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Université Paul Sabatier - Toulouse III

Manuscrit

présenté pour l’obtention de
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Abstract

This manuscript synthesizes my scientific activity between September 2007 (end
of my PhD thesis) and July 2018. This scientific activity was first carried
out in the context of three postdoctoral positions at Neurospin - CEA Saclay,
the departments of Applied Mathematics and of Biomedical Image Analysis at
Imperial College London, and the department of Biomedical Image Analysis
at University of Oxford. It was then pursued at the Mathematics Institute
of Toulouse, where I obtained a CNRS Research Engineer position in 2012.
This has lead me to work on different projects in collaboration with various
researchers and PhD students. A selection of relevant scientific contributions
related to Mathematical models and numerical methods in medical image and
complex data analysis are synthesized in this manuscript and other contributions
are only mentioned.

A general synthesis of my scientific activity is first developed Chapter 1. It
first gives a global overview of my carrier and my PhD work. It then describes
the different scientific projects in which I have been involved and who were
my main collaborators. As almost all my contributions were carried out in the
context of collaborative projects, so it also develops what was my personal con-
tribution to selected communications. It finally gives my bibliographic record.
A more detailed presentation of the selected research projects is given in the
following chapters. I distinguish my contributions in Mathematical models in
medical image analysis, Numerical methods for stochastic modeling and Statis-
tical learning on complex data. Chapters 2, 3 and 4 then deal with each these
fields.
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Manuscript organization

This manuscript contains a synthesis of my scientific activity between September
2007 (end of my PhD thesis work) and July 2018. A selection of representative
communications is also given in appendix.

A general synthesis of my scientific activity is first developed Chapter 1.
Its first section is a preamble giving a global overview of my carrier and my
PhD work. Section 1.2 then describes the different scientific projects in which
I have been involved after my PhD work and who were my main collaborators.
Note that almost all my research projects were carried out in collaboration with
other researchers or PhD students. My personal contribution to selected journal
papers and conference proceedings is then developed in Section 1.3. Then, a pre-
sentation of the students I have formally supervised and of the different courses
and practicals I have taught is given in Section 1.4. My bibliographic record
is finally given in Section 1.5, where I distinguish different kinds of contribu-
tions (Refereed international journal papers, Refereed international conference
proceedings, . . .). In this manuscript, all these communications are cited with
a different style as the other citations. Table 1 represents their style.

A more detailed presentation of selected research projects is then given in
Chapters 2 to 4. For clarity purposes, I only present the communications in
which I consider that my scientific contribution was significant. Among them,
I distinguished scientific contributions related to three themes: Mathematical
models in medical image analysis, Numerical methods for stochastic modeling
and Statistical learning on complex data. Explanations related to these themes
will be developed in Chapters 2, 3 and 4, respectively. Each of these chapters
starts with an introductory section and its following sections develop the con-
tributions of specific projects.
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Refereed international journal papers [IJ-.]
Refereed national journal papers [NJ-.]

Papers submitted to journals [SJ-.]
Books and book chapters [B-.]
Submitted book chapters [SB-.]

Refereed international conference proceedings [IC-.]
Refereed national conference proceedings [NC-.]

Submitted international conference proceedings [SC-.]

Table 1: Citation types of the references in the bibliographic record of Sec-
tion 1.5. The dots (.) correspond to the communication numbers in chronolog-
ical order.
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Chapter 1

General synthesis

1.1 Preamble

1.1.1 Career overview

After I graduated with my bachelor degree, I have for a long time hesitated be-
tween studying applied mathematics or computer science. I finally found myself
between the two with a Master 1 degree in applied mathematics and a Master
2 degree in computer science. I discovered the fields of Scientific Computing
(PDEs, Optimization) and Statistics during my Master 1 degree and realized
this year that I wanted to make my career in numerical mathematics. Then, I
decided to be even more specialized in programming for data analysis. This has
lead me to go to a Master 2 degree in computer science applied to signal and
image analysis.

This profile in-between applied mathematics and computer science gave me
the opportunity to get a funding for a PhD thesis in engineering science with
Pr F. Plouraboué at the Fluid Mechanics Institute of Toulouse. My PhD work
consisted in analyzing large 3D images of the cerebral micro-vasculature, in
order to quantify the blood flow properties at the brain scale. In terms of pro-
gramming, I coded image analysis algorithms where the memory management
and the algorithmic complexity were critical constraints. Different statistical
issues related to small datasets in high dimension also became concrete for me.
This finally gave me the taste for applications in life sciences. In parallel to
my PhD thesis work, I was also junior lecturer (moniteur) in fluid mechanics
at the Paul Sabatier University. I gave a Master 1 level course in computa-
tional models for fluid dynamics (non-linear 2D/3D PDEs) during three years,
which strengthened my knowledge in numerical simulation. I also gave different
courses in mechanics and realized how important are pertinent approximations
when one mathematically solves a real-life problem. Selecting the most influ-
ential properties of a modeled phenomenon is indeed what often makes such
problems solvable with a negligible approximation error.

My goal after my PhD thesis work was to focus on numerical mathematics
applied to medical image analysis, in order to find either an academic or an
industrial position in this field. I first obtained a postdoctoral position at Neu-
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rospin/CEA Saclay with Dr P. Ciuciu where I worked for almost two years on
Bayesian optimization models to estimate the brain activity in functional Mag-
netic Resonance Imaging. Then obtained two postdoctoral positions at Imperial
College London (with Pr D. Rueckert and Pr D.D. Holm) and at University of
Oxford (with Dr J.A. Schnabel), where I worked for three years on the develop-
ment of image registration strategies in medical imaging. In addition to work
experiences in data analysis, these almost five years of postdoctoral positions
were probably those where I learned my most important lessons about how to
communicate in science and how to build a research project. I then wished
to continue my career at the interaction between numerical mathematics and
real-life applications.

In 2012, I obtained a CNRS Research Engineer position at the Toulouse In-
stitute of Mathematics (IMT). My two main missions there were (and are still)
first to give a high level technical support to the scientific activity at IMT, and
to additionally have my own scientific activity. I have then continued different
collaborations in medical imaging with former colleagues. Medical imaging was
however a very minor research theme at IMT at the time, so I involved myself
in other research projects of the Probability and Statistics team (ESP) of IMT.
In particular, I have initiated collaborations related to statistical learning and
the analysis of complex data. These themes are indeed close to medical imaging
from a methodological point of view and were also interesting to me. After
working on several projects with technical contributions in statistical learning
(C++, Python, OpenCL and R programming; results interpretation; trainees
co-supervision; . . .), I was gradually more and more involved in their scientific
aspects, so I also developed a research activity in this field.

This path has lead me to have scientific contributions in relatively varied
fields, although being all related to Mathematical models and numerical methods
in medical image and complex data analysis. In this manuscript, I will synthesize
the scientific contributions I have made after my PhD work (September 2007)
and before July 2018. I will focus on my most significant scientific contributions,
in my opinion, and mention the other ones.

1.1.2 PhD thesis work

My PhD thesis work [B-1] was carried out at the Fluid Institute of Toulouse
(IMFT, UMR 5502) between 2003 and 2007, under the supervision of Franck
Plouraboué. My goal was to quantify the anatomy of intracortical vascular net-
works in order to evaluate their blood flow properties using statistical mechanics
techniques. Image resolution was 1.43 microns per voxel for acquired volumes of
about 3 cubic millimeters, as shown Fig. 1.1. The whole vasculature was then
captured in the acquired images which made it possible to estimate the blood
flow properties at the millimeter scale. This scale is interesting as it is similar
to the cortical areas size. The results of this work were then of importance to
compare the blood flow properties of different brain regions, or of a single brain
region in different groups of subjects. This also made it possible to quantify
the local impact of a brain stroke in terms of nutriment supply for the brain
tissues, and to quantify how a tumor strongly increases its nutriment supply
by transforming the vascular network in its neighborhood. Remark that these
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Figure 1.1: Data studied during my PhD work: Samples of the intracortical
vasculature of about 3 mm3 were acquired using synchrotron tomography at a
resolution of 1.4µm per voxel. All vessels are then distinguished in the volumes,
which makes it possible to evaluate blood flow properties at the cortical region
scale using statistical mechanics techniques. Illustration out of [B-1].

results were also of interest to understand the observed signal in BOLD fMRI
as developed in Section 3.2. This work was rewarded in 2008 by the French
national prize La recherche with the human health mention. Although I had
a minor research activity in vascular image analysis after my PhD thesis [IJ-9,
IC-34, SJ-3], this experience had an important impact on the research themes I
developed later:

1. I used various tools of statistical mechanics and image analysis in [IJ-3,IJ-
1, IC-9, IC-7, IC-6, IC-5, IC-3, IC-2, IC-1, NC-1]. This made me familiar
with the statistical analysis of 3D medical images.

2. The project which had the highest impact on my future career was the
one published in [IJ-2,IC-4]. I developed a novel image processing strategy
to fill the discontinuities that can be obtained when segmenting vascular
networks in 3D images. These developments were made in a scientific
community different to the one of F. Plouraboué. He therefore put me
in contact with X. Descombes (INRIA Sophia-Antipolis) who is specialist
of bio-medical imaging and who advised me in this context. This allowed
me to move from the fluid mechanics community to the medical imaging
community after my PhD.

3. In the very end of my PhD thesis, I also worked on graph representations
of the vascular networks in order to detect clusters of influent vessels using
graph clustering techniques (see Fig. 1.2). This work is the last method-
ological part of my PhD manuscript [B-1] and was only published four
years later in a journal [IJ-9], after further bio-mechanical developments.
Although it had little impact in my PhD work, it was the basis for the
development of a new research activity in graphs analysis eight years later,
at the Mathematics Institute of Toulouse [IJ-19,SJ-6,SC-1].

4. I finally worked on large data volumes: each 3D image was about 8 times
larger than what I could allocate on my workstation. This developed my
taste for low-level algorithms suitable for real-data analysis, which I kept
later in all my methodological developments.
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Figure 1.2: Automatic detection of the most influent structures in intracortical
vascular networks, based on graph clustering. (Left) A segmented and skele-
tonized sample of vascular network. The vascular network is represented by a
graph augmented with spatial coordinates and a local diameter at each node.
The colors represent here local vessels diameters. (Right) Subgraphs extracted
out of the graph on the left. Each color represent an influent cluster of vessels
with respect to the blood flow properties in the sample. Illustration out of [B-1].

The rest of this manuscript focuses on the scientific contributions I developed
during my postdoctoral works and at the Mathematics Institute of Toulouse
between 2007 and 2018. I refer to [B-1] as well as the citations of this section
for further details about my PhD work.

1.2 Projects and collaborations

This section presents the main research projects in which I have been involved
after my PhD work. In particular, I explain their working environment and who
were my main collaborators. The scientific contributions and overviews of the
main publications out of these projects is developed in Chapters 2 to 4.

1.2.1 Projects in medical image analysis

My projects related to medical image analysis are developed in Chapter 2. Here
is below a synthesis of their motivations and contributions.

Medical image registration in the LDDMM framework An important
project for me has been the development of methodologies in the Large Deforma-
tion Diffeomorphic Metric Mapping (LDDMM) framework (see Section 2.1.2).
I started working on this framework during my postdoctoral work at Imperial
College London where my goal was to develop medical image registration strate-
gies in interaction with D.D. Holm at the Department of Applied Mathematics
and D. Rueckert in the Biomedical Image Analysis department. F.X. Vialard
(former PhD student of A. Trouvé at ENS Cachan) was hired as a postdoctoral
researcher in the same project as me and we started a long term collaboration.
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Our starting point was to deeply understand [BMTY05a] and how to make it
work on practical cases given by D. Rueckert.

The first work in this collaboration with F.X. Vialard, was [IJ-6,IJ-10,IC-
20,IC-18,IC-24] (Subsection 2.3.2). We defined multi-scale metrics in LDDMM,
motivated by real applications in 3D medical imaging. From the application
side, I collaborated with M. Murgasova (former PhD student with D. Rueck-
ert) who motivated the problems related to the registration of pre-term babies
MR images. I also collaborated with M. Bruveris (former PhD student with
D.D. Holm) who extended [IJ-6] in [IJ-10] with a more mathematically rigor-
ous approach. We then worked on an extension of [BMTY05a] where sliding
constraints could be modeled in the context of my postdoctoral work at Univer-
sity of Oxford with J.A. Schnabel (former researcher in the Biomedical image
analysis department of Univ. Oxford) and published this work in [IJ-11,IC-24]
(Subsection 2.3.3). This work motivated the development of alternative for-
mulation to LDDMM, where spatially-varying metrics would make sense. This
was done in collaboration with T. Schmah (Univ. Toronto) and published in
[B-2,IC-31], where left-invariant metrics mathematically justified the use of LD-
DMM with spatially-varying metrics (Subsection 2.2.4). After having justified
the use of spatially-varying registration in LDDMM, we finally built a strategy
that learns optimal spatially-varying regularization metrics with respect to a
learning set of reference images [IC-32] (Subsection 2.3.4). Remark that these
methods were recently summarized in [SB-1].

An alternative project on which I worked with F.X. Vialard, based on the
same starting point, was the development of a formulation of LDDMM where
geodesic shooting is used to register the images [IJ-7] (Subsection 2.2.2). This
strategy was then used to define the Karcher means of shapes (average shapes) in
3D images [IJ-8,IC-22,IC-21] (Subsection 2.2.3). An original statistical learning
pipeline based on the initial momenta computed using [IJ-7] and the averaged
shapes of [IJ-8] was also presented in [IC-28,IJ-15] in collaboration with J.B.
Fiot (former PhD student with L.D. Cohen at Univ. Paris Dauphine).

Medical image registration in other frameworks Personal contributions
in medical image registration, outside of the LDDMM framework, were made
mostly by collaborating with different PhD students. Tight collaborations with
PhD students are much more frequent for postdoctoral researchers in the UK
than in France. One of their role is indeed to give a scientific support to the PhD
students of their advisor. I worked for three years as a postdoctoral researcher
in the UK, which explains these collaborations. Note that I also continued
having such collaborations after having been hired at IMT, in particular with
J.A. Schnabel’s team. In [IJ-17,IC-30], I worked with B. Papiez (former PhD
student of J.A. Schnabel) to extend the sliding motion strategy of [IJ-11]. A
simpler image registration formulation was used but the location of the sliding
constraints was automatically detected. I also worked with J. Ferhenbach in
this project to justify the developments. In parallel, I also had also a strong
scientific implication in the PhD work of A. Cifor (former PhD student of J.A.
Schnabel) were we worked on the robust tracking of liver tumors in 2D Ultra-
sound image series [IJ-13,IC-29,IC-26]. In the same vein, I also had a strong
implication in the PhD thesis work of T. Roque (former PhD student of J.A.
Schnabel), in particular in [IJ-20] where image deformations are driven by a
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physiologically motivated reaction-diffusion model (Subsection 2.2.5). By regu-
larly talking with M.P. Heinrich (former PhD student of J.A. Schnabel) about
the definition of new realistic frameworks for multi-modal image registration, I
also defined the mutual information gradient estimation technique of [IC-27,IC-
23]. More secondary collaborations with J.A. Schnabel’s students were first in
[IJ-12] with H. Baluwala (former PhD student of J.A. Schnabel) were we mostly
shared image pre-processing tasks with [IJ-11]. I also worked with M. Bhushan
[IC-25] in order to make diffeomorphic his motion correction strategy.

In addition to these collaborations with J.A. Schnabel’s students, I also
collaborated with the team of C. Fonta (DR CNRS) and M. Mescam (lecturer,
Univ. Toulouse) at the Brain and Cognition (CerCo) laboratory of Toulouse.
In this context, I developed the image registration with automatic selection of
the deformations scale in [IC-33] for marmoset monkeys brains.

Image segmentation Several image segmentation projects on which I have
contributed are related to image registration: A reference segmentation can
be throughly performed once for all on a template (average) image containing
the shape of interest. The segmented image is then registered to the template
and the reference segmentation is transported from the template domain to the
segmented image using the mapping. Using such techniques I had a strong
implication in the PhD thesis work of D.P. Zhang (former PhD student of D.
Rueckert) where we developed different strategies for the segmentation of the
coronary artery in 3D+time cardiac CT sequences [IC-19,IC-17,IC-16]. More
recently, I also developed a plugin for the 3Dslicer software in order to perform
the template-based segmentation of marmoset brain images [SJ-2] with C. Fonta
and M. Mescam from CerCo.

As an extension of my PhD thesis gap filling strategy of [IJ-2], I also worked
with R. Bates (former PhD student of J.A. Schnabel) on a post-treatment strat-
egy for tubular structures segmentation. We indeed extended [IJ-2] to micro-CT
images of tumorous vascular networks [IC-34]. By collaborating with J.M. Mire-
beau (CR CNRS, Univ. Paris Dauphine) and J. Fehrenbach in the context of
an ANR project, we also presented in [IJ-16] the ITK implementation of an
efficient anisotropic non-linear diffusion technique for 2D or 3D images.

I also work with F. Gamboa (Pr Univ. Toulouse, IMT), A. Gossé (CR CEA
Saclay) and A. Quaini (CR CEA Saclay) since 2015 on the segmentation and
the feature extraction of 2D image sequences representing rotating and levitat-
ing balls which are extremely warmed-up. The goal here is to understand the
mechanical properties of the balls under extreme conditions. The main techni-
cal issues deal with artifacts, occlusions and low boundary contrasts observed
during the experimental protocol. A communication explaining the results of
this work should be submitted over the following months.

Finally, I currently collaborate with F. Malgouyres (Pr Univ. Toulouse,
IMT) and colleagues from the Toulouse Cancer University Institute, in particu-
lar S. Ken (Research Engineer INSERM, IUCT), on a 4 years INSERM project
where we work on segmentation strategies for nodules and other structures in
multi-modal whole body images. For now, we have published a regularization
strategy for the Fast Marching algorithm [IC-37] and I co-supervise with F. Mal-
gouyres V.K. Ghorpade (postdoctorate IMT) who works on these developments
since January 2018.
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1.2.2 Projects in numerical methods for stochastic mod-
eling

I mainly developed original numerical methods for stochastic modeling in the
context of two projects and had besides minor contributions. Here is below
a synthesis of their motivations and contributions. Further explanations are
developed Chapter 3.

My first work experience with numerical methods for stochastic modeling
was during my postdoctoral work at CEA Saclay with P. Ciuciu (former CR
CEA Saclay). This project was related to the analysis of the brain activity in
functional Magnetic Resonance Imaging (fMRI) time series, (Section 3.2). An
original Bayesian model was first developed in collaboration with T. Vincent
(former PhD student of P. Ciuciu) to analyze fMRI time series [IJ-4,IJ-14,NJ-
1,IC-11,IC-15,IC-8]. I have been particularly involved in the development of a
strategy to efficiently compute the partition function of Potts field with respect
to their inverse temperature β [IJ-5,IC-13,IC-14,IC-12,NC-3], in order to make
unsupervised the spatial regularization of this model. Insights about the pro-
posed methodology were also developed with F. Forbes (DR INRIA Grenobles)
and J. Idier (Pr Central Nantes), who temporarily hired me for two months in
the end of my postdoctoral work at CEA Saclay and before my postdoctoral
work at Imperial College London. Note that I also supervised the Master 2
project of A.L. Fouque (ENS Cachan) during this postdoctoral work and we
developed a statistical clustering strategy for fMRI time series [IC-10,NC-2].

More recently, I collaborated with S. Gadat (Pr Toulouse School of Eco-
nomics, IMT) and I. Gavra (former PhD student of S. Gadat) on the definition
of a barycenter estimation strategy for graphs in which a probability measure
reflects observation occurrences on the graph nodes (Section 3.3). We first pub-
lished [IJ-19] and extended this work to the online and high dimensional context
in [IJ-6]. I. Gavra has recently obtained a lecturer position at University of
Rennes and we plan continuing our collaboration.

I also worked with S. Ribes who was PhD student under the supervision of
O. Caselles at a laboratory of Univ. Toulouse 3 (SIMAD). She had the potential
and the material to write a paper in a medical image analysis journal but her
supervisors had little experience in this field. After talking together about her
project, we agreed that I would informally advise her in this part of her PhD
thesis work. I mainly helped her to develop the image segmentation pipeline
based on Bayesian model as in [IJ-4], and led the paper redaction at the IEEE
Trans. Medical Imaging format [IJ-18].

I have finally started a collaboration last year with G. Fort (DR CNRS,
IMT) about Maximum Likelihood inference algorithms in statistical models.
My goal in this collaboration is to develop original numerical methodologies
to make scalable Gibbs sampling strategies. For now, my contributions were
mostly technical and I worked on an efficient implementation of the algorithms
in [IC-36,NC-4]. Note that, I also had a similar technical contribution with S.
Gadat and M. Costa (Lecturer at Univ. Toulouse, IMT) [SJ-1] which deals with
atomic deconvolution i.e. with deconvolution in density estimation.
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1.2.3 Projects in statistical learning on complex data

The third field in which I had a scientific activity is statistical learning applied
to complex data. My research activity in this field is developed Chapter 4 and
is synthesized hereafter. Note that I give different links between complex data
analysis and medical image registration in Section 4.1. In this manuscript, I
distinguish my research activity in these fields by considering medical image
registration as a specific subfield of complex data analysis.

As mentioned Subsections 1.2.1 and 1.2.2, I first had a minor contribution
in this field while supervising the M2 project of A.L. Fouque with P. Ciuciu
during my postdoctoral work at CEA Saclay [IC-10,NC-2]. This contribution
was about statistical learning techniques to clusterize hemodynamic parameters
out of fMRI time series. Several years later, I worked with J.B. Fiot and F.X.
Vialard on the exploration of different spatial regularization models for logistic
regression on 3D image domains [IC-28,IJ-15] (Section 4.2). I also developed an
image registration strategy with automatic selection of the deformations scale
in [IC-33] based on LASSO regularization. In these contributions, statistical
learning techniques were mostly applied to specific applicative cases.

I started developing new models in statistical learning by co-supervising two
PhD theses with J.M. Loubes (Pr Univ. Toulouse, IMT). I first work with
T. Bui since September 2016 on the development of statistical models for the
classification of 3D coiled shapes out of the inner ear as well as distributions of
the response of the ear to otoacoustic emission (OAE) [SJ-5] (Section 4.3). I also
work with C. Champion since September 2017 on the extraction of representative
variables in complex systems [SC-1,NC-5] (Section 4.4).

Other collaborations in this theme have also started with F. Gamboa (Pr
Univ Toulouse, IMT), F. Bachoc (Lecturer Univ Toulouse, IMT), and S. Déjean
(Research Engineer, Univ. Toulouse, IMT) and should lead to new developments
in the future.

1.3 Personal contributions

Almost all my scientific contributions were developed in the context of collab-
orative works. In this section, I therefore make clear what was my personal
contribution to selected journal papers and conference proceedings. These se-
lected communications are presented in chronological order and correspond to
the communications given in appendix.

Unsupervised spatial mixture modelling for within-subject analysis
of fMRI data [IJ-4]

(Motivation) Within-subject analysis of the brain activity in BOLD fMRI con-
sists in detecting patterns of energy consumption in 3D+time image series. Each
of these patterns is located at an image point and smoothly evolves in time dur-
ing several seconds after an onset. It represent a brain activation and is related
to local variations of oxygen consumption in the brain due to a cognitive task. In
2010, all existing approaches either detected the activations using a predefined
energy consumption pattern, or estimated this pattern at specific locations and
times. There is however a physiological evidence that these two tasks should be
performed simultaneously as the energy consumption pattern strongly depends
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of the local vasculature which varies across brain regions [IJ-1,IJ-3]. (Main pa-
per contributions) This paper develops an original Bayesian model in which
the activations detection and the energy consumption patterns are simultane-
ously estimated. The model makes physiologically realistic hypotheses to con-
strain the minimized energy, making it possible to detect local activations that
are lost using more generic regularization models. (Personal contributions)
T. Vincent (who was a PhD student of P. Ciuciu at CEA Saclay) was the main
contributor to this work. I developed the unsupervised spatial regularization
model and strategy to estimate the 3D Potts field partition functions. The par-
tition function strategy was generalized later in [IJ-5]. This paper is shown in
Appendix B.1.

Min-max extrapolation scheme for fast estimation of 3D Potts field
partition functions [IJ-5]

(Motivation) Potts models are typically used as Hidden Markov Fields with
K labels/colors when segmenting an image using a Bayesian formalism. They
indeed allow to spatially regularize the optimal segmentation with a strength
which is controlled by an inverse temperature β. When the regularization level
is unsupervised, it is however mandatory to compute the partition function of
the Potts field w.r.t. β, which can be extremely demanding in terms of compu-
tations. (Main paper contributions) In [IJ-5], we proposed a fast partition
function estimation strategy for 2D and 3D Potts fields with irregular shapes.
This technique was applied to the estimation of the brain activity in func-
tional MRI time-series. In this application, about 100 Potts fields were used to
spatially regularize the detection of brain activation/deactivation/inactivation,
where the regularization level was automatically-tuned and region-wise. (Per-
sonal contributions) I was the main contributor to this work. I collaborated
with T. Vincent (who was a PhD student of P. Ciuciu at CEA Saclay) to in-
tegrate the partition function estimation strategy to the brain activity analysis
pipeline. I also worked with F. Forbes, J. Idier and P. Ciuciu to develop my
insights about the proposed method. This paper is shown in Appendix B.2.

Simultaneous Multiscale Registration using Large Deformation Dif-
feomorphic Metric Mapping [IJ-6]

(Motivation) This paper was motivated by the lack of literature in 2011 on
the choice of physiologically realistic regularizing metrics to register medical im-
ages with LDDMM [BMTY05b]. (Main paper contributions) The impact
of the regularizing metric in medical image registration was first discussed. In
particular, we have made clear that using unsuitable regularizing metrics with
respect to the registered structures leads to physiologically implausible defor-
mations, even if the shape boundaries are accurately matched. Motivated by
real-life medical image registration cases, a strategy to define multi-scale metrics
in LDDMM was presented, assessed and discussed. (Personal contributions)
I was the main contributor to this work. The key ideas came by discussing with
F.X. Vialard when developing our implementation of [BMTY05b] on 3D medi-
cal images. I realized that very little literature was dealing with the choice of
the metric in LDDMM although this choice is fundamental in practice. This
paper is shown in Appendix A.1.
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Diffeomorphic 3D Image Registration via Geodesic Shooting using an
Efficient Adjoint Calculation [IJ-7]

(Motivation) This work was motivated by the need for an accurate tool to com-
pute the initial momenta that compare 3D images in the LDDMM framework.
Initial momenta are indeed important in LDDMM, as they compactly encode
local differences between the registered images and can therefore be used for
further statistics on shape spaces or for the estimation of average shapes. Note
that they are specific to LDDMM in the image registration community and are
one of the main reasons that make this formalism appealing. (Main paper
contributions) A new variational strategy for the diffeomorphic registration
of 3D images is defined. It performs the optimization on the set of geodesic
paths instead of on all the possible curves, and therefore directly estimates the
initial momenta comparing two images. (Personal contributions) I tightly
collaborated with F.X. Vialard on this paper. My main contributions have dealt
with the resolution of implementation and numerical issues related to the use
of the geodesic shooting strategy on 3D medical images. This paper is shown
in Appendix A.2.

Diffeomorphic Atlas Estimation using Geodesic Shooting on Volumet-
ric Images [IJ-8]

(Motivation) Computing the average shape of a given organ is fundamental
for many medical image applications, in particular in brain imaging. It indeed
makes it natural to propagate local information measured on a reference set
of imaged organs into this average shape, denoted template. This information
(typically a probabilistic segmentation) can then be propagated to other images.
Another important application is to quantify the local variability of the reference
images. The motivation of this paper is to define a computationally tractable
strategy to compute average shapes out of 3D medical images. (Main paper
contributions) A new algorithm to compute intrinsic means of organ shapes
from 3D medical images was defined. This algorithm is based on the geodesic
shooting algorithm of [IJ-7] and is fully diffeomorphic. Contrary to other tem-
plate definition strategies, the intensities of the average shapes are then not the
average intensities of several images registered to each other, leading to sharper
region boundaries. This strategy also offers interesting properties for further
statistical studies by using the information contained in initial momenta. (Per-
sonal contributions) F.X. Vialard and me contributed equally to this work.
F.X. Vialard computed the gradients of the optimized energy and I developed
the gradient descent based strategy. This paper is shown in Appendix A.3.

Mixture of Kernels and Iterated semidirect Product of Diffeomor-
phisms Groups [IJ-10]

(Motivation) This work directly follows [IJ-6], where we defined and discussed
a practical method to use multi-scale metrics in LDDMM. A first attempt to dis-
tinguish scale-dependent deformations out of an optimal deformation between
two shapes was given in [IJ-6], but this contribution was secondary compared
with other ones. As it may be useful for further statistical studies, the work of
[IJ-10] strongly develops this discussion. (Main paper contributions) The
influence of different scales when comparing two shapes using LDDMM with
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multi-scale kernels is studied with a more rigorous model than in [IJ-6]. A
variational approach is developed for the multiscale analysis of diffeomorphisms
and the semidirect product representation is generalized to several scales. (Per-
sonal contributions) F.X. Vialard and M. Bruveris (who was a PhD student
of D.D. Holm at Imperial College London) were the main contributors to the
developed model. My first contribution was to give the research directions of
this work and to specifically make sure that the mathematical developments
would have a practical impact from a image analysis point of view and would
be algorithmically realistic on 3D images. I also implemented and assessed the
strategy on 3D medical images. This paper is shown in Appendix A.4.

Piecewise-Diffeomorphic Image Registration: Application to the Mo-
tion Estimation between 3D CT Lung Images with Sliding Conditions
[IJ-11]

(Motivation) Standard medical image registration models make the hypoth-
esis that the deformations between registered images are smooth (and then
continuous) everywhere. However, sliding conditions can be observed in medi-
cal images, for instance at the lung boundaries. This paper was then motivated
by the need for diffeomorphic image registration models with sliding conditions.
(Main paper contributions) We first defined a general strategy for model-
ing sliding conditions when registering 3D images in a piecewise-diffeomorphic
framework. Compared with existing literature in 2012, this strategy ensured
that the estimated deformations were invertible everywhere although they could
be locally discontinuous. We also integrated the proposed strategy to the LD-
DMM [BMTY05b] and the LogDemons [VPPA08] diffeomorphic registration
frameworks. (Personal contributions) I was the main contributor to this
work. I worked with F.X. Vialard to define the admissible Reproducing Kernel
Hilbert Space in the LDDMM context. We also shared image pre-processing
tasks with H.A. Baluwala (who was a PhD student of J.A. Schnabel at Univ.
Oxford) that were also used in [IJ-12]. This paper is shown in Appendix A.5.

Construction of Diffeomorphic Spatio-temporal Atlases using Kärcher
means and LDDMM [IC-22]

(Motivation) This work directly extends [IJ-8] where a fully diffeomorphic
strategy was proposed to compute average shapes (atlases) out of 3D images.
It was motivated by the need for the definition of fully diffeomorphic spatio-
temporal atlases. In this context, each reference image is associated to an
acquisition time and the average template evolves in time. The spatio-temporal
atlas also spatially moves smoothly in time with no intensity change and any
intensity blurring, which allows to preserve the sharpness of region boundaries,
or to make move an atlas associated to a single segmentation. (Main paper
contributions) Compared with [IJ-8], a straightforward contribution was to
use a time-dependent kernel to weight the influence of each reference image
at a given time. In order to make the temporal evolution of the template fully
diffeomorphic and dense in time, our key contribution was to perform the spatio-
temporal shape averaging on the tangent space of the evolution rather than on
the space of images. (Personal contributions) I was the main contributor to
this work. F.X. Vialard formalized the intuition I had about the spatio-temporal
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averaging strategy on tangent spaces. This paper is shown in Appendix A.6.

Piecewise-diffeomorphic registration of 3D CT/MR pulmonary im-
ages with sliding conditions [IC-27]

(Motivation) The driving motivation of this paper was to make it possible
to register multimodal 3D images with sliding conditions. The two technical
issues addressed in this paper were (1) to make the estimation of local similar-
ity gradients computationally tractable on large multimodal images, and (2) to
strongly regularize the deformations, as the registered structures have a strongly
different representations in the CT and MR images, while modeling local slid-
ing conditions. (Main paper contributions) This paper directly applies the
regularization strategy of [IJ-11] to locally constrain sliding deformations. Its
main contribution is the use of approximated local gradient of mutual informa-
tion to match the images which was first presented in [IC-23] and is developed
here. (Personal contributions) I was the main contributor to this work. M.P.
Heinrich (who was a PhD student of J.A. Schnabel at Univ. Oxford) helped me
to pre-process the images and to assess the registration quality. This paper is
shown in Appendix A.7.

Hybrid Feature-based Diffeomorphic Registration for Tumour Track-
ing in 2-D Liver Ultrasound Images [IJ-13]

(Motivation) Ultrasound (US) imaging is a widely accessible and low-cost im-
age acquisition modality but also opens various questions in image analysis.
This is due to the fact that it generates different artifacts and that it acquires
2D image sequences in a 3D domain. The specific driving motivation of [IJ-13]
is to define a robust and accurate method to compensate for the breathing mo-
tion when tracking liver tumors in US imaging. (Main paper contributions)
A whole diffeomorphic image registration pipeline was defined to follow the tu-
mors. The PDE-based deformation model was inspired from the LogDemons
framework of [VPPA08]. The main contribution of [IJ-13] was the definition
of new matching forces that allow to robustly follow the tumor in 2D US im-
age sequences. (Personal contributions) My main contribution to this paper
was to scientifically lead the work of A. Cifor (who was a PhD student of J.A.
Schnabel at Univ. Oxford) to integrate the image features she defined in an
image registration framework and to assess the results. I also found a mathe-
matical justification to the algorithm and its parameters through a PDE-based
formulation of the registration algorithm. This paper is shown in Appendix A.8.

Longitudinal deformation models, spatial regularizations and learning
strategies to quantify Alzheimer’s disease progression [IJ-15]

(Motivation) The early detection of Alzheimer’s disease (AD) is an important
challenge for its efficient treatment through adapted drug delivery. In this pa-
per, we worked on its detection based on local hippocampal shape changes in
time. The hippocampus is indeed a subcortical structure which is known by the
clinicians to be anatomically impacted by AD. (Main paper contributions)
In this paper, we explored the use of different spatial regularization models in
logistic regression to learn which local shape deformations optimally discrim-
inate AD subjects from subject with Mild Cognitive Impairment. (Personal
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contributions) J.B. Fiot (who was a PhD student of L.D. Cohen at Univ.
Paris Dauphine) and F.X. Vialard were the main contributors to this work. I
helped J.B. Fiot defining an average shape and aligning the images. We have
also made the link between the regularization strategies and their physiological
interpretation. This project is the one in which I started developing a scientific
activity in machine learning. This paper is shown in Appendix C.1.

Diffeomorphic image matching with left-invariant metrics [B-2]

(Motivation) The Large Deformation by Diffeomorphic Metric Mapping (LD-
DMM) framework of [BMTY05b] was designed to regularize the deformations
with the same smoothing properties in the whole image domain. This contribu-
tion presented an alternative problem formulation, denoted Left-LDM or LIDM,
in which spatially-varying metrics make sense. (Main paper contributions)
We first explored the use of left-invariant metrics on diffeomorphism groups
based on reproducing kernels defined in the body coordinates of the source im-
age. This approach differs from LDDMM, where right-invariant metric on a
diffeomorphism group are used. A link with LDDMM was also established and
a practical algorithm to register 3D images with LIDM was given. (Personal
contributions) My main contribution was to guide the mathematical devel-
opments in strong collaboration with F.X. Vialard and T. Schmah so that the
registration strategy would be realistically applied on 3D medical images. This
has lead to a computationally tractable 3D image registration algorithm (very
close to [BMTY05b]) where the final deformation is analytically the same as us-
ing LIDM although the path is different. This paper is shown in Appendix A.9.

Spatially-varying metric learning for diffeomorphic image registra-
tion. A variational framework [IC-32]

(Motivation) In medical image registration, it makes obvious sense that the
deformations of different organs should be ideally regularized with different
smoothing properties. Standard medical image registration algorithms how-
ever use spatially homogeneous smoothing properties for two main reasons: (1)
This is mathematically and algorithmically much simpler, and (2) tuning spa-
tially varying smoothing properties requires prior information on the registered
structures that is generally not available. (Main paper contributions) In
this paper, we build on the diffeomorphic registration model of [B-2] to define
a strategy that learns optimal spatially-varying regularization metrics with re-
spect to a learning set of reference images. The learning strategy is defined in a
variational framework. (Personal contributions) I tightly collaborated with
F.X. Vialard in this project. I gave research directions, so that the strategy
would be computationally tractable on 3D medical images and would lead to
meaningful results. I also defined a numerical solution to keep the learning di-
mension reasonable, implemented the strategy and tested it on real 3D medical
images. This paper is shown in Appendix A.10.

Diffeomorphic registration with self-adaptive spatial regularization
for the segmentation of non-human primate brains [IC-33]

(Motivation) The motivation of this paper is close to the one of [IC-32] and
deals with the semi-automatic tuning of the smoothing properties in the reg-
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istration of template images. Contrary to [IC-32], the goal of this paper is
to alleviate the need for scale definition in the regularizing metric of a med-
ical image registration algorithm. (Main paper contributions) The main
methodological contribution of this paper is to explore a new strategy to auto-
matically tune the spatial regularization of the deformations in medical image
registration. To do so, the image registration model is an optimization strategy
in which the deformations of the template are the weighted sum of reference
deformations at different scales, and the weights are penalized with a L1 norm
(LASSO). Sparse non-null weights are then computed, leading to optimal scale
selection. (Personal contributions) I was the main contributor to this work.
L. Dolius, C. Fonta and M. Mescam acquired the images and helped me to
interpret the results. This paper is shown in Appendix A.11.

Filling Large Discontinuities in 3D Vascular Networks using Skeleton-
and Intensity-based Information [IC-34]

(Motivation) The segmentation of vascular networks often leads to discon-
tinuities in the segmented vessels. For tumorous networks, no hypotheses can
additionally be made on the network structures, due to the chaotic arrangement
of their vessels. This makes it impossible to use standard gap filling algorithms
for such vascular networks. (Main paper contributions) This paper extended
[IJ-2], that I wrote during my PhD thesis work, with a gap filling strategy that
combines both skeleton- and intensity-based information to fill large disconti-
nuities. (Personal contributions) My main contribution to this paper was to
scientifically lead the work of R. Bates (who was a PhD student of J.A. Schnabel
at Univ. Oxford) in order to extend [IJ-2] and make it efficient with the data
he had. This paper is shown in Appendix A.12.

How to calculate the barycenter of a weighted graph [IJ-19]

(Motivation) Undirected graphs with weighted edges and probability measures
on their nodes are of particular interest to model complex phenomena. For in-
stance, they may represent a social network with individuals talking about a
given topic. In this case, the individuals are the nodes, the strength of the
relation between two individuals is an edge weight, and the probability mea-
sures reflect the occurrences of a tag (e.g. an hashtag in twitter). There was
no algorithm to compute the barycenter such structures in 2017 although this
may be statistically informative. (Main paper contributions) In this pa-
per, we introduced an original stochastic algorithm to find the Fréchet mean
of such graphs. It relies on a noisy simulated annealing algorithm. (Personal
contributions) I. Gavra (who was a PhD student of S. Gadat at Univ. Paul
Sabatier/IMT) was the main contributor to this work. S. Gadat worked with
here on the algorithm definition and its convergence. My main contribution
was to lead I. Gavra’s work to make her strategy usable on real data. This
allowed us to make it algorithmically efficient on reasonably large graphs, to de-
velops insights about its parametrization, and to identify practical issues which
make this algorithm not scalable to large graphs. These issues were treated in
the follow-up paper [SJ-6] where my scientific involvement was stronger. This
paper is shown in Appendix B.3.
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A DCE-MRI Driven 3-D Reaction-Diffusion Model of Solid Tumour
Growth [IJ-20]

(Motivation) This work was motivated by the need for tumor growth predic-
tion models to estimate the response to therapies. (Main paper contribu-
tions) This paper introduced an image-driven 3D reaction-diffusion model of
avascular tumor growth in order to predict spatio-temporal tumor evolution.
The model is calibrated using information derived from follow-up DCE-MRI
images. It indeed consists in registering follow-up multi-layer images with con-
straints encoded in a non-linear reaction-diffusion model. The registration then
consists in estimating the model parameters. Note that it can also be seen as a
PDE-constrained optimization problem. (Personal contributions) I had two
major contributions in this paper. The first one was to scientifically lead the
work of T. Roque (who was a PhD student of J.A. Schnabel at Univ. Oxford)
to transform the tumor growth equations she collected in the literature into a
reaction-diffusion model which can be used based on DCE-MRI image infor-
mation. I also discretized the equations to make the resolution scheme stable
and sufficiently fast on 3D image domains. In addition, I advised T. Roque
on a simple and pragmatic optimization strategy to automatically tune tumor
specific model parameters. This paper is shown in Appendix A.13.

Regularized Multi-Label Fast Marching and Application to Whole-
Body Image Segmentation [IC-37]

(Motivation) The segmentation of multiple structures such as lymph nodes in
whole-body MR images of patients with tumors is a task which can be hardly
automatized for two main reasons: (1) Structures boundaries are not visible ev-
erywhere, and (2) the patients and the structures to segment may have a large
anatomical variability. User interventions are then necessary but should be as
limited as possible, and related to particularly responsive algorithms. (Main
paper contributions) We proposed a computationally efficient regularization
strategy for the Fast Marching (FM) segmentation of multiple organs. The
regularization stabilizes the segmentation of complex structures and has a low
computational impact. We also integrated this regularized segmentation strat-
egy to the 3Dslicer software so that clinicians could validate the methodology on
real cases. (Personal contributions) I supervised this project in collabora-
tion with F. Malgouyres with whom we deepened the first intuitions about the
regularization strategy, S. Ken who gave us its driving motivation and partici-
pated to the results assessment, and S. Lebreton who integrated the algorithms
to 3DSlicer. This paper is shown in Appendix A.14.

A representative variable detection framework for complex data based
on CORE-clustering [SC-1]

(Motivation) Discovering representative information in high dimensional spaces
with a limited number of observations is a recurrent problem in data analy-
sis. Heterogeneity between the variables behavior and multiple similarities be-
tween variable subsets make the analysis of complex systems an ambiguous task.
(Main paper contributions) This paper presents a formalism to robustly es-
timate the representative variables in such complex systems. The formalism is
based on a novel graph clustering strategy, denoted CORE-clustering, adapted
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to the addressed problem. The graphs encode the relations between different
observed variables and the clusters are selected based on the number of variables
they contain. The representative variables are finally the cluster centers, so the
number of variables in each cluster can be seen as a regularization parameter.
The method is additionally designed to be scalable to large datasets. (Personal
contributions) The original idea of the CORE-clustering algorithm came from
the PhD thesis work of A.C. Brunet with J.M. Loubes as a supervisor, but was
only published in Arxiv [BAL+16]. I supervised C. Champion (PhD student
IMT, co-supervised by J.M. Loubes and me) to totally re-design the methodol-
ogy. We developed mathematical and algorithmic insights to make it efficient in
the general complex data case. I also advised her in the experimental validation.
We finally wrote together [SC-1], with advice from J.M Loubes. This paper is
shown in Appendix C.2.

Distribution regression model with a Reproducing Kernel Hilbert
Space approach [SJ-5]

(Motivation) Regression analysis is a predictive modeling technique that has
been widely studied over the last decades with the goal to investigate relation-
ships between predictors and responses. Extensions of the Reproducing Kernel
Hilbert Space (RKHS) framework became popular to extend the results of the
statistical learning theory in the context of regression of functional data as well
as to develop estimation procedures of functional valued functions f . As far
as the authors know, It has however not been extended so far to probability
distribution spaces. (Main paper contributions) This paper introduces a
strategy to solve the regression problem where the inputs belong to probability
distribution spaces and the output predictors are real values. The regression
function is composed of an unknown function f and an element of H(K), where
H(K) is the RKHS induced by the kernel K defined on the set of mean em-
beddings of distributions to RKHS H(k). (Personal contributions) My main
contribution in this paper was to guide the work of T. Bui (PhD student IMT,
co-supervized by J.M. Loubes, P. Balaresque and me) in order to establish the
link between the mathematical formalism she developed and the auto-acoustic
response curves she studied. This was critical to understand the model and to
obtain pertinent results. This paper is shown in Appendix C.3.

Online Barycenter Estimation of Large Weighted Graphs [SJ-6]

(Motivation) This paper follows [IJ-19], where an original strategy was pro-
posed to compute the barycenter of undirected weighted graphs. The method of
[IJ-19] has strong mathematical foundations but is not scalable to large graphs.
In addition, although the formalism is general enough to address the online
estimation of online graphs, this application is not clearly discussed in [IJ-19].
(Main paper contributions) In this paper, we extend [IJ-19] to efficiently
estimate the barycenter of very large graphs. The online case, where empirical
observations of the graph node probability measures are made in parallel to the
barycenter estimation, is also discussed. Algorithmic aspects of the strategy are
highlighted as they are directly related to the scalability of the method. (Per-
sonal contributions) I have tightly collaborated with I. Gavra to develop the
methodology and we have similar contributions in [SJ-6]. This paper is shown
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in Appendix B.4.

1.4 Teaching activity and students supervision

This section briefly develops the teaching activity I had in during career and
gives an overview of the students I have supervised. Note that I have mixed in
this section the activity I had during and after my PhD thesis work (defended
in September 2007).

Teaching activity

• 2017-2018: Lectures and practical courses in Image Analysis (32 hours).
Master 2 MAPI3 (Applied Mathematics). Paul Sabatier University, Toulouse.

• 2017-2018: Lectures and practical courses in Machine Learning (18 hours).
Master students to University lecturers (context of a two weeks spring
school). VNUHCM - University of Science, Ho-Chi-Minh city, Vietnam.

• 2017-2018: Practical courses in Statistics (16 hours). Master 2 of ISAE /
Supaero, Toulouse.

• 2017-2018: Lecture and practical courses in GPU computing (4 hours).
Master 2 of ISAE / Supaero, Toulouse.

• 2016-2017: Lectures and practical courses in Image Analysis (8 hours).
Master 2 MAPI3 (Applied Mathematics). Paul Sabatier University, Toulouse.

• 2016-2017: Practical courses in Statistics (16 hours). Master 2 of ISAE /
Supaero, Toulouse.

• 2006: Lectures and practical courses of Numerical Simulation in Fluid Me-
chanics (32 hours). Master 1 in Mechanics and Energetics, Paul Sabatier
University, Toulouse.

• 2006: Practical courses of Stochastic Process applied to heterogeneous
media (14 hours). Master 1 in Mechanics and Energetics, Paul Sabatier
University, Toulouse.

• 2005: Lectures and practical courses of Numerical Simulation in Fluid Me-
chanics (44 hours). Master 1 in Mechanics and Energetics, Paul Sabatier
University, Toulouse.

• 2005: Practical courses of Point Mechanics (20 hours). Licence 1 in Math-
ematics and Computer Science applied to Science (DEUG MIAS), Paul
Sabatier University, Toulouse.

• 2004: Lectures and practical courses of Numerical Simulation in Fluid Me-
chanics (44 hours). Master 1 in Mechanics and Energetics, Paul Sabatier
University, Toulouse.

• 2004: Practical courses of Point Mechanics (20 hours). Licence 1 in Math-
ematics and Computer Science applied to Science (DEUG MIAS), Paul
Sabatier University, Toulouse.
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Students supervision

Postdoc supervision

• 02/2018-.: V. K. Ghorpade. Postdoctoral researcher in Applied Mathe-
matics for medical image analysis: Mutli-modal image registration of 3D
whole-body medical images. Co-supervision with F. Malgouyres (Pr IMT).

PhD student supervision

• 09/2017-.: C. Champion (Applied Mathematics at l’INSERM/IMT): De-
velopment of new strategies for the analysis of complex data. Co-supervision
with J.-M. Loubes (Pr IMT) and R. Burcelin (DR INSERM).

• 09/2016-.: T. Trang Bui (Applied Mathematics at INSA Toulouse/IMT):
Regularization models for the analysis of auditory data. Co-supervision
with J.-M. Loubes (Pr IMT) and P. Balaresque (CR1 CNRS, UMR5288).

Master students supervision

• 2018: R. Vaysse (M1 Applied Mathematics/Data Analysis, Paul Sabatier
University - 5 months): Statistical analysis of data out of speech samples
for Parkinson’s disease detection. Co-supervision with S. Déjean (IR UPS)
and J. Farinas (Mcf UPS - UMR5505)

• 2017: V. Brès (M2 Applied Mathematics/Computer Science, ENSEEIHT
- 6 months): GPU computing with OpenCL to speed-up large graph clus-
tering algorithms.

• 2017: S. Lebreton (M2 Applied Mathematics/Computer Science, EN-
SEEIHT - 6 months): Development of a C++ plugin in 3DSlicer for the
semi-interactive segmentation of 3D medical images. Co-supervision with
F. Malgouyres (Pr IMT).

• 2017: N. Artigouha (M1 Computer Science, INSA Toulouse - 2 months):
Using the C++ Boost Graph Library to for the analysis of large graphs.

• 2016: D. Grasselly (M1 Applied Mathematics, INSA Toulouse - 3 months):
Development of a Matlab code for the registration of lung images with
sliding conditions. Co-supervision with J. Fehrenbach (Mcf UPS/IMT).

• 2016: M. Verdier (M1 Applied Mathematics, INSA Toulouse - 3 months):
Induction of Bayesian networks from medical data.

• 2016: M. Ralle (M2 Mathématiques, Paris Orsay University - 4 months):
Statistical analysis of the cochlear coil. Co-supervision with J.M. Loubes
(PR UPS/IMT).

• 2015: T. Berriat (M1 Applied Mathematics, INSA Toulouse - 3 months):
Statistical analysis of the cochlear coil. Co-supervision with J.M. Loubes
(PR UPS/IMT).

• 2014: A. Choury (M2 Applied Mathematics, INSA Toulouse - 6 months):
Statistical analysis of seismic wave propagation measures. Co-supervision
with J.M. Loubes (PR UPS/IMT) and P. Besse (PR INSA/IMT).
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• 2013: L. Dolius (M2 Medical Imaging and Radiophysics, Paul Sabatier
University - 6 months): Quantitative Analysis of 3D brain images. Co-
supervision with C. Fonta (DR CerCo/CNRS) and M. Mescam (McF
UPS/CerCo).

• 2010: A. Camphuis (M1 Supelec - 2 months): Validation of a medical
image registration algorithm. Co-supervision with F.X. Vialard (Postdoc-
toral researcher at Imperial College London).

• 2008: A.L. Fouque (M2 ENS Cachan - 5 months): Analysis of the BOLD
signal in functional MRI. Co-supervision with P. Ciuciu (CR CEA Saclay).

• 2005: V. Gratsac (M2 Computer Science, Nantes University - 6 months):
Segmentation of large vascular network images using Tensor Voting.

I have finally supervised 8 trainees with License 2 and 3 levels from prépa
INPT, ENS Lyon and IUT Toulouse on the implementation of different algo-
rithms.
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[IJ-3] L. Risser, F. Plouraboué, P. Cloetens, and C. Fonta. A 3d-investigation
shows that angiogenesis in primate cerebral cortex mainly occurs at capil-
lary level. International Journal of Developmental Neuroscience, 27(2):185–
96, 2008.
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Submitted book chapters

[SB-1] F. X. Vialard, and L. Risser. Spatially varying metrics for LDDMM.
Riemannian Geometric Statistics in Medical Image Analysis (submitted).

23



Refereed international conference proceedings

[IC-37] L. Risser, S. Ken, S. Lebreton, E. Grossiord, S. Kanoun, and F. Malgo-
uyres. Regularized multi-label fast marching and application to whole-
body image segmentation. In Proceedings of IEEE International Sympo-
sium on Biomedical Imaging (ISBI), 2018.
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[NC-1] L. Risser, F. Plouraboué, C. Fonta, P. Cloetens, and A. Steyer. Volumes
élémentaires représentatifs dans les réseaux microvasculaires. In Proceed-
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Chapter 2

Mathematical models in
medical image analysis

2.1 Introduction

2.1.1 Medical image analysis

The medical image analysis community is a wide multidisciplinary community
composed of applied mathematicians, computer scientists, specialists of signal
processing, and data scientists who develop data analysis models related to
medical images. This community is particularly active due to the constant
progress of medical imaging acquisition devices. Image acquisition is indeed
faster and faster, making it possible to acquire images with an increasingly
accurate spatial resolution and image time series having shorter repetition times.
Different image acquisition modalities and parameterizations, as well as different
contrast agents also allow to quantify different information in a same diseased
patient. Back in 2000, [DA00] already reported the impressive progress made
in acquisition and analysis of medical images since the early works in the 70’s.
These progress are likely to continue in the future as they have an important
impact in the society.

2.1.2 Medical image registration

Most of my contributions in medical image analysis deal with image registration.
I then give a brief introduction to this field in this subsection.

Problem definition Consider a fixed image IF and a moving image IM .
These images are defined on 2D or 3D discrete domains ΩF and ΩM with regu-
larly sampled points denoted pixels in 2D and voxels in 3D. Although medical
images may contain vectors or tensor structures at each of their points, we only
treat the case where the pixels/voxels contain scalar values here. Medical images
are also augmented with image to world matrices WF and WM which transform
their pixel/voxel coordinates into world coordinates which are common to all
registered images and expressed in millimeters. For instance, if p is a voxel of
image IF , its millimeter coordinates are WFp. Images IF and IM may indeed
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be scanned with different resolutions, orientations and origins. In real appli-
cations, they additionally often cover different spatial domains although they
contain at least a common organ of interest. Medical image registration then
consists in mapping the common structures of interest IF in IM .

Similarity metrics We denote ID the deformation of the moving image IM
by the saught mapping. A similarity metric S(IF , ID) has naturally to be used
to establish an optimal mapping between IF and IM . This metric must have
low values when the common structures of IF and ID are accurately mapped
and high values when they are distant to each other. For images acquired using
the same modality, the hypothesis that a given structure has a given gray level
often holds, at least after gray level pre-alignments. The most classic similarity
metric is then the so-called Sum of Squared Difference (SSD) and is equal to
S(IF , ID) = ||IF − ID||22. The images IF and IM may however be acquired
using different imaging modalities (e.g. using CT and MR imaging) typically
to quantify different physiological properties of a studied organ. For such mul-
timodal images, a given structure has generally different gray levels in IF and
IM . As a consequence, more complex similarity measures such as the mutual
information (MI) [MCV+97] or edge-based techniques such as [SADDdS15] or
Modality Independent Neighborhood Descriptors (MIND) [HJB+12a] must be
used. It finally worth mentioning that only the intensities of specific structures
may be different in the registered images, typically due to a pathology. In this
case, techniques mixing image registration with the detection of these struc-
tures [HDJR12] as well as metamorphosis models [TY05, GY05, NHP+11] may
be used.

Classic deformation models When IF and IM are acquired using different
imaging modalities, it is common practice to rigidly align these images. Medi-
cal image registration then consists in modifying the properties of WM with a
translation and a volume preserving rotation that optimizes the similarity be-
tween IF and the deformed moving image ID = IM ◦W−1

M ◦φr ◦WF , where ID is
sampled in the fixed image domain and φr is the rigid deformation. Note that a
simple generalization of rigid registration is affine registration, where the volume
preserving constraints are released and shearing constraints can be captured. It
is often used to propagate the segmentation of an image to another one which
contains the same structures, with little degrees of freedom to optimize.

In order to estimate local deformations, more generic deformation models are
however required. This can be for instance essential to quantify the local growth
or shrinkage of an organ in follow-up images. Such deformations are encoded
in a displacement field φ, which is a vector field that maps the coordinates of
the fixed image to corresponding coordinates in the moving image. To simplify
the notations, we suppose here that IF and IM are in the same image domain.
For a given point p in IF , p + φ(p) is then the corresponding point in IM ,
and we denote ID = IM ◦ φ the deformed moving image. The registration of
IF and IM now consists in optimizing φ so that S(IF , ID) is low and φ is also
physiologically plausible. Such deformation problems are often denoted non-
rigid registration problems. The vectors of φ should for instance have reasonably
large amplitudes and the smoothness of this vector field should be coherent with
the biomechanical properties of the compared images. Non-rigid registration is
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then often formulated as the following optimization problem:

φ̂ = arg min
φ

S(IF , IM ◦ φ) +R(φ) , (2.1)

where S is the similarity energy, R is the regularization energy, and the degrees
of freedom of φ are optimized. This problem opened a whole field of research
with questions related to the model for φ, the deformations regularization, the
similarity metric, and obviously the optimization method. Surveys and classifi-
cations of such methods can be found for instance in [VMK+16, SDP13, Bro92].

A straightforward idea in non-rigid registration would be to use PDE-based
biomechanical models of the registered shapes to constrain the deformations, as
for instance in [HRS+99]. These methods however require to segment the reg-
istered structures and to parametrize the biomechanical models with unknown
patient-specific model parameters. They are also not necessarily simple to code,
non-linear and multi-dimensional PDEs being known as relatively complex to
solve in mathematical engineering. Finally, no biomechanically sound defor-
mation model is very well established for some organs, for instance the brain.
Classic non-rigid registration models then use smoothing models derived from
the heat equation as in optical flow models [HS81, LK81a]. PDE-based reg-
ularization models with spatially homogeneous smoothing properties are also
reasonable as in elastic based registration [Bro92]. Naturally smoothing the
deformations by estimating the mapping on a grid of control point an inter-
polating the deformations on the rest of the domain as in [RSH+99] is also
standard in non-rigid and multimodal image registration. Convolution-based
registration was finally made extremely popular in medical image registration
by the Demons algorithm of [Thi96]. It is finally interesting to remark that
most classic non-rigid image registration algorithms are relatively generic with
spatially-homogeneous regularization properties.

Diffeomorphic deformation models An important category of medical im-
age registration algorithms, which has been very popular these 10 last years and
which I used in various papers is diffeomorphic image registration. Instead of
encoding the deformations in displacement fields directly or in a grid of control
points, they are encoded in a velocity field integrated in time:

∂tφ(t, x) = v(t, φ(t, x)) , (2.2)

where x ∈ Ω and t ∈ [0, 1]. Initial conditions for φ are typically null deformations
φ(0, x) = 0 for all x ∈ Ω, and the estimated displacement field is φ(1, x). The
key advantage of diffeomorphic image registration is that if the integration of v
is performed on a sufficiently fine temporal grid, displacement field φ(1, x) is en-
sured to be a one-to-one (invertible) mapping. This property is highly desirable
in most medical image registration applications, where a point in IF corresponds
to a single point in IM and vice-versa. This property cannot be easily ensured
using non-diffeomorphic techniques too. Note that two important classes of dif-
feomorphic image registration algorithms exist, those using stationary velocity
fields as in the LogDemons algorithm [VPPA08] for instance, and those based
on time-varying velocity fields as in LDDMM [BMTY05a] for instance. There
were long debates about what was the best choice: stationary velocity fields lead
to clearly faster and less memory demanding algorithms, have far less degrees
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of freedom to estimate , and can be efficiently integrated using the method of
[ACPA06]. Time-varying velocity fields are however more versatile, more natu-
ral to optimize using gradient descent based approaches and, in particular in the
LDDMM context, can offer unique properties for further statistical studies as
e.g. in [SFP+10]. Both strategies then make sense depending on the application.

Discussion From a broad data analysis point of view, I would conclude this
subsection by claiming that medical image registration is a class of data mapping
problems in which (1) reliable data information is strongly related to image gra-
dients and is therefore sparsely distributed in space, (2) the degrees of freedom
are typically much larger than the amount of available and reliable information,
and (3) the mapping regularization is what makes the problem well posed and
should be physiologically pertinent. Remark finally that there has been these
last years an extremely strong interest given to new image registration frame-
works based on neural networks [LKB+17]. These methods will not be discussed
in this manuscript but could be promising in the future.

2.1.3 LDDMM image registration

The Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework is
one of the main medical image registration formalisms. More generally, it is re-
lated to the field of Computational Anatomy [GM98, Pen09, YAM09] where the
analytical and statistical study of biological shapes variability has been actively
developed in the past fifteen years. In this context, the Riemannian formal-
ism on shape spaces has provided efficient tools [PARP06, MTY02, MTY06,
YMSM08, TMT02] allowing the use of powerful statistical methods developed
for Riemannian manifolds [FLPJ04, FVJ08]. This formalism is the one in which
I have developed several of my main scientific contributions. I therefore present
it in this subsection.

Problem definition LDDMM image registration is based on a variational
setting and the choice of a Riemannian metric. Its goal is to solve the dif-
feomorphic image registration problem, i.e. to estimate optimal smooth and
invertible maps (diffeomorphisms) of the ambient space that represent a map-
ping between the points of a source image IS and those of a target image IT
[DGM98, JDJG04, BMTY05b]. Note that the notations IS and IT are common
in the LDDMM formalism, and correspond to the moving and fixed images (IM
and IF , resp.) using more general image registration notations. This formalism
is particularly adapted to the registration of most 3D medical images, where
the hypothesis that the organ deformations are smooth is reasonable, and the
topology of the represented organs is preserved.

Image registration is then formulated as an energy minimization problem,
where the energy E(v) is:

E(v) =
1

2

∫ 1

0

‖v(t)‖2V dt+ ‖IS ◦ ϕ−1 − IT ‖2L2 , (2.3)

32



with:

∂tϕ(t, x) = v(t, ϕ(t, x)) (2.4)

ϕ(0, x) = x ∀x ∈ Ω .

As explained Section 2.1.2, a time-dependent velocity field v is the optimized
structure with respect to E . It is defined on the source image domain and for
times t ∈ [0, 1]. The similarity measure between the deformed source image
IS ◦ ϕ−1 and the target image IT is the sum of squared differences. This simi-
larity measure is standard for gray level images (see Section 2.1.2). The norm
‖v(t)‖V also controls the smoothness of the optimal deformations and will be
further discussed in the next paragraph. At time t, it can be computed using
‖v(t)‖V =< F(v(t))F(K)−1,F(v(t)) >L2 , where F(.) represents the Fourier
transform and < ., . >L2 is the L2 inner product. This makes appear the
smoothing kernel K, which is directly related to the Reproducing Kernel Hilbert
Space (RKHS) V , and is used to convolve the deformations when registering two
images (see Alg. 1). As summarized Fig. 2.1, the flow constraints encode the
trajectory of the points x ∈ Ω: At time t = 0, a point x of the source image IS is
naturally at location ϕ(0, x) = x. Then, its motion at times t ∈ [0, 1] is defined
by the integration of the time-dependent velocity field v(t, x). The transformed
location of x at time t = 1 is finally ϕ(1, x) and corresponds to the mapping of
x in the target image IT .

(1,x)

(0,x)

(0.2,x)

(0.4,x)

(0.6,x) (0.8,x)

x  = 

φ φ
φ

φ

φ

φ

ξ(0.4,φ(0.4,x))

Figure 2.1: Transportation of the point x ∈ Ω through the diffeomorphism
ϕ(t, x), where Ω is the domain of the source image IS . The point ϕ(1, x) is the
mapping of x in the target image IT . Illustration out of [IJ-6].

Importantly, the gradient of E with respect to v can be analytically computed
at each time t following [BMTY05b] as:

∇vE(t) = v(t)−K ?
[
DetJφt,1∇(φt,0 ◦ IS) ((φt,0 ◦ IS)− (φt,1 ◦ IT ))

]
, (2.5)

where φtj ,ti transports an image from time ti to time tj through the diffeomor-
phism ϕ, and DetJ. contains the determinant of the Jacobians of a deformation.
Note that DetJ. at a point x represents local volume variations. For instance, it
is equal to 1 if the local volume is preserved, lower than 1 if it shrinks, and higher
than 1 if it expands. Values lower to 0 also mean that the deformation is locally
not invertible. The gradients Eq. (2.5) make it possible to minimize Eq. (2.3)
with reasonable computational resources using gradient descent based optimiza-
tion. LDDMM image registration of IS and IT therefore consists in minimizing
Eq. (2.3) using the gradients Eq. (2.5) following the constraints Eq. (2.4).
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Properties I now give an overview of the mathematical properties of LD-
DMM based on the developments of [SB-1]. In Eq. (2.3), V is a Hilbert space
of vector fields on a Euclidean domain Ω ⊂ Rd. Importantly, the inclusion
map V ↪→W 1,∞(Ω,Rd) (i.e. the space of vector fields which are Lipschitz con-
tinuous) is continuous. This assumption ensures that the computed maps are
diffeomorphisms. The norm on V then controls the W 1,∞ norm. These spaces
are included in the family of the reproducing kernel Hilbert spaces (RKHS)
[Aro50], which implies that they are completely defined by their kernel. The
kernel is a function from the product space Ω × Ω into Rd which satisfies the
above-mentioned assumption if it is sufficiently smooth. The direct consequence
of this hypothesis on V is that the flow of a time dependent vector field in
L2([0, 1], V ) is well defined as explained [You08, Appendix C]. Then, the set of
flows at time 1 defines a group of diffeomorphisms denoted by GV :

GV def.
= {ϕ(1) : ∃ v ∈ L2([0, 1], V ) s.t. φ(v)} , (2.6)

where φ(v) = ϕ(1) and ϕ solves Eq. (2.4) [Tro95]. Trouvé then defined a metric
on this group:

dist(ψ1, ψ0)2 = inf

{∫ 1

0

‖v‖2V dt : v ∈ L2([0, 1], V ) s.t. ψ1 = φ(v) ◦ ψ0

}

(2.7)
under which he proved that GV is complete. It is finally important to emphasize
that the deformations between two images in LDDMM are optimal paths, or
geodesics, between the images. As discussed in [You07], these 3D+time defor-
mations have therefore shooting properties and can be entirely encoded in a 3D
scalar field: the initial momentum P0.

Implementation Different ideas related to the implementation of the LD-
DMM framework are now discussed. This discussion specifically builds on
[BMTY05b] where a practical algorithm of LDDMM for image matching was
given. We then give hereafter an overview of this algorithm, plus different nu-
merical strategies we used to make it work efficiently.

When registering two images, one has first to define a discrete domain on
which the time-dependent vector fields ϕ(t, x) and v(t, x) are computed, where
ϕ(t, x) is the mapping of x at time t through ϕ and v(t, x) is velocity field
integrated in time to compute ϕ. A natural choice is to use a spatial grid
defined by the pixel/voxel coordinates of IS . We denote D̂ this discrete domain
and recall that D is the dense image domain. As discussed Section 2.1.2, we also
make the hypothesis that IS and IT are in the same image domain to simplify
our notations. In our implementation, we also used an uniformly sampled grid
to discretize t. The grid time step should also be sufficiently small to avoid
generating non-invertible deformations when temporally integrating v. About
10 time steps are enough in most applications but more time steps may be
necessary when sharp deformation are computed (see e.g. [IJ-11]).

We use the following notations to describe the registration algorithm: The
tθ, θ ∈ {1, . . . ,Θ} are the discrete time points. For each tθ, several vector
fields are required to encode useful deformations based on the diffeomorphism
ϕ: φtj ,ti(x) first transports x ∈ D̂ from time ti to time tj through ϕ. The images
IS,tθ and IT,tθ also correspond to IS and IT transported at time tθ using φ0,tθ
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and φ1,tθ respectively. Image registration is then a gradient descent algorithm
where v is optimized with respect to IS , IT and the smoothing kernel K as
shown Alg. 1.

Alg. 1 Interpreted LDDMM algorithm of [BMTY05b] to register the images
IS and IT .

1: {Initialization}
2: ∀θ ∈ {1, . . . ,Θ} and ∀x ∈ D̂: the velocity v(tθ, x) = 0.
3: repeat
4: {Compute the mappings between t = 1 and tθ}
5: for θ = Θ− 1→ 0 do
6: ∀x ∈ D̂: Compute φ1,tθ (x) and φtθ,1(x).
7: end for
8: {Compute the smooth energy gradients}
9: for θ = 1→ Θ do

10: ∀x ∈ D̂: Compute φ0,tθ (x).

11: ∀x ∈ D̂: Compute IS,tθ (x) and IT,tθ (x).

12: ∀x ∈ D̂: u(tθ, x) = ε1 (DetJ(φtθ,1(x))∇IS,tθ (x)(IS,tθ (x)− IT,tθ (x))).
13: u(tθ, .) = K ? u(tθ, .).
14: ∀x ∈ D̂: ∇vE(tθ, x) = v(tθ, x)− u(tθ, x)
15: end for
16: {Update v}
17: ∀θ ∈ {1, . . . ,Θ} and ∀x ∈ D̂: v(tθ, x) = v(tθ, x)− ε2∇vE(tθ, x)
18: until Convergence

In Alg. 1 the mappings φt1,t2(x) are computed using an Euler method from
time t2 to time t1. Another remark is that a simple and very efficient technique
can be used to speed-up the convergence of this registration algorithm. So-
called momentum methods [RHW86] are widely known in machine learning to
speed-up the convergence of gradient descent algorithms in high dimension. At
each iteration, it simply consists in updating the optimized variables with a
linear combination of the current gradients and the previous update. Personal
(unpublished) experience has shown that this technique is particularly efficient
in image registration where, at a given iteration, the mapping has only converged
in some regions but not in all of them.

Another interesting point to discuss to make the practical use of the LDDMM
algorithm efficient, is that it depends on two parameters ε1 and ε2. In practice
ε1 should be sufficiently large so that u(tθ, x) has much more influence than
v(tθ, x) in row 14 of Alg. 1. The vector field u(tθ, x) indeed pushes one image to
the other and can be interpreted as a force field. The influence of v(tθ, x) should
then be small but not negligible. This term is specific to LDDMM in the medical
image registration community and indeed ensures the temporal consistency of
the time-dependent deformations. The choice of ε2 is more conventional in a
gradient descent algorithm and controls the convergence speed. An empirical
technique to tune it was given in [IJ-11]: At the first algorithm iteration, we
compute vmax = maxtθ,x ||∇vE(tθ, x)||2. We then set ε2 as equal to 0.5/vmax,
where 0.5 is in pixels/voxels, so that the maximum update at the first iteration
is half a pixel/voxel. The updates have then a reasonable and automatically
controlled amplitude.
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Distributed codes Note finally that the implementation of [BMTY05b] on
which I have worked is freely available on sourceforge in the uTIlzReg package1.
It works on 2D and 3D nifti images, was implemented in C++ and supports
parallel computation using openMP. A GPU implementation of [IJ-7], which is
methodologically close to [BMTY05b], was also developed by A. Martin (Master
student at ENS Lyon) during his internship at the Institut de Mathématiques
de Toulouse and is freely distributed on github2. Its implementation is based
on the codes of uTIlzReg and uses the openCL programming language in the
computationally intensive loops. On 3D medical images containing 1923 vox-
els, it was shown to be about 60 times faster than the original C++/openMP
code3. This makes obvious the interest of GPU computing in medical image
registration, where the data are very well structured.

2.1.4 LogDemons image registration

Although most of my contributions in image registration were developed in the
LDDMM formalism, I also worked in the LogDemons image registration for-
malism [VPPA08] in various papers (e.g. [IJ-11,IJ-17,IC-33]). This formalism
has not the mathematical properties of LDDMM, given Subsection 2.1.3, but
it has the important advantage to require far less memory and computational
resources than LDDMM. It also ensures that the estimated deformations are dif-
feomorphic, and generally leads to similar deformations as by using LDDMM. It
is therefore extremely popular in medical image registration, when the applica-
tion it only to map two images. Note that I re-implemented in the LogDemons
formalism different ideas developed (and mathematically justified) in the LD-
DMM framework, in order to apply them on real medical images, as in [IJ-11]
for instance. Here is then a brief overview of this formalism.

Let IS be a source image defined on the spatial domain Ω ⊂ Rn and reg-
istered on a target image IT ∈ Ω. Here, IS is transformed through the time-
dependent diffeomorphic transformation φvt , t ∈ [0, 1] which is defined by a
stationary velocity field v using: ∂

∂t
φvt = v(φvt ), where φv0 = Id. The final

deformation is the exponential map of v, exp(v)
.
= φv1 , and the deformed source

image is then computed as IS ◦ exp(v). The optimal velocity field ṽ is obtained
by minimizing ṽ = arg minv E (v,vc), where the energy E is defined as:

E (v,vc) =
1

λ2
i

||IT −IS ◦φvc
1 ||2L2 +

1

λ2
x

|| log((φv1)
−1 ◦φvc

1 )||2L2 +
1

λ2
d

||∇v||2L2 (2.8)

where the logarithm is the inverse operation of the exponential. In this equation,
the first term measures the sum of squared differences between the registered
image intensities, the second term measures the correspondence between the
smooth deformation φv1 and the deformation φvc

1 , and the third term measures
the spatial regularity of v. Insights about the influence of the parameters λi,
λx, λd are thoroughly developed in [MPS+11]. A key aspect of the demons
algorithms is that it decouples the estimation of the optimal image matching
(terms 1 and 2 of Eq. (2.8)) with the spatial regularization of the deformations

1https://sourceforge.net/projects/utilzreg/
2https://github.com/scalexm/GeoShoot/
32 minutes of computations on a Nvidia GTX 780 GPU using openCL, instead of 2 hours

on a 32 cores Intel Xeon E5-2650 using C++/openMP
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(terms 2 and 3 of Eq. (2.8)). As a result, the velocity field vc encodes an
intermediate transformation φvc

1 , called correspondence, which matches the two
images without considering the regularity of the transformation. Minimization
of E (v,vc) is as follows: The velocity field v is initialized as null. Then E (v,vc)
is iteratively minimized using a two sub-step strategy: Firstly, vc is computed
using v and an update field δv, defined as:

δv(x) = − IT − IS ◦ φv1
||J(x)||2 + λ2

i /λ
2
x

J(x) (2.9)

where J(x) is the gradient of the image intensities, J(x) = ∇(IS ◦φv1). Note that
δv may be smoothed by a Gaussian kernel (fluid-like regularization). Ideally,
vc should be updated using vc = log(φv1 ◦ φδv1 ). Since the logarithm of a defor-
mation is computationally intractable in general, vc is approximated using the
Baker-Campbell-Hausdorff (BCH) formula: vc ' vc+δv+[v, δv]/2+[v, [v, δv]],
where the Lie bracket [., .] is defined by [v1,v2] = (∇v1)v2 − (∇v2)v1. In
the second sub-step, v is updated by smoothing vc using a Gaussian kernel
(diffusion-like regularization).

2.2 Medical image registration models

2.2.1 Summary of contributions

This section contains the main manuscripts related to my research activity on
the definition of generic or application-specific image registration models.

Summarized papers Subsection 2.2.2 deals with a geodesic shooting model
to perform diffeomorphic image registration in the LDDMM formalism and was
published in [IJ-7] (see Appendix A.2). A project building directly on [IJ-7],
was the one of [IJ-8,IC-22,IC-21] (see Appendices A.3 and A.6). In these papers,
we developed new algorithms to compute intrinsic means of organ shapes from
3D medical images. They are presented Subsection 2.2.3. Subsection 2.2.4 then
summarizes [B-2] (see Appendix A.9) which gives a mathematical justification to
spatially-varying metrics in the LDDMM framework. Finally, Subsection 2.2.5
explains [IJ-20] (see Appendix A.13) which was not in developed the LDDMM
framework. In this work, image deformations are driven by a physiologically mo-
tivated reaction diffusion model and only a few model parameters are optimized.

Other papers Other personal contributions in this topic are first in [IC-31],
which is a preliminary proceeding to [B-2]. [IC-25] is also a strategy for the
motion correction and parameter estimation in dceMRI sequences. My minor
contribution in this paper was to make the registration algorithm diffeomorphic.
Finally, direct applications of the average shape estimation of [IJ-8] are found
in [IC-28,IJ-15] for the brain hippocampus and in [SJ-2] for marmoset brains.
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2.2.2 Diffeomorphic image matching using geodesic shoot-
ing

Introduction

In [IJ-7] (see Appendix A.2), a geodesic shooting model was developed to per-
form diffeomorphic image registration in the LDDMM formalism. This work
was motivated by the need for an accurate tool to compute initial momenta
that compare 3D images in the LDDMM framework. Initial momenta are in-
deed important in LDDMM, as they are a key for further statistics on shape
spaces and they are specific to LDDMM in the image registration community. A
new variational strategy for the diffeomorphic registration of 3D images was de-
fined. It performs the optimization directly on the set of geodesic paths instead
of on all the possible curves.

Methodology

The key of [IJ-7] is a reformulation of Eq. (2.3) with a slighly different functional

E(P0) =
1

2

∫

D

K(P0∇I0)(x)P0(x)∇I0(x) dx+ S(I(1)) , (2.10)

under the constraints




∂tI + 〈∇I, v〉 = 0 ,

∂tP + div(Pv) = 0 ,

v +K(P0∇I0)(x) = 0 ,

(2.11)

and with initial conditions P (t = 0) = P0 and I(t = 0) = I0. In this context,
the function P0 : D 7→ R is called the initial momentum. We then denote

K(P0∇I0)(x) =

∫

D

k(x, y)P0(y)∇I0(y) dy . (2.12)

This quantity can be reformulated as an L2 norm of the quantity P0∇I0 for
the square root of the kernel k. Moreover, the system (2.11) encodes the fact
that the evolution of I(t) is geodesic in the LDDMM setting. Therefore, this
formulation transforms the problem of optimizing on the time dependent d di-
mensional vector field v into optimizing on a function P0 defined on the domain
D. As in most image registration algorithms, [IJ-7] optimizes P0 using a gra-
dient descent. Estimation of these gradients is at the heart of this paper. It is
important to remark that the dimension of the optimized the scalar field P0 is
much lower than the dimension of the time-dependent vector field v although
they are directly related by the system (2.11). The optimization procedure is
then more constrained, which makes it more efficient for the estimation of initial
momenta.

Results

The most interesting result of [IJ-7] is the one which shows that the initial
momenta computed using the proposed method are more accurate than those
computed of the standard strategy of [BMTY05b] on synthetic data. This is
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Source image IS I(1) using [IJ-7] P0 using [IJ-7]

Target image IT I(1) using [BMTY05b] P0 using [BMTY05b]

Figure 2.2: Registration of synthetic images using the methods of [BMTY05b]
and [IJ-7]. The estimated deformed source image I(1) and initial momenta P0

are represented. Illustration out of [IJ-7].

illustrated Fig. 2.2. This tool to efficiently compute the initial momenta has
then be the basis for further developments in which F.X. Vialard and me have
developed new algorithms to compute intrinsic means of organ shapes from 3D
medical images [IJ-8,IC-22,IC-21], as developed Subsection 2.2.3.

2.2.3 Karcher mean estimations for 3D images

Introduction

Computing the average shape of a given organ is fundamental for many medical
image applications, in particular in brain imaging. It indeed makes it natural to
propagate local information measured on a reference set of imaged organs into
this average shape, denoted template. This information (typically a probabilis-
tic segmentation) can then be propagated to other images. Another important
application is to quantify the local variability of the reference images. The moti-
vation of [IC-21,IJ-8] was then to define a computationally tractable strategy to
compute average shapes out of 3D medical images. The proposed algorithm was
based on the geodesic shooting algorithm of [IJ-7] presented Subsection 2.2.2
and is fully diffeomorphic. Contrary to standard template definition strategies,
the intensities of the average shapes are then not the average intensities of sev-
eral images registered to each other, leading to sharper region boundaries. This
strategy also offers interesting properties for further statistical studies by using
the information contained in initial momenta.

In [IC-22], the work of [IC-21,IJ-8] was extended as a fully diffeomorphic
strategy to compute spatio-temporal atlases (time-dependent average shapes)
out of 3D images on which a notion of time is associated (e.g. the age, time after
a pathology onset). Compared with [IC-21,IJ-8], a straightforward contribution
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was to use a time-dependent kernel to weight the influence of each reference
image at a given time. The key contribution was however to perform the spatio-
temporal shape averaging on the tangent space of the evolution rather than on
the space of images. As a result, the temporal evolution of the template was
fully diffeomorphic and dense in time. These contributions are summarized
hereafter.

Volumetric atlas estimation using Karcher means

We build on the geodesic shooting formalism of [IJ-7] presented Subsection 2.2.2
and denote P0(A,B) the initial momentum representing the deformation to
match a source image IS to a target image IT . We also consider a set of
scans Is weighted by hs , s ∈ [1, . . . , S] and representing shapes with the same
topology. We use the methodology of [Pen06, FLPJ04] to estimate the weighted
average of these shapes, denoted by A. Such an average shape is often denoted
a template or atlas in medical imaging. The main advantage of this method is
that it ensures that the structures topology of A is the same as in the Is, even
when their spatial variability is large. Accordingly to the Karcher mean [Kar77,

FLPJ04], an average shape is the minimizer of M(A)
.
= α−1

∑S
s=1 hsd(A, Is)2,

where α :=
∑S
s=1 hs and d(A, Is) is the distance between A and Is. In our

context, d(A, Is)2 = 〈P0(A, Is),K ? P0(A, Is)〉L2 , where K is the smoothing
kernel associated to the metric of the problem [BMTY05a]. Note that the
uniqueness of A is generally not guaranteed. However, in finite dimensions, it
can be proven that a unique minimizer to M(A) exists if the group of data lies
in a sufficiently small neighborhood. The gradient of M with respect to the
momentum variable is then given by:

∇∗M(A) = α−1
S∑

s=1

hsP0(A, Is) . (2.13)

After defining an initial guess, the average shape A is then estimated using a gra-
dient descent: (1) For each image Is, s ∈ [1, . . . , S], compute the initial momen-
tum P0(A, Is) by registering A on Is using LDDMM. (2) Compute the weighted
mean of the momenta P av0 := P0(A, Is), s ∈ [1, . . . , S] using Eq. (2.13). (3) Com-
pute the deformed template image A1 using the shooting equation Eq. (2.11)
with initial conditions P0 = P av0 and I0 = A. (4) Update the template A with
A := A1. This iterative procedure is stopped when the norm of the gradient
(Eq. 2.13) is below a given threshold.

Spatio-temporal atlas estimation using Karcher means

In the 3D+time context, we denote by Is the sth scan acquired at time τs for
s ∈ [1, . . . , S]. We denote ϕsτ , the unknown diffeomorphism which encodes the
temporal evolution of the shape in Is at times τ ∈ [τinit, τend]. We also denote by
Aτ the temporal evolution of the average shape and by Φτ the diffeomorphism
that deforms Aτinit to Aτ , so Φτinit is the identity transformation. We measure
the anatomical variability Vτ around Aτ using the PGA method of [FLPJ04]. In
practice, the quantities Aτ and Vτ are estimated for values of τ regularly sam-
pled between τinit and τend and denoted τn, n ∈ {1, . . . , N}. Fig. 2.3 illustrates
these notations. As discussed in [IC-22], a straightforward strategy to compute
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Aτ is to replace hs of Eq. (2.13) with g(τn − τs), where g is a Gaussian kernel.
This model however requires the estimation of N ×S Karcher means at each it-
eration of the gradient descent algorithm, which is particularly time consuming.
In addition, it does not control any relation between the diffeomorphisms ϕsτ
(between the images Is and Aτ ) and the diffeomorphism Φτ (between the aver-
ages Aτinit and Aτ ) when computing the initial momenta. We then developed
another model which gives this control and requires the estimation of only S
initial momenta P0 at each gradient descent iteration, and summarize it below.
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Figure 2.3: Estimation of the average spatio-temporal development of the cortex
Aτ , τ ∈ [τinit, τend] from segmented 3D images Is, s ∈ [1, . . . , S] of different
subjects acquired at different time-points τs. Illustration out of [IC-22].

Subject-dependent spatio-temporal deformations of the cortical volumes ϕs

are supposed unknown. The initial momenta P0(Aτn , I
s ◦ ϕsτs,τn) are then ap-

proximated with Tτs→τn(P0(Aτs , I
s)), where Aτs = Aτn ◦ Φτs,τn is known and

Tτs→τn(.) is the transportation of the momentum from time τs to time τn. We
then estimate the unknown temporal evolution of Is using this technique in a
temporal window defined by the kernel g. The transportation of the momen-
tum using T.→.(.) is similar to the problem of changing coordinate systems for
spatio-temporal studies of shapes. We use a simple transportation defined as:
Tτs→τn(P0(Aτs , I

s)) := P0(Aτs , I
s) ◦Φτn,τs , which is the first order approxima-

tion of the standard push-forward operation on momentum. Note that there
is no agreement in the literature on the adequate methodology to address this
problem. This transport of the momentum can be done using parallel transport
[You07] or classical transformations such as in [RCSO+04].

The corresponding algorithm uses spatio-temporal averaging on the tan-
gent space of of the evolution and is summarized as follows: Define initial
guesses of the Aτn , n ∈ {1, . . . , N}. Then compute a first estimation of Φτ ,
τ ∈ [τinit, τend] using pairwise registration of successive images Aτn as done in
the first algorithm. Using Φτ , Aτ can then be densely represented in time.
Then repeat until convergence: (1) ∀s, estimate P0(Aτs , I

s) (2) ∀n, compute

∇∗Mτn(Aτn) = α−1
∑S
s=1 g(τn − τs)Tτs→τn(P0(Aτs , I

s)). (3) ∀n, update Aτn
using the shooting system Eq. 2.11 and then update Φτ .
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Results

We now give a brief overview of the results of [IC-22,IJ-8]. In [IJ-8], the conver-
gence of the gradient descent strategy was assessed on 3D images representing
shapes with three levels of complexity: simple hippocampi (subcortical brain
structure), relatively flat brains, and well folded brains. In all cases, the algo-
rithm converged after little iterations (from two iterations for the hippocampi
to 5 iterations for the folded brains). In [IC-22], the spatio-temporal algorithm
was also applied to compute the average brain growth in pre-term babies and
their spatio-temporal anatomical variability, as shown Fig. 2.4. An amount of
S = 50 reference T2 weighted MR images with about a millimetric resolution
were used, and the gestational age of the scanned babies was from 29 to 37
weeks. The method was shown as being an interesting tool in this context, with
a nice potential for further statistical studies. Its only limitation is that it can
only be reasonably used on images in which the shape structures are clearly vis-
ible. In brain imaging this is the case for babies, subcortical structures, fossiles
and all mammals except modern adult humans. For a reasonable use of this
method on modern adult humans other landmarks should additionally be used.

Figure 2.4: Average cortical surfaces of Aτn estimated at different times τn using
spatio-temporal averaging on tangent spaces (second algorithm). From left to
right, the age τn is 30, 32, 35 and 37 weeks of gestational age. Illustrations at
the top represent the outer cortical surface and those at the bottom the inner
cortical surface. Colors represent the normalized initial momentum variability
Vτn at the cortical surface and are sampled identically in all images. Illustration
out of [IC-22].

2.2.4 Left-invariant metrics for diffeomorphic image match-
ing

Introduction

A natural extension of the LDDMM formalism with spatially homogeneous ker-
nels sum of kernels [BMTY05b] consists in having a kernel which depend on
their spatial location. Defining an extension of LDDMM justifying such kernels
was then developed in [B-2,IC-31] (see Appendix A.9).

It is first important to mention that GV , defined Eq. (2.6), is right-invariant.
This means that for every ψ1, ψ2, ψ3 ∈ GV and the distance of Eq. (2.7) the
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following property holds:

dist(ψ1 ◦ ψ3, ψ0 ◦ ψ3) = dist(ψ1, ψ0) . (2.14)

However, the right-invariant point of view was designed for homogeneous ma-
terials with translation invariant properties. A consequence in LDDMM is that
spatially varying or direction-dependent kernels have no obvious interpretation.
More practically, the norm is defined in Eulerian coordinates but when t varies
and the source image IS is deformed by ϕ(t, .), a given point p of IS moves
through space (see Fig. 2.1). Conversely, a given point in space corresponds to
different points in the deformed source image for different times t. Similarly, the
directions in a direction-dependent kernel are defined with respect to Eulerian
coordinates and not the coordinates of the moving source image.

Nonetheless, spatially-varying kernels have a high interest in medical image
registration where the different registered structures have naturally different
(and potentially non-isotropic) deformation properties. Before working on [IC-
31] we already worked on such problematics in [IJ-11] (Section 2.3.3) to model
sliding conditions between the lungs and the ribs and realized how important
was this question for medical applications. Below is then an overview of this
extension of LDDMM which naturally supports the use of spatially varying
kernels.

Methodology

The framework of [B-2,IC-31] is based on a left-invariant metric, i.e. a norm
in the body (Lagrangian) coordinates of the source image. We then denoted it
LIDM for Left Invariant Diffeomorphic Metrics. Instead of applying the norm
V to the spatial velocity defined by (2.4), it is then applied to the convective
velocity v(t) implicitly defined by

∂tϕ(t) = dϕ(t) · v(t) , (2.15)

where dϕ(t) is the spatial derivative of ϕ(t). The optimized energy Eq. (2.3) in
LDDMM image registration is then constrained with ∂tϕt = dϕt · vt in LIDM,
instead of the standard LDDMM constraint ∂tϕt = vt ◦ϕt. An important result
of [IC-31] to design a computationally tractable implementation of LIDM on
3D images is the following: both LIDM and LDDMM approaches lead to the
same final deformation at time 1 if the same smoothing kernel is used. More
generally:

• If φt minimizes E in LIDM, then ϕt := φ−1
1−t ◦φ1 minimizes E in LDDMM.

• If ϕt minimizes E in LDDMM, then φt := ϕ1 ◦ϕ−1
1−t minimizes E in LIDM.

Optimal paths in Left-LDM are left-geodesics and optimal paths in Right-LDM
are right-geodesics, but all of them lead to the same deformation for a given met-
ric. This result had an important consequence for the practical development of
LDDMM-derived algorithms with spatially-varying metrics. If the final map-
ping is what matters for the application the LDDMM algorithm Alg. 1 can still
be used with regularization properties depending on space. The only difference
is the interpretation of the deformation.
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Results

Fig. 2.5 illustrates the main result of [IC-31] on a synthetic example. In this
example, LIDM registered the images using a kernel which is defined accord-
ingly to a partition of unity which smoothly splits the spatial domain into two
sub-regions. In the first subregion (white), where the disc is homogeneously
translated, a Gaussian kernel with a large σ is used. A small σ is however
used in the second region (black), where fine deformations are observed. In
this example LIDM, performed better than [BMTY05b] with the sum of kernel
[IJ-6,IJ-10] and the diffeomorphic and multi-scale strategy of [AEGG08]. Using
a partition of unity and adapted regularization levels gave here an intuitive and
efficient control to get the desired deformations.

Figure 2.5: Comparison of the LIDM strategy of [IC-31] with spatially-varying
regularization with two reference diffeomorphic registration algorithms with sta-
tionary regularization (LDDMM: [BMTY05b], [IJ-6] and SyN: [AEGG08]). Il-
lustration out of [IC-31].

In general, the use of spatially varying kernels then appears as interesting
for real medical images. However, the shortcoming of this approach is that the
kernel still does not evolve with the deformed shape. For moderate deformations
as in Fig. 2.5, this is not a problem. In particular, this was the starting point of
the metric learning strategy in [IC-32] presented Subsection 2.3.4. This method
however cannot reasonably be applied in the large deformations case where the
kernel should depend on the shape itself. Such approaches have actually been
developed in [You12, ATTY15, AMY16] in which the operator A depends on
the shape itself, but developing models for images associated with an efficient
implementation remains unsolved.

2.2.5 Image matching based on a reaction-diffusion model.

The last medical image registration model described in this section strongly
differs from the other ones as it is not related to LDDMM and instead constraint
image deformations with a physiologically motivated reaction-diffusion PDE
model.
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Motivation

This work was motivated by the need for avascular tumor growth prediction
models to estimate the response to therapies. In this context, models of the tu-
mor evolution with respect to physiological parameters are well established, so
RKHS-based or other standard generic non-rigid registration algorithms are not
adapted. We then introduced and assessed in [IJ-20] a novel image-driven 3D
reaction-diffusion model of avascular tumor growth in order to predicts spatio-
temporal tumor evolution. The model was calibrated using information de-
rived from follow-up DCE-MRI images. It therefore corresponds to a PDE-
constrained optimization problem where the registration consists in estimating
the model parameters. Follow-up multi-layer images are indeed registered with
deformations that are constrained by the PDE model. Tumor growth prediction
finally consists in simulating the PDE model after the last acquisition time of
the follow-up images that were used to calibrate the model.

Methodology

Deformation model The first main contribution of the paper was to gather
different equations, out of the tumor evolution modeling literature, in a system
of equations in a 3D image domain, where most physiological information can
be derived from DCE-MRI images. This system is numerically solved in a
3D image domain and models the spatio-temporal evolution of the amount of
proliferating p, hypoxic q and necrotic n cells in a tumor. Here is its formulation
in a continuous domain at location x and time t:

∂p

∂t
= 5(d5 p) + g(η)p

(
1− r

Θ

)
− f(η)p (2.16)

∂q

∂t
= 5(d5 q) + f(η)p− h(η)q (2.17)

∂n

∂t
= h(η)q , (2.18)

where the diffusion coefficient d was modeled by a scalar field d = exp (−r/κ)
in Eq. (21) of [IJ-20] and r is the total number of cells (r = p + q + n). Local
proliferation, hypoxia and necrosis rate g, f and h are given by Equations (4)-(6)
of [IJ-20] and are directly related to the nutrient distribution η (Equation (19)
of [IJ-20]). Finally Θ is the carrying capacity of the tissue represented by the
volume of a voxel as defined section 2.D of [IJ-20]. On a 3D domain, this system
is therefore:

∂p

∂t
=

∂d

∂x

∂p

∂x
+
∂d

∂y

∂p

∂y
+
∂d

∂z

∂p

∂z
+ d

∂2p

∂x2
+ d

∂2p

∂y2
+ d

∂2p

∂z2
+A (2.19)

∂q

∂t
=

∂d

∂x

∂q

∂x
+
∂d

∂y

∂q

∂y
+
∂d

∂z

∂q

∂z
+ d

∂2q

∂x2
+ d

∂2q

∂y2
+ d

∂2q

∂z2
+B (2.20)

∂n

∂t
= C, (2.21)

where, at each point (x, t), A = (1 − r/Θ)gp − fp, B = fp − hq, and C = hq.
Discretization and numerical resolution of this system are developed in the ad-
ditional document of [IJ-20], given in Appendix A.13.
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Image registration The second main paper contribution was to show how
to use this 3D non-linear model to predict the evolution of an avascular tumor.
Consider two DCE-MRI time series acquired at time points TP1 and TP2.
Different maps are extracted at TP1 in order to initiate the PDE-based model.
These maps specifically represent at TP1 the number of proliferating cells (p),
of hypoxic cells (q), of necrotic cells (n), as well as the nutrient distribution (η)
and the diffusion coefficient of the hypoxic and proliferative cell densities (d).

Before solving the spatio-temporal PDE model, additional global parameters
have also to be solved. In [IJ-20], three parameters related to the models of d, g
and f were identified as pertinent to control tumor-specific behaviors. For given
parameter values the model can be solved until TP2 and the propagated maps
can be compared with the corresponding maps extracted from the DCE-MRI
time series at TP2 to evaluate the parameters pertinence. The image registra-
tion model then consists in optimizing these parameters with the PDE system
as a spatio-temporal constraint. In practice this optimization was performed
using a simulated annealing strategy and the relative volume estimation error
between the observed tumor volume and the true one was optimized.

Once the three parameters estimated, the model PDE system can then be
solved after TP2 to predict the tumor evolution. An interesting application
is then to compare the predicted evolution with the true one to evaluate the
impact of a treatment after TP2.

Results and discussion

After validating the tumor registration strategy of [IJ-20] on synthetic data, it
was assessed on nine preclinical cases of breast carcinoma. For each case, DCE-
MRI derived physiological maps between TP1 and TP2 were registered. Each
registration required about 15 hours and 1500 optimization step on a 3.4GHz
Intel Xeon computer with 32GB of RAM, and image domains of size 128×64×64.
The optimal parameters were then used to predict the tumor evolution at follow-
up time points TP3, TP4 and TP5. Propagated maps were then compared with
the true ones. When excluding two cases in which the model hypotheses were
not respected, the average tumor volume errors were 0.22±0.19, 0.40±0.34 and
0.56 ± 0.37 at times TP3, TP4 and TP5, respectively. Mean relative errors in
term of total cell number were a bit higher but still reasonable with 1.02± 0.95,
1.65 ± 1.71 and 2.67 ± 2.33 at times TP3, TP4 and TP5, respectively. These
higher values were expected as only average tumor volume errors was optimized
by the algorithm. They however open interesting directions for refinements of
the model in particular on the estimation of necrotic cells. Another extension of
this method for vascularized tumors is also natural. A finer optimization model
would finally make the parameters estimation much faster and robust.

2.3 Regularization metrics in medical image reg-
istration

2.3.1 Summary of contributions

This section presents different projects related to the regularization of the defor-
mations in diffeomorphic registration, more specifically in the LDDMM formal-
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ism. These projects were carried out in the context of a long term collaboration
with F.X. Vialard and have lead to several of my main scientific contributions
which I summarize here.

Summarized papers The paper [IJ-6], Subsection 2.3.2, was first motivated
by the lack of literature in 2011 on the choice of physiologically realistic regu-
larizing metrics to register medical images with LDDMM [BMTY05b]. It first
discussed the impact of the regularizing metric in medical image registration. In
particular, it made clear that using unsuitable regularizing metric, with respect
to the registered structures, leads to physiologically implausible deformations
even when the shape boundaries are accurately matched. Motivated by real
medical image registration cases, a strategy to define multi-scale metrics in LD-
DMM was the presented, assessed and discussed. A first attempt to measure the
impact of each scale was given in [IJ-6] as this may be useful for further statistical
studies. It was then strongly developed in [IJ-10] with a more mathematically-
grounded model. This extension is also presented Subsection 2.3.2.

An extension of this work, which later motivated the work of [B-2] on spa-
tially varying metrics, is [IJ-11] where we defined a general strategy for model-
ing sliding conditions when registering 3D images in a piecewise-diffeomorphic
framework. This work is presented Subsection 2.3.3.

After having justified the use of spatially-varying registration in LDDMM [B-
2] (Subsection 2.2.4), we also built on this paper to define a strategy that learns
optimal spatially-varying regularization metrics with respect to a learning set of
reference images. The learning strategy is defined in the variational framework
of [IC-32] presented Subsection 2.3.4.

Other papers Other contributions which are not detailed here are first [IJ-
17,IC-30] which deals with sliding constraints in diffeomorphic 3D image regis-
tration as in [IJ-11]. An important aspect treated in this paper was that slid-
ing conditions location were automatically detected by the proposed algorithm,
contrary to existing approaches in 2014. A spatially-dependent regularization
scheme was introduced. It contains a non-linear term that depends on image
intensities and the estimated deformations themselves, which makes it possible
to detect discontinuous deformations. B. W. Papiez (who was a PhD student
of J.A. Schnabel at Univ. Oxford) had the intuitions that have lead to the
proposed algorithm and was the main contributor to this paper. I worked with
J. Fehrenbach (lecturer at Univ. Toulouse, IMT) to cast the algorithm of B. W.
Papiez into a PDE model. This allowed me to formally understand the algo-
rithm and how to properly tune its parameters in a relatively unstable context.
Subsection 2.5 and the recommendations section 3 are directly related to my col-
laboration with J. Fehrenbach. Another publication related to [IJ-11] is [IJ-12]
and also deals with lungs registration with sliding motion. This approach was
more application-grounded and dedicated to the registration of CT and PET
images.

An alternative strategy to [IC-32], where optimal metrics are selected from
the data, was also presented in [IC-33]. Contrary to [IC-32], where the spatially-
varying regularization metric is learned before the registration, the strategy
of [IC-33] pre-defined a reference basis of deformations at different scales and
then registered the images with deformations encoded as a weighted sum of
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the basis elements. The level of smoothing was then controlled by the most
influential basis elements. To select optimal deformation scales, the weights
were also regularized by using a LASSO term. This work is not presented in
the main manuscript as I consider it is not mature enough. It is however given
in Appendix A.11.

Finally, preliminary versions of [IJ-6] and [IJ-11] were published in the pro-
ceedings [IC-20,IC-18,IC-24].

2.3.2 Multi-scale metrics

Introduction

We now discuss the project presented in [IJ-6,IJ-10] (see Appendices A.1 and
A.4) in which I worked on the development of multi-scale kernels in the LDDMM
framework [BMTY05b]. In most applications, a Gaussian kernel is used to
smooth the deformations. The Gaussian width σ is commonly chosen to obtain
a good matching accuracy. This means that small values, close to the image
resolution, are used for σ. One can then wonder what is the effect of this
parameter on the structure of the deformation. This question is the starting
point of this project.

(a) I36 (b) Isosurfaces of (c) σ = 1.5 (d) σ = 20
and S36 S36 and S43

Figure 2.6: (a) gray matter extraction of the 3D MR image I36 (top) and
resulting segmentation S36 (bottom). The red square indicates the 2D region
of interest shown in (b-c). (b) The blue and red isolines represent the cortical
surface of S36 and S43, respectively. The gray levels are the segmented cortex of
S43. (c-d) The yellow isolines represent deformed cortical surfaces of S36 after
LDDMM registration on S43 with σ = 1.5 and σ = 20, respectively. The grids
represent the estimated dense deformations. Illustration out of [IJ-6].

In [IJ-6], we have first illustrated the influence of σ on the mapping obtained
between two images of the gray matter acquired on a pre-term baby at about
36 and 43 weeks of gestational age, as summarized Fig. 2.6. Let us focus on the
(b-top) subfigure of Fig. 2.6. The blue isoline represents the cortex boundary
in a 2D region of interest (ROI) out of a 3D segmented image S36 and the ROI
is located in the red square of the (a-bottom) subfigure. The gray levels of the
same (b-top) subfigure also represent the segmented cortex in the same pre-term
baby but 7 weeks later. It is obvious that the brain became globally larger as
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the brain and the skull strongly grow at this age. The shapes should be almost
shifted at the scale of this ROI to capture the amplitude of the deformation.
Importantly, existing cortex folds also became deeper and new folds appeared,
which is normal during brain maturation because the cortex growth is faster
than the skull growth. Capturing the folding process requires registering the
images at a scale close to the image resolution here. To conclude, the registration
of these images requires at a same time a large σ and a small σ. If only a small
or a large σ is used, the optimal path (and the optimization process) will either
lead to physiologically implausible deformations as shown Fig. 2.6-(c) or does
not capture fine deformations as shown Fig. 2.6-(d). This justifies the use of
multi-scale kernels to establish geodesics between such follow-up medical images.

Sum of kernels

In LDDMM, the kernel spatially interpolates the rest of the information (i.e.
the momentum) to drive the motion of the points where there is no gradient in-
formation, e.g. in flat image regions. Therefore, it is natural to introduce a sum
of kernels to fill in the missing information while preserving the physiologically
realistic matchings. Based on the practical implementation of LDDMM for im-
ages of [BMTY05b] and summarized Alg. 1, we have proposed to use smoothing
kernels constructed as the sum of several Gaussian kernels [IJ-6]. These kernels
denoted by MK, are the weighted sum of N Gaussian kernels Kσn , each of them
being parametrized by its standard deviation σn:

MK(x) =

N∑

n=1

anKσn(x)

=

N∑

n=1

an(2π)−3/2|Σn|−1/2 exp

(
−1

2
xTΣ−1

n x

)
,

(2.22)

where Σn and an are respectively the covariance matrix and the weight of the
nth Gaussian function. Each Σn is only defined by a characteristic scale σn:
Σn = σnIdRd . Once this kernel is defined, the registration algorithm is the
same as in Alg. 1.

A tricky aspect of these kernel construction for practical applications is how-
ever the tuning of their weights an. Although the choice of the σn has a rather
intuitive influence on the optimal deformations, the tuning of the an strongly
depends on the representation and the spatial organization of the registered
shapes at the scales σn, n ∈ [1, N ]. As described in [IJ-6] it depends on: (1)
Representation and spatial organization of the structures: A same shape can be
encoded in various ways. For instance, it can be a binary or a gray levels image.
This representation has first a non-linear influence on the similarity metric (the
sum of squared difference in LDDMM) forces (unsmoothed gradients) as shown
row 12 of Alg. 1. The choice of optimal parameters an is even more complicated
to do as the spatial relation between the shape structures should also be taken
into account when smoothing the forces (row 13 of Alg. 1). (2) Prior know-
ledge: Prior knowledge about the amplitude of the structures displacement at
each scale σn may be incorporated in an.

In [IC-18] we have then proposed to semi-automatically tune the an as fol-
lows:

an = a′n/g(Kσn , IS , IT ),
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where g(Kσn , IS , IT ) represents the typical amplitude of the forces when reg-
istering IS to IT at a scale σn. This amplitude is related to (1) and cannot
therefore be computed analytically. An empirical technique to tune it is the
following: for each Kσn , the value of g(Kσn , IS , IT ) can be estimated by observ-
ing the maximum update of the velocity field v in a pre-iteration of registration
of IS on IT using only the kernel Kσn with an = 1. The apparent weights a′n,
n ∈ [1, N ] provide an intuitive control of the amplitude of the displacements and
are related to (2). To deform the largest features of IS and IT with a similar
amplitude at each scale σn, the user should tune all the apparent weights a′n
with the same value. Typical results we obtained in [IJ-6] on the example of
Fig. 2.6 are shown Fig. 2.7.

MK2
a′1
a′2

= 1 MK2?
a′1
a′2

= 8 MK4 MK7

Figure 2.7: Registration results obtained on the example of Fig. 2.6 using multi-
scale kernels. MKN stands for the sum of N kernels. Here MK4 and MK7
were automatically designed with apparent weights a′i having the same value.
Illustration out of [IJ-6].

The results of Fig. 2.7 make clear that multi-scale kernels with automatically
tuned an following our method perform well in this example. More plausible
deformations are indeed obtained since the correlation of the motions of the
points is higher. Another phenomenon observed in practice is that a better
quality of matching is obtained with a sum of kernels than with a single kernel
of small width. Although we have no quantitative argument in this direction,
we strongly believe that this is due to the convergence of the gradient descent
algorithm to local minima. In standard image registration, coarse to fine tech-
niques [LK81b] are ubiquitous. They consist in first registering two images with
a strong regularization level and then iteratively decreasing the regularization
level when the algorithm has converged at the current scale. At each considered
scale, gradient descent based registration is then likely to be performed in a
stable orbit w.r.t. the compared shapes scale. In LDDMM, using the sum of
kernels at different scales instead of small scales only may then have a similar
effect from an optimization point of view.

Influence of each scale

It is interesting to remark that the influence of each sub-kernel of the multi-scale
kernels we defined can be measured. This property is particularly interesting
for further statistical analyses. A first attempt to characterize this influence has
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Figure 2.8: Representation of scale-dependent deformations ϕi out of a defor-
mation ϕ obtained between two brain images using the method of [IJ-10]. The
colors represent the amplitude of the scale-dependent deformations at the brain
surface. Illustration out of [IJ-10].

been presented in [IJ-6] and was strongly developed in [IJ-10]. In [IJ-10], the
registration of IS on IT is performed by minimizing an energy En with respect to
the n-tuple (v1, . . . , vn) where each time-dependent velocity field vi is associated
to scale-dependent deformations. The energy E(v) of Eq. (2.3) then becomes:

En(v1, . . . , vn) =
1

2

n∑

i=1

∫ 1

0

‖vi(t)‖2Hidt+ ‖IS ◦ ϕ−1 − IT ‖2L2 , (2.23)

where the space Hi corresponds to kernel Kσi , the whole diffeomorphism ϕ(t)
is equal to ϕ1(t) ◦ · · · ◦ ϕn(t), and ϕi(t) is defined by

∂tϕk(t) =

(
vk(t) + (Id−Adϕk(t))

n∑

i=k+1

vi(t)

)
◦ ϕk(t) . (2.24)

Here Adϕv also denotes the adjoint action of the group of diffeomorphisms on
the Lie algebra of vector fields:

Adϕv(x) = (Dϕ.v) ◦ ϕ−1(x) = Dϕ−1(x)ϕ.v(ϕ−1(x)) . (2.25)

These equations then allow to quantify scale-dependent deformations ϕi in the
whole deformation ϕ. Results and algorithmic description of the solution for 3D
images were given [IJ-10]. An illustration of this paper, where the deformations
between two brain images where split into 7 scales is given Fig. 2.8. Note that
[SLNP12] built on these ideas to incorporate sparsity priors on the scales. The
space of kernels was also extended in [TQ18], with wavelet-based multi-scale
kernels based. The project of [IJ-6,IJ-10] was a first step in such developments.
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Figure 2.9: Illustration of the sliding motion at the lung boundary in the coronal
view of two CT volumes acquired on the same subject. The motion of the vessel
designated by the red cross, and the ribs (1) and (2) clearly demonstrate the
sliding motion at the lung boundary. Images out of the EMPIRE10 challenge
[MVGR+11] and illustration out of [IJ-11].

2.3.3 Diffeomorphic image registration with sliding con-
ditions

Introduction

We now focus on how to to model sliding constraints in the LDDMM formal-
ism. Such constraints are observed e.g. at the lung boundaries as emphasized
in Fig. 2.9. In [IJ-11], we have developed a smoothing strategy to solve this
problem by using Alg. 1 (of [BMTY05b]), with specific smoothing properties.
The central idea was to predefine different regions of interest Ωk in the domain
Ω of the registered images at the boundary of which discontinuous deformations
are potentially estimated. Note first that these region of interest are fixed, so
the source image IS and the target image IT must be aligned at the boundaries
of the regions Ωk. This is done by pre-registering the images with a very large
amount of smoothing. This domain decomposition is illustrated Fig. 2.10.

I
S

∂Ω1∂Ω2

Ω2 Ω1

(a) (b) (c)

Figure 2.10: (a) Subdivision of the registration domain Ω into Ω1 (inside the
lung) and Ω2. Subdomain boundaries are represented by ∂Ω1 and ∂Ω2. (b)
Velocity fields v which can be obtained in Ω after independent smoothing in
Ω1 and in Ω2, and (c) after enforcing sliding conditions in the neighborhood of
∂Ω1 and ∂Ω2. Illustration out of [IJ-11].
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Methodology

Instead of considering a Reproducing Kernel Hilbert Space (RKHS) V embedded
in C1(Ω,Rn) or W 1,∞ as in the previous section, we used here N RKHS of
vector fields V k ∈ C1(Ωk, [0, 1]) which can capture sliding motion, i.e. with an
orthogonal component to the boundary vanishes at any point of ∂Ωk. The set
of admissible vector fields is therefore defined by V :=

⊕N
k=1 V

k, the direct sum
of the Hilbert spaces (V k)k∈[1,N ]. In particular, the norm on V of a vector field
vt is given by

‖vt‖2V =

N∑

k=1

‖vkt ‖2V k , (2.26)

where vkt is the restriction of vt to Ωk. The flow of any v ∈ L2([0, 1], V ) is then
well defined although the resulting deformations are piecewise-diffeomorphic and
not diffeomorphic. As a consequence, the deformation is a diffeomorphism on
each subdomain and allows for sliding motion along the boundaries.

Now that an admissible RKHS is defined, let us focus on the strategy we
used to mimic the Gaussian smoothing of row 13 in Alg. 1 with the desired
properties. In order to prevent from information exchange between the region
Ωk, the updates were diffused with Neumann boundary conditions at the bound-
aries of Ωk. Independent Gaussian based convolution in each region Ωk, would
have been a quicker alternative in terms of computations but would not take
into account the intrinsic region geometry. Then, in order to make sure that the
orthogonal component to the boundary vanishes at any point of ∂Ωk, we use
a projection strategy of the updates before and after smoothing so that they
respect this constraint.

To do so, we considered the vector field T so that for each point x ∈ Ω,
x + T(x) is the nearest boundary between two subdomains in a limited neigh-
borhood around the boundaries ∂Ωk. For the registration of pulmonary images,
we empirically used a neighborhood of about γ = 20 millimeters. Consider
a velocity field w defined on Ω. We used T to enforce the sliding conditions
around ∂Ωk by reducing the contributions of w(x) in the direction of T(x),
when ||T(x)||L2 < γ:

w(x) = w(x)− α(x)T(x)
< w(x),T(x) >L2

||T(x)||2L2

, (2.27)

where the weight α(x) equals (γ − ||T(x)||)2/γ. For numerical stability, w(x)
was set to 0 if ||T(x)||2L2 = 0. The registration algorithm is then the same as
Alg. 1 except row 13, where u is first projected using Eq. (2.27), then smoothed
using the heat (diffusion) equation, and then projected again using Eq. (2.27).

Results

Results shown in [IJ-11] made clear the impact of this strategy compared with
standard smoothing kernels. Fig. 2.11 shows the impact of such a piecewise dif-
feomorphic kernel when registering lung image where a sliding motion is clearly
required at the lung boundaries. Note that to make this strategy tractable on
large medical images (as in Fig. 2.11), we also coded it in the LogDemons for-
malism of [VPPA08]. The computational burden would have been too high in
the LDDMM framework for such large 3D images. Both methods however led
to similar results on smaller images.
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Figure 2.11: Deformation magnitude and deformed grids obtained when regis-
tering I1 to I5 using LogDemons using sliding motion modeling (S-LogD) or not
(LogD MR). Colour bar is from 0 to 5 cm. Illustration out of [IJ-11].

2.3.4 Learning optimal regularization metrics

As mentioned Subsection 2.2.4, our work on spatially varying metrics opened
the question of how to learn optimal metrics based on a set of reference images
representing the same organ (shape) in different patients and a template (av-
erage) image. Incorporating mechanical or biological constraints to reproduce
realistic results is indeed what we have described so far in this chapter. It is
however also natural to learn the metric parameters using data driven meth-
ods if no mechanical model is well-established for the data of interest. This
subsection then briefly presents the work of [IC-32], where an answer was given.

Building on [IC-31,B-2], we designed a set of kernels expressing spatially-
varying metrics. We used symmetric positive definite matricesM as a parametriza-
tion of this set of kernels. In order to ensure the smoothness of the deformations,
any kernel of this set has to satisfy the constraint that the Hilbert space of vec-
tor fields is embedded in the Banach space of C1 vector fields. To enforce this
constraint, we proposed the following parametrization,

K = {K̂MK̂ |M SDP operator on L2(Rd,Rd)} , (2.28)

where K̂ is a spatially-homogeneous smoothing kernel (typically Gaussian). The
variational model then consisted in minimizing the functional:

F(M) =
β

2
d2
S++(M, Id) +

1

N

N∑

n=1

min
v
EIn(v,M) , (2.29)

where β is a positive weight. The first term regularizes the kernel parameters,
so that the minimization problem is well posed. Here, it favors parametrizations
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of M close to the identity matrix but other a priori correlation matrix could
be used. The term d2

S++(Id,M) can be chosen as the squared distance on
the space of positive definite matrices given by ‖ log(M)‖2. Here again, other
choices of regularizations could have been used such as the log-determinant
divergence. This model has been implemented in [IC-32] where a simple method
of dimension reduction was used since the matrix M is of size n2 where n is
the number of voxels and it gave promising results on the 40 subjects of the
LONI Probabilistic Brain Atlas (LPBA40). An illustration of the matrix M
obtained this paper is given Fig. 2.12. The pertinence of the learned metrics was
further evaluated by comparing the mappings obtained using this metric with
other mappings obtained using reference algorithms on 3D brain images. The
algorithm was shown to lead to particularly competitive mappings in our tests,
both in terms of accuracy and deformation smoothness. We finally mentioned
that an exciting perspective of this work would also be to statistically analyze
the obtained spatially-varying metric parameters.

Figure 2.12: Values out of M learned on 40 subjects of the LONI Probabilistic
Brain Atlas (LPBA40). The values are represented at their corresponding lo-
cation in the template image T . (DiagM): Values M(j, j) for j ∈ [1, . . . , N ].
Color bar ranges from 1 (black) to 1.04 (white). (GridM): M(i, j) for a fixed
i and j ∈ [1, . . . , L]. White point corresponds to i = j and has an intensity of
1.03. Color bar ranges from -0.05 (black) to 0.05 (white) for other points. Red
curves represent the boundary between white and gray matter in T . Illustration
out of [IC-32].

2.4 Similarity metrics in medical image registra-
tion

2.4.1 Summary of contributions

In all LDDMM or LogDemons methods presented Sections 2.2 and 2.3, the
similarity metric is the sum of squared differences. It is then adapted to images
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in which a given structure has the same intensity in all registered images (see
Section 2.1.2). This section then deals with other similarity metric adapted to
multimodal images or noisy images with potentially strong artifacts.

Summarized papers My main project in the use of similarity metrics adapted
to multimodal images is the one of [IC-27,IC-23], where I defined a methodol-
ogy to approximate local gradients of mutual information. This methodology is
summarized Subsection 2.4.2.

Other paper Another project related to multi-modal image registration in
which was involved, was motivated by the robust tracking of liver tumors in
2D Ultrasound image series [IJ-13]. These 2D images were acquired in a 3D
domain and the tracked liver tumors moved because of the breathing motion.
A whole diffeomorphic image registration pipeline was defined to follow the
tumors. This PDE-based deformation model is inspired from the LogDemons
framework of [VPPA08]. The main paper contribution is the integration of
new matching forces, based on regional image properties, that allow to robustly
follow the tumor in the 2D US images. My main personal contribution in [IJ-
13] was mostly to drive the developments and to help writing the paper. My
methodological contribution was the definition of the PDE-based deformation
model but is minor compared with other works. This paper is then only given
in Appendix A.8.

2.4.2 Local estimation of mutual information gradients

Motivation

The project of [IC-27,IC-23] was motivated by the need for multimodal images
registration strategies with flexible deformation regularization properties. Dif-
ferent modalities capture different information about the imaged organs, which
motivates their use from a diagnostic perspective. In this context, establish-
ing automatically an accurate mapping between two multi-modal images gives
access to clinicians the corresponding points between multimodal images repre-
senting the same organ. As explained, Subsection 2.1.2, mutual information is
the most popular similarity metric to register multimodal images. Deformations
regularization is also critical there as there not necessarily exists a mapping be-
tween all observed structures. This is illustrated Fig. 2.13 on a thoracic cage
acquired using CT and MR imaging. Standard multimodal image registration
algorithms therefore use rigid deformations or a very large amount of smoothing
to tackle this issue. As an extension of [IJ-11], presented Subsection 2.3.3, we
believed that spatially varying properties may be used in this context as a prior
to solve more advanced registration models, as shown again Fig. 2.13 where a
discontinuity can be seen at the thoracic cage boundary. Existing registration
methods with adapted regularization properties are based on local gradients of
the similarity metric. This motivated the development of a strategy for the fast
and local estimation of mutual information gradients in 3D image registration.
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×+
CT image

×+
MR image

Figure 2.13: Two registered 3D CT/MR images. Sliding conditions may occur
at the thoracic cage boundary (e.g. red curve). The crosses + and× respectively
show a rib and a point at the boundary between the lungs and the diaphragm.
Although + nearly remains at the same location, × clearly moves down with
the rest of the boundary. The sliding motion is obvious here. Illustration out
of [IC-27].

Methodology

Mutual information Let ωS and ωT be two Parzen windows that are related
to the intensities of IS ◦φv1 and IT . As in [TU00], we build the Parzen windows
using cubic B-splines so that they have unit integral and respect the partition
unity. The discrete sets of intensities associated with IS ◦φv1 and IT are LS and
LT , respectively. The joint Parzen discrete probability between IS ◦ φv1 and IT
is then:

p(i, j; v) =
α(v)

εSεT

∑

x∈Ω

ωS

(
i− IS ◦ φv1(x)

εS

)
ωT

(
j − IT (x)

εT

)
, (2.30)

where i ∈ LS , j ∈ LT , εT and εS are scaling factors controlling the size of
the Parzen windows, and α(v) is the normalizing constant of the probabilities.
The marginal discrete probabilities are then pS(i; v) =

∑
j∈LT p(i, j; v) and

pT (j; v) =
∑
i∈LS p(i, j; v). Since IT is the fixed image, the probabilities pT do

not depend on v. We then denote pT (j; v) = pT (j). The mutual information
between IS ◦ φv1 and IT is then:

S(v) = −
∑

i∈LS

∑

j∈LT
p(i, j; v) log2

(
p(i, j; v)

pS(i; v)pT (j)

)
(2.31)

Mutual information gradients As shown in [TU00], when only IS is de-
formed to match IT , the derivative of the mutual information S with respect to
a deformation parameter µ can be written as:

∂S

∂µ
= −

∑

i∈LS

∑

j∈LT

∂p(i, j; v)

∂µ
log2

(
p(i, j; v)

pS(i; v)

)
. (2.32)

The authors of [TU00] then developed this equation in a parametric registration
context. It is however interesting to note that this equation is sufficiently general
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to model µ as any deformation of φv1 . We then computed the derivative of
p(i, j; v) according to µ:

∂p(i, j; v)

∂µ
= a1

∑

x∈Ω

∂ωS

(
i−IS◦φv

1(x)
εS

)

∂µ
ωT

(
j − IT (x)

εT

)

=
−a1

εS

∑

x∈Ω

∂IS ◦ φv1(x)

∂µ

∂ωS(ξ)

∂ξ

∣∣∣∣
ξ=

i−IS◦φv1(x)

εS

ωT

(
j − IT (x)

εT

)

where a1 is constant for all intensity levels i and j. Eq. (2.32) can then be
written as:

∂S

∂µ
∼

∑

x∈Ω

∑

i∈LS

∑

j∈LT

∂IS ◦ φv1
∂µ

∂ωS(ξ)

∂ξ

∣∣∣∣
ξ=

i−IS◦φv1
εS

ωT

(
j − IT (x)

εT

)
log2

(
p(i, j; v)

pS(i; v)

)

(2.33)
The third and fourth terms of Eq. (2.33) can be straightforwardly computed

from the current deformation. The second one can also be analytically computed
since the ωS is constructed using B-splines. The first term however depends on
the type of deformation that µ represents. Importantly, the derivative ∂S/∂µ
is computed using a triple-sum on Ω, LS and LT , which is critical in terms
of computational burden in the general case. We then describe hereafter how
we locally estimated the derivative of Eq. (2.33) in the LogDemons framework
[VPPA08] at a low algorithmic cost.

Approximated mutual information gradients As introduced in Subsec-
tion 2.1.4, the update field δv is computed in the LogDemons framework with-
out considering the regularity of the transformation. When estimating δv in the
point x ∈ Ω using Eq. (2.33), we consider the parameter µx as a local transla-
tion of x and do not perform any image or histogram smoothing. In addition,
the local updates are constructed in the direction of the intensity gradients with
an amplitude depending almost exclusively on the mutual information. To do

so, we denote b(x) =
∇IS◦φv

1(x)
|∇IS◦φv

1(x)| as the normalized intensity gradient and con-

sider the points xn = x + nδb, n ∈ {−1, 0, 1}, where δ is the spatial distance
between the points xn. We also reduce the number of bins i and j considered
in Eq. (2.33) by exploiting the fact that the cubic B-splines in ωS and ωT are
non-null on a compact domain only. To do so, we first denote γ this domain’s
extent. We then denote LS,x and LT,x, the subsets of LS and LT representing
bins with less intensity difference than γ with IS◦φv1(xn) and IT (x) respectively.
We then estimate the contribution of the points xn to the mutual information
S using:

S(x) =
∑

xn

∑

i∈LS,xn

∑

j∈LT,xn

IS ◦ φv1(xn)
∂ωS(ξ)

∂ξ

∣∣∣∣
ξ=

i−IS◦φv1(xn)

εS

ωT

(
j − IT (xn)

εT

)
log2

(
p(i, j;µ)

pS(i;µ)

) (2.34)

and the contribution S+(x) and S−(x), if the points points xn are translated by
δb, and by −δb. The corresponding contributions are obtained by replacing xn
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by xn − δb and xn + δb in the first term of Eq. (2.34). In the present context,
the derivative Eq. (2.33) is then estimated in the direction where the variation
of mutual information is the highest:

∂S

∂µx
(x) ∼ min

(
S+(x)− S(x)

δ
,
S−(x)− S(x)

δ

)
(2.35)

Note that the minimum value is considered because the values of S, S+ and S−

are negative. Using this strategy, only five trilinear interpolations of the gray
levels in IS ◦ φv1 are required to estimate ∂S(x)/∂µx.

Results

In [IC-27], these approximated mutual information gradients were incorporated
in the LogDemons framework of [VPPA08] in addition to the sliding motion
strategy of [IJ-11]. Results of [IC-27] were in the same vein as those of [IJ-11] but
for multimodal images. Compared with the standard Free-Form Deformation
(FFD) algorithm of [RSH+99] for non-rigid multimodal image registration, a
better trade-off between organs matching accuracy and deformation smoothness
(outside of the discontinuity) was also obtained. Computational times were also
reduced compared with FFD for 3D images of 300× 300× 70 voxels (about 40
minutes for [IC-27] and several hours for FFD).

2.5 Image segmentation models

2.5.1 Summary of contributions

In this section, I present my research activity in medical image segmentation.
It was secondary compared with the one in image registration but one paper
worth being presented here in my opinion.

Summarized paper The segmentation strategy of [IC-37] is first presented
subsection 2.5.2. The manuscript is also given in Appendix A.14. This work
was motivated by the segmentation of multiple structures such as lymph nodes
in whole-body MR images of patients with tumors. This task can be hardly
automatized for two main reasons: (1) Structures boundaries are not visible
everywhere due to very similar gradients in neighbor structures, and (2) the
patients and the segmented structures have large anatomical variability. User
interventions are then necessary but should be as limited as possible and with
particularly responsive algorithms. In [IC-37], we then proposed a computation-
ally efficient regularization strategy for the Fast Marching (FM) segmentation of
multiple organs. This regularization stabilizes the semi-automatic registration
of complex structures and has a low computational impact.

Other papers Other contributions which are not described here are first those
made in collaboration with D.P. Zhang (former PhD student at Imperial Col-
lege London) about the coronary artery motion modeling from 3D cardiac CT
sequences using template matching [IC-19,IC-17,IC-16]. In addition to lead the
methodological developments of D.P. Zhang, my methodological contribution
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in these papers was mainly to incorporate existing diffeomorphic registration
algorithms in a robust template matching context.

The paper [SJ-2] also presents a Python plugin for 3Dslicer4, which I de-
veloped to segment MR images representing the marmoset monkey brain. The
segmentation was again based on a template propagation strategy and the In-
sight Segmentation and Registration Toolkit (ITK)5. This contribution is how-
ever mainly technical and therefore not developed here.

The work of [IC-34] extended [IJ-2] with a gap filling strategy that combines
both skeleton- and intensity-based information to fill large discontinuities. It
was motivated by the segmentation of vascular networks, where discontinuities
are obtained in the segmented vessels using standard segmentation techniques,
due to complex morphology and weak signals. This work is only given in Ap-
pendix A.12 as it extends a methodology developed during my PhD work.

Finally, [IJ-16] presents the ITK implementation of an efficient anisotropic
non-linear diffusion technique for 2D or 3D images. This technique is based on
the adaptive scheme of [FM14] making the diffusion stable and requiring limited
numerical resources. Anisotropic Non-Linear Diffusion is a powerful image pro-
cessing technique, which allows to simultaneously remove the noise and enhance
sharp features in two or three dimensional images. Note that the anisotropy was
not considered in the Perona and Malik sense [PM90] which is common in im-
age processing but rather Weickert sense [Wei96], where the orientation is truly
taken into account. In a sense, this method can be considered as a segmen-
tation technique. The contributions of [IJ-16] are however too technical to be
presented here.

2.5.2 Regularization model for the Fast Marching segmen-
tation

Motivation

The work of [IC-37] was motivated by the quantitative analysis of Chronic Lym-
phocytic Leukemia (CLL), which is the most common B-cell malignancy and
mostly affects elderly people. This requires the segmentation of more than ten
organs in whole-body MR images. Due to high inter-patient variability and lack
of intensity gradients at some organ boundaries, the only way to obtain a good
segmentation is to ask a trained clinician to draw the organ shape according
to his experience. This task is particularly time consuming (about 100 min-
utes). Our goal was then to develop a pertinent semi-interactive strategy [1-5]
to reduce the time dedicated to this task. We then proposed a computation-
ally efficient regularization strategy for the Fast Marching (FM) segmentation
[Set96] of multiple organs.

Methodology

We consider L regions of interests (organs) in image I. The clinician iteratively
places the seeds and then runs the Multi-label Fast-Marching strategy [Set96].
The label of each segmented region is related to one or several pre-defined seeds.
The iterative propagation of the labels is also then performed using a standard

4https://www.slicer.org/
5https://itk.org/
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Dijkstra’s algorithm. Importantly, the distance to the nearest seed is addition-
ally propagated. Using distances is fundamental in Fast-Marching as it allows
to define a maximum distance to the seeds propagation and to manage the con-
flicts at the boundary between neighbor regions. The distance is null at seed
points and defined as dist(q) = min(dist(q), dist(p)+ c(p, q)) everywhere else,
where q and p are two adjacent voxels in the same region. In the standard
Fast-Marching algorithm, c(p, q) is the Euclidean distance between p and q. To
make the method less sensitive to narrow bridges between two organs having
similar intensities, our main contribution is to introduce the regularizing cost:

c(p, q) =
√

(I(p)− I(q))2 + γR(p)2, (2.36)

where the regularization map R penalizes bridge crossing. Given a structuring
element N , the cost R is defined by

R(p) = max
s∈N

I(p+ s)−min
s∈N

I(p+ s) . (2.37)

In practice, we use cuboids of size r × r × r for N , so that R can be efficiently
computed using standard mathematical morphology tools on the whole image
domain. The geodesics between the seeds and the segmented region boundaries
therefore take into account semi-local intensity variations. These semi-local in-
tensity variations are what makes the algorithm regularized. The regularization
term R indeed strongly increases the distances to the seeds in narrow bridges.
Note that R is additionally computed once for all before running the algorithm,
so the regularized distance propagation is performed at a similar cost as the
non-regularized one.

Results and discussion

Figure 2.14: Segmentation obtained using the regularized Fast-Marching
methodology of [IC-37] on whole body MR images. Results out of a single
3D segmentation on the coronal, sagittal and axial planes (from left to right).
Illustration out of [IC-37].

The impact of our regularization strategy was first satisfactorily evaluated
on synthetic data. We then tested it on 3D images of patients with Chronic
Lymphocytic Leukemia from the University Cancer Institute of Toulouse. Semi-
interactive segmentation of the structures of interest with the developed strategy
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was compared with their manual segmentation by experienced clinicians, which
is the clinical routine, on MR images of 250×250×200 voxels. The segmentation
accuracy was similar using both methods and the time dedicated to the segmen-
tation was reduced by a about a factor 3 using regularized Fast-Marching. A
typical results is illustrated Fig. 2.14.

2.6 Outlook

There are several perspectives to the works presented in this section. Immediate
research directions will be carried out in the context of the supervision of V.
K. Ghorpade’s postdoctoral work on the registration of 3D and mutli-modal
whole-body images. I am in particular interested in developing the polyaffine
registration framework of [ACAP09, TMK11] to constrain the registration of
CT-MR whole body images, in which the bones are locally rigid and other
structures can be modeled with elastic constraints. In this context, we also
work on an extension of the MIND model of [HJB+12b] that transforms the
representation of multi-modal images, so that they can be registered using the
sum-of-squared-difference similarity metric.

I also have a long term collaboration with A. Gossé (CR CEA Saclay), A.
Quaini (CR CEA Saclay) and F. Gamboa (Pr Univ. Toulouse, IMT) in which
I work on features extraction of 2D image sequences representing rotating and
levitating balls which are extremely warmed-up. We started writing a paper
explaining the results of this work. I also plan to write an applied communication
explaining the pipeline I developed for these specific images.

I established first contacts with S. Chafik (Pr Univ. Clermont-Auvergne)
to work on deformation models and shape analysis. We could work on an ex-
tension of [SJ-4], where we would estimate the variability of the sulcal pattern
variability in human endocasts. I have indeed started a collaboration last year
with E. De Jager (University of Pretoria, South Africa) and C. Fonta (CNRS,
CerCo Toulouse) to study such structures. After applying existing techniques
to analyse analyze the data of E. De Jager, our work has lead to open ques-
tions dealing with how to address the specificity of human endocasts data to
understand their anatomical variability.

I have also developed last year a collaboration with L. Keller (Regenerative
Nanomedecine team, Strasbourg hospital) to study the vasculature of broken
bones in micro-CT images. Until now, I used the techniques I developed dur-
ing my PhD thesis [SJ-3]. We have written a proposal to extend the tools I
developed, as the vessels segmentation could be clearly improved. In particular
I would like to make it possible to segment these very large images by reducing
the algorithmic cost of computationally inefficient, but robust, algorithms using
stochastic techniques.

Finally, I would be interested to work on developing self-adaptive regulariza-
tion models in medical image registration inspired by neural network models.
There has indeed been a large interests on such models recently in the med-
ical image registration community, e.g. [MWZJL16]. Constraining properly
such models and then the underlying optimization algorithms, could lead to
more accurate and physiologically realistic image mappings than using current
methods.
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Chapter 3

Numerical methods for
stochastic modeling

3.1 Summary of contributions

This chapter presents my main scientific contributions related to numerical
methods for stochastic modeling. My main contributions in this field were made
in the context of two projects summarized in Sections 3.2 and 3.3.

Summarized papers The first project in I developed numerical methods
for stochastic modeling was motivated by the analysis of the brain activity in
3D+time fMRI time series and is developed in Section 3.2. It was carried out in
the context of my postdoctoral work at CEA Saclay with P. Ciuciu (DR CEA
Saclay). Related papers in the appendices are [IJ-5] in Appendix B.2 and [IJ-4]
in Appendix B.1. An original Bayesian model for the simultaneous detection of
brain activations and the estimation of the their response in the image sequences
was first developed. This model constraints the problem using physiologically
realistic hypotheses, making it possible to detect local brain activations that
are lost using more generic models. In this context, I was particularly involved
in the development of a strategy to efficiently compute the partition function
of irregular 3D Potts fields with respect to their inverse temperature β, which
can be extremely demanding in terms of computations using standard methods.
This contribution allowed to spatially regularize the detection of brain activa-
tion/deactivation/inactivation in fMRI time series using automatically-tuned
and region-wise regularization levels.

The second project was about the barycenter estimation of graphs in which
a probability measure on its nodes reflects the observation occurrences. For
instance, the graph may represent a social network and the observations are
topics discussed by network members (e.g. a hashtag in twitter). In this exam-
ple, the notion of graph barycenter may allow to define a typical user interested
by this topic. It is also a first step to define a notion of distance between two
observation sets observed on the same graph. Specifically, the developed strat-
egy estimates the Fréchet mean of such graphs and relies on a noisy simulated
annealing algorithm. This project was carried out in collaboration with S. Ga-
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dat (Pr Toulouse School Economics, IMT) and I. Gavra (former PhD student
Univ. Toulouse 3, IMT) and is presented in Section 3.3. Related papers in the
appendices are [IJ-19] in Appendix B.3 and [IJ-6] in Appendix B.4.

Other papers I also had secondary contributions in other projects related to
numerical methods for stochastic modeling. In [IJ-18], I worked on the develop-
ment of an algorithm dedicated to the automatic segmentation of the breast in
magnetic resonance images. This algorithm was based on a statistical segmen-
tation strategy regularized by using a hidden Markov model. My main contri-
butions there were to advise S. Ribes (former PhD student, Univ. Toulouse 3,
SIMAD) in the development of her pipeline and in presenting her methodology
at the IEEE Trans. Medical Imaging format. Her PhD work was indeed not
supervised by researchers in medical image analysis and I helped her to com-
municate in this community.

I have also recently started a collaboration with G. Fort (DR CNRS, IMT)
about Maximum Likelihood inference algorithms in statistical models [IC-36,NC-
4]. Although my goal in this collaboration is to develop original numerical
methodologies for such strategies, my contributions were technical so far (effi-
cient C++ algorithm implementation). I also had a similar technical contribu-
tion in [SJ-1] which deals with atomic deconvolution i.e. with deconvolution in
density estimation. Note finally that I also supervised the Master 2 project of
A.L. Fouque (ENS Cachan), dealing with statistical clustering of fMRI image
series, during my postdoctoral work at CEA Saclay. This work was published
in [IC-10,NC-2] but was too preliminary to be developed here.

3.2 Numerical methods for the analysis of the
brain activity

3.2.1 A general model for the analysis of fMRI time series

BOLD fMRI

In medical imaging, the Blood-Oxygen-Level-Dependent (BOLD) signal locally
captures temporal variations of oxyhemoglobin and deoxyhemoglobin relative
levels. This signal is of particular importance in functional Magnetic Resonance
Imaging (fMRI) applied to the detection of the brain activity, where it is es-
tablished that each brain region is specialized to specific cognitive tasks. It
can indeed be used to detect active brain regions, which have a higher oxyhe-
moglobin and deoxyhemoglobin (or more simply energy) consumption than at
rest. For a given activation, it is fundamental to note that the energy consump-
tion starts briefly after the neuronal activity and then follows a pattern that
smoothly evolves during several seconds. This is due to local vascular proper-
ties which somehow induce an inertia between the energy requirement and its
supply by the blood.

As quantified during my PhD thesis work [IJ-1,IJ-3,IJ-9], vascular network
properties strongly vary across brain regions. These local patterns of energy
consumption, called the hemodynamic response functions (HRF), therefore vary
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in space in BOLD fMRI time-series. The methodological developments of this
project were related to the analysis of the brain activity in BOLD fMRI by
making such physiologically motivated hypotheses on the observed 3D+t signal
to robustly capture fine activations.

The Joint Detection Estimation (JDE) framework

The framework in which I worked to analyze BOLD fMRI time-series was the
Joint Detection-Estimation (JDE) framework introduced in [VCI07, MIV+08].
This approach relies on a prior parcellation of the brain into P = (Pγ)γ=1:Γ

functionally homogeneous and connected parcels [TFP+06]. The shape of such
parcels can be seen at the top-right of Fig. 3.4.

Every parcel Pγ comprising voxels (Vj)j=1:J is characterized by a single
hemodynamic response function (HRF) h. This HRF should be ideally esti-
mated at each voxel but that would induce too much degrees of freedom to
the model. Existing methods in 2009 also used a single HRF for the whole
brain. Using a different HRF in each brain region then appears as a reasonable
trade-off. Within a given Pγ , stimulus-related fluctuations of the BOLD signal
magnitude are however voxel-dependent and encoded by a = (amj )j=1:J,m=1:M ,
the response levels where m stands for the stimulus type index.

The fMRI time course measured in voxel Vj then reads: yj =
∑M
m=1 a

m
j x

m ?
h + bj , where xm stands for the binary stimuli vector, whose non-zero entries
encode the arrival times of the mth stimulus type, and bj stands for the noise
component [VCI07, MIV+08]. Note that a drift term Pl is also considered in the
model to capture low frequency variations due to breathing. We will however
not further discuss this term here as its use is straightforward and refer to [IJ-4]
for more details. These notations are illustrated in Fig. 3.1.

Figure 3.1: Parcel-based regional BOLD model of the Joint Detection-
Estimation framework of [VCI07, MIV+08] and [IJ-4,IJ-5]. Illustration out of
[IJ-4].

Prior probability density functions are introduced within a Bayesian frame-
work on every (a,h). A Gaussian prior on h with a smooth constraint is also
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used in addition to non-informative priors on each hyper-parameter [VCI07].
Spatial Gaussian mixture models are expressed on a through the introduction
of hidden variables q = (qmj )m=1:M

j=1:J that encode whether voxel Vj is activated
in response to stimulus m or not. In this case, qmj is in {1, 0} but it may have
more than two colors/labels if other states are modeled, as for instance in [IJ-5]
where deactivations are also modeled.

The main contribution of [IJ-4], compared with previous work was to spa-
tially smooth q with a regularization level βm that is automatically tuned in
each parcel and for each stimulus type m. The stochastic optimization prob-
lem is then independent from a parcel to the other. Stimulus-dependent hidden
Ising fields were introduced on the states such that the global prior pdf reads:

p(a |Θa) =
∏

m

∑

qm

[(∏

j

f(amj | qmj ,θm)
)

Pr(qm|βm)
]

and f(amj | qmj = i) ∼ N (µi,m, vi,m). Parameters µi,m and vi,m define the prior
mean and variance of class i = 0, 1, respectively for the stimulus type m. The set
θm comprises four prior mixture parameters θm = {µ0,m, µ1,m, v0,m, v1,m, βm}
since non-activating voxels are modeled using a zero-mean Gaussian density (µ0,m =
0).

Samples of the full posterior pdf p(h,a,q,Θ |y) are simulated using a Gibbs
sampler algorithm and posterior mean estimates are then computed from these
samples. Inner Metropolis-Hastings (MH) steps are also use in case of inabil-
ity to draw samples from the full conditional posterior probability. Here, we
focus on the sampling of parameter βm, which is achieved using a symmet-
ric random walk Metropolis-Hastings (MH) step: At iteration k, a candidate

β
(k+1/2)
m ∼ N (β

(k)
m , σ2

ε ) is generated. It is accepted (i.e., β
(k+1)
m = β

(k+1/2)
m )

with probability: α(β
(k)
m → β

(k+1/2)
m ) = min(1, Ak,k+1/2), where the acceptation

ratio Ak,k+1/2 follows Eq. (3.1):

Ak,k+1/2 =
p(β

(k+1/2)
m |q(k)

m )

p(β
(k)
m |q(k)

m )
=
p(q

(k)
m |β(k+1/2)

m )p(β
(k+1/2)
m )

p(q
(k)
m |β(k)

m )p(β
(k)
m )

=
Z(β

(k)
m )

Z(β
(k+1/2)
m )

exp
(

(β(k+1/2)
m − β(k)

m )U(q(k)
m )
)
,

using Bayes’ rule and considering a uniform prior for βm.

It is important to remark that this approach requires to estimate ratios of
partition functions Z(.) for all Pγ parcels prior to exploring the full posterior
pdf. This aspect of the algorithm is the one on which I had a major contribution.
I therefore develop next section the solution I developed to quickly and robustly
estimate parcel-related partition functions for Ising models in [IJ-4] and 3-class
(colors) Potts models in [IJ-5]. Results obtained using the JDE model with and
without automatically-tuned β are also shown in Subsection 3.2.3.
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3.2.2 Estimation of 3D Ising and Potts field partition func-
tions

Introduction

As developed above, the JDE framework was proposed in [MIV+08, TFP+06]
and [IJ-4] as a generalization of regression methods for the analysis of fMRI data.
It was initially developed to discriminate activating voxels from nonactivating
ones. To this end, spatially adaptive 2-class mixture models and irregular 3D
Ising fields embodied the spatial correlation over these hidden states in each pre-
defined brain region. This method was extended in [IJ-5] to also account for
putative deactivations that may appear for instance in pathologies (epilepsy).
To this end, the 2-class mixture models were then extended to 3 classes and the
Ising models became Potts models.

Both for 2-class Ising models and for 3-class Potts models, the regularization
was made spatially adaptive in different brain regions. This required the esti-
mation of numerous partition functions on irregular 3D domains. This section
then explains the original partition function estimation strategy we developed.

Problem statement

Figure 3.2: Instantiations of typical Potts fields which partition functions are
estimated. (left) 3-colors Potts field in a 2D regular grid T . In [IJ-5], the colors
model the voxels states (activated, non-activated, and de-activated) (right)
Irregular 3D grid T in which a partition function may be estimated. In [IJ-5]
or [IJ-4], this grid represents a cortical region in which the brain activity is
estimated.

Let us consider a grid T characterized by a set of sites (voxels) s = (si)i=1:n.
Importantly here, the grid T is in a 3D connected domain and is not necessarily
regular. In the driving motivation of this work it indeed represents a segmented
region in a 3D image. A label qi ∈ {0, . . . , L} is associated to each site si, where
L is the possible set of labels (or colors). Fig. 3.2 illustrates these notations. A
pair of adjacent sites si and sj (i 6= j) is denoted i ∼ j and is called a clique c, so
the set of all cliques is an undirected graph denoted G. Let q = (q1, q2, . . . , qn) ∈
{0, . . . , L}n be the set of labels associated to s. In what follows, we assume q
to be distributed according to a symmetric Potts model:

Pr(q|β) = Z(β)−1 exp (βU(q)) , (3.1)
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where the global negative energy is:

U(q) =
∑

(i,j)∈G
I(qi == qj) , (3.2)

and I(A) = 1 whenever A is true and 0 otherwise. The inverse temperature
β ≥ 0 controls the amount of spatial correlation between the components of q
according to G. The partition function Z(β) reads

Z(β) =
∑

q∈{0,...,L}n
exp (β U(q)) (3.3)

and depends on the geometry of G in addition to β. Its exact evaluation in
a reasonable amount of time is impossible except on tiny grids as the number
of combinations q ∈ {0, . . . , L}n can be extremely large even for medium sized
domains, and L equals 2 or 3. Most image segmentation models based on
Potts or Ising models therefore work with a fixed β so the partition function
is considered as an unknown constant variable. Robust and fast estimation of
Z(β) is however a key issue for numerous 3D medical imaging problems involving
Potts models and more generally discrete MRFs when β is not fixed.

Partition function estimation

Path sampling Different strategies exist to estimate the partition function
of Potts models. The most common one is the path sampling strategy [TIP08]
in which Z(β) is first straightforwardly computed for β = 0 and then iteratively
computed for larger values of β using:





Z(0) = Ln

Z(β) ≈ Z(β0)
1

M

M∑

m=1

exp (βU(qm))

exp (β0U(qm))

(3.4)

Once a Z(βi) computed, Z(βi+1) can then be estimated for βi+1 slightly higher
than βi. Remark that at each iteration, this algorithm also requires to in-
stantiate M label sets qm in the considered graph G at at the current inverse
temperature β0. This is made using the Swendesen-Wang algorithm [HBJ+97].
We have shown in [IJ-5] that this strategy performed particularly well for the
domains on which we worked. It is however particularly time consuming when
used in the join detection estimation framework of [IJ-4,IJ-5] as it still requires
the instantiation of numerous qm. This is why we developed our extrapolation
strategy.

Alternative strategies Remark that alternative methods to the path sam-
pling strategy exist to estimate partition functions. An important one is based
on the mean field theory as in [FP03], which iteratively computes a fixed point
equation. We have however shown in [IJ-5] that it was not accurate in our
application. A far faster one is the Onsager’s formula [Ons44] which gives the
analytic expression of the partition functions for 2D square grids with toroidal
boundary assumptions. This formula was not generic enough to be used in our
project but allowed us to compare our approximations to ground truth results
in relatively simple domains.
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Fast and robust partition function estimation The technique proposed
in [IJ-5] consists in (1) precomputing a set of partition functions on various refer-
ence grids (Gp)p={1,...,P} and then (2) quickly estimating the partition function
of a test grid T by extrapolating a partition function (Gref ) which is selected
out of (Gp)p={1,...,P}. As justified in [IJ-5], the extrapolation function is:

log Z̃T (β,Gref ) =

(
cT
cGref

(log ẐGref (β)− logL) + logL

)
, (3.5)

where cT and cGref are the number of cliques in T and Gref , respectively. The
strategies to estimate the (Gp)p={1,...,P} and select Gref are described hereafter.

The partition function of the P reference grids (Gp)p={1,...,P} are computed
once for all using path sampling with a fine step on different β values and a large
amount of simulated qm. This strategy is particularly time consuming but leads
to accurate estimates of the partition functions. Note that the configurations
of the reference grids (Gp)p={1,...,P} should be inhomogeneous and cover diverse
situations that may occur in the applications.

The grid (Gref ) selected out of (Gp)p={1,...,P} to approximate the partition
function of T is chosen based on geometric properties. Let ni be the number
of neighbors for site si of T . We defined rT = σT /µT as a measure of grid
homogeneity where µT and σT are the mean and standard deviation of ni over
T , respectively. We then define a similarity index between two grids as:

LT (Gp) = (rT − rGp)2 (3.6)

A second similarity index we use is the approximation error criterion between
the partition function of T and its approximation using the one of Gp. This
approximation error criterion depends on the number of cliques c. and sites n.
in T and Gp.

AT (Gp) =

(
(nT − 1)− cGp(nGp − 1)/cGp

nT

)2

(3.7)

Justification of AT (Gp) is at the heart of [IJ-5]. Importantly, it holds for Gp
sufficiently similar to T , which we quantify using LT . The reference grid is
then finally selected as:

Gref = arg min
(Gp)p={1,...,P}

AT (Gp) subject to LT (Gp) ≤ ε (3.8)

3.2.3 Results and discussion

A brief overview of the main results obtained in [IJ-4,IJ-5] is now given. Fig. 3.3
first compares the above-mentioned partition function estimation techniques in
a case where the ground truth is known, using the Osanger’s formula. One can
see that the path sampling and the proposed extrapolation technique are those
that perform best. The extrapolation technique is however much faster. We
then present in Fig. 3.4 representative results obtained by using the proposed
strategy in the proceedings of [IC-15] which corresponds to [IJ-5]. Here the
three classes represent activations, non-activations and de-activations. In the
example of Fig. 3.4(top), it can be shows that finer activations are estimated
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Figure 3.3: Partition function of a 2D 2-class Potts field defined over a 30× 30
cyclic regular grid estimated using (Red curve) Osanger’s formula, (Blue curve)
path sampling estimate, (Green stars) extrapolation technique from a reference
set made up by 250 grids of various size and shape and (Black dashed curve)
Mean field theory (denoted GBF) based approximation. Illustration out of [IJ-
5].

than by using fixed β or no spatial regularization. In Fig. 3.4(top), the cortical
areas that are known to be related to vision are those in which activations are
found after a visual stimulation. Remark that in both cases, the areas in which
no activations are found have large β values, i.e. a strong level of regularization
while those with activations have optimal β values between 0.5 and 0.8. It worth
finally mentioning that computational times with or without the estimation of
β are almost the same. They required about 1 hour for each image series in
2010 and using Python.
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Figure 3.4: Application of the partition function estimation technique to the join
detection-estimation framework of [IJ-4]. (top) Estimated normalized contrast
maps between an auditory computation task (AC) and sentence (AS) in a 2D
slice out of a 3D domain. (bottom) Brain activation detected after a visual
stimulus. Illustration out of [IC-15].

3.3 A stochastic framework for the online graph
barycenter estimation

3.3.1 Motivation

Graph structures can model complex phenomena of high interest in a wide va-
riety of domains and play an important role in various fields of data analysis.
Although graphs have been used for quite a while in some fields, e.g. in sociol-
ogy [Mor34], the recent explosion of available data and computational resources
boosted the importance of studying such structures. Among the main applica-
tion fields, one can count computer science (web understanding [PSV07]), biol-
ogy (neural, protein, gene networks), social sciences (analysis of citations, social
networks [HK10]), machine learning ([GA10]), statistical or quantum physics
([Est15]), marketing (consumers preference graphs) and computational linguis-
tics ([NS06]).

Singling out the central node in a graph can be seen as a first step to un-
derstand a network structure. Different notions of node centrality have been
introduced to measure the influence or the importance of nodes of interest in a
network. Centrality notions are sometimes related to the mean distance from
each node to all others [Bav50], to the degree of each node [Fre78] or even to the
eigenvalues of the graph’s adjacency matrix [Bon72]. A rather complete survey
can be found in [Bor05]. These notions of centrality however can only take into
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account predefined weights on the edges but not on the nodes, although there
are numerous applications where this would be rather natural. For example,
consider a graph representing a subway network, where its nodes are the sub-
way stations. It seems quite reasonable to use the number of passengers getting
in and getting out the subway network at the different station to establish the
central station. In the case of a traffic network, the node-weight can model how
many cars pass by a given intersection; in the case of a social network it can
model the number of followers (or likes, or posts, etc.) of each individual.

To take this kind of information into account, we defined in [IJ-19] a method
to estimate the barycenter of a graph with respect to a probability measure on
the nodes set. In [SJ-6], this methodology was then made scalable to large
graphs. It was also explicitly developed in an online context where the exact
probability measure is unknown and only observations of this random distribu-
tion are required (e.g. observations of the subway stations at which passengers
getting in or leaving the network). It may additionally be updated at the ar-
rival of a new observation. Besides determining a central node, the knowledge
of such a barycenter on a graph may be of multiple uses in future work. For
example, the computation of the barycenter using two observation data sets on
a single graph could be used to determine whether these sets are sampled using
the same probability measure. The barycenter may also be useful in graph rep-
resentation, since setting the graph barycenter in a central position provides an
intuitive visualization.

3.3.2 Methodology

Main notations

Back in 1948, M. Fréchet presented a possible answer to define the mean of a
probability measure on an Euclidean space [Fré48]. He introduced a notion of
typical position of order p for a random variable Z defined on a general metric
space (E , d) and distributed according to any probability measure ν. This is
now known as the p-Fréchet mean, or simply the p-mean, and is defined as:

M (p)
ν := arg min

x∈E
EZ∼ν [dp(x, Z)]. (3.9)

For example, if Z is a random variable distributed according to a distribution
ν on Rd, its expected value, given by mν =

∫
Rd xdν(x) is also the point that

minimizes:
x 7−→ EZ∼ν [|x− Z|2]. (3.10)

Now, let G = (N,E) denote a finite weighted graph, where E is its edges set
and ν is a probability measure on its nodes set N . The barycenter of a graph
G = (N,E) is then defined here as the following 2-Fréchet mean, that we simply
denote Fréchet mean:

Mν = argminx∈N
∑

y∈N
d2(x, y)ν(y) , (3.11)

where d(x, y) is the sum of the edge weights in the shortest path between nodes
x and y, and ν(y) is the probability measure on node y. Importantly here, the
lower an edge weight the closer the linked nodes. We then denote edge lenght
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the weight given to an edge. One should finally remark that the Fréchet mean of
a weighed graph is not necessarily unique. This is indeed due to the potentially
complex structure of graph G = (N,E).

As mentioned in Subsection 3.3.1, we place ourselves in an online estima-
tion framework, in the sense that we suppose that the probability measure ν is
unknown. A sequence (Yn)n≥0 of i.i.d. random variables distributed according
to ν is instead available. For instance, in the subway networks example, an ob-
servation Yn can be interpreted as the access of a passenger to a given station.
Remark that if only a number of observations at each node is known, the Yn
can be randomly generated following a uniform law with more or less weight on
the nodes depending on the number of observation. This makes it possible to
use the strategies of this section by mimicking the observations.

Figure 3.5: (left) Example of discrete graph G, and (right) corresponding
continuous version ΓG. Xt represents the current position of the algorithm in
ΓG. In this example its closest node in G is the node B. Illustration out of
[SJ-6].

Our strategy to estimate the barycenter of G = (N,E) finally runs on ΓG, a
continuous version of the discrete graph G. Given an edge e = (u, v) of length
Le in G = (N,E), the corresponding edge in ΓG is an interval [0, Le] where its
extremities are the linked nodes, as shown in Fig. 3.5. As a result, the estimated
graph barycenter Xt can be on an edge and not only on a node.

Graph barycenter estimation

In [IJ-19], we proposed a method to estimate the barycenter of weighted graphs
and established its convergence from a theoretical point of view. This algorithm
is based on a simulated annealing algorithm with a random perturbation, as
summarized in Alg. 2. Importantly, the random perturbation is modeled in
order to escape potential local traps. Its impact is then decreased progressively
in order to cool down the system and let the algorithm converge. This effect
is parametrized by a continuous function (βt)t≥0, that represents the inverse
of the so-called temperature schedule: when βt is small, the system is hot and
the random noise is quite important with respect to the gradient descent term.
Then, when βt goes to infinity, the random perturbation is negligible.

The convergence of the simulated annealing to the set of global minima, is
guaranteed from a theoretical point of view for logarithmic evolutions of the
temperature, i.e. βt = β log t . Large values of β increase the convergence rate
of the algorithm. However, if its value is too large, the algorithm might converge
to a local minimum instead of a global one (see for example [Haj88]).

73



Alg. 2 Graph barycenter estimation algorithm of [IJ-19]

Require: Continuous version of G = (N,E), i.e. ΓG.
Require: Observations sequence Y = (Yk)k≥1 on the nodes set N .
Require: Increasing inverse temperature (βt)t≥0 and intensity (αt)t≥0.
1: Pick X0 ∈ ΓG and set K = len(Y )− 1.1

2: T0 = 0.
3: for k = 0 : K do
4: Generate Tk according to αk.
5: Generate εk ∼ N (0,

√
Tk − Tk−1).

6: Randomly move Xk (Brownian motion): Xk = Xk + hkεk, where hk is a
direction uniformly chosen among the directions departing from Xk, and
εk is a step size.

7: Deterministically move Xk towards Yk+1: Xk+1 = Xk +βTkα
−1
Tk

XkYk+1,
where XkYk+1 represents the shortest (geodesic) path from Xk to Yk+1

in ΓG.
8: end for
9: return Graph location XK estimated as the barycenter of ΓG. We consider

the nearest node to XK in G as its barycenter.
1 Here len(Y ) represents the length of the sequence (Yk)k≥1.

Another important parameter comes from the online aspect of the algorithm.
In our model, we simulate the arrival times Tn of the observations Yn by an
inhomogeneous Poisson process (Nα

t )t≥0
2, where (αt)t≥0 is a continuous and

increasing function that describes the rate at which we use the sequence of
observations (Yn)n≥0. We refer to (αt)t≥0 as the intensity of the process. On
one hand, and from a theoretical point of view, using more observations improves
the algorithm’s accuracy and convergence rate, so it may seem natural to use
large values for αt. On the other hand, in practice, observations can be costly
and limited, so one would like to limit their use as much as possible. More
discussions about the algorithm and its convergence are given in [IJ-19].

Multi-scale graph barycenter estimation

The key practical issue with the strategy of [IJ-19] on large graphs is that the
deterministic move (row 7 of Alg. 2) requires to compute the shortest path from
Xk to Yk+1. To achieve this, we used a standard Dijkstra’s algorithm which is
particularly demanding in terms of computational times, especially when com-
puted K + 1 times. The solution of [IJ-19] was to pre-compute once for all the
shortest distances between all node pairs and then to use this information for a
quick algorithm execution. Computing these distances is #N times slower than
computing the shortest path between two nodes, where #N is the number of
nodes in G = (N,E). This solution then makes sense when K+ 1 is larger than
#N , or when multiple runs of the algorithm will be performed on the same
graph, e.g. in order to evaluate the barycenters related to different observation
sets Y . Its major drawback is however that it requires to store a #N × #N
matrix in memory, which is unrealistic when #N is large. Moreover, the algo-
rithmic cost of a Dijkstra’s algorithm on weighted graphs is anyway O(#N2)

2Tn is the n-th jumping time of the Poisson process Nα
t , Tn := inf{t : Nα

t = n}
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and therefore does not scale at all to large graphs. We then proposed in [SJ-6]
a multiscale extension of [IJ-19], where reasonable heuristics were used to make
the problem scalable. The broad lines of this strategy are given in Alg. 3.

Alg. 3 Multiscale barycenter estimation

Require: Graph G = (N,E).
1: Partition G = (N,E) is partitioned into I sub-graphs Gi = (Ci, Ei).
2: Undersample G = (N,E) in G̃ = (Ñ , Ẽ), where each node of G̃ represents

a compact description of sub-graph Gi.
3: Estimate the barycenter b̃ of G̃ using Alg. 2.
4: Compute a multiscale graph Ĝ = (Ĉ, Ê) with the nodes of G in the subgraph

of b̃ and the nodes of G̃ elsewhere.
5: Estimate the barycenter b̄ of Ĝ using Alg. 2.
6: return Node b̄ estimated as the barycenter of G

In short, the graph G = (N,E) is partitioned into I clusters using any
clustering strategy that scales to large data, e.g. [pyt]. A connected subgraph
Gi = (Ci, Ei) is then defined for each cluster i and its center will be a node of the
undersampled graph G̃. After estimating the barycenter b̃ of this undersampled
graph, a multiscale graph Ĝ is generated. This graph contains all nodes and
edges of G = (N,E) the central cluster of b̃ and only the subsampled information
in other graph clusters. As a result, a fine barycenter of G can be estimated in
Ĝ with a strongly limited number of information. In addition to this multiscale
model, [SJ-6] develops algorithmic strategies to make the estimation of G̃ and
Ĝ scalable on large graphs. In particular, this requires to define a reasonable
approximation strategy of the subsampled edge lengths in G̃ and Ĝ, which is
discussed and assessed in the paper.

3.3.3 Results and discussion

The strategies of [IJ-19] and [SJ-6] were tested on graphs of different sizes and
structures (subway and road networks as well as social networks). We give here
representative results of [SJ-6] obtained on the subway network of Paris and the
road network of the New-York City urban area.

In Fig. 3.6, we first represent subsampled and multiscale versions of the
Parisian metro graph, based on Alg. 3. The whole graph has 296 nodes and 353
edges and it was partitioned into 19 subsets of subway stations. Node related
observations were also sampled based on the number of passengers getting in
the subway network at the corresponding stations during one year. Note that
when running 100 times Alg. 2 on the whole graph, the subway station Chatelet
was always estimated as the graph barycenter, which is not a surprise for most
Parisians. This also satisfactorily assessed the methodology in this simple ex-
ample. Interestingly, one can see in Fig. 3.6(top-right) that Chatelet is not
included in G̃ and thus cannot be estimated as the subsampled graph center,
which justifies the use of the multiscale graph Ĝ here. By running 100 times
the multi-scale extension Alg. 2, we then estimated 97 times Chatelet. This
extension was then shown efficient and stable in this test.

More exhaustive assessment of the proposed framework was made on a graph
representing the road network of the New York city urban area. In particular,
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Figure 3.6: Graph representations of the Parisian Metro. Nodes locations do
not reflect the actual GPS coordinates and the the edges width is inversely
proportional to the time needed to go from a station to another one. (Top-
left) Complete graph G. The colored nodes are the estimated barycenters of
the precomputed sub-graphs Gi and are be the nodes Ñ of G̃. (Top-right)
Subsampled graph G̃. (Bottom) Multiscale graph Ĝ. Illustration out of [SJ-6].

we tested the algorithm sensitivity to the parameter β, the stopping time T ,
the number of observations O and the graph parcellation. The initial graph had
264.346 nodes and 733.846 edges and its multiscale version had slightly less than
1% of this volume. This made it possible to estimate this network barycenter
on a laptop with 32GB memory in less than 1 minute after 3h and 30minutes
for the pre-computation of the subsampled graph. Our key result was that the
variability of the barycenter estimate on different runs and with recommended
parameters was less than 3% of the graph diameter, which is relatively accurate.
This result is illustrated in Fig. 3.7.

Remark finally that the strategies were also tested on social networks graphs
out of Facebook, zbMATH and Youtube. Results were also stable in these graph
although slightly less than in the subway and road networks presented here, as
discussed in [IJ-19,SJ-6]. A Python package implementing these strategies will
finally be distributed subject to [SJ-6] acceptance.

76



Figure 3.7: Results obtained on the road network of the New-York city ur-
ban area. (Left) General view of the complete New York graph. The red
diamond-shaped points are the barycenters obtained on a pre-defined graph
partition. (Right) Barycenters obtained using two different graph partitions.
The barycenter estimations are represented in the region of interest (ROI) de-
fined in the general view. The red and blue dots were obtained using each of
the two partitions. Illustration out of [SJ-6].

3.4 Outlook

Immediate extensions of the works presented in this chapter will be carried-out
by continuing my collaboration with I. Gavra. We work on an extension of [SJ-
6] were we mathematically study the impact of the graph parcelation, on which
our multi-scale model is based, on the barycenter estimates. We also believe
that estimating average paths would also be a nice extension of this work.

I also continue working with G. Fort and S. Gadat on extensions of [IC-
36] and [SJ-1], respectively. For now my contributions are mostly technical
but I expect developing a stronger scientific activity in numerical methods for
stochastic modeling based on these collaborations.

Finally, I have developed these two last years a good experience in GPGPU
computing (General-purpose computing on graphics processing units) which al-
lows to massively parallelize the computations in scientific computing. Graph-
ics processing units are indeed specific architectures that were designed to solve
very efficiently common linear algebra computations such as matrix/vector mul-
tiplications. These architectures are however not particularly suited to process
irregular data such as graphs, in the sense that the data are not regularly or-
ganized in the memory. GPUs are however cheap and popular. I was also
able to speed-up by a factor 10 a large graph clustering algorithm using simple
GPGPU techniques (internship of V. Brès at IMT). I therefore expect to develop
stochastic algorithms for the analysis of irregular data on GPU architectures.
Specifically, I believe that by developing stochastic algorithms adapted to the
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material constraints of GPU architectures, the time required to clusterize very
large graphs could be strongly reduced.
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Chapter 4

Statistical learning for
complex data

4.1 Summary of contributions

This chapter presents my scientific contributions in statistical learning for com-
plex data. Complex data are understood here in the sense that they have a high
dimension with a potentially limited number of observations. Heterogeneity be-
tween the variables behavior and multiple similarities between variable subsets
can also make ambiguous their analysis. The definition of pertinent regulariza-
tion techniques and adapted analysis models are then central issues here. It is
interesting to make a link between these issues and those addressed by the image
registration models and regularization techniques of Chapter 2. The methods of
Chapter 2 may indeed be seen as a category of complex data analysis methods
in which the geometry of the information is strongly related to physiological
tissue properties and the reliable information is sparsely distributed at the lo-
cation of pertinent intensity gradients. To make clear the distinction between
the methods presented here and those of Chapter 2, no strategy of the present
chapter mimics physiologically inspired models for image matching.

Summarized papers The project of [IC-28,IJ-15] (Appendix C.1) is the first
one in which I participated to scientific contributions in statistical learning for
complex data. It consisted in empirically exploring the use of different spatial
regularization models for logistic regression on 3D image domains. The classified
observations were indeed initial momenta computed using [IJ-7], which is pre-
sented in Subsection 2.2.2. The goal of the logistic regression model was to learn
local shape changes which optimally discriminate subjects with Alzheimer’s dis-
ease from subject with Mild Cognitive Impairment. This work consists in the
empirical evaluation of regularization methods in the specific high dimensional
context of 3D medical images, it is briefly presented in Subsection 4.2.

I also work on the development of new statistical learning techniques for
complex data by co-supervizing two PhD theses with J.M. Loubes (Pr Univ.
Toulouse, IMT) . I first work with T. Bui on the development of statistical

79



models adapted to the analysis of 3D coiled shapes out of the inner ear and
response distributions of the ear to otoacoustic emissions. In this context, we
developed the distribution regression strategy of [SJ-5] for probability distribu-
tions which is based on a Reproducing Kernel Hilbert Space (RKHS) regression
framework. An overview of this strategy is given in Subsection 4.3 and the
submitted manuscript can be found in Appendix C.3. I also work with C.
Champion on the extraction of representative variables in complex systems. In
particular, we developed an original and scalable graph clustering method which
is directly applied to regularize the detection of representative variables in high
dimensional systems with a little amount of observations. The submitted paper
[SJ-1] is given in Appendix C.2 and an overview of the method is developed in
Subsection 4.4.

Other papers Among the three themes distinguished in this manuscript, this
is the one in which my research activity is the newest although I applied such
techniques in various projects. In [IC-10,NC-2], I first applied statistical learn-
ing techniques to clusterize hemodynamic parameters out of functional MRI
time series in the framework of [NJ-1]. In [IC-33] (Appendix A.11), I also used
LASSO regularization to select the optimal scale of the deformations between
two registered images, as discussed in Section 2.3.1. In [NJ-2], permutation tests
and the Akaike information criterion (AIC) were also used to clusterize differ-
ent evolution models in anatomical data out of the inner ear of early hominins
fossils. In these three projects, different learning strategies were however only
applied, so they will not be further discussed in this manuscript.

4.2 Regularization models on 3D image domains

4.2.1 Motivation

The early detection of Alzheimer’s disease (AD) is an important challenge for its
efficient treatment through adapted drug delivery. In [IC-28,IJ-15], we worked
on its detection based on local hippocampal shape changes in time. The hip-
pocampus is indeed a subcortical structure which is known by the clinicians to
be anatomically impacted by AD. The main paper contribution was to explore
the use of different spatial regularization models in logistic regression to learn
local shape changes that optimally distinguish AD subjects from subject with
Mild Cognitive Impairment. The novelty in this context was the development
and the assessment of a mathematically rigorous image analysis pipeline for such
applications. Here is the below a brief overview of the method and its results.

4.2.2 Methodology

The row material of [IJ-15] was a set of MR images of the brain acquired on
n = 103 patients out of the ADNI1 database [SGMWLJ+05]. An example of
such images is illustrated in Fig. 4.1. All considered patients had Mild Cog-
nitive Impairment (MCI) at a first image acquisition time, denoted baseline.

1http://www.loni.ucla.edu/ADNI
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Follow-up acquisitions of the same patients were made one year after. A di-
agnostic made several years later also distinguished 19 patients who converted
to Alzheimer’s disease (AD) and 84 who are still MCI. The main question ad-
dressed in this project is then whether the early anatomical transformations of
the hippocampus can predict this diagnostic.

3D MR image Hippocampus Average hippocampus
out of ADNI boundaries in and transported

[SGMWLJ+05] a 2D slice initial momenta.

Figure 4.1: Data on which the supervised classification of [IJ-15] is performed.
(Left) Input MR image acquired on a patient at baseline. (Center) Represen-
tation of the hippocampus surface by the red curve, in a 2D frame out of the
MR image. (Right) Volumetric representation of the average hippocampus in
all data, i.e. the template. The color represent the amount of temporal defor-
mations observed in one patient and transported on the template. Illustration
out of [IJ-15].

To solve this problem, the follow-up images related to each patient were reg-
istered using [IJ-7]. The local deformations of each of the 103 hippocampi were
then encoded in a 3D field of initial momenta (see Subsections 2.2.2) containing
about p = 20000 scalars. As all hippocampi at baseline do not have the same
shape, all the initial momenta were transported to a common template. Tem-
plate definition was made on a subset of 20 segmented hippocampal volumes
using the Karcher mean strategy of [IJ-8] with a metric of [IJ-6]. The predictive
model of [IJ-15] was then

y = F (Xw + b) , (4.1)

where y ∈ {±1}n is the behavioral variable (conversion or not to AD), X ∈
Rn×p contains the n observations of patient specific deformations, i.e. the n
transported initial momenta. The vector w ∈ Rp and the scalar b are then the
parameters to estimate. This is made using a logistic regression model where
the probability for a patient i to have label yi given the observation xi is

p (yi | xi,w, b) def.
=

1

1 + exp
(
−yi

(
xTi w + b

)) . (4.2)

By considering a log likelihood model and considering the observations as inde-
pendent, the problem then consists in finding arg minw,b L(w, b)+λJ(w), where
the loss term L is

L(w, b)
def.
=

1

n

n∑

i=1

log
(
1 + exp

(
−yi(xTi w + b)

))
. (4.3)
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We recall that n << p in this context as n = 103 subjects are studied and each
observation is about in dimension p = 20000. One of the main contribution of
the paper was then to use different regularization strategies in this context by
testing different models for J(w). Ridge [HK70], LASSO [Tib94] and elastic net
[ZH05] regularizations which do not take into account any spatial structure of
the coefficients were first tested. They were compared with the total variation,
Sobolev and fused LASSO regularizations [TSR+05] in 3D volumes which take
into account the spatial distribution of the initial momenta. Total variation
favors sharp spatial transitions between the values of w while Sobolev enforces
smooth transition. Fused LASSO adds to Total variation a sparsity constraint
on the values with an additional LASSO constraint. The energy was finally
optimized using the HANSO algorithm [LO12].

4.2.3 Results

In the results section, different regularization strategies and weights λ were
tested. The predictive power of each strategy was measured using a leave-
10%-out scheme. Results were particularly interesting for a main reason: The
regularization strategies leading to the highest predictive power were clearly
Total Variation and Fused LASSO. These methods are those that model sharp
spatial transitions for the values of w, which is consistent with physiological
studies showing that specific regions of the hippocampus are likely to be related
to AD conversion.

4.3 Distribution regression with a RKHS ap-
proach

4.3.1 Motivation

Regression analysis is a predictive modeling technique which has been widely
studied over the last decades. Its goal is to investigate relationships between
predictors and responses. In the context functional data regression, extensions
the Reproducing Kernel Hilbert Space (RKHS) framework has become popular
to extend the results of the statistical learning theory. As far as the authors
know, It has however not been extended so far to probability distribution spaces
although this may open various applications. This is the driving motivation of
this work.

4.3.2 Methodology

We consider the model:
yi = f(µi) + εi (4.4)

where {µi}ni=1 are n observed probability distributions on R and the {yi}ni=1

are real numbers (scores) associated to each µi. In addition, εi represents an
i.i.d. noise and f is a functional valued function [Pre07]. As in classical re-
gression models, we estimate the unknown function f based on the observations
{(µi, yi)}ni=1. The regression problem will be regularized using the Wasserstein
distance on probability distributions.
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Consider two probability distributions µ and ν in W2(R), F−1
µ the quantile

function associated to µ, and U a uniform random variable on [0, 1]. In this case,
the simplest expression for the Wasserstein distance W2 is given in [Whi76]:

W2(µ, ν) = E(F−1
µ (U)− F−1

ν (U))2. (4.5)

Following [BGLV17], a positive definite kernel kΘ : W2(Ω) ×W2(Ω) → R can
be defined as follows:

kΘ(µ, ν) := γ2 exp

(
−W

2H
2 (µ, ν)

l

)
, (4.6)

where the parameter Θ := (γ,H, l) is such that γ 6= 0 and l > 0. A shown in
[BGLV17], kΘ is a positive definite kernel if 0 < H ≤ 1.

A Reproducing Kernel Hilbert Space (RKHS) space F0 is then defined by
considering the following inner product

〈fn, gm〉F0
=

n∑

i=1

m∑

j=1

αiβjkΘ(µi, νj),

where fn(•) =
∑n
i=1 αikΘ(•, µi) and gm(•) =

∑m
j=1 βjkΘ(•, νj). Now, let F be

the space of all continuous real-valued functions from W2(Ω) to R. We prove in
[SJ-5] that F0 ⊂ F , so our estimation strategy can be written as:

f̂ = argmin
f∈F

(
n∑

i=1

|yi − f(µi)|2 + λ ‖f‖2F

)
, (4.7)

where the weight λ is strictly positive. Using the Representer theorem [KW70,

SHS01], this leads to the following expression for f̂ ,

f̂ : µ 7→ f̂(µ) :=

n∑

j=1

αjkΘ(µ, µj), (4.8)

where {αj}nj=1 are obtained from the data by solving the system of linear equa-

tions given Eq. (16) of [SJ-5].

4.3.3 Results and discussion

After studying the influence of the parameters on synthetic data, interesting
results were obtained on 48 oto-emission curves, representing the response of
the ear to different frequencies (here between 0Hz and 10kHz). The curves are
illustrated in Fig. 4.2. Each of them is associated to the age of the patient on
which it was acquired. A leave-one-out procedure was then used to validate
the effectiveness of the regression approach to predict the patient age based
on its oto-emission curve. Results are given in Fig. 4.3, where it can be ob-
served that the regression strategy performed well in the range of ages at which
most acquisitions were made. Note that the curves were considered as prob-
ability distributions after a suitable normalization. More details are given in
Appendix C.3.
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Figure 4.2: Oto-emission curves obtained on 48 subjects with frequencies rang-
ing from 0Hz to 10kHz. Illustration out of [SJ-5].

Figure 4.3: Prediction of the age using a leave-one-out procedure, based one the
functions of Fig. 4.2. Illustration out of [SJ-5].

4.4 Representative variable detection for com-
plex data

4.4.1 Motivation

Discovering representative information in high dimensional spaces with a limited
number of observations is a recurrent problem in data analysis. Heterogeneity
between the variables behavior and multiple similarities between variable sub-
sets make the analysis of complex systems an ambiguous task. In [SC-1], we
then presented a formalism to regularize the selection of representative variables
in such complex systems. The formalism is based on a specific graph cluster-
ing strategy, denoted CORE-clustering, adapted to the addressed problem. In
particular, each cluster must contain a minimum number of variables and all its
variables must have a coherent observed behavior. The representative variables
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are then the cluster centers. The key feature of this contribution compared with
the literature is that the regularization level is then controlled by the minimum
number of variables in each cluster, which is a particularly intuitive parameter
to tune.

4.4.2 Methodology

Let us consider a complex system of p quantitative variables X = (X1, · · · , Xp)
and n observations of these variables (Xi

1, · · · , Xi
n), where n << p. The sim-

ilarity between the observed variables behavior can be modeled in a graph G,
where each node represents a variable and each edge weight encodes the sim-
ilarity between two variable behaviors. The norm of the correlation between
variable pairs or other similarity measures may be used for this weight.

In order to define a notion of coherence in a subset of variables, we first
define the coherence c(Xi, Xj) between Xi and Xj

c(Xi, Xj) = max
P∈Pi,j

min
em,n∈P

wm,n , (4.9)

where Pi,j is the set of all possible paths in G between the nodes representing
Xi and Xj , and wm,n is the weight between the nodes representing Xm and Xn.
Note that minem,n∈P wm,n is known as the capacity of path P in G [Pol60, Hu61].
We now denote S a subset of the variablesX. The coherence c(S) of this variable
subset is the minimal coherence between the variables it contains:

c(S) = min
(Xi,Xj)∈S2

c(Xi, Xj) (4.10)

If all the variables of S have a coherent observed behavior, then c(S) is high,
and c(S) drops if at least one variable of S does not behave like another vari-
able of this subset. The justification of this measure is further discussed and
illustrated in [SC-1].

In order to regularize the detection of the representative variables in X,
we consider these variables as the center of particularly coherent clusters in G
containing between τ to 2τ variables. A cluster S is considered as particularly
coherent if c(S) > ξ. For instance, if the In the norm of the correlation between
variable pairs is used ξ = 0.75 can be a reasonable choice. We denote CORE-
clusters a clusters which respects these two constraints. The variable selected in
each CORE-cluster is then considered as an influential variable as its behavior is
coherent with at least τ other variables. We proposed in [SC-1] to find optimal
CORE-clusters Ŝ = {Ŝλ}λ∈{1,...,Λ} by optimizing:

Ŝ = arg max
S

Λ∑

λ=1

c(Sλ) , (4.11)

where Λ is not fixed, Sλ1
∩ Sλ2

= ∅ for all possible (λ1, λ2), and each Sλ
contains τ to 2τ − 1 variables and has a coherence c(Sλ) > ξ. Note that
the amount of combinations to explore is huge and computing Eq. (4.10) is
particularly demanding. In order to make the strategy computationally scalable,
the problem is first solved on the maximum spanning tree [Kru56] of the whole
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graph. Two aggregative and divisive optimization algorithms which do not
explicitely compute Eq. (4.11) are then presented in [SC-1]. We show in this
paper that their algorithmic cost is lower than K log (K), where K is the number
of graph edges. This is much lower than existing clustering strategies with a
relatively similar control on the sought clusters [Sei83, GMT+16] as discussed
in [SC-1].

4.4.3 Results and discussion

The two proposed CORE-clustering algorithms were first tested on synthetic
data, which allowed to evaluate their performance depending on the noise in
the data and the number of observations n for a given variables number p. The
influence of the parameter τ was also evaluated. Results on real data were
obtained on the classic Yeast dataset [SSZ+98] which can be found on the UCI
Machine Learning Repository2 and includes n = 77 yeast samples under various
time during the cell cycle and a total of p = 1660 genes, so n << p. The goal
of this analysis was to detect CORE-clusters among the correlation patterns
in the time series of gene expressions of yeast measured along the cell cycle.
The similarity between all gene pairs was measured using the absolute value of
Pearson’s correlation. A total of about 1.3× 106 weighted edges was then used
when representing the variable correlations in the resulting graph.

Core-cluster 1: 31 variables 

Core-cluster 2: 55 variables 

Core-cluster 3: 36 variables 
Core-cluster 4: 39 variables 

Core-cluster 5: 56 variables 

Core-cluster 6: 58 variables 
Remaining
1379 variables 

Figure 4.4: CORE-clusters obtained using the strategy of [SC-1] on the yeast
dataset of [SSZ+98] and the granularity coefficient τ = 30. CORE-clusters
containing 30 to 59 variables were estimated.

The two proposed algorithms required about 160 and 3 seconds on an Intel
Core i7 computer, respectively. An illustration of the CORE-clusters selected
using τ = 30 is given in Fig. 4.4. We have shown in [SC-1] that the results
obtained using the two algorithms were coherent to each other. We have also
shown that by using only 30 observations instead of 77 (specifically the 30 first
observations of the dataset), we selected two representative variables out of the
four that were detected using 77 observations. The observed influence of the
two other representative variables was probably lost in the 37 observations we
removed. This suggests that our strategy detects stable representative variables,
even when the number of observations is very low compared with the dimension
of the observations. The submitted paper can be found in Appendix C.2.

2https://archive.ics.uci.edu/ml/datasets/Yeast
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4.5 Outlook

Immediate research directions in complex data analysis will be carried-out in
the context T. Trang Bui and C. Champion PhD theses. In the context of T.
Trang Bui’s thesis, we establish a model to learn a link between the inner-ear
shape properties and the frequencies that can be heard. We also work with
C. Champion on regularization models to make more robust the representative
variable detection model of [SC-1].

An important project to me is the development of new methods to detect
and correct selection biases in machine learning. We indeed started with J.M.
Loubes, F. Gamboa and F. Bachoc a tight collaboration to propose new Fair
learning solutions. We also plan to submit an ANR proposal on this topic this
year.

I also have an ANR project with S. Déjean (IR, IMT), J. Farinas (Mcf IRIT),
K. Daoudi (INRIA Bordeaux) and members of Toulouse and Bordeaux hospitals
to discriminate two types of pathologies (Alzheimer’s Disease and MSA) based
on the voice. We then hope to find characteristics which would make an early
diagnosis efficient based on machine learning techniques.

I currently write a proposal with F. Malgoures (Pr IMT) in order to study
satellite images of fire propagations. Image segmentation should be reasonably
performed using standard image analysis techniques. We are however interested
in developing statistical-learning based techniques to predict the fire propaga-
tion.

I finally established links with P. Payoux and the TONIC team (INSERM,
Toulouse hospital) to distinguish healthy and pathological aging based on longi-
tudinal multi-modal data. We currently start this collaboration by co-supervising
a student project and we write a proposal for a post-doctoral position on this
topic.
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