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Preamble

The rise of global molecular (i.e. omics) sciences has considerably expanded our

knowledge of many biological systems. Compared to genomics, or even proteomics,

metabolomics appeared more recently, about two decades ago. The metabolome is the

set of all small molecules (metabolites) involved in biochemical reactions, and thus

provides specific informations about the phenotype. Moreover it is the end product of

cellular metabolism. As such, it is of great potential to monitor any physio-pathological

variations in a living system. This proximity with the phenotype leads to a greater

variability than other omics data. It is therefore a challenge for data analysis, and large

cohorts are thus required to increase the statistical power of the studies. One of the

reference analytical approaches in metabolomics, Liquid Chromatography coupled to

Mass Spectrometry (LC-MS), however, is nevertheless low throughput. New protocols

are therefore developed, such as Flow Injection Analysis coupled to High-Resolution

Mass Spectrometry (FIA-HRMS) to bypass the chromatographic step. In parallel,

the design of robust computational workflows to process such specific raw signals is

pivotal. In the the first part of this PhD, we describe the design and implementation

of the first workflow for the preprocessing of FIA-HRMS data.

A specificity of metabolomics is the chemical diversity of the molecules. Since only

partial information is provided by the analytical techniques (e.g. the mass-to-charge

ratio, m/z in the case of MS approaches), structural annotation is a challenge for the

majority of the detected compounds. Additional experiments are therefore used, such

as tandem mass spectrometry (MS/MS), to obtain new informations about the frag-

mentation of the molecule, which can be compared to tandem spectra from chemical

standards. With the recent emergence of high-speed acquisition instruments, hundreds

of MS/MS spectra from distinct molecules can be generated in a single acquisition.

Automated processing and analysis of such collections of spectra has therefore become

critical. On the one hand, predictive approaches based on in silico fragmentation mod-

eling have been developed. On the other hand, mining strategies have been recently

described to analyze the similarities between spectra, by using molecular networks or

pattern mining. Whereas the modeling of the physical fragmentation process is central

to in silico fragmentation methods, it is not used by similarity based approaches, thus

making the interpretation of the detected similarities more challenging. We therefore

developed in the second part of the PhD a new method to find structural similarities

within MS/MS spectra collections, based on an innovative graph mining algorithm.
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Structure of the manuscript

This thesis starts by an introductory part describing the key terms and concepts

used in mass spectrometry based metabolomics (Section 1). Next, an overview of

metabolomics is presented (Section 2), focusing on the preprocessing and annotation

challenges which led to our project. The datasets used in this thesis are also described

in chapter (Chapter 3).

The two next parts of the manuscript describe our contributions about 1) the

processing of Flow Injection Analysis coupled to High-Resolution Mass Spectrometry

(FIA-HRMS) data (proFIA software; Part II), and 2) the mining of structural pat-

terns within MS/MS spectra collections (MineMS2 software; Part III). The two parts

can be read independently. They both start with a bibliographic introduction giv-

ing a technical overview of the problem, followed by the design and implementation

of our algorithms, their validation on two real datasets, and a discussion about the

perspectives of the proposed methods.

The thesis ends with a global conclusion about the approaches and software devel-

oped in this PhD, and their scientific impact.

4



Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Structure of the manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

I Introduction 11

1 Nomenclatures 12

1.1 Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Specific MS and MS/MS nomenclature . . . . . . . . . . . . . . . . . . 16

1.3.1 Description of MS data . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.2 Description of MS/MS data . . . . . . . . . . . . . . . . . . . . 18

2 Bibliography 21

2.1 Metabolomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Application of metabolomics . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Biomarker discovery . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Insights into systems biology . . . . . . . . . . . . . . . . . . . . 24

2.3 Main analytical techniques . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Hyphenated Mass spectrometry setup . . . . . . . . . . . . . . . 26

2.4 Processing and analysis of MS-derived data . . . . . . . . . . . . . . . . 27

5



2.4.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.3 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.4 Tandem mass spectrometry (MS/MS) for structural elucidation 31

2.5 Current challenge of metabolomics . . . . . . . . . . . . . . . . . . . . 32

3 Datasets 34

3.1 FIA-HRMS datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Biological material and sample preparation . . . . . . . . . . . . 35

3.2 MS/MS datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 The PenicilliumDIA dataset . . . . . . . . . . . . . . . . . . . 35

3.2.2 The LemmDB dataset . . . . . . . . . . . . . . . . . . . . . . 35

II A preprocessing workflow for FIA-HRMS: proFIA 38

4 Introduction 39

4.1 FIA-HRMS preprocessing algorithms and software tools . . . . . . . . . 39

4.2 Peak detection methods in LC-MS . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Peak detection in m/z dimension . . . . . . . . . . . . . . . . . 45

4.2.2 Inter-scans m/z matching . . . . . . . . . . . . . . . . . . . . . 46

4.2.3 Peak picking on the EIC . . . . . . . . . . . . . . . . . . . . . . 48

4.2.4 Alternative methods . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.5 Grouping peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 A computable model for an Extracted Ion Chromatogram in FIA-MS 56

5.1 Extraction of physical phenomena affecting an EIC in FIA-MS . . . . . 57

5.1.1 Physical phenomena originating from the Flow Injection Analy-
sis (FIA) system . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.2 Phenomena occurring in the Electrospray Ionisation Source (ESI) 58

5.1.3 Phenomena occurring in a Mass Spectrometer (MS) . . . . . . . 60

6

intro:datasets:mush
intro:datasets:lemm


5.2 Selection of a computable model for the extracted physical phenomena 61

5.2.1 Modeling of the concentration curve . . . . . . . . . . . . . . . . 62

5.2.2 Modeling of matrix effect (ME) . . . . . . . . . . . . . . . . . . 63

5.2.3 Modeling of the noise in HRMS . . . . . . . . . . . . . . . . . . 67

5.3 Proposed EIC model integrating these components . . . . . . . . . . . 67

5.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Construction of a processing workflow for FIA-HRMS data: proFIA 71

6.1 Initial estimation of the sample peak limits . . . . . . . . . . . . . . . . 72

6.2 m/z band detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Model of the noise variance . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.1 Noise variance estimation . . . . . . . . . . . . . . . . . . . . . 77

6.3.2 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4 Sample peak determination . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4.1 Regression on simulated data . . . . . . . . . . . . . . . . . . . 80

6.4.2 Selection of well behaved EICs . . . . . . . . . . . . . . . . . . . 82

6.4.3 Regression of the sample peak . . . . . . . . . . . . . . . . . . . 82

6.5 Peak detection using modified matched filtration . . . . . . . . . . . . . 83

6.5.1 Peak limits estimations . . . . . . . . . . . . . . . . . . . . . . . 83

6.5.2 Solvent removal . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.5.3 Statistical testing of sample contribution . . . . . . . . . . . . . 87

6.5.4 Extension of the testing to include matrix effect . . . . . . . . . 87

6.5.5 Quality metrics calculation . . . . . . . . . . . . . . . . . . . . . 88

6.6 Inter samples features grouping . . . . . . . . . . . . . . . . . . . . . . 89

6.7 Missing value imputation . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Evaluation of proFIA on experimental datasets 92

7.1 Comparison between proFIA and XMCS . . . . . . . . . . . . . . . . . 93

7.2 Reproducibility of peak picking with proFIA . . . . . . . . . . . . . . . 95

7.3 Comparison with manual measurement . . . . . . . . . . . . . . . . . . 96

7



7.3.1 Comparison of detection . . . . . . . . . . . . . . . . . . . . . . 96

7.3.2 Comparison of quantification . . . . . . . . . . . . . . . . . . . . 97

7.4 Impact of proFIA parameter values . . . . . . . . . . . . . . . . . . . . 98

8 Discussion 101

8.1 Intra sample grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.2 Current limitations from proFIA . . . . . . . . . . . . . . . . . . . . . . 102

8.2.1 Medium resolution data . . . . . . . . . . . . . . . . . . . . . . 102

8.3 Refinement of proFIA workflow . . . . . . . . . . . . . . . . . . . . . . 104

8.3.1 Bias of the ME’s indicator . . . . . . . . . . . . . . . . . . . . . 104

8.3.2 Improvement of regression process . . . . . . . . . . . . . . . . . 105

8.4 Extension of the proFIA software . . . . . . . . . . . . . . . . . . . . . 105

III Development of a tool for structural similarity mining:
MineMS2 107

Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9 Introduction 109

9.1 MS/MS spectral database matching . . . . . . . . . . . . . . . . . . . . 109

9.1.1 Cosine Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.2 in silico fragmentation methods . . . . . . . . . . . . . . . . . . . . . . 112

9.2.1 Machine-learning based approaches . . . . . . . . . . . . . . . . 112

9.2.2 Physic-based approaches . . . . . . . . . . . . . . . . . . . . . . 113

9.2.3 Comparison of the in silico fragmentation methods . . . . . . . 113

9.3 Similarities based approaches . . . . . . . . . . . . . . . . . . . . . . . 115

9.3.1 MS/MS similarity network . . . . . . . . . . . . . . . . . . . . . 115

9.4 MS/MS pattern mining . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.5 Graph Theory Reminder . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9.6 Introduction to Frequent subgraph Mining . . . . . . . . . . . . . . . . 121

9.6.1 Graph isomorphism problem . . . . . . . . . . . . . . . . . . . . 121

8



9.7 Overview of FSM algorithms . . . . . . . . . . . . . . . . . . . . . . . . 122

9.7.1 Traversal of the search space . . . . . . . . . . . . . . . . . . . . 123

9.7.2 Canonical forms in FSM . . . . . . . . . . . . . . . . . . . . . . 125

9.7.3 Candidate generation . . . . . . . . . . . . . . . . . . . . . . . . 125

9.8 Reducing the number of mined patterns . . . . . . . . . . . . . . . . . 128

9.9 MS/MS spectra preprocessing . . . . . . . . . . . . . . . . . . . . . . . 130

9.9.1 Comparison of the preprocessing from MS2process (automated)
and Xcalibur (manual) . . . . . . . . . . . . . . . . . . . . . . . 133

10 Definition of a graph representation for a set of fragmentation spectra
highlighting their structural similarities 134

10.1 Definition of a graph representation of a set of collisional spectra . . . . 134

10.1.1 Initial graph representation: Fragmentation tree . . . . . . . . . 135

10.1.2 A new graph representation of MS/MS spectra: the Losses Graphs
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

10.1.3 Interest of Losses Graph representation . . . . . . . . . . . . . . 137

10.2 Construction of Losses Graphs from MS/MS spectra . . . . . . . . . . 138

10.2.1 Mass differences discretization . . . . . . . . . . . . . . . . . . . 138

10.2.2 Formula generation . . . . . . . . . . . . . . . . . . . . . . . . . 141

10.3 Losses Graphs properties . . . . . . . . . . . . . . . . . . . . . . . . . 143

11 MineMS2: A Frequent Subgraph Mining Algorithm for Fragmenta-
tion Spectra 149

11.1 Reduction of the pattern search space for Losses Graph mining . . . . . 149

11.1.1 Patterns specificity for Losses Graph mining . . . . . . . . . . . 150

11.1.2 A canonical form of AFG : the k-LMDF Spanning Tree . . . . . 150

11.1.3 A dedicated data structure for FSM on Losses Graphs : the
k-Path Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

11.2 Mining Closed AFGs using the k-path tree . . . . . . . . . . . . . . . . 154

11.2.1 Pattern structure in MineMS2 . . . . . . . . . . . . . . . . . . . 154

11.2.2 Overview of the MineMS2-FSM algorithm . . . . . . . . . . . . 155

11.2.3 Ill-formed subtrees of T . . . . . . . . . . . . . . . . . . . . . . 155

9



11.2.4 Efficient Support Computation . . . . . . . . . . . . . . . . . . 157

11.2.5 2-LMDF frequent spanning trees enumeration . . . . . . . . . . 158

11.2.6 Frequent subtree enumeration . . . . . . . . . . . . . . . . . . . 159

11.2.7 Completeness of the enumeration algorithm . . . . . . . . . . . 160

11.3 Mining closed patterns only . . . . . . . . . . . . . . . . . . . . . . . . 161

11.3.1 Reconstructing AFG form 2-LMDF tree . . . . . . . . . . . . . 162

11.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

11.5 Experimental results on real datasets . . . . . . . . . . . . . . . . . . . 162

12 Discussion 165

12.1 Summarizing the detected subgraphs . . . . . . . . . . . . . . . . . . . 165

12.1.1 Problem formalization . . . . . . . . . . . . . . . . . . . . . . . 168

12.1.2 Assigning a chemical score to an AFG . . . . . . . . . . . . . . 169

12.1.3 Development of a greedy algorithm for pattern selection . . . . 170

12.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

12.2.1 Limits of patterns mining methods . . . . . . . . . . . . . . . . 172

12.2.2 Extensions of MineMS2 . . . . . . . . . . . . . . . . . . . . . . 174

12.2.3 Interpretability of MineMS2 derived patterns . . . . . . . . . . . 175

12.2.4 Potential coupling of MineMS2 to in silico fragmentation methods175

13 Conclusion 176

References 179

Appendices 197

A k-LDFM subtree enumeration example 198
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Chapter 1
Nomenclatures

1.1 Acronyms

AFG: Acyclic Flow Graph, the type of graph mined in chapter 11.

BFS: Breadth-First Search, a classical graph traversal algorithm

CWT : Continuous Wavelet Transform, a widely used algorithm for peak detection,

see section 4.2.3.

DFS: Depth-First Search , a classical graph traversal algorithm.

EIC: Extracted Ion Chromatogram a slice of Mass Spectrometry data in a limited

m/z range and eventually in a limited time range, see section 1.3. item[ESI: ]

Electro Spray Ionization, a reference technique of ionization used in metabolomics,

see section 5.1.2 for a more complete description.

FIA-HRMS: Flow Injection Analysis coupled to High Resolution Mass Spectrome-

try, the high-throughput technique studied in part II.

k-LMDF: , k Left Most Depth First, a canonical form of an AFGdefined in chapter

11.

LC-MS: Liquid Chromatography coupled to Mass Spectrometry, a reference tech-

nique in metabolomics.

ME: Matrix Effect. The combined effect of all components of the sample other

than the analyte on the measurement of the quantity (Murray et al. 2013), it is

described in more detail in section 5.1.2.
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MS: Mass Spectrometry.

MS/MS: Tandem MS spectrum obtained by isolating a single molecule and frag-

menting it.

TIC: Total Ion Chromatogram, a curve obtained by summing all the intensities

present on each mass spectra, for each time point. See 1.3.

TOF: Time-of-Flight mass spectrometer, one of the most widely used mass spec-

trometer. A very quick description of his functioning is given in part

13



1.2 Glossary

Because of the difficulty to define specific data terms without many cross-references,

the vocabulary relative to Mass Spectrometry data is described in a dedicated section

1.3 similarly the vocabulary of graph theory used in part III is described in section

9.5.

Analyte : A molecule of interest from which needs to be quantified.

Carrier flow: The flow of solvent carrying a sample to the mass spectrometer.

Concentration curve: The gradient of concentration observed in function of time

at a fixed point of the flow of an FIA system.

Fragment Ion An ion resulting from a fragmentation event visible on an MS-MS

spectrum. See section 1.3 for more detail.

Losses Graphs : A graph representation of an MS-MS spectrum defined from a set

of MS-MS spectra in chapter 10.

Mass analyzer: A mass analyzer is the component of the mass spectrometer that

takes ionized masses and separates them based on charge to mass ratios.

Matrix Effect: The combined effect of all components of the sample other than the

analyte on the measurement of the quantity (Murray et al. 2013), it is described

in more detail in section 5.1.2.]Acyclic Flow Graph, the type of graph mined in

chapter 11.

Matched filtration: A pattern detection procedure where the pattern is convolved

to the input sequence, and match are found as maxima on the convolved se-

quence, see section 4.2.3.

Neutral loss A neutral molecule ion resulting from a fragmentation event. See sec-

tion 1.3 for more detail.

Orbitrap: An High Resolution mass spectrometer is an ion trap mass analyzer con-

sisting of an outer barrel-like electrode and a coaxial inner spindle-like electrode

that traps ions in an orbital motion around the spindle.

Precursor Ion The isolated ion leading to an MS-MS spectrum, see section 1.3 for

more detail.
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Sample peak: The common common temporal profiles of all the concentration curves

in an ideal FIA system without any retention.
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1.3 Specific MS and MS/MS nomenclature

In this section we define the key MS terms and concepts which will be used throughout

the thesis. A short introduction can be found in R. Smith et al. 2014, as well as a

more detailed glossary in (Murray et al. 2013). The reference chemical terminology

is defined by the International Union of Pure and Applied Chemistry (IUPAC Gold

Book).

1.3.1 Description of MS data

An example of the data generated by an FIA-HRMS acquisition is shown in Figure 1.1.

The data are 3-dimensional: m/z, time, and intensity, with m/z being a mass-to-

charge ratio.

Figure 1.1: Nomenclature used to describe MS data: a) 3D representation of
the data, b) scan at a specific time point: a mass spectrum, d) slice within a specific
m/z window: an Extracted Ion Chromatogram (EIC), and c) slice covering the whole
m/z acquisition range : the Total Ion Chromatogram (TIC), i.e., the signal obtained
by summing all intensities for each scan

An MS run consists of multiple acquisitions (typically every second): for each scan,
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the instruments provides a measure of the intensities detected across the whole m/z

range, a mass spectrum, which is a vector of m/z values and corresponding intensi-

ties (Figure 1.1b). The whole data set corresponding to a complete MS run for one

sample can be represented as a 3D plot (Figure 1.1a), where all scans are shown side

by side in the time dimension. By definition, the time scale is identical for all data

points. In contrast, points in the m/z dimension are usually not binned to achieve

maximal measurement accuracy: as a result, slight random variations are observed

from one scan/spectrum to the other. To capture all ions from the same feature along

the time dimension, slices covering a small m/z window are used (Extracted Ion

Chromatogram (EIC); Figure 1.1d). It is a 2D curve with time as abscissa and in-

tensity as ordinate. Depending on the m/z width of the slice, multiple points from the

same spectrum may be selected: in that case, their intensities are summed. The EIC

obtained by considering the full m/z range is called the Total Ion Chromatogram

(TIC), each intensity is the sum of the values of a whole mass spectrum (Figure 1.1c).

Profile vs centroid data

(a) (b)

Figure 1.2: Profile and centroid m/z modes. On these simulated data, a) m/z
distributions can be observed before centroidization, whereas on b) each feature is
represented by a unique m/z value in the centroid mode.

Mass spectrometers often sample distributions of m/z values corresponding to same

ion. This distributions is clearly visible on the mass spectra (Figure 1.2a, data exhibit-

ing these distributions are called ”profile mode data” or ”profile data”. It is often

more convenient from a storage and processing point of view to reduce each distri-

bution to a single m/z value and its corresponding intensity (which may be the area

of the peak, or its maximum). These data are called ”centroided”, or ”in centroid

17



mode”. Centroidization is discussed with more detail in section 4.2.1.

Low vs high resolution

Figure 1.3: Low and High resolution mass spectrometry. Two signals have been
simulated corresponding to a resolution of 4’000 (red) and 30’000 (black). The two
peaks at a about 300.1 and 300.2 They cannot be separated at the sub-nominal, low
resolution.

Multiple definitions of resolution have been proposed by IUPAC. Here we will

use the ratio between the m/z value and the full width at half maximum (FWHM). It

is important to keep in mind that the resolution of a mass spectrometer is defined at

a specific m/z (since it decreases with large m/z values). Low resolution instruments

were first used in metabolomics, in particular for high-throughput applications. Such

mass spectrometers cannot separate ions below the nominal mass (i.e., isobaric ions,

also called isobars; red signal in Figure 1.3). Today, most platforms are equipped with

high-resolution mass spectrometers HRMS which enable to assign a unique chemical

formula to m/z values up to a few hundreds Da (black signal in Figure 1.3). The data

and algorithms presented in this thesis are therefore designed for HRMS data.

1.3.2 Description of MS/MS data

The m/z value alone is not sufficient to assign a chemical structure to a feature (e.g.,

all chemical isomers have the same m/z). Tandem mass spectrometry is therefore used

to analyze the fragmentation pattern of the molecule. During the first MS acquisition,

ions are selected within a certain m/z range (Isolation Windows). During the sub-

sequent collision induced dissociation step, these (parent) ions are fragmented. The
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Figure 1.4: Nomenclature for MS/MS data. a) MS spectrum; b) zoom on the
specific m/z isolation window used to produce the MS/MS spectrum shown in c)

fragments are analyzed during the second MS acquisition. MS/MS can be used to

study the fragmentation of a few ions of interest (e.g., which have been highlighted by

upstream statistical analysis of the MS spectra). Each fragmentation event generates

at least two fragments, one product ion which will be detected in the MS/MS (or

MS2) spectrum because it keeps the charge, and one or several neutral loss(es) which

would not be visible as they will be neutral (they can be inferred from the differences

between the peaks from the parent and the product ions). With the improvement of

the mass spectrometers in terms of sensitivity, mass accuracy, resolution and acqui-

sition speed, new ”non-targeted” (or ”semi-targeted” strategies have emerged), such

as Data Dependent Acquisition (DDA) and Data Independent Acquisition

(DIA)(Fenaille et al. 2017). DDA and DIA were initially developed for proteomics

but are now widely used in metabolomics. In DDA, the mass spectrometer selects the

ions after the acquisition of the MS-spectrum, based on predefined criteria (e.g., the

”top n” ions of maximal intensity or the presence of a characteristic ion). In DIA, all
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the precursor ions within predefined (wide) isolation windows are fragmented.
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Chapter 2
Bibliography

2.1 Metabolomics

Figure 2.1: Metabolomics among the main omics approaches (European
Bioinformatics Institute website).

Metabolomics (Oliver et al. 1998) is the global study of the small molecules

(typically less than 1.5 kDa) present in a biological sample. Metabolites are the end

products of regulatory processes in the organism (Figure 2.1), and are therefore of

high interest to characterize the phenotype. Many strategies have been developed to

study either the intra- or extracellular content, fluxes, or specific chemical families

(Figure 2.2). Metabolomics has been applied to many fields, including health, nutri-

tion, agroscience, and microbiology (Section 2.2). The set of all metabolites is referred

as the metabolome: while an important number of metabolites have already been

detected and characterized (the Human Metabolome DataBase, HMDB, contains more

than 18,000 metabolites; David S Wishart et al. 2018), recent developments have shown
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that a significant part of the metabolome remains unknown (Zamboni et al. 2015). The

chemical diversity of the metabolome has led to the development of complementary

observation techniques (Section 2.3).

2.2 Application of metabolomics

Figure 2.2: Complementary strategies in metabolomics (from Emily G. Ar-
mitage and Barbas 2014). Fingerprinting involves the global screening for all
detectable metabolites within the system under investigation. Footprinting (mainly
referred to in in vitro cell systems) is the analysis of metabolites from the environment
around the system under investigation and reveals information about metabolic ex-
change. Profiling is the screening of a particular class of chemicals, e.g. amino acids,
for which standards are also analysed. Flux analysis is the tracing of one compound,
usually isotope labeled carbon, through a particular pathway or set of pathways to
determine the fate of the compound. Target analysis is the comparison of one or a few
closely related target metabolites whose concentrations may change depending on the
experimental conditions.

2.2.1 Biomarker discovery

Many metabolomics studies focus on the discovery of biomarkers representative of a

specific physio-pathological condition. The aim of such biomarker discovery strate-

gies may be either i) to define early and non-invasive molecular diagnostics, ii) to

find new therapeutic targets, or iii) to monitor the response to a dedicated treatment

(David S. Wishart 2016; Monteiro et al. 2013; Trivedi et al. 2017). The full validation

of a biomarker is a long and complex process which consists of several steps (Nagana

Gowda and Raftery 2013):
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Discovery phase: An experiment is designed, and run, to collect representa-

tive samples from of distinct classes (e.g., case versus control). Analytical

chemistry is used to detect either (Figure 2.2): as many compounds as pos-

sible (metabolic fingerprinting), or a preselected set of known metabolites

(metabolic profiling). While the former strategy is semi-quantitative (i.e. re-

lies on the comparison between the two conditions), the latter approach can be

quantitative when standards are used. Preprocessing of the raw data from

the instrument generates a sample by variable table of peak intensities. Finally,

statistical analysis is performed to select the most discriminating features

(molecular signature).

Identification: Unambiguous chemical identification of the selected candidates is

mandatory for downstream clinical validation. This process involves both compu-

tational (e.g., matching with in-house or public databases, structure prediction

using in vitro fragmentation and/or machine learning), and experimental

tasks (e.g. additional tandem MS fragmentation experiments).

Validation: To limit the risk of false positives candidates, which may have been

selected during the statistical analysis (e.g. type I error in univariate hypothesis

testing or overfitting during multivariate modeling), the molecular signature has

to be validated on a second, independent experiment (Broadhurst and Kell 2006;

Castaldi et al. 2011).

Mechanism of action: Characterization of the biological role and the mechanisms of

action are critical for a metabolite to be considered as a candidate biomarker for

the clinic. This step involves many computational and experimental approaches

such as metabolic network analysis, molecular biology, molecular imaging, etc.

As a first step, metabolic networks may be used to provide information about the

biochemical reactions and pathways involving the detected metabolites Caspi et

al. 2018. Network analysis may also suggest new biomarkers of interest (Frainay

and Jourdan 2017). The putative cascade of reactions may be studied dynam-

ically (e.g. by fluxomics) by using isotope-labeled experiments Buescher et al.

2015. More generally, the investigation of the underlying mechanisms of disease

has been the focus of recent technological advances (C. H. Johnson et al. 2016).

An example of such a comprehensive pipeline in metabolomics is provided by the

study of cardiovascular disease by Z. Wang et al. 2011. Within an initial human cohort

from 50 cases and 50 controls, 40 out of the 2,000 detected compound were found to be

statistically significant. A total of 18 of these molecules were validated on an indepen-

dent cohort. Three of the metabolites were unambiguously identified by NMR and MSn
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experiments: choline, trimethylamine N-oxide (TMAO) and betaine. Supplementary

experiments in mice highlighted the contribution of these metabolites to atheroscle-

rosis. A similar strategy was applied to diabetes: the contribution of branched chain

amino acids to insuline resistance was evidenced by targeted metabolomics followed

by validation in mice (Newgard et al. 2009). Metabolic changes are also known to be

critical in tumors (Hanahan and Weinberg 2011), and several biomarkers for distinct

cancer types have been reported (Newgard 2017; M. Yang et al. 2013). Comprehen-

sive reviews about metabolomics approaches for the discovery of disease biomarkers

are available in David S. Wishart 2016 and Trivedi et al. 2017.

Metabolomic applications to Health also include the personalization of pharmaco-

logical treatments to the individual patient (patho)physiology (pharmacometabolomics;

David S. Wishart 2016; Kaddurah-Daouk et al. 2008), and the study of the impact of

nutrition and of the gut microbiome (Scalbert et al. 2014).

2.2.2 Insights into systems biology

Metabolomics has been used extensively to understand the metabolism as a network of

biochemical reactions and discover new pathways (G.-F. Zhang et al. 2011; Frainay and

Jourdan 2017). Furthermore, metabolomics provides unique informations about gene

function Fukushima et al. 2014: recently, a high-throughput screening of Escherichi coli

strains over-expressing individual proteins was developed: analysis of the concentration

variations within a known mix of metabolites after incubation with each of the strains

resulted in the discovery of more than 200 potential novel enzymes (Sévin et al. 2016).

A review of the applications to enzyme discovery and annotation is available in Prosser

et al. 2014.

The diversity of metabolite structures and functions has led the development of a

wide range of analytical technologies (Rolin 2013) which are introduced in the next

section.

2.3 Main analytical techniques

Analytical techniques have been historically divided into Nuclear Magnetic Resonance

(NMR) or Mass Spectrometry (MS) based approaches (A. Zhang et al. 2012). A

list of their main pros and cons according to is given in . While NMR is fast and repro-

ducible, it is less sensitive than MS, especially when MS is coupled to chromatography
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Table 2.1: Main analytical techniques used in metabolomics (from (David S.
Wishart 2016) )
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(see Table 2.1 from David S. Wishart 2016). MS is therefore a technique of choice for

biomarker discovery, and this thesis describes innovative methods for the analysis of

MS data. We briefly describe below the classical experimental setup for metabolomics

analysis with a mass spectrometer coupled to a chromatographic column.

2.3.1 Hyphenated Mass spectrometry setup

Figure 2.3: Schematic view of an hyphenated MS setup.

In classical acquisition by liquid chromatography (respectively gas chromatogra-

phy) coupled to mass spectrometry, namely LC-MS (respectively GC-MS), the sample

is injected into a carrier-flow which enters the chromatographic column which separates

the compounds according to their physico-chemical properties (Figure 2.3). Before en-

tering the mass spectrometer, a step of ionization (and, in the case of a liquid sample,

desorption) is performed within the ionization source, to end up with ions in the gas

phase which enter the mass spectrometer. Within the mass analyzer, ions are sepa-

rated according to their mass-to-charge ratio m/z. MS technologies therefore generate

complex 3 dimensional data (m/z, retention time, and intensity). As a consequence,

efficient computational pipelines are required for the processing, statistical analysis,

and annotation of metabolomics data (Junot et al. 2013).
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2.4 Processing and analysis of MS-derived data

Figure 2.4: Computational workflow for metabolomics data Alonso et al.
2015

An overview of the computational workflow is described in Figure 2.4. First, pre-

processing of the raw sample files from the MS instrument generates a sample by

variable table of intensities. Second, statistical analysis is used to select the dis-

criminating features according to the factor(s) of interest, and to build multivariate

prediction models. Third, chemical and biological annotation of the selected vari-

ables is performed. Processing shares some similarities with proteomics, which also

relies on MS instruments. Hypothesis testing and machine learning methods used for

the statistical analysis of high-dimension datasets in transcriptomics and proteomics

are also used in metabolomics. In contrast, metabolite annotation is specific, due to

the chemical diversity of the compounds.

2.4.1 Preprocessing

Preprocessing consists of the detection and quantification of the features in the indi-

vidual raw files, followed by the alignment between the samples to generate the sample

by variable table of peak intensities (i.e. the peak table). As the first part of this

thesis focuses on new computational approaches for preprocessing, this step will be

more detailed in Section 4.1.
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2.4.2 Statistical analysis

Statistical analysis of the peak table usually starts with the exploration of the data.

Numerical and graphical summaries (e.g. with unsupervised approaches such as Prin-

cipal Component Analysis) help detecting strong variations uncorrelated to the factors

of interest such as signal drift, batch effect, outliers.

Missing values imputation

Missing values resulting from a failure during the preparation, acquisition, or prepro-

cessing may be up to 10-40% of the intensities (Godzien et al. 2015; Emily Grace

Armitage et al. 2015). Although several statistical methods can handle a certain

amount of missing values (e.g. the NIPALS algorithm for Partial Least Square multi-

variate regression and classification (H. Wold 1966)), imputation methods are required

for other methods. A post-processing approach was proposed in the XCMS reference

software for LC-MS data preprocessing (C. Smith et al. 2006), whereby the region

of the missing peaks in the raw data is integrated by using the m/z and retention

time limits derived from the other samples. This strategy has multiple drawbacks,

as the signals may deviate in both dimensions between the samples. Even though

the integration region may be increased, this may eventually result in the inclusion of

non-related signals. Alternatively, statistical methods applied to the peak table have

been described: in particular, approaches based on k-NN (Hrydziuszko and M. Viant

2012) and random forest, were shown to outperform simpler strategies (such as the

replacement by the mean or the median) consistently (Wei et al. 2018). To take into

account the limit of detection, new methods based on left-censored distributions have

been proposed, either adapted from a truncated version of the k-NN (Shah et al. 2017),

or from a modified quantile regression (M. Lee 2010).

Unwanted variation correction

Biases affecting measurements may occur at any step: sample collection, storage,

preparation, analysis. Such unwanted variations (i.e. non correlated to the factors of

interest) need to be corrected by using quality control samples and statistical normal-

ization procedures (Livera et al. 2015). A well-known bias during MS acquisition is the

signal drift and batch-effect: when analyzing a large number of samples with MS (e.g.

in the case of cohorts), a signal attenuation may be observed due to the contamination

of the source (intensity drift). The MS instrument is therefore periodically cleaned,
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Table 2.2: Examples of unsupervised and supervised statistical methods for
proteomics and metabolomics data analysis (from Robotti et al. 2014)

resulting in offset differences of intensity between the batches. Both biases may be

corrected by using quality control samples (QC or pool) consisting of a mixture of all

samples (Warwick B Dunn et al. 2011). As each feature is expected to be detected in

all QC measurements, the median (Livera et al. 2015) or mean (Kloet et al. 2009) of

these QC intensities may be used for inter-batch correction (S.-Y. Wang et al. 2013).

The most popular method for the correction of the intra-batch intensity drift is the

locally weighted scatter plot smoothing (LOESS) regression (Cleveland 1979; War-

wick B Dunn et al. 2011). A review of alternative approaches is described in Kultima

et al. 2009. When QCs are not available, strategies applying the regression to the

samples, and/or using replicates in different batches, have been proposed (Rusilowicz

et al. 2015). At the end of this step, features which still have high intensity variations

in the QCs after the correction are usually discarded (e.g. when the relative standard

deviation of their QCs is above 30%.).

Statistical methods for biomarker discovery

Many statistical methods have been applied to metabolomics data for biomarker dis-

covery (Figure 2.2). On the one hand, univariate hypothesis testing with a correction

for multiple tests, is used. On the other hand, multivariate statistics, which take into

account the structured correlation between the variables, are applied to the data ma-

trix (e.g., review from Robotti et al. 2014 about multivariate modeling in proteomics,

which also holds for metabolomics). In particular, latent variable based approaches

have been shown to perform well on spectral data: Principal Component Analysis

(PCA) and Partial Least Squares regression (PLS; S. Wold et al. 2001) are popu-

lar methods for unsupervised and supervised multivariate modeling, respectively (see

Worley and Powers 2013 for a review). Furthermore, the Orthogonal PLS method

29



(OPLS, Trygg and S. Wold 2002) enables to separately model the variations orthog-

onal to the response before building the PLS model (Pinto et al. 2013). Additional

machine learning approaches have been used more recently in metabolomics, such as

Support Vector Machine (Meyer et al. 2003), Random Forest (Breiman 2001) and

Classification and Regression Trees (Frank and Lanteri 1989).

To be useful in the clinics, the list of biomarkers must be restricted to a few

molecules. Selection of the most important features for the performance of the predic-

tive models is therefore of critical importance.

At the end of the statistic step, the chemical structures of the selected metabolites

need to be identified.

2.4.3 Identification

For each feature, the annotation which is extracted from the raw data during the pre-

processing step is: the m/z value, the retention time (when chromatography has been

used), the peak intensity, and, in some cases, the presence and intensity of isotopic or

adduct peaks. Such information, however, is not sufficient to characterize the chemi-

cal structure. Identification therefore remains a major challenge for high-throughput

biomarker discovery by metabolomics (M. R. Viant et al. 2017).

In fact, the Metabolomics Standards Initiative (MSI) has proposed four levels for

metabolite identification, from an unknown compound merely detected as a peak on

a spectrum (level 4) to the identified structure (level 1; (Sumner et al. 2007; Warwick

B. Dunn et al. 2012)): the level 1 requires the matching of two or more orthogonal

properties (e.g., retention time, m/z, MS/MS spectrum) between the candidate com-

pound and the pure chemical standard. In practice, however, the requirement of a

standard is difficult to fulfill since an MS acquisition potentially contains thousands

of mass signals, and chemical standards are not available for most them. As a result,

level 2 (putatively annotated) is often preferred: it requires the matching of one or

two properties to spectra acquired with potentially distinct analytical conditions (e.g.,

spectra from external databases). One of these matching criteria is often the MS/MS

spectrum, which gives an information about the structure of the molecule (i.e., its

fragmentation pattern).
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2.4.4 Tandem mass spectrometry (MS/MS) for structural elu-

cidation

Figure 2.5: Schematic view of Data Dependent (DDA) and Data Independent
(DIA) acquisitions. See the text for the details.

MS/MS spectra are obtained by the fragmentation of the (precursor) ions. Narrow

m/z windows (isolation windows) are used to select the ion of interest between the

first MS analyzer and the collision cell (although the size of the window is typically less

than 1 Da, it is however not always sufficient to prevent the co-selection of isobaric

ions). The nomenclature about tandem mass spectrometry (MS/MS, or MS2) that

we will use hereafter is described in Section 1.3. MS/MS spectra are critical for the

discovery of new metabolites (M. R. Viant et al. 2017) as they provide insights about

the structure of the molecule. Moreover, the recent technological evolution of mass

spectrometers (in particular the increase of the acquisition speed) has resulted in new

applications (Fenaille et al. 2017): while MS/MS spectra were classically acquired on

a restricted set of selected molecules (e.g. after a first pass of MS experiments), two

new modes of acquisitions, Data Independent Acquisition (DIA) and Data Dependent

Acquisition (DDA), have emerged in the recent years (Figure 2.5).

In DDA, the instrument automatically selects the precursor ions meeting a criterion

defined by the user (e.g. an intensity threshold or a specific isotopic pattern; Heng-
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Keang et al. 2008; Figure 2.5 left). This approach is popular because the set of

generated MS/MS spectra covers a maximum of the detected molecules in the sample

(Fenaille et al. 2017).

In DIA, the set of fragmented ions is independent from the data. Two types of

DIA approaches have been described. In the first strategy, a specific set of metabolites

(possibly identified in a previous run, or from a known biological pathway) is selected

for fragmentation a priori (Figure 2.5, middle). This type of DIA is the most common

one. It is used for the further characterization of putative biomarkers, or in studies

targeting a specific set of molecules (e.g. from a given pathway). It is also the method

of choice to analyze a known standard. Alternatively, in the second DIA approach, wide

m/z windows covering the full m/z axis are defined, and the instrument fragments

all the ions detected within these windows. Despite a few publications addressing

the deconvolution of the generated spectra (Tsugawa, Cajka, et al. 2015; Nikolskiy

et al. 2013), this method remains scarcely used in metabolomics because of the added

complexity in the annotation process (Fenaille et al. 2017).

Both DDA and DIA approaches generate the same kind of data: a collection of

MS/MS spectra associated to the m/z values of the precursor ions. With the recent

advent of instruments with high acquisition speed, the amount of such MS/MS data

has increased (hundreds of MS/MS acquisitions can now be performed within a single

MS run; Benton et al. 2015), and the routine annotation of a large proportion of the

metabolome seems achievable (M. R. Viant et al. 2017). To address this challenge, the

development of innovative tools for MS/MS data analysis is pivotal (Section 9.4).

2.5 Current challenge of metabolomics

As stated above, the metabolome has a huge potential for biomarker discovery as

metabolites are the end products of biological processes. This results, however, in

a stronger influence of the environment on the metabolomic data compared to other

omics. As a consequence, large cohort sizes are required to achieve sufficient statisti-

cal power. Nevertheless, the main metabolomics technology, LC-MS, is highly time-

consuming (runs often exceed 30 minutes). New acquisition strategies are therefore

needed (Zamboni et al. 2015). Direct introduction into the mass spectrometer (thus

bypassing the chromatographic step) is an attractive approach for high-throughput

metabolomics. As the time dimension is lost, high mass resolution is needed to dis-

criminate the ions. Direct infusion (i.e. with a syringe) into very high-resolution

and expensive instruments (FT-ICR) have been described (Andrew D Southam et al.
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2017). Alternatively, Flow Injection Analysis (FIA) approaches using the same setting

as LC-MS (except the chromatographic column) have been described initially with low

resolution mass spectrometers(Beckmann, Parker, et al. 2008). With the emergence

of high-resolution mass spectrometers (HRMS), the interest for FIA-HRMS in high-

throughput metabolomics was renewed (Madalinski et al. 2008). Since there was no

software tool for the processing of such data, the first part of the PhD was focused

on the development and implementation of a preprocessing workflow for FIA-HRMS

data (Part II).

Another major bottleneck in metabolomics is the chemical identification of the

detected compounds. Tandem mass spectrometry is a powerful approach to obtain

structural informations about the precursor (M. R. Viant et al. 2017). Direct match-

ing with MS/MS spectra is, however, limited by the amount of available standards

and the content of MS/MS databases. As we will see in Section 9.4, computational

approaches for structure prediction have been developed in the recent years, based on

in silico fragmentation. However, even top performing methods such as CSI:FingerID

(Shen et al. 2014; Böcker and Dührkop 2016) still fail to identify known molecules in

more than 20 % of the cases, and this rate of error is expected to be higher for un-

known compounds. Alternatively, strategies mining the structural information within

collections of MS/MS spectra are emerging. Similarities can then be used to propa-

gate annotation of known molecules. Such approaches take advantage of the increasing

number of MS/MS spectra which can be generated in a single acquisition. Further-

more, they do not require any information from spectral or molecular databases. The

second part of the PhD aims at developing a new method to extract the similarities

from a set of spectra using a graph representation (Part III).
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Chapter 3
Datasets

Among the datasets which have been used for the validation of the algorithms through-

out the PhD work, we describe two representative ones for each part of the thesis:

serFusion and serExactive for the FIA-HRMS data processing (Part II), and Lem-

mDB and PenicilliumDIA for the MS/MS structural mining (Part III). All data

have been generated on HRMS Orbitrap instruments (Thermo Fisher Scientific) at

the Drug Metabolism Research Laboratory (CEA LEMM, Saclay) and the Toxalim

Research Center on Food Toxicology (INRA Toxalim, Toulouse).

3.1 FIA-HRMS datasets

The two datasets were generated to optimize the analytical conditions for the detection

of compounds in serum by FIA-HRMS (Table 3.1). A commercial serum sample was

used (Biopredic). In the serFusion dataset, the sample was spiked with increasing

concentrations of a mixture from 40 compounds. These metabolites were selected

from the chemical library of the LEMM partner. In the serExactive dataset, several

dilutions of the serum sample alone were studied. The samples from the serFusion

and serExactive were analyzed on the Fusion (resolution = 100,000 at m/z = 200)

and Exactive (resolution = 50,000 at the same m/z) Orbitrap high-resolution mass

spectrometers, respectively.
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3.1.1 Biological material and sample preparation

Concentrations of the serum sample and the spiking mixture are detailed in Table 3.1.

The list of the 40 spiked compounds is available in the supplementary information from

the publication (Delabrière et al. 2017). Metabolites were recovered after methanol

precipitation of proteins as described in Boudah et al. 2014.

3.2 MS/MS datasets

3.2.1 The PenicilliumDIA dataset

To study the secondary metabolism of Penicillium Verrucosum, a DIA approach was

designed (Hautbergue et al. 2017). The majority of the detected compounds are

unknown. We selected all spectra obtained with the CID mode at a collision energy

of 40 eV, as this was the most represented type of collision among the dataset. The

PenicilliumDIA dataset thus contains MS/MS spectra from 45 compounds (out of

the 98 molecules described in the article). The peaks were detected using the MZmine

local minimum search algorithm, which was the method providing the largest number

of detected features with this dataset. MS/MS spectra were then extracted using the

MS2process software presented in Section 9.9.

3.2.2 The LemmDB dataset

The LemmDB dataset corresponds to the set of standards (metabolites and drugs)

used for identification by our LEMM partner (Roux et al. 2012). All 1021 compounds

were analyzed in FIA-MS/MS on an Exactive mass spectrometer (Thermo Fisher

Scientific), in HCD mode, at the following dissociation energies: 10, 20, 40, 80 eV. For

some compounds, no correct MS/MS spectra was obtained: a second set of energies

was then used, depending on the structure of the compound.

As only the raw files were available, a preprocessing workflow was developed to

match the selected MS/MS precursors and the MS detected features, and generate

MS/MS spectra of high quality. This workflow relies on our proFIA (Part II) and

MS2process (Part III; Section 9.9) packages. For the compounds with at least one

spectrum containing more than 1 peak, a summed spectrum was computed. The
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LemmDB dataset thus consists of 663 MS/MS spectra from the positive ionization

mode. For the 368 remaining compounds, the MS/MS signal was either absent (no

ionization, at least in the positive mode), or of low quality.
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Part II

A preprocessing workflow for

FIA-HRMS: proFIA
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Chapter 4
Introduction

4.1 FIA-HRMS preprocessing algorithms and soft-

ware tools

The goal of this part is to give an algorithm to pass from raw FIA-HRMS data to

a data matrix variables × samples suitable for the statistical analysis. To do so we

will start by reviewing the existing FIA-HRMS workflows. We will then see how the

time dimension, while being reduced in FIA-HRMS data, still give some important

information, which will be used in chapter 5 to model an EIC in FIA-HRMS. We will

then give a review of the existing principle in peak-picking LC-MS data, which will be

used in the proFIA workflow 6.

FIA-MS has been used in metabolomics for more than twenty years (Smedsgaard

and Frisvad 1995). Initial FIA-MS experiments were used to obtain a global ”finger-

print” of a sample (J. Allen et al. 2003; Beckmann, D. P. Enot, et al. 2007; Lloyd et al.

2011). The most frequent steps to obtain these fingerprints were:

• An FIA-MS acquisition was performed for each sample.

• The data were binned in the m/z dimension with a predetermined bin size, often

1.

• The intensities in each bins were summed leading to a single integer for each

m/z bin.

Each raw acquisition is thus processed into a vector of intensities of fixed dimen-
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sion (the number of bins): preprocessing is minimal, since no peak-picking nor peak

alignment between samples is required. Subsequent statistical analysis based on such

fingerprints (D. Enot et al. 2008), including machine learning (I. M. Scott et al. 2010),

is straightforward. However the initial binning results in major drawbacks in terms

of information loss. First, multiple isobaric compounds are grouped within the same

feature. So, even if the statistical analysis of the sample is successful, the subsequent

identification of the underlying compounds is complex. To perform such identifica-

tion, authors have therefore often relied on prior information about the metabolites

contained in the sample (Beckmann, D. P. Enot, et al. 2007; Ward et al. 2010), or on

a supplementary acquisition using a higher resolution mass spectrometer (Favé et al.

2011). Second, removal of the baseline requires an additional acquisition from the

solvent only.

With the development of high-resolution mass spectrometers (HRMS), it is now

possible to assign a single molecular formula based on the mass measurement up

to a few hundreds of Da (Kind and Fiehn 2006; Kind and Fiehn 2010). In a first

attempt to pre-process such FIA-HRMS data, Yang and colleagues proposed a strategy

starting with a nominal mass binning preprocessing step, followed by a subsequent

step back into the high-resolution data to annotate the detected features(L. Yang et

al. 2009). However, this type of approach has a major drawback: if the discriminating

signal is weak compared to other signals in the same bins, this signal of interest

will be masked. Alternative processing methods include a few proprietary software

(Madalinski et al. 2008). The ability access to the source code, however, is mandatory

to understand the underlying algorithms and develop complementary or alternative

approaches. Recently, the following workflow was proposed by Fuhrer et al. 2011 and

successfully reused in Sévin et al. 2016:

• All spectra from an acquisition file are summed to obtain a single total ion

spectrum (TIS) in profile mode.

• A wavelet transform was used on the TIS to detect the m/z centroids.

• m/z centroids are matched between the different acquisitions by binning.

• Annotation was performed by matching the m/z features to a list of candidate

molecular ions, adducts and isotopes generated from the KEGG database.

The success of the proposed approach, however, relies on the extensive metabolism

annotation of the target organism, Escherichia coli to validate the m/z features. Such
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a strategy would therefore fail with less characterized organisms, and make the de-

tection of new metabolites impossible. Moreover the summing of all time point for

each m/z prevent the discrimination between solvent and sample and therefore results

in the incorporation of chemical noise. Finally, the Matlab scripts are not publicly

available, and no detail is given about the quantification procedure.

Whereas no preprocessing pipeline for the FIA-HRMS data has emerged yet, a

robust workflow for the the preprocessing of Direct Infusion (DIMS) acquisitions has

been described recently (Andrew D Southam et al. 2017). The authors used the

spectra-stitching procedure, which consists in acquiring mass spectra of multiple small

overlapping m/z windows to increase sensitivity (Andrew D. Southam et al. 2007).

However such a workflow cannot be applied to standard FIA-MS protocols, as it re-

quires multiple technical replicates and acquisitions. Furthermore, in FIA, the addi-

tional time dimension and the presence a sample peak is not compatible with the last

filter for DIMS data, which filter out the signal which vary too much along the time

axis is incompatible with FIA data which present a peak.

In conclusion, no software package was available to process FIA-HRMS data. In

addition, the described algorithms either relied on the comprehensive identification of

the metabolites (Fuhrer et al. 2011), or on complex constraints on the acquisitions

sequence (D. Enot et al. 2008; Andrew D Southam et al. 2017). As a result, there was

an unmet need for bioinformatics methods and tools to pre-process FIA-HRMS data.

One of the initial expectations about FIA-HRMS data was that well-defined peaks

would be observed on the EICs from sample compounds, (Figure 4.1a), and flat base-

lines would appear on signals originating from the solvent. Surprisingly, however, ex-

ploration of the raw data also highlighted unexpected peak shapes such as ”reversed”

peaks (Figure 4.1c) or double peaks (Figure 4.1b). Such peak shapes had already be

found to be caused by matrix effect (Nanita 2013) in the case of well chosen but these

dynamics have not been described at the scale of a full sample including hundreds of

compounds. They could not be processed correctly by the workflow which sums the

intensities over the whole EIC (D. Enot et al. 2008; Fuhrer et al. 2011). Therefore

building an accurate a model of EICs became a priority (chapter 5).

Recently, S.Nanita (Nanita 2013) proved that information about the ME can be

extracted from the EIC. These results suggested that the sample zone and ME compo-

nents of the EIC could be modeled separately. As the previously described workflows

do not consider EICs and compress the time dimension, they cannot extract this

information. Therefore we chose to use the EICs, which allowed the extraction of in-

formation on matrix effect for the first time in an untargeted acquisition. The problem
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(a) (b)

(c) (d)

Figure 4.1: Influence of physical phenomena on the EIC signal (FIA-HRMS acquisition
with an Orbitrap Fusion instrument): a) EIC with a clear sample peak, b) sample peak
affected by matrix effect, c) solvent affected by matrix effect, d) combination of sample
peak, solvent, matrix effect, and strong noise
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(a) (b) (c)

Figure 4.2: A feature extracted from an LC-MS acquisition. a) shows the 3D peak, b)
shows a projection along the m/z dimension and c) shows a projection into the time
by m/z plane.

of preprocessing FIA-HRMS data can therefore be related to EIC processing of LC-MS

data.

4.2 Peak detection methods in LC-MS

The preprocessing software which were selected for the review are freely available, with

a clear documentation of the algorithms 4.1. A recent comparison of 3 of the most used

softwares, mzMine, XCMS and MS-DIAL is available in Li et al. 2018. We discarded

approaches which rely on additional data, such as the machine-learning method from

MAVEN which requires pre-existing annotated data (Melamud et al. 2010), or the

apLCMS strategy based on known compounds in the dataset (Yu and Jones 2014):

while these methods have proven to be efficient, there was no such dataset available

for FIA-HRMS data.

The first step of preprocessing algorithm is usually to reduce the complex 3-

dimensional data to a lower number of features, often by summarizing a signal from

an analyte by a single m/z, rt, and intensity (e.g., the area or the maximum of the

peak) values. The second step is the removal of chemical noise, i.e., 1) the baseline

generated by the molecules from the mobile phase and 2) the signals for which an

accurate measurement of intensity is not possible.

While there is no official definition for the term ”features” in LC-MS experiments,

features are usually considered as points with similar m/z measurements in successive

scans (figure 4.2c), with a peak clearly visible by projection of the data on the time

by intensity plane 4.2b. If the data is in profile mode, a peak is also visible on the
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m/z by intensity plane (see the Description of MS data section). Because of these

characteristics, peak detection algorithms usually rely on a sequential approach (in 13

on 15 software from table 4.1), which include the following steps :

1. (Optional) Find peaks in the m/z dimension on each scan

2. Find points with similar m/z in consecutive scans and store them

3. Find peaks in the time dimension in the previously stored m/z traces

Although many approaches have been proposed for each step, they share a few

underlying common principles. For example, two main strategies have been used for

step 2: mass traces and binning methods. Regarding the third step, approaches

based on either peak modeling or extrema detection have been proposed. The pros

and cons of each method will be detailed. Finally, alternative strategies which have

also proved successful for peak detection in LC-MS will be reviewed, including methods

based on Kalman filter, or processing the m/z and rt dimensions simultaneously.

4.2.1 Peak detection in m/z dimension

The detection of the peaks in the m/z dimension, often referred to as centroidization,

is probably the step for which the least different algorithms have been proposed. It

is because this step is quite specific to the mass spectrometer technology. Fourier

Transform based mass spectrometers may generate specific artifacts resulting from

data transformation (Mathur and O’Connor 2009) which are not present in TOF data.

Centroidization is therefore often provided by the constructor software, and sometimes

even performed during the acquisition process. Two algorithms are available in MS-

DIAL (Tsugawa, Cajka, et al. 2015) and MzMine (Katajamaa and Oresic 2005). The

first one is based on a simple detection of local maxima, followed by a descent of the

slopes on both sides of the peaks. The descent stops after the intensity decreases under

a fixed threshold or when the intensity starts to increase. This basic approach is often

the one implemented in constructor software.

The second type of algorithm for the detection of mass peaks is based on Continuous

Wavelet Transform (CWT). It was initially developed for proteomics data (Lange et

al. 2006) and was later modified to include additional noise estimates (Du et al. 2006;

French et al. 2014) .
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(a) (b) (c)

Figure 4.3: Continuous wavelet transform Du et al. 2006. a) shows a simulated spec-
tra, b) shows the wavelets coefficients at each scale and c) shows the detected ridges
corresponding to peak maxima

Continuous Wavelet transform (Daubechies 1992) are based on the convolution

of a rescaled model wavelet and an input sequence, in the case of mass spectrum the

input sequence is the raw mass spectrum and the model peak is often the Mexican Hat

Wavelet. The convolved sequences are grouped into a matrix (Figure 4.3b), where rows

correspond to different wavelet scales and columns to m/z values from the spectrum.

P. Du et al. (Du et al. 2006) then proposed to identify the peaks by finding ridges

(Figure 4.3c). French et al. 2014 developed a simpler algorithm by detecting maxima

separated by more than 0.1 m/z. These wavelet methods rely on a local estimation

of the noise, e.g., a percentile of the wavelet coefficients at the smaller scales. A more

complete description of the underlying properties of wavelet methods in the case of

LC-MS methods is available in section 4.2.3.

Centroidization results in spectra where each peak has been compressed to a single

point in the m/z dimension (its centroid), often found by averaging all the masses in

the detected peak and an intensity equal to his area or to the maximum of the peak.

4.2.2 Inter-scans m/z matching

This step aims to match peaks with similar m/z between different spectra (or scans).

Three types of approaches have been described. The first one is mass binning on the

m/z axis, as in the initial version of XCMS (C. Smith et al. 2006) for low resolu-

tion data, and in the MS-DIAL software for high resolution(Tsugawa, Cajka, et al.

2015; Tsugawa, Kanazawa, et al. 2014). To avoid that a feature would fall astride two

bins, overlapping bins are used. A major drawback of binning is the loss of resolu-

tion in the m/z dimension. With the advent of high-resolution mass spectrometers,

new approaches therefore emerged, which are based on the detection of mass traces
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(Figure 4.4), such as in the centWave, MzMine, MAVEN, MET-COFEA and OpenMS

software (Tautenhahn et al. 2008; Katajamaa and Oresic 2005; Melamud et al. 2010;

W. Zhang et al. 2014; Kenar et al. 2014).

Figure 4.4: An example of the detection of regions of interest (ROI) by the
centWave algorithm from XCMS (Tautenhahn et al. 2008).

In these algorithms, data points are grouped through consecutive scans: on the

one hand, centWave, TracMass2, MET-COFEA and MAVEN process scans sequen-

tially in increasing time order. On the other hand, OpenMS and MZmine (module

Chromatogram builder) build m/z traces by extending the most intense point in both

directions.

Another difference between the software is the m/z trace stopping criterion. All

algorithms extend the mass traces by selecting points from the consecutive scan which

have close m/z values. The m/z vicinity may be determined with a fixed threshold

in ppm or Dalton (e.g., in centWave, MET-COFEA, and MAVEN). Alternatively,

a refined strategy may be used: for instance, OpenMS uses an online variance and

mean estimator for the mass trace to be extended. In case of multiple candidates,

MET-COFEA takes into account both the intensity and the mass difference with the

previous centroid to select the next point. In contrast, TracMass2 selects the only

candidate with minimal m/z difference.

An additional stopping criterion is the continuity of the mass trace in the time di-

mension: OpenMS and MET-COFEA allow a fixed number of gaps, but not centWave
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nor MAVEN.

While these principles are common to all algorithms, some additional steps may be

included, such as the prefilter parameter in centWave which discards features below

an intensity threshold, the m/z trace merging algorithm in MET-COFTEA, which try

to correct mistakes by merging close mass traces.

In contrast to the above principles, an alternative approach has been implemented

in apLCMS (Yu, Park, et al. 2009). First, m/z points are first grouped globally using

a kernel density estimation. Second, within each m/z group, the segments in the time

dimension capturing at least a fixed proportion of intensities are selected iteratively

by decreasing length.

The output of this step is a set of m/z-rt cut of the data, each cut containing all

the data points of a mass trace, or in the m/z dimension only if a binning strategy

have been used. Although there may be a high number of such traces, the storage

required for such lists is limited compared to the initial raw data (centWave ROI

detection reduces an LC-MS dataset from 55.5 Mb to 17.7Mb). The next step aims at

quantifying and separating the peak(s) contained in these m/z traces.

4.2.3 Peak picking on the EIC

At this stage, an EIC is extracted for each m/z trace or bin from the previous step.

This EIC may include multiple co-eluting compounds, in addition to some chemical

noise. To separate co-eluting compounds, a step of peak detection is therefore neces-

sary. A comparison of the peak detection by reference processing software on such a

complex EIC is shown in Figure 4.5. Multiple approaches have been proposed for peak

detection. Currently, the most popular ones may be classified as model or extrema

based methods. The former rely on the matching of a model to the signal using a

convolution operator. In contrast, the latter first smooth the data before performing

extrema detection directly on the smoothed sequence or on its derivative.

Model based method

Model based methods use the matching of a peak model to each points from the

extracted m/z traces by convolution. They are currently implemented in many of the

reference softwares, including both centWave and matchedFilter algorithms in XCMS,

and both wavelets algorithms in MZmine and MET-COFEA. In this section we will
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(a) xcms-centWave (b) MZmine-local minima

(c) MZmine-Savitsky-Golay (d) xcms-MassifQuant
.

Figure 4.5: Peak picking on a complex EIC extracted from PenicilliumDIA.
Each color corresponds to a detected feature. The main strategies described in the text
are illustrated: a) wavelet transform in the centWave algorithm (XCMS), b) simple
local minima (MZmine), c) Savitsky-Golay smoothing with filter on the derivative
values (MZmine), and d) Kalman filtration implemented in the MassifQuant algorithm
(XCMS).
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present the application of such techniques to EICs, which is similar to their application

to the m/z dimension as described above in section 4.2.1.

The only matched pattern used in current LC-MS software is, to the best of our

knowledge, the ”Mexican hat” function, which is the second derivative of the Gaussian

function (denoted P hereafter). This model is usually rescaled using a parameter

provided by the user, as the scale of the model needs to match the width of the

chromatographic peaks. This function has many interesting properties, such as a 0

area and symmetry, which are used by the algorithm. It is matched against the input

signal using the convolution operator:

(f ∗ g)(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ

Usually, the scans are supposed to be equally spaced in the time dimension (which

is often the case in LC-MS experiments). This allows to compute a simple discrete

convolution. We will denote the intensity of the n points of the EIC as I[n]. The

convolution then becomes:

(P ∗ I)[n] =
m=k∑
m=−k

P [m]I[n−m]

The k indicates that the model function is sampled on a relevant interval. Matched

filtration has been extensively studied for chromatographic peaks (Bogaert et al. 1993;

Danielsson et al. 2002; Andreev et al. 2003). One of the major results from these

works is the proof of the noise reduction achieved with Gaussian (Andreev et al. 2003)

or Mexican-hat functions (Danielsson et al. 2002). Another interesting finding is the

application of matched filtration to different kinds of noisy data: (Bogaert et al. 1993)

concluded that the inclusion of a complex noise model does not lead to significant

improvement of the peak detection. This is of importance given the heteroscedasticity

of the noise in LC-MS (see Figure 4.1). Matched filtration was also proved to be robust

to errors on the filter width in (Bogaert et al. 1993), which is of crucial important as

the peak width may vary in a single experiment.

The value of the symmetric and zero-area properties of the Gaussian is illustrated

in Du et al. 2006: if we see the LC-MS chromatogram as an addition of a constant

baseline (C), a slow evolving baseline (B), and the peak (P), the convolution may be

expressed, by using the distributivity property:

(P ∗ I)[n] =
m=k∑
m=−k

P [m]C[n−m] +
m=k∑
m=−k

P [m]B[n−m] +
m=k∑
m=−k

P [m]P [n−m]
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Because P is symmetric and C is constant the first sum is 0. In addition, if we consider

that B varies very slowly, the second term is close to 0. Therefore the convolution

reflects only the matching between the peak model P and the real peak P , with a

limited contribution from the baseline. Matched filtration has also been shown robust

across the width of the Gaussian (Danielsson et al. 2002).

Nevertheless, matched filtration faces some limitations in the case of co-eluting

compounds with varying intensities, and is less robust to changing peak width in the

time domain. As a result, a second group of methods based on the Continuous Wavelet

Transform (CWT) emerged more recently (Daubechies 1992).

The use of CWT for MS data processing has been first reported in the m/z dimen-

sion for proteomics application (Lange et al. 2006; Du et al. 2006; Wee et al. 2008).

The CWT may be described as the convolution of a signal with a family of filters

which are rescaled versions of a function known as the mother-wavelet (denoted φ).

The wavelet coefficients are more formally written as:

c(a, b) =

∫
R
I(t)φa,b(t)dt

with φa,b(t) = φ

(
t− b
a

)
where a is the scale and b is the translation. In metabolomics,

φ is often the Mexican Hat wavelet. As φ is a symmetric, we have that φa,b(t) =

φ

(
b− t
a

)
and therefore by using the substitution property of integration, we can see

that c(a, b) = (I ∗ φa)(b), with φa(t) = φ

(
t

a

)
. Therefore the CWT on a fixed scale

is the matched filtration using the φa rescaled wavelet as the filter, and the pros of

matched filtration apply to wavelet transform.

Du et al. 2006 showed that wavelet coefficients allow a more robust peak detec-

tion since each maximum should be detected at multiple scales: in fact, ridges of

the wavelets coefficients are expected at peak locations (Figures 4.3b and 4.3c). This

procedure allows a more robust and accurate detection, and is used in centWave (Fig-

ure 4.5a), MET-COEA, and MZmine wavelets implementations.

The scales range to be used in the algorithm are provided by the user, using his

knowledge of the chromatographic system. The lower limits of the scale is especially

important as it may result to the incorporation of high frequency noise if it is not

stringent enough.

An additional filter is used to ensure that the peak is distinct from the baseline.
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A signal over noise is often calculated, where the signal may be taken at the maximal

value on intensity or on the wavelet coefficient. The noise is either computed locally,

or by taking the mean of all or a portion of all the intensities of the EICs (Compared to

the high number of points on an EIC, the points belonging to a chromatographic peaks

are generally rare). This explains the poor performances of these methods in complex

EICs (Figure 4.5), as there is not enough signal-free regions to estimate the noise

correctly. These approaches are implemented in all the algorithms, and the interested

reader is referred to the corresponding articles listed in table 4.1.

Maxima-based method

Such methods are based on the detection of peaks on the smoothed signal. The

smoothing is an essential step as chromatograms may be very noisy. Comprehensive

software toolkits such as MzMine or MS-DIAL provide multiple smoothing methods.

An important challenge for these methods is that they should not distort the peak

too much. Multiple smoothing methods have been used, including the well known

Savitsky-Golay filter (Savtisky and Golay 1964), which is equivalent to the fitting of

a polynomial by the least square procedure within a fixed time window. It has been

implemented in the MS-DIAL and MZmine software (Figure 4.5c). Other methods

which gained popularity recently are the Locally WEighted Scatterplot Smoothing

(LOWESS) (Cleveland 1979), based on the weighted fitting of a polynomial (often of

degree two or three) locally (i.e., in small windows). LOWESS is implemented in the

OpenMS algorithms. Finally, the Kernel Smoother has also been used (often using a

gaussian kernel), e.g., in MAVEN, apLCMS, and TracMass2.

The simplest procedure is to detect local maxima on the smoothed sequence and

to perform slope descent on each side, the first reached minimum defining the limits of

the peaks (Figure 4.5b). This is the procedure used by the OpenMS and the MAVEN

software, and by apLCMS to obtain a first peak estimate. Peaks may also be detected

by using the derivative (Figure 4.5c), such as in MZmine (Savitsky-Golay module) or

in MS-DIAL. After this step, the software often refine their estimates by going back

to the non-smoothed data.

The filters used to remove noisy peaks are different between all softwares, but often

include some local noise estimation. MZmine uses a minimum relative peak height

and a ratio of peak maximum to edge length, and checks that the peak is intense

enough in a small window. MS-DIAL filters are based on the amplitude change of the

derivatives and of the intensities. Three noise thresholds are used in MS-DIAL, one
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on the difference of the smoothed sequence, one of the first-derivative sequence, and

one on the second derivative sequence, the derivative sequences being calculated using

5-point Taylor approximation. The noise on each sequence is calculated as the mean

of the points below 5% of the maximum on each sequence. The left edge of a peak is

detected when both the first derivative and the intensity on the smoothed sequence

exceed the thresholds. The top of the peak is recognized when the first-derivative

change of signs and the second derivative pass the associated threshold. Right edge is

detected similarly to left edge.

These methods often perform better than model-based methods on complex EICs,

as it is shown in Figure 4.5. However they are generally less sensitive than wavelets

to low intensity signals as smoothing becomes less reliable.

4.2.4 Alternative methods

This section presents three algorithms, TracMass, gridMass, and apLCMS, which are

based on different approaches.

Kalman tracking based methods

Historically, Kalman filters have been used in multiple area, including in object track-

ing along multiple measurements (Cuevas et al. 2005). Kalman derived the equations

to track an object moving with a constant velocity given random fluctuation between

measurements (Kalman 1960): more precisely, a first set of equations provides the

prediction for the next time point, as well as a confidence interval, and a second set

updates the estimation. The reader interested in the Kalman theory and its applica-

tion to MS processing is referred to Kalman 1960 and Aberg et al. 2009, respectively.

Kalman tracking was initially applied to LC-MS in the TracMass software (Aberg

et al. 2009) and reimplemented in the MassifQuant algorithm integrated into XCMS

(Conley et al. 2014) (Figure 4.5d). The latter was shown to outperform centWave in

terms of quantification, but was more sensitive to noisy data (Conley et al. 2014). It is

interesting to note, however, that the second version TracMass2 did not use a Kalman

filter but a more classical m/z trace detection approach, the authors stating that the

results were similar with a lower level of complexity (Tengstrand et al. 2014).
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gridMass algorithm

gridMass (Treviño et al. 2014) is the only algorithm for LC-MS processing which

processes the data in the m/z and time dimensions simultaneously. The gridMass

algorithm work by generating a grid of equally spaced probes on the m/z-rt plane.

Probes are then sequentially moved to the highest intensity point in a small rectangle

around it. A feature is then detected when multiple probes converge to this maxi-

mum, the initial position of the probes determining the limits of the peak in both

dimensions. The initial set of features is then cleaned to remove artifacts caused by

the baseline. This principles however does not use the inherent sparsity of the data in

both dimensions which reduce the processing time.

apLCMS software

apLCMS was first described in Yu, Park, et al. 2009 and further extended in Yu and

H. Peng 2010. While apLCMS processing starts with a sequential peak detection using

a ”maxima” based method, the workflow also contains a deconvolution step which is

not present in the other software: a bi-Gaussian mixture model if fitted to accurately

model asymmetric peaks, by using a modified Expectation-Maximization algorithm

(Yu and H. Peng 2010).

4.2.5 Grouping peaks

The presented algorithms give a good overview of the principles from the most popular

peak-picking methods in LC-MS. Some of these methods were used to build the proFIA

algorithm, as described in chapter 6. After this peak detection in individual sample

files, the peaks need to be matched across the different acquisitions. Because the

methods for peak alignment described in the literature often rely on both m/z and rt

matching, they could not be directly transposed to FIA-MS data. Moreover they often

rely on the fact that the distribution of the m/z values on an individual spectrum

is sparse (because of the chromatography step upstream from the MS instrument).

Therefore the matching in the m/z dimension is usually performed by using a simple

window (e.g., in MAVEN and XCMS). A more advanced algorithm in apLCMS uses

kernel smoothing followed by peak detection. More complex strategies include the

RANSAC aligner in MZmine (Pluskal et al. 2010), which uses a model of m/z and rt

deviations built on multiple subsamples, or the approach from MET-COFEA which

includes a hierarchical clustering based on both a proximity metric and peak shape
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correlation. In contrast to LC-MS, we will see in chapter 6 that the m/z axis in

FIA-MS is very dense and that a dedicated method for peak matching is required.

In conclusion, due to the lack of a software which would rely on the specific prop-

erties of FIA signal, the development of a new workflow was necessary. Due to the

complexity of the observed peak shapes, a dedicated model was required, as detailed

in chapter 5. This model was then used to design a workflow for the preprocessing of

FIA-HRMS, proFIA (chapter 6). Finally the performance of proFIA was evaluated on

several datasets from distinct HRMS instruments and applications (chapter 7).
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Chapter 5
A computable model for an Extracted Ion

Chromatogram in FIA-MS

The goal of this section is to define a general model for the Extracted Ion Chro-

matogram (EIC) profiles generated by Flow Injection Analysis coupled to High-Resolution

Mass Spectrometry (FIA-HRMS) technologies, as independent as possible of the spe-

cific instrumental setup used. In particular, for such a model to allow efficient and

robust preprocessing, the following criteria must be fulfilled:

1. As few physical quantities from the FIA-HRMS system as possible should be

required by the model

2. The model should be computable and interpretable

3. The model should explain, at least qualitatively, the various types of EIC profiles,

such as those shown on Figure 4.1.

To develop the EIC model, we begin in section 5.1 by extracting the major physical

phenomena affecting an EIC in FIA-HRMS, based on a review of the literature and

on the observation of real data sets from distinct instruments. Section 5.2 then aims

to choose a computable model for each of the selected phenomena. Finally, section 5.3

presents our complete EIC model for preprocessing, and shows how the proposed model

successfully explains the signals observed on Figure 4.1.
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5.1 Extraction of physical phenomena affecting an

EIC in FIA-MS

Flow-Injection Analysis (FIA) was defined in 1988 by Ruzicka and Hansen 1988 as

”information-gathering from a concentration gradient formed from an injected, well-

defined zone of fluid, dispersed into a continuous unsegmented stream of carrier”. The

reader interested in a more detailed introduction is invited to take a look at the website

from J. Ruzicka. The part of the system performing the injection of the sample and

including the carrier flow will be called the FIA system in this thesis. It determines

the shape of the signal in the time domain (chromatogram): the chromatogram of a

specific ion (i.e., within a specific m/z range) is classically referred to as the ”Extracted

Ion Chromatogram” (EIC). Some examples of EICs are shown on Figure 4.1. In the

case of FIA-MS, the information-gathering part is provided by the mass spectrometer.

Mass spectrometer instruments include three main components, the ion-source, the

mass analyzer and the detector. Each of them has an influence on the resulting signal.

In this section we will give an overview of the main physical phenomena from the FIA

system, the ion-source, and the analyzer, which impact on the EIC profile. However

we will not discuss the underlying physics theory, as this is out of the scope of this

PhD.

5.1.1 Physical phenomena originating from the Flow Injec-

tion Analysis (FIA) system

Because all the physical phenomena affecting an EIC in FIA-MS are not well-known

(Kolev 2008), and the full modeling of an FIA-system is out of the scope of this thesis,

we will consider the influence of the FIA system on the EIC shape as depicted in

Figure 5.1. It is a reasonable approximation of a simple FIA system used for the

coupling with a mass spectrometer (John Draper and Beckmann 2013).

In standard analysis, solvents are chosen to avoid reaction with the sample: there-

fore, we will not take these interactions into account. According to Kolev 2008, the

phenomena responsible for the mass transfer of the sample zone in the carrier flow

(and hence the distortion of the sample zone) are convection and diffusion. Convec-

tion occurs in the axial direction, and is caused by the difference of flow speed between

the middle and the walls of the tube (Figure 5.1a). However convection is partially

compensated by diffusion, a radial transfer of mass between the flow at the center of
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Figure 5.1: Schematic view of an FIA system. The injected sample forms a zone (a),
which is subsequently dispersed within the carrier flow (b-c).

the tube and the tube wall, and reciprocally. The diffusion homogenizes the parabolic

sample zone, resulting in a more symmetrical volume (Figure 5.1b-c). Both convec-

tion and diffusion vary according to the apparatus, and therefore their influence on

the peak shape may differ between FIA systems.

This phenomenon results in a gradient of concentration which will pass at consec-

utive times through the electrospray to be ionized. This gradient of concentration will

be referred in the next section as concentration curve.

5.1.2 Phenomena occurring in the Electrospray Ionisation Source

(ESI)

The electrospray ionization source (ESI) is most used in metabolomics because of

its ability to ionize polar and semi-polar molecules (Lei et al. 2011). It has been

extensively used in FIA (J. Draper et al. 2013). A typical ESI source is described

in Figure 5.2. The sample is injected through a charged capillary and surrounded

by a counter electrode. This leads to the formation of liquid-phase ions (Kebarle

and Verkerk 2009). The electrolytic liquid is sprayed in micro-meter sized droplets

using an aerosol. The droplets then shrink in size while the solvent evaporates, and,

after passing the Rayleigh limit of stability (F.R.S. 1882), they disaggregate because

58



Figure 5.2: Overview of an electrospray, extracted from Banerjee and Mazumdar
2012

of electric strength, until only ions remain in the gas. ESI usually produces single-

charged ions. The sign of the charge depends on the voltage between the electrodes.

ESI is considered as a ”soft” ionization technique resulting in minimal fragmentation

of the molecules.

The transmission from the liquid-phase to the gas-phase highly depends on the

parameters of the ESI source, such as the current in the electrode, the distance between

the tip and the capillary, and between the capillary and the skimmer (Page et al.

2007). Furthermore, the efficiency of the desorption/ionization process for an analyte

is influenced by its physico-chemical environment, and in particular by the surrounding

analytes.

The matrix effect (ME) has been defined as ”the combined effect of all com-

ponents of the sample other than the analyte on the measurement of the quantity”

(Guilbault and Hjelm 1989). The exact causes of ME are not known, and are com-

plex to investigate because electrospray includes gas-phase and liquid-phase reactions

simultaneously. Trufelli et al. 2011 listed four possibles explanations:

• Competition between analytes for the charge and the access to the droplet surface

(Kebarle and Verkerk 2009; Cech and Enke 2001).

• Presence of interfering molecules, which may increase the viscosity and surface

tension of the droplets, thus affecting their formation and resulting in a loss of
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charge reaching the mass analyzer (King et al. 2000).

• Non-volatile additive which may result in the formation of solid precipitates

(King et al. 2000).

• Presence of ions in the matrix or the additives which will pair with ions naturally

present in the sample (Holcapek et al. 2004).

Because in FIA all analytes enter the ESI source simultaneously (contrary to hyphen-

ated techniques relying on chromatography), ME strongly affects the signal. The

modeling of ME was therefore a critical step within our preprocessing workflow.

The ions produced in the ESI source then enter the mass spectrometer.

5.1.3 Phenomena occurring in a Mass Spectrometer (MS)

Orbitrap and Time-Of-Flight (TOF) are the two types of mass spectrometers which are

most used for high-resolution metabolomics (despite its very high resolution, Fourier

Transform Ion Cyclotron is less frequent because of its cost, J. H. Gross 2011). They

are based on completely different principles, which make a general description of the

physical principles of mass spectrometer detection impossible. We will give a short

description of the principles of each type of mass analyzer, based on the book from J.

Gröss (J. H. Gross 2011).

Time-of-flight mass analyzer

The first functional TOF instrument was presented in 1948 by A. E. Cameron and D.

F. Eggers Jr. (Cameron and Jr. 1948). In TOF instruments, ions are accelerated in an

electric field before entering a field-free region in which they drift at different speeds

according to their kinetic energies. Their velocities follow a statistical distribution

depending on their mass over charge (m/z). A major source of noise in this set-up is

called the dead-time effect (Gedcke 2001; Titzmann et al. 2010). When too many ions

of similar m/z hit the same detector simultaneously, some events are ignored because

of detector saturation, resulting is a bias in the measured spectra. To reduce the

statistical noise generated by such detection methods, the output spectrum is usually

a combination of multiple acquisitions.
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Orbitrap mass analyzer

Ion trapping in quadro-logarithmic field (orbitrap) to produce mass spectra was demon-

strated in the late 90s by A. Makarov (Makarov 2005). In an orbitrap mass analyzer,

ions are injected around an electrode surrounded by another electrode. An electro-

static voltage of several kilovolts, negative for positive ions, is applied to the central

electrode, while the outer electrode is at ground potential. Ions are injected around

the central electrodes and start to loop around the central electrode. Their looping

frequencies are directly linked to the mass-on-charge ratio of the ions, and can be

measured using the generated electrostatic field.

Both of these spectrometer, are source of noise for the mass spectrometers, which

is caused by the process of measurement and by the stochastic nature of the physical

process. This noise is notably caused by the Flicker noise present in all electronic

currents and by the counting of ions in TOF mass spectrometer. We just denoted by

observation that the noise included an heteroscedastic component, his existence have

been notably described in Anderle et al. 2004 and Wentzell and Tarasuk 2014. Both

modeled the noise variance on TOF data as a second order polynom.

In conclusion, we selected three main physical phenomena for our EIC model:

• The influence of convection and diffusion on the sample zone.

• The influence of matrix effect on the compound intensities (ESI source).

• The noise added by the the mass spectrometer.

We will now define computable expressions for each of these components.

5.2 Selection of a computable model for the ex-

tracted physical phenomena

Our aim in this section is to define a mathematical expression of the physical phe-

nomena affecting an EIC, which will then be used to obtain a computable model of

the intensities of the EIC as a function of time. This is of crucial importance because

the goal of an FIA-HRMS acquisition is in the general case to obtain quantitative

or qualitative information about the analytes in the sample, while at the same time
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discarding the chemical background or noise present in the solvent (Trotzmuller et al.

2010). However without a clear model of the comportment of the ions originating

from the sample, this discrimination is impossible. We consider an ideal FIA system

in which there is no retention of the analytes. The validity of this hypothesis will be

discussed in the next chapter. We also consider that there is no chemical reaction

occurring between the sample and the carrier flow, and between the individual ana-

lytes within the carrier flow (such an hypothesis is common in chromatography, and

is based on the low concentration of the analytes).

5.2.1 Modeling of the concentration curve

We stated that the sample zone has an initial parabolic shape because of convection,

and then homogenizes because of diffusion. This evolution has been described as

the convection diffusion by Levenspiel and Bischoff (Levenspiel and Bischoff 1964).

However because of the complexity of this equation, no analytical solution has been

provided yet, to the best of our knowledge (Kolev 2008).

A review by Kolev 1995 lists different types of models for FIA-MS data. These

models are referred either as black-boxes, (when considering the system in terms of

input-output only), or deterministic and probabilistic (i.e., based on the physical prop-

erties of the system). Deterministic models require an accurate knowledge of the exper-

imental setup and of the physical phenomena dominating the system’s dynamics. Such

models are therefore not compatible with our constraints of robustness and general-

ization. Probabilistic models suffer from the same drawbacks, the required parameters

often including the mean carrier flow velocity, diffusion coefficient, or tube diameter

(Wentzell, Bowdridge, et al. 1992; Kucza 2013). We therefore selected a black-box

approach.

Black-box models consider the system only in terms of inputs and outputs (Kolev

1995), without relying on the underlying physical process. While Kolev listed a lot of

models used to cover the majority of FIA systems, most of them are not relevant for

our problem, as our goal is not to predict the response of the system from previous

data (Margaret and Dermot 1993), but instead to obtain a computable model which

may be fitted to an EIC. We therefore focused on functions known as ”empirical peak

shape models”, which have been widely used in chromatography(Felinger 1998) and

flow injection approaches(Kolev 1995). The majority of these peak models are derived

from the Gaussian function as this function traces back to the first linear model of

chromatography by Martin and Synge (Martin and Synge 1941), the interested readers
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is referred to Felinger 1998. However the Gaussian is symmetric: although concen-

tration curve are supposed to be a gaussian function if the time of residence is long

enough (Kolev 2008), this condition is not reached in practice with the majority of

FIA experiments, as it would lengthen the acquisition. Therefore we focused on asym-

metric empirical functions instead. We chose to discard piecewise-defined functions

such as the bi-Gaussian (Eli et al. 1970) as they double the numbers of parameters,

and rely on the assumption that the left and right slopes of the peak are independent.

Exponentially Modified Gaussian (EMG) The EMG function has been suc-

cessfully used to describe concentration curves (B. F. Johnson et al. 1992; Brooks and

Dorsey 1990). It is the convolution between a Gaussian with parameters µ and σ and

an Exponential with decay rate τ .

c(t)µ,σ,τ = Gµ,σ(t) ∗ Eτ (t) =
1

τ
√

2πσ2

∫ t

x=0

e−−
(x−µ)2

2σ2 × e−
t−x
τ dx

With only three parameters, these functions can efficiently model a wide range of

asymmetric peak shapes (especially in FIA systems). Moreover many techniques al-

low fast calculation (Berthod 1991) and determination of parameters and statistical

moments from simple measurements on peak shape (Mark and Joe 1992; Brooks and

Dorsey 1990; Foley 1987). These methods may therefore be used to give good starting

points for curve fitting.

Gamma distribution: Another asymmetric curve successfully used in FIA is the

Gamma distribution (Smit and Scheeren 1988). However it requires the addition of

a shift parameter and has therefore as many parameters as the EMG. As it has been

less studied and less used in the case of concentration curves a single time, we chose

to model the concentration curve as an EMG function over the gamma distribution.

5.2.2 Modeling of matrix effect (ME)

The mathematical expression of matrix effect (ME) should remain simple and com-

putable even for a thousand of molecules measured simultaneously in a complex bio-

logical sample.

While the presence of ME has been known for quite a long time (Kebarle and Tang

1993) and multiple putative sources of ME have been suggested, no comprehensive
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ME model has been proposed yet because of the multiplicity and of the complexity of

the phenomena involved. However two models of the molecular competition for the

ionization have been described (Kebarle and Tang 1993; Enke 1997). In this section

we show the main incompatibility of these model on real experimental data including

hundreds of features.

Model proposed by C.G. Enke (Enke 1997)

C. G. Enke proposed a model where charge is partitioned between the surface and the

inside of the droplets. While this model correctly describes different known properties

of the response of ESI-MS systems (e.g., linearity of the response at low concentration,

loss of linearity at high concentration), the observed signal for a molecule depends on

the concentrations of all other analytes. Therefore this model cannot be used in

practical situations where the concentrations of analytes are unknown.

Model proposed by P. Kebarle and L. Tang(Kebarle and Tang 1993)

Original model Kebarle and Tang made the assumption that ionization is limited

by one main factor, the finite amount of charges which end up at the surface of the

droplets. Each compound gets a limited amount of this intensity. They proposed the

following formula for the intensity of an analyte A co-eluting with an analyte B (and

an electrolyte E):

IA+ = pf
kACA

kACA + kBCB + kECE
I (5.1)

where I is the total intensity provided by the electrospray; ki is an analyte specific

factor representing the ability of the respective ion species to become part of the charge

on the droplet surface and its ability to subsequently escape and enter the gas phase;

f is the fraction of charges on the droplets which are converted to gas-phase ion; p is

the fraction of the ion detected in the mass spectrometer relative to their gas-phase ion.

Extensions to multiple compounds It is possible to extend the model to all

analytes in the solution, O:

IA+ = pf
kACA∑
i∈O kiCi

I (5.2)
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Extension to FIA Since there is no chromatographic separation in FIA, all com-

pounds with the same mass (e.g., all isomers) contribute to the same m/z signal. For

a given m/z, the observed intensity on a sufficiently small EIC is therefore
∑

j∈Am Ij+

(where Am is the set of all analytes with the same m/z). The Formula (5.2) then

becomes:

∑
j∈Am

Ij+ = pf

∑
j∈Am kjCj∑
i∈O kiCi

(5.3)

Note that in this model, the denominator remains unaffected by the summing. To

make the notation easier, IM+ will hereafter denote the sum of intensities observed at

a certain m/z. An example of the application of this model to simulated FIA curves

is shown in Figure 5.3.

(a) Concentration curve (b) Intensity affected by suppression

Figure 5.3: Kebarle and Tang model applied to two analytes (blue, kA = 2 and red
kB = 5), and a solvent compound (orange, kE = 1)

Model effect on solvent We can prove that I is proportional to the Total Ion

Current (TIC) of a scan. If we sum the Formula (5.2) for all analytes we get :

TIC =
∑
j∈O

Ij+ = pf

∑
i∈O kiCi∑
i∈O kiCi

I = pfI (5.4)

so I = TIC
pf

. In an FIA acquisition, the analytes either come from the solvent, or

from the sample. Compounds from the solvent can be assumed to have a constant

concentration during the acquisition. In contrast, compounds from the sample have a

peak shape which depends on the flow rate, and on the tube and solvent properties
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(Figure 5.3a).

These two different chromatographic profiles allow us to rewrite the Formula (5.2) :

IM+ = pf

∑
j∈Am kjCj∑

i∈Osol kiCi +
∑

i∈Osam kiCi
I (5.5)

with Osam for the analytes from the sample and Osol for the molecules from the solvent.

As there are multiple scans in an FIA acquisition, we can specify the time dimension,

and replace I by TIC
pf

:

IM+(t) =

∑
j∈Am kjCj(t)∑

i∈Osol kiCi(t) +
∑

i∈Osam kiCi(t)
TIC(t) (5.6)

We can use the Equation (5.6) to highlight an interesting property of this model for

the signal from the solvent. If we suppose that the observed m/z comes from solvent

ions only (which we denote S), this means that their concentration curve is constant:∑
j∈Am kjCj(t) = CS. Therefore Equation (5.6) becomes:

IS+(t) =
Cs∑

i∈Osol kiCi(t) +
∑

i∈Osam kiCi(t)
TIC(t)+ (5.7)

In this equation we can observe that none of the terms depend on S, except the CS.

This means that in the model proposed by Kebarle and Tang, EICs coming form solvent

features are proportional. This property, however, was not observed in experimental

data as shown in Figure 5.4.

(a) (b)

Figure 5.4: EICS composed of signal originating from the solvent with dif-
ferent shapes (serFusion): It is clearly visible that figure a) may not be a rescaled
version of 5.4b) because 5.4a) come back close to his initial level, while 5.4b) does not.
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In conclusion, as the existing models were either impossible to use without the

knowledge of the real concentration profiles, or do not agree with experimental data,

we switched to an empirical approach. Such an approach has been described by Nanita

(Nanita 2013), who compared the EIC from a pure standard (i.e., without ME) to the

EIC from the same standard spiked into a biological matrix. Using this technique, ME

was expressed as a function of the normalized intensity (Snorm) using a first- or second-

order exponential ME(Snorm) = aebSnorm or ME(Snorm) =
aebSnorm + cedSnorm

a+ c
. While

Nanita showed that the second-order exponential better fits the data, we selected the

first-order model as it reduces the number of parameters with only a small impact on

the fit quality. Moreover to ensure that ME(0) = 0 we used the expression a(ebSnorm−
1)

5.2.3 Modeling of the noise in HRMS

Because of the differences between TOF and Orbitrap detection processes, it is impos-

sible to define a single noise model based on physical principles. We therefore consider

the noise on each data point as independent from the other points, with a law depend-

ing on the intensity at the point, and on the observed intensities. An algorithm to

obtain a raw estimation of noise variance as a function of the intensity will be detailed

in the next chapter.

5.3 Proposed EIC model integrating these compo-

nents

5.3.1 Definition

We can now propose a model for EICs for FIA HRMS. We first consider the case

where an EIC contains a single sample analyte that we will denote A and some solvent

molecules. As we assume that there is no retention in the pipework, we can consider

that the concentration curves of all the analytes in the sample are identical (noted P ),

up to a multiplicative factor corresponding to their respective concentration (e.g., CA

for analyte A). P will be called sample peak in the rest of this thesis. However, even

without matrix effect, the transmission of the analyte from the liquid-phase into the

gas-phase is not 100% efficient, therefore a second multiplicative constant representing

the efficiency of the transmission TA is needed. These two constants may be grouped
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into a single constant kA = CATA, and the EIC model of A becomes kAP .

The analytes are then ionized in the electron spray, together with the molecules

from the solvent. We assume that the amount of ions from the solvent is very small

compared to the ions from the sample. Consequently, the matrix effect is caused by

the molecules from the sample only. Therefore the matrix effect should be a function of

kAP . Since we selected a first-order exponential model for ME, we have ME(kAP ) =

aAe
bAkAP = aAMeb

′
AP , with b′A = bAkA. Therefore ME effect may be expressed as

a function of P and two constant terms for the molecules, and without an explicit

knowledge of the his concentration at the given time. We remind the reader that CA

is a constant. Moreover for commodity purpose we can define a′A = aA/kA.

Furthermore, a baseline may be present if a molecule from the solvent has a similar

m/z (as it this the case in Figure 4.1d). We refer to this baseline, which is specific to

A, as BA. Although the baseline is also affected by ME, we chose to ignore this effect

as the baseline is generally small compared to the amplitude of the peaks, (if this is

not the case, the analytical conditions need to be optimized). We can similarly define

B′A = BA/kA

The observed intensity of the EIC corresponding to A may therefore be written as:

IA(t) = kAP (t)−MEA(P (t)) +BA + ε (5.8)

or by fully developing the model and putting kA as a factor:

IA(t) = kA(Gµ,σ ∗ Eτ (t)︸ ︷︷ ︸
P

− a′A(eb
′
A×(Gµ,σ∗Eτ (t)) − 1)︸ ︷︷ ︸

ME

+B′A) + ε (5.9)

With ε is the heteroscedastic noise. This factorized model is in practice simpler to

use than the non factorized version, therefore for commodity purpose we will use it

in the following section, and write a′A, b
′
A, B

′
A as aA, bA, BA for commodity purpose. A

visualization of the contributions from each of the three terms is shown on Figure 5.5.

The proposed model includes 7 parameters:

• 1 multiplicative constant representing the concentration and the ionization fac-

tor: kA.

• 3 derived from the EMG function used to model the sample peak (P ): µ, σ, τ .

• 2 derived from the first order exponential used to model matrix effect (MEA):

aA, bA.
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• 1 related to the solvent baseline: BA.

Out of these seven components, BA can be extracted from the EIC (by focusing on

the intensities at the beginning of the acquisition), and µ, σ, τ are identical across all

the EICs.

Figure 5.5: Fitting of model described in Equation (5.8) (showed in red) on a real
(rescaled) EIC extracted from the serFusion dataset. The sample peak is shown in
blue, the matrix effect in green (here 1 −ME is plotted for visualization purpose).
The solvent baseline is equal to 0 on this EIC.

As expected, the proposed model explains the various types of observed EICs

shown in Figure 4.1. On the EIC 4.1a, the major contributor to the intensity is the

sample peak. However, even in that case of a ”well-behaved” EIC, ME impacts on the

maximum height of the sample peak, as suggested by the simulation from Figure 5.5.

The ”suppressed” EIC shown in Figure 4.1b results from a similar contribution of the

sample peak and of the ME, as explained by the model on Figure 5.6a. In the absence

of a model, such observed EICs would have been mistakenly interpreted as two distinct

peaks. Finally, Figure 4.1c illustrates an EIC from solvent alone: the sample peak is

absent, but the baseline is still affected by ME. Such a profile is also explained by our

model (Figure 5.6b).

These simulations highlight the value of our model to explain the various types of

EIC profiles observed on real data sets, depending on the ME and the baseline.
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(a) (b)

Figure 5.6: Simulated EIC using our Model (5.8). Figure a) results from a ME of
similar intensity as the sample peak (here we have set a = 0.05 and b = 50). Figure b)
shows a signal of solvent affected by ME, with a = 0.25. In both cases we set µ =
30, σ = 8, and τ = 0.05 (i.e., the sample peak is identical for the two EICs).
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Chapter 6
Construction of a processing workflow for

FIA-HRMS data: proFIA

In this section we will detail our suite of algorithms created for the processing of FIA-

HRMS data (Figure 6.1). The whole pipeline is available as the proFIA R package in

the Bioconductor repository (DOI: 10.18129/B9.bioc.proFIA; Delabrière et al. 2017).

A set of demonstration data is also available in the plasFIA extracted from the serFu-

sion dataset. The structure and some of the algorithms were inspired by the reference

softwares for LC-MS processing reviewed previously (Table 4.1).

The main innovation is the development of an EIC model integrating matrix ef-

fect, as presented in the previous chapter 5: because the expected peak shape highly

depends on the experimental setup and is not clearly defined, the sample peak is first

estimated on well-behaved EICs, and subsequently used for matched filtration. ME

was also considered when selecting the m/z traces (m/z band detection). Finally, po-

tential retention in the FIA pipe was taken into account, as such an effect was observed

in the data sets.

The critical part of proFIA is the detection and the quantification of peaks within

each sample. As in LC-HRMS, it includes the detection of m/z traces followed by the

analysis of EICs. As we have seen in the previous chapter, in a theoretically perfect

FIA-MS acquisition (i.e., without matrix effect, baseline solvent, or retention), all EICs

should have the same shape, and should only differ by a factor corresponding to the

analyte concentration and its ionization efficiency. The sample peak is common to

all analytes from the sample. Estimation of the sample peak is essential, since it is

used in many steps of the processing (including m/z band detection and EIC matched
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Figure 6.1: proFIA workflow. Input files are the centroided raw data in standard
formats. First, within each sample file, mass bands are detected in the m/z by time
plane (using the ppm and dmz parameters), and a noise model is built. The sample
peak is modeled, and subsequently used within each m/z band to detect the temporal
limits of the analytes signal, and evaluate its quality. Second, the previously detected
features are grouped between samples by using a kernel density estimation in the m/z
dimension. Finally, missing values can be imputed with either a k -Nearest Neighbors
or a Random Forest based method. The output is the peak table containing the
characteristics of each feature (m/z limits, mean correlation with the sample peak as
a quality metric, and intensity in each sample)

filtering). It is not possible, however, to obtain a direct estimation, since most of the

EICs (and hence the TIC) are affected by matrix effect. Therefore a selection of EICs

which are not too affected by matrix effect is done.

6.1 Initial estimation of the sample peak limits

An initial raw estimation of the limit of the sample peak is first performed. This step

aims to obtain a 3 points estimate: the first scan on which the sample injection is visible

(linj), the maximum of the injection (minj), and finally the last scan of the injection
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(uinj). These three points are used in the first three steps of the algorithm (band

detection and noise estimation, and sample peak estimation) to detect the signals

affected by the solvent, and to discard them when determining the sample peak shape.

Therefore to allow the maximum of flexibility and robustness regarding the sample

peak shapes, a geometric algorithm was used:

1. The Total Ion Chromatogram (TIC) is rescaled in the [0, 1] interval both in the

time and intensity dimensions.

2. The solvent value is set to the first intensity of the TIC.

3. The starting time of the injection (lower limit of the injection window: linj) is

set to the first scan corresponding to 3 consecutive increasing intensities superior

to the solvent.

4. minj is set to the maximum of the smoothed TIC (on the sequence smoothed

using a 5-points median filter).

5. All scans superior to linj + minj are considered as candidates for the end of

injection (upper limit: uinj). For each candidate time u, let us denote M , U ,

and L the summits of the triangle joining the signal intensities at time points

minj, u and at the last time point of the chromatogram. The limit of injection

uinj is computed as the time point maximizing cos(UM,UL) − UM.UL (the

second term avoids the selection of points with noisy intensities at the end of the

chromatogram).

The output is a triplet linj,minj, uinj which will be used in the subsequent steps. minj

and linj are good estimates of the true injection time and maximum intensity of the

sample peak as long as the majority of the molecules are not affected by retention in

the pipework. The limit of injection uinj is a less reliable estimate as any retained

molecule will strengthen the right-tail of the peak.

6.2 m/z band detection

The m/z band detection step in proFIA differs from the building of m/z traces in LC-

MS in several ways. Because of ME, the intensity may decrease at the maximum of the

sample peak (Figure 4.1b), resulting in missing values in some of the consecutive scans

when the signal is under the limit of detection of the mass spectrometer. Therefore gaps
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Figure 6.2: Band and peak detection on serFusion: Data before (left) and after
(right) band detection and filtering. Dashed black lines indicate the detected bands
(the m/z window is enlarged for visualization purpose); red rectangles correspond to
the regions identified by the peak detection step as containing the analyte signal. Band
at m/z 256.20 is discarded during the peak detection step

need to be allowed when building the traces in the time dimension. Another difference

with LC-MS is the fact that m/z bands are detected without limits in the time domain

(Figure 6.2, dashed lines). Such bands, however, are not detected by binning the m/z

scale (which would result in a loss of accuracy), but by grouping centroids with close

m/z values. Each band (denoted B) consists of a list of centroids characterized by their

3-dimensional coordinates (mz, int, scan), and a scalar meanMz. The data points are

processed sequentially by increasing time and increasing m/z. The full algorithm is

detailed in 1.

The algorithm starts by initializing a new band for each point of the first scan.

These bands are stored in a linked list sorted in increasing order of m/z. Data points

are processed 1) by scan order and 2) by m/z value within each scan. For each new

centroid p, the bands at the vicinity are selected from the full bands list (Line 6)

using a tolerance in ppm and a minimum threshold dmz (Line 5), to handle the loss of

accuracy at low masses. If no candidate is found, a new band is created directly(11).

In the case where at least a band is found (function InsertCentroid), we first

select the band B which is closest to p by designing the following metric Dist(B, p)

(with b denoting the last added point in B):

Dist(B, p) =
|p.mz − b.mz|
ppm× p.mz

+
log(p.int)− log(b.int)

2
(6.1)

(note that this definition takes into account the local deviation as it considers b). Then
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Algorithm 1 Band detection algorithm

1: procedure findBands(Scans, ppm, dmz)
2: BL← Initialize bands with points in the first scan. . List of bands
3: for s in 1, . . . , |Scans| do
4: for p = (mz, int) in Scans[s] do
5: tol← max(dmz, ppm×mz × 10−6)
6: Cp ← Bands B ∈ BL such that |B.meanMz −mz| < tol . Candidate

bands
7: inserted = False
8: if |Cp| ≥ 1 then
9: (p, inserted)← InsertCentroid(Cp, p)

10: if not inserted then
11: Create a new band with p only

return BL
12: end procedure

1: procedure InsertCentroid(Cp, p)
2: Cp′ = Cp
3: while |Cp| 6= ∅ do
4: Bp = argminc∈Cp Dist(p, c)
5: blast ← last point of Bp

6: if blast.scan = p.scan then . Bp already contains a point for scan s
7: B−1p ← Bp without blast
8: if Dist(p,B−1p ) < Dist(blast, B

−1
p ) then

9: Replace blast by p in Bp

10: p← blast return InsertCentroid(Cp′ , p)
11: else
12: Cp ← Cp/Bp

13: else
14: Assign bp to Bp return (p, True)

return (p, False)
15: end procedure

(Line 14), if there is no point b from this scan in B already, p is added to the band.

Otherwise, p is compared to b using Dist, and the other point is inserted once again

if p is a better candidates ( Line 10). If on any points all the candidate bands are

considered, the stopping criterion of the while is met and the point is inserted into a

new band. This procedure ensures that the number of incorrect assignments is kept

to a minimum, and avoid the incorporation of noisy points with close m/z in the mass

traces.

The list of detected bands is subsequently cleaned by discarding bands without at

least 3 successive points in the time dimension.
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To avoid the risk of band splitting (i.e., two bands are created for the same m/z

feature), and increase the robustness of the algorithm with respect to the ppm and

dmz parameters, two bands are fused when they have less than 2×ppm×mz difference

and share less than 2 scans.

The final filtering step focuses on the quality of detected bands, to discard fea-

tures which are too suppressed by ME. The proportion of points from each band

B within the sample peak limits (linj, uinj) determined in the previous section (6.1),

F = (
∑

c∈B.centroids 1(linj ≤ c.scan ≤ uinj))/(uinj − linj), must be superior to the user

defined bandCoverage parameter, the default parameters in the proFIA software is

0.4. An example of such a discarded band is displayed in Figure 6.2 (top band on the

right panel).

Figure 6.3: Impact of the filtering steps on the total number of detected m/z
features (i.e., bands) from an acquisition of the plasFIA package.

This filtering steps may result in up to 100-fold reduction of the number of detected

bands (Figure 6.3).

The bands are then used for the estimation of noise and the characterization of the

sample peak model.
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Figure 6.4: Noise variance estimates. The ordinate values of the points correspond
to the estimated variance in each intensity bin, and their color encodes the logarithm of
the number of points in the bin; red curve: LOESS fit. a) Q-Exactive (serExactive),
and b) Fusion Orbitrap instruments (serFusion).

6.3 Model of the noise variance

6.3.1 Noise variance estimation

Noise depends on the technology of the MS analyzers and detectors (e.g., Time-Of-

Flight vs Fourier Transform). To develop a robust method, we therefore implemented

a non parametric estimation of the noise variance as a function of intensity. This

estimation will be used in the subsequent steps (e.g., to filter out solvent features in

section 6.5.3 by discriminating analyte signal from solvent baseline).

The proposed algorithm is a variant from Wentzell and Tarasuk 2014. In the

original approach, noise variance is estimated in each intensity bin from a logarithmic

spaced series of bins covering the full intensity range of the whole acquisition. More

specifically, for each EIC, the signal is filtered using a low-pass filter. The noise is

estimated as the difference between the smoothed signal and the original data. While

this strategy results in a very raw estimate of noise on individual measures, each bin

contains tens of thousands estimates, and the mean of each bin therefore provides a

robust estimate of the variance. In the original method, a curve is then fitted to the

bin means (Figure 6.4).

Because proFIA is intended to process more than one sample at a time, we extended

this algorithm to estimate the noise on multiple files simultaneously: the range of
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intensities is set from a minimum provided by the user (who has some expertise on the

noise level) to a maximum equal to twice the maximum intensity in the first processed

file. The logarithmically spaced bin scale is built and is identical for all files. The

binning process on each individual file f returns for each bin b a pair (Vb,f , Sb,f ), where

Vb,f is the noise mean and Sb,f is the number of points. The global variance estimate

for each bin across the samples (Vb) is then computed as the weighted mean of the

variances estimated in the individual files: Vb =

∑
f∈samples Vb,f × Sb,f∑

f∈samples×Sb,f
.

6.3.2 Regression

A Local Polynomial Regression (LOESS) is then performed (LOESS was shown to

outperform a simple polynomial regression). Because there is usually only a few high

intensity points in each file, noise cannot be estimated in a robust manner in these

bins: we therefore discard the set of high intensity bins with a cumulative proportion

of points inferior to 5%. The minimum intensity (provided by the user) may be lower

than the real value, leading to non-robust smoothing of intensity and over-estimation

of the noise in the lowest bins (Figure 6.5) as described in Wentzell and Tarasuk 2014.

Variance estimates for low intensities are thus smoothed (moving average of 7 points),

and the intensity bin corresponding to the minimum of the smoothed variance is used

as the lowest bin for the LOESS regression.

The result of this step is a model of the noise variance of the intensity, as well as

an interval of definition [minIntensity,maxIntensity].

6.4 Sample peak determination

After band detection, it is now possible to work in the time dimension to perform peak

quantification on each Extracted Ion Chromatogram (EIC). We will see however that

our EIC model (chapter 5) is too complex to be fitted directly to the data (6.4.1). In

this section, we therefore use the model to estimate the sample peak P (common to all

EICs) by using the best behaved EICs (strong intensity, little ME, no baseline). In the

next section (6.5), P will be used to detect the time limits of the signal on each EIC

by matched filtration, to subsequently allow an accurate quantification of the analyte.

In chapter 5, we proposed the following model for EIC:
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Figure 6.5: Determination of the lowest intensity bin for the model: A bin scale
starting at a minimum intensity(500) too low for robust variance estimation. Blue:
smoothed variance; Red: selected lowest bin for the LOESS regression (serFusion)

IA(t) = kA × (Gµ,σ ∗ Eτ (t)︸ ︷︷ ︸
P

− aA(ebA×(Gµ,σ∗Eτ (t)) − 1)︸ ︷︷ ︸
ME(P )

+BA) + ε (6.2)

which may be written in a complete form as :

IA(t) =kA ×
(

1

τ
√

2πσ2

∫ t

x=0

e−−
(x−µ)2

2σ2 × e−
t−x
τ dx︸ ︷︷ ︸

P

−

aA(e

bA×( 1

τ
√

2πσ2

∫ t
x=0 e

−− (x−µ)2

2σ2 ×e−
t−x
τ dx)


− 1)︸ ︷︷ ︸

ME(P )

+BA

)
+ ε

(6.3)

The least square estimate objective function of this model is non-convex, a global min-

imum cannot be computed by a simple method. We therefore evaluated the efficiency

of the regression on simulated data.
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parameter distribution
µ N (40, 8)
σ U(3, 8)
τ U(0.01, 0.2)

a = 10c c ∼ U(−2, 0.5)
b = 10d d ∼ U(−2, 3)

Table 6.1: Parameters used to simulate EICs

6.4.1 Regression on simulated data

We generated 20 distinct sample peaks P and, for each of them, 40 EICs (half with

little ME, and the other half with strong ME; Table 6.1).

To simplify the regression problem, baseline was omitted from the simulation, and

the EMG term was normalized to 1 before calculating the ME term. A multiplicative

noise was added to each point: the noise was drawn from a Gaussian distribution with

variance 0.2× i, where i is the intensity of the point. Simulations successfully reflected

the EICs from real FIA-HRMS data sets (compare Figure 6.6 with Figure 4.1). The

amount of ME was evaluated as the ratio between the area of the ME term and the

area of the sample peak P term.

(a) (b)

Figure 6.6: Simulated EICs. Equation 6.2 was used to simulate a wide variety of
EIC, including well-behaved EIC (a) and suppressed and tailed EIC (b).

The Levenberg-Marcquadt algorithm implemented in the minpack.lm R package

(Moré 1978) was used to perform the regression, as it is one of the most popular algo-

rithms for optimization, and has successfully been applied to the fit of EMG functions

to m/z peaks (Lange et al. 2006). The initial parameters of the sample peak (µ, σ, τ)

were estimated using measurements of peak height and peak asymmetry as described
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in Brooks and Dorsey 1990. Due to the high fluctuations of ME, direct estimation

of initial value for b was not possible. We used instead 4 sets of starting points cor-

responding to increasing levels of the b parameter, from 0.01 (low ME), 0.69 (ME

masking half of the sample peak height at the peak apex), 1.09 (completely masking

the peak height, similar to 6.6b), and up to b = 5 (extreme ME). a was kept to 0.5 in

all settings. The Root Mean Squared Error (RMSE) of the actual vs modeled sample

peak P was computed, and plotted against the ME (Figure 6.7). While P is well

modeled when ME is low, RMSE is above 5% for more than 58% of the EICs in case

of high ME (even when high b values are given as starting point).

(a) b = 0.01
(b) b = 0.34

(c) b = 0.5 (d) b = 5

Figure 6.7: Quality of sample peak modeling as a function of the amount
of ME in the EIC. EICs with various amounts of ME were simulated using Equa-
tion 6.2 and parameter distributions from Table 6.1. The quality of the sample peak
P modeling obtained with increasing initial b values was evaluated with the RMSE.

In conclusion, direct estimation of the sample peak P on EICs with strong ME

is not accurate even on these simplified simulated data (no baseline, similar noise

variance). We therefore selected for proFIA a two step strategy. First the sample peak

was estimated by regression for the well behaved EICs only (i.e., the one less affected

by ME and high intensity). Then this sample peak was used to perform matched

filtration on all the EICs (to ensure robustness).
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6.4.2 Selection of well behaved EICs

”Well-behaved” EICs (corresponding to the previously detected m/z bands) were se-

lected as follows:

1. No baseline.

2. High intensity.

3. Small ME.

4. No retention time shift.

Condition 1 is fulfilled if the intensity of the points before the start of the sample peak

(estimated as linj in the chapter 6.1) is 0. For condition 2, the maximum intensity

value of each EIC is computed: only the EICs with a maximum within the top decile

are selected. Criterion 4 is met if the beginning of the EIC peak (set to the first

three points with a consecutive increment in intensity) falls within 1s of a refined linj

estimate. For condition 3 to be fulfilled, the delay between the apex of the EIC and

minj must be less than 2 s.

Among the EICs meeting the 4 conditions the 20 most intense are selected. The

set of these ”well-behaved” EICs is denoted as M . The sample peak window and apex

time estimates (linj,minj, uinj) are updated by considering the sum of these EICs as

the TIC an reapplying the initial algorithm for the 3-points estimate of the sample

peak (section 6.1). The initial parameters for the sample peak P are also updated by

applying the moment methods (Brooks and Dorsey 1990) to this summed EIC.

6.4.3 Regression of the sample peak

Because the sample peak is supposed to be the same for all the well-behaved EICs, the

regression is performed on all the M EICs simultaneously, to ensure the convergence

to a local maximum. While the parameters of the EMG (µ, σ, τ) are common to all

M EICs, the ME parameters aj, bj and the intensity coefficient kj are specific to the

analyte from EICj. Therefore we decided to minimize the combined error function

using the same data, to obtain an estimation of µ, σ, τ as robust as possible. Our error

function then becomes: ∑
j∈M

|Ij − kjPµ,σ,τ +MEaj ,bj |
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This quantity is estimated using the Levenberg-Marcquadt algorithm. The initial val-

ues of µ, σ, τ were determined from the sum of the M EICs by using the moment

methods. The initial parameters values for all (aj, bj) were (0.5, 0.69) since this corre-

sponds to a low ME. All the EICs of were normalized before the regression to ensure

that the errors have the same scale. All kj parameters were therefore set to 1. Noise

was neglected on these high intensity EICs.

After this step an estimate of the sample peak P is available. P is used on the

EIC from each m/z band to 1) perform matched filtration and detect the time limits

of the peak for each analyte individually, and 2) evaluate the amount of ME.

6.5 Peak detection using modified matched filtra-

tion

An approach based on the sample peak model P determined previously was used for

peak detection on each EIC, because peaks are often very noisy. Matched filtration

was used over wavelets transform because in FIA a peak greatly differing from the

sample peak determined earlier is probably ill-formed, there was therefore no need for

a rescaling of the injection peak. Matched filtration (described in section 4) has several

advantages for FIA, including robustness to high levels of noise, and low sensibility to

rescaling of the sample peak (e.g., in the case of the low intensity EICs). However, the

classical approach had to be modified to take into account ME and the absence of large

signal free regions on the EIC. Our algorithm consists of two main parts: detection of

the putative peak borders and discarding of signals which are too close to the baseline.

6.5.1 Peak limits estimations

The putative peak limits were determined on the EIC by using matched filtration of the

sample peak P . Because of ME, the initial peak detection on the filtered sequence is

refined by detecting a second maximum on the convolved sequence. The full algorithm

is described in algorithm 2.

First, the algorithm detects a local maximum (m denoting the apex) of a convolved

sequence (blue curve in Figure 6.8). A first guess of the initial peak limits is obtained

by descending the slopes of the peak. The processing then depends on the position

of m relative to the sample peak time characteristics linj,minj, uinj. All the EICs
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Algorithm 2 Determination of peak limits, DownSlopes just follows the slopes
starting from a local maximum until a minimum is found.

1: function findPeakLimits(I, P, S, linj,minj, uinj)
2: n← length of I
3: np ← length of P
4: C ← I ∗ P
5: m← argmax j ∈ 1 . . . nC[j]
6: l, u← DownSlopes(C,m)
7: R← False
8: if linj < m then
9: if m < minj then . Left part of the peak

10: m′ ← argmax j ∈ u . . . uinjC[j]
11: if m′ is a local maximum then
12: l′, u′ ← DownSlopes(C,m′)

13: l, u←MaxRange(u, l, u′, l′)

14: if minj < m < uinj then . Right part of the peak
15: m′ ← argmax j ∈ linj . . . lC[j]
16: if m′ is not a local maximum then . Refinement (triangular filter)
17: C ′ ← I ∗ S
18: m′ ← argmax j ∈ linj . . . lC ′[j]
19: if m′ is a local maximum then
20: l′, u′ ← DownSlopes(C ′,m′)
21: l, u←MaxRange(u, l, u′, l′)

22: if uinj < m and (u− l) ≥ np then . Retention in the pipework
23: R← True
24: elsereturn (R,−1,−1)

25: Refine(l, u) return (R, l, u)
26: end function
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with m < linj are discarded as it means that the best position of the peak occurs

before the sample reaches the mass spectrometer (24). For the other EICs, m usually

falls between the injection limits. In this case, the algorithm looks for a second local

maximum on the other side of minj (line 9 and 14) to take into account the signals

strongly affected by ME (Figure 6.8b). If ME is low, no second maximum is detected

(Figure 6.8a). However in case of signal suppression, a second maximum may be

detected. Because the first ”peak” of strongly suppressed signals may be very sharp

(and thus may not be detected as a local maximum), a convolution with a narrower

filter (triangular wavelet denoted S) may be used to accurately estimate the left limit

of the peak (line 17). The support is extended to include both peaks in lines 21 and

13.

Finally the peak limits are refined. The Refine function looks for a local minimum

to ensure that the detected peak is visually correct. If the refined limit l is inferior to

linj, l is set to linj.

Now that the time limits (lj, uj) for every peak have been detected, the amount

of solvent must be checked to ensure that it does not prevent reliable quantification

(Figure 6.8c).

6.5.2 Solvent removal

EICs with a large part of their intensities potentially coming from the solvent must be

discarded. Although many of these signals have been already removed at the previous

matched filtration step, an additional filtering is applied by looking at the points of

the EIC before linj. If at least 3 points have a non zero intensity, the EIC is considered

as being affected by the solvent, and the solvent intensity noted isol is set to the mean

of the non 0 EIC points before linj.

If no solvent is detected the peak is validated, as it has already passed the bandCoverage

filter in the band detection steps, meaning that there is enough point in the sample

peak for reliable integration.

If the EIC includes some solvent, it is kept if the amount of signal is sufficient

compared to the baseline. Due to the the limited duration of the acquisition, there

are very few signal-free region in the EICs: as a result, a local estimation of the

noise based on the quantile of the convolved sequence, as it often used with matched

filtration or wavelets methods, is not possible. We therefore rely on the comparison

of isol and the maximum intensity of the EIC meic: if meic < 1.5isol (the 1.5 threshold
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Figure 6.8: proFIA filter on real EICs extracted from serFusion. Black line:
EIC, blue line: convolved sequence C, red line: matched peak P at the maximum of
C, grey dotted vertical lines: peak limits for subsequent integration. Legend: quality
metrics provided by proFIA (maximum intensity, indicator of retention shift (d), p-
value obtained when testing the significance of signal compare to baseline (c) and
correlation with the sample peak when the peak is not shifted).
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was determined empirically), the EIC is discarded, as it means that the relative level

of solvent is very high compared to the signal originating from the sample, such level

of solvent invalidate our hypothesis on the negligibility of isol. If meic > 1.5isol a

statistical test is used.

6.5.3 Statistical testing of sample contribution

The null hypothesis H0 states that the signal consists of baseline only: I = B + ε,

where the noise ε is modeled at each time i by εi ∼ N(0, V (B[i])) with V the estimation

of the variance in function of the noise obtained in section 6.3. If we assume the

independence of noise with time, the total noise between the signal limits also follows

a normal distribution:

E =
u∑
i=l

εi ∼ N

(
0,

u∑
i=l

V (B[i])

)

The statistic Ê =
∑u

i=l ε̂i =
∑u

i=l(I[i] − B̂[i]) is then compared to this distribution

(with B̂ being the linear segment between the peak limits I[l] and I[u]). The peak

is kept if the unilateral test p-value is inferior to a given threshold (0.01 by default;

Figure 6.10c). While this test makes the hypothesis that the baseline is linear, it is

still valid when the baseline is affected by ME, as we show below.

6.5.4 Extension of the testing to include matrix effect

Our hypothesis H0 remains unchanged (stating that the signal consists of baseline

only). However, we now include ME in our equation describing intensity under H0:

I = B −ME(P ) + ε

Our previous linear estimation of B is superior to the quantity B −ME(P ), as the

contribution of ME is always negative. As a result, our previous estimate of the noise

εi at each data point i, ε̂i = I−B is inferior or equal to the real value of εi = I−B , and

our test statistic Ê =
∑u

i=l ε̂i ≤ E is always underestimated (red cross on Figure 6.9).

The calculated p-value is therefore biased upward:

PH0(X > E) ≤ PH0(X > Ê)
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Figure 6.9: Noise distributions and test statistics under H0. The true (respec-
tively, estimated in the absence of ME) distribution and statistic (cross) are shown in
black (respectively, red).

Moreover as the variance estimation V is an increasing function, B̂ > B results in

V (B̂) > V (B). Consequently, the variance of E is over-estimated. Finally, let us

consider the following property of Gaussian distributions: if X and Y are random

variables following two Gaussian distributions of mean 0 and standard deviations X ≥
Y , we have for all U > 0:

P (X > U) ≥ P (Y > U)

Since the standard deviation of E is inferior to the true standard deviation of E, the

above property results in PH0(X > Ê) ≥ PH0(Y > Ê) with X ∼ N(0,
∑u

i=l B̂i))

and Y ∼ N(0,
∑u

i=l V (Bi)). The p-value calculated previously under the hypothesis

I = B + ε (i.e. in the absence of ME) is therefore a superior to the p-value that

would be obtained by adding the ME to the model. In conclusion, using the p-value

obtained without considering the matrix effect does not increase type II errors, i.e.

errors resulting in a signal considered as feature whereas it is in fact the baseline

solvent (to our experience there are few additional errors of type I, and such errors are

not limiting for the quality of the preprocessing).

6.5.5 Quality metrics calculation

Compared to LC-MS peak picking algorithms, proFIA takes advantage of the sam-

ple peak to provide additional quality metrics (Figure 6.10). First, an indicator of
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retention of the peak in the pipework is provided: if the detected maximum of the

convolved sequence is closer to uinj than to minj and no second maximum is detected

on the convolved sequence on the left of the peak, the feature is flagged as shifted

(Figure 6.10d). Second, if the EIC is not shifted, an indicator of ME is computed

as the correlation between P and the EIC within the sample peak time limits, cor.

Correlation values above 0.6 suggest that ME is low (Figure 6.10a), whereas negative

values warns against putative strong distortion of the signal (Figure 6.10b).

At the end of these steps, the features have been detected and quantified within

each sample file. They now need to be matched between the different samples to build

a global peak table of the data set for subsequent statistical analysis.

6.6 Inter samples features grouping

We used only the m/z dimension to group similar features, as variations in the retention

time and the effect of ME in each class was not previously studied in FIA. A density

estimation method with a Gaussian kernel, which proved successful in apLCMS (Yu,

Park, et al. 2009), was used. However, since the mass accuracy of a mass spectrometer

is expressed in ppm, we used the density on multiple overlapping windows with an

increasing bandwidth along the mass axis. The main parameters are ppmGroup the

maximum authorized deviation in ppm and the minimum deviation threshold in Dalton

dmzGroup. Each peak of the estimated density is considered as a feature candidate.

Similarly to XCMS (C. Smith et al. 2006), features which are not detected in a sufficient

amount of samples in at least one of the sample classes are discarded (the sample

classes should define a priori groups of samples with similar peak profiles: e.g., blank

vs matrix samples, or control vs cases; (C. Smith et al. 2006)). The threshold may

be either a fixed number of samples or a fraction of the total number of samples in

each class, therefore allowing the processing of unbalanced class sizes. After this step

a feature by sample table is generated (often called a peak table in the MS jargon),

using either the area of the peak, or its maximum intensity.

6.7 Missing value imputation

Some of the missing values in the peak table may result from a technical failure to

detect a compound in a sample (e.g., for concentrations close to the limit of detection).

An imputation step is therefore useful in the preprocessing workflow. The imputation
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Figure 6.10: Representative EICs from a sample of the serFusion dataset.
EICs have been scaled for visualization purpose. Blue curve: mean profile; grey area:
80% symmetric quantile of the selected EICs at each time point.
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approach based on integration of raw signal within the expected region of interest,

as implemented in the xcms.fillPeaks algorithm; (C. Smith et al. 2006), may fail to

detect any signal in case of high-resolution data, because the detected bands are thin.

As an alternative, a k -Nearest Neighbors method (KNN) applied to the peak table

(which imputes a missing value as the average of the closest features) was shown to

be optimal for DI-MS data (Hrydziuszko and M. Viant 2012). Such approach requires

that features be scaled before nearest neighbors are computed. To refine the estimation

of the intensity distribution for feature scaling, Shah et al. 2017 recently proposed to

take into account the limit of detection of the instrument by using a truncated normal

distribution model (KNN-TN). The described methodology, however, assumes that the

distribution can be modeled by a single Gaussian, which may lead to errors in case of

multiple sample classes. We therefore implemented a modified KNN-TN imputation

method where the similarity with neighbors is computed for the samples of the same

class only. Alternatively, the Random Forest approach is provided in proFIA, as

implemented in the MissForest R package (Stekhoven and Bühlmann 2011) which was

recently shown to achieve efficient imputation of missing values in MS datasets (Guida

et al. 2016; Gromski et al. 2014).

At this final processing stage, the peak table is available for subsequent statistical

analysis, and may be exported as a csv tabulated file or an Expression Set R object,

which is a standard data structure for processed omics data in Bioconductor (Gentle-

man et al. 2004). Export is also possible to the Workflow4Metabolomics (W4M) 3 table

format, which enables further analysis on the online platform (Giacomoni et al. 2014)

(the proFIA tool has also been integrated into W4M, to enable comprehensive FIA

workflow design and computation online with a Graphical User Interface (Delabrière

et al. 2017; Guitton et al. 2017)).
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Chapter 7
Evaluation of proFIA on experimental

datasets

In this section, the performance of the proFIA software are evaluated on two FIA-

HRMS datasets (3.1). To optimize the analytical conditions of metabolomics analysis

of serum by FIA, a commercial sample of human serum was analyzed by Orbitrap

HRMS instruments. In the serFusion dataset, the serum sample was spiked with

a mixture of 40 representative compounds, at increasing concentrations. Acquisition

was performed at very high resolution (100,000 at m/z = 200; Orbitrap Fusion). In

the serExactive dataset, several dilutions of the spiked serum were studied at a high-

resolution (50,000 at m/z = 200; Orbitrap Exactive). Both datasets are presented in

more details in the introduction (section 3.1).

The performance of proFIA was assessed according to three evaluation criteria.

Firstly, since there was no reference software for the processing of FIA-HRMS, proFIA

was compared to the reference algorithm for peak-picking in LC-MS, centWave, which

is implemented in the XMCS R/Bioconductor package (C. Smith et al. 2006): in par-

ticular, the reproducibility of the peak-picking and the total number of detected sig-

nals were compared (section 7.1). Secondly, the reproducibility of the peak-picking of

proFIA in terms of detection and quantification was evaluated on replicate acquisitions

(section 7.2). Thirdly, proFIA was compared to the manual peak-picking performed

by an experimenter with the vendor software for data visualization and quantification

(section 7.3). At the end of the chapter, an overview of the impact of the proFIA

parameters on the reproducibility and sensitivity of the detection is provided (section

7.4).
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Parameters serFusion serExactive
ppm 2 8
dmz 0.0005 0.001

p-value 0.001
bandCoverage 0.4

ppmGroup 1 4
dmzGroup 0.0005

Table 7.1: proFIA parameters used for the processing of the serFusion and serEx-
active datasets

centWave parameters Tested values
ppm 0.5, 1, 2, 3
snthresh 3, 5, 10
prefilter(k) 2,3,4
prefilter(I) 100, 500, 1000
peakwidth(Max) 25, 50, 75, 100

proFIA parameters Tested values
ppm 1, 2, 3, 4, 5
bandCoverage 0.2, 0.3, 0.4, 0.5, 0.6, 0.8
pvalue 0.05, 0.01, 0.005, 0.001, 0.0001

Table 7.2: Optimization of peak-picking parameters for the centWave and
proFIA algorithms.

The results described in the 7.2 and 7.3 sections were all generated using the sets of

parameters described in Table 7.1. No missing value imputation was performed since

the goal of this section is to evaluate the upstream peak-picking steps.

7.1 Comparison between proFIA and XMCS

proFIA and the centWave algorithm for peak-picking from XCMS (Tautenhahn et al.

2008) were compared on the serFusion dataset. Since the recently described ”Isotopo-

logue Parameter Optimization” method for LC-MS processing centWave described in

Libiseller et al. 2015 could not be applied to our FIA data, we tested multiple sets

of values. The minimal peak width of the wavelet scale was set to 5 s to ensure that

suppressed peaks could still be detected. Multiple parameter values were also tested

for proFIA (Table 7.2).

Two metrics were used to compare the peak-picking: 1) the reproducibility of

quantification, as determined by the Coefficient of Variation (CV) of each feature

intensity between the replicates (CV is the standard deviation divided by the mean),

and 2) the sensitivity of detection, by counting how many features were detected in

all triplicates. The first metric, intensity CV, was only computed for signals from

the top quintile of each sample, ensuring that only peaks corresponding to ions from

the sample are taken into account, and not the chemical noise. The results on the
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serFusion dataset are summarized in Figure 7.1.

Figure 7.1: Comparison of centWave and proFIA for FIA-HRMS data pre-
processing: Each point represents a combination of parameters. Points are colored
according to the values of the most significant parameter (SNT for centWave and ppm
for proFIA).

Figure 7.1 shows that proFIA outperforms centWave on the serFusiondata set

for both metrics. The CV for all the parameter sets of proFIA is inferior to 10% but

superior to 35% with centWave. This may be explained by many factors, including

the fact that the peak model of centWave does not take into account the asymmetry

of the peaks, and that this model is not compatible with split peaks (due to ME). The

reproducibility of peak detection by proFIA also outperformed centWave, which may

result from the requirement of continuity in the time dimension by centWave (pre-

venting the detection of suppressed peaks), and by the baseline estimation procedure

of centWave which is not suited to FIA EICs.

These results were encouraging but not sufficient to prove the performance of

proFIA, since the centWave algorithm was not designed for such data. We there-

fore assessed next whether proFIA is sufficiently robust for routine preprocessing of

FIA-HRMS data sets.
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7.2 Reproducibility of peak picking with proFIA

The reproducibility of proFIA was evaluated both in terms of quantification and detec-

tion on the serFusion and serExactive datasets. We first counted for each feature f

the number of triplicate samples where f was detected. The distribution of the number

of features corresponding to 1, 2, or 3 replicate detections are plotted on Figure 7.2 for

both datasets. A total of 63% (respectively 65%) of the features were detected in all

three replicates of the serFusion(respectively serExactive) dataset. The numbers

dropped to 18% (respectively 16%) in 2 of the triplicates, and 19% (respectively 16%)

in one of the triplicates only.

(a) (b)

Figure 7.2: Reproducibility of peak detection with proFIA. Distributions of the
maximum intensity for the features detected in 1, 2, or all sample triplicates, in the
serFusion (a) and the serExactive (b) datasets. Zero values were removed as they
indicate that a feature is not present in the sample.

As expected, the most intense features were usually detected in all triplicates,

whereas all features detected only in a single replicate have lower intensities compared

to those detected in 2 or 3 of the triplicates. Overall, these results highlight the high

level of reproducibility of the peak detection from proFIA.

The reproducibility of quantification was then investigated by computing, for each

intensity quintile, the average of the CVs between replicates (Table 7.3). Overall,

proFIA achieved a good quantification reproducibility of 12% (respectively 9%) for the

serFusion (respectively the serExactive) datasets (Table 7.3). Such a performance

is similar to the preprocessing of LC-MS data with the initial matchedFilter algorithm

from XCMS (C. Smith et al. 2006).
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Quintile Intensity range CVF (%) CVE(%)

1st
F : [1.0× 104, 9.2× 104] 16.1
E : [9.9× 102, 6.0× 103] 10.0

2nd
F : [9.1× 104, 1.4× 105] 13.1
E : [6.0× 103, 9.8× 103] 9.1

3rd
F : [1.4× 105, 2.1× 105] 11.6
E : [9.8× 103, 1.5× 104] 8.7

4th
F : [2.1× 105, 4.2× 105] 10.9
E : [1.5× 104, 3.0× 104] 9.2

5th
F : [4.2× 105, 7.8× 107] 7.7
E : [3.0× 104, 2.3× 107] 9.1

Table 7.3: Reproducibility of proFIA quantification. The coefficient of varia-
tion (CV) between the triplicates is computed within five consecutive intensity win-
dows (quintiles) along the dynamic range for the serFusion(F) and serExactive(E)
Orbitrap datasets.

7.3 Comparison with manual measurement

proFIA was compared to the classical ”manual” peak-picking method routinely used

by experimenters for the processing of FIA data. To this end, our partners from the

LEMM laboratory at CEA, who had produced the serFusion dataset (human serum,

either pure or spiked with 40 molecules at five increasing concentrations, analyzed

in triplicate), used the Xcalibur vendor software (Thermo Fisher Scientific) to: 1)

visualize the EICs of the 40 signals from each of the 18 samples, 2) evaluate whether

a signal was detected or not, and 3) determine visually the time limits of the peak for

subsequent integration by Xcalibur.

7.3.1 Comparison of detection

The detection results for the 18×40 = 720 signals achieved by the automated (proFIA)

and ”manual” methods are shown as a confusion matrix (table 7.4).

With a recall of 98.5% and a precision of 96.8%, proFIA results were in very good

agreement with manual peak picking. In addition, they were obtained in a couple of

minutes compared to 1 hour of work using manual integration.
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Figure 7.3: Relative absolute dif-
ferences of quantification between
proFIA and manual integration

proFIA
Yes No Total

Manual
Yes 460 6 466
No 15 239 254
Total 475 245 720

Table 7.4: Comparison of proFIA
versus manual detection (serFu-
sion dataset).

7.3.2 Comparison of quantification

The quantification values from both methods are visualized as a heat map (Figure 7.4).

proFIA intensities were very close to manual integration (the mean of the relative

absolute differences was 5.1%).

To further understand the few discrepancies between the two methods, the 60

EICs with a difference above 10% (Figure 7.3) were further checked visually. Three

types of discrepancies were observed, and only the first one was a limitation from

proFIA which was corrected. First, for peaks with a strong right tail, the upper time

limit of the peak often differed between proFIA and manual integration (leading to

a difference of intensity). Therefore, to optimize the processing of these EICs, an

additional parameter, fullInteg was included in proFIA to allow the integration along

the full time axis in the cases where no solvent has been detected on the considered EIC.

Second, in the case of EICs affected by solvent, the integration with Xcalibur resulted in

automatic removal of a flat baseline. The assumption of such a flat baseline, however, is

not valid in the case of FIA-MS data (therefore this difference of quantification cannot

be considered as an error from proFIA). Third, in some cases, some unexplained noise

of high intensity was included in the integrated area by the chemist and not by proFIA.

Altogether, the previous results show that proFIA outperforms the state of the art

LC-MS software in terms of peak picking, has a high reproducibility in both detection

and quantification, and outperforms manual integration by an expert chemist. This

highlights the unique value of proFIA among the existing MS preprocessing algorithms

for metabolomics. A final study was conducted to assess the impact of the few proFIA

parameters on the quality of the peak-picking.
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Figure 7.4: Evaluation of peak detection and quantification on serFusion.
For each of the 40 compounds spiked in the serum samples at various dilutions and
analyzed in triplicate, the automated quantification with proFIA (left) was compared
to the manual integration of peaks with the vendor software (right). The concentration
of the spiking mixture is indicated in the sample label (C1 = 10 ng/mL). The white
color denotes the absence of signal.

7.4 Impact of proFIA parameter values

The impact of the most important parameters from Table 7.2 on the sensitivity (num-

ber of detected peaks) and reproducibility (CV of intensity) was analyzed. Figure 7.5

shows the results of the two metrics for all combinations of parameters described previ-

ously (Table 7.1): on each sub-figure, the values of one of the parameters is color-coded.
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(a) bandCoverage

(b) ppm

(c) pvalthresh

Figure 7.5: Influence of proFIA main parameters on reproducibility and
sensitivity (serFusion). On each figure, the points are colored according to the
values of one of the parameter.
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The detection was impacted by ppm values below the accuracy of the mass spec-

trometer (e.g., < 1 ppm), but was otherwise robust to this parameter (Figure 7.5b).

As expected, higher values of bandCoverage lead to an increase of reproducibility but

a decrease of detection (Figure 7.5a). The strong increase of the CV criterion when

bandCoverage decreases from 0.3 to 0.2 suggests that a value of 0.2 results in too many

noisy peaks for this dataset. Finally, pvalthresh, which is the threshold used to filter

out the features whose intensity is not significantly higher than the solvent baseline

(6.5.3), has little influence on the reproducibility of signal detection and quantifica-

tion since most of the bands containing solvent have been discarded during the band

detection step (Figure 7.5a).

While proFIA parameters are of crucial importance for high-quality preprocessing

(as for any peak-picking software), it is important to note that thanks to the concept of

sample peak, proFIA does not have an equivalent to the signal-to-noise ratio parameter

in the general case. This is due to the fact that the presence of signal in the sample

peak only is usually sufficient to ensure that the signal originates form the samples.

Therefore the number of parameters of the proFIA peak detection is reduced compared

other to LC-MS peak-picking algorithms (Table 7.2).
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Chapter 8
Discussion

This part of the thesis was devoted to the processing of Flow Injection Analysis cou-

pled to High-Resolution Mass Spectrometry (FIA-HRMS) data. We have first built

a specific model for the Extracted Ion Chromatogram (EIC) in chapter 5, which we

have then used to design a workflow for feature extraction from raw data (chapter 6).

Experiments showed that our proFIA software offered a good reproducibility of peak

picking, and outperformed the reference manual peak-picking (i.e., with a similar ac-

curacy but at meast 20 times faster; chapter 7). Using the EIC model, additional

characterization of the features are provided to the user, such as an estimation of the

sample peak and an indicator of matrix effect (ME).

Future improvements and addition of new features are discussed below, such as

the annotation of adducts and neutral losses (section 8.1), the application to medium

resolution data (section 8.2.1), the optimization of the ME indicator metric (section

8.3), and the benchmarking of alternative processing methods (section 8.4).

8.1 Intra sample grouping

In MS experiments, a single metabolite often generates multiple m/z signals, such as

natural isotopes, or adducts and neutral losses generated in the ESI source (Keller

et al. 2008). Annotation of these signals, which are highly correlated, would be very

interesting both for the chemist (as a help in identification) and for the statistician

(e.g., to reduce the number of univariate tests and hence the impact of the correction

for multiple testing). However, no such annotation methodology currently exists for
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FIA-HRMS signals. On the one hand, isotopes are easily detected because of their

known mass difference with the mono-isotopic ion. Moreover, in metabolomics, the

most intense peak always corresponds to the mono-isotopic signal (in contrast to pro-

teomics). As a result, isotope annotation has sometimes been included in the mass

traces detection process (Kenar et al. 2014), or using a second round of targeted de-

tection of region of interests with relaxed parameters (Treutler and Neumann 2016).

On the other hand, annotation of adducts and neutral losses is more challenging since

their presence 1) is not known in advance and 2) depends on the molecular formula.

An algorithm for the annotation of pseudo spectra grouping the multiple signals origi-

nating from a single molecule has been proposed in the CAMERA software for LC-MS

data (Kuhl et al. 2012): peaks are first grouped according to their retention time;

then a similarity metric is computed by taking into account the shape of the peaks

and the m/z differences corresponding to known adducts; finally, this similarity is used

to build a network, and co-eluting compounds are separated by label propagation.

The CAMERA workflow is based on the fact that adducts and neutral losses occur

after the chromatographic steps: as a result, peaks originating from the same com-

pound are expected to have a similar shape. This assumption, however, does not hold

in FIA-HRMS, since a lot of peaks have a shape similar to the sample peak. Moreover

the density of signals detected in FIA-HRMS prevents a direct annotation of adducts

using mass differences. Finally the impact of ME on the peak shape from adducts

is not well-described in the context of FIA-HRMS. Therefore there is a need to in-

clude annotation strategies in proFIA, using principles specific to FIA-HRMS. One

approach would be to study the similarity of EIC shapes among signals originating

from the same compound. A second strategy would be to group all the annotation

tasks into a global identification step downstream from proFIA: in their publication,

Draper et al. (John Draper et al. 2009) derived rules from metabolite databases to

predict adduct formation. However, since these approaches use a knowledge developed

on LC-MS data, they cannot be directly transposed to FIA-HRMS (for example, the

formation of adducts in the case of a strong ME is different from the LC-MS context).

8.2 Current limitations from proFIA

8.2.1 Medium resolution data

In the previous section we have seen the application of proFIA to two different

datasets with m/z resolutions equal to 500 K and 100 K, respectively. proFIA was
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also successfully to process data at a 60 K resolution (Habchi et al. 2017). Since

all these high-resolution datasets have been acquired on Orbitrap instruments, we

decided to assess proFIA performances on alternative, Time-Of-Flight (TOF), mass

spectrometers. During the PhD, a very interesting high-throughput dataset relying

on FIA-HRMS using a TOF was published (Sévin et al. 2016) and the dataset was

made publicly available (MTBLS373). Processing of these data with proFIA, however,

gave poor results: many of the signals described in the study were not detected by our

workflow. Visual inspection of the results indicated that the main cause was a failure

of the centroidization algorithm due to the lower resolution of the acquisition (about

5 K at 200 m/z), as shown on Figure 8.1: in Figure 8.1a, only the peak with m/z

363.02 is clearly visible. The second peak at m/z 363.09 on Figure 8.1b is only visible

as a small shoulder peak in the red box of 8.1a, which prevents the detection of the

centroid by usual peak picking method. This results in missing points in the sample

peak, and eventually in the discarding of m/z bands by the bandCoverage filter.

(a) scan at the apex of the sample peak (b) scan at the border of the sample peak

Figure 8.1: Example of overlap between isobaric ions. Both spectra belong to
the same sample extracted from Sévin et al. 2016, at acquisition times corresponding
to either the apex (a) or the border of the sample peak (b). Two m/z features are
visible on b). However, the feature of highest m/z, which has a much lower intensity
(compare the y-axis scales), is not detected on a) (small shoulder peak highlighted
with a red dashed rectangle).

To process these kind of data, optimized centroidization algorithms performing a

decomposition of the overlapping signals are required, oppositely to those described in

the introduction (4.2.1).
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8.3 Refinement of proFIA workflow

The FIA-MS method of acquisition has two main limitations: the inability to separate

isomers and the ME. While the former is inherent to the FIA technique, some analytical

protocols have been shown successful in reducing the latter, such as sample dilution.

Therefore a good characterization of ME is critical to achieve an optimal sensibility

in an FIA-MS experiment. proFIA is to our knowledge the first workflow to integrate

ME into the EIC model, and to provide a metric of ME. Here we discuss the quality

of the ME measurement and the potential effect of ME on the ionization process.

8.3.1 Bias of the ME’s indicator

Figure 8.2: Matrix effect on an analyte signal (Nanita 2013). All peaks corre-
spond to the same analyte (Hexazinone), at the same concentration (1 ng/mL), either
pure (black dots), or spiked into various biological matrices (colored dots). The severe
ME observed with canola seed is likely due to high oil levels (Nanita 2013).

The proFIA indicator of ME is computed as the correlation between the EIC and

the sample peak. This indicator, however, does not reflect quantitatively ME, in

particular for strong effects resulting in the suppression of more that 80% of the signal

intensity (Figure 5.6a). A better estimation is possible by using replicates and relying

on the fact that ME at the borders of the peak is supposed to be negligible compared

to the ME at the apex. As standard metabolomics methodology recommend the use

of replicates, a refined version of proFIA may use such information to better estimate

ME: a regression could be performed simultaneously on matched EICs from replicates
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to determine the extent of ME while considering the sample peak of each sample.

8.3.2 Improvement of regression process

Section 6.4 described the procedure for the determination of the sample peak. While

this procedure has been designed using simulations in section 6.4.1, this validation is

not sufficient to ensure that the correct sample peak is picked. A validation of this

sample peak could be done by using the method proposed by Nanita 2013 on the EICs

selected for regression by proFIA. The second issue with this regression procedure is

the hypothesis of the presence of well-behaved EICs. Such an assumption is difficult

to verify in the general case, and is probably sample dependent. While it is clear that

some molecules ionize better than others, it is likely that all EICs exhibit significant

matrix at high concentration of samples. Therefore the estimated sample peak is

probably less sharp than the real sample peak. The estimated sample peak however

is closer to the real sample peak than the TIC or any of the individual EICs. These

considerations were taken into account in proFIA, as the estimation of the sample peak

is only used as a model for the matched filtration which is known to be robust to error

in peak width.

Estimation of the sample peak could be further refined. In particular, the EMG

model may not be able to describe all the sample peak shapes generated by the FIA

process. As an example, a peak with a flat top was observed in the dataset from Sévin

et al. 2016. Additionally, the regression could also be performed by using likelihood

maximization and the estimation of the noise variance described in section 6.3.1.

The use of replicates and the optimization of regression may eventually allow to

apply our FIA peak model to every EIC, therefore providing unique quantitative in-

formation about ME.

8.4 Extension of the proFIA software

The alternative processing method described in section 4.1 and used successfully at

large scale in Sévin et al. 2016 based on statistical filters was shown to be efficient for

lower resolution data (8,000-12,000; Fuhrer et al. 2011; Sévin et al. 2016). In contrast,

such a resolution is too low for the currently used centroidization methods to allows

an efficient processing by proFIA (Section 8.2.1). Integration of these alternative

algorithms into proFIA (their current implementation is not publicly available) would
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allow to further extend the scope of proFIA for high-throughput applications.
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Part III

Development of a tool for

structural similarity mining:

MineMS2
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Approach

The second part of the PhD is devoted to the structural annotation of compounds

by mass spectrometry, which is a major challenge in metabolomics. To fully exploit

the structural information contained in large collections from MS/MS spectra, we

developed a suite of algorithms to mine fragmentation patterns. The resulting workflow

is implemented in the MineMS2 R/C++ package. At the time of writing this thesis, the

last step (selection of the top k patterns of interest) is still being optimized. MineMS2,

however, has already been validated on two metabolomic case studies.

This part is structured as follows. In Section 9.4, we first review the computational

strategies to analyze MS/MS spectra, to either predict the structure (e.g. using in

silico fragmentation methods) or mine the similarities between spectra (e.g. with

molecular networks or the detection of motifs). Focusing on the latter approach, we

then introduce the algorithms for Frequent Subgraph Mining (FSM; useful definitions

are provided in Section 9.5), which are at the core of our strategy (later described in

Chapter 11). We conclude this introduction by presenting the preprocessing methods

we developed to obtain high-quality MS/MS spectra as input from our pattern mining

workflow ( Section 9.9).

In Chapter 10, we define a new representation of MS/MS spectra as Losses Graphs

without the need for prior knowledge of the elemental formulas. The algorithm devel-

oped to build these graphs is detailed in Section 10.2. Finally, one formal hypothesis

about the Losses Graphs and some resulting properties which will be used in Chap-

ter 11 are introduced (Section 10.3).

In Chapter 11, we design an FSM algorithm to specifically mine the Losses Graphs

Ṡince such algorithms are computationally intensive, several strategies to reduce the

search space are implemented: we first demonstrate that the subgraphs of interest be-

long to the class of Acyclic Flow Graphs (AFGs; Section 11.1.1). We further show

that, instead of full AFGs, trees can be used (Section 11.1.2). We therefore de-

fine a new data structure, the k-Path Tree(Section 11.1.3), to generate all frequent

AFGs(Section 11.2). This set of AFGsis large. However, we show that only closed

AFGsshould be mined (Section 11.3). Finally, the performance of the proposed suite

of algorithms is evaluated on two real datasets (Section 11.5). The results highlight

one of the main challenges of exact FSM approaches: the high number of generated

patterns. In Section 12.1, we therefore propose an innovative method to reduce the

number of patterns, based on the reduction of the Hasse Diagram associated to the

set of closed patterns.
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Chapter 9
Introduction

In this introduction we first give an overview of the main uses of MS/MS spectra,

and of the existing identification strategies. We start from database matching, we

then present in silico fragmentation, and finally describe similarity-based methods.

In a second part, we introduce the Frequent Subgraph Mining (FSM) algorithms and

principles, which are a basis of the proposed strategy.

The measure of an m/z ratio alone in an MS spectrum is not sufficient to identify

metabolites, which are characterized by a broad diversity of chemical structures: even

with an accuracy inferior to 1 ppm, multiple elemental compositions are possible for

molecules above 200 Da (Kind and Fiehn 2007). As a result, additional information is

needed for metabolite identification. While retention time (RT) may be used for the

characterization of isomers between MS spectra from the same analytical platform,

the chromatographic process is difficult to reproduce on a distinct setting, prevent-

ing the use of RT in public databases. In contrast, fragmentation spectra (MS/MS)

provide unique structural information and are therefore well-suited for metabolites

identification.

The first intuitive use of MS/MS spectra is the direct comparison with spectral

databases containing fragmentation spectra of known compounds.

9.1 MS/MS spectral database matching

The direct identification method relies on a spectral database and a matching al-

gorithm. Public spectral databases differ according to the species (e.g., the human
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metabolome database HMDB; David S Wishart et al. 2018), or the class of metabo-

lites (e.g., the lipid database LipidMap; Fahy et al. 2007). Databases with a more

general scope also exist as MassBank (Hisayuki Horai et al. 2010) and GNPS (M.

Wang et al. 2016), but are often less curated. Curation is critical for the quality of the

spectra: MassBank relies on an automatic processing implemented in the RMassBank

package (Stravs et al. 2012), while other databases such as METLIN or MzCloud use

manual curation, which can be considered as more robust. A recent review points out

that the coverage of the MS/MS public databases is still limited (Vinaixa et al. 2016):

even compounds centric databases such as METLIN or HMDB contain spectra from

only 5− 10% of the known metabolites, which prevents the successful matching of the

majority of unknown MS/MS spectra. Moreover there is a lack of MS/MS spectra

acquired in the negative ionization mode in all the considered databases.

The second issue of current spectral database queries is the matching algorithm

(Vinaixa et al. 2016). A filter on the m/z of the precursor ion is performed to generate

a list of candidate MS/MS spectra: however, there is no simple procedure for the next

step which is the actual matching of MS/MS peaks. Despite their critical importance,

matching algorithms are scarcely described in the majority of the databases listed in

Vinaixa et al. 2016: among the cited methods are the normalized dot product imple-

mented in MassBank (Hisayuki Horai et al. 2010) and the X-rank scoring implemented

in METLIN (Mylonas et al. 2009). In the past, alternative approaches have also been

described, such as the Euclidean distance and a Probability Based matching algorithm

(Pesyna et al. 1976).

9.1.1 Cosine Similarity

The cosine similarity have been initially proposed in 1978 (Sokolovv et al. 1978) and

was evaluated as the best performing method for MS/MS spectra comparisons in

Stein and D. R. Scott 1994: the two MS/MS spectra to compare (say U and V )

are represented as two vectors of the same dimension NU∩V , which is the number of

common peaks between U and V (as defined by a tolerance in the m/z dimension

provided by the user). For each vector, each element is a number depending of the

m/z and the intensity of the peak (see below). The similarity metric is the cosine of

the angle between the 2 vectors:

Cos(U, V ) =

∑
i∈U∩V WU,iWV,i√∑

i∈U∩V W
2
U,i

√∑
i∈U∩V W

2
V,i
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with Wi = (m/z)ni intensity
m
i . The exponents n and m are used respectively to

increase the contributions of peaks with low intensity, and with high masses (the latter

being more specific that common fragments; Stein and D. R. Scott 1994). The n = 3

and m = 0.6 values used in MassBank have been determined empirically (H. Horai

et al. 2008).

Furthermore, this metric has been refined as a composite cosine score to take into

account all the peaks from the query spectrum (and not just the common peaks; Stein

and D. R. Scott 1994):

CompCos(U, V ) =
NUCos(U, V ) +NU∩V F (U, V )

NU +NU∩V

NU represents the number of peaks in the query spectrum U , and NU∩V the number

of peaks common to U and V . F is a factor capturing a similarity (of trend between

the two spectra:

F =
1

NU∩V

∑
i∈U∩V

(
WU,iWV,i−1

WU,i−1WV,i

)
︸ ︷︷ ︸

Yi

ki

with ki defined as:

ki =

1 if Yi < 1

−1 otherwise

The composite distance is implemented in MassBank (Hisayuki Horai et al. 2010) and

a modified version is used in GNPS (M. Wang et al. 2016). As highlighted recently

(Scheubert et al. 2017), the tuning of the cosine similarity parameters is critical to

increase the number of annotations (up to 5 fold).

Because of the limited coverage of MS/MS spectral databases (spectra from 13,000

distinct standards in METLIN and 28,000 spectra in MassBank; Vinaixa et al. 2016),

a new type of annotation methods has emerged in the last decade, which are based on

the matching to candidate spectra generated in silico by modeling the fragmentation of

compounds. These methods have the advantage to work with huge molecular databases

such as PubChem (Kim et al. 2016), ChemSpider (Pence and Williams 2010), ChEBI

(Hastings et al. 2016), and KEGG (Kanehisa et al. 2017). These databases contain 27

millions, 25 millions, 46,000 and 14,000 compounds, respectively, which cover a wide

range of chemical classes and biological matrices. Importantly, in silico fragmentation

methods allow identification of compounds for which no standard is available.
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9.2 in silico fragmentation methods

In this part we briefly describe the common principles and the main differences between

the most-used freely available in silico fragmentation software: MetFrag (Wolf et al.

2010), MS-Finder (Tsugawa, Kind, et al. 2016), CSI-FingerID (Shen et al. 2014) and

CFM-ID (F. Allen et al. 2014). Two types of strategies have been used: machine learn-

ing approaches of fragmentation processes based on spectral databases (CFM-ID, CSI-

FingerID), and methods relying on physical criteria to select the best spectrum among

all candidates generated by combinatorial fragmentation (MetFrag, MS-Finder). A

common feature of all these methods is the determination of an underlying fragmen-

tation graph, with the complete molecule as the root and the fragments as vertices.

9.2.1 Machine-learning based approaches

Such methods learn a model from an MS/MS spectral database and the corresponding

structures of the parent molecules. The two chosen model-based methods both model

the fragmentation of a molecule using a graph. However while CFM-ID considers the

graph of the precursor molecule to build the model, CSI-FingerID only considers the

formula of the molecules.

CFM-ID first breaks all the bonds combinatorially while allowing some rearrange-

ments, and then models the probability of transition from one fragment (node) to the

other. To reduce the search space and generalize the model, each fragment is repre-

sented as a binary fingerprint φ including information about the neighboring atoms,

the presence of a specific chemical group, or the presence of a fixed 2 or 3 paths. The

interested reader is referred to F. Allen et al. 2014 for the full description of the fin-

gerprint. The model can then be run forward to predict a spectrum from a compound

as a mixture of Gaussians.

Alternatively, CSI-FingerID (Shen et al. 2014) first determines a fragmentation tree

for each parent molecule of the database, by selecting the best fitting set of sub-formula

from a set of candidates to explain the experimental spectra. The underlying method,

which relies on solving an instance of the maximally weighted colored subtree, has been

extensively studied by the team of S. Böcker (Böcker and Rasche 2008; Rasche et al.

2010; Böcker and Dührkop 2016). A combined kernel based on both the fragmentation

tree and the spectrum is computed, and subsequently used to train a Support Vector

Machine (SVM) to learn a binary fingerprint representing the molecular graph. This
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directly maps the spectrum and the fragmentation tree to each feature of the finger-

print. For each query spectrum, the fragmentation tree is computed and the chemical

features are predicted by the SVM model, and for each molecules a score is computed

using these features. This model has been extended to bypass the fingerprint by using

Input Output Kernel Regression in Brouard et al. 2016.

9.2.2 Physic-based approaches

Here, the fragmentation graph of each candidate molecule is obtained by the systematic

in silico breaking of all bonds between the atoms within the chemical structure (or pairs

of bonds in case of rings). The final score takes into account not only the matching of

the simulated fragments to the measured MS/MS peaks but also a physical criterion:

in MS-Finder, priority is given to fragments that are obtained according to known

chemical rules (Tsugawa, Cajka, et al. 2015), whereas MetFrag relies on the bond

dissociation energy (Wolf et al. 2010). In these combinatorial approaches, the choice

of the fragmentation path is important (e.g., in MetFrag, the shortest path is selected).

Several of the in silico fragmentation methods have been refined by using isotopic

patterns, such as MetFrag (Ruttkies et al. 2016) and CSI-FingerID (Shen et al. 2014)

(the latter relies on isotopic patterns to compute the fragmentation tree with the

SIRIUS software Böcker, Letzel, et al. 2009).

9.2.3 Comparison of the in silico fragmentation methods

While the presented methods are based on distinct principles, they all have the same

objective: the annotation of an MS/MS spectrum using in silico fragmentation of can-

didates from compound databases. In 2012, S. Neumann and E. Schymanski proposed

to benchmark the approaches during an annual challenge: the Critical Assessment of

Small Molecule Identification (CASMI, Schymanski and Neumann 2013): each year,

an organizing team provides MS/MS spectra (i.e., challenges) and the goal for the par-

ticipants from the Category 2 is ”to determine the correct molecular structure using

in silico fragmentation techniques alone”.

Interestingly, recent results (Schymanski, Ruttkies, et al. 2017) highlight the com-

plementarity of the different approaches: in the 2016 contest, CSI-FingerID (Shen et

al. 2014) and one of his derivative (Brouard et al. 2016) got the highest number of

gold medals (awarded for each spectrum to the contestant with the lowest rank of the
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Table 9.1: Retrieving rates of in silico fragmentation (Laponogov et al.
2018).

true molecule), respectively 86 and 82 out of 208, followed by MS-FINDER (Tsugawa,

Cajka, et al. 2015) and CFM-ID (F. Allen et al. 2014), with 70 and 63 gold medals, re-

spectively. However, MS-FINDER outperformed the model based methods regarding

the mean rank of the correct molecule.

In a very recent publication, Lapogonov et al.(Laponogov et al. 2018) proposed

to combine both approaches. To do so they defined a composite score TotalScore,

based on a score similar to MetFrag(FragScore) score and a score similar to the CSI-

FingerID(FingerScore). The proposed methodology named ChemDistiller was com-

pared to CSI-FingerID, CFM-ID and MetFrag. Performances of the approaches were

evaluated on the number of correct molecules within the top 1 and top 5 candidates

for a small database (HMDB, MassBank, ChEBI, NIST), and within the top 20 for

a large database (PubChem, HMDB, MassBank, ChEBI) on 6,297 compounds (Ta-

ble 9.1). The combined approach outperforms the other methods on the large database,

but not on the small one where the correct molecule is better ranked among the predic-

tions from MetFrag. Moreover physics based MetFrag always outperforms the machine

learning based CFM-ID and CSI:FingerID (Table 9.1), which is not in agreement with

the results from CASMI. However, it should be noted that the machine learning based

methods inherently include more parameters, which results in a more complex tuning.

In contrast, the physics based methods are simpler to use. In the CASMI context,

algorithms are generally tuned by the teams which developed them, thereby providing

a high level of expertise. This may explain their higher performances, however it is
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not the typical level of expertise of the end-user of these approaches.

Another important conclusion from this study is that, on large databases, even with

a known elemental formula, no software exceed 56.5% of correct ranking of the true

chemical formula within the top 20 predictions. This may be explained by the very

high number of candidates in the compound databases and the resulting complexity

of selecting the unique correct identification. Therefore, new methodologies are still

required to address the challenge of metabolite identification.

9.3 Similarities based approaches

In parallel to the prediction of chemical structure, alternative unsupervised strategies

have been developed recently to extract structural information from MS/MS spectra by

studying their similarities. The idea is that the annotation from one known spectrum

may be propagated to similar spectra. Two types of approaches have been described:

MS/MS networks implemented in GNPS (M. Wang et al. 2016) and a pattern based

MS2LDA method (Hooft, Wandy, Barrett, et al. 2016).

9.3.1 MS/MS similarity network

In such networks, each node is a spectrum and each edge indicates a high similar-

ity between two spectra: in the Global Natural Products Social molecular network

(GNPS ), an edge corresponds to a cosine similarity above a user-defined threshold

and at least k peaks in common (the value of k is also set by the user M. Wang et al.

2016). GNPS networks have been used to propagate annotation and visualize the

main metabolites components (Boya P. et al. 2017; Hooft, Padmanabhan, et al. 2016).

Another implementation of such MS/MS networks is available in the MetCirc package

(Naake and Gaquerel 2017). Furthermore, to increase the readability, a filtering step

is often added: in GNPS, displayed vertices have at most n edges, where n is selected

by the user.

An important conceptual limitation of molecular networks, pointed out by Hooft,

Wandy, Barrett, et al. 2016 is shown on Figure 9.1a: even though the complete graph

suggests a common structural information between the spectra (set of shared peaks or

losses), this component cannot be automatically extracted from the pairwise compar-

isons carried out by the network. Furthermore, the characterization of clusters within

a given network is difficult (Figure 9.1b). As a result, a new kind of approaches has
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(a) (b)

Figure 9.1: Limitations of the interpretation of molecular networks (Lem-
mDB data set). a): a six node cluster extracted from the network generated by
GNPS (M. Wang et al. 2016); b): two distinct levels of interpretation (clusters) within
a network are displayed as black boxes.

emerged, based on pattern mining.

9.4 MS/MS pattern mining

The objective of pattern mining methods is to extract building blocks from a set of

spectra, where each block corresponds to a given molecular family or to a molecular

substructure. These blocks are generally a set of fragments and/or losses. A first

example is the MS2LDA approach (Hooft, Wandy, Barrett, et al. 2016), which relies on

Latent Dirichlet Allocation modeling (Blei et al. 2003), originally used in text mining.

Briefly, within a set of MS/MS spectra to be studied, each spectrum is seen as a

mixture from a set of topics (i.e. the patterns) common to these spectra, where each

topic is a distribution from the set of common words (i.e. the m/z of losses). Recently,

MS2LDA has been extended to simultaneously mine multiple sets of spectra (Hooft,

Wandy, Young, et al. 2017). Although the MS2LDA approach is very innovative,

our experience suggests that the parametrization of the model is quite complex, often

leading to patterns generated mainly by a single very common word, such as an H2O

loss.

A second strategy, based on frequent itemset mining, has been described very

recently on bioRxiv (Mrzic et al. 2017). In this approach named MESSAR, the set of

all the mass differences between the fragment ions is computed, and considered as an
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item-set representative of the spectrum. Then, for a set of spectra, the corresponding

set of itemsets is used to perform associative rule mining to predict structural features.

It is to my knowledge the most similar approach to the one proposed in this PhD.

A major difference between in-silico fragmentation approaches and the similarities

based approaches presented in this section is the fact that the former rely on graphs

to model the fragmentation process, in contrast to the latter. Graphs are an intuitive

representations of chemical fragmentation (in particular when elemental formulas are

associated to the nodes), and are therefore highly meaningful for MS experts. For

these reasons, we have developed a new pattern mining approach of MS/MS spectra

collections based on a graph representation of the spectra. Chapter 10 defines this

representation which may be computed without the knowledge of the elemental for-

mula. Chapter 11 describes our MineMS2 algorithm based on Frequent Subgraph

Mining (FSM) to extract recurring subgraphs from this set of graphs. In the rest of

this introduction, a more technical overview of the main algorithms for FSM will be

given.
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9.5 Graph Theory Reminder

This part gives some definitions and notations about the Graph Theory and the more

specific Frequent Subgraph Mining concepts. The interested reader is referred to J. L.

Gross et al. 2013 for the graph theory part and to Jiang et al. 2013 for the frequent

subgraph mining related part.

In this part we will focus on directed edge-labeled graphs. Such a graph is a

4-tuple G = (V,E, L, l), with:

• V the set of vertices.

• E ⊆ V × V a set of ordered pairs.

• L the set of edge labels

• l : E → L the edge-labeling function.

The set of vertices, edges, and the edge-labeling function of a graph G will be denoted

V (G), E(G), and lG, respectively. In the rest of this section, we will only consider

edge-labeled graphs so for commodity purpose the term labeled is omitted.

For each edge e = (u, v), u is called the source of the edge and v is called the

target of the edge.

A Directed Acyclic Graph (DAG), is a finite directed graph with no directed

cycle, meaning that there is no consistently directed sequence of edges from a vertex

v which loops back to v.

A directed path is a sequence of alternating edges and vertices in which the

source of the edge is preceding the edge and the target of the edge is following it. By

definition all the vertices are disjoints.

A rooted graph is a graph in which one vertex r has been distinguished as the of

root. If there is a directed path from r to any other vertex of the graph, the graph is

called a flow graph. If there is a unique path from the root to any vertex, it is called
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an arborescence.

A graph G is a subgraph of a graph H if V (G) ⊂ V (H) and E(G) ⊂ E(H) and

∀(u, v) ∈ E(G), u ∈ V (H) and v ∈ V (H).

A spanning arborescence T of a graph G is a subgraph of G containing all the

nodes of G and such that T is an arborescence.

An isomorphism between two graphs G and G′ is a bijective function f : V (G)→
V (G′) such that:

∀(u, v) ∈ E, (f(u), f(v)) ∈ E ′ and lG(u, v) = lG′(f(u), f(v))

This relation will be denoted G 'e G′ in this thesis.

The fact that G is isomorph to a subgraph H ′ of H will be denoted as G ⊆e H.

We will also call H a supergraph of G. The isomorphism from V (G) to V (H ′) is called

an embedding of G in H. We write the set of all the embeddings of G in H as φHG

We define the support of a graph G on a set of graphs D :

SuppD(G) =
∑
H∈D

|φHG |

This definition counts the multiples occurrences of subgraph in a graph multiple times,

oppositely to the most common definition. The frequency of a graph may be defined

as FreqD(G) = SuppD(G)/|D|

The Frequent Subgraph Mining(FSM) is the task to extract all the subgraphs

G from a set of graphs with support superior to a fixed threshold ε. In practice one

often limits the mining to connected subgraphs.

A lattice is a partially ordered set in which every two elements have a unique

supremum (also called a least upper bound or join) and a unique infimum (also called

a greatest lower bound or meet). In the case of subgraph, the ordering relation is the

subgraph relationship ⊆e.

119



This lattice can be visualized as a graph, where each vertex represents a subgraph

from a graph of D. The lowest vertex is the empty graph, while the top vertices are

the graphs from D. A vertex p is a parent of a vertex q on the lattice, if the subgraph

associated to q is a subgraph p with a single edge or node added. An example of such

a lattice limited to connected subgraph and ordered by the subgraph relationship is

shown in Figure 9.2.

Figure 9.2 highlights one of the main problem of FSM, the multiple way to construct

a graph. This is often tackled by considering a specific canonical form of a graph.

If two graphs G and H are isomorphic, they have the same canonical form. We define

a canonization function as a function associating its canonical form to a graph.
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9.6 Introduction to Frequent subgraph Mining

The objective of Frequent Subgraph Mining (FSM) algorithms is to extract all

the subgraphs from a given data set with a frequency above a specified threshold. A

good review of FSM algorithms can be found in Jiang et al. 2013. The definitions and

vocabulary used in this part are defined in section 9.5. Their main fields of applica-

tion are chemistry (notably the mining of molecular substructure), web, and biology

(notably to mine protein-protein interactions; Jiang et al. 2013). FSM problems have

been divided into two classes, depending on whether the frequent subgraphs are mined

within a set of medium-size graphs (often called ”transactions”), or within a single very

large graph. Moreover one may want to mine all or only a subset from the frequent

subgraphs, and allow some errors in the subgraph matching.

In this part we focus on the mining of all the frequent subgraphs from a set (or

database) of graphs D. The frequency of G in D is FreqD(G) = |SuppD(G)|/|D|,
where SuppD is the support defined in section 9.5. FSM corresponds to the extraction

of all the subgraphs G from D with a frequency above an ε threshold provided by the

user:

FD = {G|FreqD(G) ≥ ε}

FSM algorithms require two elements: the generation of a set of candidate graphs,

and the computation of their support. This raises one of the core problem of Frequent

Subgraph, the computation of subgraph isomorphism.

9.6.1 Graph isomorphism problem

Here we give a short description of the problem of graph isomorphism. Interested

readers can refer to J. Lee et al. 2012 for a recent review of algorithms for subgraph

isomorphism within a database, and to Mckay and Piperno 2014 and Ullmann 1976 for

a description of the principles of such algorithms and their comparison. In Chapter 10

we will describe the two dedicated algorithms we developed to solve the subgraph

isomorphism in quadratic time and the graph isomorphism in linear time on our specific

graphs.

While the general problem of subgraph isomorphism is known to be NP-complete

(Garey and D. S. Johnson 1979), there is no proof of the NP-completeness of graph

isomorphism. Efficient algorithms have however been proposed for graph isomorphism,
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using a branch and bound approach (Ullmann 1976), and expanded notably later in the

VF2 algorithm (Cordella et al. 2001). Algorithms usually include a partial mapping

between the two graphs, and have specific strategies to prune the search space and

refine this mapping. More recently, algorithms which are better suited to the research

of a subgraph within a set of graphs have been implemented (e.g. by storing the

presence of specific graph features among the set of graphs), the most efficient being

quickSI (Shang et al. 2008), as shown by J. Lee et al. 2012. Polynomial algorithms are

also available in the case of specific graphs, for example trees (Shamir and Tsur 1999)

or planar graphs (Eppstein 1995).

While the algorithms detecting subgraph isomorphism may also be used for graph

isomorphism, some more efficient strategies have been described, based on the canon-

ical labeling of a graph. A group theory based approach was first used in NAUTY

(McKay et al. 1981) and further extended into Traces software (Mckay and Piperno

2014). These algorithms are based on group theory to compute the graph automor-

phism group, which is then used to generate a canonical form of the considered graph.

These automorphisms allow in practice a huge pruning of the search space, and sim-

ilar principles have been reused in multiple software aiming at the testing of graph

isomorphism (Junttila and Kaski 2011; Darga et al. 2004).

In practice, FSM algorithms often bypass a lot of the isomorphism computation

burden by generating graphs in a specific fashion. For example, the SLEUTH al-

gorithm, which mines unordered subtrees, relies on a scope list to avoid any graph

isomorphism calculation (M. J. Zaki 2005).

9.7 Overview of FSM algorithms

Because of the tremendous size of the search space (which consists of all the subgraphs

within a given database), FSM algorithms have focused on different ways to reduce

this space, in particular by traversing it in different ways (Section 9.7.1), or by using

specific canonical forms to ensure that each element of the search space is visited only

once (Sections 9.7.2 and 9.7.3). The most important components of FSM algorithms

will be presented hereafter; readers interested to a more detailed description or a more

exhaustive list of FSM algorithms are referred to Jiang et al. 2013 and Ayed et al.

2016.
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9.7.1 Traversal of the search space

The FSM algorithms share some common principles: they consider a set of subgraphs,

and try to make them grow (Jiang et al. 2013). When a single subgraph of size is

considered and grown as much as possible, this process is referred as Depth-First

Search (DFS) exploration as it corresponds to a DFS traversal of the lattice. When

multiple graphs of size k are combined to give a set of graphs of size k+1, this approach

is referred as an Apriori approach, and the lattice is traversed in a Breadth-First

manner. These approaches are similar in essence to the methods initially developed

in Frequent Itemset Mining (i.e., the Apriori algorithm (Agrawal and Srikant 1994)

and the FP-growth algorithm (Han et al. 2000)). In contrast, GASTON is another

type of algorithm which traverses the lattice in a modified BFS strategy, by first

considering the frequent paths, then by combining them to build the trees, and finally

by aggregating these trees to build the full set of frequent graphs (Nijssen and Kok

2004). Another paradigm is implemented into the MARGIN algorithm, which moves

among the nodes of the search space at the border between frequent and non-frequent

subgraphs (Thomas et al. 2006).

All the approaches makes use of the Downward-Closure Property which states

that if a graph is frequent then all of its subgraphs are also frequent (Jiang et al. 2013).

By doing so, they inherently explore the lattice of all subgraphs from D (See section

9.5). An example of such a lattice is shown in Figure 9.2.

Figure 9.2 highlights some of the most salient features of such lattices. Firstly, the

number of subgraphs is huge compared to the size of the database, and therefore a

full exploration of the lattice is computationally intractable. Although the downward

closure property of frequent subgraphs is a good way to prune some part of this lattice,

it is often not sufficient to reduce its size. The difference between Apriori and DFS

based approaches is the order used to explore this lattice (Figure 9.3). On the one

hand, the Apriori methods require to store a lot of patterns at each step. However

a large part of the search space can be pruned by combining only frequent patterns.

On the other hand, DFS based approaches store a reduced number of graphs for the

exploration process, but explore a wider part of the search space, as stated in Jiang

et al. 2013. Secondly, there are multiple ways to generate a subgraph from a subgraph

of lower size. Therefore to avoid to the duplication of subgraphs, a canonical form

is used.
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Figure 9.2: Example of subgraph lattice. 9.2d: lattice containing all the connected
subgraphs from a database D consisting of 3 graphs a), b), and c), highlighted with
red boxes.
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(a)
(b)

Figure 9.3: Apriori and DFS strategies to explore a lattice of subgraphs
(from Jiang et al. 2013)

9.7.2 Canonical forms in FSM

A canonical form is a standard way to represent an object, in the case of graphs, it is

a representation which is the same for all the isomorphic graphs. A common strategy

for graph canonization is to generate a labeling of the graph which corresponds to a

given ordering of its vertices of the graphs, and then to define the canonical form as

the minimum of these labelings using the lexicographic order among the permutations

of vertices. Such a method has been implemented to define a minimum DFS code in

gSpan (Han et al. 2000), or to define the minimum Canonical Adjacency Matrix code

in AGM (Inokuchi et al. 2000), or maximum code in FFSM (J. Huan et al. 2003).

These canonical forms have been used because they often incorporate an interesting

property, allowing a huge pruning of the search space: if G is a subgraph of H then

code(G) < code(H). GASTON uses the Nauty software to compute the canonical form

of the detected cyclic graphs (Nijssen and Kok 2004).

Canonical forms however are easier to compute for trees, especially for rooted

trees. They are usually based on two kinds of tree traversal, depth-first search (DFS)

or breadth first search (BFS), with a specific symbol added when the algorithm needs

to backtrack (Figure 9.4). Canonical forms are generally the root of the candidate

generation step, and they are checked each time a candidate is generated in many

generic algorithms.

9.7.3 Candidate generation

Two kinds of methods exist to generate candidates depending of the exploration of

the lattice, DFS or Apriori. Both of these methods aim at minimizing the number

of redundant subgraphs generated. The first extension strategy combines two size k

frequent patterns to build a new candidate. To avoid duplicated candidates, these
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(a)

Name Canonical Form
DFS Label
Sequence

abea$$$cfb$d$$a$$dfc$$$

Depth-Label
Sequence

(0, a), (1, b), (2, e), (3, a), (1, c), (2, f),
(3, b), (3, d), (2, a), (1, d), (2, f), (3, c)

Breadth-First
Canonical String

a$bcd$e$fa$f$a$bd$$c#

(b)

Figure 9.4: Canonical forms of a tree used in FSM algorithms. Example of a
tree (a) and several of his canonical forms used in FSM (b). A full description of these
labeling algorithms is available in Jiang et al. 2013

methods often rely on an ordering based on a canonical form of the chosen graphs.

Such approaches have been introduced into graph mining by the Apriori algorithm

(Inokuchi et al. 2000). Suites of algorithms have been designed to break down the

complexity of the task, starting by the generation of frequent paths, then combining

them to build trees, and finally graphs, as implemented in GASTON (Nijssen and Kok

2004). A similar approach is described in Gudes et al. 2006, which merges paths into

graphs, and then recursively generates the full set of graphs.

Another example of Apriori approach, with a reduced number of patterns stored

at each level, is described for trees in Mohammed J. Zaki 2002. At each step, each

tree of size k + 1 is generated from two trees of size k which share a similar canonical

code except on the last character. Subtrees meeting this requirement are grouped

into a structure called equivalence class, allowing an efficient storage and candidate

generation (Mohammed J. Zaki 2002; Mohammed J. Zaki 2004).

In the second kind of methods based on DFS, a single edge is added to the data,

without combining existing patterns. Such a method is used for example in the gSpan

algorithm (Han et al. 2000).

In the case of rooted trees with ordered labels, there is an efficient enumeration

order, called right-most extension, which ensures to visit each tree only once (Fig-

ure 9.4): given a frequent subtree T , the tree may only be extended by adding a node

at the right of the right-most path. In practice this implies that the canonical labels

such as the DFS-Label Sequence (see Table 9.4b) from the previous trees are a

prefix from the canonical label of the extended tree. Right-most extension is used to

generate candidates in the majority of the tree mining software (Mohammed J. Zaki

2002; M. J. Zaki 2005; Chi et al. 2004).
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Figure 9.5: Right most extensions of a tree. Possible extensions are shown as
dashed lines. x > c label indicates that only labels superior to c are allowed. The
node which is crossed out is forbidden because it is not on the right most path

While the candidate generation of unconstrained graphs normally requires to check

for isomorphisms, right most-path extension strategies ensure each graph is uniquely

constructed, therefore sparing many computations. However, an issue is that many

non frequent candidates are generated. As a result, a new scheme of extension for trees

based on extension of the left and right most leaf has been proposed in the AMIOT

algorithm (Hido and Kawano 2005).

Candidate generation strategies require to make a compromise between the gener-

ation of each candidate unique time, and the generation of frequent candidates over

non-frequent candidates.

The final step is the computation of the supports from the subgraphs. Raw iso-

morphism methods may be used, as in gSpan (Yan and Han 2002). However, in many

software, embedding lists are stored to reduce the computation burden. When mining

rooted trees, it is also possible to store only the roots of the subtrees, therefore reduc-

ing the storage required. A stated in Jiang et al. 2013, exact algorithms for subgraph

enumeration have been mainly developed between 2000 and 2007. Recent researches

have often focused on using these algorithms in a distributed way, for example using

the map reduce paradigm and an a prior algorithm in Bhuiyan and Hasan 2015.
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9.8 Reducing the number of mined patterns

Once built, the full lattice of frequent patterns is often very large, and the information

content is too large and redundant to be interpreted directly. Therefore a special

class of algorithms have been designed to mine maximal and closed subgraphs. Let

us denote FD the set of frequent patterns from a graph database D, then the set of

maximal frequent subgraphs MFD may be defined as:

MFD = (G|G ∈ FD and @H ∈ FD|G ⊆ H)

Two algorithms have been proposed to efficiently mine Maximal Frequent Subgraphs,

SPIN (Jun Huan et al. 2004) and MARGIN (Thomas et al. 2006). SPIN uses a

specific type of equivalence class to generate the patterns, namely graphs which share

a minimum spanning tree code. Such graphs are locally maximal in these equivalence

classes, which results in an efficient pruning of non maximal candidates. MARGIN is

based on the property that a subgraph is maximal if all its possible supergraphs in the

database D are not frequent. In contrast to all the other algorithms which traverse the

lattice in a bottom-up manner, MARGIN traverses the lattice at the interface between

frequent and non frequent patterns, therefore detecting maximal patterns. These two

algorithms have proven to be generally faster than general FSM algorithms, and to

generate less candidates.

While MFD is several orders of magnitude smaller than FD. However if a low

support threshold is used, it will miss a large part of the pattern with high support.

As a result, another set of patterns have often been mined: the set of closed patterns

CFD:

CFD = (G|G ∈ FD and @H ∈ FD|G ⊆ H and SuppD(G) = SuppD(H))

The three sets of patterns satisfy: MFD ⊂ CFD ⊂ FD. We will focus on closed patterns

since they are more relevant to our application (as we shall see in Chapter 11). An

algorithm to define CFD named CloseGraph has has been designed by the authors of

gSpan (Yan and Han 2003). CloseGraph is based on an early termination criterion,

which states that, given a graph g and an edge e, if g and g+e have the same support,

then all the graphs including g without e should not be grown, and that growing

the graphs containing g + e is sufficient. Efficient checking of these property allows

to reduce the search space. Alternatively, an algorithm mining complete graphs in

the specific case of relational graphs was proposed by Yan, Zhou, et al. 2005. This
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algorithm, however, is very specific to these kinds of graphs. More efficient approaches

have been developed for other specific graphs, such as graphs with unique edge labels

(El Islem Karabadji et al. 2016), or graphs without edge label but with unique node

labels, which may be used to model biological networks (J. y. Peng et al. 2008). An

algorithm for DAG mining has also be proposed (Termier et al. 2007), but it is limited

to graphs with unique labels.

No recent comparison of these graph mining algorithms is available: in 2005, four

FSM algorithms were compared, including gSpan and GASTON (Wörlein et al. 2005).

This study notably highlights the exponential nature of the FSM mining problem.

In particular, all the algorithms presented in this section consider a reduced number

of vertices and of edge labels: comparisons for graph mining software is usually per-

formed on molecules with less than 10 distinct edge labels, and less than 100 distinct

node labels. Even with additional constraints such as unique edge labels (El Islem

Karabadji et al. 2016) or without edge label but with unique node labels (J. y. Peng

et al. 2008), the runtime increases exponentially and becomes intractable even with a

reduced number of labels. These considerations highlight the critical need to simplify

the problem as much as possible by reducing the search space. In Chapter 10, we de-

rive a set of interesting properties from the lattice of MS/MS fragmentation subgraphs,

which allows us to transform the graph problem into a frequent subtree mining issue

addressed in Chapter 11.
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9.9 MS/MS spectra preprocessing

When building the MineMS2 workflow, we stumbled upon an unexpected issue: the

preprocessing of MS/MS spectra. Preprocessing takes as input the raw data mixing MS

and MS/MS scans, with multiple MS/MS acquisitions for a single precursor, and gen-

erates a single fragmentation spectrum for each precursor, while discarding as much

noise as possible. Although many methods have been proposed to analyze MS/MS

spectra, the preprocessing has been comparatively seldom described. This may be

explained by a shift in the use, and performance, of the MS instruments. Historically,

MS/MS spectra were targeted on a reduced set of molecules of (putative) biological in-

terest. These spectra were then processed using vendor software in a targeted manner,

either by manually selecting the set of raw MS/MS spectra and generate the single

MS/MS spectrum, or by specifying an m/z and rt ranges to do so. However the rise

of Data Dependant Acquisition has considerably increased the number of spectra, and

as the considered precursors are not known in advance, this kind of processing has

become increasingly difficult. Four main open-source softwares are currently able to

preprocess such MS/MS data: MZmine (Pluskal et al. 2010), RMassBank(Stravs et al.

2012), MS-DIAL (Tsugawa, Cajka, et al. 2015), msPurity(Lawson et al. 2017). A

summary of the intended use and the issues with these tools is provided in Table 9.2

(MS-DIAL was not included as we were not able to run it on any of our computers).

Software Reference Type Intended MS/MS use Limitation

MZmine Pluskal et al. 2010 Java GUI and
command line

Coupling with GNPS Weak cleaning procedure
Many noisy peaks remaining

RMassBank Stravs et al. 2012 R package Cleaning of spectra
from known molecules

Requires knowledge of
the formula of the molecules

msPurity Lawson et al. 2017 R package
Link between MS

and MS/MS spectra
Evaluation of

precursor purity

No direct output of MS/MS
spectra, no cleaning and fusing

of MS/MS spectra

Table 9.2: Comparison of the main open-source MS/MS preprocessing soft-
ware tools.

As shown in Table 9.2, preprocessing with the existing solutions was not optimal as

input for MineMS2: in particular, removal of noisy peaks (spectra cleaning) is crucial

in our methodology, which does not use any intensity threshold, and does not prioritize

high intensity peak. We therefore developed an R package, named MS2process, aimed

at the preprocessing of MS coupled to MS/MS data: it takes as input a peak list (e.g.

generated by XCMS or MZmine for LC-MS data, or by proFIA for FIA-MS data),
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(a) (b)

Figure 9.6: Matching of the selected MS/MS precursor and the detected
MS feature. Isolated precursors (gray crosses) and MS features detected by XCMS-
centWave (black rectangles, extended for visualization purpose) are shown (Data In-
dependent Acquisition of the PenicilliumDIA dataset). a): the specified precursor
isolation window matches the detected MS feature; b): example of a significant shift
between the isolated ions and the actual signal.

including the m/z and rt windows for each feature, and returns the set of cleaned

MS/MS spectra in the reference Mascot Generic Format (.mgf).

The steps from the MS2process workflow were inspired by RMassBank (Stravs et

al. 2012) :

• MS/MS and MS feature matching

• MS/MS spectra fusing

• MS/MS spectra filtering

The first step aims at matching the detected peaks in the m/z dimension to the

precursor ions isolated by the mass spectrometer (Figure 9.6). This task is complex

because significant deviations may be observed, especially in targeted acquisition, e.g.

when the precursor m/z value is experimental (Figure 9.6a), or when multiple peaks

have close m/z values (Figure 9.6b). Our algorithm therefore matches the m/z and

rt of all precursor ions to the peak list of detected features, using a specified m/z

tolerance and a strict matching in the time dimension.
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Then, for each MS feature matching a precursor ion, only MS/MS spectra cor-

responding to scans of high intensity on the Extracted Ion Chromatogram are kept,

since these spectra are less noisy (Figure 9.7): in practice, the selected scans have an

intensity above (1 + fwhmthresh)× baseline on the EIC of the precursor ion (where

fwhmthresh is set to 0.33 by default, and baseline is the maximum of intensity at

the limits of the EIC peak.

Figure 9.7: Selection of MS/MS spectra on the MS EIC (PenicilliumDIA
dataset). Red cross: selected scans; blue lines: limits of the feature detected by
centWave.

In addition, within the selected MS/MS spectra from each precursor, the peaks

corresponding to the same fragment ion are grouped, by using a density based clus-

tering similar to the one described in Section 6.6. The number of peak occurrences

within each group is computed for quality control (see below). The intensity of the

group is set to the mean of the peak intensities.

Finally, a quality control step is performed on the processed MS/MS spectra, by

using two filters: 1) multiplicity (default set to 0.5): minimum frequency of the peak

occurrence in the initial (selected) raw spectra; 2) noiselevel (default set to 0.5%):

minimum relative intensity of the peak in the processed spectrum. In practice, these

two filters remove a lot of noisy signals and drastically reduce the number of peaks as

compared to the raw spectra (Figure 9.8).

At that stage, high quality MS/MS spectra are available. If the elemental formulas

of the precursors are specified, a formula generator based on the algorithm by Böcker

and Lipták 2005 may further be used to annotate the fragments.
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(a) (b)

Figure 9.8: Cleaning performed by MS2process. a): output MS/MS spectrum
generated by MS2process; b): raw MS/MS spectrum at the apex from the EIC (Peni-
cilliumDIA dataset).

9.9.1 Comparison of the preprocessing from MS2process (au-

tomated) and Xcalibur (manual)

The automated preprocessing with MS2process was compared for 19 precursors from

the PenicilliumDIA DIA dataset to the routine manual processing by chemists with

the Xcalibur software (Thermo Fisher). A total of 40% of the peaks detected with

Xcalibur were also selected by MS2process. The other 60% were found to be noisy

peaks which were filtered out only with the MS2process software (multiplicity filter).

This was confirmed by the fact that all the peaks with a relative intensity above 2%

detected with Xcalibur were also selected by MS2process. Furthermore, there was less

than 5% difference of peak intensity between the two software. We concluded that

MS2process was at least equivalent to the manual spectrum extraction, and probably

better suited for automatic workflows as it removes more irreproducible noisy peaks.

The MS2process package has not been published yet due to time constraints (since

this would require a comprehensive benchmark with the other tools available); it was

used, however, for the MS/MS spectra extraction of both the LemmDB and the

PenicilliumDIA datasets.
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Chapter 10
Definition of a graph representation for a

set of fragmentation spectra highlighting

their structural similarities

We propose here a new representation of a collection of MS/MS spectra as a set of

graphs named Losses Graphs , which highlights the similarities of fragmentation among

the corresponding (unknown) molecules. Some interesting properties of these graphs

are demonstrated, for further use in the mining of similarities in the next chapter.

10.1 Definition of a graph representation of a set

of collisional spectra

We consider D a set of collisional spectra : each spectrum is the result of the fragmen-

tation of a parent ion (or precursor) noted prec, of m/z ratio prec.mz and intensity

prec.int. M is the elemental formula of prec. The spectrum is a 2D vector with di-

mensions named mz and int. We consider that the spectra are relatively noise free, we

proposed in section 9.9 an adapted MS/MS spectra extraction and cleaning procedure,

however MzMine(Pluskal et al. 2010) also furnishes spectra in the right format.
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(a)

C4H10NO
+
3

mz : 120.066

C4H8NO
+
2

mz : 102.055

C4H6NO
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mz : 74.060
C3H8NO

+

mz : 84.044

C3H6N
+

mz : 56.050

CO

H2O H2O

H2O

(b)

Figure 10.1: Representation of an MS/MS spectrum as a fragmentation tree.
a): spectrum from homoserine, C4H9NO3, from the LemmDB dataset; b): corre-
sponding fragmentation tree computed by the SIRIUS software (Böcker and Dührkop
2016). The precursor peak is shown in red.

10.1.1 Initial graph representation: Fragmentation tree

S. Böcker and F. Rasche(Böcker and Rasche 2008) initially proposed to represent an

MS/MS spectrum as a fragmentation tree. The use of fragmentation tree is different

from the fragmentation trees used to describe MSn spectra(Kasper et al. 2012).

In the fragmentation trees from Böcker and Rasche 2008, vertices and edges cor-

respond to fragments and neutral losses, respectively. In higher-energy collisional

dissociation (HCD) cells from Orbitrap instruments, multiple consecutive fragmenta-

tions occur: at each fragmentation, an ion M(+/−) (where M and (+/−) are the

elemental formula and the charge of the ion, respectively) leads to two fragments, one

bearing the charge (A) and the other remaining neutral (B), as follows:

M(+/−) = A(+/−) +B (10.1)

The charged fragment A will be observed as a peak on the spectrum, contrary to the

neutral fragment B which is not detected by the instrument. B is therefore referred

as a neutral loss. In the fragmentation tree, an edge labeled B is added between the

vertices M and A. An MS/MS spectrum and its fragmentation tree representation is

shown in Figure 10.1.

Determination of the true fragmentation tree is a very difficult task, which has been

studied since 2008 by the team of S.Böcker: In Rasche et al. 2010 they showed that
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only 71% of the predicted losses were confirmed by experts. While the computing of an

optimal fragmentation tree has been improved in terms of speed an optimality by using

Integer Liner Programming (Rauf et al. 2012), the rate of errors remains substantial.

The rates of errors in the determination of the molecular formula at the root of the

fragmentation tree and therefore of the fragmentation tree remains superior to 10%

on different datasets in the most recent evaluation in Böcker and Dührkop 2016.

As errors in the fragmentation tree prevent the discovery of similarities between

spectra, we defined a new kind of fragmentation graph which can be computed without

the elemental formulas of the precursor ions in D.

10.1.2 A new graph representation of MS/MS spectra: the

Losses Graphs

H2O

H4O2

H2O

CH2O2

64.016

CH2O2 H2O

mz :
120.066

mz :
102.055

mz :
84.044

mz :
74.060

mz :
56.050

Figure 10.2: Losses Graph rep-
resentation from homoserine.
The MS/MS spectrum is showed
in 10.1a. The red label correspond
to the precursor ion.

We propose to use Edge-Labeled Directed Graph

(see 10.2) which we will abbreviate by Losses

Graph . These graphs have a natural topolog-

ical order, as vertices can be ordered by m/z val-

ues. Furthermore, the vertex corresponding to the

precursor ion is always included. Each edge la-

bel corresponds to a m/z bin, resulting from a

discretization from a set of m/z differences. In

the case where this m/z bin is sufficiently small

it mays be matched to a single formula (for ex-

ample H2O is the only neutral molecule with a

nominal mass of 18) and can thus be labeled by

the elemental formula. However multiple formula

may often be matched to a bin, in this cases the

corresponding edge label is shown as the mean of

the corresponding m/z bin (Figure 10.2).

Importantly, these graphs do not require any knowledge of the molecular formula,

in contrast to the fragmentation trees described earlier: when present, formula labeling

of an edge only indicates that a single elemental formula matches the m/z difference

between the two considered peaks. Moreover these graphs does not use the intensities

of the peaks on the MS/MS spectra.
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10.1.3 Interest of Losses Graph representation

(a) precursor: m/z 511.29

H2O

63.032

45.022

147.068

C9H7N
165.079

147.068

C8H6
H2O

511.29

412.22

394.21

349.19

295.14 267.15

265.15

247.14

219.15 120.08

(b) Losses Graph from (a)

(c) precursor: m/z 370.13

H2O

63.032

45.022

147.068

C9H7N
165.079

147.068

C8H6
H2O

370.13

352.12

324.12

307.10
223.06

205.05

120.08

(d) Losses Graph from (c)

Figure 10.3: A common fragmentation pattern between MS/MS spectra from
two distinct precursors (PenicilliumDIA dataset), shown in a) and c). Only the
10 most intense peaks are displayed for visibility purposes. b) and d): Losses Graph
from spectrum a) and c), respectively. The red vertex corresponds to the peak of the
precursor ion. A common subgraph is highlighted in bold in the Losses Graph , and
the corresponding peaks are colored in each MS/MS spectrum.

The proposed Losses Graph representation enables to detect fragmentation simi-

larities even in the case where they originate from different precursors. As an example,

Figure 10.3 displays the Losses Graph from two spectra from the PenicilliumDIA

dataset where a common subgraph has been detected; however, only in the second

subgraph does the root correspond to the peak of the precursor ion of the MS/MS
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spectrum (m/z 370.13). The mining of Losses Graph therefore provides major

structural insights into the similarities of the fragmentation patterns, which cannot be

obtained by the GNPS nor MS2LDA strategies.

10.2 Construction of Losses Graphs from MS/MS

spectra

The building of Losses Graphs from MS/MS spectra was developed by designing the

following steps:

• Mass difference discretization

• Label merging

• Formulas generation

• Graph construction

The first step generates a set of discretized masses corresponding to all the losses

observed in at least ε MS/MS spectra. ε is a user-furnished parameter which should

be superior to 2. It computes the m/z differences between peaks within all spectra,

before discretizing these differences. In the second step, labels are merged if they are

too close according to the mass spectrometer accuracy. In the third step, a set of

neutral formula is generated and matched to these discretized mass differences (within

an m/z tolerance). In the final step, the Losses Graphs are built.

10.2.1 Mass differences discretization

In this step, all the 1 on 1 m/z differences between k most intense peaks of the MS/MS

spectra are computed (k is set to 15 by default). If the precursor is not observed, a peak

with an m/z corresponding to the m/z of the isolated ion is added to the spectrum.

The set of the mass differences from all spectra are then discretized using a density

estimation on overlapping windows, similarly to the method described in section 6.6:

the algorithm has also three parameters, dmz, ppm and ε, where ppm and dmz account

for the mass accuracy of the mass spectrometer, and ε corresponds to the minimum

number of spectra in which a mass difference needs to be detected to be kept in the
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final set (default set to 2). Within each overlapping window delimited by mzmin and

mzmax (default width set to 0.2), the bandwidth of the kernel density is computed

as bw = max(ppm×mzmin× 10−6/3, dmz/3). Each peak detected on the density is

then output as a Gaussian of mean µ (apex of the peak) and of standard deviation bw

(density bandwidth within the current windows; Figure 10.4b).

(a) Density estimation (b) Gaussian modeling to measure overlap

Figure 10.4: Example of mass discretization. a): two peaks are detected by the
raw density estimation; b): Gaussian modeling used by MineMS2 to determine if the
peaks (i.e., the labels) should be merged.

In some cases, the distance between two peaks detected by the density is at the

limit of the resolution from the mass spectrometer, resulting in a risk of mislabeling

(Figure 10.4). An additional step of label merging was therefore added, where labels

are fused when they have enough overlap (Algorithm 3).

The algorithm works sequentially on all the discretized mass differences in increas-

ing order of mass. Each label p from a set of label in increasing m/z order P is modeled

by two parameters µ(p) and σ(p)which are the mean and the standard deviation of

the underlying Gaussian. The algorithm relies on two main parameters maxOverlap

(maximum overlap between two consecutive Gaussians) and f (number of standard de-

viations from both Gaussians used to compute the overlap): a Gaussian p is truncated

to the interval [µ(p)− f × σ(p), µ(p) + f × σ(p)] to simplify the computation. The

default value of f is 3, ensuring that 99% of the area of each Gaussian is considered.

At each step the overlap between the the current Gaussian p and the next Gaussian

P [i+ 1] is computed using the overlap function (Line 5). If this value is superior

to the maxOverlap value (0.05 by default) the two labels are merged using merge

procedure, which updates p. If the overlap is inferior to maxOverlap, p is set to
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Algorithm 3 Label merging algorithm

1: procedure mergeGaussian(P,maxOverlap, f)
2: n← size of P
3: p← (−1, 0.1) . initializing to the Gaussian with µ = −1 and σ = 0.1
4: for i ∈ 1 . . . n do
5: if overlap(p, P [i+ 1], f) < maxOverlap then
6: p← merge(p, P [i+ 1], f)
7: else
8: output p
9: p← P [i+ 1]

10: end procedure
11: function overlap(p1, p2, f)
12: bmin ← µ(p2)− f × σ(p2)
13: bmax ← µ(p1) + f × σ(p1)
14: if bmin > bmax then return 0

15: a1 ← area of p1 on [bmin, bmax]
16: a2 ← area of p2 on [bmin, bmax]

return max(a1, a2)
17: end function
18: function merge(p1, p2, f)
19: bmin ← µ(p2)− f × σ(p2)
20: bmax ← µ(p1) + f × σ(p1)

21: µ =
bmin + bmax

2

22: σ =
|µ− bmin|

f
return (µ, σ)

23: end function
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P [i+ 1] and the merging evaluation is iterated (Line 8).

At the end of this step, each Gaussian is then transformed back to a bin using the

f parameter: bin(p) = [µ(p)− f × σ(p), µ(p) + f × σ(p)], and eventually adjusted to

ensure that the bins are disjoints.

10.2.2 Formula generation

The goal of this step is to assign an elemental (neutral) formula to each of the dis-

cretized m/z difference computed previously, when possible. All possible formulas are

generated for m/z ∈ [mzmin, mzmax], with mzmin = 14.5 and mzmax = 200. Bins in-

ferior to 14.5 are considered too low for a meaningful neutral loss, while neutral losses

superior to 200 usually match multiple formulas.

Figure 10.5: Number of possible neutral formula as a function of m/z. Blue:
formulas corresponding to chemically existent species. Red: combinations to all such
formulas by MineMS2 to generate the set of possible losses.

The algorithm described in Böcker and Lipták 2005 is used to generate all possible

formulas with a mass between mzmin and mzmax was implemented in C++. A set of

rules extracted from the well known ”Seven Golden Rules” (Kind and Fiehn 2007) was

then used to check whether the predicted formula indeed corresponds to a chemically

existent (neutral) species:

• The sum of valences or the total number of atoms having odd valences is even;
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• The sum of valences is greater than or equal to twice the maximum valence;

• The sum of valences is greater than or equal to twice the number of atoms minus

1.

This filter ensures that a fully connected molecular graph (chemical structure) exists.

Nonetheless an ionized molecule mays lose multiple neutral molecules consecutively.

An example is a consecutive loss of two molecules of water (H2O), resulting in a total

loss of H4O2 which does not admit a molecular graph. Therefore all the sums from

previously computed formulas were added to the set of chemically compatible losses,

whose size increased considerably (Figure 10.5).

At this stage, all bins within [mzmin,mzmax] and without any possible elemental

formula were discarded, therefore reducing the number of possible labels for the edges.

All bins with labels superior to mzmax were kept.

In conclusion, a table of bins was generated, where each bin b has a lower and

upper bounds, bmin and bmax and a set of formulas bf (if bmax < mzmax). As the bins

do not overlap, they are naturally ordered: for two bins c and d we say that c ≤ d

if cmin < dmin. The bins are then ordered by mass, and an integer is associated to

each bin, with 1 corresponding to the bin of lowest mass, and nL for the bin with the

highest mass (nL is the number of bins). This set of labels for our collection of spectra

D is denoted L(D).

Losses Graph construction

Losses Graphs are built by adding a vertex for each peak of the mass spectrum, and an

edge for each mass difference in L(D) (Figure 10.2), plus eventually an added peak for

the precursor. For each of the constructed Losses Graph G the peak corresponding to

the precursor is designed as root(G). During the process, the frequency of each label

is stored. To further strengthen the graph building procedure, especially in the case of

a poor parametrization, the absence of duplication of edges is checked. If for a vertex

v in a graph G there exist multiple incoming or outgoing edges with similar label a,

only the edge with the mass difference closest to the center of the a bin is kept. In

practice this ensures that for a fixed vertex u there is at most one incoming edge with

label a and at most one outgoing edge with label a:

Property 1. Let G be in the set of Losses Graphs D with labels L(D). Then:

∀u ∈ V (G),∀a ∈ L(D) there is at most 1 vertex v s.t. l(u, v) = a
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and:

∀u ∈ V (G),∀a ∈ L(D) there is at most 1 vertex v s.t. l(v, u) = a

Moreover Losses Graphs are simple graphs, since the bins are disjoint. Losses

Graphs also have other interesting properties which are explained in the next section

and will be used in the next chapter.

Intuitively, similarities in the decomposition patterns as shown in Figure 10.3 can be

spotted on the constructed Losses Graphs by finding similar subgraphs. This problem

is known as Frequent Subgraph Mining (FSM) problem. The goal of the next section is

to give some properties which will be used in chapter 11 to construct a FSM algorithm.

To do so we will use hypotheses which ensue from our Losses Graphs construction

procedure.

10.3 Losses Graphs properties

As stated in the previous section, a set of Losses Graphs D have been constructed

from a set of mass spectra S, using a set of frequent mass difference bins (i.e. present

in at least ε spectra). Thanks to the procedure used to reduce the labeling errors in

Section 10.2.1, we make the following assumption about the graphs:

Property 2 (Perfect Binning 1). Consider a connected subgraph G = (V,E) of any

graph of D. Consider Ge = (V,E/e), the subgraph obtained by removing any edge e

from G such that Ge remains connected; then SuppD(G) = SuppD(Ge).

Let’s note u and v the endpoints of e, i.e e = (u, v) and the label of e is l. Property

2 states that for each occurrence of Ge with isomorphism f , there is an edge between

f(u) and f(v) of label l. This property becomes more intuitive if we remember that

labels correspond to masses differences, a missing edge would indicate a mass difference

of similar value but without the label, which is an error of labeling. This property

leads to an interesting property of the frequent rooted and induced subgraphs of D,

which are the main type of patterns that we will consider in chapter 11.

Theorem 10.1. Two rooted induced subgraphs from D, A and B are isomorphic i.f.f

there exists one spanning arborescence from A, TA and one from B, TB such that TA

is isomorphic to TB.

Proof. The proof that A 'e B implies an isomorphism between any of the spanning

tree is trivial, by considering the same isomorphism, so (A 'e B)⇒ (TA 'e TB)
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Let us call f the isomorphism from V (TA) to V (TB), and rA and rB their respective

roots. We show hereafter that there is an equality between the edges and vertices sets

of A and their image by f in B.

Vertex set equality

By definition of the spanning arborescence, it is clear that V (B) = {f(v), v ∈ V (A)},
as all the vertices are contained in the spanning tree.

Edge set equality

The edge set equality may be proved by contradiction. Let us consider an edge e =

(u, v) such that (u, v) ∈ E(A) but (f(u), f(v)) /∈ E(B). Let us denote TA+e the graph

obtained by adding e to TA. Because TA 'e TB and TB ⊆e B, we have by transitivity

of the subgraph relationship: TA ⊆e B. Moreover TA+e 6⊆e B. As TA is a subgraph of

TA + e we have thatSuppD(TA) ≥ SuppD(TA + e). But as TA is a subgraph of both A

and B and TA+e is a subgraph of A but not B , we have SuppD(TA) > SuppD(TA+e).

However, based on property 2, we have SuppD(TA) = SuppD(TA + e) since TA + e is

a equal to TA plus an edge e. Therefore we have a contradiction and e cannot exist:

E(A) ⊆ E(B). Conversely, we show that E(B) ⊆ E(A), and thus E(B) = E(B). We

have therefore demonstrated that (TA 'e TB)⇒ (A 'e B). In conclusion:

(TA 'e TB)⇔ (A 'e B)

.

This property implies that the support of any connected frequent subgraph of D

is equal to the support of any of his spanning tree. The considered property of perfect

labeling is also reflected by a second property :

Property 3 (Perfect Binning 2). If P = u, x, v is a directed 2-edge path frequent in

D and L(D) is the edge labels of D :

∃!a ∈ L(D)s.t∀G ∈ D s.t. P ⊆e G then (u, v) ∈ E(G) and l(u, v) = a

Here the frequency refers to the ε parameter used to discretize edge labels. This

property is illustrated on Graph 10.6 with u = H2O, x = CH2O2, and w = CH4O3. If
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Figure 10.6: Subgraph of 10.2

the path is frequent, then there is an edge between both ends of the path, with a label

corresponding to the sum of the mass differences on the path. The label is identical

whatever the subgraph containing such a path P . This property may be extended to

all the paths in any subgraph of D by induction:

Theorem 10.2. If P = u, . . . , v is a directed path frequent in D and L(D) is the edge

labels of D then:

∃!a ∈ L(D), ∀G ∈ D s.t. P ⊆e G, (u, v) ∈ E(G) and l(u, v) = a

Proof. If |P | = 2 the property is evident, as there is a single edge in the path. If

|p| = 3 the property corresponds to Property 3. Using the k = 2 and k = 3 cases as

initialization, we can prove the property for every k ≥ 4 by induction on |P |. Suppose

that the theorem is true for all path P s.t |P | = k ≥ 2, let us prove it for path any

path P ′ s.t |P ′| = k + 1.

If Q is a path of size k+ 1 from r to v, it may be written as P = r, x1, . . . , xk−1, v.

Now let us consider P ′ = r, x1 . . . xk−1, which is of length k. As P ′ is of length k and

rooted in r, there exists an edge from r to xk−1 because of the induction property.

Therefore r, xk−1, v is a frequent path of size 2 from G and, on the basis of Property 3,

there exists an edge from r to v. Therefore the property is true for k+1, and therefore

by recurrence for all k ≥ 2.

Using this property it is possible to derive an interesting property for any frequent

arborescence in D :

Theorem 10.3. For a given frequent arborescence P with root r in D, let us denote

by GP the subset of D in which P occurs, i.e. GP = [G ∈ D|P ⊆e G]. For an element
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G of GP let’s write fG the corresponding isomorphism, then :

∀G ∈ GP ,∀v ∈ V (P ),∃!a ∈ L(D) s.t (fG(r), fG(v)) ∈ E(G) and l(fG(r), fG(v)) = a

Proof. To prove this theorem, consider a vertex v of the spanning arborescence P and

consider a path q from r to v. As the arborescence is frequent in D, q is frequent in D.

Therefore by theorem 10.2 there is an edge from fG(r) to fG(v) with a unique label

a.

Using both Theorems 10.1 and 10.3, it is possible to derive a simple criterion to

test if a frequent arborescence is a subgraph of a graph of D:

Theorem 10.4. Let us denote the set of labels of the edges originating from u within

a graph H whose labeling function is l by Lu(H) i.e.:

LH(u) = [a|∃v ∈ V s.t. (u, v) ∈ E(H) and l(u, v) = a]

Let P be a frequent arborescence from D with root r, then for G ∈ D:

P ⊆e G︸ ︷︷ ︸
A

⇔ ∃v ∈ V (G) s.t. LP (r) ⊆ LG(v)︸ ︷︷ ︸
B

Proof. The proof of A ⇒ B is trivial given the definition of our isomorphism: if G

contains an induced subgraph isomorphic to P , v exists and is the image of r by

the isomorphism. We will therefore focus on the proof of B ⇒ A and assume that

∃v ∈ G′ s.t. LG(r) ⊆ LG′(v).

Let us consider TG(r), the subgraph of G consisting of all the vertices from G and

all the edges originating from the root of G. Because it covers all the vertices, it is

rooted and there is a single path from the root to all the vertices (1-edge long), it is a

spanning arborescence.

Similarly, let us consider the subgraph of G′ rooted in v and consisting of all edges

originating from v with labels in LG(r), noted TG′(v). It includes as many edges as

TG(r), because LG(r) ⊆ LG′(v), and therefore as many vertices. Now let us consider

the function f : V (TG(r))→ V (TG′(v)) defined by:

f(u) =

v if u = r

u′ s.t. l(v, u′) = l(r, u) if u 6= r.
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Then f(u) exists for all u ∈ V (TG(r)) because V (TG(r)) = V (G), and LG(r) ⊆ LG′(v).

Since, by construction, there is a single outgoing edge from v to each label, this function

is bijective. In addition, by definition of f , ∀u ∈ V (G), l(r, u) = l(f(r), f(u)) =

l(v, f(u)). Therefore f defines an isomorphism and TG(r) 'e TG′(v). And since TG(r)

and TG′(v) are spanning arborescence of G and G′ respectively, using Theorem 10.1,

G and G′ are isomorphic.

Using this theorem, the following algorithm was developed to find a mapping be-

tween a frequent arborescence P and a Losses Graph G.

Algorithm 4 Subgraph isomorphism algorithm

1: function subgraphIsomorphism(P,G)
2: nP ← |P |
3: nG ← |G|
4: r ← root of P
5: P0 ← LP (r)
6: VG ← V (G) in reverse topological order
7: while nG ≥ nP do
8: v ← VG [nG]
9: Sv ← LG(v)

10: if P0 ⊂ Sv then
11: M ← empty map
12: for i successor of r in P do
13: M [i]← successor of v in G with edge label l(r, i)

return M
14: else
15: pass to the next iteration of the While loop

return empty map
16: end function

This algorithm sequentially tests the vertices of G in topological order on line 8. At

each step it tests if the set of labels of the outgoing edge of the considered node in G

is a superset of the set of labels form the outgoing edges from the root in P (Line 10).

If the condition is true by theorem 10.4 an isomorphism if found and the mapping is

constructed (Line 12). If not (Line 15), the algorithm passes to the next vertex of G. If

at the end not enough vertices remains to be considered the algorithm return an empty

map indicating that no isomorphism was found. Therefore the worst time complexity

of this algorithm (when no isomorphism is detected) is O((|P |+ |G|)(|G| − |P |)): the

left term corresponds to the computation of the inclusion (Line 10), and the right term

is the number of visited vertices (Line 7). However if the root of the pattern in G is

known, there is a derived algorithm (by considering only this root over the full VG set)

with complexity O((|P |+ |G|), which is used extensively in the next chapter.
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Similarly, the complexity of the algorithm which checks for graph isomorphism is

O(|P | + |G|), because only the root of the graph H needs to be tested. Such fast

algorithms to check isomorphism are crucial for Frequent Subgraph Mining (FSM)

tasks.

Intuitively, similarities in the decomposition patterns as shown in Figure 10.3 can

be seen as isomorphic subgraphs. Thus, a way to find these similarities is to extract the

recurring subgraphs from D. Such a task is known as Frequent Subgraph Mining

(FSM), and a specific FSM algorithm for Losses Graph will be detailed in the next

chapter.
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Chapter 11
MineMS2: A Frequent Subgraph Mining

Algorithm for Fragmentation Spectra

In this chapter we describe the Frequent Subgraph Mining (FSM) algorithms developed

to mine the Losses Graphs generated in Chapter 10, which is implemented in the

MineMS2 software. In Section 11.1, we present the structure of the mined patterns,

and we show how specific constraints on the patterns topologies may be used to reduce

the search space. First, we define an adapted canonical form allowing us to build an

efficient data structure in Section 11.2. Second, the full suite of algorithms for closed

subgraph generation is described in Section 11.2.2. Third, preliminary results on

experimental data are presented in Section 11.5.

11.1 Reduction of the pattern search space for Losses

Graph mining

Because the graph search space increases exponentially with the number of edges,

reduction of this search space is critical. In the case of the Losses Graphs , the

challenge is the high number of edge labels (179 and 1368 for the PenicilliumDIA

and LemmDB datasets, respectively). This is to be compared with the usual number

of labels in classical graph FSM algorithm, which is generally lower than 100. In fact,

we observed that neither gSpan (Yan and Han 2002) nor GASTON (Nijssen and Kok

2004) were able to process our datasets in less than 2 hours. We therefore decided to

develop new algorithms taking into account the specificities of our graphs.
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Figure 11.1: Examples of k-LMDF spanning trees for the same pattern but
distinct values of k (PenicilliumDIA dataset). The k-LMDF spanning tree is
shown in red.

11.1.1 Patterns specificity for Losses Graph mining

To facilitate the mining process, we chose to consider only rooted patterns. This

means that the peak corresponding to a substructure is assumed to be present in the

spectrum. Although this hypothesis may seem quite strong a priori for single MS-

MS acquisitions, fused spectra acquired at multiple energies are commonly used in

other MS-MS softwares such as CSI-FingerID(Shen et al. 2014), therefore ensuring

that more fragments are present. As we want to mine the losses occurring from a

single substructure, there should be a path between the root of the pattern and any

node. Therefore the mined patterns are Acyclic Flow Graphs (abbreviated AFG), as

they admit a path from the root to each node. Moreover we chose to consider only

induced subgraphs, as the addition of an edge does not add any information (in term

of support), as shown in Theorem 10.1.

We will therefore refer to these patterns using the acronym AFG in the rest of this

chapter, and make use of the Theorems 10.1 and 10.2, which apply to AFGs.

11.1.2 A canonical form of AFG : the k-LMDF Spanning Tree

Since AFGs are rooted and induced subgraphs from D, they satisfy Theorem 10.1: two

subgraphs from D are isomorphic if they have a common spanning tree. In practice,

this means that if we define a function f from G to TG, the set of spanning trees from

G, therefore distinguishing a spanning tree of G among the set of all its spanning trees,

then f is a canonization function.

To reduce the search space, we defined the k Left-Most Depth First spanning tree
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as canonical form (noted k-LMDF). It is the spanning tree defined by performing a

DFS on the a graph G, such that i) the edge with the minimum label is selected first

and ii) the search stops at depth k. Alternatively, the k-LMDF canonical form can be

defined as the spanning tree with minimum DFS Label Sequence, where the DFS

label sequence is defined in M. J. Zaki 2005, and illustrated in Figure 9.4. Three

examples of such spanning trees for distinct values of k are shown in Figure 11.1.

The k-LMDF spanning tree is always defined, because there is at least one spanning

tree with a maximum depth of 1 by considering all the edges originating from the root

(Property 10.3). It is evident that the graphs admitting a spanning tree of maximum

depth k admit a spanning tree of maximum depth k+1. Therefore, as all the considered

graphs admit a spanning tree of depth 1, they admit a spanning tree of depth k for

any k > 1. So the k-LMDF shape is defined for all k for the considered patterns.

The specific set of edges originating from the root is of particular interest because it

defines a labeling function for each node from the AFG pattern, thus simplifying the

generation of the k-LMDF spanning trees.

Although 1-LMDF trees are simpler to generate (as they are basically sets of la-

bels), the 2-LMDF form limits the complexity of graph generation and simplifies the

computation of the support. The 2-LMDF form is therefore used by the MineMS2

FSM algorithm to generate the trees. Furthermore, this canonical form allows us to

define a new data structure, the k-Path Tree, which, in turn, drastically reduces the

search space.

11.1.3 A dedicated data structure for FSM on Losses Graphs

: the k-Path Tree

The proposed k-Path Tree is very similar to the Frequent Pattern tree (FP − tree)
described in Han et al. 2000, except that it stores paths over itemsets. The intuition

behind this k-Path Tree is that the set of frequent paths is sparse compared to the set

of all the possible paths of size k which can be generated using the set of labels.

To facilitate the mining of AFGs, the k-Path Tree stores three additional informa-

tions about each vertex v (Figure 11.2):

lT (v) the label of v.

hT (v) the label of the edge linking the first to the last vertex of the path (which exists

and is unique as demonstrated in Theorem 10.2

151



0

1

2

34

A

B
C

A B
C

(a) Graph with id 1

0

1

3

2

4
D

A

B
C

B

A

(b) Graph with id 2

#

(1)
A:A

(2)
B:C

(3)
B:B

(4)
A:C

(5)
C:C

(1,0)
(1,2)
(2,0)
(2,2)

(1,0)
(2,0)

(1,1)
(2,0)

(c)

Figure 11.2: Example of the 2-path tree generated from a database D con-
sisting of two graphs. The 2-path tree 11.2c contains all the paths of size 2 within
graphs 11.2a and 11.2b. For each node of this tree are attached: i) within the node
circle: an ID in parenthesis, l(v) in bold, and h(v) and ii) in the dotted box: O(v),
which is used to prune the paths with a frequency below the ε threshold.

OT (v) the list of occurrences.

The building of the k-Path Tree T is described in Algorithm 5. To build the k-

Path Tree the Losses Graphs from the database D are processed sequentially (Line 2),

and an integer id is associated to each Losses Graph . For each graph, the path

enumeration is performed using a modified Depth-First Search. The first difference

with standard DFS is that an indicator of visit named vis is stored for each edge, with

value in {unknown, closed, visited}. These labels are used to speed up computation

and to avoid to visit multiple times the same path:

unknown indicates that the edge has never been visited, therefore all the paths in-

cluding this edge may be added.

closed means that the edge has already been visited from the current vertex, and

should not be explored further.

visited indicates that the edge has been visited in a previous branch of the DFS tree.

Therefore no path starting from this edge or from a successor of this edge needs

to be explored.

At each step forward, all the paths of size 1 to k are added (Line 28) to a vertex v

by adding a pair (gid, r) where gid is an id corresponding to the graph and r is the

root of the path. Each time the algorithm backtracks from a vertex v, all the outgoing
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Algorithm 5 k-Path tree construction

1: function constructKPathTree(D,k)
2: for i ∈ 1, . . . , |D| do
3: AddToKPathTree(T ,D[i],k,i)

4: end function
5: procedure AddToKPathTree(T ,G,k,id)
6: N ← empty stack
7: R← nodes from G without parents . roots in G
8: for r ∈ R do
9: n← r, s← NULL

10: append n to N
11: while n 6= s do
12: s← NextNode(n,G,N)
13: if s = n then
14: n← pop an element of N
15: label all outgoing edges from n as visited
16: else
17: n push s into N
18: AddPaths(T,N,G, k, id)

19: end procedure
20: function NextNode(n,G,N)
21: En ← non closed outgoing edges from n in G
22: if |En| 6= 0 then
23: e← edge of En with minimum label
24: vis(e)← closed

return Target vertex of e
return n

25: end function
26: procedure AddPaths(T ,N ,G,k,id)
27: i← 0
28: while i < k and |N | − k > 0 do
29: if vis(N [|N | − i], N [|N | − i+ 1]) = visited then return

30: o = (id,N [|N | − i])
31: if (N [|N | − i], N [|N |]) ∈ E(G) then
32: Nt ← position of path N [|N | − i], . . . , N [|N |] of G to T
33: Add occurrence o to O(Nt)
34: elsereturn
35: end procedure
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edges are labeled as visited. This prevents the algorithm from adding the same path

multiple times.

A pruning of the non-frequent paths is performed at Line 31, which follows directly

from Theorem 10.2: if there is no edge between two nodes but there is a path between

them, this path may not be frequent. Moreover Theorem 10.2 shows that the edge

labeling is unique among all the frequent paths.

The k-Path Tree has multiple interesting properties. First, it contains all the k-

LMDF spanning trees of all the frequent AFGs. This is because the k-Path Tree

contains (in the sense of the subgraph relationship) all the paths up to size k present

in D, and therefore all the trees of maximum depth k. Therefore it also contains all

the trees in k-LMDF shapes. Moreover using Algorithm 5, it can be built such that a

large part of the non frequent paths are not considered, therefore reducing the search

space considerably.

The problem of generating all frequent spanning trees over the dataset then be-

comes the problem of enumerating all the subtrees of the constructed k-Path Tree

which include the root while ensuring that they correspond to k-LMDF spanning

trees.

11.2 Mining Closed AFGs using the k-path tree

In this section we consider that a k-Path Tree T has been constructed from a set of

Losses Graphs D with a set of labels L(D). We will start by giving an overview of

the pattern structure in 11.2.1. We will then describe the full FSM algorithm used by

MineMS2 in 11.2.2. Each building block of this algorithm will then be explained in the

following subsections. 11.2.3 gives a condition to ensure that a subtree of T may exist

in D. We will then show how the support of these subtrees may be computed easily

using the k-Path Tree(11.2.4). Section 11.2.5 details the process of 2-LMDF spanning

tree enumeration.

11.2.1 Pattern structure in MineMS2

In the MineMS2-FSM algorithm, a pattern consists of 5 elements:

G: The graph representing the pattern.
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Exts: The list of its possible extensions where each extension is listed as a triplet

(nG, l, nT ), with nG the starting vertex of the extension in G, l the label of the

edge, and nT the corresponding vertex in the k-Path Tree. This list is always

sorted in Depth First Left-Most order.

S: A set of the forbidden values of h(n).

O: A set of occurrences of the pattern in D.

n: The number of vertices in the graph.

The graph G represents the pattern. Two supplementary informations for each

vertex v of G are computed: the depth, denoted d(v), and the label of the edge

between the root of G and the node v, which is denoted h(v) as a label of node v, and

corresponds to the hT label extracted from the corresponding node in T .

11.2.2 Overview of the MineMS2-FSM algorithm

The MineMS2 FSM algorithm performs a Depth First exploration of the pattern space

(recursive call on Line 21). It starts from a set of seed patterns including 1 or 2 edges

(Line 13). At each step, a single seed pattern P is extended by a single edge, and the

k-Path Tree is used to check that the extended candidate: i) is frequent (Line 15), and

ii) is a possible subtree of a graph from D (Line 13). The closure of the frequent tree

is then checked (Line 20). If this is the case, the full AFG graph is rebuilt (Line 20),

and returned.

11.2.3 Ill-formed subtrees of T

Here we describe a simple criterion to detect a subtree of T which may not be a subtree

of any graph of D. An example of such a subtree is shown in Figure 11.3. This subtree

cannot occur in the original graphs of Figure 11.2 because it features two paths with

the same endpoints in the original graphs: it is not a subgraph of any graph of D.

We will call such subtrees ill-formed. An example of ill-formed subtree is shown in

Figure 11.3. Ill-formed subtrees can be detected by using the hT label of the k-Path

Tree.

Theorem 11.1. Let D be a set of Losses Graphs and T be their corresponding k-Path

Tree for a fixed k and a fixed frequency ε. Let G ∈ D and TG be a frequent subtree of D
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Algorithm 6 Overview of the MineMS2 FSM algorithm

1: function mineClosedAFGs(D, ε, k, tol)
2: T ← constructKPathTree(D, k)
3: EnumerateClosedAFGs(T,D, ε)
4: end function
5: function EnumerateClosedAFGs(T,D, ε)
6: S ← 1-edge or 2-paths patterns
7: for P ∈ S do
8: e← first elements of Exts(P )
9: ExtendkLMDFTree(P, e, T,D, ε)

10: end function
11: function ExtendkLMDFTree(P, e, T,D, ε)
12: Pe ← addition of edge e to P
13: if Pe is ill-formed then return

14: Occs(Pe) = calcOccurences(P, e, T )
15: if |Occs(Pe)| < ε then return

16: Enew ← NewExtensions(T, e)
17: Einf ← [e′ ∈ Exts(P )|e′ ≤ e]
18: Exts(Pe)← Exts(P ) ∪ Enew/Einf
19: Remove impossible extensions from E
20: if isClosed(Pe, D) then
21: Pe ← ReconstructAFG(Pe, D)
22: output Pe

23: for f ∈ Exts(Pe) do
24: ExtendkLMDFTree(Pe, f, T,D, ε)

25: end function

#

(1)
A:A

(2)
B:C

(3)
B:B

(4)
A:C

Figure 11.3: Example of an ill-formed subtree. Extracted from the k-Path
Treeshown in Figure 11.2c.
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occurring in G, rooted in r, and with a maximum depth inferior to k. By construction

of T , TG ⊆ T . Let φ be the mapping from TG to T . Then:

∀v, v′ ∈ V (TG), v 6= v′ ⇔ hT (φ(v)) 6= hT (φ(v′))

.

Proof. Let us suppose that there are v, v′ ∈ V (TG) satisfying hT (φ(v)) = hT (φ(v′)),

and let us write p = r, . . . , v and p′ = r, . . . , v′ the paths between the root and the

final node. Because of Property 10.2, there exists an edge between r and v, with

a label hT (φ(v)). Similarly, there exists also an edge between r and v′, with label

hT (φ(v′)) = hT (φ(v)). Since the outgoing labels from an edge are unique (Property 1),

there exists a unique edge with a given origin and label in a graph. As a result,

v = v′.

In practice, we will call a subtree Ta of T ill-formed if there exists two nodes u

and v of Ta such that hT (u) = hT (v). In contrast, if a tree is not ill-formed, it will be

called a correct subtree. It is clear that if a subtree is ill-formed, any supertree of this

subtree is ill-formed. As the proposed algorithm performs a Depth-First exploration,

this property is important to reduce the search space, as the algorithm may backtrack

from its DFS branch every time it meets an ill-formed pattern.

11.2.4 Efficient Support Computation

For the correct subtrees, the storage of the root of each path in the k-Path Tree enables

a simple computation of the support:

Theorem 11.2. Given a k-Path Tree T generated from a set of Losses Graphs D, and

Y be a correct subtree of T , then:

|SuppD(Y )| =
⋂
y∈Y

OT (y)

Proof. Let us call φY (D) the set of all isomorphisms between Y and the subgraph

of graphs from D. It is clear that |SuppD(Y )| = |φY (D)|. The inclusion φY (D) ⊂⋂
y∈V (Y )OT (y) is evident, a tree rooted in r occurs imply that all the path constituting

the trees occurs from r. We therefore just have to prove that
⋂
y∈V (Y )OT (y) ⊂ φY (D).
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Suppose that there is a pair (g, v) of
⋂
y∈V (Y )OT (y). Write G the graph corre-

sponding to g. For all y ∈ V (Y ) let us write py = r, . . . , y the path from the root of

T , r, to y, which exists by definition of T .

By construction of the occurrence set OT , ∀y ∈ V (Y ), there exists an isomorphism

fy : V (py) → V (G) with fy(v) = r such that p′y = v, . . . , fy(y) and p 'e p′. Now let

us consider the set VY in V (G) such that VY = [fy(y),∀y ∈ V (Y )]. Let us consider

the function f defined as f : V (Y ) → V (G) such that f = fy(v), as fy exists for all

y ∈ V (Y ).

Now let us prove that f is injective by contradiction. Consider y1, y2 ∈ V (Y )

such that y1 6= y2. By construction of T the label of edge (v, f(y1)) in G is hT (y1),

similarly the label of edge (v, f(y2)) in G is hT (y2). As Y is a correct subtree we have

hT (y1) 6= hT (y2) so (v, f(y1)) and (v, f(y2)) are two distinct edges. As G is not a

multigraph this means that f(y1) 6= f(y2). Therefore f is injective.

So by defining YG the image set of V (Y ) through f , f defines a bijection between

V (Y ) and YG, as f is injective and V (Y ) and VY have the same cardinal.

Now consider any edge of (u,w) ∈ E(Y ) with u,w ∈ V (Y ). As Y is a tree, u is

a children of w or reciprocally. We will consider that w is the children of u, but the

demonstration is symmetric. As there is a single path form the root to any node in

the tree pw the path from r to w includes u, therefore (u,w) ∈ E(pw) and therefore

(f(u), f(w)) ∈ E(p′w). As p′w ⊆e G, we have that (f(u), f(w)) ∈ E(G).

Therefore we have defined a subgraph isomorphism which preserves edge label

between Y and G and is therefore included in φTY (D). So
⋂
y∈V (Y )OT (y) ⊂ φTY (D).

Therefore by double inclusion we have that |SuppD(TY )| =
⋂
y∈Y OT (y)

This theorem ensure that the support of any correct subgraph of T and therefore

of any AFG can be computed simply by intersecting the occurrences sets O of the

corresponding vertices from T .

11.2.5 2-LMDF frequent spanning trees enumeration

We describe here an algorithm to enumerate the frequent spanning trees of 2-LMDF

shape from the 2-path trees of a set of Losses Graphs D with labels L(D). We use a

pattern-growth approach similar to Asai et al. 2002; Mohammed J. Zaki 2002, where

patterns are extended using right-most path extensions.
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11.2.6 Frequent subtree enumeration

Algorithm 7 2-LMDF spanning tree enumeration

1: procedure Enumerate2LMDFSubtrees(T, ε)
2: P0 ← InitializePatterns()
3: for p ∈ P do
4: EnumerateExtensions(P, T, ε)

5: end procedure
6: procedure EnumerateExtensions(P, T, ε)
7: output P
8: for e ∈ P.exts do . Adding an edge and a node to P
9: Pe ← ExtendPattern(P, e, T, ε)

10: if Pe 6=Empty pattern then
11: EnumerateExtensions(Pe, T, ε)

12: end procedure
13: function ExtendPattern(P, e, T, ε)
14: d← getLabel(T, e)
15: if d ∈ P.S then return Empty Pattern . ill-formed or non-LMDF subtree

16: Pe ← Copy of P
17: Pe.O ← P.O ∩ getOccs(T, e)
18: if |Pe.O| < ε then . Non frequent tree return

19: Pe.S ← P.S ∪ d
20: Einf ← [e′ ∈ P.exts| e′ ≤ e]
21: Esup ← [e′ ∈ P.exts|e′ > e]
22: for e′ ∈ Einf do . Non LMDF extensions
23: d′ ← getLabel(T, e′)
24: Adds d′ to Pe.S

25: Extse ← NewExtensions(e, T )
26: for e′ ∈ Extse do . extension leading to ill-formed subtree
27: d′ ← getLabel(T, e′)
28: Remove extension (nG, d

′, .) from Esup

29: Pe.exts = Extse ∪ Esup
30: end function

The algorithm first builds the set of 1-edge patterns as seed patterns (Line 2).

These patterns are then expanded in a Left-Most manner by using the stored Exts

lists, and in a depth first manner by the recursive call on Line 11. At each extension

step, a single edge e is added and the extensions which are not on the right-most

path anymore are removed (Einf in Line 20). To ensure that another spanning tree

including a node n with similar h(n) would not be generated later, h(n) is included in

the set of forbidden value Pe.S (Line 24). Finally, when an extension is added, the set

of the new extension is extracted from the k-Path Tree(Line 25). For these extensions,
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the corresponding h values are computed and removed from the extensions of Pe with

the same origin as e. A complete example is available in Annex A.

11.2.7 Completeness of the enumeration algorithm

The proof of completeness of the algorithm derives from the fact that right most

extension procedures are exhaustive (as demonstrated in Asai et al. 2002).

In Section 11.2.3, we have seen that if a graph was ill-formed, all of its supergraphs

were also ill-formed. Consequently, the extensions of a graph G may be stopped

directly as soon as G becomes ill-formed: the MineMS2 FSM algorithm therefore

checks that i) the tree is correctly formed (Line 15), and that extensions which would

lead to ill-formed trees are discarded (Line 26). This ensures that all generated subtrees

are correct.

As a consequence, it is possible to use Theorem 11.2 to compute the support of

the pattern in D (Line 17). Similarly to ill-formed patterns, if G is not frequent, its

supergraphs are not frequent, and G should not be expanded (Line 18).

We have shown that the generated subtrees are correct and frequent. Line 22

further ensures that they are left-most: every time an extension e is added, all the

edges at the left are put in Einf and their corresponding hT value is added to S. By

condition on Line 15 a node with a similar value of hT is never added, therefore no

extension at the left of an existing extension may be added. Similarly to the ill-formed

and frequent characteristic, it is clear that if a spanning tree is not LMDF, neither are

its supergraphs.

Therefore the algorithm stops only when it meets a tree which is not frequent

or not k-LMDF. In contrast, any k-LMDF tree may be produced as all its subtrees

are k-LMDF, and therefore by completeness of the right-most extension, it will be

constructed by the proposed algorithm.

Therefore the proposed algorithm generates all the 2-LMDF frequent subtrees.

However, as the full set of frequent 2-LMDF subtrees is explored, two additional steps

are required to ensure that closed AFG patterns are mined: i) a way to ensure that the

mined patterns are closed and ii) an algorithm to rebuild the AFGs from the 2-LMDF

subtrees.
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11.3 Mining closed patterns only

A subgraph is closed if there is no frequent supergraph of this graph. In practice, the

concept of closed patterns have been initially developed to mine closed itemsets, e.g.

in the CHARM algorithm (Mohammed J. Zaki and Hsiao 2002). The method relies on

the fact that, given a set of occurrences of the patterns, their biggest common patterns

(called the closure) may be generated directly from the items. This approach enables

an efficient pruning of the search space. However, the construction of the biggest

common graph from a set of graphs is known to be NP-complete (Garey and D. S.

Johnson 1979), and is not correctly defined in the case of rooted graph (there can be

multiple biggest common rooted graphs with different roots). Among the techniques

developed to mine closed subgraphs, the most generic is the closeGraph algorithm (Yan

and Han 2003). This algorithm highlights one of the main challenge of the mining of

closed subgraphs: Frequent Subgraph Mining algorithms focus on the generation of

each candidate a single time. Therefore there is often no link in the generation process

between a subgraph and one of its supergraph, except in the specific case of right most

extensions. As a result, a supplementary step to detect the potential supergraphs is

necessary.

The task requiring to get the full set of the frequent subgraphs to be sure that a

pattern is frequent may seem expensive. However, a useful property to reduce this

search was proved for general labeled graphs in Part 5 of Yan and Han 2003:

Theorem 11.3. Given two graphs G and G′ s.t. G ⊆ G′ and Supp(G) = Supp(G′),

then ∃H an extension of G by a single edge, or a node and an edge and H ⊆ G′, s.t

Supp(G) = Supp(H)

Therefore it is possible to evaluate whether a subgraph S is complete by simply

checking that there exists a 1-edge and 1-vertex (v) extension from S which have the

same support. In our case it is even simpler as any 1-vertex extension will either add

a node v linked to the root, as all vertices have an incoming edge from the root by

Theorem 10.3, or a new root (in which case the old root of S will have an incoming

edge from v).

Therefore a simple procedure may be derived to ensure that a graph is closed, by

considering only out-going and incoming-edges from the root described in algorithm

11.3.
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1: function isClosed(S,D)
2: (g0, v0)← first element of O(S)
3: Ein ← labels of incoming edge of v0 in D[g0]
4: Eout ← labels of out-going edge of v0 in D[g0]
5: H0 ← [h(v)|v ∈ V (S)]
6: Eout ← Eout −H0

7: for (g, v) ∈ O(S)|(g, v) 6= (g0, v0) do
8: Ein,v ← labels of incoming edge of v in D[g]
9: Eout,v ← labels of out-going edge of v in D[g]

10: Ein ← Ein ∩ Ein,v
11: Eout ← Eout ∩ Eout,v
12: if Ein and Eout are empty then return True

return False
13: end function

11.3.1 Reconstructing AFG form 2-LMDF tree

By property 2, an AFG G may be reconstructed from the initial set of Losses Graphs

D, by selecting any occurrence of G and mapping it to the associated graph. This can

be done by a single set matching using Theorem 10.3. Finally, the edges between the

matched nodes may be added to the k-LMDF tree.

11.4 Implementation

The full suite of developed algorithms was implemented as an R package named

MineMS2, and all the graph mining algorithm is implemented in C++ to speed

up computation. MineMS2 takes as input the database of spectra as a single file in

the standard mgf format for MS/MS data potentially generated by the MS2process

software described in section 9.9, and may return visualizations of the found patterns,

as well as their occurrences on the mass spectra, and eventually a network containing

the patterns and the spectra for a more general visualization.

11.5 Experimental results on real datasets

MineMS2 was applied to two datasets corresponding to two case studies. The first

dataset (PenicilliumDIA) results from Data Independent Acquisitions to character-
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ize the secondary metabolome from the pathogenic fungus Penicillium verrucosum

Hautbergue et al. 2017. A majority of the precursors are polypeptides. The second

dataset (LemmDB) is a database of MS/MS spectra from pure compounds (Labora-

toire d’Etudes du Metabolisme des Médicaments at CEA). It consists of 663 spectra

representing complementary chemical families (organic acids, amino acids, hormones,

plant metabolites, xenobiotics) selected according to their biochemical relevance, oc-

currence in biofluids, and commercial availability(Roux et al. 2012). For these two

datasets, the running time and the number of mined patterns were computed as a

function of the minimum frequency (Figure 11.5). The parameters used for the build-

ing of the Losses Graphs are given in Table 11.1. All computations were performed on

a laptop with a 2.6 Ghz Intel i7 processor and 8 Go of memory.

dataset PenicilliumDIA LemmDB
Number
of spectra 45 663
maxFrags 15
ppm 8 2
dmz 0.005 0.001
heteroAtoms No Yes
Number of
labels 179 1,368

Table 11.1: Parameters used for the building of the Losses Graphs .
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Figure 11.4: Application of MineMS2 to two real spectral collections. The
number of detected patterns (a) and the running time (b) as a function of the ε (fre-
quency) parameter are displayed for the LemmDB(red) and PenicilliumDIA(blue)
datasets.

MineMS2 was shown to be highly efficient, since both datasets could be mined in
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less than 6 min, although the LemmDB database contains more than 600 spectra.

In contrast, the reference algorithms for graph mining, GASTON (Nijssen and Kok

2004) and gSpan (Yan and Han 2002), were still running after 2 h (data not shown). In

addition, gSpan had already detected more than 2,000,000 patterns, showing that our

targeting strategy for subgraphs is of critical importance to obtain meaningful results.

Regarding the reference closed patterns mining algorithms, none of them could be

tested due to limited availability or incompatibility with our edge labeled graphs.

MineMS2 is therefore, to the best of our knowledge, the only algorithm able to mine

closed patterns from Losses Graphs . Since the current number of detected patterns

remains high, thus preventing a manual browsing by the end-user, we propose an

approach to reduce this number of patterns by using the inherent lattice formed by

the closed pattern. This approach is described in the discussion section as it is still a

work in progress.
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Chapter 12
Discussion

In the previous part we propose a new method of pattern mining using an efficient

subgraph mining algorithm, we will discuss the limits and possible extensions of this

methodology and his coupling with other existing algorithms.

The first limitations of the proposed methodology is the very high number of mined

motifs generated by our FSM approach. It therefore makes the implementation of step

of summarization of the pattern set mandatory. In the next section, we propose a

methodology to summarize the set of patterns by selecting the most informative. This

is presented in discussion as at the moment of writing of this PhD, it still is a work in

progress.

12.1 Summarizing the detected subgraphs

One of the main issues with Frequent Subgraph Mining Approach is the very high

number of mined subgraphs (Jiang et al. 2013). In this section, we present potential

strategies to summarize the set of mined closed subgraphs. We define the set L as

L = D ∩ C ∩ ∅, with D the set of Losses Graphs , C the set of the closed AFGs, and

∅ the empty graph. L is a subset from the set of all induced subgraphs from D, and

is therefore partially ordered by the subgraph relationship (denoted by ⊆).

As L is a finite and partially ordered set, it can be represented by a Directed Acyclic

Graph G where the vertices correspond to the elements of L, i.e. there exists a bijection

f : L→ G, and there is an edge from u ∈ V (G) to v ∈ V (G) if f−1(u) ⊆ f−1(v).
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Figure 12.1: Representation of patterns within the Hass Diagram (Penicilli-
umDIA dataset). Pink squares correspond to Losses Graphs . Blue circles indicate
AFGs: bigger nodes define super-patterns, and darker nodes correspond to patterns
with a higher chemical score. The AFG corresponding to each nodes is shown.

Although G is very large, a more sparse representation keeping the same amount

of information can be obtained by using the transitive reduction of G. The transitive

reduction of G is another directed graph H with the same vertices and as few edges

as possible, such that if there is a path from vertex v to vertex w in G, then there

is also such a path in H. This graph is known as the Hass Diagram of ad ordered

set and is defined for any finite partially ordered set. An example of Hass Diagram

corresponding to the full set of patterns from the PenicilliumDIA dataset is shown

in Figure 12.2.

Although the full Hass Diagram is difficult to interpret, a zoom on specific parts

provides a useful hierarchical representation of the patterns and of their structural

content (Figure 12.1).

Many approaches have been proposed to summarize big graphs (a recent review

of such algorithms may be found in arXiv:1612.04883v3). Such methods, however,

do not take into account the particularity of Hass Diagram and are not adapted to

our problem. A more closely related approach is the lattice reduction, derived from

Formal Concept Analysis (see the review in Dias and Vieira 2015). Nevertheless, these

methods tend to focus on the most frequent patterns, whereas highly specific patterns

are also important in our applications; in addition, they do not discriminate between
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Figure 12.2: Full Hass Diagram (PenicilliumDIA dataset). The empty graph
is omitted for visibility purpose. Pink squares correspond to Losses Graphs . Blue
circles indicate AFGs.
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the upper nodes in the hierarchy and the leafs, the latter being Losses Graphs which

must not be removed from the Hass Diagram.

We have therefore developed a new approach to reduce our Hass Diagram to k

nodes (where the number of selected patterns, k, is specified by the user), which:

1. keeps all the nodes corresponding to Losses Graphs .

2. keeps as many of the similarities between the Losses Graphs as possible.

12.1.1 Problem formalization

The proposed approach can be summarized as follows:

1. A score based on the Hass Diagramis defined between any pair of Losses Graphs

(as a measure of their similarity): SP .

2. The matrix of scores for all Losses Graphs is computed: M .

3. A heuristic approach is used to reduce the number of nodes to k while minimizing

the differences with the initial M .

∅ 0

A 1

B 2.1 C 2

D 3 E 8 F 2.8

G 1.2

1

2

3 4 5 6

Figure 12.3: Example of a Hass Diagram to be reduced. I nodes (Losses Graphs
) are shown as squares, and R nodes (AFGs) as circles. The score of each element
from R is indicated at the right of the node

Consider a Hass Diagram HD,C generated from a set of Losses Graphs D and a set

of closed AFGs C. For commodity purpose we denote it by H.Let us write I(H) the

vertices of H corresponding to Losses Graphs , and R(H) the vertices corresponding

to elements of C plus the empty graph.
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We assume that a non negative score S may be assigned to each pattern (as detailed

below in Section 12.1.2). S is a function from R(H)→ R+, with S(∅) = 0. Moreover

if X and Y are AFGs such that if X ⊆ Y then S(X) < S(Y ).

Now, for each pair of Losses Graphs , we define a score SP as a measure of the

similarity between them: it equals to the best score S among their common subgraphs.

As ∅ ∈ H , SP is always defined and is non negative. More formally let us define SPH

the function from I(H)× I(H) to R+ as:

SPH(A,B) = max
u∈pred(A)∩pred(B)

S(u)

Where pred(A) denotes all the predecessors from A in H. For example, in Figure 12.3,

SP (3, 4) = 3, SP (5, 6) = 2.8, SP (4, 6) = 2.8, and SP (1, 5) = 0.

SP may then be used to build a matrix of scores for all the Losses Graphs :

MH [j, k] = SPH(i−1(j), i−1(k))

where i : I(H)→ [1, . . . , |I(H)|] is an index associated to each Losses Graph .

MHD,C is our measure of the structural similarity between any pair of Losses Graphs

from D, based on the detected frequent patterns. This matrix is defined for any set of

closed patterns. It is symmetric.

Our Hass Diagram reduction objective can now be viewed as the decrease of the

number of patterns with the lowest impact on MH . This can be formulated as follows:

given a set of Losses Graphs D, a set of closed patterns C, and a specified number of

patterns k, find Co , a subset from C of size k, such that:

Co = argmin
C′⊂C
|C′|=k

RMSE(MHD,C ,MHD,C′
)︸ ︷︷ ︸

F

where RMSE is the Residual Mean Squared Error between the two matrices. Since F

can be seen as a cost function to optimize, finding Co is a combinatorial optimization

task.

12.1.2 Assigning a chemical score to an AFG

Our metric is derived from the scoring of fragmentation trees described in Rasche

et al. 2010. In MS/MS spectra from metabolites, some frequent losses convey little
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information (for example, the loss of H2O, or NH3). In contrast, some fragmentations

are more determinant for the chemical and biological interpretations (e.g. in the

PenicilliumDIA dataset, the loss of mass 147.068 corresponds to Phenylalanine).

Moreover, fragments of higher mass tend to be more specific. It is thus possible to

score each loss based on its mass and putative elemental formula. Compared to Rasche

et al. 2010, we added a term to penalize the frequent losses in the dataset. For a loss

L of mass mL and frequency fL in the initial set of Losses Graphs :

score(L) = sigmoid(fL)× Pknown − Pmono + log100(mL)

with sigmoid(f) = 1/(1 + e2(f−0.5)), Pknown a fixed term promoting known losses,

and Pmono a fixed term penalizing mono-atomic masses such as C2 which are highly

improbable, these terms may be furnished by the user. At the moment this score is

still a work in progress, so I do not detail the value of these parameters.

The score of an arborescence is defined as the sum of the scores from its edges.

The spanning arborescence with the minimum score is used to define the score of the

AFG. This minimal spanning arborescence can be computed by selecting the incoming

edge with the minimum score for each vertex of the each AFG.

12.1.3 Development of a greedy algorithm for pattern selec-

tion

A greedy algorithm was implemented to select k patterns while minimizing the mod-

ifications of the MHD,C matrix of spectra similarities. The algorithm was tested on

simulated small scale examples, where the optimal subset could be computed by brute

force search (see below). Since the selected subsets sometimes differ from the opti-

mal on these simulations, and since a bias towards large patterns was observed with

the large (real) spectral collections, the algorithm is not described here, and a more

complex approach need to be developed.

Evaluation on simulated datasets

As the generation of a set of random Losses Graphs and AFGs is difficult, we focused

on itemsets, which are also partially ordered sets (a Hass Diagram can therefore be

built). We generated 400 sets of itemsets (corresponding to 400 simulated databases

D) as follows: for each database, between 6 and 10 itemsets (corresponding to the
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Losses Graphs ) were created by combining up to 6 items (the losses). The set of

the closed frequent itemsets (corresponding to the AFGs in C) was mined using an

implementation of the CHARM algorithm (Mohammed J. Zaki and Hsiao 2002). A

score was drawn for each of the 6 items using a normal distribution of mean 5 and

standard deviation 2, and the score of each closed frequent itemset was computed as

the sum of the scores from the included items.

For each of these 400 databases and their associated closed frequent itemsets, the

Hass Diagram was built (Figure 12.4b) and M was computed. Then for k ∈ {2, 3, 4, 5},
if the number of frequent itemsets in the database was more than k, Co was found,

and the RMSE between the two matrices was stored and compared to the greedy

algorithm. This led to 1290 pairs of RMSE values obtained with the optimal selection

(RMSET ) and the greedy algorithm (RMSEG; Figure 12.4a).

(a)

(b)

Figure 12.4: Results on simulated itemsets. b): simulated Hass Diagram; the
node selected only by the optimal solution Co for k = 4 is in green, the node selected
by both the optimal solution and the greedy algorithm are in purple, and the node
selected by the greedy solution only is in red. a): boxplot of the log ratio between the
RMSE corresponding to the two approaches, for the 1290 simulations.

As shown by these simulations, selection by the greedy algorithm is suboptimal

(even with these small number of items). Observation of the optimum solutions,

however, seems to validate our optimization criterion. The challenge is therefore to

develop a better algorithm to find the optimal, or to relax the objective function so

that the optimum is easier to compute.
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12.2 Perspectives

12.2.1 Limits of patterns mining methods

MineMS2 is a method to mine exact subgraphs, to our knowledge the only existing

method of exact pattern mining which has been used in MineMS2 is the MEtabolite

SubStructure Auto- Recommender (MESSAR) software (Mrzic et al. 2017) mining

itemsets. Both of them only mine exact patterns, in contrast to the patterns mined

by MS2LDA (Hooft, Wandy, Barrett, et al. 2016). In both MineMS2 and MESSAR,

a large number of patterns is detected. This may be explained by the skewness of

the label distribution (Figure 12.5): many patterns may appear randomly (this is the

reason why we penalize frequent losses in the Section 12.1).

Figure 12.5: Distribution of labels in the set of Losses Graphs (LemmDB
dataset). The 6 most common losses labels are: H2O, CH2O2, C2H2, C2, C2H2O,
H3N .

The high number of patterns may also be the result from the partial fragmentation

of the molecules: the fragmentation patterns from a substructure common to several

compounds may differ according to the global structure of these compounds. If, for

example, one of the compound is much bigger than the other one, the energy in the

collision cell may not be sufficient to achieve the fragmentation up to the substructure

of interest. Such a bias may be partially overcome by using the sum of spectra from

different energies, but this still increases the number of different fragmentation patterns

for a single substructure.
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Finally while the utility of non-exact patterns for direct annotation has been

demonstrated in Hooft, Wandy, Barrett, et al. 2016, the use of exact patterns seems

more difficult as they are more dataset dependent and less flexible. On the other hand

inexact pattern as proposed in MS2LDA are more difficult to interpret, and dependent

of less intuitive parameters: during my experiments, I had a very hard time param-

eterizing MS2LDA caused by the fact that it includes multiple hyper-parameters. In

practice this led to the detection of pattern including H2O with a very high probability

and hundreds of other losses/fragments with a probability inferior to 2%. In contrast,

the parameters of MineMS2 are limited to the number of fragments considered and

the accuracy of the mass spectrometer.

Besides the limits of the exact pattern mining methods, the MineMS2 addresses

some inherent challenges, notably due to the discretization process: in practice we

noted that the discretization of a set of masses differences is way less trivial than

the discretization of a set of masses. We therefore added a step of label merging

in the workflow. As this labeling step remains difficult, property 2 (”An edge may

be removed from any connected graph which remain connected without changing his

support”) might not be always satisfied. In practice, however, we checked that the

property was valid in 95% of the Losses Graphs (LemmDBdataset).

Furthermore the formula generation may possibly be improved by removing some

really improbable formulas: for example C2 is a valid formula in terms of a molecular

graph but requires a quadruple bond between the two carbons, a case that may never

occur in nature.

Finally the most obvious flaw of MineMS2 is the inherent exponential nature of

the mining process, which makes it less scalable than the method proposed by Hooft,

Wandy, Barrett, et al. 2016: we have however shown that MineMS2 could be run in

a few minutes on datasets of realistic size (e.g. 700 spectra). To further increase the

size of the input set of spectra, the number of peaks by spectrum may be reduced

(maxFrag argument of MineMS2), but this may result in missing some important

patterns in spectra with a high number of peaks.
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12.2.2 Extensions of MineMS2

Mining both fragments and losses

Although the mined patterns are currently limited to losses, the software may be ex-

tended to also include information about the fragments. This would be of high value

for molecules which are characterized by a single fragment (e.g. lipid families). In

the current version, MineMS2 mines patterns consisting of fragments only if there is

a loss between them (i.e., if the formula of the first fragment is included in the for-

mula of the second fragment). Although the inclusion of additional fragment-based

patterns seems difficult, it is possible to integrate them into the graphs by discretizing

the masses, and considering them as vertex labels. However, such an approach would

probably be computationally intractable apart from datasets of very limited size. The

direct mining of both losses and fragments seems therefore difficult with the proposed

methodology.

However, the mining of fragments alone is possible with the methodology by sim-

ply modifying the Losses Graphs construction process. An artificial peak of m/z 0

could be added, and the full set of mass difference would be constructed. Then all the

negative mass differences would be kept and their absolute value would be discretized

using the proposed algorithm. The mass difference originating from the 0 peak would

be then discretized separately, and the formula generation would need to take into

account the mass of the added adduct ion, as the fragments are charged. This would

lead to a set of graphs similar to Losses Graphs where the precursor would be re-

placed by the m/z 0 peak and the topological order would be inverted however all the

edges between fragments ions other than the precursor peak and the 0 peak would be

inverted. This set of graphs would have exactly the same properties than the Losses

Graphs and could be mined using the same algorithms. While the combination of

the two sets of patterns is far from trivial, this approach is, to my opinion, the most

realistic to mine simultaneously fragments and losses. Moreover the combined set of

both type of patterns may still be represented by a Hass Diagram, and the approach

of Hass Diagram reduction described in Section 12.1 would therefore be applicable.

Another possible extension of the MineMS2 software is the development of a visual-

ization module, which would offer a more interactive exploration of the set of patterns.

In particular, targeted queries would be available, such as the isolation of patterns with

a specified loss, or the finding of the biggest pattern within a spectrum. Pattern visu-

alization would be very useful for biologists, since the task of MS/MS analysis and de
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novo identification currently requires a large amount of manual work, and this module

would therefore considerably increase the value of the proposed methodology. Some

exploration features have already been implemented in C++ in the R package, and

the addition of a web interface would be useful.

12.2.3 Interpretability of MineMS2 derived patterns

MineMS2 has some strong advantages over alternative MS/MS exploration approaches,

due to the pattern mining strategy: in particular, patterns are more interpretable than

the single similarity measure computed by GNPS (M. Wang et al. 2016), and more

related to the physical fragmentation process than the discrete distribution mined by

MS2LDA (Hooft, Wandy, Barrett, et al. 2016).

While the pattern mining and the structure prediction objectives have been ad-

dressed separately up to now, an interesting approach to combine both strategies has

been proposed in MESSAR, association rule mining is used to relate spectral features

(fragments and losses) to substructures. The proposed methodology, however, does

not take into account the fact that losses may be consecutive. A similar approach

could potentially be used with MineMS2, by considering each pattern as an item and

each Losses Graph as an itemset, thus finding fragmentation patterns corresponding

to known substructures.

12.2.4 Potential coupling of MineMS2 to in silico fragmen-

tation methods

As stated in introduction, MineMS2 was developed to work on a graph representation

from the mass spectrum. Since graphs are also used in in silico fragmentation models,

pattern mining could be included in such approaches. The main in silico fragmentation

methods (Ruttkies et al. 2016; Böcker and Dührkop 2016; Tsugawa, Kind, et al. 2016)

currently test a vast number of possible fragmentations for each compound, and then

select the best scoring one according to some specified criterion (see section 9.2 ).

By using MineMS2, the detection of meaningful patterns common to several spectra

would suggest common fragmentation subtrees: therefore, a constraint of equality

between the subtrees may be included into the scoring process. This would vastly

differ from the usual in-silico fragmentation methods, which always consider all the

spectra independently, and therefore ignore the fact that spectra acquired in a single

acquisition will probably share a higher degree of similarity.
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Chapter 13
Conclusion

In this thesis, we have described the two innovative contributions we developed and

implemented for the high-throughput processing and annotation of metabolomics data

from high-resolution mass spectrometry.

In Part II, we proposed the first freely available workflow for the processing of

FIA-HRMS data, based on an approximation of the physical processes affecting an

the EIC signal (Delabrière et al. 2017). Features detection and quantification were

shown to be as accurate and much faster than the manual processing by chemical

experts, and to outperform reference algorithms for LC-MS data such as centWave.

The resulting software, named proFIA, is available as an R package on Bioconductor

(https://doi.org/10.18129/B9.bioc.proFIA), and as a Galaxy module within the Work-

flow4Metabolomics online platform. proFIA features several new algorithms including

an indicator of matrix effect, and an estimation of the sample peak, which should also

be helpful for experimenters when optimizing the analytical setup.

To our knowledge, matrix effect is the main limiting factor of FIA-MS, however,

while a lot of possible factors have been proposed (see section 5.1.2), its effect on a full

biological sample has not been evaluated. The raw matrix effect indicator proposed

by proFIA is a first step in this direction and could potentially be used to evaluate the

matrix effect in function of the characteristics of the molecules. This could have a great

impact on the analytical workflow at many level. For example it would potentially

allow to use FIA-MS in targeted experiments if the targeted compounds are known

to ionize correctly. Similarly while the initial discovery of a biomarker in LC-MS is

better because of its higher sensitivity, its validation could potentially be performed in

FIA-MS if its ionization is known to be sufficient. A better understanding of matrix
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effect could also lead to improvement in the DI-MS technique, the other other widely

used high-throughput approach.

More generally, proFIA by mimicking the physical process allows a better insight

into the quality of the analytical protocol by providing a quick classification of the

observed signals (See figure 6.10). This kind of approach, which allows a quick evalu-

ation of an experimental setup could potentially be also used in LC-MS with different

metrics. While in FIA the desired peak shape is an asymmetric peak, in LC-MS the

desired peak shape is a Gaussian, and generally the peak picking approach has been

tailored to detect Gaussian peaks. However non Gaussian peak exhibiting tailing or

fronting may arise from various physico-chemical factors, or from the internal process-

ing of the mass spectrometer (Wahab et al. 2017) . These peaks are harder to quantify

and generally more difficult to reach, therefore a classification of the peak shapes in

LC-MS acquisition could potentially allow an optimization of the acquisition protocol

to optimize signal shape and increase the peak picking software efficiency.

In Part III, we developed a new approach to extract structural similarities within

a set of MS/MS spectra. The strategy relies on a new representation of fragmentation

spectra as graphs which does not require prior knowledge of the elemental formula from

the precursor, as well as a dedicated Frequent Subgraph Mining suite of algorithms

to efficiently extract the set of closed frequent subgraphs. Input high-quality spectra

may be generated by the MS2process module that we developed. The mining workflow

itself, implemented as the MineMS2 R package, was shown to successfully mine two

large collections of spectra (DIA experiment and in-house database). As the set of

frequent patterns is large, a method is currently being developed to summarize this

set. As soon as this final step is validated, the manuscript and the package will be

submitted.

The proposed pattern mining approaches has multiple potential applications. First

the concept of patterns, while having some inherent limitations discussed previously,

has a high potential of coupling with machine learning approaches. A set of patterns

could be used to define a set of features upstream of a machine learning approach.

Such features would potentially be more interpretable than the usual features or ker-

nel used, as they would be extracted directly from similar data. Moreover in the case

of MineMS2, the proximity with the chemical fragmentation makes them more inter-

pretable. Such interpretable features are really important, especially to allow a better

use of these computational tool in the metabolomics community.

While the two parts address distinct data analysis questions, the underlying strat-

egy was similar: building a model mimicking the physical process as much as possible,
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and providing new interpretable informations, such as the sample peak in FIA or the

fragmentation patterns in MS2 annotation. Furthermore, both proFIA and MineMS2

packages have been successfully combined to automatically process the LemmDB

dataset, which consists of MS/MS spectra from standards acquired with an FIA-HRMS

protocol.

This PhD therefore provides solutions to the community on two major challenges

for high-throughput metabolomics: the preprocessing and the annotation.
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Appendix A
k-LDFM subtree enumeration example

Here we describe the generation of all subtrees from the k-Path tree from Figure 11.2

using Algorithm 7.

#

(1)

A:A

(2)

B:C

(3)

B:B

(4)

A:C

(5)

C:C

(1,0)
(1,2)
(2,0)
(2,2)

(1,0)
(2,0)

(1,1)
(1,2)
(2,0)
(2,1)

(1,1)
(2,0)

(1,0)
(1,1)
(2,0)

This tree is similar to the k-Path Treefrom Figure 11.2c. A unique identifier has

been added in parenthesis for each node v. The bold letter indicates the label of

the corresponding edge l(v), and the second label is h(v). O(v) are shown in dashed

boxes. For clarity, the growth of each pattern starts from the root (in contrast to

Algorithm 7), and the computation of the support is also detailed.
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0

A B C

Exts = ((0, A, 1),

(0, B, 3), (0, C, 5))

S = ∅

Initial state (1)

Initially, only the root is present on the graph

and all extensions are possible. Here, the ex-

tensions are showed in dashed lines for vi-

sualization purpose, and the root node is in

red.

0

1

A B

B

Exts = ((1, B, 2), (0, B, 3))

S = {A}

O = {(1, 0), (1, 2),

(2, 0), (2, 2)}

Extension (0, A, 1) (2)

Step 2: After the first extension (0, A, 1)

is added, the extension (1, B, 2) is added by

looking at the possible labels of the succes-

sors in T . Extension (0, C, 5) becomes impos-

sible because it would lead to the same node

as extension (1, B, 2), as readily detected by

checking that hT (2) = C. The occurrences

are directly extracted from T .

0

1

2

A

B

B

C

Exts = ((0, B,X))

S = {A,C}

O = {(1, 0), (2, 0)}

Extension (1, B, 2) (3)

The addition of (1, B, 2) does not result in a

new extension as there is no extension from

(2) in T . A C edge is is directly added from

the root of the pattern because hT (2) = C.

The new occurrence set in computed by in-

tersecting the occurrences of the parent pat-

terns and the occurrences of OT (2).

Exts = ()

S = {A,C}

Test of (0, B, 3) and backtrack (4)

The support of the graph obtained by ex-

tending (3) by (0, B, 3) is {(1, 0), (2, 0)} ∩
{(1, 1), (1, 2), (2, 0), (2, 1)} = {(2, 0)}, there-

fore it is not frequent and the algorithm back-

tracks to (2).
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0

1 2

A B

A

Exts = ((2, A, 4))

S = {A,B,C}

Extension (0, B, 3) (5)

Because we add an extension which is su-

perior in Left-Most Depth-First Order, the

extension (1, A, 1) is removed. hT (1) is also

added to S. Extension (2, A, 4) is added from

the path tree. The intersection of the occur-

rence sets is performed.

Exts = ()

S = {A,B,C}

Test of (2, A, 4) and backtrack (6)

Because hT (4) = C and C is in S, the algo-

rithm backtracks to (1), as there is no more

extension in (2).

0

1

B

A

Exts = ((1, A, 4))

S = {A,B}

Extension (0, B, 3) (7)

Because we add an extension which is supe-

rior to (0, A, 1) in the Left-Most Depth First

order, the extension (0, A, 1) is removed as

hT (3) = A, A is added to S. Extension

(1, A, 4) is added from T .

0

1

2

B

A
C

Exts = ()

S = {A,B,C}

Extension (1, A, 4) (8)

Because hT (4) = C, C is added S. There is

no new extension to be added from T .

Exts = ()

S = {A,B,C}

Backtrack to (1)

As there is no more extension in (7) and

(8), the algorithm backtracks to (1).

0

1
C

Exts = ()

S = {A,B,C}

Extension (0, C, 5)(1)

As the extension (0, C, 5) is added, (0, A, 1)

and (0, B, 3) extensions are removed because

they are lower in the Depth-First Left-Most

order. As a result, A and B are added to the

set of forbidden values.
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After this step, the algorithm ends, as all the possible spanning subtrees have been

visited.
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Synthèse

Dans cette thése sont décrites deux contributions distinctes que nous avons développées

et mises en œuvre pour le traitement à haut débit et l’annotation des données métabolomiques

de la spectrométrie de masse à haute résolution. Un état de l’art global introduisant

la métabolomique et justifiant les travaux effectués dans cette thèse est dréssé dans la

section 2. Cette thése est donc divisèe and deux parties inépendantes.

Dans la partie II, nous avons proposé le premier workflow librement disponible

pour le traitement des données haut débit d’Analyses par injection en Flux Continues

(FIA), une technique de métabolomique haut-deébit. Cet algorithme est basé sur une

étude de l’état de l’art de la détection de pics en métabolomiques effectuées en section

4. Pour cela nous avons proposé un nouveau modéle basé sur les processus physiques

affectant l’intensité mesuré pour chaque ion. Trois composants ainsi que des moéles

calculables pour chacun d’entre eux ont éte extraits dans le chapitre 5. Les composants

les plus important sont les suivants : un pic résultant du gradient de concentration

induit par le système de FIA noté P , l’effet matrice qui est exprimé en fonction du

pic d’injection en vert. La somme des ces deux composants est le quantité d’ion qui

passe dans le spectromètre de masse. Néanmoins de par la mesure de cette intensité

par le spectrométre de masses, un bruit hétéroscedastique s’y ajoute. Ce modéle est

étudi’e plus en détail dans le chapitre 6. Suite á des experiences sur des données

simulées on constate notamment que les paramètres du modéles sont trop difficiles á

estimer quand le signal est trop affecté par l’effet matrice. Un workflow tenant en

compte cette spécificité est a donc été développé et est décrit dans la figure. Dans une

premiére parties des bandes de points de masse proches et consecutifs sont détectés.

Certaines bandes, suffisamment intenses et pécsentant un pic bien visible sont ensuite

utilisées pour estimer P . Cette estimation est ensuite utilisée pour filtrer les signaux et

estimer les limites de l’injection pour chaque ion. Cette méthode permet notamment

d’obtenir des indicateurs de qualités des signaux interprétables chimiquement. Cette

méthode est à notre connaissance la premiére à permettre d’extraire des métriques

mesurant l’effet mátrice. Cet algorithme de détection de pics ainsi que des algorithmes

d’alignement des signaux et d’imputation des données manquantes permettant un

prétraitement complet des données de FIA-HRMS. Ils ont été packagé dans un paquet

R, textbfproFIA.

Ce workflow a été évalué sur des données réelles dans le chapitre 7. Pour cela

proFIA a été comparé à la détection de pics manuelles effectuée par un expert, ainsi

qu’à XCMS(C. Smith et al. 2006) une méthode de référence. Il a été démontré sur
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plusieurs appareils que proFIA était plus sensible et plus reproductible dans les deux

cas. De plus proFIA avait des performances très proche de la détection manuelle par

un expert qui peut être considéré le gold standard. Ces résultats illustrent l’intérêt de

la méthodologie proposée. Les perspectives de ce travail sonc discutés dans la partie

8, on peut notamment noter l’utilisation des métriques d’effet matrices pour mieux

comprendre les classes de molécules affectées.

La deuxième partie du doctorat a porté sur à l’annotation structurale des métabolites

des spectres MS/MS, qui constitue un enjeu majeur en métabolomique. Un état de l’art

de cette problèmatique est donné dans la section 9.4. Nous proposons une méthode

d’extraction de motifs de fragmentation d’une collection de spectres basées sur une

modélisation des spectres sous formes de graphes. Pour cela dans le chapitre 10 nous

proposons une nouvelle représentation des spectres de fragmentation sous forme de

graphe qui ne nécessite pas de connaitres la composition moléculaire de l’ion parent

pour être construite. Nous détaillons le processus de construction de ces graphes et

leurs propriétés tout au long du chapitre 4. L’une des propriétés les plus importantes

données dans ce chapitre le fait qu’il est possible d’obtenir un algorithme de com-

plexité linéaire pour résoudre le problème d’isomoprhisme de graphes sur ces graphs

particuliers.

Dans le chapitre 11, un algorithme de Frequent Subgraph Mining adaptés à ces

graphes est proposé. Cet algorithme repose sur une constatation tirés d’un état de l’art

sur les algorithmes de FSM dressés dans la section 9.6, les problèmes de FSM étant

très demandeur en calcul, il faut réduire l’espace des sous graphe recherchés autant

que possible. Pour cela dans le chapitre 11 on montre qu’il est possible de se limiter à

la génération de sous arbres fréquents plutôt que de sous graphes. L’exhaustivité de

l’algorithme de génération des sous graphes fréquent est prouvée. Cet algorithme a

été implémenté dans un package R/C++ mineMS2, et il a été testé sur deux jeux de

données biologiques. Sur un jeu de donées de plus de 600 spectres l’agorithme tourne

en moins de 5 minutes, contrairement aux algorithme de FSM plus généraux qui ne

terminent pas en 2 heures. Ceci est dû à la topologie spécifique des graphes minés qu’ils

ne prennent pas en compte. Les limites et les perspectives de cette méthodologie sont

discutées dans la section 12, notamment le grand nombre de motifs de fragmentations

extraits.

Cette thèse présentedeux contributions originales au traitement de données metabolomiques,

toutes deux diponibles à la communauté sous forme de package R (mineMS2). Les

deux méthodes proposées sont de plus toute deux dérivées du processes physique,

permettant une plus grand interprétabilité.
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Titre : Nouvelles approches pour le traitement et l’annotation des données de
métabolomique haut débit obtenues par spectrométrie de masse haute-résolution

Mots-clés : Analyse de Graphes, Metabolomique, Détection de sous graphes
fréquents, Traitement du signal

La métabolomique est une approche de
phénotypage présentant des perspectives
prometteuses pour le diagnostic et le
suivi de plusieurs pathologies. La tech-
nique d’observation la plus utilisée en
métabolomique est la spectrométrie de
masse (MS). Des dévloppements tech-
nologiques récents ont considérablement
accru la taille et la complexité des
données. Cette thèse s’est concentrée
sur deux verrous du traitement de ces
données, l’extraction de pics des données
brutes et l’annotation des spectres.
La première partie de la thèse a portée sur
le développement d’un nouvel algorithme
de détection de pics pour des données
d’analyse par injection en flot continue
(Flow Injection Analysis ou FIA), une
technique ahut-débit. Un modèle dérivé
de la physique de l’instrument de mesure
prenant en compte la saturation de
l’appareil a été proposé. Ce modèle in-
clut notamment un pic commun à tous
les métabolites et un phénomène de sat-
uration spécifique pour chaque ions. Ce
modèle a permis de créer une workflow
qui estime ce pic commun sur des signaux
peu bruités, puis l’utilise dans un filtre

adapté sur tous les signaux. Son efficacité
sur des données réelles a été étudié et il
a été montré que proFIA était supérieur
aux algorithmes existant, avait une bonne
reproductibilité et était très proche des
mesures manuelles effectuées par un ex-
pert sur plusieurs types d’appareils.
La seconde partie de cette thèse a
portée sur le développement d’un outil de
détection des similarités structurales d’un
ensemble de spectre de fragmentation.
Pour ce faire une nouvelle représentation
sous forme de graphe a été proposée qui
ne nécessite pas de connâıtre la composi-
tion atomique du métabolite. Ces graphes
sont de plus une représentation naturelle
des spectres MS/MS Certaines propriétés
de ces graphes ont ensuite permis de créer
un algorithme efficace de détection des
sous graphes fréquents (FSM) basé sur la
génération d’arbres couvrants de graphes.
Cet outil a été testé sur deux jeux données
différents et a prouvé sa vitesse et son in-
terprétabilité comparé aux algorithmes de
l’état de l’art.
Ces deux algorithmes ont été implémentés
dans des package R, proFIA et mineMS2
disponibles à la communauté.
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Metabolomics is a phenotyping approach
with promising prospects for the diagno-
sis and monitoring of several diseases. The
most widely used observation technique in
metabolomics is mass spectrometry (MS).
Recent technological developments have
significantly increased the size and com-
plexity of data. This thesis focused on two
bottlenecks in the processing of these data,
the extraction of peaks from raw data and
the annotation of MS/MS spectra.
The first part of the thesis focused on the
development of a new peak detection al-
gorithm for Flow Injection Analysis (FIA)
data, an high-throughtput metabolomics
technique. A model derived from the
physics of the mass spectrometer taking
into account the saturation of the instru-
ment has been proposed. This model in-
cludes a peak common to all metabolites
and a specific saturation phenomenon for
each ion. This model has made it pos-
sible to create a workflow that estimates
the common peak on well-behaved signals,
then uses it to perform matched filtration

on all signals. Its effectiveness on real data
has been studied and it has been shown
that proFIA is superior to existing algo-
rithms, has good reproducibility and is
very close to manual measurements made
by an expert on several types of devices.
The second part of this thesis focused on
the development of a tool for detecting the
structural similarities of a set of fragmen-
tation spectra. To do this, a new graphical
representation has been proposed, which
does not require the metabolite formula.
The graphs are also a natural representa-
tion of MS/MS spectra. Some properties
of these graphs have then made it possi-
ble to create an efficient algorithm for de-
tecting frequent subgraphs (FSM) based
on the generation of trees covering graphs.
This tool has been tested on two different
data sets and has proven its speed and in-
terpretability compared to state-of-the-art
algorithms.
These two algorithms have been imple-
mented in R, proFIA and mineMS2 pack-
ages available to the community.
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