée à un bout de la chaîne et extraite à l’autre bout,
et l’efficacité définie par l’Eq. (1) caractérise la qualité du transport d’énergie. Le principal
résultat de ce chapitre vient de la comparaison de l’efficacité entre deux scénarios : lorsque
le transport est assisté par un PPS unidirectionnel (qui se propage le long de la chaîne),
et lorsqu’il est assisté par un PPS réciproque (qui se propage sans direction privilégiée).
L’étude effectuée dans ce chapitre montre que le PPS unidirectionnel résulte en une efficacité
surpassant celle de son homologue réciproque de plus d’un ordre de grandeur.

Par ailleurs, une des propriétés particulièrement intéressante de l’ITP réside dans le fait
que le PPS est pratiquement insensible à la réflexion. En effet, de manière générale, en
considérant un PPS réciproque, lorsqu’il rencontre un obstacle, celui-ci a pour effet de réfléchir
une partie du PPS. En revanche, dans le cas d’un PPS unidirectionnel généré par un ITP, le
canal de réflexion étant inexistant, le PPS n’a d’autre possibilité que de contourner l’obstacle
et de poursuivre sa route2. Dans ce chapitre, il est montré que lorsqu’un obstacle se situe au
milieu de la chaîne, l’efficacité du transport d’énergie assisté par un PPS réciproque devient

2Pour être complet : il faut aussi que, comme dans le cas dans notre système, le PPS se situe dans une
bande interdite partagée par les deux milieux constituants l’interface, de sorte que le rayonnement au sein de
chaque milieu soit impossible.
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Figure 3: Système étudié dans le Chap. 4 : un système quantique est situé à proximité
d’une plaque de sapphire à la température TS . La plaque et le système sont soumis à un
rayonnement de corps noir à une température TW qui diffère de TS . Le système quantique est
composé d’un atome à trois niveaux, jouant le rôle de machine thermique quantique, chauffant
ou refroidissant les atomes à deux niveaux qui sont positionnés autour d’elle.

presque nulle, alors que dans le cas d’un PPS unidirectionnel, elle est remarquablement peu
affectée par la présence de l’obstacle. Ce résultat est particulièrement intéressant vis-à-vis
de réalisations expérimentales, où des défauts de fabrication (obstacles) peuvent exister à
l’interface.

Le Chap. 4 de cette thèse, présentant les résultats des Réfs. [22, 23], s’intéresse à une
machine thermique quantique. Plus précisément, un système quantique est plongé dans un
champ électromagnétique se trouvant hors équilibre thermique (voir Fig. 3). Cette configura-
tion hors équilibre est due à la présence d’une plaque de sapphire d’épaisseur δ = 5nm ayant
une température TS , qui est soumise à un rayonnement de corps noir caractérisé par une
température TW telle que TW 6= TS . Le système quantique, situé à proximité de la plaque,
est composé d’un atome à trois niveaux d’énergie et de N atomes à deux niveaux (“qubits”).
Après avoir introduit les quantités nécessaires, et en particulier la notion de température
associée à une transition atomique, il est possible de montrer que l’atome à trois niveau joue
le rôle de machine thermique quantique : grâce au champ électromagnétique qui est hors
équilibre thermique, cet atome est capable d’interagir avec les atomes à deux niveaux de
sorte à diminuer leur énergie, c’est-à-dire à les refroidir. Le processus inverse est également
possible : la machine peut chauffer (donner de l’énergie aux) qubits. Il est important de noter
que ces deux “tâches thermiques” s’opèrent lorsque le système est dans son état stationnaire.
Cet effet a été étudié d’abord dans la Réf. [18] en présence d’un seul qubit, c’est-à-dire pour
N = 1, et est poursuivie dans ce chapitre dans les cas 1 ≤ N ≤ 6. Les qubits forment un
polygone régulier à N sommets centré sur la machine, et l’ensemble des atomes appartient
au plan parallèle à la surface de la plaque. La tâche thermique délivrée par la machine sur
les qubits est étudiée en fonction de la distance entre la plaque et le système atomique. En
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particulier, il est montré qu’il existe des régimes où la machine chauffe les qubits jusqu’à les
amener en inversion des populations : la probabilité qu’ils soient dans leur état excité est
supérieure à celle de leur état fondamental. Inversement, la machine est capable de refroidir
considérablement les qubits. De plus, ces tâches thermiques sont non seulement effectuées
sur chaque qubit indépendamment, mais aussi sur le sous-système des qubits dans son en-
semble. Il est remarquable que la machine puisse réaliser des tâches d’une telle intensité sur
des systèmes bien plus grands qu’elle en termes de dimensions d’espace de Hilbert.

De surcroît, une configuration spécifique est étudiée avec N = 4, où seuls deux des quatre
qubits interagissent avec la machine. L’analyse de ce système montre que malgré cette absence
d’interactions, la température des quatre qubits est grandement affectée par la présence de
la machine. Cela est dû à l’interaction entre les qubits, et le mécanisme de partage des
tâches est mis en avant : les deux qubits couplés à la machines relaient la tâche thermique
et la transmettent à ceux qui n’interagissent pas directement avec elle. Dans le chapitre,
la révélation de ce mécanisme se fait notamment à l’aide des corrélations entre différentes
partitions du système quantique, et il est montré que la contribution des corrélations de
nature purement quantique est négligeable. Par ailleurs, le contrôle des tâches thermiques
ainsi que leur robustesse sont étudiés sous divers aspects.



Introduction

Manipulating energy with as much control and as little lossess possible is a problematic at
the heart of many technologies. This is the case not only at the macroscopic scale, but also
at much smaller ones where quantum effects may play a crucial role. More specifically, with
the development of technologies and experimental techniques over the past decades, it is now
achievable to maneuver matter at the micro- or nano- scales. Among these techniques, one
could cite ion trapping [1], cold atoms in optical lattices [2], or superconducting qubits [3].
All these methods pave the way for future experiments and the design of new technologies
based on elementary systems involving either a single or very few quantum emitters [4]. Such
quantum systems could be used to realize quantum communication [5], or to design quantum
networks [6], as well as quantum-computation processing [7]. Another possibility would be to
mimic relevant natural systems, e.g., the celebrated photosynthetic antenna complexes [8–10],
which collect and transport solar radiation to the reaction center with high efficiency, and are
particularly interesting with regards to the improvement of photovoltaic cells [11]. One could
also consider designing quantum systems capable of controlling energy exchanges in biological
constituents [12].

All these promising developments share the common feature to require a certain degree
of energy management, which has been explored under many different aspects. For example,
energy transport within chains of trapped ions [14, 15] or two-level quantum emitters [13] has
been under study. Superconducting circuits have also been proposed to reproduce the exciton
transport of the antenna photosynthetic complexes mentioned above [16]. These complexes
have additionally triggered a lot of interest on the interplay between quantum coherent en-
ergy exchanges and environment-induced dissipation with regards to energy transport within
open quantum systems [17]. Such environments can also be exploited through the design
of absorption quantum thermal machines to provide energy to single quantum emitters [18].
Moreover, improving the range of interaction between quantum emitters can be fruitful in
terms of energy management. This is typically realized by coupling the emitters to an engi-
neered electromagnetic mode mediating the interaction between them [19]. These are only a
few examples out of many investigations potentially providing new methods to manage energy
within elementary quantum systems. The development of all these different aspects, and more
generally, having the capacity of yielding energy to an arbitrary subpart of a quantum system,
or tuning with a high degree of precision the interaction strength between its components,
could bring the technologies based on systems involving a few elementary quantum emitters
to a new paradigm.

This thesis presents the theoretical investigation of three different physical systems which

xi
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exhibit noticeable properties with respect to energy management in the framework of open
quantum systems. To be more specific, each of them will be composed of a few two- or three-
level quantum emitters (‘atoms’) embedded in a common environment with which they will be
interacting. It is important to stress that we will consider system–environment interactions
in the weak-coupling limit, so that in addition to further approximations, the dynamics of
the three quantum systems will be described by Markovian quantum master equations. This
framework will allow us to analyze the energy exchanges involving the open systems through
a quantum-thermodynamical approach. More precisely, we will introduce the concept of
internal energy of the quantum system, and the notion of energy flux in this context, which
will be the main quantities we will consider to investigate the three systems.

The thesis is structured of four chapters. Chapter 1 can be viewed as an introduction,
where we will consider a simple open quantum system for which the Markovian quantum
master equation will be derived explicitly. The master equations of the other chapters will be
easily adapted from this one. Moreover, we will also define the quantum-thermodynamical
notions and other measures that will be used in the following, and we will conclude with an
example illustrating some of the concepts previously introduced in the chapter.

Chapter 2 is dedicated to the investigation of energy-transport efficiency of a chain of
two-level atoms (between 2 and 7) interacting with a blackbody radiation. We will see that
for specific configurations, reaching 100% of transport efficiency is achievable around room
temperature. More remarkably, we will demonstrate that exceeding this threshold is also
possible for many system setups, reaching in some cases 1400% of efficiency. Moreover, when
the efficiency is amplified, the transport range is increased as well. Through an analysis of
the energy fluxes, we will determine the origin of this effect: an atomic triplet belonging
to the chain plays the role of excitation injector, drawing energy from the environment and
increasing the quantum-system energy during the transport process. This is only possible
when the temperature of the environment is significant (around room temperature). This
chapter discusses the results presented in Ref. [20].

Chapter 3 also addresses the energy-transport efficiency of a two-level-atom chain, al-
though thermal effects are negligible in this case. The chain is located at the interface of a
photonic topological insulator (PTI), where a unidirectional surface-plasmon-polariton (SPP)
can exist, propagating in the bulk band gap and immune to backscattering. By comparing
SPP-assisted energy transport between bi- and uni-directional SPPs, we show that the PTI-
induced unidirectional SPP leads to a transport efficiency larger than the bidirectional one,
by one or more orders of magnitude. Moreover, we highlight different aspects stemming from
the use of the photonic topological insulator which are particularly relevant for practical re-
alizations, among which the remarkable robustness of energy transport in the presence of
significant defects on the SPP path, or the increase of transport range, as well as the pos-
sibility to literally switch off the energy-transport process. The results of this chapter are
presented in Ref. [21].
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Chapter 4 is devoted to the study of a quantum system immersed in an out-of-thermal-
equilibrium environment. The system is composed of an absorption quantum thermal ma-
chine, a three-level atom, around which are located a few two-level atoms (‘qubits’). We
show that the machine is able to yield (heat up) or absorb (cool down) energy to/from the
qubits with significant intensity by considering systems involving from 1 to 6 qubits. In some
cases, some of the qubits are affected by the machine although they are completely decoupled
from it. This effect is analyzed in terms of correlations between the different subparts of the
quantum system. Moreover, we propose different methods allowing one to tune thermal tasks,
i.e., to control how much energy is yielded/absorbed to/from each qubit by the machine. The
results of this chapter are presented in Refs. [22, 23].





Chapter 1

Multipartite open quantum systems
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This first chapter is dedicated to the introduction of the mathematical tools that will
be used in the analysis of the systems studied in the following chapters. All these physical
systems have the common property of being open quantum systems weakly interacting with
their respective environments. As such, their dynamics will be studied in the framework of
Markovian open quantum systems. For this reason, Sec. 1.1 is dedicated to the derivation of
a Markovian quantum master equation describing the dynamics of a specific quantum system
weakly interacting with a ‘generic’ stationary electric field. This will be useful as only minor
modifications of this master equation will be necessary to describe appropriately the dynamics
of the systems under consideration in the next chapters.

In Sec. 1.2, based on the master equation, we compute the energy fluxes stemming from the
field-induced interactions participating to the system dynamics. They will be of major interest
to understand the different effects observed in the next chapters, particularly in Chap. 2. In
addition, this will allow us to introduce the notion of heat flux in the framework of quantum
systems, which is used in Chap. 4 to describe the energy exchanges through a quantum-
thermodynamical approach. In this same chapter, we will also employ several correlation
quantifiers and other measures to analyze the interactions between different partitions of the
system. These are briefly introduced in Sec. 1.3.

Finally, we conclude with Sec. 1.4 by applying the Markovian quantum master equation
derived in Sec. 1.1 to an elementary open quantum system, which will allow us to illustrate
miscellaneous notions that have been introduced throughout this chapter.

1
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1.1 Markovian quantum master equation

The quantum system we consider in this section is composed of N two-level quantum emitters,
which will be referred to as two-level ‘atoms’, or ‘qubits’, having an equal transition frequency
ω0. The system is open as the qubits are weakly interacting with a stationary electric field. In
this section, we derive a Markovian quantum master equation describing the dynamics of the
quantum system. This derivation follows the scheme presented in Ref. [24] [see also [25–27]].

The total Hamiltonian describing this system is

Htot = HS +HE +Hint, (1.1)

where HS and HE are the free Hamiltonians of the quantum system (the qubits) and of the
environment, respectively, and Hint is the Hamiltonian describing the interaction between
these two subsystems. The total system is assumed to be closed, and is characterized by the
density matrix ρ(t). Its dynamics is determined by the von Neumann equation

dρ(t)
dt

= − i
~
[
Hint(t), ρ(t)

]
, (1.2)

which is expressed in the interaction picture, where

Hint(t) = exp
( i
~
(
HS +HE

)
t
)
Hint exp

(
− i

~
(
HS +HE

)
t
)

(1.3)

is the interaction Hamiltonian in this picture. After integrating over time, we have

ρ(t) = ρ(0)− i

~

∫ t

0
ds
[
Hint(s), ρ(s)

]
, (1.4)

where ρ(0) is the system density matrix at the beginning of the time evolution. Re-injecting
ρ(t) in Eq. (1.2), and performing a partial trace over the degrees of freedom of the environment
leads to

dρS(t)
dt

= − 1
~2TrE

( ∫ t

0
ds
[
Hint(t),

[
Hint(s), ρ(s)

]])
, (1.5)

where we have assumed TrE
([
Hint(t), ρ(0)

])
= 0, and where ρS(t) = TrE

(
ρ(t)

)
characterizes

the reduced density matrix of the qubits system. From this point, we carry out a series of
approximations that will lead us to a Markovian quantum master equation describing the
time evolution of ρS(t). Firstly, we perform the weak-coupling or Born approximation by
assuming that the effect of the quantum system on the environment dynamics is negligible.
This allows us to express the total density matrix as a product state: ρ(t) = ρS(t)ρE , where
ρE = TrS

(
ρ(t)

)
is the reduced density matrix of the environment. Then, Eq. (1.5) becomes

dρS(t)
dt

= − 1
~2TrE

( ∫ t

0
ds
[
Hint(t),

[
Hint(s), ρS(s)ρE

]])
. (1.6)
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Secondly, we use theMarkov approximation, which consists in assuming that the quantum-
system time evolution only depends on the present state, leading to the replacement of ρS(s)
by ρS(t) in Eq. (1.6). Moreover, we perform the change of variable s→ t− s, and extend the
upper limit of the integral: t → +∞. This approximation is permitted when the correlation
functions of the environment decay over a time scale τB that is small compared to τR, the
relaxation time of the quantum system: τB � τR. In this case, the dynamics of the qubits
is described on a coarse-grained time scale, for which the environment time evolution is not
resolved. This yields the following Markovian quantum master equation

dρS(t)
dt

= − 1
~2TrE

( ∫ +∞

0
ds
[
Hint(t),

[
Hint(t− s), ρS(t)ρE

]])
. (1.7)

To develop Eq. (1.7), we need to express the interaction Hamiltonian in the interaction
picture, Hint(t). Under the dipole approximation, its expression in the Shrödinger picture
reads

Hint = −
∑
i

D(i) ·E(ri), (1.8)

where here and hereafter, the index i always takes the values i ∈ {1, . . . , N}. D(i) is the dipole
operator of the i-th qubit, and E(ri) is the electric-field operator at the position of this qubit,
noted by ri. We will see that due to the Markov approximation, the action of the environment
on the qubits dynamics will occur through the electric-field correlation functions. These will
be determined from the fluctuation-dissipation theorem, valid at thermal equilibrium1. Thus,
the explicit form of the electric-field operator is not necessary here. It follows from Eq. (1.8)
that the interaction picture of Hint is

Hint(t) = −
∑
i

D(i)(t) ·E(ri, t), (1.9)

where D(i)(t) and E(ri, t) = exp
(
i
~HEt

)
E(ri) exp

(
− i

~HEt
)
are the dipole and electric-

field operators in the interaction picture. To express D(i)(t), we first introduce the following
notations. The ground and excited energy levels of the i-th qubit are noted by |gi〉 and |ei〉,
respectively, and we recall that the transition frequency ω0 is the same for all the qubits, such
that the free Hamiltonian of the system reads

HS = ~ω0
∑
i

|ei〉〈ei|. (1.10)

To each qubit transition is associated the transition matrix element µ(i) = 〈gi|D(i)|ei〉 of

1In Chap. 4, we study a quantum system embedded in an out-of-thermal-equilibrium environment. However,
the correlation functions can still be deduced from the fluctuation-dissipation theorem: this is possible by
considering the total electromagnetic field as a sum of fields at thermal equilibrium, as will be detailed in
Chap. 4.



4 Chapter 1. Multipartite open quantum systems

the dipole operator D(i). We stress that µ(i) is an induced fluctuating dipole due to the
action of the electric field on the atomic transition. Here and in the next chapters, we will
always assume real induced dipoles, such that µ(i) = µ(i)∗. The dipole operator can thus be
expressed as

D(i) =
∑

ω=±ω0

A(i)(ω), (1.11)

where ω can take the values ω = ±ω0, and where we have introduced the following operators

A(i)(ω0) = µ(i)σ(i), A(i)(−ω0) = A(i)†(ω0) = µ(i)σ(i)†, (1.12)

with σ(i) = |gi〉〈ei| being the lowering operator of the i-th qubit. The operators A(i)(±ω0)
are eigenoperators of the free Hamiltonian of the system with eigenvalues ∓~ω0, in the sense
that they verify the following commutation relations

[HS ,A
(i)(ω0)] = −~ω0A

(i)(ω0), [HS ,A
(i)†(ω0)] = +~ω0A

(i)†(ω0). (1.13)

The reason for expressing the dipole operator in terms of the eigenoperators A(i)(ω) is that
their interaction-picture expression, noted by A(i)(ω, t), is

A(i)(ω, t) = exp
( i
~
HSt

)
A(i)(ω) exp

(
− i

~
HSt

)
= e−iω0tA(i)(ω), (1.14)

and it follows that the dipole operator in the interaction picture is

D(i)(t) =
∑

ω=±ω0

A(i)(ω, t) =
∑

ω=±ω0

e−iωtA(i)(ω). (1.15)

Then we can express the interaction Hamiltonian in the interaction picture:

Hint(t) = −
∑
i

D(i)(t) ·E(ri, t),

= −
∑
i

∑
ω=±ω0

e−iωtA(i)(ω) ·E(ri, t),

= −
∑
i

∑
ω=±ω0

∑
α

e−iωtA(i)
α (ω)Eα(ri, t),

(1.16)

where here and in the following α ∈ {x, y, z} stands for the Cartesian components. As a
remark, we note that Hint being Hermitian, it can be equivalently expressed as

Hint(t) = −
∑
i

∑
ω=±ω0

∑
α

e−iωtA(i)
α (ω)Eα(ri, t),

= −
∑
i

∑
ω=±ω0

∑
α

e+iωtA(i)†
α (ω)E†α(ri, t).

(1.17)

Based on Eq. (1.17) and after some algebra, Eq. (1.7) leads to the following equation of
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motion for the qubits reduced density matrix

dρS(t)
dt

=
∑
i,j

∑
α,β

∑
ω=±ω0

(
Θ(ij)
αβ (ω)

[
A

(j)
β (ω)ρS(t), A(i)†

α (ω)
]

+ Θ(ji)∗
βα (ω)

[
A(i)
α (ω), ρS(t)A(j)†

β (ω)
])
,

(1.18)

where we performed the rotating-wave approximation by eliminating the rapidly-oscillating
terms. This can be operated when the intrinsic-evolution time scale of the open system, noted
by τS , is much smaller than its relaxation time scale: τS � τR. Moreover, we have introduced
the following functions

Θ(ij)
αβ (ω) = 1

~2

∫ +∞

0
ds eiωs〈E†α(ri, t)Eβ(rj , t− s)〉, (1.19)

which involve the correlation functions of the electric field

〈E†α(ri, t)Eβ(rj , t− s)〉 = TrE
(
E†α(ri, t)Eβ(rj , t− s)ρE

)
. (1.20)

As mentioned before, we are considering an environmental electric field that is stationary
(
[
HE , ρE

]
= 0), such that the correlation functions are homogeneous in time:

〈E†α(ri, t)Eβ(rj , t− s)〉 = 〈E†α(ri, s)Eβ(rj , 0)〉. (1.21)

In addition, the following decomposition can be realized

Θ(ij)
αβ (ω) = 1

2γ
(ij)
αβ (ω) + is

(ij)
αβ (ω), (1.22)

where we have used

γ
(ij)
αβ (ω) = Θ(ij)

αβ (ω) + Θ(ji)∗
βα (ω) = 1

~2

∫ +∞

−∞
ds eiωs〈E†α(ri, s)Eβ(rj , 0)〉, (1.23)

s
(ij)
αβ (ω) = 1

2i
(
Θ(ij)
αβ (ω)−Θ(ji)∗

βα (ω)
)
. (1.24)

The main interest of this decomposition is to allow us to clearly identify the terms that will
contribute to the dissipative and unitary dynamics of ρS(t), the functions γ(ij)

αβ (ω) and s(ij)
αβ (ω),

respectively. It follows that Eq. (1.18) can be formulated as

dρS(t)
dt

=
∑
i,j

∑
α,β

∑
ω=±ω0

{
1
2γ

(ij)
αβ (ω)

([
A

(j)
β (ω)ρS(t), A(i)†

α (ω)
]

+
[
A(i)
α (ω), ρS(t)A(j)†

β (ω)
])

+ is
(ij)
αβ (ω)

([
A

(j)
β (ω)ρS(t), A(i)†

α (ω)
]
−
[
A(i)
α (ω), ρS(t)A(j)†

β (ω)
])}

.

(1.25)
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By introducing the following functions,

S
(ij)
± (ω) =

∑
α,β

µ(i)
α µ

(j)
β s

(ij)
αβ (±ω), (1.26)

Γ(ij)
em (ω) =

∑
α,β

µ(i)
α µ

(j)
β γ

(ij)
αβ (ω), (1.27)

Γ(ij)
abs (ω) =

∑
α,β

µ(i)
α µ

(j)
β γ

(ij)
αβ (−ω), (1.28)

and with the help of Eq. (1.12), we obtain the following interaction-picture master equation
for the dynamics of the qubits reduced density matrix

dρS(t)
dt

=
∑
i,j

{
1
2Γ(ij)

em (ω0)
([
σ(j)ρS(t), σ(i)†

]
+
[
σ(i), ρS(t)σ(j)†

])

+ 1
2Γ(ij)

abs (ω0)
([
σ(j)†ρS(t), σ(i)

]
+
[
σ(i)†, ρS(t)σ(j)

])
+ iS

(ij)
+ (ω0)

([
σ(j)ρS(t), σ(i)†

]
−
[
σ(i), ρS(t)σ(j)†

])

+ iS
(ij)
− (ω0)

([
σ(j)†ρS(t), σ(i)

]
−
[
σ(i)†, ρS(t)σ(j)

])}
.

(1.29)

Firstly, we note that all the coefficients involved here have units of inverse time. The co-
efficients Γ(ij)

em/abs(ω0) are the rates associated to the photon emission/absorption processes.
They involve either a single (i = j) or a pair (i 6= j) of qubit(s), and in the following we will
refer to them as ‘local’ and ‘non-local’ rates, respectively. The coefficients S(ij)

± (ω0), when
i 6= j, characterize environment-mediated long-range dipole–dipole interactions, transferring
energy between two qubits. When i = j, they correspond (to a factor ~) to Lamb-type renor-
malization of the qubits energy levels due to the interaction with their environment. It is
important to stress that this master equation is not yet the typical Markovian quantum mas-
ter equation for the density matrix of a quantum system interacting with an environmental
field that one usually finds in the literature [24, 26], which is given below. Indeed, Eq. (1.29)
takes into account the possibility that the environment of the quantum system might be non-
reciprocal, in which case the correlation functions are such that Γ(ij)

em/abs(ω) 6= Γ(ji)
em/abs(ω) and

S
(ij)
± (ω) 6= S

(ji)
± (ω) [27]. We will consider such an atomic environment in Chap. 3, where the

environment-induced interactions of the quantum system will be dominated by a unidirec-
tional surface-plasmon-polariton, and therefore where Eq. (1.29) is required to describe the
open-system dynamics.

On the other hand, the environments of Chaps. 2 and 4 are reciprocal, and having
Γ(ij)

em/abs(ω) = Γ(ji)
em/abs(ω) and S(ij)

± (ω) = S
(ji)
± (ω) leads to the following well-known interaction-
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picture master equation

dρS(t)
dt

= − i
~
[
Hshift +HΛ, ρS(t)

]
+Dem

[
ρS(t)

]
+Dabs

[
ρS(t)

]
. (1.30)

In this expression, we have introduced the two following terms:

Hshift = ~
∑
i

(
S

(ii)
+ (ω0)σ(i)†σ(i) + S

(ii)
− (ω0)σ(i)σ(i)†

)
, (1.31)

HΛ = ~
∑
i 6=j

Λ(ij)(ω0)σ(i)†σ(j), (1.32)

with Λ(ij)(ω) = S
(ij)
+ (ω)+S(ji)

− (ω). The operatorHshift describes the energy shift associated to
the the qubits energy levels mentioned above. In the following, they will usually be small with
respect to the qubits energy (S(ii)

± (ω0)� ω0), such that we will neglect them, or equivalently,
directly include them in the definition of the qubits free Hamiltonian (HS ≡ HS + Hshift).
Moreover, HΛ corresponds to the coherent environment-mediated dipole–dipole interactions
between each pair of qubits. We note that this Hamiltonian commutes with the qubits
free Hamiltonian

[
HS , HΛ

]
= 0. In addition to these two terms, we have also introduced

in Eq. (1.30) the dissipative terms Dem/abs, which encapsulate all the processes of photon
emission/absorption of the quantum system, defined by

Dem
[
ρS(t)

]
=
∑
i,j

D(ij)
em (ω0)

[
ρS(t)

]
=
∑
i,j

Γ(ij)
em (ω0)

(
σ(j)ρS(t)σ(i)† − 1

2
{
σ(i)†σ(j), ρS(t)

})
,

(1.33)

Dabs
[
ρS(t)

]
=
∑
i,j

D(ij)
abs (ω0)

[
ρS(t)

]
=
∑
i,j

Γ(ij)
abs (ω0)

(
σ(j)†ρS(t)σ(i)− 1

2
{
σ(i)σ(j)†, ρS(t)

})
,

(1.34)

with {·, ·} denoting the anticommutator. Each D(ij)
em/abs is a super-operator, so-called Lindblad

dissipator, acting on the qubits reduced density matrix and describing either the local (i = j)
or non-local (i 6= j) process of photon emission/absorption. As a remark, it is possible
diagonalize the matrix formed by the transition rates Γ(ij)

em/abs(ω0) in order to obtain Eq. (1.30)
under a diagonal form in terms of collective qubits operators.

Let us briefly compare the reciprocal and nonreciprocal master equations, namely, Eqs. (1.29)
and (1.30). Firstly, it must be pointed out that the processes involving a single qubit are not
affected by the reciprocity feature of the environment. Thus, Hshift and the local dissipa-
tors D(ii)

em/abs are present in both equations, although we did not express them explicitly in
Eq. (1.29) for readability. On the other hand, the environment-induced dipole–dipole in-
teractions and the non-local dissipative terms contribute differently to the qubits dynamics
depending on whether the environment is reciprocal or not. For example, some terms present
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in the nonreciprocal master equation cancel each other out in the reciprocal case. Finally, we
note that in both cases, the Schrödinger picture of the master equation is simply obtained by
adding the term − i

~ [HS , ρS(t)].
About the validity of the approximations necessary to derive the master equations Eqs. (1.29)

and (1.30), following [24, 28], in the next chapters, the different time scales for a transition
of frequency ω will be estimated by τR(ω) ∼

[
Γ(ii)

em (ω) + Γ(ii)
abs(ω)

]−1, τB(ω) ∼ ω−1, and
τS(ω) ∼ (2ω)−1. In each case, we will consider the set of parameters that produces the
‘worst’ possible scenario with regards to these approximations.

1.2 Energy fluxes

In this section, we will use a quantum thermodynamical approach to investigate the energy
exchanges related to the open system. Indeed, the Markovian quantum master equation
derived in the previous section allows us to consider the time evolution of observables exclu-
sively related to the open system, the role of the environment being reduced to its correlation
functions. This will allow us to introduce, in analogy with classical thermodynamics, the
notion of internal energy of the open system, and to derive its time evolution, which will
lead us to the concepts of heat and work in the framework of quantum thermodynamics. In
addition, we express in terms of heat fluxes the different energy exchanges either between the
open system and its environment, or between its subparts. This will help us in the analysis
of the systems investigated in Chaps. 2 and 4. In these cases, the qubits environment will
be reciprocal, which is why in the present section, we will remain focused on the reciprocal
master equation Eq. (1.30). Moreover, for simplicity, the reduced density matrix of the open
system will be denoted by ρ(t), rather than by ρS(t), and Tr ≡ TrS will designate the trace
over the quantum-system degrees of freedom.

To begin with, we express the internal energy U(t) of the qubits system with the help of
its free Hamiltonian,

U(t) = 〈HS〉(t) = Tr
(
HSρ(t)

)
. (1.35)

The time variation of internal energy can be induced either by a change of the open-system
free Hamiltonian or by the time evolution of the qubits density matrix:

dU(t)
dt

= Tr
(
∂HS

∂t
ρ(t)

)
+ Tr

(
HS

dρ(t)
dt

)
= Ẇ + Q̇, (1.36)

where we have introduced the following quantities

Ẇ = Tr
(
∂HS

∂t
ρ(t)

)
, Q̇ = Tr

(
HS

dρ(t)
dt

)
, (1.37)

which are assimilated to the quantum-mechanical version of work and heat contributions [29–
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31], respectively. In analogy with classical thermodynamics, the work contribution is identified
as the one not increasing the von Neumann entropy of the system density matrix, which is
defined by

S(ρ(t)) = −Tr
(
ρ(t) ln

[
ρ(t)

])
. (1.38)

The reminder of the contributions constitute the heat fluxes. In this framework, Eq. (1.36)
constitutes the first law of quantum thermodynamics. In the scenarios considered in the
following chapters, the system free Hamiltonian will always be time independent, such that
Ẇ = 0. Consequently, the modifications of the system internal energy will only occur through
heat fluxes.

By injecting Eq. (1.30) in Eq. (1.36), we obtain

dU(t)
dt

= − i
~
Tr
(
HS

[
HΛ, ρ(t)

])
+ Tr

(
HSDem[ρ(t)]

)
+ Tr

(
HSDabs[ρ(t)]

)
. (1.39)

We first note that Tr
(
HS [HΛ, ρ(t)]

)
= Tr

(
[HS , HΛ]ρ(t)

)
= 0, since as pointed out in the

previous section [HS , HΛ] = 0. In addition, by considering the dissipative processes related
to either a single or a pair of qubit(s), we define the local and non-local superoperators based
on Eqs. (1.33) and (1.34):

D(i)
loc
[
ρ(t)

]
= D(ii)

em [ρ(t)] +D(ii)
abs[ρ(t)], (1.40)

D(ij)
nl
[
ρ(t)

]
= D(ij)

em [ρ(t)] +D(ij)
abs [ρ(t)] + H.c., (1.41)

such that Eq. (1.39) can be expressed as

d〈U〉(t)
dt

=
∑
i

Tr
(
HSD(i)

loc[ρ(t)]
)

+
∑
i<j

Tr
(
HSD(ij)

nl [ρ(t)]
)
. (1.42)

Each term on the right-hand side of Eq. (1.42) corresponds to a heat flux between the quantum
system and the environment. To be more precise, the local flux Q̇

(i)
loc(ω0) characterizes the

energy exchanged between the transition of the i-th qubit and the electric field:

Q̇
(i)
loc(ω0) = Tr

(
HSD(i)

loc
[
ρ(t)

])
= ~ω0

(
Γ(ii)

abs(ω0)p(i)
g (t)− Γ(ii)

em (ω0)p(i)
e (t)

)
, (1.43)

where p(i)
g (t) = Tr

(
σ(i)σ(i)†ρ(t)

)
and p

(i)
e (t) = Tr

(
σ(i)†σ(i)ρ(t)

)
are the ground and excited

populations of the i-th qubit. The sign of this flux is settled by the competition between
photon emission and absorption processes: when it is positive (negative), energy is absorbed
(lost) by the transition from (to) the environment, thereby increasing (decreasing) the internal
energy of the quantum system. Regarding the other dissipative processes, each of them
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involves two qubits and yields a non-local heat flux:

Q̇
(ij)
nl (ω0) = Tr

(
H

(i)
S D

(ij)
nl
[
ρ(t)

])
= −~ω0Re

[
c(ij)(t)

](
Γ(ij)

em (ω0)− Γ(ji)
abs (ω0)

)
, (1.44)

with H(i)
S = ~ω0|ei〉〈ei|, and where c(ij)(t) = Tr

(
σ(i)†σ(j)ρ(t)

)
is the coherence between qubits

i and j. Being computed with H(i)
S , the flux Q̇(ij)

nl (ω0) describes the amount of energy traded
by atom i with the environment due to its interaction with atom j. It is important to stress
that this collective interaction has the same effect on atom j: Q̇(ij)

nl (ω0) = Q̇
(ji)
nl (ω0). In other

words, the amount of energy traded with the environment through this common flux is equally
shared between the two qubits: they either both absorb (Q̇(ij)

nl (ω0) = Q̇
(ji)
nl (ω0) > 0) or loose

(0 > Q̇
(ij)
nl (ω0) = Q̇

(ji)
nl (ω0)) the same quantity of energy.

In addition to internal-energy variations of the quantum system in its whole, it can be
insightful to take into account the energy exchanges occurring between its different subparts,
thereby leaving the total internal energy unchanged. In analogy with Eq. (1.35), the internal
energy of the i-th qubit2 is [32]: U (i)(t) = Tr

(
H

(i)
S ρ(t)

)
, and its time variation can be expressed

from Eq. (1.39) by replacing the free Hamiltonian of the quantum system HS by the one of
the single qubit under consideration, H(i)

S . This equation leads to the expressions of the local
and non-local heat fluxes involving this atom, which stem from the dissipators. Additionally,
the fact of having Tr

(
H

(i)
S

[
HΛ, ρ(t)

])
6= 0 (or alternatively

[
H

(i)
S , HΛ

]
6= 0) reveals the exis-

tence of energy fluxes modifying the internal energy (and entropy) of the subsystem under
consideration, but once again, without changing the one of the whole quantum system. These
fluxes, the hopping heat fluxes, stem from the coherent dipole–dipole interaction mediated by
the environment between each pair of qubits. For a generic pair of qubits (i, j), they read

Q̇
(ij)
hop(ω0) = − i

~
Tr
(
H

(i)
S

[
HΛ, ρ(t)

])
= −2~ω0Λ(ij)(ω0)Im

[
c(ij)(t)

]
. (1.45)

Having Q̇(ij)
hop(ω0) > 0 indicates that the internal energy of qubit i is increasing to the detriment

of the one of qubit j, such that Q̇(ij)
hop(ω0) = −Q̇(ji)

hop(ω0).
We stress that the hopping and non-local heat fluxes crucially depend on the quantum

coherences between the eigenstates of the system free Hamiltonian: in the absence of these
coefficients, both of these fluxes vanish.

1.3 Correlations and other measures

In this section, we briefly introduce miscellaneous mathematical tools that we will use to
investigate interactions within the quantum systems under consideration in the following

2As far as these internal energy exchanges are concerned, we will only be interested in subsystems reducing
to a single qubit, but we could in principle also consider larger subsystems.
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chapters (mainly in Chap. 4).

1.3.1 Bipartite mutual information

Consider a bipartite quantum system, with partitions A and B. The bipartite mutual in-
formation quantifies the total correlations (classical+quantum) between these two subsys-
tems [33, 34]. It is based on the von Neumann entropy defined in Eq. (1.38). To be more
precise, if the state of the composite system is described by the density matrix ρAB, and if
ρA(B) = TrB(A)

(
ρAB

)
is the reduced state of the partition A (B), then the bipartite mutual

information between A and B is defined by

MI(A : B) = S(ρA) + S(ρB)− S(ρAB), (1.46)

where S(ρA) + S(ρB) characterizes the uncertainty (as measured by entropy) on ρA and
ρB treated separately, and where S(ρAB) is the one on the whole system. The bipartite
mutual information is a non-negative quantity, which equals zero when the two partitions are
uncorrelated, namely, when ρAB = ρA ⊗ ρB. On the other hand, when the composite system
is in a maximally-entangled pure state, the reduced states ρA and ρB are maximally mixed,
such that the mutual information is maximized and MImax(A : B) = 2 ln

(
min(dA, dB)

)
, where

dA and dB are the dimensions of the Hilbert spaces of the subsystems A and B, respectively.

1.3.2 Tripartite mutual information

In the same spirit as for bipartite systems, when considering a quantum system with three
partitions A, B, and C, the total correlations between them are given by the tripartite mutual
information [35, 36]:

τ(A,B,C) = MI3(A : B : C)− µ(A : B : C), (1.47)

where MI3(A : B : C) = S(ρA) + S(ρB) + S(ρC) − S(ρABC), and with µ(A : B : C) =
max

{
MI(A : B),MI(A : C),MI(B : C)

}
. Note that τ(A,B,C) characterizes the correlations

that are genuinely tripartite, in the sense that they cannot be accounted for by considering
subsystems of {A,B,C}.

1.3.3 Trace distance

The trace distance is a metric on the space of density matrices. For two density matrices ρ
and σ, it is defined by [37]

Dt(ρ, σ) = 1
2Tr

(√
(ρ− σ)†(ρ− σ)

)
. (1.48)
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It belongs to the interval Dt(ρ, σ) ∈ [0, 1], where Dt(ρ, σ) = 0 if and only if ρ = σ, while
when the two states have orthogonal supports, i.e. when all their eigenvectors with non-zero
eigenvalues are orthogonal, then Dt(ρ, σ) = 1. One of the interests of the trace distance is to
provide a measure of state distinguishability [37, 38]: Suppose we consider a system which
is either in the state ρ or σ, but we don’t know which of the two. The trace distance allows
us to know the maximum probability to correctly distinguish between ρ and σ after a single
optimal measure, which is given by

P = 1
2
(
1 + Dt(ρ, σ)

)
. (1.49)

When the trace distance between the two states is Dt(ρ, σ) = 1, we can experimentally
distinguish ρ and σ with full certainty (P = 1), whereas for Dt(ρ, σ) ' 0, the uncertainty on
our state is almost maximum (P ' 1/2).

1.3.4 Geometric quantum discord

As mentioned previously, the mutual information between two partitions A and B of a quan-
tum system corresponds to the total correlations, thereby encapsulating classical and quan-
tum contributions. One way to determine the quantum contribution is to use the notion of
quantum discord [34, 39]:

D(A→ B) = MI(A : B)− C(A→ B), (1.50)

where MI(A : B) characterizes the total correlations between A and B [see Eq. (1.46)] and
C(A→ B) represents the classical contribution to MI(A : B). Firstly, it is important to stress
that unlike the mutual information, D and C are not symmetric with respect to A and B.
Secondly, the quantum discord is generally difficult to compute as determining C(A → B)
requires a usually-complicated optimization with respect to POVMs (positive-operator-valued
measures) on A. By introducing a metric g(·, ·) on the space of states, it is possible to
compute the geometric quantum discord [39, 40], defined as the distance between the bipartite
state under consideration, ρAB, and its closest classical state χAB (having only classical
correlations):

DG(A,B) = g(ρAB, χAB). (1.51)

There exists analytical expressions of DG in specific configurations, and in particular for the
case of a bipartite system having dimensions 2× d [41], namely, systems composed of a qubit
and another subsystem of arbitrary but finite size. One of the most commonly employed
metrics of the state space used to compute the geometric discord is the one based on the
Bures distance [37].
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Figure 1.1: Dynamics of the quantum system. Panel(a): Ground-state populations of the
two qubits. Panel (b): Q̇(1)

loc(ω0) is the local heat flux of the qubit 1, while Q̇(12)
nl (ω0) and

Q̇
(12)
hop (ω0) are, respectively, the non-local and hopping fluxes between the two qubits from

the perspective of qubit 1. Units: 10−20 J · s−1. Panel (c): Bipartite mutual information
between the two qubits, and trace distance between the qubits state and the thermal state at
T = 300K.

1.4 A basic example

We conclude this chapter by a simple example illustrating the dynamics of an open quantum
system described by the reciprocal Markovian quantum master equation Eq. (1.30) derived
in Sec. 1.1.

We consider two qubits in free space interacting with a blackbody radiation at T = 300K.
The qubits have the same atomic transition frequency ω0 = 1014 rad · s−1. The induced
dipoles associated to the qubits transitions are assumed to be identical, pointing orthogonally
to the line joining the qubits and having magnitudes |µ(1)| = |µ(2)| = |µ| = 10−30 C ·m. The
distance separating the qubits is a = 3µm. We will consider similar physical configurations
in Chap. 2 but with more than two qubits. The Hamiltonian of the total system is

Htot = HS +HE +Hint, (1.52)

where HS and HE are the qubits and electric-field free Hamiltonian, respectively, and Hint is
the Hamiltonian of interaction between the qubits and the electric field. To be more explicit,
we have

HS = ~ω0
(
|e1〉〈e1|+ |e2〉〈e2|)

)
= ~ω0

(
σ(1)†σ(1) + σ(2)†σ(2)

)
. (1.53)

In the framework of Markovian open quantum systems, the Hamiltonian dynamics of the
environment will be neglected, such that explicit knowledge of HE is not required. In the
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dipole approximation, the interaction Hamiltonian is

Hint = −
2∑
i=1
D(i) ·E(ri) = −

2∑
i=1

(
µ(i)σ(i) + µ(i)σ(i)†

)
·E(ri). (1.54)

The parameters of the present set up have been chosen based on typical parameters from
Chap. 2, where we show that the Born-Markov and rotating-wave approximations can be
applied. Consequently, the master equation Eq (1.30) can be used to describe the dynamics
of the qubits reduced density matrix, denoted by ρ(t):

dρ(t)
dt

= − i
~
[
HΛ, ρ(t)

]
+Dem

[
ρ(t)

]
+Dabs

[
ρ(t)

]
, (1.55)

where Hshift has been neglected, and where we have:

HΛ = Λ(12)(ω0)σ(1)†σ(2) + Λ(21)(ω0)σ(1)σ(2)†, (1.56)

Dem/abs
[
ρ(t)

]
=

2∑
i,j=1
D(ij)

em/abs
[
ρ(t)

]
. (1.57)

Equation (1.55) can be written in a slightly more explicit form with the help of Eqs. (1.40)
and (1.41):

dρ(t)
dt

= −i
[
HΛ, ρ(t)

]
+D(1)

loc
[
ρ(t)

]
+D(2)

loc
[
ρ(t)

]
+D(12)

nl
[
ρ(t)

]
. (1.58)

The expressions of the coefficients entering into play in the dynamics of the quantum system
stem in the present case from the correlation functions of blackbody radiation at T = 300K in
free space, whose expression is well-known [26]. Introducing the quantities r̃ = ω0|r1 − r2|/c
and γ0 = |µ|2ω3

0/3~πε0c
3, the local dissipative rates read

Γ(11)
em (ω0) = Γ(22)

em (ω0) =
[
1 + n(ω0, T )

]
γ0, Γ(11)

abs (ω0) = Γ(22)
abs (ω0) = n(ω0, T )γ0, (1.59)

where n(ω, T ) =
(

exp(~ω/kBT )− 1
)−1 is the mean number of thermal photons at frequency

ω and temperature T . The non-local dissipative rates are

Γ(12)
em (ω0) = Γ(21)

em (ω0) =
[
1 + n(ω0, T )

]
γ0α(r̃), Γ(12)

abs (ω0) = Γ(21)
abs (ω0) = n(ω0, T )γ0α(r̃),

(1.60)

where we defined
α(r̃) = 3

2r̃3
(
r̃ cos(r̃) +

[
r̃2 − 1

]
sin(r̃)

)
.

The strength of the coherent dipole–dipole interaction is

Λ(12)(ω0) = Λ(21)(ω0) = −3
4
γ0
r̃3
[(
r̃2 − 1

)
cos(r̃)− r̃ sin(r̃)

]
, (1.61)
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and we point out that unlike the transition rates, this quantity does not depend on the field
temperature T . We note that the coefficients Λ(ij)(ω0) and Γ(ij)

em/abs(ω0) with i, j ∈ {1, 2}
defined above are particular cases of the more general Eqs. (2.6), (2.7) and (2.8) introduced
in Chap. 2.

Figure 1.1(a) shows the dynamics of the qubits ground-state populations p(1)
g (t) and p(2)

g (t)
for an initial state |ψ(0)〉 = |e1g2〉, i.e. with qubit 1 in its excited state (p(1)

g (0) = 0) and
qubit 2 in its ground state (p(2)

g (0) = 1). At the beginning of the evolution, they exhibit
an oscillatory behavior which has a decreasing amplitude, until both populations equal each
other. After that, they tend together to their stationary value, which in this case is given by
the Boltzmann distribution: p(ω) = e−~ω/kBT /Z, where Z is the partition function. Notice
that during the oscillation period, the local maxima of one population correspond to the local
minima of the other, which suggests a coherent energy exchange between the qubits. This is
confirmed by Fig. 1.1(b) showing some of the heat fluxes involved in the system. To be more
precise, one sees that the hopping flux Q̇(12)

hop (ω0), stemming from the field-mediated coherent
dipole–dipole interaction between qubits 1 and 2, has a dynamics very similar to the one of
the populations. In particular, at the beginning of the evolution Q̇

(12)
hop (ω0) < 0, indicating

that qubit 1 is yielding energy to qubit 2 (Q̇(21)
hop (ω0) = −Q̇(12)

hop (ω0) > 0), which is why the
ground-state population of the latter decreases (i.e. its excited population increases). This
energy transfer goes on with a decreasing amplitude until Q̇(12)

hop (ω0) = 0, and after that, we
have Q̇(12)

hop (ω0) > 0: it is now the qubit 2 that is transferring energy to the benefit of qubit 1.
As explained previously, this coherent interaction continues until the populations equal each
other, in which case the hopping flux vanishes. As a witness of the interactions between the
qubits, the bipartite mutual information MI(1 : 2) is displayed in Fig. 1.1(c). Initially, the
qubits are uncorrelated such that MI(1 : 2) = 0. When they start interacting, the mutual
information immediately increases, with an intensity reflecting the hopping flux amplitude,
where in particular the local maxima of MI(1 : 2) occur at the same times as the local extrema
of Q̇(12)

hop . After that, when the interaction between qubits vanishes, they decorrelate from each
other and MI(1 : 2) = 0 again.

The damped coherent oscillations of the populations are due to the dissipative processes.
Indeed, the local flux of qubit 1, illustrated in Fig 1.1(b), shows that this qubit is dissipating
energy into the environment (Q̇(1)

loc(ω0) ≤ 0), and this is also the case for qubit 2 (not shown
here). On the other hand, the non-local flux between these qubits is such that Q̇(12)

nl (ω0) =
Q̇

(21)
nl (ω0) > 0: the atomic pair is collectively drawing energy from the environment through

this heat flux, but not enough to fully balance the energy lost through the local fluxes.
Eventually, at stationarity, the dissipative fluxes vanish, and the mean energy exchanged
between the open system and its environment is zero.

The trace distance Dt(ρ, ρTS) between the qubits reduced density matrix and the thermal
state ρTS = exp(− HS

kBT
)/Z at T = 300K is shown in Fig. 1.1(c). Initially, the quantum

system is far from the thermal state, but under the effect of energy dissipation, it gets closer
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and closer to it, until they become equal when Dt(ρ, ρTS) = 0. This clearly illustrates the
thermalization of the quantum system to the equilibrium thermal state at the temperature
of the environmental electric field.



Chapter 2

Energy transport in atomic chains
in a thermal environment

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Physical system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Relevant parameters of the system . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Mathematical description of the system . . . . . . . . . . . . . . . . . . 20

2.3.1 Master equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Definition of energy-transport efficiency . . . . . . . . . . . . . . . . . . . 22

2.4 Long-range transport and efficiency amplification . . . . . . . . . . . . 23

2.5 Preliminary investigations . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Steady-state analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8 Chains with more atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.1 Introduction

Finding new methods to efficiently transport energy within molecular or atomic systems is
a key ingredient for future technologies, such as quantum-computing processing or photo-
voltaic cells [42]. To this end, a number of physical systems have been investigated, many of
them being based on the coupling between emitters (e.g. molecules or atoms) and tailored
electromagnetic modes. This is typically realized when emitters are located within optical cav-
ities [43, 44], or close to metallic surfaces such as mirrors [45], or nanospheres [46]. Moreover,
some investigations found inspiration from natural systems such as light-harvesting photo-
synthetic complexes [11, 47], which transport energy with high efficiency. Remarkably, it has
been shown that these systems exhibit long-living excitonic quantum coherences [8–10]. These
observations have drawn a considerable attention, and a number of studies have suggested

17
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Figure 2.1: Physical system under investigation in this chapter: atomic chain embedded in an
electromagnetic field at temperature T . The interactions between the environmental field and
the atoms open different channels of energy exchange, either between the quantum system and
its environment or within the chain. Moreover, to evaluate the energy-transport efficiency of
the chain, energy is pumped into the first atom and extracted from the last one through the
fluxes P and E, respectively. The atoms are labeled with increasing x as {p, 2, . . . , N − 1, e},
where p denotes the atom of pumping, and e the extraction atom.

that the energy-transport process occurring in these complexes could result from the inter-
play between quantum coherent transfer of excitations and environment-induced dissipation,
a mechanism called environment-assisted quantum transport (ENAQT) [17, 48–57]. In this
spirit, the role of temperature on energy transport of thermal photons has been investigated
in Ref. [58] for bi- and tri-dimensional open systems composed of a few two-level quantum
emitters (‘atoms’). It has been shown that thermally-enhanced nonlocal effects could dras-
tically improve transport efficiency. In particular, it has been demonstrated that in specific
configurations, the efficiency can largely surpass 100% and reach 300%.

In this chapter, we focus our investigation of thermal effects on energy transport in the
case of unidirectional chains of two-level atoms. We will show that for specific configurations,
the transport efficiency can be dramatically amplified, reaching sometimes 1400%. To unveil
the origin of this effect, we perform both steady-state and dynamical studies of the heat-flux
interplay between the two-level atoms. In addition, we show that the transport range can be
up to 8 times larger than in the absence of thermal effects. These investigations are realized
for different number of atoms composing the chain. The results presented in this chapter have
been published in Ref. [20].
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2.2 Physical system

The system we consider in this chapter consists of N identical two-level atoms distributed
linearly in free space along the x-axis, as depicted in Fig. 2.1, and embedded in an elec-
tromagnetic field at thermal equilibrium at temperature T . Our aim here is to investigate
the properties of energy transport within such atomic chains, and to dedicate a particular
attention to the role played by the thermal environment in the transport process.

The figure of merit we will use throughout this chapter is the energy-transport efficiency.
The mathematical definition of this quantity will be given further, but we can already provide
the underlying idea: energy is artificially pumped at one edge of the chain, and extracted
from the other edge. The efficiency stems from the comparison between these two amounts
of energy.

2.2.1 Relevant parameters of the system

Before entering the heart of the subject and giving the mathematical description of the prob-
lem, let us first briefly discuss the physical parameters of the system that are relevant, and
introduce several assumptions that will be valid throughout this work.

First of all, we will assume that all the atoms have the same transition frequency ω0.
This parameter will be varied in the following investigations but its typical value is of the
order of ω0 ∼ 1014 rad · s−1 (ν0 ∼ 16THz, λ0 ∼ 19µm), that is near the far-infrared region of
the electromagnetic spectrum. This corresponds to a temperature of ~ω0/kB ∼ 764K. Being
interested in the energy transport related to thermal effects, working with higher frequencies
would necessitate unrealistic environmental temperatures (e.g. 1.8 × 104 K for a wavelength
of 800 nm).

To each atomic transition is associated a transition dipole moment µ, which will be as well
considered identical for all atoms in the chain. We set arbitrarily both its direction, that we
choose orthogonal to the one of the chain, i.e., µ = |µ|ẑ, and its magnitude |µ| = 10−30 C ·m.

Another important parameter is the geometrical configuration of the chain. Indeed, we
will see that the interaction between two atoms depends on their spatial separation. This
is also a parameter that will be changed during our investigations, but the configuration of
reference will be a regular chain with step a, with typical value a = 0.1µm. In this case, the
length of the chain is L = (N − 1)a.

Last but not least, the temperature T of the electromagnetic field embedding the atomic
chain is an essential parameter. Once again, although this parameter will be varied during
our analysis, two main regimes will be considered: low temperature (T = 10K) and room
temperature (T = 300K).
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2.3 Mathematical description of the system

2.3.1 Master equation

Let us now turn to the model describing the time evolution of the system. By calling HS and
HE the atomic chain and environment bare Hamiltonians, respectively, the Hamiltonian of
the total system reads

Htot = HS +HE +Hint, (2.1)

where Hint is the Hamiltonian describing the interaction between the quantum system and
the environment. The ground and excited states of the i-th qubit are noted by |gi〉 and |ei〉,
respectively, and the corresponding lowering operator is σi = |gi〉〈ei|. The system Hamil-
tonian then reads HS =

∑N
i=1 ~ω0σ

†
iσi, whereas the interaction Hamiltonian is given in the

framework of the dipole approximation by Hint = −
∑N
i=1(σ†i + σi)µ ·E(ri). The derivation

of the Markovian quantum master equation Eq. (1.30) described in Chap. 1 can be applied
here. Regarding the validity of the approximations for the Born-Markov and rotating-wave
approximations, the environment decay time is τB = ω−1

0 = 10−14 s, and the intrinsic time
scale is τS ∼ (2ω0)−1 ∼ 5 × 10−15 s. Among the configurations we will consider, the one
generating the smallest relaxation time scale occurs when the environmental temperature is
T = 1000K, leading to τR ∼ 10−1 s, such that τR � τB and τR � τS are both verified.
Besides, being interested in the energy transport from one edge of the chain to the other,
we introduce incoherent energy pumping on the first atom, atom p, and extraction from the
N -th atom, noted by e. Consequently, the time evolution of the reduced density matrix of
the atomic chain ρ(t) is

dρ(t)
dt

= − i
~
[
HΛ, ρ(t)

]
+Dem

[
ρ(t)

]
+Dabs

[
ρ(t)

]
+Din

[
ρ(t)

]
+Dout

[
ρ(t)

]
, (2.2)

where the dissipators Din and Dout represent the pumping and extraction processes. To be
more specific, the pumping on atom p is

Din[ρ(t)] = Γin

(
σ†pρ(t)σp −

1
2{σpσ

†
p, ρ(t)}

)
, (2.3)

with σp = σ1, whereas the extraction on atom e is

Dout[ρ(t)] = Γout

(
σeρ(t)σ†e −

1
2{σ

†
eσe, ρ(t)}

)
, (2.4)

where σe = σN , and Γin and Γout being the rates of pumping and extraction, respectively. In
this chapter, these rates will be fixed at Γin = 10−3γ0 and Γout = 102γ0. These values will
remain the same throughout this chapter. They have been chosen based on previous works
attempting to reproduce the environment of natural physical systems realizing photosyn-
thesis, where the interplay between coherent quantum dynamics and environmental-induced
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dissipation seems to play a fundamental role in the energy transport [58].

The other contributions to this master equation (HΛ, Dem and Dabs) stem from the inter-
action between the EM field and each atom in the chain. This interaction produces an effective
field-induced Hamiltonian coupling [HΛ, see Eq. (1.32)] between pairs of atoms thanks to the
self-correlation of the field at two distinct points in space. In addition, dissipation of atomic
energy into the field is accounted for by the terms Dem and Dabs [Eqs. (1.33) and (1.34)]. More
precisely, environmental properties are taken into account through the coefficients Λ(ij)(ω0),
Γ(ij)

em (ω0) and Γ(ij)
abs (ω0), respectively. Again, since no ambiguity is possible regarding the

transition frequency, we will drop the notation showing the explicit dependence on ω0, e.g.
Λ(ij)(ω0)→ Λ(ij). Before giving the expression of these coefficients, we introduce the following
notations for a given atomic couple (j, k):

rjk = rk − rj ,

r̃jk = ω0
c
|rjk|,

r̂jk = rjk
|rjk|

,

µ̂ = µ

|µ|
.

(2.5)

The strength of the unitary dynamics in free space between atoms j and k with identical
dipoles is

Λ(jk) = −3
4γ0

[
2(µ̂ · r̂jk)2f(r̃jk) +

(
1− (µ̂ · r̂jk)2

)
g(r̃jk)

]
,

f(x) = cosx+ x sin x
x3 , g(x) = (x2 − 1) cosx− x sin x

x3 .

(2.6)

These coefficients depend on the interatomic separation and dipoles orientations. On the
other hand, they are independent of the electromagnetic-field temperature.

The rates of spontaneous emission and absorption of photons into/from the field associated
to the dissipative processes Dem and Dabs are

Γ(jk)
em =γ(jk)[1 + n(ω0, T )

]
, (2.7)

Γ(jk)
abs =γ(jk)n(ω0, T ), (2.8)

where
γ(jk) = γ0

∑
l=x,y,z

(
[µ̂]l

)2
α

(jk)
l , (2.9)

with l denoting the three Cartesian components, and where we used

α(jk)
x = 3

r̃3
jk

(
sin r̃jk − r̃jk cos r̃jk

)
, (2.10)

α(jk)
y = α(jk)

z = 3
2r̃3
jk

(
r̃jk cos r̃jk + (r̃2

jk − 1) sin r̃jk
)
. (2.11)
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As mentioned before, in our system the atoms are aligned along the x-axis, such that only
the terms α(jk)

x will contribute to the rates. It is worth stressing that unlike Λ(jk), these
rates do depend on the temperature through the thermal factor n(ω0, T ). In the limiting
case of a field in the vacuum state, that is in the absence of thermal photons (n(ω0, T ) = 0),
the quantum system cannot absorb energy from the environment (Γ(jk)

abs = 0), and thus its
interaction with the field is exclusively reduced to spontaneous emission. As expected, the
presence of thermal photons both provides the possibility to absorb energy from the field and
triggers the addiational process of stimutaled emission.

2.3.2 Definition of energy-transport efficiency

As mentioned before, we need to quantify the fraction of the extracted energy which is due
to the presence of pumping, and, to do so, we begin by quantifying how much energy can be
extracted when the pumping is not present.

Therefore we consider a first situation, the so-called no-pumping scenario, where only
extraction is performed. The corresponding density matrix of the chain ρ0(t) is solution to
Eq. (2.2) after having set Γin = 0 (while Γout 6= 0). The corresponding energy flux extracted
from the last atom is

E0(t) = −Tr
(
HsysDout[ρ0(t)]

)
. (2.12)

The minus sign present in this definition has been added so that E0(t) is a positive quantity,
which describes the amount of energy extracted. Having E0(t) 6= 0 implies that energy is
extracted from the system despite the absence of pumping. As mentioned before, this typically
occurs when thermal effects are non-negligible, providing the chain with the possibility to
absorb thermal energy from the field. The second case is the pumping scenario, where both
pumping and extraction are performed (Γin 6= 0 and Γout 6= 0). By calling ρ(t) the density
matrix associated to this configuration, the pumping and extraction fluxes are respectively

P (t) = Tr
(
HSDin[ρ(t)]

)
, E(t) = −Tr

(
HSDout[ρ(t)]

)
. (2.13)

The definition of energy-transport efficiency directly stems from these three energy fluxes,
and reads

χ(t) = E(t)− E0(t)
P (t) . (2.14)

Note that we are comparing energy fluxes rather than energies. Having E(t) = E0(t) + P (t)
(χ(t) = 1) suggests that the energy is effectively transported along the chain without any
loss, namely with 100% of efficiency. On the other hand, if the extraction flux is the same
whether pumping is performed or not (E(t) = E0(t)), it can be considered that the pumped
energy has been totally lost to the environment or stored in the system but has never reached
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Figure 2.2: Energy-transport efficiency as a function of the distance between the last two
atoms of a four-atom chain.

atom e.

2.4 Long-range transport and efficiency amplification

Let us begin our investigation on transport efficiency with a system of N = 4 atoms of transi-
tion frequency ω0 = 1014 rad · s−1, regularly distributed with a constant step a = 0.1µm. The
atoms are labeled {p, 2, 3, e}. We will start focusing on the energy transport at the steady
state of the system and therefore consider only stationary quantities (unless specified other-
wise), such that we drop the explicit time dependence, e.g., χ = lim

t→∞
χ(t).

We investigate here how the energy transport is affected when the atom of extraction,
i.e., the last one of the chain, is moved along the x-axis. The energy-transport efficiency
corresponding to this simulation is shown in Fig. 2.2. The displacement of the extraction
atom is described by the parameter d characterizing the distance between atoms N − 1 and
N , that is between atoms 3 and e in this case. The regular chain disposition corresponds
to d = a. Besides, being interested in thermal effects on energy transport, we analyze this
displacement for two different thermal configurations: at low temperature (T = 10K) and at
room temperature (T = 300K).

At low temperature, there being no thermal photons (n(ω0, 10) ' 0), the EM field is close
to its vacuum state. In this case, no thermal energy is available in the atomic environment
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(Γ(ij)
abs = 0) and pumping is thus the only process increasing the energy of the quantum

system. For this reason, in the absence of pumping, no energy is extracted from the chain
(E0 = 0). Concerning the other energy channels, the strength of the hopping fluxes (Λ(ij))
is independent of the temperature, and the rates of emission reduce to Γ(ij)

em = γ(ij), such
that both types of fluxes, hopping and emission, are contributing in this low-temperature
regime. This implies that the pumped energy can either be transmitted within the chain or
lost to the environment, such that the relation 0 ≤ χ ≤ 1 holds, and therefore the transport
efficiency depends on the competition between energy transmission and energy loss. This
can be seen in Fig. 2.2: when d ∼ a, the hopping fluxes are dominant. The major amount
of the pumped energy is transported to the extraction atom, while the effects related to the
dissipative fluxes are negligible. This leads to χ ∼ 1. When d increases, however, the strength
of the hopping fluxes between atoms 3 and 4 weakens, progressively reducing the amount of
energy transmitted between them, until it completely vanishes when d ≥ 2µm. In this case,
the extraction atom cannot interact with the rest of the chain, where the pumped energy
remains trapped and then ends up by being dissipated, resulting in χ = 0.

At T = 300K the EM field is not in the vacuum state since the mean number of thermal
photons is not negligible, having for effect to boost the interactions between the quantum
system and its environment. On the one hand, the chain absorbs thermal photons present in
EM field with rates Γ(ij)

abs , and having E0 > 0 is very likely. On the other hand, the loss of
energy is also enhanced (Γ(ij)

em = γ(ij)(1 + n(ω0, 300)
)
). In this case, having a good efficiency

does not rely on the bare competition between energy-transmission and energy-loss, as in the
low-temperature configuration. Indeed, pumping energy into atom p causes modifications in
all the quantum-system energy-exchange processes: hopping, emission and absorption (the
latter being active only when T is large enough, as is the case, e.g., at T = 300K). A
good efficiency then requires that these interactions modified due to pumping lead to an
enhanced amount of energy extracted from atom e in comparison to the no-pumping scenario.
Figure 2.2 clearly shows that the behavior of the transport efficiency is radically different from
the low-temperature regime, although the regular-chain configuration (d = a) also leads to
χ ∼ 1. When d increases, even though the hopping fluxes between atoms 3 and 4 are weak in
comparison to the emission ones, the efficiency overcomes the low-temperature upper bound,
and can reach values up to ∼ 9 times greater. This means that the energy extracted from the
chain remarkably surpasses the one pumped in by almost one order of magnitude.

In addition to being interesting per se, this effect of efficiency amplification occurs within a
wide interval of d, therefore considerably extending the range of energy-transport. For exam-
ple, comparing with the low-temperature regime, producing χ ' 1 at T = 10K necessitates a
regular-chain configuration, thus limiting the transport to a distance of L = 3×0.1 = 0.3µm.
At room temperature, on the other hand, this can be achieved either with a regular chain or
with a chain of length L = 2 × 0.1 + 2.2 = 2.4µm, which is 8 times larger than in the low-
temperature regime. Besides, the smooth variation of χ within the efficiency-amplification
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Figure 2.3: Panels (a)-(d): Efficiency as a function of the distance d between atoms N−1 and
N (with N = 4), and of the environmental temperature T . The atomic transition ω0 takes
the values 0.5, 1, 2 and 5 (units of 1014 rad · s−1) in panels (a), (b), (c) and (d), respectively.
Panel (e): Maximum efficiency with respect to d ∈ [0.1, 3]µm and T ∈ [10, 1000]K as a
function of ω0. Panel (f): Value of d, noted dmax, producing the best efficiency as a function
of ω0. In panels (e) and (f), the red squares correspond to panels (a)-(d), and the black arrows
represent the asymptotic limit when ω0 � 1014 rad · s−1.

interval makes it robust against small variations of d. Regarding energy transport and its
practical realization, these properties of long range and robustness make this physical sys-
tem more advantageous at room temperature than at low temperature. Indeed, working at
T = 10K necessitates a very specific atomic distribution, which can be hardly achievable
experimentally, and produces at best χ = 1. On the other hand, at room temperature, less
precision is required on the atomic positions, and obtaining χ > 1 is achievable for a large
number of configurations.

2.5 Preliminary investigations

In the aim of getting more insight on the efficiency amplification, we explore the dependence
of this phenomenon on the variation of several relevant parameters, still at stationarity. More
specifically, Figs. 2.3(a-d) show a density plot of χ as a function of the distance between
atoms 3 and e, and of the EM-field temperature, each panel corresponding to a different
atomic transition frequency.

The first thing to point out is the difference of the efficiency-variation scale between
each panel. Indeed, when ω0 = 0.5 × 1014 rad · s−1, depending on the couple of parameters
(d, T ), the interval of efficiency variation is [−40, 20], whereas it is reduced to χ ∈ [0, 1] for
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Figure 2.4: Left scale: Difference between the energies extracted with and without pumping
(solid blue line) and pumping (dashed green line), which produce the maximum efficiency
shown in Fig. 2.3(e). Right scale: Energy extracted in the presence of pumping (dash-dotted
red line) in correspondence with the left scale.

ω0 = 5× 1014 rad · s−1. Although some configurations result in χ < 0, we will remain focused
on the ones producing χ > 0 since the analysis we are pursuing is dedicated to increasing the
efficiency of energy transport. For the atomic transition frequency ω0 = 0.5 × 1014 rad · s−1

[Fig. 2.3(a)], the mean number of thermal photons is non-negligible for a large number of
T ∈ [10, 1000]K. Within this range of temperatures, the variation of n(ω0, T ) is considerable
and induces in turn a strong sensitivity of the efficiency with respect to T at this frequency
[Fig. 2.3(a)]. With the frequency increasing, the minimum temperature necessary to have
considerable thermal effects rises, leading to a shift of the high-efficiency regions towards
high temperatures [Figs. 2.3(b-c)]. Finally, the mean number of thermal photons at ω0 =
5 × 1014 rad · s−1 is negligible for all the temperatures in the interval considered here, and
therefore pulling away the N -th atom in such environments [Fig. 2.3(d)] or in a field in vacuum
state is similar. In such cases, the maximum value of efficiency is χ ' 1 and is reached when
the chain is regularly distributed (d = a), and then monotonically decreases toward 0 when
increasing d.

This analysis is generalized with Fig. 2.3(e), which shows the maximum efficiency χmax

with respect to (d, T ) ∈ [0.1, 3]µm × [10, 1000]K, as a function of the atomic transition
frequency. Clearly, χmax decreases with the increase of ω0, that is with the disappearance of
thermal effects in the environment. Finally, the frequencies are too high for the presence of
notable thermal effects within the considered interval of temperatures, leading to the vacuum-
state-field regime, characterized by χmax ' 1 with d = a. The black arrow corresponds to the
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asymptotic value of χmax when ω0 � 1014 rad · s−1, which reaches the remarkable value of 40.
Investigating the dependence of χ on the distance between atoms N − 1 and e reveals

that the efficiency amplification is not only a thermal effect, but also geometrical. Indeed,
we just showed that the high-efficiency region is shifted toward high temperatures when ω0

increases. In addition, this shift is accompanied by a shrinking of these regions with respect
to the parameter d. Besides, as shown in Fig. 2.3(f), when ω0 is increased, the distance dmax

producing the best efficiency is reduced, and eventually reaches the regular-configuration
value dmax = a. The discontinuity visible at ω0 ∼ 2.2 × 1014 rad · s−1 reflects the transition
between the configuration where χmax > 1 for a given dmax > a, to the one where χmax = 1
and dmax = a represent the best possible scenario. Note that in the latter case there is still a
region of d > a where the efficiency slightly increases, but such that χ < 1. This is illustrated
in Fig. 2.2, where a small bounce of χ at T = 10K is visible around d ∼ 0.7µm. Once again
the black arrow indicates the limiting case ω0 � 1014 rad · s−1.

Figure 2.4 displays the fluxes entering into play in the definition of efficiency [Eq. (2.14)]
as a function of ω0. The values shown here are the one producing the maximum efficiency
shown in Fig. 2.2. It can be seen that the additional energy extracted from the chain in the
presence of pumping can be of several orders of magnitude larger than the one pumped in.
Also, note that in the limit ω0 � 1014rad · s−1, although having χ ∼ 40 is remarkable, the
fluxes involved here are rather small.

2.6 Steady-state analysis

This section is dedicated to the steady-state analysis of the energy-transport efficiency. To be
more specific, we will study the interplay between the energy fluxes occurring either within
the quantum sytsem or between the chain and its environment, and elucidate the mechanism
inducing the efficiency amplification discussed previously.

We begin our analysis with Fig. 2.5, where the last atom of the chain is pulled away,
similarly to Fig. 2.2, but for several values of N . Not surprisingly, the best values of efficiency
reached in the low-temperature regime are produced by the regular-chain configuration, and
never exceed 1. More remarkably, at room temperature, the efficiency amplification only
occurs in the case of a four-atom chain, revealing that this effect results from a very specific
balance of the interplay between the energy fluxes.

Before going further, let us briefly recall the different heat fluxes entering into play, which
have been introduced in Chap. 1. The hopping fluxes (Q̇(ij)

hop) describe energy exchanges
between two atoms and do not change the total energy of chain. The local fluxes (Q̇(i)

loc)
result from the sum of both photon absorption and emission processes, which stem from the
interactions between a single atomic transition and the environment. On the other hand, the
non-local fluxes (Q̇(ij)

nl ) are associated with the interaction between an atomic couple and the
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Figure 2.5: Efficiency as a function of the distance between atoms N − 1 and N for chains
with different number of atoms. The environmental temperature is T = 10K (upper panel)
and T = 300K (lower panel). The configuration N = 4 is the one presented in Fig. 2.2.

Figure 2.6: Global differences for each type of energy flux involving atom e [Eq. (2.16)] as a
function of the distance between atoms 3 and e. Additionaly, the contributions of each atom
to ∆Q̇(e)

hop are shown as well.



2.6. Steady-state analysis 29

environment. Similarly to the local fluxes, they result from the balance between emission and
absorption of energy by the couple. The amount of energy exchanged between the atomic
pair and the field is the same for the two atoms, i.e., each of them either receives or looses
half of the energy.

In order to highlight the role played by each of these fluxes in both the pumping and no-
pumping scenarios, instead of working with bare energy fluxes, we will rather use differences
of energy fluxes between the pumping and no-pumping scenarios, as follows

∆Q̇(j)
loc = Q̇

(j)
loc − Q̇

(j)
loc,0, ∆Q̇(jk)

ϕ = Q̇(jk)
ϕ − Q̇(jk)

ϕ,0 , (2.15)

where here the local flux concerns atom j and the hopping (ϕ = “hop”) and non-local (ϕ =
“nl”) fluxes involve atoms j and k. Then, the global difference of hopping (non-local) fluxes
involving the j-th atom reads

∆Q̇(j)
ϕ =

∑
k 6=j

∆Q̇(jk)
ϕ . (2.16)

Note that in the following, most of the time these differences will be normalized by the
pumping flux P .

Let us now use these quantities to investigate the efficiency amplification occurring in
the four-atom chain. The following figures have been realized at T = 361K, because in this
case, the maximum efficiency (χ = 10.2) is even higher than at T = 300K. Although we do
not explicitly plot the efficiency as a function of d for T = 361K, its behavior is extremely
similar to the one at T = 300K, shown in Fig. 2.2, which can safely be used as reference in
the following. In this figure, it is worth stressing that the efficiency is always positive within
the whole interval of d, implying that the energy extracted from the chain in the presence of
pumping is larger than without pumping (E > E0). This leaves two possibilities concerning
the origin of the additional energy (E − E0): it is either absorbed by atoms (p, 2, 3) (by
pumping or environmental interactions) and transmitted to the extraction atom, or absorbed
directly by the latter from the field. To determine this, Fig. 2.6 shows the global differences
of each type of flux involving the extraction atom (∆Q̇(e)

loc, ∆Q̇(e)
nl and ∆Q̇(e)

hop) as a function
of d at T = 361K. The difference ∆Q̇(e)

hop follows a behavior very similar to the one of χ in
Fig. 2.2, and having ∆Q̇(e)

loc ∼ ∆Q̇(e)
nl ∼ 0 leads us to conclude that the additional energy

is absorbed by the chain (atom e excluded) and transmitted exclusively by hopping to the
extraction atom. A further step is to unveil the origin of this extra energy. A hint is given
by the different contributions to ∆Q̇(e)

hop, i.e., each ∆Q̇(ei)
hop such that i 6= e, are also shown in

Fig. 2.6. One can see that having d ∼ a induces ∆Q̇(e)
hop ∼ ∆Q̇(e3)

hop ∼ P , indicating that atom
e receives an amount of energy close to P by hopping from its nearest neighbor, that is atom
3. The rest of the hopping fluxes are negligible. When d increases, however, the distribution
of hopping fluxes changes significantly, and two distinct behaviors emerge. On the one hand,
both differences ∆Q̇(ep)

hop and ∆Q̇(e3)
hop become negative, signifying that atoms p and 3 yield less
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Figure 2.7: Global difference of each type of flux involving atom 2 as a function of the distance
between the last two atoms of the chain. The hopping flux between atoms 2 and e is also
shown. It appears clear that the main contribution to ∆Q̇(2)

hop comes from the interaction
between this atomic pair. This quantity is plotted in Fig. 2.6 from the perspective of atom e,
which explains the opposite sign between the two curves (i.e., ∆Q̇(e2)

hop = −∆Q̇(2e)
hop ).

energy to atom e in the presence of pumping than in its absence. On the other hand, a drastic
enhancement in the energy flowing from atom 2 to atom e arises. This huge increase is such
that ∆Q̇(e2)

hop + ∆Q̇(ep)
hop + ∆Q̇(e3)

hop > 0: in the pumping case, although atoms p and 3 transmit
less energy to the extraction atom, this deficit is overwhelmed by the increase of the hopping
flux originating from atom 2, such that E > E0 which leads to χ > 0. Besides, in most of
these cases, the additional energy is larger than P , resulting in χ > 1. This suggests that
the pumping induces a modification of the fluxes distribution such that the quantum system,
and in particular the triplet (p, 2, 3), absorbs energy from the environment. Consequently,
the rest of the analysis is declined in two steps: on the one hand, we will focus on atom 2,
and on the other hand, on the atomic pair (p, 3).

Firstly, we start with Fig. 2.7, which shows the same quantities as in Fig. 2.6, but related
to atom 2, that is ∆Q̇(2)

loc, ∆Q̇(2)
nl and ∆Q̇(2)

hop. The peculiar flux ∆Q̇(2e)
hop is pictured as well. The

analysis will be focused on the region d > 0.4µm. Consistently with the previous observations,
it can be seen that in the pumping case, atom 2 yields more energy to e than in the no-
pumping scenario since ∆Q̇(2e)

hop < 0 (recall that ∆Q̇(2e)
hop = −∆Q̇(e2)

hop ). This loss, however, is
compensated by a significant increase of the energy absorbed by atom 2 from the environment,
mainly through local flux, but also, to a lesser extent, by non-local flux. Secondly, concerning
the atomic pair (p, 3), Fig. 2.8 shows the local fluxes of these two atoms, as well as their shared
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Figure 2.8: Difference of local and non-local fluxes related to atoms p and 3 as a function
of the distance between atoms 3 and e. The rise of these flux differences coincides with the
amplification of the efficiency (χ ≥ 1).

non-local flux. In the region of efficiency amplification, and in the presence of pumping, a
collective behavior arises between these two atoms: they absorb energy cooperatively thourgh
their non-local flux. Although this energy income is counter-balanced by their individual local
fluxes, this collective behavior privileges the interactions between these two atoms, and at
the same time, reduces the interactions between each of them and the rest of the atoms not
belonging to this couple. Consequently, atom 2 gets isolated (in terms of interactions with
its neighbors), providing it with the possibility to interact more with both its environment
and the extraction atom. Then, the atomic triplet (p, 2, 3) functions as an excitation injector:
the cooperation of atoms p and 3 induced by pumping has for effect to single out atom 2,
allowing it to absorb more thermal energy from the environment, and to transmit it to the
extraction atom via hopping. In such cases, the energy extracted at the end of the chain has
potentially two contributions: the energy pumped in, which is (partially) transmitted along
the chain, and the energy injected by the triplet (p, 2, 3) by the thermal environment.

Synthesizing the previous observations, two different regimes can be identified depending
on the geometry of the chain. Within the range d ∈ [0.1, 0.4]µm the regular-transmission
regime occurs. It is characterized by the fact that most of (if not all) the extracted energy
originates from the pumping and χ ≤ 1. In this case, the transport is realized by hopping
from an atom to its neighbor, from one edge of the chain to the other. The hopping strength
being independent of the temperature, this regime can exist at any T , including T = 0K,
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Figure 2.9: Main part: Dynamics of the energy-transport efficiency. Inset: Dynamics of the
ground state populations of each atom. These populations, noted p(i)(t) (p(i)

0 (t)) for the i-th
atom in the presence (absence) of pumping, are obtained from the reduced density matrix
ρ(i)(t) (ρ(i)

0 (t)). The correspondence between curves and populations are the following. Solid
brown line with squares: p(e); solid red line p(p); dash-dotted red line: p(p)

0 ; solid green line
with circles: p(2); dashed green line: p(2)

0 . The curves of p(e)
0 , p(3) and p(3)

0 are superimposed
with p(e), p(p) and p(p)

0 , respectively.

when the field is in the vacuum state. When d > 0.4µm, the excitation-injector regime
dominates. In this regime, the extraction atom is spatially isolated, and the atomic triplet
(p, 2, 3) plays the role of excitation injector described above. This mechanism results from
the competition between two opposite requirements: on the one hand, the excitation injector
needs to be isolated as much as possible, otherwise the interactions with the extraction atom
redistribute the fluxes and destroy the effect. On the other hand, since a large amount of the
energy absorbed by atom 2 is transmitted to atom e via hopping, then the distance between
them must not be too large, otherwise the strength of the interaction vanishes. This regime
being based on the absorption of thermal energy from the environment, it cannot be realized
with a field in the vacuum state. However, it allows energy transport over a much larger
range than the other regime, in addition to the drastic efficiency amplification.

2.7 Dynamics

In the previous section, we have analyzed the energy-transport efficiency as a function of the
chain geometry. This analysis was performed at stationarity, and it emerged that in some
cases, the atomic triplet (p, 2, 3) induces an amplification of the efficiency. In the following,
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we will focus our attention on this mechanism by fixing the chain geometry, and investigate
the efficiency dynamics. This will allow us to have a deeper insight on the establishment of
the interplay between different kinds of fluxes that gives birth to the excitation injector.

Throughout this section, the system of reference will be a four-atom chain with the temper-
ature of the electromagnetic field fixed at T = 361K. The distance between two neighboring
atoms is a = 0.1µm, except the one between atoms 3 and e, which is d = 1.03µm. The sta-
tionary energy-transport efficiency of this chain is χ = 10.2, and its time evolution is depicted
in Fig. 2.9. Moreover, to have a global insight on the energy distribution dynamics, the inset
of this figure shows the ground state populations of each atom as a function of time, both in
the presence (solid lines) and in the absence (dashed lines) of pumping.

Before entering into details, it is worth stressing that three time scales enter into play in
the dynamics of this system. Each of them corresponds to a different physical process and is
characterized by a specific rate: pumping (Γin), spontaneous relaxation (γ0) and extraction
(Γout). As mentioned before, we have set Γin = 10−3γ0 and Γout = 102γ0, and consequently
the effects of each process manifest themselves in the following chronological order: extraction,
relaxation, and pumping (Γ−1

out < γ−1
0 < Γ−1

in ). These three time scales are clearly visible on
the population dynamics, shown in the inset of Fig. 2.9. At t = 0, the initial state of the
system is the thermal state, where all the ground state populations, noted p(i) (p(i)

0 ) in the
presence (absence) of pumping (with i ∈ {p, 2, 3, e}), are equal to each other. The ground
state population of the extraction atom is the first one to be affected by the extraction process
in both cases, with and without pumping, and rapidly reaches its maximum value for the rest
of the dynamics: the extraction maintains atom e close to its ground state. The populations of
the other atoms start to change during the time scale associated to the spontaneous relaxation.
Within this period (∼ γ0t ∈ [10−2, 1]), they follow a similar evolution, whether pumping is
performed or not. After that, however, there begin to arise differences of two natures. Firstly,
focusing on a single scenario, either pumping or no-pumping, the population dynamics can
differ from an atom to another. Secondly, for a given atom, the pumping and no-pumping
scenarios can induce different dynamics.

To begin our investigation, we will first compare the populations dynamics of each atom
in the no-pumping case (dashed lines). In this case, the ground state population of atom 2 is
approximately constant starting from γ0t ∼ 1. Concerning atoms p and 3, their populations
remain close to each other throughout the dynamics (p(p)

0 ' p
(3)
0 ). Until γ0t ∼ 2× 102, their

behavior is roughly the same as atom 2, but after that they start increasing, such that at
stationarity, the probability of excitation of atom 2 (i.e., 1 − p

(2)
0 ) is higher than the one

of atoms p and 3. Although we are interested in the comparison of this scenario with the
pumping case, it is worth noticing that there already appears a similar behavior of atoms p
and 3 differing from the one of atom 2. This results from the symmetry of the triplet: atom
2 standing in between atoms p and 3, its interactions with them are equal. On the other
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Figure 2.10: Dynamics of the local fluxes of atoms p, 2 and e. The local flux Q̇(3)
loc is not shown

because it is superimposed with Q̇(p)
loc. Two curves with the same color code are associated to

the same atom: the solid lines correspond to the pumping case while their dashed counterparts
characterize the no-pumping scenario.

hand, the atomic separations of the couples (p, 2) and (p, 3) ((3, 2) and (3, p)) differ, leading
to unequal interactions. The positions of atoms p and 3 being symmetric with respect to
atom 2, they have identical interactions and therefore their populations are extremely close,
but different from the ones of atom 2. Rigorously, the symmetry of the triplet in terms of
interactions is broken by the extraction (and pumping) process(es), but most of the time this
is negligible.

We now turn to the pumping scenario (solid lines). In this case, although once again the
populations of atoms p and 3 stay close to each other (p(p) ' p(3)), their behavior is radically
different from the no-pumping scenario. Indeed, the pumping has for effect to decrease signif-
icantly these populations, which reach their stationary value shortly after passing γ0t = 103,
i.e., the time associated to γin. On the contrary, the ground state population of atom 2
increases. As a consequence, in comparison to the no-pumping scenario, the atoms p and 3
have their probability of excitation increased, while the one of atom 2 has decreased. More-
over, the hierarchy between atomic populations is reversed, changing from p

(2)
0 < p

(p)
0 , p

(3)
0 to

p(2) > p(p), p(3).

Having now a first glimpse of the atomic-energy-state dynamics, let us turn to the time
evolution of the different energy fluxes inducing this dynamics, and as usual, compare the
differences between pumping and no-pumping scenarios. The dynamics of the local fluxes
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Figure 2.11: Dynamics of the hopping fluxes both in the presence (solid lines) and absence
(dashed lines) of pumping. Inset: Dynamics of the imaginary parts of the coherences between
the atomic couples (2, e) (solid and dashed blue lines) and (3, e) (solid and dashed red lines),
which generate the corresponding hopping fluxes shown in the main part.

shown in Fig. 2.10 are deeply related to the ones of the ground state populations. In particular,
it can be seen that each considerable change in the evolution of the populations is related
to the successive appearances, firstly, of the extraction flux which occurs very early in the
dynamics (t ∼ Γ−1

out), secondly, of the fluxes related to the interactions between the atoms
and their environment (t ∼ γ−1

0 ), and finally, of the pumping flux (t ∼ Γ−1
in ). Rigorously, it

should be noted that there is actually a supplementary slight modification of the populations
in between the regimes of extraction and spontaneous relaxation (γ0t ∼ 10−1). This is related
to the hopping fluxes, and we will look into it more in detail with Fig. 2.11. Before going
further, let us recall that these fluxes are determined by the imaginary parts of the coherences
present in the density matrix of the chain. These latter are plotted as an inset of Fig. 2.11,
and indeed, it can be seen that they are intimately related to the behavior of the hopping
fluxes.

In Fig. 2.11, two intervals can be distinguished in the time evolution of both the main
part and the inset. As mentioned before, the first one occurs in between the regimes of
extraction and spontaneous relaxation. In the no-pumping scenario, this relaxation leads to a
stabilized fluxes distribution. However, in the presence of pumping, during the corresponding
time scale, there appears an additional modification of the hopping fluxes distribution. The
presence of the peaks in the first region can be interpreted with the help of the atomic ground
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Figure 2.12: Main part: Dynamics of the non-local fluxes of each atomic couples. Two cuves
with the same color characterize the same atomic couple, and the solid (dashed) lines indicate
the presence (absence) of pumping. Inset: Real parts of the coherences related to the atomic
couples (p, 2) (orange lines) and (p, 3) (green lines) from which stem the non-local fluxes
displayed in the main part.

state populations in Fig. 2.9. As discussed previously, the system is initially in a thermal
state, such that the atomic populations are equally distributed. At this stage, there is no
interatomic energy exchange and the imaginary parts of the coherences are non-existent. The
manifestation of the extraction process rapidly breaks this homogeneity by forcing atom e to
remain poorly excited. As a consequence, in the attempt of bringing back the system to a
Gibbs state, the imaginary parts of the coherences arise, inducing hopping fluxes, and thus
providing the atoms with the possibility to redistribute the energy uniformly within the chain
acting in this respect against the extraction process. Note that the highest peaks (in absolute
value) are the ones involving atom e, which is obviously the atom affected the most by the
extraction. The amplitude of this effect increases until the evolution enters the time scale
related to the spontaneous relaxation processes. At this moment, the energy channel related
to the interactions between the system and the environment comes into play. Consequently,
the inhomogeneity of the atomic population distribution is even more profound and therefore
the balance between hopping fluxes is strongly disrupted. Finally, the effect of pumping
begins to appear, and the differences between the two scenarios, with and without pumping,
heighten. As expected from the steady-state analysis of the excitation-injector mechanism,
the hopping flux between atoms 2 and e is the one the most enhanced, to the benefit of the
extraction atom. Moreover, although atoms p and 3 still yield energy to e, this occurs to a
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lesser extent.

Regarding the different interactions necessary to the establishment of the excitation-
injector mechanism, we still have to investigate the collective interaction between atoms p
and 3. To this end, their dynamics is pictured in Fig. 2.12, along with the real part of the
relevant coherences (see the inset): as mentioned before [Eq. (1.44)], these coefficients dictate
the behavior of the non-local fluxes. The difference between pumping and no-pumping sce-
narios is striking. In the absence of pumping, the non-local flux arising from the cooperation
of atoms p and 3 releases energy into the environment. Pumping energy into the chain has
two notable consequences. Firstly, the magnitude of this collective interaction is increased.
Secondly, the direction of the energy flow is reversed: the non-local flux increases the energy
of the atomic pair instead of decreasing it. Although atoms p and 3 release a large amount
of their energy to the field through the local fluxes Q̇(p)

loc and Q̇(3)
loc, this is not the case for its

totality, and therefore their energy increases. As shown previously, this is also the case for
atom 2, which absorbs energy from the field, but there arises a remarkable difference between
the pair (p, 3) and atom 2. Indeed, Fig. 2.11 shows that the amount of energy conceded by
atom 2 via hopping is increased, meaning that the latter plays the role of an antenna: it
absorbs energy from the field and transmits it within the chain. On the contrary, the hopping
fluxes of atoms p and 3 decrease in the presence of pumping: instead of transmitting their
energy, they rather ‘store’ it, therefore increasing their probability of being in the excited
state, as shown in Fig. 2.9 (1− p(α) > 1− p(α)

0 for α = p, 3).

Summarizing, this is what follows from the investigation of the dynamics. Starting from a
thermal state where the atomic populations are equally distributed, extraction is performed
on the last atom of the chain, which quickly approaches its ground state. Consequently, in
the attempt of bringing the system back to an homogeneous population distribution, complex
coherences arise, whose imaginary parts induce hopping fluxes allowing interatomic energy ex-
changes. When the effects of the thermal environment enter into play, a new balance between
local, non-local and hopping fluxes is established, until the effect of pumping manifests itself.
At this moment, the mechanism of the excitation injector sets up. The individual and collec-
tive interactions of atoms p and 3 with the environment strengthen, notably due the increase
of the real parts of their coherences. This results in the enhancement of their probability of
being in the excited state. In the mean time, atom 2 has more freedom to interact with the
field from which it absorbs thermal energy. Despite this absorption, this atom is closer to
its ground state than atoms p and 3 because it concedes a considerable amount of its energy
to the rest of the chain, and in particular to the extraction atom, therefore increasing the
energy extracted from the chain in the presence of pumping, and thus, the energy-transport
efficiency.
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Figure 2.13: Stationary energy-transport efficiency of a five-atom chain as a function of d4
and d5, corresponding to the distance between atoms (3,4) and (4,e), respectively.

2.8 Chains with more atoms

Figure 2.5 showed us that moving away the last atom of the chain produces an amplification
of the efficiency only when N = 4. After investigating this specific case, we have shown
that each atom composing the chain plays an essential role in the energy transport: the
atomic triplet (p, 2, 3) acts as an excitation injector and the fourth one is the atom from
which energy is extracted. In this section, similarly to Fig. 2.5, we also explore the stationary
energy-transport efficiency with N = 5, 6, 7, but with different constraints on the geometry
of the chain. Having in mind to take advantage of the excitation injector, we keep fixed
the positions of atoms (p, 2, 3) by separating them with a step of a = 0.1µm. The degrees
of freedom we will explore are the atomic positions of atoms 4, . . . , N . Moreover, in the
following, we will fix T = 361K.

We begin our study with a five-atom chain, the atoms being labeled {p, 2, 3, 4, e}. The
stationary transport efficiency is shown in Fig. 2.13 as a function of d4 and d5, denoting the
distance between atoms 3 and 4, and the one between 4 and e, respectively. In analogy with
the four-atom chain, there is a wide region where the efficiency reaches values greater than 1,
suggesting that the excitation injector still plays his role despite the presence of an additional
atom. More remarkably, the best value of efficiency reaches χ = 13.52, which is even better
than in the case N = 4.

Let us continue our investigations with chains of N = 6 and N = 7 atoms. In these cases,
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N d4(µm) d5(µm) d6(µm) d7(µm) χ

5 0.763 0.618 13.518

6 0.556 1.076 0.578 13.982
0.782 0.564 0.518 13.631

7 0.768 0.581 0.380 0.419 13.908

Table 2.1: Table regrouping the optimized transport efficiencies of N -atom chains (N > 4),
which has been realized with respect to the atomic positions of atoms 4, . . . , N within the
interval [0.1, 2]µm by using a genetic algorithm. Each generation of the algorithm is formed
of 103 individuals. The portion of this population surviving the selection process is the half of
it producing the best efficiency, and the portion that is subject to mutation after the mating
step is 20% (randomly chosen). Two criteria were chosen to determine the convergence of the
algorithm: the relative differences between both the best 20 efficiencies and each couples of the
associated positions had to be lower than 10−3 (10−2 for N = 7). For N ≥ 6, the optimized
efficiencies are local maxima, i.e., a set of atomic positions producing an even higher efficiency
could exist.

the number of variables is such that the efficiency cannot be plotted similarly to N = 4 or
N = 5, and trying to determine the best efficiency by varying only one or two parameters
at a time might be a laborious task. To overcome this, we used a genetic algorithm [59] to
determine the optimized values of χ as a function of the atomic positions (the first three
atoms still being at a fixed distance a = 0.1µm).

The genetic algorithm is a stochastic optimization process based on Darwin’s theory of
species evolution. In our case, we identify a species individual as a chain configuration,
such that atomic positions can be viewed as genetic code. To initialize the algorithm, a
set of individuals is created randomly, thus forming the population of the first generation.
Hereafter begins a series of three steps that is repeated generation after generation. Step 1
is the selection process. This is realized with the help of the function to be optimized, in our
case the energy-transport efficiency. This function is applied to all the population, and the
individuals selected to survive are the ones producing the best values of the function. After
that comes step 2: the members of the surviving population are divided in pairs, each of which
will play the role of parents. Indeed, the mating of each couple generates two children whose
genetic code is based on the ones of their two parents. The step 3 consists in mutating a small
portion of the population by randomly modifying its genetic code. From these three steps
results a new population mixing parents and offspring, and involving a few mutated members.
Applying iteratively these three steps on the successive generations leads to populations more
and more refined until convergence toward the global maximum of the function is finally
reached.

The results of these optimizations are presented in Tab. 2.1, where it can be seen that,
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remarkably, the best efficiency values have improved with respect to the cases N = 4 and
N = 5. Moreover, it is worth stressing that these values correspond to local maxima, meaning
that there are potentially other configurations producing equal or even better energy-transport
efficiency. Finally, in addition to the improvement of efficiency, the increase of the number of
atoms is also accompanied by a widening of the transport range, notably with considerable
atomic separations. For example, the case N = 7, which produces an efficiency of χ ∼ 14,
corresponds to a chain of length L = 2.35µm.

2.9 Conclusion

In this chapter, we investigated the energy transport properties of N -atom chains embedded
in an electromagnetic field at temperature T . More specifically, we compared how efficiently
the chain transports energy when artificial pumping and extraction are performed at each
edge of the chain, respectively.

We have shown that for specific geometric configurations, the transport efficiency can be
drastically larger than 100%, reaching in some cases 1400%. The investigation of a four-
atom chain both at stationarity and during dynamics has allowed us to unveil the mechanism
producing such efficiency amplification.

This is due to the atomic triplet (p, 2, 3) which has the role of an excitation injector.
More precisely, pumping energy into the system intensifies the interactions of atoms p and 3
with their environment, not only individually, but also collectively: the magnitude of both
their local fluxes and their shared non-local flux are considerably enhanced. Although the
energy balance between these fluxes does not induce directly a significant modification of the
energy extracted, the privileged interaction between these two atoms has for effect to give
more freedom to atom 2, on the one hand, to absorb energy from the thermal field, and on
the other hand, to transmit energy by hopping to atom e.

The amount of energy extracted from the chain in the presence of pumping has two
contributions: the pumped energy that has been transmitted by hopping from an atom to its
neighbor, and the energy absorbed by the chain. Within the efficiency-amplification regime,
due to the excitation injector, this amount of energy can largely surpass the one of pumped in,
leading to an efficiency larger than 100%, and as mentioned previously, sometimes reaching
1400%.

Analyzing the fluxes dynamics in this regime has highlighted the importance of the co-
herences rising in the chain density matrix. On the one hand, their imaginary parts induce
hopping fluxes allowing interatomic energy exchanges. On the other hand, their real parts
give birth to the non-local fluxes, and in particular to the one related to the couple (p, 3),
whose essential role in the mechanism of efficiency amplification has been discussed above.

An important aspect of the efficiency amplification effect regarding practical realizations
are its properties related to the chain geometry. Indeed, there exists a large number of
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configurations that produce an efficiency larger than 100%. In addition, the robustness of the
efficiency against small displacements of the last atom ensures the possibility to observe this
effect despite potential lack of precision on atomic positions due to experimental difficulties.
Finally, the range of the efficiency amplification regime offers the possibility to transport
energy over considerable distances. For example, we have shown that a regular chain is
required to obtain an efficiency of 100% at low temperature, while around room temperature,
on the other hand, the same efficiency can be reached with (nonregular) chains up to 8 times
larger.
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3.1 Introduction

Topological insulators (TIs) are materials that have drawn a tremendous attention in the last
few years, reaching its paroxysm with the attribution of the Nobel Prize to Thouless, Haldane
and Kosterlitz in 2016. One of the main interests of these insulators comes from the existence
of chiral edge states crossing the gap between their valence and conduction bands, which are
backscattering immune. These singular properties stem from the non-trivial topology of the
TIs band structures, and offer a new paradigm in numerous practical applications, ranging
from spintronics to quantum information [60].

Analogously to electronic edge states, it has been shown that unidirectional electromag-
netic states can exist at the interface of the so-called photonic topological insulators (PTIs).
Similarly to TIs, these materials are characterized by a photonic band structure of non-trivial
topology, generated by materials with either broken time-reversal or inversion symmetry. At
the interface between a PTI and a topologically-trivial medium, there can exist unidirectional
electromagnetic states protected from backscattering. The existence of these states was firstly
predicted in systems involving photonic crystals with broken time-reversal symmetry [61, 62],

43



44 Chapter 3. Energy transport in atomic chains close to PTIs

Figure 3.1: Physical system: chain of N two-level emitters located at the interface between
a biasable plasma (being a PTI in the presence of biasing field) and an opaque medium
(ε = −2). The chain step is called a, and the interface width is denoted by W . Energy is
pumped into the first atom of the chain and extracted from the last one.

and has been experimentally observed afterwards through different protocols based on pe-
riodic structures [63–66]. Furthermore, the existence of such states has been extended to
continuous media, e.g., with magnetized plasma [67].

Besides, chiral quantum systems have recently been drawing an increasing attention [68–
75]. These are systems where the photon-emission process of quantum emitters (‘atoms’) is
anisotropic, which can be used to control interatomic interactions, e.g., in the aim of producing
entanglement [68, 70, 71, 73].

In the same spirit as Chap. 2, this chapter will be dedicated to the investigation of energy-
transport efficiency along a unidirectional chain of two-level atoms which, in this case, will
be located in a nonreciprocal environment. More precisely, the environment will consist of
a unidirectional surface-plasmon-polariton (SPP) generated at the interface between a PTI
and an opaque medium. We will see that due to unidirectionality, the energy-transport
efficiency can be enhanced by one or more orders of magnitude with respect to reciprocal
environments. In addition, we will demonstrate the robustness of unidirectional transport
against the presence of interface deformation. Moreover, we will also highlight that through
the tunability of the SPP reciprocity properties, the energy transport can be controled to a
certain extent. The results of this chapter are presented in Ref. [21].

3.2 Physical system

The system under investigation in this chapter is a chain of N two-level quantum emitters,
located at the interface between a biasable plasma and an opaque medium, as illustrated in
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Fig. 3.1. The emitters are regularly distributed along the x axis, with a step of a, such that the
i-th atom has for position ri = (i−1)ax̂. Moreover, they all have the same transition frequency
ν0 = ω0/2π = c/λ0 = 200THz, as well as similar transition dipole moment µ = |µ|ŷ, pointing
orthogonally to the interface with a magnitude of |µ| = 60D. In order to quantify the energy-
transport efficiency, energy will be pumped into the first atom, which we call atom p, and
extracted from the last one, atom e. The atoms are thus labeled {p, 2, . . . , N − 1, e}. As
we will see, the chain energy-transport properties will drastically change depending on the
atomic environment, and in particular, on its topological properties.

The description of PTIs is based on the notion of photonic-band-structure topology [61,
62]. To be more specific, the bulk band diagram of a PTI exhibits a band gap, and each of
its branches is characterized by a topological invariant, the Chern number. This number is
an integer differing from zero when the band topology is non-trivial. This occurs in materials
where either time-reversal [64, 76, 77] or inversion [78, 79] symmetry is broken. Then, at
the interface between a PTI and another medium with a common band gap, there can exist
gap-crossing one-way edge modes. The number of these modes is determined by the difference
between the gap Chern numbers of the two media. For each medium, the gap Chern number is
obtained by summing the Chern numbers of every branch below the band gap. We note that in
the case of two topologically-identical media, the gap Chern numbers are equal, and therefore
there is no gap-crossing edge mode. Thus, to observe these modes, the two media must have
different topologies. In our system, aside the biasable plasma, which will be treated in the
next paragraph, the opaque medium (OM) in the region y > 0 is topologically trivial, and
characterized by a relative permittivity ε = −2, so that propagation in its bulk is prevented.

When a static magnetic field is applied to the biasable plasma, time-reversal symmetry
is broken, thereby generating a non-trivial topology for the bulk band structure, which, in
addition, exhibits a band gap. Then, the biased plasma (BP) is a PTI, whereas in the
absence of magnetic field, the unbiased plasma (UP) is gap-less and topologically trivial.
Let us elaborate a bit more on this. The biasable plasma we will consider throughout this
work has a permeability µ = 1, and is characterized by a relative permittivity which varies
depending on the presence of a biasing magnetic field, B = Bzẑ in our case. This permittivity
is an Hermitian tensor

ε(ω) =


ε11 ε12 0
ε21 ε22 0
0 0 ε33

 , (3.1)

having for components

ε11 = ε22 = 1−
ω2
p

ω2 − ω2
c

, ε33 = 1−
ω2
p

ω2 , ε12 = −ε21 = i
−ωcω2

p

ω(ω2 − ω2
c )
,

where ωc = Bzqe/me is the cyclotron frequency induced by the biasing field, and qe andme the
electron charge and mass, respectively. Moreover, ωp = Neq

2
e/ε0me is the plasma frequency,
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Figure 3.2: Panels (a) and (b): bulk band diagrams of the biased and unbiased plasmas,
respectively, along with the dispersions of the SPPs existing at their interfaces with the
opaque medium. In the presence of bias [panel (a)], each branch is characterized by a non-
trivial Chern number. Panels (c) and (d): Electric profiles generated by a point-source dipole
(black arrow) oriented along the y axis at the BP/OM and UP/OM interfaces, respectively.
The interface width is W → ∞, and the plasma frequency is ωp/ω0 = 0.95. In the biased
(unbiased) plasma configuration, the cyclotron frequency is ωc/ω0 = 0.21 (ωc/ω0 = 0).

Ne being the free-electron density. When Bz 6= 0, the BP bulk supports a TE and a TM
mode [80]. The TE mode having a single branch (not shown) of Chern number CTE = 0, it
is topologically trivial and will not be considered in the following. The bulk band diagram of
the TM mode is represented in Fig. 3.2(a), showing the existence of two branches separated
by a band gap. The lower (upper) branch is characterized by a Chern number of Clow = −1
(Cup = 1) [67, 81]. The gap Chern numbers of the two media are CBP

gap = Clow = −1 and
COM

gap = 0, such that ∆Cgap = COM
gap − CBP

gap = 1, indicating the presence of a single one-way
SPP (edge mode) at the BP/OM interface, whose dispersion is also represented in Fig. 3.2(a).
Remarkably, this unidirectional SPP is backscattering immune: the propagation channel of
opposite direction (reflection) is forbidden and, in addition, being operated in a band gap
shared by the two media, radiation into the bulks is prevented. Then, in the presence of
imperfections at the interface, the SPP has no other possibility than to remain confined at
the interface and to preserve its propagation direction. We note that the SPP propagates
along the x axis, along which the atoms are distributed. When Bz = 0, on the other hand,
the UP is topologically trivial, the bulk TM mode has no band gap, and the UP/OM interface
supports a reciprocal SPP [Fig. 3.2(b)].

In Fig. 3.2, the electric profiles generated by a point-source dipole in panels (c) and (d)
illustrate the difference between the two configurations with and without biasing field, respec-
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tively. It is clear in panel (c) that the SPP propagates unidirectionally and remains confined
at the interface, while on the other hand, in panel (d), it propagates in both directions. We
note that throughout this chapter, the electric profiles and the electric Green function, which
will be needed later, are computed numerically using finite-element method.

3.3 Generalized master equation and basic example

The atoms being located at the interface between the biasable plasma and the opaque medium,
their environmental electric field will depend on the SPP propagation properties, which will
affect the interactions between atoms, and therefore, the energy-transport properties of the
quantum system. To investigate these effects, we turn to the chain dynamics.

By denoting with |gi〉 and |ei〉, respectively, the ground and excited states of the i-th
atom with i ∈ {1, . . . , N}, the corresponding lowering operator is σi = |gi〉〈ei|. The free
Hamiltonian of the chain reads HS = ~ω0

∑N
i=1 σ

†
iσi, and the total Hamiltonian of the system

is
Htot = HS +HE +Hint, (3.2)

where HE and Hint characterize the free Hamiltonian of the environment and the inter-
action Hamiltonian, respectively. Being E(r) the electric field at point r, the interaction
between each atom and its environment under the dipole approximation is expressed as
Hint = −

∑N
i=1(σi + σ†i )µ · E(ri). We note that this system is very similar to the one of

Ref. [27], where entanglement between a pair of two-level atoms at proximity of a PTI has
been investigated with the help of a Markovian quantum master equation. Since our system
is identical (similar environment, atomic transition frequency and dipole magnitude), the
time scales are the same: the relaxation of the open system is of the order of τR ∼ 10−8 s
in the worst configuration, while its intrinsic evolution time scale is τS ∼ 2.5 × 10−14 s and
the bath relaxation time scale is τB ∼ 10−11 s, such that the Born-Markov and rotating-wave
approximations can be safely applied here too. Similarly to Ref. [27], in order to describe
appropriately the dynamics of the open system by taking into account the potential presence
of unidirectional SPP, we have to use the generalized master equation Eq. (1.29), which is
valid for both reciprocal and nonreciprocal environments. As a remark, it has been shown [27]
that this equation is also suited to describe the dynamics of systems chirally coupled to their
environment [82, 83]. In addition, our aim being to investigate the energy-transport proper-
ties of the quantum system, we consider energy pumping and extraction on the first and last
atoms of the chain, respectively. We also note that thermal effects are negligible here, such
that no thermal-photon absorption takes part to the dynamics (differently from the results
shown in the other chapters). The pumping process is thus the only way for the chain to
gain energy. By denoting ρ(t) the chain reduced density matrix, and introducing the super-
operator D̃(σi, σj)[ρ(t)] = [σjρ(t), σ†i ] + [σi, ρ(t)σ†j ], the master equation describing the chain



48 Chapter 3. Energy transport in atomic chains close to PTIs

dynamics reads

ρ̇(t) = − i
~
[
HS, ρ(t)

]
+
{ N∑
i,j=1

Γij
2 D̃(σi, σj) +

∑
i 6=j

SijD̃(σi, iσj)

+ Γin
2 D̃(σ†p, σ†p) + Γout

2 D̃(σe, σe)
}

[ρ(t)],

(3.3)

where Γin and Γout are the pumping and emission rates, respectively. The coefficients associ-
ated to the other interactions are [27]

Sij = ω2
0

ε0~c2Re
[
µ ·G(ri, rj , ω0) · µ

]
, Γij = 2ω2

0
ε0~c2 Im

[
µ ·G(ri, rj , ω0) · µ

]
, (3.4)

where G(r, r′, ω) is the electric Green function of the system, characterizing the medium
response at point r to a point-source dipole located at r′. The coefficients Γij and Sij

correspond to, respectively, Γ(ij)
em (ω) and S(ij)

+ (ω) of Eq. (1.29). As usual, the rate of photon
emission Γij involves either a single atom (i = j) or a pair (i 6= j) of atom(s), and characterizes
an energy exchange between the quantum system and the environmental field. On the other
hand, Sij is associated to a non-dissipative interaction, where energy is transfered from atom
j to atom i without modifying the internal energy of the whole quantum system.

It is crucial to point out that these coefficients inherit the reciprocity properties of the
environment through the Green function. More specifically, a reciprocal environment is char-
acterized by the relation G(r, r′, ω) = G(r′, r, ω), leading to Γij = Γji and Sij = Sji. In this
case, the master equation Eq. (3.3) reduces to the reciprocal master equation Eq. (1.30) (in
the absence of thermal effects). When the environment is nonreciprocal, the Green function is
such that G(r, r′, ω) 6= G(r′, r, ω), yielding Γij 6= Γji and Sij 6= Sji, and the master equation
Eq. (3.3) differs from Eq. (1.30). Moreover, in the particular case of a nonreciprocal environ-
ment being unidirectional in the direction r → r′, then G(r, r′, ω) = 0 and G(r′, r, ω) 6= 0.
It follows that at the BP/OM interface, which supports a unidirectional SPP propagating to-
ward increasing x, the coefficients associated to the chain interactions are such that for atoms
i < j with i, j ∈ {1, . . . , N}: Γij = Sij = 0, Γji 6= 0 and Sji 6= 0. As a remark, we note that
although in nonreciprocal systems the generalized master equation has a different structure
than standard Markovian quantum master equations (see Chap. 1), numerical simulations
have shown that the right-hand side of Eq. (3.3) is trace preserving, and that the resulting
density matrix is Hermitian with non-negative diagonal elements summing to 1, consistently
with quantum mechanics [82, 84].

Before going further, let us illustrate with a basic example the difference between reciprocal
and unidirectional environments regarding the chain dynamics. To this end, in Fig. 3.3, we
compare the time evolution of a four-atom chain (N = 4) in both configurations: Bz 6= 0 and
Bz = 0. To simplify the system, pumping and extraction processes are switched off by setting
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Figure 3.3: Panels (a) and (b): Dynamics of the excited atomic populations of a four-atom
chain (p(i)

e (t), with i ∈ {1, 2, 3, 4}) in the presence and absence of bias, respectively. No
pumping nor extraction is performed here, and the interface width is W →∞.

Γin = Γout = 01. The initial state we choose is |ψ(t = 0)〉 = |g1e2g3g4〉, where atom 2 is in its
excited state while the others are in their ground states. In both configurations, we call ρ(t)
the chain density matrix. To track the energy propagation across the different subparts of the
atomic system, we consider, for each atom i, the excited population p

(i)
e (t) = Tr

(
σ†iσiρ(t)

)
.

The dynamics of these populations are shown in Fig. 3.3 for each configuration. In the
presence of biasing field [Bz 6= 0, Fig. 3.3(a)], when the SPP is unidirectional, the excitation
is clearly traveling throughout the chain. The unidirectionality is highlighted by the fact that
atom 1, being located at x1 < xj for j ∈ {2, 3, 4}, remains unaffected by the presence of
the excitation (Γ1j = S1j = 0). However, as a remark, it must be pointed out that Γj1 6= 0
and Sj1 6= 0: having p(1)

e (t) 6= 0, e.g., with different initial conditions, would lead this atom
to participate to the processes of dissipation and interatomic energy transfer. In the UP
configuration [Bz = 0, Fig. 3.3(b)], the SPP is reciprocal, such that Γij = Γji and Sij = Sji.
In particular, atom 2 can transfer energy to its neighbors on both sides, including atom 1,
as can be seen. On the other hand, atom 4 is almost unaffected by the excitation, as most
of the energy is dissipated before reaching it. This example clearly illustrates that SPP-
assisted energy transport is more advantageous in the unidirectional case, as the energy flow

1Pumping and extraction being not present in this example, we temporarily drop the notation {p, 2, 3, e}
and rather use {1, 2, 3, 4} to name the atoms.
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Figure 3.4: Dynamics of the energy-transport efficiency for different environments and inter-
face widths (see the main text). The chain step is a/λ0 = 0.9.

is oriented along the chain direction. In the following, we quantify the difference between the
two environmental configurations in terms of energy-transport efficiency.

3.4 Transport-efficiency enhancement induced by unidirectional-
SPP

In this section, considering a four-atom chain, we show that energy transport assisted by
one-way SPP is drastically more efficient than with a reciprocal SPP. Remarkably, as we will
see, the enhancement factor between these two configurations is of one order of magnitude.

The definition of energy-transport efficiency we will use throughout this Chapter is the
one defined in Chap. 2 through Eq. (2.14), which we recall:

χ(t) = E(t)− E0(t)
P (t) , (3.5)

where E0(t) [E(t)] corresponds to the flux of energy extracted from the last atom of the chain,
atom e, in the absence (presence) of pumping, whereas P (t) is the energy flux pumped into
the first atom, atom p. In the present chapter, these fluxes are expressed as

E0(t) = −Γout
2 Tr

(
HSD̃(σe, σe)[ρ0(t)]

)
,

E(t) = −Γout
2 Tr

(
HSD̃(σe, σe)[ρ(t)]

)
,

P (t) = Γin
2 Tr

(
HSD̃(σ†p, σ†p)[ρ(t)]

)
,

where ρ0(t) and ρ(t) are the chain density matrices in the absence and presence of pumping,
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respectively. We recall that in contrast with Chap. 2, there is no thermal effects here: energy
is absorbed by the chain only through the pumping process, such that the efficiency is up
bounded by χmax(t) = 1, for any t. During the time evolution, the lower bound to χ(t)
depends on the chain initial state. However, since in the absence of pumping the chain energy
can only decrease, this leads to E0(∞) = lim

t→∞
E0(t) = 0. Thus, the stationary efficiency

χ(∞) = lim
t→∞

χ(t) is such that 0 ≤ χ(∞) ≤ 1. We note that in the following, unless specified
otherwise, the pumping and extraction rates will be arbitrarily fixed at Γin = Γout = 1.5Γ11.

Before starting the comparison between reciprocal and unidirectional chain environments,
it is important to raise the following point. Setting the biasing-field magnitude to Bz = 0 or
Bz 6= 0 leads to the generation of SPPs that differ not only with regards to their propagation
properties, but also with respect to other features (intensity, confinement factor, etc.). If,
on the one hand, the comparison between these two configurations is relevant, as they both
characterize systems with realistic parameters, on the other hand, focusing on the effect of
one-wayness on energy transport requires a fair comparison, i.e., between SPPs of equivalent
properties (other than propagation direction). To this end, based on a unidirectional SPP
calculated with realistic parameters, for which Sij = 0 and Γij = 0 for atoms i < j, we
introduce an artificially-reciprocal (AR) SPP by setting Sij = Sji and Γij = Γji, and by
multiplying Γii by a factor 2 [83]. In this way, the transport efficiencies assisted by the
unidirectional and AR SPPs can be fairly compared to highlight the effects of one-wayness.

Figure 3.4 shows the transport-efficiency dynamics of a four-atom chain (N = 4) for a
BP/OM interface of width W (green curves) and its corresponding AR environment (red
curves) (vacuum is also shown through the blue line). The comparison between the two
environments is realized for two different interface widths: W/λ0 = 1.2 (solid green and dot-
dashed red lines) and W → ∞ (dashed green and double-dotted-dashed lines). In all these
cases, the initial state is |ψ(t = 0)〉 = |g1g2g3e4〉, and the efficiency dynamics is roughly identi-
cal: at the beginning of the time evolution, as long as the difference between the pumping and
no-pumping scenarios has not appeared, the efficiency is χ(t) = 0. As soon as this difference
manifests itself, then χ(t) 6= 0, and eventually the system reaches stationarity. Let us focus
on the comparison of the stationary efficiency between unidirectional- and reciprocal-SPP-
assisted energy transport, starting with the finite-width-interface configuration (W/λ0 = 1.2).
It appears clear that the unidirectional environment is much more advantageous, producing
a transport efficiency amplified by more than one order of magnitude with respect to the
reciprocal case. To be more specific, the fraction of pumped energy transported to the end of
the chain in the AR environment is negligible, being of χ(∞) ∼ 0.01, while on the other hand,
the BP/OM interface leads to a significant transport efficiency: χ(∞) ∼ 0.14. In the con-
figuration with W → ∞, the difference between the two configurations is of the same order,
although the efficiencies are smaller than their respective finite-width-interface counterpart.
In any case, all of these configurations realize a more efficient energy transport than vacuum
(free-space).
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Figure 3.5: Panels (a-c): Examples of bulk band diagrams and SPP dispersions for different
bias. Main figure: Dynamics of the energy-transport efficiency of a four-atom chain for
different bias. The chain step is a/λ0 = 0.9 and the interface width is W/λ0 = 1.2.

Thus, the one-wayness character of the SPP assisting energy transport along the chain
leads to a drastic amplification of the energy-transport efficiency with respect to an equivalent
reciprocal atomic environment. Although the values of efficiency presented in these results
might seem relatively low, we stress that efficiency optimization is not our purpose here. A
maximization of χ(∞) with respect to relevant parameters (chain step, atomic frequency,
etc.) could lead to considerably-larger efficiencies.

3.5 Practical advantages

In this section, we will mainly focus on realistic configurations, i.e., where reciprocal and
unidirectional SPPs are both calculated from realistic parameters. This will allows us to
point out several properties which are interesting with regards to practical realizations of
PTI-based energy transport.

We start our investigation by the control of energy transport through the tuning of the
biasing magnetic field. As discussed previously, setting either Bz = 0 or Bz 6= 0 changes
the propagation properties of the SPP at the interface between the biasable plasma and the
OM, due to topological properties. In particular, when Bz 6= 0, it must be pointed out that
the direction of the biasing field determines the propagation direction of the unidirectional
SPP. As an example, Fig. 3.5 shows the bulk band diagram of the biasable plasma along
with the SPP dispersion for different bias: B = −Bzẑ, B = 0 and B = Bzẑ, in panels
(a), (b) and (c), respectively. We note that these diagrams stem from Ref. [27], where an
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Figure 3.6: Stationary energy-transport efficiency of a two-atom chain as a function of the
chain step (i.e. the distance between the two atoms) in different environments. The interface
width is W/λ0 = 1.2.

interface similar to ours is involved. In our case, having ±Bz settles whether the unidirectional
SPP is propagating toward increasing (Bz) or decreasing (−Bz) x. The transport efficiency
corresponding to these different biasing fields is shown in the main part of Fig. 3.5 in the
case of a four-atom chain (N = 4). Let us concentrate on the stationary efficiency. In the
absence of biasing field (Bz = 0, dashed red line), the fraction of pumped energy reaching the
extraction atom is negligible (χ(∞) ∼ 0.007). On the other hand, with B = Bzẑ (solid green
line), the unidirectional SPP propagating in the chain direction p→ e amplifies significantly
the transport efficiency: χ(∞) ∼ 0.14. More remarkably, when B = −Bzẑ (dot-dashed blue
line), the efficiency remains strictly null: χ(t) = 0, for any t. This comes from the fact
that the energy pumped into atom p cannot be transmitted to the other atoms of the chain
(Γj1 = Sj1 = 0, where the index 1 stands for atom p, and with j ∈ {2, 3, 4}), and has no other
possibility than to be dissipated into the environment (Γ11 6= 0). Then, whether pumping is
performed or not, the energy extracted from atom e is the same [E(t) = E0(t)], leading to
χ(t) = 0, for any t. It follows from this analysis that energy transport can be tuned, to a
certain extent, by simply modifying the biasing field: in the absence of bias, starting from a
low-efficiency transport at the reciprocal UP/OM interface, one can choose either to enhance
it by one order of magnitude or to completely switch it off.

Another advantage of the BP/OM interface comes from the enhancement of the interatomic-
interaction range. Figure 3.6 shows the stationary efficiency χ(∞) of a two-atom chain
(N = 2) as a function of a/λ0, characterizing the distance between the two atoms (chain
step). The transport efficiency has been computed for three different atomic environments:
UP/OM (dashed red line) and BP/OM (solid green line) interfaces, and vacuum (dotted blue
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Figure 3.7: Stationary energy-transport efficiency as a function of the number of atoms com-
posing the chain for different environments. The chain step is fixed at a/λ0 = 0.6 and the
interface width is W/λ0 = 1.2.

line). The unidirectional SPP proves to be the best (in terms of energy transport) for two
reasons. Firstly, for any chain step, it produces the greater transport efficiency. Secondly,
χ(∞) remains significant for atomic separations which are considerably larger than in the
two other configurations. For example, realizing energy transport with χ(∞) = 0.1 with the
UP/OM interface requires a/λ0 ' 0.7, whereas in the case of a BP/OM interface, the same
value of efficiency is achieved with a chain step approximately 6 times larger.

A different strategy to enhance the transport range, which necessitates to increase the
chain length, is to increase the number of atoms, rather than increasing the distance between
them. The behavior of the stationary efficiency as a function of N is shown in Fig. 3.7, where
for each N -atom chain, the step is fixed at a/λ0 = 0.6. The atomic environments in this plot
are BP/OM (green line) and UP/OM (red line) interfaces, as well as the AR environment (blue
line) obtained from the BP/OM interface, similarly to Fig. 3.4. Once again, the unidirectional
SPP leads to a transport efficiency significantly greater than the two reciprocal configurations,
for each N . Moreover, with the atom number increasing, χ(∞) decreases slowly in the
nonreciprocal case, producing considerable values of transport efficiency up to at least N = 7,
χ(∞) ' 0.2, which is larger than any N -atom chain (N ≤ 7) in the reciprocal configurations.
On the contrary, with the UP/OM interface and the AR environment, the efficiency decreases
to negligible values very quickly.

Last but not least, we now turn to the energy-transport properties with regards to one
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Figure 3.8: Panels (a) and (b): Electric profiles generated by a point-source dipole (black
arrow) at the defected (deformed) BP/OM and UP/OM interfaces, respectively. Main part:
Dynamics of the energy-transport efficiency of a four-atom chain for flat and defected BP/OM
and UP/OM interfaces (see the main text). The chain step is a/λ0 = 0.9 and the interface
width is W →∞.

of the most celebrated features stemming from the PTIs: robustness of the SPP propagation
against backscattering. Indeed, as shown in Fig. 3.2(a), the SPP propagating at the BP/OM
interface cannot reach the bulks of the two media, and therefore remains confined at the
interface. In addition, the SPP is unidirectional, and as such, in the presence of a defect
(deformation/imperfection) at the interface, reflection cannot occur since the propagation
channel of opposed direction is closed. Then, from the combination of these two properties, it
follows that the SPP has no other possibility than to bypass the obstacle. This is illustrated
with the electric profiles of the UP/OM and BP/OM interfaces, shown in Figs. 3.8(a) and
(b), respectively, where the defect consists in a trapezoidal-shaped interface deformation of
contour length ' 1.8λ0. We note that there is no bulk band gap in the UP band structure
[Fig. 3.2(b)]. The dynamics of transport efficiency corresponding to these configurations is
shown in Fig. 3.8, for an interface of infinite width. The chain is composed of N = 4 atoms,
and the defect is located in between the positions of atoms 2 and 3, i.e. in the middle of the
chain. As expected from the electric profiles, the BP/OM interface (green lines) generates
a robust energy-transport efficiency. More precisely, the defected interface (solid green line)
produces a stationary efficiency χ(∞) ' 0.056, which is barely lower than the flat interface
(dashed green line), for which χ(∞) ' 0.067. On the contrary, at the UP/OM interface, the
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stationary transport efficiency is strongly sensitive to the presence of defect, diminishing of
almost one order of magnitude. Moreover, in the defected-interface configuration, which is
more likely to occur in practical realizations (e.g., due to fabrication errors), the efficiency
amplification from UP to BP is of more than 2 orders of magnitude.

3.6 Physical insight with two-atom chains

In this section, we will consider a chain composed of N = 2 atoms. Instead of consider-
ing a specific environment, as we did previously with the biasable plasma of permittivity ε
[Eq. (3.1)], we will rather manipulate the coefficients of the master equation describing the
chain dynamics, regardless of the physical system likely to generate them. To be more spe-
cific, we will determine the coefficients which produce the best efficiency in reciprocal and
unidirectional environments, respectively. This will help us to understand why the latter are
more favorable for energy transport.

To begin with, we make the assumption that the main contribution to the Green’s function
comes from the SPP [27, 85], and based on Eqs. (3.4), we parametrize the master-equation
coefficients as

Sij = 0.5X cos(φ),

Γij = X sin(φ),

where both parameters X > 0 and φ ∈ [0, 2π] depend on the atomic separation such that
lim
a→0

Γij = Γii. Moreover, we assume that Γ11 = Γ22, which amounts to presume that the
two atoms have exactly the same environment, such that the parametrization only affects
their SPP-mediated interaction. To model a reciprocal environment, the coefficients must
verify S12 = S21 and Γ12 = Γ21, whereas for a unidirectional one, S12 = Γ12 = 0. As
mentioned above, our goal here is to determine the values of these parameters which result
in the maximum transport efficiency, for each environment.

Our first step toward this maximization will be to determine the value of the parameter φ.
To this end, Fig. 3.9 shows the stationary efficiency as a function of this parameter, when X is
fixed. The solid (dashed) lines correspond to the reciprocal (unidirectional) configuration, for
different values ofX. As can be seen, the reciprocal environment always produces a maximized
efficiency when φ = π/2 mod π, whereas in the unidirectional case, χ(∞) is insensitive to
variations of φ. Then, in the following, we will settle φ = π/2. The corresponding master-
equation coefficients are S12 = S21 = 0 for both environments, and Γ12 = Γ21 = X (Γ12 = 0
and Γ21 = X) for the reciprocal (unidirectional) case. This constitutes the dissipative regime,
where the atoms only exchange energy with their environment, and not between each other.
Moreover, it is worth pointing out that, for both environments, the efficiency increases along
with X. To maximize the efficiency, we then have to determine the maximum value attainable
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Figure 3.9: Starionary energy-transport efficiency of a two-atom chain as a function of the
parameter φ for different values of X̃ = X/Γ11. The solid lines correspond to a reciprocal
environment, and the dashed lines to a unidirectional one.

for X, which, within the dissipative regime, amounts to find the upper bound to Γ21.
To have a valid reciprocal master equation, the dissipative rates involved in the diagonal

form of the master equation (see Chap. 1) must be non-negative [24]. For a system composed
of a pair of two-level atoms, these coefficients are Γ± = Γ11 ±

√
Γ12Γ21 ≥ 0 (Γ11 = Γ22 being

assumed), which leads to the relation Γ21 ≤ Γ11, since Γ12 = Γ21 holds for reciprocal systems.
Thus, Γ11 is an upper bound to Γ21, as confirmed by Fig. 3.10. This plot shows Γ21 as a
function of the distance between the two atoms, for several environments. For now, we are
only interested in the reciprocal ones: UP/OM interface, vacuum, vacuum–dielectric material
of permittivity ε = +2 and vacuum–dielectric material of permittivity ε = −2. The two last
ones have been chosen as representatives of typical reciprocal environments. As can be seen,
in all of these cases, the condition Γ21 ≤ Γ11 is verified. Thus, we now have the values of
the parameters maximizing the efficiency in the reciprocal case: (X,φ) = (Γ11, π/2). On the
other hand, for nonreciprocal environments, the master-equation structure is different from
the reciprocal one, and the property Γ21 ≤ Γ11 is not necessarily required. This is confirmed
by the example of the BP/OM interface shown in Fig. 3.10, where Γ21 reaches values up
to 7 times larger than Γ11, which is considerable. This difference of allowed values for Γ21

marks a strong distinction between reciprocal and unidirectional systems, since the atomic
coupling can be significantly stronger in the latter case. Moreover, it is worth stressing that
the maximum coupling in the reciprocal case, Γ21 = Γ11, is only obtained in the unrealistic
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Figure 3.10: Master-equation coefficient Γ21 as a function of the distance between the two
atoms, resulting from numerical simulations of different environments (see main text).

limit a → 0, whereas there is a large number of atomic separations in the unidirectional
configuration that produce Γ21 > Γ11.

Figure 3.11 shows the stationary efficiency in the reciprocal case when Γ21/Γ11 is increased,
in the purely-dissipative regime (φ = π/2, S12 = S21 = 0, Γ12 = Γ21 = X). As already
hinted by Fig. 3.9, χ(∞) increases along with Γ21/Γ11, until the limiting case Γ21/Γ11 =
1 is reached, where the maximum transport efficiency achievable in this configuration is
produced: χ(∞) ' 0.12. In addition to this reciprocal environment, we consider an artificially-
unidirectional system, in the same spirit as for Fig. 3.4, this time by setting Γ12 = 0 and
dividing the local rates Γ11 = Γ22 by 2. In this way, a fair comparison between reciprocal
and unidirectional environments can be done within Γ21/Γ11 ∈

[
0, 1
]
. In this interval, the

unidirectional configuration produces a better energy-transport efficiency than the reciprocal
one, and additionally, the gap between their efficiencies increases with Γ21. At the reciprocal
limiting case (Γ21/Γ11 = 1), the unidirectional efficiency (χ(∞) ' 0.39) is more than 3 times
greater than the reciprocal one. More remarkably, when Γ21/Γ11 > 1, which corresponds to
a region strictly forbidden to reciprocal systems, the efficiency keeps increasing and takes on
significant values, reaching χ(∞) = 0.83 in the best configuration.

In summary, by comparing equivalent reciprocal and unidirectional environments in the
dissipative regime, which is the more favorable for energy transport, we have demonstrated
that unidirectional systems are considerably much more favorable than reciprocal ones with
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Figure 3.11: Stationary energy-transport efficiency of a two-atom chain as a function of
Γ21 within the dissipative regime (φ = π/2) in reciprocal and unidirectional environments.
The latter is obtained artificially from the reciprocal case (see main text). The reciprocal
configuration is restricted to Γ21 ≤ Γ11, unlike the unidirectional one.

respect to energy transport. This is the case not only in terms of transport efficiency, but
also with regards to practical aspects. Indeed, the maximum reciprocal efficiency is reached
in the limiting case of infinitely close atoms, while unidirectional systems produce a larger
efficiency for number of realistic atomic separations. Then, unidirectional systems offer the
possibility to transport energy more efficiently and over larger distances than comparable
reciprocal environments, which is possible due to the stronger atomic coupling that they are
able to produce.

3.7 Conclusion

In this chapter, we have investigated the energy-transport efficiency of an atomic chain com-
posed of N two-level atoms, located at the interface between a PTI and an opaque medium.
Due to the PTI properties, this interface supports a unidirectional SPP which is backscatter-
ing immune. By comparing SPP-assisted energy transport along the chain between reciprocal
and unidirectional SPPs, we have shown that the effect of one-wayness is to amplify the trans-
port efficiency by one order of magnitude.

In addition, we have highlighted several energy-transport features stemming from PTI
properties, making them particularly advantageous in the perspective of practical realizations
of environment-assisted energy transport along an atomic chain. More specifically, we have
shown that the transport efficiency can be tuned through the magnitude and the orientation
of the magnetic field biasing the plasma: starting from the reciprocal configuration (unbiased
plasma), the transport efficiency can be either strictly switched off, or enhanced by one order
of magnitude.

Besides, we have discussed the enhancement of the transport range induced by the uni-
directional SPP: for a two-atom chain, the unidirectional transport efficiency remains signif-
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icant for considerably larger distances than its reciprocal counterpart. Moreover, we have
considered chains with different atom numbers. With reciprocal environments, increasing
this number quickly leads to a transport efficiency which is negligible, whereas it remains
significant up to at least seven-atom chains in the unidirectional case.

We have also shown that the backscattering-immune property of the unidirectional SPP
is of major interest regarding energy transport. Indeed, despite the presence of considerable
defect on its path, the unidirectional SPP remains confined at the interface and bypasses the
obstacle, while on the other hand, in the reciprocal case, the SPP propagation is strongly
affected by the defect. This leads to a transport efficiency in the unidirectional case that is
amplified by two orders of magnitude with respect to the reciprocal one.

Finally, in order to determine the best efficiency achievable in reciprocal and unidirec-
tional configurations, we have parametrized the coefficients of the master equation associated
to a two-atom chain. With the help of this parametrization, we have shown that in both
environments, the efficiency is always better in the dissipative regime. In this regime, we
have determined an upper bound to the non-local transition rate Γ21, which only applies to
reciprocal environments. Below this threshold, the transport efficiency is always larger in
the unidirectional environment. In addition, the upper bound to Γ21 does not hold for the
unidirectional SPP, and this parameter can take larger values, corresponding to a stronger
dissipative coupling between the two atoms, which leads to an even better transport effi-
ciency. Moreover, such a coupling, unattainable in reciprocal environments, is achievable for
a large number of geometrical configurations, thereby highlighting a supplementary advantage
of using unidirectional SPPs to assist energy transport rather than reciprocal ones.
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4.1 Introduction

Quantum thermodynamics is a field of research that has been under investigation since the
1950’s [86], for which interest has only been growing over the last decades [22, 23, 86–121].
For example, the formulation of thermodynamics laws in the quantum regime has been inves-
tigated [114, 122], as well as the foundations of statistical thermodynamics based on quantum
effects. One can also mention the study of fluctuations theorems of nonequilibrium quantum
systems [116, 117, 123–126], quantum phase transitions in condensed matter physics [127,
128], or also work extraction from quantum systems [129–131].

A number of these investigations have been performed based on physical systems capable
of performing thermal tasks in the quantum regime [22, 23, 86–110, 112, 114, 118–120], of-
fering the opportunity to investigate multiple aspects of quantum thermodynamics, such as

61
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entropy production and irreversibility [92, 116, 117, 121], or also entangled quantum ther-
mal machines [91]. In addition, inspired by classical thermal machines reduced down to the
microscopic scale, e.g. with single ion [132] or single colloidal particle [133] in Paul traps,
multiple experimental schemes have been proposed for the realization of quantum thermal
machines [108–110, 134]. This could be of interest not only to confront theoretical pre-
dictions with experiments, but also to pave the way for future applications, ranging from
nano-technologies [135] to molecular biology [12].

Among the different models of quantum thermal machines, the so-called ‘self-contained’
quantum machines have drawn a considerable attention [22, 23, 86, 100–110], being able to
perform thermal tasks without external driving. Specifically, a quantum absorption refriger-
ator is a quantum system able to establish a stationary heat flux from a macroscopic colder
bath to a hotter one, by absorbing energy from a third bath. However, practical realizations
of such quantum thermal machines are usually not easy. The main reason for this is that
different transitions of the same quantum system are required to be coupled with each other
while simultaneously being in thermal contact with independent macroscopic thermal baths.

To overcome this difficulty, it has been shown that a single out-of-thermal-equilibrium
(OTE) environment is a promising framework for realistic implementations of quantum ab-
sorption thermal machines [18]. In this case, the role of the machine is played by a three-level
quantum emitter (‘atom’) interacting with a single OTE electromagnetic (EM) field. Due to
the OTE character of the environment, different transitions of the machine can be seen as
interacting with different effective macroscopic thermal baths. It has been shown that this
physical set up provides the machine with the ability to perform a task on a target body
consisting in a single two-level atom (‘qubit’), in this sense that the qubit energy can be
either increased (≡ heating) or decreased (≡ cooling) by the machine. This first result is
encouraging in the perspective of manipulating energy within quantum systems composed of
a very few atoms.

In this chapter, we push a step further this investigation by considering a target body being
a multipartite quantum system. To be more precise, we will investigate OTE configurations
involving N = 2, . . . , 6 qubits in addition to the machine. We will notably demonstrate that
the machine is able to deliver thermal tasks of strong intensities on systems of increasing
size (in terms of Hilbert-space dimension). Moreover, we will discuss several possibilities
for tuning these thermal tasks, not only on the whole qubits system, but also on each qubit
individually. The role of correlations will be discussed, and the robustness of the task delivery
will be confronted to variations of several parameters. The results presented in this chapter
have been published in Refs. [22, 23].
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r

Ts
TW TW

Figure 4.1: Physical system: quantum emitters embedded in an out-of-thermal-equilibrium
electromagnetic field, which is produced by a blackbody radiation at TW and a dielectric slab
at TS 6= TW . The quantum system is located at a distance z from the slab, which is made of
sapphire, and has thickness δ = 50nm.

4.2 Physical system

In this Chapter, we analyze the energy exchanges occurring within a specific quantum system
which is embedded in an out-of-thermal-equilibrium electromagnetic field. More precisely,
this quantum system is composed of N + 1 quantum emitters (referred to as ‘atoms’): N
identical qubits (i.e. two-level atoms), with N = 1, . . . , 6, and a single three-level atom
(the ‘machine’). Previous studies have characterized the energy distribution of a single n-
level atom (n ≥ 2) interacting with an OTE EM field [28]. Furthermore, considering two
interacting atoms in such a field, it has been shown that a three-level atom can significantly
modify the energy distribution of a qubit (N = 1) [18]. This analysis has been performed
with a quantum thermodynamical approach, where the three-level atom can be identified as
a quantum thermal machine delivering a task on a target body, the qubit.

As shown in Fig. 4.1, the quantum system is located in proximity of a dielectric slab at
temperature TS . In our case, the slab will have a thickness of δ = 50nm, and will be made
of sapphire, which has a resonance frequency of ωS = 0.81 × 1014 rad · s−1. The quantum
system and the slab are both irradiated by a blackbody radiation emitted by distant walls at
temperature TW . When the two temperatures involved are equal, the EM field surrounding
the atoms is at thermal equilibrium at Teq = TS = TW . However, this will generally not be
the case in our investigations: the temperatures will differ (TS 6= TW ), thereby producing an
OTE EM field. In any case, it must be stressed that the two temperatures are fixed in time,
such that the EM field is stationary. The geometry of the quantum system can be understood
with the help of Figs. 4.1 and 4.2. All the atoms belong to the xy-plane, which is parallel
to the slab surface. The distance between this plane and the slab is characterized by the
coordinate z. The qubits, labeled {1, . . . , N}, form a regular polygon of radius r centered on
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Figure 4.2: Geometrical configuration of the quantum system when N = 4. The green triangle
(blue discs) represents the three-level atom, labeled M (qubits, labeled {1, 2, 3, 4}). The black
arrows indicate the induced dipole directions of the emitters.

the machine. As will be detailed in the following, an essential parameter in all the system
energy exchanges is the dipole moment associated to each atomic transition, through both its
orientation and magnitude. While the dipole orientations will be variable parameters in this
chapter, the magnitudes, on the other hand, will all be fixed at the value 10−30 C ·m.

4.3 Open quantum system and out-of-thermal-equilibrium en-
vironment

4.3.1 General model and master equation

The Hamiltonian characterizing the time evolution of the total system (quantum system and
electromagnetic field) has the form

Htot = HS +HE +Hint, (4.1)

where HS is the free Hamiltonian of the atomic system, HE the one of the electromagnetic
field, and Hint is the Hamiltonian describing the atoms-field interactions. Let us start focusing
on the atomic system. The free Hamiltonian eigenstates of the three-level atom (the machine)
are labeled |0〉, |1〉 and |2〉. To these states are associated three atomic transitions, indexed
by τ ∈ {1, 2, 3}, where τ = 1 corresponds to the transition between states |0〉 and |1〉, τ = 2
between |1〉 and |2〉, and τ = 3 between |0〉 and |2〉. Using the indexM to denote the machine,
the corresponding lowering operators are σ(M)

1 = |0〉〈1|, σ(M)
2 = |1〉〈2|, and σ(M)

3 = |0〉〈2|. The
transition frequencies are designated by ωτ , and the hierarchy of the energy levels is such that
ω3 = ω1 + ω2. Moreover, ω3 is chosen to be in resonance with the slab resonance frequency,
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ω3 = ωS , thereby being resonant with the EM-field mode the most affected by the presence
of the slab. The ground and excited states of the i-th qubit are |gi〉 and |ei〉, respectively, and
the corresponding lowering operator is σ(i)

q = |gi〉〈ei|, with i ∈ {1, . . . , N}. All qubits share
the same transition frequency ωq, which is also identical to the machine transition τ = 2:
ωq = ω2. Then, using the indexes τ = {1, 2, 3, q} and a ∈ {M, 1, . . . , N}, the free Hamiltonian
of the quantum system reads

HS =
∑
τ

∑
a

~ωτσ(a)†
τ σ(a)

τ , (4.2)

= ~ω1σ
(M)†
1 σ

(M)
1 + ~ωq

(
σ

(M)†
2 σ

(M)
2 +

N∑
i=1

σ(i)†
q σ(i)

q

)
+ ~ωSσ

(M)†
3 σ

(M)
3 .

As discussed above, to each atomic transition corresponds a transition dipole moment induced
by the electromagnetic field: the dipole related to the transition τ of atom a is labeled µ(a)

τ .
Moreover, the position of atom a is noted by ra, and the electric field at this point is E(ra).
Under the dipolar approximation, the Hamiltonian describing the interactions between the
set of atomic transitions and the environmental electromagnetic field is

Hint = −
∑
τ

(
σ(a)
τ + σ(a)†

τ

)
µ(a)
τ ·E(ra). (4.3)

The system parameters are such that the quantum-system–field interactions can be treated
in the weak-coupling limit, and the Born-Markov and rotating-wave approximations can be
applied, as detailed in Chapter 1. More precisely, the configuration producing the smallest re-
laxation time scale occurs for the smallest slab–atoms distance and the larger slab temperature
that we will be considering, which are z = 0.1µm and TS = 900K. In this case, the transition
ω3 has the smallest relaxation time: τR ∼ 3.2×10−4 s, while ω2 corresponds to the larger envi-
ronmental decay time τB = ω−1

2 ∼ 1.2×10−13 s, and to the larger τS ∼ (2ω2)−1 ∼ 6×10−14 s.
Then the two conditions τR � τB and τR � τS hold such that the Born-Markov and rotating-
wave approximations can be applied. Thus, starting from the general Hamiltonian (4.1), the
following Markovian quantum master equation can be used to determine the time evolution
of ρ(t), the reduced density matrix of the quantum system,

dρ(t)
dt

= − i
~
[
HS +HΛ, ρ(t)

]
+
∑
a

∑
τ

D(a)
τ

[
ρ(t)

]
+
∑
a6=b
D(ab)

res
[
ρ(t)

]
(4.4)

where a, b ∈ {M, 1, . . . , N}. Let us briefly identify the different contributions involved in
this equation. First of all, the operator HΛ appearing in the commutator describes the field-
induced coherent dipole-dipole interactions between two resonant transitions, which operate
energy exchanges between subparts of the quantum system, conserving the energy of the total
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system. This operator is expressed as

HΛ = ~
N∑
i=1

Λ(Mi)(ωq)σ(M)†
2 σ(i)

q + H.c.

+ ~
∑
i<j

Λ(ij)(ωq)σ(i)†
q σ(j)

q + H.c..
(4.5)

This expression involves interactions between the machine transition τ = 2 and each qubit
(first line), as well as between each pair of qubits (second line). Their strength is determined
by the coefficient Λ(ab)(ωq) (with a, b ∈ {M, 1, . . . , N}), whose expression will be detailed
later. The master-equation contributions not involved in the commutator describe dissipa-
tive processes, i.e., energy exchanges between the quantum system and the EM field. More
precisely, the dissipation inherent to each individual transition reads

D(a)
τ

[
ρ(t)

]
= D(a)

em(ωτ )
[
ρ(t)

]
+D(a)

abs(ωτ )
[
ρ(t)

]
, (4.6)

where a ∈ {M, 1, . . . , N} and τ ∈ {1, 2, 3, q}. On the other hand, D(ab)
res with a, b ∈ {M, 1, . . . , N},

describes a collective behavior of a resonant-transition pair, and is defined as

D(ab)
res
[
ρ(t)

]
= D(ab)

em (ωq)
[
ρ(t)

]
+D(ab)

abs (ωq)
[
ρ(t)

]
. (4.7)

These dissipative processes involve the absorption and emission super-operators whose def-
initions are given in Eqs. (1.33) and (1.34), respectively. Analogously to Λ(ab)(ωτ ) for the
coherent interaction, the transition rates Γ(ab)

abs (ωτ ) and Γ(ab)
em (ωτ ) characterize the strength

of the corresponding energy exchanges. These different coefficients originate from the corre-
lations of the OTE EM field, which have been computed in Ref. [136] in terms of the slab
scattering operators, and have been used in the framework of Casimir-Lifshitz force and heat
transfer in OTE systems. In the following subsection, we briefly present the essential points
of the derivation of these coefficients, which are crucial to determine the time evolution of the
quantum system.

4.3.2 Auto-correlation functions of the OTE EM field

As discussed in Chap. 1, the different energy-exchange mechanisms occurring within the
open system stem from the auto-correlation functions of the environmental EM field, through
the coefficients Γ(ab)

em , Γ(ab)
abs and Λ(ab) (for two generic atoms a, b). At thermal equilibrium,

including T = 0K, these functions can be deduced from the fluctuation-dissipation theorem.
In the specific case of free-space, i.e. in the absence of matter, their analytical expressions
are well-known and given by Eqs. (2.6) to (2.11) of Chap. 2. However, when the system is
OTE, as is the case when TS 6= TW , the fluctuation-dissipation theorem does not hold, and
the calculation of the electric field and its correlation functions is not trivial. Nonetheless,
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their derivation has been performed in Ref. [136], based on the assumption of local thermal
equilibrium. Each body, the walls and the slab in our case, is assumed to have a constant
temperature, despite the presence of another (far-away) body of different temperature. The
assumption consists in stating that the field emitted by each body is the same it would emit
if it was at thermal equilibrium at its own temperature. The total EM field at any point in
space results from the sum of the EM fields emitted by each body. In Ref. [136], which was
dedicated to the study of Casimir-Lifshitz force and heat transfer OTE, the total EM field
and its auto-correlation functions have been derived in the case of two bodies at different
temperatures, having arbitrary shapes and dielectric properties, and both of them being
embedded in a blackbody radiation at a third temperature. In the following, we express the
auto-correlation functions in the simpler case of a single body in a blackbody radiation, firstly
of arbitrary geometric and dielectric properties, and then in the specific case of a dielectric
slab. Moreover, we will express the auto-correlation functions in terms of the body reflection
and transmission operators, R and T , respectively.

Starting from the expression of the electric field at an arbitrary point r (outside the body)
and time t, E(r,t), it can be decomposed with respect to frequency as

E(r, t) = 2Re
[ ∫ +∞

0

dω

2π e
−iωtE(r, ω)

]
. (4.8)

Considering a transition of frequency ωτ , this decomposition leads to the expression of the
coefficients Γ(ab)

em (ωτ ), Γ(ab)
abs (ωτ ) and Λ(ab)(ωτ ) under the form [25]

Γ(ab)
em (ωτ ) = 1

~2

∑
i,j

[µ(a)
τ ]i[µ(b)

τ ]j〈Ei(ra, ωτ )E†j (rb, ωτ )〉, (4.9)

Γ(ab)
abs (ωτ ) = 1

~2

∑
i,j

[µ(a)
τ ]i[µ(b)

τ ]j〈E†i (ra, ωτ )Ej(rb, ωτ )〉, (4.10)

Λ(ab)(ωτ ) = 1
~2

∑
i,j

[µ(a)
τ ]i[µ(b)

τ ]j

[
P
∫ +∞

0

dω′

2π

(〈Ei(ra, ω′)E†j (rb, ω′)〉
ωτ − ω′

+ 〈E
†
i (ra, ω′)Ej(rb, ω′)〉

ωτ + ω′

)]
,

(4.11)

where P indicates the principal part of the integral, and with the indexes a, b referring to
generic atoms sharing a transition τ of frequency ωτ . For k = a, b, and with i, j ∈ {x, y, z},
[µ(k)
τ ]i and Ei(rk, ωτ ) stand for the i-th Cartesian component of the dipole transition and of

the electric-field mode at position rk, respectively. Following [25, 136], the anti-normally and
normally ordered correlation functions between electric-field components of frequency ω at
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points ra and rb, read

〈Ei(ra, ω)E†j (rb, ω)〉 = ~ω3

3πε0c3

{(
1 + n(ω, TW )

)
[α(ab)
W (ω)]ij +

(
1 + n(ω, TS)

)
[α(ab)
S (ω)]ij

}
,

(4.12)

〈E†i (ra, ω)Ej(rb, ω)〉 = ~ω3

3πε0c3

{
n(ω, TW )[α(ab)∗

W (ω)]ij + n(ω, TS)[α(ab)∗
S (ω)]ij

}
, (4.13)

where it has been assumed that the two points ra = (r⊥a , za) and rb = (r⊥b , zb) are located on
the right side of the body (za, zb > 0). It is worth stressing that the two temperatures involved
in the system are contributing through n(ω, T ) =

[
exp(~ω/kBT )− 1

]−1, which characterizes
the mean number of thermal photons at frequency ω and temperature T . Additionally,
the coefficients [α(ab)

S (ω)]ij and [α(ab)
W (ω)]ij have been introduced: they correspond to the

contribution of the body (αS) and of the walls (αW ) to the correlation functions. They are
expressed in terms of the body scattering operators, R and T , which encapsulate the body
dielectric and geometric properties.

Before giving the explicit expression of these two coefficients, it is necessary to decompose
the electric field in terms of plane waves propagating along the z-axis, upon which the scatter-
ing operators will act. Each plane wave is characterized by its frequency ω and its wave vector
Kφ = (k, φkzẑ), where k = (kxx̂, kyŷ) denotes the transverse wave vector. The parameter
φ ∈ {+,−} describes the propagation direction along the z-axis: φ = + (φ = −) for waves
propagating towards increasing-z (decreasing-z). Finally, the wave polarization is described
by p ∈ {1, 2}, with p = 1 (p = 2) standing for transverse-electric (TE) [transverse-magnetic
(TM)] polarization. A single mode of the electric field is entirely identified by the parameters
(ω,k, p, φ), where k2

z = ω2

c2 − k2, and with k = |k|. Then, the wave-vector decomposition of
an electric-field frequency component reads

E(r, ω) =
∑
φ

∑
p

∫ +∞

−∞

d2k

(2π)2 e
iKφ·rε̂φp(k, ω)Eφp (k, ω), (4.14)

with Eφp (k, ω) denoting the mode amplitude, and with the polarization unit vectors ε̂φ1 (k, ω) =
ε̂φTE(k, ω) and ε̂φ2 (k, ω) = ε̂φTM(k, ω), defined as

ε̂φTE(k, ω) = ẑ × k̂ = 1
k

(
− kyx̂+ kxŷ

)
, (4.15)

ε̂φTM(k, ω) = c

ω
ε̂φTE(k, ω)×Kφ = c

ω

(
− kẑ + φkzk̂

)
. (4.16)

The operators R and T act on each components of the field impinging the body, and result in
an outgoing field in agreement with its scattering properties. A specific example will be given
further, when the role of the body is played by a slab. Before that, the coefficients [α(ab)

W (ω)]ij
and [α(ab)

S (ω)]ij introduced above, valid for a body of arbitrary shape and dielectric properties,
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can be expressed

[
α

(ab)
W (ω)

]
ij

=3πc
2ω

∑
p,p′

∫
d2k

(2π)2

∫
d2k′

(2π)2 e
i
(
k·r⊥a −k

′·r⊥b
)
〈p,k|

×
{
ei
(
kzza−k

′∗
z zb
)[
ε̂+
p (k, ω)

]
i

[
ε̂+
p′(k

′, ω)
]∗
j

(
T P(pw)
−1 T

† +RP(pw)
−1 R

†
)

+ ei
(
kzza+k′∗z zb

)[
ε̂+
p (k, ω)

]
i

[
ε̂−p′(k

′, ω)
]∗
j
RP(pw)
−1 (4.17)

+ e−i
(
kzza+k′∗z zb

)[
ε̂−p (k, ω)

]
i

[
ε̂+
p′(k

′, ω)
]∗
j
P(pw)
−1 R

†

+ e−i
(
kzza−k

′∗
z zb
)[
ε̂−p (k, ω)

]
i

[
ε̂−p′(k

′, ω)
]∗
j
P(pw)
−1

}
|p′,k′〉,[

α
(ab)
S (ω)

]
ij

=3πc
2ω

∑
p,p′

∫
d2k

(2π)2

∫
d2k′

(2π)2 e
i
(
k·r⊥a −k

′·r⊥b
)
〈p,k|ei

(
kzza−k

′∗
z zb
)[
ε̂+
p (k, ω)

]
i

(4.18)

×
[
ε̂+
p′(k

′, ω)
]∗
j

{
P(pw)
−1 −RP(pw)

−1 R
† +RP(ew)

−1 − P
(ew)
−1 R

† − T P(pw)
−1 T

†
}
|p′,k′〉.

Both of these coefficients depend on the separation between quantum-emitter coordinates ra
and rb. In addition, the parameters za and zb take into account the distance between each
emitter and the body. The operators P(pw)

−1 and P(ew)
−1 are defined through

〈p,k|P(pw)
−1 |p

′,k′〉 =(kz)−1〈p,k|Π(pw)|p′,k′〉, (4.19)

〈p,k|P(ew)
−1 |p

′,k′〉 =(kz)−1〈p,k|Π(ew)|p′,k′〉, (4.20)

where Π(pw) and Π(ew) are projectors into the propagative (ω/c ≥ k) and evanescent (k > ω/c)
sectors, respectively. By considering the atomic transition τ , we introduce the coefficients

α
(ab)
W (ωτ ) =

∑
i,j

[µ̂(a)
τ ]∗i [µ̂(b)

τ ]j
[
α

(ab)
W (ωτ )

]
ij
, (4.21)

α
(ab)
S (ωτ ) =

∑
i,j

[µ̂(a)
τ ]∗i [µ̂(b)

τ ]j
[
α

(ab)
S (ωτ )

]
ij
, (4.22)

which take into account the dipole orientations of atoms a and b through µ̂(k)
τ = µ

(k)
τ /|µ(k)

τ |
for k = a, b. Finally, the transition rates can be expressed as

Γ(ab)
em (ωτ ) =

√
γ

(a)
0 (ωτ )γ(b)

0 (ωτ )
([

1 + n(ωτ , TW )
]
α

(ab)
W (ωτ ) +

[
1 + n(ωτ , TS)

]
α

(ab)
S (ωτ )

)
,

(4.23)

Γ(ab)
abs (ωτ ) =

√
γ

(a)
0 (ωτ )γ(b)

0 (ωτ )
(
n(ωτ , TW )α(ab)

W (ωτ )∗ + n(ωτ , TS)α(ab)
S (ωτ )∗

)
, (4.24)

where γ
(k)
0 (ωτ ) = |µ(k)

τ |2ω3
τ

3π~ε0c3 for k = a, b, is the rate of spontaneous emission in vacuum,
involving the dipole magnitudes.
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Concerning the strength of the hopping flux [Eq. (1.45)], it can be decomposed as the sum
of a free-space and a matter contributions [25], Λ(ab)

0 (ωτ ) and Λ(ab)
ref (ωτ ), the latter originating

from reflection on the body surface:

Λ(ab)(ωτ ) = Λ(ab)
0 (ωτ ) + Λ(ab)

ref (ωτ ). (4.25)

The free-space contribution is [25, 26]

Λ(ab)
0 (ωτ ) = −3

4

√
γ

(a)
0 (ωτ )γ(b)

0 (ωτ )
{

2(µ̂(a)∗ · r̂ab)(µ̂(b) · r̂ab)f(r̃ab)

+
[
µ̂(a)∗ · µ̂(b) − (µ̂(a)∗ · r̂ab)(µ̂(b) · r̂ab)

]
g(r̃ab)

}
,

f(x) = cosx+ x sin x
x3 , g(x) = (x2 − 1) cosx− x sin x

x3 .

(4.26)

where rab = rb − ra, r̂ab = rab/|rab| and r̃ab = rabωτ/c. In the case of identical dipoles
(µ(a)

τ = µ
(b)
τ ), this equation reduces to Eq. (2.6) of Chap. 2. The body contribution to the

coherent interaction is
Λ(ab)

ref (ωτ ) =
∑
i,j

µ
(a)∗
i µ

(b)
j

[
Λ(ab)

ref (ωτ )
]
ij
, (4.27)

where the coefficient
[
Λ(ab)

ref (ωτ )
]
ij

is expressed in terms of the reflection operator. For a
generic frequency ω, it reads

[
Λ(ab)

ref (ω)
]
ij

=− iω2

4ε0~c2

∑
p,p′

∫
d2k

(2π)2

∫
d2k′

(2π)2 e
i
(
k·r⊥a −k

′·r⊥b
)
〈p,k|

×
{
ei
(
kzza+k′∗z zb

)[
ε̂+
p (k, ω)

]
i

[
ε̂−p′(k

′, ω)
]∗
j
RP(pw)
−1 (4.28)

− e−i
(
kzza+k′∗z zb

)[
ε̂−p (k, ω)

]
i

[
ε̂+
p′(k

′, ω)
]∗
j
P(pw)
−1 R

†

+ ei
(
kzza−k

′∗
z zb
)[
ε̂+
p (k, ω)

]
i

[
ε̂+
p′(k

′, ω)
]∗
j

(
RP(ew)
−1 + P(ew)

−1 R
†)}|p′,k′〉.

It is worth pointing out that unlike the dissipative rates (4.23) and (4.24), the coherent
interaction does not depend on the temperatures involved in the system.

As discussed before, Eqs. (4.23), (4.24) and (4.28) introduced above are suitable for a
body with arbitrary geometry and dielectric properties since the operators R and T , which
encapsulate these properties, are general. In the specific case of a dielectric slab of permittivity
ε(ω), these operators connect two modes of the EM field as

〈p,k|R|p′,k′〉 = (2π)2δ(k − k′)δpp′ρp(k, ω),

〈p,k|T |p′,k′〉 = (2π)2δ(k − k′)δpp′τp(k, ω),
(4.29)
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where the coefficients ρp(k, ω) and τp(k, ω) are defined as

ρp(k, ω) = rp(k, ω) 1− e2ikzmδ

1− r2
p(k, ω)e2ikzmδ , τp(k, ω) =

(
1− r2

p(k, ω)
)
ei(kzm−kz)δ

1− r2
p(k, ω)e2ikzmδ , (4.30)

where kzm =
√
ε(ω)ω2/c2 − k2 is the z-component of the wave vector inside of the medium.

Equations (4.30) correspond to the slab coefficients of reflection and transmission, taking into
account its finite thickness δ, and stem from the Fresnel coefficients

rTE(k, ω) = kz − kzm
kz + kzm

, rTM(k, ω) = ε(ω)kz − kzm
ε(ω)kz + kzm

, (4.31)

To summarize, we have expressed the coefficients involved in the master equation of the
system, each of them being associated to a specific interaction (photon emission/absorption,
hopping). All of these coefficients depend on the slab material and thickness, and the dis-
sipative processes also depend on the walls and slab temperatures. Moreover, the spatial
coordinates as well as the dipole magnitudes and orientations are also relevant, as they af-
fect the interactions both between the environment and the system, and inside the system,
between atoms.

4.4 Three-level atom as quantum thermal machine

4.4.1 Environmental and population temperatures

In classical physics, according to the first law of thermodynamics, the energy variation of a
system can be expressed as the sum of a work and a heat contributions. In Chap. 1, we have
shown that a quantum version of this law can be formulated once the notions of heat and work
have been defined in the quantum framework. Moreover, we have demonstrated that, no work
being involved in the systems we are considering, any energy variation occurs through a heat
flux. In classical physics, the notion of heat flux is deeply related to the one of temperature:
a heat flux spontaneously arises between two bodies at different temperatures, transferring
energy from the hotter one to the colder one, until thermal equilibrium is reached. Although
we have introduced a definition of quantum heat flux, the notion of temperature in the
quantum framework still needs to be specified. This section is dedicated to the introduction
of two different definitions of temperatures: one will be associated to an atomic transition, and
the other one to the field mode interacting with this transition. These will help us describing
and understanding the interplay of energy fluxes taking place in our system.

These two temperatures are based on the property mentioned above, namely the appear-
ance of a (quantum) heat flux between two bodies at different temperatures, flowing from the
hotter one to the colder one. To this end, we consider the local heat flux of a generic atom a,
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Env. bathHOT
COLD

Q < 0
.

Q > 0
.

θ > T θ < T

Figure 4.3: Illustrations of hot and cold transitions: When the population temperature of the
transition is greater than the environmental temperature of EM-field mode at this frequency
(θ > T ), a heat flux arises and releases energy from the transition to the field, thereby
decreasing the quantum-system energy (Q̇ < 0). In the opposite case (θ < T ), the transition
absorbs energy from the field which increases the open-system energy (Q̇ > 0).

between its transition τ and the environmental EM field, which can be put under the form

Q̇
(a)
loc(ωτ ) = X(ωτ )

(
e~ωτ/kBθ

(a)
τ − e~ωτ/kBT

(a)
τ

)
, (4.32)

with X(ωτ ) > 0, and where the two quantities T (a)
τ and θ(a)

τ are the two different temperatures
we will be considering. Not only they both have the dimension of a temperature, but also
the relation between them (T (a)

τ R θ
(a)
τ ) settles the sign of the heat flux Q̇(a)

loc(ωτ ), as required.
The expressions and physical interpretations of these temperatures are detailed below.

On the one hand, the so-called environmental temperature reads

T (a)
τ = ~ωτ

kB ln
[
Γ(a)

em(ωτ )/Γ(a)
abs(ωτ )

] . (4.33)

It characterizes the temperature of the EM-field mode at frequency ωτ , and depends on the
transitions rates Γ(a)

abs/em(ωτ ), which stem from the complex structure of the field. T (a)
τ is an

effective temperature, associable to the thermal-equilibrium temperature of an effective bath
producing the same transition rates. When the system is OTE, in general, two different field
modes have different environmental temperatures. For example, the three machine transitions
τ = {1, 2, 3} usually interact with field modes having different environmental temperatures:
T

(M)
1 6= T

(M)
2 6= T

(M)
3 , such that each transition can be viewed as interacting with an effective

bath at thermal equilibrium at T (M)
1 , T (M)

2 and T (M)
3 , respectively. In the particular case of

thermal equilibrium between the slab and the walls (TS = TW = Teq), all of the environmental
temperatures reduce to Teq (T (M)

1 = T
(M)
2 = T

(M)
3 = Teq). On the other hand, the function

θ
(a)
τ characterizes the population temperature, defined as

θ(a)
τ = ~ωτ

kB ln
[
p

(a)
g (ωτ )/p(a)

e (ωτ )
] , (4.34)
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where p(a)
g (ωτ ) and p

(a)
e (ωτ ) are the ground and excited state populations of transition τ ,

respectively. θ(a)
τ describes the energy distribution of a transition. More specifically, in the

limit of a transition in its ground state, namely p
(a)
g (ωτ ) → 1, then θ

(a)
τ → 0K. With the

increase of the excited population, the temperature increases as well, until it diverges in
the case of equally populated states [p(a)

g (ωτ ) = p
(a)
e (ωτ )]. It is worth stressing that this

definition may lead to a negative θ(a)
τ < 0K. This condition indicates as usual that the

transition is under population inversion: the excited state is more populated than the ground
one [p(a)

g (ωτ ) < p
(a)
e (ωτ )].

As mentioned before, and stemming from Eq. (4.32), the heat-flux direction between a
transition and its environment (i.e. the field mode at the same frequency) is determined by
the relation between population and environmental temperatures Fig. 4.3. More precisely,
we speak of hot transition when θ(a)

τ > T
(a)
τ , in which case the transition looses energy to the

EM field (Q̇(a)(ωτ ) < 0), whereas for a cold transition (θ(a)
τ < T

(a)
τ ), energy is drawn from

the field to the transition (Q̇(a)(ωτ ) > 0). Finally, in case of thermal equilibrium between
the transition and its environment (θ(a)

τ = T
(a)
τ ), each photon emission is compensated by a

photon absorption [Γ(a)
em(ωτ )p(a)

e (ωτ ) = Γ(a)
abs(ωτ )p(a)

g (ωτ )], such that the mean value of energy
exchanged is Q̇(a)(ωτ ) = 0.

It is worth stressing the distinction between thermal equilibrium of slab and walls tem-
peratures (TS = TW = Teq) and in terms of population and environmental temperatures
(θ(a)
τ = T

(a)
τ ). The former describes thermal equilibrium of the EM field surrounding the

quantum system. In this peculiar configuration, the emission and absorption rates of all
atomic transitions depend only on the temperature Teq, such that all the environmental
temperatures collapse to Teq. It follows that the atomic energy-level populations follow a
Boltzmann distribution (p(a)(ωτ ) = exp(−~ωτ/kBTeq)/Z, where Z is the partition function),
in which case θ(a)

τ = T
(a)
τ . Then, TS = TW = Teq necessarily induces thermal equilibrium

between the transitions and their environment: θ(a)
τ = T

(a)
τ = Teq. On the other hand, the

OTE configuration TS 6= TW does not necessarily lead to θ(a)
τ 6= T

(a)
τ . For example, let us

consider a single qubit embedded in the OTE EM field. The corresponding environmental
temperature T (a)

τ is an effective quantity, depending on both TS and TW . Nevertheless, the
energy distribution of the transition is only regulated by T (a)

τ , leading to the thermalization
of the population temperature to the environmental one (θ(a)

τ = T
(a)
τ ). However, in the case of

an atom with more that two levels, each transition has generally its own environmental tem-
perature, as illustrated previously with the machine example. Then, the atomic populations
do not follow a Boltzmann distribution, and θ(a)

τ 6= T
(a)
τ .

In the following sections, we use these notions of temperatures, and hot/cold atomic
transitions to discuss the interactions between the machine and the qubit(s).
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4.4.2 Three-level atom in an OTE field as thermal machine

In this section, we briefly explain the functioning of the three-level atom acting as a thermal
machine, performing at steady state a thermal task on a single qubit. The analysis of this
system, and its interpretation in the framework of quantum thermodynamics, has been per-
formed in Ref. [18]. We will focus on the specific case where M plays the role of refrigerator,
cooling down the qubit, but the mechanism of the reverse process (heating) is similar.

To begin with an even more elementary system, we temporarily put aside the qubit, and
start focusing on a system where only the machine is present. Let us consider the case where
the EM field surrounding the machine is OTE (TS 6= TW ), such that the machine transitions
perceive different environmental temperatures: T

(M)
1 6= T

(M)
2 6= T

(M)
3 . We dedicate our

attention to the system at stationarity, in which case the energy conservation imposes to the
different machine energy exchanges to equilibrate. As discussed before, these are realized
through heat fluxes, one for each transition, and their direction is settled by the relation
between their corresponding population and environmental temperatures, namely θ(M)

τ and
T

(M)
τ , where here τ ∈ {1, 2, 3}. We first focus to the flux related to the transition τ = 3,

i.e., the one with the largest energy (ω3 = ω1 + ω2). We make the assumption that the
field–machine interactions have led to a stationary configuration where θ(M)

3 > T
(M)
3 . This

is verified for a number of system setups, and we will see later that this amounts to assume
that the machine is acting as a refrigerator. This relation tells us that the transition is hotter
than its environment, therefore releasing energy into the EM field (Q̇(M)

loc (ω3) < 0). By energy
conservation, the two other transitions draw energy from the field to compensate this loss:
their respective heat fluxes are positive (Q̇(M)

loc (ωη) > 0, with η = 1, 2), meaning that they are
both colder than their environment (θ(M)

η < T
(M)
η ).

Let us now take into account the qubit, labeled 1. In the previous section, we explained
that when such an atom is isolated in an EM field, its population temperature thermalizes
to its environmental temperature (θ(1)

q = T
(1)
q ), which depends on TS and TW . However,

we are now considering a stationary system with both the machine and the qubit, involving
the atomic transitions τ = {1, 2, 3, q}. We recall that transitions τ = 2 and τ = q are
resonant (ω2 = ωq). Their dipoles and the atomic positions with respect to the slab are
assumed to be equivalent, such that they interact similarly with the EM field: T (M)

2 = T
(1)
q .

Moreover, if the dipoles are not orthogonal, this resonance allows the machine and atom 1 to
interact with each other, thereby putting in contact the transition τ = q, which would be at
θ

(1)
q = T

(1)
q = T

(M)
2 in the absence of the machine, with the machine transition τ = 2, which

is cold (θ(M)
2 < T

(M)
2 = T

(1)
q ). As a consequence, a heat flux arises between them, a hopping

flux, transferring energy from the qubit to the machine (Q̇(M1)
hop (ωq) = −Q̇(1M)

hop (ωq)>0), in the
attempt to equilibrate their energy distribution, or, in other words, to bring these transitions
at thermal equilibrium, in terms of population temperatures. This mechanism leads to a
stationary configuration where θ(1)

q < T
(1)
q : the transition of atom 1 is maintained cold under
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the action of the machine. The population temperature of transition τ = 2, on the other hand,
is poorly affected by the energy drawn from the qubit. This is due to the fluxes interplay
involving the other machine transitions: the absorbed energy is released into the environment
through the flux of transition τ = 3.

Three remarks are in order concerning the mechanism described above. Firstly, when we
considered the machine in the absence of qubit, the transition τ = 2 gained energy exclusively
by local heat flux. Here, in the presence of atom 1, this flux is still active but is less intense,
and its reduction is compensated by the energy drawn by hopping. Secondly, to be rigorous,
the non-local heat flux between the couple (M, 1) and the field must also be taken into account.
In most of the cases we will consider in this Chapter, the energy involved with this flux does
not play a significant role, and thus can be neglected in the description of the cooling process.
However, it must be noted that this flux takes part in the expression of the Carnot efficiency
associated to this system [18]. Finally, the hopping flux between the machine and atom 1 is
proportional to the imaginary part of the quantum coherence between the states |1e1〉 and
|2g1〉 [Eq. (1.45)].

An analogy can be drawn between our quantum system and a classical refrigerator, high-
lighted in Fig. 4.4. A classical refrigerator transfers energy, with the help of an energy supply
(usually work, but not necessarily [137]), from a cold reservoir (the food) into a hot reservoir
(the kitchen), under the form of heat. In our case, the food is identified to the transition of
the qubit, while the machine transition τ = 3 corresponds to the fridge spiral through which
energy is released to the kitchen, the field mode characterized by the temperature T3. The
hopping flux between transitions τ = 2 and τ = q performs the thermal task, i.e., transfers
energy from atom 1 to transition τ = 3. The energy supply is provided by the local fluxes
of both transitions τ = 1 and τ = 2. Moreover, the transition τ = 2 also corresponds to
the inside of the refrigerator, as it is in contact with the food. In Ref. [18], considering the
machine acting on a single qubit, it has been shown that the efficiency at maximum power
can reach values remarkably close to the Carnot efficiency, in which case quantum discord
between the qubit and the machine is particularly pronounced.

Finally, instead of cooling down the qubit, the machine can instead yield energy to it,
thereby heating it up. In this case, the heat flux direction of each transition is reversed.
In other words, the relation between population and environmental temperatures of each
transition is the following: transition τ = 3 is cold, while in counterpart τ = 2 and τ = 1
are hot, allowing them to release the energy absorbed by τ = 3, either in the field (for both
transitions) or to atom 1 (only for τ = 2), the latter case corresponding to the heating process.

4.5 Role of correlations in thermodynamic tasks

Let us now investigate how the machine can affect the temperature of the target body when the
latter is composed of N > 1 qubits. More precisely, we will start focusing on the case N = 4,
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Figure 4.4: Illustration of the analogy between the three-level atom and a classical refrigerator.
The two smallest transitions of the machine (τ = 1, 2) are cold, and thus absorb energy from
the field (Fig. 4.3). The smallest machine transition (τ = 2) is also identified to the inside
of the fridge. The qubit transition (the food) is resonant with the machine transition τ = 2,
inducing a heat flux transferring energy from the qubit to the machine. As a consequence, the
qubit population temperature lowers: the qubit is refrigerated by the machine. The energy
absorbed by the machine is released through its largest transition (the fridge spiral) to the
EM-field mode (the kitchen) having the same frequency as the transition.

whose spatial distribution is represented in Fig. 4.2. In the numerical simulations presented
throughout this Section, unless specified otherwise, the slab and walls temperatures have been
chosen to TS = 900K and TW = 300K, respectively, and the machine–qubits distance set to
r = 0.8µm.

Although in the following we will essentially investigate temperatures (T (a)
τ , θ(a)

τ , . . . ), we
will not deal with them on their raw form, but rather with their inverse, for convenience (see
further). In addition, being mainly interested in the resonant transitions τ = {2, q}, we define
T−1
M = T

(M)−1
2 , βM = θ

(M)−1
2 and βi = θ

(i)−1
q for i ∈ {1, . . . , N}. In this way, the divergence

occurring in the population temperatures [Eq.(4.34)] when p
(a)
g (ωτ ) = p

(a)
e (ωτ ) disappears,

corresponding to βa = 0, for a ∈ {M, 1, . . . , N}. Moreover, we multiply these quantities by
−1 to facilitate their interpretation: −βa increases with the transition energy, and population
inversion corresponds to −βa > 0. Also, notice that what we defined as hot (cold) transition,
namely when θ

(a)
τ > T

(a)
τ (θ(a)

τ < T
(a)
τ ), verifies −βa > −T−1

a (−βa < −T−1
a ). For all these

reasons, we will work with −T−1
M and −βa, which will be called ‘temperatures’, with a slight

abuse of notation.
In the previous Section, we discussed the flux interplay leading the three-level atom to

function either as a refrigerator or as a heating machine. This role is fixed by the interactions
between this atom and the OTE EM field, as they determine whether the transition in contact
with the qubits is hot or cold. Following [18], we explore a large number of configurations
with different atom–field interactions by changing the parameter z, namely the distance be-
tween the slab and the plan containing the atomic system. Figure. 4.5 shows population and
environmental temperatures of all the resonant transitions for z ∈ [0.1, 100]µm. This figure
being very rich, we will decline its analysis in two steps, in order to have a clear comprehen-
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Figure 4.5: Left scale: Inverted population temperatures of all the resonant transitions (−βa,
a ∈ {M, 1, 2, 3, 4}), and machine environmental temperature (−T−1

M ), as a function of the
slab–atoms distance. Right scale: Temperatures in correspondence with the left scale. The
slab and walls temperatures are represented by horizontal dash-dotted grey lines. Panels (a)
and (b): zooms into the regions where heating and cooling regimes are the strongest, respec-
tively.

sion. Firstly, we will investigate the z-dependence of the machine temperatures exclusively,
and secondly, focus on the relations between these temperatures and the ones of the qubits.

Figure 4.5 pictures both environmental and population temperatures of the machine tran-
sition τ = 2, namely, −T−1

M and −βM , respectively. Let us start analyzing the environmental
one with respect to z. When the quantum system is close to the slab (z < 0.6µm), the contri-
bution of the latter to the OTE EM field is much larger than the contributions coming from
the walls, which is negligible. Consequently, the atomic environment is similar to an EM field
at thermal equilibrium with the slab, leading to TM ' TS . On the other hand, the opposite
scenario takes place when z > 10µm: the field emitted by the slab eventually vanishes, in
which case only the walls contribute to the EM field, such that TM ' TW . Between these two
regions, when z ∈ [0.6, 10]µm, slab and walls contribute comparably to the field, leading to
a smooth variation of TM from TS to TW , as z increases.

Let us now compare −T−1
M to the population temperature of the machine, pictured by

−βM . In the region z < 0.6µm, since the EM field is comparable to a thermal field at TM =
TS , the transition τ = 2 is at thermal equilibrium with its environment (−βM = −T−1

M ). When
z increases, however, the EM field is not similar to a field at thermal equilibrium anymore, and
each machine transition has a different environmental temperature (T (M)

1 and T (M)
3 are not

shown here). Consequently, the machine transitions are not at thermal equilibrium with their
environments, and a heat-flux interplay arises. More specifically, when z ∈ [0.6, 10]µm, the
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Figure 4.6: Panel (a): Left scale: Mutual information and geometric quantum discord of
the bipartition {2 : (1, 3)}. Panel (b): Left scale: tripartite mutual information of parti-
tions (M, 1, 3) and (1, 2, 4). Both panels: Horizontal axis: slab–atoms distance. Right scale:
Inverted population temperature of atom 2, and machine environmental temperature.
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transition τ = 2 enters a hot regime (−βM > −T−1
M ). More remarkably, in the subinterval

z ∈ [1, 7]µm, the quantity −βM is positive, signifying that the transition is undergoing
population inversion: the excited state is more populated than the ground state [p(M)

e (ω2) >
p

(M)
g (ω2)]. On the other hand, within z ∈ [10, 40]µm, the hierarchy between environmental

and population temperatures is reversed (−β−1
M < −T−1

M ), such that the machine transition
enters a cold regime. Notice that there are regions of z where −β−1

M reaches temperatures
that are beyond the thresholds fixed by slab and walls temperatures. This is only obtainable
in an OTE configuration, since the best one can do at thermal equilibrium is −βM = −T−1

eq ,
with either Teq = TS or Teq = TW . Moreover, it is worth stressing that the drastic population-
temperature variation between hot and cold regimes has been obtained only by tuning the
slab-atoms distance, leaving TW and TS unchanged.

Let us now turn to the analysis of the relations between machine and qubit temperatures.
Firstly, it must be pointed out that all of the transitions τ = {2, q} have equivalent dipoles, and
that the corresponding atoms positions have the same z coordinate. Then, they all interact
similarly with the EM field, and thereby they all have the same environmental temperatures:
TM = T

(i)
q with i ∈ {1, 2, 3, 4}. Moreover, let us recall that a single qubit (N = 1) in an OTE

field thermalizes to its environmental temperature. On the other hand, in the presence of the
machine, interatomic interactions breaks the thermal equilibrium between the qubit and its
environment: its population temperature tends to the one of the machine transition τ = 2,
which is either hot (−βM > −T−1

M ) or cold (−βM < −T−1
M ). Now, turning to the case when

N > 1, as shown in Fig 4.5, it appears clear that all of the qubit population temperatures
are driven by −βM . In other words, the machine is able to deliver a thermal task not
only on a single qubit, but on at least four of them. More specifically, in the hot-regime
interval (z ∈ [0.6, 10]µm), the machine heats up the qubits by increasing their population
temperatures, whereas refrigeration occurs within the cold regime (z ∈ [10, 40]µm). The
strength of the Hamiltonian atom–atom interactions being much stronger than the atom(s)–
field ones (Λ(Mi) � Γ(ij)

abs/em, i, j ∈ {1, 2, 3, 4}), the population temperatures of the qubits
get much closer to −βM than to −T−1

M . In particular, even when −βM undergoes drastic
variations, as is the case during the population-inversion regime, then −βi with i ∈ {1, 2, 3, 4}
go through similar variations as well, with an intensity only slightly reduced.

To have a deeper insight, let us analyze more specifically the atomic interactions producing
these results. In particular, it is important to stress that the hopping flux [Eq. (1.45)], through
which the thermal tasks are delivered, is a dipole–dipole interaction. As such, the relative
orientations of the interacting dipoles is an essential parameter, crucially affecting the coupling
strength. Two limiting cases of relative dipole orientations exist. The first one is when the
two dipoles are aligned, as is the case for the couples (M, 1) and (M, 3): it produces a
maximal coupling, which explains why −β1 and −β3 are driven by −βM . Moreover, we have
−β1 = −β3 for symmetry reasons. The second limiting configuration occurs when the dipoles
are orthogonal to each other. Then, the atoms are fully decoupled, and their interaction
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vanishes. For this reason, the machine interacts neither with atom 2 nor 4. Nonetheless, as
can be seen on Fig. 4.5, −β2 and −β4 are clearly affected by the presence of the machine. To
explain this, the interactions between qubits must be taken into account. Focusing on the
pair (1, 2), the two dipoles are not orthogonal to each other, and then the atoms are coupled.
This is also the case for the pair (2, 3), and by symmetry, atom 4 interacts with both atoms
1 and 3, similarly to atom 2. From these interactions between qubits (‘indirect channel’), it
follows that the thermal tasks undergone by atoms 1 and 3, due to their interaction with the
machine (‘direct channel’), are relayed to atoms 2 and 4, which explains the variations of −β2

and −β4, although these two atoms are completely decoupled from M . In the following, we
will refer to this mechanism as the task-distribution mechanism.

To reinforce this analysis, in Fig. 4.6, we investigate several correlation quantifiers, which
witness interactions between different subparts of the quantum system. More specifically, we
focus on the indirect channel through the bipartition composed of, on the one hand, the pair
(1, 3), and on the other hand, the single atom 2. The correlations between these subsystems
are described by the mutual information MI(2 : {1, 3}) [Eq. (1.46)], shown in Fig. 4.6(a). To
facilitate the figure reading, −β2 and −T−1

M have been incorporated (right scale). When no
thermal task is performed, i.e., in the region z < 0.6µm when −β2 ' −T−1

M , the correlations
vanish, witnessing the absence of interactions between the two partitions. On the other
hand, when the machine is achieving either heating or cooling, MI(2 : {1, 3}) varies at the
same values of z as −β2, and with an intensity reflecting the temperature variations. In
particular, the extrema of the population temperature correspond to the maxima of mutual
information, suggesting that the subsystems are interacting the most at these points. This
confirms that indeed, the interactions between qubits redistribute the thermal task delivered
by the machine, such that, despite atom 2 is decoupled fromM , its population is still affected
by it. By symmetry, this is also the case for atom 4.

The correlations described by the mutual information encapsulate both classical and quan-
tum correlations. It is legitimate to wonder in what proportions the correlations necessary to
relay the thermal tasks are of classical/quantum nature. To determine this, we used the geo-
metrical discord [Eq. (1.51)], which characterizes the quantum correlations of the bipartition
(2 : {1, 3}). As can be seen, this quantity, noted D(2 : {1, 3}), is close to (when not exactly)
zero throughout the entire interval of z, which leads us to conclude that these correlations
are of classical nature.

The interplay of the two different channels, direct and indirect, is highlighted in Fig. 4.6(b)
through a many-body perspective, using tripartite correlations [Eq. (1.47)]. The direct chan-
nel is characterized by the tripartition (M, 1, 3), whereas the indirect one is represented by
(1, 2, 4). Both τ(M, 1, 3) and τ(1, 2, 4) follow a behavior similar to the one of the population
temperatures. Note that, while τ(M, 1, 3) encapsulates all of the interactions involved in the
direct channel, on the other hand, the total tripartite correlations of the indirect one are
τ(1, 2, 4) + τ(3, 2, 4). Then, the task-distribution mechanism can be expressed in terms of
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Figure 4.7: Left scale: Trace distance between the reduced state involving only the qubits
and its closest thermal state, which has for temperature TC , as a function of the slab–atoms
distance. Right scale: Inverted temperature −T−1

C .

tripartite correlations through τ(M, 1, 3) = τ(1, 2, 4) + τ(3, 2, 4). Moreover, by symmetry of
the system, we have that τ(1, 2, 4) = τ(3, 2, 4), leading to τ(M, 1, 3) ' 2τ(1, 2, 4), which is
clearly the case when the correlations are the strongest (z ' 2.7µm).

Until now, our analysis has been focused on the effect of the machine on each individual
qubit. An interesting aspect arising from the multipartite character of our system comes
from the possibility to consider the target body, namely the qubits, as a whole, and to
evaluate the thermal task performed by the machine upon it. To this end, we calculated the
quantityDt(TC), corresponding to the trace distance [Eq. (1.48)] between the density operator
involving exclusively the qubits, ρQ = TrM (ρ), and its closest thermal state ρTS(TC). The
latter has been obtained from the family of thermal states ρTS(T ) = exp(−HQ/kBT )/Z, where
HQ =

∑N
i=1 ~ωq|ei〉〈ei|, and Z is the partition function. A minimization of the trace distance

between the states ρQ and ρTS(T ) has been realized with respect to T . The temperature
minimizing this trace distance is noted by TC , and accordingly, ρTS(TC) is by definition
the closest thermal state to ρQ. Figure 4.7 shows both Dt(TC) and −T−1

C as a function
of z. The first thing to point out is that −T−1

C has a behavior similar to the individual
population temperatures of the qubits (−βi, i ∈ {1, 2, 3, 4}, in Fig. 4.5). Besides, as discussed
previously, in the absence of task delivery, the qubits thermalize to their environment, inducing
a stationary configuration where they do not interact with each other. In this case, ρQ is not
different from a thermal state, and Dt(TC) = 0. On the other hand, when the machine is
performing a task, it is relayed across the qubit subsystem through the indirect channel. Then,
the corresponding density operator is not diagonal, and ρQ cannot be a thermal state, leading
to Dt(TC) 6= 0. Indeed, one can see that Dt(TC) varies accordingly with the magnitude of
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Figure 4.8: Left scale: tripartite mutual information of the partitions (M, 1, 3) and (1, 2, 4)
as a function of ε, which parametrizes the slab and walls temperatures. Right scale: Inverted
population temperatures of the machine and atom 2. Inset: Zoom into the region ε ∈ [0, 0.2].

the population-temperature variations of the qubits. In any case, although for a number of
configurations this trace distance differs from 0, it remains low, reaching at most 6 × 10−3

(recall that 0 ≤ Dt(T ) ≤ 1, ∀T ). This means, recalling the meaning of trace distance in terms
of experimental distinguishability of two quantum states, that ρQ is almost undistinguishable
from a thermal state at TC . Thus, it can reasonably be considered that the subsystem formed
by the qubits is at thermal equilibrium with an effective environment at TC , which is close to
θ

(M)
2 , the temperature imposed by the machine. Therefore, the machine is able to perform a
thermal task on a subsystem which, in terms of Hilbert space dimension, is much bigger than
itself.

In the previous investigations of this Section, the environmental EM field interacting
with the atomic system was modified through the slab–atoms distance. Let us now change
this environment by setting z = 2.7µm and varying the slab and walls temperatures, TS
and TW . This variation is performed through the parameter ε ∈ [0, 1] as TS(ε) = εTS

and TW (ε) = εTW , where {TW , TS} = {300, 900}K. The case ε = 1 corresponds to the
configuration where the qubits are heated up the most (Fig. 4.5). In Fig. 4.8, the population
temperatures of both the machine (−βM ) and atom 2 (−β2) are pictured as a function of
ε. Two regimes can be distinguished: the first one belongs (approximately) to the region
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Figure 4.9: Left scale: Inverted population temperatures of the machine, atom 1 and atom 2,
as a function of r, the machine–qubit distance. Right scale: Temperatures in correspondence
with the left scale. Inset: Hopping strength between the machine and atom 1, as a function
of r.

ε ∈ [0.6, 1], where the two temperatures remain close to each other. This witnesses the
occurrence of the task-distribution mechanism, involving direct and indirect channels, without
which −β2 would not be driven by −βM . Moreover, it is worth pointing out that the task
intensity is almost constant, despite the relatively large temperature variation, ranging from
{TS(0.6), TW (0.6)} = {540, 180}K to {TS(1), TW (1)} = {900, 300}K. The second regime
exists when ε ≤ 0.6, where the difference between −βM and −β2 increases as ε decreases,
indicating the weakening of the (indirect) coupling between M and atom 2. Finally, in the
limit ε→ 0, the EM is at thermal equilibrium, leading to the thermalization of the population
temperatures to the environmental one.

To have a deeper understanding on the interplay between direct and indirect channels
regarding these two regimes of ε, similarly to Fig. 4.6, we also plot in Fig. 4.8 the tripar-
tite mutual information of (M, 1, 3) and (1, 2, 4). In the first regime, both functions are of
the same order, and we have τ(M, 1, 3) > τ(1, 2, 4), accordingly with the task-distribution
mechanism. However, in the second regime, and more specifically within ε ∈ [0.2, 0.6], the
correlations between qubits increase significantly as ε decreases. Although τ(M, 1, 3) slightly
increases as well, this occurs in a lesser extent, and the improvement of τ(1, 2, 4) indicates
that the interactions between the atoms of this subsystem are enhanced. In particular, atom
1 privileges interacting with atoms 2 and 4, rather than with M and 3. As a consequence,
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the thermal task is less and less delivered on atom 1, and then also on atoms 2 and 4. More
remarkably, in the interval ε ∈ [0, 0.15], τ(M, 1, 3) decreases along with ε, witnessing the
reduction, and eventually the vanishing, of the interactions between the M, atom 1, and atom
3. Then, when the task-distribution mechanism is broken, the difference between −βM and
−β2 is the largest (see the inset), while on the other hand, the interactions between qubits
are drastically enhanced, as suggest by the peak of τ(1, 2, 4). As a remark, again, recall that
due to the system symmetry, the behaviors of atoms 3 and 4 are similar to the ones of atoms
1 and 2, respectively. It must be noted that entanglement between qubits with symmet-
ric configurations in OTE environments similar to the present one has been investigated in
Ref. [138].

4.6 Robustness of thermal tasks

The results of the previous Section have been obtained by considering idealized atomic po-
sitions and dipole orientations (Fig. 4.2, where the machine interactions with atoms 1 and
3 were optimized, and the ones with atoms 2 and 4 strictly zero. Having now highlighted
the mechanisms producing the task delivery on the qubits, it is legitimate to wonder how
robust these mechanisms are when the parameters are not ideal, similarly to realistic config-
urations. This is the topic of this section. In the following, the system of reference will be the
one displayed in Fig. 4.2, with the distance between the slab and the atomic system being
z = 2.7µm. The slab and walls temperatures will be TS = 900K and TW = 300K.

The first parameter under investigation is the distance between the machine and the
qubits, noted by r. Figure 4.9 displays the population and environmental temperatures of
the machine, −βM and −T−1

M , as well as the population temperatures of atoms 1 and 2,
−β1 and −β2. The slab–atoms distance being set to z = 2.7µm, the first point in Fig. 4.9,
being r = 0.8µm, corresponds to the one of Fig. 4.5, where the qubits are heated up the
most. As expected from the task-distribution mechanism, throughout the entire interval
r ∈ [0.8, 500]µm, the inequality −βM ≥ −β1 ≥ −β2 holds. More remarkably, the population
temperatures remain on a plateau for r ∈ [1, 20]µm, the task delivery being then extremely
robust in this entire interval. For larger values, however, machine and atoms start decou-
pling: −β1 and −β2 drop off with an oscillatory behavior, and eventually collapse to the
environmental temperature, −T−1

M .
The task-distribution mechanism occurring through hopping fluxes, having a deeper in-

sight on the r-dependence of the tasks necessitates to look into the coefficients determining
their strengths. Let us focus on the one between the machine and atom 1, namely Λ(M1)(ωq),
shown in the inset of Fig. 4.9 (where it is denoted ΛM1). According to Eq. (4.25), this term is
the sum of a vacuum and a slab contributions, but numerical simulations have shown that the
latter is negligible in all of our configurations. Thus, the analytical expression of the vacuum
contribution can help us understanding the behavior of ΛM1. From Eq. (4.26), this function
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Figure 4.10: This plot is the mean of 103 realizations of system configurations where noise has
been randomly introduced on the atomic positions (see main text). Left scale: Inverted popu-
lation temperatures of all the resonant transitions, and machine environmental temperature,
as a function of z. Right scale: Temperatures in correspondence with the left scale.

has an oscillatory behavior with an 1/r-envelop, clearly visible in the inset of Fig. 4.9. When
r → ∞, the amplitude of ΛM1 vanishes, in which case the task cannot be delivered, atoms
M and 1 being decoupled. In the limit r → 0, ΛM1 diverges, resulting in a saturation of the
energy exchanges, such that the population temperatures remain constant. This saturation
regime delimits the plateau region. The transition from the plateau to the oscillatory regime,
i.e. when −β1 and −β2 begin to drop off, is determined by r ∼ c/ωq ' 37µm. In this regime,
the local extrema of ΛM1 correspond to the ones of the population temperatures (minima for
−βM , maxima for −β1 and −β2).

Another important aspect we addressed is noise on the atomic positions, which we have
artificially introduced on the system shown in Fig. 4.2. More specifically, we produced several
realizations of the system. For each of them, the atomic positions in the plane parallel
to the slab have been chosen randomly around their idealized position, with a Gaussian
distribution of standard deviation σ = 1µm. The dipoles of the qubits were still pointing
toward the machine, whose dipole was fixed parallel to the direction joining M and atom 1 in
the idealized case. Figure. 4.10 presents the atomic population temperatures as a function of
z, obtained after averaging over 103 realizations. Remarkably, the averaged temperatures are
very close to the ones of the regular configuration, except that the separation between −β1

(= −β3) and −β2 (= −β4) are slightly reduced. This result is encouraging as it reveals that,
despite the non-idealized interactions due to the noisy atomic positions, the task delivery is
still significant.
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Figure 4.11: Scheme representing the rotation of atom 1 around the machine. Note that this
rotation does not involve any dynamics: we consider successive steady configurations.

4.7 Tuning thermodynamical tasks

As discussed already, the task-distribution mechanism occurs through hopping fluxes. Thus,
manipulating the parameters determining the strength of these fluxes offers the possibility
to exert control on a thermal-task intensity. The goal of this Section is to present several
methods to vary these parameters, and then, to tune a thermal task. Again, throughout this
section, the slab and walls temperatures will be fixed at TS = 900K and TW = 300K, and
the slab–atom distance is set to z = 2.7µm.

Let us firstly address the situation where atom 1 is rotated around the machine, as pictured
in Fig. 4.11. Its position on the circle of radius r = 75µm is noted by ϕ. Its dipole orientation
varies along with ϕ, such that it is always pointing toward M. The case ϕ = 0 sets the
regular configuration (Fig. 4.2), in which the system belongs to the heating regime (Fig. 4.9).
Although the task intensity is not maximal (r = 75µm does not belong to the plateau regime
of Fig. 4.9), working with this radius facilitates the manipulation of atomic positions with
regards to potential practical realizations, but the following results also hold for smaller values
of r. The atomic population temperatures corresponding to the rotation of atom 1 are shown
in Fig. 4.12, as a function of ϕ (or rϕ, on the upper axis). Note that the values ϕ = π/2, π,
and 3π/2, have not been attributed to atom 1, as they correspond to the positions of atoms
2, 3, and 4, respectively. Moreover, we stress that there is no dynamics here: the stationary
solution to Eq. (4.4), from which stem the population temperatures, is computed for each
value of ϕ.

Atom 1, similarly to atom 3, has a crucial role in the task-distribution mechanism, e.g.,
when ϕ = 0: it directly interacts with M, such that it undergoes the thermal task, and has
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Figure 4.12: Left scale: Inverted population temperatures of the qubits. Right scale: Tem-
peratures in correspondence with the left scale. Lower axis: angle setting the position of atom
1 around the machine. Upper axis: arc length in correspondence with the lower axis.

an interaction with both atoms 2 and 4, through which it relays the task. This privileged
role comes from the fact that atom 1 interacts with all of the other atoms, which is due to its
dipole orientation. When it is moved around the circle, however, this is not always the case,
which has consequences on the task-distribution mechanism. In particular, when ϕ → π/2,
atoms 1 and 2 are extremely close to each other. They are decoupled from the machine, but
not from atoms 3 and 4. Nonetheless, despite atom 3 is undergoing the task imposed by M,
Fig. 4.12 shows that −β1 and −β2 both drop to the environmental temperature −T−1

M (not
shown), witnessing that they are not affected by their interaction with atom 3. This is due
to their dramatically strong coupling: on the one hand, their dipoles are (almost) aligned,
such that their interaction is optimized. On the other hand, the small distance between them
also induces a coupling much stronger than any other: Λ(12)(ωq)� Λ(1k)(ωq) ' Λ(2k)(ωq), for
k = 3, 4. It follows that the subsystem (1, 2) gets completely isolated from energy exchanges
with the rest of the system, leading to the thermalization of −β1 and −β2 to −T−1

M . On the
other hand, this leaves more energy to be shared within the rest of the system, leading to
larger values of −β3 and −β4 than in the regular configuration (ϕ = 0). Moreover, notice that
the gap between them has almost vanished, even though only atom 3 is directly interacting
with the machine. When ϕ→ π, a similar mechanism occurs between atoms 1 and 3. Their
interaction dominates any other energy exchange, and thus they are decoupled from the rest
of the system. In particular, there being no atom interacting with the machine, all of the
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qubits thermalize to their environmental temperature: −βi = −T−1
M , for i = 1, 2, 3, 4. Finally,

when ϕ → 3π/2, the configuration is symmetric to the case ϕ → π/2, where the roles of
atoms 2 and 4 are swapped. In the spirit of thermal-task management, these three values of
ϕ, namely π, π/2 and 3π/2, are particularly interesting as they correspond to configurations
where the thermal task is literally switched off from subparts of the system. The number
of qubits affected by the machine can be either of four (ϕ = 0), two (ϕ → π/2, 3π/2) or
zero (ϕ → π). It is worth pointing out that in these configurations, the temperatures are
either close to −βM (not shown), for the subsystem interacting with the machine (directly or
indirectly), or to −T−1

M , for the atoms belonging to the switched-off subsystem. However, it
is must be stressed that intermediate values of ϕ are also interesting with regards to thermal-
task control. As can be seen in Fig. 4.11, between two singular values of ϕ, the population
temperatures vary smoothly between −βM and −T−1

M , such that any temperature belonging
to the interval defined by these two temperatures is achievable. Moreover, even small changes
of ϕ can dramatically change the temperature distribution (θ(1)

q , θ
(2)
q , θ

(3)
q , θ

(4)
q ) (right scale

of Fig. 4.12), as for example, passing from (−1300,−1300,−1300,+1400)K for ϕ = 0.73π,
to (−1100,+1500,−1200,+1100)K, for ϕ ' 0.8π. Although the variation of ϕ might seem
relatively small, it corresponds to an arc length of r × (0.8 − 0.73)π = 16.5µm, which is
reasonable. From these two examples, it is clearly possible to produce configurations where
some qubits share the same temperatures (ϕ = 0.73π), or on the contrary, systems where all
of the temperatures differ for hundreds of Kelvin (ϕ = 0.8π).

Another approach for thermal-task tuning, rather than modifying atomic positions, is
to manipulate the coupling between an atom and the rest of the system by changing its
dipole orientation. In Fig. 4.13, we consider the system shown in Fig. 4.2, and focus on the
dipole orientation of atom 4, denoted µ(4)

q . To this end, we introduce the angle α as the
one between µ(4)

q and the z axis. When α = 0, µ(4)
q points along the z axis, and thus is

orthogonal to the other dipoles of the system. In this case, there possibly exists a coupling
between atom 4 and the other ones, which is due to the matter contribution to the hopping
strength [Eq.(4.25)]. However, according to numerical results, these interactions are negligible
in comparison with the other atomic interactions involved. Then, it can be considered that
atom 4 is decoupled from the system, as confirmed by −β4, which, being isolated from the
task-delivery mechanism, thermalizes to its environmental temperature. As α increases, the
projection of µ(4)

q on the atomic plan increases as well, which induces stronger interactions
with the rest of the system. Consequently, the task-distribution mechanism begins to affect
−β4, which increases too. On the other hand, since the other atoms share their energy with
atom 4, their population temperatures lower. In particular, the population temperature of
atom 2, whose dipole is aligned with the atomic-plane component of µ(4)

q , is the most affected.
Finally, when α = π/2, the regular configuration is reached, where −β4 = −β2. Similarly to
the previous method, the achievable temperatures belong to an interval wide of hundreds of
Kelvins. In addition, one can independently tune the temperature of each atom, whereas the
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Figure 4.13: Left scale: Inverted population temperatures of the qubits as a function of
α, the angle between the dipole of atom 4 and the z axis. Right scale: Temperatures in
correspondence with the left scale.

previous technique induces a significant temperature modification for at least two atoms.

4.8 Variation of the number of qubits

To this point, we have only considered systems with four qubits. However, one can legitimately
wonder if, with different values ofN (and thus with different geometries), the task-distribution
mechanism still occurs, and if it does, is the thermal task strongly affected by the size of the
target body? We address these questions in the present Section.

To determine the dependence of the thermal tasks on the number of qubits, we look into
the extrema of the population temperatures with respect to z ∈ [0.1, 100]µm. These have
been determined for N varying from N = 1 to N = 6, where in each case, the qubits form a
regular polygon of N edges of radius r centered to the machine. Their dipoles point toward
M , while the machine dipole is always directed to atom 1. It must be stressed that for two
different values of N , the temperature behaviors are extremely similar throughout the whole
interval z ∈ [0.1, 100]µm (e.g., see Fig. 4.5). This comes from the fact that the nature of
the task performed by the machine is determined by the environmental EM field, which does
not depend on N . In particular, independently of N , the maxima/minima of temperatures
always occur at the same value of z.

Now turning to the analysis of Figs. 4.14(a) and 4.14(b), showing the maxima and minima
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Figure 4.14: Left scale: Maximal [panel (a)] and minimal [panel (b)] population temperatures
of the resonant transitions, as a function of the number of atoms present in the system, after
optimization with respect to z ∈ [0.1, 100]µm. Right scale: Temperatures in correspondence
with the left scale.

of temperatures, respectively, it appears in both cases that the machine population temper-
ature varies linearly as N increases. This indicates that each supplementary qubit either
draws or shares, depending on the role of the machine, the same amount of energy as the
others already present. Let us concentrate on the heating regime [Fig. 4.14(a)]. The first
aspect worth pointing out is that for each N , the population temperatures of the qubits are
undergoing population inversion. This shows that not only the task-distribution mechanism
is still active, but also that its intensity is large enough to significantly affect all of the qubit
temperatures. When N increases, following M, these temperatures decrease as well, but not
linearly. This comes from the system geometry, which is N -dependent. Indeed, according to
the parity of N , the number of atoms directly interacting with the machine is either one or
two, which is a parameter affecting the task-distribution mechanism. Nonetheless, this fea-
ture is relevant only when the number of atoms is rather small (N ≤ 4): when N increases,
the coupling between two neighboring atoms is reinforced, as their separation is reduced, and
their dipole orientations are more favorable for interacting with each other. Then, the energy
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Figure 4.15: Maximal bipartite and tripartite mutual information, rescaled bipartite mutual
information, and geometric quantum discord, as a function of the number of qubits present
in the system. The maximization has been performed with respect to z ∈ [0.1, 100]µm, and
over all the partitions accessible to each quantifier.

provided by the machine is distributed more evenly, leading to a population-temperatures
distribution increasingly homogeneous. For example, −β1 and −β2 are clearly different when
N = 3, while for N = 5, all of the qubit population temperatures are approximately equal.
Analogous observations hold for the refrigeration case shown in Fig. 4.14(b).

To accompany the scaling of population temperatures with respect to N presented above,
we also analyzed the corresponding correlations, as displayed in Fig. 4.15. The same quanti-
fiers as the previous sections have been used, namely bi- and tri-partite mutual information,
and geometric quantum discord. Let us recall that each quantifier characterizes the correla-
tions between partitions having specific structures: any bi-(tri-)partitions for bi-(tri-)partite
mutual information, and bipartition with dimensions 2 × d for geometric quantum discord,
where d ∈ N. The number of partitions growing with N , after a first optimization over
z ∈ [0.1, 100]µm, we selected the partitions providing the maximum values of correlations,
for each quantifier. Moreover, we introduced the rescaled mutual information, for the fol-
lowing reason. The scaling of the mutual information characterizes how the correlations
spread out among the system as the number of interaction channels is increased. However,
its theoretical maximum value depends on the system size: for a generic bipartition AB,
with dimensions dA and dB, this maximum is given by MImax(A:B) = 2 ln

(
min(dA, dB)

)
. To

describe the scaling of the correlations magnitude relatively to the system dimension, we de-
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fined the rescaled mutual information as MIRes(A:B) = MI(A:B)/MImax(A:B), which unlike
the mutual information, belongs to [0, 1], independently of N .

According to Fig. 4.15, when N = 3, only a single qubit has its dipole aligned with
the machine dipole, such that this configuration constitutes the first system where the task-
distribution mechanism is clearly occurring. This is confirmed by all the correlation quanti-
fiers. After that, when N increases, the number of interaction channels is sufficiently large to
dilute the correlations homogeneously throughout the system, inducing a diminution of the
correlations.

4.9 Conclusion

In this chapter, we have investigated the energy exchanges of a quantum system composed of
a three-level atom and N qubits, which is embedded in an OTE EM field. Following previous
studies, we have introduced two different notions of atomic-transition temperatures, useful
to investigate the energy exchanges of the system. More specifically, we have explained how
the three-level atom can play the role of absorption quantum thermal machine, delivering a
thermal task on a single qubit.

Pushing further the investigation, we have demonstrated that the machine is able to
perform tasks of significant intensity on a target body composed ofN = 4 qubits. Remarkably,
this occurs despite the fact that two of them are completely decoupled from the machine, and
comes from the task-distribution mechanism: the qubits interacting with the machine not only
undergo the thermal task, but also relay it to the atoms non-interacting with the machine.
We have supported this interpretation with the help of several correlation quantifiers. In
particular, we have shown that the task-delivery mechanism produces atomic correlations of
classical nature.

Besides, we have demonstrated that the qubit subsystem, when considered as a whole, is
almost undistinguishable from a state at thermal equilibrium with an effective reservoir at the
machine temperature. This witnesses the fact that the machine can deliver a thermal task
not only on the qubits individually, but also on the subsystem composed of all the qubits,
which is considerably bigger than the machine in terms of Hilbert space dimensions.

Another part of this chapter has been dedicated to the robustness of the thermal-task
delivery with respect to different parameters, such as walls and slab temperatures, machine–
qubits distance, or noise on the atomic positions. In all of these cases, we have shown that
the machine can perform a significant task for number of configurations.

The tuning of thermal task has also been investigated, where two different strategies have
been proposed. The first one consists in modifying the atomic positions, e.g., by rotating
an atom around the machine. When N = 4, this strategy offers the possibility to switch
off/on subsystems composed of 2 or 4 qubits, namely, to make them thermalize either to their
environmental temperature or close to the machine population temperature, which can be
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dramatically different. The second strategy achieves task tuning on individual qubits, which
can be completely decoupled from the rest of the system by changing their dipole orientation.
With both strategies, the tuning of the qubit population temperatures is achievable over
interval wide of hundreds of Kelvin.

Finally, we have investigated the capacity of the machine to deliver thermal tasks on
systems with different number of qubits, ranging from 1 to 6. In all of these configurations,
the task performed by the machine is always significant, although loosing in intensity with
increasingN . Besides, the qubit population temperatures are sensitive to the system geometry
when N ≤ 4, whereas above that number, the energy is more and more evenly distributed
throughout the qubit subsystem. This investigation has been supported by an analysis of the
correlations as a function of N .





Conclusion

The results presented in this thesis have been obtained in the framework of investigations
related to energy management at the atomic scale. Indeed, each of the three systems ex-
plored from Chap. 2 to Chap. 4 have revealed particularly interesting properties in the aim
of manipulating energy exchanges in open quantum systems. Let us briefly summarize these
different results.

In Chap. 1 we have considered a simple system composed of N two-level atoms weakly
interacting with an environmental electric field. Under several assumptions, including the
Born-Markov approximation, we have derived a Markovian quantum master equation de-
scribing the dynamics of the quantum system. From there, we have been able to introduce
quantum-thermodynamical quantities, such as internal energy of the open system, as well as
the quantum versions of heat and work. We have identified the different heat fluxes charac-
terizing energy exchanges either between the environment and the open system, or between
its different subparts.

Chapter 2 has been dedicated to energy-transport efficiency in chains of two-level atoms
interacting with a blackbody radiation. We have shown that for specific (but reasonable)
parameters, such as atomic positions, environment temperature, and number of atoms com-
posing the chain, the efficiency could remarkably reach values up to 1400%. A detailed
analysis of the heat fluxes at steady state and during the dynamics has revealed the role
played by the excitation injector, an atomic triplet whose interactions result in the absorp-
tion of energy from the field, leading to an enhancement of the amount of energy extracted
from the chain. We have discussed the robustness of efficiency amplification against small
geometry variations. In addition, we have pointed out the fact that efficiency amplification
is accompanied by a significant extension of the transport range, which can be increased by
a factor 8 in some cases.

Energy-transport efficiency has been also the subject of Chap. 3, where a chain of two-
level atoms is located at the interface between biasable plasma and an opaque medium. In
the presence of magnetic field, the biased plasma is a photonic topological insulator, allow-
ing the existence of a unidirectional SPP at its interface, propagating in the bulk bandgap
and assisting energy transport along the chain. After comparison with energy transport
assisted by reciprocal SPP, we have shown that the one-way SPP leads to a much better
transport-efficiency, which is amplified by one or more order of magnitudes with respect to
the bidirectional case. We have also highlighted that the unidirectional SPP transports en-
ergy over larger distances. In addition, due to properties of the PTI, the one-way SPP has the
remarkable feature of being backscattering immune. As such, contrary to the reciprocal case,
the presence of considerable defect at the interface barely affects its propagation, resulting in
a transport efficiency almost as large as the one in the absence of defect. The possibility to
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switch on/off the energy-transport process through the biasing field has also been discussed.
Finally, Chap. 4 has been dedicated to the study of a multipartite quantum system embed-

ded in an out-of-thermal-equilibrium electromagnetic field, where a three-level atom functions
as an absorption quantum thermal machine, heating up or cooling down the qubits located
around it. We have shown that despite the increasing number of qubits, the machine is able
to deliver thermal tasks on all of them with a considerable intensity, and in particular to bring
them to population inversion. We have also pointed out geometric configurations involving
four qubits, two of them being decoupled from the machine. Nevertheless, their population
temperatures are still affected by the presence of the machine, revealing the existence of
the task-distribution mechanism: the task is spread within the whole qubit system due to
qubit–qubit interactions. This mechanism has been discussed in terms of bi- and tri-partite
correlations, and we have demonstrated that bipartite geometric quantum discord remains
negligible, independently of the task intensity. Moreover, thermal task delivery has proven to
be robust against the variation of atomic positions, and of slab and walls temperature. Last
but not least, we have pointed out methods for tuning thermal tasks by manipulating either
the atomic positions or the qubits dipole orientations.
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Notes on the numerical results

This thesis contains all the equations and the physical parameters necessary to reproduce
the presented numerical results. In particular, the dynamics of the miscellaneous systems
are obtained from Markovian quantum master equations, such that two main steps can be
identified to compute the systems dynamics: (i) the calculation of the coefficients involved in
the master equations, (ii) the solution of the master equation. Step (i) is extremely system-
dependent as the master-equation coefficients stem from the environment of the open quantum
system. To be more explicit:

• Chapter 2: the quantum system is in free space, its dynamics is given by Eq. (2.2), and
the corresponding coefficients can be obtained from Eqs. (2.6), (2.7) and (2.8),

• Chapter 3: the quantum system is located at a PTI interface, its dynamics is expressed
by Eq. (3.3) and the corresponding coefficients are given by Eqs. (3.4). In this case,
it is necessary to compute the Green’s function solution to Eq. (2) of Ref. [75] with
the permittivity given in Eq. (3.1) of this thesis. In the present work, it was computed
using finite element method. For more details, please contact S. Ali Hassani Gangaraj
(ali.gangaraj@gmail.com),

• Chapter 4: the environment of the quantum system is an OTE electromagnetic field in
the presence of a body, the coefficients of the master equation Eq. (4.4) are given by
Eqs. (4.23), (4.24), and (4.25). The numerical calculation of these coefficients can be rel-
atively difficult. In particular, we would suggest to compute the integrals (4.17), (4.18)
and (4.27) (with Eqs. (4.29) in the case where the body is a slab) using C/C++ routines
(e.g., “gsl_integration_cquad”).

Once step (i) has been achieved, in our case, we have realized step (ii) with the help of the
Python-package QuTiP [139], which can give both the time evolution and the stationary state
of the open quantum system. Different computers have been used to realize the simulations,
all of them having approximately the following properties:

• Memory: 60GiB

• Processor Intel Xeon (R) CPU ES-2680 v2 @ 2.80GHz x40

• OS type: 64-bit

With these machines, the typical time to realize a full simulation, that is fulfill steps (i)
and (ii) for a single system set up is only of a few minutes at most (except in the case of
Chap. 3, where the Green’s-function calculation can sometimes be tricky). Note that although
these machines are relatively powerful, standard laptops can perfectly be used as well, with
a computation time a bit longer but still reasonable.
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Abstract — This thesis deals with energy management in open quantum systems. Three different
systems are under study in the limit of weak system–environment coupling, and their dynamics is
described by Markovian quantum master equations. In the first chapter, the complete derivation of
such equation is performed in a specific case, and several notions of quantum thermodynamics are
introduced. In the first system, energy transport is investigated along atomic chains (between 2 and
7 atoms) embedded in blackbody radiation around room temperature. It is shown that the transport
efficiency can reach remarkable values, exceeding 100% and reaching 1400% in some configurations.
Moreover, when the efficiency is amplified, the transport range is also considerably increased. The
following chapter also deals with energy transport in atomic chains. The quantum system is located at
the interface of a photonic topological insulator (PTI), supporting a unidirectional surface-plasmon-
polariton (SPP) immune to backscattering. The SPP propagates along the chain and assists energy
transport. Comparison is made between reciprocal and unidirectional SPPs in terms of transport
efficiency, and it is shown that the latter can yield an efficiency larger by one order of magnitude. In
addition, several practical aspects stemming from PTIs are highlighted, including the robustness of
energy transport in the presence of defects on the SPP path. In the last chapter, a quantum system
embedded in an out-of-thermal-equilibrium electromagnetic field is investigated. It is composed of a
three-level atom playing the role of an absorption quantum thermal machine, as well as N two-level
atoms (‘qubits’), with N = 1, . . . , 6, which are the target bodies. It is demonstrated that the machine
is able to perform significant thermal tasks on the qubits, even when their number is increased.
Moreover, it is pointed out that due to qubit–qubit interactions, the tasks delivered by the machine
are distributed throughout the system of interacting qubits, such that in some cases the temperature
of the qubits which are completely decoupled from the machine can still be considerably affected by
it. This task-distribution mechanism is investigated by means of the correlations between different
subparts of the system. In addition, the tuning of thermal tasks is discussed.

Résumé — Cette thèse traite de la manipulation de l’énergie dans trois systèmes quantiques
ouverts différents dans la limite de couplage faible système–environnement, et leurs dynamiques re-
spectives sont décrites par une équation mâıtresse quantique markovienne. Dans le premier chapitre,
le calcul d’une telle équation est réalisé pour un système particulier, et diverses notions de thermo-
dynamique quantique sont introduites. Pour le premier système physique, on analyse le transport
d’énergie le long de châınes atomiques (entre 2 et 7 atomes) soumises à un rayonnement de corps
noir proche de la température ambiante. Il est montré que l’efficacité du transport peut atteindre
des valeurs remarquables, surpassant 100% et atteignant jusqu’à 1400% dans certaines configurations.
De plus, lorsque l’efficacité est amplifiée, la portée du transport est également considérablement aug-
mentée. Le chapitre suivante traite aussi du transport d’énergie dans des châınes atomiques. Le
système quantique est placé à l’interface d’un isolant topologique photonique (ITP), qui supporte un
plasmon polariton de surface (PPS) insensible à la réflexion. Le PPS se propage le long de la châıne
atomique et assiste le transport d’énergie. La comparaison est faite entre PPSs réciproque et unidi-
rectionnel en termes d’efficacité du transport, et il est démontré que ce dernier produit une meilleure
efficacité, de plus d’un ordre de grandeur. De surcrôıt, divers aspects pratiques dus aux propriétés
des ITPs sont mis en avant, notamment la robustesse du transport d’énergie en présence de défauts
sur le parcours du PPS. Enfin, un système quantique immergé dans un champ électromagnétique
hors équilibre thermique est étudié. Il est composé d’un système à trois niveaux d’énergie, jouant le
rôle de machine thermique quantique à absorption, ainsi que de N atomes à deux niveaux (“qubits”)
qui sont affectés par l’action de la machine. Il est montré que la machine est capable de délivrer
des tâches thermiques d’intensité significative sur les qubits, y compris lorsque leur nombre aug-
mente. De plus, il est mis en évidence qu’en raison d’interactions qubit–qubit, les tâches réalisées
par la machine sont distribuées parmi l’ensemble du système des qubits en interaction, de sorte que
dans certains cas, même les qubits complètement découplés de la machine subissent une modifica-
tion de température considérable. Ce mécanisme de distribution des tâches est analysé à travers les
corrélations entre différentes partitions du système quantique. Par ailleurs, le contrôle des tâches
thermiques est également discuté.
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