
HAL Id: tel-01946258
https://theses.hal.science/tel-01946258v1
Submitted on 5 Dec 2018 (v1), last revised 23 Jan 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Privacy Preserving Top-k Query Processing over
Outsourced Data

Sakina Mahboubi

To cite this version:
Sakina Mahboubi. Privacy Preserving Top-k Query Processing over Outsourced Data. Computer
Science [cs]. Université de montpellier, 2018. English. �NNT : �. �tel-01946258v1�

https://theses.hal.science/tel-01946258v1
https://hal.archives-ouvertes.fr

Délivré par l’Université de Montpellier

Préparée au sein de l’école doctorale I2S∗
Et de l’unité de recherche UMR 5506

Spécialité: Informatique

Présentée par Sakina Mahboubi
sakina.mahboubi@inria.fr

Préservation de la Confidentialité
des Données Externalisées dans le

Traitement des Requêtes Top-k

Soutenue le 21/11/2018 devant le jury composé de :

M. Nicolas ANCIAUX Directeur de Recherche Inria Rapporteur

M. Omar BOUCELMA Professeur Université d’Aix-Marseille Rapporteur

Mme. Hinde BOUZIANE Maitre de Conférence Université de Montpellier Examinatrice

Mme. Karine ZEITOUNI Professeur Université de Versailles Saint-Quentin-en-Yvelines Présidente

M. Reza AKBARINIA Chargé de Recherche Inria Encadrant

M. Patrick VALDURIEZ Directeur de Recherche Inria Directeur de thèse

∗ I2S: ÉCOLE DOCTORALE INFORMATION STRUCTURES SYSTÈMES

Dedication

To my father and mother
To my fiance
To my brother
To my sisters
To all my friends

i

Acknowledgments

Firstly, I would like to express my special appreciation and thanks to the Algerian gov-
ernment for financing this thesis and giving me the opportunity to continue my graduate
studies in France. It was really an occasion for me to improve my skills and research
spirit. During the three years of my thesis, and for the first time in my life, I lived by
myself far from my family in another country. It was a wonderful experience that I really
enjoyed.

I would like to express my gratitude to the members of my PhD committee, Dr. Nico-
las Anciaux, Dr. Omar Boucelma, Dr. Hinde Bouziane, and Dr. Karine Zeitouni. I
highly appreciate their patience as well as the time they took out of their busy schedules
to read and evaluate my work.

I am extremely thankful for all those who have helped me with my thesis. Starting
by extending my sincere thanks to my advisor, Dr. Reza Akbarinia, for encouraging my
research and for allowing me to grow as a researcher. His advice on both research as well
as on my career have been invaluable and it greatly helped me to keep going, even when it
was really tough. It is absolutely difficult to find and develop an idea without the help of
a specialist in the domain. I found Reza all the time next to me to realize this. Also, I am
deeply grateful to my director Dr. Patrick Valduriez for his encouragement, support and
help specially to finish writing my thesis, I was honored to work with a great researcher
like him.

A special thanks to my family. Words can not express how grateful I am to my
father and mother, for all the sacrifices that they have made on my behalf. Their prayers
sustained me this far. I am also so thankful to my fiance for his encouragement and
support during these three years.

I would like to thank my friends in France and in Algeria for the wonderful time and
quality moments that I spent with them. I wish for each and every one of them the best
of luck and success in their future personal and professional projects and look forward to
meeting them again.

Last, but not least, I would like to thank every person that I met and helped me to be
here today and realize this success. Thanks for you all.

iii

Résumé

L’externalisation de données d’entreprise ou individuelles chez un fournisseur de cloud,
par exemple avec l’approche Database-as-a-Service, est pratique et rentable. Mais elle
introduit un problème majeur : comment préserver la confidentialité des données exter-
nalisées, tout en prenant en charge les requêtes expressives des utilisateurs. Dans cette
thèse, nous considérons un type important de requêtes, les requêtes top-k, et attaquons le
problème du traitement de ces requêtes sur des données cryptées dans le cloud, tout en
préservant la vie privée. Une requête top-k permet à l’utilisateur de spécifier un nombre k
de tuples les plus pertinents pour répondre à la requête. Le degré de pertinence des tuples
par rapport à la requête est déterminé par une fonction de notation.

Nous considérons deux cas : 1) centralisé : les données chiffrées de l’utilisateur sont
stockées au niveau d’un noeud unique d’un data center du cloud. 2) distribué : les don-
nées chiffrées de l’utilisateur sont partitionnées verticalement (pour des raisons de perfor-
mance), et les partitions sont chiffrées et réparties sur plusieurs noeuds.

Nous proposons d’abord un système complet, appelé BuckTop, pour le cas centralisé.
BuckTop est capable d’évaluer efficacement les requêtes top-k sur des données cryptées,
sans avoir besoin de les décrypter dans le cloud. Il inclut un algorithme de traitement des
requêtes top-k qui fonctionne sur les données cryptées, stockées dans un noeud du cloud,
et retourne un ensemble qui contient les données cryptées correspondant aux résultats
top-k. Il est aidé par un algorithme de filtrage efficace qui est exécuté dans le cloud sur les
données chiffrées et supprime la plupart des faux positifs inclus dans l’ensemble renvoyé.

Pour le cas distribué, nous proposons deux nouveaux systèmes, appelés SDB-TOPK
et SD-TOPK, qui permettent d’évaluer les requêtes top-k sur des données distribuées
cryptées sans avoir à les décrypter sur les noeuds où elles sont stockées. De plus, SDB-
TOPK et SD-TOPK ont un puissant algorithme de filtrage qui filtre les faux positifs autant
que possible dans les noeuds et renvoie un petit ensemble de données cryptées qui seront
décryptées du côté utilisateur. Nous analysons la sécurité de notre système et proposons
des stratégies efficaces pour la mettre en oeuvre.

Nous avons validé nos solutions par l’implémentation de BuckTop, SDB-TOPK et
SD-TOPK, et les avons comparé à des approches de base par rapport à des données syn-
thétiques et réelles. Les résultats montrent un excellent temps de réponse par rapport aux
approches de base. Ils montrent également l’efficacité de notre algorithme de filtrage qui
élimine presque tous les faux positifs. De plus, nos systèmes permettent d’obtenir une
réduction significative des coûts de communication entre les noeuds lors du calcul du
résultat de la requête.

v

vi 0. Résumé

Titre en français

Préservation de la confidentialité des données externalisées dans le traite-
ment des requêtes top-k

Mots-clés

• Confidentialité

• Requêtes top-k

• Données sensibles

• Sécurité du cloud

• Données distribuées

Abstract

Outsourcing corporate or individual data at a cloud provider, e.g., using Database-as-a-
Service, is practical and cost-effective. But it introduces a major problem: how to pre-
serve the privacy of the outsourced data, while supporting powerful user queries. In this
thesis, we consider an important kind of queries, top-k queries, and address the problem
of privacy-preserving top-k query processing over encrypted data in the cloud. A top-k
query allows the user to specify a number k, and the system returns the k tuples which
are most relevant to the query. The relevance degree of tuples to the query is determined
by a scoring function.

We consider two cases: 1) centralized: the user encrypted data are stored at a single
node of a cloud data center (i.e. computer cluster) 2) distributed: the user encrypted data
are vertically partitioned (for scalability and performance reasons), and the partitions are
encrypted and distributed across multiple nodes of a cloud data center.

We first propose a complete system, called BuckTop, for the centralized case. Buck-
Top is able to efficiently evaluate top-k queries over encrypted data outsourced to a singe
node, without having to decrypt it in that node. It includes a top-k query processing al-
gorithm that works on the encrypted data stored in the cloud node, and returns a set that
is proved to contain the encrypted data corresponding to the top-k results. It also comes
with an efficient filtering algorithm that is executed in the cloud node on encrypted data
and removes most of the false positives included in the set returned.

For the distributed case, we propose two new systems, called SDB-TOPK and SD-
TOPK, that can evaluate top-k queries over encrypted distributed data without having to
decrypt at the nodes where they are stored. In addition, SDB-TOPK and SD-TOPK have
a powerful filtering algorithm that filters the false positives as much as possible in the
nodes, and returns a small set of encrypted data that will be decrypted in the user side.
We analyze the security of our system, and propose efficient strategies to enforce it.

We validated our solutions through implementation of BuckTop, SDB-TOPK and SD-
TOPK, and compared them to baseline approaches over synthetic and real databases.
The results show excellent response time compared to baseline approaches. They also
show the efficiency of our filtering algorithm that eliminates almost all false positives.
Furthermore, our systems yield significant reduction in communication cost between the
distributed system nodes when computing the query result.

vii

viii 0. Abstract

Title in English

Privacy Preserving Top-k Query Processing over Outsourced Data

Keywords

• Privacy

• Top-k query processing

• Sensitive data

• Cloud security

• Distributed data

ix

Équipe de Recherche
Zenith Team, Inria & LIRMM

Laboratoire
LIRMM - Laboratoire d’Informatique, Robotique et Micro-électronique de Montpellier

Adresse
Université Montpellier
Bâtiment 5
CC 05 018
Campus St Priest - 860 rue St Priest
34095 Montpellier cedex 5

Résumé étendu

Contexte

L’externalisation de données sensibles dans le cloud [33], avec l’approche “Database-
as-a-Service” (DaS), pose une question majeure : comment préserver la confidentialité
des données externalisées, qui peuvent être manipulées par les employés du cloud par
exemple, lors du traitement des requêtes de l’utilisateur ?

La solution classique consiste à crypter les données avant de les externaliser. Ensuite,
le défi consiste à répondre aux requêtes des utilisateurs sur des données cryptées. Une
solution naïve est de récupérer toutes les données cryptées depuis le cloud vers la machine
cliente, les décrypter, puis évaluer la requête sur des données en clair (non cryptées).
Cette solution n’est pas pratique, car elle ne permet pas d’exploiter la puissance de calcul
considérable qu’offre le cloud pour évaluer les requêtes.

Dans cette thèse, nous considérons un type important de requêtes : les requêtes top-
k. Ainsi, nous adressons le problème du traitement des requêtes top-k sur des données
cryptées dans le cloud, tout en préservant la confidentialité.

Selon le rapport “Cloud Security Alliance” [19], la sécurité dans le cloud est l’une
des principales préoccupations des utilisateurs. La sécurité dans le cloud désigne un vaste
ensemble de politiques et de technologies déployées pour protéger les données, les appli-
cations et les infrastructures associées au cloud contre différentes menaces telles que la
perte de données, l’accès non autorisé aux données, la violation des données, le déni de
service, etc. En général, ces menaces peuvent être regroupées en trois modèles principaux
[5], selon le type d’attaquant ou d’adversaire dont le but est d’accéder aux données de
l’utilisateur et/ou de les altérer : 1) Le modèle honnête-mais-curieux (honest-but-curious),
aussi appelé semi-honnête où l’attaquant suit les étapes prescrites dans un protocole. Ce-
pendant, l’attaquant peut essayer d’apprendre des informations supplémentaires sur les
utilisateurs en se basant sur leurs données, ainsi que sur les entrées, les sorties et les
messages reçus pendant l’exécution du protocole sécurisé. 2) Le modèle malveillant (ma-
licious) où un adversaire peut s’écarter arbitrairement de l’exécution normale d’un pro-
tocole et modifier les données de l’utilisateur. 3) Le modèle déguisé (covert) qui se situe
entre le modèle honnête-mais-curieux et le modèle malveillant. Plus précisément, un ad-
versaire déguisé peut s’écarter arbitrairement des règles d’un protocole, sans modifier les
données de l’utilisateur.

xi

xii 0. Résumé étendu

Objectifs

Dans cette thèse, nous supposons le modèle honnête-mais-curieux. Ce modèle est bien
adapté au problème du traitement des requêtes dans le cloud [46, 24] comme les fournis-
seurs du cloud ne sont pas des attaquants malveillants qui peuvent modifier les protocoles
ou les données des utilisateurs, mais ils peuvent être intéressés à en savoir plus sur les
utilisateurs en accédant à leurs données. Toutefois, cela peut porter atteinte à la vie privée
des utilisateurs. La préservation de la vie privée ou la confidentialité des données sont les
principales exigences pour assurer la sécurité des données dans le cloud [80]. De nom-
breux utilisateurs accordent plus d’attention à la protection de leur vie privée lorsqu’ils
accèdent à des données stockées dans le cloud ou utilisent les services du cloud. En par-
ticulier, ils s’attendent à cacher leur identité en utilisant les services du cloud. Certains
utilisateurs souhaitent également que leurs opérations sur les données et les informations
extraites d’un cloud soient correctement protégées. La préservation de la vie privée devrait
garantir que toutes les données critiques et sensibles doivent être masquées ou cryptées et
que seuls les utilisateurs autorisés ont accès aux données dans leur intégralité.

Nous concentrons notre travail de recherche sur les requêtes top-k. Ce type de requête
a un grand intérêt pour divers domaines des technologies de l’information tels que les
réseaux de capteurs [91], les systèmes de gestion de flux de données [85], crowdsourcing
[18, 95], analyse des données spatiales [75], bases de données temporelles [64], bases de
données graphes [31], etc. Une requête top-k permet à l’utilisateur de spécifier un nombre
k qui spécifie les k tuples les plus pertinents pour la requête. Le degré de pertinence des
tuples à la requête est déterminé par une fonction de notation (scoring). Dans une base
de données composée de listes d’éléments de données, chaque élément de données a un
score local dans chaque liste. La fonction de notation f est une fonction qui calcule une
note globale pour chaque élément de données.

Comme exemple simple de requête top-k, prenons l’exemple d’une université qui ex-
ternalise sa base de données des étudiants vers le cloud, avec des noeuds non fiables. La
base de données est cryptée pour des raisons de confidentialité. Dans ce cas, une requête
top-k intéressante sur les données cryptées externalisées est la suivante : retourner les k
étudiants qui ont les pires moyennes dans certains cours donnés.

Il y a plusieurs approches pour traiter les requêtes top-k sur des données en clair (non
cryptées). L’une des approches les plus importantes est Threshold Algorithm (TA) [27] qui
fonctionne sur des listes triées selon les valeurs d’attribut. TA peut trouver efficacement
les meilleurs résultats grâce à une stratégie intelligente pour décider quand arrêter de lire
la base de données. Toutefois, TA et toutes les autres approches efficaces élaborées pour le
traitement des requêtes top-k jusqu’à présent supposent l’existence des valeurs d’attributs
des éléments de données en clair c.-à-d., les éléments de données sont représentés sous
forme lisible pour l’utilisateur. La confidentialité des données de l’utilisateur n’est donc
pas préservée.

L’une des principales solutions pour préserver la confidentialité des données dans le
cloud est de crypter les bases de données externalisées. Le cryptage des données est le
processus d’encodage d’un message ou d’une information de manière à ce que seules les

xiii

parties autorisées puissent y accéder. Cette solution assure une grande confidentialité des
données. Cependant, la capacité d’effectuer un traitement pratique des requêtes sur des
données cryptées reste un défi majeur [8]. Dans cette thèse, nous sommes intéressés par
le traitement des requêtes top-k sur des données cryptées.

Quand on réfléchit au traitement des requêtes top-k sur des données cryptées, la pre-
mière idée qui vient à l’esprit est d’utiliser un schéma de cryptage entièrement homo-
morphe, qui permet d’effectuer des opérations arithmétiques sur des données cryptées
[28]. L’utilisation de ce type de cryptage permet de calculer le score global des éléments
de données par rapport aux données cryptées. Cependant, les méthodes actuelles de cryp-
tage entièrement homomorphique sont très coûteuses en termes de temps de cryptage et
de décryptage. En outre, elles ne permettent pas de comparer les données cryptées, et de
trouver les résultats top-k.

Le cloud est généralement constitué de plusieurs sites (ou centres de données), cha-
cun situé à un endroit géographique différent. Un centre de données (data center) dispose
de ses propres ressources informatiques et de stockage, généralement sous la forme d’un
cluster d’ordinateurs, qui est composé d’un grand nombre de noeuds de calcul/stockage.
Ainsi, pour des raisons de scalabilité et de performance, les données peuvent être répar-
ties sur plusieurs noeuds, soit horizontalement (différents éléments de données sur dif-
férents noeuds), soit verticalement (différents champs de données sur différents noeuds).
Ces deux formes de partitionnement peuvent être combinées [59]. Dans cette thèse, nous
considérons deux cas pour le traitement de requêtes top-k sur des données cryptées : 1)
centralisé : les données chiffrées de l’utilisateur sont stockées sur un seul noeud d’un
centre de données, ce qui est utile si la base de données de l’utilisateur peut facilement
tenir sur un noeud ; 2) distribué : les données chiffrées de l’utilisateur sont partitionnées
et les partitions sont chiffrées et réparties sur plusieurs noeuds, ce qui est utile si la base
de données est très grande. Nous nous concentrons sur le partitionnement vertical pour
deux raisons. Tout d’abord, il est très facile de répondre aux requêtes top-k sur des par-
titions horizontales : il suffit que chaque neud du centre de données cloud calcule ses
données top-k locales, puis le résultat final est obtenu en calculant les données top-k de
l’ensemble des données top-k locales. Ensuite, le partitionnement vertical est plus diffi-
cile et le problème du traitement des requêtes top-k avec partitionnement vertical reste un
grand problème de recherche [14, 93].

Contributions
Cette thèse apporte trois contributions principales :

1. Etat de l’art du traitement de requêtes en préservant la confidentia-
lité des données
Nous présentons en détail les solutions existantes pour le traitement de requêtes sur des
données externalisées en préservant la confidentialité. Nous présentons l’externalisation
des données en général et certains défis associés, tels que la confidentialité des données.

xiv 0. Résumé étendu

Nous décrivons ensuite les techniques utilisées pour préserver la confidentialité des don-
nées de l’utilisateur, par exemple, l’anonymisation, la confidentialité différentielle et le
chiffrement des données. Nous détaillons les différents types de schémas de cryptage
qui sont proposés pour assurer le traitement des requêtes sur des données cryptées, par
exemple, le cryptage qui préserve l’ordre, le cryptage homomorphe, le cryptage interro-
geable, etc. Enfin, nous présentons les principales techniques de traitement des requêtes
d’intervalle, des requêtes de recherche des k plus proches voisins (kNN) et des requêtes
top-k sur des données cryptées.

Il y a essentiellement trois catégories de techniques qui ont été développées pour les
requêtes d’intervalle : 1) les techniques basées sur les structures de données spécialisées :
elles utilisent des structures de données spéciales telles que les arbres, les graphes et les
index qui sont utilisées pour exécuter des requêtes d’intervalle sur des données chiffrées ;
2) les techniques basées sur le chiffrement qui préserve l’ordre : elles permettent aux bases
de données et autres applications de traiter efficacement les requêtes impliquant un ordre
des données chiffrées ; et 3) les techniques basées sur la bucketization : elles sont basées
sur un partage du domaine relatif à un attribut de la base de données en un ensemble de
paquets. Chacun d’eux est identifié par une étiquette. L’ensemble des étiquettes permet
de construire un index utilisé plus tard par le cloud pour traiter les requêtes.

Les techniques proposées pour préserver la confidentialité des données pour les re-
quêtes kNN sont classées en deux catégories : 1) des techniques centralisées [37, 86] ;
et 2) des techniques distribuées où les données sont réparties verticalement ou horizon-
talement entre un ensemble de noeuds non complices [73, 73]. Presque tous les proto-
coles proposés pour préserver la confidentialité pendant le traitement des requêtes top-k
[81, 82, 13] sont basés sur l’utilisation des techniques de calcul multi-participant sécurisé
(Secure Multiparty Computing - SMC) sur des données en clair. Dans le SMC, il y a n
participants (P1, . . . , Pn) qui détiennent des entrées privées (a1, . . . , an). Un protocole
SMC permet à (P1, . . . , Pn) de calculer en collaboration une fonction f sur les entrées
(a1, . . . , an) sans divulguer ai à Pj , où 1 ≤ i, j ≤ n et i 6= j. Pour y parvenir, les par-
ticipants doivent échanger des messages et effectuer des calculs locaux jusqu’à ce que
chacun obtient le résultat souhaité. A notre connaissance, un seul travail introduit une
solution pour le traitement des requêtes top-k sur données cryptées [87].

2. BuckTopk

Nous proposons un système complet, appelé BuckTop, pour le cas centralisé. BuckTop est
capable d’évaluer efficacement les requêtes top-k sur des données cryptées externalisées
vers un noeud unique c.-à-d. la base de données entière est stockée dans un noeud du
cloud. BuckTop utilise une technique de bucketisation après le cryptage des données où
il partitionne chaque liste de la base de données dans un ensemble de paquets et affecte à
chaque paquet une borne inférieure et supérieure. Ces bornes sont utilisées plus tard pour
le traitement des requêtes top-k. BuckTop inclut un algorithme de traitement des requêtes
top-k qui fonctionne sur les données cryptées stockées dans le noeud du cloud sans avoir
à les décrypter dans ce noeud. L’algorithme de traitement des requêtes top-k retourne un

xv

ensemble de données appelé candidats top-k qui contient les données cryptées correspon-
dant aux résultats top-k. BuckTop utilise un algorithme de filtrage efficace qui est exécuté
dans le noeud du cloud sur les données cryptées et supprime la plupart des faux positifs
inclus dans l’ensemble des candidats top-k renvoyés par l’algorithme de traitement des re-
quêtes top-k. Ce filtrage se fait sans avoir besoin de décrypter les données dans le cloud.
Nous avons validé notre système par des expérimentations sur des ensembles de données
synthétiques et réelles. Nous avons comparé son temps de réponse avec l’approche ba-
sée sur le cryptage qui préserve l’ordre sur des données cryptées, et avec l’algorithme
TA sur des données en clair. Les résultats expérimentaux montrent un excellent gain de
performance pour BuckTop. Ils montrent aussi que la surcharge d’utiliser BuckTop pour
le traitement des requêtes top-k sur des données cryptées est très faible, à cause de l’effi-
cacité de l’algorithme du traitement des requêtes top-k et de l’algorithme de filtrage qui
élimine jusqu’à 99% des faux positifs dans le noeud du cloud.

3. SDB-TOPK et SD-TOPK

Pour le cas distribué, nous proposons deux nouveaux systèmes, appelés SDB-TOPK (Se-
cure Distributed Bucket based TOP-K) et SD-TOPK (Secure Distributed TOPK). Ces
systèmes sont capables d’exécuter un traitement de requêtes top-k sur des données cryp-
tées réparties sur les noeuds n d’un centre de données. Ils utilisent les mêmes techniques
de cryptage et de bucketisation que celles proposées dans le système BuckTop pour cryp-
ter la base de données avant de l’externaliser. Ensuite, la base de données externalisée est
répartie sur les noeuds de sorte que chaque noeud stocke au moins une liste de la base
de données. SDB-TOPK et SD-TOPK utilisent des algorithmes de traitement de requêtes
top-k qui sont exécutés dans les noeuds et trouvent un ensemble comprenant les données
top-k chiffrées. Ils sont exécutés sans avoir à décrypter les données dans les noeuds où ils
sont stockés. De plus, SDB-TOPK et SD-TOPK ont un puissant algorithme de filtrage qui
filtre les faux positifs autant que possible dans les noeuds, et renvoie un petit ensemble
de données cryptées qui seront décryptées du côté utilisateur pour obtenir le résultat final.
Nous avons évalué les performances de nos solutions sur des bases de données synthé-
tiques et réelles. Les résultats montrent un excellent temps de réponse et un excellent coût
de communication pour SDB-TOPK et SD-TOPK par rapport aux approches basées sur
l’algorithme TA . Ils montrent que leur temps de réponse peut être de plusieurs ordres
de grandeur supérieur à celui des algorithmes basés sur TA. Ceci est principalement dû à
leurs algorithmes optimisés de traitement des requêtes top-k et de filtrage. Les résultats
montrent également des gains significatifs dans les coûts de communication des SDB-
TOPK et SD-TOPK par rapport aux autres algorithmes. Ils montrent également l’effica-
cité de l’algorithme de filtrage qui élimine presque tous les faux positifs, sans décrypter
les données.

xvi 0. Résumé étendu

Directions de recherche
Cette thèse identifie deux directions importantes pour la poursuite de la recherche sur le
traitement des requêtes sur des données cryptées. La première est de considérer l’exécu-
tion des requêtes skyline sur des données cryptées. Comme la requête top-k, la requête
skyline [9, 62] est une requête importante qui est utilisée pour réduire le nombre de résul-
tats retournés aux utilisateurs, en éliminant ceux qui ne sont pas intéressants. Ainsi, les
requêtes skyline peuvent être très utiles pour réduire le coût de communication entre le
cloud et ses utilisateurs. Formellement, une requête skyline est définie comme suit. Avec
un ensemble de données D et un ensemble d’attributs m, une requête skyline Q sur D re-
tourne un ensemble de tuples qui ne sont dominés par aucun autre tuple dans les attributs
donnés. Un tuple X domine un autre tuple Y , si, sur tous les attributs, X est aussi bon ou
meilleur que Y et, sur au moins un attribut, X est meilleur que Y . La dominance entre
deux tuples est notéeX > Y . Les dominances des attributs sont spécifiées dans la requête
skyline. La principale différence entre requête skyline et requête top-k est que les résultats
des requêtes top-k changent avec le changement de la fonction de notation, tandis que les
résultats des requêtes skyline sont fixés pour un ensemble de données. De plus, la taille
du résultat de la requête skyline ne peut pas être contrôlée par l’utilisateur et, dans le pire
cas, peut être aussi grande que la taille des données. Une solution pour exécuter les re-
quêtes skyline sur des données cryptées est d’utiliser un cryptage qui préserve l’ordre qui
nous permet de déterminer la dominance des tuples dans chaque attribut. Cependant, le
défi consiste à trouver des solutions plus sûres qui ne divulguent pas l’ordre des données
cryptées ou ne les divulguent que partiellement.

La seconde direction de recherche est d’exploiter la technologie des software guard
extensions (SGX) pour le traitement des requêtes top-k sur des données cryptées dans le
cloud. SGX, proposé par Intel, est une nouvelle technologie matérielle qui protège les
secrets d’une application des logiciels malveillants en créant des zones de mémoire, ap-
pelées enclaves, isolées de code et de données. Ces pages de mémoire non adressables
sont réservées à partir de la RAM physique du système, puis cryptées, permettant à l’ap-
plication d’accéder à ses secrets sans crainte d’être exposée. Les applications SGX sont
construites en deux parties : 1) partie de confiance qui se compose des enclaves. Elles ré-
sident dans une mémoire cryptée et sont protégées par Intel SGX. Les enclaves sont consi-
dérées comme fiables parce qu’elles ne peuvent pas être modifiées après leur construction.
Si un utilisateur ou un logiciel malveillant tente de modifier une enclave, cet essai sera
détecté et évité par le CPU; 2) la partie non fiable qui est le reste de l’application. Toute
application ou région de mémoire non protégée par Intel SGX est considérée comme non
fiable. Nous pourrions utiliser cette technologie, qui est disponible dans certains clouds,
par exemple, Azure, pour améliorer le temps de réponse et la sécurité du traitement des
requêtes sur des données cryptées. L’idée est d’utiliser les enclaves de confiance pour
déchiffrer certaines données dans le cloud, c-à-d., quand cela est nécessaire. Cependant,
le défi est d’optimiser les opérations à exécuter dans les enclaves car elles peuvent être
rapidement surchargées car leur capacité est limitée.

Contents

Dedication i

Acknowledgments iii

Résumé v

Abstract vii

Résumé étendu xi

List of Figures xxi

List of Tables xxiii

1 Introduction 1
1.1 Thesis Context and Objectives . 1
1.2 Contributions . 3
1.3 Organization of the Thesis . 5

2 Overview of Privacy-Preserving Query Processing over Outsourced Data 7
2.1 Introduction . 7
2.2 Database Outsourcing . 7
2.3 Data Privacy Of Outsourced Databases 9

2.3.1 Anonymization . 9
2.3.2 Differential Privacy . 11
2.3.3 Data Encryption . 12

2.4 Query Processing . 13
2.4.1 Range Queries . 15
2.4.2 KNN Search Queries . 15
2.4.3 Top-k Query . 16
2.4.4 Top-k Query Processing Algorithms 17

2.4.4.1 Fagin’s Algorithm . 18
2.4.4.2 Threshold Algorithm 18
2.4.4.3 No-Random-Access Algorithm (NRA) 19

xvii

xviii CONTENTS

2.4.4.4 Best Position Algorithm 20
2.4.4.5 Best Position Algorithm 2 20

2.4.5 Top-k Query Processing over Distributed Data 21
2.4.5.1 Three-Phase Uniform-Threshold Algorithm (TPUT) . . 21
2.4.5.2 Three-Phase Adaptive Threshold Algorithm (TPAT) . . 22
2.4.5.3 Three-Phase Object Ranking Based Algorithm 22
2.4.5.4 Hybrid-Threshold Algorithm 23

2.5 Privacy-Preserving Query Processing . 24
2.5.1 Privacy Preserving Range Query Processing 24

2.5.1.1 Specialized Data Structure-Based Techniques 24
2.5.1.2 Order-Preserving Encryption-Based Techniques 26
2.5.1.3 Bucketization-Based Techniques 29
2.5.1.4 CryptDB . 30

2.5.2 Privacy Preserving Knn Query Processing 31
2.5.3 Privacy Preserving Top-k Query Processing 33

2.6 Conclusion . 35

3 Top-k Query Processing over Centralized Encrypted Data 37
3.1 Introduction . 37
3.2 Motivation . 37
3.3 Problem Definition . 38

3.3.1 Adversary Model . 38
3.3.2 Problem Statement . 39

3.4 OPE-Based Approach . 39
3.4.1 Data Encryption . 39
3.4.2 Top-k Query Processing . 39

3.5 BuckTop System . 40
3.5.1 System Architecture . 40
3.5.2 Data Encryption . 41
3.5.3 Top-k Query Processing . 42
3.5.4 False Positive Filtering . 44

3.6 Performance Evaluation . 46
3.6.1 Setup . 46
3.6.2 Results . 47

3.7 Conclusion . 51

4 Top-k Query Processing over Distributed Encrypted Data 53
4.1 Introduction . 53
4.2 Problem Definition . 54

4.2.1 Database Distribution and Systems Architecture 54
4.2.2 Problem Statement . 55

4.3 TA-Based Approaches . 55
4.3.1 Data Storage . 55

CONTENTS xix

4.3.2 Remote-TA . 56
4.3.3 Block-TA . 57

4.4 SDB-TOPK System . 58
4.4.1 Data Encryption and Outsourcing 58
4.4.2 Top-k Query Processing . 58
4.4.3 False Positive Filtering . 61

4.5 SD-TOPK System . 63
4.5.1 Top-k Query Processing . 64
4.5.2 False Positive Filtering . 66

4.6 Security Analysis and Improvement . 67
4.6.1 Obfuscating Bucket Boundaries 67
4.6.2 Security Analysis . 70
4.6.3 Security Improvements . 72

4.7 Update Management . 73
4.8 Experimental Evaluation . 73

4.8.1 Setup . 73
4.8.2 Results . 74

4.9 Conclusion . 78

5 Conclusion 81
5.1 Contributions . 81
5.2 Directions for Future Work . 82

Bibliography 85

List of Figures

2.1 Database Outsourcing Model Architecture 8
2.2 Query Processing Components . 14
2.3 Range query . 15
2.4 Multi-dimensional range query . 15
2.5 3 Nearest Neighbors Query . 16
2.6 3 Nearest Neighbors Join Query . 16
2.7 PPES plaintext tree . 26
2.8 PPES encryption function . 26
2.9 PPES ciphertext tree . 26
2.10 Indexing Program Syntaxe . 28

3.1 BuckTop system architecture . 41
3.2 Example of an encrypted database with the information about the created

buckets . 45
3.3 Cloud top-k time vs. number of database tuples 47
3.4 Response time vs. number of database tuples 47
3.5 Response time vs. m . 48
3.6 Response time vs. k . 49
3.7 Response time vs. bucket size . 49
3.8 Response time using different queries 49
3.9 Response time using different datasets 49

4.1 SDB-TOPK and SD-TOPK architecture 54
4.2 Response time vs. number of database tuples 75
4.3 Response time vs. number of queried attributes m 75
4.4 Response time vs. k . 75
4.5 Response time vs. bucket size . 75
4.6 Response time using different databases 77
4.7 Number of communicated messages vs. number of database tuples 78
4.8 Size of communicated data (in bytes) vs. number of database tuples . . . 78

xxi

List of Tables

2.1 A medical table . 10
2.2 A 2-anonymous medical table . 10
2.3 A 2-diverse medical table . 11
2.4 Top-2 query with SUM scoring function 16
2.5 Employee Database . 25
2.6 Encrypted Employee Database . 25
2.7 SMC primitives required for PPKT and PPKTS protocols 35

3.1 False positive elimination by filtering algorithm over different datasets . . 50

4.1 Example of an encrypted database . 57
4.2 Encrypted database, with 3 data items in each bucket. The encrypted

scores inside buckets are not sorted. The boundaries (minimum and
maximum) of buckets are shown below 62

4.3 Bucket boundaries . 62
4.4 Example of an encrypted database, and the information about its buckets. 62
4.5 False positive elimination by the filtering algorithm of SDB-TOPK and

SD-TOPK over different databases. 78

xxiii

Chapter 1

Introduction

Cloud computing encompasses on demand reliable services provided over the Internet
(typically represented as a cloud) with easy access to virtually infinite computing, storage
and networking resources. Through very simple Web interfaces and at small incremental
cost, users can outsource complex tasks, such as data storage, system administration, or
application deployment, to very large data centers operated by cloud providers. Thus,
the complexity of managing the software/hardware infrastructure gets shifted from the
users’ organization to the cloud provider. However, outsourcing sensitive data to a cloud
provider [33], using Database-as-a-Service (DaS), has a main problem: how to preserve
the privacy of the outsourced data, which may be violated by cloud employees for in-
stance, while processing the user’s queries.

The popular solution is to encrypt the data before outsourcing it to the cloud. Then, the
challenge is to answer user queries over encrypted data. A naive solution is to retrieve the
encrypted database from the cloud to the client machine, decrypt it, and then evaluate the
query over plaintext (non encrypted) data. This solution is not practical, as it does not take
advantage of the power provided by the cloud computing resources for evaluating queries.
In this thesis, we consider an important kind of queries, top-k queries, and address the
problem of privacy-preserving top-k query processing over encrypted data in the cloud.

In the rest of this introduction, we first define the thesis context and objectives, and
then introduce our contributions. Finally, we give the thesis organization.

1.1 Thesis Context and Objectives
According to the Cloud Security Alliance [19], cloud security is one of the main concerns
for cloud users. Cloud security refers to a broad set of policies and technologies deployed
to protect data, applications, and the associated infrastructure of cloud computing. There
are a number of security threats, such as data loss, unauthorized access to the data, data
breaches, denial of service, etc.

In general, the security threats can be grouped into different models [5], according to
the type of attacker or adversary whose aim is to get access to the user data and/or tamper
it:

1

2 1. Introduction

• Honest-but-Curious Model: In this model (also called semi-honest), an attacker
follows the prescribed steps of a protocol. However, the attacker can try to learn
additional information about the users based on the users data, and the input, output,
and messages received during the execution of the secure protocol.

• Malicious Model: An adversary in the malicious model can arbitrarily diverge
from the normal execution of a protocol and change the user data.

• Covert Model: This model lies between honest-but-curious and malicious models.
More specifically, an adversary under the covert model may deviate arbitrarily from
the rules of a protocol, without changing the user data.

In this thesis, we assume the honest-but-curious threat model. This model is well
adapted to the problem of query processing in the cloud [46, 24] as the cloud providers
are not malicious attackers who can change the protocols or user data, but they may be
interested to learn more information about the users by accessing their data. However, this
may violate the privacy of users. Privacy preservation is one of the main requirements
to ensure data security in the cloud [80]. Many users pay more attention to their privacy
protection when they access cloud data or use cloud services. In particular, they expect to
hide their identity while using the cloud. Some users also want their operations on the data
and the information retrieved from a cloud to be properly protected. Privacy preservation
should ensure that all critical and sensitive data must be masked or encrypted and that
only authorized users have access to data in its entirety.

We focus on top-k queries, which have attracted much attention in several areas of
information technology such as sensor networks [91], data stream management systems
[85], crowdsourcing [18, 95], spatial data analysis [75], temporal databases [64], graph
databases [31], etc. A top-k query allows the user to specify a number k, and the system
returns the k tuples which are most relevant to the query. The relevance degree of tuples to
the query is determined by a scoring function. Given a database composed of lists of data
items, each data item has a local score in each list. The scoring function f is a function
that calculates an overall score for each data item.

As a simple example of top-k query, consider a university that outsources the students
database to the cloud, with non-trusted nodes. The database is encrypted for privacy rea-
sons. Then, an interesting top-k query over the outsourced encrypted data is the following:
return the k students that have the worst averages in some given courses.

There are several approaches for processing top-k queries over plaintext (non en-
crypted) data. One of the most popular approaches is the Threshold Algorithm (TA)
[27] that works on sorted lists of attribute values. TA can find efficiently the top-k results
because of a smart strategy for deciding when to stop reading the database. However,
TA and all other efficient top-k approaches developed so far assume the existence of at-
tribute values of the data items in plaintext i.e., data items represented in the original
human-readable form. Thus the privacy of the user data is not preserved.

One of the main solutions for preserving privacy in the cloud is to encrypt the out-
sourced databases. Data encryption is the process of encoding a message or information

1.2 Contributions 3

in such a way that only authorized parties can access it. This solution provides strong data
privacy. However, the ability to perform practical query processing on encrypted data re-
mains a major challenge [8]. In this thesis, we are interested in processing top-k queries
over encrypted data.

When we think about top-k query processing over encrypted data, the first idea that
comes to mind is to use a fully homomorphic encryption scheme, which allows perform-
ing arithmetic operations over encrypted data [28]. Using this type of encryption allows
computing the overall score of data items over encrypted data. However, existing fully
homomorphic encryption methods are very expensive in terms of encryption and decryp-
tion time. In addition, they do not allow to compare the encrypted data, and find the top-k
results.

A cloud is typically made of several sites (or data centers), each at a different geo-
graphical location. A data center has its own computing and storage resources, typically
as a computer cluster, which is made of multiple computer nodes. Thus, for scalability
and performance reasons, data can be partitioned across multiple nodes, either horizon-
tally (different data items on different nodes) or vertically (different data fields on different
nodes). These two forms of partitioning can be combined [59]. In this thesis, we consider
two cases for top-k query processing over encrypted data: 1) centralized: the user en-
crypted data are stored at a single node of a data center, which is useful if the database
can fit at one node; 2) distributed: the user encrypted data are partitioned and the partitions
are encrypted and distributed across multiple nodes, which is useful if the database is very
big. We focus on vertical partitioning for two reasons. First, answering top-k queries over
horizontal partitions is very easy: it is sufficient that each node of the cloud data center
calculates its local top-k data items, then the final top-k result is obtained by calculating
the top-k data items of all the local top-k data items. Second, vertical partitioning is more
difficult and the problem of top-k query processing with vertical partitioning has been
addressed by the research community [14, 93].

1.2 Contributions
The main contributions of this thesis are as follows.

• A survey of privacy preserving query processing. We first introduce a general
definition of data outsourcing in the cloud. Then, we present the main techniques
used to preserve the privacy of the user data stored in the cloud.

• BuckTopk. We propose a complete system, called BuckTop, for the centralized
case. BuckTop is able to efficiently evaluate top-k queries over encrypted data out-
sourced to a singe node, without having to decrypt it in that node. It includes a
top-k query processing algorithm that works on the encrypted data stored in the
cloud node, and returns a set that is proved to contain the encrypted data corre-
sponding to the top-k results. It also comes with an efficient filtering algorithm
that is executed in the cloud node on encrypted data and removes most of the false

4 1. Introduction

positives included in the set returned by the top-k query processing algorithm. This
filtering is done without needing to decrypt the data in the cloud.

• SDB-TOPK and SD-TOPK. For the distributed case, we propose two new sys-
tems, called SDB-TOPK (Secure Distributed Bucket based TOP-K) and SD-TOPK
(Secure Distributed TOPK). SDB-TOPK and SD-TOPK come with top-k query
processing algorithms that are executed in the nodes, and find a set including the
encrypted top-k data items. They are executed without needing to decrypt the data
in the nodes where they are stored. In addition, SDB-TOPK and SD-TOPK have
a powerful filtering algorithm that filters the false positives as much as possible in
the nodes, and returns a small set of encrypted data that will be decrypted in the
user side. We analyze the security of our systems, and propose efficient strategies
for enforcing them. We evaluated the performance of our systems over synthetic
and real databases. The results show excellent performance compared to baseline
approaches. They also show the efficiency of our filtering algorithm that elimi-
nates almost all false positives in the cloud, and reduces the communication cost
significantly.

The results of this thesis have been presented in the following papers:

• Sakina Mahboubi, Reza Akbarinia, Patrick Valduriez. Privacy-Preserving Top-k
Query Processing in Distributed Systems. Submitted for journal publication, July
2018.

• Sakina Mahboubi, Reza Akbarinia, Patrick Valduriez. Privacy-Preserving Top-k
Query Processing in Distributed Systems, In European Conference on Parallel Pro-
cessing (Euro-Par), 281-292, 2018.

• Sakina Mahboubi, Reza Akbarinia, Patrick Valduriez. Answering Top-k Queries
over Outsourced Sensitive Data in the Cloud. In International Conference on Database
and Expert Systems Applications (DEXA), 218-231, 2018.

• Sakina Mahboubi, Reza Akbarinia, Patrick Valduriez. Top-k Query Processing over
Distributed Sensitive Data, In International Database Engineering & Applications
Symposium (IDEAS), 208-216, 2018.

• Sakina Mahboubi, Reza Akbarinia, Patrick Valduriez. Distributed Privacy-Preserving
Top-k Query Processing, In BDA: Gestion de données - principes, technologies et
applications, 2018.

• Sakina Mahboubi, Reza Akbarinia, Patrick Valduriez. Top-k Query Processing
Over Outsourced Encrypted Data. Research Report RR-9053, 2017.

• Sakina Mahboubi, Reza Akbarinia, Patrick Valduriez. Privacy Preserving Query
Processing in the Cloud. In BDA: Gestion de données - principes, technologies et
applications, 2016, 61-62.

1.3 Organization of the Thesis 5

1.3 Organization of the Thesis
This thesis is organized as follows.

Chapter 2: State of the art
In this chapter, we review the state of the art in privacy preserving query processing over
outsourced data in the cloud. First, we present the general concept of data outsourc-
ing. Then, we introduce the main techniques proposed to preserve the privacy of the
outsourced data and review the top-k query processing algorithms over plaintext data. Fi-
nally, we review the main privacy preserving techniques proposed for processing range
queries, k-nearest neighbor (kNN) queries and top-k queries.

Chapter 3: Top-k query processing over centralized encrypted data
In this chapter, we present our solutions to process top-k queries over encrypted data in
the case of a singe node of a cloud data center. First, we present a basic solution called
OPE-based approach which is based on order preserving encryption. Then, we introduce
our main contribution: BuckTop system. We describe its architecture, and then its top-k
query processing and false positive filtering algorithms. Finally, we report the experiment
results that we performed to validate the efficiency of our system.

Chapter 4: Top-k query processing over distributed encrypted data
In this chapter, we present our solutions for privacy preserving top-k query processing in
the case where the data are distributed across multiple nodes of a cloud data center. We
first propose basic approaches based on TA algorithm called Remote-TA and Block-TA
for top-k query processing over distributed encrypted data. Next, we present our two
main contributions called SDB-TOPK and SD-TOPK. We describe data encryption and
outsourcing steps, top-k query processing and false positive filtering algorithms involved
in these systems. Furthermore, we analyze the security of SDB-TOPK and SD-TOPK.
Finally, we report the experimental results and show that these systems are very efficient
for privacy preserving top-k query processing over distributed encrypted data.

Chapter 5: Conclusion
In this chapter, we summarize our contributions and point out the future research direc-
tions.

Chapter 2

Overview of Privacy-Preserving Query
Processing over Outsourced Data

2.1 Introduction

Database outsourcing provides users and companies with powerful capabilities to store
and process their data in third-party machines managed by a cloud service provider. How-
ever, the privacy of the outsourced data is not guaranteed as users typically loose physical
access control to their data. The most popular solution to protect outsourced data is to
encrypt the data before outsourcing to the cloud. This solution introduces the problem of
how to evaluate user queries over the encrypted data.

In this chapter, we present the general concept of database outsourcing [33] and intro-
duce the problem of outsourced data privacy and the existing solutions. Then, we review
the top-k query processing algorithms over plaintext data. Finally, we review the state of
the art privacy preserving query processing techniques, focusing mainly on range, kNN,
and top-k queries.

2.2 Database Outsourcing

The idea of outsourcing data to a third party provider is introduced for the first time by
Haĉigümus, et al. in [33] and referred to as “Database as a Service”.

Database as a Service (DAS) is a database management concept in which the data
owner stores her data in a cloud, and delegates the responsibility of administering and
managing the data to the cloud. This paradigm alleviates the need of installing data man-
agement software and hardware, hiring administrative and data management crew (per-
sonnel) at the company’s site. Thus, the data owner can concentrate on her core business
logic rather than on the tedious job of data management. Examples of DAS providers are:
Amazon, IBM and Google.

The architecture using DAS (see Figure 2.1) consists of 3 main entities: Data Owner,
Cloud Service Provider and Client. Generally, data owner and clients are considered

7

8 2. Overview of Privacy-Preserving Query Processing over Outsourced Data

Figure 2.1 – Database Outsourcing Model Architecture

as trustful entities while cloud provider is trustless for the purpose of accessing data in
an unauthorized manner. A data owner uploads her data at to the cloud using a high
speed communication link. A data owner can insert new data, modify the existing data
and delete data. In case of multiple clients, the data owner can set access level permis-
sions for using the data. Data management hardware and software tools are deployed
and maintained at the cloud. To ensure the availability of data in case of data crash or
version change, standby machines are also maintained so that seamless and uninterrupted
database service is provided. When a client submits a query to the cloud, the query is
processed in the cloud nodes, and the results are sent back to the client. The clients are
given permission to access the data according to their privilege level.

Database outsourcing introduces several challenges in terms of performance, scalabil-
ity and security and data privacy.

• Performance: Since the interaction between the users and the cloud takes place
in a different manner than in traditional databases, there are potential overheads
introduced by this architecture. Therefore the sources of performance degradation
and their significance should be determined.

• Scalability: A good DAS must support database and workloads of different sizes.
The challenge arises when a database workload exceeds the capacity of a single
machine. A DAS must therefore support scale-out, where the responsibility of data
management is partitioned amongst multiple nodes to achieve higher throughput.

• Security and data privacy: As the data is stored at the cloud, it may be the case
that the cloud provider is trustless in terms of disclosing and misusing the data. In
this case, security of the database can be hampered in a dramatic way.

2.3 Data Privacy Of Outsourced Databases 9

2.3 Data Privacy Of Outsourced Databases

Users lose the physical control over their data when they store it in an untrusted cloud.
Therefore, the privacy of the outsourced data is not guaranteed. Several techniques are
proposed to ensure the privacy of this data. In this section, we present the anonymization,
differential privacy and data encryption techniques.

2.3.1 Anonymization
Most of the outsourced database contains sensitive information about individual entities,
such as a person, a household, or an organization. In order to protect this sensitive data,
the users may anonymize the database tables such that the resulting tables do not disclose
any sensitive information. There are different ways to anonymize a table such as sup-
pression and generalization. Suppression is the operation of changing a specific value of
an attribute in a tuple by ANY, denoted by *. Generalization is the operation of chang-
ing a value of an attribute to a more general one. If the data value is numeric, it may
be changed to a range of values. Several anonymization techniques have been proposed
and the most popular ones are k-anonymity [71] and `-diversity [50]. In both approaches,
attributes are partitioned into three categories: (1) some attributes are identifiers that can
uniquely identify an individual, such as Name or Social Security Number; (2) some at-
tributes are Quasi-Identifiers (QI), which the adversary may already know (possibly from
other publicly-available databases) and which, when taken together, can potentially iden-
tify an individual,e.g., Gender, Nationality and Age; (3) some attributes are Sensitive
Attributes (SAs), which are unknown to the adversary and are considered sensitive, such
as Disease and Salary.

k-Anonymity. Suppose we have a table consisting of n tuples each having m quasi-
identifying attributes (Gender, Nationality and Age in Table 2.1), and let k >1 be an
integer. The idea is to suppress/generalize some of the entries in the table so as to ensure
that for each tuple in the modified table, there are at least k-1 other tuples in the modified
table that are identical to it along the quasi-identifying attributes. The objective is to
minimize the extent of suppression and generalization. Note that entries in the column
corresponding to the sensitive attribute (“Diseases” in Table 2.1) are not altered. Table
2.2 is a k-anonymized table for k = 2 of Table 2.1.

We suppose that an adversary knows the QI attributes of Peter from another database,
e.g. voter registration, using Table 2.1, she cannot distinguish the first tuple from the
second tuple. Thus, she is not sure whether Peter suffers from HIV because the first tuple
is linked to HIV, but the second tuple is not.

A k-anonymized table protects individual privacy in the sense that, even if an adver-
sary has access to all the QI attributes of all the individuals represented in the table, she
would not be able to track down an individual’s tuple further than a set of at least k tuples,
in the worst case. Thus, releasing a table after k-anonymization prevents definitive tuple
linkages with publicly available databases, and keeps each individual hidden in a crowd of

10 2. Overview of Privacy-Preserving Query Processing over Outsourced Data

Name Gender Nationality Age Disease
Peter male Japanese 26 HIV
John male Malaysian 30 flu
Mary female American 36 HIV
Sally female Canadian 40 HIV
Eason male American 40 flu
Louis male Chinese 36 flu

Table 2.1 – A medical table

Gender Nationality Age Disease
male Asian 26 - 30 HIV
male Asian 26 - 30 flu

female North American 36 - 40 HIV
female North American 36 - 40 HIV
male Person 36 - 40 flu
male Person 36 - 40 flu

Table 2.2 – A 2-anonymous medical table

k − 1 other people. The privacy parameter k must be chosen according to the application
in order to ensure the required level of privacy.

`-Diversity. The concept of `-diversity [50] was introduced to address the limitations
of k-anonymity. The latter may disclose sensitive information when there are many identi-
cal sensitive attribute (SA) values within an equivalence class,e.g., all persons suffer from
the same disease. An equivalence class of a table is a collection of all tuples in the table
containing identical QI values, it is also called a QI-group.

`−diversity prevents homogeneity attacks. In the homogeneity attack, while an equiv-
alence class may contain at least k tuples, it is possible that all tuples have the same
sensitive attribute value, enabling the adversary to infer the sensitive attribute value of
individuals in the equivalence class. Even if not all tuples have the same value, proba-
bilistic inference is still possible. `−diversity ensures that at least ` SA values are well-
represented in QI-group i.e. the probability that any tuple in this group is linked to a
sensitive value like is at most 1/`. Table 2.3 is a 2-diverse table of Table 2.1. It contains
two QI-groups. The first one contains the two first tuples while the second contains the
last four tuples. For each QI-group, the probability that a tuple is linked to HIV is at most
1/2.

Machanavajjhala et al. suggest in [50] that any k-anonymity algorithm can be adapted
to achieve `-diversity in different ways,e.g., take a k-anonymous table and suppress groups
that are not `-diverse or suppress tuples in groups until all groups are `-diverse.

2.3 Data Privacy Of Outsourced Databases 11

Gender Nationality Age Disease
male Asian 26 - 30 HIV
male Asian 26 - 30 flu

* Person 36 - 40 HIV
* Person 36 - 40 HIV
* Person 36 - 40 flu
* Person 36 - 40 flu

Table 2.3 – A 2-diverse medical table

2.3.2 Differential Privacy
Differential privacy has received growing attention in the research community. It was
originally developed by Dwork, Nissim, McSherry and Smith in [22]. Differential pri-
vacy provides rigorous and statistical guarantees against what an adversary can infer from
learning the results of some randomized algorithm. In the simplest setting, consider an
algorithm that analyzes a dataset and computes statistics about it (such as variance, me-
dian, mode, etc.). Such an algorithm is said to be differentially private if by looking at the
output, one cannot tell whether any individual’s data was included in the original dataset
or not. In other words, the guarantee of a differentially private algorithm is that its be-
havior hardly changes when a single individual joins or leaves the dataset. Formally, we
say that a randomized computation M provides ε-differential privacy if for any datasets
A and B that differ in at most one entry or tuple (called databases neighbors) and any set
of possible outcomes S ⊆ Range(M),

Pr[M(A) ∈ S] ≤Pr[M(B) ∈ S]× eε

The parameter ε allows to control the level of privacy. Lower values of εmean stronger
privacy. The values typically considered for ε are smaller than 1, e.g., 0.01 or 0.1 (for
small values we have eε ≈ 1 + ε).

To achieve differential privacy, Dwork et. al. propose the Laplace mechanism [22],
which perturbs the output of the computation function by explicitly adding scaled random
noise from the Laplace distribution. Laplace distribution represents the distribution of dif-
ferences between two independent variables with identical exponential distributions. It is
also called the double exponential distribution. The median mechanism proposed in [69]
is an interactive differentially private mechanism that answers arbitrary predicate queries
f1, . . . , fn that arrive on the fly without the future knowledge queries, where k could be
large or even super-polynomial. It comes to answering more queries exponentially and
gives fixed constraints. Theoretically, the mechanism is suitable for defining and identi-
fying the equivalence of queries in the interactive setting. In this setting, to answer the
queries from the users, an interactive differential privacy interface is being inserted be-
tween the users and the database for the sake of privacy. The Gaussian mechanism [23]
and the K-norm mechanism [34] are differentially private mechanisms that are also based
on the idea of output perturbation with noise from different distributions. Lei [42] pro-

12 2. Overview of Privacy-Preserving Query Processing over Outsourced Data

poses differentially private M-estimators, which perturb the histogram of input data using
a scaled noise and further uses the noisy histogram to train the models. Zhang et. al. [94]
propose a differentially private functional mechanism that adds a properly scaled Laplace
noise to the coefficients of loss function in the polynomial basis.

2.3.3 Data Encryption
Outsourced database services allow users to store sensitive data on a remote, untrusted
node and retrieve desired parts of it on request. Many works have addressed the security
of outsourced databases by encrypting the data at rest and pushing part of the process-
ing to the cloud. This solution provides strong data privacy, however, the ability to per-
form practical query processing on encrypted data remains a major challenge. Both the
database and the cryptography research communities have shown great interest in query-
ing encrypted data including keyword search [78, 16], k nearest neighbors search (kNN)
[37, 86], range queries [32, 36], etc. To process different queries over encrypted data,
several techniques have been developed, e.g., Bucketization, order preserving encryption,
Searchable encryption, etc.

Bucketization-based technique [32, 35] uses distributional properties of the dataset
to partition data and design indexing techniques that allow approximate queries over
encrypted data. Unlike cryptographic schemes that aim for exact predicate evaluation,
bucketization admits false positives while ensuring all matching data is retrieved. A
post-processing step is required at the client side to remove the false positives. These
techniques often support limited types of queries and lack of a precise analysis of the
performance/security trade-off introduced by the indexes.

Order preserving encryption (OPE) [1, 7, 49, 67] is a deterministic encryption scheme
where the order of the ciphertext, i.e., the encoded information obtained as the result of
encryption, is the same as that of the original plaintext. OPE allows databases and other
applications to process queries involving order e.g., range queries, over encrypted data
efficiently. OPE relies on the strong assumption that all plaintexts in the database are
known in advance.

Searchable symmetric encryption (SSE) allows one to store data at an untrusted node
and later search the data for records (or documents) matching a given keyword while
maintaining privacy. Many recent works [20, 38, 84] have studied SSE and provided
solutions with varying trade-offs between security, efficiency, and the ability to securely
update the data after it has been encrypted and uploaded.

All the above mentioned techniques sacrifice some degree of data privacy for more
effective querying on encrypted data and provide different levels of security guarantees.
Other proposals sacrifice query efficiency for stronger data privacy such as homomorphic
encryption scheme.

A homomorphic encryption scheme Hom [79, 61] is a form of encryption that allows
computation on encrypted data, generating an encrypted result which, when decrypted,
matches the result of the operations as if they had been performed on the plaintext. More
formally, it is a public key encryption consists of four algorithms: (Keygen, E,D,Eval).

2.4 Query Processing 13

Given a security parameter λ, the Keygen algorithm returns a secret key sk and a public
key pk. Keygen(λ) → (sk, pk). The secret key is known only to the data owner and it is
used to decrypt the data encrypted by the appropriate public key which may be dissemi-
nated widely. The encryption algorithm E takes as input a message m, a public key pk
and outputs a ciphertext C, E(pk,m) → C, the decryption algorithm D takes as input
the cyphertext C and a secret key sk and outputs a message m, D(C, sk)→ m. the Eval
algorithm takes as input a public key pk, a t − input circuit Cr (consisting of addition
and multiplication gates modulo 2), and a tuple of ciphertexts C1, . . . , Ct (corresponding
to the t input bits of Cr, and returns a ciphertext C (corresponding to the output bit of
Cr)

Most of the known homomorphic encryption schemes support only a limited set of
functions f , which restrict their applicability. The theoretical problem of constructing
a fully homomorphic encryption scheme supporting arbitrary functions f , was solved
by the breakthrough work of Gentry [28] followed by other works and improvements
[83, 77]. Fully homomorphic encryption allows the cloud to compute arbitrary functions
over encrypted data, while only clients see decrypted data. However, it is computationally
expensive to be used in practice.

2.4 Query Processing
Query processing is an essential technology for database management systems. It allows
to efficiently retrieve from the database the data specified in a user query. In this section,
we describe the query processing steps, then we present the processing algorithms of
some queries like range queries, kNN search queries and top-k queries.

Query processing aims to transform a query described in a high-level declarative lan-
guage (e.g. SQL) into a correct and efficient execution strategy [4]. The query processor
receives a query as input, translates and optimizes this query in several phases into an
executable query plan, and executes the plan in order to obtain the results of the query.
The query transformation and execution is done by five components [41] (see Figure 2.2):
parse, query rewriter, query optimizer, plan refinement/code generation and query execu-
tion engine

1. Parser. In the first phase, the query is parsed and translated into an internal repre-
sentation (e.g., a query graph [65]) that can be easily processed by the later phases;

2. Query rewriter. Query rewriter transforms a query in order to carry out optimiza-
tions that are useful regardless of the physical state of the system (e.g., the size of
tables, presence of indices, locations of copies of tables, speed of machines, etc.).
Typical transformations are the elimination of redundant predicates and simplifica-
tion of expressions;

3. Query Optimizer. This component carries out optimizations that depend on the
physical state of the system. It decides which indices to use to execute a query,

14 2. Overview of Privacy-Preserving Query Processing over Outsourced Data

Figure 2.2 – Query Processing Components

which methods (e.g., hashing or sorting) to use to execute the operations of a query
(e.g., joins and group-bys), and in which order to execute the operations of a query.
The query optimizer also decides how much main memory to allocate for the exe-
cution of each operation. As a result of this optimization, a plan is generated. This
plan specifies precisely how the query is to be executed. Probably every database
system represents plans in the same way: as operator trees. The nodes of a plan are
operators, and every operator executes one particular operation (e.g., join, group-
by, sort, scan, etc.). The edges of a plan represent consumer-producer relationships
of operators;

4. Plan Refinement/Code Generation. It transforms the plan produced by the op-
timizer into an executable plan. In some systems, plan refinement also involves
carrying out simple optimizations which are not executed by the query optimizer
because of a simplification in the implementation of the query optimizer.

5. Query Execution Engine. This component provides generic implementations for
every operator. Most of the query execution engines are based on an iterator model
[30]. In such a model, operators are implemented as iterators and all iterators have
the same interface. As a result, any two iterators can be plugged together (as spec-
ified by the consumer–producer relationship of a plan), and thus, any plan can be
executed. Another advantage of the iterator model is that it supports the pipelining
of results from one operator to another in order to achieve good performance.

The catalog used in the three first components stores all the information needed in
order to parse, rewrite and optimize a query. It maintains the database schema (i.e., def-
initions of tables, views, user-defined types and functions, etc.), the partitioning schema
(i.e., information about what global tables have been partitioned and how they can be
reconstructed), and physical information such as the location of copies of partitions of
tables, information about indices, and statistics that are used to estimate the cost of a
plan. In most relational database systems, the catalog information is stored in a specific
relational (meta-) database.

2.4 Query Processing 15

Figure 2.3 – Range query Figure 2.4 – Multi-dimensional range query

2.4.1 Range Queries
Range queries have been used in different domains such as sensor networks [47] spatial
databases [60, 63], grid information service [3], peer-to-peer systems [44, 66], etc. A
range query is a query that retrieves all data items where some of their attribute values are
between an lower bound a and a upper bound b (see Figure 2.3). The result of the range
query can be an empty-set or a too-large-set of data items.Unlike in an exact-match query
(a query with an equality predicate), it is not generally known in advance how many data
items it will return.

Range queries are important to query multidimensional databases [76]. In this case,
they are called multidimensional range queries (also called window or rectangular queries).
Using a multidimensional range query, the user specifies an interval of values (for each
attribute), which the retrieved data tuples have to match. It is the result of the cartesian
product of the intervals for all dimensions. The range query can be represented by a
hyper-box QB in the multidimensional space . The ranges of query box QB are defined
by two boundary points, the lower bound QBlow = [a1, a2, . . . , an] and the upper bound
QBup = [b1, b2, . . . , bn]; where a1 ≤ b1, a2 ≤ b2, . . . , an ≤ bn (see Figure 2.4). The
purpose of the range query is to select all data tuples inside the query box QB, i.e., to
select tuples t satisfying ai ≤ t ≤ bi, for 1 ≤ i ≤ n.

2.4.2 KNN Search Queries
The K-Nearest Neighbor query (kNN) is a classical problem that has been extensively
studied, due to its many important applications, such as spatial databases [40, 48], pattern
recognition, DNA sequencing and many others. Given a dataset P, a query point p and a
value k, the kNN query returns k points ∈ P which are closest to the query point p based
on a distance function (e.g., euclidean distance)(see Figure 2.5). There is another type

16 2. Overview of Privacy-Preserving Query Processing over Outsourced Data

Figure 2.5 – 3 Nearest Neighbors Query
Figure 2.6 – 3 Nearest Neighbors Join
Query

Attribute 1 Attribute 2 Attribute 3 Overall score
O1, 55 O2, 34 O2, 43 O2, 125
O2, 48 O1, 30 O3, 30 O1, 118
O3, 42 O3, 27 O1, 33 O3, 109

Table 2.4 – Top-2 query with SUM scoring function

of kNN query which is kNN join query. It can be defined as follows: given a dataset P
and a query set Q, for each point q ∈ Q, the kNN query allows to retrieve its k nearest
neighbors from points in P (see Figure 2.6).

To search for the K nearest neighbors of a query point q, the distance of the kth near-
est neighbor to q defines the minimum radius required for retrieving the complete answer
set. Unfortunately, such distance cannot be predetermined with 100% accuracy. Hence,
an iterative approach that examines increasingly larger spheres in each iteration can be
employed. The algorithm works as follows. Given a query point q, finding nearest neigh-
bors begins with a query sphere defined by a relatively small radius about q, querydist(q).
All data spaces that intersect the query sphere have to be searched. Gradually, the search
region is expanded until all the K nearest points are found and all the data subspaces
that intersect with the current query space are checked. The k data points are the near-
est neighbors when further enlargement of query sphere does not introduce new answer
points. Starting the search query with a small initial radius keeps the search space as tight
as possible, and hence minimizes unnecessary search (has a larger radius that contains all
the K nearest points been used).

2.4.3 Top-k Query
Top-k queries have attracted much attention in several areas of information technology
such as network monitoring systems, information retrieval, data mining, multimedia databases,
spatial data analysis, etc.

2.4 Query Processing 17

By a top-k query, the user specifies a number k, and the system should return the k
most relevant answers to the user. The relevance degree of the answers to the query is
determined by a scoring function (see Table 2.4). A common method for efficient top-k
query processing is to run the algorithms over sorted lists (also called inverted lists) [27].
Let us define them formally.

Let D be a database of n data items, and L1, L2, ..., Lm be m lists such that each list Li
contains n pairs of the form (d, si(d)) where d ∈ D and si(d) is a non-negative number
that denotes the local score of d in Li. Each list Li is sorted in descending order of its
local scores.

The set of m lists is called a database. The overall score of each data item d is
calculated as ov(d) = f(s1(d), s2(d), ..., sm(d)) where f is a given scoring function. In
other words, the overall score is the output of f where the input is the local scores of d in
all lists.

The result of a top-k query is the set of k elements that have the highest overall scores
among all elements of the database. Formally, the top-k query result is a set of elements
D′ ⊆ D such that |D′| = k, and ∀d′ ∈ D′ ∧ ∀d ∈ (D −D′)⇒ ov(d′) ≥ ov(d).

Almost all of the algorithms for top-k query processing work on data organized in
sorted lists. The sorted lists model is simple and general. For example, suppose we want
to find the top-k tuples in a relational table according to some scoring function over its
attributes. To answer such query, it is sufficient to have a sorted (indexed) list of the values
of each attribute involved in the scoring function, and return the k tuples whose overall
scores in the lists are the highest.

For processing top-k queries over sorted lists, two modes of access are usually used
[27]. The first is sorted (sequential) access that allows us to sequentially access the next
data item in the sorted list. This access begins with the first item in the list. The second is
random access by which we look up a given data item in the list.

2.4.4 Top-k Query Processing Algorithms
Most algorithms proposed for top-k query processing over plaintext data [25, 27, 2, 14]
use the sorted list model of the database. A naive solution to find the top-k answers
is to scan the sorted lists from beginning to end, calculate for each seen data item its
overall score using the scoring function, then return the k data items that have the highest
overall score. This solution is not efficient, especially for very large databases. Fagin [25]
proposes the first efficient algorithm Fagin’s Algorithm (FA) which is based on a simple
idea: do sorted access in parallel in the sorted lists and stop after finding k data items
which are seen in all the lists. Based on FA, Fagin et al. [27] introduce the threshold
algorithm (TA). This algorithm comes with an intelligent stop mechanism better than FA;
after each sorted access, TA calculates a threshold and stops when it finds k data items
that have an overall score greater than or equal to the threshold. FA and TA algorithms
use random access to access a given data in the sorted lists, but in some applications,
performing random access is impossible or very expensive. Fagin et al. propose in [26]
an algorithm called no random access to resolve this problem. Akbarinia et al. [2] propose

18 2. Overview of Privacy-Preserving Query Processing over Outsourced Data

another algorithm Best Position Algorithm based on the TA algorithm. It uses a different
threshold value which is based on the position of the data items accessed in the lists. In
the rest of this section, we present in more detail these algorithms, which some of them
will be used in the rest of the thesis.

2.4.4.1 Fagin’s Algorithm

The basic idea of Fagin’s Algorithm (FA) is to scan sequentially the sorted lists until
finding k data items that have been seen in all the lists then it stops. After that, FA
calculates for each seen data its overall score and return the k data items that have the
highest one. FA execution steps are the following:

1. Starting with the first data item in each list, do sorted access in parallel to the sorted
lists. Maintain in a set S all the data items that have been seen under the sorted
access. If there are k data items in S that have been seen in all the lists, then stop
sorted access and pass to the second step, else continue doing sorted access.

2. for each data item d ∈ S, do random access to the lists to get its local scores. By
applying the scoring function on the returned local scores, FA calculates the overall
score of d and maintains it in a set Y if its overall score is among the k highest
scores calculated so far.

3. Return Y .

Fagin shows in [25] that his algorithm is optimal with high probability in the worst
case only, i.e, when we have to go far in the lists in order to find the top-k data items. This
is not the case while using some scoring functions like MAX where FA does additional
and useless accesses.

2.4.4.2 Threshold Algorithm

The threshold algorithm (TA) comes with a different stop condition more efficient than
that of FA. It uses a threshold to decide if it stops doing sorted access or not. this threshold
is calculated by applying the scoring function on the last sees local scores in the lists. TA
proceeds as follows:

1. In parallel, do sorted access in the sorted lists. For the data item d seen in a list Li,
do random access on the other lists to get its local score. Calculate the overall score
of d using the scoring function. Maintain d in a set Y if its overall score is among
the k highest scores of the data items seen so far.

2. After each sorted access, calculate a threshold TH by applying the scoring function
on the last seen local score in each list. If there are k data items in Y that have an
overall score greater than or equal to TH , then stop doing sorted access and go to
step 3. Otherwise, go to step 1.

2.4 Query Processing 19

3. Return Y .

TA assumes that the costs of sorted and random access methods are the same. In ad-
dition, TA does not have a restriction on the number of random accesses to be performed.
Every sorted access in TA results in up to m−1 random accesses, where m is the number
of lists.

2.4.4.3 No-Random-Access Algorithm (NRA)

In some applications, performing random access can be impossible, as in the example
discussed in [12]. To address this problem, Fagin et al. propose the No Random Access
algorithm (NRA) [26], which finds the top-k answers by exploiting only sorted accesses
to the lists. NRA proceeds as follows:

1. Let pmin1 , . . . , pminm be the smallest possible values in lists L1, . . . , Lm

2. Do sorted access in parallel to lists L1, . . . , Lm and at each step do the following:

(a) Maintain the last seen local scores ls1, . . . , lsm in the m lists

(b) For each seen data item d, compute a lower bound Lb = f(v1, . . . , vm) where
vi = si(d) if d is seen under the sorted access in the list i, otherwise vi = pmini .
Also compute an upper bound Ub = f(u1, . . . , um) where ui = si(d) if d is
seen in the list i, otherwise ui = lsi. For a data item d′ that is not seen in
any list, its lower bound Lb = f(pmin1 , . . . , pminm) and its upper bound Ub =
f(ls1, . . . , lsm).

(c) Let Ak be the set of k data items with the largest lower bound values Lb seen
so far. If two data items have the same lower bound, then ties are broken using
their upper bounds such that the data item with the highest upper bound value
wins (and arbitrarily if there is a tie for the lower bound value)

(d) Let Mk be the kth largest Lb value in Ak.

3. A data item d is said viable if Ub(d) > Mk. Stop sorted access when:

(a) At least k distinct data items have been seen

(b) There are no viable data items outside Ak. That is, if Ub(d) ≤ Mk for all
d /∈ Ak

4. Return Ak.

Mamoulis et al. study the NRA algorithm in [56] under various application require-
ments. They observe that at some stage during NRA processing, it is not useful to update
the upper bounds. Instead, the updates to these upper bounds can be deferred to a later
step, or can be reduced to a much more compact set of necessary updates for more efficient
computation.

20 2. Overview of Privacy-Preserving Query Processing over Outsourced Data

2.4.4.4 Best Position Algorithm

The Best Position Algorithm (BPA) uses a threshold value which is different than that of
TA, based on the position of the data items accessed in the lists. This allows BPA to stop
processing much earlier than TA. BPA proceeds as follows:

1. Do sorted access in each of the sorted lists. For each seen data d in a list Li, do
random access in the other lists to get its local score and its position in each list.
Maintain the obtained data to be used in step 2 and compute the overall score of d.
In a set Y , maintain the k data items that have the highest overall scores calculated
so far.

2. Let Pi be the set of positions in Li which are seen under sorted or random access
in step 1. Let bpi, called best position in Li, be the greatest position in Pi such that
any position in Li between 1 and bpi is also in Pi. Let si(bpi) be the local score of
the data item which is at the position bpi in the list Li.

3. Calculate a best position overall score λ = f(s1(bp1), s2(bp2), . . . , sm(bpm)). If
Y contains k whose overall scores are greater than or equal to λ, then stop doing
sorted access to the lists. Otherwise, go to step 1.

4. Return Y .

In FA and TA, many read operations are redundant, and BPA tries to minimize those
operations. Depending on the number of lists m, BPA can be (m - 1) times faster than TA.
Furthermore, Akbarinia et al. [2] introduce the Best Position Algorithm 2 (BPA2) which
is again (m-1) faster than the first version of their best position algorithm.

2.4.4.5 Best Position Algorithm 2

The Best Position Algorithm 2 (BPA2) algorithm is based on BPA. It is much more ef-
ficient than BPA where the number of accesses to the lists done by BPA2 can be about
(m-1) times lower than that of BPA. In this algorithm, a new mode of access is defined:
direct access. Direct access allows to read the data item which is at a given position in a
list. BPA2 works as follows:

1. For each list Li, let bpi the best position in Li. Initially, set bpi = 0.

2. For each list Li and in parallel, do direct access to position (bpi + 1) in list Li. As
a data item d is seen under direct access in some list, do random access to the other
lists to find d′s local score in every list. Compute the overall score of d. Maintain
in a set Y the k seen data items whose overall scores are the highest among all data
items seen so far.

3. If a direct access or random access to a list Li changes the best position of Li, then
along with the local score of the accessed data item, return also the local score of
the data item which is at the best position. Let si(bpi) be the local score of the data
item which is at the best position in list Li.

2.4 Query Processing 21

4. Let best positions overall score be λ = f(s1(bp1), s2(bp2), . . . , sm(bpm)). If Y
involves k data items whose overall scores are higher than or equal to λ, then stop
doing sorted access to the lists. Otherwise, go to step 1.

5. Return Y .

BPA and BPA2 have the same stopping mechanism. Thus, they both stop at the same
(best) position. In addition, they see the same set of data items. However, there are two
main differences between them. The first difference is that BPA2 does not return the seen
positions to the user, it returns only the set Y (which contains at most k data items) and
the local scores of the m best positions. The second difference is that with BPA some seen
positions of a list may be accessed several times, but with BPA2 each seen position of a
list is accessed only once because BPA2 does direct access to the position which is just
after the best position and this position is always an unseen position in the list.

2.4.5 Top-k Query Processing over Distributed Data
In distributed applications and systems such as sensor networks, data streams, and peer-
to-peer (P2P) systems, data generation and storage is also distributed. Thus an emerging
challenge is to support top- k query processing in distributed systems. It is possible to
use the existing algorithms to process Top-k queries in distributed systems e.g., TA, but
this increases latency and consumes an excessive amount of bandwidth when the num-
ber nodes of the distributed system increases. Several algorithms have been proposed
to resolve this problem while reducing latency and bandwidth consumption. Cao and
al.[14] proposed Three-Phase Uniform Threshold algorithm (TPUT). It is executed in
three rounds of communication between nodes. Based on this algorithm, Yu and al.[93]
introduce three algorithms: Three-Phase Adaptive Threshold algorithm (TPAT), Three-
Phase Object Ranking based algorithm (TPOR) and Hybrid-threshold algorithm (HT).

2.4.5.1 Three-Phase Uniform-Threshold Algorithm (TPUT)

In TPUT, the authors make the assumption that the distributed system is composed of m
nodes connected to a central manager. These nodes maintain the sorted lists. TPUT pro-
ceeds in three phases, each taking one communication round between the central manager
and the nodes to be completed. First, it determines a lower-bound estimation of the kth

value. Second, it prunes away ineligible data items as much as possible using this esti-
mation. Third, it looks up the resulting set of data items in all nodes to identify the top-k
items. The detailed execution steps are the following:

Lower bound estimation of the kth value: When the central manager receives a top-
k query, it informs all the nodes. Each node responds by sending the top-k items in its
sorted list. After that and for each returned data item o, the central manager calculates its
partial sum P : P (o) = s′

1(o) + s′
2(o) + · · · + s′

m(o) where s′
i(o) = si(o) if o is returned

by the node i, and s′
i(o) = 0 otherwise. At the end of this phase, the central manager set

the lower bound τ1 called "phase-1 bottom" at the k highest partial sum.

22 2. Overview of Privacy-Preserving Query Processing over Outsourced Data

Pruning away ineligible data items: Using "phase-1 bottom", the manager fixes a
threshold T = (τ1/m) and sends it to all the nodes. Each node looks in its list for the
data items whose score value is greater than or equals to T and returns them to the central
manager. Now, the latter is sure that it has all the data items that can be in the top-k
answer set. The reason is that if a data item is not returned by any node, its score value is
less than T i.e., its aggregate value is less than τ1. Therefore, it cannot be in the top-k set.
The central manager now starts the pruning task by refining the lower bound estimated
in the previous phase. It calculates the new partial sum for all the returned data items
and sets a "phase-2 bottom" value, denoted by τ2, to the kth partial sum. It is clear that
τ1 ≤ τ2 ≤ T . Then, the manager calculates the upper bound of each returned data items
and eliminates those who have an upper bound less than τ2. The upper bound of a data
item o is calculated as follows: U(o) = u′

1(o) + u′
2(o) + · · ·+ u′

m(o) where u′
i(o) = si(o)

if o has been returned by the node i, and u′
i(o) = T otherwise. As a result of this phase,

the central manager gets the set of top-k candidates denoted by S.
Top-k data item identification. In this phase, the central manager sends the set S

to the nodes which respond by sending the local scores of the data items in S. Now, the
manager can calculate the exact global score of each data item in S and selects the top-k
results.

During the execution of the previous steps, it is remarkable that TPUT does not take
into consideration data distribution. It supposes that it is uniform among all nodes which
is not realistic due to the heterogeneous nature of distributed systems.

2.4.5.2 Three-Phase Adaptive Threshold Algorithm (TPAT)

TPAT is an extension of TPUT. It divides the "phase-1 bottom" τ1 among the nodes dif-
ferently. TPUT assumes that data item scores are uniformly distributed among nodes in
the distributed system, i.e., each node contributes approximately the same to the result
set of top-k data items. However, this assumption does not consider the case where some
nodes may have data items with larger score distributions (hot nodes) and other nodes
may have data items with smaller score distributions (cold nodes). To resolve this prob-
lem, TPAT proposes to divide τ1 among nodes according to their data distributions. It
is executed in three phases where the first and third one are the same TPUT. The only
difference is in the second phases where the uniform threshold T = τ1/m is replaced
by a set of thresholds T1, T2, . . . , Tm determined by the central manager. These thresh-
olds are calculated according to some statistics sent from the nodes. Then, the thresholds
T1, T2, . . . , Tm are sent to node1, node2, . . . , nodem, respectively. The rest of this phase is
the same as in TPUT except the upper bound calculation, which is calculated as follows:
U(o) = u′

1(o) + u′
2(o) + · · · + u′

m(o) where u′
i(o) = si(o) if o has been returned by the

node i, and u′
i(o) = Ti otherwise.

2.4.5.3 Three-Phase Object Ranking Based Algorithm

The Three-Phase Object-Ranking based algorithm (TPOR) takes into consideration the
heterogeneous nature of distributed systems without using any summary statistics (unlike

2.4 Query Processing 23

TPAT). It uses data item rankings instead of their scores to eliminate ineligible data items
which cannot be among the top-k result. TPOR has the same execution phases of TPUT,
except the second one, where the central manager broadcasts the list L of the k data items
that have the highest partial sum to all nodes. Then, each node looks for the local score
of each data item in L and determines the lowest local score Ti among all the k data
items in L. Then, it sends the list of data items that have a score value ≥ Ti to the
central manager. This central manager calculates the partial sums of all the data items
seen so far, and identifies the data items with the k highest partial sums. Let τ2 be the
kth highest partial sum called “phase-2 bottom”. Now, the central manager tries to prune
away more data items, It calculates the upper bounds of the data items seen so far as
follows Usum(O) = u′

1(o) + u′
2(o) + · · · + u′

m(o) where u′
i(o) = si(o) if o has been

returned by the node i, and u′
i(o) = Ti otherwise. Then the central manager removes data

items which have an upper bound less than τ2 from the candidate set.

2.4.5.4 Hybrid-Threshold Algorithm

In certain cases, the uniform threshold calculated by TPUT for each node to prune data
items may be very small. This results in many more data items returned from all the nodes.
Alternatively, if a data item in the list L calculated by TPOR in phase 1 ranks very low
in some nodes or even does not appear, then those nodes will send almost their entire list
to the central manager. To resolve this problem, the Hybrid-Threshold algorithm (HT) is
proposed by [57]). HT tries to combine the advantages of both TPOR and TPUT. It works
in 3 phases, with an additional patch phase executed if necessary). The first one is the
same as in TPUT. In the second phase, the central manager asks each node to send data
items whose scores are greater than or equal to a hybrid threshold, which is calculated as
the maximum of the uniform threshold T = τ1/m from TPUT and the threshold obtained
by TPOR. However, this cannot guarantee the correctness of the algorithm. It is possible
that some data items in a node whose scores are between the uniform threshold by TPUT
and the threshold by TPOR, are top-k data items. Thus, a patch phase is added in order
to make the algorithm correctly return the top-k data items. Then, the central manager
calculates the new partial sums for all the data items seen so far and identifies the data
items with the k highest partial sums. Let the kth partial sum denote τ2. The central
manager calculates Tpatch = τ2/m. After the second phase, the central manager knows
the lower bounds of the data item scores of nodes, denoted as T1, . . . , Tm. If Tpatch ≤ Ti,
the central manager sends Tpatch to node i and asks node i to send the data items whose
scores are greater than or equal to Tpatch. Since Tpatch is greater than T , calculated in the
beginning of phase 2, the total number of data items sent by HT is no greater than that of
TPUT. However, if Tpatch > Ti for every i, there is no need for this patch phase, i.e., all
top-k data item candidates have been considered.

24 2. Overview of Privacy-Preserving Query Processing over Outsourced Data

2.5 Privacy-Preserving Query Processing

To provide privacy guarantees for outsourced data in clouds, the main solution is that the
user encrypts the data before outsourcing. Several works have addressed the problem of
query processing over encrypted data. In this section, we present the main approaches
proposed for executing range queries, kNN queries, and top-k queries over encrypted
data.

2.5.1 Privacy Preserving Range Query Processing
In the literature, there are essentially three categories of techniques that have been de-
veloped for range queries: specialized data structure-based techniques, order-preserving
encryption-based techniques and Bucketization-based techniques. Popa et al. have pro-
posed an exhaustive system called CryptDB [68] that ensures SQL query processing over
encrypted data, which takes into consideration range query processing.

2.5.1.1 Specialized Data Structure-Based Techniques

To process range queries over encrypted data, several techniques [8, 45, 74, 46] have been
proposed that use special data structures such as trees, graphs, and indexes.

In [45], Li and al. propose a prefix-preserving encryption based schema (PPES) that
focuses on interval-matching or exact-matching as query conditions. Interval-matching is
defined as a boolean function f[a,b](x), which returns true if and only if x ∈ [a, b] where
x, a and b are all non-negative integers. Exact-matching is a special case of interval-
matching in which a is equal to b. PPES encrypts the whole tuple of a data item in
the database as one block: all the attribute values of a data item O are the input of the
encryption schema. Then, it associates each encrypted tuple with a number of indexing
attributes. The result of this operation (see the example illustrated in Tables 2.5 and 2.6)
is a database with one attribute representing the encrypted tuple (the attribute Enc_tuple
in Table 2.6) and additional attributes representing the indexes (ISSN , ISALARY and IDNO
in 2.6). Each plaintext tuple t(A1, . . . , An) is mapped onto a tuple t′(E(t), I1, . . . , Im)
where m ≤ n. The attribute E(t) stores an encrypted string that corresponds to the entire
plaintext tuple, and each Ii corresponds to the index over some Aj .

To construct the indexes, first, PPES transforms the interval matching into prefix-
matching. The transformation is based on the fact that an arbitrary interval can be con-
verted into a union of prefix ranges. For example, the interval [32, 111], the 8-bit binary
representation of which is [00100000, 01101111], can be represented by a set of prefixes
{001∗ , 010∗, 0110∗} where ∗ is used to denote an arbitrary suffix. Checking the mem-
bership of a number in the interval is equivalent of checking that the number matches any
of those prefixes in the set. For example, 37 (00100101 in binary) is in the interval as it
matches prefix 001∗, while 128 (10000000 in binary) is not in the interval since it matches
none of those three prefixes. PPES integrate the prefix-preserving encryption proposed in
[90]. A prefix-preserving encryption is a function Ep that for given two numbers a and

2.5 Privacy-Preserving Query Processing 25

FNAME LNAME SSN ADDRESS SALARY DNO
John Smith 123456789 731 Fordren, Storrs, CT 30000 5

Franklin Wong 333445555 638 Voss, Storrs, CT 40000 5
Alicia Zelaya 999887777 3321 Castle, Storrs, CT 25000 4

Ahmad Jabbar 987987987 980 Dallas, Storrs, CT 25000 5
James Borg 888665555 450 Stone, Storrs, CT 55000 1

Table 2.5 – Employee Database
Enc_tuple ISSN ISALARY IDNO

fjftejcCcWsGqfChXcHuRzoriODCRxvD 068764019 6488 250
tprJMmfjXJNs74fZZfL1TridemjZnWvY 277737042 45639 250
edVI8JvVSjmzXsrmDIiosZabdFnnorwy 080581877 53798 224

z4tzGJUdsyy7Eb0puESatLCXOXckVTWA 203690710 53798 250
zzdqGlqngQgwJurSqsyFrejiia6KCNMk 929644962 20577 59

Table 2.6 – Encrypted Employee Database

b that share a k-bit prefix, Ep(a) and Ep(b) also share a k-bit prefix [45]. we say that
two n-bit numbers a = a1a2 . . . an and b = b1b2 . . . bn share a k-bit prefix (0 ≤ k ≤ n),if
a = a1a2 . . . ak = b1b2 . . . bk, and ak+1 6= bk+1 when k < n.

After that, the prefix-preserving encryption generates the index as follows. If a plain-
text can take any value of a n-bit number, the entire set of plaintexts can be represented
by a complete binary tree of height n. This is called the plaintext tree (illustrated in Fig-
ure 2.7 using 4-bit plaintexts). Each node in the plaintext tree (excluding the root node)
corresponds to a bit position, indicated by the height of the node, and a bit value, indi-
cated by the direction of the branch from its parent node. A prefix-preserving encryption
function (see Figure 2.8) is defined by specifying a binary variable for each non-leaf node
(including the root node) of the plaintext tree. This variable specifies whether the en-
cryption function “flips” this bit or not. Applying the encryption function results in the
rearrangement of the plaintext tree into a ciphertext tree (see Figure 2.9).

To execute range queries over data encrypted using PPES, the query conditions in
operations (such as selects and joins) must be translated to corresponding conditions over
the cloud representation. This translation function is called Mapcond. In [45], the authors
studied the SELECT query which is transformed as follows:

attribute = value: since the prefix-preserving encryption is a one-to-one mapping,
the mapping is simply defined by Mapcond(Ai = v)⇒ Ep(Ai) = Ep(v).

attribute ≤ value (attribute ≥ value): a query condition Ai ≤ v (Ai ≤ v) is
equivalent to an interval-matching of f [vmin, v](Ai) (f [v, vmax](Ai)), where vmin (vmax)
is the lower (upper) bound of the attribute domain. The interval [vmin, v]([v, vmax])
can be converted into a union of prefix ranges, P1, P2, . . . , Pl, using interval-matching
prefix-matching transformation. Therefore, f [vmin, v](Ai) can be transformed {MP1(Ai),
MP2(Ai), . . . , MPl

(Ai)} (MPk
(Ai) denotes the boolean function, which returns true if

26 2. Overview of Privacy-Preserving Query Processing over Outsourced Data

Figure 2.7 – PPES plain-
text tree

Figure 2.8 – PPES encryp-
tion function

Figure 2.9 – PPES cipher-
text tree

and only if the value of Ai matches prefix Pk). Then, the prefix-preserving encryption can
be applied on the prefixes. Therefore, the mapping is defined as follows:

Mapcond(Ai ≤ v)⇒{MEp(P1)(Ep(Ai)) OR MEp(P2) (Ep(Ai)) OR . . . OR
MEp(Pl)(Ep(Ai))}.

When the cloud receives this query, it executes it over the encrypted data. The results
will be transmitted to the client. The client then can get the query results by applying the
decryption function.

There are some other works that create indexes to perform range query processing
over encrypted data, e.g., [46, 70]. For example, in [46], the authors propose a query
processing schema that achieves index indistinguishability under the indistinguishability
against chosen keyword attack (IND-CKA) i.e. this schema ensures that no information
regarding to the keywords is leaked from the index. They propose to organize all indexing
elements in a complete binary tree where each node is represented using a Bloom filter.
The tree is called a PBtree (where “P” stands for privacy and “B” stands for Bloom filter).
PBtrees allows to achieve index indistinguishability with two important properties. The
first one is structure indistinguishability, that is, two sets of data items have the same
PBtree structure if and only if the two sets have the same number of data items. Thus, the
structure of PBtree of a set of data items is determined solely by the set cardinality, not the
value of data items. The second property is node indistinguishability, that is, for any two
PBtrees constructed from data sets of the same cardinality, which have the same structure,
and for any two corresponding nodes of the two PBtrees, the values of the two nodes are
not distinguishable. Thus, the proposed schema prevents an adversary from performing
statistical analysis on the index even with domain knowledge.

2.5.1.2 Order-Preserving Encryption-Based Techniques

Order-preserving encryption (OPE) allows databases and other applications to process
queries involving order (e.g., range queries), over encrypted data efficiently. OPE not only
allows efficient range queries, but also allows indexing and query processing to be done

2.5 Privacy-Preserving Query Processing 27

exactly and as efficiently as for plaintext data. To process a range query, it is sufficient to
send the encryption of a and b (the bounds of the range query) to the cloud who locates the
two ciphertexts in logarithmic-time via standard tree-based data structures, and returns all
encrypted data between the two ciphertexts.

The ideal security goal for an order-preserving scheme is to reveal no additional infor-
mation about the plaintext values besides their order (which is the minimum needed for
the order-preserving property).

A number of order-preserving encryption schemes have been proposed in the literature
[1, 7, 49, 67]. Nevertheless, the security of these schemes is still under discussion [88]
because the order of the data is disclosed.

Agrawal et al. [1] introduce the concept of order-preserving encryption. Their encryp-
tion scheme allows any comparison operation to be directly applied on encrypted data. It
supports equality and range queries such as MIN, MAX, COUNT, GROUP BY and OR-
DER BY over encrypted data. SUM or AVG operations to a group is not supported by
this scheme where the values need to be decrypted in order to get the result. The authors
of [1], first, transform the plaintext database into a flat database such that the values are
uniformly distributed. This flat database is then transformed into the cipher database such
that the data values are distributed according to the targeted distribution. The transfor-
mation of the database is performed by splitting it in several buckets and by using linear
interpolation inside every bucket. The drawback of this method is that it must take as in-
put all the plaintexts in the database in advance, which is not always practical in real-life
applications.

Boldyreva et al. [7] have shown that indistinguishability against chosen-plaintext at-
tack (IND-OCPA) is unachievable by any OPE scheme with stateless encryption and im-
mutable ciphertexts. A chosen-plaintext attack is an attack model which presumes that
the attacker can obtain the ciphertexts for arbitrary plaintexts. The goal of the attack is to
gain information that reduces the security of the encryption scheme. The authors propose
an efficient OPE scheme on the basis of a sampling algorithm for the hypergeometric
probability distribution. As IND-OCPA is unachievable for this scheme, they propose
a security notion of a random order-preserving function (ROPF) and related primitives
asking that an OPE scheme will look "as-random-as-possible" subject to the order pre-
serving constraint. The encryption algorithm of the scheme in [7] behaves similarly to an
algorithm that samples a ROPF from a specified domain on-the-fly.

Popa et al. propose the first order-preserving scheme that achieves ideal security.
Their basic idea is mutable ciphertexts, which means that over time, the ciphertexts for a
small number of plaintext values change. They prove that mutable ciphertexts are needed
for ideal security.

Liu and al. in [49] introduce a programmable order-preserving scheme which is secure
and easy to use. The architecture in which this scheme is used is composed of: (1) trusted
side represented by the query proxy and the user application and (2) an untrusted side
represented by the cloud. The scheme is built over the simple linear expressions of the
form a×x+b = v where x is the input value and v its index. The form of the expressions is
public, however the coefficients a and b are kept secret (known only by the query proxy)

28 2. Overview of Privacy-Preserving Query Processing over Outsourced Data

I ::= rindexsens[a,b] (v) | S; rindexsens[a,b] (v)
S ::= skindexsens[a,b] (v) | if C then S1 else S2 | S1;S2
C ::= gt(c) | ge(c)

Figure 2.10 – Indexing Program Syntaxe

and a must be greater than 0. This basic indexing scheme is secure against ciphertext
only attacks while the attacker do not know a, b and any input values. But if the attacker
gets some input values of some indexes for example x1 and x2 with indexes v1 and v2, she
could recover a and b by solving two linear equations a×x1 +b = v1 and a×x2 +b = v2.
To resolve this vulnerability, the authors propose to add some random noise to each index
as follows: a×xi+ b+noisei. Based on this idea, they develop an indexing program that
allows different input values to be indexed by different linear indexing expressions and
allows indexes to be indexed again (like the Triple Data Encryption Algorithm (3DES)
algorithm, which applies the Data Encryption Algorithm (DES) one of the most widely
used cryptographic algorithms three times to each ciphertext).

To describe the indexing program, the following terms must be defined: sensitivity,
randomized index and sensitivity-keeping index.

Definition 1. Let V be the set of all input values. The sensitivity of V denoted by sens is
the minimum element in the set {|v1 − v2||v1 ∈ V, v2 ∈ V, v1 6= v2}. .

Definition 2. Given the sensitivity sens of input values V, the randomized index of value
v ∈ V denoted rindexsens[a,b] (v) is a × v + b + noise, where a > 0 and noise is randomly
sampled from the range [0, a× sens). denoted

Definition 3. Given the sensitivity sens of input values V ,if a > 1, then the sensitivity-
keeping index of value v ∈ V denoted skindexsens[a,b] (v) is a× v + b + noise, where noise
is randomly sampled from the range [0, a× sens− sens]

The indexing program I has the syntax shown in Figure 2.10. It can be either rindexsens[a,b]
or has the form S; rindexsens[a,b] , where S is the composition of sensitivity-keeping index-
ing expressions. S can be a basic sensitivity-keeping indexing expression skindexsens[a,b] , a
conditional indexing expression, or a sequential composition of expressions. In the condi-
tional indexing expression, C means a condition, which can be gt(c) or ge(c), where c is a
constant. The semantics of indexing programs is defined as follows. Suppose v is an input
value. Then, I(v) means the application of I to v, generating v’s index. If I is rindexsens[a,b] ,
then I(v) = rindexsens[a,b] (v). If I is S; rindexsens[a,b] , then I(v) = rindexsens[a,b] (i), where
i = S(v). The semantics of indexing steps S is defined inductively. If S is skindexsens[a,b]
then S(v) = skindexsens[a,b] (v). If S is the conditional indexing step, then S(v) = S1(v)
if v makes the condition C true; otherwise, S(v) = S2(v). The condition C is gt(c) or
ge(c). The condition gt(c) is true if v > c, and ge(c) is true if v ≥ c.If S is a sequential
composition of steps, then S(v) = S2(i), where i = S1(v).

2.5 Privacy-Preserving Query Processing 29

An indexing program is said well-formed if it is order-preserving. Since in an indexing
program the basic indexing expressions skindex and rindex are already order-preserving,
it is order-preserving if all conditional indexing expressions are also order-preserving. For
any conditional indexing expression if C then S1 else S2, where C is gt(c) or ge(c), it is
order-preserving if S1(c) ≥ S2(c). This condition also makes sure there is no overlap
among indexes generated by S1 and S2.

The programmability of indexes increases the robustness of our index scheme in two
aspects. First, input values can be indexed by multiple linear expressions, making brute-
force attacks harder. Second, the distribution of indexes can be decoupled from the distri-
bution of input values, making it harder to estimate the range of input values according to
the positions of indexes.

2.5.1.3 Bucketization-Based Techniques

Bucketization is useful technique for range query processing over encrypted data. It is
based on partitioning the attribute domain of an attribute in a relational database into a
set of buckets. Each of them is identified by a tag. The set of tags construct an index
used later by the cloud to process the queries. There are several methods for partitioning
the values of an attribute, for instance, by dividing the attribute domain to almost equal
intervals or creating partitions with equal sizes [32, 36, 35, 43].

Hacigumus et al. [32] proposed the bucketization-based data representation for query
processing in Database as a Service model. They develop a technique to split an original
query over plaintext relations into 1) a corresponding query over encrypted relations to be
run in the cloud; 2) a client query for post-processing results returned by the cloud. To
achieve this transformation, they develop an algebraic framework for query rewriting over
encrypted representation. For the encryption and storage data, the authors propose that,
for each relation R(A1, A2, . . . , An), where Ai represents attribute i in the the relation R,
they store in the cloud an encrypted relation RS(etuple, AS1 , AS2 , . . . , ASn), where etuple
is an encrypted string that corresponds to a tuple in the relation R and ASi correspond to
the index of the attribute Ai. For data partitioning, they split the domain of an attribute Ai
into partitions such that these partitions taken together cover the whole domain, and any
two partitions do not overlap. This partitioning step is similar to those used for histogram
construction, equi-depth, equi-width partitioning, etc. Then, they assign a random (index)
tag to each bucket effectively making every element within a bucket indistinguishable
from another. When a query is issued by the client, first, it is determined which buckets
intersect the query using the index tag stored on the client (this is typically a small amount
of information) and all contents of the intersecting buckets are retrieved from the cloud.
The disadvantage is that the query result almost consists of false positives, which have
to be eliminated by the client in the post-processing phase. Unfortunately, this proposed
bucketization method [32] is not optimal for minimizing false positives.

Hore et al. [35] study the problem of supporting an important class of multidimen-
sional range queries over relational data in a privacy-preserving manner. They propose
an approach that computes a secure indexing tag of the data by applying a bucketization

30 2. Overview of Privacy-Preserving Query Processing over Outsourced Data

technique, which prevents the cloud from learning exact values of the database data items.
In their approach, they assume that the data is encrypted at the row level, i.e. each row
of the table is encrypted as a single unit, which we will refer to as an e-tuple (the same
encryption technique used in the the previous cited work of Hacigumus et al. [32]). The
bucketization algorithm consists of two phases. First, bucket creation, it starts with a sin-
gle bucket and greedily generates a new one in each iteration until the specified number of
buckets is formed. The resulting buckets are called "optimal" buckets. The second phase
is called controlled diffusion. It re-distributes the data contained in the optimal buckets
into a new set of buckets called "composite" buckets such that the average entropy and
variance of the sensitive attribute’s value distribution is substantially increased. The re-
sulting set of composite buckets are approximately equi-depth buckets and form the final
bucketized representation of the client data on the cloud. To retrieve the data elements in
response to a range query q, first, the client computes the query overlap with the optimal
buckets (denoted as q(B)) and then determines the composite buckets that contain at least
one element from any bucket in q(B), which are then requested from the cloud.

2.5.1.4 CryptDB

CryptDB [68] is a relational database system that provides privacy. It executes SQL
queries over encrypted data using a collection of efficient SQL-aware encryption schemes.
CryptDB is developed to address two threats. The first threat is a curious administrator
who tries to learn private data (i.e., honest-but-curious model). The second threat is an
adversary that gains complete control of application and DBMS servers.

CryptDB system is composed of two main components:

• A proxy that stores the database schema, the current encryption layers of all columns
and a secret master Key. It is responsible of all encryption and decryption opera-
tions, and rewriting queries by changing some operators while preserving query
semantics,

• A database management system (DBMS) server which stores the encrypted user
data, some auxiliary tables (used during the query processing) and the anonymized
database schema.

CryptDB equips the DBMS server with CryptDB-specific user-defined functions (UDFs)
that enable it to compute certain operations applied over ciphertexts. The DBMS server
never sees sensitive data because it never receives decryption keys in plaintext. This pre-
vents a curious database administrator (DBA) from access to the sensitive data.

CryptDB query processing is done in four steps:

1. When the proxy receives a query issued by the application user, it anonymizes each
table and column name contained in the query, and encrypts each constant in the
query using the master key MK and the best-suited encryption scheme for the de-
sired operation. CryptDB uses some operations of existing crypto systems: Ran-
dom(RND), Deterministic (DET), Order Preserving Encryption (OPE) and Homo-

2.5 Privacy-Preserving Query Processing 31

morphic Encryption (HOM), in addition to a new cryptographic primitive for joins
[68].

2. The proxy verifies if it must give keys to the DBMS server in order to adjust en-
cryption layers before executing the query. If so, it issues an UPDATE query at the
DBMS server that invokes a UDF to adjust the encryption layer of the appropriate
columns. The proxy sends the encrypted query to the DBMS server.

3. When the DBMS server receives the query, it executes it using standard SQL (oc-
casionally invoking UDFs for aggregation or keyword search).

4. The proxy intercepts the query result from the DBMS server ,decrypts it and returns
the plaintext result to the application user.

CryptDB aims to preserve user data privacy not integrity. If an adversary (or mali-
cious DBA) compromises the DBMS server or the proxy, she can then modify or delete
the encrypted data. Also, this system is not completely secure since it uses some weak
encryption schemes (e.g., order-preserving encryption).

2.5.2 Privacy Preserving Knn Query Processing
In the literature, many techniques have been proposed for secure kNN query processing.
We classify these techniques into two categories: centralized and distributed.

Centralized techniques. Several methods are proposed to secure kNN query pro-
cessing in centralized systems such as [37, 86, 92, 96]. Wong et al. [86] proposed a new
encryption scheme called Asymmetric Scalar-Product-preserving Encryption (ASPE) that
preserves the scalar product between the query vector (q) and any tuple vector (ti) from
the database (D) for distance comparison, which is sufficient to find kNN. Both the data
and query are encrypted using slightly different encryption schemes before outsourcing to
the cloud, and all the users know the decryption key. As an improvement, Zhu et al. [96]
propose a novel secure kNN method in which the encryption key of the data owner is not
disclosed to the users so the data owner participates in query encryption. Each user would
like to find out the kNN of her private query point q without disclosing any privacy to data
owner and cloud. Before being submitted to the cloud for kNN computation, the query
point will be encrypted in a collaborative manner between the user and the data owner
such that only the user obtains the encrypted query q′. The data owner cannot reveal her
key to the user because Zhu et al. suppose that the user is not trustworthy enough and she
may reveal her knowledge about the key to the adversary (the cloud in this work) or it will
seriously violate the business secret and privacy. When the cloud recieves the encrypted
query q′, executes it without learning anything about the original query point.

As an alternative, Hu et al. [37] propose a holistic and efficient solution that is based
on Privacy Homomorphism (PH) [21]. PH is an encryption transformation that maps a set
of operations on plaintext to another set of operations on ciphertext. In essence, PH sup-
ports modular addition, subtraction, and multiplication over encrypted data and enables

32 2. Overview of Privacy-Preserving Query Processing over Outsourced Data

complex computations (such as distances) based solely on ciphertext, without decryp-
tion. The authors of [37] integrated a provably secure PH seamlessly with a generic index
structure to develop a framework that evaluates various types of complex queries, such
as kNN queries. Recently, Yao et al. [92] propose a new secure kNN method based on
partition-based Secure Voronoi Diagram (SVD). Instead of asking the cloud to retrieve the
exact kNN, it is asked to return a relevant encrypted partition (E(G) for E(D)) such that
G is guaranteed to contain the k-nearest neighbors of q. This solves the SkNN problem
accurately by letting the cloud retrieve the k-Nearest Neighbors of q (in encrypted form).

Most of the computations during the query processing step in [37, 92, 96] are per-
formed locally by the end-user, which conflicts with the purpose of database outsourcing
model.

Distributed techniques. In these methods, the data is partitioned either vertically or
horizontally and distributed among a set of independent, non-colluding parties. Many
attempts have been made to secure kNN query processing in a distributed environment.
Shaneck et al. [73] propose a privacy-preserving algorithm to perform k-Nearest Neigh-
bor search. The algorithm in privacy-preserving nearest neighbor search [73] is based
on Secure Multiparty Computation (SMC) for privately computing kNN points in a hor-
izontally partitioned dataset (i.e. each party has a collection of data for the same set of
attributes, but for different entities). In SMC, there are n parties noted by (P1, . . . , Pn)
who hold private inputs (a1, . . . , an). An SMC protocol allows (P1, . . . , Pn) to collabo-
ratively compute a function f on inputs (a1, . . . , an) without disclosing ai to Pj , where
1 ≤ i, j ≤ n and i 6= j. To achieve that, the participating parties have to exchange
messages and perform some local computations until all the parties get the desired out-
put. The algorithm proposed in [73] is composed of two main parts. The first computes
a superset of the nearest neighborhood and the second one reduces this set to the exact
nearest neighbor set.

Ghinita et al. [29] propose a private information retrieval (PIR) based framework
for answering kNN queries in location-based services (LBS). LBS are services offered
through a mobile phone and take into account the device’s geographical location. They
typically provide users with useful information about restaurants, coffee shops, stores,
concerts, and other places or events which are in a specific geographical area. PIR allows
users to retrieve a data itemXi from a setX = Xi, Xi, . . . , Xn stored in the cloud without
revealing i to the cloud. This solution, however, protects only the query privacy (i.e. it
does not address data privacy and access pattern issues). Note that, in private queries
in location-based services [29], the data residing in the cloud are in plaintext format.
However, if the data is encrypted to ensure data privacy, it is not clear how a user can
obliviously retrieve the output tuples because she does not know the indices that match
his input query.

Note that the above data distribution methods are applicable to perform kNN queries
over partitioned data in plaintext format among different parties and not over encrypted
data. Yousef et al. [24] propose a protocol for computing k-NN on encrypted data. They
use Paillier encryption [61] as the underlying cryptographic tool. Paillier encryption is
additive homomorphic. Using this property, they developed protocols which compute k-

2.5 Privacy-Preserving Query Processing 33

NN securely in the cloud. Their solution provides very strong security guarantees and is
able to hide the data access pattern as well. However, such security comes at the cost of
performance.

Manish et al. [39] introduced a new protocol for computing k-NN on encrypted data
in the two-party honest-but-curious cloud model. In this model, two non-colluding pub-
lic cloud clouds voluntarily collaborate with each other to exchange resource and share
computing. The proposed protocol is asymptotically faster than the protocol proposed
by Youcef et al. [24], without compromising on strong security guarantees. They use
LFHE (leveled fully homomorphic encryption) [11], a variant of homomorphic encryp-
tion that supports arbitrary functions, and compute squared Euclidean distances directly
on encrypted data. In order to compute the ranking among distances, they transform the
distances suitably to preserve their order and offload the comparison to a public cloud,
which has the secret keys. Since this cloud has access only to transformed results of
computations performed on plaintext data, they show that in spite of this knowledge, this
honest-but-curious cloud does not learn anything useful about the original database, the
results, or the query.

Here, we highlight that the KNN problem should not be confused with the top-k prob-
lem in which the given scoring function plays an important role, such that on the same
database and with the same k, if the user changes the scoring function, then the output may
change. Thus, the proposed solutions proposed for kNN cannot be used for processing
the top-k queries over encrypted data.

2.5.3 Privacy Preserving Top-k Query Processing
Almost all the protocols proposed to preserve the privacy during top-k query processing
[81, 82, 13] are based on using the secure multiparty computation techniques (SMC) over
plaintext data. To the best of our knowledge, [87] is the only work that introduces a
solution for top-k query processing over encrypted data.

Vaidya and Clifton [81, 82] study the problem of finding the top-k matching items
over vertically-distributed private data. They assume k parties,P1, . . . , Pk, each party
has access to a separate database that gives information about different features. Data is
collected for the same set of entities. Also, they make the assumption that none of the
parties trust each other completely, privacy concerns prevent them from disclosing scores
or local ordering of the entities. Their proposed protocol is based on Fagin’s algorithm
[27] described in Section 2.4.4.1. During the sorted access phase, a mechanism is used
to check if there are at least k data items in common to all the parties, as well as giving
the union of the sets without revealing the effective order of the data items at any party
or even revealing which data item came from which party. Then, each party performs the
random access phase independently. In the computation phase, the parties first partially
compute scores such that two parties are left with (random) shares of the score for each
data item. These two parties then identify a cutoff score that separates the kth item from
those below it. This performs a binary search for the appropriate threshold using secure
comparisons to guide the search without revealing the score of individual items. As a final

34 2. Overview of Privacy-Preserving Query Processing over Outsourced Data

step, the parties can (securely) compare each item with the score to determine if it is in
the top-k set or not.

Xiong et al. [89] introduce an algorithm for finding the k largest values among par-
ties holding private sets of values. The protocol preserves privacy in a probabilistic way
by randomizing values before distributing them among parties and avoids using crypto-
graphic primitives.

Burkhart et al. [13] proposed two SMC protocols tailored for the problem of pre-
serving the privacy of top-k queries over distributed data: 1) Privacy-Preserving Top-K
protocol (PPTK) and 2) Privacy-Preserving Top-K protocol by using Sketches protocol
(PPTKS). In the two protocols, the authors assume the existence of two types of parties:
n input parties (IN) and m computation parties (CN). The INs are the parties that want
to compute the top-k items over their datasets. The CNs help the INs by performing
private computations. Each IN locally holds a set of items. An item is defined by an
identifying key and a corresponding value. The goal of the protocols is to compute the k
items with the biggest aggregate values over all input sets, without disclosing information
about non-top-k items. The aggregate value of an item is simply the SUM of its local
values. Also, the protocols should not reveal which INs contribute to a top-k item. With
the PPKT protocol, parties put keys into a local hash table to produce a compact repre-
sentation of a possibly large and sparse space of keys, such as the space of IP addresses.
Then, they use SMC primitives (see Table 2.7) to aggregate the local hash tables, resolve
collisions, and estimate the top-k key-value pairs. The main idea is that SMC operations
are applied to fixed-length hash tables, and this reduces the computational overhead by
avoiding expensive key comparison operations. PPTKS extends PPTK using multiple
hash tables, i.e., sketches, to reduce the number of collisions experienced by top-k keys
and to further improve the estimation accuracy of PPTK.

Xianrui et al. [87] propose a solution for processing top-k queries over encrypted data.
In their solution, the data owner encrypts the database using some probabilistic encryption
scheme before outsourcing it to the cloud. The authors assume the existence of two differ-
ent non-colluding semi-honest clouds, S1 and S2, where S1 stores the encrypted database
and S2 holds the secret keys and provides the crypto services. They refer to the cloud S2
as CryptoCloud and assume that S2 resides in the cloud environment and is isolated from
S1. The two nodes S1 and S2 do not trust each other, and thus, have to execute secure
computations over encrypted data. The Crypto Cloud S2 is equipped with a cryptographic
processor, which stores the decryption key. For top-k query processing, they proposed an
algorithm called SecQuery which is based on NRA algorithm [26] (described in Section
2.4.4.3). SecQuery runs two protocols, EncSort [6] and EncCompare [10], position
by position in the sorted lists then S1 computes the worst/best scores based on the items
at each position with the collaboration of S2. Then, S1 has to update the complete list
of encrypted items seen so far with their global worst/best scores. At the end, node S1
reports k encrypted data items without learning any data item or its scores. At the end
of the protocol, the data item ids can be reported to the client. There are two options to
return the data items to the client: either the encrypted records are retrieved and returned
to the client, or the client retrieves the records using a secure scheme.

2.6 Conclusion 35

Name Syntax Output Description

sharing share(s) [s]

A secret value s held by an IN is split up in
m shares si. Each si is then distributed to
CN i. The ensemble of all distributed shares
{s1, . . . , sm} is called a sharing of s and
denoted by [s].

reconstruction recon([s]) s
The individual shares of a sharing [s] are
combined to reconstruct the secret value s.

addition [a] + [b], [a] + b [a+ b]

Adds two sharings (or a sharing and a public
value) to get a sharing of the SUM. This also
includes subtraction (’-’).

multiplication [a]× [b], [a]× b [a× b]
Multiplies two sharings (or a sharing and a
public value) to get a sharing of the product.

equal
aqual([a], [b]),
equal([a], b)

if (a == b)
then [1]
else [0]

Two sharings (or a sharing and a public
value) are compared for equality. The output
remains secret.

less-than
lessThan([a], [b]),
lessThan([a], b)

if (a < b)
then [1]
else [0]

Two sharings (or a sharing and a public
value) are compared for size. The output
remains secret.

Table 2.7 – SMC primitives required for PPKT and PPKTS protocols

2.6 Conclusion
In this chapter, we first introduced database outsourcing and query processing over out-
sourced plaintext data. Then, we discussed the different techniques used to ensure the
privacy of the data while querying them. We presented in more detail the existing so-
lutions for range query processing over encrypted data and the proposed techniques to
secure kNN search query and top-k query processing.

In this thesis, we address the problem of top-k query processing over encrypted data.
In the best of our knowledge, and as we saw in Section 2.5.3, there is no efficient solution
to process top-k query processing over encrypted data except the one of Meng et al. [87].
As we will see in the next chapter, the assumptions that they make in the architecture
of their system is different from ours. They assumes the existence of two different non-
colluding semi-honest clouds, S1 and S2, where S1 stores the encrypted database and
S2 holds the secret keys and provides the crypto services. The two clouds belong to
two different cloud providers and do not trust each other; therefore, they have to execute
secure computations on encrypted data. Our assumptions are different, We use one cloud
to only store the encrypted database and to process the top-k query processing algorithm
over the encrypted data because we the cloud in our contributions is not trusted.

Chapter 3

Top-k Query Processing over
Centralized Encrypted Data

3.1 Introduction

Data encryption is the most efficient technique to protect data and ensure their privacy
in the cloud. However, this technique a big challenge which is: How to answer the user
queries over encrypted data. A naive solution is to retrieve the encrypted database from
the cloud to the client, decrypt it, and then evaluate the queries over plaintext (non en-
crypted) data. This solution is inefficient, because it does not take advantage of the cloud
computing power for evaluating queries.

In this chapter, we consider the case where the encrypted data items are stored in
one node of the cloud. Then, we propose a novel system, called BuckTop [52, 51], to
answer top-k queries over encrypted data in the cloud. BuckTop is designed to encrypt
and outsource user sensitive data to the cloud. It comes with a top-k query processing
algorithm that is able to process efficiently top-k queries over the encrypted data, without
decrypting them in the cloud data centers.

This chapter is organized as follows. Section 3.4 presents a basic solution called
OPE-based approach. It is based on Order Preserving Encryption. In Section 3.5, we
introduce our main contribution in this chapter: BuckTop. We describe the its top-k query
processing and false positive filtering algorithms. Section 3.6 describes our performance
evaluation. Finally, Section 3.7 concludes.

3.2 Motivation

Cloud data outsourcing provides users and companies with powerful capabilities to store
and process their data in third-party data centers. However, when a user stores her data in
a public cloud, she loses the physical access control to the data. Thus, potentially sensitive
data gets at risk of security attacks, e.g., from the employees of the cloud provider. Ac-
cording to a recent report published by the Cloud Security Alliance [19], security attacks

37

38 3. Top-k Query Processing over Centralized Encrypted Data

are one of the main concerns for the cloud users.
Top-k query processing over encrypted data is critical for many applications that out-

source sensitive data. For example, consider a university that outsources the students
database in a public cloud, with non-trusted nodes. The database is encrypted for pri-
vacy reasons. Then, an interesting top-k query over the outsourced encrypted data is the
following: return the k students that have the worst averages in some given courses.

There are many different approaches for processing top-k queries over plaintext data.
One of the best known approaches is TA (threshold algorithm) [27] that works on sorted
lists of attribute values. TA can find efficiently the top-k results because of a smart strategy
for deciding when to stop reading the database. However, TA and its extensions assume
that the attribute values are available as plaintext.

To the best of our knowledge, Meng et al [87] propose the only solution for processing
top-k queries over encrypted data. They assume the existence of two non-colluding nodes
in the cloud, one of which can decrypt the data (using the decryption key) and execute
a TA-based algorithm. Our assumptions about the cloud are different, as we do not trust
any node of the cloud.

In this chapter, we propose a basic approach called OPE-based that preserve the data
privacy while preserving top-k queries in clouds. It uses a combination of the order pre-
serving encryption (OPE) and the FA algorithm for privacy preserving top-k query pro-
cessing. Then, we propose a complete system, called BuckTop, the first efficient approach
for processing top-k queries over encrypted data. We call it BuckTop, as it uses the buck-
etization technique to manage the encrypted data in the server. This chapter includes the
following contributions:

• A new top-k query processing algorithm that, given a database of encrypted data
stored in buckets, returns a set, which is proved to contain the encrypted data cor-
responding to the top-k results.

• A novel powerful filtering algorithm that significantly filters in the server the false
positives included in the set of encrypted data returned by the top-k query process-
ing algorithm. We prove theoretically the correctness of the filtering algorithm.

3.3 Problem Definition
In this section, we first describe the adversary model which we consider, then we state the
problem of processing top-k queries over encrypted data in the cloud.

3.3.1 Adversary Model
An adversary model generally specifies what an adversary or attacker is allowed to do
during an execution of a secure protocol. In our work, we consider the honest-but-curious
adversary model for the cloud. This model is widely used in many solutions proposed for
secure processing of the different queries [46].

3.4 OPE-Based Approach 39

3.3.2 Problem Statement
Let us now formally state the problem which we address. Let D be a database, and E(D)
be its encrypted version such that each data c ∈ E(D) is the ciphertext of a data d ∈ D,
i.e., c = Enc(d) where Enc() is an encryption function. We assume that the database
E(D) is stored in one node of the cloud.

Given a number k and a scoring function f . Like many previous works on top-k query
processing (e.g., [27]), we assume that the scoring function is monotonic. our goal is to
develop an algorithm A, such that when A is executed over the database E(D), its output
contains the ciphertexts of the top-k results.

A naive approach for top-k query processing over the encrypted database E(D) is to
retrieve it from the cloud, decrypt all of its data, run an existing top-k algorithm over
the plaintext data, and return the top-k results to the user. However, this approach is
impractical, particularly for very large databases.

3.4 OPE-Based Approach
In this section, we propose a basic approach, called OPE-based, that uses a combina-
tion of the order preserving encryption (OPE) [1] and the FA algorithm [25] for privacy
preserving top-k query processing.

3.4.1 Data Encryption
Let us first explain how the local scores are encrypted. With the OPE-based approach, the
local scores (attribute values) in the sorted lists are encrypted using the order preserving
encryption technique. We also use a deterministic encryption method for encrypting the
ID of data items. The deterministic encryption generates the same ciphertexts for two
equal inputs. This allows us to do random access to the encrypted sorted lists by using the
ID of data items.

After encrypting the data IDs and local scores in each sorted list, the lists are sent to
the cloud. Notice that all we need is that the lists in the cloud be sorted in the same order
they were before encryption.

3.4.2 Top-k Query Processing
Let us now describe how top-k queries can be answered in the cloud over the encrypted
data. Given a top-k query Q with a scoring function f , the query is sent to the cloud.
Then, the cloud uses the FA algorithm for processing Q as follows. It continuously per-
forms sorted access in parallel to each sorted list, and maintains the encrypted data IDs
and their encrypted local scores in a set Y . When there are at least k encrypted data IDs
in Y such that each of them has been seen in each of the lists, then the cloud stops doing
sorted access to the lists. Then, for each data item d involved in Y , and each list Li, the
cloud performs random access to Li to find the encrypted local scores of d in Li (if it

40 3. Top-k Query Processing over Centralized Encrypted Data

has not been seen yet). The cloud sends Y to the user machine which decrypts the local
scores of each item d ∈ Y , computes their overall scores, and find the final k items with
the highest overall scores.

Theorem 1. Given a top-k query with a monotonic scoring function, the OPE-based
approach returns a set that includes the encrypted top-k elements.

Proof. Let Y be the set of data items, which have been seen by top-k query processing
algorithm in some lists before it stops. Let Y ′ ⊆ Y be set of data items that have been
seen in all lists. Let d′ ∈ Y ′ be the data item whose overall score among the data items in
Y ′ is the minimum. In each list Li, let s′

i be the real (plaintext) local score of d′ in Li.
We show that any data item d, which has not been seen by the algorithm under sorted

access, has an overall score that is less than or equal to that of d′. In each list Li, let
si be the plaintext local score of d in Li. Since d has not been seen by the top-k query
processing algorithm, and the encrypted data items in the lists are sorted according to their
initial order, we have si ≤ s′

i, for 1 ≤ i ≤ m. Since, the scoring function f is monotonic,
then we have f(s1, ..., sm) ≤ f(s′

1, ..., s
′
m). Thus, the overall score of d is less than or

equal to that of d′. Therefore, the set Y contains at least k data items whose overall scores
are greater than or equal to that of the unseen data d.

3.5 BuckTop System
The OPE approach, presented in the previous section, evaluates correctly the top-k queries
over encrypted data. But, as shown by our experiments reported in Section 3.6, there may
be a high number of false positives which are sent from the cloud to the client, and this
renders OPE inefficient in practice. This is why, we propose the BuckTop approach which
is much more efficient than OPE.

In this section, we present our BuckTop system. We first describe the architecture of
BuckTop, and introduce our method for encrypting the data items and storing them in the
cloud. Afterwards, we propose an algorithm for processing top-k queries over encrypted
data, and an algorithm for filtering the false positives in the cloud.

3.5.1 System Architecture
The architecture of BuckTop system is shown in Figure 3.1, it has two main components:

• Trusted client. It is responsible for encrypting the user data, decrypting the re-
sults and controlling the user accesses. The security keys used for data encryp-
tion/decryption are managed by this part of the system. When a query is issued by
a user, the trusted client checks the access rights of the user. If the user does not
have the required rights to see the query results, then her demand is rejected. Oth-
erwise, the query is transformed to a query that can be executed over the encrypted
data.

3.5 BuckTop System 41

Figure 3.1 – BuckTop system architecture

For example, suppose we have a relation R with attributes att1, att2,. . . , attm, and
the user issues the following query:

SELECT * FROM R ORDERED BY f(att1, . . . , attm) LIMIT k;

This query is transformed to:

SELECT * FROM E(R) ORDERED BY F (E(att1),. . . , E(attm)) LIMIT k;

where E(R) and E(atti) are the encrypted name of the relation R and the attribute
atti respectively.

Note that the trusted client component should be installed in a trusted location, e.g.,
the machine(s) of the person/organization that outsources the data.

• Service provider. It is installed in the cloud, and is responsible for storing the
encrypted data, executing the queries provided by the trusted client, and returning
the results. Note that this component does not keep any security key, and it cannot
decrypt the encrypted data in the cloud.

3.5.2 Data Encryption
Let us now present our approach for encrypting and outsourcing the data to the cloud. As
mentioned before, the trusted client component of BuckTop is responsible for encrypting
the user databases. Before encrypting a database, the trusted client creates sorted lists for
all important attributes, i.e., those that may be used in the top-k queries. Then, each sorted
list is partitioned into buckets. There are several methods for partitioning a sorted list, for
example dividing the attribute domain of the list to almost equal intervals or creating
buckets with equal sizes [35]. In the current implementation of our system, we use the

42 3. Top-k Query Processing over Centralized Encrypted Data

latter method, i.e., we create buckets with almost the same size where the bucket size is
configurable by the system administrator.

Let b1, b2, ..., bt be the created buckets for a sorted list Lj . Each bucket bi has a lower
bound, denoted by min(bi), and an upper bound, denoted by max(bi). A data item d is
in the bucket bi, if and only if its local score (attribute value) in the list Lj is between the
lower and upper bounds of the bucket, i.e., min(bi) ≤ sj(d) < max(bi).

We use two types of encryption schemes (methods): deterministic encryption to en-
crypt the data item ids and probabilistic encryption to encrypt the local scores in the sorted
lists. The deterministic encryption allows us to have the same encrypted ID for each data
item in all sorted lists.

With the probabilistic encryption, for the same plaintexts different ciphertexts are
generated, but the decryption function returns the same plaintext for them. Thus, for
example if two data items have the same local scores in a sorted list, their encrypted
scores may be different. The probabilistic encryption is the strongest type of encryption.

After encrypting the data IDs and local scores of each list Li, the trusted client puts
them in their bucket (chosen based on the local score). Then, the trusted client sends the
buckets of each sorted list to the cloud. The buckets are stored in the cloud according to
their lower bound order. However, there is no order for the data items inside each bucket,
i.e., the place of the data items inside each bucket is chosen randomly. This prevents the
cloud to know the order of data items inside the buckets.

3.5.3 Top-k Query Processing
The main idea behind top-k query processing in BuckTop system is to use the bucket
boundaries to decide when to stop reading the encrypted data from the lists.

Given a top-k query Q including a number k and a scoring function f . To answer Q,
the following top-k processing algorithm is executed by the cloud service provider:

1. Let Y be an empty set;

2. Perform sorted access to the lists:

2.1 Read the next bucket, say bi, from each list Li (starting from the head of the
list);

2.2 For each encrypted data d contained in the bucket bi:

2.2.1. Perform random access in parallel to the other lists to find the encrypted
score and the bucket of d in all lists;

2.2.2. Compute a minimum overall score for d, denoted by min_ovl(d), by ap-
plying the scoring function on the lower bound of the buckets that con-
tain d in different lists. Formally, min_ovl(d) = f(min(b1), min(b2),
...,min(bm)), where bi is the bucket involving d in the list Li.

2.2.3. Store the encrypted ID of d, its encrypted local scores, and its min_ovl
score in the set Y.

3.5 BuckTop System 43

2.3 Compute a threshold TH as follows: TH = f(min(b′
1), min(b′

2), ... ,min(b′
m)),

where b′
i is the last bucket seen under sorted access in the Li, for 1 < i < m.

In other words, TH is computed by applying the scoring function on the lower
bounds of the last seen buckets in the lists.

2.4 If the set Y contains at least k encrypted data items having minimum overall
scores higher than TH, then stop. Otherwise, go to Step 2.1.

When the top-k query processing algorithm stops, the set Y includes the encrypted top-
k data items (see the proof below). This set is sent to the trusted client that decrypts its
contained data items, computes the overall scores of the items, removes the false positives
(i.e., the items that are in Y but not among the top-k results), and returns the top-k items
to the user.

Let us prove that BuckTop’s top-k query processing works correctly, but first we have
to prove that the minimum overall score of any data item d, i.e., min_ovl(d), which is
computed based on the lower bound of its buckets, is less than or equal to its overall
score. We also show that the maximum overall score of d, i.e., max_ovl(d), is higher
than or equal to its overall score.

Lemma 2. Given a monotonic scoring function f , the minimum overall score of any data
item d is less than or equal to its overall score.

Proof. The minimum overall score of a data item d is calculated by applying the scoring
function on the lower bound of the buckets in which d is involved. Let bi be the bucket
that contains d in the list Li. Let si be the local score of d in Li. Since d ∈ bi, its local
score is higher than or equal to the lower bound of bi, i.e., min(bi) ≤ si. Since f is
monotonic, we have f(min(b1), ...,min(bm)) ≤ f(s1, ..., sm). Therefore, the minimum
overall score of d is less than or equal to its overall score.

Lemma 3. Given a monotonic scoring function f , the maximum overall score of any data
item d is greater than or equal to its overall score.

Proof. The proof can be done in a similar way as Lemma 2.

Now, we show in the following theorem that the output of BuckTop top-k query pro-
cessing algorithm contains the encrypted top-k data items.

Theorem 4. Given a top-k query with a monotonic scoring function f , the output of
BuckTop top-k query processing algorithm contains the encrypted top-k results.

Proof. Let Y be the output of the BuckTop top-k query processing algorithm, i.e., the set
that contains all the encrypted data items seen under sorted access when the algorithm
ends. We show that each data item d that is not in Y (d /∈ Y), has an overall score
that is less than or equal to the overall score of at least k data items in Y . Let si be the
local score of d in the list Li. Let b′

i be the last bucket seen under sorted access in the
list Li, i.e., when the algorithm ends. Since d is not in Y , it has not been seen under

44 3. Top-k Query Processing over Centralized Encrypted Data

sorted access in the lists. Thus, its involving buckets are after the buckets seen under
sorted access by the algorithm. Therefore, we have si < min(b′

i) for 1 ≤ i ≤ m, i.e.,
the local score of d in each list Li is less than the lower bound of the last bucket read
under sorted access in Li. Since the scoring function is monotonic, we have f(s1, ..., sm)
< f(min(b′

1),min(b′
2), ...,min(b′

m)) = TH . Thus, the overall score of d is less than TH.
When the algorithm stops, there are at least k data items in Y whose minimum overall
scores are greater than or equal to TH. Thus, their overall scores are at least TH. Therefore,
their overall scores are greater than or equal to that of the data item d.

3.5.4 False Positive Filtering
In the set Y returned by the top-k query processing algorithm of BuckTop, in addition to
the top-k results there may be false positives. Below, we propose a filtering algorithm to
eliminate most of them in the cloud, without decrypting the data items. As shown by our
experimental results, our filtering algorithm eliminates most of the false positives (more
than 99% in the different tested datasets). This improves significantly the response time
of top-k queries, because the eliminated false positives do not need to be communicated
to the trusted client and should not be decrypted by it.

In the filtering algorithm, we use the maximum overall score, denoted by max_ovl
of each data item. This score is computed by applying the scoring function on the upper
bound of the buckets involving the data item in the lists. The algorithm proceeds as
follows:

1. Let Y ′ ⊆ Y be the k data items in Y that have the highest minimum overall scores
(min_ovl) among the items contained in Y .

2. Let dmin be the data item that has the lowest min_ovl score in Y ′.

3. For each item d ∈ Y

3.1 Compute the maximum overall score of d, i.e., max_ovl(d), by applying the
scoring function on the upper bound of the buckets involving d in the lists.
Formally, let max(bi) be the upper bound of the bucket involving d in the list
Li. Then, max_ovl(d) = f(max(b1),max(b2), ...,max(bm)).

3.2 If the maximum overall score of d is less than or equal to the minimum overall
score of dmin, then remove d from Y . In other words, if max_ovl(d) ≤
min_ovl(dmin)⇒ Y = Y − {d}

Let us prove that the filtering algorithm works correctly. The following theorem shows
that the filtering algorithm works correctly, i.e., the removed data are only false positives.

Theorem 5. Any data item removed by the filtering algorithm cannot belong to the top-k
results.

3.5 BuckTop System 45

Proof. The proof can be done by considering the fact that any removed data item d has
a maximum overall score that is lower than the minimum overall score of at least k data
items. Thus, by using Lemmas 2 and 3, the overall score of d is less than or equal to that
of at least k data items. Therefore, we can eliminate d.

Example Consider the encrypted database shown in Figure 3.2, and a top-k query
with k = 3 and a scoring function that computes the sum of the local scores in the sorted
lists.

List 1 List 2 List 3

bucket
ID

encrypted
data
item

encrypted
local
score

bucket
ID

encrypted
data
item

encrypted
local
score

bucket
ID

encrypted
data
item

encrypted
local
score

B11 E(d1) E(27) B21 E(d6) E(28) B31 E(d2) E(22)
B11 E(d3) E(30) B21 E(d3) E(29) B31 E(d3) E(25)
B11 E(d6) E(26) B21 E(d2) E(26) B31 E(d6) E(27)
B12 E(d2) E(15) B22 E(d1) E(24) B32 E(d5) E(21)
B12 E(d8) E(20) B22 E(d7) E(21) B32 E(d1) E(20)
B12 E(d5) E(24) B22 E(d4) E(19) B32 E(d9) E(18)
B13 E(d4) E(14) B23 E(d5) E(16) B33 E(d8) E(17)
B13 E(d7) E(12) B23 E(d9) E(13) B33 E(d7) E(14)
B13 E(d9) E(11) B23 E(d8) E(10) B33 E(d4) E(11)
...

(a) Encrypted database
List 1 List 2 List 3

bucket
ID min max

bucket
ID min max

bucket
ID min max

B11 24.6 32 B21 25.5 31 B31 21.9 28
B12 14.8 24.1 B22 18 24.1 B32 17.7 21.5
B13 10.7 14.2 B23 9 16.5 B33 10 17.3

(b) Bucket boundaries

Figure 3.2 – Example of an encrypted database with the information about the created
buckets

BuckTop algorithm starts by scanning the data items in the fist bucket of each list. For
each seen data item in the list i, in our case d1, d2, d3 and d6, BuckTop does a random
access in the other lists to get the min of the bucket where the data item is found and calcu-
lates its minimum overall score: min_ovl(d1) = 60.3, min_ovl(d2) = 62.2, min_ovl(d3)
= 72, min_ovl(d6) = 72. Also a threshold is calculated TH = 72. Here, BuckTop
finds that only two data items that have an overall score greater than or equal to the TH ,
so it continues the sorted scan. In the 2nd buckets, BuckTop calculates min_ovl(d4) =

46 3. Top-k Query Processing over Centralized Encrypted Data

38.7, min_ovl(d5) = 41.5, min_ovl(d7) = 38.7, min_ovl(d8) = 33.8, min_(d9) = 37.4
and TH = 50.5. we observe that the minimum overall score of d3, d1, d6 and d2 is
greater than TH, so BuckTop stops data scanning and stores all the seen data items in a set
Y , i.e., Y = {E(d3), E(d1), E(d6), E(d2), E(d5), E(d8), E(d7), E(d4), E(d9)}. after
that, The filtering algorithm is applied on the data items of Y. The k data items that have
the highest min_ovl scores in Y are Y ′ = {d3, d6, d2}. Among the data items in Y ′, the
minimum min_ovl belongs to d2, which is min_ovl(d2) = 62.2. For filtering, we need
to compare max_ovl score of each data item in Y - Y’ with min_ovl(d2). We find that
max_ovl(d1) = 77.6, max_ovl(d5) = 62.1, max_ovl(d8) = 57.9, max_ovl(d7) = 55.6,
max_ovl(d4) = 55.6, max_ovl(d9) = 52.2. We observe that we can eliminate d5, d8, d7,
d4 and d9 from Y because they have a max_ovl score less than min_ovl score of d2. As a re-
sult, after the filtering, Y will contain the data items Y = {E(d1), E(d2), E(d3), E(d6)}.
This set includes only one false positive, i.e., d2, which will be eliminated in the client
side.

3.6 Performance Evaluation

In this section, we evaluate the performance of BuckTop using synthetic and real datasets.
We first describe the experimental setup, and then report the results of our experiments.

3.6.1 Setup
We implemented our top-k query processing system and performed our tests on real and
synthetic datasets. As in some previous work on encrypted data (e.g., [46]), we use the
Gowalla database, which is a location-based social networking dataset collected from
users locations. The database contains 6 million tuples where each tuple represents user
number, time, user geographic position, etc. In our experiments, we are interested in
the attribute time, which is the second value in each tuple. As in [46], we decompose
this attribute into 6 attributes (year, month, day, hour, minute, second), and then create
a database with the following schema R(ID, year, month, date, hour, minute, second),
where ID is the tuple identifier. In addition to the real dataset, we have also generated
random datasets using uniform and Gaussian distributions.

We compare our solution with the two following approaches:

• OPE: this is the OPE-based solution (presented in Section 3.4) that uses the order
preserving encryption for encrypting the data scores.

• TA over plaintext data: the objective is to show the overhead of top-k query pro-
cessing by BuckTop over encrypted data compared to an efficient top-k algorithm
over plaintext data.

In our experiments, we have two versions of each database: 1) the plaintext database
used for running TA; 2) the encrypted database used for running BuckTop and OPE.

3.6 Performance Evaluation 47

In our performance evaluation, we study the effect of several parameters: 1) n: the
number of data items in the database; 2) m: the number of lists; 3) k: the number of
required top items; 4) bsize: the number of data items in the buckets of BuckTop. The
default value for n is 2M items. Unless otherwise specified, m is 5, k is 50, and bsize is
20. In our tests,the default database is the synthetic uniform database.

In the experiments, we measure the following metrics:

• Cloud top-k time: the time required by the cloud provider to find the set that
includes the top-k results, i.e., the set Y .

• Response time: the total time elapsed between the time when the query is sent to
the cloud and the time when the k decrypted results are returned to the user. This
time includes the cloud top-k time, the filtering, and the result post-processing in
the client (e.g., decryption).

• Filtering rate: the number of false positives eliminated by the filtering algorithm
in the cloud.

We performed our experiments using a node with 16 GB of main memory and Intel
Core i7-5500 @ 2.40Ghz as processor.

3.6.2 Results
In this section, we reports all the experiment results that we obtained.

Effect of the Number of Data Items: In this experiment, we compare the perfor-
mance of TA over plaintext data with BuckTop and OPE over encrypted data, while vary-
ing the number of data items, i.e., n.

 2000

 4000

 6000

 8000

 10000

 12000

 0 1 2 3 4 5 6

C
lo

u
d

 t
o

p
-k

 t
im

e
(m

s)

n (million)

TA
BuckTop

OPE

Figure 3.3 – Cloud top-k time vs. number
of database tuples

 1000

 10000

 100000

 1x10
6

 0 1 2 3 4 5 6

R
es

p
o

n
se

 t
im

e
(m

s)

n (million)

TA
BuckTop

OPE

Figure 3.4 – Response time vs. number
of database tuples

Figure 3.3 shows how cloud top-k time evolves, with increasing n, and the other
parameters set as default values described in Section 3.6.1. The cloud top-k time of all

48 3. Top-k Query Processing over Centralized Encrypted Data

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6 7

R
es

p
o

n
se

 t
im

e
(m

s)

m

TA
BuckTop

Figure 3.5 – Response time vs. m

approaches increases with n. But, OPE takes more time than the two other approaches,
because it stops deeper in lists, and thus reads more data.

Figure 3.4 shows the total response time of BuckTop, OPE and TA while varying n,
and the other parameters set as default values. Note that the figure are is in logarithmic
scale. TA does not need to decrypt any data, so its response time is almost the same as its
cloud time. The response time of BuckTop is slightly higher than its cloud top-k time, as
in addition to top-k query processing it performs the filtering in the cloud and also needs
to decrypt at least k data items. We see that the response time of OPE is much higher
than its cloud top-k time. The reason is that OPE returns to the trusted client a lot of false
positives, which should be decrypted, and removed from the final result set. But, this is
not the case for BuckTop as its filtering algorithm removes almost all the false positives
in the cloud, thus there is no need to decrypt them.

Effect of the Number of Queried Attributes: Figure 3.5 reports the server runtime
of TA and BuckTop when varyingm (i.e., the number of attributes in the scoring function),
and the other parameters set as default values. We observe that when m ≤ 5, the two
algorithms have almost the same server runtime. But when m is more than four, BuckTop
performs better than TA.

Effect of k: Figure 3.6 shows the total response times of BuckTop with increasing
k, and the other parameters set as default values. We observe that with increasing k the
response time increases. The reason is that Bucktop needs to go deeper in the lists to find
the top-k results. In addition, increasing k augments the number of data items that the
trusted client needs to decrypt (because at least k data items are decrypted by the trusted
client).

Effect of Bucket Size: Figure 3.7 reports the response time of BuckTop when varying

3.6 Performance Evaluation 49

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100 110

R
es

p
o

n
se

 t
im

e
(m

s)

k

TA
BuckTop

Figure 3.6 – Response time vs. k

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

R
es

p
o

n
se

 t
im

e
(m

s)

Bucket size

BuckTop

Figure 3.7 – Response time vs. bucket
size

the size of buckets, and the other parameters set as default values. We observe that the
response time increases when the bucket size increases. The reason is that the top-k
query processing algorithm of Bucktop reads more data in the lists, because the data are
read bucket by bucket. In addition, increasing the bucket size increases the number of
false positives to be removed by the filtering algorithm, and eventually decrpting the none
eliminated false positives in the client side.

 0

 200

 400

 600

 800

 1000

Q
uery1

Q
uery2

Q
uery3

R
es

p
o
n
se

 t
im

e
(m

s)

TA
BuckTop

Figure 3.8 – Response time using differ-
ent queries

 0

 200

 400

 600

 800

 1000

 1200

 1400

R
eal database

U
niform

 database

G
aussian

 database

R
es

p
o
n
se

 r
u
n
ti

m
e

(m
s)

TA
BuckTop

Figure 3.9 – Response time using differ-
ent datasets

Effect of Queries: We evaluated the effect of queries and their scoring functions on
the performance of our approach. For this, we tested three different queries with different
scoring functions. In the first query, noted as Q1, the scoring function is sf1(s1 + s2 +
...+ sn) = s1 + s2 + ...+ sn. In this query, we have the same coefficient (impact) for all
scoring attributes. In the 2nd and 3rd queries, there is a higher skew in the coefficients: in
Q2, we set sf2(s1 + s2 + ... + sn) = 1 × s1 + 2 × s2 + ... + n × sn), and in Q3 we set

50 3. Top-k Query Processing over Centralized Encrypted Data

Database size (M) 1 2 3 4 5 6
Rate of eliminated false
positives 100% 100% 100% 99.99% 99.99% 100%

A: over Uniform dataset
Database size (M) 1 2 3 4 5 6
Rate of eliminated false
positives 99.98% 99.99% 99.99% 99.99% 99.99% 99.99%

B: over Real dataset
Database size (M) 1 2 3 4 5 6
Rate of eliminated false
positives 99.94% 99.96% 99.97% 99.98% 99.98% 99.98%

C: over Gaussian dataset

Table 3.1 – False positive elimination by filtering algorithm over different datasets

sf3(s1 + s2 + ...+ sn) = 21 × s1 + 22 × s2 + ...+ 2n × sn.
Figure 3.8 shows the response time of TA and BuckTop using the three queries. Note

that in our experiments the default query is Q1. We observe that for the query Q3, Buck-
Top performs better than the other queries. The reason is that in Q3, only one or two
attributes are the dominating factors of the scoring function (i.e., those with very high
coefficients). In this case, the top-k processing algorithm takes less time to stop, and this
is why the response time of BuckTop with Q3 is lower than the other queries.

Performance over Different Datasets: We study the effect of the datasets on the
performance of BuckTop and TA using different datasets: synthetic datasets with uniform
and Gaussian distributions, and real dataset (Gowalla). Figure 3.9 shows the response
time of TA and BuckTop over different datasets, while other parameters are set as default
values. We see that over the uniform and real datasets, BuckTop and TA have approxi-
mately the same response times. Over the Gaussian dataset, the response time of BuckTop
is a little higher than TA. The reason is that over this dataset the number of false positives
is higher than the other datasets, thus more encrypted data should be decrypted by the
trusted client.

Effect of the Filtering Algorithm: BuckTop’s filtering algorithm is used to elimi-
nate/reduce the false positives in the cloud. We study the filtering rate by increasing the
size of the dataset. For the uniform synthetic dataset, the results are shown in Table 3.1-A.
For datasets with up to three million data items, the filtering method eliminates 100% of
the false positives, and the cloud returns to the trusted client only the k data items that
are the result of the query. For larger datasets, BuckTop filters up to 99,99% of the false
positives. By using the Gaussian dataset, we obtain the results shown in Table 3.1-C. We
see that around 99,94% of false positives are eliminated.

Over the real dataset, Table 3.1-B shows the filtering rate. We observe that the filter-
ing algorithm eliminates 99,99% of false positives. Thus, the filtering algorithm is very
efficient over all the tested datasets. However, there is a little difference in the filtering
rate for different datasets because of the local score distributions. For example, in the

3.7 Conclusion 51

Gaussian distribution, the local scores of many data items are very close to each other,
thus the filtering rate decreases in this dataset.

3.7 Conclusion
In this chapter, we proposed a novel system, called BuckTop, designed to encrypt sensitive
data items, outsource them to a non-trusted cloud, and answer top-k queries. It uses
the bucketization technique to manage the encrypted data in the cloud. BuckTop has a
top-k query processing algorithm that is executed over encrypted data, and returns a set
containing the top-k results, without decrypting the data in the cloud. It also comes with a
powerful filtering algorithm that eliminates significantly the false positives from the result
set.

We validated our system through experimentation over synthetic and real datasets.
The experimental results show excellent performance gains for BuckTop compared to
OPE over encrypted data, and TA algorithm over original (plaintext) data. They illustrate
that the overhead of using BuckTop for top-k processing over encrypted data is very low,
because of efficient top-k processing and false positive filtering.

Chapter 4

Top-k Query Processing over
Distributed Encrypted Data

4.1 Introduction
In this chapter, we consider the case of distributed datasets where a dataset (e.g., a relation)
is vertically fragmented and distributed across multiple nodes of a cloud data center. The
user data are encrypted (for privacy reasons) and distributed (for performance reasons)
across multiple nodes. In this context, we address the problem of privacy-preserving top-
k query processing.

Privacy preserving top-k query processing is critical for many distributed applica-
tions that outsource sensitive data. For example, consider a university that outsources
the students database in a public cloud, in Infrastructure-as-a-Service (IaaS) mode, with
non-trusted nodes. The database is vertically partitioned (for performance reasons) and
encrypted. Then, an interesting top-k query over the encrypted distributed data is the
following: return the k students that have the worst averages in some given courses.

The problem of top-k query processing over distributed data has been yet addressed
over plaintext data, e.g., [15]. However, the proposed approaches assume the existence
of local scores of the data items (i.e., their attribute values) in plaintext, and there is no
efficient solution capable of evaluating efficiently top-k queries over encrypted data in
distributed environments.

In this chapter, we address the problem of evaluating top-k queries over encrypted data
distributed across multiple nodes of a cloud data center. We first present two simple TA-
based approaches, called Remote-TA and Block-TA, that are coordinated by the client.
These two approaches can correctly find top-k results from the encrypted data, but may
need many round-trips between the client and the nodes, and also need to decrypt many
encrypted data in the client side. Then, we propose two efficient systems, called SDB-
TOPK (Secure Distributed Bucket based TOP-K) [55] and SD-TOPK (Secure Distributed
TOPK) [54, 53]. They are executed in the nodes of the cloud data center. Both SDB-
TOPK and SD-TOPK include efficient algorithms to process top-k query over distributed
encrypted data and a powerful filtering algorithm that filters the false positives as much

53

54 4. Top-k Query Processing over Distributed Encrypted Data

Figure 4.1 – SDB-TOPK and SD-TOPK architecture

as possible in the nodes. As a result, they return a small set of encrypted data that will be
decrypted in the client side. We theoretically prove the correctness of the query processing
algorithms. We analyze the security of our approaches by measuring the amount of data
that can be revealed to the adversary, and propose efficient strategies for enforcing it.

The rest of this chapter is organized as follows. Section 4.2 formally defines the prob-
lem we address. In Section 4.3, we propose basic approaches based on the TA algorithm
called Remote-TA and Block-TA. In Sections 4.4 and 4.5, we propose our two main solu-
tions called SDB-TOPK and SD-TOPK. Section 4.6 analyzes the security of the proposed
solutions. Section 4.8 describes our performance evaluation. And Section 4.9 concludes.

4.2 Problem Definition

In this section, we present the properties that we specify for the Our system and the data
presentation, then we define the problem that we address.

4.2.1 Database Distribution and Systems Architecture

We suppose that the sorted lists database is fragmented over a number of nodes of a cloud
data center. The architecture of both SDB-TOPK and SD-TOPK systems is shown in
Figure 4.1. It is composed of:

• Trusted client. It is responsible for encrypting the user data, decrypting the results
and controlling the user accesses

4.3 TA-Based Approaches 55

• Remote service. It is installed in the nodes of a cloud data center, and is responsible
for storing the encrypted data, executing the queries provided by the trusted client,
and returning the result.

Formally, let P be the set of the nodes of the cloud data center. Each sorted list Li is
stored over a node p ∈ P . We call p the owner of Li. Each node p ∈ P is the owner of
at least one list of the database E(D). Each list owner can perform sorted and random
access only in the lists that it keeps, not in the other lists.

We consider the honest-but-curious adversary model for the nodes of a cloud data
center.

4.2.2 Problem Statement

The problem we attack in this chapter is top-k query processing over encrypted and dis-
tributed data across the nodes of a cloud data center.

Let D be a database composed of n data items, and represented by m sorted lists. We
want to encrypt the data items contained in the lists of D, and store the encrypted lists in
the nodes of a cloud data center. Then, our goal is to develop a distributed algorithm A
that given any top-k query q (including a scoring function f) returns the k data items that
have the highest overall scores with regard to f . This should be done without decrypting
the data items in the nodes, while minimizing the response time and the communication
cost of the query execution.

4.3 TA-Based Approaches

In this section, we present two approaches based on the TA algorithm for top-k query
processing over encrypted data in distributed environments: Remote-TA and Block-TA.
In these approaches, the top-k query processing is coordinated in the trusted client.

4.3.1 Data Storage

To be able to execute TA-based algorithms over encrypted data, the trusted client stores
the database in the nodes of the cloud data center as follows. It encrypts the pairs 〈d, si(d)〉
of the sorted lists using two encryption schemes: 1) deterministic to encrypt data identi-
fier d; 2)probabilistic to encrypt local score of the data, i.e., si(d). The encrypted pairs
〈E(d), E(si(d))〉 in the lists are sorted in the same order as their initial order.

After encryption, the trusted client sends each encrypted sorted list to one node of
the cloud data center nodes, which is called the owner of the list. The Remote-TA and
Block-TA are based on the TA algorithm. The coordination is done in the trusted client,
not in the nodes.

56 4. Top-k Query Processing over Distributed Encrypted Data

4.3.2 Remote-TA

Given a top-k query containing a number k and a scoring function f , Remote-TA proceeds
as follows:

1. The trusted client asks the list owners for the encrypted pairs (encrypted data id and
score) which are in position j of the lists (initially j = 1). The list owners return
the asked data.

2. The trusted client decrypts the received encrypted scores and calculates a threshold
TH by applying the scoring function on the decrypted scores.

3. Let S be the set of encrypted data items returned from the position j of the lists. The
trusted client demands the list owners to return the encrypted scores of data items
in S. Each list owner does random access in its list to find the encrypted scores of
each data item in S, then sends them to the trusted client.

4. The coordinator collects the data such that, as a result, for each data item in S it has
all its encrypted scores in all the lists .i.e for each E(di) where 1 ≤ i ≤ size(S),
the coordinator has E(s1(di)), E(s2(di)), ..., E(sm(di)). it sends the data collected
to the trusted client.

5. Trusted client decrypts each returned data item d and calculates its overall score
ov(d) = f(s1(d), s2(d), ..., sm(d)). Then, it checks if among the yet received data
items there are at least k data items that have an overall score greater than or equal
to TH . If this is the case, then it stops the algorithm and returns the k received data
items that have the highest overall scores to the user. Otherwise, it increases j by
one and restarts from step 1.

Example. We use the database shown in Table 4.1 composed of three lists, list1,
list2, and list3 stored respectively in nodes s1, s2 and s3. The user asks for the top-4
data items in the database with SUM as a scoring function. As a first step of Remote-
TA, the trusted client asks for the data items in the first position in each node. The list
owner returns the asked data items to the trusted client who decrypts them and calculates
the threshold th = 30 + 29 + 27 = 86. Then, the client asks the list owners to return
the encrypted score of the data items E(d3) and E(d6). The client calculates the overall
scores: ov(d3) = 30 + 29 + 25 = 84, ov(d6) = 26 + 28 + 27 = 81. Now, there are
two data items that have an overall score greater than or equal to the threshold, thus it
continues and asks the data items in the next position. Finally, in the fifth position, there
are at least k data items with overall scores greater than or equal to TH: ov(d1) = 71,
ov(d2) = 63, ov(d3) = 84, ov(d5) = 61, ov(d6) = 81. The trusted client stops asking
for the data items. It returns to the user the result of the top-k query which is the set of
data items d1, d2, d3 and d6.

4.3 TA-Based Approaches 57

List 1 List 2 List 3

encrypted
data item

encrypted
local
score

encrypted
data item

encrypted
local
score

encrypted
data item

encrypted
local
score

E(d3) E(30) E(d3) E(29) E(d6) E(27)
E(d1) E(27) E(d6) E(28) E(d3) E(25)
E(d6) E(26) E(d2) E(26) E(d2) E(22)
E(d5) E(24) E(d1) E(24) E(d5) E(21)
E(d8) E(20) E(d7) E(21) E(d1) E(20)
E(d2) E(15) E(d4) E(19) E(d9) E(18)
E(d4) E(14) E(d5) E(16) E(d8) E(17)
E(d7) E(12) E(d9) E(13) E(d7) E(14)
E(d9) E(11) E(d8) E(10) E(d4) E(11)
...

Table 4.1 – Example of an encrypted database

4.3.3 Block-TA

Block-TA is an improvement of the Remote-TA algorithm where the encrypted data items
are read block by block. Indeed, in order to minimize the communication cost, in the first
step of Block-TA, the trusted client asks blocks of predefined size from the list owners.
After decrypting the data items of the block, the trusted client computes the threshold by
applying the scoring function on the scores of the last data items in the blocks, and stops
if among yet received data items there are at leas k data items with overall scores higher
than or equal to the threshold. Otherwise it retrieves the next block, and so on.

Example. Consider the same previous example presented in Table 4.1, the same top-4
query and the SUM function.

Let us run Block-TA on the database of Table 4.1 by using blocks of size 4. The
trusted client asks the list owners to return the 4 first data items in each list. The owner
of the list L1 returns d3, d1, d6 and d5. It also returns E(24) which is the encrypted
score of the last data item in the block. This is used later to calculate the threshold. The
owner of L2 returns d3, d6, d2, d1 and E(24). The owner of L3 returns d6, d3, d2, d5 and
E(21). Then, the trusted client decrypts the received data and calculates the threshold
TH = 24 + 24 + 21 = 69. The client asks for the encrypted score of the returned
data items d1, d2, d3, d5 and d6. When it gets the asked scores, it decrypts them and
calculates the overall score of each data item: ov(d1) = 71, ov(d2) = 63, ov(d3) = 84,
ov(d5) = 61, ov(d6) = 81. The client finds that only d1, d3 and d6 have an overall score
greater than or equal to the threshold TH , so it asks the next block of four data items
in each list. The owner of L1 returns d8, d2, d4, d7 and E(12). The owner of L2 returns
d7, d4, d5, d9 and E(13), and that of L3 returns d1, d9, d8, d7 and E(14). The trusted
client calculates the threshold TH = 12 + 13 + 14 = 39. Then, the client asks each

58 4. Top-k Query Processing over Distributed Encrypted Data

node to return the encrypted score of the data items and calculates their overall score:
ov(d4) = 44, ov(d7) = 47, ov(d8) = 47, ov(d9) = 42. The trusted client finds that there
are at least 4 data items with overall scores greater than or equal to TH . Thus, it stops
communicating with the list owners, and returns to the user the data items d1, d2, d3, d6
that have the biggest overall score among the data items received from the list owners.

4.4 SDB-TOPK System

In this section, we present our first contribution called SDB-TOPK; we describe our tech-
nique for encrypting the data and outsourcing them to the nodes of the cloud. Then, we
propose our SDB-TOPK top-k query processing and false positive filtering algorithms.

4.4.1 Data Encryption and Outsourcing
Before outsourcing a database, SD-TOPK creates sorted lists for all important attributes,
i.e., those that may be used in the top-k queries. Then, each sorted list is partitioned into
buckets. Let b1, b2, ..., bt be the created buckets for a sorted list Lj . Each bucket bi has a
lower bound, denoted by min(bi), and an upper bound, denoted by max(bi). A data item
d is in the bucket bi, if and only if its local score (attribute value) in the list Lj is between
the lower and upper bounds of the bucket, i.e., min(bi) ≤ sj(d) < max(bi).

We use two types of encryption schemes for encrypting the data item ids and the local
scores of the sorted lists: deterministic and probabilistic. The deterministic scheme is
used to encrypt the ID of the data items. We use the probabilistic scheme to encrypt the
local scores (attribute values) of data items.

After encrypting the data IDs and local scores of each list Li, the trusted client puts
them in their bucket (chosen based on the local score). Then, it sends the buckets of each
sorted list to one node in the cloud. The buckets are stored in the nodes according to their
lower bound order. However, there is no order for the data items inside each bucket, i.e.,
the position of the data items inside each bucket is chosen randomly.

4.4.2 Top-k Query Processing
The main idea behind top-k query processing algorithm of SDB-TOPK is to use the bucket
boundaries and a new technique to decide when to stop reading the encrypted data from
the buckets.

For each top-k query, one of the nodes of the cloud performs the coordination between
the nodes to execute the query. We call this node as coordinator. The coordinator may be
the node that initially receives the user’s query or be randomly chosen among the system
nodes.

Given a top-k query with a number k and a scoring function f , SDB-TOPK chooses a
node as query coordinator. The coordinator sets a variable j = 1, and then the following
steps are performed to answer the query (see pseudo-code in Algorithm1):

4.4 SDB-TOPK System 59

Algorithm 1: SDB-TOPK Query Processing Algorithm
Input: The top-k query Q including k and the scoring function f ; Encrypted

database partitioned vertically over m nodes N1, . . . , Nm;
Output: Set Y containing encrypted top-k data items

1 begin
2 j = 1;
3 Let N0 be the coordinator node;
4 while !stop do
5 N0 asks N1 to Nm in parallel to return their jth bucket;
6 N1 ... Nm return to N0 the asked buckets and their lower bound;
7 N0 calculates θ = f(min(b1),min(b2), ...,min(bm)); where min(bi) is the

lower bound of the bucket received from Ni.
8 N0 sets Y = {all encrypted data items contained in the received buckets};
9 N0 sends Y to N1 to Nm in parallel;

10 N1 ... Nm : foreach d ∈ Y do
11 do random access in the list of buckets, find the bucket that contains d,

and return to N0 the lower bound of the bucket;
12 N0 : foreach d ∈ Y do
13 calculate ovmin(d) = f(min(b1(d)) +min(b2(d)) + ...+min(bm(d)),

where where min(bi(d)) is the lower bound of the bucket that
contains d in the list Li.

14 N0 :if (there are at least k data items in Y with ovmin ≥ θ) then
15 stop=true;

16 else
17 j = j + 1;

60 4. Top-k Query Processing over Distributed Encrypted Data

1. The coordinator asks each node to return the jth bucket of its list.

2. The nodes return the asked buckets, including the encrypted local score and en-
crypted id of the data items contained in the buckets. They also return the lower
bound of the asked buckets.

3. The coordinator calculates a threshold θ by applying the scoring function f on
the lower bound of the returned buckets: θ = f(min(b′

1),min(b′
2), ...,min(b′

m))
where b′

1, ..., b
′
m are the buckets returned from the nodes keeping the lists L1, ..., Lm

respectively.

4. Let Y be the set of data items contained in the buckets received from the nodes.
The coordinator sends Y to all the nodes. For each data item d ∈ Y , the nodes
perform random access in their lists to find the bucket bi containing d (by using the
encrypted id of d). Each node returns to the coordinator a set containing the lower
and upper bounds of the buckets containing the data items contained in Y .

5. For each data item d in Y , the coordinator calculates a minimum overall score
ovmin(d) = f(min(b1),min(b2), ...,min(bm)), where min(bi) is the lower bound
of the bucket where d is found in the list Li.

6. If among the encrypted data items received so far there are at least k data items with
minimum overall scores equal or greater than θ, then the algorithm ends. Otherwise,
the coordinator increments j, i.e., sets j = j + 1, and goes to Step 1.

When the above algorithm ends, the set of data items contained in Y is called the set of
candidate data items. The coordinator sends the candidate data items to the trusted client,
where they are decrypted, their overall score is calculated, false positives are eliminated,
and the top-k data items are returned to the user.

The following theorem shows that the output of SDB-TOPK contains the encrypted
top-k data items.

Theorem 6. Given a top-k query with a monotonic scoring function f , the output of SDB-
TOPK contains the encrypted top-k results.

Proof. Let Y be output of the SDB-TOPK algorithm, i.e. the set that contains all the
encrypted data items seen under sorted access when the algorithm ends. We show that
each data item d that is not in Y (d /∈ Y), has an overall score that is less than or equal
to the overall score of at least k data items in Y . For each list Li, let si be the local score
of d in the list Li. Let b′

i be the last bucket seen under sorted access in the list Li by its
owner. Since d is not in Y , it has not been sent to the coordinator by the nodes. Thus,
it has not been seen under sorted access in the lists. Thus, its involving buckets are after
the last buckets seen under sorted access by the nodes in the lists. Therefore, we have
si < min(b′

i) for 1 ≤ i ≤ m, i.e., the local score of d in each list Li is less than the lower
bound of the last bucket read under sorted access in Li. Thus since the scoring function

4.4 SDB-TOPK System 61

is monotonic, we have f(s1, ..., sm) < f(min(b′
1),min(b′

2), ...,min(b′
m)) = θ. Thus, the

overall score of d is less than the threshold used in the BuckTop algorithm. When the
algorithm stops, there are at least k data items in Y whose minimum overall scores are
greater than or equal to the threshold. Thus, their overall scores are at least the threshold.
Therefore, their overall score is greater than or equal to that of the data item d.

4.4.3 False Positive Filtering
The set of candidate data items returned by SDB-TOPK may involve false positives which
should be decrypted and eliminated in the trusted client. Below, we propose a filtering
algorithm to eliminate most of the false positives in the nodes of the cloud. This algo-
rithm improves significantly the response time of the queries because the eliminated false
positives do not need to be communicated to the trusted client and be decrypted there.

Given the set of candidate data items Y , the filtering algorithm done by the coordinator
proceeds as follows:

• Calculate the minimum overall score of all candidate data items contained in Y , sort
them according to their minimum overall score, and take the kth minimum overall
score denoted by δ2.

• Calculate the maximum overall score of all candidate data items contained in Y ,
and eliminate those with maximum overall score less than < δ2. The maximum
overall score of a data item d is computed as follows: ovmax(d) = f(max(b1) +
max(b2) + ...+max(bm)), where max(bi) is the upper bound of the bucket bi that
contains d in the list Li.

At the end of the filtering algorithm, the candidate data items that remain in Y are sent
to the trusted client to be decrypted, and the top-k items be extracted.

The following theorem shows that the filtering algorithm works correctly, i.e., the
removed data are only false positives.

Theorem 7. Given a top-k query with a monotonic scoring function f , then any data item
removed by the filtering algorithm cannot belong to the top-k results.

Proof. The proof can be done by considering the fact that any removed data item d has
a maximum overall score that is lower than the minimum overall score of at least k data
items. Thus the overall score of d is less than or equal to that of at least k data items that
are not removed. Therefore, we can eliminate d safely.

Example To illustrate the top-k query processing and filtering algorithms in SDB-
TOPK, we use the database shown in Table 4.4, with a top-4 query and the scoring func-
tion as SUM. We suppose that the nodes n1, n2, and n3 keep the listsL1, L2 andL3 respec-
tively. Assume that the coordinator is the node n0. In the first step, n0 asks the other nodes
to return the encrypted data items which are in the first bucket of their lists, as well as the
lower bound (min) of the bucket. The node n1 return ({E(d1), E(d3), E(d6)}, 24.6). The

62 4. Top-k Query Processing over Distributed Encrypted Data

List 1 List 2 List 3

bucket
ID

enc
data
item

enc
local
score

bucket
ID

enc
data
item

enc
local
score

bucket
ID

enc
data
item

enc
local
score

B11 E(d1) E(27) B21 E(d6) E(28) B31 E(d2) E(22)
B11 E(d3) E(30) B21 E(d3) E(29) B31 E(d3) E(25)
B11 E(d6) E(26) B21 E(d2) E(26) B31 E(d6) E(27)
B12 E(d2) E(15) B22 E(d1) E(24) B32 E(d5) E(21)
B12 E(d8) E(20) B22 E(d7) E(21) B32 E(d1) E(20)
B12 E(d5) E(24) B22 E(d4) E(19) B32 E(d9) E(18)
B13 E(d4) E(14) B23 E(d5) E(16) B33 E(d8) E(17)
B13 E(d9) E(11) B23 E(d9) E(13) B33 E(d7) E(14)
B13 E(d7) E(12) B23 E(d8) E(10) B33 E(d4) E(11)
...

Table 4.2 – Encrypted database, with 3 data items in each bucket. The encrypted scores
inside buckets are not sorted. The boundaries (minimum and maximum) of buckets are
shown below

List 1 List 2 List 3
bucket
ID min max

bucket
ID min max

bucket
ID min max

B11 24.6 32 B21 25.5 31 B31 21.9 28
B12 14.8 24.1 B22 18 24.1 B32 17.7 21.5
B13 10.7 14.2 B23 9 16.5 B33 10 17.3

Table 4.3 – Bucket boundaries

Table 4.4 – Example of an encrypted database, and the information about its buckets.

4.5 SD-TOPK System 63

node n2 returns ({E(d6), E(d3), E(d2)}, 25.5), and n3 returns ({E(d2), E(d3), E(d6)},
21.9). After receiving the buckets from n1, n2 and n3, the coordinator calculates the
threshold θ = 24.6 + 25.5 + 21.9 = 72. Then, it asks the nodes to return the lower
bound of the buckets that contain the returned data items. Then, the coordinator calcu-
lates for each data item, its minimum overall score using its min(bi) in each list. We have
ovmin(E(d1)) = 24.6 + 18 + 17.7 = 60.3, ovmin(E(d2)) = 62.2, ovmin(E(d3)) = 72,
and ovmin(E(d6)) = 72. The coordinator finds that only for two data items, the min-
imum overall score ovmin is greater than or equal to θ. Thus it sets j = 2 and asks
each node to return data items that are in the second bucket in addition to the lower
bound of the bucket. After receiving the asked information, the coordinator calculates the
new threshold θ = 14.8 + 18 + 17.7 = 50.5 and asks the nodes n1, n2 and n3 for the
lower and upper bounds of the buckets that contain the returned data items. After that,
it calculates ovmin of the returned data items, i.e., E(d4), E(d5), E(d7), E(d8), E(d9).
Thus, it calculates ovmin(E(d4)) = 38.7, ovmin(E(d5)) = 41.5, ovmin(E(d7)) = 38.7,
ovmin(E(d8)) = 33.8 and ovmin(E(d9)) = 37.4. Now, the coordinator finds that four
(i.e., k) data items have minimum overall scores greater than or equal to θ. Thus, it stops
retrieving the buckets from the nodes. The set of data items received by the coordinator
until now is called the set of candidate items.

Then, the coordinator executes the filtering algorithm on the candidate items as fol-
lows. It sets δ2 = 60.3 (the 4th minimum overall score). For each candidate data item, the
coordinator calculates its maximum overall score: ovmax(E(d1)) = 77.6, ovmax(E(d2))
= 83.1, ovmax(E(d3)) = 91, ovmax(E(d4)) = 55.6, ovmax(E(d5)) = 62.1, ovmax(E(d6))
= 91, ovmax(E(d7)) = 55.6, ovmax(E(d8)) = 57.9, ovmax(E(d9)) = 52.2. The coordi-
nator finds that E(d4), E(d7) , E(d8) and E(d9) have a maximum overall score less than
δ2, so it eliminates them from the candidate set and returns the remained data items to the
trusted client with their encrypted scores. The trusted client decrypts each returned data
item and calculates its overall score: ov(d1) = 71, ov(d2) = 63, ov(d3) = 84, ov(d5) =
61, ov(d6) = 81. It finds that the top-4 data items are d1, d2, d3 and d6, and returns them
to the user.

4.5 SD-TOPK System

In this section, we present the SD-TOPK system, designed for efficient processing top-
k queries over encrypted and distributed data across the nodes of the cloud data center.
It is coordinated in the nodes of the cloud. SD-TOPK needs much less communication
between the cloud and the trusted client than SDB-TOPK. It is also much more efficient
in terms of response time.

In SD-TOPK, the data encryption and outsourcing is done in the same way as that of
SDB-TOPK, i.e., by creating buckets, and using deterministic and probabilistic methods
for encryption (see Section 4.4.1).

The rest of this section is organized as follows. We first introduce the top-k query
processing algorithm of SD-TOPK. Then, we present an algorithm for removing the false

64 4. Top-k Query Processing over Distributed Encrypted Data

positives from the results of the top-k query processing algorithm, without decrypting the
data.

4.5.1 Top-k Query Processing

Algorithm 2: SD-TOPK Query Processing Algorithm
Input: Encrypted database partitioned vertically over m nodes:

E(D) = {L1, L2, ..., Lm}
Output: Set containing top-K data items

1 begin
2 N0 asks N1...Nm to return buckets containing the k first data items and their

lower bounds
3 N0: foreach returned data item d do
4 calculates ovmin(d) = f(v1(d) + v2(d) + ...+ vm(d))
5 N0 sets δ = the kth ovmin
6 N0 calculates θ = δ∑m

i=1 ai

7 N0 sends θ to N1...Nm

8 N1...Nm return to N0 all the data items which are in buckets with max(bj) ≥ θ
9 N0 sets Y = {candidate data items}

10 N0 asks N1...Nm to return the encrypted local scores of each data item d inY
11 N0 returns to the client Y with the returned encrypted scores

In our algorithm, we assume that the scoring function is in the class of linear functions
with positive coefficients (denoted as LFPC), i.e. f = a1x1 + a2x2 + · · · + amxm where
each coefficient ai ≥ 0 for 1 ≤ i ≤ m. Many functions such as SUM, COUNT, AVG and
MAX are in the class of LFPC functions. Note that every LFPC function is monotonic,
but there exist functions that are monotonic but not LFPC.

In SD-TOPK, for each query, one of the nodes of the cloud performs the coordination
between the list owner nodes. We call this node as coordinator. As in SDB-TOPK, the
coordinator may be the node that initially receives the user’s query or be randomly chosen
among the list owner nodes.

Let us describe the SD-TOPK algorithm. Given a top-k query with a number k and a
scoring function f , the cloud chooses a node as query coordinator, and then the following
steps are performed to answer the query (see Algorithm 2:

1. The coordinator broadcasts to the list owners the number k, and asks each list owner
to return the buckets that contain the k first data items in the list. With each bucket,
the list owner returns the encrypted identifier of the data items involved in the
bucket, as well as the lower bound of the buckets. Formally, let B be the set of
buckets containing the first k data items of the list. For each bucket bi ∈ B, the
owner returns min(bi) and E(d) if d ∈ bi.

4.5 SD-TOPK System 65

2. For each returned data item d, the coordinator calculates its minimum overall score
defined as follows: ovmin(d) = f(v1(d) + v2(d) + ... + vm(d)) where vi is the
minimum value of the bucket that contains d in the list Li if d is returned to the
coordinator by the owner of Li, otherwise vi = 0. In other words, for calculating the
minimum overall score of a data d, we apply the scoring function on the minimum
value of the buckets that contain d in the lists. If the data d has not been sent by the
owner of a list, then we use zero in the function instead of the minimum value of
the bucket.

3. The coordinator sorts the received data items according to their minimum overall
score, and chooses the data item d′ that has the kth minimum overall score denoted
by δ. Then, it uses the minimum overall score of d′ to calculate a threshold θ as
follows: θ = δ∑m

i=1 ai
where a1, . . . , am are the coefficients in the scoring function.

After computing the threshold θ, the coordinator sends it to all list owners.

4. Each list owner returns to the coordinator the list of the data items that are in the
buckets with maximum values greater than or equal to θ.

5. Let Y be the set of all data items that are sent to the coordinator by at least one list
owner. We call Y the set of candidate items. The coordinator sends the encrypted
id of all data items involved in Y to the list owners, and they return the encrypted
score of each data item contained in Y .

6. Finally, the coordinator returns to the trusted client the candidate items and their
encrypted local scores.

When the trusted client receives the candidate items, it decrypts them using the secret
keys. Then, it calculates for each candidate d its overall score, extracts the k data items
that have the highest overall scores, and returns them to the user.

The following theorem shows that the output of SD-TOPK contains the encrypted top-
k data items.

Theorem 8. Given a top-k query with a scoring function f that is linear with positive
coefficients. Then, the output of SD-TOPK contains the encrypted top-k results.

Proof. Let the scoring function be f = a1x1 + a2x2 + · · · + amxm. Let Y be the output
of the algorithm, i.e., the set of candidate items. To prove the theorem, it is sufficient to
show that each data item d that has not been sent to the coordinator in the 4th step of the
algorithm, has an overall score that is less than or equal to the overall score of at least k
data items in Y . Let θ be the threshold value that is to the list owners in the third step of
the algorithm. For each list Li, let si be the local score of d in the list Li. The overall
score of d is computed as ov(d) = a1s1 + · · · + amsm. Since d has not been sent to the
coordinator, from the 4th step of the algorithm, we know that si < θ. Thus, we have
ov(d) < a1 × θ + · · · + am × θ = ∑m

i=1 ai × θ. From the 3rd step of the algorithm, we

66 4. Top-k Query Processing over Distributed Encrypted Data

know that θ = δ∑m

i=1 ai
. Thus, we have ov(d) < δ. In other words, the overall score of d

is less than the minimum overall score of the data item d′ that is the kth data item found
in the 3rd step of the algorithm. Therefor, the overall score of d is less than at least k data
items found by the SD-TOPK algorithm, so d cannot be among the top-k results.

4.5.2 False Positive Filtering
The set of candidate data items returned by SD-TOPK may involve many false positives
which should be decrypted and eliminated by the trusted client. Below, we propose a
filtering algorithm to eliminate most of the false positives in the cloud. It improves signif-
icantly the response time of the queries because the eliminated false positives do not need
to be communicated to the trusted client and be decrypted there.

Given the set of candidate data items Y , the filtering algorithm done by the coordinator
proceeds as follows:

• Calculate the minimum overall score of all candidate data items, sort them accord-
ing to their minimum overall score, and take the kth minimum overall score denoted
by δ2.

• Calculate the maximum overall score of all candidate data items, and eliminate
those with maximum overall score less than < δ2. The maximum overall score of
a data item d is computed as follows: ovmax(d) = f(v1(d) + v2(d) + ... + vm(d))
where vi is the maximum value of the bucket that contains d in the list Li if d is
returned to the coordinator by the owner of Li, otherwise vi is equal to the minimum
value of the last bucket received from the owner of Li.

At the end of the filtering algorithm, the candidate data items that remain in Y are sent
to the trusted client to be decrypted, and the top-k items be extracted.

The following theorem shows that the filtering algorithm works correctly, i.e., the
removed data are only false positives.

Theorem 9. Given a top-k query with a scoring function f that is linear with positive
coefficients, then any data item removed by the filtering algorithm cannot belong to the
top-k results.

Proof. The proof can be done by considering the fact that any removed data item d has
a maximum overall score that is lower than the minimum overall score of at least k data
items. Thus, according to Lemmas 1 and 2 the overall score of d is less than or equal to
that of at least k data items that are not removed. Therefore, we can eliminate d.

Example To illustrate SD-TOPK, we use the database shown in Table 4.4 with a top-4
query and SUM as scoring function. We suppose that a node n0 is the coordinator. It sends
a messages to all list owners (e.g., n1, n2, n3) and asks for the 4 first data items in each
list (since k = 4), and the minimum of the buckets in which they are. The node n1 re-
turns 〈d1, 24.6〉 〈d3, 24.6〉 〈d6, 24.6〉〈d2, 14.8〉. The node n2 returns 〈d6, 25.5〉 〈d3, 25.5〉

4.6 Security Analysis and Improvement 67

〈d2, 25.5〉 〈d1, 18〉 and the node n3 returns 〈d2, 21.9 〉 〈d3, 21.9〉 〈d6, 21.9〉 〈d5, 17.7〉.
The coordinator calculates the minimum overall score of the returned data items by using
the minimum of their buckets. It finds that ovmin(d1) = 24.6 + 18 = 42.6, ovmin(d2)
= 14.8 + 25.5 + 21.9 = 62.2, ovmin(d3) = 24.6 + 25.5 + 21.9 = 72, ovmin(d5) = 17.7
and ovmin(d6) = 72. After sorting the minimum overall scores, the coordinator finds
that the 4th minimum overall score is 42.6 (that of d3), so it sets δ = 42.6. Then,
it calculates θ = δ/3 = 14.2. Afterwards, it asks each node to return the encrypted
id (bucket boundaries) of the data items that are in buckets bi such that max(bi) ≥ θ.
The data items received from list owners are called candidate data items. The coordina-
tor calculates for the candidate items their minimum overall score: ovmin(d1) = 60.3,
ovmin(d2) = 62.2 , ovmin(d3) = 72, ovmin(d4) = 38.7, ovmin(d5) = 41.5 , ovmin(d6) =
72 , ovmin(d7) = 38.7 , ovmin(d8) = 33.8 and ovmin(d9) = 37.4. It also calculates
δ2 = 60.3, that is the kth minimum overall score among candidate data items (defined in
the filtering algorithm). Then, it calculates the maximum overall scores of the candidate
data items: ovmax(d1) = 77.6 , ovmax(d2) = 83.1 , ovmax(d3) = 91 , ovmax(d4) = 55.6
, ovmax(d5) = 62.1 , ovmax(d6) = 91 , ovmax(d7) = 55.6 , ovmax(d8) = 57.9 and
ovmax(d9) = 52.2. According to the filtering algorithm, the coordinator eliminates the
data items that have a maximum overall score less than 60.3. Then, it remains five data
items in the set of candidate items Y = {d1, d2, d3, d5, d6}. The coordinator asks the list
owners to return all encrypted scores of the candidate items and sends them to the trusted
client. When the client receives the data items, it decrypts them and calculates their real
overall score: ov(d1) = 71, ov(d2) = 63, ov(d3) = 84, ov(d5) = 61, ov(d6) = 81. Fi-
nally, the trusted client finds that the top-4 data items are d1, d2, d3 and d6. It returns
them to the user who had issued the query.

4.6 Security Analysis and Improvement

In this section, first, we propose a technique that allows to perturb the bucket boundaries
in order to improve and reinforce the security of our proposed systems SDB-TOPK and
SD-TOPK. Note that this technique is also applicable on BuckTop system proposed in
chapter 3. Then, we analyze the different types of information that can be leaked to the
adversary (the nodes of the cloud data center). Finally, we propose some techniques to
reduce the risk of disclosing sensitive data.

4.6.1 Obfuscating Bucket Boundaries

To strengthen the security of our systems SDB-TOPK and SD-TOPK, we propose a
method to obfuscate the bucket boundaries, thus the adversary cannot learn the limits
of the data items in the buckets. For this, we change the bucket limits as follows. We
choose two random numbers a and c. These numbers must be kept secret in the trusted
client. Before sending the database to the cloud, the lower and upper bounds of each

68 4. Top-k Query Processing over Distributed Encrypted Data

bucket bi are obfuscated (modified) as follows:

min(bi) := min(bi)× a+ c (4.1)

max(bi) := max(bi)× a+ c (4.2)

Thus, the trusted client multiplies the lower (upper) bounds by the secret number a,
and then adds the secret number c to the result. These obfuscated bucket limits are sent to
the cloud data center nodes together with the encrypted IDs and scores.

By the above strategy, we hide the limits of the buckets from the cloud nodes. But, a
question remains to answer: do SDB-TOPK and SD-TOPK work correctly if it uses the
changed lower/upper bounds? The answer to this question is positive. The intuition is
that the stop condition of SDB-TOPK and SD-TOPK remains valid, if we multiply and
add all bucket limits to the same positive numbers.

Now, we present the theorems proving that SDB-TOPK and SD-TOPK works cor-
rectly if they use the obfuscated lower bounds.

Theorem 10. Given a top-k query with a monotonic scoring function f . If we change
the lower bound of the buckets by using Equation 4.1, then the output of SDB-TOPK will
contain the top-k results.

Proof. Let Y be the output of the SDB-TOPK top-k query processing algorithm. We
show that each data item d that is not in Y (d /∈ Y), has an overall score that is less
than or equal to the overall score of at least k data items contained in Y . Let Y ′ ⊆ Y
be the k data items whose minimum overall score is higher than θ when the algorithm
ends. Let d′ ∈ Y ′ be the data item that has the smallest overall score among the data
items contained in Y ′. In each list Li, let b′

i be the bucket that contains d′ in Li, and thus
min(b′

i) ∗ a+ c is the new (modified) lower bound of b′
i. Let b1, ..., bm be the last buckets

seen by the algorithm before it ends. Then, from the stop condition of SDB-TOPK, we
have: θ = f(min(b1)∗a+c, ...,min(bm)∗a+c)≤ f(min(b′

1)∗a+c, ...,min(b′
m)∗a+c)

Since f is monotonic and the numbers a and c are positive, we have:

f(min(b1), ...,min(bm)) ≤ f(min(b′
1), ...,min(b′

m)) (4.3)

Before changing the lower bounds, the local score of d′ in each list is higher than or equal
to the lower bound of its bucket. Thus, we have:

f(min(b′
1), ...,min(b′

m)) ≤ f(s′
1, ..., s

′
m) (4.4)

By comparing Equations 4.3 and 4.4, we have:
f(min(b1), ...,min(bm)) ≤ f(s′

1, ..., s
′
m) = ovl(d′)

In the right hand side of the above equation, we have the overall score of d′. Now, we
show that the left hand side of the above equation is higher than or equal to the overall
score of a data d that has not been seen by the algorithm. Let si be the (plaintext) local
score of d in the list Li. Since d has not been seen by the algorithm, its bucket in Li is after

4.6 Security Analysis and Improvement 69

bi that is the last bucket seen by the algorithm. Thus, we have si ≤ min(bi) for 1 ≤ i ≤ m.
Therefore, since f is monotonic, we have: f(s′

1, ..., s
′
m) ≤ f(min(b1), ...,min(bm))

In other words, ov(d) ≤ ov(d′). Thus, the overall score of any unseen data item d is
less than or equal to that of at least k data items contained in Y . Therefore, Y contains
the top-k results, and the proof is done.

The following theorem shows that the filtering algorithm of SDB-TOPK works cor-
rectly, if we change the bucket boundaries using Equations 4.1 and 4.2.

Theorem 11. Assume a top-k query with a monotonic scoring function f . If we modify
the lower bound of the buckets by using Equations 4.1 and 4.2, then the filtering algorithm
of SDB-TOPK does not remove any top-k result.

Proof. Let Y be the output of SDB-TOPK algorithm, and Y ′ ⊆ Y be the k data items in
Y that have the highest min_ovl scores. Let d′ be the data item in Y ′. In each list Li, let
b′
i and s′

i be the bucket and local score of d′
i in the list.

We do the proof by contradiction. We choose a data item d that is a top-k result and
has been removed by the filtering algorithm. We show that this assumption yields to a
contradiction. In each list Li, let bi and si be the bucket and local score of di in the list.
Since, d has been removed from the list, its maximum overall score using the modified
boundaries is lower than or equal to that of d′. Thus, we have:

f(max(b1)× a+ b, ...,max(bm)× a+ b) ≤ f(min(b′
1)× a+ c, ...,min(b′

1)× a+ c)
Since the coefficients a and c are positive, the monotonicity of f implies that:
f(max(b1), ...,max(bm)) ≤ f(min(b′

1), ...,min(b′
1)).

Therefore, we have: max_ovl(d) ≤ min_ovl(d′). Then by using Lemmas2 and 3, we
have: ovl(d) ≤ ovl(d′). In other words, the overall score of d is less than that of any data
item contained in Y ′. Thus, d is not a top-k result and can be removed.

Let us now prove that our second system, i.e., SD-TOPK, works correctly if we ob-
fuscate bucket boundaries.

Theorem 12. Assume a top-k query with a scoring function f that is linear with positive
coefficients. If we change the lower bound of the buckets by using Equation 4.1, then the
output of SD-TOPK will involve the top-k results.

Proof. Let the scoring function be f = a1x1 + a2x2 + · · · + amxm. Let Y be the output
of SD-TOPK algorithm, i.e., the set of candidate items. We show that each data item d
that has not been sent to the coordinator by the list owners, has an overall score that is
less than or equal to the overall score of at least k data items involved in Y . Let bi be the
bucket that contains the data d in the list Li, and thusmax(bi)∗a+c is the new (modified)
upper bound of bi. From the 4th step of SD-TOPK, we know that in each list Li we have
max(bi)∗a+c < θ. Thus, we have a1×(max(b1)∗a+c)+ · · ·+am×(max(bm)∗a+c)
<

∑m
i=1 ai × θ. We know that θ = δ∑m

i=1 ai
. Thus, we have the following equation:

a1 × (max(b1) ∗ a+ c) + · · ·+ am × (max(bm) ∗ a+ c) < δ (4.5)

70 4. Top-k Query Processing over Distributed Encrypted Data

Now, let d′ be the data item that has the kth minimum overall score in the 3rd step of
SD-TOPK. In each listLi, let b′

i be the bucket that contains d′ inLi, and thusmin(b′
i)∗a+c

is the new (modified) lower bound of b′
i. From the 3rd step of the algorithm, we know that

the minimum overall score of d′ (computed by using the obfuscated buckets) is equal to
δ. Thus, we have a1 × (min(b′

1) ∗ a+ c) + · · ·+ am × (min(b′
m) ∗ a+ c) = δ. Thus, we

have the following equation:

a1 × (min(b′
1) ∗ a+ c) + · · ·+ am × (min(b′

m) ∗ a+ c) = δ (4.6)

By comparing Equations 4.5 and 4.6, we have: a1 × (min(b′
1) ∗ a+ c) + · · ·+ am ×

(min(b′
m) ∗ a + c) > a1 × (max(b1) ∗ a + c) + · · · + am × (max(bm) ∗ a + c). Since

the numbers a and c are positive, we can write: a1 × (min(b′
1) + · · · + am × min(b′

m)
> a1 ×max(b1) + · · · + am ×max(bm). This means that the minimum overall score of
the data item d′ is higher than the maximum overall score of d. In other words, the data
item d could not be among the top-k results.

The following theorem shows that the filtering algorithm works correctly for SD-
TOPK, if it uses the obfuscated bucket limits.

Theorem 13. Assume a top-k query with a scoring function f that is linear with positive
coefficients. If we change the lower bound of the buckets by using Equation 4.1, then the
filtering algorithm of SD-TOPK does not remove any top-k result.

Proof. Let Y be the output of SD-TOPK algorithm, and d′ be the data item that has the
kth minimum overall score among the data items in the 3rd step of SD-TOPK. In each list
Li, let b′

i and s′
i be the bucket and local score of d′

i in the list.
We do the proof by contradiction. We assume a top-k data item d has been removed by

the filtering algorithm, and show that this assumption yields to a contradiction. Let bi and
si be the bucket and local score of di in the list Li. Since, d has been removed from the list,
its maximum overall score using the modified limits is lower than or equal to minimum
overall score of d′. Thus, we have: a1 × (max(b1)× a+ c), ..., am × (max(bm)× a+ c)
≤ a1 × (min(b′

1)× a+ c), ..., am × (min(b′
1)× a+ c). Since the parameters a and c are

positive, we have: a1 ×max(b1), ..., am ×max(bm) ≤ a1 ×min(b′
1), ..., am ×min(b′

1).
This means that the maximum overall score of the data item d is lower than the minimum
overall score of d′. Thus, d cannot be a top-k result.

4.6.2 Security Analysis
Partial Order Leakage: In SDB-TOPK and SD-TOPK, we use the bucketization tech-
nique for managing the data in the cloud nodes. The bucket boundaries are obfuscated,
so they disclose no information to the adversary. Inside the buckets, no information is
leaked because the data items are not ordered and the local scores are encrypted using a
probabilistic scheme.

4.6 Security Analysis and Improvement 71

But a partial order is leaked about the data items that are in different buckets (since
the buckets are ordered). We point out that the security of SBD-TOPK and SD-TOPK is
higher than the TA-based approaches, because with the latter approaches the total order
of the encrypted data is leaked to the cloud nodes.

Even a partial order leakage may help the adversary to obtain rough information about
the sensitive data of individuals if she has some background information about the data.
For example, if the adversary A knows that the age of a target person u is very high, then
A may find the bucket containing u in the list corresponding to age (i.e., the first or last
bucket of the list). Then, by guessing the ID of u in the bucket (e.g., if the size of the
bucket is too small), A may find the bucket of u in the salary’s list, and then estimate her
salary with some confidence probability. We show that this probability (i.e., the risk of
privacy violation) is very low, when the size of buckets is not small.

Let u be an individual (data item) in the database, and assume that the adversary A
knows the value of u in some attribute a. We want to compute the confidence probability
that A finds the bucket containing u’s value in a sensitive attribute s. Let us denote this
confidence probability by P (bs,u|a). We assume that if A finds the bucket of u in the
list representing s, then she can make a good estimation of u’s value, e.g., using some
background knowledge about the values of attribute s.

To find the bucket of u in the sensitive attribute s, the adversary A needs to perform
the following steps: 1) guessing the lists that represent a and s; 2) finding the bucket of u
in the list representing a; 3) guessing the ID of u in the found bucket; 4) searching u’s ID
in the list representing s, and finding its bucket.

Let P (L1 = a ∧ L2 = x) be the probability that A guesses correctly the lists rep-
resenting the attributes a and s. Let m be the number of lists in the database. In our
systems, the metadata of sorted lists (e.g., their identification) is encrypted, and they have
the same size and format. Thus, the probability of finding the correct list of an attribute is
1
m

. Therefore, the probability of correctly guessing the lists representing both attributes a
and s is:

P (L1 = a ∧ L2 = x) = 1
m× (m− 1) (4.7)

If the adversary A finds correctly the list representing a, then we assume that A is
able to find the bucket containing u by using the background knowledge about the value
of u in a (and some statistical information). After finding the bucket, say b, the adversary
needs to guess the ID of u. Let size(b) be the number of encrypted values in the bucket
b. Then, the probability of finding u’ ID in the bucket b, denoted as P (ID = u), is:

P (ID = u) = 1
|size(b)| (4.8)

If A guesses correctly the ID of u in the bucket b, then she can find the bucket con-
taining the ID in the list representing the attribute s (if she guesses correctly the list of s),
and then she can roughly estimate the u’s value in s.

The following theorem provides a formula that calculates the probability that an ad-
versary finds the bucket of an individual u in the sensitive attribute s by knowing the value
of u in an attribute a.

72 4. Top-k Query Processing over Distributed Encrypted Data

Theorem 14. Let s be a sensitive attribute, size(b) be the size of the buckets, and m be
the number of lists in the cloud. Let P (bs,u|a) be the probability that the adversary detects
correctly the bucket of an individual u in the sensitive attribute s by knowing the value of
u in an attribute a. Then, P (bs,u|a) is:

P (bs,u|a) ≤ 1
size(b)×m× (m− 1) (4.9)

Proof. The proof can be done using Equations 4.7 and 4.8.

The above theorem shows that when the size of the buckets is not small, the probability
of privacy violation is very low.

When the bucket size is one (which is equivalent of preserving the total order), the
risk of privacy violation is the highest. We advise at least size 10 for the buckets.

Note that choosing very big buckets increases the response time of query processing
(see the effect of bucket size on performance in Section 4.8.2). Therefore, the size of
the buckets should be taken based on the user privacy requirements (e.g., the maximum
acceptable probability of privacy violation) and performance (e.g., response time).

4.6.3 Security Improvements
In this section we propose some improvements to minimize as possible the data leakage
to the adversary.

Perturbing the Number of Asked Results: In the basic version of of SDB-TOPK
and SD-TOPK, the information about the number of asked results, i.e., k, is disclosed to
the nodes. We can perturb this information as follows. The trusted client generates a ran-
dom integer s between 0 and a predefined (small) value, and adds it to k. Then, it sends
k′ = k + s to the cloud as the number of required results. After receiving the encrypted
results from the cloud, the trusted client filters the result set and sends only k results to
the user. This strategy improves the security of our systems, however, we must choose the
value of s such that the response time of SDB-TOPK and SD-TOPK will not be affected
(see the effect of increasing k on performance in Section 4.8.2).

Perturbing the Database Size: Another information which, is leaked is the database
size (i.e., the number of tuples). This leakage can be avoided by adding dummy tuples to
the database before sending it to the cloud nodes. But, we have to be careful not to add
dummy tuples which could be returned to the user as a result of top-k queries. For this,
we can proceed as follows. Let n′ be the number of dummy data items that we want to
add to the lists. In each list Li, let si be the last local score in the list. We generate n′

random data IDs. Then, for each list Li, we generate n′ random scores smaller than si,
and assign them randomly to the n′ data IDs. Afterwards, we add the generated data IDs
and their local scores to the sorted lists. Since the local scores of the dummy data items
are smaller than any real data item, they have no chance to be returned as a result of top-k
queries.

4.7 Update Management 73

4.7 Update Management
To update a data item in SDB-TOPK and SD-TOPK systems is done by deleting the old
data scores (attribute values) and then inserting its new scores in the nodes of the cloud
data center. Let d be the data to be updated and the new scores in the lists L1, ..., Lm are
s1, ..., sm respectively.

To delete the old encrypted scores of d, it is sufficient to encrypt the ID of d using the
key that has been used for encrypting the data IDs, and then asking the nodes to find the
encrypted ID in the lists and then remove the pairs (E(d), E(si(d))) from the lists.

Inserting the new scores of d is done as follows. The trusted client uses the metadata
of the buckets (i.e., the lower and upper bounds), and for each list Li, it calculates the
bucket of the list to which the data score si should by stored. Let bi be the corresponding
bucket of si. The trusted client encrypts the ID and scores of d by using the encryption
schemes that are used for encrypting the ID and scores. Finally, for each list Li, it creates
the pairs (E(d), E(si(d))), and asks the owner of the list Li to put the pair in the bucket
bi.

4.8 Experimental Evaluation
In this section, we evaluate the performance of SDB-TOPK and SD-TOPK using synthetic
and real datasets. We study the effect of different parameters such as the number of data
items in each lists, the number of the database lists, the number of data items requested,
etc.

In the rest of this section, we first describe the experimental setup, and then report the
results of our experiments.

4.8.1 Setup

We did our tests on real and synthetic datasets 1. As in some previous work on privacy
(e.g., [46]), we use the Gowalla database, which is a location-based social networking
dataset collected from users locations. The database contains 6 million tuples where each
tuple represents user number, time, user geographic position, etc. In our experiments, we
are interested in the attribute time, which is the second value in each tuple. As in [46], we
decompose this attribute into 6 attributes (year, month, day, hour, minute, second), and
then create a database with the values of those attributes. In addition to the real dataset,
we have also generated random datasets using uniform and Gaussian distributions.

For the data encryption in all the approaches, we use the two following algorithms:
XOR [17] to encrypt the identifiers of the database items, and Blowfish [72] to encrypt
the local scores of the database items. For Remote-TA and Block-TA, we simply sort the
encrypted data items in each list based on their initial order (i.e., their order in plaintext).

1The code and tested data are accessible at: https://github.com/MAHBOUBIsakina/SD_
TOPK_approach

https://github.com/MAHBOUBIsakina/SD_TOPK_approach
https://github.com/MAHBOUBIsakina/SD_TOPK_approach

74 4. Top-k Query Processing over Distributed Encrypted Data

To create the distributed topology, we choose PeerSim [58]. In our tests, the number
of nodes is equal to the number of lists, i.e., each node will be owner of one list. In the
tested system, the average latency of messages is 50 ms. The coordinator node is one the
list owner nodes (randomly chosen).

In our performance evaluation, we study the effect of several parameters: 1) n: the
number of data items in the database; 2) m: the number of lists; 3) k: the number of
required top items; 4) bsize: the number of data items in the buckets (or blocks) in SDB-
TOPK, SD-TOPK and Block-TA. The default value for n is 2M items. Unless otherwise
specified, m is 5, k is 50, and bsize is 10. In our tests, the default database is the synthetic
uniform database.

To evaluate the performance of our approach, we measured the following metrics:

• Response time: the total time elapsed between the time when the query is sent
to the coordinator and the time when the k decrypted results are returned to the
user. This time includes top-k query processing time, filtering time, and the result
post-processing time (e.g., decryption).

• Filtering rate: the number of false positives eliminated by the filtering algorithm
in the cloud nodes.

• Communication cost: We measure two metrics: 1) the number of messages com-
municated between the nodes to answer a top-k query; 2) the total number of bytes
communicated to answer a top-k query.

4.8.2 Results
In this section, we reports all the experiment results that we obtained.

Effect of Database Size: In this experiment, we compare the response time of SDB-
TOPK, SD-TOPK, Remote-TA and Block-TA, while varying the number of data items,
i.e., n.

Figure 4.2 shows how response time evolves, with increasing n, and the other pa-
rameters set as default values described in Section 4.8. Note that the results are shown
in logarithmic scale. The response time of all approaches increases with increasing the
database size. SD-TOPK is the best; its response time is at least two orders of magnitude
better than the other algorithms. Also, the results show that SDB-TOPK performs better
than TA-based approaches. This high difference between SDB-TOPK and SD-TOPK is
mainly due to the difference in the number of communicated messages to find the top-k re-
sult. The difference between our proposed systems and TA-based algorithms is due to the
high number of encrypted data items that should be decrypted by TA-based algorithms
in trusted client, and also the communicated messages. Block-TA performs better than
Remote-TA, because of reading the lists in blocks, thus it needs less number of messages.

Effect of the Number of Queried Attributes: Figure 4.3 shows the response time
of SDB-TOPK, SD-TOPK and TA-based algorithms when varying m (i.e., the number of
attributes in the scoring function), and the other parameters set as default values (except

4.8 Experimental Evaluation 75

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 6 7 8 9 10 15 20 100

R
es

p
o

n
se

 t
im

e
(s

)

n (x1000)

SD-TOPK
SDB-TOPK

Block TA
Remote TA

Figure 4.2 – Response time vs. number
of database tuples

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1 2 3 4 5 6 7

R
es

p
o

n
se

 t
im

e
(s

)

m (list)

SD-TOPK
SDB-TOPK

Block TA
Remote TA

Figure 4.3 – Response time vs. number
of queried attributes m

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

R
es

p
o

n
se

 t
im

e
(s

)

k

SD-TOPK
SDB-TOPK

Figure 4.4 – Response time vs. k

 0.1

 1

 10

 100

 250
 500

 1000

 2500

 5000

R
es

p
o

n
se

 t
im

e
(s

)

bucket size

SD-TOPK
SDB-TOPK

Figure 4.5 – Response time vs. bucket
size

76 4. Top-k Query Processing over Distributed Encrypted Data

n which is fixed to 100K data items). We observe that the response time of SD-TOPK
increases slightly comparing to the other approaches when the number of lists increases.
The reason is that when we increase the number of lists, more data (sent by the nodes)
should be processed by the coordinator for finding the candidate items.

Effect of k: Figure 4.4 shows the response times of SDB-TOPK and SD-TOPK with
increasing k, and the other parameters set as default values. We observe that with in-
creasing k the response time of SD-TOPK increases slightly compared to SDB-TOPK.
The reason is that when k increases, SD-TOPK needs to get more data items from the list
owners in each step. In addition, increasing k augments the number of data items that the
trusted client needs to decrypt (because at least k data items are decrypted by the trusted
client).

Effect of Bucket Size: Figure 4.5 reports the response time of SDB-TOPK and SD-
TOPK when varying the size of buckets, and the other parameters set as default values.
We observe that the response time of SD-TOPK is almost constant compared to SDB-
TOPK response time. We observe that SDB-TOPK response time decreases when the
bucket size is less than 1000 data item, and when the bucket size is greater than this
value, the response time increases. The reason is that initially, by increasing the bucket
size, SDB-TOPK needs to exchange less messages between the nodes to find the top-k
data items, without a significant impact on the number of false positives. But, when the
bucket size gets very big, the number of false positives sent to the trusted client increases
significantly, thus it needs much more time to decrypt and eliminate them.

Performance over Different Datasets: We study the effect of the datasets on the per-
formance of SDB-TOPK, SD-TOPK, Remote-TA and Block-TA using different datasets:
synthetic datasets with uniform and Gaussian distributions, and real dataset (Gowalla).
Figure 4.6 shows the response time of the approaches over different datasets by using
100K data items, while other parameters are set as default values. We see that the per-
formance of all approaches over the Gaussian database is better than real and uniform
databases. The reason is that with the latter databases, the algorithms need to go deeper
into the lists to be sure that they have found the top-k results.

Communication Cost: We measure the communication cost of SDB-TOPK, SD-
TOPK, Remote-TA and Block-TA in terms of the total number of messages exchanged
between the different nodes and the size of the exchanged data.

Figure 4.7 shows the number of communicated messages while increasing the number
of tuples and fixing the other parameters to the default values. We observe that SD-TOPK
needs to exchange a small number of messages comparing to the others approaches. The
reason is that SD-TOPK runs in only some rounds of communication (that does not de-
pend on the database size). SDB-TOPK and TA-based algorithms exchange messages
until finding the top-k elements, thus for them the number of messages depends on the
position where they stop in the lists. Results show that SDB-TOPK and Block-TA ex-
changes the same number of messages because they read the data items in the lists by
buckets with same sizes so they stops in the same position. We see that the number of
messages exchanged by Block-TA is less than that of SDB-TOPK and Remote-TA, be-
cause the latter approaches communicates the data items in blocks not one by one as in

4.8 Experimental Evaluation 77

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

G
aussian

 database

R
eal database

U
niform

 database

R
es

p
o

n
se

 t
im

e
(s

)

SD-TOPK
SDB-TOPK

Block TA
Remote TA

Figure 4.6 – Response time using different databases

Remote-TA.
Figure 4.8 illustrates the size of the communicated data in bytes, while increasing the

number of tuples in the database and setting the other parameters to the default values.
We note that the size of the communicated data increases with the database size. The
amount of data transferred by SDB-TOPK and SD-TOPK is less than that of TA-based
approaches. The reason is that SDB-TOPK and SD-TOPK uses the obfuscated bucket
boundaries to check the top-k data items and these boundaries have a size less than the
encrypted scores used by other algorithms. We observe also that SD-TOPK transfers more
data than SDB-TOPK because the threshold calculated by SD-TOPK is generally lower
than the one calculated by SDB-TOPK. Thus, the nodes in SD-TOPK needs to go deeper
in the lists and return more data compared to SDB-TOPK.

Filtering Rate The filtering algorithm used by SDB-TOPK and SD-TOPK algorithm
is used to eliminate/reduce the false positives in the cloud. We study the filtering rate
of our approaches by using different datasets. The results are shown in Table 4.5. We
observe that the filtering algorithm of SD-TOPK eliminates 100% of the false positives
over the uniform database, thus the coordinator returns to the trusted client only the k data
items that are the result of the query.

We see that in the real and Gaussian databases, around 99.99% of false positives
are eliminated. For SDB-TOPK, we see that the filtering algorithm eliminates between
99.97% and 97.44% of positives over uniform and real databases, and 98.53% over gaus-
sian database. This difference comes from the local score distributions. For example, in
the Gaussian distribution, the local scores of many data items are very close to each other,
thus the filtering rate decreases in this dataset. The results show that the filtering algo-
rithm is very efficient over all the tested datasets, this is why we need to decrypt in the
client side only a small number of data (i.e., only the top-k data and a very small number

78 4. Top-k Query Processing over Distributed Encrypted Data

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 6 7 8 9 10 15 20 100

M
es

sa
g

e
N

u
m

b
er

n (milles)

SD-TOPK
SDB-TOPK

Block TA
Remote TA

Figure 4.7 – Number of communicated
messages vs. number of database tuples

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 6 7 8 9 10 15 20 100

ex
ch

an
g

ed
 d

at
a

si
ze

 (
b

y
te

)

n (milles)

SD-TOPK
SDB-TOPK

Block TA
Remote TA

Figure 4.8 – Size of communicated data
(in bytes) vs. number of database tuples

System Uniform dataset Real dataset Gaussian dataset
SD-TOPK 100% 99.995% 99.991%
SDB-TOPK 99.97% 97.44% 89.53%

Table 4.5 – False positive elimination by the filtering algorithm of SDB-TOPK and SD-
TOPK over different databases.

of false positives, if any).

4.9 Conclusion
In this chapter, we addressed the problem of evaluating top-k queries over encrypted
and distributed data across the nodes of a cloud data center. We first presented two TA-
based approaches, called Remote-TA and Block-TA, that correctly find top-k results over
encrypted data. But, they need many round-trips between the client and the cloud nodes,
and also need to decrypt many encrypted data in the client side. Then, we proposed tow
efficient Systems, called SDB-TOPK and SD-TOPK, that are coordinated and executed in
the nodes of the cloud. Our proposed systems include a top-k query processing algorithm
that finds a set of encrypted data that includes the top-k data items. In addition, we
proposed a filtering algorithms that filters efficiently the false positives in the nodes. We
theoretically proved the correctness of SDB-TOPK and SD-TOPK query processing and
filtering algorithms. We also analyzed the security of the two systems, and proposed
efficient strategies for enforcing it.

We evaluated the performance of our solutions over synthetic and real databases. The
results show excellent response time and communication cost for the SDB-TOPK and
SD-TOPK compared to TA-based approaches. The results also show a significant gain in
communication cost of SD-TOPK compared to the other algorithms. They also show the

4.9 Conclusion 79

efficiency of the filtering algorithm that eliminates almost all false positives in the cloud
nodes.

Chapter 5

Conclusion

In this thesis, we addressed the problem of privacy preserving top-k query processing over
encrypted data. Data encryption is the most popular and used technique to protect data
and to preserve users privacy. The major challenge is how to execute the user queries over
the encrypted data. In this context, we proposed three efficient solutions for executing
top-k queries over encrypted data stored in the cloud, for two cases where the database is
stored at a single node or distributed across multiple nodes of the cloud data center.

In the rest of this chapter, we summarize and discuss the main contributions made in
this thesis. We end with some directions for the future work.

5.1 Contributions

A survey of privacy preserving query processing

We gave a thorough introduction to the existing solutions for privacy preserving query
processing over outsourced data. We introduced the data outsourcing in general, and then
presented the techniques used to preserve user data privacy, e.g., anonymization, differen-
tial privacy and data encryption. The later technique is a common method to assure data
privacy in the cloud. We presented the main techniques for processing range queries, k-
nearest neighbor (kNN) queries and top-k queries over encrypted data, organized in three
categories: 1) special data structure based techniques; 2) order preserving encryption
based techniques; 3) bucketization based techniques.

BuckTopk

We first addressed the problem of top-k query processing over encrypted data, in the case
where the database can be stored in a single node of a cloud data center. We developed a
novel system, called BuckTop, designed to encrypt data items, outsource them to a non-
trusted cloud node, and answer top-k queries. BuckTop has a top-k query processing
algorithm that is executed over encrypted data, and returns a set containing the top-k

81

82 5. Conclusion

results, without decrypting the data in the cloud node. It also comes with a powerful
filtering algorithm that eliminates significantly the false positives from the result set.

We validated our system through experimentation over synthetic and real datasets.
We compared its response time with order preserving encryption based approach over
encrypted data, and with the TA algorithm over original (plaintext) data. The experimental
results show excellent performance gains for BuckTop. They illustrate that the overhead
of using BuckTop for top-k processing over encrypted data is very low, because of efficient
top-k processing and false positive filtering algorithm that eliminates until 99% of the
false positives in the cloud node.

SDB-TOPK and SD-TOPK
We addressed the problem of evaluating top-k queries over encrypted data, in the case
where the data is vertically partitioned across multiple nodes of the cloud data center. We
first proposed two TA-based approaches, called Remote-TA and Block-TA, that correctly
find top-k results over encrypted data. But, they need many round-trips between the client
and the cloud, and also need to decrypt many encrypted data in the client side. Then, we
presented our main contributions, called SDB-TOPK and SD-TOPK, that are executed in
the nodes of the cloud data center. They include a top-k query processing algorithm that
finds a set of encrypted data that includes the top-k data items. In addition, we proposed a
filtering algorithms for each system that filters efficiently the false positives in the nodes.
We theoretically proved the correctness of SDB-TOPK and SD-TOPK top-k processing
and filtering algorithms. We also analyzed the security of our systems, and proposed
efficient strategies for enforcing them.

We evaluated the performance of our solutions over synthetic and real databases. The
results show excellent response time and communication cost for the SDB-TOPK and
SD-TOPK compared to TA-based approaches. They show that their response time can be
several order of magnitude better than that of TA-based algorithms. This is mainly due
to their optimized top-k query processing and filtering algorithms. The results also show
significant gains in communication cost of SDB-TOPK and SD-TOPK compared to the
other algorithms. They also show the efficiency of the filtering algorithm that eliminates
almost all false positives, without decrypting the data.

5.2 Directions for Future Work

Our proposed systems address the problem of top-k query processing over encrypted data.
To enrich and extend them we can envisage the following research directions.

Supporting skyline queries
Our work could be extended to consider the execution of skyline queries over encrypted
data. Like top-k, the skyline query [9, 62] is an important query that is used for reducing

5.2 Directions for Future Work 83

the number of results returned to the users, by eliminating those that are not interesting.
Thus, skyline queries can be very useful for reducing the communication cost between
the cloud and its users.

Formally, a skyline query is defined as follows. Given a dataset D and a set of m
attributes, a skyline query Q over D returns a set of tuples which are not dominated by
any other tuple in the given attributes. We say that one tupleX dominates another tuple Y ,
if on all attributesX is as good as or better than Y and on at least one attribute, X is better
than Y . The dominance between two tuples is denoted by X > Y . The preferences of the
attributes are specified in the skyline query. The main differences between skylines and
top-k queries is that the results of top-k queries change with the different score functions,
while the results of skyline queries are fixed for a given dataset. In addition, the size of
the skyline cannot be controlled by the user and it can be as large as the data size in the
worst case.

One solution for executing skyline queries over encrypted data is to use an order pre-
serving encryption that allows us to determine the dominance of tuples in each attribute.
However, the challenge is to find more secure solutions that do not disclose the order of
encrypted data or disclose it partially.

Using software guard extensions technology
Another future work can be the utilization of Software Guard Extensions (SGX) for top-
k query processing over encrypted data in the cloud. SGX, proposed by Intel, is a new
hardware technology that protects an application’s secrets from malicious software by
creating isolated memory regions of code and data called enclaves. These non-addressable
memory pages are reserved from the system’s physical RAM and then encrypted, allowing
the application to access its secrets without fear of exposure. SGX applications are built
with two parts: 1) Trusted part which consists of the enclaves. They reside in encrypted
memory and are protected by Intel SGX. Enclaves are considered trusted because they
cannot be modified after they have been built. If a malicious user or software tries to
modify an enclave, this trial will be detected and avoided by the CPU; 2) the untrusted
part which is the rest of the application. Any application or memory region not protected
by Intel SGX is considered untrusted.

We could use this technology, which is available in some clouds (e.g., Azure), to im-
prove the response time and security of query processing over encrypted data. The idea
is to use the trusted enclaves to decrypt some data in the cloud, i.e., when it is neces-
sary. However, the challenge is to optimize the operations to be executed in the enclaves
because they can be overloaded quickly as their capacity is limited.

Bibliography

[1] AGRAWAL, R., KIERNAN, J., SRIKANT, R., AND XU, Y. Order preserving en-
cryption for numeric data. In International Conference on Management of Data
(SIGMOD) (2004), pp. 563–574.

[2] AKBARINIA, R., PACITTI, E., AND VALDURIEZ, P. Best position algorithms for
top-k queries. In Proceedings of the VLDB Endowment (PVLDB) (2007), pp. 495–
506.

[3] ANDRZEJAK, A., AND XU, Z. Scalable, efficient range queries for grid information
services. In International Conference on Peer-to-Peer Computing (P2P) (2002),
pp. 33–40.

[4] ANTONOPOULOS, N., EXARCHAKOS, G., LI, M., AND LIOTTA, A. Handbook
of Research on P2P and Grid Systems for Service-Oriented Computing: Models,
Methodologies and Applications: Models, Methodologies and Applications. Infor-
mation Science Reference (an imprint of IGI Global), 2010.

[5] AUMANN, Y., AND LINDELL, Y. Security against covert adversaries: Efficient
protocols for realistic adversaries. In Theory of Cryptography Conference (TCC)
(2007), pp. 137–156.

[6] BALDIMTSI, F., AND OHRIMENKO, O. Sorting and searching behind the curtain.
In International Conference on Financial Cryptography and Data Security (FC)
(2015), pp. 127–146.

[7] BOLDYREVA, A., CHENETTE, N., LEE, Y., AND O’NEILL, A. Order-preserving
symmetric encryption. In International Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT) (2009), pp. 224–241.

[8] BONEH, D., AND WATERS, B. Conjunctive, subset, and range queries on encrypted
data. In Theory of Cryptography Conference (TCC) (2007), pp. 535–554.

[9] BORZSONY, S., KOSSMANN, D., AND STOCKER, K. The skyline operator. In
International Conference on Data Engineering (ICDE) (2001), pp. 421–430.

85

86 5. Bibliography

[10] BOST, R., POPA, R. A., TU, S., AND GOLDWASSER, S. Machine learning classifi-
cation over encrypted data. In Network and Distributed System Security Symposium
(NDSS) (2015).

[11] BRAKERSKI, Z., GENTRY, C., AND VAIKUNTANATHAN, V. (leveled) fully homo-
morphic encryption without bootstrapping. Transactions on Computation Theory
Journal (TOCT) 6, 3 (2014), 13.

[12] BRUNO, N., GRAVANO, L., AND MARIAN, A. Evaluating top-k queries over web-
accessible databases. In International Conference on Data Engineering (ICDE)
(2002), pp. 369–380.

[13] BURKHART, M., AND DIMITROPOULOS, X. Fast privacy-preserving top-k queries
using secret sharing. In International Conference on Computer Communications
and Networks (ICCCN) (2010), pp. 1–7.

[14] CAO, P., AND WANG, Z. Efficient top-k query calculation in distributed net-
works. In ACM Symposium on Principles of Distributed Computing (PODC) (2004),
pp. 206–215.

[15] CAO, P., AND WANG, Z. Efficient top-k query calculation in distributed networks.
In ACM Symposium on Principles of Distributed Computing Conference (PODC)
(2004), pp. 206–215.

[16] CHANG, Y.-C., AND MITZENMACHER, M. Privacy preserving keyword searches
on remote encrypted data. In International Conference on Applied Cryptography
and Network Security (ACNS) (2005), pp. 442–455.

[17] CHURCHHOUSE, R. Codes and Ciphers. Cambridge University Press, 2002.

[18] CICERI, E., FRATERNALI, P., MARTINENGHI, D., AND TAGLIASACCHI, M.
Crowdsourcing for top-k query processing over uncertain data. Transactions on
Knowledge and Data Engineering Journal (TKDE) 28, 1 (2016), 41–53.

[19] COLES, C., AND YEOH, J. Cloud adoption practices and priorities survey report.
Tech. rep., Cloud Security Alliance report, Jan. 2015.

[20] CURTMOLA, R., GARAY, J., KAMARA, S., AND OSTROVSKY, R. Searchable
symmetric encryption: improved definitions and efficient constructions. Journal of
Computer Security (JCS) 19, 5 (2011), 895–934.

[21] DOMINGO-FERRER, J. A provably secure additive and multiplicative privacy ho-
momorphism. In International Conference on Information Security (ISC) (2002),
pp. 471–483.

[22] DWORK, C., MCSHERRY, F., NISSIM, K., AND SMITH, A. Calibrating noise to
sensitivity in private data analysis. In Theory of Cryptography Conference (TCC)
(2006), pp. 265–284.

87

[23] DWORK, C., ROTH, A., ET AL. The algorithmic foundations of differential privacy.
Foundations and Trends R© in Theoretical Computer Science Journal 9, 3–4 (2014),
211–407.

[24] ELMEHDWI, Y., SAMANTHULA, B. K., AND JIANG, W. Secure k-nearest neighbor
query over encrypted data in outsourced environments. In International Conference
on Data Engineering (ICDE) (2014), pp. 664–675.

[25] FAGIN, R. Combining fuzzy information from multiple systems. Journal of Com-
puter and System Sciences (JCSS) 58, 1 (1999), 83–99.

[26] FAGIN, R., LOTEM, A., AND NAOR, M. Optimal aggregation algorithms for mid-
dleware. In SIGMOD-SIGACT-SIGART symposium on Principles of database sys-
tems (2001), pp. 102–113.

[27] FAGIN, R., LOTEM, A., AND NAOR, M. Optimal aggregation algorithms for mid-
dleware. Journal of Computer and System Sciences (JCSS) 66, 4 (2003), 614–656.

[28] GENTRY, C. Fully homomorphic encryption using ideal lattices. In ACM Sympo-
sium on Theory of Computing Conference (STOC) (2009), pp. 169–178.

[29] GHINITA, G., KALNIS, P., KHOSHGOZARAN, A., SHAHABI, C., AND TAN, K.-
L. Private queries in location based services: anonymizers are not necessary. In
International Conference on Management of Data (SIGMOD) (2008), pp. 121–132.

[30] GRAEFE, G. Query evaluation techniques for large databases. Computing Surveys
Journal (CSUR) 25, 2 (1993), 73–169.

[31] GUPTA, M., GAO, J., YAN, X., CAM, H., AND HAN, J. Top-k interesting subgraph
discovery in information networks. In International Conference on Data Engineer-
ing (ICDE) (2014), pp. 820–831.

[32] HACIGÜMÜŞ, H., IYER, B., LI, C., AND MEHROTRA, S. Executing sql over
encrypted data in the database-service-provider model. In International Conference
on Management of Data (SIGMOD) (2002), pp. 216–227.

[33] HACIGÜMÜS, H., MEHROTRA, S., AND IYER, B. Providing database as a service.
In International Conference on Data Engineering (ICDE) (2002), pp. 29–40.

[34] HARDT, M., AND TALWAR, K. On the geometry of differential privacy. In ACM
Symposium on Theory of Computing Conference (STOC) (2010), pp. 705–714.

[35] HORE, B., MEHROTRA, S., CANIM, M., AND KANTARCIOGLU, M. Secure mul-
tidimensional range queries over outsourced data. VLDB Journal 21, 3 (2012), 333–
358.

[36] HORE, B., MEHROTRA, S., AND TSUDIK, G. A privacy-preserving index for range
queries. In Proceedings of the VLDB Endowment (PVLDB) (2004), pp. 720–731.

88 5. Bibliography

[37] HU, H., XU, J., REN, C., AND CHOI, B. Processing private queries over untrusted
data cloud through privacy homomorphism. In International Conference on Data
Engineering (ICDE) (2011), pp. 601–612.

[38] KAMARA, S., PAPAMANTHOU, C., AND ROEDER, T. Dynamic searchable sym-
metric encryption. In ACM Conference on Computer and Communications Security
(CCS) (2012), pp. 965–976.

[39] KESARWANI, M., KAUL, A., NALDURG, P., PATRANABIS, S., SINGH, G.,
MEHTA, S., AND MUKHOPADHYAY, D. Efficient secure k-nearest neighbours over
encrypted data. In International Conference on Extending Database Technology
(EDBT) (2018), pp. 264–275.

[40] KOLAHDOUZAN, M., AND SHAHABI, C. Voronoi-based k nearest neighbor search
for spatial network databases. In Proceedings of the VLDB Endowment (PVLDB)
(2004), pp. 840–851.

[41] KOSSMANN, D. The state of the art in distributed query processing. Computing
Surveys Journal (CSUR) 32, 4 (2000), 422–469.

[42] LEI, J. Differentially private m-estimators. In Neural Information Processing Sys-
tems Conference (NIPS) (2011), pp. 361–369.

[43] LI, C., HAY, M., MIKLAU, G., AND WANG, Y. A data- and workload-aware query
answering algorithm for range queries under differential privacy. VLDB Journal 7,
5 (2014), 341–352.

[44] LI, D., CAO, J., LU, X., AND CHEN, K. C. Efficient range query processing in
peer-to-peer systems. Transactions on Knowledge and Data Engineering Journal
(TKDE) 21, 1 (2009), 78–91.

[45] LI, J., AND OMIECINSKI, E. R. Efficiency and security trade-off in supporting
range queries on encrypted databases. In ACM Conference on Data and Applications
Security and Privacy (CODASPY) (2005), pp. 69–83.

[46] LI, R., LIU, A. X., WANG, A. L., AND BRUHADESHWAR, B. Fast range query
processing with strong privacy protection for cloud computing. VLDB Journal 7, 14
(2014), 1953–1964.

[47] LI, X., KIM, Y. J., GOVINDAN, R., AND HONG, W. Multi-dimensional range
queries in sensor networks. In International Conference on Embedded Networked
Sensor Systems (SenSys) (2003), pp. 63–75.

[48] LIU, D., LIM, E.-P., AND NG, W.-K. Efficient k nearest neighbor queries on
remote spatial databases using range estimation. In International Conference on
Scientific and Statistical Database Management (SSDBM) (2002), pp. 121–130.

89

[49] LIU, D., AND WANG, S. Programmable order-preserving secure index for en-
crypted database query. In International Conference on Cloud Computing (CLOUD)
(2012), pp. 502–509.

[50] MACHANAVAJJHALA, A., GEHRKE, J., KIFER, D., AND VENKITASUBRAMA-
NIAM, M. \ell-diversity: Privacy beyond\kappa-anonymity. In International Con-
ference on Data Engineering (ICDE) (2006), p. 24.

[51] MAHBOUBI, S., AKBARINIA, R., AND VALDURIEZ, P. Privacy preserving query
processing in the cloud. In Gestion de données - principes, technologies et applica-
tions (BDA) (2016), pp. 61–62.

[52] MAHBOUBI, S., AKBARINIA, R., AND VALDURIEZ, P. Answering top-k queries
over outsourced sensitive data in the cloud. In International Conference on Database
and Expert Systems Applications (DEXA) (2018), pp. 218–231.

[53] MAHBOUBI, S., AKBARINIA, R., AND VALDURIEZ, P. Distributed privacy-
preserving top-k query processing. In Gestion de données - principes, technologies
et applications (BDA) (2018).

[54] MAHBOUBI, S., AKBARINIA, R., AND VALDURIEZ, P. Privacy-preserving top-
k query processing in distributed systems. In European Conference on Parallel
Processing (Euro-Par) (2018), pp. 281–292.

[55] MAHBOUBI, S., AKBARINIA, R., AND VALDURIEZ, P. Top-k query processing
over distributed sensitive data. In International Database Engineering & Applica-
tions Symposium (IDEAS) (2018), pp. 208–216.

[56] MAMOULIS, N., CHENG, K. H., YIU, M. L., AND CHEUNG, D. W. Efficient
aggregation of ranked inputs. In International Conference on Data Engineering
(ICDE) (2006), pp. 72–72.

[57] MICHEL, S., TRIANTAFILLOU, P., AND WEIKUM, G. Klee: A framework for dis-
tributed top-k query algorithms. In Proceedings of the VLDB Endowment (PVLDB)
(2005), pp. 637–648.

[58] MONTRESOR, A., AND JELASITY, M. Peersim: A scalable p2p simulator. In
International Conference on Peer-to-Peer Computing (P2P) (2009), pp. 99–100.

[59] ÖZSU, M. T., AND VALDURIEZ, P. Principles of Distributed Database Systems,
Third Edition. Springer, 2011.

[60] PAGEL, B.-U., SIX, H.-W., TOBEN, H., AND WIDMAYER, P. Towards an analysis
of range query performance in spatial data structures. In SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (1993), pp. 214–221.

90 5. Bibliography

[61] PAILLIER, P. Public-key cryptosystems based on composite degree residuosity
classes. In International Conference on the Theory and Applications of Crypto-
graphic Techniques (EUROCRYPT) (1999), pp. 223–238.

[62] PAPADIAS, D., TAO, Y., FU, G., AND SEEGER, B. An optimal and progressive
algorithm for skyline queries. In International Conference on Management of data
(SIGMOD) (2003), pp. 467–478.

[63] PAPADIAS, D., ZHANG, J., MAMOULIS, N., AND TAO, Y. Query processing
in spatial network databases. In Proceedings of the VLDB Endowment (PVLDB)
(2003), pp. 802–813.

[64] PILOURDAULT, J., LEROY, V., AND AMER-YAHIA, S. Distributed evaluation of
top-k temporal joins. In International Conference on Management of Data (SIG-
MOD) (2016), pp. 1027–1039.

[65] PIRAHESH, H., HELLERSTEIN, J. M., AND HASAN, W. Extensible/rule based
query rewrite optimization in starburst. In Sigmod Record (1992), vol. 21, pp. 39–
48.

[66] PITOURA, T., NTARMOS, N., AND TRIANTAFILLOU, P. Replication, load balanc-
ing and efficient range query processing in dhts. In International Conference on
Extending Database Technology (EDBT) (2006), pp. 131–148.

[67] POPA, R. A., LI, F. H., AND ZELDOVICH, N. An ideal-security protocol for order-
preserving encoding. In IEEE Symposium on Security and Privacy (S&P) (2013),
pp. 463–477.

[68] POPA, R. A., REDFIELD, C., ZELDOVICH, N., AND BALAKRISHNAN, H.
Cryptdb: protecting confidentiality with encrypted query processing. In ACM Sym-
posium on Operating Systems Principles (SOSP) (2011), pp. 85–100.

[69] ROTH, A., AND ROUGHGARDEN, T. Interactive privacy via the median mechanism.
In ACM Symposium on Theory of Computing Conference (STOC) (2010), pp. 765–
774.

[70] SAHIN, C., ALLARD, T., AKBARINIA, R., ABBADI, A. E., AND PACITTI, E. A
differentially private index for range query processing in clouds. In International
Conference on Data Engineering (ICDE) (2018).

[71] SAMARATI, P., AND SWEENEY, L. Generalizing data to provide anonymity when
disclosing information. In SIGMOD/PODS Conference (1998), p. 188.

[72] SCHNEIER, B. Description of a new variable-length key, 64-bit block cipher (blow-
fish). In Fast Software Encryption workshop (FSE) (1994), pp. 191–204.

91

[73] SHANECK, M., KIM, Y., AND KUMAR, V. Privacy preserving nearest neighbor
search. In International Conference on Data Mining Workshops (ICDMW) (2006),
pp. 541–545.

[74] SHI, E., BETHENCOURT, J., CHAN, T. H., SONG, D., AND PERRIG, A. Multi-
dimensional range query over encrypted data. In IEEE Symposium on Security and
Privacy (S&P) (2007), pp. 350–364.

[75] SHI, J., WU, D., AND MAMOULIS, N. Top-k relevant semantic place retrieval on
spatial RDF data. In International Conference on Management of Data (SIGMOD)
(2016), pp. 1977–1990.

[76] SKOPAL, T., KRÁTKỲ, M., POKORNỲ, J., AND SNÁŠEL, V. A new range query
algorithm for universal b-trees. Information Systems Journal (ISJ) 31, 6 (2006),
489–511.

[77] SMART, N. P., AND VERCAUTEREN, F. Fully homomorphic encryption with rel-
atively small key and ciphertext sizes. In International Workshop on Public Key
Cryptography (PKC) (2010), pp. 420–443.

[78] SONG, D. X., WAGNER, D., AND PERRIG, A. Practical techniques for searches
on encrypted data. In IEEE Symposium on Security and Privacy (S&P) (2000),
pp. 44–55.

[79] STEHLÉ, D., AND STEINFELD, R. Faster fully homomorphic encryption. In Inter-
national Conference on the Theory and Application of Cryptology and Information
Security (ASIACRYPT) (2010), pp. 377–394.

[80] TANG, J., CUI, Y., LI, Q., REN, K., LIU, J., AND BUYYA, R. Ensuring secu-
rity and privacy preservation for cloud data services. Computing Surveys Journal
(CSUR) 49, 1 (2016), 13.

[81] VAIDYA, J., AND CLIFTON, C. Privacy-preserving top-k queries. In International
Conference on Data Engineering (ICDE) (2005), pp. 545–546.

[82] VAIDYA, J., AND CLIFTON, C. W. Privacy-preserving kth element score over ver-
tically partitioned data. Transactions on Knowledge and Data Engineering Journal
(TKDE) 21, 2 (2009), 253–258.

[83] VAN DIJK, M., GENTRY, C., HALEVI, S., AND VAIKUNTANATHAN, V. Fully ho-
momorphic encryption over the integers. In International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT) (2010), pp. 24–43.

[84] VAN LIESDONK, P., SEDGHI, S., DOUMEN, J., HARTEL, P., AND JONKER, W.
Computationally efficient searchable symmetric encryption. In Secure Data Man-
agement Workshop (SDM) (2010), pp. 87–100.

92 5. Bibliography

[85] WANG, X., ZHANG, Y., ZHANG, W., LIN, X., AND HUANG, Z. SKYPE: top-k
spatial-keyword publish/subscribe over sliding window. VLDB Journal 9, 7 (2016),
588–599.

[86] WONG, W. K., CHEUNG, D. W.-L., KAO, B., AND MAMOULIS, N. Secure knn
computation on encrypted databases. In International Conference on Management
of Data (SIGMOD) (2009), pp. 139–152.

[87] XIANRUI MENG, H. Z., AND KOLLIOS, G. Top-k query processing on encrypted
databases with strong security guarantees. In International Conference on Data
Engineering (ICDE) (2018).

[88] XIAO, L., AND YEN, I.-L. Security analysis for order preserving encryption
schemes. In Annual Conference on Information Sciences and Systems (CISS) (2012),
pp. 1–6.

[89] XIONG, L., CHITTI, S., AND LIU, L. Topk queries across multiple private
databases. In International Conference on Distributed Computing Systems (ICDCS)
(2005), pp. 145–154.

[90] XU, J., FAN, J., AMMAR, M. H., AND MOON, S. B. Prefix-preserving ip address
anonymization: Measurement-based security evaluation and a new cryptography-
based scheme. In International Conference on Network Protocols (ICNP) (2002),
pp. 280–289.

[91] YANG, H., CHUNG, C., AND KIM, M. An efficient top-k query processing frame-
work in mobile sensor networks. Data & Knowledge Engineering Journal (DKE)
102 (2016), 78–95.

[92] YAO, B., LI, F., AND XIAO, X. Secure nearest neighbor revisited. In International
Conference on Data Engineering (ICDE) (2013), pp. 733–744.

[93] YU, H., LI, H.-G., WU, P., AGRAWAL, D., AND EL ABBADI, A. Efficient pro-
cessing of distributed top-k queries. In International Conference on Database and
Expert Systems Applications (DEXA) (2005), pp. 65–74.

[94] ZHANG, J., ZHANG, Z., XIAO, X., YANG, Y., AND WINSLETT, M. Functional
mechanism: regression analysis under differential privacy. VLDB Journal 5, 11
(2012), 1364–1375.

[95] ZHANG, X., LI, G., AND FENG, J. Crowdsourced top-k algorithms: An experi-
mental evaluation. VLDB Journal 9, 8 (2016), 612–623.

[96] ZHU, Y., XU, R., AND TAKAGI, T. Secure k-nn computation on encrypted cloud
data without sharing key with query users. In International Workshop on Security in
Cloud Computing (SCC) (2013), pp. 55–60.

	Dedication
	Acknowledgments
	Résumé
	Abstract
	Résumé étendu
	List of Figures
	List of Tables
	Introduction
	Thesis Context and Objectives
	Contributions
	Organization of the Thesis

	Overview of Privacy-Preserving Query Processing over Outsourced Data
	Introduction
	Database Outsourcing
	Data Privacy Of Outsourced Databases
	Anonymization
	Differential Privacy
	Data Encryption

	Query Processing
	Range Queries
	KNN Search Queries
	Top-k Query
	Top-k Query Processing Algorithms
	Fagin's Algorithm
	Threshold Algorithm
	No-Random-Access Algorithm (NRA)
	Best Position Algorithm
	Best Position Algorithm 2

	Top-k Query Processing over Distributed Data
	Three-Phase Uniform-Threshold Algorithm (TPUT)
	Three-Phase Adaptive Threshold Algorithm (TPAT)
	Three-Phase Object Ranking Based Algorithm
	Hybrid-Threshold Algorithm

	Privacy-Preserving Query Processing
	Privacy Preserving Range Query Processing
	Specialized Data Structure-Based Techniques
	Order-Preserving Encryption-Based Techniques
	Bucketization-Based Techniques
	CryptDB

	Privacy Preserving Knn Query Processing
	Privacy Preserving Top-k Query Processing

	Conclusion

	Top-k Query Processing over Centralized Encrypted Data
	Introduction
	Motivation
	Problem Definition
	Adversary Model
	Problem Statement

	OPE-Based Approach
	Data Encryption
	Top-k Query Processing

	BuckTop System
	System Architecture
	Data Encryption
	Top-k Query Processing
	False Positive Filtering

	Performance Evaluation
	Setup
	Results

	Conclusion

	Top-k Query Processing over Distributed Encrypted Data
	Introduction
	Problem Definition
	Database Distribution and Systems Architecture
	Problem Statement

	TA-Based Approaches
	Data Storage
	Remote-TA
	Block-TA

	SDB-TOPK System
	Data Encryption and Outsourcing
	Top-k Query Processing
	 False Positive Filtering

	SD-TOPK System
	Top-k Query Processing
	False Positive Filtering

	Security Analysis and Improvement
	Obfuscating Bucket Boundaries
	Security Analysis
	Security Improvements

	Update Management
	Experimental Evaluation
	Setup
	Results

	Conclusion

	Conclusion
	Contributions
	Directions for Future Work

	Bibliography

