
HAL Id: tel-01947003
https://theses.hal.science/tel-01947003v1

Submitted on 6 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and qualitative simulation of hybrid systems
Hadi Zaatiti

To cite this version:
Hadi Zaatiti. Modeling and qualitative simulation of hybrid systems. Modeling and Simulation.
Université Paris Saclay (COmUE), 2018. English. �NNT : 2018SACLS493�. �tel-01947003�

https://theses.hal.science/tel-01947003v1
https://hal.archives-ouvertes.fr

Th
ès

e
de

 d
oc

to
ra

t
N

N
T

:
20

18
S
A

C
L

S
49

3

Modélisation et simulation
qualitative de systèmes

hybrides

Thèse de doctorat de l’Université Paris-Saclay préparée à:

Université Paris-Sud

Commissariat à l’Énergie Atomique

École doctorale n◦ 580
Sciences et technologies de l’information et de la communication (STIC)

Spécialité de doctorat: Informatique

Thèse présentée et soutenue à Orsay, le 29 novembre 2018, par:

Hadi Zaatiti
Composition du jury:

Sylvain Conchon Président
Professeur, Université Paris-Sud

Walid Taha Rapporteur
Professeur, Université de Halmstad

Goran Frehse Rapporteur
Professeur, ENSTA-ParisTech

Erika Ábrahám Examinatrice
Professeur, Université RWTH Aachen

Philippe Dague Directeur
Professeur, Université Paris-Sud

Jean-Pierre Gallois Co-encadrant
Ingénieur, Commissariat à l’Énergie Atomique

1

Acknowledgements

I am forever in debt to my professor Philippe Dague for guiding me

throughout the thesis. He provided me with constant feedback, was

always available for any inquiry and showed me new horizons to extend

the research. Without his help the current quality of the thesis work

and the present manuscript would have never been achieved.

I thank my supervisor Jean-Pierre Gallois for the daily discussions

about the thesis topic and his constant supervision over the works.

My sincerest thanks goes also to Lina Ye for bringing her expertise in

the diagnosability verification domain, her work in co-authoring the

publications and her numerous advice.

The help I received at CEA from my colleagues Arnault and Stéphane

during my implementation work was of major importance, for that I

thank them indefinitely.

I address my profound thanks and gratitude to professor Walid Taha

and professor Goran Frehse for taking the time to evaluate my manuscript,

their valuable comments and for taking part of the jury for my thesis

defence. I also thank professor Erika Ábrahám and professor Sylvain

Conchon for accepting to take part in the jury and assisting to the oral

defense.

I thank my family, my mother Hala, father Samir and sister Saly living

in my home country Lebanon for their eternal support and their visits

to France for checking up on me constantly.

My thanks goes also to my friends Ben, Jad, Houssam, Nadine, Ghida,

Dory, Slim, Lamia, Minh-Thang and Imene for being there for me in

time of need.

Abstract

Hybrid systems are complex systems that combine both discrete and

continuous behaviors. Verifying behavioral or safety properties of such

systems, either at design stage or on-line is a challenging task. Actu-

ally, computing the reachable set of states of a hybrid system is un-

decidable. One way to verify those properties over such systems is by

computing discrete abstractions and inferring them from the abstract

system back to the original system. We are concerned with abstractions

oriented towards hybrid systems diagnosability checking. (Bounded)-

diagnosability can be see as the ability of the system (or an extended

system) to localize a problem in bounded time such as the occurrence

of a fault. Our goal is to create discrete abstractions in order to verify

if a fault that would occur at runtime could be unambiguously detected

in finite time by the diagnoser. This verification can be done on the

abstraction by classical methods developed for discrete event systems,

which provide a counterexample in case of nondiagnosability. The ab-

sence of such a counterexample proves the diagnosability of the original

hybrid system. In the presence of a counterexample, the first step is

to check if it is not a spurious effect of the abstraction and actually

exists for the hybrid system, witnessing thus non-diagnosability. Oth-

erwise, we show how to refine the abstraction and continue the process

of looking for another counterexample.

Contents

1 Introduction 1

1.1 Contributions . 3

1.2 Thesis outline . 3

1.3 Summary in french . 5

2 Scientific Context 10

2.1 Modeling and verification . 10

2.2 Qualitative Modeling and Simulation 17

2.3 Hybrid Systems Verification . 27

2.4 System Diagnosability . 43

2.5 Tools and Challenges in Hybrid Systems Verification 47

2.6 Chapter Summary . 50

3 Framework for Hybrid Automata Verification 52

3.1 Hybrid Automata . 52

3.2 Diagnosability: Observations and Faults 68

3.3 Chapter Summary . 73

4 Qualitative Abstractions for Hybrid Automata 74

4.1 Qualitative Abstractions . 74

4.2 Algorithmic computation of the abstraction 89

4.3 Application to diagnosability verification 108

4.4 Chapter Summary . 120

i

Contents ii

5 Implementation and Experimental results 122

5.1 Automating the abstraction computation 122

5.2 Examples and simulation results . 127

5.3 Chapter Summary . 133

6 Conclusion 136

6.1 Results Summary . 136

6.2 Comparison with the existing literature 137

6.3 Perspectives . 138

6.4 Publications . 141

A Tool Grammar and Models 142

A.1 Tool Grammar . 142

A.2 Input models . 143

B Discussion on critical points 146

Bibliography 147

ii / 162

Chapter 1

Introduction

The thesis is concerned with the formal verification of complex systems at mod-

eling stage. Precisely, the complex systems dealt with are hybrid systems that

exhibit a twofold behavior: continuous and discrete. Hybrid Automata are a com-

mon framework to model hybrid systems using finitely many discrete modes and

continuous real-valued variables. They provide an intuitive, powerful and general

way to model a large number of practical systems, applicable in many domains:

aeronautics, railway, biology and more generally cyber-physical systems (CPS)

where control loops act upon digital electronic circuits (discrete behavior) and are

orchestrated by the physical environment (continuous processes).

The problem of hybrid systems verification is addressed, i.e., given a hybrid au-

tomaton model and a property, does the model verify this property? The literature

shows that the verification of hybrid systems is challenging. In fact, the study of

hybrid systems requires cross-disciplinary competences. Consequently, verification

methods must couple and extend results originating from different domains such as

control theory, applied mathematics and both theoretical and practical computer

science. Moreover, due to the expressiveness of the hybrid automata modeling lan-

guage, verifying the most simple properties (such as reachability) is undecidable

for hybrid systems. Progress in hybrid systems is also held back by the lack of a

strong standardized specification and modeling language. Many tools for hybrid

systems verification exist today, each of them having its own input language and

addressing a specific problem with particular methods.

The work addressed by this thesis is the application of principles from the

1

Chapter 1. Introduction 2

qualitative reasoning domain to hybrid systems verification. Intuitively, qualita-

tive reasoning aggregates similar behaviors of the system into representative sets

and reasons over these sets. The relations describing the representative sets allow

a global overview of the system behavior, performing as such, what is called in

the literature, a qualitative simulation. For hybrid systems, it is difficult to ag-

gregate any exact set of behaviors. For this reason, representative sets that are

over-approximations of the real system behaviors are used. The overview mapping

is thus an abstraction relating the real (or concrete) system and the related rep-

resentative (or abstract) sets. The abstract system being an over-approximation,

a class of properties can be verified using the abstraction and inferring the result

to the concrete system.

The topic of hybrid systems verification being too general, a particular prop-

erty is addressed: diagnosability. This property of the system supposes that a

given hybrid automaton models, not only the correct behavior of the system, but

faulty ones as well. Practically speaking, if the system is inevitably unable to

avoid the occurrence of a fault(s) and if the faulty behavior can be character-

ized in advance, one can model this faulty behavior. The system is considered

diagnosable if it is able to detect the faulty behavior and identify the fault that

occurred among the set of possible faults after the fault occurrence. Moreover, the

system is supposed partially observable, thus, diagnosability analysis should only

use the partial observations to establish its verdict. Our goal is to create discrete

abstractions in order to verify, at design stage, if a fault that would occur at run

time could be unambiguously detected in finite time (or within a given finite time

bound for bounded diagnosability) by the diagnoser using only the allowed ob-

servations. This verification can be done on the abstraction by classical methods

developed for discrete event systems, which provides a counterexample in case of

non-diagnosability. The absence of such a counterexample proves the diagnosabil-

ity of the original hybrid system. In presence of a counterexample, the first step

is to check if it is not a spurious effect of the abstraction and actually exists for

the hybrid system, witnessing thus non-diagnosability. Otherwise, the abstraction

is to be refined, guided by the elimination of the counterexample, and the process

of looking for another counterexample continues until some precision is reached.

2 / 162

Chapter 1. Introduction 3

1.1 Contributions

The contributions of the thesis are:

• The elaboration of a method that performs a qualitative simulation of a given

hybrid system. The method incorporates reasoning from the qualitative

domain and extend previous results from the literature.

• The implementation of a tool that performs the qualitative simulation of the

hybrid system given a polynomial hybrid automaton as input.

• An extension to the qualitative simulation framework for producing timed

abstractions of a given hybrid system using existing flow-pipe computation

techniques. The flow-pipe computation is guided by the resulting qualitative

simulation. Timed automata are used to represent the qualitative timed

abstraction.

• The elaboration of a method that applies the results issued from the qualita-

tive simulation and timed abstractions to diagnosability verification of hybrid

systems in the framework of counter-example guided abstraction refinement

(CEGAR) loop. Methods that were specific to diagnosability analysis of

discrete and timed automata are used.

1.2 Thesis outline

The upcoming chapters are organized as follows:

• Chapter 2 presents the scientific context. The literature concerned with

model driven engineering, qualitative reasoning and simulation, hybrid sys-

tem verification techniques for reachability and diagnosability verification

and the existing tools and challenges are reviewed.

• Chapter 3 introduces a formal framework for hybrid system verification,

fault modeling and diagnosability. The adopted notations are introduced

and practical examples from known benchmarks are used to illustrate the

definitions.

3 / 162

Chapter 1. Introduction 4

• Chapter 4 presents qualitative reasoning based abstraction methods for

hybrid systems and their applicability to diagnosability verification. The

method combines predicate abstraction with qualitative based reasoning and

is instantiated to the class of polynomial hybrid automata.

• Chapter 5 presents the tool for performing a qualitative simulation of a

given hybrid system illustrated and tested on different examples.

• Chapter 6 concludes the thesis. The chapter reviews the contributions

while comparing with closely related work from other authors and finally

draws some perspectives.

4 / 162

Résumé français

1.3 Summary in french

Cette partie résume en français le contenu de la thèse. On présentera

d’abord la structure du manuscrit et le contenu des chapitres puis le

résumé des publications.

1.3.1 Mot-clés

Systèmes et automates hybrides, raisonnement qualitatif, diagnostica-

bilité, systèmes à évènements discrets, automate temporisé, techniques

d’abstraction.

1.3.2 Structure de la thèse

Le manuscrit de thèse est constitué de six chapitres et deux annexes.

• Chapitre 1 : Le premier chapitre est introductif. Il décrit la

problématique traitée par la thèse et présente le contexte scien-

tifique général ainsi qu’une liste des contributions de la thèse.

• Chapitre 2 : Le deuxième chapitre fournit un aperçu global des

différentes problématiques évoquées par la thèse et les éléments

de l’état de l’art sur lesquels se fondent les travaux de la thèse : la

modélisation et l’analyse des systèmes hybrides, la modélisation

et la simulation qualitatives et la diagnosticabilité. Cette partie

résume les concepts de base pour permettre au lecteur de se fa-

miliariser avec la thématique. Les concepts sont illustrés par des

exemples.

Chapter 1. Introduction 6

• Chapitre 3 : Le troisième chapitre présente le formalisme de

base utilisé pour la description des systèmes hybrides : les auto-

mates hybrides. Le problème de diagnosticabilité sous observation

partielle, formalisé en termes d’automates hybrides, est également

présenté, suivi des classes particulières de systèmes hybrides no-

tamment les automates temporisés et les automates hybrides poly-

nomiaux qui nous intéressent pour les travaux de la thèse.

• Chapitre 4 : Le quatrième chapitre présente une approche pour

construire des abstractions temporisées d’un automate hybride

et son application à la diagnosticabilité. Cette abstraction peut

être raffinée, à la précision souhaitée, en partitionnant davantage

l’espace d’états. Ensuite cette approche est utilisée pour résoudre

le problème de diagnosticabilité : deux copies de l’automate hy-

bride sont utilisées pour former un nouveau système de jumeaux

(twin plant). Ainsi on peut caractériser un problème de diag-

nosticabilité comme une exécution du système dans laquelle une

copie atteint un état fautif et l’autre non, les deux produisant les

mêmes observations sur l’horizon de temps donné. L’abstraction

est utilisée pour permettre l’analyse des automates hybrides avec

une dynamique polynomiale.

• Chapitre 5 : Ce chapitre présente les expériences sur des études

de cas. Un outil prototype qui permet d’effectuer la simulation

qualitative d’une manière automatique est présentée. L’architec-

ture de l’outil est présentée puis une étude des performances avec

les temps de calculs évalués sur plusieurs modèles de systèmes

hybrides et continus est établie.

• Chapitre 6 : Le chapitre final présente les conclusions. Une com-

paraison des travaux avec d’autres travaux proches de la thématique

considérée est présentée. Finalement, des perspectives envisage-

ables sont illustrées.

6 / 162

Chapter 1. Introduction 7

1.3.3 Résumé des publications

• [109] Les systèmes hybrides exhibent une interaction entre des décisions

de contrôle discret et des processus physiques continus, ces systèmes

sont au coeur des systèmes dits cyber-physiques. Suite à ces inter-

actions, la vérification de ces systèmes est difficile. Dans cet article,

on s’intéresse aux techniques d’abstraction des systèmes hybrides. Les

abstractions sont utiles pour automatiser le processus de vérification

du système hybride, comme la vérification de la sûreté ou même des

propriétés plus compliquées lorsque la vérification est combinée avec

des algorithmes de “model checking” classiques. L’article présente

un outil qui calcule de façon automatique l’abstraction d’un système

hybride donné en entrée, celui-ci ayant une expressivité polynomi-

ale. L’abstraction peut être manuellement raffinée afin d’atteindre une

meilleure précision, cette opération est guidée par le concepteur du

système. L’outil est testé sur plusieurs exemples.

• [110] La vérification des propriétés des systèmes hybrides depuis leur

conception, comme la sûreté ou la diagnosticabilité, ou pendant leur

exécution, telle que la détection et l’isolation de fautes, est une tâche

difficile. Dans ce papier on est concerné par les techniques d’abstraction

orientées pour la vérification de la diagnosticabilité d’un système hy-

bride donné. La vérification est effectuée sur l’abstraction utilisant

des méthodes classiques développées pour les systèmes à évènements

discrets étendues avec des contraintes temporelles, qui fournissent un

contre-exemple dans le cas où le système n’est pas diagnosticable.

L’absence d’un tel contre-exemple prouve la diagnosticabilité du système

original. En présence d’un contre-exemple, la première étape est de

vérifier si celui-ci n’est pas un faux contre-exemple résultant de l’abs-

traction et qu’il figure bien au niveau concret, témoignant ainsi de la

non-diagnosticabilité. Dans le cas contraire, on montre comment raf-

finer l’abstraction guidé par l’élimination du contre-exemple puis le

processus de recherche d’un nouveau contre-exemple continue jusqu’à

7 / 162

Chapter 1. Introduction 8

atteindre un résultat ou un verdict non concluant. On se sert des

principes de modélisation et raisonnement qualitatifs pour le calcul de

l’abstraction discrète. Les abstractions en tant qu’automate temporisé

sont particulièrement étudiées, en effet elles permettent de gérer les

contraintes temporelles qui sont capturées à un niveau qualitatif du

système hybride.

• [111] La croissance en complexité des systèmes rend plus difficile

la détection et l’isolation de fautes. Ce fait s’applique aux systèmes hy-

brides qui combinent un double aspect discret et continu. La vérification

de propriétés durant la phase de conception du système, telles que la

sûreté, la diagnosticabilité et la prédictabilité, ou durant leur exécution,

telles que la détection et l’isolation de fautes, est une tâche difficile.

En effet, calculer l’ensemble des états atteignables d’un système hy-

bride donné n’est pas décidable, ceci est principalement dû à la grande

expressivité du langage de modélisation des systèmes hybrides notam-

ment en ce qui concerne la partie continue. Une méthode employée

pour vérifier les propriétés de tels systèmes consiste à calculer une ab-

straction discrète du système considéré, à appliquer le processus de

vérification à l’abstraction et à inférer le résultat obtenu au système

hybride original. La diagnosticabilité est une propriété qui décrit la ca-

pacité d’un système à déterminer l’occurrence d’une faute à partir des

observations. Ce problème a reçu une attention considérable dans la

littérature. Néanmoins, la plupart des travaux existants sont appliqués

aux systèmes à évènements discrets ou, dans une moindre mesure,

aux systèmes continus mais très peu aux systèmes hybrides. Dans

ce chapitre d’ouvrage, on est concerné par les méthodes d’abstraction

orientées pour la vérification de la diagnosticabilité d’un système hy-

bride donné. Notre objectif est de créer des abstractions discrètes pour

vérifier, dès la modélisation de ce système, si une faute qui peut avoir

lieu durant l’exécution du système peut-être détectée sans ambigüıté en

temps fini (temps borné donné) par le diagnostiqueur en utilisant seule-

ment les observations disponibles. La vérification peut être effectuée

8 / 162

Chapter 1. Introduction 9

sur l’abstraction en utilisant des méthodes classiques développées pour

les systèmes à évènements discrets, qui fournissent un contre-exemple si

le système n’est pas diagnosticable. En présence d’un contre-exemple,

la première étape est de vérifier s’il ne résulte pas de l’abstraction

et existe au niveau du système hybride témoignant ainsi de la non-

diagnosticabilité du système. Dans le cas contraire, on montre com-

ment raffiner l’abstraction, guidé par l’élimination du contre-exemple

et on poursuit le processus de recherche d’un autre contre-exemple

jusqu’à l’obtention d’un résultat final ou d’un verdict non concluant.

On se sert des principes du raisonnement et modélisation qualitatifs

pour calculer l’abstraction discrète et on définit plusieurs stratégies

de raffinement. Les abstractions en tant qu’automate temporisé sont

particulièrement étudiées, vu qu’elles permettent de représenter quali-

tativement les contraintes temporelles.

9 / 162

Chapter 2

Scientific Context

In this chapter the scientific context related to the thesis work is introduced. Sec-

tion 2.1 presents model driven engineering and verification. Section 2.2 reviews

the literature concerned with qualitative reasoning and simulation. Section 2.3

addresses hybrid systems modeling and verification techniques. The last section

summarizes existing tools and challenges in the hybrid systems verification do-

main.

The objective of the thesis is the study of abstraction techniques of hybrid systems

using qualitative principles and their application to diagnosability verification. For

this reason, it is important to review the concerned literature and existing tech-

niques presented in this chapter. Consequently the literature addressing qualitative

reasoning principles is presented. The latter are used in the proposed abstraction

technique. Moreover, existing hybrid systems verification techniques are reviewed

to bring forward what the elaborated qualitative abstraction can complement and

for comparison purposes. Works addressing diagnosability of discrete event, timed

and hybrid systems are recalled; in fact the proposed diagnosability verification

technique uses and extends some of the thesis works from the presented scientific

context.

2.1 Modeling and verification

Models today are present in every scientific discipline to reason, exchange infor-

mation and withdraw conclusions from any process. The act of modeling involves

10

Chapter 2. Scientific Context 11

three stakeholders: what is being modeled or the system to be modeled S, the

model M and the modeling language (or paradigm). Given S and the chosen

modeling language(s), the act of modeling produces M . Practically speaking, M

holds information about S which often is not all the information contained within

S. In other words, a model is never complete unless it is the actual system [76].

This lack of information between the model and the system translates naturally to

a distance indicating how faithful the model is towards S for a given purpose. A

portrait photo can be seen as a model of a person, illustrating the facial form, skin

tone, eye color and so on, it is a faithful model if the purpose is to illustrate the

physical characteristics of the person. However it is not the case for representing

personality traits of the person such as likes or dislikes and interests.

Usage In scientific disciplines, models serve various purposes such as communi-

cation and collaboration between teams, testing and prototyping, simulation and

verification. The use of models today is central for any scientific and research

activity. Engineers use models as specifications to build systems in the future that

do not exist today, chemists use models to describe observations from real experi-

ments, physicists use models to predict future behaviors or trace back the unknown

history of a physical process of the environment [76]. Today, modeling languages

are numerous and can range from application specific languages to domain specific

ones.

Deterministic models If a model can react to specific actions, then a deter-

ministic model is one that reacts the same way for the same action. For example,

a function that always gives the same output for a given input is a deterministic

function. A function that could provide one of two possible outputs for a given

input is a non-deterministic function. Determinism is useful for modeling sys-

tems that necessarily exhibit some behavior. Non determinism is also useful in

representing systems with uncertainties, where the real system may exhibit many

“correct” behaviors.

Abstracting and modeling A model can be seen as an abstract representation

of S. The model can carry a wide variety of information, one can further abstract

11 / 162

Chapter 2. Scientific Context 12

the model to see a specific aspect of the system such as abstracting the model of

a building to see the places of wires. Such abstraction of the model is useful for

the electrical engineer. In the computer science field and the early design phase

of a large software, it comes as a first step to build a conceptual model of the

software. Such a model does not represent the underlying code or programming

language and libraries used, but only the broad idea and intent for which the

software serves and clarifying all idea-related ambiguities. It thus specifies what

is the software supposed to do and not how and is certainly an abstraction of it.

Different modeling languages such as the Unified Modeling Language (UML) are

used for conceptual modeling.

2.1.1 Model checking

In engineering fields, modeling is often conceptual at the early design stage. The

real system is then built while being faithful to the model. One would like to test

or verify that the conceptual model behaves according to a given specification [34].

Verification and Validation Given a model M and a verification purpose V (a

specification) then model checking refers to deciding whether or not V is verified

by M denoted M |= V . This process is called model checking. It refers to methods

and algorithms for exploring M and determining if it obeys the specification of its

intended behavior. Research in model checking aims to automate the verification

process of M . Note that model checking does not take into account mistakes that

can occur at the modeling phase in which case the model is not credible with

respect to the actual system S. The process of checking if the system designer

built the right model is referred to as system validation. Model checking attracted

interest in industry, providing, at design stage, error-prone software and products.

However model checking has been held back by the state explosion problem, which

is the problem that the number of states in a system grows exponentially in the

number of system components. Much research has been devoted to ameliorating

this problem via abstraction techniques and compositional reasoning [50].

12 / 162

Chapter 2. Scientific Context 13

Symbolic Model Checking Around 1990, techniques that used symbolic state

space exploration arose. If the system is modeled as a simple automaton with

states and transitions, then the verification procedure is carried out by reasoning

over a set of states [82]. BDDs (binary decision diagrams) encode these sets of

states using functions and allow one to compute transitions based on them rather

than on individual states [1]. These techniques allowed one to handle larger de-

signs and target a greater class of complexity through the use of abstraction and

compositional reasoning. Nonetheless, they lack applicability due to each model

application requiring a reasoning on its own, as to how to group the states and

finding equivalence classes. Today many arising projects observe collaborations

between large industrial groups working in the same field. The aim is to obtain

application specific verification tools in avionics, autonomous vehicles, railway and

other system manufacturing domains where the human knowledge and expertise

are directly taken into account in the elaborated tools.

Bounded Model Checking (BMC) [33] Bounded model checking refers to

verifying a property up to a tolerated bound. In a simple automaton, the bound

can be expressed by the maximum number of transition that can be taken starting

from some initial state. BMC was applied to reachability and liveness properties

where in the first, all generated sequences of states are within a given set of states

and the second is verified by detecting whether or not we can find a loop in the

sequences. Many results have been obtained in safety verification, where invariants

(detailed in the next paragraph) play a major role. An invariant is expressed as a

property that holds in each and every state of the automaton. Compared to BDD,

BMC is efficient when searching for a counterexample of the property to verify,

which is expected since we are adding a bound when exploring the state space.

Some of the disadvantages of bounded model checking is that the method lacks

completeness and the types of properties that can currently be checked are very

limited. In bounded model checking only finite length sequences are explored, so

only those safety properties for which it is enough to look at only bounded length

sequences may be entirely verified. For the thesis work, a particular case of the

diagnosability property can be seen as a bounded model checking problem. It

13 / 162

Chapter 2. Scientific Context 14

is the case when verifying bounded diagnosability, i.e. the system’s capacity of

detecting a fault in a bounded time after its occurrence.

2.1.2 Invariants

Invariants play a key role in verification methods. We show here the different

facets and characteristics of invariants.

Invariant Let us apply repeatedly to a real input x, a function f(x) = 3x−1. If

the initial value is x = 1 then an invariant is an assertion which holds indefinitely

in a certain context, e.g., φ = x > 0 is considered as an invariant for the system.

It is called invariant because it is not changing with respect to time. In this ex-

ample, time is implicit and can be measured discretely by the number of times

we applied f to the input x. The link with verification methods is the possibility

of directly using found invariants of the model against the given specification. In

general models, finding invariants is an extremely challenging task. Today there

is no general tools that synthesize model invariants, even for loop invariants in

programs. Most of the existing program verification tools require human inter-

vention for manually inserting invariants to deduce the needed verification proof.

The difficulty arises in the fact that modeling languages with large expresiveness

are needed. Consequently designing verification methods that can handle all the

possible situations induced by the expressive language becomes complex.

Inductive Invariant Let us apply f for k times where k ∈ N+. Does knowing

that φ is verified on the k − 1th iteration enough to decide if φ is true on the kth

iteration? For φ = x > 0 this cannot be true, take x = 0.2 as initial value. An

inductive invariant, is an invariant that requires no further assumptions or other

conditions to be met for it to be indefinitely true. Given this definition, we can

consider φind = x > 1 as inductive invariant.

Fixed Points Given a function f : X → X, an element x ∈ X is a fixed point

of f if f(x) = x. Hence x is invariant by f . Many problems in mathematics and

computer science can be formulated in terms of the existence of a fixed point.

14 / 162

Chapter 2. Scientific Context 15

Application to computer science Due to the increasing complexity of com-

puter programs, rigorous methods for error detection are needed. Invariants and

fixed points are important in error detection in computer programs. Theorem

proving over computer programs requires finding complex invariants, which is a

very difficult task that, most of the time, cannot be automated by a program

itself. In computer science, semantics is the mathematical study of the mean-

ing of programming languages. They describe the processes a computer follows

when executing a program in a specific language. Verification tasks over computer

programs often involves abstracting the semantics of the program. This field is

known as the Abstract Interpretation, the theory for approximating semantics of

programming languages. This theory allows us to rigorously describe the idea that

a certain semantic can be more or less precise depending on the level of observa-

tion. Many reasoning present in program verification have been applied to hybrid

systems verification.

2.1.3 Satisfiability Solvers

A solver is a mathematical software that takes as input a mathematical repre-

sentation of a problem and tells whether or not the problem admits a solution.

In any verification problem, a solver is usually used to find solutions given a set

of constraints. Some of these problems is solving equations, applying sorting or

shortest path algorithms, finding the maximum and minimum values of a table

or a continuous multi-variable function and so on. SAT or Satisfiability Problem

can be summarized as: Given a formula φ with specified variables, the goal is to

determine whether exists or not an interpretation for all variables for which φ is

satisfied. Example of a sat problem: Find x ∈ R such that φ = {x2 + 2x+ 1 = 0}.
A verification problem can be coded as a formula that can be checked for a solu-

tion using a satisfiability solver, this is the case for diagnosability of discrete event

systems.

2.1.4 Boolean SAT

It is the particular case where φ is a formula over Boolean variables. So one asks

whether the variables of a given Boolean formula can be consistently replaced by

15 / 162

Chapter 2. Scientific Context 16

the values TRUE or FALSE in such a way that the formula evaluates to TRUE.

If this is the case, the formula is called satisfiable. On the other hand, if no such

assignment exists, the function expressed by the formula is identically FALSE for

all possible variable assignments and the formula is unsatisfiable. Example: The

formula “a AND NOT b” is satisfiable because one can find the values a = TRUE

and b = FALSE, which make the formula TRUE. In contrast, “a AND NOT a” is

unsatisfiable.

Definition 2.1 (K-Sat Problem). Preliminary definitions

1. Atom: Boolean variable which can be either true or false, e.g., x, y

2. Literal: an atom or its negation, e.g., x, ¬x

3. Clause: a disjunction of literals, e.g., x ∨ ¬y

4. CNF: a formula in Conjunctive Normal Form consists of ANDs of several

clauses, e.g., (x ∨ ¬y) ∧ (x ∨ y)

K-SAT problem is : given a CNF formula f , in which each clause has exactly

K literals, decide whether or not f is satisfiable. That is, whether there is an

assignment to the atoms such that f evaluates to TRUE.

2.1.5 Satisfiability modulo Theories (SMT) [54]

Satisfiability modulo Theories (SMT) solvers couple a SAT solver with a solver of a

given theory T to check the satisfiability of logical formulas whose atoms are inter-

preted in T. An SMT formula is generally quantified, i.e., can be expressed using

∀-universal quantifiers and ∃-existential quantifiers. For example, diagnosability

verification of a timed automaton can be coded as a SMT problem. In particular,

Satisfiability modulo ODEs solvers are suitable to reason about continuous and

more generally hybrid systems. Many mathematical problems involving ODEs can

be expressed as quantified SMT formulas, such as the following.

General Initial Value Problem Given a system of ODEs ~̇x = f(t, ~x(t)) and a point

(t0, ~x0) in the domain of f , find a function ~x that is a solution to the ODE system

and satisfies ~x(t0) = ~x0.

Some widely used SMT solvers are Z3 [41], CVC [10], OpenMath.

16 / 162

Chapter 2. Scientific Context 17

2.2 Qualitative Modeling and Simulation

In this chapter, a summary of the principles of qualitative reasoning, modeling

and simulation is presented as they will form a basis for the abstraction process

considered in this thesis work. First, the basic concepts of qualitative reasoning

are presented then the most important works accomplished in qualitative modeling

and simulation are reviewed and discussed [78, 49, 86].

2.2.1 Qualitative Reasoning and Simulation

Intuitive concept Given an object or a concept, qualitative reasoning (or QR)

refers to the usage of “quality” descriptors to illustrate it. For example, to char-

acterize the mass of an object, one can reason numerically by attributing a real

value for it under a certain precision metric. On the other hand, one can reason

qualitatively: instead of giving a precise numerical value for the mass of an ob-

ject, we point out that it is heavy. Consequently, the values that can be taken by

the mass of the object which, when represented by real numbers, are infinite, are

assigned a label from a finite qualitative set, e.g., Qal = {“light′′, “heavy′′}.

Quantitative mapped to Qualitative The qualitative labels are abstractions

of numerical valuations, which implies naturally that a relation between both can

be defined. Intuitively, a modeling approach that uses numerical procedures al-

ways considers (up to a certain sufficient precision) that the attributed numerical

valuations to the model variables are a faithful and sufficient representation of re-

ality. A qualitative modeling approach describes the valuations using ranges. Back

to our simple object mass example, one can map numerical values to their quali-

tative sets. We define a mapping function α : R+ → Qal by, e.g., α(x) = “light′′

if x ∈ [0, 100] and α(x) = “heavy′′ if x ∈ (100,+∞).

Safe modeling of partially known systems If one is told this object is

“heavy′′, one cannot point back the numerical value of the mass of the object.

This implies the use of the partially provided information to reason about the ob-

ject, with nevertheless frequently important decisions to make. Consider a robotic

lifter arm whose maximum weight lifting capacity is of 100. The arm, provided the

17 / 162

Chapter 2. Scientific Context 18

correct qualitative label assigned by α, can decide whether or not to lift the object

without any further information. We remind next some of the main applications

of QR (which are not limited to).

Application Domain Qualitative reasoning has been applied to numerous do-

mains, such as robotics, computer science, formal methods and verification, mod-

eling of cyber physical-systems, testing and prototyping, biology and so on. The

usage of QR tackles the fundamental issue of states explosion when simulating

systems with large number of dependent entities and when numerical simulations

are not rigorous enough to validate the system. Qualitative reasoning is mainly

present in, but not limited to:

• Artificial intelligence: this is one of the main domains where qualitative rea-

soning is used, as real time decision making processes require a fast recogni-

tion of the context in which to operate and do not necessarily require a high

level of precision.

• Embedded Control and Signal Processing: computer programs are limited in

computational resources and qualitative reasoning can provide information

at the sufficient abstract level to make correct processing and controlling.

• Economics: specific data are unknown most of the time, but the chang-

ing behavior, such as prices fluctuation of stock markets, is known. Thus,

qualitative reasoning can be used to model the partially known system and

perform a simulation with the given information and “predict” the possible

future fluctuations.

2.2.2 Qualitative models of continuous systems

In this section, we introduce the mathematical foundations of qualitative reasoning

and some of the main works done in this field. As a start, we consider continuous

systems modeled as a set of functions and we study qualitative models assigned to

these systems.

18 / 162

Chapter 2. Scientific Context 19

Continuity and Differentiability Reminders [f is continuously differentiable]

is equivalent to [f is differentiable (hence continuous) and f ′(x) is continuous]

equivalent to the notation [f ∈ C1]. A critical point of a differentiable function f

is a point where the derivative of f is null. Let R = R ∪ {+∞} ∪ {−∞}.

Definition 2.2 (Reasonable Function). A function f : [a, b] ⊆ R → R is reason-

able if all of the following are met: f is continuous on [a, b]; f is continuously

differentiable on (a, b) with values in R and f ′d(a) and f ′g(b) exist in R (when de-

fined, i.e., when a or f(a) is finite and the same with b); the set of critical points

of f in any bounded interval of [a, b] has only finitely many connected components;

both limits limt→a+f
′(t) and limt→b−f

′(t) exist in R and are equal respectively to

f ′d(a) and f ′g(b) when defined.

Assumption 2.1. All functions modeling the constraints in the qualitative models

we will consider in this section are assumed reasonable.

Landmarks of continuous functions Let S = {f1, ..., fn} be a set of functions

of one variable t defined on [a, b]. We will refer to S by complete model and to

t by time. One of the first and most interesting works in qualitative reasoning

is the identification of important points in a function evolution, called landmarks

[74]. The aim is to keep less information about the infinite fi(t) values but which

is nonetheless characterizing what is “important” about S. To each function fi let

us assign a finite set of landmarks in fi([a, b]), this set of points forms the basis of

the qualitative behavior description of S and contains at least the functions critical

points (where f ′i(t) = 0) when the fi’s are differentiable over their domain. The

time points at which these landmarks occur are called Time-Distinguished Points

(TDP). Note that the set L(f) of landmarks of a function f is an ordered set.

Example. Figure 2.1 is a plot illustrating a function with four landmarks over the

viewed interval. The TDPs are represented in green.

Definition 2.3 (Qualitative Attribution Function). Let f be a continuous function

over a domain X ⊂ R and L a set of landmarks of f . We define the qualitative

attribution function Qf : X → L × L × SIGN , where SIGN = {+,−, 0}, as

assigning to each real x ∈ X, first the two successive landmarks li and li+1 of f

19 / 162

Chapter 2. Scientific Context 20

Figure 2.1: Graph of a function labeled with the minimum set of landmarks and
time-distinguished points

such that li < f(x) < li+1 if x is not a TDP and two times the landmark li if

f(x) = li, and second the sign of f ′(x).

Qualitative States Given a function f : [a, b]→ R where a, b ∈ R and a set L of

landmarks of f with Qf the qualitative attribution function, then each attributed

value by Qf is a qualitative state, the set of which will be denoted by QS.

Definition 2.4 (Qualitative State). Let l1 < ... < lk be the landmark values of

f : [a, b] → R. The qualitative state QS(f, t), for t ∈ [a, b], is a couple (qval, qdir).

For a given real t0 ∈ [a, b] then QS(f, t0) is given by:

• qval (qualitative state value) is the landmark value f(t0) if t0 is a TDP, or

the couple of the previous and next landmarks (lj, lj+1) encompassing f(t0)

if t0 is not a TDP.

• qdir (qualitative state direction) is + if f ′(t0) > 0, 0 if f ′(t0) = 0 and − if

f ′(t0) < 0.

Example 2.1 (Continuous Square Function). Consider f(x) = x2. One of its

landmark is 0 for the TDP x = 0. So, at the coarsest level, there are three qual-

itative states S1 = ((−∞, 0),−), S2 = (0, 0), S3 = ((0,+∞),+). The number of

qualitative states grows linearly with the number of landmarks.

20 / 162

Chapter 2. Scientific Context 21

Definition 2.5 (Qualitative Behavior). The qualitative behavior of f on [a, b] is

the sequence of qualitative states obtained by alternating timed-distinguished points

of f and open intervals between two such consecutive points: QS(f, t0), QS(f, (t0, t1)),

QS(f, t1), ..., QS(f, tn) such that, for all i, QS(f, (ti, ti+1)) = (
⋃
ti<t<ti+1

qtval, qdir)

with (qtval, qdir) = QS(f, t).

2.2.3 Qualitative Differential Equations (QDEs)

Ordinary differential equations An ordinary differential equation (ODE) de-

scribes the relation between real variables and their change w.r.t time. In other

words, in dimension two for example, for a given time value t0 for which the values

of x and y are x0 and y0, an ODE represents how the future (or past) values of the

variables (i.e., after or before some infinitesimal time δt) are obtained according

to the current values x0 and y0 and perhaps the time moment t0 as well. This can

be described as :

x(t0 + δt) = f1(x0, y0, t0)δt (2.1)

y(t0 + δt) = f2(x0, y0, t0)δt (2.2)

To model the variables change continuously, δt is supposed infinitesimally small,

hence the usual representation of an ODE ẋ = f(x, t). ODEs are widely used to

model systems with tightly dependent variables changing continuously with time.

Qualitative differential equations A qualitative differential equation (QDE)

also constrains the future evolution of the variables according to their past values.

However, a QDE relaxes the constraints of the ODE, it is thus an abstraction of

the ODE. The main difference between a QDE and an ODE is that the valuations

of the variables belong to a finite domain instead of the usual Rn. This finite

domain is defined by given landmarks associated to time-distinguished points of

a function. For example consider the differential equation ẋ = x + 1 assigning

to each real value of x ∈ R+ a value of the derivative ẋ with respect to time.

Suppose x is a traveling distance and ẋ is the traveling speed. And that, according

to a specification, different actions are to be performed for each different speed

interval from Qal = {“slow”, “normal”, “fast”}, where “slow”, “normal” and

21 / 162

Chapter 2. Scientific Context 22

“fast” label respectively the sets ẋ ∈ [1, 50], (50, 100], and (100,+∞). Given the

partitioning Qal of ẋ we can define a qualitative differential equation as a mapping

relating regions of x to regions of ẋ as:

∆X : Q→ Qal (2.3)

where Q = {qslow, qnormal, qfast} such that: qslow = [0, 49], qnormal = (49, 99] and

qfast = (99,+∞), and ∆X(qslow) = slow,∆X(qnormal) = normal,∆X(qfast) =

fast.

2.2.4 Using automata to model qualitative differential equa-
tions

Definition 2.6 (Automaton). An automaton A is a tuple A = (Q,Σ, T,Q0, QF)

where:

• Q is a set of states

• Σ (or alphabet) is a finite set of labels (or symbols)

• T ⊆ Q× Σ×Q is a set of labeled transitions

• Q0 ⊆ Q and QF ⊆ Q are sets of respectively initial and final (also called

accepting) states

An execution (or run) r of A is a sequence l0l1...ln where li ∈ Q, l0 ∈ Q0 and for

each consecutive states lili+1 there is a label σ ∈ Σ such that (li, σ, li+1) ∈ T . If

additionally ln ∈ QF , then r is an accepting execution.

We can model a qualitative differential equation using an automaton. For this

purpose, let A = (Q, T) be a simple automaton where Q is a set of states and T is

a set of transitions T ⊆ Q×Q. For our previous example, we consider each region

of x as a state: qslow, qnormal and qfast. A transition t = (q1, q2) ∈ T represents

that there could be (but not necessarily) at least one trajectory initially in q1 that

reaches, after a certain time, q2 (without reaching any other intermediate state be-

tween). For the state qslow this means two outgoing transitions t1 = (qslow, qnormal),

t2 = (qslow, qslow). Given only the two pieces of information x ∈ [0, 49] and

22 / 162

Chapter 2. Scientific Context 23

ẋ ∈ [1, 50], we can conclude that an outgoing transition is guaranteed to an adja-

cent region, i.e., t2. Given an automaton A, then if ∃q ∈ Q, t = (q, q) /∈ T then

the region of q is a singleton and 0 /∈ ∆X(q). In other words, we can relate any

differentiable trajectory to a path of the automaton derived from the qualitative

differential equation, however the inverse is not true. The constructed automaton

provides a computational model over which model checking methods are applied to

obtain verification results on the system. In our case, the automaton can provide

non reachability results, i.e., deciding if some regions of the state space are never

reached. Starting from a set of initial regions, a region is never reached if there is

no path rooted in the set of initial states and leading to it in the corresponding

automaton.

Example 2.2 (U-shaped tube). Modeling with Qualitative Reasoning

A

B

Figure 2.2: Two tanks system

The presented example is a simplified version taken from QSIM encyclopedia

consisting of a U-shaped tube that shows a practical case to model a system using

qualitative principles [73]. Water is filled with two different levels A and B and

a thin tube linking both of them (Figure 2.2). Water is added to tank A, which

causes a pressure difference between the two tanks, water passes through the thin

tube until both tanks have the same water level. The problem is studied using the

variables: HA, HB water quantities (proportional to water levels) respectively in

tanks A and B; PA and PB pressures at the bottom of tanks A and B respectively.

The variables are continuous in time. The pressure in the tank increases with the

amount of water, this constraint can be modeled qualitatively by P = g+(H) with

g+ some monotonically increasing continuous function. Let us associate landmarks

to the model variables: to HA we associate LHA
= {0, HAMAX

,+∞} where HAMAX

23 / 162

Chapter 2. Scientific Context 24

is the maximum water quantity in tank A and to PA we associate LPA
= {0,+∞}.

Similar qualitative constraints are assigned to variables HB and PB. Additionally

we know about the function g+ that, if the tank is empty, then the pressure is null

and analogically, infinite water quantity causes infinite pressure: thus we express

these two statements with regards to the landmarks as g+(0) = 0 and g+(+∞) =

+∞. The flow flowAB in the thin tube (i.e., the quantity of water going through

a section of the tube during a time unit) results from a pressure difference in the

two tanks pAB = pA − pB, what we model by another monotonically increasing

function f+ such that flowAB = f+(pAB) with f+(0) = 0 and f+(+∞) = +∞. If

the water quantity in A decreases then the quantity in B increases accordingly and

vice versa, thus we have dHB

dt
= −dHA

dt
. The flow is equal to this water quantity

variation: flowAB = dHB

dt
= −dHA

dt
. The equations are qualitative differential

equations where each variable V is not in R but in the finite domain L(V) defined

by the associated landmarks. The qualitative model is the set of all the constraints

given previously (see Figure 2.3). In the next section, we recall the principles of

simulating a given qualitative model.

g+
A g+

B

HA HB

PA PB

flowABd
dt

d
dt

PAB

+

−1

f+

x op y y = op(x)

Legend

Operation

Operators

d
dt

−1

+

f+

derivative

opposite

sum

monotically increasing function

Figure 2.3: Qualitative model of the U-Tube example

24 / 162

Chapter 2. Scientific Context 25

2.2.5 Qualitative Simulation

After the modeling phase, one can perform a qualitative simulation that derives

a set of possible behaviors from the model. Given an (or several) initial qualita-

tive state, the simulation computes successors of it. Once a fixed point has been

reached, i.e., the successors are not new qualitative states, the simulation stops.

Since the qualitative space is finite when the considered functions are reasonable,

termination of the qualitative simulation algorithm is guaranteed. The successor

is computed by applying a set of rules relying on the continuity and differentia-

bility assumptions. The simulation results can be used to verify if specifications

or desired properties are met, i.e., for model checking purposes [74]. Adaptive

reasoning can be incorporated to the simulation, whereas some significant points

can be identified and used in the simulation, increasing the size of the landmarks

set and thus the accuracy of the simulation (the number of dynamically created

landmarks has to be finitely bounded to guarantee termination of the simulation).

Compared to numerical approaches, qualitative simulation allows the usage of only

partial information provided about the system (derivative sign, curvature points,

other important points) and termination of the simulation is guaranteed since the

state space is abstracted to a finite space. On the other hand, one looses the

accuracy that is provided by a numerical approach. The fundamental steps are:

• Find the landmarks of all continuous functions representing the system.

• Find all qualitative states whose landmarks cover the given initial set. Mark

these states.

• Compute successor qualitative states of each marked state by applying the

qualitative rules and unmark it.

• Stop the computation when all states are unmarked.

The result is a graph where each path is a sequence of qualitative states

(QS0, ..., QSn) where QSi+1 is a successor of QSi. Every change from one qual-

itative state to another is associated to a time-distinguished point. The graph

illustrates possible behaviors of the system and can be analyzed to verify given

specifications.

25 / 162

Chapter 2. Scientific Context 26

Example 2.3 (U-shaped tube). Qualitative Simulation The simulation pro-

vides a set of the different possible behaviors of the system. Back to the U-tube

example, we know that from any initial state, the levels in the two tanks will con-

verge to become equal and the flow flowAB to become null. Consider an initial

state where tank A is full and B is empty, i.e., HA = HAmax and HB = 0. Let us

find the initial qualitative states for the rest of the variables together with their

derivative signs. By inference rules, PB = 0 and PA = (0,+∞), consequently

Qualitative Variable qval qdir
HA HAmax −
HB 0 +
PA (0,+∞) −
PB 0 +
PAB (0,+∞) −

flowAB (0,+∞) −

Table 2.1: Initial qualitative state

pAB = (0,+∞). Similarly flowAB = (0,+∞) which determines that the flow is

from A to B, i.e., qdir(HA) = − and qdir(HB) = +. g+
A , g+

B and f+ are monoton-

ically increasing functions, which implies that qdir(PA) = − and qdir(PB) = +

and then qdir(PAB) = − and finally qdir(flowAB) = −. This completes all valu-

ations of the initial qualitative state QS(t = 0) (Table 2.1). Let us compute the

successor states of QS(t = 0), i.e., the the new possible valuations of the qual-

itative variables at a time t > t0. HB is initially zero and increasing, since the

increase process is continuous thus in the next state HB will be positive and still

increasing. Similar reasoning is applied to the rest of the variables to obtain the

successor qualitative state (Table 2.2). The applied rules rely on the continuously

differentiable assumption for each variable. The successor state is valid for the

open time interval (t0, t1) where t1 is the next time-distinguished point.

At t1, different qualitative states are possible. Either an equilibrium is reached

with flowAB being null, or flowAB continues to decrease. In the first case, there

are two possibilities, either the tank B is filled at the same time the equilibrium is

reached (QS1, Table 2.3), or B is only partially filled while reaching the equilibrium

(QS2, Table 2.3). In the second case, tank B is fully filled but the equilibrium is

26 / 162

Chapter 2. Scientific Context 27

Qualitative Variable qval qdir
HA (0, HAmax) −
HB (0, HBmax) +
PA (0,+∞) −
PB (0,+∞) +
PAB (0,+∞) −

flowAB (0,+∞) −

Table 2.2: Successor qualitative state

still not reached, thus the current model can represent the spilling effect of water

from tank B (QS3, Table 2.3). Thus, many next qualitative states are possible,

the transition system obtained from a qualitative simulation is not deterministic.

Qualitative
Variable

Branched Qualitative States
QS1 QS2 QS3

qval qdir qval qdir qval qdir
HA (0, HAmax) 0 (0, HAmax) 0 (0, HAmax) −
HB HBmax 0 (0, HBmax) 0 HBmax +
PA (0,+∞) 0 (0,+∞) 0 (0,+∞) −
PB (0,+∞) 0 (0,+∞) 0 (0,+∞) +
PAB 0 0 0 0 (0,+∞) −

flowAB 0 0 0 0 (0,+∞) −

Table 2.3: Branching of successor qualitative states

2.3 Hybrid Systems Verification

This section reviews the literature concerned with verification methods for hybrid

systems and more specifically reachability analysis. In the existing literature, we

distinguish several modeling frameworks for hybrid systems: hybrid automata,

Petri nets, hybrid bond graphs and hybrid programs. In this thesis, we adopt

hybrid automata as models of hybrid systems because of their common use in the

scientific community and their intuitive way of coupling finite state machines with

differential equations. A formal definition of a hybrid automaton and its semantics

are proposed in chapter 3 and will be used for the following sections (Def. 3.1,

27 / 162

Chapter 2. Scientific Context 28

p.53 and Def. 3.2, p.57). For the following, let H be a hybrid automaton and [[H]],

the set of all executions of H (i.e., the semantics of H).

2.3.1 Hybrid Automata Reachability Analysis

Reachability analysis for hybrid systems received a considerable attention in the

literature due to the emerging need for formal verification of complex critical sys-

tems, in particular of cyber-physical systems.

Reachability Problem Statement Let B be a set of states. We wish to verify

if any execution of H starting from its initial set reaches B at some time. Deter-

mining the reachable set of states with certainty decides whether or not the system

is safe. However, for hybrid systems, reachability analysis is generally undecidable.

Much work has been devoted to verify state reachability through the computation

of an over-approximation containing the concrete executions [[H]]. Another emerg-

ing research direction is the study of under-approximations of [[H]], a problem that

is tackled in less work.

We summarize and review three large categories of hybrid automata verifica-

tion techniques: numerical simulations, over(under)-approximation flow-pipes and

invariant synthesis, and symbolic abstraction techniques.

2.3.2 Numerical Simulation

Let C = (X,S0, F, Inv) be a continuous system, where the dynamics F is given by

Lipschitz continuous functions w.r.t. all variables in X. Given an element x0 from

the set S0 then numerical simulation consists in computing a trajectory φ : T → R
at some time points T ⊆ R+ starting from the initial element φ(t0) = x0. This

trajectory is unique for a given x0 as stated by the Picard-Lindelof theorem. Nu-

merical simulation explores the reachable set of states depth first. This method

examines trajectories one by one. The exact trajectory is abstracted to a set of

points computed at specific time moments via the integration step ∆t. To validate

a model via numerical simulations, a number of them are performed and when each

of them does not violate the safety property then the system is supposed safe up

28 / 162

Chapter 2. Scientific Context 29

to the considered precision (estimated from the integration step and the tolerated

approximation error). Numerical simulations are aimed at local verification given

some bounded local error and are not suitable for studying a modeled perturba-

tion. Today, numerical simulation is widely used to validate and test models in

the industry. Many schemes have been elaborated for numerical simulations such

as Runge-Kutta and Euler’s method. Matlab & Simulink offers a wide library of

models applied in diverse fields and is of common use for academics and industry.

The simulation part in the software is limited to numerical simulation. The simu-

lation algorithm such as ode45 is sophisticated and is able to use shortcuts in some

situations in an ad hoc manner for increased computation efficiency or precision.

In critical industry applications notably Avionics, the certification process remains

today time consuming and often based on documentation. Consequently, there is

an emerging urgent need for tools with better formal basis, where the reached

precision is accurately quantified. Set-based simulation consists in computing the

reachable states from the whole initial set S0, this is a breadth first search and

will be reviewed in the next paragraph. The Acumen simulator applies numerical

simulation while having solid underlying semantics [100], it offers a good under-

standing of the underlying computations in such a way that the user is directly

confronted to problems that could arise such as the zero-crossing problem. The

latter problem occurs when the chosen precision is not enough to test whether or

not the computed trajectory satisfies a given condition.

2.3.3 Flow-pipe methods

The term flow-pipe has been coined as an over-approximation set of reachable

states of a continuous dynamical or hybrid system given an initial set of states

[25, 79, 75, 9]. In the next chapter we will review some tools that compute the

flow-pipe of the executions of a hybrid system from the initial set of states. These

tools showed success in verifying safety and robustness in reaction to perturbations

or uncertainty. The mathematical foundation of the tools relies on set based

integration and safe approximations of functions. Intuitively, the idea is the

following: given the initial set and the differential equations attributing locally

the first order derivative of each variable, a safe upper bound of the first order

29 / 162

Chapter 2. Scientific Context 30

derivative is computed. Then, given a time step, the computed bounds derive a

constraint over the variables valuations, representing parts of the state space that

cannot be reached at this time step. For example, a car is at distance d = 0

and running at 2km/min initially at t = 0. A safe lower and upper bounds of

2 are 1 and 3, the car is supposed never to over-or-underpass these bounds. At

t = 5min, we can safely say that the car is at a distance of at least 5km and

not exceeding 15km. In general, the exact first derivative is not constant but it is

continuously changing according to the variables of the state space and possibly

time. Consequently, the bounds over the dynamics are changing with time and

must be computed accordingly..

Computing a flow-pipe Algorithm 1 presents a rough scheme for com-

puting a flow-pipe with some notation abuse.

input : H := Hybrid Automaton;
∆t := Time Step (float precision real);
T := Time Horizon (float precision real)
output: Flow-pipe := Flow(H)

Flow ← {(q0, Init(q0)};
Time← 0;
List← Flow;
while List 6= ∅ ∧ Time < T do

(q, S)← List.pop();
C ← ContinuousTimeElapsed (S,∆t);
Time← Time+ ∆t;
Flow ← Flow ∪ {(q, C)};
for G guard in q do

D ← ComputeDiscreteJump (C,G);
if D 6= ∅ then List← List ∪ {D};

end

end
return Flow;

Algorithm 1: Hybrid automaton flow-pipe computation rough scheme

Algorithm operations The algorithm does not present all the required details,

for example one needs to remove from Flow the parts that do not satisfy the invari-

30 / 162

Chapter 2. Scientific Context 31

ant of each mode but this operation has been omitted. It is written here for only

one initial mode. The reachability algorithm requires operations over the states S,

represented each one by a subset of Rn. The main procedures that are required are:

• ContinuousTimeElapsed (S,∆t): given a state S reached at some time t and

the time step ∆t, the procedure computes a continuous successor of S denoted S ′

reached at t + ∆t. All the concrete trajectories of H initially in S are in S ′ after

∆t time units have elapsed. The procedure is the challenging part in reachability

computation because it requires using the dynamics of H to extract S ′.

• ContinuousDiscreteJump (S1, S2): given two states S1 and S2 in a mode, where

S2 corresponds to the change of mode condition associated to a transition from

this mode (also called guard/jump condition), this operation computes the reach-

able set via the discrete jump. In other words, an intersection between the guard

and the current reached set is computed then its image via the reset (if present)

is computed.

Additionally, the regular set based operations are used by the reachability al-

gorithm such as: Minkowsky sum ⊕, Union ∪ and intersection ∩.

Forward and backward reachability Flow-pipe computation tackles straight-

forwardly safety verification, the time step for integration is always taken forward

starting from the initial set. To incorporate the specification (i.e., the unsafe set),

many tools compute two flow-pipes: the first one, Flow(S0, T) is initialized the

initial set with a forward time integration step and the second Flow(B, T ′) is

initialized from the unsafe set with a backward integration time step (Figure 2.4).

If the two flow-pipes do not intersect, the system is safe, if not, back and forth

operations are applied to further refine the flow-pipes until a specified precision is

achieved (i.e., computing more accurate bounds) [84]. Computing two flow-pipes

instead of one reduces the computation time for the verification process by making

use of parallelism.

31 / 162

Chapter 2. Scientific Context 32

S0

B

Flow(S0; T)

Flow(B; T 0)

_tforward = 1

_tbackward = −1

Figure 2.4: Forward and backward flow-pipe computation for safety verification

Geometric representation of states Hence, the time and memory

complexities of the used operations depend crucially on the choice of the state

representation S. Many works have been devoted for the choice of the state rep-

resentation. An important concern in these methods is to balance the trade off

between accuracy and computation complexity [79]. The need for accuracy is seen

when computing the continuous time elapsed, where the error between the over-

approximate representation and the actual concrete state should be bounded. The

computation complexity arises when performing operations such as set addition

(Minkowsky sum), intersection and union. We review important state representa-

tions.

� Convex sets have been extensively studied as state representations.

Definition 2.7 (Convex Set). A set S = {x | x ∈ Rn} is convex if and only if for

all x and y in S and any real λ ∈ (0, 1), (1− λ)x+ λy ∈ S.

A convex polyhedron is obtained by intersecting any number of half-spaces (Fig-

ure 2.5). A polytope is a bounded convex polyhedron.

Definition 2.8 (Hyper-rectangle). A hyper-rectangle HR of dimension n is a

subset of Rn such that HR is a product of boxes: HR =
∏n

i=1 Ii where each Ii is

an interval over the reals.

32 / 162

Chapter 2. Scientific Context 33

~a1
T
:~x+ ~b1 = 0

~a2
T
:~x+ ~b2 = 0

~a3
T
:~x+ ~b3 = 0~a4

T
:~x+ ~b4 = 0

~a5
T
:~x+ ~b5 = 0

~a6
T
:~x+ ~b6 = 0

Figure 2.5: Convex polytope, intersection of half-spaces

Zonotopes

Definition 2.9 (Zonotope). A zonotope Z = (G, c) where G ∈ Rn×m is the gen-

erator vectors set matrix with m,n ≥ 0, c ∈ Rn is called the center of Z is the set

Z ⊂ Rn such that:

Z = {x ∈ Rn | ∃a ∈ [−1, 1]m, x = G.a+ c} (2.4)

A zonotope is symmetrical w.r.t to its center c, a more generalized represen-

tation that is not necessarily symmetrical is given by star sets. A star set is the

intersection of a zonotope with a set defined by some predicate constraints.

Example 2.4 (Flow-pipe computation using zonotopes). Consider the following

linear system where the initial set is given by a hyper-rectangle set x(0) and

the state x(t) is subject to bounded perturbation given by a zonotope u(t). We

use CORA, a tools suite for reachability computation of continuous and hybrid

systems, to compute the flow-pipe of the system using zonotopes (Figure 2.6).

The flow-pipe (in grey) is computed till the time horizon T = 5 time units. Matlab

Simulink is used to run numerical simulations randomly generated from the same

initial set observed in black.

ẋ =

−1 −4 0 0 0
4 −1 0 0 0
0 0 −3 1 0
0 0 −1 −3 0
0 0 0 0 −2

x+u(t), x(0) ∈

(0.9, 1.1)
(0.9, 1.1)
(0.9, 1.1)
(0.9, 1.1)
(0.9, 1.1)

 , u(t) ∈

0.9, 1.1

(−0.25, 0.25)
(−0.1, 0.1)
(0.25, 0.75)

(−0.75,−0.25)

33 / 162

Chapter 2. Scientific Context 34

(a) (b)

Figure 2.6: Flow-pipe computation versus numerical simulations

Support functions Support functions appeared efficient in computing over-

approximations of convex sets. A support function Supp of a convex, compact set S

is a mapping SuppS : Rn → R such that SuppS(l) = maxx∈S l.x. Convex sets can

be represented via their support functions. This representation showed efficiency

in the computation of different operations needed for reachability computation in

comparison with direct expression of the set via constraints. The study of support

functions led to the development of the tool SpaceEx that will be discussed in the

next section.

� Non-convex sets

Taylor Models Taylor models are non convex sets that have been studied and

applied as a representation of states for computing reachable sets. The Taylor

model state representation is implemented in the tools CORA and Flow*. Let f

be a n time differentiable function such that f : (a, b)→ R where (a, b) ⊆ R. Then

we can say that:

f(x) = Pn(x) +Rn(x) (2.5)

where for some c ∈ (a, b)

Pn(x) = f(c) +
f ′(c)

1!
(x− c) +

f ′′(c)

2!
(x− c)2 + ...+

f (n)(c)

n!
(x− c)n (2.6)

34 / 162

Chapter 2. Scientific Context 35

And if f (n+1) exists and is continuous on an open interval containing c and x is in

this interval, then there is some d ∈ (x, c) between such that:

Rn(x) =
f (n+1)(d)

(n+ 1)!
(x− c)n+1 (2.7)

Definition 2.10 (Over-approximative Taylor model). Given a polynomial p ∈
R[X], where X is a set of n variables, an interval I, and a function f defined over

a domain U ⊆ Rm, then (p, I) is an over-approximative Taylor model of f if:

∀x ∈ U, f(x) ∈ p(x) + I (2.8)

To construct an over-approximative Taylor model of a function f one can:

compute till a certain order the Taylor polynomial of f , find the interval I = (q, r)

using the remainder.

q ≤ Rn(x) ≤ r ⇒ Pn(x) + q ≤ Pn(x) +Rn(x) ≤ Pn(x) + r ⇒ p2(x) ≤ f(x) ≤ p1(x)

(2.9)

Example 2.5 (Taylor model of ex). Consider f(x) = ex and x ∈ (−1, 1). We

use a method proposed in previous works to find a suitable Taylor model of f(x)

[24]. Compute the Taylor polynomial at the midpoint of (−1, 1) till a certain order

then evaluate a upper and lower bound of the remainder. Observing Table 2.4,

Polynomial Order k P I
0 1 [−0.75, 1.75]
1 1 + x [0,0.75]

2 1 + x+ x2

2
[-0.25,0.25]

3 1 + x+ x2

2
+ x3

6
[0.0345,0.0517]

4 1 + x+ x2

2
+ x3

3!
+ x4

4!
[−0.02266, 0.02266]

Table 2.4: Taylor polynomial of the exponential function with a safe remainder
interval

we notice that the higher the computed Taylor polynomial order is, the lower the

remainder error (given by I) is. If the computation of the remainder satisfies:

f(x) − Pk(x) converges to zero if k → +∞, then any arbitrary precision can be

computed by increasing the Taylor polynomial order.

35 / 162

Chapter 2. Scientific Context 36

Hybrid Automaton H

Abstract System A

Abstraction Function α

Model Checking Algorithm

Verdict Analysis and Inference Rules Guaranteed Termination

Undecidable state reachability

Figure 2.7: Hybrid automata abstraction scheme combined with model checking

2.3.4 Abstraction Techniques

Flow-pipe computation provides methods for accurately computing the reachable

set, however termination of the algorithm cannot be generally guaranteed without

specifying the time horizon T . In some situation, self-containment is achieved

(i.e., there is some time instant t < T for which the flow-pipe part obtained

at time t + ∆t is totally contained within one or more of the flow-pipe parts

computed at times before t). Consequently, flow-pipes remain a bounded model

checking algorithm suitable for continuous dynamical and hybrid systems. In many

applications, verifying time-unbounded properties is necessary, most notably in

controller certification. Some techniques emerged for synthesizing invariants, i.e.,

sets that hold for any time t. The main idea is to find functions in the state space

over which all change directions point inwards. We review in this part existing

abstraction methods and invariant synthesis techniques.

Abstraction Methods Abstraction methods extract information from a given

model to show a desired behavior or property. Figure 2.7 illustrates the high level

scheme for abstracting a hybrid automaton H into an abstract system A via the

abstraction function α. These methods retain important information from the hy-

brid system that are possibly “sufficient” to prove the property. These properties

can range from reachability or liveness of a set of states to more complex ones. In

the existing literature, authors studied and elaborated different abstraction meth-

ods of a given hybrid system model. Methods for constructing quality abstractions

36 / 162

Chapter 2. Scientific Context 37

cannot be automated for the broad class of hybrid automata. This is explained

by the fact that many differential equations have no closed form solutions and it

is thus difficult to define a general abstraction method that would apply for any

continuous change. Two fundamental issues have to find a solution by any ab-

straction method:

• Describe formally the abstraction method M that produces the abstract sys-

tem given the concrete one (and automate the construction operations as much as

possible) and give the algorithmic steps to compute it.

• Give the necessary proofs that once the abstract system, constructed with the

method M , verifies property F (P) then the original hybrid system verifies P where

F relates a concrete property to its abstract counterpart. Or more generally, de-

duce a class of properties that is preserved in the abstraction constructed using

method M .

Other questions follow naturally the previous ones such as the time and space

complexity of the abstraction algorithm, termination and worse execution time,

application of the method in a distributed framework and so on. An example is the

state reachability property which is undecidable for hybrid systems. Nonetheless,

if the abstract system falls within the decidable class, then the abstract counter-

part of the property can be verified using classical model checking algorithms. If

the property is verified at the abstract level, the abstraction relation allows one to

infer this result back to the original hybrid system.

Predicate Abstraction Hybrid systems are generally infinite state machines.

Early work in [4, 5] shed the light on the completeness of abstracting infinite state

machines into finite ones for linear dynamical hybrid systems. The infinite space

of the hybrid system is abstracted into the finite possible valuations of a given set

of linear predicates. A valuation represents concretely a convex polyhedron. From

each obtained abstract state, transitions towards other abstract states are com-

puted according to the continuous and discrete changes. To compute transitions

outgoing from an abstract state A a flow-pipe is computed with the concrete set

37 / 162

Chapter 2. Scientific Context 38

A1

A2

A3

Flow(A2; T)

Flow(A3; T
0)

Figure 2.8: Three abstract states defined via predicates and linked via flow-pipe
computation

represented by A and computed for time instants t1, t2, After each step of the

flow-pipe computation at time ti, an intersection of the obtained flow-pipe with the

concrete sets of abstract states different from A is performed. If the intersection

with another state B is not empty, a transition is added from A to B. Flow-pipe

computation uses existing tools for linear dynamics. Obviously, a maximum time

horizon of the instants ti must be provided and the number of performed intersec-

tions must be manually tweaked. Figure 2.8 illustrates three abstract sets A1, A2

and A3 and the incoming abstract transitions towards A1 obtained via flow-pipe

computation. The idea of predicate abstraction came originally from software

verification techniques. It showed effectiveness in finding bugs in programs. In

[61, 102, 8, 96], Tiwari proposed to combine predicate abstraction with qualitative

reasoning to have a more representative abstraction; his work is of an important

basis for this thesis. A study for timing the abstraction is given in a complemen-

tary article [85]. In [99], Sloth addresses abstractions of non-linear systems with

polynomial dynamics. The idea is to generate a partitioning of the state space,

38 / 162

Chapter 2. Scientific Context 39

whose abstraction is always complete and in some cases sound. For soundness, the

task is formulated as an optimization problem that could yield results similar to

those obtained by invariant synthesis techniques. Nonetheless, the termination of

the optimization procedure is generally not guaranteed. [28] combines in a recent

work relational abstractions and flow-pipe constructions allowing one to cover a

larger class of properties, and shows that using each method separately fails to do

so.

Invariant Synthesis Seen from a computational perspective, invariant com-

putation consists in computing a set of mathematical constraints satisfied by all

states of the system. The property we wish to prove is expressed as a set of con-

straints as well. One can then check if the property constraints violate any of the

computed invariant constraints, if none is violated then the system verifies this

property. Invariant computation is difficult and not automatic as the form of the

invariant varies differently with the form of the dynamics and other components of

the hybrid system. Some techniques assume the invariant takes a template form.

For example, for a linear invariant with two real variables x, y, the form can be

αx+ βy = 0 with α and β two unknown constants. Then one encodes the hybrid

system, the property to verify and a specific parametric form of the invariant into

an SMT (Satisfiability Modulo Theories) based solver and evaluates the unknown

parameters α and β of the invariant automatically [61]. Other techniques attempt

to generate barrier certificate functions that enclose the reachable set of states.

A barrier certificate is an inductive invariant that helps in safety verification of

dynamical and hybrid systems. For a given system, if a barrier certificate function

is found and does not intersect the unwanted set of states, the system is consid-

ered safe and that is valid for any execution within the barrier certificate and for

unbounded time (Figure 2.9). The main challenge is to find barrier certificates

that can be efficiently encoded (i.e., expressed in a usable form), as their structure

can become complex [71, 47]. Recently, generating barrier certificates was applied

to safety verification in a compositional framework [98].

39 / 162

Chapter 2. Scientific Context 40

B

X0

Figure 2.9: A barrier certificate enclosing the reachable set of states from X0

without intersecting the unwanted set of states B

2.3.5 Counter-Example Guided Abstraction Refinement
(CEGAR)

The CEGAR loop consists in combining the abstraction model checker together

with a refinement method of the abstraction. Since model-checking can be in-

conclusive (i.e., when the abstraction is not sufficient to establish the proof), one

can refine the abstraction for further precision. We now recall counter-example

guided abstraction refinement (CEGAR) that was originally proposed to verify

safety properties [48, 6]. Very generally, CEGAR is an incremental way to decide

if a problem admits a solution. The method starts with very coarse abstraction

of the original problem, checks the abstraction for a solution, then depending on

whether or not a solution is found concludes that the original problem is solvable

or that the abstraction does not retain enough information to make a decision. In

the latter case a refinement is applied (i.e., information is added to the abstrac-

tion from the original problem) and the verification procedure is repeated on the

refined abstraction.

40 / 162

Chapter 2. Scientific Context 41

As example, consider in our case the following situation, which will be made pre-

cise in the next chapters. Given a hybrid automaton H, a set B ⊂ S of so-called

“bad” states, where S = Q×X is the state space of H, we say that H is safe with

respect to B if and only if there is no execution in H from an initial state to a

bad state in B. Otherwise, we say that H is not safe. This safety property is thus

expressed as H |= AG¬B in Computation Tree Logic (CTL), which means that

all hybrid automaton executions never reach a bad state from B. An execution

h = (q0,x0)
l0−→ (q1,x1)...(qm,xm) with (qm,xm) ∈ B is called a counterexample of

H with respect to this safety property.

Let DA a discrete automaton obtained by applying an abstraction function α on

H. We say that ĥ = ŝ0
l̂0−→ ŝ1...ŝm is the abstract counterexample of DA cor-

responding to h, if ŝi = α(qi,xi) holds ∀i ∈ {0, ...,m}. Reciprocally, given a

counterexample ĥ of DA, h is called a corresponding concrete counterexample if

ŝi = α(qi,xi) and (qi,xi)
li−→ (qi+1,xi+1) ∈→, where → is a transition relation of

the labeled transition system representing the semantics of H. If a counterexam-

ple ĥ of DA has no corresponding concrete counterexample of H, then ĥ is called

a spurious counterexample. The following theorem expresses that if the safety

property is satisfied at the abstract level then it is satisfied at the concrete level.

Theorem 2.1. Given a hybrid automaton H, a discrete automaton DA which is

an abstraction of H with abstraction function α, let B ⊂ S, and B̂ = {b̂ | ∃b ∈ B :

b̂ = α(b)}. Then DA |= AG¬B̂ implies H |= AG¬B.

Now we introduce a scheme for CEGAR to verify safety properties for a given

hybrid automaton, whose idea is to repeat the following steps until the considered

property is verified or refuted (it is assumed that α(qi,xi+1) ∈ B̂ implies (qi,xi+1) ∈
B):

1. analyze DA |= AG¬B̂ with model checking:

• if the property holds, return the conclusion that H is safe from Theo-

rem 2.1;

• if it does not hold, a counterexample is obtained before turning to 2;

41 / 162

Chapter 2. Scientific Context 42

2. validate whether this counterexample has a corresponding concrete coun-

terexample in H:

• if there does exist a corresponding concrete counterexample, then return

that H is not safe;

• otherwise, the counterexample is spurious and thus is used to refine DA

before returning to 1 by replacing DA with the newly obtained refined

abstraction.

42 / 162

Chapter 2. Scientific Context 43

2.4 System Diagnosability

In this section we review works concerned with diagnosability verification of hybrid

systems and the particular classes of discrete event systems and timed automata.

Diagnosability Fault diagnosis is a crucial and challenging task in the auto-

matic control of complex systems, whose efficiency depends on the system property

called diagnosability. This is a property describing the ability to determine with-

out ambiguity whether a fault of a given type has effectively occurred based on the

observations provided by the system. Diagnosability analysis has already received

considerable attention in the literature over latest decades. However, most of the

existing works refer to discrete event systems [95, 32, 89, 97, 59, 107, 57] with

stochastic and fuzzy variants [101, 77, 68] or continuous systems [23, 11, 87, 104].

Diagnosability was also studied in the framework of decentralized and distributed

architectures [90, 93, 106, 83]. But many modern technological processes exhibit

both continuous evolution and discrete transitions, whose combination is at the

origin of complex behavior and important phenomena of such systems. To the best

of our knowledge, very few works handle diagnosability of hybrid systems with sat-

isfactory results. Given a model that describes both correct and faulty behavior

and what is presumed observable (i.e., generated externally by the model), then

the model is said to be diagnosable if the observations are enough to determine

that a fault has occurred and, in the case of multiple faults, to identify which one

of them happened. The diagnoser is a function which, given an observable trace

of the system, is able to decide whether or not a fault has occurred. Thus, the

model is diagnosable if and only if such a function exists. For example, if a and b

are the only two observable events and u and f are two unobservable events where

f corresponds to the fault event, then given a generated observable trace ab, one

cannot determine, with certainty, whether the model behavior (i.e., combined with

the unobservable events) corresponds for example to ab or aub or afb (if the three

may exist) and thus whether the faulty event f occurred or not.

Diagnosability of discrete event systems As a first step, [103] proved that

the existing definitions of diagnosability for discrete event systems and for con-

43 / 162

Chapter 2. Scientific Context 44

tinuous systems can be stated as a property of the system fault signatures (w.r.t.

normal behavior signatures), and a unified definition of diagnosability was es-

tablished. However hybrid systems diagnosability was not considered. Among

the contributions concerned with hybrid diagnosability, we can mention [18] that

slightly modified the classical necessary and sufficient condition for diagnosability

of a discrete event system of [95] and expressed it in terms of reachability. [51]

generalized this condition requiring more restrictive hypotheses. Despite the claim

that the two above methods deal with hybrid systems, these works do not really

account for the hybrid nature of the system as they use only a very high level

discrete abstraction and ignore the continuous dynamics. On the other hand, in

[35], diagnosability is expressed in terms of mode discernability (also called distin-

guishability by other authors) and is only based on the continuous dynamics.

Diagnosability of time-dependent systems (timed automata) Diagnos-

ability for systems with time constraints classically modeled using finite state ma-

chines with clocks (i.e., real valued variables with constant dynamics) has been

studied [105]. This type of models describes a more general class of systems than

discrete event systems (DES), the clocks can measure the sojourn time in a state

and constraints to enable a transition can be based on the clock valuations. Timed

automata, a class of hybrid automata, are extensively used to model finite state

machines with clock variables. Diagnosability of timed automata reveals a more

challenging task than DES: in fact, the executions generated by discrete event

systems are regular and many efficient algorithms exist for solving emptiness and

reachability problems. This is possible since such models can be determinized.

However, timed automata and more generally hybrid automata, cannot be usually

turned to deterministic models, hence property verification becomes more complex

at the expense of expressiveness. When a feasible diagnoser exists, the model is

diagnosable. Some works aimed further at finding a deterministic diagnoser which

itself is a timed automaton. It has been shown that for deterministic timed au-

tomata (DTA), it is decidable to check whether a diagnosis function is realizable

and that its complexity class is 2EXPTIME [21]. This class supposes that any

two outgoing transitions from a given state cannot be labeled by the same event

as long as their guards are enabled for the same valuations (i.e., the events are

44 / 162

Chapter 2. Scientific Context 45

time-deterministic). A method describing the conditions to obtain a diagnoser as

a deterministic timed automaton is also described.

Diagnosability of Hybrid Systems [14] was among the early works that coped

with actual hybrid systems, introducing the idea to consider a hybrid model as a

twofold mathematical object. A hybrid system is modeled as a hybrid automaton

whose discrete states represent its operation modes for which the continuous dy-

namics are specified. The discrete event part (automaton) constrains the possible

transitions among modes and is referred to as the underlying DES. The restriction

of the hybrid system to the continuously-valued part of the model is defined as the

multimode system. Considering the analytical redundancy approach to define a

set of residuals [58] for every mode, [14] introduced the concept of mode signature

which refines the classical concept of fault signature. Mode signatures determine

mode distinguishability. The key idea of [14] is to abstract the continuous dynamics

by defining a set of “diagnosis-aware” events, called signature-events, associated to

mode signature changes across modes. Signature-events are used to enrich appro-

priately the underlying DES. The behavior of the abstract system is then modeled

by a prefix-closed language over the alphabet enriched by these additional events.

The finite state machine generating this language is called the behavior automaton.

Based on the abstract language, the diagnosability analysis of the hybrid system

is cast into a discrete event framework and standard methods of this field can be

used.

The approach of [14] later consolidated in [16] can be compared to the ap-

proach proposed in [38, 39] which uses fault signatures to capture the continuous

dynamics. The fault signatures of [38, 39] are based on fault transients and they

directly express the expected dynamic behavior of measured variables after the

fault abstracted in qualitative terms. The approach of [14, 16] differs in that it

uses mode signatures that are specifically built for diagnosis, based on standard

analytical redundancy residual methods of the FDI control field [46]. Its originality

relies in that it proposes a way to integrate these methods with equally standard

methods of the DES diagnosis field [112]. [14, 16] adopt the diagnoser approach

[95] because it has the advantage to also support straightforwardly online diagno-

sis. [45] repeats these ideas differing by the fact that the diagnoser is directly built

45 / 162

Chapter 2. Scientific Context 46

from the underlying DES and mode distinguishability is used to cluster its state

labels. This method leads to a so-called clustered diagnoser. Let us note that this

method only applies to a restricted class of hybrid systems for which transitions

triggered by continuous dynamics are not allowed.

Checking DES diagnosability with methods based on the construction of diag-

nosers has exponential complexity with the size of the underlying DES automaton.

Hence, approaches based on verifiers, also known as twin plant approaches, are

generally preferred. This is because, although a twin plant cannot be used for

online diagnosis, it can be constructed in polynomial time. Methods integrating

a twin plant approach with mode distinguishability checking for assessing hybrid

system diagnosability are recent. The reader can refer to [44] as a first piece of

work in this direction. Later, [60] indicated that mode distinguishability could be

complemented by another property of the continuous dynamics named ephemer-

ality. Ephemerality states when the system cannot stay forever in a given set of

modes. The continuous dynamics are hence abstracted remembering only these

two pieces of information. In addition to this, [60] checks diagnosability in an in-

cremental way. It starts by generating the most abstract DES model of the hybrid

system and checking diagnosability of this DES model. A “counterexample” that

negates diagnosability is possibly provided based on the twin plant. The model is

then refined to try to invalidate the counterexample and the procedure repeats as

far as diagnosability is not proved. This approach hence uses just the necessary

information about continuous dynamics, in an “on request” manner, hence making

the best out of computation. In the most recent literature concerned with hybrid

system diagnosability like [60] and also [42], which characterizes the maximum

delay for diagnosing faults given measurement uncertainty, abstraction is key. Ab-

straction is also at the core of other methods to check other properties of hybrid

systems.

Diagnosability via abstraction [43] applied the use of abstractions as timed

automata to diagnosability verification and showed that for a certain class of ab-

stractions, the verification problem belongs to the complexity class P . [42] presents

a procedure to determine the (δd, δm)-diagnosability of a hybrid system where δd

46 / 162

Chapter 2. Scientific Context 47

is the maximum time to diagnose a fault after its occurrence and δm is a preci-

sion metric representing the uncertainty in measuring the observable events. The

method, given a hybrid automaton H with initial set of hybrid states S0, a pre-

cision metric ε, a time horizon Tend, operates as follows. Find a set of so-called

robust neighborhoods around elements from S0 where the executions initially in

one of these neighborhoods are alike, having the same observable events and are

consistent in time until the specified horizon Tend. This similarity relation is de-

fined formally using Hausdorff distance metrics guaranteeing the time consistency

up till a certain imposed precision ε. Continue finding neighborhoods until S0 is

fully covered by them. The abstraction is formed by the many sets of executions

from each of the computed neighborhoods. Proofs of the inclusion of the timed

language of the hybrid automaton into the constructed abstraction are given.

2.5 Tools and Challenges in Hybrid Systems Ver-

ification

2.5.1 Numerical simulation

Acumen testbed for cyber-physical systems [100] Acumen is an exper-

imental modeling and simulation environment for hybrid systems. It is built

around a small, textual modeling language. Different plotting libraries and vi-

sualization are embedded into graphical user interfaces, providing an environment

for researchers in the simulation field to run experiments.

2.5.2 Flow-pipe tools

Ariadne [88] Ariadne is an open source library developed for hybrid automata

modeling and verification. It provides structures and types for the analysis and

description of hybrid automata. In addition it holds state reachability computation

algorithms [17].

SpaceEx [52] is a platform for the verification of hybrid systems. SpaceEx

allows the use of different types of state representation and refinement strategies

and combination of flow-pipes with symbolic techniques.

47 / 162

Chapter 2. Scientific Context 48

Flow* [26] Flow Star (Flow*) is a reachability analysis tool for hybrid systems

with non linear dynamics. It computes a flow-pipe, represented by a Taylor model,

which is an over-approximation of the set of reachable states.

Cora [2] Cora is a Matlab based library for formal verification and analysis of

hybrid systems. Cora embeds different state representations such as polytopes,

zonotopes and Taylor models.

2.5.3 SMT solvers

DReach [72] DReach encodes a given hybrid automaton and a safety specifica-

tion as SMT formulas, then uses DReal for solving the obtained set of constraints.

2.5.4 Automated proof tools

KeyMaera [92] is a theorem prover dedicated to hybrid systems verification.

KeyMaera uses differential dynamic logic (dL) to write hybrid programs [91].

These programs have precise semantics and can model non-deterministic choices.

The dynamics can be expressed as non linear differential equations, inequalities

and non deterministic inputs. The tool combines the use of different results from

algebraic calculus. A hybrid program is defined using the following grammar:

hp1, hp2 ::= x := γ |?θ | x′ = γ&θ | hp1 ∪ hp2 | hp1;hp2 | hp∗1

Less formally, respectively:

• assignment of an expression γ to a variable x

• test θ over the variables which acts as a guard: if ?θ = true then it is possible

to transit, else no transition is made

• formula for the derivative x′ of x with respect to time

• non deterministic choice to go through hp1 or hp2

• sequence ordering of the execution, hp1 first then hp2

• iteration of hp1 an arbitrary finite number of times

48 / 162

Chapter 2. Scientific Context 49

Forms of the expressions An expression can be: [a := −v;x′ = x + y′ + a]φ,

the brackets “[]” refer to the LTL operator always, in other terms, in all reachable

states, φ is satisfied.

Example 2.6 (Hybrid Program). Hybrid programs are an equivalent representa-

tion method of hybrid automata. To illustrate a hybrid program, let us consider

the verification task of a simple train control system. The example is present in

Keymaera. The goal is to verify that the train at location z never bypasses the

movement authority (MA) by a distance SB in order to avoid collisions with other

train. In dL logic, this is expressed by a hybrid program where a is the acceleration

of the train, b is the train braking constant and c is an acceleration constant such

that:

ETCS ≡ if (MA− z < SB) then a := −b

else a := c

z′′ = a

• The ETCS program consists of two parts, a control part ctrl (verifying a

guard condition with a reset) and a continuous applied dynamic drive. When

embedded into an actual train, the ETCS program must repeat itself peri-

odically. This is represented by assigning the Kleene star to the sequence:

ETCS ≡ (ctrl; drive)∗. The star refers to continuous repetition of the se-

quence ctrl; drive of hybrid programs with respect to time.

• ctrl evaluates the condition on the MA, if it is verified then the train ac-

celeration can be a positive constant (acceleration mode), else it is negative

(brake mode). Thus, ctrl decides whether a discrete jump is applied or not.

• drive represents the continuous evolution in the hybrid system specified by

the differential equation z′′ = a

KeyMaera takes as input the hybrid program and a formula to verify such as

φ := z 6 MA. Temporal logic is used to state that φ should be verified in

all states of the controller. The tool then applies proof strategy over the hybrid

program to deduce the truth value of φ w.r.t the ETCS program.

49 / 162

Chapter 2. Scientific Context 50

2.5.5 Challenges in Hybrid Systems Verification

Cross Disciplinary The study of hybrid systems involves different disciplines

such as applied mathematics, control theory, theoretical and practical computer

science. Consequently, the classical education curriculum taking one of the fields

as a specialty is not fit for the study of hybrid systems and cyber-physical systems

in general.

Large scale systems The verification of large scale hybrid systems (i.e., with

the number of coupled variables exceeding around 40) remains a challenge. The fu-

ture aim of the scientific community will be to develop formalism adapted to larger

systems such as in distributed framework. Many applications arise in distributed

hybrid systems such as managing a fleet of unmanned vehicles or aircrafts.

Distributed Hybrid Systems Very few works tackle the verification of hybrid

systems in a distributed framework. The large scale complexity can be relaxed

through distribution and local computations.

Standardization There is a lack of standardized specification language for cyber-

physical and hybrid systems.

2.6 Chapter Summary

The chapter introduced model based verification and reviewed the existing litera-

ture concerned with qualitative modeling, reasoning and simulation, then the exist-

ing hybrid systems verification techniques, tools and challenges and the literature

concerned with the diagnosability property. In fact, qualitative reasoning allows

modeling systems with partially known knowledge while still getting conclusions

via simulation. We have seen that it is crucial to precisely denote the assumptions

such as continuity of functions, differentiability and smoothness, as these hypothe-

ses are a basis for computing correct successors of an initial given qualitative state.

We reviewed different verification techniques for verifying hybrid systems. In par-

ticular Flow-pipe computation aims at finding over and under-approximations of

50 / 162

Chapter 2. Scientific Context 51

the reachable set of states of a hybrid system that are semantically correct but

still not computationally expensive.

51 / 162

Chapter 3

Framework for Hybrid Automata
Verification

3.1 Hybrid Automata

In this part we introduce the formal framework describing hybrid automata that

will be adopted throughout the thesis and the different notations that will be

used. Later on, we provide an example of a practical system modeled as a hybrid

automaton. Lastly, we formally introduce the different classes of hybrid automata,

in which timed and polynomial hybrid automata are of our primary interest.

3.1.1 Hybrid Automata overview

Hybrid systems are dynamical systems that include discrete and continuous

behaviors [65]. Hybrid automata (HA) are a mean to model such systems. A

hybrid automaton is an infinite state machine. Each state of the hybrid automaton

is twofold with a discrete and a continuous part. The discrete part ranges over

a finite domain while the continuous part ranges over the Euclidean space Rn.

Intuitively a hybrid automaton permits modeling continuous change and discrete

behavior such as digital electronics controlling a physical environment. The main

components of a hybrid automaton are:

• Graph: A graph of nodes and edges, where nodes are Modes (or Locations,

or Discrete State) of the system and edges representing control switches,

52

Chapter 3. Framework for Hybrid Automata Verification 53

each edge relates unidirectionally two modes with each other and expresses

a mode change.

• Continuous Dynamics (or Flow Condition): Each mode of the graph,

is assigned a set of constraints, describing the continuous change. More

precisely, continuous dynamics can be expressed as differential equations (or

inclusions) or, in a much simpler form, a set of the possible valuations of the

derivative such as an interval over the reals.

• Variables: A finite set of containers, whose valuations are over the set of

real numbers.

• Jump Conditions: A set of constraints assigned to each mode. When a

jump constraint is satisfied, a switching between two related modes is allowed

to occur.

3.1.2 Hybrid Automata Definition

We now propose a general formal definition of hybrid automata and introduce the

different notations that will be used throughout this thesis.

Definition 3.1 (Hybrid Automata (HA)). An n-dimensional hybrid automaton

(HA) is a tuple H = (Q,X, S0,Σ, F, Inv, T) where:

• Q is a finite set of modes (or locations), that can be possibly defined as the

valuations set of a finite number of finite valued variables, and represents the

discrete part of H. X is a set of n real-valued variables (which are locally

continuously differentiable functions of time), whose valuations set X ⊆ Rn

represents the continuous part of H. S = Q × X is the state space of H,

whose elements, called states, are noted (q,x) with q and x the respective

discrete and continuous parts of the state.

• S0 ⊆ S is the set of initial states. If unique, it is noted (q0,x0).

• Σ is a finite set of events.

53 / 162

Chapter 3. Framework for Hybrid Automata Verification 54

• F : S → 2Rn
is a mapping assigning to each state (q,x) ∈ S a set F (q,x) ⊆

Rn constraining the time derivative ẋ of the continuous part of the mode q

by ẋ ∈ F (q,x). If there is no uncertainty on the derivative, then F is a

function S → Rn specifying the flow condition ẋ = F (q,x) in each mode q

(the dynamics in each mode is thus given by a set of n first-order ordinary

differential equations (ODEs)).

• Inv : Q → 2X assigns to each mode q an invariant set Inv(q) ⊆ X, which

constrains the values of the continuous part of the state while the discrete

part is q. We require, for all q ∈ Q, that {x | (q,x) ∈ S0} ⊆ Inv(q).

• T ⊆ S × Σ × S is a relation capturing discontinuous state changes, i.e.,

instantaneous discrete transitions from one mode to another one. Precisely,

t = (q,x, σ, q′,x′) ∈ T represents a transition whose source and destination

states are (q,x) with x ∈ Inv(q) and (q′,x′) with x′ ∈ Inv(q′), respectively,

and labeled by the event σ. It represents a jump from x in mode q to x′ in

mode q′.

We will call (concrete) behavior of H any sequence of continuous solution flows

and discrete jumps, rooted in an initial state, satisfying all the constraints above

defining H.

Set Based Notations Hybrid systems are typically represented as finite au-

tomata with (discrete, i.e., modes) states Q, initial states Q0 = {q ∈ Q | ∃x ∈
Inv(q) (q,x) ∈ S0} and transitions δ defined by δ = {(q, σ, q′) ∈ Q × Σ × Q |
∃x,x′ (q,x, σ, q′,x′) ∈ T}. To each state q ∈ Q0 is associated an initial (con-

tinuous) nonempty set Init(q) = {x ∈ Inv(q) | (q,x) ∈ S0}. To each tran-

sition τ = (q, σ, q′) ∈ δ are associated a nonempty guard set G(τ) = {x |
∃x′ (q,x, σ, q′,x′) ∈ T} ⊆ Inv(q) and a set-valued reset map R(τ) : G(τ) →
2Inv(q′) given by R(τ)(x) = {x′ | (q,x, σ, q′,x′) ∈ T}. It is actually equivalent

in the definition to provide either T or δ, G and R. In the last case, H is de-

noted by (Q,X, S0,Σ, F, δ, Inv,G,R) and we have: ∀(q,x), (q′,x′) ∈ S, ∀σ ∈ Σ,

((q,x, σ, q′,x′) ∈ T ⇔ τ = (q, σ, q′) ∈ δ ∧ x ∈ G(τ) ∧ x′ ∈ R(τ)(x)).

54 / 162

Chapter 3. Framework for Hybrid Automata Verification 55

Relational Based Notations It can be in some cases more convenient to adopt

a relational-based representation than a set-based representation and to use pred-

icates instead of subsets. By a slight abuse of notation, for each mode q, Init(q)

(for q ∈ Q0), F (q) and Inv(q) indicate then predicates whose free variables are

respectively from X, X×Ẋ and X and Init(q)(x), F (q)(x, ẋ) and Inv(q)(x) being

true means respectively x ∈ Init(q), ẋ ∈ F (q,x) and x ∈ Inv(q). In the same

way, for each mode transition τ , G(τ) and R(τ) indicate predicates whose free

variables are respectively from X and X ×X and G(τ)(x) and R(τ)(x,x′) being

true means respectively x ∈ G(τ) and x′ ∈ R(τ)(x). We will make use equally of

both representations.

Assumption 3.1. Guards in any mode q will be assumed non-intersecting: ∀q ∈
Q, ∀τ1 = (q, σ1, q1) ∈ δ, ∀τ2 = (q, σ2, q2) ∈ δ, (τ1 6= τ2 ⇒ G(τ1) ∩G(τ2) = ∅).

Non-deterministic state machine Thus, at any moment of its continuous

evolution in a mode q, the system may jump to at most one other mode and by a

unique event. Nevertheless, a HA is generally non-deterministic: the continuous

dynamics in each mode may be non-deterministic, the moment where a jump

occurs is non-deterministic (as long as Inv(q)(x) and G(τ)(x) are true, where q is

the source mode of the mode transition τ , the system may continue to continuously

evolve in q or make the transition τ) and the reset after a jump may be non-

deterministic.

3.1.3 Graphical representation

A hybrid automaton is visually represented by a set of nodes and arcs:

• Nodes: each node represents a mode of the system and is labeled by the

flow constraints such as differential equations followed by the mode invariant

sets.

• Arcs: each arc represents a jump (discrete transition) from one mode to

another. The arc is labeled by its event and its associated guard (and possibly

its reset map).

55 / 162

Chapter 3. Framework for Hybrid Automata Verification 56

off

ẋ = −x
x ≥ 68

on

ẋ = −x+ 100

x ≤ 82

x ∈ [80, 90]
x ≤ 70/Bon

80 ≤ x/Boff

Figure 3.1: 1-dimensional hybrid automaton modeling a thermostat

Example 3.1 (Temperature regulator). A temperature regulator or thermostat

system maintains the temperature of an object quasi-constant by turning on and

off a heater device. Practically speaking, such system contains at least, a temper-

ature sensor, a heater device and logic control electronic circuits. An algorithm

computes, given the actual measured temperature of the object, the correspond-

ing order for the circuitry to activate or not the heater. A hybrid automaton

H = (Q,X, S0,Σ, F, δ, Inv,G,R) models the behavior of such system (Figure 3.1)

such that:

• Q = {on, off }, X = {x}, S0 = (off , [80, 90])

• Σ = {Bon, Boff }, F (on) = {ẋ = −x+ 100}, F (off) = {ẋ = −x}

• δ = {τ1 = (off,Bon, on), τ2 = (on,Boff , off)}, Inv(off) = x ≥ 68, Inv(on) =

x ≤ 82

• G(τ1) = x ≤ 70, G(τ2) = x ≥ 80, R(τ1) = R(τ2) = (x = x′)

The assigned hybrid automaton H is one dimensional, where x represents the

sensed temperature.

3.1.4 Hybrid Automata semantics

The semantics of a hybrid automaton (i.e., the set of executions of a HA) is a set

of sequences, every sequence aggregates continuous time lapses with mode jumps

while satisfying all the flow, invariant and jump constraints. We denote by q0, q1, ...

the modes of Q, and by x1, x2, ..., xn the variables of X.

56 / 162

Chapter 3. Framework for Hybrid Automata Verification 57

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Time t

65

70

75

80

85

90

95

T
em

p
er

at
ur

e
x

Initial States Set

Reach States Set

Guard States Set

Invariant States Set

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Time t

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

T
em

p
er

at
ur

e
x

Initial States Set

Reach States Set

Guard States Set

Invariant States Set

(b)

Figure 3.2: Thermostat behavior for: (a) Mode off , (b) Mode on

Definition 3.2 (Hybrid automaton semantics). The semantics of a hybrid au-

tomaton H, denoted by [[H]], is the set of all executions (or runs), which are labeled

sequences of states from S with labels in L = Σ∪R+: (q0,x0)
l0−→ (q1,x1)...(qi,xi)

li−→
... such that (q0,x0) ∈ S0 and, for any two successive states (qi,xi)

li−→ (qi+1,xi+1)

in the sequence, one of the following is true:

• li = σi ∈ Σ and (qi,xi, σi, qi+1,xi+1) ∈ T ;

• li = di ∈ R+, qi = qi+1, xi,xi+1 ∈ Inv(qi) and ∃x : [0, di] → X continuously

differentiable function, with x(0) = xi, x(di) = xi+1 and ∀t ∈ (0, di) ẋ(t) ∈
F (qi, x(t)) and x(t) ∈ Inv(qi).

In the first case, the system executes a discrete transition (also called discrete

jump) τi = (qi, σi, qi+1) from the source mode qi to the destination mode qi+1.

Such a transition is possible (enabled) as soon and as long as xi ∈ G(τi). After

the jump, the system may follow the new dynamics given by F (qi+1), starting

from the continuous state xi+1 ∈ R(τi)(xi). Notice that no time elapses during a

discrete jump, which is instantaneous. In the second case, the system performs a

continuous transition (also called continuous flow) of duration di inside the mode

qi, constrained by the dynamics F (qi) and the invariant set Inv(qi). The sequence

h = (off , 80)
0.15−−→ (off , 69)

Bon−−→ (on, 69)
0.5−→ (on, 81)

Boff−−→ (off , 81)... is valid for

the thermostat (Example 3.1), thus h ∈ [[H]]. The trace of an execution h, i.e.,

57 / 162

Chapter 3. Framework for Hybrid Automata Verification 58

the sequence of its labels, is a word from L? (or Lω for infinite h), denoted as

trace(h). We denote the total time duration of h by time(h) ∈ R+∪{+∞}, which

is calculated as the sum of all time periods in the trace of h: time(h) =
∑
di.

Figure (3.2) illustrates the behavior of the thermostat system: the reachable set

of states starting from the initial set S0, the guard and invariant states sets.

Zeno behavior An execution h ∈ [[H]] is zeno if it is infinite with finite time,

i.e., the sum given by
+∞∑
i=0

di

converges (i.e., tends to a real finite value). Consequently, in a zeno execution h,

an unbounded number of discrete jumps occur while the execution time time(h) is

finite. Real systems in general do not show zeno behavior. Such behavior arises at

the modeling stage and is due to the abstraction and incompleteness of the model.

Many works addressed the conditions for zeno behaviors to exist [113].

Assumption 3.2. We limit our work to cases that do not account for any zeno

behavior.

Example 3.2 (Bouncing Ball). The classical bouncing ball example illustrates

zeno behavior. A ball is initially released from some height H0 without initial

speed. Once it hits the ground, the ball bounces back. The example at some

abstraction level, can be modeled by a hybrid automaton with a single mode and

one jump. The variables of the system are: the vertical position of the ball x0 and

its velocity x1 = dx0
dt

. The forces applied to the ball are limited to the gravitational

force, thus dx1
dt

= −g is constant with g the gravitational acceleration of the Earth.

The ball is assumed semi-elastic and hollow, so when the collision with the ground

occurs some of the air inside the ball is compressed for a short period of time due to

the deformation of the ball. The ball is well sealed, so while the ball takes back its

normal form, the compressed air allows the ball to bounce again. Due to friction

with the ground, some of the ball’s kinetic energy is lost and some is restituted.

The energy loss and restitution happen in a short duration of time when compared

with the time elapsed between two successive bounces of the ball. Consequently,

the energy loss can be assumed instantaneous, the change of speed is modeled as

58 / 162

Chapter 3. Framework for Hybrid Automata Verification 59

a discrete jump back to the same mode while having a different value of the speed

(because of the energy loss, modeled as a reset) and an opposite direction of the

velocity after the jump (because the ball does not penetrate through the ground).

The guard holds the condition x1 < 0∧x0 = 0 and the associated reset, x1 := −r.x1

with r ∈ (0, 1) the restitution factor. Using the reachability computation tool

CORA initialized from the set [0.9, 1.1] we compute the flow-pipe till a time horizon

of 2.1 time units using zonotopes as state representation (Figure 3.3). We can

clearly see that the bouncing ball simulated trajectory exhibits zeno behavior: in

a bounded area of x0 such as [0, 0.2] the number of bounces increases infinitely

often.

Figure 3.3: Flow-pipe of the bouncing ball simulated using zonotopes

3.1.5 Hybrid Automata Classes and Particular Cases

The components of the hybrid automaton previously defined can be further con-

strained to find particular classes. On the two opposite sides of the continuity

spectrum we find discrete automata and continuous systems. When constraining

primarily the dynamics F we find practical classes of hybrid automata such as

59 / 162

Chapter 3. Framework for Hybrid Automata Verification 60

the rectangular or linear class or timed automata. For the rectangular class the

dynamics valuations are a cartesian product of intervals and it lies on the bound-

ary of the decidability over reachability problem with some restrictions [66]. The

timed and polynomial hybrid automata classes are of particular interest for this

thesis work.

Definition 3.3 (Discrete Automata (DA)). It is the case where there is no contin-

uous space. Thus, a (finite) discrete automaton (DA) is a tuple D = (Q,Q0,Σ, δ)

where:

• Q is a finite set of discrete states (modes).

• Q0 ⊆ Q is the set of initial states.

• Σ is a finite set of events.

• δ ⊆ Q× Σ×Q is a set of transitions of the form τ = (q, σ, q′).

This definition is identical to Definition 2.6, except that now any state is con-

sidered final. The semantics [[D]] of D is given by the set of sequences (called

paths) made up of successive states transitions labeled by events and rooted in an

initial state. It has a finite representation. The trace of such a path is the word

in Σ? (Σω for infinite paths) whose letters are the successive labels of the path.

Definition 3.4 (Continuous systems (CS)). It is the case where there is no dis-

crete part. Thus, an n-dimensional continuous system (CS) is a particular hybrid

automaton C with only one mode (|Q| = 1) and Σ, T = ∅ (and thus δ,G,R too).

It can thus be denoted as C = (X,S0, F, Inv) with S0 ⊆ Inv.

The semantics [[C]] of C is the set of all time labeled sequences of continu-

ous states, rooted in an initial state, corresponding to the continuous transitions

constrained by the dynamics F and the invariant set Inv. Its representation is

infinite.

60 / 162

Chapter 3. Framework for Hybrid Automata Verification 61

Timed Automata It is a class of hybrid automata where the continuous vari-

ables xi, 1 ≤ i ≤ n, with values in R+, called clocks, have all first order derivatives

equal to one. So time elapses identically for all clocks. The set C(X) of constraints

over a set of clocks X is defined as follows: a constraint is either a primitive con-

straint of the form xi op ci where ci ∈ R+ (at the theoretical level because, in

practice, Q is used instead of R for computer implementation reasons) and op is

one of <,≤,=,≥, > or a finite conjunction of primitive constraints. The satisfia-

bility set of a constraint is thus a rectangle in Rn
+, i.e., the product of n intervals

of the half real line R+, and we will identify C(X) to the set of rectangles.

Definition 3.5 (Timed automata (TA)). A timed automaton (TA) is a hybrid

automaton T = (Q,X, S0,Σ, F, δ, Inv,G,R) such that:

• X = Rn
+.

• S0 = Q0 × {0}.

• ∀q ∈ Q F (q, .) = 1, which means that the dynamics of clocks evolution in

each mode q is given by ẋi = 1.

• Inv : Q→ C(X) associates to each mode q a rectangle invariant in X. We

require 0 ∈ Inv(q0).

• G : δ → C(X) associates to each discrete transition (q, σ, q′) a rectangle

guard in Inv(q).

• ∀τ ∈ δ ∃Y (τ) ⊆ X ∀x ∈ G(τ) R(τ)(x) = {x′} with x′i = 0 if xi ∈ Y (τ) and

x′i = xi otherwise, i.e., clocks in Y (τ) are reset to zero with transition τ , the

others keeping their values.

The notation of a timed automaton T is generally simplified as T = (Q,X,Q0,Σ,

Inv, (δ,G, Y)). The semantics of T as a hybrid automaton, given by Definition 3.2,

can be simplified by merging together in an execution successive timed transitions

between two discrete transitions and summing up their time period labels. An ex-

ecution in [[T]] is thus a sequence h of alternating time steps (possibly with 0 time

period) and discrete steps of the form (q0,x0)
d1−→ (q0,x0 + d1)

σ1−→ (q1,x1)
d2−→ ...

whose trace trace(h) is the timed word d1σ1d2... ∈ R+(ΣR+)∗ and duration is

61 / 162

Chapter 3. Framework for Hybrid Automata Verification 62

time(h) =
∑
di.

Decidability results The class of timed automata is particularly interesting as the

reachability and language emptiness problems are decidable for that class and are

PSPACE-complete [7]. This result still holds for singular automata where the

flow F (., .) is a constant singleton, allowing thus different constant slopes to the

clocks. However, if a clock can switch from active (turned on) to inactive (turned

off), or vice versa, when transiting between two modes then it is called a stop-

watch, i.e., ∀q ∈ Q ∃c ∈ {0, 1}n F (q, .) = c, which means that the dynamics

of clocks evolution in each mode q is given by ẋi = 1 for those clocks active in

q and ẋi = 0 for those clocks inactive in q. During inactivity, it holds its last

valuation when it was active (or 0 in case of reset). It has been shown that decid-

ability for timed automata with one stopwatch holds if some strong conditions are

met [20], however it is no longer true for timed automata with three stopwatches

(and thus also for the more general class of multisingular automata, where the

flow singletons depend on the mode).

Rectangular Automata For this class, the unique flow condition F (., .) is the

same for all modes and is given by a bounded rectangle in Rn (instead of the

singleton 1), Init(q0) is a bounded rectangle, Inv(q) is a rectangle for any mode

q and, for any discrete transition τ , the guard G(τ) is a rectangle and the reset

R(τ) is a bounded rectangle for those reset variables, which depend only on τ [65].

The idea behind a rectangular automaton is that changes of the discrete state

has no effect over the variations of the continuous variables. The variables values

can change between the discrete states but not their flow. Rectangular automata

naturally express that the continuous variables are decoupled.

Definition 3.6 (Rectangle of dimension n). A rectangle I of dimension n is a

product of n intervals Ii = (ai, bi) whose endpoints (that may belong or not to the

interval) are in {R ∪ ±∞}
I = Π

16i6n
Ii (3.1)

A rectangle is bounded if each of its intervals Ii is bounded.

62 / 162

Chapter 3. Framework for Hybrid Automata Verification 63

Definition 3.7 (Rectangular Automata (RA)). A rectangular automaton (RA) is

a hybrid automaton R = (Q,X, S0,Σ, F, δ, Inv,G,R) such that:

• X = Rn
+.

• ∃I, S0 = Q0 × I where I is an n-dimensional bounded rectangle.

• ∃IF∀q ∈ Q,F (q, .) = IF and IF is an n-dimensional bounded rectangle.

• Inv : Q→ C(X) associates to each mode q a rectangle invariant in X.

• G : δ → C(X) associates to each discrete transition (q, σ, q′) a rectangle

guard in Inv(q).

• ∀τ ∈ δ ∃Y (τ) ⊆ X ∃Ii(τ), for xi ∈ Y (τ), bounded intervals ∀x ∈ G(τ)

R(τ)(x) = {x′} with x′i ∈ Ii(τ) if xi ∈ Y (τ) and x′i = xi otherwise, i.e.,

clocks in Y (τ) are reset to intervals Ii(τ) with transition τ , the others keeping

their values.

Unknown constant An unknown constant can be modeled by a variable xj with

IFj = [0, 0]. xj should not be reinitialized by any control switch and other variables

may depend on the value of xj.

Decidability results Decidability for the reachability problem and for language

emptiness problem holds for the class of rectangular automata. And thus holds

for the subclass of singular automata, whose timed automata are a particular

case. But this is no longer true for the larger class of multirectangular au-

tomata where the flow rectangle conditions F (q, .) = IFq depend on the mode

q (as written above it is already not true for the subclass of multisingular au-

tomata with singleton flows). Notice nevertheless that, allowing changes of flow

conditions with changes of modes may remain manageable if, e.g., we require a

reset of the variables concerned when it occurs. That is how initialized multi-

rectangular automata, i.e., where for each discrete jump, each variable whose

flow interval is changed in this jump has to be reset (reinitialized), can be trans-

lated to rectangular automata. Decidability does not hold any more also for the

class of triangular automata which generalize rectangular automata by replac-

ing rectangles by so-called triangles obtained by intersecting rectangles with any

63 / 162

Chapter 3. Framework for Hybrid Automata Verification 64

number of half-spaces defined by inequalities of the form xi ≤ xj, i.e., if vari-

ables are not pairwise independent (extending for timed automata the set C(X)

by constraints of the form xi − xj op cij leads already to undecidability). Linear

automata generalize both multirectangular and triangular automata by allow-

ing sets F (q, .), Init(q), Inv(q), G(τ), R(τ)(.) to be any convex polyhedra in Rn

(instead of just rectangles or triangles) and different flows conditions for differ-

ent modes. And polynomial automata generalize linear automata by allowing

those sets to be defined no longer by just linear constraints but by polynomial

constraints.

Time elapsed in a state In a multirectangular automaton and for a given state

q, we can define a variable x1 with flow condition in q given by IFq 1
= [1, 1] and in

any state q′ different from q given by IFq′ 1 = [0, 0]. It models a stopwatch and can

be used to measure the duration the system stays in state q, the stopwatch being

off in any other state.

Linear Hybrid Automata

A linear term over a set Y = {yi, 1 ≤ i ≤ n} of real-valued variables is a linear

combination over Y with real (in practice, rational) coefficients, i.e., an expression

of the form k0 + k1y1 + . . . + knyn with ki ∈ Q. A linear predicate over Y is an

inequality between linear terms over Y , i.e., can be written as k0+k1y1+. . .+knyn ≤
0. A convex linear predicate over Y is a finite conjunction of linear predicates over

Y , thus its satisfiability set is a convex polyhedron in Rn.

Definition 3.8 (Linear Hybrid Automata (LA)). A linear hybrid automaton (LA)

is a hybrid automaton L = (Q,X, S0,Σ, F, δ, Inv,G,R) such that :

• ∀q ∈ Q,F (q) is a convex linear predicate with free variables from Ẋ only,

which means that, in each mode, ẋ is constrained to belong to a given convex

polyhedron, depending only on the mode.

• ∀q ∈ Q, Init(q) and Inv(q) are convex linear predicates over X.

• ∀τ ∈ δ, G(τ) and R(τ)(.) are convex linear predicates over X.

64 / 162

Chapter 3. Framework for Hybrid Automata Verification 65

Remark 3.1. A linear differential equation cannot necessarily be converted into

a linear flow condition: the notions of linear for differential equations and hybrid

automata are different.

Multi-Affine Hybrid Automata

We recall the definition of a multi-affine function [70].

Definition 3.9 (Multi-affine Function). A multi-affine function f : Rn → Rp is

a polynomial in the indeterminates x1, , ..., xn with the property that the degree of

f in any of the variables is less than or equal to 1. Stated differently, f has the

form:

f(x1, ..., xn) =
∑

i1,...,in∈{0,1}
ci1,...,inx

i1
1 ...x

in
n , (3.2)

with ci1,...,in ∈ Rp for all i1, ..., in ∈ {0, 1} and using the convention that if ik = 0,

then xikk = 1.

E.g., a two-dimensional multi-affine continuous system can be written as:

ẋ = ax+ by + cxy + d (3.3)

ẏ = a′x+ b′y + c′xy + d′ (3.4)

where a, b, c, d, a′, b′, c′, d′ ∈ R.

Definition 3.10 (Multi-Affine Hybrid Automata (MAA)). A multi-affine hybrid

automaton (MAA) is a hybrid automaton MA = (Q,X, S0,Σ, F, δ, Inv,G,R) for

which ∀q ∈ Q the flow condition F (q, .) : X → Rn is a multi-affine function and

∀q ∈ Q, ∀τ ∈ δ, Init(q), Inv(q), G(τ), R(τ)(.) are rectangle predicates.

Polynomial Hybrid Automata

Definition 3.11 (Polynomial Hybrid Automata (PA)). A polynomial hybrid au-

tomaton (PA) is a hybrid automaton P = (Q,X, S0,Σ, F, δ, Inv,G,R) for which

∀q ∈ Q the flow condition F (q, .) : X→ Rn is a polynomial function and ∀q ∈ Q,

∀τ ∈ δ, Init(q), Inv(q), G(τ), R(τ)(.) are defined by polynomial constraints.

65 / 162

Chapter 3. Framework for Hybrid Automata Verification 66

3.1.6 Modeling with hybrid automata

Hybrid automata represent an intuitive modeling framework. They are used in

various domains to model complex hybrid systems. Here is a practical case where

an hybrid automaton is used for modeling a system.

Example 3.3 (The switched server [81]). We consider an example of 4 buffers

B1, ..., B4 and a server S . To each buffer Bi we assign a workflow wi representing

the rate at which work is entering the buffer. The server processes work, one

buffer at a time, at a rate ws. The switching between buffers is controlled by a

user input. For the work processing to eventually terminate it is necessary that

ws > w1 + w2 + w3 + w4. Such system is modeled by a hybrid automaton H =

(Q,X, S0,Σ, F, Inv, T). We first identify the discrete modes and the continuous

variables. With some observation, we notice that each time the server switches

buffers, the continuous change of the work waiting to be processed follows a new

evolution. Therefore, a simple choice for modeling the set of discrete modes Q is

that each qi represents the server processing work at buffer Bi. Hence, we have

four modes and Q = {q1, q2, q3, q4}. The server is able to switch from and to

any mode, as a result, all distinct modes qi and qj are related by a discrete jump

with a given label, say switch i j. Let xi(t) be the amount of work in the buffer

Bi at time t. The set X of continuous variables is thus made up of those four

variables xi and X ⊆ R4. Any state (qi,x) with xi > 0 can be chosen as initial

state: Init(qi)(x) = (xi > 0). If the system is in the discrete mode qi, then

we have ẋi(t) = wi − ws and, for all j such that i 6= j, ẋj(t) = wj, hence F is

specified. Invariant sets are given by: Inv(qi)(x) = (xi ≥ 0) and reset predicates

R(τ) are the equality predicate. What is left to be specified are the values of the

guards Gij which in practice represent the switching protocol of the server. Finally

T = {(qi,x, switch i j, qj,x) | i 6= j,x ≥ 0, Gij(x), xj > 0}.

66 / 162

Chapter 3. Framework for Hybrid Automata Verification 67

q1

ẋ1 = w1 − ws
ẋi 6=1 = wi

q2

ẋ2 = w2 − ws
ẋi 6=2 = wi

q4

ẋ4 = w4 − ws
ẋi 6=4 = wi

q3

ẋ3 = w3 − ws
ẋi 6=3 = wi

s 1 2

s 2 1

s 2 3s 3 2

s 3 4

s 4 3

s 4 1 s 1 4

s
1

3

s
3

1 s
2

4

s
4

2

Figure 3.4: Graphical representation of the switched buffer hybrid system example

67 / 162

Chapter 3. Framework for Hybrid Automata Verification 68

3.2 Diagnosability: Observations and Faults

In this part we introduce a formal framework for analyzing the diagnosability of a

hybrid system. We specify observations and partially observable hybrid automata,

we introduce fault modeling and definitions for (bounded-)diagnosability and re-

view the important notion of critical pair.

3.2.1 Observations and faults

Remind that diagnosability is a system property allowing one to determine with

certainty, at the design stage, that a fault occurred in the system, using avail-

able observations. Precisely, in a given system model, the existence of two infinite

behaviors, with the same observations but exactly one containing the considered

fault, violates diagnosability. Hence, to be able to analyze such property, it is

necessary to define what can be observed for given systems as well as what are

considered as faults. In practice, the observations are partial, only parts of the

system are known and are usually obtained from sensors. In whole generality we

will consider that both some discrete jumps between modes and some continuous

variables inside a mode may be observable. The sets of observable events and vari-

ables are assumed to be time invariant, the second one being also assumed to be

independent of the mode for the sake of simplicity. Events are observed together

with their instantaneous occurrence time and variables values are assumed to be

observed at any moment. E.g, for the thermostat system (Figure 3.1, page 56),

transitions Bon, Boff and temperature x are assumed to be observable. For what

concerns faults, we will suppose that they are modeled by some unobservable dis-

crete jump, between precisely a normal mode and a faulty mode, translating often

in a change of dynamics. This is well adapted for abrupt faults but progressive

faults or degraded modes (as a shift of parameter) can be also represented in this

way, the designer abstracting a slow evolution in a sudden change when he esti-

mates that the behavior variation induced (that he will model by means of the

invariant and the guard) cannot any more let consider the given mode as normal.

To sum up, we obtain the following definition.

68 / 162

Chapter 3. Framework for Hybrid Automata Verification 69

Definition 3.12 (Partially observable hybrid automaton (POHA)). A partially

observable hybrid automaton (POHA) is a hybrid automaton H (Def. 3.1, page. 53)

where:

• Σ = Σo] Σu] Σf , i.e., the set of events is the disjoint union of the set Σo

of observable (normal) events, the set Σu of unobservable normal events and

the set Σf of unobservable fault events.

• X = Xo]Xu, i.e., the set of continuous real-valued variables is the disjoint

union of the set Xo of observable variables and the set Xu of unobservable

variables.

Definition 3.13 (Execution (timed) observation). Given an execution h ∈ [[H]]

of a POHA H, h = (q0,x0)
l0−→ (q1,x1)...(qi,xi)

li−→ ..., with li ∈ Σ∪R+, the (timed)

observation of h is defined as Obs(h) = xo0, l
o
0,x

o
1...x

o
i , l

o
i , ..., where:

• xoi is obtained by projecting xi on variables in Xo.

• loi = li if li ∈ Σo∪R+. Otherwise, loi = ε, which is then removed from Obs(h).

Note that all durations labels li = di in h are present in Obs(h). Thus, any

observable event li = σi in h is present in Obs(h) together with its occurrence time,

obtained by adding up all durations dj in Obs(h) from the origin up to the event

σi. In the same way, any observable variable x has its value known in Obs(h) at all

those instants t obtained as the sums of consecutive durations in Obs(h) from the

origin. If t is the occurrence time of an (observable or unobservable) event σ and if

x is reset by the discrete transition σ, then the value of x changes instantaneously

after this transition and the new value will be noted x+(t) to distinguish it from

the value x(t) before the transition (a reset observable variable may thus identify

the presence of an unobservable event). Similarly, one can define observation for

timed automata. The difference is that we do not assume any information about

continuous clocks, so there is no xoi . Then, the observation is obtained from the

trace (a timed word) by erasing all unobservable events and by adding up the

periods between any two successive observable events in the resulting sequence.

We have thus defined what is the observation of a POHA H at the level of its timed

transition system (see subsection 4.1.3). Defining its observation at the level of its

69 / 162

Chapter 3. Framework for Hybrid Automata Verification 70

timeless transition system (see subsection 4.1.3) is similar, with li ∈ Σ ∪ {ε} and

loi = li if li ∈ Σo and removed otherwise. This means that the timeless observation

is obtained from the timed observation Obs(h) above by removing all durations di,

keeping thus only observable events in Σo and values xoi of observable variables at

each transition step as an ordered sequence without any occurrence time attached.

3.2.2 System Diagnosability Definition

As we just explained, a fault is modeled as a fault event that alters the system

from a normal mode to an abnormal mode. There may exist different fault events

in a given system.

Assumption 3.3. For the sake of reducing complexity (from exponential to linear

in the number of different fault events) and of simplicity, in the following only

one fault type, i.e., fault event, at a time is considered but multiple occurrences

of this event are allowed, and the other types of fault events are thus processed as

unobservable normal events.

By processing like this successively each fault type individually, one obtains

the same result about system’s diagnosability as if all fault types were considered

simultaneously with a lower complexity (the system is diagnosable if and only

if it is diagnosable for each fault type). Now we adapt to hybrid systems the

diagnosability definition [95] introduced for discrete event systems (the bounded

one and the unbounded one in terms of executions lengths). hF denotes a finite

execution whose last label is a first occurrence of the fault event F considered.

Given a finite execution h ∈ [[H]] such that h = (q0,x0)
l0−→ (q1,x1)...(qi,xi), the

set of post-executions of h in [[H]] is defined as [[H]]/h = {h′ = (qi,xi)
li−→ ... |

h.h′ ∈ [[H]]}, where h.h′ is obtained by merging the final state of h and the first

state of h′ (both are identical). Consequently, a faulty execution is defined as

follows, where we abbreviate F ∈ trace(h) by F ∈ h.

Definition 3.14 ((∆-)faulty executions). Given a hybrid automaton H and F a

fault event, a faulty execution is an execution h ∈ [[H]] such that F ∈ h. Thus

h = hFh′ where hF is the prefix of h whose last label is the first occurrence of F .

We denote the period from (the first occurrence of) fault F in h by time(h, F)

70 / 162

Chapter 3. Framework for Hybrid Automata Verification 71

= time(h′). Given a positive real number ∆ ∈ R∗+, we say that at least ∆ time

units pass after the first occurrence of F in h, or, in short, that h is ∆-faulty, if

time(h, F) ≥ ∆.

Definition 3.15 (Hybrid automaton (time bounded and unbounded) diagnosabil-

ity). Given ∆ ∈ R∗+, a fault F is said ∆-diagnosable in a POHA H iff (if and only

if)

∀h ∈ [[H]] (h ∆-faulty ⇒
∀h′ ∈ [[H]] (Obs(h′) = Obs(h)⇒ F ∈ h′)).

i.e.,

∀hF ∈ [[H]] ∀h ∈ [[H]]/hF (time(h) ≥ ∆⇒
∀h′ ∈ [[H]] (Obs(h′) = Obs(hF .h)⇒ F ∈ h′)).

A fault F is said diagnosable in H iff

∃∆ ∈ R∗+ (F ∆-diagnosable in H).

This definition states that F is ∆-diagnosable (resp., diagnosable) iff, for each

execution hF in [[H]], for each post-execution h of hF with time at least ∆ (resp.,

with enough long time, depending only on F), then every execution in [[H]] that

is observably equivalent to hF .h should contain F . Precisely, the existence of

two indistinguishable behaviors, i.e., executions holding the same observations,

with exactly one containing F and time long enough after F , i.e., whose time

after F is at least ∆ (resp., is arbitrarily long), violates the ∆-diagnosability

(resp., diagnosability) property for hybrid automata. Inspired from the framework

of discrete event systems, we define critical pairs for partially observable hybrid

automata taking into account both continuous and discrete dynamics.

Definition 3.16 (∆-critical pair). A pair of executions h, h′ ∈ [[H]] is called a

∆-critical pair with respect to F iff: F ∈ h and F /∈ h′ and Obs(h) = Obs(h′) and

time(h, F) ≥ ∆.

We are now ready to state the sufficient and necessary condition for diagnos-

ability verification.

71 / 162

Chapter 3. Framework for Hybrid Automata Verification 72

Proposition 3.1. A fault F is ∆-diagnosable in a POHA H iff there is no ∆-

critical pair in [[H]] with respect to F . F is diagnosable in H iff, for some ∆,

there is no ∆-critical pair in [[H]] with respect to F (i.e., there is no arbitrarily

long time after F critical pair).

Proof. The equivalence between the absence of ∆-critical pairs in a POHA and its

∆-diagnosability is directly seen by negating the diagnosability definition (Def.3.15):

¬(∀h ∈ [[H]] (h ∆-faulty ⇒
∀h′ ∈ [[H]] (Obs(h′) = Obs(h)⇒ F ∈ h′))).

⇐⇒
∃h ∈ [[H]] (h ∆-faulty ∧ (∃h′ ∈ [[H]] (Obs(h′) = Obs(h) ∧ F /∈ h′))).

From the definition of a ∆-faulty execution, the previous is equivalent to

∃h ∈ [[H]] (F ∈ h ∧ time(h, F) ≥ ∆) ∧ (∃h′ ∈ [[H]]

(Obs(h′) = Obs(h) ∧ F /∈ h′))).
⇐⇒

∃h, h′ ∈ [[H]] (F ∈ h ∧ F /∈ h′ ∧ time(h, F) ≥ ∆ ∧Obs(h′) = Obs(h)).

Note that all above definitions (e.g., observable projection, post-executions, di-

agnosability, critical pairs, etc.) are applicable in a similar way to timed automata,

which can be considered as a special type of hybrid automata. The only difference

is that the set of continuous variables is the set of clock variables whose derivative

is always 1 [36, 15, 13, 37, 60]. And, as for automata the existence of arbitrarily

long (in terms of transitions number) after F faulty executions implies the exis-

tence of an infinite faulty execution, in the same way it has been proved [105]

that for timed automata the existence of arbitrarily long time after F faulty exe-

cutions implies the existence of a +∞-faulty execution (extending Definition 3.14

to 4 = +∞) and thus that non-diagnosability is witnessed by the existence of

a +∞-critical pair (extending Definition 3.16 to 4 = +∞) and its checking is

PSPACE-complete.

Proposition 3.2. A fault F is diagnosable in a partially observable timed automa-

ton T iff there is no +∞-critical pair in [[T]] with respect to F .

72 / 162

Chapter 3. Framework for Hybrid Automata Verification 73

Theorem 3.1 (Diagnosability check of timed automata). Checking diagnosability

of a partially observable timed automaton T is PSPACE-complete.

Proof. The result and proof are elaborated in [105].

We will rest on this result as diagnosability checking of a POHA H will be

performed on a timed automaton T abstracting H. We will use also the following

obvious result.

Proposition 3.3. If a POHA H is ∆-diagnosable then it is ∆+-diagnosable

for any ∆+ > ∆. Alternatively, if H is not ∆-diagnosable then it is not ∆−-

diagnosable for any positive ∆− such that ∆− < ∆.

3.3 Chapter Summary

This chapter introduced a framework for hybrid automata model and semantics.

We reminded classes of interest of hybrid automata. Two practical examples of

modeling using the hybrid automata formalism were presented: a thermostat and

a switched buffer system. The diagnosability definitions for a hybrid automaton

have been presented together with critical pairs that witness non-diagnosability

of the system and we reminded complexity results for verifying diagnosability of

timed automata.

73 / 162

Chapter 4

Qualitative Abstractions for
Hybrid Automata

In this chapter we elaborate abstractions of hybrid automata using principles from

the qualitative reasoning domain. Abstractions as timed automata are presented.

Algorithms for computing the abstractions are shown. Section 4.1 presents state-

space decomposition abstractions of a hybrid automaton where timeless and timed

abstractions are defined. Section 4.2 presents algorithms for automating the com-

putation of the defined abstractions. Finally, section 4.3 applies the elaborated ab-

straction method to diagnosability verification by using a counter-example guided

abstraction refinement loop.

4.1 Qualitative Abstractions

The language of hybrid automata as previously defined (Section 3.1) is not directly

manageable (for the purpose of model checking for example). This is mainly due

to the large expressiveness of the language. This fact translates mathematically by

the differential equations having no closed form solutions in general. The challeng-

ing part about hybrid systems is to encode the continuous evolution into usable

representations while taking into account the guard and reset regions. Conse-

quently, the use of abstractions allows obtaining a simplified model, but nonethe-

less possibly sufficient and correct for formal properties verification. The decision

at the abstract level can to some extent be inferred back to the concrete hybrid

system. We first remind some abstraction principles and provide some intuitive

74

Chapter 4. Qualitative Abstractions for Hybrid Automata 75

and motivating examples. We then define different abstraction schemes using and

extending ideas from the qualitative reasoning domain. This is done by first in-

troducing the finest abstractions of hybrid automata followed by decomposition

of the hybrid state space into regions. We then define hybrid automata abstrac-

tions using a defined decomposition. We elaborate abstractions as discrete event

systems, modeling reachability between the regions of the decomposition of the

state space, and as timed automata, adding time constraints to the reachability

relations. For the rest of the chapter, we consider a hybrid automaton H (Def.3.1,

page 53).

4.1.1 Abstracting continuous change

Generally speaking, verifying basic properties such as reachability is undecidable

for continuous systems. This is due in particular to the large expressiveness of

continuous dynamics over the infinite domain of the reals [63]. A fortiori, for

a hybrid system, a computation of the reachable set of states starting from an

initial state is undecidable except for few classes [66]. An efficient practice is to

partition infinite domains into a finite number of subsets, abstracting the system

behavior in each of those subsets. In this section, we thus focus on abstractions

that discretize the infinite state space defined by continuous variables into a finite

set. The challenging part about abstractions is the choice made to select the

representative sets and the criterion for choosing them. This choice relies entirely

on the class of the properties one wishes to verify and on the structure and class of

the hybrid system itself. Abstractions that can be refined are a necessary concern,

as refinement allows if needed adding more information into the abstract system

from the original one.

Sound and complete abstraction Figure 4.1 illustrates the exact reachable

set (in grey) obtained from an initial square set X0. Two abstractions are pro-

posed (finite sets of squares within the bold lines). On the left is a complete

abstraction, the exact reached set of states being contained within the abstrac-

tion squares. On the right is a sound abstraction, every square of the abstraction

having a nonempty intersection with the exact reached set (in the example, it is

75 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 76

also complete, while the abstraction on the left is not sound). Take care that some

authors use the opposite designation to qualify an abstraction.

X0 X0

Figure 4.1: Square abstraction of a continuous evolution: complete unsound ab-
straction (left), sound and complete abstraction (right)

For a hybrid automaton H, the general idea is to use complete abstractions,

i.e., whose behaviors encompass all concrete behaviors of H, for those properties

we want to verify that are universally quantified on all the behaviors (the exe-

cutions) of H, and to use sound abstractions, i.e., whose behaviors all abstract

some concrete behavior of H, for those properties we want to verify that are ex-

istentially quantified on the behaviors of H. Both cases correspond in practice

to over-approximations and under-approximations respectively. In fact to con-

struct the complete unsound abstraction (left), it is sufficient to have computed

an over-approximation of the reachable set of states, then any square represen-

tation that contains the over-approximation is a complete abstraction. While to

construct the sound and complete abstraction (right), it is necessary to have an

under-approximation of the reachable set of states, any square of the abstraction

representation must guarantee that it has a non-empty intersection with the under-

approximation set. Consequently, we will have the insurance that if the property

is proved to be satisfied by the abstraction, then it is by H. If it is proved to

be unsatisfiable at the abstraction level, then we will not be able to conclude in

general and will resort on a refinement of the abstraction. In this thesis where we

are particularly interested in the diagnosability property, we will use exclusively

76 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 77

complete abstractions (and thus almost always unsound, with so called spurious

behaviors that do not reflect any concrete behavior) .

4.1.2 Abstractions using qualitative and invariant based
reasoning

Using qualitative principles Let us apply qualitative based reasoning to ab-

stract continuous change (reviewed in 2.2, page 17). Given a set of ODEs, the

infinite state space of the continuous variables is discretized into a finite set. The

discretization of Rn is often achieved by rectangles, i.e., is built by product from

a discretization of R. And this one is obtained by fixing a finite number of (ratio-

nal) landmarks li, resulting in a finite partition in terms of open intervals (li, li+1)

(with possibly infinite endpoints) and singleton intervals [li], allowing what is called

absolute order of magnitude reasoning. The coarsest partition (except R itself)

is obtained from the single landmark 0 and corresponds to the sign partition:

(−∞, 0), [0], (0,+∞), giving rise to a partition of size 3n of Rn. It is particularly

interesting when applied to the valuations of the variables derivatives, as it cor-

responds to discretize according to the sign of the derivative, which is constant

within each set of the partition, and thus to the change direction of the variable

itself (decreasing, constant, increasing). The variables being continuously differ-

entiable, it is not possible for the sign of the derivative to pass from negative to

positive without crossing zero. Exploiting this feature, we obtain a scheme of the

behavior of the variables called “qualitative simulation” and obtain an overview

of the system behavior [74, 53, 78].

Example 4.1. Consider this simple linear continuous system:

ẋ = 3x

ẏ = y − 1
(4.1)

Adopting the partition of the state space given by the signs of the derivatives,

the abstract state space of size 9 is thus: (ẋ > 0 ∨ ẋ < 0 ∨ ẋ = 0) ∧ (ẏ >

0 ∨ ẏ < 0 ∨ ẏ = 0). The transitions between the abstract states are computed

according to the laws of evolution given the signs of the derivatives. The abstract

state (ẋ > 0 ∧ ẏ > 0) corresponds to the region {x, y | x > 0 ∧ y > 1} in the

77 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 78

state space. From this state, no transition is possible to another abstract state.

Suppose we wish to verify a basic reachability property: starting from the state

(1, 3) is it possible to reach the state (−5,−4)? The answer would be no, the

proof is given using the previous abstraction method and inferring the property

back to the original system. Such abstraction is complete: from any initial state

(x0, y0) the solutions of the differential equation system 4.1 will always satisfy the

constraints imposed by the abstract system rules, i.e., the possible transitions.

Abstractions for the verification of temporal properties The above

abstraction is useful to trace the future evolution of the state given the initial one

to prove a safety property of avoiding an unwanted state. However it is time-

oblivious, time is not captured by the abstraction. Consequently, for proving a

more complex property that involves the notion of time the above abstraction is

not sufficient. One needs to add time as a separate state variable and correlate

the variables changes to changes in time. A timed specification can be expressed

using temporal logic.

Example 4.2. Let us reconsider the same dynamics of the previous example,

suppose the initial set of states X0 such that X0 = {(x, y) | 1 < x < 2 ∧ 1 <

y < 2 ∧ x < y} and the property F (x > y) where F is the “eventually” linear

temporal logic (LTL) operator. Fp, where p is a Boolean proposition, is equivalent

to ∃t0 ∈ R+,∀t > t0, p = true. It is obvious that the rate at which x is increasing

with respect to time is much larger than that of y. Hence, for all the initial states

within X0 the property is true. The previous abstraction method however does

not capture the rate at which the derivative of x is changing and is thus useless

for establishing the proof. Actually, changing the first equation in 4.1 by ẋ = 0.5x

would keep the abstract system unchanged and nevertheless change the truth value

of the property. In our case, the system can be written as ẋ = Ax + b where

x = (x, y)T and A is the corresponding matrix. We then deduce by computing

the eigenvalues of , which are 3 and 1 in our example, that the rate at which x

increases is larger than the rate at which y increases, which provides a sufficient

proof that the above property holds when the system is initiated from X0.

The previous example illustrates the case of a linear dynamics where the eigen-

vectors are not rotated by the linear transformation and are thus invariant for

78 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 79

the continuous system. Therefore, taking these two vectors into account during

the abstraction process is an obvious choice. However, in the more general case

of nonlinear dynamics, the invariant takes a more complex form. Some technique

encodes the hybrid system, the property to verify and a specific parametric form of

the invariant into an SMT (Satisfiability Modulo Theories) based solver and eval-

uates the unknown parameters of the invariant automatically. Once computed,

the invariant is incorporated to make a finer and more representative abstraction

[61].

4.1.3 The finest abstraction of a hybrid automaton

Let us consider the semantics of a hybrid automaton as an infinite transition

system. It is the most granular abstraction achievable whose computation is not

possible in practice. We will use the finest abstraction in the next section to define

a less granular abstraction, that can be computed.

The timed transition system Let S =
⋃
q∈Q({q} × Inv(q)) ⊆ S the (infinite)

set of invariant satisfying states of H, S0 =
⋃
q∈Q0

({q} × Inv(q)) ⊆ S0 the subset

of invariant satisfying initial states and → ⊆ S × L × S the transition relation

defined by one or the other condition in Definition 3.2, page 57. The semantics of

H is actually given by the labeled transition system StH = (S, S0, L,→), i.e., [[H]]

is the set of all paths of StH issued from an initial state. StH , called the timed

transition system of H, is thus a discretization of H with infinite sets of states

and of transition labels. It just abstracts continuous flows by timed transitions

retaining only information about the source, the target and the duration of each

flow and constitutes the finest abstraction of H we will consider.

The timeless transition system The timeless abstraction of StH , called the

timeless transition system of H, is obtained by ignoring also the duration of

flows and thus defined as SH = (S, S0,Σ∪{ε},→), obtained from StH by replacing

any timed transition (qi,xi)
di−→ (qi+1,xi+1) with di ∈ R+ by the ε transition

(qi,xi)
ε−→ (qi+1,xi+1), that can be considered as a silent transition. It has infinite

set of states but finite set of transitions labels. It constitutes the finest timeless

abstraction of H we will consider.

79 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 80

Proposition 4.1 (Correctness and completeness of the semantics). Any concrete

behavior of H is timed (resp. timeless) abstracted into an S0 rooted path in StH
(resp. SH). Conversely, any path in StH (resp. SH) that alternates continuous

and discrete transitions (in particular any single transition) abstracts a part of a

concrete behavior of H and, if the flow dynamics F is a singleton function (i.e.,

deterministic derivative), any S0 rooted path in StH (resp. SH) abstracts a concrete

behavior of H. In this latter case, there is thus no spurious abstract behavior in

StH (resp. SH), which expresses faithfully the behavior of H.

4.1.4 Geometric decomposition of the state space

The finest abstraction cannot be computed in practice generally. Consequently,

we present finite state space decomposition of a hybrid automaton. We will then

present an abstraction based on different decompositions that incorporates reach-

ability and time constraints. Later on, we will discuss the refinement of the ab-

straction yielding constraints with better precision than before refinement.

Definition 4.1 (Continuous space partition). A (finite) partition P of the Eu-

clidean space Rn is a finite set of nonempty connected subsets of Rn such that every

point x ∈ Rn is in one and only one of those subsets. We can write Rn =
⊎
p∈P p.

An element p of P will be referred to as a partition element and we will call it a

region. For a subset E of Rn, we will denote by P (E) the subset of regions of P

that have a nonempty intersection with E.

The only smoothness hypothesis we will impose for the moment over a partition

is that any (finite) continuous path crosses only a finite number of times each

region, more precisely, ∀x : [0, 1] → Rn a continuous function, ∀p ∈ P a region,

x−1(p) is a finite union of intervals. In practice, partitions are chosen enough

regular and smooth, with regions in any dimension from n to 0 such as (from

simpler to more complex) rectangles, zonotopes, polytopes or defined by a set of

polynomial inequalities. The choice among the different partitions is guided by

the property we wish to verify. For example, consider a continuous system with

dynamics F . A coarse but helpful way to obtain a high level reachability mapping

would be to identify regions of the state space that conserve the sign of F . E.g.,

80 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 81

in one dimension, for all elements of the same region the derivative signs would be

all either negative or positive or null. Thus, the regions would be the connected

components of the three subsets p1, p2, p3 defined by:

p1 = {x ∈ X|ẋ > 0}, p2 = {x ∈ X|ẋ < 0}, p3 = {x ∈ X|ẋ = 0} (4.2)

For n dimensional systems, the regions would be the connected components of the

3n subsets Es of Rn parametrized by sign vectors s ∈ {−1, 0,+1}n: Es = {x ∈ X |
∀i, 1 ≤ i ≤ n, ẋi < 0 if si = −1, ẋi = 0 if si = 0, ẋi > 0 if si = +1}.

If the considered system is a hybrid automaton, it is practical to allow different

partitions in different modes. In the following, we will assume that the sets Init(q),

Inv(q), G(τ) and R(τ)(p) (for p connected subset of G(τ)) can be expressed as

finite unions of connected subsets (if this is not the case, we will over-approximate

parts of them). We define thus a decomposition of the hybrid state space as follows.

Definition 4.2 (Hybrid state space decomposition). Given a hybrid automaton

H = (Q,X, S0,Σ, F, δ, Inv,G,R) and a set of partitions P, we say that P decom-

poses H if there is a surjective function d such that d : Q→ P.

The initial and invariant sets and the guards satisfiability domains and variables

reset domains are primary elements to take into consideration while abstracting.

For q ∈ Q and τ = (q, σ, q′) ∈ δ, we denote the regions families d(q)(Init(q)),

d(q)(Inv(q)), d(q)(G(τ)) by dInit(q), dInv(q), dG(q, τ) ⊆ d(q) and, for a region p ∈
dG(q, τ), we denote d(q′)(R(τ)(p ∩ G(τ))) by dR(q′, τ, p) ⊆ d(q′). When possible,

we will try to define d such that Init(q), Inv(q), G(τ) and R(τ)(p) are exactly

the unions of the regions in those families (if not, those regions families over-

approximate them).

4.1.5 Encoding hybrid automata reachability constraints

We have defined in 4.1.3 page 79, the timeless transition system SH of a hybrid

automaton H as the finest timeless abstraction that can be obtained. However, in

practice SH can only be computed for very restricted classes of hybrid automata.

We will define a less granular time-abstract transition system based on a set of

partitions and define the relations between adjacent regions.

81 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 82

Definition 4.3 (Adjacent regions). Two distinct regions p1, p2 of a partition P

of Rn are adjacent if one intersects the boundary of the other: p1 ∩ p2 6= ∅ or

p1 ∩ p2 6= ∅, where p refers to the closure of p.

Definition 4.4 (Decomposition-based timeless abstract automaton of a hybrid

automaton). Given a hybrid automaton H = (Q,X, S0,Σ, F, Inv, T) and a decom-

position (P, d) of H, we define the timeless abstract (finite) automaton of H with

respect to P as DHP = (QDH , Q0DH
,ΣDH , δDH) with:

• QDH = {(q, p)|q ∈ Q, p ∈ d(q)}.

• Q0DH
= {(q, pInit)|q ∈ Q0, pInit ∈ dInit(q)}.

• ΣDH = Σ ∪ {ε}.

• ((qi, pk), σ, (qj, pl)) ∈ δDH iff one of both is true:

– σ ∈ Σ and pk ∈ dG(qi, τ) and pl ∈ dR(qj, τ, pk) where τ = (qi, σ, qj) ∈ δ.

– qi = qj and σ = ε and pk, pl ∈ dInv(qi) are adjacent regions and ∃d ∈
R∗+ and ∃x : [0, d] → X continuously differentiable function such that

∀t ∈ (0, d) ẋ(t) ∈ F (qi, x(t)), ∀t ∈ [0, d] x(t) ∈ Inv(qi), x(0) ∈ pk,

x(d) ∈ pl, ∃c 0 ≤ c ≤ d ∀t ∈ (0, c) x(t) ∈ pk ∀t ∈ (c, d) x(t) ∈ pl and

x(c) ∈ pk ∪ pl.

The defined timeless abstract automaton encodes reachability with adjacent

regions of the state space, the events in Σ witnessing mode changes and ε tran-

sitions representing a continuous evolution between adjacent regions in the same

mode. Notice that ((qi, pk), σ, (qj, pl)) ∈ δDH ⇒ ∃xk ∈ pk ∃xl ∈ pl (qi,xk)
σ−→

(qj,xl) in SH , the converse being true for σ ∈ Σ. The mapping αP defined by

αP((q,x)) = (q, p) with p ∈ d(q) and x ∈ p defines an onto timeless abstrac-

tion function αP : S → QDH . If the flow condition F is a singleton, αP maps any

transition of SH to a unique path in DHP. The coarsest timeless abstract automa-

ton is obtained when partitions of P have all a unique region p = X and is thus

(Q,Q0,Σ, δ), i.e., the discrete part of H without its continuous part. It corresponds

to the coarsest timeless abstraction function α{{X}}((q,x)) = q. For our pre-

vious thermostat example, this gives ({off , on}, {off }, {Bon, Boff }, {(off , Bon, on),

82 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 83

(on,Boff , off)}) and the abstraction of the execution h given previously (3.1.4) is

just off
Bon−−→ on

Boff−−→ off ...

Theorem 4.1 (Timeless abstraction completeness). Given a decomposition P of

H, any concrete behavior of H is timeless abstracted into a Q0DH
rooted path in

DHP and any transition of DHP abstracts a part of a concrete behavior of H. If

the flow condition F is a singleton function then the timeless abstraction function

αP defines a trace preserving mapping (still denoted by αP) from S0 rooted paths

in SH (i.e., timeless executions of H) to Q0DH
rooted paths in DHP and thus the

language defined by SH is included in the language defined by DHP.

Obviously, a path in DHP does not abstract in general a concrete behavior of

H (as the behaviors parts abstracted by the individual transitions do not connect

in general) which expresses that abstraction creates spurious behavior. Figure 4.2

illustrates a parallelogram abstraction. Two concrete trajectories h and h′ are

abstracted by two abstract paths respectively p1 → p2 and p2 → p3; however the

abstract path p1 → p2 → p3 admits no feasible concrete trajectory.

h h0

p1 p2

p3

(p1; p2)

(p2; p3)

Figure 4.2: Abstraction spurious effect: every concrete trajectory is covered by an
abstract trajectory but the opposite does not necessarily hold.

Abstracting with partial observations If now H is a POHA, in the same way

we defined the observation of a concrete execution in Definition 3.13 we define the

observation of its timeless abstraction.

83 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 84

Definition 4.5 (Timeless abstraction observation). Given a POHA H and h =

(q0, p0)
σ0−→ (q1, p1)...(qi, pi)

σi−→ ..., with σi ∈ Σ ∪ {ε}, a timeless abstract path in

DHP, the observation of h is defined as Obs(h) = po0, σ
o
0, p

o
1...p

o
i , σ

o
i , ..., where

• poi is obtained by projecting pi on variables in Xo.

• σoi = σi if σi ∈ Σo. Otherwise, σoi = ε, which is then removed from Obs(h).

Consider an execution h ∈ [[H]] of the POHAH, h = (q0,x0)
l0−→ (q1,x1)...(qi,xi)

li−→
..., with li ∈ Σ ∪ R+, its (timed) observation Obs(h) = xo0, l

o
0,x

o
1...x

o
i , l

o
i , ... as in

Definition 3.13, its timeless abstraction αP(h) = (q0, p0)
σ0−→ (q1, p1)...(qi, pi)

σi−→ ...,

with σi ∈ Σ ∪ {ε}, as in Theorem 4.1 (assuming F a singleton) and the obser-

vation of this last one Obs(αP(h)) = po0, σ
o
0, p

o
1...p

o
i , σ

o
i , ... as in Definition 4.5. We

could try to define the timeless abstraction of the observation Obs(h). A natural

definition would be αP(Obs(h)) = p′0, σ
o
0, p
′
1...p

′
i, σ

o
i , ..., with σoi = loi if loi ∈ Σo

(and = ε, which is removed, otherwise), i.e., the same σoi ’s as in Obs(αP(h)), and

p′i =
⊎
{p|xo

i∈po} p
o the union of the projections on Xo of all regions containing a

value whose projection on Xo is equal to xoi (assuming to simplify the same parti-

tion for each mode, as the mode may be unknown from observation). So, we notice

that Obs(αP(h)) is more precise than αP(Obs(h)), as poi ⊆ p′i, which we denote by

Obs(αP(h)) v αP(Obs(h)) to mean that both sequences have common events and

there is inclusion of the qualitative space values as subsets of Xo, the valuations

set corresponding to the observable variables.

4.1.6 Encoding hybrid automata time constraints

We are concerned with verifying temporal properties of hybrid systems and check-

ing the diagnosability property using time constraints. For this reason, we define

in this subsection, always related to a decomposition of the state space into parti-

tions, an abstraction of the hybrid automaton as a timed automaton that partly

captures the time constraints at the level of the regions. We will first introduce

some intuitive ideas. Consider a partition P of the Rn state space of a continuous

system with arbitrary dynamics F , the set of trajectories (i.e., the continuous solu-

tion flows) entering a region p ∈ P is in one of these two cases: either at least one

of the trajectories ends up trapped inside p for all future times or all of them exit

84 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 85

p to an adjacent region within a bounded time under the continuity assumption.

In the first case, no time constraint can be associated with the region p unless a

reshaping of p is applied; in the latter, it is possible to compute time constraints

satisfied by all trajectories entering and leaving the region p. We will give a formal

definition of the timed automaton constructed from given hybrid automaton and

partitions set and then discuss some cases where a time bound can be practically

computed.

Definition 4.6 (Region time interval and time bounds). Given a continuous

system CS, a partition P of Rn and p ∈ P one of its regions, we say that

Ip = [tmin, tmax], with tmin, tmax ∈ R+ ∪ {+∞}, is a region time interval of p

for CS if all trajectories of the CS entering p at time t leave p at time t+ tmin at

least and t+ tmax at most. tmin and tmax are lower and upper time bounds of p.

For a hybrid automaton, we denote the time interval relative to the region p in

mode q as I(q,p).

Definition 4.7 (Decomposition-based timed abstract automaton of a hybrid au-

tomaton). Given a hybrid automaton H = (Q,X, S0,Σ, F, δ, Inv,G,R), a decom-

position (P, d) and the timeless abstract automaton DHP = (QDH , Q0DH
,ΣDH , δDH)

of H with respect to P, we define the timed abstract automaton of H with re-

spect to P as THP = (QDH , {c}, Q0DH
,ΣDH , InvTH , (δDH , GTH , YTH)) such that,

∀(q, p) ∈ QDH with a region time interval I(q,p) = [tmin, tmax]:

• InvTH((q, p)) = [0, tmax].

• ∀τ = ((q, p), σ, (q1, p1)) ∈ δDH , GTH(τ) = [tmin,+∞) if σ = ε and p does not

intersect any reset set (i.e., ∀τ ′ = (q′, σ′, q) ∈ δDH p /∈ d(q)(R(τ ′)(G(τ ′))))

or [0,+∞) else.

and, ∀τ ∈ δTH , YTH(τ) = {c}.

The timed abstract automaton adds time constraints to those states (q, p) of

the timeless abstract automaton for which an interval I(q,p) is computable as non-

trivial (i.e., I(q,p) 6= [0,+∞)), by using one local clock c (reset at 0 in each state)

that measures the sojourn duration t in each state (q, p), i.e., in each region p,

and coding these constraints by means of invariant and guard of c in each state.

85 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 86

The invariant codes the maximum sojourn duration as the upper time bound of

the region p and the guard codes the minimum sojourn duration as the lower

time bound of the region p when both entering and leaving the region are not

the result of discrete jumps (controlled here directly for the out-transition and by

requiring that p does not intersect any reset set for all possible in-transitions). In

the thermostat example, consider the partition into two regions associated to the

mode off given by the initial states set (off , [80, 90]) and by (off , [68, 80)). Then we

take as time bounds for (off , [80, 90]) tmin = 0 and tmax = 0.12 (the exact upper

bound, i.e., the time for the temperature to decrease from 90 to 80 is Log(9
8
)).

It means that we define in the timed abstract automaton InvTH((off , [80, 90])) =

[0, 0.12]. A beginning of execution of the timed abstract automaton is, for example

(off , [80, 90])
0.08−−→ (off , [68, 80]).

Theorem 4.2 (Timed abstraction completeness). Given a decomposition P of

H, any concrete behavior of H is timed abstracted into an execution in THP.

If the flow condition F is a singleton function then the abstraction function αP

defines a mapping, denoted by αtP, from S0 rooted paths in StH (i.e., executions

of H) to executions in THP. This mapping is trace preserving once ε labels are

erased from executions traces in THP and time period labels are added up between

two consecutive events labels in both executions traces in StH and in THP. This

means that, for any execution (q0,x0)
w−→∗ (qi,xi) ∈ [[H]], with w ∈ L∗ (where

L = Σ ∪ R+), it exists a unique execution (q0, p0)
w′−→∗ (qj, pj) ∈ [[THP]], with

w′ ∈ L′∗ (where L′ = L ∪ {ε}), x0 ∈ p0, qj = qi, xi ∈ pj, w′|Σ = w|Σ (where |Σ is

the projection of timed words on words on Σ∗) and, for any two successive events

wl = w′l′ and wm = w′m′ of w|Σ,
∑

l′<k′<m′,w′
k′ 6=ε

w′k′ =
∑

l<k<mwk.

Forgetting time, i.e., removing the clock, provides a natural abstraction func-

tion α from THP to DHP which maps an execution (q0, p0)
l0−→ (q1, p1)...(qi, pi)

li−→
..., with li ∈ Σ∪{ε}∪R+, in THP into the execution (q0, p0)

σ0−→ (q1, p1)...(qi, pi)
σi−→

..., with σi ∈ Σ∪{ε}, in DHP, with σi = li if li ∈ Σ∪{ε} and continuous transitions

labeled by li = di ∈ R+ are suppressed. We have: αP = α ◦ αtP.

Definition 4.8 (Timed abstraction observation). Given a POHA H and h =

(q0, p0)
l0−→ (q1, p1)...(qi, pi)

li−→ ..., with li ∈ Σ∪{ε}∪R+, an execution in THP, i.e., a

86 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 87

timed abstract path, the observation of h is defined as Obs(h) = po0, l
o
0, p

o
1...p

o
i , l

o
i , ...,

where

• poi is obtained by projecting pi on variables in Xo.

• loi = li if li ∈ Σo∪R+. Otherwise, loi = ε, which is then removed from Obs(h).

As for the timeless case, we can define the timed abstraction of an observation

(of an execution h ∈ [[H]]) and we obtain: Obs(αtP(h)) v αtP(Obs(h)).

From another side, the abstraction function α that forgets time maps a timed

abstract observation po0, l
o
0, p

o
1...p

o
i , l

o
i , ..., with loi ∈ Σo ∪ R+, into the timeless ab-

stract observation po0, σ
o
0, p

o
1...p

o
i , σ

o
i , ..., with σoi ∈ Σo, suppressing duration labels

li = di ∈ R+. For any concrete execution h ∈ [[H]], we have: Obs(αP(h)) =

α(Obs(αtP(h))), i.e., Obs ◦ αP = α ◦Obs ◦ αtP.

We now formally define a refinement operation of the previously defined ab-

straction. For this purpose, we construct a finer couple of discrete and timed

automata by defining a more granular decomposition for regions and give the nec-

essary assumptions to compute such refinement. By making the partition more

granular in regions of interest, tighter time bounds are also obtained. The refine-

ment is a necessary step when a proof for the verification of a property could not

be made at a given abstraction level.

4.1.7 Refining the partitioning of the state space

Definition 4.9 (Partition refinement). Given two partitions P and P ′ of Rn, we

say that P ′ is a refining partition of P iff ∀p′ ∈ P ′ ∃p ∈ P p′ ⊆ p. This implies:

∀p ∈ P ∃P ′p ⊆ P ′ p =
⊎
p′∈P ′p p

′.

Definition 4.10 (Hybrid state space decomposition refinement). Given two de-

compositions (P, d) and (P′, d′) of a hybrid automaton H = (Q,X, S0,Σ, F, Inv, T),

we say that P′ refines P, denoted by P′ � P, if ∀q ∈ Q d′(q) is a refining partition

of d(q).

87 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 88

4.1.8 Refined timeless model

Definition 4.11 (Refined timeless abstract automaton). Given a hybrid automa-

ton H and two abstract timeless automata DHP and DHP′ of H with respect to

two decompositions (P, d) and (P′, d′) respectively, we say that DHP′ is a timeless

refinement of DHP abstracting H if P′ ≺ P, which we denote by DHP′ ≺ DHP.

Definition 4.12 (State split operation). Given an abstract timeless automaton

DHP of a hybrid automaton H, a split operation of the state (q, p) ∈ QDH is

defined by a partition {p1, p2} of p, p = p1

⊎
p2, and results in two states (q, p1)

and (q, p2) and in the refined abstract timeless automaton DHP′ with P′ obtained

from P by replacing d(q) by d′(q) = d(q)\{p} ∪ {p1, p2}.

The construction of DHP′ from DHP after a (q, p) state split is a local op-

eration as only the transitions of δDH having as source or as destination the

state (q, p) have to be recomputed from H. In practice, the refined model is

obtained by performing a finite number of state split operations. After having

performed the split operations and in order for the obtained automaton to sat-

isfy definition 4.4, it is only required to recompute some of its transitions, while

inheriting the rest from DHP. Let Qsplit ⊆ QDH be the set of split states and

post(Qsplit) = {q ∈ QDH | ∃qs ∈ Qsplit∃(qs, σ, q) ∈ δDH} and pre(Qsplit) = {q ∈
QDH | ∃qs ∈ Qsplit∃(q, σ, qs) ∈ δDH}. Then to obtain DHP′ it is sufficient to only

recompute transitions (q, σ, q′) such that q, q′ ∈ Qsplit ∪ post(Qsplit) ∪ pre(Qsplit).

The onto abstraction function αP′,P : QP′

DH → QP
DH defined by αP′,P((q, p′)) =

(q, p) with p′ ⊆ p defines a trace preserving mapping αP′,P from DHP′ to DHP

(and thus the language defined by DHP′ is included in the language defined by

DHP) and we have: αP = αP′,P ◦αP′ . Defining in a natural way as previously the

P-abstraction αP′,P of the observation of a timeless P′-abstract execution h, we

obtain: Obs(αP′,P(h)) v αP′,P(Obs(h)).

4.1.9 Refined timed model

Definition 4.13 (Refined timed abstract automaton). Given a hybrid automa-

ton H and two abstract timed automata THP and THP′ of H with respect to two

88 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 89

decompositions (P, d) and (P′, d′) respectively, we say that THP′ is a timed refine-

ment of THP abstracting H if P′ ≺ P. We denote it similarly by THP′ ≺ THP.

Concerning the refined abstract timed automaton THP′ resulting from a split

of (q, p) into (q, p1) and (q, p2), if I(q,p) = [tmin, tmax] the region time intervals

I(q,p1) = I(q,p2) = [0, tmax] can be adopted in first approximation as they are safe,

but in general new tighter time bounds are recomputed from H for the sojourn

duration in the regions p1 and p2. Thus, the refined timed model is obtained by a

finite sequence of the two operations:

• State split: similar as before, the state split of (q, p) whose time interval is

I(q,p) = [tmin, tmax] yields (q, p1) and (q, p2). The time intervals for the new

split regions are set as I(q,p1) = I(q,p2) = [0, tmax] (tmax stays a safe upper

bound of the sojourn duration but tmin is reset to 0 since the split induces a

distance shrink).

• Time bounds refinement: in this case, more precise time bounds are

obtained for a given region of a discrete state, i.e., if I(q,p) = [tmin, tmax] then

I ′(q,p) = [t′min, t
′
max] with t′min ≥ tmin and t′max ≤ tmax, at least one of both

being a strict inequality.

The onto abstraction function αP′,P defines a trace preserving mapping αtP′,P
from THP′ to THP, after trace simplification as in Theorem 4.2 and provided

the time bounds used in THP′ , once added for all regions p′ included in a given

region p, are at least as tight as the time bounds used in THP. And we have:

αtP = αtP′,P ◦ αtP′ . Finally, for any timed P′-abstract execution h, we obtain:

Obs(αtP′,P(h)) v αtP′,P(Obs(h)).

4.2 Algorithmic computation of the abstraction

In the previous section we formally defined timeless and timed abstractions of a

given hybrid automaton based on space partitioning. In this section, we present

algorithmic steps to compute the timeless abstraction. Then, we discuss methods

for computing the bounds of the timed abstraction. The next chapter will present

a tool that applies the presented algorithms together with experimental results.

89 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 90

The timeless abstraction computation steps are summarized as follows and

detailed next:

• For each mode q of H, compute a symbolic representation of the abstract

states using qualitative reasoning rules.

• For each computed symbolic state st, evaluate the presence of a transition

towards abstract states whose concretization is adjacent to the concretization

of st.

• Apply a linking operation to the mode abstractions taking into account

guards and resets.

For the rest of the thesis, we will instantiate the hybrid automata class to

polynomial hybrid automata (page 65, Definition 3.11), hence we hold the following

assumption:

Assumption 4.1. We assume that all dynamics, initial sets, invariant sets, guards

and resets of the considered hybrid automaton are given by polynomials in the

Q[X] ring.

Example 4.3 (Two dimensional polynomial hybrid automaton). To illustrate the

computation steps of this section we will consider the following example throughout

this section. The example is purely theoretical and does not reflect a practical

application.

q0

ẋ0 = x2
0 + x1

ẋ1 = x0 + x2
1

x0 ≥ 0 x1 ≥ 0

q1

ẋ0 = x0 − x1

ẋ1 = x0 + x1

x0 ≥ 0 x1 ≥ 0

x2
0 + x2

1 < 4

x2
0 + x2

1 > 9

Figure 4.3: Polynomial hybrid automaton example

90 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 91

4.2.1 Computing qualitative partitions

Partitioning rules Consider a mode q of H. We will apply the geometric

decomposition seen in subsection 4.1.4 to define d(q) and compute the abstraction

DH{d(q)} of q. Thus, the regions are the connected components of the 3n subsets

Es of Rn parametrized by sign vectors s ∈ {−1, 0,+1}n: Es = {x ∈ X | ∀i, 1 ≤
i ≤ n, ẋi < 0 if si = −1, ẋi = 0 if si = 0, ẋi > 0 if si = +1}. Note that

in the case of polynomial dynamics, the sets conserving the sign vector are not

necessarily connected, in such case we will reason over non-connected sets and

use invariants (Inv(q)) to separate them. To further partition algorithmically the

state-space into connected sets we refer the reader to algorithms in [12]. Moreover

such sets are not necessarily convex. Nonetheless, for dynamics given by linear

differential equations, the sign conserving sets are connected and convex.

Expressing abstract states. We use semi-algebraic sets to represent regions

using (unions of) (in)equalities of polynomials over X. For example, if X contains

two variables, we can express a circular set as: (x − x0)2 + (y − y0)2 < r2 with

x0, y0 and r as given rational numbers.

Definition 4.14. A semi-algebraic set in Rn is a finite union of sets defined each

one by a finite number of equalities or inequalities over polynomials.

Computing the abstract states The computation is performed in the follow-

ing way. For a mode q of the hybrid automaton, a stack Stack(q) is initialized with

polynomials representing the initial and guard sets, incoming resets and dynamics.

The stack is then extended as follows: each polynomial from the stack is copied

three times and copies are assigned +,− and null symbols. The regions expres-

sions are obtained by symbolically computing the cross product of every element

in the stack with all the other elements corresponding to different polynomials.

The result is the set of sign-conserving semi-algebraic sets. The abstract states are

then labeled whether they belong to the initial set, guard condition or reset, or

none of the above. The first computation step is symbolic, thus, some regions are

not feasible (i.e., are empty sets). A first check is performed to eliminate all empty

regions. This can be implemented by finding whether or not a set of polynomial

91 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 92

equalities and inequalities admits a solution. The evaluation is performed using a

quantifier elimination solver applying cylindrical algebraic decomposition and will

be discussed in the next subsection. Abstract states whose region representation

admits no solution are simply discarded from the stack.

Example 4.4 (Computing an initial qualitative partition). Applying the previous

steps for the considered example (Example 4.3, page 90), the initial partition of

mode q0 (whose null-clines and guard boundary are shown on Figure 4.4) contains

the abstract states represented in Table 4.1. The empty regions check eliminates

8 regions and we are left with 18 abstract states (Table 4.2). When limiting the

study zone to the specified invariant of q0, Inv(q0) = {x0 ≥ 0, x1 ≥ 0}, we are left

with three states (Table 4.3).

Figure 4.4: Qualitative partition of mode q0

92 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 93

Abstract States

S0

x2
0 + x1 = 0

S1

x2
0 + x1 = 0

S2

x2
0 + x1 = 0

∧ x0 + x2
1 = 0 ∧ x0 + x2

1 = 0 ∧ x0 + x2
1 = 0

∧ x2
0 + x2

1 = 4 ∧ x2
0 + x2

1 < 4 ∧ x2
0 + x2

1 > 4

S3

x2
0 + x1 = 0

S4

x2
0 + x1 = 0

S5

x2
0 + x1 = 0

∧ x0 + x2
1 < 0 ∧ x0 + x2

1 < 0 ∧ x0 + x2
1 < 0

∧ x2
0 + x2

1 = 4 ∧ x2
0 + x2

1 < 4 ∧ x2
0 + x2

1 > 4

S6

x2
0 + x1 = 0

S7

x2
0 + x1 = 0

S8

x2
0 + x1 = 0

∧ x0 + x2
1 > 0 ∧ x0 + x2

1 > 0 ∧ x0 + x2
1 > 0

∧ x2
0 + x2

1 = 4 ∧ x2
0 + x2

1 < 4 ∧ x2
0 + x2

1 > 4

S9

x2
0 + x1 < 0

S10

x2
0 + x1 < 0

S11

x2
0 + x1 < 0

∧ x0 + x2
1 = 0 ∧ x0 + x2

1 = 0 ∧ x0 + x2
1 = 0

∧ x2
0 + x2

1 = 4 ∧ x2
0 + x2

1 < 4 ∧ x2
0 + x2

1 > 4

S12

x2
0 + x1 < 0

S13

x2
0 + x1 < 0

S14

x2
0 + x1 < 0

∧ x0 + x2
1 < 0 ∧ x0 + x2

1 < 0 ∧ x0 + x2
1 < 0

∧ x2
0 + x2

1 = 4 ∧ x2
0 + x2

1 < 4 ∧ x2
0 + x2

1 > 4

S15

x2
0 + x1 < 0

S16

x2
0 + x1 < 0

S17

x2
0 + x1 < 0

∧ x0 + x2
1 > 0 ∧ x0 + x2

1 > 0 ∧ x0 + x2
1 > 0

∧ x2
0 + x2

1 = 4 ∧ x2
0 + x2

1 < 4 ∧ x2
0 + x2

1 > 4

S18

x2
0 + x1 > 0

S19

x2
0 + x1 > 0

S20

x2
0 + x1 > 0

∧ x0 + x2
1 = 0 ∧ x0 + x2

1 = 0 ∧ x0 + x2
1 = 0

∧ x2
0 + x2

1 = 4 ∧ x2
0 + x2

1 < 4 ∧ x2
0 + x2

1 > 4

S21

x2
0 + x1 > 0

S22

x2
0 + x1 > 0

S23

x2
0 + x1 > 0

∧ x0 + x2
1 < 0 ∧ x0 + x2

1 < 0 ∧ x0 + x2
1 < 0

∧ x2
0 + x2

1 = 4 ∧ x2
0 + x2

1 < 4 ∧ x2
0 + x2

1 > 4

S24

x2
0 + x1 > 0

S25

x2
0 + x1 > 0

S26

x2
0 + x1 > 0

∧ x0 + x2
1 > 0 ∧ x0 + x2

1 > 0 ∧ x0 + x2
1 > 0

∧ x2
0 + x2

1 = 4 ∧ x2
0 + x2

1 < 4 ∧ x2
0 + x2

1 > 4

Table 4.1: Qualitative abstract states for mode q0 of Example 4.3

93 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 94

Non-empty Abstract States

S0

x2
0 + x1 < 0

S1

x2
0 + x1 < 0

S2

x2
0 + x1 < 0

∧ x0 + x2
1 < 0 ∧ x0 + x2

1 > 0 ∧ x0 + x2
1 > 0

∧ x2
0 + x2

1 < 4 ∧ x2
0 + x2

1 > 4 ∧ x2
0 + x2

1 < 4

S3

x2
0 + x1 < 0

S4

x2
0 + x1 < 0

S5

x2
0 + x1 > 0

∧ x0 + x2
1 > 0 ∧ x0 + x2

1 = 0 ∧ x0 + x2
1 < 0

∧ x2
0 + x2

1 = 4 ∧ x2
0 + x2

1 < 4 ∧ x2
0 + x2

1 > 4

S6

x2
0 + x1 > 0

S7

x2
0 + x1 > 0

S8

x2
0 + x1 > 0

∧ x0 + x2
1 < 0 ∧ x0 + x2

1 < 0 ∧ x0 + x2
1 > 0

∧ x2
0 + x2

1 < 4 ∧ x2
0 + x2

1 = 4 ∧ x2
0 + x2

1 > 4

S9

x2
0 + x1 > 0

S10

x2
0 + x1 > 0

S11

x2
0 + x1 > 0

∧ x0 + x2
1 > 0 ∧ x0 + x2

1 > 0 ∧ x0 + x2
1 = 0

∧ x2
0 + x2

1 < 4 ∧ x2
0 + x2

1 = 4 ∧ x2
0 + x2

1 > 4

S12

x2
0 + x1 > 0

S13

x2
0 + x1 > 0

S14

x2
0 + x1 = 0

∧ x0 + x2
1 = 0 ∧ x0 + x2

1 = 0 ∧ x0 + x2
1 < 0

∧ x2
0 + x2

1 < 4 ∧ x2
0 + x2

1 = 4 ∧ x2
0 + x2

1 < 4

S15

x2
0 + x1 = 0

S16

x2
0 + x1 = 0

S17

x2
0 + x1 = 0

∧ x0 + x2
1 > 0 ∧ x0 + x2

1 > 0 ∧ x0 + x2
1 > 0

∧ x2
0 + x2

1 > 4 ∧ x2
0 + x2

1 < 4 ∧ x2
0 + x2

1 = 4

S18

x2
0 + x1 = 0

∧ x0 + x2
1 = 0

∧ x2
0 + x2

1 < 4

Table 4.2: Qualitative abstract states after empty regions check

Non-empty Abstract States

S8

x2
0 + x1 > 0

S9

x2
0 + x1 > 0

S10

x2
0 + x1 > 0

∧ x0 + x2
1 > 0 ∧ x0 + x2

1 > 0 ∧ x0 + x2
1 > 0

∧ x2
0 + x2

1 > 4 ∧ x2
0 + x2

1 < 4 ∧ x2
0 + x2

1 = 4

Table 4.3: Non-empty invariant satisfying qualitative abstract states

94 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 95

4.2.2 Computing transitions between regions

We show in this section how to compute transitions between abstract states. The

absence of incoming transitions to an abstract state translates by the absence

of incoming trajectories to the region on the concrete level. The presence of a

transition from abstract state S to S ′ translates by the presence of some trajectories

from the region of S going to the region of S ′ after some bounded time.

For illustrative purpose, consider the set of continuous variables X to be of

dimension two and let p(x, y) be a formula for which y is a function of a real

variable x. The example p(x, y) = −x + y is shown in Figure 4.5. The normal

Figure 4.5: Projecting the flow onto the normal vector of qualitatively chosen
boundaries

vector of p(x, y) is obtained by applying the partial derivatives with respect to each

variable. It is not other than the gradient of p, thus points towards the direction

of increasing p when a small increase of x and y occurs, in other words points

towards the half plane p(x, y) > 0.

~n =

(
∂p

∂x
,
∂p

∂y

)
= (−1, 1) (4.3)

Let us consider an ODE represented on the figure by its vector field F : ẋ = 1,

ẏ = 2. A sufficient condition for which a trajectory starting in p(x, y) < 0 is able

to cross to p(x, y) > 0 is that there exists a point on the boundary p(x, y) = 0 for

95 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 96

which the vector field is pointing to p(x, y) > 0. We project the flow vector onto

the normal vector and study the sign of the obtained scalar product ~dp. ~F . If there

is a point (x0, y0) for which ~dp. ~F (x0, y0) > 0 then such a trajectory exists. In our

example ~dp. ~F (x, y) = 1. If ~dp. ~F = 0 then for sure no trajectory from p(x, y) < 0

to p(x, y) > 0 is possible, but with this information alone we cannot guarantee

that there is no transition from p(x, y) < 0 to p(x, y) = 0. In such case, we need

to evaluate the vector field in a neighborhood around p(x, y) = 0 by studying the

Jacobian matrix.

Regions defined using multiple constraints Consider our previous example

and define another region boundary p2(x, y) = x + y. We consider all the nine

connected regions formed by p1(x, y) op 0 ∧ p2(x, y) op 0 where op ∈ {<,>,=}.
To evaluate whether or not transitions are possible from a region to another, we

need to evaluate the scalar product over the boundary of each region. In our

example, those boundaries for the four regions of dimension two are given by two

half lines. E.g., for S0 the boundary is (p1(x, y) = 0∧x ≤ 0)∧(p2(x, y) = 0∧x ≥ 0)

(see Figure 4.6).

Figure 4.6: Flow projection onto regions defined using multiple constraints

96 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 97

Varying normal vector In the case of polynomial hybrid automata, the direc-

tion of the normal vector over a given boundary varies with the position on the

boundary. In such case ~dp is expressed as a polynomial.

Evaluating the flow projection onto boundaries Consequently, to evaluate

the presence or not of an abstract transition, one is required to find the truth values

of semi-algebraic constraints. We use a method that has been elaborated tackling

this problem called Cylindrical Algebraic Decomposition (CAD). CAD was first

introduced by Collins [56]. We now review briefly the basic steps of this method.

Let {P (X)} be a set of polynomials over n variables with coefficients in Q. The

method constructs a partition of Rn where the set of polynomials {P (X)} holds a

constant sign for all variables in X in every region of the computed partition. Once

the decomposition is computed, it can be then used to give solutions to system of

(in)-equations. The algorithmic steps are:

1. For each coordinate variable x ∈ X,

(a) Find the projection on x of the intersection points of all polynomials in

P (X) (i.e., solve p1(x) = p2(x)... = pn(x)).

(b) Find the zero sets of each polynomial with respect to x.

(c) Find singularity points on x for every polynomial (i.e., the function does

not behave well or is not defined).

(d) Form regions on the domain of x partitioned according to the previously

found sets of points and/or intervals.

2. Choose a sample point within each region, and evaluate each polynomial

p(x) at each chosen point for x and symbolically for the other coordinates

(variables) from X.

3. Study the sign of each p(x) at the sampled points.

4. Match the (in)-equalities required by the problem to be solved with the

previously obtained table, if no match is found then the problem admits no

feasible solution.

97 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 98

The CAD method has been proven to be doubly exponential [40]. However

one can benefit from parallelism to alleviate the computation time, since every

transition computation can be performed independently. The idea will be discussed

in the next chapter.

Extending the expressiveness to rational fractions For the moment, the

considered class of hybrid systems is the polynomial class. Nonetheless with some

minor modifications, one can extend the abstract states and transitions computa-

tion to ODEs with rational functions. For example, given a rational fraction P (x)
Q(x)

,

Studying the truth value of P (x)
Q(x)

> 0 is equivalent to studying the truth value of:

(P (x) > 0 ∧Q(x) > 0) ∨ (P (x) < 0 ∧Q(x) < 0) (4.4)

One can use CAD with an intermediary computation layer to allow for ODEs with

rational fractions.

Example 4.5 (Transitions Computation). Let us compute the transitions between

abstract states from the previous example (Example 4.3, page 90). Consider the

two adjacent regions given by abstract states S8 and S9 and their common bound-

ary region given by S10 (Table.4.3, page 94).

S8 : x2
0 + x1 > 0 ∧ x0 + x2

1 > 0 ∧ x2
0 + x2

1 > 4 (4.5)

S9 : x2
0 + x1 > 0 ∧ x0 + x2

1 > 0 ∧ x2
0 + x2

1 < 4 (4.6)

S10 : x2
0 + x1 > 0 ∧ x0 + x2

1 > 0 ∧ x2
0 + x2

1 = 4 (4.7)

The normal vector to the boundary region is given by ~n = (2x0, 2x1). The

scalar product of the normal vector with the flow in mode q0 is then:

~n. ~F = 2x3
0 + 2x3

1 + 4x0x1 (4.8)

The presence of a trajectory from S9 to S10 and from S10 to S8 is then given by

the truth value of the following formula:

x2
0+x2

1 = 4∧2x3
0+2x3

1+4x0x1 > 0∧x2
0+x1 > 0∧x0+x2

1 > 0∧x0 ≥ 0∧x1 ≥ 0 (4.9)

The evaluation of formula 4.9 using CAD returns true. The same reasoning goes

for evaluating the presence of transitions from S8 to S10 and S10 to S9, the CAD

evaluation of the corresponding formula gives false.

98 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 99

4.2.3 Linking the single mode abstractions

At this stage, the abstract states and transitions have been computed for one

mode. The operation is repeated similarly for every mode q of H. The following

operation will link the obtained mode abstractions. The linkage operation con-

sists in expressing each guard region of a transition τ in a mode q1 whose target

mode is q2 (or the image in q2 of this region by the reset if the transition has a

reset) according to the partition of mode q2. In other words, we have to compute

αd(q2)(G(τ)) (or αd(q2)(R(τ)(G(τ))) in case of reset), given αd(q1)(G(τ)), and the

transitions from the regions of the latter one to the regions of the first one. The

operation is implemented by checking the nonemptiness of p1∩G(τ)∩p2∩ Inv(q2)

(or R(τ)(p1 ∩G(τ)) ∩ p2 ∩ Inv(q2) in case of reset) for each region p1 ∈ d(q1) and

each region p2 ∈ d(q2), which boils down to a satisfiability check of a system of

polynomial equalities and inequalities. If satisfied, a mode change transition is

thus added from region p1 to region p2.

4.2.4 Refinement operation.

Refining the abstraction consists in adding further information from the hybrid

system to obtain a more precise abstraction. The idea is to split one or more

regions into several regions by adding further boundaries to the decomposition.

This is applied per mode of the hybrid system. What is important to notice is

that many of the previously computed transitions remain valid after a refinement

operation. The refinement algorithm checks which transitions remain valid and

recomputes those that require to be reevaluated. The following are the algorithmic

steps to perform for a refinement operation. Consider a new boundary region Bnew

(typically of dimension n − 1) to be added to the abstraction. In order to keep

the abstraction complete while incorporating the new boundary into the current

partition, the following is performed:

1. Find the set of regions {Rcompute} from the previous decomposition that

intersect Bnew.

2. For the set of regions {Rold} that do not intersect Bnew, leave their incoming

and outgoing transitions intact.

99 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 100

3. Process each region Rcompute intersecting Bnew.

• Find which boundaries (in all dimensions) of Rcompute intersect Bnew.

• Compute the newly obtained regions.

• Recompute the in and out transitions relative to those new regions as

previously explained in the subsection 4.2.2.

4.2.5 Computing time bounds

In this subsection, we are interested in algorithmic methods to compute the time

bounds of the timed abstraction. The timeless abstraction DHP provides the sets

of qualitatively chosen regions with transitions towards adjacent ones. Let P be

a partition of Rn associated with one of the modes of H and Ip = [tmin, tmax] the

associated region time interval of some region p ∈ P . Finding the exact minimum

and maximum sojourn times is not always possible. Hence, it is rather more

practical to consider upper and lower bounds of these sojourn times that keep the

abstraction complete.

Definition 4.15 (Reasonable time bounds). The upper and lower bounds tmin, tmax

associated to some region p are said to be reasonable if tmin > 0 and tmax 6= +∞,

otherwise they are said unreasonable.

Some interesting points to be noted when investigating whether or not a region

has reasonable time bounds:

• An unbounded region does not necessarily have unreasonable time bounds.

• A bounded region with no critical points does not necessarily have reasonable

time bounds.

• A region containing only critical points has unreasonable time bounds.

• A qualitatively partitioned region (according to the sign of the derivative

vector) containing no critical points does not necessarily have reasonable

time bounds.

100 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 101

Each boundary of a region p is associated with transitions towards adjacent

regions in the abstract timeless system. The transition associated to a boundary

is either (inward) or (outward) or (inward and outward) towards (or from) p. For

a region expressed as a semi-algebraic set given by p1 < 0 ∧ p2 < 0 ∧ ... ∧ pn <
0, the boundaries are B(p) = {p1 = 0, ..., pn = 0}. Let Bin(p) be the set of

inward boundaries towards p, Bout(p) be the set of outward boundaries from p

and Bin/out(p) be the set of inward and outward boundaries towards (or from) p.

The sign based timeless abstraction allows one to differentiate between regions

containing only critical points and those that do not contain any critical point

(the number of critical points in any region is finite as the number of zeros of

a polynomial is finite). Regions containing only critical points are assigned a

maximum and minimum sojourn time tmin = tmax = +∞. Consequently, for

the following the time bound computation concerns regions containing no critical

points.

Assumption 4.2. The considered region p contains no critical points.

Numerical simulations can be used to find approximate time bounds of p, how-

ever this is not an exact method.

Numerical estimation of the time bounds We consider a set of points for

each inward boundary in Bin(p). A number of numerical simulations initialized

from these points are computed and stopped when trajectories verify the equations

of the abstract state neighboring any outward boundary of the region from Bout(p).

The exact trajectory is not guaranteed to reach an exit. Assuming the numeri-

cal trajectories reach an outward boundary, we obtain a collection of time lapses.

Choosing the maximum and minimum elements of the sample allows one to de-

termine approximations of the maximum and minimum sojourn times. Obviously,

the obtained bounds are estimated and not verified, thus the timed abstraction

obtained is not necessarily complete. We propose a more suitable and accurate

method for computing the time bounds.

101 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 102

Guard satisfying regions If the considered region p (or part of it) satisfies a

mode change condition (i.e., the guard condition) from mode q to mode q′ while

having the invariant of q satisfied within the region, the system exhibits non-

determinism between either a mode jump or staying within the mode q. This fact

must be reflected by the time constraint associated to p. The dynamics within

the two modes q and q′ must be taken into account for the region p and each

associated region p′ in q′ reached after mode jump (possibly via a reset). The

computation of the time bounds tmin (resp. tmax) should be done for both regions

p and p′ together as a whole by combining minimum (resp. maximum) sojourn

times in p then p′ with a non-deterministic mode change (and possible reset), i.e.,

evaluating the global minimum (resp. maximum) bounds for all possible instants

of mode jump, by using both dynamics of q and q′. In the following, we consider

the standard case of a region in absence of any guard or reset.

Assumption 4.3. The considered region p does not intersect any guard or reset

set.

Computing tmax

We previously defined tmax as the maximum sojourn time in a region.

Consider a system of two-dimensional ODEs:

ẋ = f1(x, y) (4.10)

ẏ = f2(x, y) (4.11)

The problem is summarized as follows. Consider an initial and final point in the

(x, y) plane Mi(xi, yi) and Mf (xf , yf). The time lapse τ = tf − ti taken by the

continuous system initially in Mi at time ti to reach Mf at time tf is expressed by:

τ =

∫ tf

ti

dt =

∫ xf

xi

dx

f1(x, y)
=

∫ yf

yi

dy

f2(x, y)
(4.12)

Computing τ exactly is not always possible since, generally speaking, the solutions

x(t) and y(t) cannot be expressed in closed forms. Suppose that Mi and Mf are

varying points respectively on the inward boundary Bin and outward boundary

Bout. To find a safe upper bound of the maximum sojourn time, we will use a

102 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 103

variant of flow-pipe construction. The idea is to construct a flow-pipe that will not

be used to find the set of reachable states, but rather to identify the time elapsed

to reach an outward boundary. The flow-pipe Flow is of total duration N∆t where

∆t is the time step and N ∈ N is to be found. Flow is initialized from an inward

boundary bin ∈ Bin(p) of a considered region p. ContinuousTimeElapsed(B,∆t)

is a procedure computing a flow-pipe initially starting from B with a time step ∆t

that was introduced in the scientific context (Chapter 2, page 29). In the latter we

reviewed the existing flow-pipe computation tools that were successful in analyzing

hybrid automata from linear to polynomial dynamics [52, 27]. To the best of our

knowledge, the tools assume convex initial sets, however the qualitatively chosen

boundaries can be non-convex. Thus, practical results for time bound computation

will only be applied to convex qualitative regions.

Algorithm 2 is applied to obtain tmax of a region p.

input : set Bin(p) of inward boundaries of a region p, time horizon T
output: a safe over-approximating time bound tmax of p

for bin ∈ Bin(p) do
tmaxi ← 0;
while tmaxi < T do

Flow ← ContinuousTimeElapsed(bin,∆t);
tmaxi ← tmaxi + ∆t;
if (Flow ∩ p = ∅) then break;

end
if (tmaxi ≥ T) then return “max reached”;

end
return Maximum (tmaxi);

Algorithm 2: Computing a safe time bound of a region

Algorithm termination Remind that the region p is chosen qualitatively and

not containing any critical point. This assumption does not prove that the time

bounds are finite, but however discards some situations where the time bounds

are not finite. Consequently the qualitative partition choice eases the time bounds

computation. Obviously, unless bounded by T , termination of algorithm 2 is gen-

erally not guaranteed. One can check for conditions for which finite time bounds

exist and adapt the maximum time horizon T accordingly.

103 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 104

Proposition 4.2 (Sojourn bounds). A sufficient but not necessary condition for

the region p to have finite time bounds (tmax finite, thus nonnegative real) is that

∃i 1 ≤ i ≤ n ∀x ∈ p ẋi 6= 0, where p is the closure of p.

If the condition in proposition 4.2 is verified over p for a dimension i then all

trajectories should respect finite time bounds for staying in the region p. On the

other hand, a trajectory making a finite number of orbital spins once inside p then

exiting p does not satisfy this condition while having finite time bounds. One way

to look for a finite time bound is to refine the partition with the objective that

the regions become small enough for the condition to hold for each of them. If

the derivatives along each axis take each a finite number of null values inside the

partition, but never all at the same time, there is no problem with refining the

partition to have each null derivative point alone in one region. In the other cases,

a further discussion on critical points is presented in Appendix B.

Note that the tmax computed by Algorithm 2 is only valid for those trajectories

that from a Bin(p) are guaranteed to exit by a Bout(p). This happens because

the flow-pipe is an over-approximation and some trajectories staying in p with

tmax = +∞ may exist. To deal with such trajectories, one can combine under and

over-approximations to obtain faithful time bounds whether it is the maximum or

minimum sojourn time.

Computing tmin

As previously defined, tmin corresponds to the minimum sojourn time in a state.

Consequently, if any inward and outward boundaries of the region p have an in-

tersection then we associate a null value to tmin. Thus, one can associate tmin to a

specific entry boundary Bin instead of the whole region. A simple way to compute

a lower bound of the time passed in p by all the trajectories, is to consider the

minimal distance between Bin and Bout expressed as:

tmin =
dmin
vmax

(4.13)

dmin = minM∈Bin,M ′∈Bout||MM ′|| (4.14)

vmax = maxx∈p||ẋ|| (4.15)

104 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 105

For the class of polynomial hybrid automata we consider, solving the equations is

a well-studied procedure in non-linear optimization with constraints.

Example 4.6 (Temperature regulator). Consider again the temperature regulator,

or thermostat (see Figure 3.1). The continuous behavior of each mode is illustrated

in Figure 4.7.

(a) (b)

Figure 4.7: Thermostat phase plane with randomly generated numerical simula-
tions: (a) Mode off , (b) Mode on

The previously explained abstraction algorithms are applied to this thermo-

stat example. The result is automatically obtained from the tool (that will be

presented in Chapter 5) and is illustrated in Figure 4.8. Green states correspond

to guard satisfiability, blue states are regions interpreted from the other mode and

purple states are regions produced if both mode invariants were set to true. The

produced abstraction graph proves that the four regions (off, 3), (off, 4), (on, 0)

and (on, 4) of the state space in purple color are time invariants. The abstract

state of the initial set [80, 90] is region 0 in mode off . From state 0 only one

abstract trajectory exists, a mode change is possible to region 1 in mode on and

going back to mode off is possible. The abstraction is sufficient to provide a

proof that (off, 2) and (off, 1) are to be crossed by the system for a mode change

to happen. The transitions outgoing from the blue regions are computed during

the mode linkage step. Notice that the information within this abstraction are

not enough to prove for example that all trajectories starting from (off, 0) are

105 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 106

eventually (i.e., in finite time) subject to a mode change. This can be proven how-

ever if the abstraction contains additionally time sojourn bounds expressing how

much time can the system stay in a given region as we previously defined (Def. 4.7).

(Mode on, Region 2)

(off ,0)
x > 0

70− x < 0

(off ,2)
x > 0

70− x = 0

(off ,1)
x > 0

70− x > 0

(off , 3)
x < 0

70− x > 0

(off ,4)
x = 0

70− x > 0

Inv(off) =[68,+∞)

Boff

(a)

(Mode off , Region 1)

(on,1)
120− x > 0
x− 80 < 0

(on,3)
120− x > 0
x− 80 = 0

(on,2)
120− x > 0
x− 80 > 0

(on,0)
120− x < 0
x− 80 > 0

(on,4)
120− x = 0
x− 80 > 0

Inv(On) =(−∞,82]

Bon

(b)

Figure 4.8: Thermostat qualitative abstraction: (a) Mode off , (b) Mode on

Attributing Sojourn Bounds Let us attribute sojourn bounds to the previous

abstraction. The obtained timed abstraction, illustrated in Figure 4.9, is not com-

puted presently by the tool, but the bounds are computed by hand by considering

the slowest and fastest trajectories in each region. To illustrate the computation,

we will consider the abstract state (off , 0) and attribute the minimum and maxi-

mum sojourn time in the timed automaton.

Minimum sojourn time For the lower bound of the minimum sojourn time tmin,

the minimum distance crossed by a trajectory under the continuity assumption is

dmin = 80 − 70 = 10. Let us find the maximum (or an upper bound) of the first

order derivative vmax. The dynamics of mode off is ẋ = −x, consequently the

upper bound vmax is given by 80. The lower bound of the minimum sojourn time

associated to the considered abstract state is thus:

tmin =
dmin
vmax

=
10

80
= 0.12

Maximum sojourn time Considering the same abstract state and taking into

account that the exact solution to ẋ = −x is t = Ln(1/x), then an upper bound

106 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 107

for the sojourn time can be deduced by considering the trajectory initially at 80

and reaching 70:

tmax = ln

(
80

70

)
= 0.14

(off, Init)

ṫ = 1

t < 0.12

(off , 0)

ṫ = 1

t < 0.14

(off , 2)

ṫ = 1

t < ε

(off , 1)

ṫ = 1

t < 0.03

(off , 3)

ṫ = 1

t ∈[0,+∞)

(off , 4)

ṫ = 1

t ∈[0,+∞]

(Mode on, Region 2)

t := 0

t ≥ 0/t := 0

t ≥ 0.12/t := 0

t > ε′/t := 0

t > 0/t := 0

(a)

(on, 1)

ṫ = 1

t < 0.27

(on, 3)

ṫ = 1

t < ε

(on, 2)

ṫ = 1

t < 0.052

(on, 0)

ṫ = 1

t ∈[0,+∞)

(on, 4)

ṫ = 1

t ∈[0,+∞]

(Mode off , Region 1)

(Mode off , Init)

t ≥ 0/t := 0

t > ε′/t := 0

t > 0.05/t:=0

(b)

Figure 4.9: Timed abstraction of the thermostat system (a) Mode on, (b) Mode
off

107 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 108

4.3 Application to diagnosability verification

Hybrid automata have generally an infinite state space and their semantics can be

represented using infinite state machines. Thus, to verify formally their properties

we will rest on using model checking over the abstraction of the hybrid system.

Model-checking can be inconclusive, in which case the abstraction must be refined.

In this section, we adapt counterexample guided abstraction refinement (CEGAR)

that we previously reviewed (Chapter 2.3.5, page 40) to diagnosability verification.

CEGAR was originally proposed to verify safety properties [48, 6].

Note that to verify safety properties, it is sufficient to check one execution at a time

and verify whether the execution can reach an unsafe state. However, verifying

diagnosability reveals a more complex task as one is required to simultaneously

analyze two executions at a time, i.e., to verify whether or not the two executions

have the same observations while only one of them contains the considered fault.

The abstraction of the hybrid automaton can be directly used to verify safety and

generate an abstract counterexample when safety is violated. This is performed by

state exploration of the abstraction given the abstract states of the unsafe set of

states. This is not the case for diagnosability verification, in fact a transformation

of the abstraction is required to find critical pairs using state exploration.

4.3.1 CEGAR scheme for hybrid automata diagnosability
verification

Consequently, the adaptation of CEGAR to verify diagnosability of H consists in

three steps described as follows and to be detailed in the next subsections:

• Abstracting a hybrid automaton using the previously elaborated method

to obtain the timed automaton abstracting H.

• Diagnosability checking of a timed abstract automaton of H. Unlike

safety verification, the timed abstraction cannot be directly used to check

for the property to be verified and generate abstract counterexamples. This

is why we use the twin plant method that transforms the timed automaton

108 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 109

abstraction to another representation. The latter can be directly used to gen-

erate a counterexample C.E by simple state exploration when diagnosability

is not verified at the abstract level.

• Validation of the C.E by checking whether the C.E is valid or spurious

at the concrete level.

• Refinement of the timed abstract automaton by using a finer hybrid state

space decomposition to avoid the found C.E when it is declared spurious.

Verifying diagnosability of a hybrid automaton by checking it on its abstrac-

tion is justified because if the diagnosability property is verified for an abstrac-

tion, then it is verified also for the concrete hybrid system. This can be estab-

lished by showing that a concrete counterexample of diagnosability lifts up into

an abstract counterexample of diagnosability. Actually, given a hybrid automaton

H = (Q,X, S0,Σ, F, Inv, T), two executions h, h′ ∈ [[H]] such that

h = (q0,x0)
l0−→ (q1,x1)...(qi,xi)

li−→ ...

h′ = (q′0,x
′
0)

l′0−→ (q′1,x
′
1)...(q′i,x

′
i)

l′i−→ ...

are called a counterexample of diagnosability in H with respect to the fault F if

they satisfy the three conditions defined in Definition 3.16 (page 71), i.e., if h

and h′ constitute a critical pair of H. We will denote each state (qi,xi) by si and

(q′i,x
′
i) by s′i.

Theorem 4.3. Given a hybrid automaton H, a timed abstract automaton THP of

H with abstraction function αtP and a modeled fault F in H, if F is (∆-)diagnosable

in THP then F is (∆-)diagnosable in H.

Proof. Assume that F is not ∆-diagnosable in H. Then a critical pair exists among

the executions of H, thus the following holds:

∃h, h′ ∈ [[H]], F ∈ h and F /∈ h′ and time(h, F) ≥ ∆ and Obs(h′) = Obs(h).

From Theorem 4.2, since THP is a timed abstraction of H with abstraction func-

tion αtP, if we denote ĥ = αtP(h) and ĥ′ = αtP(h′), then the following holds:

∃ĥ, ĥ′ ∈ [[THP]], F ∈ ĥ and F /∈ ĥ′ and time(ĥ, F) ≥ ∆ and Obs(ĥ′) = Obs(ĥ).

109 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 110

Consequently, (ĥ, ĥ′) is a critical pair of THP, which establishes thus a counterex-

ample of diagnosability in THP: C.E = (ĥ, ĥ′). By contradiction, this proves the

result.

Algorithm 3 illustrates the CEGAR scheme adaptation for hybrid automata

diagnosability verification.

input : Hybrid Automaton := H; Considered Fault := F ; Precision
:= (integer, maximum number of refinements) precision

output: Decision := H is diagnosable | H is not diagnosable | Precision
is reached

TH ← Initial Timed Abstract Automaton of H;
C.E ← Diagnosability Check (TH,F);
abstraction level← 0;
while C.E 6= ∅ ∧ abstraction level < precision do

if Validate(C.E,H) then decision← false;
Exit;
else TH ← Refine (TH,C.E,H);
C.E ← Diagnosability Check (TH,F);
abstraction level← abstraction level + 1;

end
if C.E = ∅ then decision← true;
else decision← max reached;

Algorithm 3: CEGAR scheme for hybrid automata diagnosability verification

4.3.2 Twin plant based diagnosability checking

Diagnosability checking of a discrete event system, modeled as an automaton,

based on the twin plant method [67, 108] is polynomial in the number of states

(actually it has been proved it is NLOGSPACE-complete [94]). The idea is to

construct a non-deterministic automaton, called pre-diagnoser or verifier, that pre-

serves only all observable information and appends to every state the knowledge

about past fault occurrence. The twin plant is then obtained by synchronizing the

pre-diagnoser with itself based on observable events to get as paths in the twin

plant all pairs of executions with the same observations in the original system.

Each state of the twin plant is a pair of pre-diagnoser states that provide two

110 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 111

possible diagnoses. A twin plant state is called an ambiguous one if the corre-

sponding two pre-diagnoser states give two different diagnoses (presence for one

and absence for the other of a past fault occurrence). A critical path is a path in

the twin plant with at least one ambiguous state cycle. It corresponds to a critical

pair and it has thus been proved that the existence of a critical path is equivalent

to non-diagnosability. The twin plant method has been adapted to be applied to

timed automata [105], where a twin plant is constructed in a similar way except

that the time constraints of two executions are explicitly taken into account using

clock variables. The idea is to verify whether the time constraints can further

distinguish two executions by comparing the occurrence time of observable events.

The definition of a critical path in the twin plant is analog, except that ambiguous

state cycle is replaced by infinite time ambiguous path.

Lemma 4.1. A fault is diagnosable in a timed automaton iff its twin plant contains

no critical path [105].

For timed automata, checking diagnosability is PSPACE-complete.

Algorithmic Computation of the Twin Plant of a Timed Automaton

We review (informally) the main steps for building the twin plant of a partially

observable timed automaton with a single modeled fault.

1. Make two identical copies of the timed automaton.

2. For one copy, rename the unobservable events (faulty and normal events),

discrete states and clocks such that it has different names than the other

copy.

3. Remove for one of the copies all transitions labeled with the copy’s faulty

event.

4. Compute the product of the two timed automata by forcing observable tran-

sition events to synchronize.

5. Assign the invariant of every state from the product timed automaton by

composing the invariants of the merged states with the Boolean ∧ operator.

111 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 112

Example 4.7 (Twin plant construction example). Figure 4.10 illustrates a timed

automaton with initial state qinit and observable events Σo = {a, b} and unobserv-

able event Σu = {u} and fault event Σf = {f}. Under any two nominal and faulty

executions of the timed automaton, the event b cannot appear at the same time.

Consequently, the timed automaton is diagnosable and contains no critical pair.

Notice that the invariants in q1 and qF1 play a role in determining diagnosability

as b becomes an event forced to appear at necessarily different times between a

non-faulty and a faulty execution. If the invariant of q1 was for example the same

as qF1 , then the timed automaton would become non-diagnosable. If we change the

guard of the transition (q0, f, q
F
1) from t > 3 to t ≥ 3 then the timed automaton

becomes non-diagnosable witnessed by the critical pair (h, h′) such that:

h =(qinit, 0)
a−→ (q0, 0)

3−→ (q0, 3)
u−→ (q1, 3)

b−→ (q2, 3)

h′ =(qinit, 0)
a−→ (q0, 0)

3−→ (q0, 3)
f−→ (qF1 , 3)

b−→ (qF2 , 3)

Projecting the pair onto observations we obtain Obs(h) = Obs(h′) = 0, a, 3, b.

qinit
q0

t ≤ 6

q1

t ≤ 3

qF1
t ≤ 6

q2

qF2

a

t := 0

u
t ≤

3

t >
3

f

b

b

Figure 4.10: Diagnosable Timed Automaton

The twin plant is the product, synchronized on observable events, of the timed

automaton with a copy of itself where the copy holds only the normal executions

112 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 113

(those that do not contain the fault event). For the previous example, every state q

is copied and denoted q′, unobservable event u is copied and renamed u′ and clock

t is copied and renamed t′. The observable events a and b are synchronized, while

transitions of u and u′ can occur asynchronously. The obtained twin plant is illus-

trated in Figure 4.11. Using a simple state exploration algorithm of the twin plant,

we cannot find any fault labeled execution with infinite time proving the absence

of critical pairs in the original timed automaton, and thus the diagnosability.

(qinit, q
′
init)

(q0, q
′
0)

t ≤ 6
t′ ≤ 6

(q1, q
′
0)

t ≤ 3
t′ ≤ 6

(q1, q
′
1)

t ≤ 3
t′ ≤ 3

(qF1 , q
′
0)

t ≤ 6
t′ ≤ 6

(q0, q
′
1)

t ≤ 6
t′ ≤ 3

(qF1 , q
′
1)

t ≤ 6
t′ ≤ 3

(q2, q
′
2)

(qF2 , q
′
2)

a

t := 0
t′ := 0

u

t ≤
3

t >
3

f

u′

t′ ≤ 3

u′

t′ ≤ 3

b

u′

t′ ≤ 3

b

f
t >

3

u

t ≤
3

Figure 4.11: Twin plant of a diagnosable timed automaton

4.3.3 Counterexample validation or refusal

After applying the twin plant method on a timed abstract automaton THP of H

as described in [105], suppose that a critical pair C.E = (ĥ, ĥ′) is returned (if not,

it means that THP, and thus H, is diagnosable). Whether we find or not two

concrete executions h, h′ ∈ [[H]] whose abstractions by αtP are ĥ and ĥ′ and form a

concrete critical pair decides if C.E is validated or refuted. We detail below both

procedures for validation or refusal and the reasons for which, in the latter case, a

critical pair can be assumed spurious.

Validating an abstract counterexample: If the returned counterexample

(ĥ, ĥ′) exists at the concrete level, there exists h, h′ ∈ [[H]], whose abstractions

113 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 114

by αtP (according to Theorem 4.2) are ĥ, ĥ′, and which form a critical pair. This

concrete pair is a witness of non-diagnosability of the hybrid automaton H.

In practice, validating the counterexample involves computing reachable sets

of states. As we have seen, computing the exact set is not possible, one uses

computations of safe over-approximations instead, such as using ellipsoids and

zonotopes for complex dynamics or hyper-cubes for simpler ones [3, 19]. Two flow-

pipes are computed with pre-defined time horizons T and T ′ such that T = time(ĥ)

and T ′ = time(ĥ′). The flow-pipes trace what is dictated by the counterexample.

Suppose that ĥ′ is the fault carrying execution of the counterexample, then the

verification of ∆-diagnosability will translate by the flow-pipe tracing ĥ′ to be of

duration at least ∆ in the faulty mode.

If the counterexample is not validated, the abstract counterexample C.E is said

spurious and becomes refuted.

Refuted counterexample: In case of spurious C.E = (ĥ, ĥ′), the idea is

to construct longest finite executions h, h′ ∈ [[H]], that abstract by αtP into fi-

nite prefixes of ĥ, ĥ′ and such that Obs(h) = Obs(h′). The fact they cannot be

extended means that ∀h ∈ [[H]]/h, h′ ∈ [[H]]/h′ one step executions, either (i)

ŝ|h|+1 6= αtP(s|h|+1) (or ŝ′|h′|+1 6= αtP(s′|h′|+1)) or (ii) l̂|h| 6= l|h| (or l̂′|h| 6= l′|h|) or (iii)

Obs(h) 6= Obs(h′). In this case, sreach|h|+1 and s′reach|h′|+1 are returned, that represent the

two sets of reachable concrete states that are the first ones to disagree with the

abstract C.E. We summarize below the reasons resulting in the C.E being spuri-

ous.

Spurious state reachability: There is no concrete execution in H whose abstraction

is one of ĥ or ĥ′, as one of the set of states of H whose abstraction is an abstract

state ŝi or ŝ′i is not reachable in H starting from the initial states of H. Note

that care will have to be taken when refining THP (see next subsection). E.g., a

possible case is that there exists two executions (h, h′) reaching (s1, s
′
1) and then

(s2, s
′
2) but not reaching (s3, s

′
3) (and none passing by (s1, s

′
1) and (s2, s

′
2) reaches

(s3, s
′
3)), and two other executions (u, u′) reaching (s2, s

′
2) from (s, s′) 6= (s1, s

′
1),

with αtP(s) = αtP(s1) and αtP(s′) = αtP(s′1), and then reaching (s3, s
′
3), all with time

periods compatible to those of the abstract executions. If the refined model simply

eliminated the transition from ŝ2 to ŝ3 or from ŝ′2 to ŝ′3 then it could no longer be

considered an abstraction of H, since some concrete execution in H would have

114 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 115

no abstract counterpart. Thus the refinement has to apply the split operation

as previously described, so that preserving the abstraction while eliminating the

spurious counterexample.

Spurious time constraints satisfaction: The abstract critical pair, when considered

timeless, owns a concrete critical pair realization in H but none verifying the time

bounds imposed by the abstract timed automaton. In this case it is not a spurious

state reachability problem but a spurious timed state reachability problem. Ac-

tually the time constraints of the abstract critical pair cannot be satisfied by any

concrete critical pair realizing it in H.

Spurious observation undistinguishability: The two executions of the abstract criti-

cal pair share the same observations (observable events with their occurrence times

and snapshots of the values of observable continuous variables at arrival times in

each abstract state) but actually any two concrete executions realizing this crit-

ical pair in H do distinguish themselves by the observation of some observable

continuous variable.

4.3.4 Refinement of the abstraction

If it reveals that the abstract counterexample C.E = (ĥ, ĥ′) is spurious, then one

refines the timed abstract automaton THP to get THP′ , guided by the information

from C.E. The first step is analyzing C.E to identify the reasons why it is spuri-

ous (as classified previously). The idea is to avoid getting relatively close spurious

abstract counterexample when applying twin plant method on the refined timed

abstract automaton THP′ . The refinement procedure is described as follows and

will be illustrated on our example in the next subsection.

1. Suppose that C.E is refuted due to an illegal stay, i.e., the corresponding in-

variant is not respected. The consequence could be sreach|h|+1 = ∅, i.e., an illegal

transition. To eliminate such spurious counterexample next time, one can parti-

tion the region containing ŝ|h| to get a new region representing the legal stay such

that the refinement can be done based on this partition. The idea is to eliminate

illegal (unobservable) transitions between the new region and others by tightening

time constraints. In a similar way, one can handle spurious counterexamples with

illegal transitions due to the unsatisfiability of the corresponding guards by the

115 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 116

evolution of continuous variables, but with a legal stay this time.

2. Suppose that the refutation of C.E is due to different observations from s|h|+1

and s′|h′|+1 without reachability problem. The idea is to calculate the exact mo-

ment, denoted tspurious, before which it is still possible to get the same observations

while after it the observations will diverge. With tspurious, one can partition ŝ|h|+1

and ŝ′|h′|+1 to get a new region whose legal stay is limited by tspurious and tran-

sition to another region gives birth to a new refined observation by means of an

observable continuous variable if any.

4.3.5 Case study example

The CEGAR scheme for diagnosability checking of hybrid automata will be illus-

trated by the following case study example.

Example 4.8 (Fault tolerant thermostat model). We start from our thermostat

example as nominal behavior and we add two faulty transitions to new faulty

modes. The two observable events Bon and Boff allow one to witness mode changes

and the continuous variable x is assumed to be observable. The system starts from

x ∈ [80, 90]. Two faults are modeled as unobservable events F1 and F2 ∈ Σf shown

in Figure 4.12. In practice, the fault F1 models a bad calibration of the temperature

sensor. As for fault F2, it represents a defect in the heater impacting its efficiency

and is modeled by a parametric change of a constant in the expression of the first

order derivative of x.

CEGAR scheme for fault F1

Initial Abstraction: We consider an initial decomposition P = {Poff , Pon, P
F1
off , P

F1
on

P F2
off , P F2

on } of the hybrid state space. Each partition P ∈ P is made up of only one

region representing the reals R. Hence computing tmin and tmax for each region p

yields Ip = [0,+∞), in other words the initial abstraction contains no time con-

straints.

Diagnosability Check: The diagnosability check using the twin plant method gen-

116 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 117

off

ẋ = −x
x ≥ 68

on

ẋ =− x+ 100

x ≤ 82

off F1

ẋ = −x
x ≥ 80

onF1

ẋ = −x+ 100

x ≤ 90

off F2

ẋ = −x
x ≥ 68

onF2

ẋ = −x+ 120

x ≤ 82

x ∈ [80, 90]
x ≤ 70/Bon

80 ≤ x/Boff

F1

x ≤ 82/Bon

88 ≤ x/Boff

F2

x ≤ 70/Bon

80 ≤ x/Boff

Figure 4.12: 1-dimensional hybrid automaton modeling a faulty thermostat

117 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 118

erates a counterexample C.E = (ĥ, ĥ′) such that:

ĥ = (off , poff)
0.15−−→ (off , poff)

Bon−−→ (on, pon)
0.3−→ (on, pon)

Boff−−→ (off , poff)...

ĥ′ = (off , poff)
0.1−→ (off , poff)

F1−→ (off F1 , pF1
off)

0.05−−→ (off F1 , pF1
off)

Bon−−→ (onF1 , pF1
on)

0.3−→

(onF1 , pF1
on)

Boff−−→ (off F1 , pF1
off)...

Validation or refusal: The computation of the set of concrete executions {h} (resp.

{h′}) whose abstraction is ĥ (resp. ĥ′) yields an approximation as follows:

{h} = (off , [80, 90])
0.15−−→ (off , [69, 77])

Bon−−→ (on, [69, 70])...

{h′} = (off , [80, 90])
0.1−→ (off , [72, 81])

F1−→ (off F1 , [80, 81])
0.05−−→

(off F1 , [76, 77] : invalid)

The concrete state computations show that it is not possible to stay 0.05 time units

in mode off F1 as the temperature reached would be [76,77] violating the invariant

x ≥ 80. The C.E is thus refuted.

Refinement of the state space: The refinement aims at eliminating the previous

spurious C.E. From this C.E, it is possible to compute the exact time constraint

for staying in mode off F1 and then triggering the transition Bon and refine the

hybrid state space accordingly. Once refined, the new abstraction should not con-

tain similar counterexamples. The validation process reveals that all trajectories

entering mode off F1 with x ∈ [80, 81] cannot stay more than tmax = 0.0124 time

units but it is possible for some trajectories to instantaneously change from off to

off F1 to onF1 in which case tmin = 0, thus I(off F1 ,[80,81]) = [0, 0.0124]. The refined

abstraction would carry this new information by updating the partition of mode

off F1 , from R to (−∞, 80)] [80, 81]] (81,+∞), thus ensuring that all future gen-

erated counterexamples would satisfy this constraint.

CEGAR scheme for fault F2

Initial Abstraction: The same as for F1.

Diagnosability Check: The diagnosability check of the initial abstraction using the

118 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 119

twin plant method generates a C.E = (ĥ, ĥ′):

ĥ = (off , poff)
0.5−→ (off , poff)

Bon−−→ (on, pon)
0.5−→ (on, pon)

Boff−−→ (off , poff)...

ĥ′ = (off , poff)
0.5−→ (off , poff)

Bon−−→ (on, pon)
0.4−→ (on, pon)

F2−→ (onF2 , pF2
on)

0.1−→

(onF2 , pF2
on)

Boff−−→ (off F2 , pF2
off)...

Validation or refusal: The computation of the set of concrete executions {h} (resp.

{h′}) whose abstraction is ĥ (resp. ĥ′) yields an approximation as follows:

{h} = (off , [80, 90])
0.5−→ (off , [48.5, 54.58] : invalid)

{h′} = (off , [80, 90])
0.5−→ (off , [48.5, 54.58] : invalid)

This C.E is refuted due to illegal stay in the mode off violating the corresponding

invariant. In other words the trajectories are not feasible: if the system stays in

mode off for 0.5 time units then the state invariant is no longer true. Thus, if Bon

is observed then the duration of stay in off should be smaller.

Refinement of the state space: To prevent future similar spurious counterexamples,

a refinement is applied to the initial abstraction. The refined model considers

new regions in mode off : poff 1
= [80, 90] (initial region) and poff 2

= [68, 80)

(legal region). The computation of the time intervals relative to each region are:

I(off ,[68,80)) = [0, 0.16] and I(off ,[80,90]) = [0, 0.12]. The refined abstraction will encode

these time constraints and ensure that a set of similar counterexamples (including

this one) are eliminated. Regions that are not reachable will be eliminated, such

as [0, 68).

Second Abstraction

Diagnosability Check: The second C.E generated from the refined twin plant is:

ĥ = (off , poff 1
)

0.08−−→ (off , poff 1
)

ε−→ (off , poff 2
)

0.07−−→ (off , poff 2
)
Bon−−→ (on, pon)

0.5−→

(on, pon)
Boff−−→ (off , poff)...

ĥ′ = (off , poff 1
)

0.08−−→ (off , poff 1
)

ε−→ (off , poff 2
)

0.07−−→ (off , poff 2
)
Bon−−→ (on, pon)

0.4−→

(on, pon)
F2−→ (onF2 , pF2

on)
0.1−→ (onF2 , pF2

on)
Boff−−→ (off F2 , pF2

off)...

Validation or refusal: Note that the continuous transitions in the second C.E

respect the temporal constraints added during the refinement based on the first

119 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 120

C.E. The corresponding concrete approximate executions of this C.E are:

{h} = (off , [80, 90])
0.15−−→ (off , [69, 77])

Bon−−→ (on, [69, 70])
0.5−→ (on, [80.5, 81.8])...

{h′} = (off , [80, 90])
0.15−−→ (off , [69, 77])

Bon−−→ (on, [69, 70])
0.4−→ (on, [79, 79.9])

F2−→

(onF2 , [79, 79.9])
0.1−→ (onF2 , [82.9, 83.7])...

In this case, this second C.E is also considered as spurious because, given the time

constraints, the two trajectories are different in the observations of x in the hybrid

system since the last regions are disjoint, i.e., [80.5, 81.8] ∩ [82.9, 83.7] = ∅. And

also the invariant x ≤ 82 in onF2 is violated.

Refinement of the state space: The counterexample analysis could identify the

time boundary tspurious, up to which the observations could be the same for at

least two concrete trajectories, and after which the critical pair becomes spurious.

In our example, suppose the fault occurred at tf where x ∈ [a, b], then tspurious is

the time instant from which faulty and nominal sets of trajectories are disjoint:

tspurious = ln

(
b− a+ 20

20

)
+ tf (4.16)

For the second spurious C.E, tf = 0.4 and tspurious− tf = 0.044. The two concrete

nominal and faulty executions originating from (on, [79, 79.9]) will be in the fol-

lowing temperature range after 0.044 time units: x ∈ [79.90, 80.7] in the mode on

and x ∈ [80.7, 81.6] in the mode onF2 . Hence, at any future time, the observations

are different. By incorporating the time constraint in the refined abstraction, we

ensure that counterexamples that are spurious because of disjoint observations in-

cluding the previous one cannot be generated again. For the sake of simplicity, we

analyzed the two faults separately. One more sophisticated strategy is to analyze

the next fault based on the refined abstraction obtained from the analysis of the

precedent fault.

4.4 Chapter Summary

In this chapter we elaborated a method to generate an abstraction of a given hybrid

automaton using qualitative reasoning. A timing of the abstraction is proposed us-

ing existing flow-pipe techniques to generate the timed automaton abstraction. An

120 / 162

Chapter 4. Qualitative Abstractions for Hybrid Automata 121

adaptation of CEGAR that was specifically used for safety verification is applied

to diagnosability verification by extending results that were specific for discrete

event and timed systems.

121 / 162

Chapter 5

Implementation and
Experimental results

5.1 Automating the abstraction computation

In this chapter an implementation of a tool that applies previous algorithms from

Chapter 4, Section 4.2 (page. 89) is presented. The tool automatically computes

the timeless abstraction of a hybrid automaton and is implemented in C++. First,

the tool architecture is presented followed by the primary classes and external

dependencies. Second, we briefly explain the implementation specific procedures

and present experimental results while evaluating performances. Finally, perspec-

tives to extend the current implementation to compute the timed abstraction and

perform diagnosability verification are presented and discussed.

5.1.1 Black box view

The input model is a polynomial hybrid automaton written in accordance to the

grammar rules described in Appendix A.1. The tool takes the file [name].model

and performs the abstraction procedure if no model parsing errors are detected.

The input file contains the different components of a hybrid automaton model H:

• A list of hybrid automaton modes

• A list of ODE’s relative to each mode

122

Chapter 5. Implementation and Experimental results 123

• Invariants for each mode (if not specified then the invariant is set to true by

default)

• Mode change transitions with their guards and resets

• Refinement functions

• Optionally an initial set

5.1.2 Tool Architecture

The tool architecture is presented in Figure 5.1. Execution flow shows how the

applied algorithms are sequenced. The required libraries for each step of the com-

putation are also mentioned. First, a parsing operation is applied to a given input

model satisfying the previously presented grammar. Second, the state partitioning

algorithm is applied to discretize the state space into qualitative regions. Then

transitions are evaluated from every qualitative region with its adjacent neighbors.

The obtained partitioning and transition evaluation results are then saved graph-

ically as a finite state machine graph. At this point of the execution, the user can

choose or not to compute the maximum and minimum first order derivatives of Ẋ

in each partitioned region. The latter can in some situations be used to deduce

the minimum and maximum sojourn times combined with the crossing distances

of each region.

The following freely available libraries and solvers are required by the tool:

• QepCAD a Quantifier Elimination applying Cylindrical Algebraic Decomposi-

tion solver;

• Nlopt a non linear optimization library;

• Boost libraries for parsing inputs and generating outputs using regular ex-

pressions;

• Graphviz and Matplotlib for plotting and visualization.

123 / 162

In
p

u
t:

 H
yb

ri
d

 S
ys

te
m

 M
o

d
el

M
o

d
el

 P
ar

se
r:

 P
re

p
ar

e
d

at
a

fo
r

co
m

p
u

ta
ti

o
n

M
u

lt
i-

va
ri

ab
le

Po

ly
n

o
m

ia
l P

ar
se

r
B

O
O

ST
::

xp
re

ss
iv

e
R

eg
u

la
r

ex
p

re
ss

io
n

s
id

en
ti

fi
er

re
q

u
ir

es

Le
ge

n
d

Ex
te

rn
al

 d
ep

en
d

en
cy

M
o

d
el

 P
ar

se
r

H
yb

ri
d

 S
ys

te
m

 M
o

d
el

Pa
rt

it
io

n
in

g
A

lg
o

ri
th

m
:

C
o

m
p

u
te

 A
b

st
ra

ct
 S

ta
te

s
Sy

m
b

o
lic

al
ly

Pa
rt

it
io

n
in

g
En

gi
n

e
Pa

rt
it

io
n

in
g

R
u

le
s

Q
u

al
it

at
iv

e
R

u
le

s
o

r
U

se
r

D
ef

in
ed

St
o

re
 D

is
cr

et
e

St
at

es
Po

ly
n

o
m

ia
l

C
o

n
st

ra
in

ts

Ev
al

u
at

in
g

Tr
an

si
ti

o
n

s:
 C

o
m

p
u

te
 t

ra
n

si
ti

o
n

s
b

et
w

ee
n

 s
ta

te
s

Q
e

p
C

A
D

C
A

D
 s

o
lv

er
Fo

rm
u

la
 E

va
lu

at
io

n

C
o

m
p

u
te

 t
ra

n
si

ti
o

n
 f

o
rm

u
la

Ex
e

cu
ti

o
n

 F
lo

w

Ev
al

u
at

io
n

 R
es

u
lt

 A
n

al
ys

is

O
u

tp
u

t:

A
b

st
ra

ct
io

n

O
p

ti
o

n
al

G
ra

p
h

ic
 V

is
u

al
iz

at
io

n
G

n
u

p
lo

t
|

M
at

p
lo

tl
ib

G
ra

p
h

vi
z

C
o

m
p

u
te

 T
im

e
co

n
st

ra
in

ts
N

lo
p

t
O

p
ti

m
iz

at
io

n
 L

ib
ra

ry

Ti
m

in
g

th
e

ab
st

ra
ct

io
n

:
M

ax
im

u
m

 a
n

d
 m

in
im

u
m

 s
o

jo
u

rn
 t

im
e

U
se

r
G

u
id

ed

F
ig

u
re

5.
1:

A
rc

h
it

ec
tu

re
of

th
e

H
y
b
ri

d
A

u
to

m
at

a
Q

u
al

it
at

iv
e

A
b
st

ra
ct

io
n

T
o
ol

Chapter 5. Implementation and Experimental results 125

5.1.3 Classes and Methods

Tables 5.1 and 5.2 present the main classes and methods used in the tool.

Class Name Description

Monomial a.
∏n

i x
ki
i where a is a double precision float, ki is

an integer

Polynomial
∑
a.
∏
xkii a finite sum of Monomial(s)

Polynomial Constraint Polynomial p and a constraint type op ∈ {>,<
,=}

Polynomial Region a set of Polynomial Constraint(s)

Continuous System an ordered set of Polynomial, if polynomial p(x)
is of index i then it is interpreted as dxi

dt
= p(x)

Polynomial Partition an aggregation of a single Continuous System

and a set of Polynomial region(s)

Hybrid System an ordered set of Continuous System (CS). Each
(CS) is assigned transitions containing guards and
resets

Table 5.1: Main Classes of the Abstraction Tool

125 / 162

Chapter 5. Implementation and Experimental results 126

Methods Description

(obj) to string where obj stands for one of the previous classes
name, provides in and out methods to convert
a string to object of obj, this is implemented by
checking the presence of regular expressions using
simple deterministic automata.

polynomial (operator) where operator is (+, ∗, derive, projection
flow) providing primary operations on polyno-
mials.

partition(base) computes the set of polynomial region(s) us-
ing cross product of elements from a set of
strings base with the number of variables of a
Continuous System.

CAD Evaluate(string) evaluates the true or false nature of a CAD for-
mula using QepCAD.

Transitions Compute given a Polynomial Partition, this function will
compute the formula expressing the scalar prod-
uct between the dynamics and the normal vec-
tor of some boundary while limiting the evaluated
boundary to the region of the considered abstract
state.

Table 5.2: Main Methods of the Abstraction Tool

126 / 162

Chapter 5. Implementation and Experimental results 127

5.2 Examples and simulation results

Example 5.1 (Continuous System). Cyclic Behavior

The brusselator is a mathematical model used for representing chemical reactions

with cyclic change of color. The dynamics are nonlinear. The model holds a single

mode q with a singleton flow F given by the variables derivatives as:

ẋ0 = 1− 4x0 + x2
0x1

ẋ1 = 3x0 − x2
0x1

For illustrative purposes, two numerical simulations of the example show a

clockwise rotation of the trajectories with respect to the (x0, x1) coordinates (see

Figure 5.2). As a first simulation, we are interested in the behavior of the brus-

(a) (b)

Figure 5.2: Brusselator normalized phase plane with numerical simulations

selator in the first quadrant of the (x0, x1) plane, thus we add to Inv(q) the con-

straints: x0 > 0, x1 > 0 as invariants. The system is two-dimensional, hence the

computed abstraction according to flow sign vector contains 32 = 9 states. The

tool successfully analyzes the example, the produced abstraction is shown both

as an automaton view in Figure 5.3.a and in the continuous space view in Figure

5.3.b.

The qualitative simulation shows what behavior of the system is impossible

and what behavior is possible. Using a numerical simulator (or computing an

127 / 162

Chapter 5. Implementation and Experimental results 128

0
1− 4x0 + x2

0x1 < 0
3x0 − x2

0x1 < 0

2
1− 4x0 + x2

0x1 < 0
3x0 − x2

0x1 = 0

1
1− 4x0 + x2

0x1 < 0
3x0 − x2

0x1 > 0

6
1− 4x0 + x2

0x1 = 0
3x0 − x2

0x1 < 0

3
1− 4x0 + x2

0x1 > 0
3x0 − x2

0x1 < 0

7
1− 4x0 + x2

0x1 = 0
3x0 − x2

0x1 > 0

4
1− 4x0 + x2

0x1 > 0
3x0 − x2

0x1 > 0

5
1− 4x0 + x2

0x1 > 0
3x0 − x2

0x1 = 0

8
1− 4x0 + x2

0x1 = 0
3x0 − x2

0x1 = 0

(a) (b)

Figure 5.3: Brusselator computed abstraction with Inv(q) = (x0 > 0 ∧ x1 > 0)
(a) Automaton view (b) Continuous space view

over-approximating flow-pipe), it would take a number of simulations to show the

possible cyclic behavior of the brusselator. Figure 5.3 proves that the rotation

direction of the brusselator cycle cannot be counter-clockwise in a single abstrac-

tion step and without refinements. This result is valid for all trajectories in the

unbounded (x0 > 0 ∧ x1 > 0) domain and cannot be proved using numerical

or flow-pipe simulations. Note that state 8 corresponds to the equilibrium point,

i.e., in a neighborhood around state 8 no trajectories are to reach it in any time.

As a result, trajectories come neither in nor out, thus no outgoing or incoming

transitions are associated to state 8.

Change of Invariant Another abstraction of the brusselator is computed with

a change of the previous invariant from x0 > 0 ∧ x1 > 0 to true, the result is

represented in Figure 5.4. Notice that new transitions that were absent appear

(3 → 5) and (5 → 4). The result is correct and is due to the non-connected sets

of the considered abstract states. This abstraction shows that the behavior of the

system can possibly be counter-clockwise when considering the whole state space

R2.

Refining the abstraction Let us consider more granular regions of the previous

partitions for each example. Consider adding x1−5 as a refining polynomial of the

128 / 162

Chapter 5. Implementation and Experimental results 129

0
1− 4x0 + x2

0x1 < 0
3x0 − x2

0x1 < 0

2
1− 4x0 + x2

0x1 < 0
3x0 − x2

0x1 = 0

1
1− 4x0 + x2

0x1 < 0
3x0 − x2

0x1 > 0

6
1− 4x0 + x2

0x1 = 0
3x0 − x2

0x1 < 0

3
1− 4x0 + x2

0x1 > 0
3x0 − x2

0x1 < 0

7
1− 4x0 + x2

0x1 = 0
3x0 − x2

0x1 > 0

4
1− 4x0 + x2

0x1 > 0
3x0 − x2

0x1 > 0

5
1− 4x0 + x2

0x1 > 0
3x0 − x2

0x1 = 0

8
1− 4x0 + x2

0x1 = 0
3x0 − x2

0x1 = 0

(a) (b)

Figure 5.4: Brusselator computed abstraction with Inv(q) = true
(a) Automaton view (b) Continuous space view

brusselator initial partition. Figure 5.5 illustrates the newly obtained partition.

Figure 5.5: Adding a refining polynomial to a previous decomposition

Notice that by applying the refinement algorithm 4.2.4, many of the previously

computed transitions remain valid. The regions 3 and 4 and 5 are split respectively

as (3, 4, 5) ; (6, 7, 8) and (9, 10, 11). Regions 0, 1, 2, 12, 13, 14 are re-expressed by

adding to each of them the containing half-plane of the new refining polynomial.

In this case, the half-plane expressed by x1− 5 < 0 is added to these regions. The

129 / 162

Chapter 5. Implementation and Experimental results 130

0
1− 4x0 + x2

0x1 < 0
3x0 − x2

0x1 < 0
x1 − 5 < 0

2
1− 4x0 + x2

0x1 < 0
3x0 − x2

0x1 = 0
x1 − 5 < 0

1
1− 4x0 + x2

0x1 < 0
3x0 − x2

0x1 > 0
x1 − 5 < 0

13
1− 4x0 + x2

0x1 = 0
3x0 − x2

0x1 > 0
x1 − 5 < 0

6
1− 4x0 + x2

0x1 > 0
3x0 − x2

0x1 > 0
x1 − 5 < 0

8
1− 4x0 + x2

0x1 > 0
3x0 − x2

0x1 > 0
x1 − 5 = 0

7
1− 4x0 + x2

0x1 > 0
3x0 − x2

0x1 > 0
x1 − 5 > 0

12
1− 4x0 + x2

0x1 = 0
3x0 − x2

0x1 < 0
x1 − 5 < 0

3
1− 4x0 + x2

0x1 > 0
3x0 − x2

0x1 < 0
x1 − 5 < 0

5
1− 4x0 + x2

0x1 > 0
3x0 − x2

0x1 < 0
x1 − 5 = 0

4
1− 4x0 + x2

0x1 > 0
3x0 − x2

0x1 < 0
x1 − 5 > 0

10
1− 4x0 + x2

0x1 > 0
3x0 − x2

0x1 = 0
x1 − 5 > 0

9
1− 4x0 + x2

0x1 > 0
3x0 − x2

0x1 = 0
x1 − 5 < 0

11
1− 4x0 + x2

0x1 > 0
3x0 − x2

0x1 = 0
x1 − 5 = 0

14
1− 4x0 + x2

0x1 = 0
3x0 − x2

0x1 = 0
x1 − 5 < 0

Figure 5.6: Refined Brusselator Abstraction Automaton View

refined abstraction automaton obtained automatically using the tool is observed

on Figure 5.6.

5.2.1 Computation Time

Making use of multi-threaded programming It is important to note that

the transitions computing can be parallelized, once the abstract states are com-

puted for a single mode. For the moment this parallelization is not implemented

in the presented tool. In fact, an evaluation of a set of inequalities using CAD has

been proven to be doubly exponential [40]. Hence, parallelizing the computations

will significantly reduce the computation time of the abstraction and will allow

130 / 162

Chapter 5. Implementation and Experimental results 131

one to handle systems with large number of modes and with higher dimensions

(i.e., the number of continuous variables involved).

Benchmark evaluation We use the benchmark proposed by Xin Chen in [29]

to evaluate computation time over different linear, non-linear and hybrid systems

models. The computation time is illustrated in Table 5.3, page 134 and is achieved

on a machine equipped with an Intel Core i5-3210M CPU operating at a 2.5 Ghz

frequency. All input models are given in appendix A.2 (page 143).

Refined models computation time For some of the previously considered

examples from the benchmark, we applied successive refinement steps to obtain a

more granular abstraction. The refining polynomials were chosen randomly. The

computation time of the refined models and the number of refinement steps (i.e.,

number of added polynomials for all modes) are illustrated in Table 5.4 (page 135).

Fail reasons Fail(1) occurred with one of the transition computation at the level

of the quantifier elimination solver with no specific error. Fail(2) occurred due to

the lack of extra cells needed for the computation. In fact the number of cylindrical

algebraic decomposition cells in QepCAD is capped. From the first transition com-

putation of Biology Model 1, the number of required cells exceeded the maximum

cap.

5.2.2 Extending the tool with optimization libraries

Once the qualitative abstraction is computed, the tool can optionally call a non-

linear optimization library Nlopt to perform optimization operations over the par-

titioned regions.

Computing Vmin and Vmax An important operation that can be performed is

computing the maximum and minimum values of the first order derivatives of each

continuous variables. After the discrete abstraction of H is computed, the user

can choose to compute Vmin and Vmax. Similarly to the transitions between regions

computation, the computation of the minimal and maximal values of ẋ denoted

respectively Vmin and Vmax can be parallelized as well. The tool interfaces with

131 / 162

Chapter 5. Implementation and Experimental results 132

the Nlopt library and uses existing algorithms to determine safe upper and lower

bounds of Vmin and Vmax with a tolerated error. The computed values will refine

the abstraction and can be represented using rectangular automata.

132 / 162

Chapter 5. Implementation and Experimental results 133

5.3 Chapter Summary

In this chapter we presented a tool that automatically performs the qualitative

simulation of a given non-linear polynomial hybrid automaton given as input. The

performed operations can be summarized in two steps: first the computation of the

partitions relative to each mode of the hybrid automaton, second the computation

of the transitions between each region of the obtained partition. The tool was

tested over several examples to evaluate performances.

133 / 162

Chapter 5. Implementation and Experimental results 134

M
o
d

el
N

am
e

C
om

p
u

ta
ti

on
T

im
e

(s
)

N
b

r
V

ar
ia

b
le

s
|X
|

N
b

r
M

o
d

es
|Q
|

N
b

r
of

A
b
st

ra
ct

S
ta

te
s

L
in

ea
r

D
y
n

am
ic

s

V
an

D
er

P
ol

O
sc

il
la

to
r

2.
7

2
1

9

N
on

-L
in

ea
r

P
ol

y
n

om
ia

l
D

y
n

am
ic

s

L
ot

ka
-V

ol
te

rr
a

2.
9

2
1

9
B

u
ck

li
n

g
C

ol
u
m

n
2.

9
2

1
9

B
ru

ss
el

at
or

3.
2

2
1

9
L

or
en

tz
11

.4
3

1
27

R
o
es

sl
er

A
tt

ra
ct

or
8.

4
3

1
27

C
ou

p
le

d
V

an
D

er
P

ol
F

ai
l(1

)
4

1

B
io

lo
gy

M
o
d

el
1

F
ai

l(2
)

7
1

L
in

ea
r

H
y
b

ri
d

S
y
st

em

B
ou

n
ci

n
g

B
al

l
8

2
1

27
T

h
er

m
os

ta
t

13
.3

1
2

10

N
on

-L
in

ea
r

P
ol

y
n

om
ia

l
H

y
b

ri
d

S
y
st

em

2D
E

x
am

p
le

(p
ag

e.
90

)
19

7
2

2
54

C
om

b
in

ed
B

ru
ss

el
at

or
18

9
2

2
44

T
ab

le
5.

3:
C

om
p
u
ta

ti
on

ti
m

e
of

th
e

ti
m

el
es

s
ab

st
ra

ct
io

n
fo

r
d
iff

er
en

t
m

o
d
el

s

134 / 162

Chapter 5. Implementation and Experimental results 135

M
o
d

el
N

am
e

C
om

p
u

ta
ti

on
T

im
e

(s
)

N
b

r
V

ar
ia

b
le

s
|X
|

N
b

r
M

o
d

es
|Q
|

N
b

r
of

ab
st

ra
ct

st
at

es
R

efi
n

em
en

t
st

ep
s

N
on

-L
in

ea
r

P
ol

y
n

om
ia

l
D

y
n

am
ic

s

B
ru

ss
el

at
or

3.
2

2
1

9
0

3.
6

2
1

15
1

10
.5

2
1

35
2

30
.1

2
1

54
3

L
or

en
tz

3.
6

3
1

27
0

10
.6

3
1

69
1

30
.1

3
1

11
0

2
86

.4
3

1
15

2
3

L
in

ea
r

H
y
b

ri
d

S
y
st

em

T
h

er
m

os
ta

t
4.

6
1

2
10

0
11

.1
1

2
12

1
26

.7
1

2
18

2

N
on

-L
in

ea
r

P
ol

y
n

om
ia

l
H

y
b

ri
d

S
y
st

em

C
om

b
in

ed
B

ru
ss

el
at

or
76

.4
2

2
44

0
10

7
2

2
77

1
34

6
2

2
11

7
2

T
ab

le
5.

4:
A

p
p
ly

in
g

re
fi
n
em

en
t

st
ep

s
w

it
h

co
m

p
u
ta

ti
on

ti
m

e

135 / 162

Chapter 6

Conclusion

6.1 Results Summary

We were interested in verifying a given formal safety property on a hybrid system,

based on discrete abstractions of this system, for which checking this property is

decidable and which guarantee that the property is satisfied at the concrete hy-

brid level if it is satisfied at the abstract level. We focused on the diagnosability

property, for its importance in safety analysis at design stage and the challenge

it gives rise to. We presented elements from the literature regarding hybrid au-

tomata abstractions, however few works handle diagnosability verification, as this

property deals with a pair of trajectories and partial observations of the system

and is thus more complex to check than reachability. In order to handle time

constraints at the abstract level, we chose abstractions of the hybrid automaton

as timed automata, related to a decomposition of the state space into geometric

regions, the abstract time constraints coming from the estimation of the sojourn

time of trajectories in each region. Thus the abstractions over-approximate the

regions of interest to which are added time constraints obtained from the dynamics

of the concrete system. We adapted a CEGAR scheme for hybrid systems diag-

nosability verification, based on the counterexample provided at the abstract level

by the twin plant based diagnosability checking when diagnosability is proved to

be unsatisfied. We presented situations for which the produced counterexample

is spurious and a refinement in finer regions and tighter time constraints is then

required. A tool prototype that implements the qualitative simulation algorithm

136

Chapter 6. Conclusion 137

of a given hybrid automaton (with at most polynomial dynamics in terms of ex-

pressiveness) have been developed and tested over examples.

6.2 Comparison with the existing literature

6.2.1 Hybrid Automata Abstraction

Works of A. Tiwari [102] The works of Tiwari introduced qualitative reason-

ing to hybrid automata verification. The broad class of hybrid automata is con-

sidered and experimentation is provided through examples and case study. Our

work further instantiates the framework to the specific class of polynomial hybrid

automata and considers partitions of the state space using semi-algebraic sets. Fea-

sibility and applicability in practice of the qualitative simulation is shown by the

tool implementation and a manual refinement of the abstraction is implemented.

Works of C. Sloth [60] Sloth elaborated abstraction methods of hybrid au-

tomata represented as timed automata. In his work, inductive invariants are con-

sidered and form a basis of the abstraction technique. Consequently, he considers

regions of interest for which the projections of the flow to boundaries are always

oriented inward, making the region an invariant. This is not the case in our work,

where the orientation whether inward or outward is reflected in the abstraction

over qualitatively partitioned regions. This is justified as some properties can only

be proved by taking all aspects of the flow orientation into account (recall the

brusselator example direction of rotation). In our work we propose to combine

existing flow-pipe computation techniques with finite state abstractions to obtain

a more representative, timed abstraction.

6.2.2 Diagnosability verification

Works of A. Grastien [60] In the abstraction method we previously elabo-

rated, time constraints are used explicitly. When an abstraction refinement is

required, tighter time bounds are obtained over the new regions of the refined

137 / 162

Chapter 6. Conclusion 138

decomposition. The proposed abstraction method hence differs from the one pro-

posed by Grastien. In [60], the abstraction consists in retaining some properties

of the continuous dynamics, namely mode distinguishability and ephemerality,

which are directly checked on the concrete hybrid system when necessary. On the

contrary, in our approach the abstractions refer directly to the continuous state

space and the continuous dynamics are interpreted with increasing levels of gran-

ularity, which results in finer and finer state space decompositions to which time

constraints are associated. These abstractions take the form of timed automata.

Works of M. Beneditto [43] Beneditto proposes a timed abstraction to verify

diagnosability. The abstraction used is a durational graph, that measures the

elapsed time of a trajectory from an initial set until a mode change condition

is hit. In our method, the abstraction we use is one that first can be refined,

and second is computed qualitatively over partitioned regions. The diagnosability

verification is proven via the absence of critical pairs.

6.3 Perspectives

Our thesis work draws many perspectives. The first direct perspective is to elab-

orate automated rules to implement the refinement strategies by analysis of a

diagnosability counterexample given the reasons we previously explained.

Diagnosability specific perspectives

• We wish to extend the diagnosability verification algorithm by attributing an

ε-precision, for ε arbitrary small constant (for a given metrics to be defined),

for hybrid automata, guaranteeing the refinement loop termination when the

defined precision is achieved. In fact, up to now, we assume a continuous

domain for both the values and the time stamps of the observable variables

without taking into account sensors precision, i.e., the minimal intervals (of

value and of time) that can be captured. This is the reason why our cur-

rent algorithm may not terminate, due to an infinite refinement process. A

fundamental and essential future work perspective is to provide a general

algorithm for diagnosability verification with ε-precision [69], for ε arbitrary

138 / 162

Chapter 6. Conclusion 139

small. This will ensure theoretical termination of the algorithm, as the num-

ber of refinement steps to reach the precision will then be finite. And this

is actually justified in practice because both model parameters and observa-

tions cannot be infinitely accurate, thus the value ε for the precision would

come from the precision of the model parameters and of the measurements,

in space and time.

• In the same spirit, one interesting future work would be to demonstrate a bi-

simulation relation between the concrete model and the final refined abstract

model when considering this minimal precision imposed by the model and the

sensors, where the termination of the refinement can thus be guaranteed. In

other words, theoretically, we could always deduce the right verdict, either

the system is diagnosable or it is not diagnosable with respect to a given

minimal precision.

• Another promising aspect of diagnosability verification is to study the po-

tential of this approach for deducing at design stage minimal concrete sets of

observations (which events/continuous variables to observe, i.e., which sen-

sors, and at which observation times, e.g., sampling periods of sensors) for

which the system is diagnosable (assuming it would be diagnosable if obser-

vation was total). This includes both suppressing sensors placement (if not

useful otherwise) while keeping existing diagnosability or adding sensors to

make diagnosable a non-diagnosable system [22].

• We would like as well to study the application of the approach to the prob-

lem of active diagnosis. The latter supposes that the system is controllable

via actions at execution time. When some actions are performed the fu-

ture evolution of the system is changed. If the system is not diagnosable, a

controller can be synthesized that forces the system to stay within the diag-

nosable area of execution. The problem was studied for systems modeled as

automata [62].

• Extending the abstraction combined with model checking approach to other

formal properties such as predictability seems promising. Predictability is a

139 / 162

Chapter 6. Conclusion 140

property of the model, if satisfied then it is possible to predict in advance the

future unavoidable occurrence of a fault, given some sequence of observations.

Tool perspectives

• Interfacing the current tool prototype with existing flow-pipe computation

tools to automate the computations of the time bounds of the timed abstrac-

tion and for validating/refuting a given counter-example is a crucial step to

extend the existing prototype. We plan in particular to use and extend ex-

isting tools for timed automata model checking and for over-approximation

reachability at the continuous level. We want to investigate also the usage

of SMT solvers [31, 30], in particular with theories including ODEs [55], to

deal simultaneously with discrete and continuous variables.

• We wish to implement a split of the sign preserving regions, which for the

moment can have non-connected components (in the case of polynomial dy-

namics) to have sign preserving regions with only connected sets. This is

feasible in practice, in fact using results from the literature [64] and known

theorems such as,

Theorem 6.1. Every semialgebraic set has finitely many connected compo-

nents which are semialgebraic. Every semialgebraic set is locally connected.

the obtained abstraction by partitioning the state-space into connected com-

ponents is guaranteed to stay finite.

• It is also important to interface the tool with a timed abstraction diag-

nosability model checker which given a fault-modeling partially observable

timed automaton, computes the corresponding twin plant and generates (∆)-

critical pairs (such a model checker has been developed at LRI, implemented

with the SMT solver Z3). Once implemented it can be interfaced with the

current prototype tool to perform CEGAR for verifying automatically diag-

nosability.

• Implementing a state split strategy guided by a validated counterexample is

as well a practical and useful step to perform.

140 / 162

Chapter 6. Conclusion 141

6.4 Publications

International Conferences:

• “Counterexample-Guided Abstraction-Refinement for Hybrid Systems Diag-

nosability Analysis”, H. Zaatiti, L. Ye, P. Dague, J.-P. Gallois, 28th Interna-

tional Workshop on Principles of Diagnosis DX’17, Brescia, Italy, September

2017; long version in the proceedings, Kalpa Publications in Computing,

volume 4, pp. 124-143, 2018.

• “Automating Abstraction Computations of Hybrid Systems”, H. Zaatiti, L.

Ye, P. Dague, J-P. Gallois, Formal Verification of Physical Systems FVPS

2018, workshop of the 11th Conference on Intelligent Computer Mathematics

CICM 2018, Hagenberg, Austria, August 2018.

Book chapter:

• “Abstractions Refinement for Hybrid Systems Diagnosability Analysis”, H.

Zaatiti, L. Ye, P. Dague, J-P Gallois, L. Travé-Massuyès, in Diagnosabil-

ity, Security and Safety of Hybrid Dynamic and Cyber-Physical Systems,

Springer, 2018.

141 / 162

Appendix A

Tool Grammar and Models

A.1 Tool Grammar

The input model must satisfy the following input grammar rules. The grammar

is straightforward allowing to textually describe a hybrid automaton with at most

polynomial dynamics:

model name
{

INIT
{

(mode number, poly)
}
[mode number
{

(ODE;)*
INVARIANT:
(inv;)*
REFINE:
(refine;)*
TRANS:
→mode number, G: (guard;)*, R: (reset;)*;
}]∗

}

Figure A.1: Model Input Grammar

142

Appendix A. Tool Grammar and Models 143

(xyz)∗ or [xyz]∗ refers to any number of repetitions of xyz. mode number is an

integer from 0 up to the number of modes of the hybrid automaton.

A.2 Input models

A.2.1 Van Der Pol Oscillator

ẋ0 = x1

ẋ1 = x1 − x0 − x2
0x1

A.2.2 Lotka Volterra

ẋ0 = 2x0 − x0x1

ẋ1 = −3x1 + x0x1

A.2.3 Buckling Column

ẋ0 = −x1

ẋ1 = 2x0 − x3
0 − x0 + 1

A.2.4 Lorentz

ẋ0 = −10x0 + 10x1

ẋ1 = 28x0 − x1 − x0x1

ẋ2 = −3x2 + x2x1

A.2.5 Roesller Attractor

ẋ0 = −x1 − x2

ẋ1 = x0 + x1

ẋ2 = 1 + x2x0 − 6x2

143 / 162

Appendix A. Tool Grammar and Models 144

A.2.6 Coupled Van Der Pol Oscillator

ẋ0 = x1

ẋ1 = x1 − x2
0x1 + x2 − 2x0

ẋ2 = x3

ẋ3 = x3 − x2
2x3 + x0 − 2x2

A.2.7 Biology Model 1

ẋ0 = −x0 + 5x2x3

ẋ1 = x0 − x1

ẋ2 = x1 − 5x2x3

ẋ3 = 5x4x5 − 5x2x3

ẋ4 = −5x4x5 + 5x2x3

ẋ5 = x6 − 5x4x5

ẋ6 = −x6 + 5x4x5

A.2.8 Bouncing Ball

Mode q0:

ẋ0 = x1

ẋ1 = −10

Inv(q0) = {x0 > 0}

Transitions: From q0 to q0 guarded by G : x0 < 0.

144 / 162

Appendix A. Tool Grammar and Models 145

A.2.9 Combined Brusselator

Mode q0:

ẋ0 = 1− 4x0 + x2
0x1

ẋ1 = 3x0 − x2
0x1

Inv(q0) = {x0 > 0, x1 > 0}

Transitions: From q0 to q1 guarded by G : x1 < x0.

Mode q1:

ẋ0 = 1− 2x0 + 2x2
0x1

ẋ1 = x0 − 2x2
0x1

Inv(q0) = {x0 > 0, x1 > 0}

Transitions: From q1 to q0 guarded by G : x0 < x1.

145 / 162

Appendix B

Discussion on critical points

Finite number of critical points The derivatives along each coordinate are

all null at the same time in a finite number of points Xeq of region p, we repartition

p such that each new region pi has exactly one point of Xeq on its boundary. In

one dimension, suppose the null derivative point is at xeq and the initial value of

x(t) is x0. The time, which we denote by T , taken by the continuous variable x(t)

to cross from x0 to xeq can in some cases be finite. If ẋ is of the form xk where

k ∈ R, then by studying T in a neighborhood around k = 1 we obtain:

T =

∫ teq

0

dt =

∫ xeq

x0

1

ẋ
dx =

∫ 0

x0

1

xk
dx =

[
x−k+1

(−k + 1)

]0

x0

(B.1)

T is convergent if k < 1. Thus a time bound can be computed for all dynamics

of the form ẋ = xk with k < 1, for example for the square root ẋ =
√
x. In

two dimensions, let r be the distance from the equilibrium point Meq(xeq, yeq) to

a point M(x, y) which is initially in region p. Let X = xeq − x and Y = yeq − y.

Since r2 = X2 + Y 2 then 2rṙ = 2XẊ + 2Y Ẏ and if ṙ 6= 0 the time to reach Meq

is :

T =

∫ teq

0

dt =

∫ 0

r0

1

ṙ
dr =

∫ 0

r0

r

XẊ + Y Ẏ
dr (B.2)

Example B.1. Consider the two dimensional continuous system ẋ = −x2 and

ẏ = −y where (x, y) ∈ R+ × R+. The equilibrium point is Meq(0, 0). In polar

coordinates x = rcos(θ) and y = rsin(θ), then rṙ = xẋ + yẏ = −x3 − y2 =

−x2 − y2 + x2 − x3 = −r2 + x2(1 − x) = r2(−1 + cos2(θ)(1 − rcos(θ))). In a

146

Appendix B. Discussion on critical points 147

neighborhood around (0, 0):

T =

∫ 0

r0

1

r(−1 + cos2(θ)(1− rcos(θ)))
dr ≥

∫ 0

r0

−1

r
dr (B.3)

Thus T is infinite, the equilibrium point is never reached. This reasoning can be

extended to dimension n by evaluating rṙ and using spherical (or hyperspherical)

coordinates and to polynomial with real exponents. We can take an example of

square root, for instance ẋ =
√
x and demonstrate the time T is finite, then the

equilibrium is reached.

Infinite number of null derivatives. Studying a case where at least one derivative

along an axis takes an infinite number of null values in a connected set can be done

by extending the previous method. For the particular class of continuous systems

where the dynamics are only allowed multi-affine function form, [80] showed how

it is possible to capture time constraints by decomposing the infinite state space

Rn into hypercubes and evaluate the time elapsed between entering and exiting

each cube by bounding the dynamics.

Brusselator time bounds. For the Example 5.1 (page 127) of the brusselator dy-

namics, which is a repeller case around the point M0 = (1, 3), consider the ring set

R that excludes M0 such that R = {(x0, x1) | 0.09 < (−1 + x0)2 + (−3 + x1)2 <

0.5625}. Let v =
√
ẋ0

2 + ẋ1
2 then v2 = (1−4x0 +x2

0x1)2 +(3x0−x2
0x1)2 and, using

a solver, we compute a lower bound v2
low = 0.0051 of v2. It has been proven that

all trajectories initially in S0 = R2 \ {M0} converge towards a fixed orbit of the

phase plane contained within R. Suppose we split the region R into two connected

sets R1 and R2 such that R = R1

⊎
R2, for each of which the maximal sojourn

duration tmax is a positive real constant. This is possible since v admits a lower

bound vlow. This states that all trajectories initiated from S0 will cross R1 and R2

sequentially infinitely often. In practice, the presence of the system in either R1

or R2 can correspond to two different visible colors of the chemical reaction.

147 / 162

Bibliography

[1] S. B. Akers. Binary decision diagrams. IEEE Transactions on computers,

(6):509–516, 1978.

[2] M. Althoff, D. Grebenyuk, and N. Kochdumper. Implementation of taylor

models in cora 2018. In Proc. of the 5th International Workshop on Applied

Verification for Continuous and Hybrid Systems, pages 145–173, 2018.

[3] M. Althoff, O. Stursberg, and M. Buss. Computing reachable sets of hybrid

systems using a combination of zonotopes and polytopes. Nonlinear analysis:

hybrid systems, 4(2):233–249, 2010.

[4] R. Alur, T. Dang, and F. Ivančić. Reachability analysis of hybrid systems

via predicate abstraction. In C. J. Tomlin and M. R. Greenstreet, editors,

Hybrid Systems: Computation and Control, pages 35–48, Berlin, Heidelberg,

2002. Springer Berlin Heidelberg.

[5] R. Alur, T. Dang, and F. Ivančić. Progress on reachability analysis of hybrid

systems using predicate abstraction. In International Workshop on Hybrid

Systems: Computation and Control, pages 4–19. Springer, 2003.

[6] R. Alur, T. Dang, and F. Ivančić. Counterexample-guided predicate abstrac-

tion of hybrid systems. Theor. Comput. Sci., 354(2):250–271, Mar. 2006.

[7] R. Alur and D. L. Dill. A theory of timed automata. Theoretical computer

science, 126(2):183–235, 1994.

[8] G. A.Tiwari. Series of abstractions for hybrid automata. Hybrid Systems:

Computation and Control, 2289:465–478, 2002.

148

Bibliography 149

[9] S. Bak. Reducing the wrapping effect in flowpipe construction using pseudo-

invariants. In Proceedings of the 4th ACM SIGBED International Workshop

on Design, Modeling, and Evaluation of Cyber-Physical Systems, pages 40–

43. ACM, 2014.

[10] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovi’c, T. King,

A. Reynolds, and C. Tinelli. CVC4. In G. Gopalakrishnan and S. Qadeer,

editors, Proceedings of the 23rd International Conference on Computer Aided

Verification (CAV ’11), volume 6806 of Lecture Notes in Computer Science,

pages 171–177. Springer, July 2011. Snowbird, Utah.

[11] M. Basseville, M. Kinnaert, and M. Nyberg. On fault detectability and

isolability. European Journal of Control, 7(6):625–641, 2001.

[12] S. Basu, R. Pollack, and M.-F. Roy. Complexity of computing semi-algebraic

descriptions of the connected components of a semi-algebraic set. In Pro-

ceedings of the 1998 International Symposium on Symbolic and Algebraic

Computation, ISSAC ’98, pages 25–29, New York, NY, USA, 1998. ACM.

[13] M. Bayoudh, L. Travé-Massuyès, and X. Olive. Hybrid systems diagnosabil-

ity by abstracting faulty continuous dynamics. In Proceedings of the 17th

International Principles of Diagnosis Workshop, pages 9–15. Citeseer, 2006.

[14] M. Bayoudh, L. Travé-Massuyès, and X. Olive. Coupling continuous and

discrete event system techniques for hybrid systems diagnosability analysis.

In Proceedings of the 18th European Conference on Artificial Intelligence

ECAI, pages 219–223, Patras (Greece), 2008.

[15] M. Bayoudh, L. Travé-Massuyès, and X. Olive. Active diagnosis of hybrid

systems guided by diagnosability properties. IFAC Proceedings Volumes,

42(8):1498–1503, 2009.

[16] M. Bayoudh and L. Travé-Massuyès. Diagnosability analysis of hybrid sys-

tems cast in a discrete-event framework. Discrete Event Dynamics Systems,

24(3):309–338, 2014.

149 / 162

Bibliography 150

[17] L. Benvenuti, D. Bresolin, A. Casagrande, P. Collins, A. Ferrari, E. Mazzi,

A. Sangiovanni-Vincentelli, and T. Villa. Reachability computation for hy-

brid systems with ariadne. {IFAC} Proceedings Volumes, 41(2):8960 – 8965,

2008. 17th {IFAC} World Congress.

[18] S. Biswas, D. Sarkar, S. Mukhopadhyay, and A. Patra. Diagnosability anal-

ysis of real time hybrid systems. In Proceedings of the IEEE International

Conference on Industrial Technology ICIT’06, pages 104–109, Mumbai, In-

dia, 2006.

[19] O. Botchkarev and S. Tripakis. Verification of hybrid systems with linear

differential inclusions using ellipsoidal approximations. In Proceedings of the

3rd International Workshop on Hybrid Systems: Computation and Control

(HSCC’00), volume 1790 of LNCS, pages 73–88. Springer, 2000.

[20] A. Bouajjani, R. Echahed, and J. Sifakis. On model checking for real-time

properties with durations. In Logic in Computer Science, 1993. LICS’93.,

Proceedings of Eighth Annual IEEE Symposium on, pages 147–159. IEEE,

1993.

[21] P. Bouyer, F. Chevalier, and D. D’Souza. Fault diagnosis using timed au-

tomata. In International Conference on Foundations of Software Science

and Computation Structures, pages 219–233. Springer, 2005.

[22] L. Brandán Briones, A. Lazovik, and P. Dague. Optimizing the system

observability level for diagnosability. In Proceedings of the 3rd International

Symposium on Leveraging Applications of Formal Methods, Verification and

Validation (ISoLA’08), Chalkidiki, Kassandra, Greece, 2008.

[23] J. Chen and R. Patton. A re-examination of the relationship between. parity

space and observer- based approaches in fault diagnosis. In In Proceedings of

the IFAC Symposium on Fault Detection, Supervision and Safety of Technical

Systems Safeprocess’94, pages 590–596, Helsinki, Finland, 1994.

[24] X. Chen. Reachability Analysis of Non-Linear Hybrid Systems Using Taylor

Models. PhD thesis, Aachen University, 2015.

150 / 162

Bibliography 151

[25] X. Chen, E. Abraham, and S. Sankaranarayanan. Taylor model flowpipe con-

struction for non-linear hybrid systems. In Real-Time Systems Symposium

(RTSS), 2012 IEEE 33rd, pages 183–192. IEEE, 2012.

[26] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for

non-linear hybrid systems. In International Conference on Computer Aided

Verification, pages 258–263. Springer, 2013.

[27] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for

non-linear hybrid systems. In International Conference on Computer Aided

Verification, pages 258–263. Springer, 2013.

[28] X. Chen, S. Mover, and S. Sankaranarayanan. Compositional relational

abstraction for nonlinear hybrid systems. ACM Trans. Embed. Comput.

Syst., 16(5s):187:1–187:19, Sept. 2017.

[29] X. Chen, S. Schupp, I. B. Makhlouf, E. Ábrahám, G. Frehse, and

S. Kowalewski. A benchmark suite for hybrid systems reachability analy-

sis. In NASA Formal Methods Symposium, pages 408–414. Springer, 2015.

[30] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta. HyComp: An SMT-based

model checker for hybrid systems. In Proceedings of the 21st International

Conference on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS-2015), pages 52–67, London, UK, 2015.

[31] A. Cimatti, S. Mover, and S. Tonetta. SMT-based scenario verification for

hybrid systems. Formal methods in system design, 42(1):46–66, 2013.

[32] A. Cimatti, C. Pecheur, and R. Cavada. Formal Verification of Diagnosabil-

ity via Symbolic Model Checking. In Proceedings of the 18th International

Joint Conference on Artificial Intelligence (IJCAI-03), pages 363–369. Menlo

Park, Calif.: International Joint Conferences on Artificial Intelligence, Inc.,

2003.

[33] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using

satisfiability solving. Form. Methods Syst. Des., 19(1):7–34, July 2001.

151 / 162

Bibliography 152

[34] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT press, 1999.

[35] V. Cocquempot, T. E. Mezyani, and M. Staroswiecki. Fault detection and

isolation for hybrid systems using structured parity residuals. In Proceedings

of the IEEE/IFAC-ASCC: Asian Control Conference, volume 2, pages 1204–

1212, Melbourne, Australia, 2004.

[36] M. Daigle, X. Koutsoukos, and G. Biswas. An event-based approach to hy-

brid systems diagnosability. In Proceedings of the 19th International Work-

shop on Principles of Diagnosis, pages 47–54. Citeseer, 2008.

[37] M. J. Daigle. A qualitative event-based approach to fault diagnosis of hybrid

systems. PhD thesis, Vanderbilt University, 2008.

[38] M. J. Daigle, D. Koutsoukos, and G. Biswas. An event-based approach to

integrated parametric and discrete fault diagnosis in hybrid systems. Trans-

actions of the Institute of Measurement and Control, Special Issue on Hybrid

and Switched Systems, 32(5):487–510, 2010.

[39] M. J. Daigle, I. Roychoudhury, G. Biswas, D. Koutsoukos, A. Patterson-

Hine, and S. Poll. A comprehensive diagnosis methodology for complex

hybrid systems: A case study on spacecraft power distribution systems.

IEEE Transactions of Systems, Man, and Cybernetics, Part A, Special Issue

on Model-based Diagnosis: Facing Challenges in Real-world Applications,

4(5):917–931, 2010.

[40] J. H. Davenport and J. Heintz. Real quantifier elimination is doubly expo-

nential. Journal of Symbolic Computation, 5(1):29 – 35, 1988.

[41] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In International

conference on Tools and Algorithms for the Construction and Analysis of

Systems, pages 337–340. Springer, 2008.

[42] Y. Deng, A. D’Innocenzo, M. D. Di Benedetto, S. Di Gennaro, and A. A.

Julius. Verification of hybrid automata diagnosability with measurement

uncertainty. IEEE Transactions on Automatic Control, 61(4):982–993, 2016.

152 / 162

Bibliography 153

[43] M. D. Di Benedetto, S. Di Gennaro, and A. D’Innocenzo. Verification of

hybrid automata diagnosability by abstraction. IEEE Transactions on Au-

tomatic Control, 56(9):2050–2061, 2011.

[44] O. Diene, M. V. Moreira, V. R. Alvarez, and E. R. Silva. Computational

methods for diagnosability verification of hybrid systems. In Control Appli-

cations (CCA), 2015 IEEE Conference on, pages 382–387. IEEE, 2015.

[45] O. Diene, E. R. Silva, and M. V. Moreira. Analysis and verification of the

diagnosability of hybrid systems. In Decision and Control (CDC), 2014

IEEE 53rd Annual Conference on, pages 1–6. IEEE, 2014.

[46] S. Ding. Model-based fault diagnosis techniques: design schemes, algorithms,

and tools. Springer Science & Business Media, 2008.

[47] A. Djaballah, A. Chapoutot, M. Kieffer, and O. Bouissou. Construction of

parametric barrier functions for dynamical systems using interval analysis.

Automatica, 78:287–296, 2017.

[48] C. Edmund, F. Ansgar, H. Zhi, K. Bruce, S. Olaf, and T. Michael. Veri-

fication of hybrid systems based on counterexample-guided abstraction re-

finement. In H. Garavel and J. Hatcliff, editors, Proceedings of International

Conference on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS-2003), volume 2619 of LNCS, pages 192–207. Springer,

2003.

[49] A. Eggers, N. Ramdani, N. Nedialkov, and M. Fränzle. Improving sat modulo

ode for hybrid systems analysis by combining different enclosure methods.

In Proceedings of the 9th International Conference on Software Engineering

and Formal Methods, SEFM’11, pages 172–187, Berlin, Heidelberg, 2011.

Springer-Verlag.

[50] B. Falkenhainer and K. D. Forbus. Cmpositional modeling: finding the right

model for the job. Artificial intelligence, 51(1-3):95–143, 1991.

153 / 162

Bibliography 154

[51] G. Fourlas, K. Kyriakopoulos, and N. Krikelis. Diagnosability of hybrid

systems. In Proceedings of the 10th Mediterranean Conference on Control

and Automation-MED2002, pages 3994–3999, Lisbon, Portugal, 2002.

[52] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ri-

pado, A. Girard, T. Dang, and O. Maler. Spaceex: Scalable verification of

hybrid systems. In S. Q. Ganesh Gopalakrishnan, editor, Proc. 23rd Interna-

tional Conference on Computer Aided Verification (CAV), LNCS. Springer,

2011.

[53] J.-P. Gallois and J.-Y. Pierron. Qualitative simulation and validation of

complex hybrid systems. In 8th European Congress on Embedded Real Time

Software and Systems (ERTS 2016), TOULOUSE, France, Jan. 2016.

[54] S. Gao, S. Kong, and E. Clarke. Satisfiability modulo odes. arXiv preprint

arXiv:1310.8278, 2013.

[55] S. Gao, S. Kong, and E. Clarke. Satisfiability modulo ODEs. Formal Methods

in Computer-Aided Design (FMCAD), 2013.

[56] E. B. C. G.E Collins and J.R.Johnson. Quantifier elimination by cylindrical

algebraic decomposition. pages 8–23, 1998.

[57] V. Germanos, S. Haar, V. Khomenko, and S. Schwoon. Diagnosability under

weak fairness. In Proceedings of the 14th International Conference on Ap-

plication of Concurrency to System Design (ACSD’14), Tunis, Tunisia, june

2014. IEEE Computer Society Press.

[58] J. Gertler. Fault Detection and Diagnosis in Engineering Systems. Marcel

Deker, 1998.

[59] A. Grastien. Symbolic testing of diagnosability. In 20th International Work-

shop on Principles of Diagnosis (DX-09), pages 131–138, 2009.

[60] A. Grastien, L. Travé-Massuyès, and V. c Puig. Solving diagnosability of

hybrid systems via abstraction and discrete event techniques. In Proceedings

of the 27th International Principles of Diagnosis Workshop, 2016.

154 / 162

Bibliography 155

[61] S. Gulwani and A. Tiwari. Constraint-based approach for analysis of hybrid

systems. In Computer Aided Verification, 20th International Conference,

CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings, pages 190–

203, 2008.

[62] S. Haar, S. Haddad, T. Melliti, and S. Schwoon. Optimal constructions for

active diagnosis. Journal of Computer and System Sciences, 83(1):101–120,

2017.

[63] E. Hainry. Decidability and undecidability in dynamical systems. In Research

Report, 2009.

[64] J. Heintz, M.-F. Roy, and P. Solernó. Description of the connected compo-

nents of a semialgebraic set in single exponential time. Discrete & Compu-

tational Geometry, 11(2):121–140, Feb 1994.

[65] T. A. Henzinger. The theory of hybrid automata. In Verification of Digital

and Hybrid Systems, pages 265–292. Springer, 2000.

[66] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable

about hybrid automata? In Journal of Computer and System Sciences,

pages 373–382. ACM Press, 1995.

[67] S. Jiang, Z. Huang, V. Chandra, and R. Kumar. A polynomial algorithm

for testing diagnosability of discrete-event systems. IEEE Transactions on

Automatic Control, 46(8):1318–1321, 2001.

[68] E. Kilic. Diagnosability of fuzzy discrete event systems. Information Sci-

ences, 178(3):858–870, 2008.

[69] K.-D. Kim, S. Mitra, and P. R. Kumar. Computing bounded epsilon-reach

set with finite precision computations for a class of linear hybrid automata.

In Proceedings of the ACM International Conference on Hybrid Systems:

Computation and Control, 2011.

155 / 162

Bibliography 156

[70] M. Kloetzer and C. Belta. Reachability analysis of multi-affine systems.

In International Workshop on Hybrid Systems: Computation and Control,

pages 348–362. Springer, 2006.

[71] H. Kong, F. He, X. Song, W. N. Hung, and M. Gu. Exponential-condition-

based barrier certificate generation for safety verification of hybrid systems.

In International Conference on Computer Aided Verification, pages 242–257.

Springer, 2013.

[72] S. Kong, S. Gao, W. Chen, and E. Clarke. dreach: δ-reachability analysis for

hybrid systems. In International Conference on TOOLS and Algorithms for

the Construction and Analysis of Systems, pages 200–205. Springer, 2015.

[73] B. Kuipers. Qualitative simulation. In Readings in qualitative reasoning

about physical systems, pages 236–260. Elsevier, 1990.

[74] B. Kuipers. Qualitative reasoning: modeling and simulation with incomplete

knowledge. MIT Press, Cambridge, Massachusetts, USA, 1994.

[75] R. Lal and P. Prabhakar. Bounded error flowpipe computation of parame-

terized linear systems. In Proceedings of the 12th International Conference

on Embedded Software, pages 237–246. IEEE Press, 2015.

[76] E. A. Lee. The past, present and future of cyber-physical systems: A focus

on models. Sensors, 15(3):4837–4869, 2015.

[77] F. Liu and D. Qiu. Safe diagnosability of stochastic discrete-event systems.

IEEE Transactions on Automatic Control, 53(5):1291–1296, 2008.

[78] P. D. Louise Travé-Massuyès. Modèles et raisonnements qualitatifs. Hermes,

10 2003.

[79] O. Maler. Algorithmic verification of continuous and hybrid systems. arXiv

preprint arXiv:1403.0952, 2014.

[80] O. Maler and G. Batt. Approximating continuous systems by timed au-

tomata. In Formal methods in systems biology, pages 77–89. Springer, 2008.

156 / 162

Bibliography 157

[81] A. S. Matveev and A. V. Savkin. Qualitative Theory of Hybrid Dynamical

Systems. Birkhauser Boston, 2000.

[82] K. L. McMillan. Symbolic model checking. In Symbolic Model Checking,

pages 25–60. Springer, 1993.

[83] T. Melliti and P. Dague. Generalizing diagnosability definition and checking

for open systems: a Game structure approach. In Proceedings of the 21st

International Workshop on Principles of Diagnosis DX’10, pages 103–110,

Portland (OR), United States, 2010.

[84] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin. A time-dependent hamilton-

jacobi formulation of reachable sets for continuous dynamic games. IEEE

Transactions on automatic control, 50(7):947–957, 2005.

[85] S. Mover, A. Cimatti, A. Tiwari, and S. Tonetta. Time-aware relational

abstractions for hybrid systems. In Proceedings of the Eleventh ACM Inter-

national Conference on Embedded Software, EMSOFT ’13, pages 14:1–14:10,

Piscataway, NJ, USA, 2013. IEEE Press.

[86] T. Nishida. Grammatical description of behaviors of ordinary differential

equations in two-dimensional phase space. Artificial Intelligence, 91(1):3 –

32, 1997.

[87] M. Nyberg. Criterions for detectability and strong detectability of faults in

linear systems. International Journal of Control, 75(7):490–501, 2002.

[88] U. of Verona, U. of Maastricht, U. of Udine, and A. laboratory. Ariadne: An

open tool for hybrid system analysis. http://trac.parades.rm.cnr.it/ariadne/,

2016. [Online; accessed 06-October-2016].

[89] Y. Pencolé. Diagnosability Analysis of Distributed Discrete Event Sys-

tems. In Proceedings of the 16th European Conference on Articifial Intelligent

(ECAI04), pages 43–47. Nieuwe Hemweg: IOS Press., 2004.

157 / 162

Bibliography 158

[90] Y. Pencolé and A. Subias. A chronicle-based diagnosability approach for dis-

crete timed-event systems: Application to web-services. Journal of Universal

Computer Science, 15(17):3246–3272, 2009.

[91] A. Platzer. Differential dynamic logic for verifying parametric hybrid sys-

tems. In N. Olivetti, editor, TABLEAUX, volume 4548 of LNCS, pages

216–232. Springer, 2007.

[92] A. Platzer. Keymaera. http://symbolaris.com/info/KeYmaera.html, 2016.

[Online; accessed 28-September-2016].

[93] P. Ribot and Y. Pencolé. Design requirements for the diagnosability of dis-

tributed discrete event systems. In Proc. 19th Intl. Workshop on Principles

of Diagnosis (DX), Blue Mountains, Australia, pages 347–354, 2008.

[94] J. Rintanen. Diagnosers and diagnosability of succinct transition systems.

In Proceedings of the 20th International Joint Conference on Artificial In-

telligence (IJCAI-07), pages 538–544, Hyderabad, India, 2007.

[95] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneket-

zis. Diagnosability of Discrete Event System. Transactions on Automatic

Control, 40(9):1555–1575, 1995.

[96] S. Sankaranarayanan and A. Tiwari. Relational abstractions for continuous

and hybrid systems. In Proceedings of the 23rd International Conference on

Computer Aided Verification, CAV’11, pages 686–702, Berlin, Heidelberg,

2011. Springer-Verlag.

[97] A. Schumann and J. Huang. A Scalable Jointree Algorithm for Diagnosabil-

ity. In Proceedings of the 23rd American National Conference on Artificial

Intelligence (AAAI-08), pages 535–540. Menlo Park, Calif.: AAAI Press.,

2008.

[98] C. Sloth, G. J. Pappas, and R. Wisniewski. Compositional safety analysis

using barrier certificates. In Proceedings of the 15th ACM international con-

ference on Hybrid Systems: Computation and Control, pages 15–24. ACM,

2012.

158 / 162

Bibliography 159

[99] C. Sloth and R. Wisniewski. Complete abstractions of dynamical systems by

timed automata. Nonlinear Analysis: Hybrid Systems, 7(1):80–100, 2013.

[100] W. Taha, A. Duracz, Y. Zeng, A. Kevin, P. Brauner, J. Duracz, F. Xu,

R. Cartwright, M. Konecny, J. Inoue, A. Sant’Anna, R. Philippsen,

A. Chapoutot, M. O’Malley, A. Ames, V. Gaspes, L. Hvatum, S. Mehta,

H. Eriksson, and C. Grante. Acumen: An Open-Source Testbed for

Cyber-Physical Systems Research. In B. Mandler, J. Marquez-Barja, R.-

L. Vieriu, M. E. M. Campista, D. Cagáňová, H. Chaouchi, S. Zeadally,

M. Badra, S. Giordano, M. Fazio, and A. Somov, editors, International In-

ternet of Things Summit, volume 169, pages 118–130, Rome, Italy, Oct. 2015.

Springer.

[101] D. Thorsley and D. Teneketzis. Diagnosability of stochastic discrete-event

systems. IEEE Transactions on Automatic Control, 50(4):476–492, 2005.

[102] A. Tiwari. Abstractions for hybrid systems. Formal Methods in Systems

Design, 32:57–83, 2008.

[103] L. Travé-Massuyès, M. Cordier, and X. Pucel. Comparing diagnosability

criterions in continuous systems and descrete events systems. In Proceedings

of the 6th IFAC Symposium on Fault Detection, Supervision and Safety of

Technical Processes Safeprocess’06, pages 55–60, Beijing, P.R. China, 2006.

[104] L. Travé-Massuyès, T. Escobet, and X. Olive. Diagnosability analysis based

on component-supported analytical redundancy relations. IEEE Transac-

tions on Systems, Man and Cybernetics, Part A, 36(6):1146–1160, 2006.

[105] S. Tripakis. Fault diagnosis for timed automata. In Proceedings of Inter-

national Symposium on Formal Techniques in Real-Time and Fault-Tolerant

Systems (FTRTFT-2002), volume 2469 of LNCS, pages 205–221. Springer,

2002.

[106] Y. Yan, L. Ye, and P. Dague. Diagnosability for Patterns in Distributed

Discrete Event Systems. In 21st International Workshop on Principles of

Diagnosis DX’10, pages 345–352, Portland, OR États-Unis, 2010.

159 / 162

Bibliography 160

[107] L. Ye and P. Dague. Diagnosability Analysis of Discrete Event Systems with

Autonomous Components. In Proceedings of the 19th European Conference

on Artificial Intelligence (ECAI-10), pages 105–110. Nieuwe Hemweg: IOS

Press., 2010.

[108] T.-S. Yoo and S. Lafortune. Polynomial-time verification of diagnosability of

partially observed discrete-event systems. IEEE Transactions on Automatic

Control (TAC), 47(9):1491–1495, 2002.

[109] H. Zaatiti, L. Ye, P. Dague, and J.-P. Gallois. Automating Abstraction Com-

putations of Hybrid Systems. In CICM 2018 - 11th Conference on Intelli-

gent Computer Mathematics ; Workshop FVPS 2018 - Formal Verification

of Physical Systems, Hagenberg, Austria, Aug. 2018.

[110] H. Zaatiti, L. Ye, P. Dague, and J.-P. Gallois. Counterexample-guided

abstraction-refinement for hybrid systems diagnosability analysis. In

M. Zanella, I. Pill, and A. Cimatti, editors, 28th International Workshop on

Principles of Diagnosis (DX’17), volume 4 of Kalpa Publications in Com-

puting, pages 124–143. EasyChair, 2018.

[111] H. Zaatiti, L. Ye, P. Dague, J.-P. Gallois, and L. Travé-Massuyès. Abstrac-

tions Refinement for Hybrid Systems Diagnosability Analysis, pages 279–318.

Springer International Publishing, Cham, 2018.

[112] J. Zaytoon and S. Lafortune. Overview of fault diagnosis methods for discrete

event systems. Annual Reviews in Control, 37(2):308–320, 2013.

[113] J. Zhang, K. H. Johansson, J. Lygeros, and S. Sastry. Zeno hybrid systems.

International Journal of Robust and Nonlinear Control: IFAC-Affiliated

Journal, 11(5):435–451, 2001.

160 / 162

Titre: Modélisation et Simulation Qualitatives des Systèmes Hybrides

Mots clés: Automates Hybrides, Abstraction, Raisonnement Qualitative, Diagnosticabilité.

Résumé: Les systèmes hybrides sont des
systèmes complexes qui combinent un dou-
ble comportement continu et discret. La
vérification des propriétés comportementale
comme la sûreté de ces systèmes, depuis la
modélisation ou durant leur exécution en ligne,
est une tâche difficile. En effet, calculer
l’ensemble des états atteignables par un système
hybride est indécidable. Une façon de vérifier
ces propriétés est de calculer des abstrac-
tions discrètes et d’inférer le résultat obtenu
du système abstrait vers le système d’origine.
Dans ce travail on est concerné par des ab-
stractions orientées pour vérifier la diagnosti-
cabilité d’un système hybride donné. Notre
objectif est de créer des abstractions discrètes
pour vérifier si une faute qui peut survenir du-

rant l’exécution du système peut être détecter
sans ambigüıté en un temps borné par le di-
agnostiqueur. La vérification est effectuée
sur l’abstraction en utilisant des méthodes
classiques, développées pour les systèmes à
évènements discrets qui fournissent un contre-
exemple si le système n’est pas diagnostica-
ble. L’absence d’un tel contre-exemple prouve
la diagnosticabilité du système original. En
présence d’un contre-exemple, la première étape
consiste à vérifier si le contre-exemple est un
artefact résultant de l’abstraction et existe au
niveau du système hybride, témoignant ainsi
de la non-diagnosticabilité du système. Dans
le cas-contraire, on montre comment raffiner
l’abstraction et continuer à rechercher un autre
contre-exemple.

Title: Modeling and Qualitative Simulation of Hybrid Systems

Keywords: Hybrid Automata, Abstraction, Qualitative Reasoning, Diagnosability.

Abstract: Hybrid systems are complex sys-
tems that combine both discrete and continuous
behaviors. Verifying behavioral or safety prop-
erties of such systems, either at design stage or
on-line is a challenging task. Actually, comput-
ing the reachable set of states of a hybrid sys-
tem is undecidable. One way to verify those
properties over such systems is by computing
discrete abstractions and inferring them from
the abstract system back to the original system.
We are concerned with abstractions oriented to-
wards hybrid systems diagnosability checking.
Our goal is to create discrete abstractions in
order to verify if a fault that would occur at

runtime could be unambiguously detected in fi-
nite time by the diagnoser. This verification
can be done on the abstraction by classical
methods developed for discrete event systems,
which provide a counterexample in case of non-
diagnosability. The absence of such a counterex-
ample proves the diagnosability of the original
hybrid system. In the presence of a counterex-
ample, the first step is to check if it is not a
spurious effect of the abstraction and actually
exists for the hybrid system, witnessing thus
non-diagnosability. Otherwise, we show how to
refine the abstraction and continue the process
of looking for another counterexample.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

