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ont rythmés ces trois années.
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TREFLE. Merci à tous pour votre bonne humeur au quotidien, les nombreux conseils
et toutes ces discussions informelles dans lesquelles on apprend tant, en particulier sur
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Antoine, Arnaud, Cédric, Pierre, Stéphane, Valérie,... aux doctorants passés et présents
Fabien, Florian, Julien et Kevin. Et une mention spéciale pour Mathieu qui m’aura sup-
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Abstract

In the last decades, numerical simulation has experienced tremendous improvements
driven by massive growth of computing power. Exascale computing has been achieved
this year and will allow solving ever more complex problems. But such large systems
produce colossal amounts of data which leads to its own difficulties. Moreover, many en-
gineering problems such as multiphysics or optimisation and control, require far more
power that any computer architecture could achieve within the current scientific com-
puting paradigm. In this thesis, we propose to shift the paradigm in order to break the
curse of dimensionality by introducing decomposition and building reduced order models
(ROM) for complex fluid flows.

This manuscript is organized into two parts. The first one proposes an extended re-
view of data reduction techniques and intends to bridge between applied mathematics
community and the computational mechanics one. Thus, founding bivariate separation
is studied, including discussions on the equivalence of proper orthogonal decomposition
(POD, continuous framework) and singular value decomposition (SVD, discrete matrices).
Then a wide review of tensor formats and their approximation is proposed. Such work has
already been provided in the literature but either on separate papers or into a purely ap-
plied mathematics framework. Here, we offer to the data enthusiast scientist a comparison
of Canonical, Tucker, Hierarchical and Tensor train formats including their approximation
algorithms. Their relative benefits are studied both theoretically and numerically thanks
to the python library pydecomp that was developed during this thesis. A careful analysis
of the link between continuous and discrete methods is performed. Finally, we conclude
that for most applications ST-HOSVD is best when the number of dimensions d lower
than four and TT-SVD (or their POD equivalent) when d grows larger.

The second part is centered on a complex fluid dynamics flow, in particular the singular
lid driven cavity at high Reynolds number. This flow exhibits a series of Hopf bifurca-
tion which are known to be hard to capture accurately which is why a detailed analysis
was performed both with classical tools and POD. Once this flow has been character-
ized, time-scaling, a new “physics based” interpolation ROM is presented on internal and
external flows. This methods gives encouraging results while excluding recent advanced
developments in the area such as EIM or Grassmann manifold interpolation.

Key words: Data reduction, Model Reduction, MOR, POD, lid driven cavity, Low
rank approximation, tensors, HOSVD, Tensor train, tensor formats, tensor approximation,
physics interpolation, time-scaling.
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Résumé

Les dernières décennies ont donné lieu à d’énormes progrès dans la simulation numérique
des phénomènes physiques. D’une part grâce au raffinement des méthodes de discrétisation
des équations aux dérivées partielles. Et d’autre part grâce à l’explosion de la puissance
de calcul disponible. Pourtant, de nombreux problèmes soulevés en ingénierie tels que les
simulations multi-physiques, les problèmes d’optimisation et de contrôle restent souvent
hors de portée. Le dénominateur commun de ces problèmes est le fléau des dimensions.
En effet,un simple problème tridimensionnel requiert des centaines de millions de points
de discrétisation auxquels il faut souvent ajouter des milliers de pas de temps pour captu-
rer des dynamiques complexes. L’avènement des supercalculateurs permet de générer des
simulations de plus en plus fines au prix de données gigantesques qui sont régulièrement
de l’ordre du pétaoctet. Malgré tout, cela n’autorise pas une résolution “exacte” des
problèmes requérant l’utilisation de plusieurs paramètres. L’une des voies envisagées pour
résoudre ces difficultés est de proposer des représentations ne souffrant plus du fléau de
la dimension. Ces représentations que l’on appelle séparées constituent en fait un chan-
gement de paradigme. Elles vont convertir des objets tensoriels dont la croissance est
exponentielle nd en fonction du nombre de dimensions d en une représentation approchée
dont la taille est linéaire en d. Pour le traitement des données tensorielles, une vaste
littérature a émergé ces dernières années dans le domaine des mathématiques appliquées.

Afin de faciliter leurs utilisations dans la communauté des mécaniciens et en particulier
pour la simulation en mécanique des fluides, ce manuscrit présente dans un vocabulaire
rigoureux mais accessible, les formats de représentation des tenseurs et propose une étude
détaillée des algorithmes de décomposition de données qui y sont associées. L’accent est
porté sur l’utilisation de ces méthodes, aussi la bibliothèque de calcul pydecomp a été
développée et utilisée pour comparer l’efficacité de ces méthodes sur un ensemble de
cas qui se veut représentatif. La seconde partie de ce manuscrit met en avant l’étude
de l’écoulement dans une cavité entrâınée à haut nombre de Reynolds. Cet écoulement
propose une physique très riche (séquence de bifurcation de Hopf) qui doit être étudiée
en amont de la construction de modèles réduits. Cette étude est enrichie par l’utilisa-
tion de la décomposition orthogonale aux valeurs propres (POD). Enfin une approche
de construction “physique”, qui diffère notablement des développements récents pour les
modèles d’ordre réduit, est proposée. La connaissance détaillée de l’écoulement permet de
construire un modèle réduit simple basé sur la mise à l’échelle des fréquences d’oscillation
(time-scaling) et des techniques d’interpolation classiques (Lagrange,..).

Mots-clés : Réduction de données, réduction de modèle, MOR, POD, Cavitée entrainée,
HOSVD, Tensor train, tenseurs, formats tensoriels, approximation de tenseurs, interpo-
lation physique, approximation de rang faible.



Résumé (long)

Contexte.

Les dernières décennies ont donné lieu à d’énormes progrès dans la simulation numérique
des phénomènes physiques. Notamment grâce au raffinement des méthodes de discrétisation
des équations aux dérivées partielles mais surtout à l’explosion de la puissance de calcul
disponible. Pourtant, de nombreux problèmes soulevés en ingénierie tels que les simu-
lations multiphysique, les problèmes d’optimisation et de contrôle restent hors de porté
dans la plupart des cas. Le dénominateur commun de ces problèmes est le fléau des di-
mensions. En effet, un simple problème tridimensionnel requiert des centaines de millions
de points de discrétisation auxquels il faut souvent ajouter des milliers de pas de temps
pour capturer des dynamiques complexes. Pour résoudre les problèmes d’optimisation
paramétrique, il faut renouveler ces calculs plusieurs centaines ou milliers de fois pour ob-
tenir un optimum. Ces exigences dépassent largement les capacités des ordinateurs actuels
et futurs (l’ordinateur quantique n’apportera qu’une réponse partielle à ces difficultés).
Enfin, l’avènement des supercalculateurs permet de générer des simulations de plus en
plus fines au prix de données gigantesques qui sont régulièrement de l’ordre du Po sans
pour autant autoriser une résolution “exacte” des problèmes requérant l’utilisation de
plusieurs paramètres. Ces problématiques sont particulièrement aiguës dans le contexte
de simulation numérique pour la mécanique des fluides.

C’est pourquoi on se propose dans cette thèse de se placer dans un nouveau para-
digme, celui de modèles et approximations d’ordre faible. Connues théoriquement depuis
le milieu du XXe siècle, ces méthodes ont connu un formidable essor depuis la fin des
années 1980. Dans un premier temps les méthodes adaptées pour les problèmes à deux
variables se sont popularisées, parmi les plus utilisées on trouve la décomposition aux
valeurs singulières (SVD) pour les matrices et les fameuses analyses en composante princi-
pale (PCA), décomposition orthogonale aux valeurs propres (POD) [Lum67,Lum81,Sir87]
aussi connues sous le nom de décomposition de Karhunen-Loève (KLE) [Loè77]. Ces tech-
niques ont donné lieux à de nombreuses tentatives de réduction de modèles, c’est à dire
des méthodes de résolution approchée de problèmes de la physique pour lesquelles on ac-
cepte une perte de précision par rapports aux modèles complets classiques (éléments finis,
volumes finis,...) en échange d’un coût de calcul et de stockage plusieurs ordres moins
cher. Ces méthodes de constructions de modèles d’ordre réduit ont donné des résultats
encourageants par des méthodes de projection de Galerkin [Fah01, Ber04, ILD00, QR13]
ou d’interpolation [AF08,MNPP09,PR07].

Cependant, ces méthodes sont, pour la plupart, basées sur des décompositions bivariées
tout en traitant des problèmes paramétrés. Une autre approche consiste à considérer
les paramètres comme une variable, ce qui génère des objets tensoriels qui possèdent
potentiellement un grand nombre de dimensions. Les objets tensoriels, dont la croissance
est exponentiel nd en fonction du nombre de dimensions d, représente un enjeu majeur
du traitement de données pour le calcul scientifique. L’explosion de la taille des données
avec le nombre de dimensions est connu sous le nom de fléau de la dimension. Tucker
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a été parmi les premiers en 1966 [Tuc66] à proposer une représentation de faible rang
pour les tenseurs. Cette voie a pris une grande importance dans la communauté des
mathématiques appliquées depuis le début des années 2000. De nombreux formats sont
apparus (Canonique, Tucker, Hierarchique) et sont dotés de méthodes d’approximation.
Cette grande richesse a donné lieu à la rédaction de revues de littérature par Kolda et al. en
2009 [KB09] ou plus récemment par Grasedyck et al. [GKT13] et aussi d’un ouvrage très
complet sur les tenseurs par Wolfgang Hackbush [Hac14] qui entreprend une description
exhaustive des tenseurs et de leur décomposition. Enfin des approches continues, mieux
adaptées aux espaces fonctionnels ont été introduites (PGD [CKL13],RPOD [ABR16] ou
encore la TT-fonctionelle [GKM16]). Elles apportent des facilités numériques et surtout
s’intègrent très efficacement dans la construction de modèles réduits.

Enfin, pour les raisons évoquées précédemment, la construction de modèles réduits
pour la mécanique est un sujet de recherche extrêmement actif comme en témoigne les
nombreux ouvrages publiés ces dernières années [QMNI, QR13, HRS16, BGW15, CL14].
L’immense majorité de ces méthodes utilise des bases réduites, c’est à dire des bases
fonctionnelles de faible rang pour résoudre des équations aux dérivées partielles (de façon
discrète) à faible coup. Ces approches fonctionnent convenablement pour les problèmes
elliptiques [FN11,DDGS15] mais souffrent d’instabilité dans le cas hyperbolique [BCIS06,
ILD00, DM13] (équation de Navier-Stokes par exemple). Ainsi d’autre approches basées
sur l’interpolation peuvent être pertinentes si l’échantillonnage paramétrique est suffisam-
ment dense. C’est ainsi que les méthodes d’interpolation empirique proposée par Patera et
Maday (EIM [MNPP09]/ DEIM [CS10]) ou l’interpolation sur les variétés de Grassmann
par Amsallem et Farhat [AF08, AF11] sont des méthodes construites pour représenter
fidèlement la courbure de l’espace d’arrivée des EPD, c’est à dire les non-linéarités.

De ce fait, on se propose, dans ce manuscrit, d’étudier dans une première partie la
décomposition de données pour la simulation en mécanique des fluides en offrant un for-
malisme et des exemples adaptés à la communauté des mécaniciens. La seconde partie de
ce document traite de la construction d’un modèle réduit par interpolation dite “physique”
après avoir réalisé une étude détaillée (dont on ne peut faire l’économie) de l’écoulement
complexe dans une cavité entrâınée à haut nombre de Reynolds ([8600-12000]).

Réduction de données.

Dans la première partie du manuscrit la réduction de donnée sera présentée en détails
de la théorie à l’implémentation avec de nombreux tests numériques. Les décompositions
tensorielles sont pour beaucoup construites en s’appuyant sur des outils bidimensionnels.
C’est pourquoi le premier chapitre est consacré à l’étude les décomposition bivariées en in-
troduisant au passage un certain nombre de notions nécessaires par la suite. On s’intéresse
ici principalement à la décomposition de matrice par SVD. Toute matrice A ∈ Rn×m ad-
met une décomposition de la forme A = UΣV ᵀ ou U ∈ Rn×n et V ∈ Rm×m sont des
matrices orthogonales et Σ ∈ Rn×m est nul partout sauf les termes diagonaux qui sont les
valeurs singulières. Cette décomposition permet une approximation tronquée dont l’erreur
est optimale (Th. d’Eckart-Young) et connue. Il sera ensuite montré que la POD consti-
tue en fait une généralisation au cas fonctionnel de cette approche, même si l’algorithme
diffère largement. La POD lorsqu’elle est tronquée offre une approximation et une base
({ak}, {φk})Rk=1 de rang fini R de toute fonction bivariée de la forme

f(x, t) =
∞∑

k=1

ak(t)φk(x) ≈
R∑

k=1

ak(t)φk(x).
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Enfin, on verra que la célèbre PGD peut être dégradée en une simple méthode d’approxi-
mation qui pour le cas bivarié produit rigoureusement les mêmes résultats que la POD
puisqu’elles sont formellement équivalentes. Toutes ces méthodes sont mises en oeuvre
numériquement et de nombreux exemples numériques sont proposés.

Les chapitres suivant ont pour but d’offrir une présentation générale des méthodes de
réduction de données tensorielles en vue d’une application à la mécanique. Le fléau de la
dimension génère des objets tensoriels dont la croissance est exponentielle nd en fonction
du nombre de dimensions d. Ici, un changement de paradigme s’opère puisqu’on propose
des représentation approchées dont la taille varie linéairement avec d. Pour le traitement
des données tensorielles, une vaste littérature a émergé ces dernières années dans le do-
maine des mathématiques appliquées. Afin de faciliter leur utilisation dans la communauté
des mécaniciens et en particulier pour la simulation en mécanique des fluides, ce manuscrit
présente dans un vocabulaire rigoureux mais accessible les formats de représentation des
tenseurs et propose une étude détaillée des algorithmes de décomposition de données qui y
sont associées. L’accent est porté sur l’utilisation de ces méthodes, aussi une bibliothèque
de calcul pydecomp développée est utilisée pour comparer l’efficacité de ces méthodes sur
un ensemble de cas qui se veut représentatif. Finalement 4 méthodes (et leurs variations)
émergent de cette étude. La liste suivante présente l’interprétation fonctionnelle de ces
méthodes et leurs principales caractéristiques pour une fonction f(x1, ..., xd) discrétisée
sur une grille cartésienne régulière de dimension nd ou r est le rang de troncature typique
d’une dimension.

Format canonique f(x1, ..., xd) ≈
∑

k

∏d
i=1X

k
i (xi).

Elle est obtenu par un algorithme d’enrichissement successif de l’approximation type
PGD/ALS. Il offre un coût de stockage linéaire en d mais s’avère numériquement
inefficace comparé aux autres formats. La convergence n’est pas assurée.

Format de Tucker f(x1, ..., xd) ≈
∑

k1
· · ·∑kd

wk1,...,kd

∏d
i=1X

k
i (xi).

ST-HOSVD est le meilleur algorithme d’approximation pour d < 4. Il offre un coût
de stockage quasi linéaire en d. La convergence est assurée avec une erreur quasi-
optimale.

Recursive-POD f(x1, ..., xd) ≈
∑R1

k1
· · ·∑Rd−1(r1,...,rd−2)

kd−1
Xr1

1 (x1)...X
(r1,...,rd−1)
d (xd).

Ce n’est pas un format mais plutôt une généralisation récursive de la POD. Cette
structure en arbre ne permet pas l’orthogonalité de la base mais autorise une tron-
cature facile. Le coût de stockage est assez difficile à estimer mais la convergence
est bonne pour les fonctions régulières. Numériquement, elle s’avère moins efficace
que TT et ST-HOSVD.

Tensor Train f(x1, ..., xd) ≈
∑

k1,...,kd−1
G1(x1, k1)G2(k1, x2, k2) · · ·Gd(kd−1, xd).

C’est une méthode récente [Ose11] qui permet une implémentation facile et très
efficace lorsque d ≥ 5. Ce sous cas des formats hiérarchiques possède un coût de
stockage linéaire en d. Le défaut principale est l’orthogonalité partielle des tenseurs
transfert (Gi).

Toutes ces méthodes produisent des décompositions qui sont analysées dans le 4ème cha-
pitre. La partie numérique est réalisée avec la bibliothèque pydecomp qui a été développée
pour proposer une solution de compression de donnée pour la mécanique des fluides au
sein du laboratoire. Réalisée en python (langage de programmation libre), elle autorise
la lecture de nombreux types de données et fichiers grâce aux nombreuses bibliothèques
libres. Pour preuve, des données expérimentales ont été traitée aussi efficacement que des
simulation massivement parallèle du logiciel de simulation numérique des fluides notus

développé au laboratoire I2M,TREFLE.
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Proposition d’un modèle réduit pour écoulements complexes. La seconde partie
de ce manuscrit met en avant l’étude de l’écoulement dans une cavité entrâınée singulière
à haut nombre de Reynolds. Cet écoulement propose une physique très riche qui doit
être étudiée en amont de la construction de modèle réduit. Le modèle d’ordre complet
utilisé ici a été construit afin d’assurer une précision maximum (schéma compact d’ordre
6). Il a permis la mise en évidence d’une série de bifurcations de Hopf et de caractériser
l’écoulement dans la gamme Re ∈ [8000, 12000]. Il apparâıt au cours de cette étude que
l’extrême sensibilité du problème requiert toutes les précautions pour déterminer les Re
critiques. En particulier, une excitation artificielle peut être requise pour déclencher le
cycle limite. Cette étude est enrichie par l’utilisation de la décomposition orthogonale aux
valeurs propres (POD). On observe dans les modes des propriétés physiques en accord
avec les autres types d’analyses. Les modes spatiaux en particulier mettent en évidence
les structures et leurs dimensions tout en étant corrélés avec les modes temporels. Il est
d’ailleurs intéressant de noter que ces derniers vont par paires qui capturent les fréquences
de vibrations principales deux à deux.

Ces nombreuses observations nous permettent de construire un modèle réduit que
l’on peut qualifier de “physique”. Il diffère notablement des développement récents pour
les modèles d’ordre réduit. Ce modèle réduit simple est basé sur la mise à l’échelle des
fréquences d’oscillation (time-scaling) et des techniques d’interpolation classiques (La-
grange, splines,...). En effet des observations expérimentales [FKE98] et numériques ont
mis en évidence un lien entre le nombre de Strouhal2 et le nombre de Reynolds. Une loi
du puissance a permis de les relier. Ainsi pour éviter le phénomène de battement que
l’on observe lors d’une interpolation directe entre deux signaux oscillants, on propose
une méthode d’interpolation par mise à l’échelle en temps dite “time scaling”. Le modèle
réduit ainsi construit permet d’obtenir le champ de vorticité pour un Re cible à partir
de quelques Re donneurs (3 ou 4) pour tous les pas de temps. Les résultats obtenus sont
très satisfaisant avec une erreur relative de l’ordre de 10−4. L’application aux modes POD
semble prometteuse mais quelques difficultés sur la reconstruction de la phase subsistent.

Conclusion et perspectives.

Ce manuscrit propose une revue aussi globale que possible des méthodes de décomposition
de données et apporte des recommandations d’utilisation basée sur les résultats numériques
obtenus grâce à la bibliothèque de calcul pydecomp. Un modèle réduit par interpolation
“time scaling” a été construit avec succès pour des écoulements complexes grâce à une
étude détaillée des bifurcations de Hopf subies par l’écoulement dans une cavité entrâınée.

Des travaux d’amélioration pydecomp permettront l’utilisation d’architectures parallèles
et aussi de techniques avec évaluations partielles (blackbox). Concernant les modèles
réduits, nous avons commencé à explorer la branche des modèles réduits par projection de
Galerkin. Dans ce travail nous essayons d’apporter une nouvelle méthode de stabilisation
pour palier au problème bien connu d’instabilité des ROM Galerkin-POD. L’intégration
des techniques d’interpolation adaptée aux EDP non linéaires (EIM, variété de Grass-
mann) pour la construction est aussi à l’étude.

2Le nombre de Strouhal caractérise la fréquence d’oscillation d’un écoulement. Il est défini par St =
fD/U∞ ou f est la fréquence, D une longueur et U∞ un vitesse caractéristiques.
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Introduction

Context

In the last 50 years, scientific computing has become a central tool in engineering design,
especially in the mechanics field. A constant improvement in simulation techniques has
accompanied the rocketing computing power embedded in Moore’s law3. This explosion
of CPU power was magnified by the introduction of supercomputers and their massively
parallel architectures. Although some slowdown has been observed, this trend will con-
tinue, especially with the arrival of breakthrough technologies such as the much awaited
quantum computer. Still, the advent of exascale computing has only pushed forward the
boundaries of computable problems slightly while raising a series of technical issues. First,
supercomputers are really expensive infrastructures that require huge amounts of energy4.
Second, they produce data so large that storing and transferring data itself has become
an issue. For instance a famous 2012 simulation of the observable universe [ABR+12]
exemplifies the dizzying proportions taken by numerical simulation. Approximately 5000
computing nodes used 300 TB of memory producing 50 PB of raw data in 10 million hours
of computing time of which “only” 500 TB of useful data was finally kept. This kind of
data is hard to manipulate and storage is usually performed on magnetic bands making
it fairly slow to access. Also, any intent at handling such data, even in small slices, is vain
on a personal computer, thus impairing the efficiency of analysis.

Actually, the framework of building numerical models has remained the same across
the period of popularization of numerical simulation. This process has been finely tuned,
improving gradually the quality and confidence in the simulations. This technology is now
massively used in the industry, especially for designing new products that require precise
knowledge in fields such as mechanics, thermodynamics, chemistry, electromagnetic fields,
etc. In particular, computational fluid dynamics has become a central tool in designing new
aircrafts, ranging from global flow around a plane to multiphysics-multiscale combustion
inside the jet engine.

Building a direct model, also known as full order model (FOM), usually involves the
following steps. First, one needs to select the adequate equations from basic physics laws
and define carefully the limits of simulation. Depending on the problem geometry, char-
acteristic sizes and phenomena5, one chooses the simplest equations set that captures the
physics correctly. Then these equations are discretized in time and space while numeri-

3Gordon Moore predicted in 1965 that the density of transistors on chips would double every year.
After being slightly downgraded to doubling every 18 month, it has been verified from 1975 to 2012.
Current trend shows a slowing pace. Still, this exponential growth amounts to a 20 millions factor.
Naturally, it corresponds to the computing power gain.

4As of june 2018, the largest supercomputer is the Summit at Oak Ridge, USA, with more than 2
million cores it requires 8MW for a peak performance of 122PFlop/s

5A typical example in fluid dynamics is Reynolds number Re = UL/µ which characterize the relative
influence of inertia (U is a typical flow velocity and L a typical length) compared with viscosity (µ the
kinematic viscosity.)
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cal schemes are used to solve the constructed discrete problems. Whether one uses finite
differences, finite elements or finite volumes, the problem usually boils down to a linear
algebra problem

Ax = b

where A is a n×n matrix, x is the unknown vector of size n and b the right hand side term
of size n. Here, n is the number of discrete space points that typically range from millions
for 2D to billion for high end 3D problems. Moreover, this linear problem has to be solved
at each time step, often millions of times, in spite of typically costing O(n2) floating point
operations. More often than not, if one wants to simulate several interacting physical
phenomena, they occur at different time and space scales, meaning that one needs to
solve several concurrent problems of this kind. With the figures stated above, it becomes
clear direct numerical simulation (DNS) is expensive. Consequently, problems involving
to perform such simulations multiple times such as optimisation or control, remain out of
reach.

It has spawned a vast body of literature on how to make these simulations more
affordable. Among the typical solutions in fluid dynamics, Reynolds averaged Navier-
Stokes methods (RANS) and Large eddy simulation (LES) have been very successful at
capturing large structures and modeling (with more or less empirical terms) the smaller
structures. These solutions however generate a great loss of information as it is impossible
to know how the energy dissipation occurs in the small scale structures. To some, extent it
prevents relevant simulations in which the interaction of small structures drive large scale
behavior i.e. chaotic systems. Many models, in all areas of numerical simulation, have
been proposed to reduce the computing cost with the same idea of modeling the most
expensive terms of equation while retaining the same basic principles of discretization. We
observe that, within this approach, the curse of dimensionality remains the main obstacle
to scientific computing development. For instance, let the number of discrete points needed
to capture a phenomenon on one dimension be n = 1000. Now, if the problem is 3D, the
cube is discretized with n3 = 109 points. If the phenomenon is actually a dynamic one,
time has to be accounted for, which means an additional dimension. The discrete space
time is now n4 = 1012 that amounts terabytes of data for double precision real numbers.
Additionally, one might want to add a few parameters on which the simulation depends
and both the computing time and storage cost become out of reach. Even with very small
n, for instance n=2, this kind of difficulty emerges quickly. For example, with d = 50
(which is far below computational chemistry requirements), storage cost of nd = 250

amounts to 9PB if all entries are stored. A tensor is a well suited object for such data
representation, it is the discrete representation of multidimensional fields, i.e. an order d
tensor of size n1 ×· · ·×nd is filled by sampling a field on a tensor product space Ω = [0, 1]d

at discrete grid points. The necessity of storing low rank approximate tensors instead of
keeping all the entries becomes essential in this context.

Finally, Fig. 1 summarizes the dominant work-flow in scientific computing i.e. physics
modeling is followed by discretization techniques that can produce reliable simulation.
The introduction of a new paradigm is represented here by tensor decomposition and the
following steps of ROM.

In this paragraph we have shown the necessity to move beyond the current dominating
paradigm in scientific computing. In this manuscript we will explore two complementary
branches that tackle this problem. The first one is data reduction as it is the prelimi-
nary steps for most approaches of the second branch, model order reduction. The next
paragraph will present the state of the art in these fields.
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Figure 1: Scientific computing workflow enriched with tensor reduction and reduced order
modeling

State of the art

The need for order reduction is as old as numerical simulation, for instance matrix analysis
techniques such as eigen value decomposition or singular value decomposition (SVD) have
been used in the past centuries to capture structure in complex matrices. It turns out that
the bivariate decomposition methods in principle equivalent to SVD but complies with
their field formalism. Actually, they have been rediscovered many times in various fields:
it is known as principal component analysis (PCA) in statistics [Pea01,Hot33], Karhunen-
Loève expansion (KLE) in probability theory [Loè77] or proper orthogonal decomposition
(POD) in fluid dynamics [Lum81, Sir87]. These methods, by themselves, provide a de-
composition that can be truncated with optimality results [EY36] and reflect the physics
of the problem studied. The first wave of reduced order models (ROM) in mechanics is
a consequence of POD. Indeed this decomposition provides, among the many possible
bases [IR98], an orthogonal basis of the functional space in which the solution problem
lives. Consequently, many attempts at building Galerkin projection ROM on these re-
duced bases from the 1980s onward [Sir87,DKKO91,CVVI98,Fah01,Ber04] with modest
success. Indeed, in this approach, the weak form EDP is solved against test function in the
selected basis. In order to decrease the size of the problem, one has to truncate the basis
to a relatively small rank which means, in the case of fluid flows, that the small structures
are lost6. Yet these structures correspond to turbulence and viscosity for high Re number
which role is to dissipate energy. This is why Iollo et al. [ILD00] showed this approach
is inherently unstable. Thereafter, many turbulence models and stabilization techniques
have been proposed in the context of ROM [BBI09, ANR09, IW14] and continue to be
an active field of research [BGW15, LCLR16, SR18]. Generally, this approach has moti-
vated substantial amount of work that has been crystallized in various books in recent
years [QR13,QMNI] under the name Reduced Bases (RB), popularized in the early 2000s
by Patera, Maday and coauthors [MMPR00, PRV+02]. The efficiency of these methods
can be characterized by the Kolmogorov N-width. This concept with many other tools for
RB is detailed in Hesthaven, Rozza and Stamm book [HRS16].

Another approach to build ROMs is to interpolate in the parametric space of arrival
of PDEs. Indeed, one can build a set of data for several parameters with FOM and later
ask the database for a point that was not previously sampled and interpolate to this new
location. Given the large size of the full data, brute force multidimensional interpola-
tion through standard techniques (Lagrange, Splines,...) is not an option. Additionally,

6We will see in chapter 1 that the smaller structures tend to contain less energy than the larger ones.
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dynamic systems, even if they are relatively similar, may produce beat phenomenon.
Consequently, numerous methods were proposed to build such ROMs. Among the most
successful, the empirical interpolation method (EIM) has been introduced in 2004 by
Barrault et al. [BMNP04]. The idea here is to sample the parametric space by greedy
algorithm with very efficient reconstruction property for non-linear problems [MNPP09].
It was later adapted into a discrete version (DEIM) using POD modes as a basis instead
of samples [CS10]. This process is also extensively used for hyperreduction of models. The
solution of PDEs live in a Grassmann manifold that is not flat, this is the profound rea-
son why simple minded interpolation is doomed. Thus, Amsallem and Farhat proposed a
Grassmann manifold interpolation ROM [AF08,ACCF09,AF11,AZW15] that have proved
very efficient for aeroelasticity applications. It has spawned a family of methods recently
reviewed by Mosquera’s thesis [Mos18] in which the idea is to project the solutions from
the manifold to a tangential plane to perform the interpolation (by standard means) and
then return to the manifold.

All these ROM methods aim at providing quickly data on multidimensional fields,
for example, to build virtual charts. The number of parameters may be large and the
associated data lies on tensor (product) space of these parameters. As we have already
seen, this structure in itself produces exponential amounts of data. One way to tackle this
difficulty is to use separated representations. The proper generalized decomposition PGD
[CLA+09,CALK11,CL14] exactly intends to solve PDEs by directly building a separated
solution. It originates from Ladevèze LATIN method [CL93,LPN10] and was found to be
very efficient on elliptic equations with numerous variations [LN03,CLB+17,FN11]. This
method can be degraded into a data approximation technique using the simplest PDE
f = u which makes it a canonical tensor decomposition method [Nou10, Nou15] that is
roughly equivalent to alternating least squares algorithms (ALS).

Hitchcock [Hit27] usually considered to have introduced tensor decomposition in 1927.
But, it is Tucker [Tuc66] that popularized the subject in the 1960s, followed by Carroll and
Chang [CC70] and Harshmann [Har70] in 1970. As for the bivariate decomposition, much
of the research happened independently in several fields starting by psychometrics and
chemometrics. A complete history is available in Kolda and Balder review paper [KB09].
This large overview of tensor formats includes canonical format ( [CC70, Har70]) and
Tucker format with the associated decomposition methods. The former has received dwin-
dling interest due to poor numerical performance. Tucker format was at the center of
attention since DeLathauwer paper in 2000 [DDV00] which proposed an efficient approx-
imation strategy, the Higher Order SVD (HOSVD) followed by HOOI [dLdMV00]. More
recently, he coauthored Vannieuwenhoven ST-HOSVD [VVM12] that improved signifi-
cantly the computing time. The early 2010s have seen the introduction of formats that
overcome the exponential growth of the core tensor in Tucker format. Oseledets proposed
the tensor train (TT) format [OT09,Ose11,Kho11] , also known as matrix product state
(MPS), together with its decomposition algorithm. The storage cost of this format is lin-
ear in d allowing tensorization of data, i.e. the method is so efficient at handling large d
that a new strategy consists in increasing artificially the number of dimensions. To do so,
one may need to rely on partial evaluations of the target field, TT-DMRG-cross performs
this task [OT10, ODS18]. This approach is also known as blackbox algorithms [BGK10]
in the context of hierarchical tensors (HT) developed by Grasedyck, Kessner and To-
bler [Gra10, KT11]. HT actually incorporates all previously mentioned formats and ap-
proximations into a general d-linear format. These recent developments have been re-
viewed in [GKT13] while an extensive mathematical analysis of tensors and their approx-
imation is given in Hackbush’s book [Hac14]. A selection of publicly available libraries
will be discussed in detail in chapter 4.
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Finally, these formats have been extended to the continuous framework as they are
often used to separate data representing functions. A functional TT was proposed by
Bigoni and Gorodetsky [BEkM16, Gor16] while many approaches now consider n-way
array tensors and multivariate function as a single object [Hac14,Nou15,FHN15]. Finally,
a Recursive POD (RPOD) was proposed by Azaiez et al. [ABR16].

Objectives

It is clear from the scientific context that a new paradigm in scientific computing is needed.
We have seen that the data produced by standard methods has become so large that a
new field of data decomposition has emerged. It was shown in the literature review that
most of these methods have been devised for tensors and they mostly rely on extensions
of matrix decomposition and approximation techniques. It is very interesting to study
these methods for CFD simulation and translate them to the continuous framework. It
was highlighted that these works have been mostly conducted separately. Review arti-
cles mostly present the numerous approaches and associated work without comparing
numerical results, save basic test functions. To the best of my knowledge, there exist no
comprehensive comparison of the data decomposition techniques that have been devel-
oped in the last decade, especially the rare continuous versions. Additionally, the reviews
of literature or books published in recent years take place in the applied mathematics
field which implies few examples of actual large simulation.

Hence we define our first objectives. (a) offer a comprehensive synthesis of decompo-
sition methods from bivariate to multivariate data including both tensors and functions
frameworks. (b) provide an extensive numerical analysis and comparison of these meth-
ods. To do so, a computing library has to be programmed. Additionally, we intend to
contribute to the dissemination of this approach in the CFD community which implies an
adequate presentation.

Data handling is not the only difficulty incurred by modern scientific computing. We
have seen that many problems are out of reach within the current paradigm. This is why
many have tried to build reduced order models, with various level of success for CFD
applications. Indeed, instability of PODG-ROM is a bottleneck for CFD applications
since Navier-Stokes equations are hyperbolic. Interpolation on the parametric space is
no trivial task and recent approaches such as Grassmann manifold interpolation involve
complex numerical and mathematical setup to overcome these difficulties. Finally some
problem are so sensitive that direct numerical simulation may require special care to
obtain acceptable accuracy.

In this context, we propose (c) to study extensively a typical CFD test case, namely,
the 2D singular lid driven cavity flow. It is known to present particularly complex features
(at high Re) in spite of its simple geometry and clear boundary conditions. To do so, we
will use both standard tools and decomposition tools mentioned above. In the end, the
added knowledge should spur (d) new ROM concepts based on physics observation.

We can summarize objectives (a-d) that have been pursued in this thesis, as follow:

• Study tensor and multivariate function decomposition for fluid dynamics application
using a formalism and numerical experiments adapted to CFD community. Build a
computing library that provide the necessary tools.

• Explore ROM for complex flows that requires careful preliminary study. This anal-
ysis should lead to physics based ROM.
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Manuscript layout

The manuscript is divided into 2 parts. Part I deals with data decomposition among
which, Chapter 1 provides a detailed presentation of bivariate decomposition techniques
and points out to the fundamental equivalence of these methods. Once these basic tools
have been studied we go through tensor decomposition into format with roughly linear
storage cost in chapter 2. Next, the multivariate problem decomposition is treated in
chapter 3 i.e. we construct approximated functions by separated sum. Finally, chapter 4
proposes comprehensive numerical tests to compare the performance of each technique.

In the second part of this manuscript, the generation of Reduced Order Models (ROM),
based on the previous decomposition techniques and constructed bases, is addressed.
Through chapter 5, a comprehensive study of a complex flow is conducted both with
standard analysis tool (Fourier transform, linear regressions,...) and through decompo-
sition (POD). This analysis highlights the complexity of building ROM and leads us
to propose a “physics” based interpolation ROM through the so called time-scaling in
chapter 6.
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Data analysis has become a pressing issue in recent years. Indeed with the advent
exascale computing and big data technologies, we are under a constant pressure to analysis
this data. This is particularly true in the field of computational mechanics. Simulations
are growing ever larger, routinely producing petabytes of data through thousand hours
process. Then the storage and post-processing of these results has become problematic.
Consequently a vast number of techniques to address these problem has been proposed.
A common way to ease data storage and post-processing is to use tensors. Tensors are
mathematical objects that can be visualized as d-way arrays of typical size nd. The goal
of this first part is to propose numerical algorithm and data layout to d-linear storage
cost.

Hitchcock [Hit27] usually considered have introduced tensor decomposition in 1929.
But, it is Tucker [Tuc66] that popularized the subject in the 1960s followed by Carroll and
Chang [CC70] and Harshmann [Har70] in 1970. As for the bivariate decomposition, much
of the research happened independently in several fields starting by psychometrics and
chemometrics, a complete history is available in Kolda and Balder review paper [KB09].
Tucker format has received a lot of attention since DeLathauwer paper in 2000 [DDV00]
which proposed an efficient approximation strategy Higher Order SVD (HOSVD) fol-
lowed by HOOI [dLdMV00]. HOOI is known to be the method that provides the low-
est approximation error but is rather slow to converge. More recently Vannieuwenhoven
proposed a new truncation strategy for HOSVD called ST-HOSVD [VVM12] that im-
proved significantly the computing time. However efficient these methods are, the main
drawback is the core tensor that stores the weight of each modes combination. The
early 2010s have seen the introduction of formats that overcome the exponential growth
of the core tensor in Tucker format. Oseledets introduced the tensor train (TT) for-
mat [OT09, Ose11, Kho11] , also known as matrix product state (MPS) [VC06],together
with its decomposition algorithm. The storage cost of this format is linear in d allow-
ing tensorization of the data. For instance the method is so efficient a handling large
d that a new strategy consists in increasing artificially the number of dimensions. To
do so, one may need to rely on partial evaluations of the target field, TT-DMRG-cross
performs this task [OT10, ODS18, BEkM16]. This approach is also known as blackbox
algorithms [BGK10] in the context of hierarchical tensors (HT) developed by Grasedyck,
Kessner and Tobler [Gra10,KT11]. HT actually incorporates all previously mentioned for-
mats and approximations into a general d-linear format. These recent development have
been reviewed in [GKT13] while an extensive mathematical analysis of tensors and their
approximation is given in Hackbush’s book [Hac14]. The many computing libraries are
publicly available, to name only a few the Tensor Toolbox by Bader et al. [BKO17] pro-
vides a rather general API, Kressner et al. propose a HT format library htucker [KT13]
and Oseledets offers a TT library [ODS18].

We have so far only discussed d-way array tensors decomposition, but functions of
several variables defined on product spaces e.g. Ω = [0, 1]d can be viewed as tensors.
This is particularly explicit for discrete representation of functions that usually equate to
evaluation on a discrete grid. Still considering that the data originates from functions is
interesting. Indeed, applied mathematics provides many properties and most importantly
the sampling does not have to be regular. That means that a discretization strategies
that fit the complexity of the studied problem can reduce drastically the size of the data
while being processed correctly by the decomposition algorithms. Thus these formats have
been extended to the continuous framework. A functional TT was proposed by Bigoni and
Gorodetsky [BEkM16,Gor16] while many approach now consider n-way array tensors and
multivariate function as a single object [Hac14,Nou15,FHN15]. This approach is natural
for CFD specialists as we manipulate discretized operators and field constantly. Before
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attempting to separate multivariate problems, a vast body of work adressed the bivari-
ate decomposition. In the context of fluid dynamics, this approach is known as proper
orthogonal decomposition (POD). It is usually attributed to Kosambi [Kos43] and later
popularized in fluid dynamics by Lumley [Lum81] who proposed detailed analysis of flows
through the standard POD while Sirovich later proposed the “snapshots” method [Sir87]
which is much more adopted to numerical simulations outputs. This method was actually
extended to problems of several variables recently by Azaiez et al. [Aza] who proposed a
recursive POD algorithm. POD is actually equivalent to the proper generalized decom-
position (PGD) [CL14,CKL13] for bivariate approximation problem. This last techniques
actually provides a general iterative algorithm to compute separated multivariate solutions
to PDEs that can be degraded into a decomposition algorithm.

Separating data, a problem overview

In this short section, a representative example of the problem we are studying in this
section is given in order to clarify the objective.

It is assumed that the following field is known (at least in a discrete representation),

f : Ω ⊂ Rd → E ⊂ R
x 7−→ f(x)

where Ω =
∏D

i=1[ai, bi].
We are seeking a separated representation7 of f so that

f(x1, ..., xd) =
∞∑

m=1

wm

d∏

i=1

Xm
i (xi) (0.0.1)

Where wm is the weight associated with the m-th member of the sum and Xm
i is the m-th

i-mode function.
It is called a separated representation since the function is represented by a combi-

nation of univariate functions. Each of this function is normalized and orthogonal to the
others i.e. ∀1 ≤ i ≤ D,m ∈ N

‖Xm
i ‖L2 = 1

< Xm
i , X

n
i >L2 = δmn

Knowing that as m increases, the weight wm tends toward 0. Then we choose a criterion
and stop adding terms after R terms. The finite sum approximation of f with a rank R
reads

f(x1, ..., xd) ≈ f̃(x1, ..., xD) =
R∑

m=1

wm

d∏

i=1

Xm
i (xi) (0.0.2)

One should note that this process is highly compatible with discrete representation. In
this context the multivariate function is replaced by an order D tensor T ∈ Rn1×···×nD . If a
few modes containing the most relevant information is conserved, then an approximation
is obtained. Fig 2 shows a visual of this decomposition.

The goal of this first part of the manuscript is to provide the tools to build this kind
of decomposition and more sophisticated ones. Once the theoretical aspect is complete, a

7We will see that this representation is known as canonical format.
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≈ + …  +

c1
cR

b1 bR

a1 aR

Figure 2: Separated approximation of an order 3 tensor.

comprehensive discussion is proposed with numerous numerical test to guide decomposi-
tion methods used. Overall, it is intended to bridge the gap between applied mathematics
community and computational fluid dynamics in this specific area. This first part is or-
ganized as follow. First the bivariate decomposition problem is studied in chapter 1 as
it is the building block of many higher order methods. Then tensor decomposition are
presented in chapter 2 followed by the multivariate function decomposition problem in
chapter 3. Finally, a comprehensive numerical study is presented in chapter 4 with dis-
cussions on the comparative advantages of some methods and an analysis of the modes
meaning whenever possible. The python library pydecomp that was developed during this
thesis has been used for this purpose
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Chapter 1

Bivariate decompositions
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In order to give the full picture of data reduction technique, it is crucial to begin
with bivariate problems. Indeed almost all multivariate techniques result from these 2D
versions. Bivariate decomposition techniques were mainly theoretical at the time they were
proposed in the first half of the 20th century [Pea01,Hot33], manual computations limited
the size of the studied problems. But the numerical analyis and properties have been
studied in details with emerging spectral theory [EY36, Kos43]. Actual implementations
were carried on later in the second half of the 20th for fluid dynamics systems [Lum67,
BHL93, Sir87]. 2D data reduction techniques are well understood and have been applied
to the widest variety of problems in the last 20 years either to compress data or build
reduced order model [Fah01,NAM+03,AF08].

In order to offer a broader view of the possible uses of bivariate decomposition, Fig.
1.1 proposes a schematic view of bivariate problem Reduced order modeling methods.
The decomposition techniques presented in this section form the base material of many
ROMs. They are organized as follow. The dashed black line shows the dichotomy between
the continuous approach1 and the discrete one. Then the orange dashed line separates

1These approaches are conceptually continuous but their implementations requires discrete description
of the continuous space including grids, discrete operators,...
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Bivariate methods 

Reduced order modelling through reduced bases

Discrete approach Continuous approach

Direct SVD
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Reduced basis solver
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Scalar product choice : L2 , H1 
Integration technique ( trapezoidal, splines…)
Mass matrix to fit the grid

Figure 1.1: Synthetic view of the procedures described in chapter 1 for model order re-
duction of bivariate PDEs. The vertical arrows describe the work flow of these techniques
and the dotted lines highlight the conceptual differences between them.

the techniques that only apply to data –namely SVD and POD– from the PGD which is
usually used on the equation itself but can be degraded into a data decomposition method.
Finally, the blue dashed line emphases the data compression nature of the POD and SVD
while noting the possibility to obtain a ROM through the obtained basis as shown in the
lower part of the diagram.

This chapter is organized as follow. First, section 1.1 describes the singular value
decomposition (SVD) as it is both the simplest and the most used methods in this
manuscript. Then, in section 1.2, proper orthogonal decomposition (POD) is built and
analyzed, its discrete version is presented as well. Section 1.3 provides a 2D construction
of the proper generalized decomposition (PGD), and how degrading it turns the method
into a decomposition that is in fact an iterative algorithm to compute POD. Finally, sec-
tion 1.4 exhibits a series of numerical tests and application of these methods as well as
insight on their relative advantages. All along these sections, a particular focus is given
on the numerics associated with the studied methods.

1.1 Singular Value Decomposition

The Singular Value Decomposition (referred as SVD) is a generalization of the eigenvalues
decomposition for rectangular matrices. Among its many applications it can be seen as a
discrete version of the POD.
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Theorem 1.1.1 (Singular Value Decomposition [PS14]). For any matrix A ∈ Rm×n,
there are orthogonal matrices U ∈ Rm×m and V ∈ Rn×n so that

A = UΣV ᵀ

where Σ is a diagonal matrix of size n×m with diagonal elements σii ≥ 0.

Hereafter, it is assumed that the singular values are ordered decreasingly i.e. if i < j
then σii ≥ σjj. The SVD is not unique since the signs of U and V may vary.

a) m > n A

n

m U

m

m Σ

n

m

V T

n

n

b) n > m A

n

m

V T

n

n

U

m

m

=

= Σ

n

m

Figure 1.2: Singular Value Decomposition two configurations

One should note from figure 1.2 that a part of U in case a) and V in case b) only
serves a dimension match without entering calculation of A, then the SVD reads for case
a)

A = [U1, U2][Σ1, 0]ᵀV ᵀ = U1Σ1V
ᵀ

Let rank(A) = r then for k > r, σk = 0. The SVD of A can be written as sum

A =
r∑

i=1

σiUiVi
ᵀ

where σi are the diagonal entries of Σ and Ui and Vi refer to the columns of U and V
respectively. Then ‖A‖2 =

√∑r
i=1 σ

2
i leads to the optimality theorem proven by Eckart

and Young in 1936 [EY36].

Theorem 1.1.2 (Eckart-Young). Let k < r and Ak =
∑k

i=1 σiUiVi
ᵀ where the singular

values are ordered decreasingly then

min
rank(B)=k

‖A−B‖2 = ‖A− Ak‖2 = σk+1 (1.1.1)

Remark (Link with the eigenvalue decomposition). Singular and eigenvalues are closely
linked. Let A ∈ Rm×n with m > n. AᵀA = V ΣᵀΣV ᵀ −→ AAᵀ = V Σ2

1V
ᵀ. Then the

eigenvalue problem of AᵀA is equivalent to the right singular value problem of A with
λi = σ2

i and the eigenvectors of AᵀA are collinear to A’s right singular vectors vi. The
same applies to ui and the eigenvectors of AᵀA.
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Remark (Solving least square minimization problem with the SVD). The classical least
square minimization problem i.e. find xn of minimum Euclidean norm that reaches the
minimum of ‖b − Ax‖2 for A ∈ Rm×n, is solved by the SVD and the Monroe-Penrose
pseudo inverse of A (see [PS14]).

The main information contained in the Eckart-Young theorem is that the truncated
SVD (see Fig. 1.3) i.e. only keeping the k dominant modes gives an optimal approximation
of rank-k of the matrix A which rank is r ≥ k. It means that the k first singular vectors
form the optimal projection basis of size k that reads as follow,

A ≈ Ak =
k∑

i=1

σiui ⊗ vi (1.1.2)
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b)    n>m

Figure 1.3: Rank k truncated-SVD for both configurations, the shadowed part is dropped
upon truncation. k ≤ n, k ≤ m.

Numerics As for the eigenvalue decomposition, there are many algorithm to compute
the SVD, among them, the QR algorithm is particularly well suited to slim matrices. In
subsequent numerical experiment the LAPACK library is used either as direct SVD solver
dgesdd or through eigenvalue decomposition dsyev if the matrix is slim (this strategy is
also well suited for discrete POD as discussed in the next section). dgesdd relies on a
divide and conquer approach which is one of the most efficient way to handle matrices of
large size.

Other algorithm provide direct truncated SVD mainly based on iterative algorithm
such as Arnoldi procedure based library ARPACK. However it is mostly suited for sparse
matrices and the PGD fixed point procedure (presented in section 1.3) provides us with a
way to obtain of truncated basis. It should be noted that iterative algorithm are very effi-
cient at finding eigen/singular values at both end of the spectrum but face accuracy issues
in other regions, especially for ill-conditioned matrices. This results in non orthonormal
bases which may impair decomposition or ROM accuracy.
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1.2 Proper Orthogonal Decomposition

The POD was discovered many times in many different fields, however it is often attributed
to Kosambi [Kos43] who introduced it in 1943. Also, the POD comes under many names
depending on the field in which it is used or devised. For instance, it is rigorously equivalent
to the Karhunen-Loève expansion [Loè77] or Principal Component Analysis (PCA) usually
attributed to [Pea01]. It is an elegant way to approximate a high dimensional2 system
into a low dimensional one. To do so, a linear procedure is devised to compute a basis of
orthogonal proper modes that represent the energy repartition of the system. They are
obtained by solving Fredholm’s equation for data (usually) obtained through numerical
simulations. Additionally the POD offers an optimal representation of the energy in term
of L2 norm.

It has been applied to extract dominant patterns and properties in wide variety of fields
such as signal, data compression, neural activity, mechanics or fluid dynamics to name
only a few. An enlightening description of the use of POD is given by Bergmann [Ber04]”:
The POD defines uniquely and without ambiguity coherent structures3, as the realization
of largest projection on the mean realization contained in the database”.

Problem formulation (scalar case). Find the best approximation, in the sense of a
given inner product (·, ·) and average operator 〈·, ·〉, of f : D = Ωx × Ωt −→ R as a finite
sum in the form

f̃r(x, t) =
r∑

k=1

ak(t)φk(x) (1.2.1)

where (φk)k are orthogonal for the chosen inner product. ak is given by ak(t) = (f(·, t), φk(·))
then ak only depends on φk.

Discrete POD problem is often found in the literature as follow. Let {f1, ..., fnt} the
snapshots of f i.e. the representation of f at discrete time {tj}ntj=1. It is assumed that
F = span{f1, f2, ..., fnt}.

POD generates an orthonormal basis of dimension r ≤ nt, which minimizes the error
from approximating the snapshots space F . The POD basis verifies the optimum of the
following:

min
{φ}rk=1

nt∑

j=1

‖fj − f̃r,j‖2, s.t. (φk, φj) = δkj (1.2.2)

where f̃r,j =
∑r

k=1 (fj, φk) φk and δkj is the Kronecker symbol. One may observe that∑r
k=1 · is the first order approximation of the time mean operator 〈·〉. This problem can be

solved with discrete Eigen Value Decomposition (EVD). Although it is the most common
formulation of discrete POD in mechanics literature, it can be misleading regarding the
construction and properties of the POD. This is why a much more detailed presentation
is given in this thesis.

1.2.1 Building the POD

This subsection aims at providing a rigorous, however mechanics oriented presentation
of the POD. The present approach is based on Bergmann thesis manuscript [Ber04] and

2Here, high dimensionality is to be understood as rich phenomenon that require many degrees of
freedom to be described properly as opposed to simpler system which are described by few degrees of
freedom e.g. simple pendulum.

3The notion of coherent structures, introduced by Lumley (1967) [Lum67,Lum81] is central in the use
of POD for mechanics.
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lecture notes at Von Karman Institute together with Cordier [CB03a, CB03b] as well as
some of the vast corpus available including [Ale15, Cha00, Fah01]. Since POD is the cor-
nerstone of several multivariate data reduction techniques, it is crucial to provide the
mathematics underlying this method. Without loss of generality, the usual framework for
POD where the two variables are space (possibly a position vector) and times. It makes
mental representation easier for the reader and most of the POD jargon was introduced
with time-space POD.

LetX = (x, t) ∈ D = Ωx×Ωt and u : D −→ Rd a vector valued function. Additionally
we assume4 that a scalar product (·, ·) is defined on D and || · || its associated norm while
an average operator 〈·〉 is defined on D5. We also need the following u to be of finite
norm. The dominant modes of a set of realization {u(X)} are sought, i.e. the function
φ whith the largest projection on realizations {u(X)} in the least square sense. In other
words, we seek φ that maximizes |(u,φ)| where φ is normalized. Then the maximum of
this expression is sought

〈|(u,φ)|2〉
‖φ‖2

(1.2.3)

This leads to the following constrained maximization problem

max
ψ∈L2(D)

〈|(u,ψ)|2〉
‖ψ‖2

=
〈|(u,φ)|2〉
‖φ‖2

(1.2.4)

with

(φ,φ) = 1

In order to rewrite problem (1.2.4), a linear operator R : L2(D) −→ L2(D) is introduced,
it is defined as

Rφ(X) =

∫

D
R(X,X ′)φ(X ′)dX ′ (1.2.5)

where R(X,X ′) = 〈u(X) ⊗ u(X ′)〉 is the tensor of spatio-temporal correlations. Now
suppose that 〈·〉 and

∫
can be permuted then the following holds

(Rφ,φ) = 〈|(u,φ)|2〉 ≥ 0

(Rφ,ψ) = (φ,Rψ) ∀(φ,ψ) ∈ [L2(D)]2

Since R is a positive self-adjoint operator, the spectral theory applies and the solution of
problem (1.2.4) is given by the largest eigen value of this new problem

Rφ = λφ (1.2.6)

It can be written as a Fredholm integral equation:

d∑

j=1

∫

D
Rij(X,X ′)φj(X ′)dX ′ = λφi(X) ∀i (1.2.7)

4We will see in 1.2.2 that x and t play symmetric roles as long as the operators are well defined.
5The natural choice for fluid dynamics applications L2(Ωx) scalar product and a time average. The

choice of the average operator 〈·〉 kind (temporal, spatial,...) determines which kind of POD is used.
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Some fundamental properties of the POD.

1. For D bounded, Hilbert-Schmidt theory applies and ensures the existence of countably
infinitely many solutions to equation (1.2.7)

d∑

j=1

∫

D
Rij(X,X ′)φjr(X

′)dX ′ = λrφ
i
r(X) (1.2.8)

where λr,φr are respectively the POD eigenvalues and eigen functions of order r =
1, 2, ...,+∞. Each new eigen function is defined as the solution of problem (1.2.6)
adding a new constraint: orthogonality with the already known eigen functions.

d∑

i=1

∫

D
φir(X)φip(X)dX = δrp (1.2.9)

2. R is positive self-adjoint then λi ≥ 0. Additionally, they are taken decreasing and they
form a converging series i.e.

∞∑

r=1

λi ≤ +∞
.

3. The POD eigen functions form a complete basis, any realization u(X) can be repre-
sented in that basis.

ui(X) =
∞∑

r=1

arφ
i
r(X) (1.2.10)

4. ar is obtained by projecting u on φr

ar = (u,φr) =
d∑

i=1

∫

D
ui(X)φir(X)dX (1.2.11)

5. Mercer’s Theorem. The spatio-temporal correlation matrix at two points Rij is
kernel based on R then Mercer’s theorem provides a series representation,

Rij(X,X ′) =
∞∑

r=1

λrφ
i
r(X)φjr(X

′) (1.2.12)

6. Thanks to the previous property, it can be shown [CB03a] that the coefficients ar are
uncorrelated and their quadratic average is equal to the POD eigenvalues

〈ar, ap〉 = δrpλr (1.2.13)

7. Using Mercer’s theorem and the orthogonality of POD eigen functions, the following
expression emerges

d∑

i=1

∫

D
Rij(X,X)dX =

∞∑

r=1

λr = E (1.2.14)

Where E coincides with kinetics energy if u is the velocity field of a fluid for example.
Then λr indicates the weight of each modes in terms of energy.

Remark. These properties ensure the uniqueness of the proper orthogonal decomposition
(given that ||Φ|| = 1).



20 CHAPTER 1. BIVARIATE DECOMPOSITIONS

Optimality of the POD basis. Let u : D −→ E ⊂ Rd with u ∈ L2(D) and ū an
approximation of u. On a any basis (ψr(X))∞r=1 one can write

ūi(X) =
∞∑

r=1

brψ
i
r(X) (1.2.15)

Let {φ(X)}∞r=1 a set of orthogonal POD eigen functions and {λr}∞r=1 their associated
eigenvalues. Then, uPOD the POD approximation of u is considered

uPODi (X) =
∞∑

r=1

arφ
i
r(X) (1.2.16)

Properties 6 and 7 state that if (ψr(X))∞r=1 are non dimensional, 〈br, br〉 represents the
energy of mode n. Cordier and Bergmann [CB03b] proved the optimality of the POD
basis through the following lemma.

Lemma 1.2.1. Optimality of POD basis For any rank R ∈ N∗ the following inequality
holds

R∑

r=1

〈ar, ar〉 =
R∑

r=1

λr ≥
R∑

r=1

〈br, br〉 (1.2.17)

In other words, among all linear decomposition, POD is the most efficient, i.e. for a
given number of POD modes R, the projection on the subset produced by the first R POD
eigen-functions is the one that contains on average the most (kinetic) energy possible.

Operation Count In order to evaluate the number of operations required to compute
the POD decomposition of simulation data we consider the simple case where both vari-
ables have the same number of samples N , i.e. Ω = Ωx × Ωt is discretized in an N × N
matrix. For f : Ω→ R, first, the correlation matrix is computed

R(x, x′) =

∫

Ωt

f(x, t)f(x′, t)dt (1.2.18)

Obviously, the cost depends on the integration technique. For this evaluation we choose
a second order method: trapezoidal integration rule which cost is in O(N). Then this
operation has to be performed for each discrete combination of x and x′ which results in
N2 evaluations. The global cost to evaluate R(x, x′) on the discrete grid is O(N3) double
precision operations. Then the first R � N eigen values of problem (1.2.5) are sought.
This problem can be solved using a Lanczos algorithm which requires very few iteration
to compute the first eigenvalues, it requires O(MN2). Then an estimate of the operation
count to compute the M mode POD of f with a Lanczos algorithm is

O(N3 +MN2) = O(N3) (1.2.19)

As shown in the next sections choosing to apply the POD to the dimension with the
lowest degrees of freedom (DoF) number will lead to much lower number of operation.
Especially if one dimension DoF number is much lower than the other.

A POD algorithm. One of the many possible implementations of the POD is proposed
in this section. Although it might not be the most computationally efficient version, it
preserves all the functional approach framework. Indeed the user is free to implement any
integration method so that the projector also apply to L2, not to any matrix space. This



1.2. PROPER ORTHOGONAL DECOMPOSITION 21

statement is also true the linear operator Rφm which eigenvalue problem is solved by a
iterative orthonormal power method.

Algorithm 1: POD (Standard, Deflation Power Method)

input : f , target error ε
output: f̃r =

∑r
k=1 σkXkYk

m=0
R(x, x′) =

∫
Ωt
f(x, t)f(x′, t)dt;

while σm
‖f‖L2

≥ ε do

k = k + 1
(λk, φk) = Orthonormal Power method [(R− f̃k−1)φk = λkφk]
σk =

√
λk

ak =
∫

Ωx
f(x, t)φk(x)dx/ σk

f̃k = f̃k−1 + σkφkak
return fk

1.2.2 Discussion on the POD variations

Choosing the right realizations Since all information used in POD comes from the
chosen realizations6 X, one might wonder on which criteria to choose them. It is a complex
question and in some cases it has been shown that major flow properties are not preserved
(e.g. Noack [NAM+03]).

Choosing the inner product One very interesting property of POD is that the inner
product can be chosen depending on the studied problem. For instance, if a problem
requires to preserve certain properties such as incompressibility, one can choose a inner
product that is more suitable for this task. In fluid dynamics applications, mainly the
following two possibilities emerge.

Inner product on L2. L2(Ω) is the Hilbert space of square integrable functions is usu-
ally well suited for fluid dynamics applications. The inner product on L2(Ω) for two
vectors u and v is defined by

(u,v) =

∫

Ω

(∑

i

uivi

)
dx (1.2.20)

where ‖u‖2 = (u,u) is the associated norm.

A fluid kinetic energy is proportional to ‖u‖2 in fluid dynamics applications. Then,
it seems reasonable to use this inner product for general fluid dynamics problems.

Inner product on H1. Iollo et al. [ILD00] were among the first to advocate the use
of Sobolev spaces for improved quality in POD based reduced models. Indeed, L2

norm was found to be unstable. H1 norm has been continuously used since then,
for example for parabolized Navier-Stokes equation [DNS+12]. H1(Ω) is the Sobolev
space containing L2(Ω) functions which first derivative are also part of L2(Ω). The
inner product on H1 for two vectors u and v is defined as

(u,v)ε =

∫

Ω

u · v dx+ ε

∫

Ω

(∇u ·∇v) dx (1.2.21)

where ε is a numerical parameter accounting for different measures.

6Also known as snapshots in the fluid dynamics community.
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The POD was described in a general framework in the previous section. However
in practical applications, the choice of the actual first and second variable has a great
influence on the numerical computing of POD bases. Choosing time or space as the first
variable will affect both speed and accuracy of POD algorithms. The standard POD was
introduced by Lumley [Lum81] while Sirovich [Sir87] proposed the snapshots version.

1.2.2.1 Standard POD

Lumley’s approach [Lum81] for POD relies on choosing 〈·〉 as a temporal average of the
realizations i.e.

〈 · 〉 =
1

T

∫

T
· dt (1.2.22)

where T = [0, T ]. It is assumed that T is a period in which all realizations are known
and is long enough to represent the flow. The space variable, x, lives in Ω ∈ Rd. For a 3D
fluid dynamics simulation, d = 3, we can focus on the velocity fields u : Ω × T −→ R3

with the usual L2(Ω) scalar product:

(u, v)L2(Ω) =
d∑

i=1

d∑

j=1

∫

Ω

uivjdx, ∀u, v ∈ L2(Ω) (1.2.23)

Then Fredholm’s equation (1.2.7) now reads

d∑

j=1

∫

Ω

Rij(x,x
′)φj(x′)dx′ = λφi(x), ∀1 ≤ j ≤ d (1.2.24)

Where Rij is the spatial correlation tensor now reads

Rij(x,x
′) =

1

T

∫

T
ui(x, t)uj(x

′, t) dt (1.2.25)

It should be noted that in this case, φ is purely spatial.

Size of the eigenvalue problem, discrete case. Let nx be the number of spatial grid
points. Usually, nx ∈ [105, 109] for DNS simulations. d is the number of elements of u, e.g.
d = 3 for 3D cases. Then this approach becomes intractable as soon as 3D problems are
studied, even using adapted algorithm/softwares.

It should be used only when data is spatially sparse, for example within particle
tracking problems. An efficient way to overcome this difficulty for DNS is to use the
snapshots method.

1.2.2.2 Snapshots POD

The snapshots method was originally introduced by Sirovich [Sir87] in 1987. It is the
counterpart of the standard POD where the role of x and t are inverted. It is well suited
for data where there is a large number of spatial grid points while relatively low number
of time frames e.g. DNS output data. The average operator is a spatial average that reads

〈 · 〉 =

∫

Ω

· dx (1.2.26)

i.e. for two fields, the L2() scalar product defined in 1.2.23. Then, the POD scalar product
is the time integral on T . The eigen problem now reads

∫

T
C(t, t′)a(t′) dt′ = λa(t) (1.2.27)
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where C is the temporal correlation matrix that does not account for cross correlation.
In order to preserve consistency with the previous definition a 1/T is imposed before the
integral in C definition.

C(t, t′) =

∫

Ω

d∑

i,j=1

ui(x, t)uj(x, t
′) dx (1.2.28)

The eigen functions are functions of time only. Then the eigen problem of this snap-
shot POD is of reasonable size, r = nt the number of time frames/snapshots. This is
particularly well suited if nt � nx which is the usual case for DNS output data. One can
recover the spatial POD modes φn(x) by projecting the snapshots on the function with
or without normalization as per the user preference i.e.

φk(x) =

∫

Ωt

u(x, t)ak(t)dt, ∀1 ≤ k ≤ r (1.2.29)

Both these methods share a set of properties.

• Any realization ui(x, t) can be represented exactly on the full POD basis which is
orthonormal.

ui(x, t) =

NPOD∑

n=1

σnan(t)φin(x)

where NPOD ≤ ∞. Potentially, an infinite number of modes may be required.

• Temporal modes (an) form an orthogonal family (that can be normalized) while
spatial modes (Φn) form an orthonormal family.

• Any property that can be written as a linear combination of the realizations is di-
rectly passed to the spatial eigen-functions. Incompressibility or Dirichlet boundary
conditions are two examples of properties that are passed to the basis φn, ∀n <
NPOD if u has these properties.

1.2.3 SVD ' POD

From the previous sections, it clearly appears that POD and SVD share many of their
properties. One can adopt two different angles to explore the link between POD and SVD.

a. Use the the optimality of the SVD to solve the discrete POD minimization problem.
This is a straightforward application of the fact that eigenvectors can be computed
either from eigenvalue decomposition or SVD. This approach has been described in
detail by Bergmann and Fahl’s work [Ber04,Fah01]. Compared to the SVD technique
described in section 1.1, it adds a mass matrix but does not require any linear algebra
analysis to be linked with POD. Details are given in section 1.2.3.1.

b. The other way of looking at this link, was proposed among many others by Chater-
jee [Cha00]. It is a simpler presentation of the POD, only valid in the discrete frame-
work. It relies on the fact that the SVD solves optimally a matrix problem that may
be seen as the discrete equivalent of the infinite dimensional problem (1.2.2) using
the Euclidian norm for vectors. As will be shown in the general framework of ten-
sor spaces in chapter 2, this approach is justified by the applicability of the same
algorithm to tensor spaces of different nature, either continuous or discrete.
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It shall be noted that these two interpretations leads to different algorithms which
may not display the same properties of accuracy or efficiency especially when the basis
is used for reduced order modeling as its orthogonality is a very important feature. The
very illustration is the possibility to chose a problem adapted inner product in the POD
algorithm while SVD is blind to data and will be performed in the same fashion for any
problem, sometimes without preserving physical properties.

1.2.3.1 Numerical implementation of snapshots L2 POD

In order to implement efficiently the snapshot L2 POD one needs to carefully compute all
the scalar products according to a given integration scheme and accuracy. From that point
there are two possibilities either one chose to program weighted sum and solve Fredholm’s
equation (1.2.7) using a suitable algorithm e.g. power iteration/deflation method. Or
they chose to use linear algebra tools (SVD, EVD solver) and the integration becomes a
matrix vector product. Additionally a change of basis on the snapshot data is required
for the discrete operator to preserve L2 properties. The second option has been selected
in this work after observing that it is much more computationally efficient in the fortran
implementation. Moreover, it allows one to use optimally programmed solver such as
LAPACK or ARPACK libraries as well as BLAS operations. A brief overview of this method is
given next.

A reasonably general setup is chosen for this typical implementation of discrete POD.
Let D = Ω × T ⊂ Rd × R a spatio-temporal domain that is discretized in nx × nt
elements and scalar function f ∈ L2(D). Let F ∈ Rnx×nt the matrix representation of f
which columns are fi = (f(x1, ti), f(x2, ti), · · · , f(xnx , ti))

ᵀ. The goal is to find the discrete
representation {Φ, A} of the POD basis {φi, ai}.

• Inner product and associated norm:
Let u and v two scalar functions of L2(X ), X is either Ω or T which discretization
are u and v ∈ Rn. Then (u, v)L2(X ) the inner product of these functions in L2(X )
is discretized as (u,v)M where M is the interpolation matrix. For instance, M
is diagonal for a trapezoidal rule with the weights associated to this integration
scheme. The discrete integration operator reads

(u, v)L2(X )

disc−→ (u,v)M = uᵀMv

The norm associated to these inner product behave identically ||u||L2
disc−→ ‖u‖M .

This procedure is applied on both time and space variables. M 1/2 is the Choleski
decomposition left matrix of M i.e. M = M 1/2M 1/2ᵀ. As stated earlier for usual
integration techniques (trapozoidal, Simpson’s, etc.), the matrix is diagonal and

m
1/2
ij =

√
mij. Let Mt be the time integration matrix and Mx the space integration

matrix. For instance a trapezoidal rule on a uniform grid yields the following time
integration matrix,

(Mt)ij =





0 if i 6= j

δt if 1 < i < Nt

δt/2 else.

We assume that the space integration is also diagonal with (Mx)ii = wi where wi
is the weight corresponding to the integration formula e.g. P0, P1, etc. for finite
elements, trapezoidal for finite differences, etc.
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• Discrete autocorrelation function for snapshot POD:
The autocorrelation function

C(t, t′) =

∫

Ω

f(x, t)f(x, t′) dx

is discretized into a matrix C ∈ Rnt×nt whose elements are defined as

C(ti, tj) ≈ Cij =
√

(Mt)ii(Mt)jjfi
ᵀMxfj (1.2.30)

One can write C as a matrix product that reads C = M 1/2M 1/2ᵀF ᵀMxF , this
operation can be seen as a change of basis for the autocorrelation matrix. Then one
can apply the SVD (thin SVD or any EVD algorithm) on C,

C = ŨΣ Ṽ ᵀ (1.2.31)

Here, it is chosen to keep the full discrete basis. In practice, a truncated SVD will
be used as discussed in sections 1.1 and 1.2.

In order to recover the actual {φi, ai} POD basis one need to apply the change of
basis back to the discrete representation of the basis function and project f on the
temporal basis,

{ai}i ≈ A = M
− 1/2
t

ᵀ
Ũ (1.2.32)

{φi}i ≈ Φ = (F ᵀ,A)Mt = FMtA (1.2.33)

where Φi is to be normalized for actual basis.

Proof. Proving that these matrix-vector products are indeed equivalent to the discrete L2

POD is fairly straightforward discretization of operators. One can wonder why the POD
is often presented as in eq. (1.2.2), this is because, in standard POD, only the spatial
basis is kept to build a ROM, thus this mixed L2Ω/l1(T ) is sufficient.

Remark (Versatility of such implementation). Implementing this discrete POD enables
very easy change in the integration method. The special case of M = I is equivalent
to the usual algebraic solver (with a slight overhead). This means that numerically, any
method relying on SVD is interchangeable with the equivalent discrete POD. Thus the user
can very easily switch from l2-norm to L2-norm and virtually use any integration scheme
for POD. In order to prevent misunderstanding, l2 POD algorithm will be referred as
SVD by EVD.

1.3 Proper Generalized Decomposition

In order to provide a general overview of the bivariate methods, we now focus on a
method that is more recent than POD and SVD. The Proper Generalized Decomposition
(PGD) has been developed by a relatively small cluster of researchers during the 2000’s
including Chinesta, Cueto, Ladevèze, Ammar among others. The method is a variation
of the popular LATIN method [CL93] developed in the 1980’s by Ladevèze et al. It
was first developed in the context of mechanics [CLA+09, CALK11, ACDH10] and later
extended to general systems of PDEs. Nouy and Falco have extended it to a more general
framework [Nou10,FN12] and provide additional numerical analysis.

This presentation of the PGD is very restrictive as compared to the full capabilities
of this method. On the one hand, only the bivariate case is shown here, a multivariate
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version is given in section 3.1. On the other hand, the PGD is a general algorithm that can
be applied to partial differential equation (PDE), the separated approximation problem
can be written as PDE u = f where u is sought as a separate sum, this problem can be
refered as a posteriori PGD. This section is restricted to describing how the PGD is build
in the case of bivariate data post-processing.

1.3.1 Constructing a bivariate a posteriori PGD

Let f : Ω = Ωx × Ωy → R a square integrable function, i.e. f ∈ L2(Ω). As in the POD,
the goal of the PGD is to provide a separated approximation of f that reads

f(x, y) ≈ ur(x, y) =
r∑

i=1

Xi(x)Yi(y) (1.3.1)

where Xi ∈ L2(Ωx), Yi ∈ L2(Ωy), ∀i ≤ r that form an orthogonal basis of rank r of
L2(Ωx) and L2(Ωy). The sequence (ur) converges toward f, i.e. ur −−−→

r→∞
u = f

1.3.1.1 An Enrichment Process

In order to determine each element of the sequence an enrichment process has been pro-
posed by Chinesta et al. [CKL13]. This algorithm enriches the decomposition basis recur-
sively, each time adding a new pair of basis vectors {Xi, Yi}.

Xr and Yr are computed by a fixed point algorithm alternating directions. The weak
formulation of the a posteriori PGD problem reads

∀u? ∈ H1(Ω),

∫

Ω

u?(u− f) = 0 (1.3.2)

At the begining of each step it is assumed that ur−1(x, y) =
∑r−1

i=1 Xi(x)Yi(y) is known
thus ur is sought under the form

ur(x, y) = ur−1(x, y) +Xr(x)Yr(y) (1.3.3)

The process of adding terms to the sum, i.e. computing the sequence (up)
r
p=1 is called

the enrichment process. This process ends when a stopping criterion is fulfilled. Since in
the general case, one does not know the exact solution, it is chosen to stop the process
when the weight of the last term compared to the rest of the series becomes negligible.
This reads

E(r) =
||XrYr||L2(Ω)

||X1Y1||L2(Ω)

=
||Yr||L2(Ω)

||Y1||L2(Ω)

≤ εenrichment (1.3.4)

Indeed the terms are of decreasing norm, then there is no need to compare the whole
series, the first term is sufficient. In addition to that, we define {Xi} such that ∀i <
N, ||Xi||L2(Ω) = 1 all the information about the norm is transfered to {Yi}.
Remark (Choice of u0). It is not trivial to chose u0 as it influences the convergence speed
of the fixed point algorithm and may even prevent it from converging. However in most
cases it does not have much influence as the first mode contains a lot of energy that leads
to quick convergence of the fixed point algorithm.
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1.3.1.2 Fixed point algorithm

In this section, an iterative algorithm called Fixed Point Algorithm (FPA) is described, it
enables the computing of a new term (Xr, Yr) to the basis. This is the version described
by Chinesta [CKL13]. In practice, either it converges in a few iterations or it does not
converge at all. The key feature of this algorithm is its alternated direction nature, i.e.
each direction is computed one at a time.

It is assumed that X̃k and Ỹ k are known after step k of the FPA . Thus ũ(x, y) =
ur−1(x, y)+X̃k(x)Ỹ k(y). Moreover, the computing of X̃k+1 relies on Ỹ k while X̃k+1is used
to compute Ỹ k+1. u? is set to

u?(x, y) =

{
X?(x)Ỹ k(y) searching Xk+1

X̃k+1(x)Y ?(y) searching Y k+1
(1.3.5)

For simplicity reasons, the subsequent development will only address the computations
needed to evaluate X̃k+1 since the same process is at work for Ỹ k+1. Given the previous
equations, the following weak formulation holds

∫

Ω

[
X?(x)Ỹ k(y)

(
ur−1(x, y) + X̃k+1(x)Ỹ k(y)− f(x, y)

)]
dxdy = 0 (1.3.6)

This equation can be written as follow

αx
∫

Ωx

X?(x)X̃k+1(x)dx = −
∫

Ωx

X?(x)
r−1∑

j=1

(
βxjXj(x)

)
dx+

∫

Ωx

X?(x)γx(x)dx (1.3.7)

where

αx =

∫

Ωy

(Ỹ k
i )2 (1.3.8)

βxj =

∫

Ωy

Ỹ kYj ∀j < p (1.3.9)

γx(x) =

∫

Ωy

Ỹ kf (1.3.10)

Finally the strong formulation stands




X̃k+1(x) =

−∑r−1
j=1(βxjXj(x))+γx(x)

α
,∀x ∈ Ωx

Ỹ k+1(y) =
−∑r−1

j=1(β
y
j Yj(y))+γy(y)

α
,∀y ∈ Ωy

(1.3.11)

X̃k+1 is normalized i.e. ||X̃k+1||L2(Ωx) = 1, so that all the information relative to the norm

is transfered to Ỹ k+1. This algorithm is performed alternatively along x and y direction,
every time Ỹ k+1 is computed the subsequent stopping criterion is checked.

Efixed point(k) =
||Ỹ k+1 − Ỹ k||L2(Ωy)

||Ỹ k||L2(Ωy)

< εfixed point (1.3.12)
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Algorithm. A synthetic view of the algorithm is given to ease the implementation of
the PGD.

Algorithm 2: PGD (a posteriori)

input : f
output: ur =

∑r
i=1XiYi

u0 = 0, n = 0, (Xi, Yi)
r
i=1 = {} ;

while E(r) ≥ Eenrich do
r = r + 1
(Xr, Yr) =

fixed point

((Xi, Yi)
r−1
i=1 ,f ,n)

ur = ur +XrYr

E(r) =
||Yr||L2(Ωy)

||Y1||L2(Ωy)

return ur =
∑r

i=1XiYi

Algorithm 3: Fixed point

input : (Xi, Yi)
r−1
i=1 ,f ,n

output: XrYr

ur−1 =
∑r−1

i=1 XiYi, k = 0, (X̃k, Ỹ k) = (0, 0)
;

while ε ≥ Efixed point do
k = k + 1

compute αx, βx(j) ∀j < n, γx

X̃k+1 =
−∑r−1

j=1(βxjXj(x))+γx(x)

α
,∀x ∈ Ωx

X̃k+1 = X̃k+1/‖X̃k+1‖L2(Ωx)

compute αy, βy(j) ∀j < n, γy

Ỹ k+1(Y ) =
−∑r−1

j=1(β
y
j Y

j(y))+γy(y)

α
,∀y ∈

Ωy

ε = ||Ỹ k+1||L2(Ωy)/||Ỹ k||L2(Ωy)

return (Xr = X̃k, Yr = Ỹ k)

1.3.2 Equivalence of PGD with POD/SVD for bivariate decom-
position

In section 1.2, algorithm 1 was given to compute the POD of a function, it relies on
a deflated power iteration method. In order to show the connection between PGD and
POD/SVD, this method is detailed here.

POD reminder and notations. Assume that X ⊂ Rd and Y ⊂ Rs are two bounded
domains, d and s are integers ≥ 1. Let f be a given function in the Lebesgue space
L2(X × Y ). For practical reasons, the integral operator B with kernel f is introduced

ϕ 7→ B ϕ, (B ϕ)(y) =

∫

X

f(x, y)ϕ(x) dx. (1.3.13)

The operator B maps L2(X) into L2(Y ), is bounded and has an adjoint operator B∗
defined from L2(Y ) into L2(X) as

v 7→ B∗ v, (B∗ v)(x) =

∫

Y

f(x, y)v(y)dy. (1.3.14)

The self-adjoint operator R = B∗B is also an integral operator whose kernel R ∈ L2(X ×
X) is the autocorrelation function defined in section 1.2.1,

R(x, x′) =

∫

Y

f(x, y) f(x′, y) dy. (1.3.15)

Thus we recover Fredholm’s equation ((1.2.7)) with the eigenvalues λn, such as

Rϕn = λn ϕn, ∀n ≥ 0. (1.3.16)

A straightforward effect of the diagonalization of the operator R is the following
singular value decomposition of the operator B.
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Lemma 1.3.1. There exists a system (ϕn, vn, σn)n≥0 such that (ϕn)n≥0 is an orthonor-
mal basis in L2(X), (vn)n≥0 an orthonormal system in L2(Y ) and (σn)n≥0 a sequence of
nonnegative real numbers such that

B ϕn = σn vn, B∗ vn = σn ϕn. (1.3.17)

The sequence (σn)n≥1 is ordered decreasingly and decays toward zero.

As discussed previously, we have σn =
√
λn, ∀n ≥ 1, additionally the singular vectors

(ϕn)n≥1 are the same as the eigenvectors of R.

1.3.2.1 Power iteration method

The power iteration ranges among the simplest computational eigenvalue methods. We
apply this iterative method to approximate the dominant eigenvalues of R or equivalently
the dominant singular values of B. The convergence results of the power iteration will
addressed of briefly. A lot of work has been done in this issue. For instance, one can refer
to [GL96] and references there in.

The basic form of the iterate power method applied to R = B∗B aims to construct
the largest eigenvalue λ1 = (σ1)2 and the related eigenvector ϕ1. Thus, σ1 is the largest
singular value of B. The scaled version of it is recommended to avoid underflow/overflow.
It can be presented as follows:

Algorithm 4: Power iteration (eigen value problem)

input : R
output: Largest eigenvalue and vector, {λ1, ϕ1}
Choose ϕ(0) ∈ L2(X) with ‖ϕ(0)‖L2(X) = 1
repeat

χ(k) = Rϕ(k−1)

ϕ(k) = χ(k)

‖χ(k)‖L2(X)

until convergence;

return {λ1, ϕ1} = {‖χ(k)‖L2(X), ϕ
(k)}

The limit of the sequence (ϕ(k))k≥0 is the eigen-function ϕ1 and the sequence (‖χ(k)‖L2(X))k≥0

converges toward the dominant eigenvalue λ0. Also, for practical reasons, we set λ(k) =
‖χ(k)‖L2(X).
Rewritten in terms of the singular value approximation the algorithm reads

Algorithm 5: Power iteration (singular value ploblem)

input : B,B∗
output: Largest singular value and vectors, {σ1, ϕ1, v1}

1 Choose ϕ(0) ∈ L2(X) with ‖ϕ(0)‖L2(X) = 1
2 repeat
3 w(k) = Bϕ(k−1)

4 χ(k) = B∗w(k)

5 ϕ(k) = χ(k)

‖χ(k)‖L2(X)

6 until convergence;

7 return {σ1, ϕ1, v1} = {‖w(k)‖L2(X), ϕ
(k), w(k)/‖w(k)‖L2(Y )}

If the convergence is ensured then the sequence (w(k)))n≥0 tends toward w0. We in-
troduce also the notation σ(k) = ‖w(k)‖L2(Y ). Passing to the limit, it is easily checked out
that limk→∞ σ(k) = σ0.
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1.3.2.2 Connection between the methods

Let us try first to express in a variational form the collection of problems involved in the
second version of the power iteration algorithm (5). Line 3 variational form reads

∫

Y

w(k)(y)w∗(y) dy =

∫

Y

(f(·, y), ϕ(k−1))L2(X) w
∗(y) dy, ∀w∗ ∈ L2(Y ).

On account of the normalization ‖ϕ(n−1)‖L2(X) = 1 we obtain that

∫

X×Y

(
f − ϕ(k−1) ⊗ w(k)

)
(ϕ(k−1) ⊗ w∗) dxdy = 0, ∀w∗ ∈ L2(Y ).

We turn now to the evaluation of ϕ(k). A variational form of line 4 χ(k) = B∗w(k) reads

∫

X

χ(k)(x)ϕ∗(x) dx =

∫

X

(f(x, ·), w(k))L2(Y ) ϕ
∗(x) dx, ∀ϕ∗ ∈ L2(X).

Since ‖w(k)‖L2(Y ) = σ(k) we derive

∫

X×Y

(
f − 1

(σ(k))2
χ(r) ⊗ w(k)

)
(ϕ∗ ⊗ w(k)) dxdy = 0, ∀ϕ∗ ∈ L2(X).

Remark. In the last equation, the function χ(k)

(σ(k))2 converges toward ϕ0. As a result, the

following limit holds

lim
k→∞

λ(k)

(σ(k))2
= 1.

Once the dominant singular value σ1 with its corresponding modes (ϕ1, w1) are ap-
proximated, one has to evaluate the following ones. The deflation-based power iteration
process succeeds in doing so. Assume the first modes (σn, ϕn, wn) with n < N are known,
then compute the next mode (σN , ϕN , wN). The deflation mechanism is described first for
the computation of (σN , ϕN) as the eigen(vector, value) of the operator R. Let

R̃ = R−RN−1 = R−
∑

1≤n<N
λnϕn ⊗ ϕn. (1.3.18)

Then, the deflated iterate power method is given in algorithm 6

Algorithm 6: Deflated Power Iteration method (eigen value problem)

input : R, required number of modes N
output: Eigenvalues and vectors, {λn, ϕn}n>0

1 n=0
2 while n < N do
3 Choose ϕ(0) ∈ L2(X) with ‖ϕ(0)‖L2(X) = 1
4 repeat

5 χ(k) = R̃ϕ(k−1)

6 ϕ(k) = χ(k)

‖χ(k)‖L2(X)

7 until convergence;

8 {λn, ϕn} = {‖χ(k)‖L2(X), ϕ
(k)}

9 return {λn, ϕn}n≤N



1.3. PROPER GENERALIZED DECOMPOSITION 31

In order to operate the deflated algorithm on the operator B, the following result on the
kernels is necessary

Proposition 1.3.2. This equality holds

(R−RN−1)(x, x′) =

∫

Y

(f − fN−1)(x, y)(f − fN−1)(x′, y) dy, ∀(x, ξ) ∈ X ×X.

Proof. Computations starts as follows
∫

Y

(f − fN−1)(x, y)(f − fN−1)(x′, y) dy =

∫

Y

f(x, y)f(x′, y) dy

−
∑

0≤n<N
ϕn(x′)

∫

Y

f(x, y)wn(y) dy −
∑

0≤n<N
ϕn(x)

∫

Y

wn(y)f(x′, y) dy

+
∑

0≤n<N

∑

0≤k<N
ϕn(x)ϕk(x

′)

∫

Y

wn(y)wk(y) dy

Various orthogonalities yield that
∫

Y

(f − fN−1)(x, y)(f − fN−1)(x′, y) dy =

∫

Y

f(x, y)f(x′, y) dy

+
∑

0≤n<N
λnϕn(x)ϕn(x′)− 2

∑

0≤n<N
λnϕn(x)ϕn(x′)

=

∫

Y

f(x, y)f(x′, y) dy −
∑

0≤n<N
λnϕn(x)ϕn(x′) = (R−RN−1)(x, x′).

The proof is complete.

Now, we introduce the deflated operators B̃ defined by

B̃ = B̃ − B̃M−1 = B −
∑

1≤k<M
λkϕk ⊗ wk.

Corollary 1.3.2.1. R̃ = B̃∗B̃ holds.

Proof. After observing that that kernels of R̃ and B̃ are (R−RN−1)(x, x′) and (f−fN−1)
respectively, it is a direct consequence Proposition 1.3.2.

The power iterations on R can be written as in algo. 4 for the approximation of λN .
Then, each iteration can be split into two steps as in algo. 5 where the operator B̃ plays
the central role. Both versions are necessarily equivalent. Detailing in the same way as for
the dominant singular value, one obtains
∫

Y

w(r)(y)w∗(y) dy =

∫

Y

(
(f − fN−1)(·, y), ϕ(k−1)

)
L2(X)

w∗(y) dy, ∀w∗ ∈ L2(Y ),

that also reads
∫

X×Y

(
f − fN−1 − ϕ(k−1) ⊗ w(r)

)
(ϕ(k−1) ⊗ w∗) dxdy = 0, ∀w∗ ∈ L2(Y ). (1.3.19)

One can recognize (1.3.6). The next line of the algorithm is the calculation of ϕ(k), it is
conducted as follows

∫

X

χ(k)(x)ϕ∗(x) dx =

∫

X

(
(f − fN−1)(x, ·), w(k)

)
L2(Y )

ϕ∗(x) dx, ∀ϕ∗ ∈ L2(X).
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or equivalently

∫

X×Y

(
f − fN−1 −

1

(σ(k))2
χ(k) ⊗ w(k)

)
(ϕ∗⊗w(k)) dxdy = 0, ∀ϕ∗ ∈ L2(X). (1.3.20)

The ϕ(k) is then defined by the normalization of χ(k).

Finally equations 1.3.19 and 1.3.20 are identical to the weak a posteriori PGD algo-
rithm presented in section 1.3.1. This construction of the deflated power iteration (DPI)
is based on a POD and equivalent SVD formulation. Thus one can conclude that in the
bivariate framework the a posteriori PGD is equivalent to a POD solved through DPI
algorithm. It should also be noted that this section has also offered and equivalence be-
tween the usual POD and a singular alternative that one may identify to a continuous
SVD (algorihtm 4 versus 5). Thus three algorithm families emerge to separate bivariate
data : SVD , POD/EV and PGD/DPI solvers.

Additionally the interpretation of the PGD as a DPI algorithm open the field of im-
proving PGD algorithms through the vast knowledge on deflation algorithm, first in the a
posteriori framework, then in the more complex a posteriori framework. One among the
attractive features common to numerous iterative solvers (Richardson, Gradient, Arnoldi,
GMRES, etc.) of linear (and even nonlinear!) systems resides in their capacity to come up
with the solution without accessing the related full matrix at once. Being able to operate
that matrix on vectors is sufficient to start and end up those iterative solvers.

Such improvements of the PGD have been investigated in the literature, some inter-
esting papers [TLN14,ACL15,CKL13] among many others.

1.4 Numerical experiments

In this section a few numerical tests are conducted on all three methods. Although it
has been shown that they are mathematically equivalent, the difference between these
algorithm will inevitably produce different behavior, especially for ill-conditioned prob-
lems/matrices. This first numerical section provides a suggested technique over the others
depending on the problems studied. First some synthetic data is used i.e. analytical func-
tions, then an image is compressed with various levels of accuracy. Finally, data from
numerical simulations is separated.

Here we briefly recall the problem and the measure of success to solve it, i.e., the
approximation error.

Find the best approximation of f(x, y) such as fr(x, y) =
∑r

i=1Xi(x)Yi(y)

with the error measured as ||f − fr||L2 or ||f − fr||F depending on the nature of the
method7.

7Actually the choice of the norm has little influence on the numerical results. This is especially true
for trapezoidal rule on a Cartesian grid. The main purpose of this distinction is consistency and to some
extent application to ROM in part II.
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1.4.1 Synthetic data

Let Ω = [0, 1]×[0, 1] be the studied domain and four square integrable functions f1, f2, f3, f4 :
Ω→ R defined by

f1(x, y) = xy (1.4.1)

f2(x, y) =
1

1 + xy
(1.4.2)

f3(x, y) = sin(
√
x2 + y2) (1.4.3)

f4(x, y) =
√

1− xy (1.4.4)

f5(x, y) =
1

(1 + xey)
(1.4.5)

These functions range from already separated (f1) to weakly separable, also known as
singular functions in the literature. Thus these two expressions will be used indifferently
in this manuscript. They are chosen to be easily extended to multiple variables.

The four methods PGD, POD (L2(Ω)) SVD and SVD by EVD are applied on these
functions for a 32 × 32 regular Cartesian grid on a single processor Fortran or python
implementation. Integrals are computed with trapezoidal rule.

Modes shape. It is not a trivial task to interpret the modes computed by these methods
especially for (x, y) as shown in Fig. 1.4. First we focus on Fig. 1.4a and 1.4b which shows
the first modes in for both variables yielded by all three methods. As expected, since l2

scalar product is used, all methods yield the same normalized modes (Fig. 1.4a and 1.4b)
for x and y since f3 is symmetric. In Fig. 1.4c, one can see that the amplitudes of the
PGD modes is plummetting with i, this is simply caused by the definition of the PGD
sequence (see eq. (1.3.1)) which transfers the “relative weight” of a couple of mode to
the last coordinate i.e. Yi for the bivariate problem. The decay here is very fast since this
function is easily separable. Finally, Fig. 1.4d displays the same modes obtained through
POD, thus of norm 1. The apparent lack of smoothness is due to the coarseness of the
mesh but it affects very weakly the accuracy8

Typical Decrease in approximation error and singular values. The bivariate
functions can be sorted in two groups with respect to these decomposition techniques.

Definition 1.4.1 (Exponentially Separable function). A function is called exponentially
separable if the decrease in the singular values, thus in the approximation error, is ex-
ponential. In other words, a semi-log plot of the error is a straight line, regardless of its
slope.

Definition 1.4.2 (Linearly separable function). A function is called linearly separable or
weakly separable if the decrease in the singular values, thus in the approximation error, is
linear. In other words, a log-log plot of the error is a straight line, regardless of its slope.

These definition will be extended directly to multiparameter functions. Typically,
weakly separable function are produced by highly non-linear processes or functions that

8 For instance using several grids from 16 × 16 to 1024 × 1024 has shown no improvement in the
approximation error for 5 modes and a slight decrease in the accuracy with finer grid when using 10
modes. Thus as long as the sampling is fine enough to capture the features of the field f(x, t) refining the
grid does not improve the accuracy of the representation at the sampling points.
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Figure 1.4: Decomposition modes of f3.

display a sharp singularity. Thus singular function is often used to replace weakly separable
in the literature as well as in this manuscript. Additionally, various levels of separability
may be observed depending on the nature of the function. A moderate slope will often
be referred to as less separable and an almost linear decay declared weakly separable. Fi-
nally, some peculiar function may show two different regions (relative to r) with distinct
behavior such as first a sharp exponential decay followed by a milder linear one. This
generally fits the properties of the function such as length scale or turbulent behavior in
fluid dynamics.

As mentioned in the theoretical paragraphs, a very efficient way to measure the sep-
arability of a field is to observe the decay of the singular values. It is also a reliable way
to estimate the error decay. Fig. 1.5a presents a comparative view of the decay of the
approximation error for f3 which is a very common function for testing this property.
The singular values are not displayed as their behavior is very similar to the error. All
four methods are equivalent up to r ' 12 which is in agreement with the mathematical
equivalence shown in the theoretical presentation. However for r ≥ 12 it seems that the
error is stuck in the 10−8 regions. This is explained by the ill-conditioning9 of matrix C

9As the conditionning is defined by the ratio of the largest and smallest singular values, it is obvious
that the conditionning is very poor since the singular values range from O(1) and O(10−16).
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Figure 1.5: Approximation error (L2 or Frobenius norm) for bivariate methods

in eq. (1.2.30) that causes a loss or the orthonormality property of the POD/SVD basis.
Most importantly, this is due to the limited computer precision for solving the interme-
diate eigen value problem for SVD by EVD and POD. Since λmin ≈ 10−16 and σi =

√
λi,

the smallest singular value is σmin ≈ 10−8 which is also approximately the approximation
error.

Table 1.1: Numerical orthonormality of the snapshot POD basis for f3

i ||Xi||L2 ||Yi||L2 (Xi, Xi−1) (Yi, Yi−1)
1-8 1.0000 1.000 O(10−16) ≤ 10−8

9 0.999999 0.9999 4.02E-16 -2.93E-7
10 0.999999 1.000 -1.52E-16 5.16E-6
11 0.999999 1.000 1.68E-16 -6.77E-6
12 0.999999 1.000 1.66E-16 -3.19E-3
13 1.00000 0.9999 6.24E-17 0.558
14 0.999999 0.9999 -8.76E-17 0.934
15-32 0.999999 0.9999 O(10−16) O(1)

Table 1.1 presents a test of the orthogonality of the basis obtained through POD. One
can see that the dsyev routine preserves the orthonormality of the {Xi} basis (the one
it is directly computing) but that {Yi} gradually looses orthonormality as i grows. The
transition from suitable orthogonality to none takes place on a very limited number of
modes, here from 11 to 13 this property is lost with the consequence that the accuracy of
the representation reaches a threshold. An efficient solution to overcome this limit is to
use a method that ensures this property. One can choose a reorthogonalization technique
such as Gram-Schmidt orthogonalization process to the POD basis or alternatively as
proposed here rely of recursive algorithm to compute both bases, namely the PGD.

As one can see in Fig. 1.4d, in this case as long as the process converges10 the approx-
imation error decreases (exponentially here) as the number of enrichment grows. Then we

10 Convergence of the PGD fixed point alternating direction method is not ensured (especially for
weakly separable functions) and may be improved with gradient research for instance. However stopping
it at a reasonable number of iteration e.g. 10 or 20, has proven efficient in the many numerical experiments
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Table 1.2: Comparison of POD, PGD and SVD for a target error of ε = 10−6.

SVD PGD POD
n σn+1 error n σn+1 error n σn+1 error

f1 1 1.27E-15 6.68E-16 1 ≈ 0 1.02E-15 1 9.22E-17 3.45E-16
f2 5 7.91E-6 2.96E-7 5 2.12E-7 2.55E-7 5 2.12E-7 2.55E-7
f3 9 1.04E-5 4.73E-7 9 3.20E-7 4.67E-7 9 4.67E-7 3.20E-7
f4 4 1.03E-5 2.45E-7 4 2.74E-7 2.07E-7 4 2.74E-7 2.07E-7
f5 5 3.32E-6 1.67E-7 5 9.20E-8 1.49E-7 5 9.20E-8 1.49E-7

can conclude that this function is separable. Up to r = 12 one may choose any of the three
presented method as the result are extremely similar. However for the next experiment,
shown in Fig. 1.4c, functions f1 to f5 have been separated using only the PGD. One can
see that all these functions are separable although two functions stand off. f1 = xy is
already separated and the PGD only requires 1 mode to represent it to the machine error.
f3 seems to be less separable than the others as its slope is lower. Nonetheless it clearly
displays an exponential decay as the section from r = 12 to 17 is straight.

Comparison of the methods. Last the mathematical equivalence of the four methods
is tested on the least separable of our synthetic function. Fig. 1.4 and 1.5 let us think
that they are also equivalent numerically, at least as long as the POD/SVD is properly
solved. Table 1.2 further confirms that statement. Indeed, one can see that the number
of modes to reach the target error of 10−6 is always the same for all three methods and
the observed error is also very close. Meanwhile the σn+1 depend on the scalar product
used in these methods which is why POD and PGD versions are close while SVD singular
values are 1 or 2 orders of magnitude bigger.

Consequently, one may choose whichever of these three method to separate a bivariate
function. However, this must be done knowing the relative limitations of these functions.
Having both available in code is highly advisable as their advantages are situation related.

1.4.2 Image compression by decomposition

As stated in the SVD section, these techniques can be used on any kind of data. An
interesting example while presenting the data compression aspect of these methods is to
apply it to images. Indeed it is efficient to compress large images. Indeed numerical images
are stored in many formats but it always boil down to an array of integers representing
colors. Let us consider the simpler case of grayscale images, usually stored in 1 byte per
pixel. That is to say, the original 4000× 3000 pixels grayscale image "singapore.tiff"

used in Fig. 1.6 is a matrix of the same size which coefficients are integers in J0, 255K
which means 12×106bytes ≈ 12Mb without compression. Table 1.3 gives the compression
rate for different number of SVD modes retained as displayed in Fig. 1.6. One can see
easily that preserving very few modes yields high levels of compression but the image
features are not preserved. Indeed, on can see in Fig. 1.6 top two lines11 that keeping

that I have ran during this research. The “remaining part” of the basis is “caught” by the next enrichment
step in an adjustment pattern.

11The reader is advised to follow this description in the PDF version as it allows zooming of the row
of small pictures.
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Figure 1.6: A 4000 × 3000 pixels picture of Singapore Gardens by the Bay compressed
through SVD as compared with JPEG compression.



38 CHAPTER 1. BIVARIATE DECOMPOSITIONS

only one mode gives a unrecognizable image. Increasing number of retained modes r leads
to gradually better representation, 10 modes is sufficient to perceive the big structures
of the image. The big leaves and sharp metallic structures are captured with 50 modes
while 100 modes is enough to distinguish palm leaves. This behavior continues up to a few
hundreds where all human-eye relevant structures are captured by the SVD compressed
image. However at r = 200, the image is grainy (especially visible in the sky part) which
is striking in the larger SVD image and close-up in the lower part of Fig. 1.6. Adding
more and more modes reduces the noise of the image, at r = 1000 it is hard to tell that
the image has been compressed without any reference point, while the size of the image
is still halved as compared with the original uncompressed file. The only difference lies in
the contrast level as one can see that the very dark and very bright regions of the image
are not as deep as in the original image.

r SVD size (Mb) CR (%) Err. (%)
1 0,01 99.9 41.5

10 0,07 99 31.2
50 0,33 97 25.7

100 0,67 94 22.2
200 1,34 89 17.2
500 3,34 72 9.4
800 5,34 55 5.2

1000 6,68 44 3.2

Table 1.3: Compression rate using SVD on
4000 × 3000 pixels grayscale image. Where
CR is the compression rate and the error is
computed with Frobenius norm.
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Figure 1.7: Singular values of
"singapore.tiff"

A very interesting feature of this data lies in the very slow decay of the singular values,
shown in Fig. 1.7. Indeed is was chosen on purpose so that no clear directional pattern
appeared in the image and all length scales were present. Consequently, the first 50 singular
values plummet then the slope become a lot milder with a decay of one order of magnitude
per thousand modes. One can assert that the first exponential decay, associated with the
large structures of the image, is followed by a linear one due to the profusion of small
scales. This is the first example of this behavior shown in this thesis. It will appear again
in complex flows and physics problem, either in 2D or 3D. As usual, if all modes are kept
the image is exactly recovered. However, there is overhead in the storage space as U is of
the same size as the original data and one still needs to store V and Σ.

To conclude on the image compression abilities of SVD, it is fairly efficient for large
images as the ratio r/npix is very small but the method is not well suited for human-eye
use. The Frobenius error presented in table 1.3 does not fit with the human experience
of the image produced by SVD comparison. Indeed, SVD compares poorly with well
established formats such as JPEG which was specifically designed to retain eye sensitivity
such as contrast, color depth, etc.
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1.4.3 Physics problem data decomposition

We have shown in the previous examples a series of properties of the bivariate decompo-
sition. Now, we focus on data from physics, in particular data obtained by numerically
solving partial differential equations (PDEs). A single example is presented as most data
from fluid dynamics problem share similar decomposition pattern.

1.4.3.1 Data decomposition of a singular lid driven cavity flow

In this subsection, a brief analysis of the separation properties of the POD on the classi-
cal instability problem of a singular lid driven cavity (LDC) at high Reynolds number is
given. Further detailed on this very complex flow are given in chapter 5.

UY

X
10

1

Ω

Figure 1.8: Schematic
view of the LDC

The 2D LDC problem is defined on a square domain Ω =
[0, 1] × [0, 1] on a time domain T = [0, T ]. The upper side of
the domain is moving rightward at constant speed U while all
other walls are immobile as shown in Fig. 1.8. We chose a “high”
Reynolds number, here Re = 9000, which means above the first
Hopf bifurcation (see 5 for more details) i.e. the flow is unstable.
The fluid is at rest at t=0. The data is obtained through a Carte-
sian grid high accuracy CFD code developed by T.K Sengupta’s
team (more details available in section 5.1 and [LBA+18]. The
vorticity formulation of the Navier-Stokes equation is used, i.e.
ω = ∇× u, ultimately the non-dimensionalized problem reads

{
∇2ψ = −ω
∂ω
∂t

+ (~V · ∇)ω = 1
Re
∇2ω

(1.4.6)

The nature of this flow is very complex and is detailed later in section 5.1. Nevertheless
a sample of the vorticity field at time t = 1900.2 for Re = 9800 is given in Fig. 1.9. The
reader can see that the flow is mainly composed of three zones.

Drive This is the dark blue and red region at the top of the cavity. It is characterized
by high amplitude vorticity and high shear in the flow, especially near the top right
angle.

Core This is the green region of the flow displays very little variation as the exponential
contour line levels highlight. Indeed the green color is limited to ±0.3 around the
value of the center of the cavity. This part of the flow has been shown by T.K.
Sengupta et al. [SLV09] to display triangular vortices using high accuracy NCCD
scheme. These triangular vortices have also been observed for real fluids [CK94,
BvH98]. This is the region that presents the most interest for POD analysis as it is
complex and very sensitive to numerical error.

Edges/Corners This regions is composed of the three remaining edges and “corner”
zones. As for the drive region, they display high levels of vorticity but shear is usually
lower since the fluctuations in vorticity are less dramatic. The usual streamlines plot
for the LDC would show (nested) recirculation at both lower corners.

In order to have the best accuracy in the POD decomposition, a centering of the
vorticity is performed, then all results presented subsequently are produced from the
fluctuation of the vorticity field ω′ = ω − ω̄ where ω̄ the time average of ω is given by

ω̄ =
1

T

∫

T
ω
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Figure 1.9: Vorticity contour of LDC DNS at Re = 9800, t = 1900.2. The vorticity contour
lines are “centered” to ωc = ω(0.5, 0.5) ≈ −1.84 to emphasize the orbiting triangular
structures in the middle,

Here the POD is applied on the bivariate scalar field ω′(x, t) in a snapshot fashion, the
scalar product used is a measure of enstrophy ||ω′||2L(Ω) instead of the historic approach of
kinetic energy [HLB96,NAM+03,Sir87]. In vortex dominated inhomogeneous flows, rota-
tional energy is a better descriptor of POD over translational kinetic energy, as highlighted
by Sengupta et al. work [SDS03,Sen12]. Then the correlation matrix is

C(t, t′) =

∫

Ω

ω′(x, t)ω′(x, t′) dx (1.4.7)

which is numerically treated by a 2D trapezoidal rule.
Finally, to ease the presentation the POD approximation of the vorticity of rank r

reads

ωPOD
r (x, t) =

r∑

i=1

φi(x)ai(t)

where φi is normalized (||φr||L2 = 1) and the weight of the mode is carried by ai. In this
section the time interval for the POD of the vorticity field is taken in the stable limit
cycle range (see 5.1) T = [1900, 1940] with 200 equally spaced snapshots.

Fig. 1.10 shows the decay of the POD approximation error with the number of modes,
up to r ≈ 14 (region A), the decay is exponential while it is linear right to the dashed
line (region B). Looking closely, one can see that the decay is actually occurring by pairs
of modes in the exponential part. This is due to the nature of flow as the representation
of the different physical frequencies yields two POD modes. Indeed one can see that the
time modes of Fig. 1.11 are almost identical functions, only separated by a quarter period
phase shift. Their amplitude i.e. the measure of their relative contribution to enstrophy is
also very close within pairs but changes of magnitude between pairs. Finally the frequency
is doubled for every added pair. This behavior is also followed by the spatial modes shown
in Fig. 1.12. The number of structures in the core is doubled for every pair and one can
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Figure 1.10: POD approximation error decay with the number of modes.

see that the structures are slightly shifted between two members of a pair. The linear
decay is associated to numerical noise of the simulation, one can infer that variations
below the threshold r = 14 or vorticity variation smaller than 103 are not representative
of the physics of this flow.

This unstable flow example will be studied thoroughly using POD in section 5.

1.4.4 Numerical issues and proposed improvements

The bivariate techniques presented in this section are the foundation of all multivariate
methods described in this manuscript. Then it is crucial to target the numerical short-
comings that have been observed. Mainly, one can sort them as accuracy issues (the main
focus of this work) and computing efficiency issues. Some solution solve both these prob-
lems but may interfere with programming ease. The main difficulty lies in solving the
eigenvalue problem (1.2.7) in its various formulations.

Accuracy issues For applications such as building ROMs from separated fields, the
accuracy of the basis must be ensured since properties such as orthogonality of the ba-
sis are fundamental in many cases (Galerkin projection, etc.). To a lesser extend, loss
of orthonormality may prevent the decomposition to converge. Moreover, many of the
mathematical properties of these bases rely on the orhtonormality of the bases.

It was observed that the orthogonality is not always preserved for low energy modes.
This is generally explained by the poor conditioning of the correlation matrix, typical
values of the condition number K(A) = ||A−1|| · ||A|| = σmax

σmin
have been evaluated to 1016.

This result is actually expected since the decomposition yields singular values ranging
from O(1) or more to O(10−15). Usual preconditioning techniques such multiplying by
the diagonal prove inefficient to reduce the condition number as well as the orthogonality
of the basis.

As preconditioning is hopeless due to the nature of the studied matrices, one should
carefully choose the eigenproblem solver. For instance, LAPACK’s DGEEV does not preserve
the orthogonality of the eigen vectors beyond the sixth or seventh mode, on the other hand,
LAPACK’s DSYEV, that uses symmetric matrices properties, ensure orthogonality to machine
precision. However, the secondary basis (the one obtained by projection of the data on



42 CHAPTER 1. BIVARIATE DECOMPOSITIONS

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 1900  1905  1910  1915  1920  1925  1930  1935  1940

t

a1
a2
a3
a4
a5
a6
a7
a8

Figure 1.11: The first 8 time modes obtained through POD of the vorticity disturbance
field ω′ of the LDC for t ∈ [1900 : 1940]. The norm of the couples { φi, ai} is stored in ai
which is why they tend toward zero.

Figure 1.12: The first 8 spatial modes contour obtained through POD of the vorticity
disturbance field ω′ of the LDC for t ∈ [1900 : 1940].

the primary basis) does not ensures orthogonality as the modes number grows as shown in
Tab. 1.1. Synthetic data exacerbate this phenomenon as numerical simulation output do
not provide data with sufficient accuracy to preserve lower modes. Other algorithm were
tested performs variably well, DSYEV being the upper bound for accuracy. Consequently
one must always check the accuracy of the orthogonality if this property is used for further
development. For compression purpose this assumption is secondary and the only measure
of efficiency is the compression rate.

Efficiency issues. It clearly appears that solving the full eigen problem is generally in-
efficient regarding the operation count. Indeed, the nature of these decomposition strate-
gies is to truncate the separated representation to the smallest number of modes possible.
Then, computing all modes to throw away the vast majority of them, as one would do us-
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ing LAPACK routines, is inappropriate. However, to the best of my knowledge, most partial
eigenproblem solvers rely on iterative processes that are very efficient for sparse matrices
or when the user requires very few (O(10)) eigenvectors. In our framework, it is usually
interesting (sometimes compulsory) to compute tens of modes to represent accurately
complex datasets. So far using full direct LAPACK solvers on correlation matrices have
proven quick. Regarding our PGD based iterative solver, it turns out that it’s efficiency
for numerical simulation output of reasonable size (O(100MB)) is poor. Computing time
for 10 modes is orders of magnitudes longer than its LAPACK counterpart to obtain the full
basis. Scaling to bigger problem is simply out of range with the proposed implementation
as the number of numerical integration is too big. One way to circumvent these issues is
to make sure one solves the eigen problem on the smallest of the dimension, usually using
a snapshot method for CFD outputs.

Memory overload. The main limitation to the current version of the library, is actually
memory use as some datasets don’t fit in RAM typically O(100GB) is overloading memory
even on large memory computing nodes.

Proposed Improvement. The following points are possible directions for solving these
issues and improve the library.

• Implement a version of the library that does not require loading the full dataset
as to compute the decomposition, rather loading periodically chunks of the data
to compute parts of the eigen-problem. Iterative methods are the most promising
candidates. One could use a block power iterate (that would also allow parallel
computing) or some improvement of it such as Arnoldi although the implementation
for this kind of application might be more difficult. However, the implementation of
such techniques must be thought carefully as the alternate direction scheme (PGD)
has proved inefficient for large problems.

• In case of overload of dsyev processing capacity, one can rearrange data in a mul-
tivariate fashion and use tensor decomposition technique. For example instead of
separating time and space, one could also separate x and y thus making a trivariate
decomposition.

• Implement a parallel version of these algorithms to overcome memory limitation as
well as reducing computing time.

Conclusion

In this section, three bivariate data decomposition approaches were presented: SVD, POD
and PGD. It was shown that they are different algorithm that produce mathematically
equivalent results in the sense that the modes obtained are the same, with the same decay
of singular values. This is confirmed by numerical experiments (Fig. 1.4). But they require
different computing time, PGD is thus discarded as soon as one requires several modes for
large problems. The main difference between these methods lies in the choice of the inner
product determines the set in which the orthonormality of the decomposition is ensured.
On the one hand, one can choose SVD which is well suited for simple data compression as
it does not require any knowledge on the data properties or any grid/integration scheme.
Thus it allows to compress any kind of data from images Fig. 1.6 to CFD data. On the
other hand, one can prefer POD if interested in inner products that are suited to physical
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properties of the data. A typical example is the analysis of CFD data with an energetic
norm (L2(Ω)) or a norm adapted to the properties of the underlying equation (e.g. H1(Ω)
for NSE) for further use in a ROM by Galerkin projection on the reduced basis.

The presented method have been implemented and thoroughly tested. Consequently
they form the basic unit of the multivariate decomposition methods that presented in the
next sections.
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Tensors can be viewed as generalization of matrix to higher dimension i.e. an order
d tensor is a d-way array or a function of d arguments. Such object rapidly become
intractable, indeed for large d > 3, data size nd is out of reach even for the most ad-
vanced computers and will remain that way for direct handling. A simple example of
the curse of dimensionality is to take n = 2 and d = 50, although it appears to be of
reasonable size, nd ≈ 1015. This is of course far below the requirement of many scientific
areas such as chemometrics, Boltzmann equation, multiparameter PDEs etc. This has
led to the introduction of reduction techniques to overcome the curse of dimensionality
starting with Hitchcock in 1927 [Hit27]. Many work has been separately performed in
separate fields such as psychometrics (Tucker [Tuc66] and Caroll and Chang [CC70]) in
the 1960s and 1980s or chemometrics from 1981 onwards ( [AD81]). Since 2000, tensor
decomposition has gained a lot of interest in many fields including solution of stochas-
tic PDEs [DI09, KT11], solution of high dimensional Schrödinger equation, Boltzmann
equation, computational finance, etc. Many more references are available in literature

45
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surveys by Kolda and Bader [KB09] and Grasedyck et al. [GKT13]. Actually, these sur-
veys together with W. Hackbush 2014 book “Tensor spaces and numerical Tensor cal-
culus” [Hac14] demonstrate the growing interest for decomposition among the applied
mathematics community. CFD has also seen numerous applications of such techniques
due to its large production of data. Also, as we will see in part II of this manuscript,
tensor decomposition techniques can be seen as the first stage of building multiparameter
ROM.

This chapter is organized as follow. First, general concepts and definitions required
for tensor reduction are given. The second section presents four of the most common
tensor formats : canonical, Tucker, hierarchical and tensor train. These formats are not to
be confused with their associated decomposition techniques and approximation that are
described in the third section.

2.1 Some basic tensor features

This section will first address the issue of building a general framework that works equally
well for continuous and discrete multidimensional problems. The concept of a tensor space
structure and its main properties are described. In the second subsection the main features
of tensors are presented on the particular case of multi-way arrays but are expendable to
other kind of tensors. This dichotomy provides a general framework that will be needed
in further development and eases the understanding of complex definition with the n-way
array.

2.1.1 Tensor spaces

In order to build the approximation presented in the subsequent sections, a general frame-
work is introduced. The mathematical framework we use in this thesis is based on W.
Hackbush’s book “Tensor Spaces and Numerical Tensor Calculus” [Hac14] with addition
from other authors. Further details can be found in the original manuscript while we only
cover the necessary notions for tensor decomposition.

Definition 2.1.1 (Tensor Space). Let V and W be vector spaces. The algebraic tensor
space V is defined by

V = V ⊗aW = span{v ⊗ w : v ∈ V, w ∈ W} (2.1.1)

Where ⊗a connects vectors spaces and v ⊗ w is an element of V.
If a topological norm is given, the completion with respect to the given norm ‖ ·‖ yields

the topological tensor space

V ⊗‖·‖W := V ⊗aW (2.1.2)

This is then a Banach tensor space (V , ‖ · ‖).

Obviously, a tensor space is still a vector space however given a special structure.

Proposition 2.1.1. Let V and W be vector spaces with respective bases BV and BW such
that T be a tensor space over the field R. A product ⊗ : V ×W → T is a tensor product
and T a tensor space, i.e., it is isomorphic to V ⊗aW , if the following properties hold:

i) span property : T = span{v ⊗ w : V ∈ V,w ∈ W}

ii) bilinearity
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iii) linearly independent vectors {vi : i ∈ BV } ⊂ V and {wi : i ∈ BW} ⊂ W lead to
independent vectors {vi ⊗ wj : i ∈ BV , j ∈ BW} in T

Note that the tensor product is associative and universal, i.e.

Proposition 2.1.2 (Universality of the tensor product). For any multilinear map ϕ :
V1×· · ·×Vd → V , there is a unique linear mapping Φ : ⊗dj=1Vj → V so that ϕ(v1, ..., vd) =
Φ(v1 ⊗ · · · ⊗ vd).

It is possible to give an algebraic structure to a tensor space. Let the multiplication
◦ : Aj × Aj → Aj define a (non-commutative) algebra with a unit element 1. Then it is
possible to define on A =a ⊗dj=1Aj an operation ◦ : A× A→ A by means of

(
d⊗

j=1

aj

)
◦
(

d⊗

j=1

bj

)
=

d⊗

j=1

(aj ◦ bj) (2.1.3)

It is considered that the reader is familiar with the properties of Banach spaces as well
as Hilbert spaces. Consequently, only results that are of particular interest for low rank
tensor approximation are presented in this document.

Theorem 2.1.3. Let (X, ‖ · ‖) be a reflexive Banach space with a weakly closed subset
∅ 6= M ⊂ X. Then the following minimisation problem has a solution:

∀x ∈ X, find v ∈M so that ‖x− v‖ = inf
w∈M

(‖x− w‖) (2.1.4)

This theorem is very useful to show that the low rank approximation of a tensor
possesses a solution.

2.1.2 Overview of tensors of Rn1×···×nd i.e. multi-way arrays

In this section, a series of definitions and properties of the multi-way array tensors is
provided. It should be noted that most of these definitions extend to other tensor spaces
but most, if not all the work presented in this thesis manuscript uses discrete tensors.
Reference article written by T.G. Kolda and B.W. Bader “Tensor Decomposition and
Applications” in 2009 [KB09] set most of the terms, notations and definitions used in this
section. The properties and definitions presented here are limited to the one necessary for
approximation of tensors, many more work on tensors has been proposed in the litera-
ture [dSL08,Hac14].

First we introduce some notations. Let d ∈ N be the number of dimensions and
n1, ..., nd ∈ N the number of entries along each of these dimensions. Let D = {1, ..., d} be
a tuple and I = I1 × · · · × Id be a d-fold product index set with Iµ = {1, ..., nµ}

Definition 2.1.2 (Tensor). A tensor is a multidimensional array i.e. a d-way or dth-order
tensor is an element of the tensor product of d vector spaces, each of which has its own
coordinate system.

In terms of tensor space, here we have X ∈ V =
a

⊗d

i=1
Vi where Vi = Rni . This

notion of tensor is different from the many physical tensors which generally refer to a
third order tensor that is defined in every points of the space. This forms a tensor field.
Bold Euler script letters refer to order d tensors e.g. X ∈ RI .
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Definition 2.1.3 (Order of a tensor). The order of a tensor is defined as the number of
dimensions, also known as ways or modes. X ∈ RI where I = I1 × · · · × Id, is an order
d tensor1.

Remark. A first-order tensor is a vector, a second-order tensor is a matrix and a third
order tensor or more is called a higher order tensor. A visual representation of a third
order tensors is proposed in figure 2.1.

j = 1, ..., J k =
 1,

 ...
, K

i =
 1

, .
..,

 I

Figure 2.1: A third order tensor with T ∈ RI×J×K .

The entries of a tensor are denoted in the same fashion as for vectors or matrices i.e.

• entry i of vector a is ai

• entry (i, j) of matrix A is aij

• entry (i1, i2, · · · , id) of order d tensor A is ai1i2···id

A subarray is formed when a subset of a tensor is taken e.g. subarrays of matrices are
columns and rows. A colon is used to state that every element of a dimension is taken.

Definition 2.1.4 (Fibres). Fibres are the higher order analogue of matrix rows and
columns. A fibre is defined by fixing every indices but one. Mode-1 fibre of a matrix is
a column mode-2 fibres are rows and mode-3 fibres are tube fibres as shown in figure 2.2.

Remark. Slices are two dimensional sections of a tensor defined by fixing every indices
but two.

Definition 2.1.5 (Inner product and norm). Given two same-sized tensors X,Y ∈ RI,
the Inner Product is defined as follow

〈X,Y〉F =

n1∑

i1=1

· · ·
nd∑

id=1

xi1···idyi1···id (2.1.5)

When there is no ambiguity on the nature of the inner product, the Frobenius inner product
is simply noted 〈X,Y〉.

The norm associated with this inner product is the Frobenius norm defined by ‖X‖F =√
〈X,X〉 also

‖X‖F =

√√√√
n1∑

i1=1

· · ·
nd∑

iD=1

x2
i1···id (2.1.6)

1The order of a tensor is not to be confused with the rank of a tensor.
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Mode-1 fibre x:jk Mode-2 fibre xi:k Mode-3 fibre xij:

Figure 2.2: The fibres of a third order tensor.

Definition 2.1.6 (Rank-One tensor). An N-way tensor X ∈ RI is rank-one if it can be
written as the outer product of d vectors (a(j))dj=1, i.e.

X = a(1) ◦ · · · ◦ a(d) ⇔ ∀ 1 ≤ ij ≤ nj, xi1···id =
d∏

j=1

a
(j)
ij

Definition 2.1.7 (Rank of a tensor). The rank of a tensor, denoted rank(X), is the
minimum number of rank-one tensor that generate X as their sum. In other words, this
is the smallest number of components in an exact CP decomposition (see the definition
2.3.2). Further details are available in [KB09] concerning the link with the matrix rank.

Remark. There is no straightforward way to determine the rank of a higher order tensor
even for small sizes (the problem is NP-hard).

Definition 2.1.8 (µ-rank or multilinear rank of a tensor). The µ-rank of tensor X ∈ RI,
denoted rankµ(X) is the rank of X(µ). If we let rµ = rankµ(X) for µ = 1, ..., d then we can
say that X is rank-(r1, · · · , rd) tensor. Beware not to confuse the µ-rank with the previous
notion of rank of a tensor.

Remark. The notion of n-rank was popularised by De Lathauwer [DDV00].

Definition 2.1.9. matricization or unfolding
Matricization is the process of ordering the elements of a tensor into a matrix. The mode-
n matricization of a tensor X ∈ RI is denoted by X(µ) and arranges the mode-µ fibres to
be the columns of the resulting matrix. We define the index set I(µ) = I1 × · · · × Iµ−1 ×
Iµ+1×· · ·×Id. The formal notation is more complex than the concept of unfolding, indeed
the map from the tensor entries (i1, i2, · · · , id) ∈ I to the matrix entries (iµ, j) ∈ Iµ×I(µ)

is

j = 1 +
d∑

k=1
k 6=µ

(ik − 1)Jk with Jk =
k−1∏

m=1
m 6=µ

Im (2.1.7)

Only the special case of mode-n matricization is considered here, further details are
available in [Kol06].
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Remark. The ordering in which the matricization does not matter as long as it is consistent
through the computation.
One can also vectorize a tensor, the same goes concerning ordering

Mode-1 fibre x:jk

Mode-2 fibre xi:k Mode-3 fibre xij:

mode-1 Matricisation

X X(1)

Figure 2.3: Mode one matricization of third order tensor with X ∈ RI×J×K .

Tensor multiplication It is possible to define product between tensors in a varieties of
ways. It does require more complex notations and symbols that for matrices. We restrict
ourselves to the ones which are actively used to describe tensor reduction. Information
about other tensor products is widely available in the literature [KB09,Hac14].

Definition 2.1.10 (Tensor product). The tensor product is a special case of the outer
product that allow multiplication between tensors is denoted by ⊗ or ◦ if a confusion with
the Kronecker product is possible. Let I = I1 × · · · Ip and J = J1 × · · · Jq be multi index
series. The the tensor product is defined by

⊗ : RI × RJ → RI×J

(X,Y) 7→ X⊗ Y

Enrty-wise T = X⊗ Y writes
Tij = xiyj

where i = {i1, ..., ip} and j = {j1, ..., jq}.
Definition 2.1.11 (Kronecker product). Kronecker product of matrices A ∈ RI×J and
B ∈ RK×L is denoted by A⊗B. The result is a matrix of size (IK)× (JL) and defined
by

A⊗B =




a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB




Remark. It should be noted the outer product of vectors is a special case of the Kronecker
product.

Definition 2.1.12 (Kathri-Rao product). of matrices A ∈ RI×K and B ∈ RJ×K is
denoted by A�B. The result is a matrix of size (IJ)× (K) and defined by

A�B = [a1 ⊗ b1 a2 ⊗ b2 · · ·aK ⊗ bK ]

If a and b are vectors, then the Kathri-Rao product and Kronecker product are identical.
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Definition 2.1.13 (Hadamard product). It is the elementwise matrix product. Let Aand
B ∈ RI×J , their Hadamard product is denoted by A ∗B and it is also of size I × J .

A ∗B =




a11b11 a12b12 · · · a1Jb1J

a21b21 a22b22 · · · a2Jb2J
...

...
. . .

...
aI1bI1 aI2bI2 · · · aIJbIJ


 (2.1.8)

These products have many properties [KB09] that are relied upon to devise decompo-
sition algorithms.

Definition 2.1.14 (µ-mode product). The µ-mode (matrix) product, for 1 ≤ µ ≤ d
of tensor X ∈ Rn1×···×nd with matrix A ∈ Rm×nµ is denoted by X ×d A and is of size
n1 × · · · × nµ−1 ×m× nµ+1 × · · ·nd. Element-wise, we have

(X×µ A)i1···iµ−1jiµ+1···id =

nµ∑

iµ=1

xi1i2···idujiµ

It is equivalent to say that each mode-µ fiber is multiplied by the matrix A, i.e.
Y = X×µ A⇔ Y(µ) = AX(µ).

Definition 2.1.15 (multilinear multiplication [VVM12]). Multilinear multiplication in
one mode is equivalent to n-mode multiplication but is usefull to introduce a new notation

[(I, ...I,M , I, ..., I) ·X](n) = MX(n) (2.1.9)

Then in general, the unfolding of a multilinear multiplication is given by

[(M1,M2, ...,Md) ·X](n) = MnX
(n)(M1 ⊗ · · · ⊗Mn−1 ⊗Mn+1 ⊗ · · · ⊗Md)

ᵀ, (2.1.10)

Two multilinear multiplications can be transformed into one, as follow

(L1,L2, ...,Ld) [(M1,M2, ...,Md) ·X] = (L1M1,L2M2, ...,LdMd) ·X (2.1.11)

2.2 Tensor Formats

In this section, some of the most common tensor formats or representations are described.
Indeed, in applications one needs to represent the properties of a tensor using a finite
numbers of parameters. Not all tensors belong to spaces of finite dimension (e.g. tensor
Hilbert spaces), then the question of finite approximation arises. The decomposition or
approximation of a tensor in a certain format is addressed in the next section 2.3.

Before entering these descriptions, one should note the difference between represen-
tation and decomposition that are complementary notions. On the one hand, the rep-
resentation of a tensor is any way used to describe a tensor using a set of parameters
(p1, ..., pn) e.g. representation of tensor X on a computer using full real array format :
(p1, ..., pn)→ X. On the other hand the decomposition does the opposite way by analyz-
ing a tensor to determine a set of properties : X→ (p1, ..., pn).

These operation can be used alternately, for example the CP decomposition of a tensor
yields a representation of it with a given accuracy. This leads to the following statement
by Hackbush : “‘tensor decomposition’ is applied, when features of a concrete object should
be characterized by parameters of a tensor-valued data about this object”.

For the sake of simplicity, the following presentation uses d-way array formats but
they are equivalent version for arbitrary tensor spaces so long as a finite basis exists.
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2.2.1 Full format

Let I = I1 × · · · × Id a d-fold product index and a tensor X ∈ RI . Then the full format
consists in storing the values taken by X for all (i1, ..., id) ∈ I with the standard basis
eµ,iµ ∈ RIµ is defined by (eµ,iµ)jmu = δiµ,jµ . We have

X =
∑

i∈I
xi e1,i1 ⊗ · · · ⊗ ed,id (2.2.1)

Storage. Since the basis is trivial, it is not needed to store the basis and the storage
cost is

∏d
µ=1 nµ. Let n = maxµ∈D nµ then the storage cost is in O(nd) which is intractable

for large d. A more general definition of full format for tensors is given by J. Ballani in
his thesis dissertation [Bal12].

Evaluation Cost. The evaluation cost in full format is nil since one just need to recover
the value at a given index in the computer memory.

2.2.2 Canonical format or r-term format Cr
Definition 2.2.1 (Canonical Format). In this format, any tensor X ∈ V =

⊗d
µ=1 Vµ

a tensor space, is written as the finite sum of rank-1 tensors. X ∈ Cr(RI) is said to be
represented in the canonical format and it reads,

X =
r∑

i=1

d⊗

µ=1

uµ,i where uµ,i ∈ Vµ = RIµ (2.2.2)

where Uµ = [uµ,1 uµ,2 · · · uµ,r] for µ ∈ D. The µ-matricization of X can be computed by

X(µ) = Uµ(U1 � · · · �Uµ−1 �Uµ−1 � · · · �Ud)
ᵀ (2.2.3)

Remark. a. r, the length of the sum, is the tensor rank of X as stated in definition
2.1.7. However, the reader is reminded that computing the rank of an arbitrary
tensor is a NP-complex problem.

b. Cr is not a linear space since the sum of X,Y ∈ Cr belongs to C2r and X + Y /∈ Cr
in general.

Storage. Accordingly to the previous remark, it is assumed that r is known since the
tensor is already in Cr. Then each parameter vector (uµ,i) storage complexity is in O(#Iµ)
which leads to the following tensor storage complexity in Cr with n = maxµ∈D(nµ).

Nstorage(Cr) = r

d∑

µ=1

Iµ = O(drn) (2.2.4)

If r remains small then the storage complexity remains moderate even for a large number
of dimensions.
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Evaluation. The evaluation of a single entry xi, i = (i1, ..., id) ∈ I of X ∈ Cr requires
the multiplication of the values (uµ,i)iµ for µ ∈ D. Indeed xi =

∑r
j=1

∏d
µ=1(uµ,j)iµ which

means the complexity to evaluate a single entry is Nentry(Cr) = dr leading to the following
complexity to evaluate the whole tensor

Nfull eval(Cr) = O(nddr) (2.2.5)

This cost is optimal in the sense of linear complexity, however the non-linearity of the
space raises the question of truncation or approximation which is treated in section 2.3.1.

As for the full format, Cr is fully compatible with other underlying vector spaces.
Further information is available in [Bal12,Hac14].

2.2.3 Tucker format Tk
This section focuses on the crucial Tucker format which consists for X ∈ V = RI in finding
smaller subspaces Uµ ⊂ Vµ such that X ∈ ⊗d

µ=1 Uµ. Indeed if kµ = dim(Uµ) < dim(Vµ)
then X can be represented more efficiently than in full representation. This leads to the
following definition.

Definition 2.2.2 (Tucker format Tk). Let k = (k1, ..., kd) ∈ Nd and a family of linearly
independent vectors (uµ,i)µ,1≤i≤kµ for µ ∈ D such that (uµ,i)µ,1≤i≤kµ is a basis of Uµ. Then
the tucker representation of X ∈ U is

X =

k1∑

i1=1

· · ·
kd∑

id=1

wi1,...,idu1,i1 ⊗ · · · ⊗ ud,id (2.2.6)

with the weights wi1,...,id ∈ R. They form the core tensor W ∈ Rk1×···×kd.
k is the representation rank (or Tucker rank) of X in the tucker format Tk. One can also

write X as a product of W and matrices Uµ = [(uµ,i)]
kµ
i=1 which reads

X = W×1 U1 ×2 U2 · · · ×d Ud. (2.2.7)

Its µ-matricized version reads

X(n) = UµW(µ)(U1 ⊗ · · · ⊗Uµ−1 ⊗Uµ+1 ⊗ · · · ⊗Ud)
ᵀ. (2.2.8)

Remark. a. As stated by Ballani, for general tensors, Tk the set of tensors which Tucker
representation rank is lower than k is not a linear space.

b. The tuple formed of all the µ-ranks is the lowest k for which X ∈ Tk.

Storage complexity. In order to represent a tensor in Tk format, one only need to
store the core tensor of size O(

∏d
µ=1 kµ) and the basis vectors stored in matrices for each

dimension of size O(kµnµ. This yields a total storage complexity of

Nstorage(Tk) =
d∏

µ=1

kµ +
d∑

µ=1

kµnµ = O(kd + dkn) (2.2.9)

One can clearly see that the term O(kd) is very interesting if d is small since overhead
cost compared with Cr is limited. However if d grows above 5, it will become impossible
to use this format even if k remains small.
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Evaluation complexity. In order to evaluate a single entry of a tensor in tucker format,
one needs to compute the sum 2.2.6. Each term of the sum requires (d + 1) operations
which leads to the entry evaluation complexity complexity of

Nentry eval(Tk) = (d+ 1)
d∏

µ=1

kµ (2.2.10)

Then the overall complexity to evaluate the full tensor is in O((d+ 1)kdnd) which is very
costly. However this representation remains interesting since the evaluation of the tucker
rank only requires standard linear algebra tools and approximations of lower rank are
easily accessible through HOSVD. See sections 2.3.2 and 2.3.2.1.

2.2.4 Hierarchical Tucker format Hk

When dimension d gets above 5 to 10 the HT format becomes an efficient alternative to
the Tucker decomposition. It is based on the idea of recursively splitting the modes of the
tensor. The process results in a binary tree TD containing a subset t ⊂ D := {1, ..., d} at
each node e.g. figure 2.4.

The HT format is much more complex than the previous ones, then we need to intro-
duce some definitions proposed by Lars Grasedyck in [Gra10] and Jonas Ballani [Bal12].

Definition 2.2.3 (Dimension partition Tree). The tree TD is called a dimension partition
tree of D if

a. all vertices α ∈ TD are non-empty subset of D,

b. D is the root of TD,

c. every vertex α ∈ TD with #α ≥ 2 has two sons α1, α2 ∈ TD such that

α = α1 ∪ α2, α1 ∩ α2 6= ∅ (2.2.11)

The set of sons of alpha is denoted by S(α). If S(α) = ∅ , α is called a leaf. The set
of leaves is denoted by L(TD). The level number of a vertex is defined recursively as.

level(D) = 0, σ ∈ S(α)⇒ level(σ) = level(α) + 1 (2.2.12)

The set of all the vertices of a given level l is denoted T lD.
The depth of the tree is defined as

L = depth(TD) = max
α∈TD
{level(α)} (2.2.13)

Figure 2.4 displays the binary dimension partition tree of D = {1, ..., 5} which depth
is 3. A binary tree means that all non-leaf vertex has two sons.

Remark. As for the other formats, a description for general tensor spaces is available in
Hackbush’s book [Hac14] with similar properties that is useful when working in functional
spaces like H1. However for the sake of simplicity, we restrain ourselves to tensors of RI
and follow the original description of Hr format by Grasedyck [Gra10].

Definition 2.2.4 (Generalization of the Matricization [Gra10, Definition 3.3]). For a
mode cluster t in a dimension tree TI we define the complementary cluster t′ = D/t as

It = ×µ∈t Iµ, It′ = ×µ∈t′ Iµ (2.2.14)
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{1,2,3,4,5} 

{1,2} 

{1} {2} 

{3,4,5} 

{3} {4,5} 

{4} {5} 

Figure 2.4: Binary dimension partition tree of D = {1, ..., 5}

and the corresponding t-matricization as

Mt : RI −→ It × It′ , (Mt(X))(iµ)µ∈t,(iµ)µ∈t′ = X(i1,...,id) (2.2.15)

where the special case isM∅(X) =M{1,...,d}(X) = x. Thereafter, we use the short notation
X(t) =Mt(X).

Definition 2.2.5 (Hierarchical rank, [Gra10, Definition 3.4]). Let TI be a dimension tree.
The hierarchical rank (kt)t∈TI of a tensor X ∈ RI is defined by

∀t ∈ TI , kt = rank(X(t)) (2.2.16)

The set of all tensors of hierarchical rank (nodewise) at most (kt)t∈TI is denoted by

HT(kt) = H−Tucker((kt)t∈TI) = {X ∈ RI | ∀t ∈ TI : rank(X(t)) ≤ kt} (2.2.17)

Remark. From this point, it is possible to define a SVD at each node with respect to X(t).
However it is not clear yet why it makes sense to use such techniques. The next definitions
will reveal the connection with the nested representation.

Definition 2.2.6 (frame tree; t-frame, transfer tensor, [Gra10, Definition 3.5]). Let t
∈ TI be a mode cluster and (kt)t∈TI a family of nonnegative integers. We call a matrix
Ut ∈ RIt×kt a t-frame and a tuple (Us)s∈TI of frames a frame tree. A frame is called
orthogonal if the columns are orthonormal and a frame tree is called orthogonal if each
frame except the root frame is orthogonal. A frame tree is nested if for each interior node
cluster t with successors S(t) = {t1, t2} the following relation holds:

span{(Ut)i | 1 ≤ i ≤ kt} ⊂ span{(Ut1)i ⊗ (Ut2)j | 1 ≤ i ≤ kt1 , 1 ≤ j ≤ kt2} (2.2.18)

The corresponding tensor Bt ∈ Rkt×kt1×kt2 of coefficients for the representation of the
columns (Ut)i of Ut by the columns of Ut1 ,Ut2

(Ut)i =

kt1∑

j=1

kt2∑

l=1

(Bt)i,j,l(Ut1)j ⊗ (Ut2)l, (2.2.19)

is called the transfer tensor.
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For a nested frame tree it is sufficient to provide the transfer tensor (Bt) of all interior
node i.e. t ∈ I(TI) and the t-frames (Ut) for only for the leaf nodes t ∈ L(TI). So far, no
orthogonality condition has been imposed. One should not that the t-frames represent the
full tensor space of their mode cluster even if they are matrices i.e. they are t-matricization
of a #t mode tensor. For example, let t = {1, 2, 3} then U{1,2,3} has three “degrees
of freedom” and the root represent the full tensor in a t-frame which is equivalent to
a tensor. For a better understanding of this subtlety, the reader is advised to refer to
Ballani [Bal12] or Hackbush for a more detailed description [Hac14, Chapter 11]. Figure
2.5 shows the structure of the HT format that is defined next.

B1234     (1 × r12 × r34)

B12          (r12× r1× r2) 

 U1     (r1 × n1)  U2    (r2 × n2) 

B34   (r34 × r3× r4)  

 U3    (r3 × n3)  U4 (r4 × n4) 

Figure 2.5: Tree representation of the HT format of X ∈ Rn1×n2×n3×n4 . The size of the
matrices and tensors are inside blue braces.

Definition 2.2.7 (Hierarchical Tucker format Hk, [Gra10, Definition 3.6]). Let TI be a
dimension tree, (kt)t∈TI a family of non negative integers, and X ∈ H−Tucker((kt)t∈TI) =
Hk. Let (Ut)t∈TI be a nested frame tree with transfer tensors (Bt)t∈I(TI) and

∀t ∈ TI , image(X(t)) = image(Ut), X = U{1,...,d}. (2.2.20)

Then the representation ((Bt)t∈I(TI), (Ut)t∈TI) is a hierarchical Tucker representation
of X. The family (kt)t∈TI is the hierarchical representation rank. Note that the columns
of Ut need not be linear independent.

Remark. The HT representation of X ∈ Hk with orthogonal frames and a minimal kt is
unique up to orthogonal transformation of the t-frames.

Storage Complexity. The storage cost for X ∈ Hk is determined by the sum of all
leaves matrices of size (Ut)t∈I(TI) ∈ RIt×kt with all the transfer tensors (Bt)t∈I(TI) ∈
Rkt×kt1×kt2 . This leads to the following number of entries bound

Nstorage((Ut)t∈I(TI), (Bt)t∈I(TI)) ≤ k
d∑

µ=1

nµ + (d− 1)k3 ≤ kdn+ (d− 1)k3, (2.2.21)

where k = maxt∈TI kt and n = maxi∈D ni. This means that the storage cost is linear in the
dimension d provided that k is uniformly bounded and k � d. This allows applications
with large number of dimensions d.
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Evaluation Complexity. The computation of a single entry xi, i = {i1, ..., id} requires
to compute the recursive sum which is equation 2.2.19 entry-wise,

∀1 ≤ i ≤ kt, utm,i =

kt1∑

j=1

kt2∑

l=1

bti,j,l u
t1
mj u

t2
ml (2.2.22)

which means for each cluster node in the interior of the tree ktkt1kt2 and no cost on the
leafs. Then the evaluation complexity of a tensor entry in HT format is bound by

Nentry eval(HT ) ≤ (d− 1)k3 (2.2.23)

Then it is only linear in d and the cubic factor on k is not problematic as long as k remains
small. Moreover, as described in section 2.3.4, truncation techniques with error bounds
are available as well as hierarchical rank linear algebra routines. All things considered,
HT format and the associated decomposition is well suited to high dimensional tensor
reduction.

2.2.4.1 Tensor Train format

The tensor train format (TT) is a special case of hierarchical tensor formats which displays
some advantages. It was popularized by Oseledets et al. [OT09] followed by a substantial
series of paper that is condensed in [SO11]. This format was first presented as a product of
matrices that describes each element of the tensor which is why it is also known as matrix
product state (MPS) in the literature. Entry-wise, X ∈ RN is given by the following
product of matrices

xi1,...,id = G1(i1)G2(i2) · · ·Gd(id), Gµ ∈ Rkµ−1×kµ (2.2.24)

where k0 = kd = 1. For every mode µ and every index iµ the coefficients Gµ(iµ) are
matrices. There is no specific assumption on the orthogonality of the modes G(:)i,j, only
the construction of such representation may ensure it. The following definitions comes
naturally.

Definition 2.2.8 (TT-decompostion). Let Gµ ∈ Rkµ−1×nµ×kµ for all µ ∈ J1, d K a set
of order 3 tensors called TT-cores. Then the order d tensor X ∈ RN with TT-rank
r = {ki}di=0 (k0 = kd = 1) has the following TT decomposition

X =
k∑

α0,...,αd=1

G1(α0, i1, α1) · · ·G1(αd−1, id, αd) (2.2.25)

Additionally, the TT format can be seen as a special case of the HT format with a
linear structure. Here, all nodes have at least one son that is a leaf. One can see in Fig.
2.6 the link between HT and TT regarding the shape of the tree while Fig. 2.7 shows the
dimension tree associated with TT format.

Storage Complexity. It can be easily shown [GHN11] that the storage cost is

O(k2dn) (2.2.26)

where k = maxt∈TI kt and n = maxi∈D ni.
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Figure 2.6: A graph representation of TT (left) and HT (right) format highlighting their
similarities and differences.

{1,2,3,4,5} 

{1} 

{2} {3,4,5} 

{3} {4,5} 

{4} {5} 

{2,3,4,5}

Figure 2.7: “Recursive” dimension tree associated with the extended tensor train of a 5th
order tensor

Evaluation Complexity. In order to evaluate one entry of the tensor, one simply needs
to apply (2.2.24), which yields with the usual assumption on the rank and dimension of
X

Nentry eval(TT ) = (d− 1)k3 (2.2.27)

Remark. By construction, it is very easy (and cheap) to evaluate a single entry of a tensor.
Same goes with very efficient algorithm for numerical integration/contraction as given by
Oseledets [OT10].

Remark. Linear operations are straightforward to implement in TT format, including
multiplications with matrices, vectors, tensor products, Hadamard product. See [Ose11,
Sec. 4] for details and algorithms as it is out of the scope of this manuscript.

TT format possesses many of the required properties for tensor reduction:

• simple structure,

• easier to handle than HT,

• any tensor can be represented exactly,

• memory complexity that scales linearly with d,

• Straightforward multilinear algebra operations.
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However, the bases associated with each space do not appear explicitly. Indeed the long
fibers (middle dimension) of the cores span a vector space but do not form an orthonormal
basis (naturally). This is a problematic feature for physics related applications where one
usually want to manipulate modes directly whether it is for analysis or processing.

Consequently, TT format needs to be improved for our applications. The reader might
refer to the literature survey [GKT13] for a bibliographic overview and a theoretical
presentation of TT is given in [Hac14, Chap. 12]. In the next section, we introduce the
extended tensor train format as proposed by [OT09] which displays the same recursive
structures as TT while leaving direct access to the modes.

2.2.4.2 Extended TT format

The extended TT format (Ext-TT) blends together the recursive structure of TT (with all
associated procedures) while being written as a hierarchical tensor which leaves are mode
matrices. This structure is shown in Fig. 2.8 where the tuples indicates the dimensions
of each nodes. One can see that the linearity of the TT tree is preserved while the leaves
strictly account for one dimension. In terms of data structure, it leads to the tree shown
in Fig. 2.8. Here Bt can be seen as a frame (according to Hackbush’s terminology) or
in terms of representation, as a transfer tensor (third order) of dimension kt × kt1 × kt2
where kt is the hierarchical rank of node t as defined in 2.2.5 and kt1, kt2 the rank of the
sons of t. Ui are the mode matrices of size ni × ri where ni is the size of dimension k
while ri = ki. This allows to reorthogonalize and/or truncate a TT decomposition that
produces a basis that is orthonormal and optimal in terms on rank/storage ratio for the
same amount of information. Finally one can use the hierarchical evaluation formula to
build the full tensor

X =
∑

αi
(0 ≤i≤d)

∏

1≤ij≤rj
(0 ≤j≤d)

b
(j,αj−1,αj)
i

d⊗

j=1

u
(j)
ij

(2.2.28)

where b
(j,αj−1,αj)
i are column vectors (of size rj) of the transfer tensors. Entry-wise, it reads

X(i1, ..., id) =
∑

β1,...,βd

U(i1, β1) · · ·U(id, βd)
∑

α0,...,αd

B(α0, β1, α1) · · ·B(αd−1, βd, αd)

(2.2.29)
with α0 = αd = 1. It is easy to recover the TT-cores from eq. (2.2.25) by

Gk(αk−1, ik, αk) =
∑

βk

U(ik, βk)B(αk−1, βk, αk) (2.2.30)

Definition 2.2.9 (Extended-TT). Any tensor in TT format can be written in HT format
exactly using eq. (2.2.30), this format is called extended TT.

Storage cost A brief evaluation yields the following improved storage cost

O(drρ2 + drn) (2.2.31)

where ρ are the ranks of the original TT and r the (dimension-wise) rank of the ExtTT,
usually r ≤ ρ.
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B 1,2345

U 1 B2,345

U2 B3,45

B4,5U3

U4 U5

(1×k1×k2345)

(k2345×k2×k345)

(k345×k3×k45)

(k45×k4×k5)

(n5×k5)(n4×k4)

(n3×k3)

(n2×k2)

(n1×k1)

Figure 2.8: Tree representation of the arrays associated with a 5th order extended TT
tensor. Dimensions are given according to HT labeling, first and last dimensions of the
transfer tensor correspond to the TT ranks while the middle ones kj is the “dimension”
rank, expected to match the rank of the vector space spanned by the core tensors.

Table 2.1: Synoptic table of tensor formats

Format Brief Storage Evaluation

Full
Original data format. Exponential storage cost.

No evaluation cost. Only use as a temporary step O(nd) 0
toward more efficient formats.

Canonical
Linear storage cost. Easy writing/programming.

Satisfactory for any d though not the best. O(drn) O(dr)
The set Cr is not closed ⇒approximation issues.

Tucker
d exponential storage cost on rank.

Good for small d. The set Tk is closed. O(kd + dkn) O((d+ 1)kd)
Easy approximation with HOSVD.

Hierarchical

d linear storage cost. Efficient when d is big.

O((d− 1)k3)
The set HT k is closed. Cr,HT k ⊂ Tk. O(kdn

All previous algorithms available. +(d− 1)k3)
Complex writing/programming.

Train

d linear storage cost. Very efficient when d is big.

O(dk2n) O((d− 1)k3)
Subset of HT k.

All previous algorithms available + TTD.
Easy to use, conversion to Ext-TT.

2.2.5 Conclusion on tensor formats

Five tensor formats have been investigated so far, before entering the approximation of
tensor under these formats, a brief recap of their properties is proposed.

From table 2.1, it appears that data low rank reduction/approximation is compulsory
for d ≥ 3. Indeed storage cost in full format is intractable as is grows exponentially
with d. In the next section, approximation in low rank for the three other formats will be
investigated. From this section it is already clear that HT is the most versatile format since
it can represent exactly both Cr, Tk and TT. However it is the most complex in term of data
structure and algorithm. Then it will be restricted to high dimension where the efficiency
improvement justify to invest in advanced formats, more specifically, its crossover with TT
will be most suited to our applications when d grows larger than 4. Indeed the next section
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will show that CP decomposition is affected by several approximation issues. The Tucker
format is relatively easy to handle and the HOSVD is an efficient reduction technique.
For low values of d, the Tucker format should be the basic tool for tensor reduction.

2.3 Tensor decomposition

In this section, we finally tackle the approximation of tensors to reduced rank. This
allows huge storage savings as each of the presented formats separates dimensions thus
breaking the curse of dimensionality as long as the rank is kept small. In this section,
three decomposition methods are studied starting with canonical decomposition. Then
higher order SVD is used to compute truncated Tucker representations. Finally Tensor
train decomposition through SVD is described. Hierarchical decompositions are obtained
by reorganizing data in the other formats through algorithms that have been omitted
in this document. Indeed, it does not improve the decomposition properties, only the
storage cost is reduced. Thus due to the increased complexity, it was decided not to
study Hierarchical tucker decomposition, the reader is referred to [BG14, Gra10, KT13]
for additional information and implementations.

In order to describe decomposition techniques which are ways to approximate a tensor
into a particular format, it is necessary to first define what is a best approximation.

Definition 2.3.1 (best approximation). Let (V , ‖ · ‖) be a normed vector space and let
∅ 6= U ⊆ V. An element ubest ∈ U is called a best approximation of v ∈ V (with respect
to U if

‖v − ubest‖ ≤ ‖v − u‖ ∀u ∈ U

Remark. Theorem 2.1.3 ensures the existence of u best for any weakly closed reflexive
Banach vector space. Then one just need to verify these properties to ensure the existence
of a best approximation for a given tensor space.

2.3.1 CP decomposition

The idea of decomposing a tensor as a finite sum of rank one tensors was first expressed by
Hitchcock in 1927 [Hit27] which he called polyadic form. It finally became popular when
reintroduced by Caroll and Chang [CC70] in the form of CANDECOMP and Harshman
[Har70] as PARAFAC (parallel factors). Then the method CANDECOMP/PARAFAC is
referred as CP Decomposition but it can be found under other names such as polyadic
decomposition of Topographic components models.

The CP decomposition yields a tensor in the canonical format Cr.

Definition 2.3.2. The CP decomposition of a tensor X ∈ RI is to factorize it into a finite
sum of rank-one tensors i.e. it is an approximation of a tensor of RI in Cr. It means that
either of these problems have to be solved

a. Given ε > 0, find X̃ ∈ Cr with minimal r ∈ N∗ such that ‖X̃−X‖ ≤ ε.

b. Given r ∈ N, find X̃ ∈ Cr that minimizes the error ε = ‖X̃−X‖

Given that either of these problem has a solution the following identity is obtained

X ≈ X̃ =
r∑

i=1

d⊗

µ=1

x̃iµ (2.3.1)
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Remark. X̃ can be seen as the optimal projection of X on Cr.

Example 2.3.1 (3D case). Then we want to write the CP decomposition of X ∈ Rn1×n2×n3

a rank 3 tensor with R ∈ N+ terms

X ≈
R∑

r=1

ar ◦ br ◦ cr (2.3.2)

where ar ∈ Rn1 , br ∈ Rn2 and cr ∈ Rn3 . Alternatively, it can be written element-wise as

∀(i, j, k) ∈ J1, n1K× J1, n2K× J1, n3K, xijk ≈
R∑

r=1

airbjrckr

Figure 2.9 displays a visual of the CP decomposition where the rank one tensors are
represented directly as a product of vectors.

≈ + …  +

c1
cR

b1 bR

a1 aR

Figure 2.9: CP decomposition of third order tensor X ∈ RI×J×K .

The matrix A formed by the combination of vectors from the rank-one components
(the factor vectors) i.e. A = [a1 a2 · · · aR] likewise for each dimension. They are referred
as factor matrices. Then Kolda introduced the following concise notation for CP decom-
position

X ≈ JA,B,CK ≡
R∑

r=1

ar ◦ br ◦ cr

It is of practical interest to assume that the factor vectors are normalized to one and their
weights are stored into a vector λ ∈ RR so that

X ≈ Jλ;A,B,CK ≡
R∑

r=1

λr ar ◦ br ◦ cr (2.3.3)

Remark. There is no direct algorithm to compute the optimal CP decomposition of a
tensor, the problem is NP complex [HL96]. Although the uniqueness condition for rank
decomposition is weaker for tensors than for matrices (permutation and scaling are al-
lowed), it is often unique (e.g. [Har70]). Some criteria for uniqueness have been proposed
in the literature.
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2.3.1.1 Existence of a low rank approximation in Cr
Lemma 2.3.1 ( [Hac14, Remark 9.1] and [Bal12, Lemma 4.7] ). Problem (a) in definition
2.3.2 has a solution.

For a matrix, the best rank-k approximation is given by the k first factors of the
Singular Value Decomposition of that matrix (see 1.1). Then for d = 2 problem 2.3.2(b)
has a solution however statement becomes false for tensors of higher order.

A tensor is called degenerate if several rank-k approximation give the same arbitrary
approximation, in this case there is no best rank-k approximation. The best rank-k ap-
proximation may not be found sequentially, e.g. the best rank one approximation of X

may not be found in the best rank 2 approximation of X. Then all factors must be found
simultaneously to ensure optimality.

Lemma 2.3.2 (Special case C1). The set C1 is closed for all d ∈ N ∗.

Indeed T1,...,1 = C1 and Tk is closed for any k [Bal12, Lemma 4.20]. This means that
problem 2.3.2(b) has a solution in C1. However this is not true for higher ranks if d ≥ 3,
indeed it has been shown repeatedly [dSL08,KB09] that Cr is not closed in these conditions.
Ballani provides a nice view of the issue [Bal12, Lemma 4.15]. The literature provides
abundant examples of series of rank r tensors converging toward a rank r+ 1 tensor. This
is mainly due to severe cancellation effects.

Lemma 2.3.3. Given r ≥ 2 and d ≥ 3, the set Cr is not closed.

It means that in the general case, problem 2.3.2(b) does not necessarily have a solution,
theorem 2.1.3 hypotheses are not fulfilled. The occurrence of such tensors is not rare event,
see [KB09].
The next set is introduced in order to overcome these difficulties.

Lemma 2.3.4 ( [Bal12, Lemma 4.16] ). Let r ∈ N∗ and c > 0. The set

Ccr =

{
r∑

j=1

Xj : Xj ∈ C1(RI), ‖Xj‖ ≤ c, j = 1, ..., r

}
⊂ Cr(RI)

is closed.

Corollary 2.3.4.1. Let X ∈ RI. The following problem has a solution : Given r ∈ N and
c > 0, find a tensor X̃ ∈ Ccr that minimizes the error ε = ‖X̃−X‖.

Several algorithm ensure the boundedness of the norms of the terms Xj but the draw-
back is the existence of local minima which are usually not a problem in practical appli-
cations. Next section introduces a classical CP decomposition algorithm.

2.3.1.2 Computing the CP decomposition : the ALS algorithm

Although there are many approaches to compute a CP decomposition, in this section
we focus on the classical Alternating Least Square (ALS) approach. This method was
introduced by Carroll and Chang [CC70] and Harshman [Har70]. If not the most efficient
it is highly reliable and quite simple. To ease the presentation we stick to a third order
tensor although the algorithm can be easily extended to a d-way tensor.
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Let X ∈ RI×J×K a third order tensor. X̃, the best rank-R approximation of X is sought
i.e.

min
X̃

‖X− X̃‖ with X̃ = Jλ;A,B,CK ≡
R∑

r=1

λr ar ◦ br ◦ cr (2.3.4)

The ALS approach is to fix B and C to solve for A then fix A and C to solve for B
etc. until the procedure converges. Having fixed all but one matrices, the problem reduces
to a linear least-square problem which can be solved using the usual tools. Although this
algorithm is quite simple to implement and understand, it does not necessarily converges to
the global minimum of the objective function. Only a local minimum is ensured. Moreover,
it can take a large number of iteration to converge. Finally, its result may depend on the
arbitrary initial values (see Kolda [KB09] for a detailed algorithm).

Algorithm 7: ALS

input : F ∈ RI1×···×Id

output: X = w
⊗d

i=1 xi

Initialize ∀1 ≤ i ≤ d, xi ;
while Error ≥ ε do

for i = 1, d do
1 V = X1

ᵀX1 ∗ · · · ∗Xi−1
ᵀXi−1

ᵀ ∗Xi+1
ᵀXi+1 ∗ · · · ∗Xd

ᵀXd ; /* V ∈ RR×R

*/

2 Xi = F · (Xd � · · · �Xi+1 �Xi−1 � · · · �X1)V † ; /* † refer to the

Monroe-Penrose pseudo-inverse */

wi = ‖Xi‖2;

Xi = Xi

wi

return X = Jw;X1, · · · ,XdK

This algorithm led to many development but they are generally outperformed in the
production stage by several Tucker Decomposition methods such as the HOSVD (which
will be discussed later, see section 2.3.2.1). Finally, a link can be observed with the PGD
algorithm (see section 1.3 and 3.1) which also perform a minimization algorithm through
an iterative process.

It is possible to rewrite the CP format using vector spaces of unknown nature such
as infinite spaces. Still one needs to define storage on a computer the continuous bases
function for example. The case of function decomposition into CP format is studied in
section 3.1.

2.3.2 Tucker decomposition

Introduction to the Tucker Decomposition : A 3D example The Tucker decom-
position was first introduced by Tucker during the 1960s [Tuc66] and further refined. As
for the CP decomposition, the Tucker Decomposition has been “rediscovered” many times
in several fields leading to several names (HOSVD [DDV00, dLdMV00], N-Modes PCA,
etc.). It is an extension of the SVD to higher dimensions. A tensor is decomposed into a
core tensor that is multiplied by a matrix along each mode.
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Once again, the case of a third order tensor is proposed for introduction simplicity.
But, the Tucker decomposition is well defined for dimensions higher than 3. Figure 2.10
shows a graphical interpretation of the following equation for X ∈ RI×J×K ,

X ≈ JW;A,B,CK =
P∑

p=1

Q∑

q=1

R∑

r=1

wpqr ap ◦ bq ◦ cr (2.3.5)

Where A ∈ RI×P , B ∈ RJ×Q and C ∈ RK×R are the factor matrices. There are
usually set orthonormal and can be viewed as the principal components of each modes.
W ∈ RP×Q×R is the core tensor. If I < P , J < Q and K < R then it can be seen as the
compression of X given the basis formed by A,B and C.

Element wise, the tucker decomposition in 2.3.5 is ∀(i, j, k) ∈ J1, IK× J1, JK× J1, KK,

xijk =
P∑

p=1

Q∑

q=1

R∑

r=1

wpqr aip bjq ckr

Figure 2.10: Tucker Decomposition of a third order array T

It is easy to find the exact decomposition of a rank-(R1, ..., RD) tensor (see def. 2.1.8)
as presented in the next subsection. However, if one wants to compute a rank-(R1, ..., RD)
Tucker decomposition of a tensor where ∃ n ≤ D | Rn < rankn(X) then this decomposi-
tion is necessarily inexact which may raise some computational difficulties. Since such a
decomposition exclude some eigen vectors, it is called a truncated Tucker decomposition,
a visual example is shown in figure 2.11.

B

C

≈X
A

B

C

A

W

Figure 2.11: Truncated Tucker Decomposition of a third order array X
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It should be noted that there are many ways to compute truncated tucker decom-
positions, among them various ALS based methods and the Higher Order Orthogonal
Iteration (HOOI) proposed by De Lathauwer et al. [dLdMV00] which yields some opti-
mality properties. Finally, the most common method, because it is computationally the
most efficient, is the Higher Order Singular Value Decomposition (HOSVD) which was
introduced by De Lathauwer et al in 2000 [DDV00]. It was then extensively studied and
improved as in [VVM12] with the Sequentially Truncated HOSVD.

From the Tucker Format to the Tucker Decomposition (HOSVD) In this para-
graph, some mathematical properties of the Tucker decomposition are reviewed. They lead
to the classical tensor Tucker format reduction technique Higher Order Singular Value De-
composition (HOSVD) which is presented in two forms. The first one was proposed by
De Lathauwer et al in 2000 [DDV00] and the second one is a 2012 improvement from Van
Nieuwenhoven [VVM12], the Sequentially Truncated HOSVD.

Definition 2.3.3. The Tucker decomposition of a tensor X ∈ RI is to find an approxi-
mation of a tensor of RI in Tk. It means that either of these problems have to be solved

a. Given ε > 0, find X̃ ∈ Tk with minimal Nstorage(Tk) such that ‖X̃−X‖ ≤ ε.

b. Given k ∈ (N∗)d, find X̃ ∈ Tk that minimises the error ε = ‖X̃−X‖.
Given that either of these problem has a solution the following identity is obtained

X ≈ X̃ =

k1∑

j1=1

· · ·
kd∑

jd=1

wj

d⊗

µ=1

x̃iµ (2.3.6)

Lemma 2.3.5. Problem (a) has a solution.

Lemma 2.3.6. Let k = (k1, ..., kd) ∈ (N∗)d. The set Tk ⊂ RI is closed. Consequently
Problem (b) has a solution.

Since the Tucker format is closely related to the matricization of tensors. Then the
idea of using the SVD (see 1.1) on matricizations of the investigated tensor has been
used to devise algorithm to give an approximate solution to problems 2.3.3(a) and (b).
For most applications, it is not necessary to find the best approximation, an almost best
approximation is sufficient. A common tool to perform this task is the Higher Order
Singular Value Decomposition (HOSVD) introduced by De Lathauwer in [DDV00].

2.3.2.1 HOSVD

Theorem 2.3.7 (HOSVD as proved in [DDV00] by De Lathauwer et al.). Every tensor
X ∈ RI admits a higher-order singular value decomposition:

X = (U1,U2, ...,Ud) ·W, (2.3.7)

where the factor matrix Uµ is an orthogonal nµ × nµ matrix, obtained from the SVD
of the mode-µ matricization of X,

X(µ) = UµΣµVµ
ᵀ, (2.3.8)

and the core tensor W ∈ Rn1×···×nd can be obtained from

W = (U1
ᵀ,U2

ᵀ, ...,Ud
ᵀ) ·X, (2.3.9)
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Remark (Truncation). Theorem 2.3.7 refers to full HOSVD which is an exact Tucker
decomposition. However it gives a lot of information about a studied tensor such as the
multilinear rank, it is rarely the pursued goal. This kind of decomposition is aimed at
extracting the most relevant information, possibly by reducing data size. The optimality
of the SVD truncation encourages to think of truncating (Uµ). This is what is done is the
Truncated-HOSVD (T-HOSVD) which is generally referred as HOSVD. However in this
section the T-HOSVD notation will be used in order to prevent confusion.

Algorithm idea. The T-HOSVD algorithm relies on the simple truncation idea. First
compute (Uµ) defined in equation (2.3.8) in each direction, then truncate to a given
rank/column (set prior to computing). Finally compute Wt, the truncated core tensor
projecting X on the reduced basis (U t

µ) as in equation (2.3.9).
Of course the truncation of the SVD does not mean that the 2D optimality is preserved.

Optimality is not the goal of most applications and this algorithm is easy to use then a
quasi-optimality is sufficient. The quasi-optimality with respect to the optimal rank-k
approximation is given by the following theorem.

Theorem 2.3.8 (Quasi-optimality of the T-HOSVD [DDV00, Property 10]). Let X ∈ RI
with a µ-rank r = (r1, ..., rd) ∈ Nd. Given k = (k1, ..., kn) ∈ Nd, let Xbest be the best
approximation of X in Tk i.e. Xbest = argminY∈Tk‖X − Y‖2. Then the error of HOSVD
projection is bounded by

‖X−Xhosvd‖2 ≤

√√√√
d∑

µ=1

rµ∑

j=kµ+1

σ2
µ,j ≤

√
d ‖X−Xbest‖2 (2.3.10)

where the σµ,j are the singular values defined in equation (2.3.8).

The approximation error of HOSVD is bounded by the middle term in equation

(2.3.10), namely
√∑d

µ=1

∑rµ
j=kµ+1 σ

2
µ,j. Forcing this term to be lower than a given ε leads

to an adaptively truncated HOSVD for which an error bound is chosen.
Algorithm 8 presents the truncated HOSVD algorithm that computes X ∈ Tk of rank

k the approximation of F ∈ Rn1×···×nd . It is a rather compact algorithm given that one
has efficient methods to compute basic tensor operations. The implementation simplicity
of the algorithm is one of the main reason of its success.

Algorithm 8: T-HOSVD

input : X ∈ Rn1×···×nd , imposed rank : k = (k1, ..., kd)

output: X̃ = (U1, · · · ,Ud) ·W
for i = 1, d do

1 X(µ) =matricize(F, µ) ;

2 (Uµ,Σµ,Vµ
ᵀ)=SVD(X(µ)) ;

W = ((U k1
1 )

ᵀ
, (U k2

2 )
ᵀ
, ..., (U kd

d )
ᵀ
) ·X;

/* U ki
i contains the first ki columns of Ui */

return X̃ = JW;U1, · · · ,UdK

Remark. This algorithm is easily parallelized to the number of dimension (lines 1 and
2), each processor computing an SVD. Additionally, it is possible to reach higher level of
parallelization using parallel linear algebra routines.
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Operation count In order to simplify the computations, the case of an order d cubic
tensor is investigated, e.g. I = n×· · ·×n. This tensor is approximated by a rank (r, ..., r)
Truncated HOSVD. Then in every mode of the tensor the SVD of a n × nd−1 matrix is
computed plus computing a core tensor which means d matrix multiplications. Thus the
operation count is

O
(
dnd+1 +

d∑

k=1

rknd−k+1

)
(2.3.11)

In order to ease comparison with the following subsection, it should be noted that
the T-HOSVD can be seen as a series of orthogonal projections onto the tensor basis
(U k1

1 , ...,U kd
d ). Then we define

Xhosvd = π1π2 · · · πdX = (U k1
1 U

k1
1

ᵀ
, ...,U kd

d U
kd
d

ᵀ
)X ≈ X (2.3.12)

where πi = (I, ..., I,U ki
i U

ki
i

ᵀ
, I, ..., I) is the projector onto mode i.

Continuous equivalent. The T-HOSVD was presented for tensors, however it was seen
in section 1 that SVD and POD are closely related and may be considered equivalent.
Then it is easy to adapt this algorithm to a multivariate square integrable function. One
has to replace SVD with POD and discrete scalar products by integrals one.

2.3.2.2 ST-HOSVD

The Sequentially Truncated HOSVD (ST-HOSVD) was introduced by Vanniewenhoven
et al. [VVM12]. This method is a variation of the usual T-HOSVD. Basically, instead
of throwing away most of the work performed by each SVD as shown in figure 2.12, it
is chosen to keep that information and perform SVD sequentially -on a reduced tensor-
along all dimensions. The divergence of these approaches is highlighted in figure 2.13.
Since processing is sequential and the order in which the operations are performed has an
influence on the approximation, the sequence order is stored in a vector p. For the sake
of simplicity, it is assumed that p = (1, 2, ..., d) even though many of the results depend
on the permutations of p.

The ST-HOSVD has been presented using successive projections. In this framework it
is easy to both understand the idea of the method and to demonstrate its properties.

Definition 2.3.4 (Orthogonal multilinear projector). An orthogonal projector is a linear
transformation P that projects a vector x ∈ Rn onto a vector space E ⊆ Rn such that
the residual x− Px is orthogonal to E. Such a projector can always be represented as in
matrix form P = UU ᵀ given that the columns of U form an orthonormal basis of E.

Then Silva and Lim [dSL08] proposed the introduction of orthogonal multilinear pro-
jectors from tensor space V = V1 ⊗ · · · ⊗ Vd onto U = U1 ⊗ · · · ⊗ Ud ⊂ V. It is given by

πiX := (I, ..., I,UiUi
ᵀ, I, ..., I) ·X with X ∈ V = RI (2.3.13)

Definition 2.3.5. ST-HOSVD [VVM12, Def. 6.1.]
A rank-(r1, ..., rd) sequentially truncated higher-order singular value decomposition (ST-
HOSVD) of a tensor X ∈ RI, corresponding to the processing order p = [1, 2, ..., d], is an
approximation of the form

X̂p := (Û1, Û2, ..., Ûd) · Ŵ ≈ X ∈ Rn1×···×nd (2.3.14)

whose truncated core tensor is defined as

Ŵ := (Û ᵀ
1 , Û

ᵀ
2 , ..., Û

ᵀ
d ) ·X ∈ Rr1×···×rd (2.3.15)
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Figure 2.12: A visual of the truncated HOSVD, it shows that the approximation Ă is
defined simultaneously for each direction through least square approximation. Figure from
[VVM12].

Figure 2.13: A visual of the sequentially truncated HOSVD with the same axis as figure

2.12. Here each approximated tensor Ŝ
i

is performed on one dimension then a new tensor

Ŝ
i+1

is processed on the next direction. Processing order is (3,2,1). Figure from [VVM12].

and every factor matrix Û ᵀ
i ∈ Rni×ri has orthonormal columns. In terms of orthogonal

multilinear projectors, one writes

X̂p := π̂1π̂2 · · · π̂dX = (Û1Û
ᵀ
1 , Û2Û

ᵀ
2 , ..., ÛdÛ

ᵀ
d ) ·X

The i-th partially truncated core tensor is defined as

Ŵ
i

:= (Û ᵀ
1 , Û

ᵀ
2 , ..., Û

ᵀ
i , I, ..., I) ·X ∈ Rr1×···×ri×ni+1×···×nd (2.3.16)

with Ŵ
0

:= X and Ŵd = Ŵ. The rank-(r1, ..., ri, ni+1, ..., nd) partial approximation to to
X is defined as

X̂
i

= (Û1, Û2, ..., Ûi, I, ..., I) · Ŵi ∈ Rn1×···×nd

with X̂
0

= X and X̂
0

= X̂.
The factor matrix Ûi, 1 ≤ i ≤ d, is the matrix of the ri dominant left singular vectors

of the mode-i vector space of Ŵ
i−1

. It is obtained from the rank ri truncated singular value
decomposition of the (i− 1)th partially truncated core tensor, as follows:

Ŵ
i−1

(i) = UiΣiVi
ᵀ

where Ui = [Ûi Ũi].

The hat projector π̂i is defined recursively contrary to T-HOSVD. Indeed, the defini-

tion of the i+ 1 projector is optimal for the partially approximated tensor X̂
i
. This leads

to strongly improved performance if ri is small. However, as stated earlier, the processing
order is very importante since it changes both the approximation and projectors. The
ST-HOSVD algorithm is given next.
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Algorithm 9: ST-HOSVD

input : F ∈ Rn1×···×nd , truncation rank r, processing order p
output: X̂ = (X̂1, ..., X̂d) · Ŵ
Ŵ = F ;
for i = p1, ..., pd do

/* Compute SVD of Ŵ(i) then truncate to ri */

1 (U ,Σ,V ᵀ) = SVD(Ŵ(i)) ;
2 (Utr,Σtr,V

ᵀ
tr) = trunctate(U ,Σ,V ᵀ, ri);

3 X̂i = Utr ;

4 Ŵ(i) = ΣtrV
ᵀ
tr ;

return X = JŴ; X̂1, ..., X̂dK

It is possible to use a compact SVD which only yields the truncated SVD. This improve
memory efficiency as well as computing speed, especially if the multilinear rank is small.
A visual of algorithm 9 is given in figure 2.13. One can see that the approximated tensor
reduces after each truncated SVD finally reaching its final shape after the last dimension
has been reduced. It is interesting to note that if the gray area is large, the next tensor
size can be much smaller than the original tensor (see figure 2.12). Thus the SVD will be
much faster than its T-HOSVD counterpart.

Remark. The processing order has been reported to influence greatly the computing time
in addition to the obvious influence on the approximation itself. [VVM12] proposed a
heuristic that attempts to minimize the number of operations required to compute the
dominant subspace. Then one should first process the dimension with lowest size and so
on. This may even reduced the rank of the remaining terms, i.e. “forcing more energy into
fewer modes”. However choosing a processing order that minimizes the error is still an
open question.

Error estimate. For a given multilinear rank, both ST and T-HOSVD approximations
satisfy the same error bounds. However, usually, ST-HOSVD performs better in term of
actual approximation error (see [VVM12] section 7).

Theorem 2.3.9 (error bound ST-HOSVD, [VVM12, Theorem 6.5] ). Let X ∈ RI a

tensor and X̂ be the rank- (r1, ..., rd) ST-HOSVD of X. Let the SVD of X(i) be given as
in (2.3.8). Then the bounds of the ST-HOSVD are

min
i
‖Σ̃i‖2

F ≤ ‖X− X̂‖2
F ≤

d∑

k=1

‖Σ̃i‖2
F (2.3.17)

where Σ̃ is the discarded part of Σ obtained from the SVD.

Operation count. The main goal of this method is to cut-off the operation count
that was observed in the T-HOSVD. Again this estimate is restricted to cubic order-d
tensors in Rn×···×n as it is straightforward to generalize to general shapes. This tensor
is approximated by a rank (r, ..., r) ST-HOSVD. Assume that the SVD algorithm on a
m× n matrix operation count is O(m2n). Then in every mode of the tensor the SVD of
a n × ri−1nd−i matrix is computed plus computing a core tensor which means d matrix
multiplications. Thus the operation count is

O
(

d∑

i=1

ri−1nd−i+2 +
d∑

i=1

rind−i
)

(2.3.18)
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The second term in the sum is due to the scaling of the right singular vectors with the
singular values.

In this section on computing the Tucker decomposition of a tensor, 2 methods were
investigated. Both satisfy the same error bounds. On the one hand, the T-HOSVD is
straightforward to implement and allows easy parallelized implementation for low num-
ber of CPU. Analysis is also relatively easy and the processing order has no influence
on the approximation. On the other hand the ST-HOSVD is inherently sequential which
means that processing order changes both the operation count and the approximation.
This leads to analysis complexity and rises the question of an optimal processing order.
However, the operation count and approximation error are overwhelmingly lower com-
pared to T-HOSVD according to Vannieuwenhoven et al. This should be confirmed in the
numerical experiments section.

As a conclusion, if the problem is large and the tensor has large differences in the di-
rections length, the ST-HOSVD should be preferred to compute truncated Tucker decom-
position. Indeed the advantages overcome by large margin the implementation increased
complexity.

2.3.3 Tensor Train decomposition

Tensor Train format has been discussed in section 2.2.4.1, it is specially recommanded for
larger dimensions as it scales linearly with d. Moreover, numerous theorems and algorithms
have been proposed in the literature, most importantly one may rely on the following set:

• existence of the full-rank approximation (2.2.8, [Ose11, Th. 2.1]),

• existence of the low-rank best approximation (2.3.10),

• TT-SVD algorithm for quasi optimal TT approximation (Algorithm 10),

• sampling algorithms (TT-cross [OT10], TT-DMRG-cross [Ose13], maxvol [OT10],...).

In this section, we go through the decomposition properties and briefly outline the sam-
pling algorithms.

2.3.3.1 TT-SVD

As we have seen in the previous sections, SVD is a very efficient tool to decompose
tensors, it turns out that TT decomposition is well suited rely on SVD too with the
help of the generalized matricization from definition 2.2.4. Using the reduced notation
X(µ∗) = X(i1...iµ; iµ+1...id), from [OT10] we have the following property that enables the
decomposition.

Theorem 2.3.10. For any tensor X ∈ RI there exists a TT approximation T ∈ RI with
compression rank rµ = rank(X(µ∗)) such that

||X− T||F ≤

√√√√
d−1∑

µ=1

ε2
µ (2.3.19)

where ε2
µ is the distance (in Frobenius norm) from X(µ∗) to its best rank-rµ approximation:

ε2
µ = min

rankB≤rµ
||X(µ∗) −B||F (2.3.20)
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Proof. The detailed proof is available in [OT10], here an adapted version is provided as
it is constructive of the TT-SVD algorithm.

First, consider the case d = 2. The TT decomposition of Z reads

Z(i1, i2) =

r1∑

α1=1

G1(i1, α1)G2(α1, i2) (2.3.21)

and coincides with the dyadic decomposition of matrix Z. As shown in section 1.1, such an
expression can be obtained optimally using truncated SVD at rank r1 which is associated
with truncation error ε1.

By induction, the same is true for X(1) the 1-matricization of X an order d tensor.

X(1) = [X(i1; i2...id)] = UΣV ᵀ (2.3.22)

Let Y1 = U1Σ̃Ṽ ᵀ be the (best) r1-rank approximation of X(1) by truncated SVD i.e.

X(1) = Y1 +E1 (2.3.23)

where ||E1||F = ε1. Of course, Y1 can be considered as a tensor Y = [Y (i1, ..., id)]. Then
the approximation problem of X reduces to the one for Y. Y being the best r1-rank
approximation any tensor T with T (1) = U1W has a nil projection on E1. It implies the
following equality

||(X− Y) + (Y− T)||F = ||X− Y||F + ||Y− T||F (2.3.24)

So far the dimensionality of Y has not been reduced, to do so one can rewrite Y (1)

such that element-wise it reads

Y (i1; i2, ..., id) =

r1∑

α1=1

U1(i1;α1)X̃(α1; i2..., id)

where X̃ = Σ̃V1. Then, the concatenation of indices α1 and i2 into one long index leads
to the following order (d− 1) tensor

X̃ = [X̃(α1i2, i3, ..., id)]

By induction, X̃ admits a TT approximation T̃ = [T̃ (α1i2, i3, ..., id)] of the form

T̃ (α1i2, i3, ..., id) =
∑

α2,...,αd−1

G2(α1i2, α2)G3(α2, i3, α3) · · ·Gd(αd−1, id)

Such that

||X̃− T̃||F ≤

√√√√
d∑

k=2

ε̃2
k

with ε̃2
k = minrank(C)≤rµ ||X̃(µ∗) − C||F .

Now let us set G1(i1, α1) = U1(i1, α1), separate indices α1 and i2 from the long index
α1i2 and define T by the following tensor train:

T (i1, i2, ..., id) =
∑

α1,...,αd−1

G1(i1, α1)G2(α1, i2, α2) · · ·Gd(αd−1, id)

The rest of the demonstration consists in estimating ||X−T||F through evaluations of the
approximation error between ||X̃− T̃||F which bounds the former. Details in [OT10].
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Corollary 2.3.10.1. 2.1 [OT10] If a tensor X admits a canonical approximation rank
R and accuracy ε, then there exists a tensor train approximation with compression ranks
rk ≤ R and accuracy

√
d− 1ε.

Corollary 2.3.10.2. 2.2 [OT10] Given a tensor X, denote by ε = infY ||X − Y||F the
infimum of distances between X and tensor train Y with prescribed upper bounds rµ on the
ranks of unfoldings matrices (compression ranks), i.e. rankY (µ) ≤ rµ. Then the optimal
Y exists (in a fact a minimum) and the TT approximation T constructed in the proof of
Theorem 2.3.10 is quasi-optimal in the sense that

||X− T||F ≤
√
d− 1ε. (2.3.25)

It is then natural to propose the TT-SVD [Ose11] algorithm for the approximation of a
full format tensor into TT format.

Algorithm 10: TT-SVD

input : F ∈ Rn1×···×nd , truncation rank r or prescribed error ε
output: X(i1, ..., id) =

∑r
α0,...,αd=1G1(α0, i1, α1) · · ·G1(αd−1, id, αd)

1 Compute the truncation parameter δ = ε√
d−1
||F||F ;

2 Temporary tensor: C = A, r0 = 1 ;
for i = 1, ..., d do

/* reshape(C, ri−1ni,
numel(C)
ri−1ni

) */

3 C = C(i∗);
/* truncated SVD at given rank ri */

4 UΣV ᵀ = tSVD(C, rk, δ) ;
5 Gi = reshape(U , [ri−1, ni, ri]) ;
6 C = ΣV ᵀ ;

7 Gd = C;
return X = JG1,G2, ...GdK

Remark. In addition to the linear algebra algorithms mentioned in section 2.2.4.1, many
algorihtms have been developed to convert from canonical [Ose11], Tucker or HT to TT,
for instance, one can refer to [Hac14, Chap. 12 & 13]. Also, one may need to recompress an
existing TT tensor (for example after summing two TT tensors), to do so Oseledets pro-
poses the TT-rounding algorithm [Ose11] based on a combination of QR decompositions
and SVD.

Actually this algorithm relies on the same methodology as the ST-HOSVD but stores
the results in the cores thus leading to TT format. As stated earlier, this leads to a linear
storage cost in d which is much more efficient that Tucker format. In addition to that,
the weights of the entries are stored in the last mode/core Gd = Gd and modes relations
are store within the cores themselves without requiring a single core tensor.

2.3.3.2 Sampling algorithms for high dimensional TT

This kind of algorithm is very well suited to analyze data from existing simulations
in the context of fluid dynamics. However, if the dimensions of the studied problem
grows above 5 it becomes intractable to either store the data or solve the SVD prob-
lem. In order to circumvent this difficulty, one might rely on family of methods that
will be referred as sampling algorithms. They come under many names including maxvol

for matrices skeleton decomposition or TT-cross, TT-DMRG-cross,.... Obviously this
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can be done in many formats, included the also well suited HT format (see BlackBox

algorithm [BGK10]). A short overview is proposed, many more can be found in the
literature, including in [Ose11,OT10,Ose13].

The idea here is quite simple, given a suitable technique,

Find an approximation of tensor X with as few evaluation as possible for a precision ε.

the tensor does not need to be known fully, only an access to its entries is needed, for
instance a blackbox function.

Skeleton decomposition This is the building block of all sampling algorithms meth-
ods. One wants to obtain the following dyadic decomposition of a matrix2.

Definition 2.3.6 (Skeleton decomposition). Let a matrix A ∈ Rn×m and sets of indices
I = (i1, ..., ir) ∈ {1, ..., n} and J = (j1, ..., ir) ∈ {1, ...,m}. Then the skeleton decomposi-
tion of A reads

A ≈ A(I, :)A(I,J )−1A(:,J ) (2.3.26)

where A(I, :) is the matrix extracted from A rows which indices are described by I, other
submatrices are defined in the same fashion.

There are many ways to compute an approximation3, including the famous cross ap-
proximation method (see [Tyr00]), one will find alternatively the row/column and itera-
tively the entries that yields the lowest residual. A very efficient, although not optimal,
algorithm for tensor approximation using skeleton decomposition is the maxvol proce-
dure [Tyr00, SO11, OT10]. This volume maximization entry selection strategy aims at
maximmizing |det(A(I,J ))|, i.e. finding the maximum volume submatrix. It is well suited
for TT approximation algorithms and computationally inexpensive, requiring 2c(n− r)r,
where c is usually a small constant.

TT-DMRG-cross [SO11, Algorithm 1: TT-RC] To the best of my knowledge, this
method is the state of the art to perform TT decomposition in large dimension. In addi-
tion to the maxvol and cross procedure, it introduces the matrix renormalization group
(DMRG) procedure, which makes the method rank revealing4. The idea here is to introduce
temporary cores Wk(ik, ik+1) = Gk(ik)Gk+1(ik+1) so that the optimization is performed
two terms at a time, using maxvol for instance. Then the modes are separated through
SVD.

One major drawback of TT decomposition is that by constructions the 2-fibers of {Gi}
are not necessarily orthogonal, this property is only ensure by block. Several solutions
are possible to overcome it, mainly based on reorthogonalization process (usually QR
algorithms) but again only left or right5 orthogonality can be ensured for a given tensor
train. Thus, in section 2.3.4 we investigate the HT decomposition methods, especially the
orthogonalization process and conversion of TT to ExtTT format. This allows to access
the basis directly for physical analysis as well as slightly lower storage cost. Indeed the
cardinality or the vector spaces spanned by {Gi} is expected to be lower than the number
of fibers stored.

2Skeleton decomposition is also known as matrix cross approximation.
3The problem of finding the optimal submatrix is NP-hard [ÇMi09]
4On the other hand, TT-cross algorithm needs a predetermined rank which may lead to a poor

approximation or overestimated rank
5See [SO11] for details, basically with respect to the 1 and 3-matricization of the core tensors. “Note

the cores can not be both left and right orthogonal.” [SO11]



2.3. TENSOR DECOMPOSITION 75

2.3.4 Hierarchical Tucker decomposition

Hierarchical Tucker decomposition is a growing topic in the tensor decomposition commu-
nity [GKT13,BGK10,BG14,KT13]. It has been shown to be very efficient to tackle large
datasets [Gra10,HK09,BGK10] since it can be viewed as a “specialization of Tucker for-
mat” for large number of dimensions. As seen in the tensor format section (2.2), efficient
strategies have been developed to convert other formats into HT (see [Hac14]) as well as
truncation (leaf to root and root to leaf) and orthonormalization strategies proposed by
Grasedyck [Gra10]. These algorithms have already been implemented in publicly avail-
able libraries including D. Kressner and C. Tobler htucker MATLAB library [KT13].
It has also been shown that HT decomposition is very well suited for sampling algo-
rithms, one such example is the Black Box algorithm proposed by Ballany, Grasedyck
and Kluge in [BGK10]. We will see in the numerics chapter (4) that it was chosen not to
use MATLAB for implementing these methods. As a consequence of that choice and the
elements exposed above, it was chosen not to study further hierarchical decomposition in
this manuscript, for additional information, the reader can refer the above references.

Conclusion

In this chapter, the mathematical background of tensors and their decomposition was
presented. Specifically, general notion on tensor spaces and tensor calculus have been ex-
tracted from the literature in order to introduce tensor formats. For the sake of simplicity,
this chapter is limited to the case of d-way array but most of the results are applicable
in general (see [Hac14]). These formats (canonical, Tucker, tensor train and hierarchical
tensor) present a “nested” structure with specific properties and interest regarding storage
as summarized in table 2.1 at the end of section 2.2. Tucker format contains the canonical
format while proposing a better structure for approximation. Indeed, CP decomposition
computes sequentially suboptimal approximation while tucker decompositions (T-HOSVD
and ST-HOSVD) provide quasi-optimal decompositions. Finally, section 2.3 proposes a
simple algorithm for large number of dimensions with the TT decomposition method.
Each of these approximation technique was given with detailed algorithm that will be
tested in chapter 4. In the next chapter, in order to integrate properly data from CFD
simulation, the decomposition of multivariate functions (possibly vectorial) is studied.
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In this chapter, the multivariate data decomposition problem is addressed i.e. the fo-
cus is given on methods that apply in the continuous/functional framework. It is actually
the continuation of previous chapter. Indeed, as already d-way array decomposition can
easily be used on data corresponding to a function evaluated at grid points. With some
manipulation such as flattening, vectorial functions can also be treated. However such
techniques do not offer correlation among different elements of the output field. For in-
stance, there is no control on how two elements of the velocity field in CFD applications
are correlated. This is why the introduction of scalar product more subtle than vector
dot product is desirable. Continuous methods allow such control on the scalar product as
discussed for POD and PGD in chapter 1. Additionally, it allows to take advantage of non-
uniform meshing (few points in regular regions of the studied domain) while attributing
proportionate weight to each evaluation.

Consequently in this chapter we will focus on two families of multivariate decomposi-
tion methods. The first one has been specifically developed in the context of multivariate
functions and then discretized while the second family is a mere conversion to the contin-
uous framework of d-way array tensors. The first section will present the multiparameter
version of PGD which was already discussed in the bivariate chapter 1. Then the Recursive
POD (R-POD) [ABR16], an extension of the POD to multivariate functions is described.
In the third section, the continuous equivalent of the decomposition methods presented
in chapter 2 are studied.
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3.1 Proper Generalized Decomposition

In this section we present the PGD for d parameter functions both for a priori and a
posteriori model reduction. The first section present the theoretical justification of this
class of methods. The second section focuses on the algorithm proposed by Chinesta
which is the only PGD implemented so far. Finally, in subsection 3.1.3, a brief overview
of the link with the CP decomposition is proposed and some conclusion about this kind
of methods are drawn.

3.1.1 Theoretical background of the PGD

The PGD seen as an error minimization algorithm. The general setting of weak
formulation in an Hilbert space is used in this demonstration as it is in most presentation
of the PGD.

On V an Hilbert space, we define the following abstract formulation

u ∈ V, A(u, v) = L(v) ∀v ∈ V (3.1.1)

Where A is a bilinear form on V and L is a linear form on V . V = V1 ⊗ · · · ⊗ Vd is a
tensor product of Hilbert spaces provided with a scalar product and its associated norm.
S1 the set of rank-one tensors is introduced

S1 = {z = w1 ⊗ · · · ⊗ wd ; wk ∈ Vk, k ∈ {1, ..., d}} (3.1.2)

as well as Sm the set of rank-m tensors

Sm = {v =
m∑

i=1

zi ; zi ∈ S1, i ∈ {1, ...,m}} (3.1.3)

The naive problem of finding an optimal representation um ∈ Sm of a given element u ∈ V
is not trivial and has been extensively studied. As stated in section 2.3.1, the problem
is even ill posed for d ≥ 3. Then one must add suitable constraints like orthogonality or
boundedness to define a suitable optimization problem on Sm. In the context of PGD, the
orthogonality is chosen in addition to normalizing all modes save one dimension.

For a posteriori processing, we have

A(u, v) =

∫

Ω

uv dµ (3.1.4)

L(v) =

∫

Ω

fv dµ (3.1.5)

Introducing these notations might seem cumbersome, however it ease a lot the use of more
complex functionals as long as they verify the same properties. Now a short version of the
rigorous analysis of the progressive PGD proposed by Falcó in [FN12, FHMM13]. In the
following all the assumed properties are easily verified for A the scalar product operator
and L a scalar product against f as defined in equations (3.1.4) and (3.1.5).

It is assumed that A is bounded and coercive. Then equation 3.1.1 is project on VN
an N-dimensional subspace of V which the classical way of Galerkin methods.

u ∈ VN , A(u, v) = L(v) ∀v ∈ VN (3.1.6)
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Thanks to Riesz representation theorem, A : V −→ V the operator associated to A is
introduced

A(u, v) = 〈Au, v〉 (3.1.7)

and f ∈ V associated with L
L(v) = 〈f, v〉 (3.1.8)

Then the problem (3.1.6) can be rewritten in an operator form

Au = f (3.1.9)

It is further assumed that ∀v ∈ V, ∃c > 0 such that ‖Av‖ ≥ C‖v‖ . From the properties
of A and its adjoint A?, AA? is a self adjoint continuous and V -elliptic operator. Con-
sequently it defines an inner product on V denoted 〈·, ·〉AA? = 〈A·, A·〉 whose associated
norm is equivalent to the ‖ · ‖ norm. Then formulation 3.1.6 is equivalent to the following
minimal residual formulation

un = arg min
v∈Vn
‖f − Av‖ = arg min

v∈Vn
‖A−1f − v‖ (3.1.10)

If one chooses VN = SN then for A = I the PGD solves the same problem as the
truncated CP decomposition provided by an ALS algorithm. Now, a convergent PGD
algorithm is provided. Moreover it coincides with the PGD definition given by Chinesta
et al. [CKL13].

Remark. The Galerkin problem can be solved on several basis which means that PGD is
available on Hilbert tensor spaces in format that mimic any tensor reduction technique. For
example Falcó demonstrates the convergence of PGD on a basis similar to the HOSVD in
[FHMM13]. Thus one can conclude that PGD for a posteriori processing is the continuous
version of well established tensor low rank approximation. Even though a wide variety of
integration technique and PGD algorithms are available, it seems that the vast literature
investigating tensor reduction proves to be much more efficient at post-processing.
Additionally, the inverse observation can be made for solving PDEs on reduced basis
using reduced tensor representation. These algorithms might benefit for the preexisting
knowledge in a priori PGD.

On the convergence of the progressive PGD. In order to show the converge of
this algorithm, a generalization of the Eckart-Young theorem has been provided by Falcó
and Nouy in [FN12]. Since the general problem of a rank-k separated representation
is ill posed [dSL08], they proposed a progressive algorithm that converges. It is based
on successive rank-1 approximations which are known to be optimal thus the link with
singular values.

Lemma 3.1.1. Given that S1 is weakly closed for ‖ · ‖ then for each z ∈ V, ∃v∗ ∈ S1 such
that

‖z − v∗‖2 = min
v∈S1

‖z − v‖2

Finding v∗ in the previous equation is a map defined by

Π : z ∈ V −→ Π(z) ∈ S1

z 7−→ arg minv∈S1 ‖z − v‖2
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Definition 3.1.1 (Progressive separated representation of an element in V). For a Given
z ∈ V , the sequence {zn}n≥0 with zn ∈ Sn is defined as follow: z0 = 0 and for n ≥ 1,

zn =
n∑

i=1

z(i) =
n∑

i=1

σiw
(i), z(i) ∈ Π(z − zi−1) (3.1.11)

zn is the rank-n progressive separated representation of z with respect to the norm ‖ · ‖.

Theorem 3.1.2 (Generalized Eckart-Young theorem according to Falcó and Nouy). For
z ∈ V , the sequence {zn}n≥0 from definition 3.1.1 verifies

z = lim
n→∞

zn =
∞∑

i=1

σiw
(i)

This proves the convergence of the PGD algorithm which is a succession of optimal
progressive separated representation as defined in (3.1.1) with the projector associated to
A.

Remark. As stated by Falcó and Nouy, this is the simplest definition of PGD, other defi-
nitions where provided in the literature which may display better convergence properties.
One of them is the direct equivalent of the ALS algorithm [FHMM13].

3.1.2 A Galerkin PGD algorithm for d parameter functions ac-
cording to Chinesta

In order to determine each element of the sequence an enrichment process is devised. Let
Ω = Ω1 × · · · ×Ωd where each Ωi ∈ R and f ∈ L2(Ω)1. Then, the goal is to compute uni-
variate basis functions (Xk

i )rk=1, ∀ 1 ≤ i ≤ d using a fixed point algorithm in alternating
directions. The weak formulation of our problem reads

∀u? ∈ H1(Ω),

∫

Ω

u?(u− f) = 0 (3.1.12)

It is assumed that ur−1 =
∑r−1

k=1

∏D
i=1X

k
i (xi) is known thus ur is sought under the form

ur = ur−1 +
d∏

i=1

Xr
i (xi) (3.1.13)

The process of adding terms to the sum, i.e. computing the sequence (ur) is called the
enrichment process. This process ends when a stopping criterion is fulfilled. Since in the
general case, one does not knows the exact solution, it is chosen to stop the process when
the weight of the last term compared to the rest of the series becomes negligible. This
reads

E(r) =
||∏d

i=1X
r
i ||L2(Ω)

||∏d
i=1 X

1
i ||L2(Ω)

=
||Xr

d ||L2(Ω)

||X1
d ||L2(Ω)

≤ εenrichment (3.1.14)

Indeed the terms are of decreasing norm, then there is no need to compare the whole series,
the first term is sufficient. In addition to that, we define Xi such as ∀i < D, ||Xi||L2(Ω) =
1 all the information about the norm is enclosed in XD.

1Here we assume without loss of generality that Ωi is a subset of R but it could be any domain on
which an integral can be defined. e.g. 2D or 3D domains.
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Fixed point algorithm. This is an iterative algorithm that, in practice, usually con-
verges in a few iterations. It is an alternated direction algorithm, i.e. each direction is
computed one at a time.

Remark. From now on, r in Xr
i is omitted to simplify the writing at enrichment step r.

It is assumed that the fixed point series {X̂k
i }k,∀i < d is known after step k. Thus

u = ur−1 +
∏D

i=1 X̂
k
i . Moreover, it is assumed that direction s is to be updated which

means X̂k+1
i is already known ∀i < s.

The test function u? is set to

u? =
s−1∏

i=1

X̂k+1
i (xi)X

?(xs)
d∏

i=s+1

X̂k
i (xi) (3.1.15)

Given all previous equation, the following weak formulation stands

∫

Ω

[
s−1∏

i=1

X̂k+1
i X?

d∏

i=s+1

X̂k
i

(
ur−1 +

s∏

i=1

X̂k+1
i

d∏

i=s+1

X̂k
i − f

)]
= 0 (3.1.16)

This equation can be written as follow

αs
∫

Ωs

X?(xs)X̂
k+1
s (xs)dxs = −

∫

Ωs

X?(xs)

p−1∑

j=1

(
βs(j)X̂j

s

)
dxs +

∫

Ωs

X?(xs)γ
s(xs)dxs

(3.1.17)
where

αs =
∫

Ω/Ωs

∏s−1
i=1 (X̂k+1

i )2
∏d

i=s+1(X̂k
i )2 =

s−1∏

i=1

∫

Ωi

(X̂k+1
i )2

d∏

i=s+1

∫

Ωi

(X̂k
i )2 (3.1.18)

βs(j) =
∫

Ω/Ωs

∏s−1
i=1 (X̂k+1

i Xj
i )
∏d

i=s+1(X̂k
i X

j
i ) =

s−1∏

i=1

∫

Ωi

X̂k+1
i Xj

i

d∏

i=s+1

∫

Ωi

X̂k
i X

j
i ∀j < p(3.1.19)

γs(xs) =
∫

Ω/Ωs

∏s−1
i=1 X̂

k+1
i

∏D
i=s+1 X̂

k
i f (3.1.20)

Remark 1 The evaluation of αs and βs(j) are relatively cheap in term of computing cost
since they consist in a product of 1D integrals.

Remark 2 The evaluation of γs is much more costly since it cannot be reduced to 1D
integrals but requires ns × (d − 1) dimension integrals (where ns is the number of
discrete points along direction s). In order to reduce the weight of computing γs,
one should not use classical integration tools such as composite trapezoidal rules
but seek in the direction of Monte-Carlo methods, Quasi Monte-Carlo methods or
Sparse grid methods.

Finally the strong formulation stands

X̂k+1
s (xs) =

−∑p−1
j=1 (βs(j)Xj

s (xs)) + γs(xs)

αs
,∀xs ∈ Ωs (3.1.21)

All the X̂i are normalized i.e. ||X̂k+1
i ||L2(Ωi) = 1 so that all the information relative to the

norm is transfered to the last element Xd. This algorithm is performed for s = 1, d and
each time a family (X̂k+1

i )1≤i≤d is complete the convergence stopping criterion is tested.
It reads

Efixed point(k) =
||Xk+1

d −Xk
d ||L2(Ωi)

||Xk
d ||L2(Ωi)

< εfixed point (3.1.22)
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3.1.3 PGD and CPD

It clearly appears that the PGD falls in the domain of canonical representation format
Cr for functional spaces. The same statement can be made for CP decomposition where
the underlying space is Rd. Consequently, for a posteriori processing of tensor data, these
two decomposition techniques are freely interchangeable. Then any favorable property of
one is applicable to the other. Unfortunately, this remains true for the downsides like the
ill-posedness of a general best rank-r approximation. This approach has been shown to
be poorly efficient compared to Tucker format methods but may represent a first step in
an attempt to compute low rank approximations of tensors.

However, the main strength of the recursive techniques is that they are mostly cheap2,
easy to program and produces a priori reduced order bases. Indeed in many situations
where high precision is not a goal or simply unrealistic but many parameters are used,
PGD (or CP alternatives) in some of its formulation is a very interesting process that
enables calculations that are simply out of reach for direct simulations.

Remark. There is a vast literature concerning PGD algorithm applied to (mainly elliptic)
problems [CL14, FN11]. It turns out that different kind of PGD algorithm [FN12] work
best on different kind of problems (Galerkin PGD, minimum residual PGD, Krylov PGD,
Greedy Completely Orthogonal PGD ,etc.) . Then, there is no general PGD algorihtm
however the one that was presented in the previous section seems to be robust though
may require many iteration to converge.

3.2 The Recursive-POD (R-POD)

The Recursive POD [ABR16] is an extension of the usual bivariate POD, it fulfills quasi-
optimality in higher dimension. The essence of this method is to perform successive (re-
cursively) POD on the field that is to be tensorized. A field function f : D ⊂ Rd −→ Rq

i.e. a function of d variables is first processed as a (1, d − 1) field that can be separated
thanks to POD. Once the first POD has been performed, one obtains the POD modes
Xr

1 : Ω1 −→ Rq basis functions of Ω1 and φr1 : D/Ω1 −→ Rq, a set of functions of d − 1
variables. The the same POD process is performed again on each POD mode recursively
until the POD modes are univariate functions.

Remark. It should be noted that the RPOD is one the many extensions to multiple
variables that overcome the bivariate nature of POD. Consequently every conclusion con-
cerning POD remain true except optimality properties. For short, it means that any
algorithm available to compute a POD i.e. POD, PGD and to some extent direct SVD
may be used to compute the recursive POD. All algorithmic properties are preserved and
method choices should align with 2D experiment conclusion.

3.2.1 Introductory example : R-POD on a 3D field

Let f : D = Ω1 × Ω2 × Ω3 ⊂ R3 −→ R a Lebesgue square integrable function and
w = (y, z) ∈ R2. Since L2(D) and L2(Ω1, L

2(D/Ω1)) are isometric, the POD of f(x,w) is
well defined and reads

f(x, y, z) = f(x,w) ≈ fMPOD(x,w) =
M∑

m=1

Xm(x)φm(w) (3.2.1)

2As long a one only requires a small number of modes as compared to the full representation, PGD
can be efficient since it computes only the required information.
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As for the 2D POD it is handy to normalize all modes and store their relative weight into
(σ) ∈ RM . Then the POD of f reads

f(x, y, z) = f(x,w) ≈ fMPOD(x,w) =
M∑

m=1

σmXm(x)φm(w) (3.2.2)

with Xm = Xm/‖Xm‖, φm = φm/‖φm‖ and σm = 〈f,Xmφm〉.
It is now necessary to separate each 2D field φm obtained during the first step i.e.

∀1 ≤ m ≤M, φm(w) = φm(y, z) ≈ φm,K(m)(y, z) =

K(m)∑

k=1

σ̃mk Y m
k (y)Zm

k (z) (3.2.3)

Then, these two results are combined into one tensorisation of field f ,

f(x, y, z) ≈ fM(x, y, z) =
M∑

m=1

K(m)∑

k=1

σmσ̃
m
k Xm(x)Y m

k (y)Zm
k (z) (3.2.4)

Remark (K(m)). As each POD on level φm(y, z) is performed independently, if the num-
ber of dominant POD mode is dependent of an error estimator, then K(m) may change
with m. Then a R-POD rank is defined as the number of modes at each recursion level.
An illustration of the spread of K(m) is provided by figure 3.1. It can be seen that in
this matrix representation that some σ̃mk are missing. They correspond to the unneed-
ed/uncomputed modes. For practical reason, this representation of Σ̃ = (σ̃mk )km may be
useful to compare RPOD with ST-HOSVD and also facilitates the implementation setting
discarded modes as constant functions with a nil weight.

k
m

1 M
1

K(m)

Figure 3.1: Visual RPOD rank for 3 parameter function. Blue columns correspond to the
coordinates (m, k) where σ̃mk is defined while gray crossed areas correspond to coordinates
where σ̃mk is not defined (not computed).

Obviously, this sum of sum can be reordered and written as one single sum. In this
work, the following bijective numbering function is used

h : N2 7−→ N

(m, k) 7−→ l = k +
m−1∑

i=1

K(i)
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Then a new weight list is defined as σl=h(m,k) = σmσ̃
m
k . Finally the R-POD approximation

of f reads

fL(x, y, z) =
L∑

l=1

σl Xl(x)Yl(y)Zl(z) (3.2.5)

Generalization of this example is straightforward, however, notations quickly become
cumbersome for higher dimension.

POD(f(x1;x2,x3))

u1[1], φ1[1]

σ1[1]

u1[2], φ1[2]

σ1[2]

u1[3], φ1[3]

σ1[3]

POD(φ1[1](x2,x3))

u2[11], u3[11]

σ1[11]

u2[12], u3[12]

σ1[12]

u2[13], u3[13]

σ1[13]

POD(φ1[2](x2,x3))

u2[21], u3[21]

σ1[21]

u2[22], u3[22]

σ1[22]

POD(φ1[3](x2,x3))

u2[31], u3[31]

σ1[31]

Figure 3.2: Example of a Recursive POD graph of f(x1, x2, x3)

Another approach is to represent the recursion graph or decomposition graph as shown
in Fig. 3.2. In this case, there is no need to introduce a renumbering, all the information is
contained in the graph. Notations and programming remain simple as each decomposition
(as well as reconstruction) is performed independently, each node of the tree only “knows”
its children. This approach is very natural from a mathematical point of view however it
is uncommon in computational mechanics.

3.2.2 R-POD: general case

The R-POD is now presented for a field of d variables. Since this algorithm is recursive,
the processing order p = (p1, ..., pd) of the variables may influence the accuracy and the
number of modes. However, p = [1, ...d] is used in most of this presentation to lighten
notations. The orthonormal modes version of the POD is the only one used in this section
even though it is not necessary to impose orthonormality.

Prior to the definition of RPOD, as for the other data reduction method, a rank
definition for RPOD approximation is needed. In fact, the different forms that can take
the RPOD representation leads to the introduction of three RPOD ranks.

Definition 3.2.1 (RPOD ranks). Scalar-RPOD-rank R is the RPOD scalar rank, it
is defined as the total terms in sum from equation 3.2.12. If R is given alone, it gives
no information concerning how modes are distributed among dimensions. Then it is
not unique. However it is sufficient if reordered sum is the goal.

R =

R1∑

r1

· · ·
Rd−1(r1,...,rd−2)∑

rd−1

Rd−1(r1, ..., rd−2) (3.2.6)
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Exact-RPOD-rank R is the exact RPOD rank, it describe exactly how the recursive
distribution of modes is laid out. It is a recursively defined vector of sequences that
reads

R =

(
R1, (R2(r1))R1

r1=1 , · · · ,
((

(Rd−1(r1, r2, ..., rd−2) )Rd−2(r1,...,rd−2)
rd−2=1 · · ·

)R2(r1)

r1=1

)R1

r1=1

)

(3.2.7)

R may be written as a (d− 1)×
(∏

r1,...,rd−2
Rd−1(m1, ..., rd−2)

)
matrix S that stores

the allowed tuples r with rd−1 ≤ Rd−1(r1, ..., rd−2)..

Multilinear-rank Let R ∈ Nd−1 a ”cubic RPOD rank”. It is a vector that stores the
largest value of Ri(r1, ..., ri−1) for all 1 ≤ i ≤ d − 1. Then any σr can be stored in
a tensor of multilinear rank that is equal to the cubic-RPOD-rank. Since it aligns
with the ST-HOSVD multilinear approximation rank –provided that the last index is
duplicated to account for the last dimension– it is called the same. It is then defined
as follow

R = (R1, R2, · · · , Rd−1) (3.2.8)

where Ri = maxr̄∈R(1:i−1)Ri(r̄). It should be noted that this definition provides some-
what redundant information since Rd−1 = Rd, however it is interesting to stick
to the shape of the multilinear rank. The i partial multilinear rank is defined as
Ri = (R1, R2, · · · , Ri).

From definition 3.2.1 one can build a tensor representation of the rank of the exact-
RPOD-rank. It enables easy mapping/representation of the defined truncated orthogonal
vectors and their associated weights. Then it is called sigma map tensor and defined as
follows.

Definition 3.2.2 (Sigma map tensor). Let f a function of d parameters and fM, its
RPOD approximation of exact rank M. Let M = (M1,M2, · · · ,Md) be the associated
multilinear rank defined in 3.2.1. The sigma map tensor S ∈ RM1×···×Md−1 stores the
values of defined elements of the RPOD approximation and zeros elsewhere which read
element wise

si1,...,id−1
=

{
σi1σi1,i2 ...σi1,i2,...,id−1

if (i1, i2, ..., id−1, id−1) ∈M
0 else

(3.2.9)

The last dimension describes both d−1 and d parameter since they share the same singular
values.

Figure 3.3 display the order 3 sigma map tensor associated with the RPOD of a 4
parameter field. It can be seen that the third axis represent both parameter 3 and 4
associated singular values. One can see that many σI are left empty, it corresponds to the
non defined vectors of the basis. Indeed, the RPOD allows to define a different truncation
rank for each sub POD leading to optimal size of the approximation for a given target
approximation error. However, using a tensor full representation is handy for programming
and analysis purpose. On this figure, the exact RPOD rank can be seen a the series storing
the maximum coordinate of each blue bar. The scalar rank is the sum of the blue bars
length and the multilinear rank is the hypercube/tensor size.

Definition 3.2.3 (R-POD). Let f : D = Ω1 × · · · × Ωd ⊂ Rd −→ Rq ∈ L2(D) where q
and d are positive integers. Let the tuple x = (x1, ..., xd) ∈ D be the general notation for
the variables of f . Let p = [1, ...d] be the processing order.
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1

2(3;4)

Figure 3.3: Visual RPOD rank for 4 parameter function. Red columns correspond to the
coordinates (m1,m2) where σm1,m2 are defined while gray crossed areas correspond to
coordinates where they are not defined (not computed) i.e. arbitrarily set to 0. The third
dimension (Blue bars) represent defined σm1=1,m2,m3 , m1 ≥ 2 was omitted to simplify the
illustration however the same could have been drawn.

Since L2(D) and L2(Ω1, L
2(D/Ω1)) are isometric, the POD of f(x1, w), w = (x2, ..., xd)

is well defined. It yields a series of univariate functions Xr1
1 (x1), singular values σr1 ∈ R,

and multivariate functions φr1(x2, ..., xd).

POD(f(x1;x2, ..., xd)) −→ f̃(x1;x2, ..., xd)) =

R1∑

r1=1

σr1X
r1
1 (x1)φr1(x2, ..., xd) (3.2.10)

The same process is applied recursively on each φr1

∀r1 ≤ R1, POD(φr1(x2;x3, ..., xd)) −→ φ̃r1(x2;x3, ..., xd)) =

R2(r1)∑

r2=1

σr1X
r1r2
2 (x2)φr1r2(x3, ..., xd)

(3.2.11)

And so on recursively until all POD modes up to
(
X

(r1,...,rd−2)
d−1

)
and

(
X

(r1,...,rd−2)
d

)
have

been computed. Each univariate POD mode X
(r1,...,ri−1)
i is normalized with respect to the

scalar product associated norm.

Then, fR the R-POD approximation of f of exact RPOD rank R reads

f(x1, ..., xd) ≈ fR(x1, ..., xd)

=

R1∑

r1

· · ·
Ri(r1,...,ri−1)∑

ri

· · ·
Rd−1(r1,...,rd−2)∑

rd−1

σr1...rd−1
Xr1

1 · · ·X(r1,...,ri)
i · · ·X(r1,...,rd−1)

d

=

R1∑

r1

· · ·
Rd−1(r1,...,rd−2)∑

rd−1

σr1...rd−1

d∏

i=1

X
(r1,...,ri)
i (xi) (3.2.12)

L a global index is defined to write the RPOD as a single sum. Let a vector of coordi-
nates r = (r1, ..., rd−1) ∈ Nd that corresponds to the indices of a defined σr of our problem.
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It is given by the linear map h.

r = h(r) = rd−1 +
∑

i1≤r1
i2≤r2

...
id−2≤rd−2

Rd(r1, ..., rd−2) (3.2.13)

Now the RPOD written as a single sum reads

f(x1, ..., xd) ≈ fR(x1, ..., xd) =
R∑

r

σr

d∏

i=1

Xr
i (xi) (3.2.14)

Let S ∈ R the sigma map tensor associated with this RPOD approximation. Then the
cubic representation of the RPOD is defined by

f(x1, ..., xd) ≈ fR(x1, ..., xd) =

R1∑

r1

· · ·
Rd−1∑

rd−1

sr1,...,rd−1
X

(r1,...,rd)
1 (x1)⊗ · · · ⊗X(r1,...,rd)

d (xd)

(3.2.15)

where X
(r1,...,rd)
i = X

(r1,...,ri−1)
i if si1,...,id−1

6= 0 else X
(r1,...,rd)
i is a non nil constant valued

function.

Lemma 3.2.1 (RPOD expansion [ACM+15, Lemma2.2]). The RPOD expansion defined
in 3.2.3 converges toward f when Ri →∞. for i ≤ d.

As for POD, no precision was given concerning which scalar product is used to define
RPOD. The same comment concerning the choice of POD scalar product and ordering
of the dimensions remain true. Instead of snapshot versus classical method, one has to
choose a processing order p that minimizes the matrix size a each step. As was shown for
ST-HOSVD, this will also improve speed at each recursion.

Quasi-optimality As for ST-HOSVD and POD, RPOD displays a quasi-optimality
property.

RPOD Algorithm. An algorithm is devised from the previous properties. In order to
reduce operation count and the number of mode, an error estimate truncation is cho-
sen. Although, sequential this algorithm can be written easily in parallel version since
many independent problem arise at each deeper level of recursion. Only the first POD is
inevitably sequential, every subsequent POD of modes can be performed on a different
CPU. Then choosing the smallest dimension to be separated first is crucial. Assuming the
data/variable have been ordered according to p before entering the RPOD algorithm, a
recursive version of the algorithm 11 is proposed. It yields the required singular values
and RPOD modes to build the compute the first version of RPOD (def. 3.2.3). Then it
can be evaluated directly.
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RPOD tree structure

The recursive nature of the algorithm is well fitted for implementation in tree struc-
tures. As introduced in section 2.2.4, trees are simple mathematical structures that
describe links between nodes linked by edges. A tree starts by a root and ends with
leaves. As it is simply tool for describing RPOD, only a brief description of the
structure that I implemented is given. I chose to use a top down tree which means
that a node knows its children but not its parent. Indeed the process of RPOD is
top-down as well as the reconstruction and all required operation can be obtain by
going through the tree. Also a node doesn’t know its place in the tree.

Root Top level approximation i.e. f̃(x1;x2, ..., xd)

Node Stores X i
k and a POD has been applied on the multivariate function φk.

Each pair of these POD mode is (X i+1
k /φk) is stored in a different child node.

Leaf When a node is a bivariate function its children are leaves that contain the
pair of modes (Xd−1

k , Xd
k ).

For practical reasons it may be interesting to store the singular values as well as the
the modes as shown in Fig. 3.2. This leads to the notion of branch weight which is
computed as σloc/

∑
σ1
i . This is a very efficient tool for truncation of the RPOD tree

as branches can be cut off from the top without exploring the whole tree. A typical
tree for an separable function of 4 parameter is shown in Fig. 3.4 as an example.

POD(f)

u1[1], φ1[1]

0.957

u1[2], φ1[2]

0.041

POD(φ1[1](x1,w))

u2[11], φ2[11]

0.957

u2[12], φ2[12]

0.034

POD(φ2[11](x2,w))

u3[111], φ3[111]

0.956

u3[112], φ3[112]

0.027

POD(φ3[111](x3,w))

u4[1111], u5[1111]

0.956

u4[1112], u5[1112]

0.018

POD(φ3[112](x3,w))

u4[1121], u5[1121]

0.022

u4[1122], u5[1122]

0.015

POD(φ2[12](x2,w))

u3[121], φ3[121]

0.030

u3[122], φ3[122]

0.017

POD(φ3[121](x3,w))

u4[1211], u5[1211]

0.028

u4[1212], u5[1212]

0.011

POD(φ3[122](x3,w))

u4[1221], u5[1221]

0.017

POD(φ1[2](x1,w))

u2[21], φ2[21]

0.037

u2[22], φ2[22]

0.017

POD(φ2[21](x2,w))

u3[211], φ3[211]

0.035

u3[212], φ3[212]

0.013

POD(φ3[211](x3,w))

u4[2111], u5[2111]

0.034

u4[2112], u5[2112]

0.008

POD(φ3[212](x3,w))

u4[2121], u5[2121]

0.013

POD(φ2[22](x2,w))

u3[221], φ3[221]

0.017

POD(φ3[221](x3,w))

u4[2211], u5[2211]

0.017

Figure 3.4: RPOD graph obtained for f(x1, x2, x3, x4) = sin(
√∑

i x
2
i ) with a POD

cutoff value of 5× 10−3. The width of the edges represents their weight. This figure
is Zoomable on PDF version.

Operation count In order to ease comparison with its most similar method, we suppose
that each local POD is solved through the same truncate SVD algorithm that is used in the
ST-HOSVD though it might not be the best choice for accuracy of computing efficiency.
Then the SVD of a n×m matrix operation count is O(m2n).

The sum of the last column of table yields the following estimate if the samples number
is identical for all variables as sigma map tensor is a full hypercube.

O
(
d−1∑

i=1

Ri−1nd−i+2

)
(3.2.16)

One can see that this is exactly the same term as the first term in ST-HOSVD operation
count evaluation. The second one is not necessary since the RPOD algorithm does not
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Algorithm 11: RPOD

input : f ∈ L2(D), computing domain D, target error ε
output: rpod tree=[[R,S,X ]]

1 R = [ ] ; /* List containing the exact RPOD rank */

S = [ ] ; /* List containing the local singular values */

X = [ ] ; /* List containing the local eigen functions */

2 φ(x,w) = f(x1, (x2, ..., xd)) ;
3 [R,σR,UR(x),VR(w)] = trunc POD(φ, ε) ;
4 R.append(R) ;
S.append(σR) ;
X .append(UR), ;
if dim(w) > 2 then

for m ≤ R do
5 φ(x, s) = Vr(w) ;
6 (Rloc,Sloc,Xloc).append(RPOD(φ,D/Ω1, ε)) ;

7 (R,S,X ).append(Rloc,Sloc,Xloc) ;

else
8 X .append(VR) ; /* Last dimension, then keep VR as RPOD modes */

return fR = [[R,S,X ]]

Level Operations Count Hypercube Cost
1 1× POD[n1 × (n2...nd)] O(n2

1(n2...nd)) O(nd + 1)
2 M1× POD[(n2 × (n3...nd)] M1O(n2

2(n3...nd)) O(Mnd)
3

∑
m1≤M1

M2(m1)× POD[(n3 × (n4...nd)] M1M2O(n2
3(n4...nd)) O(M2nd−1)

...
...

...
...

d-1

∑ · · ·∑Md−2(m1, ...,md)× M1 · · ·Md − 2O(n2
d−1(nd)) O(Md−2n3)

POD[(nd−1 × (nd)]

Table 3.1: Operation count at each step of the RPOD algorithm.

requires to compute an intermediate function/tensor. Additionally, this results does not
account sum length number of modes variation within each dimension. This was shown
with the blue bars length in figure 3.3.

3.3 Functional tensor decomposition

In section 3.1.3, is was shown that the PGD produces a canonical format approximation
for functions that is equivalent to CP. Here, a brief review of the application of the other
tensor decomposition methods presented in chapter 2 to functions is proposed.

Let (·, ·) be a scalar product and it associated norm ||·||. We are interested in separating
function f : Ω ∈ Rd −→ Rp with ||f || <∞.

3.3.1 Functional Tucker decomposition

The goal here is to obtain a separated approximation of f in the continuous version of
the Tucker format i.e.

f(x1, ...xd) ≈ f̃(x1, ..., xd) =

r1∑

i1

· · ·
rd∑

id

wr1,...,rd−1
X i1

1 (x1)⊗ · · · ⊗X id
d (xd) (3.3.1)
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where W ∈ Rr1×· ×rd which elements are defined as the projection of f onto the orthonor-
mal basis {X i1

1 · · · , X id
d }i1,...,id i.e. wi1...id =

(
f,X i1

1 · · ·X id
d

)
.

T-HOPOD. Then a direct adaptation of T-HOSVD (see section 2.3.2.1) is done by
switching3 from SVD to POD method to obtain each decomposition. Then the algorithm
is to perform POD for each variable on f e.g. for d = 3 the T-HOPOD reads,

• POD(f ,1) −→ f(x1;x2, x3) ≈∑r1
i=1 X

i
1(x1)φi1(x2, x3)

• POD(f ,2) −→ f(x2;x1, x3) ≈∑r2
i=1 X

i
2(x2)φi2(x1, x3)

• POD(f ,3) −→ f(x3;x1, x1) ≈∑r3
i=1 X

i
3(x3)φi3(x1, x2)

• ∀i, j, k < r1, r2, r3 compute weights wijk =
(
f,X i

1X
j
2X

k
3

)

ST-HOPOD is more complex. The natural option is to go back to the sequential trun-
cation idea of the ST-HOSVD. In this case one would reduce the actual rank of the
function by truncating the POD decomposition and working on the approximation for
the next decomposition.

• POD(f ,1) −→ f(x1;x2, x3) ≈ f̃1(x1;x2, x3) =
∑r1

i=1X
i
1(x1)φi1(x2, x3)

• POD(f̃1,2) −→ f̃1(x2;x1, x3) ≈ f̃2(x1, x2, x3) =
∑r2

i=1X
i
2(x2)φi2(x1, x3)

• POD(f̃2,3) −→ f̃2(x3;x1, x1) ≈ f̃3(x1, x2, x3) =
∑r3

i=1X
i
3(x3)φi3(x1, x2)

• ∀i, j, k < r1, r2, r3 compute weights wijk =
(
f,X i

1X
j
2X

k
3

)

This process is formally equivalent to the ST-HOSVD for continuous functions however
it is as inefficient as T-HOPOD while reducing the accuracy. In spite of our effort, there
is no natural way to replace the integer index presented in the next paragraph. All of the
other rewrittings attempted of this algorithm (during my thesis) that would preserve the
speed and spirits of ST-HOSVD leads to a different problem with very poor convergence
properties.

Introducing integer parameters. In order to provide a decent ST-HOPOD algo-
rithm, one needs to tackle the phase of reshaping the tensor into a “partially truncated
core tensor” of eq. (2.3.16) or at line 4 of 9. This is not at all a natural operation in
the continuous framework. Indeed, if one tries to convert this operation into the contin-
uous framework after the first dimension was separated, they obtain the following mixed
function:

W(1) = ΣtrV
ᵀ
tr

w(α1, x2, ..., xd) = σ(α1)φ1(α1, x2, ..., xd), ∀α1 < r1 (3.3.2)

where α1 is an integer parameter.
It is then fairly easy to adapt algorithm 9 to a “mixed POD” solver. To do so, one

needs to introduce a discrete scalar product for α1 e.g. instead of using a L2 scalar product,
one can replace it by a sum operator which is equivalent to setting the integration matrix
to the identity. This process is presented in algorithm 12 for which we consider that the

3The equivalence and switching process has been discussed in section 1.2.3. Consequently all previous
remarks on these methods apply for the continous T-HOPOD as well as for T-HOSVD.
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scalar product (·, ·) is discretized for each dimension by (u, v)
disc−→ (u;v)Mi

= uᵀMiv
where Mi is a symmetric integration matrix. Thus, M1, ...,Md is a set of matrices that
enables discrete evaluation of the scalar product and consequently POD as described in
section 1.2.3.1. It is clear that F ∈ Rn1×···×nd is the discretization of function f .

Algorithm 12: ST-HOPOD

input : F ∈ Rn1×···×nd , truncation rank r, processing order p
output: X̂ = (X̂1, ..., X̂d) · Ŵ
Ŵ = F ;
for i = p1, ..., pd do

/* Compute POD of Ŵ(i) with mas matrices {Mk}k then truncate to ri
*/

1 (X,Σ,Φᵀ) = POD(Ŵ(i), {Mk}k) ;
/* Applying eq.(3.3.2) and setting integration matrix to identity.

*/

2 Ŵ(i) = ΣtrV
ᵀ
tr ;

3 Mi = Idri

return X = JŴ; X̂1, ..., X̂dK

3.3.2 Functional-TT

Here we apply the same process of adapting the SVD based algorithm to continuous
functions. Actually several publications have been published on this topic in the recent
years, among others Oseledets implied that his technique could be applied to functions
but the most determinant work came from Bigoni et al. [BEkM16] as well as in Bigoni’s
PhD. thesis [Big14] and Gorodetsky et al. [GKM16]. It is quite natural to draw a parallel
between the TT decompostiion, ST-HOPOD and the RPOD, in both cases, the idea is to
perform recursively 2D decompostions while retaining all the information obtained at each
step to speed up the process. The main point here is to use the very efficient TT-format
for functions. It is reminded that the storage cost is linear in d while only one SVD/POD
is performed at each step. Unlike ST-HOPOD, only part of the information is explicitly
transfered to the next step, this embedded implicit representation is very efficient, thus
no core tensor tensor is required. A brief overview of the properties and algorithms given
in [BEkM16,Gor16] is given next. We can write a function that as TT representation as

f(x1, x2, ..., xd) =
∑

α1,...,αd−1

G1(x1, α1)G2(α1, x2, α2) · · ·Gd(αd−1, xd) (3.3.3)

where {αi} are indices lower that the rank r = (r1, ..., rd). Once again we can introduce
α0 = 1 and αd = 1 to make the notations uniform among functions Gi(αi−1, xi, αi).

Regarding the decomposition algorithm, the process relies on the same idea of replacing
the SVD with PODs as well as using identity matrix to treat the discrete variable αi.
Bigoni et al. proved that such a process gives an actual Hilbert-Schmidt kernel which
can in turn be separated. The first decomposition (POD) of f ∈ L2

µ(Ω)4 with Ω =
Ω1 × · · · × Ωd ⊂ Rd, yields the following approximation

f(x1;x2, ..., xd) =

r1∑

α1=1

σ(αi)γ1(x1, α1)φ1(α1;x2, ..., xd) (3.3.4)

4Here we assume without loss of generality that the POD is defined with the L2(Ω) scalar product. µ
is the measure on Ω
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Now, the idea is to apply a new decomposition on σ(αi)φ1(α1;x2, ..., xd) to do so, the
scalar product on the first dimension, i.e. the integral operator, has to be redefined. Let
X = N × Ω2 and Y = Ω3 × Ωd and τ be the counting measure on N. It is shown5 easily
that if f ∈ L2

µ(Ω) then (σ1(αi)φ1(α1;x2, ..., xd)) ∈ L2
τ ×µ2×···×µd(X × Y ). Consequently

one can again perform a decomposition in which the integral with measure τ is equivalent
to a sum. The the following expression is obtained,

(σ1(αi)φ1(α1;x2, ..., xd)) =

r2∑

α2=1

σ2(α2)γ2(α1, x1, α2)φ2(α2;x3, ..., xd) (3.3.5)

It is injected in eq.(3.3.4) which now reads

f(x1;x2, ..., xd) =

r1∑

α1=1

r2∑

α2=1

γ1(x1, α1)γ2(α1, x1, α2)φ2(α2;x3, ..., xd) (3.3.6)

The process is repeated until all dimensions are separated and the decomposition from
eq.(3.3.3) is obtained. Then γi(αi−1, xi, αi) ∈ L2

µi
(Ωi) and (γk(i, ·,m), γk(i, ·,m))L2

µi
= δmn.

Remark. In the last expression, the orhtonormality is preserved for the right index, as for
the discrete TT decomposition it means that the counterpart for the left index is false.
This is due to the order in which the decompositions are processed. Consequently, not all
modes are orthonormal within a cores of the approximation {γi}i = 1d.

As for the other methods in this section, the properties of the discrete decomposition
are preserved however some properties are given by Bigoni et al. [BEkM16]. An error
estimate is given:

Proposition 3.3.1 (4.3, Bigoni et al. [BEkM16]). Let the functional tensor train de-
composition be truncated retaining the largest singular values {{ σi(αi)}riαi=1}di=1. f̃ the
approximation of f fulfills the condition:

||f − f̃ ||L2
µ

= min
g∈L2

µ

TT−rank(g)=r

||f − g||L2
µ
≤

d−1∑

i=1

∞∑

αi=ri+1

σi(αi)
2 (3.3.7)

Some convergence properties correlated with smoothness of function f are also avail-
able in the same paper.

Algorithm. Implementing the functional TT simply means to replace SVD operations
in 10 by POD and make sure operations are consistent.

Conclusion

In this chapter we have seen several functional decomposition methods. First multiparam-
eter a priori PGD was presented. It was noted that the algorithm presented by Chinesta

5 The demonstration relies on Hilbert-Schmidt kernel decomposition theory i.e. POD, it lies in the
following equation

∫

X×Y
|σ1(αi)φ1(α1;x2, ..., xd))|2dτ(αi)dµ2(x2) · · · dµd(xd) =

∑

α1

σ(α1)2

∫

Ω2×···×Ωd

|φ1(α1;x2, ..., xd))|2dµ2(x2) · · · dµd(xd) =
∑

α1

σ(α1)2 <∞
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et al. [CKL13] corresponds to a functional ALS algorithm and results as for every PGD
algorithm into a CP format function decomposition. Such presentation of the PGD to a
certain extent the main advantages of PGD which is a method that enables solving directly
EDPs (usually elliptic ones). Then, RPOD, a natural extention of POD was presented. It
consists in applying recursively POD to an bivariate interpretation of a multivariate func-
tion. Several data structures were studied and it was shown that it is possible to represent
RPOD expansion as canonical or tucker format. But these are not memory efficient as
they generate a lot of redundant information. Consequently a recursive tree structure was
adopted for implementation. Finally, it was shown that d-way array tensor decomposition
methods can be translated into functional decomposition methods with corresponding
format and properties.

In the next chapter, the multivariate function and tensor decomposition methods are
implemented and their approximation properties are tested. The python library pydecomp

that was developed during this thesis has been used for this purpose.
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Chapter 4

Numerical Experiments
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In this chapter, we propose a comprehensive numerical study of the decomposition
methods that have presented in chapter 2 and 3. Indeed, very limited comparison between
these methods is available in the literature, the goal, here, is to provide a general view
of decomposition methods at work and draw conclusion on their use in the context of
scientific computing and in particular as a first stage to develop ROM.

This chapter is formatted as follow. In order to conduct the necessary tests, two codes
were developed during my thesis and are presented in the first section. Then, in the second
section, a comprehensive comparison of the decomposition methods applied to synthetic
data is proposed. Discussions on the numerous options available for the user are proposed
and supported with data. In the final section, the most efficient methods are applied to
actual data, both from numerical simulation of fluids and actual experiment conducted
at I2M in the hope of providing an extensive sample of data available in mechanics labo-
ratories.

4.1 A decomposition library

One of the goals of my thesis was to program a library for data decomposition, its purpose
being both experimentation and “industrial” use (either in the lab or outside). With Pr.
Azaiez we defined a short list of necessary features that was later enriched with our
findings.

95
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Data decomposition library specifications

a. The library should allow an accurate comparison of the most promising meth-
ods proposed in the literature. In other words we should rely on this library to
propose a complete analysis of these methods as it is proposed in this chapter.
To do so, a number of bricks are required:

• Efficient Bivariate solvers : SVD, POD and PGD. Relying as much as
possible on existing libraries such as LAPACK. (Implementation of chapter
1).

• Numerical integration methods such as trapezoidal rule.

• Tensor formats : Full, canonical, Tucker, TT (see section 2.2) and tensor
algebra (see section: 2.1)

• Associated decomposition both in tensor and functional case (see chapter
3 and section 2.3).

• Analysis tools such as error estimator, orthonormality tests, test func-
tions, etc.

b. The code is meant for use in scientific computing thus is must be able to read
data in the most common formats and make the reduced data as easy to use
as possible. This translates in the following features:

• Read common formats : VTK, MATLAB, Fortran typical output, Adios
.bp (used in homemade CFD code Notus)

• Store decomposition efficiently (binary files) for later use.

• Provide reliability estimates

c. A complete documentation is required for easier diffusion inside and outside
the lab. Also high level routines must make the program as easy to use as
possible.

d. The code must be modular so that adding new features (such as formats
or integration schemes) is easy even if computing efficiency is reduced. Also
parallelism must be kept in mind even if it is not intended for V1.

e. Can be used as tool for ROM building.

Existing implementation The first step for anyone intending to fulfill these specifi-
cation (as well as any software project) is to review existing solutions. Actually, a lot has
already been done by research teams, only to cite the most prominent ones (a vast list of
implimentation is given by Grasedyck et al. in [GKT13]).

• T.G. Kolda and B. Bader [KB09] propose complete implementation in their Tensor
Toolbox [BKO17] both in MATLAB and C++. It proposes mainly CP and Tucker
decomposition methods. Many other softwares are listed in [KB09] on the same
topic.

• TT format is covered by Oseledets team as MATLAB TT-Toolbox [Ose18] and
python implementation ttpy [ODS18]. Other python implementation can be found
such as Bigoni’s TensorToolbox [Big14].
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• Kessner et al. propose a MATLAB hierarchical format decomposition library htucker

[KT13].

• The famous TensorFlow (www.tensor-flow.org) although relying on tensors and
providing some decomposition tools is actually not suited at all for our purpose. It
is mainly build for neural network training.

As one can see, all techniques but the RPOD (due to its relative anonymity) have already
been implemented in efficient and open access softwares. So why not use them? First
one can see that various languages are used but mainly MATLAB. Thus fitting them
all would require interfacing many codes from different languages or at the very least
MATLAB Toolboxes into one entity. Although it is possible and arguably a fast way to
obtain a general decomposition tool, that would have meant having little control on its
evolution. Also, from an moral point of view, using a proprietary software for diffusion of
research work is not very well suited. I, just as many students, would have faced difficulties
to obtain a MATLAB licence (shared token system,...). Consequently, it was chosen to
code our own library while using building bricks (such as LAPACK) as much as possible.

Discussion on the programming language. For any programming effort starting
from scratch, choosing an adapted language is crucial. Our choices were actually quite
narrow as shown in this short review.

MATLAB As seen briefly in the previous paragraph, MATLAB is a proprietary software
used intensively in research. Prototyping methods is very fast using its interpreted
language and efficient implementations are available through C/C++ compiled code.
It is a reliable solution with an extensive documentation and a large community.
Many if not all data reduction techniques are already proposed as toolboxes. Its
main but massive drawback is the expensive license that is required.

C/C++ No need to present the most popular language of the last decade including
for scientific computing applications. It allows fast execution from C and Object
Oriented programming (OOP) for complex structures. Many libraries (including
data reduction) are available. It would have been a good choice if I mastered this
language but its complexity made it risky as little support was available in the lab.

Fortran90 Mainly used in the scientific computing community for historical reasons, it
is probably the fastest language for this purpose. It allows easy conversion from
mathematical formulas to fast programs. In spite of its reputation, it has integrated
many OOP concepts in its last norms (Fortran2003 and Fortran2008). I have a
very good knowledge of this language and it is very well suited for CPU intesive
applications such as decomposition. That makes it a very good candidate. However
some intrinsic limitations remain in terms of flexibility.

Python Python is also a en vogue language. This interpreted languages offers quick de-
velopment cycle as well as an incredible versatility. It also maintains good efficiency
thanks to precompiled libraries such as numpy/scipy for scientific computing. If
one needs a very efficient implementation that cannot be written in term of existing
libraries, it is possible to interface seamlessly fortran precompiled code using f2py.
Contraty to MATLAB it is open access and its growing community in scientific com-
puting is gradually catching up with the aforementioned. Interfacing with popular
data format is easy thanks to the numerous libraries available and serialized binaries
are the natural way of storing complex object without explicitly interfacing them.

www.tensor-flow.org
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Since it is not only a scientific computing language, it allows GUI development,
graphical outputs. Finally it is quite easy to imagine a mixed code with fortran
whenever Python becomes too slow.

Actual code Actually two seperate libraries have been implemented during my thesis.
The first one, a fortran decomposition library during the first two years. Indeed, there
are numerous hindsights in the literature concerning computing time. It seemed to be a
central problem and HPC techniques would be needed at some point. While letting the
possibility to upgrade to parallel versions a sequential code was produced. It is thoroughly
documented thanks to doxygen. As shown in figure 4.1, it can be explored through any
browser making it very easy to navigate the routines and structures. However Fortran,

Figure 4.1: Dynamic HTML documentaion of the Fortran low order approximation

library.

even with the newest Object Oriented (OO) features, is a bit clumsy for our goal. First,
although it’s possible to manipulate arrays of arbitrary dimensions, it is not native in the
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language and maps from d indices to a global index have to be build with obvious loss of
efficiency. Complex structures can be build but they lack flexibility. Most importantly, and
this is well known issue of Fortran, IOs are not natural, every aspect must be prescribed
manually except in the rare cases where libraries exist. This advocates in favor of using
higher level languages for practical use. The next point in that direction is that actually for
sequential decomposition using an adequate technique, CPU time are very low e.g. about
a minute for a 13GB tensor (which is roughly the memory of a working station/laptop.).
One can conclude that memory is the issue and an adequate use of higher level language
would allow comparably fast computing with a more user friendly.

Figure 4.2: Dynamic HTML documentaion of the pydecomp build with Sphinx.

This is why, Diego Britez (Masters Student, 6 months internship) and I have worked
to build a Python implementation of this software. It has allowed us a better hierarchy
gained through my first experience and as we will see in the next section, good use of
numpy solutions have been made as the code is as fast as the fortran implementation. The
main difference between these two codes, is the presence of an actual RPOD algorithm
and structure for any dimension as well as a TT decomposition method and structure.
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This code is also thoroughly documented through Sphinx tool, an illustration is proposed
in figures Fig. 4.2.

As a conclusion, the second version of the code fulfills the specifications given above,
modularity in particular is ensure with classes for each format and separate decomposition
methods. It was not actually used as a building brick for our ROMs for historical reasons
but could do so efficiently. Interfacing with the most advanced decomposition techniques
might be necessary as the algorithms are more complex e.g. Bigoni’s TT-DMRG-cross
[BEkM16].

4.2 Synthetic data comparison

Using synthetic data is very useful to test the methods and a variety of parameters that
might influence the convergence and compression rates. Our data is generated on uniform
grids1 of n1 × · · · × nd that discretizes Ω = [0, 1]d. The following real test functions are
used

f1(x) =
1

1 +
∑

i xi
f2(x) = sin(||x||2)

f3(x) =

√
1−

∏

i

xi

A special function was used to reproduce singularity for d = 5,

fs(x1, x2, x3, x4, x5) = x2
1{sin[5x2π + 3 log(x3

1 + x2
2 + x3

4 + x3 + π2)]− 1}2

+(x1 + x3 − 1)(2x2 − x3)(4x5 − x4) cos[30(x1 + x3 + x4 + x5)]

log(6 + x2
1x

2
2 + x3

3)− 4x2
1x2x

3
5(−x3 + 1)3/2

A typical case d = 3. In order to evaluate the separability of these three test functions,
we chose a relatively coarse grid of 32 × 32 × 32. The results are presented for all three
functions in Fig. 4.3. These graphs present the relative decomposition error2 defined by

ε =
||Texact − Tdecomp||

||Texact||
, (4.2.1)

as a function of the compression rate (in %) which is the storage cost of a decomposition
at a given rank divided by the storage cost of the full format tensor i.e.

CR =
Mem cost(Tdecomp)

Mem cost(Texact)
(×100 for %). (4.2.2)

First all 5 methods are tested with L2 norm and scalar product i.e. POD is applied as
a bivariate decomposition method. A distinct pattern can be observed in these 3 figures.
The least efficient compression method is PGD, which was expected in terms of CPU
time due to the iterative algorithm at the center of the method. However as the format
is very efficient by definition one could hope that the sub-optimality of the algorithm
(see sections 3.1 and 2.3.1 for PGD and ALS NP hard problem) would not impact too

1 Using a non uniform grid would have little influence on the accuracy given that one uses accurate
integration schemes. However it may help to increase the computing speed by using a sparser grid.

2The norm is not specified here as it can be either a Frobenius norm of tensors or theL2(Ω) norm.
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Figure 4.3: Decomposition of 3 test functions with d = 3 on a 323 grid with 5 discretization
methods, using L2 integration and norm.

much the decomposition. Actually, in spite of acceptable convergence of the fixed point
algorithm, the compression rate of PGD grows much quicker than any other methods.
Still it should be noted that in all three cases, it provides the best rank-1 decomposition
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as one should expect for a method based on successive rank-1 decompositions.Then it is
clear for all 3 functions that TT-POD and ST-HOPOD are the most efficient methods,
both showing exponential decay, although with a slop change for f2 (Fig. 4.3b) as it
is the least separable of all three functions. One should note that the ST-HOPOD and
T-HOPOD are superposed, this behavior was already observed in [VVM12] (for SVD
based decompositions) in the case of easily separable functions. As we will see in the next
paragraph the main difference lies in the computing time of the methods. Additionally,
one can see that TT-POD is less efficient for these small 3D problem as the core does
not require much memory in Tucker format. Finally the RPOD is close to TT for the
lowest truncation rank i.e. as long as they are virtually equivalent3 but the nature of this
recursive decomposition creates decomposition error jump when one enters a new branch
with important weight. This phenomenon of steps is most prominent in Fig. 4.3c. As said
in 1.4 it is useless to show different grid resolution as these functions are smooth and
decomposition behavior is thus uncorrelated with grid density, only the compression rate
would vary since it depends directly on the number of discrete points.
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Figure 4.4: Decomposition of fs on a 405 grid with L2 and l2 scalar products, decomposi-
tion error in their relative norm

Influence of the scalar product choice on fs. In order to assess the influence of the
scalar product for higher dimensions decomposition, fs the least separable of the synthetic
data functions is used, with d = 5 and 40 equispaced grid points in each dimension. Indeed,

3 Actually, for TT rank of 1 and and RPOD rank of 1 i.e. 1 mode only for each dimension, then
both algorithms are strictly equivalent, only the data structure is different. Then when the rank grows,
the association of modes by explicit summation in Recursive format is less efficient than the implicit
summation to the TT format. Finally the truncation strategy used in the software requires that any
branch with a weight above truncation limit has at least one leaf kept in the evaluation and all other
leaves below the truncation limit are ignored. This results in cumulative loss in precision which means
that the rank/epsilon truncation in recursive format is less sharp than in TT format.
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method computing (s) evaluation (s)
RPOD 9.535 31.80
RSVD 7.964 32.20

ST-HOSVD 1.096 1.23
ST-HOPOD 2.378 0.98

TT-SVD 1.205 1.19
TT-POD 2.206 1.13

Table 4.1: CPU times on fv for n = 40, d = 5 with a tolerance of ε = 10−12

for easier decompositions on Cartesian grids, no difference can be seen in the relative error
graphs. Fig. 4.4 shows recursive, TT and sequentially truncated tucker decompositions
for both L2 (POD) and l2 (SVD) scalar products. One can see that for each method, the
error and compression rate are almost the same for both scalar products. The trend being
overwhelmingly driven by the method itself. Results might differ for different grid types
and functions with sharp variations in which an actual integration would capture better
theses phenomena. Also one should notice that in this case where d = 5, TT decomposition
is now more efficient than ST-HOSVD when high accuracy is required (ε < 10−4) and
does not show any sign of linear decay contrary the other methods. In particular RPOD
clearly shows a linear decay from 10−3 onward in spite of being competitive for accuracy
up to 1%.

In conclusion as long as one uses a Cartesian grid, using SVD or POD does not
influence the compression behavior and other factors should be used to decide which one
to use depending on the use of this decomposition. For ROM building, one should use a
EDP adapted scalar product i.e. POD to obtain orthonormal modes. It should also be
preserved for physical analysis of a problem. Another criterion is CPU time, especially if
one only intends to reduce storage cost of large datasets.

Relative CPU time On the same problem, let us focus on the CPU times for each
methods as well as the reconstruction time needed to obtain a full tensor from the reduced
representation. Results are shown in table 4.1. PGD has been voluntarily excluded from
this table as it requires several hours, T-HO**D is not shown either as it requires roughly
4 times the ST-HO**D as expected from the number of dimensions. One can see that for
all these methods, SVD based decomposition is faster. This is due to the implementation
of POD that requires an additional diagonal (possibly multiple diagonals) matrix multi-
plication each time a scalar product is needed as compared to the SVD by EVD. In the
end, for TT and ST decompositions for which the cost of the bivariate decomposition is
controlling CPU time, this results in doubling the time for POD. For recursive decomposi-
tion, there are numerous overheads that makes the difference much smaller. Regarding the
evaluation time, it was not particularly optimized as it is not a central task to reconstruct
full tensors, more likely for higher order tensors, one might need only to reconstruct a
slice of the tensor. The third column of table 4.1 is the evaluation of the last data point
in Fig. 4.4. First one can see that both recursive methods takes roughly the same time
which is 30 times more than the other two methods. This observation definitively dis-
qualifies recursive methods for data reduction purpose. The the Tucker and TT are in the
same range of reconstruction time, the slight differences present here translate the slight
variation in their number of modes due to different truncation criteria implementation.
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Figure 4.5: f2 decomposition with d = 3 to 5 on a 32d grid with three decomposition
methods, using L2 integration and norm.

Number of dimensions and shift in the adequate methods. Now, we investigate
the influence of the number of dimensions in order to decide upon which method to use.
To do so, in Fig. 4.5 we compare the same 3 methods with SVD solvers and show on
the same graphs relative error as a function of compression rate for d = 3 to 5 in the
decomposition is function f2. One can see, once again that RSVD is the worst in all cases
but its distance to the other methods tends to diminish as d grows. Indeed, the recursive
structures prevents the storage cost to explode with the number of dimensions d. This is
also the main difference between TT and Tucker format. While the latter is more efficient
for d = 3 and remains competitive4 up to d = 5 thanks to efficient decomposition, it is
outclassed for storage purpose by TT. This is particularly visible for d = 5 (sold lines).
Thus, one can conclude that TT decomposition should be preferred as soon as d ≥ 5 if the
orhtonormality of the modes is not a criterion. For lower order problems, it is probably
preferable to choose ST-HOSVD method as it ensures orhtonormality of the basis while
being the most efficient method at the same time.

Unbalanced grid. Another interesting experiment is variating the grid resolution among
dimensions. As mentioned by Vannieuwenhoven [VVM11], a good heuristic for CPU time
is to treat the largest dimension first in ST-HOSVD, this is also true for RPOD and
TT-SVD. It is also quite important for compression rate in recursive format as few modes
of the first dimension will be stored. As one can see in Fig. 4.6, the large imbalance in
favor of the first dimension makes recursive decompositions comparable (although less
efficient) with ST-HOSVD. Fig. 4.6a shows an exponential decay of the error with respect
to the compression rate, just as observed for equal grid refinements in Fig. 4.5. The main

4most efficient methods depends on required accuracy for d = 4.
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Figure 4.6: Decomposition of synthetic functions f2 and fs for unbalanced grid refinements.

difference lies in the comparatively higher efficiency of RPOD together with much clearer
“stepping” phenomenon. In Fig. 4.6b, one can see that n1 is 5 times bigger than the
other ni, this leads to a far greater efficiency of TT-SVD as compared with Fig. 4.4. Once
again RPOD displays the same behavior as ST-HOSVD although the error is almost a
decade greater. As expected, methods that treat dimensions sequentially are compara-
tively improving when the number of point in each dimension is imbalance. This should
be taken into account when dealing with experimental data as it is in most cases largely
imbalanced.



106 CHAPTER 4. NUMERICAL EXPERIMENTS

Technical limitations of the current version of the library. As already stated
in the last section, the main limitation of the library (in both languages) is the memory
requirement. The usual emphasis of CPU time found in the literature is mostly irrelevant
as long a one uses adequate algorithm, i.e. correlation based 2D algorithm, namely POD
or SVD through EVD, PGD and direct SVD using usual algorithm is to be avoided as
long as the former converge. Indeed, it was shown in table 4.1 that CPU times remains
within a few second range for datasets of 800MB. Consequently the main limitation is
the RAM available on the working computer. Typical PC or cluster nodes offer 8GB to
64GB, which is already substantial memory. However it is far away from our target which
is to compress simulation data obtained through modern computational fluid dynamics
softwares. Indeed typical simulation output reach tens or hundreds of GB while exascale
computing aims at generating PB of data [ABR+12].

There are mainly three directions to explore in order to solve these problems for the
two most efficient procedures TT and ST:

Data segmentation The easiest way around memory limitation for storage is to split
studied data into chunks that can be treated by a single computing unit. Many
strategies are available (spatial, temporal) but they may compromise the physical
analysis or ROM building power of these methods. It is thus easy to implement but
introduces new limitation, however this kind of strategies can be turned into a tool
for analyzing different ranges or behaviors in a flow as shown in section 1.4.3.1.

Parallelization The natural response to such difficulties in the context of HPC is to
parallelize existing algorithm to take advantage of the computing clusters used to
produce the data. This would at some point be a simple post-processing step of a
large scale code. Efforts in that direction have already been made by several teams
for CP decomposition (among others [KKU16,ZFXM]) as it can be expressed easily
as a distributed algorithm. More work on distributed tensor computing has been
performed in the recent years [Sch15,Ett15]. The most impressive of applied parallel
decomposition examples lies in W. Austin et al [ABK16] in which they achieved ST-
HOSVD of +500GB datasets. To do so they have proposed a distributed memory
version of the ST-HOSVD algorithm and in particular mode-m multiplication (TTM
in the paper) and autocorrellation matrix building. The eigenvalue problem is solved
“sequentially” on each CPU as it is of very low dimension.

Cross approximation Another approach is to rely on partial evaluation called cross
approximation of matrices and adapt it to higher order decomposition [BGK10,
BEkM16,OT10], especially TT and HT formats. The idea is that given some regu-
larity, one can evaluate a limited number of entries of the tensor to build an accurate
representation (estimators are available). The memory overload problem is then by-
passed since the input tensor can be viewed either as a blackbox function or a disk
access. Obviously this approach can be coupled with parallelism.

Tensorization This approach does not solve per se the memory overload problem, but
it allows hyper reduction through data layout manipulation. TT and HT methods
have been shown to preform best when the number of dimension is high to very high
(d >> 1), but simulation data usually comes with 3 < d < 7 and largely unbalanced
number of entries per dimension. In order to take advantage of this ability, one might
artificially increase the number of dimension (up to ni = 2). Several implementations
have been proposed in the literature, among them the Quantized TT introduced by
Oseledets [OT10] and Khoromskij [Kho11] has encountered some success [Cic14,
Big14,SO11].
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As often in scientific computing, a combination of these approaches is possible and will
increase efficiency of the decomposition process.

In this section, it was shown that decomposition of multiparameter functions and
high order tensors have been implemented successfully. Not all methods are equivalent in
terms of compression efficiency and CPU time, two of them are clearly to be preferred:
TT decomposition and sequentially truncated Tucker decomposition. HT has not been
programmed as it simply provides an efficient shell for all other decomposition techniques
and introduces significant complexity to the code. l2 and L2 norm perform equally on
the regular grid and functions tested in this section, special discretization of Ω (linked
with function smoothness) may reduce the evaluation cost of L2 scalar product. It was
shown that CPU time is not the main limitation as compared with memory handling.
Consequently, further experiment will be limited by a single workstation/node RAM,
16GB in both cases during my thesis.

4.3 Decomposition methods on numerical data

Now that the most efficient methods have been selected, TT-SVD and ST-HOSVD are
applied to decompose data obtained through experiments, both numerical and physical.
The goal of this section is to provide insight for efficient data reduction and qualitative
analysis of their use.

This study is restricted to relatively small dataset i.e. in the order of 1GB so that
decomposition as well as postprocessing fit on my laptop. Three different cases are studied.
Two are scalar data of only one variable, that is to say f : Rd −→ R as it is the simpler
case, both from numerical and actual experiment. The third example intends to address
the multiple variables of multivariate vectorial i.e. discretization of f : Rd −→ Rp.

4.3.1 A scalar simulation : 2D lid driven cavity at high Reynolds
number

First we investigate the simpler case of multidimensional field. Once again, the lid driven
cavity simulation in stream-function vorticity formulation is used, see section 5.1 and
1.4.3.1 for further details.

The problem characteristics are briefly reminded to the reader. A DNS simulation of
the lid driven cavity problem in streamfunction-vorticity formulation with high accuracy.
High Reynolds numbers are studied, here we focus on range Re ∈ [10000, 10100] with a
spacing of 20. Time steps are very small, δt = 10−3 then snapshots sampling is coarser
: δt = 0.2 in order to capture longer time series and especially limit cycles. In order to
capture the flow behavior from initial quiescent state to the limit cycle, simulation must
run from t = 0 to a few thousands. Consequently, for this analysis, a narrow range of the
limit cycle is sampled from t = 1900.2 to 1940, leading to 200 snapshots per Re. Finally,
I chose a relatively coarse space grid of 257 × 257 for easier handling as we have shown
that the number of modes is only weakly affected by grid density. In conclusion, after
interfacing pydecomp with T.K. Sengupta LDC code (written in Fortran90), an order
3 tensor T of shape 66049 × 201 × 6 is obtained. Space is given as a single vectorized
dimension, as it is not clear if it is preferable to decompose like that or by seperating
space into two dimensions leading to an order 4 tensor of shape 257× 257× 201× 6, both
approaches are shown in Fig. 4.7.



108 CHAPTER 4. NUMERICAL EXPERIMENTS

0 5 10 15 20 25
Compresion rate (%)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

R
e
la

ti
v
e
 E

rr
o
r

LDC data decomposition error

SHO_SVD vectorized

TT_SVD vectorized

SHO_SVD reshaped

TT_SVD reshaped

(a) Cutoff tolerance of ε = 10−8

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Compresion rate (%)

10-3

10-2

10-1

100

R
e
la

ti
v
e
 E

rr
o
r

LDC data decomposition error

TT_SVD reshaped

SHO_SVD reshaped

SHO_SVD vectorized

TT_SVD vectorized

(b) Cutoff tolerance of ε = 10−4

Figure 4.7: Lid Driven Cavity Simulation within the stable limit cycle time range, see 5,
input tensor is of shape 6× 201× 66049. t = 1900 to 1940 with a stepping of 0.2, space is
a 257 × 257 grid that can be vectorized (solid lines) i.e. taken as a long vector of size
66049. Space treated as 2 dimension is referred as reshaped (dashed lines). Reynolds is
a parameter dimension with Re ∈ [10000, 10100] and a stepping of 20.

This data is strikingly separable, all four configuration offer machine precision5 with
relatively low compression rates 10% to 25%. Indeed both decomposition methods and
both data layouts display exponential decay of the error as function of the compression

5 The reader is reminded that 10−7 or 10−8 is considered machine error in the context of high order
decomposition through correlation matrices.
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rate. This is particularly visible when the error E > 10−5 in the top graph Fig. 4.7a, for
lower truncation one can see an abrupt change of slope which is attributed to reaching
“noisy” data. Indeed, this phenomenon is observed on most actual datasets and it was
already observed for 2D decomposition of the LDC data, see Fig. 1.10. Next, one can
observe that all four methods display comparable accuracy for moderate accuracy, which
means that the choice must be driven by the goal of the decomposition. For optimal
storage, one is advised to prefer TT-SVD for both layout although vectorized layout
allows the user to reduce the truncation error by almost a decade. Finally, The latter
offers, by far, the best compression rate 10% for maximum accuracy as compared to the
roughly 20% of concurrent methods. Regarding ST-HOSVD, the observation regarding
layout is the opposite of TT-SVD as compression efficiency is (slightly) reduced with
reshaping.

Remark (Handling of the space dimension). As shown for this example, the compression
rate is weakly influenced by the space layout. This confirms the intuition that the amount
of information contained in space does not depend on its layout. However we can see that
it is not entirely true since differences appear early on, one can merely affirm that the
qualitative separability of the field does not depend on the layout. In specific cases such
as quasi 2D problems, the third dimension must be separated as it represents a huge gain
to treat it separately. Indeed it can be seen as an identity function.

The rank however is drastically influenced by this choice as one can see in table 4.2
where the same cutoff value of ε = 10−4 has been used with each method and the trun-
cation error is virtually the same. It is important to notice that in spite of the sequential

layout vectorized reshaped
ST-HOSVD [15,18,6] [59,63,18,6]

TT-SVD [15,6] [59,15,6,]

Table 4.2: LDC decomposition ranks with the same prescribed cutoff value ε = 10−4 (last
point in Fig. 4.7b).

nature of these methods the ranks of time and Re are unmoved by the layout choice.
Yet, spatial decomposition rank is drastically changed, being multiplied 4 times for each
one in ST-HOSVD. It is interesting to notice that only the first rank in TT-SVD is big,
the second one remains the same as for the vectorized layout. It can be interpreted that
the space spanned by space dimensions 1 and 2 (embedded at the second stage of the
algorithm) remains the same no matter the layout thus leading the same value of 15.

Now, we shift our attention to Fig. 4.7b. In this cases we are interested in the ability
of these methods to compress the data with moderate accuracy. The superiority of the
reshaped representation of space is blatant as it proposes a much finer range and roughly
half the storage space. This phenomenon in enforced by relatively low spatial ranks as
compared with nx and ny (see table 4.2). In terms of compression power, this largely
overcomes the highly intertwined nature of both space axes i.e. the rich flow behavior lies
in complex 2D structure that in spite of not being represented well in the reshaped layout
is overcome by rank truncation.

Very limited physical hindsight is obtained observing “reshaped” space modes along
X and Y which is why they are not shown here. the central region is mostly flat with
varying mean values while the extremities of the domain show large spikes and modes Y
present small scale oscillations in addition to larger structures near y = 1. The vectorized
modes (not shown) are similar to the one given in space time decompositions in chapter
5 and section 1.4 for LDC.
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(b) Reconstructed from ST-HOSVD, 1% error.
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Figure 4.8: Vorticity field of the lid driven cavity at Re=10000, t=1900s decomposition is
reconstructed compared with 1% relative error in Frobenius norm i.e. rank=(10,10,3) and
compared to original dataset. Isolines are plotted as well as colormap, they are exponen-
tially spaced from the center of the square value, solid is superior to ω(C) while dashed
lines are inferior. This is to make comparison with centered data.

Fig. 4.8 shows that even with moderate accuracy of 1% error the reconstructed data
is largely usable for qualitative analysis. This is very interesting for long term storage as
the required amount of data for this dataset is reduced to 0.2% of the original 634MB i.e.
1.2MB. Here, Fig. 4.8a shows the original vorticity field of Re = 10000 at t = 1900 while
Fig. 4.8b proposes the same field from reconstructed ST-HOSVD in the vectorized layout
and Fig. 4.8c is the difference between these two fields. One can see that the structures are
well captured as well as the minimum and maximum value. The central region vorticity
level is off by a few percent. However the lower amplitude structures are captured with
less accuracy. Finally, the difference map shows that locally, the error can reach values
comparable to the central region 6 but the frame remains mostly green i.e. the difference
is below 1. As one would expect, most of the error is contained in large gradient regions
near the boundaries of the domain.

Finally, in order to acquire a better grasp of the decomposition obtained, Fig. 4.9
shows the first modes associated with Re and time. In both cases, the first mode plays

6-3 to 4 are the min and max values of the error field as indicated at the extremities of the colormap
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Figure 4.9: Time and Reynolds modes of lid driven cavity during limit cycle (t ∈
[1900, 1905]) in for Re ∈ [10000, 10100].

a special role of virtually applying a constant offset, it can be referred as a mean mode.
Indeed this kind of mode is observed whenever the data has not been centered beforehand,
the decomposition “naturally” separate the mean field from the fluctuations. A simple
averaging of the data suppresses it and it is often advocated to do so in the literature7 as
it should improve the decomposition. Next, Fig. 4.9b displays well orginized modes, these
pairs of modes (2-3, 4-5) are seperated by a phase shift of π/4 and the frequency of pair 2
is double the frequency of pair 1. This pattern is studied in greater details in section 5.1,
yet it interesting to note that the same pattern is observed for multivariate decomposition
involving Re as a parameter as well as usual bivariate POD. It is then possible to infer
that the time behavior is the same for each Re in the chosen range. At the other hand of
the regularity spectrum, one finds Re associated modes in Fig. 4.9a. These modes appear
to be a mean to exclude each other from combinations, no clear pattern emerges. This
observation indicates low feasibility Re based interpolated ROM.

7Also, the data can be normalized in order to improve the decomposition. In fact, these processing
aim at recovering the hypotheses behind POD, PCA, etc.
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4.3.2 Experimental data : droplets evaporation

In this second example, a scalar field obtained by a lab experiment is studied. The goal
here is to emphasize that very little knowledge of the data is necessary to perform decom-
position. This dataset was kindly provided by C. Pradère, from I2M-TREFLE laboratory.
It is a study of droplets evaporation during 29 timesteps with recording at 51 different
wavelength to evaluate the density field. The camera resolution is 320 × 356, no further
detail on the technology used is required. Finally, a matlab “.mat” binary file off 800MB
was given. Once again, the remarkable aptitude of python for IO handling is exhibited as
only one line of code8 was required to obtain the 29× 51× 320× 356 array. Fig. 4.10 pro-

(a) t= 1/29 (b) t= 23/29 (c) t= 24/29 (d) t= 29/29

Figure 4.10: Visualization of 4 snapshots of the density field at the 21st tabulated wave-
length. Data kindly provided by C. Pradère (I2M Bordeaux).

vides insight on the phenomenon studied, the circular drop at initial time evaporates and
shrinks gradually up to frame 23. Cracks appear at t=24 (different wavelength may not
show these cracks) and the droplet is completely shattered at t=29. One may infer that
the droplet has solidified but this information (not given by C. Pradère) is not necessary
for data decomposition.
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tensor shape: 29× 51× 81920.

Figure 4.11: Decomposition of experimental data kindly provided by C. Pradère (I2M
Bordeaux). The density is given as a function of time, wavelength and space

8A call to the h5py library allows “natural” reading of data and selection of the required set/variable
before actually loading it into RAM
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Given that the data is obtained experimentally and that it is likely that many physics
are happening during the experiment, one needs to assess the separability of the array.
In the absense of any information about the parameter spaces at stake, for instance we
don’t know if the snapshots or the wavelength are equispaced, then Frobenius norm based
decomposition is used. Fig. 4.11 shows that with both ST-HOSVD and TT-SVD, very
little compression is achieved. Indeed, Fig. 4.11a shows that more than 60% compression
rate to reach a relative error of 1%. Yet, one can see that the error drops (actually down
to machine error) with a compression rate slightly below 100% which means that the
density field is represented “exactly” with a slight datasize reduction. Fig. 4.11b proves
that attempts at vectorizing data provide no improvement in the error decay rates. This
zoomed in view, informs us that a reduction to a few percents of error is attained within a
few modes, thus some of the behavior is separable. But the complexity of this phenomenon
lies in nonlinear physics, such as transport or phase change, that is known to cause poor
convergence of the SVD/POD.
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(c) Spatial modes from vectorized data layout (1 to 5, left to right).

Figure 4.12: First 5 modes study for droplets evaporation experiment obtained through
ST-HOSVD.

A brief, analysis of the first 5 modes of time and wavelength is proposed. Fig. 4.12
shows the first five modes of each parameter, space was taken as a single dimension
(Fig. 4.12c) since interpreting 1D space modes not relevant given the circular shape of the
studied phenomenon. Although Tucker format allow extra-diagonal correlations in the core
tensor, a clear link between the first mode of each dimension appear. Contrary to the mean
value of LDC example, here we observe a slowly decaying size of the droplet from circular
to shrinked ovoid. This behavior is helped by mode two that can be clearly associated with
the size reduction in time (green line) as well as in space with the characteristic annular
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structure. Mode interpretation among the wavelength (Fig. 4.12a) is more complex and
may require additional knowledge. Mode 1 seems to correspond to a mean value whiles
modes 2,3 and 5 have in common a visible demarcation around wavelength 35. Mode
4 has a distinct behavior, with marked spikes from one to the next, higher modes (not
shown) do not reproduce this erratic evolution. Spatial modes 3 to 5 are clearly associated
with cracking of the droplet, as well as part of the shrinkage. Indeed time modes show
associated decay oscillations followed by a sharp rise or fall at t=24, the onset of cracking.

t=1 t=23 t=24 t=29

Figure 4.13: Synoptic view of reconstructed decomposition, tolerance, ε = 10−2, wave-
length 21. Each line represent a different dataset, namely: original, ST-HOSVD reshape,
ST-HOSVD vectorized, difference ST-HOSVD reshape, difference ST-HOSVD vectorized.

Finally, Fig. 4.13 provides a synoptic view of the STHOSVD decompositions with a
prescribed error of 10−2 in both vectorized and reshaped layout. This means an actual error
of 6% for the vectorized layout with a compression rate of 1.5% while its space separated
counterpart global error is 9% for a compression rate of 0.3%. This partial choice of low
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accuracy high compression is aimed at showing that this kind of representation is sufficient
for qualitative analysis. First, in spite of high global error level, the sequence of droplet
evaporation is well captured by both methods, the crack appears at the expected frame
in each decomposition. The main difference between the two layout lies in the sharpness
of the spatial representation, indeed the vectorized approach produces a sharp edged
representation while the separated space dimension lead to a “blurry” phenomenon. This
is confirmed by the bottom frames, in which on clearly sees that the error is located
at high density gradient regions. In conclusion vectorized layout produces less efficient
decomposition but allows for a sharp and easy to interpret reconstructed field while the
separated space dimensions yields a blurry image, yet with lower global error.

4.3.3 A vectorial simulation : breaking wave

Figure 4.14: Breaking wave simulation computed with notus CFD code, wave height of
9cm and length of 10cm. The wave is going rightward from the initial state (left frame),
crosses the periodic boundary (top right), breaks at t ≈ 4500 follows to an unphysical
chaotic state. Pink lines represent the water/air interface, arrows size are proportional to
the velocity amplitude and the colormap accounts for kinetic energy.

In this last example, we study a 2D simulation of a breaking wave which provides 5
output variables : density, pressure, vorticity, velocity along each dimension. This simu-
lation was performed by Florian Desmons,a fellow PhD student at I2M-TREFLE, with
notus CFD (see boxed description). It is not intended to be a state of the art breaking
physics simulation, the goal here is to provide a complex physics two phases flow computed
with a validated HPC code.

notus CFD

Notus open-source CFD software is an initiative of Institut d’Ingénierie et de
Mécanique - Bordeaux (I2M, Bordeaux University, CNRS UMR 5295) developed
since 2015. It is dedicated to the modelisation and simulation of incompressible
fluid flows in a massively parallel context. Its numerical framework is the Finite
Volume method on Cartesian staggered grids with a methodological focus on inter-
faces treatment (on going works on fluid-fluid interface advection, surface tension
computation, immersed boundary methods, etc.).

Extract from : notus-cfd.org

notus-cfd.org
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The Navier Stokes equation with two fluids is solved thanks to a level set methods
with a velocity pressure scheme. The spatial domain Ω = [0, 0.6] × [0, 0.6] is discretized
on a 256 × 256 cartesian grid, while the time is solved with small times steps which are
sampled in 201 equispaced snapshots. The third parameter is the ratio wave height over
wave length, the latter being fixed for the whole set of simulation to 10cm, 3 heights are
given: 9, 10 and 11 cm. In each case, the boundary conditions are periodic and the velocity
field is initiated with an adapted velocity. Finally, the density field is equal to 1000 in the
liquid phase and 1 in the gas phase. For stability reasons, the transition is smoothed on a
few cells. Simulation with wave height of 9cm is provided in Fig. 4.14 where one can see
four typical snapshots of the breaking wave.

Data layout. The previous examples have shown that in spite of providing sharper
spatial description, a vectorized space is not the most efficient configuration in terms of
storage cost. Additionally, the physics of the studied problem clearly has two seperate
domains, air and water which remain in the same region with respect to coordinate Y.
Only a small portion of the Y range is affected by phase change. In conclusion, a space
separated layout is used. Furthermore, this dataset provides 5 different output fields which
are correlated since they solve the same Navier-Stokes equation system. But they possess
very different mathematical properties, for instance, density field is representing as sharply
as possible an inherently discontinuous field whereas the pressure field is naturally smooth
and continuous in spite of following the same interface. The velocity field is represented
by two scalar values but has been solved at the same time. Finally, the vorticity field is
post-processed from velocity but the field itself is much more sharp due to the rotational
operator, thus making decomposition less efficient. In conclusion, two data layouts are
studied, both with separated X and Y axes.

a. Output data for each variables are processed sequentially. Five order 4 tensor of
shape 3× 201× 256× 256 are decomposed.

b. Output data for each variable is assembled into a new dimension that intends to
account for embedded correlation among variables. One order 5 tensor of shape
5× 3× 201× 256× 256 is decomposed.

Scalar product. As for any decomposition problem, choosing the base scalar product
and associated norm is thought carefully. Time and space support both L2 and l2 decom-
position while wave height could also accommodate both, it’s not clear whether the usual
measure is suited for such parameter. Finally for case b., there is no natural measure to
integrate over different variables, leaving l2 as the only option. In conclusion, a full9 l2

decomposition is used, with two methdos, namely TT-SVD and ST-HOSVD.
Fig. 4.15 provides the error versus compression rate graphs for layouts a. and b. First

we focus on the top frames in which the truncation error of the decomposed tensor is shown
versus the compression rate. Separability of the dataset with layout b. sits in the separable
range. Once again, a sharp decay is observed for large scale evolution i.e. for error levels
down to a few percent. Then a clear inflection is observer around 0.5% compression rate
for both method. Yet, it still appears that the error decay follow an exponential trail. It is
interesting to notice that ST-HOSVD yeilds the best approximation at low compression
levels (see Fig. 4.15d) and represents to machine error the data with a compression rate
of 60% as seen in Fig. 4.15c. No such convergence is observed for TT-SVD.

9The implementation of pydecomp allows mixed scalar product with easy use. Still, it was shown that
L2 and l2 scalar product produce almost identical decomposition for regular Cartesian grids. Thus, the
increased complexity does not seem justified in this context.
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Figure 4.15: Compression of breaking wave simulation data from notus. Parameters :
5 output variables, 3 wave heights, nt = 201, nx = 256, nx = 256. Top frames are
decomposition with output variable taken as an additional dimension with n = 5, bottom
frames is the same dataset but each variable is seen as a seperate scalar decomposition
problem.

Regarding separate decompositions of variables through ST-HOSVD, lower frames of
Fig. 4.15, it is observed in Fig. 4.15c that every single variable is represented to machine
error within 50% of the original data size (per variable). It is actually uncommon for com-
plex simulation data to present an “exact” tucker rank i.e. for each variable, machine error
is reached for a tucker rank of r = (3, 201,≈ 130, 256). Next, for small truncation error
levels, all variable decrease at the same slope, only the depth of the initial drop varies.
Fig. 4.15d provides a bigger truncation criterion in order to better grasp the moderate
accuracy decomposition. Once again, large differences between variables is observed, with
pressure field being extremely separable while the vorticity field occupies the other end
of the spectrum. Table 4.3 emphasizes the great variation of ranks among variable for an
identical tolerance. In conclusion, if one is interested specifically in an “easily” separa-
ble field, then the best choice is to treat variables separately. On the other hand, when
interested in several variables, it is a better option to compress all the data together.

Graphs discrepancies. One may notice that these graphs are not exactly the same,
this is because the truncation value ε is applied to the ST-HOSVD itself i.e. to each SVD.
This leads to some mode combination to disappear from the larger ε although the actual
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Field Rank
density [3,174,58,147]
pressure [3,52,14,44]

velocity u [3,184,79,256]
velocity v [3,179,101,158]
vorticity [3,195,114,246]

Table 4.3: Breaking ST-HOSVD ranks with the same prescribed cutoff value ε = 10−3

(last point in Fig. 4.15d).

projection norm is of the same order as ε. For instance let us pretend that ε = 10−3

yields a rank (3,7,27,35), there is no warranty that modes (3,8,27,32) from the full rank
decomposition is associated with a weight ω3,8,27,32 < ε.

Another possible cause to discrepancies between Fig. 4.15c and Fig. 4.15d lies in the
building of the graph itself. The retained algorithm increases the rank at the same rate
for each dimension while taking care of respecting the available rank. This is justified
by the extreme complexity and variability of modes projection weight and the fact that
the smallest dimension reach (in my experience) very quickly the original shape size, for
instance wave height rank is maximum.

Breaking wave vorticity modes. Given that this example physics is a lot different
than the previous ones, it is interesting to look at the first five modes of each dimension
(see Fig. 4.16) for the vorticity field. The top left frame, Fig. 4.16a, shows the modes
associated with the initial height of the wave. No clear pattern is distinguishable and the
sharp variation mostly indicates that they would be better considered as discrimination
function rather than modes in the usual sense. Consequently, there is very little prospect
for interpolated ROM on this parameter when the user have only 3 instances available.
Times modes (Fig. 4.16b) can be interpreted as being activated by the breaking of the
wave (time range is approximately [3300,4500]) and further agitation. As expected, space
modes along dimensions X and Y produce remarkably contrasting patterns. On one hand,
X modes describe global agitation with distint patterns at impact (x = 0.2) and splash
region (x = 0.3). On the other hand Y modes show an intense activity near the interface
and close to 0 value elsewhere. The same pattern is observed for other variables (not
shown) but vorticity provides the most readable graphs.

Reconstructed fields. Finally, a quick overview of the reconstruction is given by means
of the density field and levelset reconstruction. Indeed, this is a very sensitive variable
and it is required to capture correctly the interphase for any interpretation of the stored
results. Fig. 4.17 shows the same snapshots as Fig. 4.14 where the black line is the original
isoline 50 of the density field and the green dotted line is its reconstructed counterpart
from ST-HOSVD(ε = 10−3). The background color maps the difference between both
density fields. In spite of marked error field, the reconstructed levelset fits perfectly with
the original one, no bubble is omitted and the shapes are well captured. Still, some parts
of the density field are negative (deep blue color in the air corresponds to ρ < −20).
This is obviously non physical and this issue should be addressed in order to prevent
misinterpretation for cases in which the analysis is more complicated.

It should be noted that with this precision of ε = 10−3, it is almost impossible to
distinguish the reconstructed field from the original mode. Some slight oscillations may
be spotted but are easily discarded by the observe as their amplitude is a few percent of
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Figure 4.16: The first vorticity modes for separated variables layout.

the maximum field value.

4.4 Standard interpolation techniques for reduced ba-

sis ROM

Given the discrete basis that we have obtained in the previous section, it is quite natural
to try to build simple interpolation ROM using standard 1D interpolation methods. We do
not intend to supersede specialized methods such as the empirical interpolation method
(EIM) proposed by Maday et al. [MNPP09] or its discrete version DEIM [Cha08]. Neither
do we try to compete with sophisticated approaches such as Grassmann manifold interpo-
lation [AF08,AF11] proposed by Amsallem and Farhat. Indeed this technique relies on the
particular topology of EDP solution space to provide accurate parametric interpolation.
Here, we simply assume that as a first approximation, standard interpolation techniques
such as Lagrange interpolation yield acceptable ROM if the sampling of the solution space
is dense enough relative to the solution smoothness. Using 1D interpolation on separated
basis is interesting since it prevents the occurrence of beat phenomenon and is very cheap
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Figure 4.17: Levelset 50 of the reconstructed density field at 4 time steps (same as Fig.
4.14) with the difference field between the original and reconstructed data.
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as compared with multidimensional interpolation.
We are interested in the following toy problem for the LDC flow separated in sec-

tion 4.3.1. The vorticity data ω(x, t, Re) defined at grid points {xi}Ni=1, {tj}ntj=1 and
Re = {Rek}Kk=1 has been separated into the following Tucker representation ω(x, t, Re) ≈
[W,Φ,A,U ] where base matrices form an orthonormal basis10. The goal here is to find
an approximation of ω(xi, tj, Ret) ∀i, j at target Reynolds Ret. We propose to interpolate
on Re modes U . To do so, one can rely on standards interpolation techniques (and their
limitations) such as the few examples listed below. A complete presentation of standards
interpolation methods is available in many books including [ARF07].

Lagrange interpolation. Usually the first example in interpolation chapters, this poly-
nomials method is exact at nodes and provides interpolation polynomials of the same order
as the number of points. These are defined as

li(x) =
n∏

j=0
j 6=i

x− xj
xi − xj

∀i < N (4.4.1)

Then the interpolation polynomial reads

Πn(x) =
n∑

i

yili(x) (4.4.2)

with Πn(xi) = yi. A complete numerical analysis is available in the literature [ARF07].
The main drawback of this method is known as Runge phenomenon, when the number of
interpolation point grows, so does the order of the interpolation polynomial which results
in oscillations at the edges of the domain.

Composite methods. In order to overcome Runge phenomenon, a solution is to use
composite methods. As Runge phenomenon is observed only when many interpolation
points are used, the idea is to cut the domain into small parts with k + 1 nodes for
Lagrange interpolation and join the obtained interpolations into one. It possesses the
following error estimate for f ∈ Ck+1([a,b]) for the global interval

||f − Πh
kf ||∞ ≤ Chk+1||f (k + 1)||∞ (4.4.3)

where h is the maximum distance between consecutive nodes. Consequently, the interpo-
lation error is low as long as h is ‘small enough’ in spite of k being small. Obviously, there
is a variety of ways to interpolate on the small segments in order to ensure regularity
properties. In this thesis, we restrain to linear (2 points intervals) examples and splines.

Splines. Spline interpolation methods are often found in softwares as they provide global
continuity properties while exhibiting the inherent stability of composite methods. In this
manuscript, the cubic splines are chosen as they are the lowest order splines to ensure
C2 approximation and possess good regularity properties. Additionally they are natively
proposed in scipy11 which make them very easy to use. Once again, the reader can find
more information in [ARF07].

10Orthonormality is useful for building stable ROM, if possible, prefer these bases.
11www.scipy.org

www.scipy.org
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Table 4.4: Reconstruction RMS error of the interpolated ROM as

Linear 2.94%
Lagrange 1.49%
Spline 1.45%

These methods have been applied to the following LDC dataset, on a regular Cartesian
of 257 × 257 computed with the previous code with 201 equispaced snapshots for t ∈
[1900, 1940], Re=10000, 10020, 10040, 10060, 10080, 10100 have been evaluated with DNS.
Ret = 10040 is removed from the training set and an ST-HOSVD (tolerance of 10−2) is
applied to the data. It yields a reduced basis of 5 Re function {Up}5

p=1 which is interpolated
at Ret. Finally the interpolated ROM is reconstructed at target Re and the RMS error is
compared using these three methods following the definition

E =
||ωDNS(Ret)− ωROM(Ret)||F

||ωDNS(Ret)||F
(4.4.4)

One can see in table 4.4 that the interpolated ROM provides a relatively good ap-
proximation of the vorticity field for all three tested methods. Not surprisingly, linear
interpolation provides the largest RMS error while Lagrange and cubic spline interpola-
tions perform equally well from this point of view. A better grasp of the ROM recon-
structed vorticity field is given in Fig. 4.18 where the top frame is the DNS vorticity field
at t = 1900.199 and subsequent pairs of frames show ROM reconstructed field for each
interpolation method together with the difference map on the right hand side. Again the
error map Fig. 4.18c shows that linear interpolation performs worst with marked error
near the cavity boundaries. In this region, the vorticity is captured equally well by cubic
splines and Langrange interpolation. But one notices that the central portion is repre-
sented with much more accuracy by Lagrange interpolation Fig. 4.18d both in shape and
actual value than it is by cubic splines (Fig. 4.18f). It is as though the first pair of mode
(see Fig. 5.10b), does not have enough weight in the ROM which would explain why a 6
branches structure is noticed for splines. The good accuracy of Lagrange interpolation is
attributed to the reduced number of sampling Re points as finer sampling would result in
Runge phenomenon. In this context however, Lagrange interpolation represents an effi-
cient and easy to implement method for basis interpolation ROM. It should be noted that
this approach provides good stability as long as the underlying interpolation method is
stable. It should be noted that running all three steps of decomposition, interpolation and
reconstruction of the slice requires less than 10 seconds for the studied case, interpolation
(online) cost being virtually nil compared to the others.

The drawback of this approach lies in the loose sampling of Re parameter, this leads to
irregular modes, of which the characteristic are deeply affected by removing one sampling
point. This impairs greatly the ability of such ROMs to produce better accuracy outputs.
For instance, using much more refined ST-HOSVD decomposition such as ε = 10−4 does
not improve at all the ROM accuracy since the maximum number of Re modes was already
attained for ε = 10−2. To overcome such difficulties, one needs to rely on methods that
inherently capture the complexity of the PDEs solution space which are for most cases
curbed manifolds.

Conclusion

In this chapter, I tried to answer to a common question in mechanics laboratories and
especially for numerical physics:
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Figure 4.18: Reconstructed vorticity and DNS vorticity field for target Re=10040 with
donor points at Re = 10000, 10020, 10060, 10080, 100000 at t = 1900.199.



124 CHAPTER 4. NUMERICAL EXPERIMENTS

“Which one of the numerous decomposition method should be used to reduce mechanics
data?”

To do so, I have developed two decomposition libraries, the second one, pydecomp,
takes advantage of python numerous libraries for scientific computing, visualization and
data I/O handling. Benchmark cases are proposed to test and compare each of the avail-
able methods : PGD, RPOD, T-HOSVD, ST-HOSVD and TT-SVD.

In section 4.2, these benchmarks have been put to use. The clear conclusion is that
PGD cannot be used as a multidimensional decomposition method for it is extremely
slow and compression power is excessively poor. Yet, it should not be dismissed as it
makes a relatively efficient 2D iterative methods which allows the user to compute only
the required modes. The T-HOSVD has been dismissed as its results are indistinguishable
from ST-HOSVD while being several times slower for large datasets. RPOD has also been
classified as not pertinent for three reasons. First, its decomposition performance is far
poorer than TT-SVD and ST-HOSVD, second, the computing time is much higher than
its contenders. Finally, the recursive mathematical nature of the methods translation to
code is not natural and leads to flat trees that are slow to scan. Extensive discussion on
scalar product selection has lead to the conclusion that default should be “blind” eulerian
scalar product, especially for Cartesian grids. But some cases could benefit from L2 scalar
product such as Gaussian quadrature points, or contexts in which the physics is well
known and requires a special scalar product such as integrating a vector field.

In section 4.3, a close attention was given to the two most efficient methods for tackled
actual data. Two scalar fields were used, one from an experiment, the other from a DNS
simulation. The experimental data, taken from a droplet drying with 4 parameters (time,
wavelength, 2D space) was found weakly separable with both methods. This is attributed
to the nonlinear nature of the studied physics. Yet the reconstructed field for a tolerance
of ε = 10−2 seems sufficient for qualitative interpretation. The high error levels seem to
lie in the cracks representation as shown brief analysis of the modes. The DNS data was
chosen to present regularities that were accurately captured. In each of these methods
two data layouts for space decomposition were studied, one separates X and Y dimension
while the other vectorize so that space is viewed as a single dimension. For both datasets,
the separate dimension produces lower compression rate for a fixed error level but the
inherent bi-dimensionality of the structured is captured with less accuracy (to the human
eye) in spite of lower error. Indeed mode combination leads to oscillations that reduce
when the rank is increased. The last example was a breaking wave simulation computed
using notus CFD. It proved the versatility of pydecommp implementation in handling data
from several sources with different characteristics. I have shown that different variable
from a single simulation present remarkably diverse separability levels. As expected, the
smoother the field, the more separable it is. Another, layout question was raised for this
example, one may wonder whether these output variables should be treated as a distinct
problems or as a single variable. Once again, there is no definitive answer and the user
must adapt the layout to its need. The global decomposition allows easy handling but
the compression rate is dominated by the least separable variable. Thus, for this case, a
distinct processing of each variable is preferable. Moreover, we have seen that, surprisingly,
this dataset tensor has a finite Tucker rank at machine error.

Finally a simple interpolated ROM of reduced basis (obtained by ST-HOSVD) has
been proposed with standard interpolation techniques. This ROM produces solution with
1% RMS while being very simple to implement. The main drawback is that we were not
able to improve the accuracy below this mark since the Re basis functions are not smooth.
Improving interpolation may require a finer approach as we will discuss in chapter 6.



Summary and conclusion on data
decomposition

In this first part of the manuscript, we have first presented the bivariate a posteriori data
reduction technique. It was observed that they are mostly equivalent from an analytical
point of view. However the algorithms display strong differences that may be used to
improve computing efficiency depending on the studied problem.

Then a detailed presentation of the tensors, their representation formats (Canonical,
Tucker, TT and HT) and the associated decomposition techniques was proposed in for-
malisme as close as possible to CFD community standards. They are well suited to reduce
numerical simulation data. However it should be noted that some properties of the flow
may be lost.

Subsequently, the multivariate function approximation/decomposition was studied
proposing two methods, the PGD which is best suited for directly solving problems on
a reduced base and the RPOD, a natural extension of POD with recursive bivariate
decomposition. The constructed recursive tree structure differs notably from the tensor
approximation that we have adapted to the continuous framework.

Finally, most of these methods were implemented (pydecomp) and numerical test were
conducted. They showed the dramatic variation of CPU time and number of mode effi-
ciency between these multivariate methods. For both the continuous and discrete frame-
works, the main result of this analysis is that sequentially truncated Tucker decomposi-
tions present the most efficient for d < 5 while it is superseded by TT decompositions for
higher d. These efficiency comparison have been performed with compression rate against
approximation error that provides a fair ground when the rank does not account the same
memory use. Finally, in view of building ROM, one should consider the orhtonormality
property of the bases obtained via these methods, especially numerically.

To close the first part, a summary of the formats and their decomposition is given. A
special care is given to provide insight for both continuous and discrete format. Anytime
POD or SVD appear, they can be switched as we have shown that they are equivalent
approaches with different scalar products. We have also noted that the correlation ap-
proach (POD and SVD by EVD) are much faster than full methods by limit the accuracy
of the decomposition to the square root of machine precision, e.g. with double precision√

10−16 = 10−8.

Canonical Format

cont. f(x1, ..., xd) ≈
d∑

k

d∏

i=1

Xk
i (xi)

disc. F ≈
r∑

i=1

d⊗

µ=1

x̃iµ

125
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This decomposition is obtained by iterative approximation enriching algorithms such
as PGD and ALS (see algorithm 2 and 3). Storage cost is linear in d (O(drn)) but it
was found that these decompositions are numerically inefficient. Additionally, con-
vergence is not ensured. These methods are not recommended if data approximation
is the sole objective.

Tucker

cont. f(x1, ..., xd) ≈
r1∑

k1=1

· · ·
rd∑

kd=1

wk1,...,kd

d∏

i=1

Xk
i (xi)

disc. F ≈
r1∑

k1=1

· · ·
rd∑

kd=1

wk

d⊗

µ=1

x̃kµµ

Many algorithm are available to compute Tucker format decomposition (HOOI, T-
HOSVD) but ST-HOSVD has been found to be the most efficient in the production
stage. At the moment, it is also the best decomposition method for small number of
dimension d ≤ 4 regarding compression versus approximation error. Storage cost is
quasi-linear in d (O(rd+drn)), the main drawback is the number of the exponential
growth of the core tensor (O(rd)). Converge of the method is certain together with
quasi-optimality property and production of orhtonormal basis. Preferred compres-
sion method for d ≤ 4. Good candidate for multidimensional ROM.

Recursive-POD

cont. f(x1, ..., xd) ≈
R1∑

k1

· · ·
Rd−1(r1,...,rd−2)∑

kd−1

Xr1
1 (x1)X

(r1,r2)
2 (x2)...X

(r1,...,rd)
d (xd)

Not a format, rather a recursive generalization of POD. The recursive tree structure
can also be used with any bivariate method (SVD, PGD,...) and allows easy trunca-
tion to prescribed accuracy. But this structure severely impairs orthogonality of the
basis (only within leaves). Storage cost is rather difficult to evaluate but converge
(thus compression rate) is good for regular functions. Numerically speaking, it is far
less efficient than TT and ST-HOSVD methods. A natural extension of POD with
limited performance and a unique data structure.

Tensor Train

cont. f(x1, ..., xd) ≈
∑

k1,...,kd−1

G1(x1, k1)G2(k1, x2, k2) · · ·Gd(kd−1, xd)

disc. F(i1, ..., id) ≈ G1(i1)G2(i2) · · ·Gd(id), ∀(i1, ..., id) ∈ I

This ordered product of order 3 tensors format allows easy implementation of de-
composition for large dimension problems i.e. d ≥ 5. Storage cost is d-linear in
O(r2dn). Many decomposition algorithms including natural TT-SVD and blackbox
methods such as TT-DRMG-cross that require evaluation of the field a few points.
It is so efficient in large dimension that increasing artificially the number of dimen-
sion, a process known as tensorization, has become a new strategy to process large
scale data. The main drawback of TT is the partial orhtonormality of the modes
in transfer tensors (Gi) that is problematic for ROM building. The most efficient
method for d ≥ 5 that does not provide orhtonormal bases for ROM.
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Hierarchical Tensor All previous formats and decomposition algorithms are subcases
of this format. Formalism is much more complex and does not come with innovative
algorithm. Then it was not studied numerically. A promising format that contains
other formats. Review and implementation by Grasedyck et al. [GKT13].
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Part II

Complex fluid dynamics and
Reduced Order Modeling
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We have seen in the general introduction that the need for cheap numerical models has
remained undimmed in spite of the explosion of computing power. Finding the simplest
equation to capture the physics of a problem is the first step. But extreme simplification
of equation leads to model that inherently capture limited features. Typical example are
steady state solutions or RANS are typical fluid dynamics examples while LES is able to
represent much more complex phenomena. Still, they remain enable to describe properly
complex flows at high Reynolds number such as singular lid driven cavity, for this kind
of problem high accuracy direct numerical simulation is necessary [Sen13,SLV09,SVB09,
Sen12]. These methods require intensive computing, for instance, 2D simulations with
relatively coarse grid (257 × 257) requires 2 days on a single modern CPU to reach the
limit cycle that is studied in chapter 5. In this context, adding a third dimension implies
to use a parallel implementation to maintain computing time below a week.

These constraints prohibits any attempt at controlling or optimizing the flow that
would require cheap evaluation of the solution field. These problems are one of the rea-
sons motivating the use of ROM. Some of these methods, such as PGD [CKL13,CLA+09]
try to solve problems and constructed a reduced basis at the same time until the required
precision is reached. These approaches are generally very efficient at solving elliptic prob-
lems [FN11, FHMM13] but results hyperbolic equations are precarious. Another way to
build ROM is to first compute reduced basis. There are many ways to obtain these basis,
such as dynamic modes decomposition (DMD) [Sch10] or Fourier transform but the most
used one in fluid dynamics is POD [Lum81, Sir87] as it is now routinely used for data
analysis (see chapter 1) and ROM building. Indeed this decomposition provides, among
the many possible bases [IR98], an orthogonal basis of the functional space in which the
solution problem lives.

Since the POD bases are orthogonal it is possible to use Galerkin projection to build
ROM. From the 1980s attempts at building such POD Galerkin ROM have flourished
[Sir87, DKKO91, CVVI98, Fah01, Ber04] with relative success. Indeed, in this approach,
the weak form EDP is solved against test function in the selected basis. But, in order to
reduce the size of the problem, one has to truncate the basis to a relatively small rank
which means, in the case of fluid flows, that the small structures are lost as we have seen in
chapter 1. Yet these structures correspond to turbulence and viscosity for high Re number
whose role is to dissipate energy. This is why Iollo et al. [ILD00] showed this approach is
inherently unstable. Thereafter many stabilisation techniques have been proposed [BBI09,
ANR09, IW14] and continue to be an active field of research [BGW15, LCLR16, SR18].
Generally, this approach has motivated substantial amount of work crystallized in various
books in recent years [QR13,QMNI] under the name reduced bases (RB) popularized in the
early 2000s [MMPR00, PRV+02]. Hesthaven, Rozza and Stamm have recently published
a book [HRS16] that covers certified RB.

ROMs can also be built using interpolation in the parametric space of arrival of PDEs.
Indeed, one can build a set of data for several parameters with FOM and later ask the
data base for a point that was not previously sampled and interpolate to this new location.
Given the large size of the full data, brute force multidimensional interpolation through
standard techniques (Lagrange, splines,...) is not an option. Additionally, dynamic sys-
tems, even if they are relatively similar may produce beat phenomenon [LBS+18]. Con-
sequently, numerous methods were proposed to build interpolated ROMs for nonlinear
problems. The empirical interpolation method (EIM) has been introduced in 2004 by
Barrault et al. [BMNP04]. The idea here is to sample the parametric space by greedy
algorithm [MNPP09] that is particularly well suited for non-linear problems. It was
later adapted into a discrete version (DEIM) using POD modes as a basis instead of
samples [CS10]. Amsallem and Farhat proposed a Grassmann manifold interpolation
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ROM [AF08, ACCF09, AF11, AZW15] that rely on the structure of PDE arrival space.
The idea is to project the solutions from the manifold to a tangential plane to per-
form the interpolation (by standard means) and the return to the manifold. In his thesis
manuscript [Mos18], Mosquera reviewed this family.

Part I has provided numerous tools for decomposition of bivariate and multivariate
data. In the second part of this thesis manuscript, these decompositions are used to pro-
duce bases in the context of fluid dynamics. It is organized as follow. Chapter 5 proposes
a complete analysis of a complex CFD flow through, inter alia, POD decomposition. The
aim is two folds: first show that complex CFD problems require specific care at all stage,
involving a detailed analysis and should lead to reasonable ROM expectation. Second we
shall show decomposition methods such as POD can help this analysis and consolidate
conclusions. Then, relying on previous chapters, an interpolated ROM is proposed with a
new physics based interpolation methods for instability flows in chapter 6.



Chapter 5

Complex flow analysis using
decomposition
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In the era of ROM, the study of flow behavior is easily forgotten. ROM researchers
usually compare their work with validated simulations. Due to the sheer difficulties inher-
ent to reduced order modeling, only limited attention is devoted to full order simulation.
Thus, it is not infrequent that commercial softwares be used for inputting data to the
ROM building process. I support the idea that the accumulation of error incurred by
ROM should lead researchers to give extra-attention to input data. Such a preliminary
work should focus both on the physics studied and the scientific computing methods used
to produce the data. Often, this step has been overlooked because of the simplicity of
problems tackled (elliptic problem are less sensitive to these considerations). In the con-
text of fluid dynamics, most application involved highly non-linear Navier Stokes equation
or derived hyperbolic equations. The complexity of such flows is illustrated in this chapter
by a single example: the singular lid driven cavity (LDC) flow. Despite its basic geomet-
rical setup, the flow is known to produce Hopf bifurcations. The first section will describe
the richness of the LDC physics and characterize it for further ROM building.

It is also well known that this analysis can be enriched though processing and decom-
position. Historical methods like Fourier transform, eigenvalue problems can be enriched
by POD as it was specially developed for fluid dynamics [Sir87]. The second section of
this chapter will provide such POD analysis of the LDC flow. Higher order modes inter-
pretation are more delicate, thus they have been restrained to straightforward comments
in section 4.3.
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5.1 Singular lid driven cavity: analysis of flow behav-

ior with high accuracy direct simulation

In this section, we present the detailed study of singular lid driven cavity flow. It has
already been presented in previous sections (1.4.3.1 and 4.3.1) and a detailed literature
review has been provided in [LBA+18,LBS+18]. Thus, a short overview of the state of the
art is given.

UY

X
10

1

Ω

Figure 5.1: Schematic
view of the LDC

State of the art. 2D flow in a square LDC (of side L) is a pop-
ular problem to test new algorithms for incompressible Navier-
Stokes equation (NSE) due to its unambiguous boundary condi-
tions, coupled with its very simple geometry. As the lid is given
a constant-speed translation (U), this gives rise to corner singu-
larities on the top wall, as depicted in Fig. 5.1.The role of such
singularities is to give rise to Gibbs’ phenomenon, as reported by
pseudo-spectral computation of NSE [AQV02].While it is possi-
ble to compute steady flow at low Re by various methods includ-
ing lowest order spatial discretization, it is not so at higher Re,
where the flow displays inherent tendencies to unsteadiness. One of the central activities
in studying the problem of LDC is to show that the onset of unsteadiness is related to
flow instability. Viewed in this perspective, the primary goal is then predict the correct
equilibrium flow for global instability studies. Such questions can be studied through lin-
ear instability analysis but this branch is not explored in this work. In DNS one directly
proceeds to obtain the unsteady flow. In this work we rely on the same sixth order CCD
scheme as in [SLV09,SVB09], to discretize both the convection and diffusion terms of the
vorticity transport equation. In this work, they indicate creation of a transient polygonal
vortex at the core, with permanent gyrating satellite vortices around it.

A steady solution has been reported by many [BG09, ECG05, GGS82] for Re far ex-
ceeding the values reported in the literature for the first Hopf Bifurcation (Recr1), due
to the excessive diffusion of the discretization. On the other hand, simulations of full
time-dependent NSE [GGH90,OI11] reveal that the flow loses stability via a Hopf bifur-
cation with respect to increasing Re. Critical Recr1 and frequencies obtained from DNS
and eigenvalue (linear instability) analysis do not match and such differences are noted
for different DNS results too for various reasons, some of these will be explained here.

It is shown in [SVB09, OI11, SVS11] that Recr1 depends upon the accuracy of the
method and how the flow is established in DNS. Physically, impulsively started flow is
ideal to study the dynamics, as it triggers all frequencies at t = 0 [SLV09, SVB09]. Such
an analysis is preferred and is superior to normal mode analysis of eigenvalue approach.
Multiple Hopf bifurcations have been reported in the literature by researchers for LDC
flow. Authors in [APQ02] have talked about a second bifurcation, while Sengupta et
al. [SVS11] have described multiple Hopf bifurcations for flow in LDC. In recent times,
Girault et al. [GGC12] have talked about multiple Hopf bifurcations for LDC flow using
compact scheme. Thus, in this section a description of multiple Hopf bifurcation is based
on overall dynamics of the flow field is proposed.

Appearance of unsteadiness with variation in parameter value(s) studied by bifurcation
theory [Sey94] is due to flow instabilities [Sen12]. Various researchers noted different value
of Recr1: 8031.93 in [SO03], 7972 in Cazemier et al. [CVVI98] using a finite volume method.
Bruneau and Saad [BS06] noted this to be in the range of 8000 to 8050 using a third order
upwind scheme, using (1024× 1024) grid. The roles played by different numerical sources
in triggering flow unsteadiness by Recr1, that explains the scattering of reported Recr1. Of
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specific interest are for methods using very high accuracy methods which report relatively
high values of Recr1.

The role of various sources of errors, including aliasing error for flow inside LDC
has been described in [SVB09]. Here we will discuss the roles of other sources of errors.
As these simulations are extremely sensitive to operating conditions, we rely only on
sequential computing in order to capture the weak transient core vortex when the major
sources of errors are removed. This aspect of hyper-sensitivity of omputed solution on
background disturbance is further exploited here to explain why Recr1 are different for
different numerical methods.

5.1.1 Governing equations and numerical methods

DNS of the 2D flow is carried out by solving NSE in stream function-vorticity formulation
given by,

∇2ψ = −ω (5.1.1)

∂ω

∂t
+ (~V · ∇)ω =

1

Re
∇2ω (5.1.2)

where ω is the non-zero out-of-plane component of vorticity for the 2D problem. The
velocity is related to the stream function by ~V = ∇ × ~Ψ, where ~Ψ = [0 0 ψ]. Reynolds
number is defined by L and the constant lid velocity, (U), which are also used as length and
velocity scales for nondimensionalization. This formulation is preferred due to inherent
solenoidality of the velocity and vorticity for 2D flows. The numerical methods and the
dynamics of the flow for Re = 10000 are given in greater details elsewhere [SLV09,SVB09]
and is not repeated here.

Equations (5.1.1) and (5.1.2) are solved subject to the following boundary conditions.
On all the four walls of LDC, ψ = constant is prescribed which helps in satisfying no-slip
condition; the wall vorticity is ωb = −∂2ψ

∂n2 , with n as the wall-normal co-ordinate chosen
for the four segments of the cavity to obtain the boundary vorticity. This is calculated
using Taylor’s series expansion at all the walls with appropriate velocity conditions at the
boundary segments. The top lid moves horizontally with a unit nondimensional velocity,
with all other walls as stationary. To solve the discretized form of Eq. (1), Bi-CGSTAB
method has been used here, which is a fast and convergent elliptic PDE solver [dV92].
The convection and diffusion terms are discretized using the sixth order accurate NCCD
method [SLV09,SVB09], which obtains both first and second derivatives simultaneously.
All other details about NCCD and other compact schemes can be also found in Sengupta
[Sen13] and hence are not reproduced here. For time advancing Eq. (2), four-stage, fourth-
order Runge-Kutta (RK4) method is used that is tuned to preserve dispersion relation.
The NCCD scheme has been analyzed for resolution and effectiveness in discretizing the
diffusion terms along with the dispersion relation preservation properties for 1D convection
equation [SLV09, SVB09]. It is noted that the NCCD method is efficient, providing high
resolution and effective diffusion discretization. Additionally, the method has built-in
ability to control aliasing error. The only drawback of NCCD scheme is that it can be used
only with uniform structured grids. All computations are performed with nondimensional
time-step of dt = 0.001. The final limit cycle behaves in a similar fashion, when time step
is changed. Only the instability of the limit cycle appears at different time range with
change in dt. A (513× 513) grid is used for most of this work but some additional set of
computations using a finer grid with (513×513) points are presented. Vorticity time series
at a sampling point, qualitatively remains the same, with only the mean value shifted by
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a small fraction. The sampling point location being at (0.95,0.95) has been thoroughly
justified in [LBA+18].

5.1.2 Dynamics of singular LDC flow

Figure 5.2: The vorticity time series at the sampling point (x = 0.95, y = 0.95) obtained
for Re = 8800 with vorticity contour plots shown at the indicated time instants. Solution
of Navier-Stokes equation is obtained using (257× 257) grid.

In this section, the dynamics of singular LDC is presented. To do so, we rely on Fig. 5.2
for Re = 8800, which shows the vorticity time series at (x = 0.95, y = 0.95) in the central
frame. In the time series, we have identified various regimes of time-variation. For example,
in Range-1a of Fig. 5.2, plotted vorticity displays high frequency transient variations,
followed by banded relatively lower frequency variations of the vorticity in Range-1b.
The time series shows the decay of the signal near the terminal time of Range-1b, the
vorticity fluctuation reduces and settles down to a steady value and which is maintained
throughout in Range-2. This period is followed by Range-3a, where the vorticity variation
displays growth and which is presumably due to linear temporal instability. Finally, in
Range-4 one notices nonlinear saturation of the growth noted in Range-3a. This is the
typical variation of vorticity with time for lower Re cases, which are above Recr1.Range-4
is where the dynamical system settles down to its limit cycle.

The study of a wide Reynolds range has brought to light the variety of behaviors
produced by singular LDC. A reduced overview is proposed here as an extensive analysis
is proposed in [LBA+18]. Here we want to highlight the main features and infer Hopf
bifurcation from the time series of vorticities near the top right corner (0.95,0.95). With
our numerical setup, the first Hopf bifurcation happens undoubtedly for 8660 < Recr1 <
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Figure 5.3: The vorticity time series for a point located at x = 0.95, y = 0.95, near
top right corner for the displayed Reynolds numbers, obtained from solution of unsteady
Navier- Stokes equation.

8670 as the steady state observe for Re=8660 in Fig. 5.3 is replaced by a stable limit cycle
for Re=8670 after instability ends range 2. Increasing Re leads to more unsteady flows
as shown for Re=9300, range 2 has disappeared and a new range (3b) is observed with
large pulsations. Re = 9400 displays a peculiar pattern bypassing previously mentioned
ranges to offer an special limit cycle which will be emphasized with spectrum analysis.
This value marks a demarcation with higher Re exemplified by Re=9700. Finally, in the
highest Reynolds range, limit cycle are subject to pulsations with many vibration modes
at stake.

5.1.3 Vorticity dynamics and polygonal vortex in LDC

From the time series shown in Fig. 5.3 for different Re’s at the stable limit cycle stage,
we have noted the feature of periodicity of the solutions in the final limit cycle. Here, we
investigate further about the flow field for Re = 10300 to describe the flow evolution in
terms of vorticity dynamics. In Fig. 5.4, we show the vorticity contours inside the cavity
at the indicated time instants, while the vorticity time series at (x = 0.95, y = 0.95) is
shown as the central panel in Fig. 5.4, to understand the choice of the time instants.

In the early stages of flow evolution, the inner core develops in conformity with the
shape of the cavity, due to the action of the wall jet impinging near the top right corner.
Thus, the lighter shaded contours shown in the form of a rounded rectangle, while the
inner contour lines morph into a circular shape, as noted at t = 200. From the time series,
one notes this stage to belong to beyond the early transient, where the coherent motion
corresponds to an apparent neutral stage which is followed by decay of the disturbance.
This continues up to t = 280, when the time series indicate the termination of decay
and beyond this time, the disturbance once again grows. The vorticity contours show two
distinct layers with sharp gradient and this motion continues, as shown in the frame for
t = 660, where the gradient is really sharp. In subsequent flow evolution, the outer layer
transforms into satellite vortices while the inner core shrinks to the triangular vortex,
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Figure 5.4: Vorticity contour is shown at different time instants from start till attainment
of limit cycle for Re = 10300. Time series of the vorticity at point (0.95, 0.95) is shown in
the center.

as noted in the frame for t = 960. Such triangular vortices have been shown earlier for
Re = 10000 [SLV09, SVB09] and it is noted here also. The triangular core vortex forms
after the linear stability phase, only once the nonlinear saturation has taken place. Hence,
one can conclude that its presence is essentially due to nonlinear dynamics of the flow
field guided by the presence of six gyrating satellite vortices. However, with passage of
time the central core vortex looses strength and identity. Thereafter, one notices these six
gyrating satellite vortices to rotate about the center of the cavity. This is the terminal
state of the limit cycle. One such cycle is shown in the bottom three frames.

5.1.4 Multiple Hopf bifurcations

The vorticity time series described in section 5.1.2 indicate different qualitative dynamics
for different Re and that in turn is suggestive of multiple bifurcations in the range of com-
puted solutions. Here, we address bifurcations for the LDC flow based on DNS performed
following an impulsive start. To do so the limit cycle amplitude is studied first, then
the analysis of the frequencies property allows a better comprehension of the underlying
mechanisms.

5.1.4.1 New equilibrium state via stable limit cycle

The amplitude of the limit cycle Ae is defined as half of the maximum excursion of the
vorticity time-series describing a constant width envelope, by sampling the vorticity at
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(0.95, 0.95). Different time evolution at the sampling point for different Re are presented
in Fig. 5.3. For some higher Re cases, computed flow field display significant modulation
even when the flow is computed up to t = 2000 and above. The Stuart-Landau model
states that A2

e ∝ |(Re − Recr1)| for the limit cycle cases with single dominant mode and
this is useful for the flow past a circular cylinder approximately. Correspondingly, Fig. 5.5
displays the plot of A2

e as a function of Re for the range 8660 ≤ Re ≤ 12000 obtained
using a grid with (257 × 257) points. Unlike the nonlinear dynamical systems for bluff
bodies, here the Hopf bifurcation [Sey94] starts very sharply, as shown in Fig. 5.5, which
occurs between Re = 8660 and 8670. Each zoomed view in Fig. 5.5 shows a segment
in which relation between Re and A2

e is compared with its linear variation. The linear
regression coefficients can be found in Table 5.1.

First segment Fourth segment

Third segment

Second segment

Figure 5.5: Multiple Hopf-bifurcation shown with respect to the vorticity time series data
shown for Fig. 5.2. All the simulated Reynolds numbers data are used to plot the amplitude
of the final stable limit cycle data against Reynolds number.

Table 5.1: Coefficients of linear regression equation of the form : A2
e = aRe + b with

regression correlation coefficient R.

Segment a b R2

1 1.384672e-4 -1.070575 0.998
2 8.017815e-5 -0.520059 0.992
3 4.389279e-4 -4.019874 0.999
4 2.166881e-4 -1.432799 0.956

In the range 8670 ≤ Re ≤ 9350, one can see in Fig 5.5 that the linear regression fits
the data well. This is confirmed by the value of the regression coefficient (R2) being really
close to 1. The amplitude then suddenly drops around Re = 9400, as noted in Fig. 5.5.
To ascertain the correctness of this value, additional simulations have been performed for



140 CHAPTER 5. COMPLEX FLOW ANALYSIS USING DECOMPOSITION

Re = 9350, 9395, 9405 and 9450 and all these data are marked in the figure. It is noted
that the value for Re = 9350 falls on the linear segment shown to the left of Re = 9400. For
Re = 9450, the amplitude belongs to the next linear segment which ends at Re = 10400,
as shown in Fig. 5.5 in the second box. However it should be noted that the correlation
coefficient is lower on this range, mainly due to its larger extent. Another natural break in
the curve is noted between Re = 10500 and 10600. Once again a linear segment is plotted
for the data points for Re = 10700 to 11400. Re = 11500 and 11600 show a particular
behavior in the higher Re range since A2

e values fall abruptly and then the amplitude
again rises sharply at Re = 11700 defining the fourth bifurcation. A new range up to
12000 is presented in the fourth box of Fig. 5.5, however the correlation coefficient is low,
implying that A2

e does not vary linearly with Re.
It has been noted [SSS10,SVS11] that the presence of such discontinuities is indicative

of multiple Hopf bifurcations in (A2
e, Re)-diagram, as in Fig. 5.5. The fact that the flow

behaves qualitatively different in different range of Re is indicative of discrete change in
A2
e with respect to Re, as indicated in Fig. 5.5. Along with such changes in the physical

plane, one would expect to notice qualitative changes of the spectrum of the time series
already shown in Fig. 5.3. From Fig. 5.5 and Tab. 5.1, one can infer the presence of four
such Hopf bifurcations. In order to provide a better understanding of the phenomena at
work here, the next sub-section will focus on spectral analysis of the vorticity time series
at point (0.95, 0.95).

5.1.4.2 Frequency spectrum analysis

In Fig. 5.6, we show few Fourier transforms of the time series shown in Fig. 5.3. Fourier
analysis is applied over the last 100 cycles, i.e., after the stable limit cycle is reached. In
order to provide accurate plots, the average on that time span has been removed from
each time series. It is clear that for Re = 8800, the dynamics is governed mostly by three
harmonics, with subsequent ones being more than a decade lower than the lowest of these
top three frequencies, as noted in Fig. 5.6. The frequencies and pattern are identical up
to Re=9400 (see table 2 of [LBA+18]) which marks the second Hopf bifurcation. For this
Re, the stable limit cycle is not reached replace by triplets of frequency spikes which are
attributed to interact with the first low amplitude spike. As noted in Fig. 5.5, the flow
behavior above Re ≈ 9450 resembles flows noted for lower post-critical Reynolds numbers.
This is clearly seen in Fig. 5.6 for Re = 9800 with six peaks in the spectrum. For the
higher Re = 11700 shown in Fig. 5.6, one notices a large numbers of spectral peaks with
more than one dominant comparable peaks. This leads to pulsating limit cycles observed
in Fig. 5.3.

5.1.5 Numerical sensitivity of the problem

The singular LDC problem is very sensitive to numerical setup. In this section we discuss
two major issues affecting the solution, namely start-up conditions and grid sensitivity of
our numerical method.

Influence of grid resolution Computations have been performed on two different
grids, i.e., (257× 257) and (513× 513), in order to assess effects of grid on the simulation.
Figure 5.7a displays time series for two different grids which clearly behave differently.
On the one hand, the coarse grid exhibit a secondary instability around t = 1200, that
leads to the final limit cycle. Because of finer wall resolution, calculated wall vorticity
is higher for the finer grid calculation. Yet, the numerical excitation caused by sources
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Figure 5.6: The frequency spectrum of the vorticity time series shown for all the simulated
Reynolds numbers, for the solution obtained from unsteady Navier-Stokes equation and
the data are for x = 0.95 and y = 0.95.

of error is lower for the finer grid. As a consequence, both the mean and fluctuation of
disturbance vorticity is lower for the finer grid, which causes upward shift of the mean
vorticity line, i.e., reduction of mean vorticity of disturbance. No secondary instability is
seen for the finer grid and still a similar limit cycle is reached with marginal difference in
amplitude and frequency of the fluctuating component of vorticity. Moreover, final state
is stable for Re ≤ 9400 when computations are carried on the finer (513 × 513) grid,
i.e., Recr1 ∈ [9400, 9450]. It emphasizes that the flow is driven by the receptivity aspect
of the problem, with coarser grid (and less accurate numerical methods) having larger
excitation due to implicit error, shows early onset of first Hopf bifurcation. This will be
further discussed in the subsection 5.1.5.1.

Re = 9500

ω

(a) Grid resolution.
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Figure 5.7: Numerical sensitivity of the singular LDC problem.
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Effect of start-up conditions The top sub-figure of Fig. 5.7b depicts the time se-
ries stored for (0.95, 0.95) on (257 × 257) grid for Re = 8670 with two different initial
conditions. The dashed line corresponds to the usual impulsive start whereas the solid
line corresponds to the solution obtained by ramping up from Re = 8660 equilibrium
solution. We note that the projected solution starting from lower Re remains quiescent
(negligibly small variations), while the solution started impulsively shows non-zero values
at the sampling point.

The bottom sub-figure of Fig. 5.7b is for (513× 513)-grid in the vicinity of the bifur-
cation obtained for this grid near Re = 9400. Two different start-up cases are presented
: (a) when the solution is obtained for Re = 9425 starting from an equilibrium solution
obtained for Re = 9450 and (b) when the initial solution is projected from the case of
Re = 9400. For the latter case, the vorticity field does not show any disturbance, while
the former case shows significant disturbance vorticity. This justifies, a posteriori, the use
of impulsive start-up which is known to excite all modes of oscillation simultaneously by
equal magnitude.

5.1.5.1 Computational bifurcation analysis: Is there a universal critical Reynolds
number for primary bifurcation?

In introduction, we have noted that different researchers have reported different critical
Recr1, ranging from 7763 ± 2% to 10,500, with a marked clustering around Recr1 in the
vicinity of 8000. As stated earlier, the chosen NCCD scheme is known to achieve near
spectral accuracy. Also Sengupta et al. ( [SLV09,SVB09]) have reasoned that the trigger
for the unsteadiness is the aliasing error originating near the top right corner of the LDC,
while the truncation, round-off and dispersion error is extremely negligible. Thus, one
needs to apply manually a disturbance to the vorticity field. Here, we chose a pulsating
vortex ωs at a location r0 = (0.015625, 0.984375) whose spread is defined by the exponent
α,

ωs = A0(1 + cos(π(r − r0)/0.0221)) sin(2πf0t) for (r − r0) ≤ 0.0221

where in the presented results here we have taken f0 = 0.41 for different amplitude cases.
For Re = 8660 and below, we start with A0 = 1.0. Once the excitation is started,

one notices the vorticity to grow and saturate to a limit cycle. After, the limit cycle is
set up, the excitation source is switched off,yet the limit cycle continues. The saturated
limit cycle amplitude for decreasing Reynolds numbers are shown in Fig. 5.8 along with
the unexcited cases (shown by hollow triangle facing towards left, up to Re = 8670) for
the sampling point at x = 0.95, y = 0.95. Below this Re = 8025, increasing strength of
pulsating vortex does not produce stable limit cycle. We note that the imposed vortical
perturbation in the limiting amplitude case of A0 = 10.0, constitute a perturbation level
of around 20 percent of the maximum vorticity in the domain. Thus, this computational
exercise indicate that the first critical Reynolds number (Recr1) lies between 8020 and
8025 and similar range of the value noted by many researchers as noted in the previous
paragraph.

Conclusion

In this subsection, the direct numerical simulation singular LDC flow has been performed.
Thanks to high accuracy NCCD schemes, it was shown that impulsively started flows go
through a series of Hopf bifurcation starting from Recr1 ≈ 8665. The complex behavior
of the flow Figs. 5.2 and 5.4 is efficiently captured by monitoring the vorticity in the
vicinity of the top right corner. Analysis of these time series and their spectrum lead us
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to propose a series of 4 Hopf bifurcations emphasized in Fig. 5.5. In order to address
the scattering of Recr1 found in the literature, the extreme sensitivity of the problem
was discussed. In particular grid sensitivity and startup conditions have been shown to
be exert tremendous influence on flow stability in addition to well known sensitivity to
numerical schemes. Finally, artificial excitation was used to recover the universal range
of first Hopf bifurcation to Recr1 ∈ [8000, 8025].

In the next section, we show that the analysis of this complex flow can benefit abun-
dantly of POD analysis.

5.2 POD analysis

A classification of POD modes based on the properties of the amplitude functions has been
performed in [SSS10,SVS11], in terms of regular and anomalous modes. In Ref. [SSS10],
the POD modes have been related with the instability modes for the first time, readying
the field of flow instability study by POD analysis. The regular POD modes occur in pairs
for the amplitude functions, separated by quarter cycle and the resultant instability modes
obey the Stuart-Landau equation [Sen12]. The anomalous modes, on the other hand do not
obey Stuart-Landau equation. Also, Stuart-Landau equation is of use for fluid dynamic
system with a single dominant mode. This approach of obtaining POD eigenfunctions and
amplitude functions in describing nonlinear instability of fluid flow has been described in
Ref. [SBB] and is routinely used for incompressible flows [SHPP15,SG16].

Here, enstrophy is preferred over those in Refs. [NAM+03,HLB96,RF94,Sir87], where
kinetic energy is used for POD analysis. In vortex dominated inhomogeneous flows, rota-
tional energy is a better descriptor of POD over translational kinetic energy, as highlighted
in Refs. [Sen12, SDS03, SSS10]. Authors in Ref. [SVS11], used enstrophy based POD ap-
proach to study both external and internal flows to show universality of POD modes in
terms of amplitude functions.

Fig. 5.8 shows the variation of the equilibrium amplitude Ae with Re, for simulations
performed using two grids, with (257 × 257) and (513 × 513) points. The onset of un-
steadiness for this grid is the point marked as ’O’ in the figure. The points shown by
filled rhombus and square are obtained using the (513× 513)-grid points. For the refined
grid, onset of unsteadiness occurs for Re slightly lower than 9450, for the case of A0 = 0.
For the coarser grid we have identified ’S’ as the point (Re = 9800) displaying secondary
instability, as already shown.

For the finer grid, we note that the primary Hopf-bifurcation between Re = 8660 and
8670 is bypassed. For this grid, the second and third bifurcations occur for Re = 9600 and
10000, respectively. Following the second bifurcation, we notice three data points with the
middle one identified as P1 in Fig.2, which show similar variation as for the (257 × 257)
grid over an extended range of Re. Later on, we compare a representative point at P2

with P1. A similar qualitative variation between the two grids are noted which originate
in a sequence starting from Q1 and Q2, which are also compared later.

Few of the distinctive features of Fig. 5.8 are the following: (a) The used methods for
space-time discretization are so accurate that the onset of unsteadiness in the flow field is
delayed, with finer grid. Even for (257× 257)-grid, the onset is delayed up to Re = 8670.
(b) For the finer grid of (513 × 513) points, the first critical Reynolds number is noted
between 9400 and 9425, for the case of no excitation. With excitation this can be brought
down to as low as Re = 8250 (as shown in the figure). (c) For Re above 10400 with the
(257× 257)-grid, one notices two branches of solution, as shown in the figure. The lower
branch (marked as U-branch) is essentially unstable and the upper branch is the stable
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Figure 5.8: Variation of the equilibrium amplitude (Ae) with Reynolds number (Re) for
the two grids, with (257 × 257) and (513 × 513) points. Note the points (P1, P2) and
(Q1, Q2) have similar dynamics, as shown later. Additional points O and S represent the
onset of unsteadiness (Re = 8670) and secondary instability (Re = 9800) of the flow field
computed using (257× 257) grid points.

branch, named as the S-branch. Upon application of slightest perturbations, the solution
on the U-branch jumps to the S-branch.

5.2.1 Analysis through POD modes

5.2.1.1 Limit cycle POD modes

Here we use POD analysis to characterize flow fields obtained by the two grids. In Figs.
5.10b and 5.10a, we show the eigenfunctions obtained following the method of snap-
shots for the POD analysis is shown for the points, P1 and P2. We display only the first
twelve modes the differences in Fig. 5.8 for the equilibrium amplitude and the associated
maximum vorticity values in the domain, the first eight eigenfunctions have remarkable
similarities, indicating the qualitative similarities of the associated flow fields obtained
using two grids with significantly different points. The eigenfunction plots of Figs. 5.10b
and 5.10a also show a definitive pattern, with the first and second modes are regular
modes [SVS11], defined for classification of POD modes. In this case, one notices three
pairs of similar vortical structures with opposite signs. In the same way, the third and
fourth modes are composed of six such pairs; fifth and sixth modes similarly have nine
pairs of structures.

This multiplicity of vortical structures are extended to higher mode pairs also. How-
ever, their contributions are negligibly small in terms of enstrophy content, as the first
eight modes in Figs. 5.10b and 5.10a, account for nearly all of the enstrophy contents for
both the grids. Such similarities are furthermore emphasized in Fig. 5.9, showing the cu-
mulative enstrophy for the pairing of points shown in Fig. 5.8. For example, in discussing
the flow dynamics for points P1 and P2, it has been mentioned that the flows would be
similar. This is clearly brought out in the eigenfunction plots of 5.10b and 5.10a and the
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Figure 5.9: Cumulative enstrophy plots for the two grids shown for the indicated Re.

cumulative enstrophy shown in the top frames of Fig. 5.9. Similarities for the points Q1

and Q2 have been suggested, while discussing the bifurcation diagram (Fig. 5.8) and the
cumulative enstrophy plot for this case shown in the bottom frame of Fig. 5.9 , strongly
supports this. We also note that keeping the Reynolds number same with the two grids
alone, does not ensure similarity of the flow, as noted from the cumulative enstrophy plot
for Re = 10000 in the middle frame of Fig. 5.9.

The POD amplitude functions, their representative discrete Fourier Transform (DFT)
plots are shown in Figs. 5.11a and 5.11b for Re = 9700 case, obtained using the two grids.
These are shown pairwise, when the two constituents differ by a phase shift of quarter
cycle. In Fig. 5.11a, amplitude functions are shown for P1 obtained using (513×513) grid.
The DFT of these time series is shown in the bottom frames for each pair. The top left
frame indicates the fundamental frequency for the first and second modes (f0 = 0.43),
while the second, third and fourth mode pairs are the super-harmonics of this fundamental
frequency (at 2f0, 3f0, 4f0). These amplitude functions and the frequencies are identical
for both grids, as can be seen for the amplitude functions and their DFT shown for the
point P2 obtained using (257× 257) grid. Once again the comparison between Figs. 5.11a
and 5.11b supports the view that the flow dynamics is similar for P1 and P2.

Next, we investigate the flow fields for the points Q1 (Re = 10000) and Q2 (Re =
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(a) P1 (513× 513 grid points).

(b) P2 (257× 257 grid points).

Figure 5.10: Eigenfunctions of POD modes for Re = 9700 at points (P1, P2) in Fig. 5.8.
(ϕm)m isolines are plotted in the [−0.5, 0.5] range with 0.01 spacing. Solid lines are positive
values, while dashed lines are negative value contour.
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(a) P1(513× 513) grid
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Figure 5.11: Amplitude of POD modes and its DFT for Re = 9700 for P1 and P2.
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(a) Q1, (513× 513) grid.

(b) Q2, (257× 257) grid.

Figure 5.12: Eigenfunctions of POD modes at points Q1 (Re=10000) and Q2

(Re=10700).(ϕm)m isolines are plotted in the [−0.5, 0.5] range with 0.01 spacing. Solid
lines are positive values, while dashed lines are negative value contour.
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(a) Q1(513× 513) grid
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Figure 5.13: Amplitude of POD modes and its DFT for Q1 (Re=10000) and Q2
(Re=10700).
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10700) of Fig. 5.8, in Figs. 5.12a and 5.12b, respectively for the two grids with the help
of POD eigenfunctions. Previously, we have noted that the flow fields for these points
obtained by the two grids will be similar, while discussing the bifurcation diagrams in
Fig. 5.8. Now the plotted eigenfunctions for the first twelve modes in Figs. 5.12a and
5.12b are also seen to be similar. This, added with the cumulative enstrophy plots shown
in the bottom frame of Fig. 5.9, strongly support the view that the flow fields are indeed
similar. This also shows that the view provided by the bifurcation diagram is a better
descriptor of similarity of flow field in the diagram, whenever A2

e plotted against Re show
identical slopes. The eigenfunctions have also similarity with the eigenfunctions shown in
Figs. 5.10a and 5.10b for the first two pairs, with respect to qualitative features. The higher
modes are distinctly different in Figs. 5.12a and 5.12b due to the flow fields belonging to
different branches of the diagrams, as compared to the cases shown in Figs. 5.10a and
5.10b. Figures. 5.12a and 5.12b belong to branches in which the instability is higher due
to multiple dominant frequencies interacting [LBA+18]. That causes the enstrophy to
be distributed over larger number of modes, i.e., one should be interested in the higher
modes beyond the number eight, as was the case for the lower Reynolds number. Even
the symmetry for the eigenfunctions noted for Re = 9700 is lost from fifth mode onwards
since two or more physical modes are interacting with the primary POD mode.

The features of eigenfunctions for Q1 and Q2 are also reflected in the amplitude func-
tions shown in Figs. 5.13a and 5.13b. The first pair of amplitude functions displays iden-
tical peak for these two grid results, which is different from the fundamental frequency
(f0) noted in Figs. 5.11a and 5.11b for Re = 9800 case. The second pair of amplitude
functions in Figs. 5.13a and 5.13b are not the super-harmonic of the fundamental seen
for the first pair of amplitude function. Thus, this segment of bifurcation diagram for
Figs. 5.13a and 5.13b, is qualitatively different from the lower Reynolds number parts
shown in Figs. 5.11a and 5.11b. Between the two points Q1 and Q2, the third and fourth
modes have some differences at the lower frequencies, otherwise other significant peaks
are collocated. The fifth and sixth amplitude functions of POD modes again have the
same value of frequency for the peak, as is noted for the first pair. All the other modes
have qualitative similarity between amplitude functions for points Q1 and Q2, and with
the exception of eleventh and twelfth modes, all the modes appear as wave-packets, which
have been called as the anomalous mode of second kind [SVS11,Sen12].

5.2.1.2 Primary and secondary instabilities POD modes

Here we study the dynamics of the unsteady flow field using two different grids, with
the intention of highlighting the mathematical physics of this canonical problem with
POD as the analysis tool. It is necessary also to characterize the flow during primary and
secondary instabilities. For this purpose, in Fig. 5.14 we show the POD eigenfunctions
obtained without excitation during the primary instability stage for Re = 8670 obtained
using the (257 × 257) grid, which is indicated as ’O’ in Fig. 5.8. This Re is a super-
critical case that displays linear instability during t = 900 to 1100. The eigenfunctions
show various polygonal core-vortex. For example, the eighth, fourteenth and seventeenth
modes display triangular vortex at the core, as was shown for the flow field in Fig. 5.2.
POD captures the presence of triangular core vortex caused by the primary instability.

For the eigenfunctions shown in Fig. 5.14 for Re = 8670, the corresponding amplitude
functions are shown in Fig. 5.15. It is readily apparent that the first two modes form
the regular pair [SVS11], while the third mode is the anomalous mode of first kind; with
fourth and fifth modes again form a regular pair, but modulated with higher frequency
components. The sixth and seventh modes appear as wave-packets and hence, would be
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Figure 5.14: Eigenfunctions of POD modes for Re = 8670 obtained with (257× 257) grid
for the point O in Fig. 5.8 during the linear instability stage.

called the anomalous mode of second kind. The eighth and ninth modes are similar to
fourth and fifth pair, i.e., regular modes which are highly modulated. The tenth mode
is an anomalous mode of first kind, similar to the third mode. It has been explained
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Figure 5.15: Amplitude functions for point ‘O’ linear instability grows. They are regrouped
by pairs for regular modes while anomalous modes are shown alone.

in Refs. [SSS10, Sen12] that the anomalous mode of first kind, gives rise to equivalent
stress term, like the Reynolds stress and alters the mean flow. In this respect, the third
and the tenth modes have opposite effects on the mean flow, as is evident from the
signs of the amplitude at the terminal time. One can similarly classify the other modes
into these categories described. However, the sixteenth and seventeenth modes appear
as combination of the two types of anomalous modes described. Another feature of the
anomalous mode of first kind is the appearance of the eigenfunctions in Fig. 5.14, where
one does not notice orbital motion of the vortices around the core, which gives rise to the
polygonal vortex in the core.
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Figure 5.16: Time series for Re = 9800 obtained with (257× 257) grid.

Fig. 5.16 provides the time series associated with Re = 9800, point ’S’ in Fig. 5.8. The
primary linear instability is followed by a quasi limit cycle (envelope is growing) before a
second instability picks up and brings the flow to a stable limit cycle whose envelope does
not change further with time. In the following, we give an interpretation of the results
of POD analysis of one such secondary instability for point ‘S’ . In Fig. 5.17(a) we show
the eigenfunctions obtained by POD analysis performed on data before the beginning
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(a)

(b)

Figure 5.17: Eigenfunctions of POD modes for Re = 9800 obtained with (257× 257) grid
during (a) t = 500 to 600 before and during (b) t = 1900 to 2000 after the secondary
instability.

of secondary instability during t = 500 to 600. At this stage, most of the enstrophy is
contained in the first few modes which is why we show the first eight modes. One notices
the onset of creation of the orbital vortices in the first six modes. The seventh mode is
without any structure and is similar to the eigenfunction for the anomalous modes in Fig.
5.14. It is the eighth mode that shows the appearance of a large triangular vortex in the
core, with three pairs of orbital vortices surrounding the core. In Fig. 5.17(b), we show
the eigenfunctions for Re = 9800 after the occurrence of the secondary instability during
t = 1900 to 2000.

The corresponding amplitudes and the DFT of various eigenmodes (as in Fig. 5.17),
are shown in Fig. 5.18. In frames (a), the plotted amplitudes correspond to eigenfunctions
shown in Fig. 5.17(a), in pairwise fashion. One can clearly note that the FFT is dominated
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Figure 5.18: Amplitude of POD modes and its DFT for Re = 9800 using (257× 257) grid
(a) before [t = 500 to 600] and (b) after [t = 1900 to 2000] the secondary instability, for
the case of Fig. 5.17

by a single mode and amplitudes are time-shifted by quarter cycle. While there is a distinct
secondary mode, but its amplitude is orders of magnitude smaller. The third and fourth
modes’ amplitude shows the peak which has a value that is twice of that noted for the first
pair. However, this mode-pair also shows modulation in the time plane, which is due to
the secondary peak shown in the DFT, which is the fundamental for the first and second
modes’ amplitude. In the same way, the fifth and sixth modes have the peak at thrice the
value noted for the first pair. The seventh and eighth modes have no correlation, as noted
in Fig. 5.18(a).

In Fig. 5.18(b), we note the amplitude functions corresponding to the eigenfunctions
shown in Fig. 5.17(b), obtained during t = 1900 and 2000, when one is in the final limit
cycle stage. It is interesting to note that the action of the secondary instability is to shift
the fundamental frequency for the first pair ((f0)before = 0.60) to a lower value (f0 = 0.43),
as noted in the DFT plots. The second and third pair of amplitude functions have peaks
at 2f0 and 3f0, respectively. The seventh and eighth modes are characterized by very high
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frequency fluctuations, and modulated at moderate frequencies, as a consequence one can
categorize these as anomalous mode of second kind [SVS11]. This phenomenon is explained
by similar amplitudes of the leading peak (4f0), with the next peak in amplitude (5f0)
that interact to create modulations. This pattern is visible for each final state, however,
it is weaker for the finer grid in Figs. 5.10a and 5.10b.

Conclusions

In this section, we have used POD to characterize LDC flow for a range of Re for simula-
tions performed using two grids (257 × 257) and (513 × 513) points. The relative scaled
amplitude of disturbance field is lower for the finer mesh, which explains why primary
Hopf bifurcation is delayed for the refined grid. But, despite difference in bifurcation se-
quences in the two grids, the qualitative similarity of flow fields are noted for points in the
bifurcation diagram. The flow in the two grids will be similar when A2

e versus Re curves
have identical slope, even if the Re are different. This is supported first by comparing the
POD modes of the flow field for Re = 9700 for the two grids at P1 and P2 but also for
points Q1 and Q2 that do not share the same Re. This is attested by careful analysis of the
POD eigenmodes corresponding amplitude functions and their DFT. These observations
are strongly supported by the cumulative enstrophy plots in Fig. 5.9, for these four points,
P1, P2, Q1 and Q2.

We were also able to characterize the primary temporal instability without excitation
(point ‘O’) by POD analysis, showing eigenfunctions and amplitudes which shows clearly
multi-periodic dynamics of the flow, with a single dominant fundamental frequency and
its super-harmonics. Finally, we have characterized the secondary instability by showing
POD computed onto t = [500, 600] and t = [1900, 2000] ranges. These time intervals
correspond to before and after the secondary instability for Re = 9800. We note that
such secondary instability does not occur for all Reynolds number cases, but when it does
occur, the effect is to change the fundamental frequency from a higher value (0.60) to a
lower value (0.43). The eigenfunctions are also completely different, before and after the
secondary instability.

In this chapter, we have studied extensively the singular LDC flow. The exhibited
complexity confirms that an extensive knowledge of the physics at work in complex flows
is necessary. Ample evidence of extreme sensitivity of this problem has been given prov-
ing that a special attention is required for choosing discretization schemes. In the next
chapters, the added understanding of this flow instability behavior will be relied upon to
build reduced order models based on POD and the bifurcation diagram presented in Fig.
5.8.

A few remarks on building ROM for the singular LDC problem. It clearly appears that
building a ROM accross ranges of Hopf bifurcations is a vain adventure as we have shown
that DNS itself produces spread out results. Consequently, the framework in which the
ROM is built should be defined precisely and limited to achievable goals. The ultimate
goal of ROM for high Re LDC is to replicate the Hopf bifurcation sequence and anticipate
Re numbers that do not belong to the set precomputed by DNS. Modeling the impulsive
start and instability cascade seems out of reach for current ROM techniques. Thus, we
have decided to focus on build ROM for limit cycle within Re segments delimited by Hopf
bifurcation. The next chapter tackles this problem by means of interpolation ROM while
the last one will explore projection ROM.
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Chapter 6

Interpolated ROM
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We are now focusing on family of methods for building ROM that relies on interpola-
tion. Using interpolation instead of solving the studied problem for a new set of parameters
is a hot research topic [AF08,Cha08,CS10,SO11]. However direct interpolation is largely
problematic. In order to fix ideas, without loss of generality, we suppose that a full order
model is available and solves the problem with high accuracy within a few hours. The
data generated amounts to a few GB for each simulation with reasonable time sampling.
A fixed space and time discretization is available with N the number of space degrees of
freedom and nt the number of snapshots. The goal is to produce quick evaluation of the
problem solution for a set of parameters for instance it can be used to solve optimization
or control problems, or simply build virtual charts [CLB+17].

Typically in fluid dynamics applications, dimensionless numbers such as Re or St are
used. Then we define the following toy problem:

Interpolation toy problem

Suppose a DNS solution produces a simulation for several donor Re number R =
{Re1, ..., Req} with a large number of spatial degrees of freedom N and stores nt.
The goal is to interpolate with as much precision as possible a solution to a target
Reynolds such that Ret 6∈ R.

Given some preliminary sampling points have been computed, we want to dispose of
interpolated values in space and time, this kind of feature is already available in most
scientific computing code. However, it is quite expensive to interpolated high dimen-
sional data with usual tools such as Lagrange interpolation. And parametrized interpo-
lation is inherently problematic for unsteady flows. In order to solve this issue, many
approaches have been proposed. Some of them rely on multiparameter decomposition
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and simple interpolation methods (Lagrange, spline, etc.) while new methods have been
devised specifically for such large problems EIM/DEIM [CS10, MNPP09] or Grassmann
Manifold interpolation [ACCF09,AF11]. These methods have proven to be very efficient
but require (especially for the latter) good knowledge of differential geometry. Recently,
Rolando Mosquera [Mos18] provided an extensive review of these methods for fluid me-
chanics that confirms both the effiency of such approaches and the complexity that it
implies. Our approach takes the opposite stance, we rely on physical observation and
simple processing to construct a satisfying interpolation that we call time-scaling inter-
polation. Indeed, we have seen that even DNS with high accuracy schemes struggles to
capture consistently the physics involved in complex incompressible flows such as LDC.
This thorough analysis allows us to rely on physical observations rather than general PDE
approach. The next section described in details time scaling interpolation.

6.1 A physics based interpolation method: Time-scaling

Flows governed by unsteady NSE presents the physical dispersion relation linking each
length scale (wavenumber) with corresponding time scale (circular frequency). Thus, the
ranges of time and length scales are important, even though a single Strouhal number
(St) and Re are often used to describe the flow field. Multitude of length and time scales
are inherent as noted in chapter 5 via POD modes and multiple Hopf bifurcations for flow
in LDC. The existence of such ranges facilitates ROM development, i.e. when donor Re’s
are in the same range, where the target Re resides.

For a vortex dominated flow, the time scale is defined as St (= fD/U∞), relating dom-
inant physical frequency (f) with flow velocity, (U∞) and the length scale (D). However
the flow does not display a single frequency, as one notices several peaks for both flows
in figure 6.1. The time series of the vorticity data at indicated locations are shown in the
left hand side frames. While the flow past a circular cylinder displays a single dominant
peaks with side bands in the spectrum (shown on the right hand side frames), the flow
inside LDC clearly demonstrates multiple peaks.

Specifically for flow past circular cylinders, an empirical relation of the type has been
provided

St = St∗ +m/
√
Re (6.1.1)

in [FKE98] with experimental data, for variation of St with Re in the wide range of
47 < Re < 2 × 105, with values of St∗ and m being different, for different ranges of Re.
Instead of using such an algebraic additive relationship, here we propose a power law
relation and test it for the range: 55 ≤ Re ≤ 200. Consequently a relationship between
Re and St is be proposed, in order to perform interpolation on the vorticity time series.

The existence of unique St for a fixed value of Re, as embodied in equation (6.1.1)
implies that employing simple-minded interpolation strategies like Lagrange interpolation,
will display unphysical wave-packets in reconstructed solution, as the time scales are
function of Re at the target. This is clearly demonstrated in figure 6.3. The proposed ROM
tackles this issue with the time scaling technique. Since the idea underlying the present
method is based on observation of St-Re relation in the flow past a circular cylinder, this
problem is studied together with the LDC that will provide insight for inside flows.

Numerical methods LDC DNS are obtained as in chapter 5 with (257× 257) points
are taken for the LDC problem. The same approach is applied to the flow past a circular
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Figure 6.1: DNS time series and their associated DFT’s are shown for (a) the flow inside
a LDC and (b) the external flow past a cylinder, at indicated points in the flow. In (b),
left frames are time series at different wake points and right frames are the associated
spectra.

cylinder but requires the introduction of orthogonal curvilinear coordinates (ξ, η) to solve
eqs. (5.1.1) and (5.1.2).
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The governing equations in transformed plane are

∂

∂ξ

(
h2

h1

∂ψ

∂ξ

)
+

∂

∂η

(
h1

h2

∂ψ

∂η

)
= −h1h2ω (6.1.2)
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(
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)
+

∂

∂η

(
h1

h2

∂ω

∂η

)}
(6.1.3)

where h1 and h2 are the scale factors of the transformation given by: h2
1 = x2

ξ + y2
ξ and

h2
2 = x2

η + y2
η. The coordinate given by ξ is along azimuthal direction and η is in the

wall-normal direction. No-slip boundary condition is applied on the wall via

(
∂ψ

∂η

)

body

= 0 and ψ = constant

Uniform flow boundary condition (Dirichlet) is provided at the inflow and a convective
condition (Sommerfeld) is provided for the radial velocity at the outflow.

The convection terms of equation (6.1.3) are discretized using the high accuracy com-
pact OUCS3 scheme which provides near-spectral accuracy for non-periodic value of the
convective acceleration terms, as explained in detail in [Sen13]. A central differencing
scheme is used to discretize the Laplacian operator of equations (6.1.2) and (6.1.3) for
the circular cylinder. An optimized four-stage, third-order Runge-Kutta (OCRK3) disper-
sion relation preserving method in [SRB11] is used for time marching. Equation (6.1.2) is
solved using Bi-CGSTAB method as for LDC.

These same methods have been used earlier for validating and computing in [SSS10,
SHPP15]. Here the simulations are performed in a fine grid, with (1001× 401) points in
the ξ and η directions. Finally, typical output of flow past a cylinder simulation is given
in Fig. 6.2.

Figure 6.2: Vorticity field plot for the flow past a circular cylinder showing von Karman
street at Re=75. Courtesy of T.K. Sengupta [SSS10].

6.1.1 Need for time scaling

The proposed ROM aims at interpolating vorticity fields at a target Re (Ret) from pre-
computed DNS at different donor Re’s. If Lagrange interpolation is used directly, then it
will not work due to variation of St with Re. Even with close-by donor Reynolds numbers
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Figure 6.3: Direct Lagrange interpolation of DNS vorticity disturbance time series between
Re causes wave packets in the cylinder wake at point (0.504,0.0).

data, upon interpolation, will produce wave-packets for flow past a cylinder as shown in
figure 6.3. In this figure, results are shown for Re = 83, as obtained by DNS of NSE
(shown by solid lines) and that is obtained by Lagrange interpolation of NSE solution
donor data obtained for Re = 78, 80, 86 and 90.

The physical frequency (f) varies slowly with Re and superposition of time-series
of donor data causes beat phenomenon observed by superposition of waves of slightly
different frequencies. Thus, the knowledge of variation of St with Re is imperative in
scaling out f -dependence of donor data before Lagrange interpolation and this is one of
the central aspects of the present work. After obtaining frequency-independent data at
target Re, one can put back the correct f -dependence via its variation with Re at the
target Reynolds number.

It was noted in [SHPP15] that the flow past a circular cylinder suffers multiple Hopf
bifurcations (experimentally shown in [Str86]) and in [SVS11] for flow inside LDC and flow
over cylinder. Hence the accuracy of reconstruction naturally demands that the target and
donor Re’s should be in the same segments of figure 6.4, as the flow fields are dynamically
similar. In figure 6.4, the equilibrium amplitude of disturbance vorticity are plotted as a
function of Re for both flows. It is imperative that one identifies the target Re in the same
segment of donor Re’s for DNS-quality reconstruction for flow past circular cylinder as
in [SHPP15] and for flow inside LDC as discussed in chapter 5. In each of these sectors
of Re, the flow behaves similarly and the (St, Re)-relation is distinct.

In figure 6.4(a), the range of Re from 8000 to 12000 for the LDC is subdivided according
to the bifurcation sequence (257× 257) for the purpose of interpolation, Four ranges are
defined with the first one given by: RI = [8020 : 8660] that corresponds to externally
excited range, which shows rapid variation of the amplitude. Range RII and RIII are
defined by hopf bifurcations and present stable limit cycles, thus making them good
candidate for ROM building. Range RIV = [10600 : 12000] is difficult for interpolation, as
one can see two branches in this range, one of which is unstable (U-branch) with respect to
any miniscule vortical excitation, as opposed to the stable one (S-branch). The flow past
cylinder is also divided in ranges as shown in figure 6.4(b). For example, to reconstruct
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Figure 3. Variation of Equilibrium amplitude of disturbance vorticity with Re indicating the
segments of Re with respect to bifurcation sequences for (a) flow in LDC and (b) for flow past
a cylinder.

excited range, which shows rapid variation of the amplitude, nearly culminating in a
vertical fall at the onset of solution bifurcation. The used CCD scheme, for flow in LDC,
has near-spectral accuracy, as explained in Sengupta, Lakshmanan & Vijay (2009);
Sengupta, Vijay & Bhaumik (2009), and the onset of unsteadiness is due to aliasing
error predominant near the top right corner, while truncation, round-off and dispersion
errors are negligibly small. To avoid the issue of lower numerical excitation in the present
work, a pulsating vortex is placed at x0 = 0.015625, and y0 = 0.984375 whose spread is
defined by the exponent α given in the following,

ωs = A0(1 + cos(π(r − r0)/0.0221)) sin(2πf0t) for (r − r0) 6 0.0221

where in the presented results here we have taken f0 = 0.41 for the single amplitude,
A0 = 1.0.

Figure 6.4: Variation of Equilibrium amplitude of disturbance vorticity with Re indicating
the segments of Re with respect to bifurcation sequences for (a) flow in LDC and (b) for
flow past a cylinder.

solution for Re=83, we have used data in the range of 78 ≤ Re ≤ 90 for the most accurate
ROM.
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Table 6.1: Scaling constant and base Reb for different ranges of Res

Re Range Scaling Constant (n) Basic Re (Reb)
55− 68 −0.49± 0.02 60

68− 78 −0.41± 0.02 72

78− 90 −0.37± 0.02 80

90− 100 −0.32± 0.02 95

100− 130 −0.28± 0.02 110

6.1.2 Formulation and modeling of ROM

In equation (6.1.1), a relation between St and Re is shown for a wide range, for the latter.
One should scale out dependence of DNS data on f or St, for any Re, by a proposed
power law scaling given below,

St(Res)

St(Reb)
=

(
Reb
Res

)n
(6.1.4)

The exponent n will depend upon the segment of Re shown in figure 6.4, with Reb
denoting a base Reynolds number in each segment. In this equation, any donor Re is
indicated as Res. Thus in a cluster of four donor Re’s, one is identified as Reb and the
other three identified as Res. From equation (6.1.4) one deduces n, by the following,

n =
log(St(Res)/St(Reb))

log(Reb/Res)
(6.1.5)

The scaling exponent n is a characteristic number of each segment and Reb. In Table
6.1, we show five segments and the corresponding n, along with Reb used in each range.
For the flow past a circular cylinder, the value of n is obtained with the tolerance of ±0.02
for all Re’s in the respective segment. As discussed in [LBA+18], f is almost constant on
each segment, so that we can set n = 0 for the LDC, individually in each segment. Having
fixed n for any Res in the segment of choice, time-scaling is performed by the following,

ts = tb

(
Reb
Res

)n
+ t0(Reb, Res) (6.1.6)

To interpret equation (6.1.6), we plot the disturbance vorticity for the flow past a
cylinder at a fixed location in the wake center-line (x = 0.504, y = 0), in figure 6.6. The
same format of time scaling should apply to many other flows, including flow inside a
LDC. It is noted that there exists a time-shift between the maximum of these two time
series, shown as t0 in the figure. This process is illustrated by a schematic view of the
transformations applied by time scaling in Fig. 6.5. Let us consider the time for Reb as tb,
and then to apply the proposed time-scaling for the data for Res, we change the physical
time of Res, by the expression given in equation (6.1.6). Consequently, the left hand side
of equation (6.1.6) is the scaled time. After obtaining t0, it is needed to collapse the two
time series for Res and Reb, so that the maximum for these two time series coincide. Thus
having fixed the base Reynolds number in each windows of bifurcation sequences, we can
obtain the time-scaled abscissa for each Res in that range.

The search for t0 is performed in such a way that the phases of both Reb and Res
match accurately. One should note that the effects of t0 are significant, despite the fact
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Time shifted signals

Figure 6.5: Schematic view of the time-scaling algoritmm (Algorithm 13). The black line
is the base signal ωs while the red line is another donor signal ωs that is transformed by
the algorihtm.

that it has a very small value. There are many ways to compute t0, but accuracy must be
very high in estimating it. A specific way is to view the time series in the spectral plane
and using the imaginary part of DFT to be used as the accuracy parameter, as described
in the next subsection.

Figure 6.6: Variation of disturbance vorticity at a point (0.504, 0.0) with tb and ts for Reb
and Res, respectively, for the pair of Reb = 80 and Res = 86 in the bifurcation sequence
78 ≤ Re ≤ 90.

6.1.2.1 Computing the initial time-shift (t0)

The present method is both accurate and computationally cheap, since it relies on the
fast Fourier transform (DFT) that is provided in the numpy library. A DFT is applied
to the vorticity time series at one relevant space point. On one hand, for the LDC prob-
lem (0.95, 0.95) is used. On the other hand for the flow past a circular cylinder, point
(0.504, 0.0) in the cylinder wake is adequate. For each sampled frequency, a complex
value (z(f) = Aeiθ) is obtained consisting of the modulus (A), which corresponds to the
amplitude and a phase (θ). Consequently, we can recover the phase associated with the
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leading frequency (L) for both signals θb and θs. Finally the time shift of signal s with
respect to the signal b is given by

t0 =
θLb − θLs
2πfL

(6.1.7)

Here, fL is the lead frequency in the amplitude spectrum for both the signals as t0
is computed only after the frequency scaling has been performed, with θ as the angle of
the complex value of the DFT associated with the lead frequency for signal b or s. This
method yields reliable and accurate values of t0, as the ROM accuracy will prove in the
following sections.

6.1.3 Time-scaling ROM algorithm

In this subsection, a short recap of the time shifting procedure for ROM building is
given for the simple case of discrete signals ωb(ti) and ωs(ti) with {ti}Ni=1 indicating the
time discretization. It can be directly applied to any space-time dependent field, with a
reference signal chosen at a reference point. Fig. 6.7 provides a schematic view of the time
scaling ROM which is built as follow:

a. Perform Algorithm 13 on all signals, except the base donor signal, in order to scale
their oscillations. Fig. 6.5 provides a schematic view of Algorithm 13.

b. Perform Lagrange interpolation on the scaled donor signals at target Ret for all
discrete times ti.

ω̄?(ti) =
∑

s∈donors

ω̂s(ti)ls(Ret) (6.1.8)

where ω̄? is the target signal and ls are the Lagrange interpolation polynomials.

c. Scale-back ω̄? to the physical time with t? = t−t0(Ret)
(Reb/Ret)n

.

Time scalingDNS simulation

Reb

Res

Res

Res

Interpolation

Ret

Inverse 
time-scaling

Interpolated 
field at Ret

Figure 6.7: Schematic view of the time scaling interpolation method.

The last step of the ROM is to scale back ω̄?(t) to the physical time, t?. Indeed, the
interpolation is performed at grid points for t, which is actually the time-scaled represen-
tation of the target vorticity field. Thus the scale-back operation is computed to associate
ω̄? with the scaled-back time t?. One should note that the final domain is cropped accord-
ing to the information lost after each shift, despite this the discrete time points match
the original discretization.
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Algorithm 13: Time-scaling algorithm for discrete signals

input : ωb, Reb, ωs, Res, t = {ti}Ni=1

output: ω̂s ; /* the time scaled signal. */

1 Perform DFT on both signals

2 Scale frequencies
(
C =

(
Reb
Res

)n)

3 Evaluate t0(Reb, Res) =
θLs −θLb
fLs 2π

4 New time ts = Ct+ t0 is associated with ωs
5 Interpolate the time-scaled signal ω̂s(t) from ωs(ts)
/* At this point, one can perform Lagrange interpolation between the

donor points to the target Re to obtain ω̄∗ */

return ω̂s

6.1.4 Time-shifting ROM applied to the LDC flow

As it was discussed in chapter 5 (with frequency values table in [LBA+18]), the main
frequency of the LDC flow is nearly constant across large ranges of Re. It emphasized
here in Fig. 6.8. Thus, the time-scaling procedures simplify to a time-shifting procedure
with n = 0, resulting in ts = t− t0 for the donor and target points, which have the same
frequency in figure 6.8.
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Figure 6.8: Frequency variation for Re=[8700,12000] for the first three leading frequencies
of the vorticity time series at point (0.95, 0.95) obtained for the last 50 periods. The dotted
lines indicate the presence of multiple dominating peaks in the spectrum.

Following Algorithm 13, we have obtained the vorticity field for Re = 10040, using the
donor points at Re = 10000, 10020, 10060 and 10080. From the reconstructed ROM data,
we have shown the vorticity time series in figure 6.9a for four representative points near
each corners. Despite the change in the vorticity magnitude by two orders, the accuracy
of reconstruction is excellent and match almost exactly.

In figure 6.9b, the reconstructed vorticity contours inside the LDC is shown for Re
= 10040, at the indicated time of t = 1900.199 by solid line, with the same donor data of
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(a) Reconstructed vorticity field at points near each corner of the cavity.
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(b) Disturbance vorticity contour plot at nondi-
mensional time t = 1900.199.

Figure 6.9: Reconstructed vorticity (solid lines) and DNS vorticity (dotted lines) field for
target Re=10040 with donor points at Re = 10000, 10020, 10060 and 10080.

Re’s for the use in the ROM following algorithm 13. The corresponding solution obtained
by DNS of NSE-Solution for Re=10040 is shown in the same figure by dotted lines. It is
readily observed that these exact and ROM solution overlap each other in the full domain
with a relative root mean square (RMS) error of 7.1× 10−4.

It shows the special case of a flow, which is multi-periodic with respect to time, yet the
predominant frequency remains constant over different ranges of Re, allowing one to use
the special version of time scaling with power law exponent given by, n = 0 in equations
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(6.1.4) and (6.1.5). Thus, one needs to simply apply a time-shift and reconstruct by the
methods described in subsections 6.1.2.1 and 6.1.3.

1900 1905 1910 1915 1920 1925 1930 1935 1940
Time

0.236

0.234

0.232

0.230

0.228

0.226

0.224

0.222

V
o
rt

ic
it

y

Vorticity time series at point [0.05, 0.05]

1900 1905 1910 1915 1920 1925 1930 1935 1940
Time

0.0570

0.0565

0.0560

0.0555

0.0550

V
o
rt

ic
it

y

Vorticity time series at point [0.05, 0.95]

1900 1905 1910 1915 1920 1925 1930 1935 1940
Time

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

V
o
rt

ic
it

y

Vorticity time series at point [0.95, 0.05]

1900 1905 1910 1915 1920 1925 1930 1935 1940
Time

7.8

7.6

7.4

7.2

7.0

6.8

V
o
rt

ic
it

y

Vorticity time series at point [0.95, 0.95]

(a) Reconstructed vorticity field at points near each corner of the cavity.
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Figure 6.10: Reconstructed vorticity (solid lines) and DNS vorticity (dotted line) field for
target Re = 9600 with donor points {9350, 9500, 9800 and 10000}.

Next, ROM is performed for Re = 9600, with the donor points at Re = 9350, 9500,
9800 and 10000. The choice of the second target Re for LDC is made on purpose, as the
bifurcation diagram in figure 6.4(a) shows that the flow has discontinuity in equilibrium
amplitude in the chosen donors the bounds of RIII for Re = 9400 and 10600. The in-
terpolated vorticity time series are compared with direct simulation results, as shown in
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figure 6.10a, at those same sampling points used in figure 6.9a. Once again the match
is excellent between interpolated results with DNS data with a very low RMS error of
5.6× 10−4.

In figure 6.10b, the interpolated vorticity contours for Re = 9600 are compared with
those computed directly from NSE to show that interpolation works globally in the flow
field and not merely at chosen sampling points. In this flow field, the power law exponent
is zero and the strength of the interpolation is in obtaining the initial time shift (t0)
obtained using algorithm 13 , obtained from the DFT of the donor point vorticity with
respect to the baseline Re chosen.

In the following, we study the case of flow past a circular cylinder to show the efficacy
of the proposed time-scaling algorithm used here. For this flow also one notices presence of
multiple time scales, but with a predominant frequency characterized by St, which follows
the power law given by equation (6.1.4), with nonzero power law exponent, n.

6.1.5 Time-scaling ROM applied to the flow past a cylinder

All the time-scaled relation and corresponding power law exponent in equation (6.1.5),
is applicable here for ROM with ω obtained by DNS. The time scaled interpolation of
the ROM for disturbance vorticity for different combination of donor points, as indicated
in Table 6.2, are obtained and RMS error with respect to DNS data are compiled in the
table summed over all the points in the domain. Case I in the table corresponds to the
case of donor points at Re = 78, 80, 86 and 90, which is noted as the most accurate based
on RMS error for the ROM reconstruction for Re =83. When we choose the donors with
Re = 55, 80, 86 and 130 for Case V in Table 6.2, the RMS error is again low, as compared
to cases where only one donor point is taken from the same segment containing the target
Re. For higher accuracy one must choose donor points from the same segment of target
Re, as clearly shown in Table 6.2 in a quantitative manner.

Table 6.2: RMS Error estimates of interpolation for Re = 83

Cases Re of donor points Error for interpolation
using donor points

I (78,80,86,90) 0.0435

II (72,80,86,90) 0.0439

III (68,80,86,90) 0.0446

IV (55,80,86,90) 0.0625

V (55,80,86,130) 0.1409

VI (55,68,72,86) 1.3160

VII (55,68,72,130) 8.5224

We draw the attention on error estimates provided in Table 6.2 for different combina-
tions of donor Re’s. It is evident from the table that the best result is obtained when all
four donor points are in the same segment of target Re, as in Case I. In Cases II to IV,
we have taken the lowest Re, farther to the left with increase in RMS error, with lowering
of the smallest donor Re. But in Case V, the extreme Re’s are chosen as 55 and 130, and
yet the RMS error is acceptable, as two of the donor Re’s belong to the segment of target
Re. In contrast, for the Case VI, only a single donor Re belongs to the same segment,
resulting in RMS error increasing almost ten folds as compared to the Case V. The worst
case (Case VII) occurs in Table 6.2, when all the donor Re’s are outside the target Re
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Figure 6.11: Variation of t0 with Res for Reb = 80 for Case I (solid line) and Case V
(dashed line) of Table 6.2. Shown in parametric form are the pair of Reynolds number
and corresponding optimal t0.

segment. This justifies principle of the adopted ROM keeping the various ranges of Re
punctuated by various Hopf bifurcations shown in figure 6.4(b).

The role of t0 is also investigated here for ω′ (the disturbance vorticity field) and the
variation of t0 with the Re is shown in figure 6.11 in the subrange 55 ≤ Re ≤ 130. Here,
we obtain t0 for the data sets of (Re= 55, 80, 86, 130) and (Re= 78, 80, 86, 90), as indicated
separately in the figure. Each of the discrete data are marked in the figure with Re and
necessary time shifts in brackets, with Reb = 80. It is noted that the finding of single t0
is far easier and less time consuming for ω′ for the present version of ROM, as compared
to any method using POD or instability modes, which would require finding different t0
for each retained modes.

In this method, ω′ is reconstructed using the identical procedure of interpolation after
time-scaling and initial time-shift, using equation 6.1.6 applied directly on ω obtained by
DNS. Thus, this procedure even circumvents the need to use the time-consuming method
of snapshots to obtain POD modes that is required for any POD based ROM e.g. POD-
Galerkin, interpolated POD. The proposed time-scaling ROM requires storage of at most
four DNS data sets in each segment for most accurate reconstruction. If one is willing to
settle for lesser accuracy, then one can reduce the requirement of performing DNS for two
Re only, in each segment of figure 6.4. Hence this ROM is not memory intensive.

Figures 6.12(a) and (b) show the comparison between DNS and the time-scaled in-
terpolated ω′ at two different points for Re=70, located along the wake-center line at
(0.504, 0.0) and at (1.014, 0.0), respectively. Excellent match with the DNS data even in
the transient state proves the efficacy of the time-scaling interpolation technique applied
to vorticity data. It is to be noted that despite the presence of a dominant St, the physical
variables demonstrate multiple time-scales as discussed in the introduction and shown in
figure 6.1.

The case for Re= 83 are shown in figures 6.12(c) and (d), which compare the distur-
bance vorticity at the same two locations with DNS data. Once again, the reconstructed



6.1. A PHYSICS BASED INTERPOLATION METHOD: TIME-SCALING 171

t

ω
’

100 120 140 160 180 200 220 240

-1

-0.5

0

0.5

1

Reconstructed 
DNS

t

ω
’

0 20 40 60 80 100

-1

-0.5

0

0.5

1

Reconstructed 
DNS

(a)

t

ω
’

100 120 140 160 180 200 220 240

-0.2

0

0.2

0.4
Reconstructed 
DNS

t

ω
’

0 20 40 60 80 100
-0.5

0

0.5

1 Reconstructed 
DNS

(b)

-0.4

t

ω
’

100 120 140 160 180 200

-2

-1

0

1

2

Reconstructed 
DNS

t

ω
’

0 20 40 60 80-2

-1

0

1

2

Reconstructed 
DNS

(c)

t

ω
’

100 120 140 160 180 200 220 240
-0.4

-0.2

0

0.2

0.4 Reconstructed 
DNS

t

ω
’

0 20 40 60 80 100

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Reconstructed 
DNS

(d)

Figure 6.12: Reconstructed disturbance vorticity with time-scaling interpolation for (a)
Re = 70 using Re = 68, 72, and 76 at (0.504, 0.0), (b) at (1.104, 0.0) and (c) Re = 83
using Re = 78, 80, 86 and 90 at (0.504, 0.0) and (d) at (1.104, 0.0). Within each subfigure,
the top frame is for comparison at early times, while the bottom frame shows comparison
at later times.
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ROM solution is indistinguishable from the corresponding DNS data. Thus, it is evident
that spectrum with multiple peaks can be handled by the presented approach of time-
scaling with initial time-shift, utilizing the power law between Re with St.

6.1.6 POD and time-scaling.

One may object that storing 4 full resolution DNS is too expensive for large scale appli-
cations. A natural idea is to couple POD and time scaling. POD provides a reduced set
of modes that can be interpolated and assembled into a new reduced order representa-
tion. This would provide cheap storage and cheap evaluation ROM. The process reads as
follow for the simple case of discrete vorticity fields ωb(xi, tj) and ωs(xi, tj) with {tj}ntj=1

and {xi}Ni=1 :

a. Apply POD to each field ω(xi, tj) =
∑r

k=1 φk(xi)ak(tj) with r � nt,

b. apply time scaling procedure to times modes of same index ((ask, a
b
k)),

c. interpolate space modes at target Re (φbk(xi), φ
s
k(xi)),

d. Reconstruct interpolated field ωt(xi, tj) =
∑r

k=1 φ
t
k(xi)a

t
k(tj)

POD applied to LDC has already been presented in details in section 5.2 so we directly
focus on time scaling procedure applied to time POD modes.
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Figure 6.13: Time scaling applied to first time mode, target Re=10040 donor points at
Re = 10000, 10020, 10060 and 10080. No back scaling applied.

Fig. 6.13 shows that time scaling procedure is very efficient at interpolating POD
modes. Black line is the actual first time mode of target Re vorticity field (shifted to
reference time of Re=10020) while the red line is the time scaled interpolation of donor
Reynolds number {10000, 10020, 10060,10080}. One can see the very good match of the
interpolated mode making it indistinguishable from the exact one. The shifting procedure
is emphasized by presenting the green (Re=10060) and blue (Re=10020) dotted line for
which direct interpolation would have resulted in canceling peaks.
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(a) Mode 2 phase miss. (b) Mode 3 phase hit.

Figure 6.14: Lagrange spatial interpolation of target Re=10040 donor points at Re =
10000, 10020, 10060 and 10080.

Spatial modes interpolation can be achieved directly with Lagrange interpolation. But,
as shown in Fig. 6.14, direct interpolation can result for the same simulation into vastly
different outputs across the modes. The left frame shows that the interpolation of mode 2
produces a mode that looks like the expected modes but with the wrong sign, this leads
to a global error near 2. Meanwhile many modes, including mode 3 (right frame), are
interpolated with very good precision E = 2.2 × 10−3. In order to circumvent the sign
error, one can add a correlation evaluation c =

∫
Ω
φskφ

s
k and change the sign accordingly.

But this is equivalent to a time shift of a quarter period for the associated time mode.
How to account for this sign change in the reconstruction is not clear yet.
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Scaling back. Actually, the biggest issue with time scaling applied to POD modes is to
carry out the last step of scaling back. Indeed, for full DNS field it was satisfying enough
to interpolate t0 and f to reconstruct limit cycle data. Here one needs to reconstruct as
many t0 and f as there are modes, f is constant across ranges so interpolation is not an
issue. t0, however, is particularly tricky as it does not seam to present any regularity for
LDC data. Additionally, one needs to ensure that the quarter phase shift between mode
pairs (see section 5.2) is preserved. These difficulties have prevented us to construct a
satisfying POD-Time-scaling interpolation ROM so far.

Summary and Conclusion

Here, we have proposed time-scaled ROM for reconstructing super-critical flow past circu-
lar cylinder and flow inside LDC using time-scaled Lagrange interpolation of vorticity data
obtained by DNS for different donor data at Re’s, largely located in the neighborhood of
the target Re. In performing the interpolation, a time-scaling is performed following equa-
tion (6.1.6) along with an initial time-shift, as a direct consequence of (St, Re)-relations
given in equations (6.1.4) and (6.1.5).

ROM reconstruction at a target Re is of DNS-quality, if all the donor points belong in
the same Re subrange, identified by multiple Hopf bifurcations in figure 6.4(a), for flow
inside the LDC in the range 8700 ≤ Re ≤ 12000 and in figure 6.4(b) for flow past a
circular cylinder, in the range of 55 ≤ Re ≤ 130 and in Table 6.1.

Data requirement of present ROM is at most for four Re’s located in the same subrange.
If one wants to perform ROM with only three Re’s, then the reconstructed data are of
slightly lower accuracy, but of very acceptable quality (not shown here). The present
procedure provides scientific and applied basis of ROM, depending upon the number and
location of donor points of target Re.

The proposed ROMs can be used at any arbitrary Re on demand, by the proposed
ROM performed with limited number of DNS at neighboring Re’s. The novel procedure
proposed here has been tested for the internal flow inside a LDC and an external flow
over a circular cylinder, as proofs of concept.

Finally, it is tempting to couple POD and time scaling, preliminary results show that
the interpolation of spatial and temporal modes is possible and accurate but the inverse
time scaling and in particular the reconstruction of t0 at target Re impairs our ability to
propose a POD-time-scaling ROM.



Conclusion on CFD and ROM

In the second part of this manuscript, we have seen that complex flows can be very
challenging simulation problems. Indeed, chapter 5 a complete study of singular lid driven
cavity flow has been conducted. We have shown that this problem is particularly sensitive
to numerical setup which is why high accuracy CCD schemes were used. This setup has
allowed us to precisely describe the Hopf bifurcation sequence thanks to standard flow
analysis tools (time series, discrete Fourier transform,...). POD analysis of the flow has
confirmed these observation. Moreover it has provided qualitative analysis of the flows for
different grids (257× 257 and 513× 513) as well as marked differences in pattern before
and after secondary instabilities.

This kind of in-depth analysis has been used in chapter 6 to propose a “physics”
based interpolation coined time-scaling. The idea originated from St-Re relation in flow
past a cylinder experiments [FKE98]. Here, instead of using general Grassmann manifold
interpolation, the time series are scaled and shifted to prevent interpolation induced beat
phenomenon. The goal of this method was to provide interpolated solution at a target
Re from a few donor Re (between two Hopf bifurcations) that were precomputed through
DNS. This method has been successfully applied to LDC flow (limit cycle) and flow pas
a cylinder (onset and limit cycle) with typical RMS errors in O(10−4) using a few as 3
donors.
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Conclusion and perspectives

Conclusion

In the era of super computers, scientific computing is confronted more than ever to the
curse of dimensionality. In this thesis we have explored a new paradigm that aims at
solving this paradox. The general approach is to break the dimensionality with methods
that turn exponential growth with respect to the number of dimension into linear growth.
This approach is two fold. First, data decomposition techniques aims at reducing existing
data in order to facilitate storage and manipulation. Second step is to build reduced order
models that solve slightly different problems with acceptable loss of accuracy but for
considerable decrease of computing time (at least in the on-line phase). Often, low rank
bases obtained with data decomposition are used which is why it is often referred to as
off-line phase. Obviously, complex problems require extended analysis prior to building
such ROMs.

In the first part of this document, data low rank approximation was studied and
programmed into a library, aiming both at compression and further use in ROM for CFD
problems. In the second part, a complex benchmark flow, singular lid driven cavity flow
at high Reynolds was studied and a novel time-scaling interpolation ROM was applied
successfully to both LDC and flow past a circular cylinder. The contributions of this thesis
can be summarized as follow.

Bivariate decomposition It was shown that bivariate decompositions are equivalent
mathematically, they include matrix decomposition through SVD and function de-
composition through POD or PGD. By equivalent, we mean that they perform
the same operation on different spaces or norms. Their usual definitions involve
different algorithms that can be tweaked into one another. This is supported by
numerical implementation as long as convergence is reached. We have also shown
that these decompositions can help and improve analysis of physical data. It was
highlighted that some fields are more separable than other. Consequently, they have
been deemed weakly separable and strongly or exponentially separable. Extensive
insight on numerics has been provided.

Tensor approximation A broad review of tensor formats and decompositions was pro-
vided in order to contribute to the diffusion of this approach in computational fluid
dynamics laboratories, starting with I2M. To do so, a complete description of these
objects, their comparative advantages and algorithms have been provided. The the-
oretical aspect indicates that canonical decomposition, in spite of its d-linear storage
cost, will produce poor approximation since the problem is NP-complex. Tucker de-
composition is composed of modes and a correlation tensor core of the same order
but of much smaller size than the original tensor. This structure makes it particu-
larly suitable for decomposition of low order tensors by successive SVDs but larger
dimension will cause exponential growth of the core tensor. Finally, TT and Hi-
erarchical formats are recently introduce format that grow linearly with d while
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presenting SVD based decomposition. That makes them good candidates for de-
composition of high to very high number of dimension. d = O(1000) is perfectly
accessible, which leads to the new practice of tensorization. Also, the distinction
between formats an their associated decomposition has been highlighted to prevent
prejudicial confusion.

Multivariate decomposition Tensors describe “blind” data and may not take advan-
tage of the properties of fields or functions that are routinely encountered in CFD.
This is why a particular care was given to decomposition methods in the continuous
framework. First, a degraded version of the PGD, that we referred to as a priori
PGD, was studied. It was concluded that this iterative method actually produces a
canonical decomposition with an iterative least square enriching approach. It can be
seen as a generalization of standard ALS algorithms. Then, a recursive generaliza-
tion of POD to dimensions higher than 2 was presented. Although it can be written
as a canonical format (by renumbering the sum indices) or as a tucker format (by
introducing a sigma map tensor) decomposition, these manipulation introduce a
lot of redundant information which is adverse to compression rate. Consequently,
an atypical recursive tree structure has been proposed to represent RPOD data.
It could be viewed a hierarchical tree, but usual definitions (see [GKT13]) involve
binary trees only. Nevertheless, the RPOD recursive tree is a new format. Of course
a SVD implementation is possible with the same properties. Finally a bridge was
drawn between tensor decomposition algorithm and continuous equivalent versions.
Notably, adaptation of Tucker format methods such as ST-HOPOD and TT-HOP
are straightforward and produces orthonormal bases with respect to any POD com-
patible scalar product. Yet, they necessitate the introduction of integer parameters
and associated measure.

Numerical comparison Most of the added value of this thesis on the question of data
compression and decomposition lies in the comprehensive numerical study of these
algorithms. Thanks to the computing library pydecomp developed for this purpose,
experiments where conducted on synthetic, experimental and numerical simulation
data. It was shown that ST-HOSVD and TT-SVD methods are the most efficient
for comparing compression rate. In accordance with the theoretical study, the tip-
ping point between these two methods is around 5 even though many parameters
may counteract slight compression rate differences. For instance, for low precision
compression, the rank is low enough for the core tensor to remain small. For physics
related problem, the data layout of space related variables have been studied. It was
concluded that separating space variables leads to better compression rate overall
due to the global measuring of the error. But, conserving space as a single dimension
provides a sharper description of spatial feature. Also, data representation of vecto-
rial or multi-field data was discussed. Once again, there is no general rule emerging
yet, It was witnessed that although correlated, variables decomposition possesses
distinct compression rates. Still, for large data set it seems that introducing a new
dimension that represents each variable is an efficient way to diminish memory use.

LDC analysis Next, singular lid driven cavity, a complex flow, has been studied thor-
oughly for Re ∈ [8000, 12000]. Standard means of investigation, such as time series
analysis, discrete Fourier transform, linear regression, etc., have been used to pro-
pose a bifurcation series scenario. Additionally, it was pointed out that this flow is
extremely sensitive to numerical setup which is why we relied on high accuracy CCD
scheme for all DNS performed in this work. For instance, startup condition mod-
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ify the onset of stable limit cycle and grid resolution changes the critical Reynolds
values. This has motivated the introduction of manual excitation of the flow that
enabled the construction of a more robust Hopf bifurcation scenario. Analysis of
POD modes on this flow has confirmed the qualitative equivalence of bifurcation
sequence for fine and coarse grid. Furthermore, it has provided additional clues for
secondary instability, giving sufficient information to decide whether a stable limit
cycle has been reached or not, even though direct analysis of time series would not
provide enough information to conclude. A distinct feature of POD decomposition
is that the time modes can be categorized relative to their physical role. The catego-
rization given by Sengupta has been supported by this work. Indeed, regular modes,
characteristic of limit cycle, are grouped by pair of identical frequency that DFT
analysis have shown to correspond to a single peak in the spectrum. Anomalous
modes are characteristic of transient behavior such as mean variation or instable
oscillations. This complete analysis has contributed to the definition of attainable
objectives for ROM building on LDC. Transient stage is far too unstable and sensi-
tive for any attempt of ROM to reproduce DNS pattern. Consequently, a ROM of
the limit cycle, between two bifurcations seemed a reasonable objective.

Time-scaling interpolation ROM Finally, a new interpolation ROM called time–scaling
was proposed. It allows DNS vorticity field interpolation from a few donor Re to a
target Re with high accuracy (O(10−4)). In this ROM, instead of devising a tech-
nique based on the topology of the PDE solution manifold, it was proposed to rely
on physical insight. Indeed, it was noted both experimentally and numerically that
the Strouhal number can be related to Re by a power low rule. This rule is adapted
into a transformation of time that scales (and shifts) time series to prevent beat
phenomenon. Then any standard interpolation technique can be used. Since 3 or 4
donors are enough, Lagrange interpolation was chosen here. This new method was
applied successfully on LDC within ranges defined during the analysis. Actually, the
frequencies have been shown to remain constant in each range, thus, only shifting
needs to be applied. Flow past a circular cylinder has also been interpolated success-
fully with full time-scaling algorithm, including the initial transient till the stable
limit cycle (Von Karman street) for Re ∈ [55, 130].

In the end, this work has lead to the publication of two articles and the submission of a
third that are included at the end of the manuscript:

• [LBA+18] Lucas Lestandi, Swagata Bhaumik, G R K C Avatar, Mejdi Azäıez,
and Tapan K Sengupta. Multiple Hopf bifurcations and flow dynamics inside a 2D
singular lid driven cavity. Computers and Fluids, 166:86–103, 2018.

• [LBS+18] Lucas Lestandi, Swagata Bhaumik, Tapan K Sengupta, G R Krishna
Chand Avatar, and Mejdi Azäıez. POD Applied to Numerical Study of Unsteady
Flow Inside Lid-driven Cavity. Journal of Mathematical Study, 51(2):150– 176, 2018.

• Tapan K Sengupta, Lucas Lestandi, S. I. Haider, Atchyut Gullapalli and Mejdi
Azäıez, Reduced order model of flows by time-scaling interpolation of DNS data,
(submitted to AMSES on April 30th 2018 ).

Future work

As we have seen in the introduction, ROM and data decomposition is a rapidly expand-
ing field, especially in the context of CFD. Many efforts are concentrated on applying
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efficiently to the Navier Stokes equations methods that have proved efficient on simpler
problem (elliptic, coercive,...). Regarding the initial step of data decomposition, recent
works have been focusing of blackbox methods that allow to enormous memory savings.
The present thesis has brought perspectives on its own, that I present hereunder.

pydecomp computing library

We have presented in section 4.1 a decomposition library was that developed during this
thesis. It proposes various formats and decomposition methods. But, the main limiting
factor is memory use. Indeed, current implementation is limited to a single computing
node and its memory. Additionally, all available decompositions require knowledge of
every entries of the field/tensor which amounts to very large datasets. Current capacity
is limited to a few GB at a time. In order to overcome this limitation, two approaches are
possible. First implementation of fully parallel solvers, typically iterative, would allow to
distribute data on many computing nodes. Current cluster architectures provide hundreds
of TB which is sufficient for processing of advanced large scale simulation data. The other
approach is to consider that one can access, on-demand, any entry of the tensor without
having to load the full tensor. This would imply huge memory savings and potentially
cutting computing efforts since one only needs a limited number of evaluation in the
parameter space to construct a general approximation of the tensor.

Also, from a practical point of view, interfaces with some common format (VTK,
ADIOS, HDF5) have been developed; this effort should be continued with providing a
user interface and easy-to-use reconstruction features.

Better interpolated ROM

Time-scaling interpolation ROM has been applied successfully onto full DNS vorticity
data. However, it can be expensive to store such data for 3D refined cases with small
time steps. Then, applying time-scaling ROM directly onto a decomposed representation,
typically POD, is a short term goal. But as shown in section 6.1.6, having multiple time
modes involves reconstructing many time shifts. This problem has not been circumvented
yet. Other approaches such as direct interpolation of Re modes for full decomposition
have been discussed but accuracy remains low. This suggests that methods accounting for
the topology of the Grassmann manifold could improve as well as generalize the proposed
method.

A stabilized POD Galerkin ROM

It was evoked several times that POD Galerkin projection ROM have been used in nu-
merous work for the last two decades. But it turns out to be unstable due to truncation
of lower energy modes. In collaboration with Instituto de Matemáticas Universidad de
Sevilla, together with Samuele Rubino, we have undertaken work to propose a new sta-
bilization scheme for POD Galerkin ROM (PODG).

In PODG, the idea is to project a set of PDEs onto a spatial reduced basis obtained
by POD. For NS equations, with incompressible flows, the pressure term is dropped since
POD preserves the divergence free property of the flow. If centered trajectories are used,
additional terms appear associated with the mean field. Also, the trilinear form associated
with advection introduces a third order tensor. A special processing may be required to
evaluate this term, but the rank of the RB is usually small enough so that it can be kept
entirely.
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Thus, the idea is to introduce a new stabilization term that comply with the physics.
Ongoing work stems from projection-based Variational Multi-Scale (VMS) ideas [IW14,
Wel15] for the simulation of turbulent incompressible flows. In the FE context, stabilized
formulations have been developed to deal with the numerical instabilities of the Galerkin
method in strongly convection-dominated configuration. We are currently working on
applying this approach to PODG stabilization.
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for tensor completion in the CP format. Parallel Computing, 57:222–234,
2016.

[Kol06] Tamara G Kolda. Multilinear operators for higher-order decompositions.
SANDIA Report, (April):1–28, 2006.

[Kos43] D D Kosambi. Statistics in function spaces. Journal of the Indian Mathe-
matical Society, 1943.

[KT11] Daniel Kressner and Christine Tobler. Low-Rank Tensor Krylov Subspace
Methods for Parametrized Linear Systems. SIAM Journal on Matrix Analysis
and Applications, 32(4):1288–1316, 2011.

[KT13] Daniel Kressner and Christine Tobler. htucker – A Matlab toolbox for tensors
in hierarchical Tucker format. pages 1–28, 2013.

[LBA+18] Lucas Lestandi, Swagata Bhaumik, G. R. K. C. Avatar, Mejdi Azaiez, and
Tapan K. Sengupta. Multiple Hopf bifurcations and flow dynamics inside a
2D singular lid driven cavity. Computers and Fluids, 166:86–103, 2018.

[LBS+18] Lucas Lestandi, Swagata Bhaumik, Tapan K. Sengupta, G. R. Krishna Chand
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Multiple Hopf bifurcations and flow dynamics inside a 2D singular lid driven cavity
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Abstract

Two-dimensional (2D) flow inside a lid driven cavity (LDC) is shown to display multi-modal behavior in a consistent
manner following the first Hopf bifurcation with varying Reynolds numbers (Re), depending upon the chosen spatial and
temporal discretization scheme. Direct numerical simulation (DNS) following impulsive start, is used to show spatio-
temporal growth and its nonlinear saturation of disturbance growth. Despite the fact that researchers have produced
different value of Reynolds number when first Hopf bifurcation occurs (Recr1), DNS fundamentally differs from classical
bifurcation studies involving global instability study of an equilibrium flow due to adopted nonlinear approach and not
restricting the analysis to temporal instability only. The accuracy attribute of the DNS adopted here has been shown
conclusively earlier via demonstration of a weak transient polygonal core vortex surrounded by relatively stronger gyrating
vortices, which appear as a constellation after the disappearance of the transient, in Sengupta et al. (J. Comput. Phys.,
228, 3048- 3071 and 6150-6168 (2009)). Investigated LDC flow is characterized by multiple time scales at any Re, which
are weak function of Re in selective intervals, punctuated by multiple bifurcations. The present investigation achieves two
primary goals. First, it proposes to reconcile that Recr1 obtained by different numerical approaches can be shown to be
in same range, provided the equilibrium flow obtained is of good quality, untainted by excessive diffusion. Secondly, we
also show that for increasing Re following the first Hopf bifurcation, the flow during the limit cycle suffers a secondary
instability, thus, requiring computation of the flow field over a longer time period. The first goal is met by exciting the
flow field with a pulsating vortex inside the LDC for a very high accuracy scheme, we are able to show the universal
nature of the primary bifurcation for Re in the range between 8020 and 8025. The flow at higher Re displays significantly
increased spectral peaks, including broad-band spectrum and the understanding of all these have been aided by phase
space portraits.

Keywords: Lid driven cavity, DNS, Multiple Hopf bifurcation, polygonal core vortex, phase space portrait

1. Introduction

The 2D flow in a square LDC (of side L) is a popular problem to test new algorithms for incompressible Navier-Stokes
equation (NSE) due to its unambiguous boundary conditions, coupled with its very simple geometry. As the lid is given
a constant-speed translation (U), this gives rise to corner singularities on the top wall, as depicted in the top frame of
Fig. 1. The role of such singularities is to give rise to Gibbs’ phenomenon, as reported by pseudo-spectral computation
of NSE [2, 7]. Computing flow in LDC by other discrete computing methods [9, 17, 33], corner singularities do not cause
any problem due to smoothly decaying spectrum created by spatial discretization [37] near the cutoff wavenumber. While
it is possible to compute steady flow at low Re by various methods including lowest order spatial discretization, it is not
so at higher Re, where the flow displays inherent tendencies of unsteadiness. One of the central activities in studying
the problem of LDC is to show that the onset of unsteadiness is related to flow instability. Viewed in this perspective,
the primary goal is then predict the correct equilibrium flow for global instability studies. However, in DNS one directly
proceeds to obtain the unsteady flow. This latter approaches can thus cause confusion, as is noted in the published
literature. Many low order methods are incapable of computing unsteady flows at high Re (= UL/ν), where ν is the
kinematic viscosity. In Ghia et al. [17], results for a wide range of Re up to 10000 are presented. The flow is steady
for Re = 10000 in [17], while numerical results obtained by high accuracy combined compact difference (CCD) scheme
presented in [26, 27] indicate creation of a transient polygonal vortex at the core, with permanent gyrating satellite vortices
around it. In these references, sixth order CCD scheme has been used to discretize both the convection and diffusion
terms of the vorticity transport equation. It is well known [1, 36] that compact schemes for spatial discretization filters
minimally, as compared to other methods.

For the LDC problem at Re ≤ 1000, researchers [2, 3, 7] have tried to circumvent the singularity by subtracting the
contribution due to singularity (divergence of pressure and vorticity at the top corners) to obtain a steady flow solution
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by pseudo-spectral methods. The singularity diverges as 1/r, with r as the radial distance from the corner for the flow, by
including inertial effects [20]. This method has not been used for Re exceeding 1000 and instead for higher Re, singularity
is removed by altering the velocity boundary condition on the lid - a process known as the regularization [25].

A steady solution has been reported by many [6, 14, 17] for Re far exceeding the values reported in the literature for
the first Hopf Bifurcation (Recr1), due to the excessive diffusion of the discretization. If this steady solution is treated
as equilibrium solution, then its global instability will not be predicted in a unique manner, as have been attempted by
solving numerically the bifurcation problem [6, 16, 30]. Use of lower order methods in obtaining equilibrium flow results
in contaminated eigenvalues. On the other hand, simulations of full time-dependent NSE [18, 19, 28] reveal that the flow
loses stability via a Hopf bifurcation with respect to increasing Re. Critical Recr1 and frequencies obtained from DNS and
eigenvalue analysis do not match and such differences are noted for different DNS results too for various reasons, some of
these will be explained here.

It is shown in [27, 28, 38] that Recr1 depends upon the accuracy of the method and how the flow is established in DNS.
Physically, impulsively started flow is ideal to study the dynamics, as it triggers all frequencies at t = 0 [26, 27]. Such an
analysis is preferred and is superior to normal mode analysis of eigenvalue approach. We note that obtaining a limit cycle
at a different Re from the limit cycle solution obtained at another Re is not appropriate. While this may result in faster
computations [28], this also produces different Recr1, as compared to the results obtained by impulsive start [26, 27, 38].
This is highlighted here by the high accuracy study of Hopf bifurcations by DNS performed by reducing sources of error.

Multiple Hopf bifurcations have been reported earlier by researchers for LDC flow. Authors in [3] have talked about a
second bifurcation, while Sengupta et al. [38] have described multiple Hopf bifurcations for flow in LDC by plotting the
bifurcation diagram using FFT data of vorticity time series. In recent times, Girault et al. [46] have talked about multiple
Hopf bifurcations for LDC flow using compact scheme. Thus, the present effort in reporting multiple Hopf bifurcation is
based on relating it with overall dynamics of the flow field, as computed by the high accuracy method, which is being
used for LDC flow in [26, 27, 38] and in the present study.

The role of various sources of errors, including aliasing error for flow inside LDC has been described in [27]. Here we
will discuss the roles of other sources of errors, based on the model convection-diffusion error [41]. As this simulations are
extremely sensitive to operating conditions, the present work relies only on sequential computing in order to capture the
weak transient core vortex when the major sources of errors are removed. This aspect of hyper-sensitivity of computed
solution on background disturbance is further exploited here to explain why Recr1 are different for different numerical
methods.

Appearance of unsteadiness with variation in parameter value(s) studied by bifurcation theory [39] is due to flow
instabilities [35]. Linear instability of equilibrium flow and DNS have been used in the literature to evaluate the onset
of unsteadiness, providing scattered values of Recr1 for flow in LDC. The authors in [3], using a second order projection
method along with second order backward difference for time integration, obtained this value to be bracketed between
8017.6 to 8018.8. The authors furthermore added that their preliminary analysis beyond the first bifurcation led them
to suppose that the system passes through a second Hopf bifurcation for a second critical Reynolds number located in the
interval [9687, 9765). Various researchers noted different value of Recr1: As 8031.93 in [32], 7972 in Cazemier et al. [11]
using a finite volume method. Bruneau and Saad [8] noted this to be in the range of 8000 to 8050 without showing the
relevant bifurcation diagram, using a third order upwind scheme, using (1024 × 1024) grid. However, the use of three
time-level Gear method, produces a spurious mode to affect results. We highlight the roles played by different numerical
sources in triggering flow unsteadiness by Recr1, that explains the scatter of reported Recr1. Of specific interest are
for methods using very high accuracy methods which report relatively high values of Recr1. It is somewhat paradoxical
that very diffusive upwind methods produce very high Recr1 also, by attenuating disturbances to delay unsteadiness, as
reported in [6, 14, 17].

High accuracy compact schemes have been used in Sengupta et al. [38] and described multiple Hopf bifurcations,
showing Recr1 = 7933 and the second at 8187, using the FFT amplitude of the vorticity time series obtained using
sixth order accurate combined compact difference (NCCD) scheme on a uniform (257 × 257) grid. Osada and Iwatsu
[28] have identified this value at 7987 ± 2% - in similar range using compact scheme on non-uniform (128 × 128) and
(257 × 257)-grids. This limit is obtained based on linear interpolation of data from these two grids, in Fig. 3 of [28] for
u-component of velocity at the core of LDC. The figure clearly shows grid dependence of the computed results as the A2

e

(equilibrium amplitude) versus Re curves have diverging slopes. Thus, the authors obtained grid-dependent results, as
seen in the present computations. This is due to the fact that the wall vorticity is different for different wall resolution,
and here we explain the reason for this. Here all computations are obtained by starting from quiescent condition at t = 0,
following an impulsive start. Several results in [28] are obtained by projecting results from one Re to another. Here,
we will demonstrate that projecting a solution from one Re to another is essentially flawed to obtain Recr1. In [28], the
authors also provide the second critical Reynolds number as Recr2 = 9575±3%, which is quite different from that is given
in [3].

There are also studies which report widely different values of Recr1. For example, Shen [34] reported Recr1 in the
range of 10000 to 10500. Poliashenko and Aidun [30] on the other hand reported a value of Recr1 = 7763 ± 2% using a
commercial FEM package. Peng et al. [29] reported a value of Recr1 = 7402± 4% using FDM by Marker and Cell (MAC)
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Figure 1: The schematic of the computational domain and location of sampling points (top) and vorticity time series at the sampling points
obtained for Re = 9500 obtained from solution of Navier-Stokes equation using a (257 × 257) grid.

To obtain Recr1, DNS is preferred over eigenvalue analysis, as in the latter a temporal analysis assumes all points to
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have identical time variation. In DNS, the true spatio-temporal dynamics is traced. In the schematic shown on top of Fig.
1, five points are identified where time variation of vorticity is stored, as shown in the other frames of the figure. Apart
from the center of the LDC, there are two points at the bottom embedded inside corner vortices at (x = 0.02, y = 0.02)
and (x = 0.98, y = 0.02). Other two points located near the top right corner of the cavity at (x = 0.95, y = 0.95) and
(x = 0.99, y = 0.99), display higher unsteadiness, strongly affected by aliasing error [27]. This is noted in the vorticity
time series shown in Fig. 1. The core suffers least perturbation and the next higher disturbance amplitude is noted at the
bottom right corner. While bottom left corner point registers significant vorticity disturbance, the top right corner points
log higher disturbance vorticity. The point at (x = 0.99, y = 0.99) being closest to the corner singularity, displays highest
variations and takes longer to attain the limit cycle. Hence the point (x = 0.95, y = 0.95) is preferred for analysis purpose
[26, 27, 38]. In [28], the time series has been sampled at a point near the bottom right corner at (x = 13/16, y = 1/16).

The paper is formatted in the following manner. In the next section, a very brief recap of the governing equation
and the numerical methods used are provided. In section 3, the flow field is characterized by vorticity field obtained by
DNS with Re. Vorticity dynamics and polygonal core vortex are described in section 4. This is followed by description
of multiple Hopf bifurcations in section 5. Apart from describing new equilibrium states, we also show the frequency
spectrum of the flow field as a function of Re and provide the phase space trajectory to describe the flow dynamics. In the
following section 6, we discuss about extreme sensitivity to the grid resolution and projection of solution for one parameter
to another. Most importantly we explain receptivity of the flow to imposed excitation and trace back the universal Recr1,
which we consider as the main results in the present work. In the end, summary and conclusions are provided.

2. Governing Equations and Numerical Methods

DNS of the 2D flow is carried out by solving NSE in stream function-vorticity formulation given by,

∇2ψ = −ω (1)

∂ω

∂t
+ (~V · ∇)ω =

1

Re
∇2ω (2)

where ω is the non-zero out-of-plane component of vorticity for the 2D problem. The velocity is related to the stream
function by ~V = ∇ × ~Ψ, where ~Ψ = [0 0 ψ]. Reynolds number is defined by L and the constant lid velocity, (U),
which are also used as length and velocity scales for nondimensionalization. This formulation is preferred due to inherent
solenoidality of the velocity and vorticity for 2D flows. It also allows one to circumvent the pressure-velocity coupling
problem. The numerical methods and the dynamics of the flow for Re = 10000 are given in greater details elsewhere
[26, 27] and is not repeated here.

Equations (1) and (2) are solved subject to the following boundary conditions. On all the four walls of LDC, ψ =

constant is prescribed which helps in satisfying no-slip condition; the wall vorticity is ωb = −∂2ψ
∂n2 , with n as the wall-

normal co-ordinate chosen for the four segments of the cavity to obtain the boundary vorticity. This is calculated using
Taylors series expansion at all the walls with appropriate velocity conditions at the boundary segments. The top lid moves
horizontally with a unit nondimensional velocity, with all other walls as stationary. To solve the discretized form of Eq.
(1), Bi-CGSTAB method has been used here, which is a fast and convergent elliptic PDE solver [42]. The convection and
diffusion terms are discretized using the sixth order accurate NCCD method [26, 27], which obtains both first and second
derivatives simultaneously. All other details about NCCD and other compact schemes can be also found in Sengupta [36]
and hence are not reproduced here. For time advancing Eq. (2), four-stage, fourth-order Runge-Kutta (RK4) method is
used that is tuned to preserve dispersion relation. The NCCD scheme has been analyzed for resolution and effectiveness
in discretizing the diffusion terms along with the dispersion relation preservation properties for 1D convection equation
[26, 27]. It is noted that the NCCD method is efficient, providing high resolution and effective diffusion discretization.
Additionally, the method has built-in ability to control aliasing error. The only drawback of NCCD scheme is that it can
be used only with uniform structured grids. All computations are performed with nondimensional time-step of dt = 0.001.
The final limit cycle behaves in a similar fashion, when time step is changed. Only the instability of the limit cycle
appears at different time range with change in dt. We also report an additional set of computations using a finer grid with
(513 × 513) points. Vorticity time series at a sampling point, qualitatively remains the same, with only the mean value
shifted by a small fraction. The sampling point location being at (0.95,0.95) has been explained in the previous section
with respect to sampling point taken in [28].
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Figure 2: The vorticity time series at the sampling point (x = 0.95, y = 0.95) obtained for Re = 8800 with vorticity contour plots shown at the
indicated time instants. Solution of Navier-Stokes equation is obtained using (257 × 257) grid.

3. Dynamics of singular LDC Flow

To understand why the eigenvalue analysis and direct solution of NSE do not match, we explain this further with
the help of Fig. 2 for Re = 8800, which shows the vorticity time series at (x = 0.95, y = 0.95) in the central frame.
The results are obtained by solving unsteady NSE using NCCD scheme [26, 27, 38] for spatial discretizations of first and
second derivatives. In the time series, we have identified various regimes of time-variation. For example, in Range-1a
of Fig. 2, plotted vorticity displays high frequency transient variations, followed by banded relatively lower frequency
variations of the vorticity in Range-1b. In Range-1b, it is possible to see coherent vortices inside the cavity. However,
such structures at the core are highly transitory and the time series shows the decay of the signal near the terminal time
of Range-1b, the vorticity fluctuation reduces and settles down to a steady value and which is maintained throughout in
Range-2. This period is followed by Range-3a, where the vorticity variation displays growth and which is presumably due
to linear temporal instability. Finally, in Range-4 one notices nonlinear saturation of the growth noted in Range-3a. This
is the typical variation of vorticity with time for lower Re cases, which are above Recr1.

For such a time series shown in Fig. 2, the linear growth in Range-3a is followed by nonlinear saturation in Range-4.
Results obtained by high accuracy solution of time-dependent NSE in Range-2 and that is strictly obtained as solution of
steady NSE may not match. Due to this, in the following linearly unstable range, solutions obtained by time-dependent
NSE in Range-3a would also not necessarily be the same, which is obtained from the eigenvalue analysis of steady NSE
solution. Also, the mismatches in Ranges-2 and -3a, can be due to differences in accuracy of numerical methods employed.
The steady state solution obtained in the unstable range is essentially due to the diffusive nature of numerical methods.
Such steady solutions have been reported for a high Reynolds number of 20000 [6, 14]. The sensitive dependence of solution
of a nonlinear dynamical system to initial condition (here the equilibrium state obtained by two ways) is well known and
for fluid dynamical system governed by NSE is recorded in the literature [36]. The Range-4 is where the dynamical system
settles down to its limit cycle. We shall note later that the transition from Ranges-2 and -3a to Range-4 can be quite
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complicated, punctuated by intermediate quasi-equilibrium states which suffer instabilities to take the system to newer
equilibrium state. This will be discussed again with respect to higher Re cases.

One of the major aspects of the work reported by Sengupta et al. [26, 27] is the multi-modal frequency spectrum of the
flow inside LDC for Re = 10000. It has been noted that with the use of NCCD scheme, the aliasing error near the top right
corner is held in control and only five distinct frequencies are noted in the spectrum for Re = 10000. In contrast, when
another combination of compact schemes were used for the same problem, the spectrum was seen to be broad-band with
presence of fluctuations at multiple scales. This difference between the two methods is due to better diffusion discretization
by NCCD scheme [27, 36]. In the present exercise, the same method has been used to track accurately the phenomenon
of multiple Hopf bifurcations in the range of Reynolds number: 8000 ≤ Re ≤ 12000 and the associated dynamics. For
the flow in the range: 8000 ≤ Re ≤ 8660, the flow remains steady and would be of lesser interest to us, obtained using
(257× 257) grid.

In various frames of Fig. 3, we depict vorticity time series at point (x = 0.95, y = 0.95) for different Re from 8660
onwards. The time series for Re = 8660 only displays Ranges-1a, -1b and -2 for the simulation performed up to t = 2000.
However, for Re = 8670, one notices all the ranges shown in Fig. 2. This implies that the first critical Hopf bifurcation
occurs in the range [8660, 8670]. As Re increases, one notices that the Range-2 shrinks, i.e., the time over which flow
remains steady decreases, before being destabilized. This steady state (an equilibrium solution) is unstable, and the flow
suffers a temporal instability. For Re = 8900, the apparent steady state actually consists of low amplitude oscillations and
the flow suffers temporal instability, which can be studied by Floquet theory [5], provided this solution strictly periodic
having a single frequency. For such periodic equilibrium flow the eigenvalue analysis for steady flow, as in [6, 30, 16] is not
possible. However, the spectrum of periodic solutions are populated with more than one incommensurate frequencies and
Floquet analysis is not an option. Thus to avoid such complexities of linear instability studies, we advocate high accuracy
solutions of unsteady NSE, as has been practiced also in the literature [8, 18, 19, 26, 27, 38] and here.

With increase in Re above 8800, one notices that the onset of Range-3a also advances, which is noted by comparing
the frames in Fig. 3. The Ranges-1a and -1b are seen to change at a slower rate with increase in Re. Also, in the time
series for Re = 9000 onwards, one notices significant modulations during the growth and nonlinear saturation stages of
the vorticity evolution. For Re = 9100 onwards, one notices that the Range-2 is completely absent, implying that the flow
does not achieve steady state at all. The temporal growth starts from the transient stage (Range-1) itself, for Re = 9100.
For such cases, eigenvalue analysis of steady state [6, 16, 30] is of no value. This situation is further compounded by
multi-modal interactions, as seen for Re = 9000 with distinct wave-packets forming. Intensification of modulations and
their extension in nonlinear saturation stage is also noted for Re = 9300. This is a new unreported instability for LDC
flow, which starts from the nonlinear modulation stage and will be referred to as secondary instability henceforth, while
the time extent is marked as Range-3b. The demarcation between early transient stage and regular temporal growth stage
is visible as a neck formation in the time series near t = 300, for Re = 9100 onwards. One of the visible signature of
the dynamical system having reached a stable equilibrium state is the presence of constant amplitude limit cycle beyond
t = 700 onwards for Re = 9300. We have already noted that depending upon Re, one may or may not see the presence of
the five ranges indicated in Fig. 2 for Re = 9100.

The marked secondary nonlinear instability is obtained here by high accuracy solution of NSE using NCCD scheme
[26, 27]. Even if linear instability were to be a valid option in the earliest phase in Range-3a, one cannot resort to
normal mode analysis [12, 21], since the visible modulation is due to multi-modal interactions. In case of single mode
being present during the growth phase, one can use Stuart-Landau equation [24, 40] and explain the nonlinear saturation
noted in Range-4, as due to self-interaction only. An objective discussion on applicability of this model is given in
[38]. A theoretical approach to multi-modal interactions has been advanced [23, 35], where the eigenfunction expansion
formalism proposed by Eckhaus [13] has been utilized to derive the more general Stuart-Landau-Eckhaus (SLE) equation
[23, 35]. SLE equation is a tool to explain the limit cycle stage with multi-modal interactions. Additionally, use of proper
orthogonal decomposition (POD) helps one to obtain the instability modes. The governing SLE equations have been used
to explain bluff body flow instability, as well as developing reduced order model (ROM) for flow past circular cylinder for
low Reynolds numbers in [23, 31].

An exceptional case is also noted for Re = 9400, in which the presence of multi-modal interactions is noted even when
the computations are carried out till t = 2000, as shown in Fig. 3. Only when the computation is extended beyond
t = 3000, one notices the slow disappearance of modulation. However, the amplitude of the final limit cycle is significantly
lower, as compared to neighboring Re cases. This will be further described in presenting multiple Hopf bifurcations. The
implications of sustained modulation is explained shortly with the help of spectrum of data after the dynamical system
has settled down to an apparent equilibrium state.

With further increase in Re, a secondary instability occurs, as seen for Re = 9700, with the final limit cycle setting
in before t = 700 in Fig. 3. In this case, after Range-1a a series of secondary instabilities are noted, culminating in
the final limit cycle very early on. For Re = 9800 the first instability is followed by nonlinear action which leads to the
amplitude continuously increasing and a single secondary instability is noted around t = 1200, which leads to the final
limit cycle being firmly established by t = 1500. This is an atypical behavior, not seen for lower Re. The vorticity time
series for Re = 9900, 10000, 10080, 10180 and 10400 (not shown here), follow similar time variation as that of Re = 9700.
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Figure 3: The vorticity time series for a point located at x = 0.95, y = 0.95, near top right corner for the displayed Reynolds numbers, obtained
from solution of unsteady Navier- Stokes equation.
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For Re = 10500, qualitatively different vorticity dynamics is noted as compared to the case for Re = 10400. This time
series has resemblance with the case for Re = 9400. The vorticity time series for Re = 10600 shows qualitatively similar
behavior as noted for Re = 9800. Above this Reynolds number, computed vorticity field up to t = 2000, show continuous
modulations in the time series. This is with the exception of Re = 11500 and 11600 cases, for which one notices stable
limit cycle after a very small time interval following the formation of neck around t = 200.

The described multiple mode interactions and consequent modulations can take a long time (Tlc) before the dynamical
system settles down to a stable limit cycle. Additionally, this process is very sensitive to the Reynolds number as one can
infer from Fig. 4. Indeed Tlc behaves irregularly during the very short range 10000 ≤ Re ≤ 10400 that is displayed here.

Figure 4: The onset time of final stable limit cycle of the vorticity time series for the displayed Reynolds numbers, with solution shown for the
location given by, x = 0.95 and y = 0.95.

4. Vorticity dynamics and polygonal vortex in LDC

From the time series shown in Fig. 3 for different Re’s at the stable limit cycle stage, we have noted the feature of
periodicity of the solutions in the final limit cycle. Here, we investigate further about the flow field for Re = 10300 to
describe the flow evolution in terms of vorticity dynamics. In Fig. 5, we show the vorticity contours inside the cavity at
the indicated time instants, while the vorticity time series at (x = 0.95, y = 0.95) is shown as the central panel in Fig. 5,
to understand the choice of the time instants.

In the early stages of flow evolution, the inner core develops in conformity with the shape of the cavity, due to the
action of the wall jet impinging near the top right corner. Thus, the lighter shaded contours shown in the form of a
rounded rectangle, while the inner contour lines morph into a circular shape, as noted at t = 200. From the time series,
one notes this stage to belong to beyond the early transient, where the coherent motion corresponds to a apparent neutral
stage which is followed by decay of the disturbance. This continues up to t = 280, when the time series indicate the
termination of decay and beyond this time, the disturbance once again grows. The vorticity contours show two distinct
layers with sharp gradient and this motion continues, as shown in the frame for t = 660, where the gradient is really
sharp. In subsequent flow evolution, the outer layer transforms into satellite vortices while the inner core shrinks to the
triangular vortex, as noted in the frame for t = 960. Such triangular vortices have been shown earlier for Re = 10000
[26, 27] and it is noted here also. The time series also indicates that there is no steady state for this flow to perform linear
stability analysis, as attempted by other researchers [6, 30]. The triangular core vortex forms after the linear stability
phase, only once the nonlinear saturation has taken place. Hence, one can conclude that its presence is essentially due
to nonlinear dynamics of the flow field guided by the presence of six gyrating satellite vortices. However, with passage of
time the central core vortex looses strength and identity. Thereafter, one notices these six gyrating satellite vortices to
rotate about the center of the cavity. This is the terminal state of the limit cycle. One such cycle is shown in the bottom
three frames.

5. Multiple Hopf Bifurcation

The vorticity time series described in section 3 indicate different qualitative dynamics for different Re and that in turn
is suggestive of multiple bifurcations in the range of computed solutions. Here, we address bifurcations for the LDC flow
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Figure 5: Vorticity contour is shown at different time instants from start till attainment of limit cycle for Re = 10300. Time series of the
vorticity at point (0.95, 0.95) is shown in the center.

based on DNS performed following an impulsive start. To do so the limit cycle amplitude is studied first, then the analysis
of the frequencies property allows a better comprehension of the underlying mechanisms.

5.1. New Equilibrium State via Stable Limit Cycle

The amplitude of the limit cycle Ae is defined as half of the maximum excursion of the vorticity time-series describing
a constant width envelope, by sampling the vorticity at (0.95, 0.95). Different time evolution at the sampling point for
different Re are presented in Fig. 3. For some higher Re cases, computed flow field display significant modulation even
when the flow is computed up to t = 2000 and above. The Stuart-Landau model states that A2

e ∝ |(Re − Recr1)| for
the limit cycle cases with single dominant mode and this is useful for the flow past a circular cylinder approximately.
Correspondingly, Fig. 6 displays the plot of A2

e as a function of Re for the range 8660 ≤ Re ≤ 12000 obtained using
a grid with (257 × 257) points. Unlike the nonlinear dynamical systems for bluff bodies, here the Hopf bifurcation [39]
starts very sharply, as shown in Fig. 6, which occurs between Re = 8660 and 8670. For flow past a circular cylinder, DNS
based Hopf bifurcation studies and corresponding results are given in [23]. Each zoomed view in Fig. 6 shows a segment
in which relation between Re and A2

e is compared with its linear variation. The linear regression coefficients can be found
in Table 1.

In the range 8670 ≤ Re ≤ 9350, one can see in Fig 6 that the linear regression fits the data well. This is confirmed by
the value of the regression coefficient (R2) being really close to 1. The amplitude then suddenly drops around Re = 9400,
as noted in Fig. 6. To ascertain the correctness of this value, additional simulations have been performed for Re = 9350,
9395, 9405 and 9450 and all these data are marked in the figure. It is noted that the value for Re = 9350 falls on the
linear segment shown to the left of Re = 9400. For Re = 9450, the amplitude belongs to the next linear segment which
ends at Re = 10400, as shown in Fig. 6 in the second box. However it should be noted that the correlation coefficient is
lower on this range, mainly due to its larger extent. Another natural break in the curve is noted between Re = 10500 and
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First segment Fourth segment

Third segment

Second segment

Figure 6: Multiple Hopf-bifurcation shown with respect to the vorticity time series data shown for Fig. 2. All the simulated Reynolds numbers
data are used to plot the amplitude of the final stable limit cycle data against Reynolds number.

Table 1: Coefficients of linear regression equation of the form : A2
e = aRe+ b with regression correlation coefficient R.

Segment a b R2

1 1.384672e-4 -1.070575 0.998
2 8.017815e-5 -0.520059 0.992
3 4.389279e-4 -4.019874 0.999
4 2.166881e-4 -1.432799 0.956

10600. Once again a linear segment is plotted for the data points for Re = 10700 to 11400. Re = 11500 and 11600 show
a particular behavior in the higher Re range since A2

e values fall abruptly and then the amplitude again rises sharply at
Re = 11700 defining the fourth bifurcation. A new range up to 12000 is presented in the fourth box of Fig. 6, however
the correlation coefficient is low, implying that A2

e does not vary linearly with Re.
A similar curve was drawn using the highest amplitude of spectrum (obtained by the FFT of the time series) for each

Reynolds number [38]. Also, the simulations have been performed here over a significantly longer time interval, till we
obtained the stable final limit cycle. It has been noted [23, 38] that the presence of such discontinuities is indicative
of multiple Hopf bifurcations in (A2

e, Re)-diagram, as in Fig. 6. The fact that the flow behaves qualitatively different
in different range of Re is indicative of discrete change in A2

e with respect to Re, as indicated in Fig. 6. Along with
such changes in the physical plane, one would expect to notice qualitative changes of the spectrum of the time series
already shown in Fig. 3. These are now shown in Fig. 7, testifying the qualitative changes in the flow field following
the appearance of a new bifurcation. From Fig. 6 and Tab. 1, one can infer the presence of four such Hopf bifurcations.
In order to provide a better understanding of the phenomena at work here, the next sub-section will focus on spectral
analysis of the vorticity time series at point (0.95, 0.95).

5.2. Frequency Spectrum Analysis

In Fig. 7, we show few Fourier transforms of the time series shown in Fig. 3. Fourier analysis is applied over the
last 100 cycles, i.e., after the stable limit cycle is reached. In order to provide accurate plots, the average on that time
span has been removed from each time series. It is clear that for Re = 8800, the dynamics is governed mostly by three
harmonics, with subsequent ones being more than a decade lower than the lowest of these top three frequencies, as noted
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Table 2: Frequencies of the six leading harmonics (only shown if amplitude (given in parenthesis) is larger than 10−4). Asterisk (*) for the
Re = 9400 and Re = 10500 indicates the presence of doublet peaks accompanying the main spike. Shaded lines indicate that many peaks are
found in the Fourier analysis, only the first six in amplitude are given.

Re F1 F2 F3 F4 F5 F6

8670 0.437 (8.61e-2) 0.874 (1.44e-2) 1.312 (1.46e-3) 1.749 (3.83e-5) 2.186(4.14e-6) 2.623 (1.20e-6)
8680 0.437 (8.66e-2) 0.874 (1.46e-2) 1.311 (1.49e-3) 1.748 (3.90e-5) 2.186 (4.02e-6) 2.623 (1.16e-6)
8690 0.437 (8.71e-2) 0.874 (1.48e-2) 1.311 (1.51e-3) 1.748 (3.97e-5) 2.185 (3.86e-6) 2.622 (1.18e-6)
8700 0.437 (8.76e-2) 0.874 (1.49e-2) 1.311 (1.54e-3) 1.749 (3.86e-5) 2.186 (4.50e-6) 2.627 (1.56e-6)
8800 0.437 (9.23e-2) 0.873 (1.66e-2) 1.310 (1.78e-3) 1.746 (4.50e-5) 2.183 (6.00e-6) 2.620 (1.74e-6)
8900 0.436 (9.64e-2) 0.871 (1.81e-2) 1.307 (2.00e-3) 1.742 (5.13e-5) 2.178 (6.00e-6) 2.614 (2.33e-6)
9000 0.435 (1.00e-1) 0.870 (1.95e-2) 1.305 (2.22e-3) 1.740 (5.66e-5) 2.174 (8.26e-6) 2.609 (3.00e-6)
9100 0.435 (1.04e-1) 0.871 (2.10e-2) 1.306 (2.47e-3) 1.739 (6.29e-5) 2.173 (9.89e-6) 2.608 (4.88e-6)
9200 0.434 (1.07e-1) 0.867 (2.22e-2) 1.301 (2.65e-3) 1.740 (6.89e-5) 2.168 (1.29e-5) 2.602 (5.51e-6)
9300 0.433 (1.10e-1) 0.866 (2.35e-2) 1.299 (2.86e-3) 1.733 (7.55e-5) 2.166 (1.62e-5) 2.599 (7.39e-6)
9350 0.433 (1.12e-1) 0.866 (2.41e-2) 1.299 (2.95e-3) 1.731 (7.94e-5) 2.164 (1.85e-5) 2.597 (7.91e-6)
9395 0.085 (1.12e-3) 0.523* (9.30e-2) 1.046* (9.74e-3) 1.569* (1.61e-3) 2.092* (1.29e-4) 2.615 (1.11e-5)
9400 0.085 (8.91e-5) 0.523* (9.45e-2) 1.046* (1.01e-2) 1.569* (1.70e-3) 2.091* (1.40e-4) 2.614 (1.42e-5)
9405 0.086 (1.08e-4) 0.523* (9.48e-2) 1.046* (1.02e-2) 1.568* (1.72e-3) 2.091* (1.41e-4) 2.614 (1.50e-5)
9450 0.432 (1.14e-1) 0.865 (2.53e-2) 1.297 (3.16e-3) 1.730 (8.63e-5) 2.162 (2.16e-5) 2.594 (8.93e-6)
9500 0.432 (1.15e-1) 0.864 (2.58e-2) 1.296 (3.22e-3) 1.728 (9.30e-5) 2.160 (2.41e-5) 2.591 (1.05e-5)
9600 0.431 (1.18e-1) 0.862 (2.68e-2) 1.294 (3.38e-3) 1.725 (1.05e-4) 2.156 (2.86e-5) 2.587 (1.25e-5)
9700 0.431 (1.20e-1) 0.861 (2.78e-2) 1.292 (3.53e-3) 1.722 (1.20e-4) 2.153 (3.31e-5) 2.583 (1.43e-5)
9800 0.430 (1.23e-1) 0.860 (2.87e-2) 1.290 (3.67e-3) 1.720 (1.35e-4) 2.150 (3.81e-5) 2.580 (1.65e-5)
9900 0.429 (1.25e-1) 0.858 (2.94e-2) 1.287 (3.78e-3) 1.716 (1.61e-4) 2.145 (4.32e-5) 2.574 (1.75e-5)
10000 0.429 (1.27e-1) 0.857 (3.02e-2) 1.286 (3.89e-3) 1.714 (1.75e-4) 2.143 (4.88e-5) 2.572 (2.07e-5)
10100 0.428 (1.29e-1) 0.856 (3.09e-2) 1.284 (3.98e-3) 1.712 (1.99e-4) 2.140 (5.52e-5) 2.568 (2.32e-5)
10200 0.427 (1.31e-1) 0.855 (3.16e-2) 1.282 (4.05e-3) 1.709 (2.27e-4) 2.136 (6.25e-5) 2.564 (2.55e-5)
10300 0.427 (1.33e-1) 0.853 (3.22e-2) 1.280 (4.11e-3) 1.706 (2.57e-4) 2.133 (7.02e-5) 2.560 (2.83e-5)
10400 0.426 (1.34e-1) 0.852 (3.27e-2) 1.278 (4.15e-3) 1.704 (2.89e-4) 2.130 (7.81e-5) 2.556 (3.12e-5)
10500 0.167 (6.79e-5) 0.597* (1.37e-1) 1.191* (6.50e-3) 1.786* (3.02e-3) 2.384* (2.48e-4) 2.980 (2.17e-6)
10600 0.425 (1.38e-1) 0.849 (3.36e-2) 1.274 (4.21e-3) 1.698 (3.60e-4) 2.123 (9.56e-5) 2.547 (3.68e-5)
10700 0.159 (1.29e-2) 0.265 (2.71e-2) 0.424 (1.27e-1) 0.530 (1.04e-2) 0.689 (7.09e-2) 0.849 (2.74e-2)
10800 0.160 (1.14e-2) 0.264 (2.86e-2) 0.424 (1.24e-1) 0.528 (1.08e-2) 0.688 (8.20e-2) 0.848 (2.55e-2)
10900 0.160 (1.13e-2) 0.264 (3.09e-2) 0.424 (1.17e-1) 0.528 (1.39e-2) 0.688 (9.36e-2) 0.848 (2.05e-2)
11000 0.160 (1.08e-2) 0.264 (3.19e-2) 0.423 (1.18e-1) 0.527 (1.45e-2) 0.687 (1.01e-1) 0.846 (2.20e-2)
11100 0.264 (3.43e-2) 0.423 (1.12e-1) 0.527 (1.61e-2) 0.687 (1.11e-1) 0.846 (1.81e-2) 0.950 (1.17e-2)
11200 0.263 (3.48e-2) 0.422 (1.12e-1) 0.526 (1.78e-2) 0.686 (1.17e-1) 0.845 (1.79e-2) 0.949 (1.24e-2)
11300 0.263 (3.39e-2) 0.422 (1.05e-1) 0.526 (2.02e-2) 0.685 (1.29e-1) 0.844 (1.50e-2) 0.947 (1.35e-2)
11400 0.262 (3.44e-2) 0.421 (1.07e-1) 0.525 (2.18e-2) 0.684 (1.32e-1) 0.842 (1.54e-2) 0.946 (1.36e-2)
11500 0.587 (1.94e-1) 1.175 (7.91e-3) 1.762 (4.26e-3) 2.349 (6.39e-4) 2.937 (1.17e-5)
11600 0.586 (1.98e-1) 1.173 (8.32e-3) 1.759 (4.47e-3) 2.346 (6.89e-4) 2.932 (1.40e-5)
11700 0.261 (3.39e-2) 0.420 (9.64e-2) 0.523 (2.33e-2) 0.681 (1.54e-1) 0.942 (1.65e-2) 1.362 (1.29e-2)
11800 0.261 (3.29e-2) 0.419 (9.23e-2) 0.522 (2.20e-2) 0.680 (1.61e-1) 0.941 (1.71e-2) 1.360 (1.43e-2)
11900 0.261 (3.15e-2) 0.420 (8.70e-2) 0.521 (1.80e-2) 0.679 (1.68e-1) 0.939 (1.70e-2) 1.358 (1.54e-2)
12000 0.260 (3.03e-2) 0.418 (7.96e-2) 0.521 (1.79e-2) 0.678 (1.76e-1) 0.939 (1.84e-2) 1.357 (1.76e-2)

in Fig. 7. Other higher Re cases display similar spectra for Re = 8800 to 9300 (not shown here). The displayed harmonics
for different Re in this range, also show the primary modal frequencies to remain constant up to Re = 9300, as shown
in Tab. 2 (the features of which is discussed in details later). In the range of Re around 9400, the fundamental and
higher harmonics display variations of frequencies that is typically different with two lower peaks appearing on each side
of a central spike and there are more than three spikes, including one with very low frequency. Also the spectrum for
Re = 9400 in Fig. 7 shows rightward shift of all the major harmonics. As noted in Fig. 6, the flow behavior above
Re ≈ 9450 resembles flows noted for lower post-critical Reynolds numbers. This is clearly seen in Fig. 7 for Re = 9800
with six peaks in the spectrum. This is the state of flow behavior till Re = 10400, these frequencies revert back to the
lower constant value, that was noted for up to Re = 9300; with the number of peaks increasing, as shown in Fig. 7 for
Re = 9800. For the higher Re = 10700 shown in Fig. 7, one notices a large numbers of spectral peaks with more than one
dominant comparable peaks. This feature of two dominant modes are noted up to Re = 11400. We also remark that unlike
the spectra for lower Re cases, these higher Re cases have many peaks in the spectrum. The spectrum for Re = 11500 and
11600 (not shown here) again displays very clean spectrum with very few peaks, as was noted for Re = 8800 to 9300. For
Re = 11700 and higher (not shown here), once again the spectrum represent two dominant modes, with larger number of
peaks present. The only difference between this case and the one for Re = 11400 is that the peak amplitude is higher for
the higher frequency, as shown in Fig. 7.

5.3. Phase Portrait Analysis

For the 2D LDC flow, the governing NSE in primitive variables are given by two evolution equations for velocity
components (u, v), apart from the mass conservation equation. Thus, the phase portrait of this dynamical system should
ideally be given in the (u, v)-plane with time as the parameter. However in our approach we have solved NSE in the
(ψ, ω)-formulation thereby exactly satisfying the mass conservation equation. Also, this formulation avoids the pressure-
velocity coupling problem. Thus, we propose to depict the phase space portrait by plotting vorticity and its time rate
in Fig. 8 for the sampling point at (x = 0.95, y = 0.95). The time series depicting the history of vorticity evolution for
these cases have been already shown in Fig. 3. We have plotted the phase space portrait for the indicated time ranges,
where the time series indicates the existence of stable limit cycle-like behavior. This is confirmed by the phase space
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Figure 7: The frequency spectrum of the vorticity time series shown for all the simulated Reynolds numbers, for the solution obtained from
unsteady Navier-Stokes equation and the data are for x = 0.95 and y = 0.95.
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portrait for the relatively lower post-critical Re values. Except for Re = 9400 case, all the other three cases for Re = 8800,
10000 and 10300 show almost identical limit cycles. Excursion of ω about the mean value is almost similar and there is a
characteristic dip in the limit cycle in all the three cases, except for Re = 9400, for which the phase portrait almost shows
oblong oval shape. The width of the limit cycle is slightly wider for Re = 9400, due to the typical frequency spectrum
shown in Fig. 7 with dominant spikes accompanied by side-bands on either side. As the second dominant cluster in the
spectrum is one decade higher than the global maximum for this case, explains the near-oval shape of the phase space
portrait. In contrast, for the other three Re cases, the global maximum and the nearest higher peaks are not widely
separated and such multi-modal behavior, whose mutual interaction can reduce dω

dt for a particular combination of phase
(i.e., at a particular time) during each cycle.
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Figure 8: Phase portrait of the vorticity (ω, ω̇) at (0.95, 0.95) once the last 100 time interval for Re = 8800, 9400, 10000, 10300. Trajectories
are closed since stable limit cycle has been reached.

5.4. Multi-periodic State

Beyond the third Hopf bifurcation, i.e., beyond Re = 10600, the flow field changes qualitatively, as noted from the time
series in Fig. 3 and the frequency spectrum in Fig. 7 for Re = 10700. The time series is characterized by the significant
modulation noted for time greater than t ≈ 1000. The same characteristic is noted better in the spectrum, where one can
see many dominant frequencies of comparable magnitude. Presence of multiple time scales lead to vorticity contours, as
shown in top frames of Fig. 9 for Re = 11000 and Re = 12000 which shows the irregular six gyrating vortices and their
center is not aligned with the geometric center of the cavity. The irregularity of gyrating vortices is more pronounced at
the higher Reynolds number case. However, this aspect is seen very graphically from the phase space portrait shown in the
bottom frames of Fig. 9. The lower Re case show distinct limit cycles with larger basin of attractor and quasi-periodicity
of the flow field is evident. However, for Re = 12000 the phase space portrait is characterized by large continuous basin
of attractor with its appearance given by a Mobius strip.

6. Numerical sensitivity of the problem

The singular LDC problem is very sensitive to numerical setup. In this section we discuss two major issues affecting
the solution, namely start-up conditions and grid sensitivity of our numerical method.
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Figure 9: Two examples of unstable limit cycle for Re = 11000 (left) and Re = 12000 (right). Vorticity contour plot is shown in the first row
at t = 2000 and phase portrait in the second.

6.1. Influence of grid resolution

Computations have been performed on two different grids, i.e., (257×257) and (513×513), in order to assess effects of
grid on the simulation. Figure 10 displays time series for two different grids which clearly behave differently. On the one
hand, the coarse grid exhibit a secondary instability around t = 1200, that leads to the final limit cycle. Because of finer
wall resolution, calculated wall vorticity is higher for the finer grid calculation. Yet, the numerical excitation caused by
sources of error is lower for the finer grid. As a consequence, both the mean and fluctuation of disturbance vorticity is lower
for the finer grid, which causes upward shift of the mean vorticity line, i.e., reduction of mean vorticity of disturbance. No
secondary instability is seen for the finer grid and still a similar limit cycle is reached with marginal difference in amplitude
and frequency of the fluctuating component of vorticity. Moreover, final state is stable for Re ≤ 9400 when computations
are carried on the finer (513× 513) grid, i.e., Recr1 ∈ [9400, 9450]. It emphasizes that the flow is driven by the receptivity
aspect of the problem, with coarser grid (and less accurate numerical methods) having larger excitation due to implicit
error, shows early onset of first Hopf bifurcation. This will be further discussed in the subsection 6.3.

6.2. Effect of start-up conditions

The top sub-figure of Fig. 11 depicts the time series stored for (0.95, 0.95) on (257× 257) grid for Re = 8670 with two
different initial conditions. The dashed line corresponds to the usual impulsive start whereas the solid line corresponds to
the solution obtained by ramping up from Re = 8660 equilibrium solution. We note that the projected solution starting
from lower Re remains quiescent (negligibly small variations), while the solution started impulsively shows non-zero values
at the sampling point.
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Figure 10: Vorticity time series are shown for Re = 9500 for two different grid spacing 257 × 257 and 513 × 513.
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Figure 11: The figure in top shows Re = 8670 (257 × 257 grid) being initialized by impulsive start-up (dashed) and ramp up from the limit
cycle solution of Re = 8660 at t=2000. The bottom figure shows result with the fine grid of (513 × 513) size for Re = 9425 computed from the
limit cycle solutions of Re = 9400 (solid) and Re = 9450 (dashed).

The bottom sub-figure of Fig. 11 is for (513 × 513)-grid in the vicinity of the bifurcation obtained for this grid near
Re = 9400. Two different start-up cases are presented : (a) when the solution is obtained for Re = 9425 starting from an
equilibrium solution obtained for Re = 9450 and (b) when the initial solution is projected from the case of Re = 9400.
For the latter case, the vorticity field does not show any disturbance, while the former case shows significant disturbance
vorticity. This justifies, a posteriori, the use of impulsive start-up which is known to excite all modes of oscillation
simultaneously by equal magnitude.

6.3. Computational bifurcation analysis: Is there a universal critical Reynolds number for primary bifurcation?

In introduction, we have noted that different researchers have reported different critical Recr1, ranging from 7763±2%
to 10,500, with a marked clustering around Recr1 in the vicinity of 8000. For example, Recr1 = 8018 in [3] and 8031.93
in [32]. Cazemier et al. [11] reported Recr1 at 7972, while Bruneau and Saad [8] suggested this to be in the range of
8000 ≤ Recr1 ≤ 8050. Sengupta et al. [38] have described multiple Hopf bifurcations, showing the first one at 7933 and
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the second at 8187, using uniform (257 × 257) grid, with bifurcation diagram drawn using the amplitude of the primary
mode only. In [28], this value is reported at 7987 ± 2%. In light of these scattered values, we furthermore investigated
why the present simulation using NCCD scheme using the uniform (257× 257) grids produces Recr1 in the narrow range
of 8660 and 8670, when no explicit excitation is applied.

One of the attributes of the used NCCD scheme is its near-spectral accuracy and it has been reasoned in [26, 27], the
trigger for the unsteadiness is the aliasing error originating near the top right corner of the LDC, while the truncation,
round-off and dispersion error is extremely negligible [44, 45]. To circumvent the issue of lower numerical excitation
in the present work (which is based on the method in [26, 27, 38]), we position a pulsating vortex ωs at a location
r0 = (0.015625, 0.984375) whose spread is defined by the exponent α,

ωs = A0(1 + cos(π(r − r0)/0.0221)) sin(2πf0t) for (r − r0) ≤ 0.0221

where in the presented results here we have taken f0 = 0.41 for different amplitude cases. For Re = 8660 and below, we
start with A0 = 1.0. Once the excitation is started, one notices the vorticity to grow and saturate to a limit cycle. Once
the limit cycle is set up, the excitation source is switched off and yet the limit cycle continues. The saturated limit cycle
amplitude for decreasing Reynolds numbers are shown in Fig. 12 along with the unexcited cases (shown by hollow triangle
facing towards left, up to Re = 8670) for the sampling point at x = 0.95, y = 0.95. The excited cases with A0 = 1.0 and
f0 = 0.41 are shown with filled triangles facing towards right, up to Re = 8030. Below this Reynolds number value, the
vortex source strength has to be increased to obtain self-sustained limit cycle, as shown by the upright hollow triangle for
Re = 8025 and A0 = 10.0.

Figure 12: The extended bifurcation diagram obtained using the pulsating vortex source near the top left of the LDC. It is noted that as
Reynolds number decreases, the imposed pulsating vortex strength is to be increased. For Re = 8020, no excitation with higher amplitude
produces stable final limit cycle.

Below this Reynolds number, increasing strength of pulsating vortex does not produce stable limit cycle. We note that
the imposed vortical perturbation in the limiting amplitude case of A0 = 10.0, constitute a perturbation level of around
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20 percent of the maximum vorticity in the domain. Thus, this computational exercise indicate that the first critical
Reynolds number (Recr1) lies between 8020 and 8025 and similar range of the value noted by many researchers as noted
in the previous paragraph. The present DNS does not require linearization or making assumptions pertaining to growth
in time or space.

The fact that the flow in LDC cannot be made unsteady for Re = 8000 is demonstrated in Fig.13. In the top frame,
the vorticity time series are shown at the sampling point (x = 0.9922, y = 0.9922) for the indicated Re values, which is
decreased by a step of 100, starting with Re = 8400 up to 8100, for A0 = 1.0, f0 = 0.41. For this amplitude of excitation,
one notices a modulated time series, due to mutual interference of the natural frequencies with the imposed time scale.
However, when the excitation is switched off at t = ts, a pure and stable limit cycle is obtained in Fig.13(a), up to
Re = 8100. For the case of Re = 8000, the withdrawal of excitation causes the vorticity time series to decay. In frames
(b) to (d), the results for the cases are shown for which the pulsating vortex amplitude is increased to A0 = 1, 2 and 10
for Re = 8000, with the frequency kept the same at f0 = 0.41. When the amplitude of excitation is doubled to 2.0, the
modulated time series is noted, and thereafter the exciter is switched off at ts. One notices that beyond ts, with exciter
switched off, the flow inside the LDC approaches a steady state. For the case of A0 = 10.0, when the exciter is turned on,
instead of the modulated time series, one notices a wide-band response of the vorticity field without any perceptible limit
cycle. Even with such large excitation amplitude for such a Re, when the excitation is switched off at ts, one notices the
vorticity field to be quiescent again in a short time. Thus, this value of Re = 8000 shows that the flow is stable, even for
a large perturbation, which is of the order of 20% of the maximum vorticity in the domain.

Finally in Fig.14 we show results for Re = 8500, for different amplitude of pulsating excitation source. For this Reynolds
number we note the causation of stable limit cycle for A0 = 0.06, while it goes back to steady state for A0 = 0.04. It is also
equally important to note that for all the amplitudes of excitation, the final limit cycle has always the same amplitude.
This indicates that the present analysis produces results which are invariant of the way one excites the flow. It also shows
that this flow shows the receptivity of the flow field, as has been highlighted earlier for external vortex dominated flow in
[35].

7. Summary and Conclusion

Flow inside a LDC is shown to display multi-modal behavior following first Hopf bifurcation with varying Re, depending
upon the discretization schemes. DNS following impulsive start, is used to show initial temporal growth followed by
nonlinear saturation of disturbance. Researchers have reported different value of Recr1 using direct simulation of Navier-
Stokes equation. This approach differs from bifurcation studies using global instability study of an equilibrium flow due to
adopted nonlinear approach and not restricting the analysis to temporal instability only. Here, flow in LDC is investigated
using high accuracy NCCD scheme for DNS using stream function-vorticity, (ψ, ω)-formulation for the range of Reynolds
numbers, 8000 ≤ Re ≤ 12000.

The accuracy aspect of DNS adopted here has been shown conclusively via (a) demonstration of a very weak transient
polygonal core vortex surrounded by relatively stronger gyrating vortices, which appear as a constellation, as shown earlier
in [26, 27]. This requires extreme accuracy of resolving convection and diffusion terms, otherwise the created aliasing error
affects the numerical stability of the method and also maintaining the complex equilibrium in creating the constellation
and (b) the value of the first critical Reynolds number, Recr1 depends strongly upon the error dynamics of the adopted
discretization scheme for a model equation [36]. One of the major achievements of the present work is to show that Recr1
can be further reduced by explicit excitation for very high accuracy numerical schemes. Thus, we distinguish between
excited and unexcited LDC flow here. This difference is described in details in section 6.3, where it is established that the
delay of onset for Recr1 is an attribute of accuracy of the present method, and not due to excessive numerical diffusion of
the methods, as in [6, 8, 14, 17].

The vorticity evolves here for the unexcited cases, as in Fig. 5, where one sees the presence of transient triangular
vortex at the core is unsteady for Re > Recr1. Dynamics is further studied by time series analysis of vorticity at the point
(0.95, 0.95), chosen based on information in Fig. 1. Overall, the dynamics is characterized in Fig. 2, by an onset showing
irregular transient behavior (in Range-1a), followed by coherent temporal decay of the time series in Range-1b. Range-2
represents quiescent state. In this figure, Range-3a is defined as the region where the flow experiences an instability, which
in the literature is often analyzed by linearized temporal theory. Secondary instability marked as Range-3b in the time
series for Re = 9300 has an onset from Re = 9100 onwards. Such secondary instability of limit cycle can also be regarded
as nonlinear instability and is reported for the flow inside LDC. In Fig. 2, Range-4 demarcates the stable limit cycle for
Re = 8800 case. It is noted that the time at which the final limit cycle is reached varies greatly with Re.

Present DNS-based approach to study Hopf bifurcations is distinct from that in the literature, where normal mode
instability analysis is attempted for steady state solutions. Here, we show multiple Hopf bifurcations in the range 8000 ≤
Re ≤ 12000, for the unexcited impulsively started cases. Also, we do not project solution from one Re to another, as this
is shown to produce erroneous flows, as shown in subsection 6.2 (Fig. 11) especially near Hopf bifurcations. In [3], the
authors have reported a possible second bifurcation for a supposed range of [9687, 9765).
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Figure 13: The vorticity time series at the indicated sampling station at x = 0.9922, y = 0.9922, for the indicated Reynolds numbers, for which
stable limit cycle is obtained by the pulsating vortex source near the top left of the LDC.

The limit cycle amplitude variation with respect to Re has been used to characterize Hopf bifurcations. In Fig. 6, it is
shown that A2

e is proportional to Re on different segments of Re for the unexcited cases, which are clearly separated from
one to the next bifurcation. For the (257×257)-grid, the Hopf bifurcations for unexcited case are located at Recr1 = 8660
followed by Recr2 = 9400, Recr3 ∈ [10500, 10700] and Recr4 = 11700.

Here Recr1 ≈ 8660 is noted for the case of no excitation, and such a high value is due to higher accuracy of the method
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Figure 14: The vorticity time series at the sampling station for Re = 8500 shown for cases with varying amplitude of excitation, to find the
limiting amplitude for which stable limit cycle is obtained by the pulsating vortex source near the top left of the LDC.

discussed in section 6.1, with low aliasing error responsible in triggering unsteadiness. This value has been lowered by
the application of explicit excitation, in the form of a pulsating vortex placed near the top left corner. Following this
procedure, it has been shown that Recr1 can be lowered to as small a value in between 8020 and 8025, shown in Fig. 12
and described in section 6.3.

Investigated LDC flow is characterized by multiple time scales at any Re, which are weak function of Re in selective
intervals, punctuated by multiple bifurcations, as shown in Table 2. Further investigation of bifurcations are made with
FFT of time series results shown in Fig. 7. The lower post-critical Re cases show distinct harmonics, while the case for
Re = 9400 has unique pattern of triplet of harmonics, as also noted in Table 2. The very high Re cases are characterized
by broadband spectrum, with many peaks and having two incommensurate dominant frequencies as noted in the bottom
frame of Fig. 7. Phase portraits are plotted over a time interval of 100 units, further showing vorticity and its time rate,
which show trajectories for very stable limit cycles for low Re cases with very narrow basin of attractors, which are unlike
the last two segments, where trajectories belong to larger dispersed bands with wider basin of attractors. This irregularity
is observed in vorticity contours for higher Re, where one notices the basin as a continuous sheet resembling a Möbius
strip.

In conclusion, we explain the universality of the primary Hopf bifurcation Reynolds number, Recr1, by showing the
effects of pulsating a vortex at a fixed frequency near the top left corner of the LDC. Presented results in Figs. 12 to 14
show the universal value of Recr1 to be within the range of 8020 and 8025. The present investigation achieves two primary
goals: First, it reconciles that Recr1 obtained by different numerical approaches can be shown in identical range, provided
the equilibrium flow obtained is of good quality, untainted by excessive diffusion. The present high accuracy computation,
on the other hand, require explicit excitation to obtain Recr1 towards the universal value of the same. This is shown here
for the first time reconciling high accuracy approach for DNS with results based on global stability analysis.
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Abstract. Flow inside a lid-driven cavity (LDC) is studied here to elucidate bifurcation
sequences of the flow at super-critical Reynolds numbers (Recr1) with the help of ana-
lyzing the time series at most energetic points in the flow domain. The implication of
Recr1 in the context of direct simulation of Navier-Stokes equation is presented here for
LDC, with or without explicit excitation inside the LDC. This is aided further by per-
forming detailed enstrophy-based proper orthogonal decomposition (POD) of the flow
field. The flow has been computed by an accurate numerical method for two different
uniform grids. POD of results of these two grids help us understand the receptivity
aspects of the flow field, which give rise to the computed bifurcation sequences by un-
derstanding the similarity and differences of these two sets of computations. We show
that POD modes help one understand the primary and secondary instabilities noted
during the bifurcation sequences.

Key Words: Lid driven cavity, POD, POD modes analysis, DNS, multiple Hopf bifurcation, polyg-
onal core vortex

AMS Subject Classifications: 65M12, 65M15, 65M6,76D05, 76F20, 76F65

1 Introduction

The 2D flow in a square LDC (of side L) is a canonical problem to study flow dynamics
numerically for incompressible Navier-Stokes equation due to its unambiguous bound-
ary conditions and very simple geometry. The flow is essentially shear-driven, with the
lid given a constant-speed translation (U), giving rise to corner singularities on the top
wall, as depicted in the top frame of Fig. 1. Such singularity gives rise to Gibbs’ phe-
nomenon [1, 5], which is milder for low order methods [16, 29]. Low order highly diffu-
sive methods [6,16] are incapable of computing unsteady flows at high Reynolds number
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(Re=UL/ν, where ν is the kinematic viscosity). In Ghia et al. [16], results for a wide range
of Re up to 10000 are presented as steady flow. However, numerical results obtained
by high accuracy combined compact difference scheme indicate creation of a transient
polygonal vortex at the core, with permanent gyrating satellite vortices around it [38,42],
for the same Re. It is well known that compact schemes for spatial discretization behave
properly as compared to other methods, and Gibbs’ phenomenon [35] is not experienced
for the singular LDC problem due to numerical smoothing of the derivatives near the
Nyquist limit [31, 39].

Steady solutions have been reported [14, 16] for Re far exceeding the values reported
in the literature for the first Hopf Bifurcation (Recr1). Unsteady flows have been obtained
as a solution of bifurcation problem [26, 43], by studying linear temporal instability of
the steady solution obtained numerically. Simulations of full time-dependent Navier-
Stokes equation [25, 38] reveal that the flow loses stability via Hopf bifurcation, as Re
increases. Critical Re and frequencies obtained from DNS and eigenvalue analysis do
not match. Such differences are also noted for different DNS results. However, DNS
approach is preferable, due to its superiority of spatio-temporal multi-modal analysis
over normal mode analysis of eigenvalue approach. In the latter, one postulates explicitly
that all points in the domain have identical variation with respect to time. This is strictly
incorrect, as one is dealing with space-time dependent growth of disturbances during the
onset of unsteadiness.

It is shown [25, 41, 42] that Recr1 depends upon accuracy of the method and how the
flow is established in DNS. Impulsive start of the flow triggers all frequencies at the onset
and hence preferred [38, 42]. Obtaining final limit cycle at one Re from the limit cycle
solution from another Re [25] is inappropriate [22]. First Hopf bifurcation obtained by
DNS is dependent upon source of numerical error, mainly on the aliasing error for flow
inside LDC [42]. This also depends upon the discretization, which in turn determines the
creation of wall vorticity. A finer grid will create larger wall vorticity, but will have lesser
truncation error. For the same numerical method, using same time step, a finer grid will
have lesser aliasing and truncation errors, and hence numerical Recr1 will be higher for
finer grid. However, this can also be studied with the help of explicit excitation to show
the near universality of Recr1.

Linear instability of equilibrium flow and DNS have been used to evaluate the onset
of unsteadiness, i.e., obtaining Recr1 for LDC. These methods yield values of Recr1 differ-
ently. For example, Recr1 = 8018 in Ref. [2] and 8031.93 in Ref. [28] have been reported.
Cazemier et al. [8] reported Recr1 at 7972 using a finite volume method. In Bruneau and
Saad [6], the critical Re is suggested to be in the range of 8000 ≤ Recr1 ≤ 8050, obtained
using a third order upwind finite difference scheme. The authors do not provide any
bifurcation diagram to substantiate this observation. Sengupta et al. [41] have described
multiple Hopf bifurcations, showing the first one at 7933 and the second at 8187, using
uniform (257×257) grid, with these values obtained from the FFT of vorticity time series.
Osada and Iwatsu [25] have identified this value at 7987 ± 2%, obtained using compact
scheme on non-uniform (128×128) and (257×257) grids. However, the authors do not
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produce any evidence for grid independent data. Shen [44] reported Recr1 in the range
of 10000 to 10500 obtained using partial regularization of top-lid boundary conditions.
Poliashenko and Aidun [26] on the other hand reported a value of Recr1 = 7763±2% us-
ing a commercial FEM package. Using the present method [41] with a (257×257) grid, a
value of Recr1 ≈ 8665 has been reported by Lestandi et al. [22], for the case of no explicit
excitation applied. A major difference is that computations for all the cases presented
here have been performed following an impulsive start.

The point located at (x = 0.95,y = 0.95) is used here for sampling the data, which
is very close to the singularity at the top right corner, and will log larger value of dis-
turbances [22, 41, 42]. A recent study [22] highlights aspects of computing flow inside
LDC based on study of time series at this point. Although, it is a valid way of study-
ing the flow dynamics in LDC, it is desirable to use a global flow analysis tool like POD,
which provides spatio-temporal information for the full domain. POD was introduced by
Kosambi [21] to project a stochastic field on to a finite set of deterministic basis functions
in the most optimum way possible. POD is also known as Karhenen-Loève decompo-
sition, principal component analysis, etc. This method requires solving an optimization
problem of variational calculus, whose discrete version is a linear algebraic eigenvalue
problem that decomposes a stochastic field into a set of eigenfunctions. Once the eigen-
values and eigenfunctions are obtained, one can obtain the time dependent amplitude
functions, which apportion disturbance field into different eigenmodes.

There are many versions of POD reported in the literature. The eigenvalues may be
obtained through a variety of methods including direct [9] and iterative solvers such as
a Lanczos procedure [34], with or without re-orthogonalization, as given by Cullum and
Willoughby [10]. One of the advantage is that this method can be used locally, in a small
zone of investigation, with the number of eigenvalues depending on the total number of
points in that small part of zone investigated.

However, even such a local analysis can be very resource-intensive. Thus, one uses
instead the alternative method of snapshots proposed by Sirovich [45]. In this case, the
number of eigenvalues depends upon number of snapshots used for the investigation.
The popularity of this method rests with the use of limited number of snapshots, thereby
making the method very efficient. Like the classical method, the problem of optimiza-
tion in projection used for method of snapshots also involves obtaining two-point cor-
relation functions. POD with method of snapshots have been used in fluid mechanics
originally with the idea of applying it to turbulent flows [19], with the number of modes
decided upon capturing a very high percentage of kinetic energy. This has been fol-
lowed in many early attempts [8, 11, 23, 24] to build POD based reduced order models
(ROMs), where primitive variable formulations have been used to convert the governing
PDEs into a set of coupled ODEs for the amplitude functions. In doing so, the pressure
gradient terms are usually omitted. This is avoided in an alternative approach, where
stream function -vorticity formulation is used for the governing 2D Navier-Stokes equa-
tion and the projection onto a deterministic basis is sought in capturing maximum en-
strophy [33, 34, 36, 37, 40]. This does not entail omission of pressure information, as vor-
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ticity transport equation is not directly coupled to pressure. Also, in this approach of
using DNS, one directly obtains the amplitude functions up to the desired numbers with
enhanced accuracy. This helped classifying POD modes based on the properties of the
amplitude functions [40, 41], in terms of regular and anomalous modes. In Ref. [40], the
POD modes have been related with the instability modes for the first time, readying the
field of flow instability study by POD analysis. The regular POD modes occur in pairs for
the amplitude functions, separated by quarter cycle and the resultant instability modes
obey the Stuart-Landau equation [30]. The anomalous modes, on the other hand do not
obey Stuart-Landau equation. Also, Stuart-Landau equation is of use for fluid dynamic
system with a single dominant mode. Hence, an augmented eigenfunction approach due
to Eckhaus [13] has been used in instability studies of fluid dynamic system with multi-
ple modes. The resultant governing equations for instability modes have been termed as
Stuart-Landau-Eckhaus equations. This approach of obtaining POD eigenfunctions and
amplitude functions in describing nonlinear instability of fluid flow has been described
in Ref. [32] and is routinely used for incompressible flows [36, 37]. In Ref. [24], the au-
thors devised a new POD mode which was obtained through a Galerkin projection on
Reynolds-averaged Navier-Strokes (RANS) equation, and called it a shift mode.

Here, enstrophy is preferred over those in Refs. [19, 24, 27, 45], where kinetic energy
is used for POD analysis. In vortex dominated inhomogeneous flows, rotational energy
is a better descriptor of POD over translational kinetic energy, as highlighted in Refs.
[30, 33, 40]. Authors in Ref. [41], used enstrophy based POD approach to study both
external and internal flows to show universality of POD modes in terms of amplitude
functions.

The paper is formatted in the following manner. In the next section, we provide a very
brief recap of the governing equation and numerical methods used. In section 3, with
the help of computed Navier-Stokes Equation (NSE) solution, we characterize the flow
field by bifurcation analysis. POD as a tool has been used in section 4, to relate vorticity
dynamics in the LDC flow field about the sensitivity to grid resolution by solving NSE
using two grids in describing primary and secondary instabilities. We close the paper by
providing the conclusions arising out of this research.

2 Governing Equations and Numerical Methods

Direct simulation of the 2D time-dependent flow is carried out by solving NSE in stream
function-vorticity formulation given by,

∇2ψ=−ω (2.1)

∂ω

∂t
+(V⃗ ·∇)ω =

1
Re

∇2ω (2.2)
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where ω is the only non-zero, out-of-plane component of vorticity for the 2D problem
considered here. The velocity is related to the stream function as V⃗ = ∇×Ψ⃗, where
Ψ⃗ = [0,0,ψ]T. The governing equations are non-dimensionalized with L as the length
scale and the constant lid velocity, (U), as the velocity scale, so that the Reynolds number
is Re = UL

ν . Consequently, computational domain is the unit square, while the time evo-
lution is continued up to desired flow development. Present formulation is appropriate
for 2D incompressible flows due to its inherent satisfaction of solenoidality condition for
velocity and vorticity. This allows one to circumvent the pressure-velocity coupling prob-
lem, which is otherwise an important issue in primitive variable formulation. Identical
numerical methods have been used previously of the flow for Re=10000 in Refs. [38, 42]
and is not repeated here.

Equations (2.1) and (2.2) are solved using uniform grid of a Cartesian frame with the
origin at the bottom left corner of the LDC. A schematic of the computational domain is
shown in Fig. 1(a). The flow field is subjected to the following boundary conditions. On
all the four walls of LDC, ψ=constant is prescribed, which satisfies no-slip condition and
helps evaluating the wall vorticity as ωb = − ∂2ψ

∂n2 , with n as the wall-normal coordinate
chosen for the four segments of the LDC. This is calculated using Taylor series expansion
at the walls with appropriate velocity conditions on the boundary segments, as given for
the top wall by,

ψ(x,L−dy)=ψ(x,L)−dy
∂ψ

∂y
+

dy2

2
∂2ψ

∂y2 +O(dy3)

Since, U = ∂ψ
∂y at the top wall, the wall vorticity can be written in truncated series form as

ωb(x)=
2

dy2

[
ψ(x,L)−ψ(x,L−dy)−dy

]
(2.3)

In Eq. (2.3) on the right hand side, the last term is due to the top lid continuously
moving at the constant speed, U, which is taken equal to one in non-dimensional form.
One can similarly obtain the expression for the wall vorticity at other wall-segments,
where we use ∂ψ

∂n =0 identically.
To solve the discretized form of Eq. (2.1), Bi-CGSTAB method has been used here,

which is a fast and convergent elliptic PDE solver [47]. The convection and diffusion
terms of Eq. (2.2) are discretized using the NCCD method [38,42] to obtain both first and
second derivatives, simultaneously. For time advancing Eq. (2.2), four-stage, fourth-order
Runge-Kutta (RK4) method is used, that is tuned to preserve physical dispersion relation.
The NCCD scheme has been analyzed for resolution and effectiveness in discretizing dif-
fusion terms [38,42]. It is noted that the NCCD scheme is particularly efficient, providing
high resolution and effective diffusion discretization, as also has been shown with the
help of model convection-diffusion equation [46]. Additionally, it has built-in ability to
control aliasing error. The only drawback of NCCD scheme is that it can be used only
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with uniform structured grids. All computations are performed with non-dimensional
time-step of ∆t = 10−3. Additional details of the method for this problem is in Ref. [22],
which explained the reason for the location where time-series for vorticity is stored for
analysis. This is shown in Fig. 1(a) as P, with the coordinate (x=0.95,y=0.95).
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Fig. 1: (a) Schematic view of the LDC problem and (b) time series of the vorticity taken
at point P (0.95, 0.95) obtained using (257×257) grid points for Re=9800.

3 Flow dynamics in LDC: Bifurcation sequences

To understand how a steady flow inside the LDC becomes unsteady with increasing Re
above critical value, we record the time variation of the vorticity in the domain at point
P, as shown in Fig. 1(b). This is a typical time series, when we use the uniform grid with
(257×257) points, for Re=9800 with the flow unexcited.

The used combined compact difference (CCD) scheme has near-spectral accuracy
and it has been explained in [38, 42], the onset of unsteadiness is due to aliasing error
predominant near the top right corner of the LDC, while the truncation, round-off and
dispersion errors are extremely negligible. To avoid the issue of lower numerical exci-
tation in the present work [38, 41, 42], a pulsating vortex is placed having the form at
r0 =(0.015625,0.984375) whose spread is defined by α=0.0221 as given in the following,

ωs = A0(1+cos(π(r−r0)/0.0221))sin(2π f0t) for (r−r0)≤0.0221

where in the presented results here we have taken f0 =0.41 for different amplitude cases.
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Fig. 2: Variation of the equilibrium amplitude (Ae) with Reynolds number (Re) for the
two grids, with (257×257) and (513×513) points. Note the points (P1, P2) and (Q1, Q2)
have similar dynamics, as shown later. Additional points O and S represent the onset of
unsteadiness (Re=8670) and secondary instability (Re=9800) of the flow field computed
using (257×257) grid points.

From Fig. 1(b) one notices a primary instability as marked in the frame, following
subsidence of the initial transient. After this instability, one notices a regular time varia-
tion of vorticity (almost like a limit cycle, with slowly increasing amplitude). However,
after some time, one notices rapidly growing envelope amplitude, caused by a secondary
instability, following which one notes a final stable limit cycle, settling down to an equi-
librium peak to peak amplitude indicated as 2Ae.

Figure 2 shows the variation of the equilibrium amplitude Ae with Re, for simula-
tions performed using two grids, with (257×257) and (513×513) points. The triangles
correspond to the equilibrium amplitude obtained using (257×257) grid points, except
the highest amplitude case of A0 =10 for this grid with open circle, for the lowest super-
critical case. It shows the onset of unsteadiness for this grid to occur between Re =8660
and 8670 for the case of A0 = 0, with the point marked as ’O’ in the figure. The points
shown by filled rhombus and square are obtained using the (513×513)-grid points. For
the refined grid, onset of unsteadiness occurs for Re slightly lower than 9450, for the case
of A0 = 0. The (257×257) grid results also show a dip in Ae around Re = 9400, which
is identified as the second bifurcation point [22] for this grid. In this reference, differ-
ent bifurcation sequences are identified by plotting A2

e versus Re and the segments are
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identified by straight lines with different slope for the unexcited cases. This stems from
the literature which identifies bifurcation with disturbance amplitude evolution follow-
ing Stuart-Landau equation [30] to occur quadratically with respect to Reynolds number.
However, this equation is valid only if there is a single dominant mode for the distur-
bance field. It is understood that for circular cylinder, presence of many POD modes and
instability modes necessitates adoption of Stuart-Landau-Eckhaus (SLE) equation to ac-
count for multi-modal interactions [40], which show quadratic variation of disturbance
with Re merely as an assumption. In Fig. 2, for the coarser grid we have identified ’S’ as
the point (Re=9800) displaying secondary instability, as already shown in Fig. 1(b).

For the finer grid, we note that the primary Hopf-bifurcation between Re =8660 and
8670 is bypassed. For this grid, the second and third bifurcations occur for Re=9600 and
10000, respectively. Following the second bifurcation, we notice three data points with
the middle one identified as P1 in Fig.2, which show similar variation as for the (257×257)
grid over an extended range of Re. Later on, we compare a representative point at P2 with
P1. A similar qualitative variation between the two grids are noted which originate in a
sequence starting from Q1 and Q2, which are also compared later.

Few of the distinctive features of Fig. 2 are the following: (a) The used methods for
space-time discretization are so accurate that the onset of unsteadiness in the flow field
is delayed, with finer grid. Even for (257×257)-grid, the onset is delayed up to Re =
8670. This has been explained here by performing the computations for lower Re, with
an excitation applied at a single point by a pulsating vortex, with frequency of excitation
of 0.41, which is distinctly different from the natural Strouhal number on 0.43. More
details about the excitation is given in [22]. Following this process of excitation, one
notices from Fig. 2 that the critical Re for this case can be brought down to between 8020
and 8025. (b) For the finer grid of (513×513) points, the first critical Reynolds number
is noted between 9400 and 9425, for the case of no excitation. With excitation this can be
brought down to as low as Re = 8250 (as shown in the figure). (c) For Re above 10400
with the (257×257)-grid, one notices two branches of solution, as shown in the figure.
The lower branch (marked as U-branch) is essentially unstable and the upper branch is
the stable branch, named as the S-branch. Upon application of slightest perturbations,
the solution on the U-branch jumps to the S-branch.

4 Proper Orthogonal Decomposition

4.1 Method overview

Here, we use the enstrophy-based POD, which is preferred over those in Refs. [19,24,45],
where kinetic energy-based POD analysis have been performed. In vortex dominated
flows, which are neither homogeneous nor periodic, rotationality is more important and
enstrophy is a better descriptor of POD over translational kinetic energy, as has been used
in Refs. [32, 36, 37, 40, 41]. Authors in Ref. [41], used enstrophy based POD approach to
study both external and internal flows to show universality of POD modes in terms of
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amplitude functions. In Ref. [24], the authors devised a reduced order model (ROM) that
relied on POD mode and Galerkin projection of RANS solution. Thus, POD analysis is
noted to be useful in studying internal and external flows of different kinds.

POD technique introduced among others by Kosambi [21] for a random field vi(x⃗,t),
where it is projected onto a set of deterministic vectors φi(x⃗), so that ⟨|(vi,φi)|2⟩/||φi||L2 is
maximum. The outer angular brackets signify time-averaging and inner brackets signify
an inner product. The computation of φi(x⃗) can be posed as an optimization problem in
variational calculus,

∫

Ωx

Rij(x⃗, x⃗′) φj(x⃗′)dx⃗′ =λ φi(x⃗) (4.1)

The kernel of the above is the two-point correlation function, Rij = ⟨vi(x⃗,t)vj(x⃗′,t)⟩ of
the random field. It is noted [32] that classical Hilbert-Schmidt theory applies to flows with
finite energy, and, therefore, denumerable infinite orthogonal POD modes can be computed. Fur-
thermore, Hilbert-Schmidt theory is applicable for flow instabilities, as the disturbance
field derives its energy from the equilibrium flow. Disturbance vorticity field is thus,
represented in POD formalism as

ω′(x⃗,t)=
∞

∑
m=1

am(t) φm(x⃗) (4.2)

where am(t) represents the amplitude function, which describes the spatio-temporal vari-
ation of the modal amplitude and φm(x⃗) is the corresponding spatial eigenfunction. It
should be noted that the eigenfunctions are orthogonal [9], additionally they are taken
of unit norm for practical reasons. Thus, these form an orthonormal basis [3] on which
ω′ can be projected, as in Eq. (4.2). Then, one can compute the corresponding amplitude
functions am(t) easily through spatial inner product

∀m∈N∗,am(t)=(ω′,φm)L2(Ωx) =
∫

Ωx

ω′(x⃗,t)φm(x⃗)dx⃗,

which emphasize the spatio-temporal nature of the POD. Equation (4.1) is an eigenvalue
problem in the integral form, which becomes intractable even for moderate grid reso-
lution. To overcome this difficulty, Sirovich [45] introduced the method of snapshots,
which has an advantage of dealing with smaller data sets in multiple dimensions. In-
stead of solving Eq. (4.1), it is chosen to solve the equivalent problem on qm which yields
the same decomposition.

∫

Ωt

C(t,t′)qm(t′)dt′ =λmqm(t) (4.3)
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where Ωt is the time interval and the autocorrelation function is defined as

C(t,t′)=
1
T

∫

Ωx

ω′(x⃗,t)ω′(x⃗,t′)dx⃗.

Once Eq. (2.2) has been solved, we can recover the spatial POD modes (φm)m due to
the following projection

φm(x⃗)=
∫

Ωt

qm(t)ω′(x⃗,t)dt. (4.4)

Finally, (φm) are normalized and the norm is passed to am =
√

λmqm. This method pro-
duces the same basis that one would obtain through classical POD. The strength of the
snapshot POD lies in the small size of the snapshots of DNS data, where Nt the number of
snapshots (time frames) that is lot smaller than the number of grid points NX. Discretiza-
tion of the above operators is performed by trapezoidal integration rule for time (as well
as space) with weights at time point i noted mi = dt/T, half of that for i = 1 and i = Nt.
The discrete version of the POD decomposition reduces to a simple matrix eigenvalue
problem [C̄]{q}=λ{q}, where [C̄] is given by

C̄ij =
√

mimj

∫

Ωx

ω′(x⃗,ti)ω′(x⃗,tj)dx⃗. (4.5)

The eigenvalues λ and eigenvectors {q} of [C̄] are computed using LAPACK eigen-
value problem solver for symmetric matrices (DSYEV). It should be noted that the cal-
culations account for the differences between discrete L2 inner product and vector scalar
product. Consequently an extra step is required that reads qm = m−1{q} where m−1

i =
1/mi.

In this paper the maximum number of snapshots is Nt = 1000 while the number of
grid points is NX = 66049 or 263169 (according to grid size), thus only the method of
snapshots is used. Moreover, the spatial POD modes will be referred to as eigenfunctions
for historical reasons while (am) will be called amplitude function or time POD modes.

4.2 DNS Data Analysis: Limit Cycle

Here we use POD analysis to characterize flow fields obtained by the two grids. In Fig. 3,
the eigenfunctions obtained following the method of snapshots for the POD analysis is
shown for the points, P1 and P2, shown in Fig. 2 for Re =9700. We display only the first
twelve modes obtained for the two grids in Figs. 3(a) and 3(b). It is noted that despite the
differences in Fig. 2 for the equilibrium amplitude and the associated maximum vorticity
values in the domain, the first eight eigenfunctions have remarkable similarities, indicat-
ing the qualitative similarities of the associated flow fields obtained using two grids with
significantly different points. The eigenfunction plots of Fig. 3 also show a definitive pat-
tern, with the first and second modes are regular modes [41], defined for classification of
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POD modes. In this case, one notices three pairs of similar vortical structures with oppo-
site signs. In the same way, the third and fourth modes are composed of six such pairs;
fifth and sixth modes similarly have nine pairs of structures. This multiplicity of vortical
structures are extended to higher mode pairs also. However, their contributions are neg-
ligibly small in terms of enstrophy content, as the first eight modes in Fig. 3, account for
nearly all of the enstrophy contents for both the grids.

Such similarities are furthermore emphasized in Fig. 4, showing the cumulative en-
strophy for the pairing of points shown in Fig. 2. For example, in discussing the flow
dynamics for points P1 and P2, it has been mentioned that the flows would be similar.

Fig. 3(a): Eigenfunctions of POD modes for Re = 9700 with (257×257) grid. These are
for the two points (P1, P2) in Fig. 2. (φm)m isolines are plotted in the [−0.5,0.5] range
with 0.01 spacing. Solid lines are positive values, while dashed lines are negative value
contour. (Cont.)
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This is clearly brought out in the eigenfunction plots of Fig. 3 and the cumulative enstro-
phy shown in the top frames of Fig. 4. Similarities for the points Q1 and Q2 have been
suggested, while discussing the bifurcation diagram (Fig. 2) and the cumulative enstro-
phy plot for this case shown in the bottom frame of Fig. 4, strongly supports this. We also
note that keeping the Reynolds number same with the two grids alone, does not ensure
similarity of the flow, as noted from the cumulative enstrophy plot for Re =10000 in the
middle frame of Fig. 4.

The POD amplitude functions, their representative DFT plots are shown in Figs. 5(a)
and 5(b) for Re = 9700 case, obtained using the two grids. These are shown pairwise,
when the two constituents differ by a phase shift of quarter cycle. In Fig. 5(a), amplitude
functions are shown for P1 obtained using (513×513) grid. The FFT of these time series
is shown in the bottom frames for each pair. The top left frame indicates the fundamental

Fig. 3(b): same modes with (513×513) grid points.
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Fig. 4: Cumulative enstrophy plots for the two grids shown for the indicated Reynolds
number, for the enstrophy based POD.

frequency for the first and second modes ( f0 = 0.43), while the second, third and fourth
mode pairs are the super-harmonics of this fundamental frequency (at 2 f0,3 f0,4 f0). These
amplitude functions and the frequencies are identical for both grids, as can be seen for
the amplitude functions and their DFT shown for the point P2 obtained using (257×257)
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Fig. 5(a): Amplitude of POD modes and its DFT for Re=9700 obtained for the (513×513)
grid for the point P1 in Fig. 2.

grid. Once again the comparison between Figs. 5(a) and 5(b) supports the view that the
flow dynamics is similar for P1 and P2.

Next, we investigate the flow fields for the points Q1 (Re=10000) and Q2 (Re=10700)
of Fig. 2, in Figs. 6(a) and 6(b), respectively for the two grids with the help of POD eigen-
functions. Previously, we have noted that the flow fields for these points obtained by the
two grids will be similar, while discussing the bifurcation diagrams in Fig. 2. Now the
plotted eigenfunctions for the first twelve modes in Figs. 6(a) and 6(b) are also seen to be
similar. This, added with the cumulative enstrophy plots shown in the bottom frame of
Fig. 4, strongly support the view that the flow fields are indeed similar. This also shows
that the view provided by the bifurcation diagram is a better descriptor of similarity of
flow field in the diagram, whenever A2

e plotted against Re show identical slopes. The
eigenfunctions have also similarity with the eigenfunctions shown in Figs. 3(a) and 3(b)
for the first two pairs, with respect to qualitative features. The higher modes are dis-
tinctly different in Fig. 6, due to the flow fields belonging to different branches of the
diagrams, as compared to the cases shown in Figs. 3(a) and 3(b). Figures. 6(a) and 6(b)
belong to branches in which the instability is higher due to multiple dominant frequen-
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Fig. 5(b): Amplitude of POD modes and its DFT for Re=9700 obtained for the (257×257)
grid for the point P2 in Fig. 2.

cies interacting [22]. That causes the enstrophy to be distributed over larger number of
modes, i.e., one should be interested in the higher modes beyond the number eight, as
was the case for the lower Reynolds number. Even the symmetry for the eigenfunctions
noted for Re = 9700 is lost from fifth mode onwards since two or more physical modes
are interacting with the primary POD mode.

The features of eigenfunctions for Q1 and Q2 are also reflected in the amplitude func-
tions shown in Figs. 7(a) and 7(b). The first pair of amplitude functions displays identical
peak for these two grid results, which is different from the fundamental frequency ( f0)
noted in Figs. 5(a) and 5(b) for Re=9800 case. The second pair of amplitude functions in
Figs. 7(a) and 7(b) are not the super-harmonic of the fundamental seen for the first pair
of amplitude function. Thus, this segment of bifurcation diagram for Figs. 7(a) and 7(b),
is qualitatively different from the lower Reynolds number parts shown in Figs. 5(a) and
5(b). Between the two points Q1 and Q2, the third and fourth modes have some differ-
ences at the lower frequencies, otherwise other significant peaks are collocated. The fifth
and sixth amplitude functions of POD modes again have the same value of frequency
for the peak, as is noted for the first pair. All the other modes have qualitative similarity
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Fig. 6(a): Eigenfunctions of POD modes for Re=10000 obtained with (513×513) grid for
the point Q1 in Fig. 2.

between amplitude functions for points Q1 and Q2, and with the exception of eleventh
and twelfth modes, all the modes appear as wave-packets, which have been called as the
anomalous mode of second kind [30, 41].

4.3 DNS Data Analysis: Primary and Secondary Instabilities

So far, we have reported POD analysis of flow fields after the time series reaches stable
limit cycle for the sampling point (x =0.95,y =0.95). We have previously reported DNS-
based study of Hopf bifurcations using the (257×257) grid in Ref. [22], providing the nu-
merical details of the methodology. Here we have studied the dynamics of the unsteady
flow field using two different grids, with the intention of highlighting the mathematical
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Fig. 6(b): Eigenfunctions of POD modes for Re=10700 obtained with (257×257) grid for
the point Q2 in Fig. 2.

physics of this canonical problem with POD as the analysis tool. It is necessary also to
characterize the flow during primary and secondary instabilities.

For this purpose, in Fig. 8(a) we show the POD eigenfunctions obtained without ex-
citation during the primary instability stage for Re=8670 obtained using the (257×257)
grid, which is indicated as ’O’ in Fig. 2. The first Hopf bifurcation obtained for this grid
occurs between 8660 and 8670. Thus, this Re is a super-critical case that displays linear in-
stability during t=900 to 1100. The eigenfunctions show various polygonal core-vortex.
For example, the eighth, fourteenth and seventeenth modes display triangular vortex at
the core, as was shown for the flow field in Refs. [38, 42] for Re =10000. Present simula-
tion and its POD confirms the presence of triangular core vortex caused by the primary
instability. This has also been advocated as the proof of accuracy of numerical schemes in
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Fig. 7(a): Amplitude of POD modes and its DFT for Re=10000 obtained for the (513×513)
grid for the point Q1 in Fig. 2.

Ref. [22], in capturing the triangular vortex at the core, as has been experimentally shown
in Refs. [4, 7, 20].

For the eigenfunctions shown in Fig. 8(a) for Re=8670, the corresponding amplitude
functions are shown in Fig. 8(b). It is readily apparent that the first two modes form
the regular pair [41], while the third mode is the anomalous mode of first kind; with
fourth and fifth modes again form a regular pair, but modulated with higher frequency
components. The sixth and seventh modes appear as wave-packets and hence, would be
called the anomalous mode of second kind. The eighth and ninth modes are similar to
fourth and fifth pair, i.e., regular modes which are highly modulated. The tenth mode
is an anomalous mode of first kind, similar to the third mode. It has been explained
in Refs. [30, 40] that the anomalous mode of first kind, gives rise to equivalent stress
term, like the Reynolds stress and alters the mean flow. In this respect, the third and
the tenth modes have opposite effects on the mean flow, as is evident from the signs
of the amplitude at the terminal time. One can similarly classify the other modes into
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Fig. 7(b): Amplitude of POD modes and its DFT for Re=10700 obtained for the (257×257)
grid for the point Q2 in Fig. 2.

these categories described. However, the sixteenth and seventeenth modes appear as
combination of the two types of anomalous modes described. It is worth remembering
that the classification of POD modes like this is only feasible with DNS and not by RANS
[24]. Authors in this latter reference introduced the so-called shift mode, which possibly
happen, if we time average the anomalous mode of the first kind using URANS approach.
One of the features of the present approach is that one does not require performing time
averaged computations using closure models. Another feature of the anomalous mode of
first kind is the appearance of the eigenfunctions in Fig. 8(a), where one does not notice
orbital motion of the vortices around the core, which gives rise to the polygonal vortex
in the core. In describing the dynamics of LDC flow in real time plane in Ref. [22], it was
noted that for some cases, limit cycle behaviour is noted after the primary instability (as
characterized in Figs. 8(a) and 8(b)), but with slowly varying amplitude of the envelope.
Such variations continue till a secondary instability occurs, following which a stable limit
cycle is noted whose envelope does not change further with time. In the following, we
report results of POD analysis of one such secondary instability noted for Re = 9800,
point ’S’ in Fig. 2. The representative time series at (x = 0.95,y = 0.95) has been already
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Fig. 8(a): Eigenfunctions of POD modes for Re = 8670 obtained with (257×257) grid for
the point O in Fig. 2 during the linear instability stage.
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shown in the bottom frame of Fig. 1, marking the primary and secondary instabilities.
In Fig. 9(a) we show the eigenfunctions obtained by POD analysis performed on data
before the beginning of secondary instability during t=500 to 600. At this stage, most of
the enstrophy is contained in the first few modes and we show eight of these modes in
Fig. 9(a). One notices the onset of creation of the orbital vortices in the first six modes.
The seventh mode is without any structure and is similar to the eigenfunction for the
anomalous modes in Fig. 8(a). It is the eighth mode that shows the appearance of a large
triangular vortex in the core, with three pairs of orbital vortices surrounding the core.

In Fig. 9(b), we show the eigenfunctions for Re = 9800 after the occurrence of the
secondary instability during t = 1900 to 2000. The first pair of eigenfunctions display
three pairs of orbiting vortices, without any core vortex. This is typical of the behaviour
of POD modes noted in the final limit cycle cases shown for higher Re. For the third and
fourth modes, one notices six pairs of orbital vortices, without any core. The following
two eigenmodes show nine pairs of orbital vortices and that is followed by the seventh
and eighth modes, which show twelve pairs of orbital vortices.

The corresponding amplitudes and the DFT of various eigenmodes (as in Fig. 9), are
shown in Fig. 10. In frames (a), the plotted amplitudes correspond to eigenfunctions
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Fig. 8(b): Amplitude of POD modes and its FFT for Re=10700 obtained for the (257×257)
grid for the point Q2 in Fig. 2.
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shown in Fig. 9(a), in pairwise fashion. One can clearly note that the FFT is dominated by

Fig. 9: Eigenfunctions of POD modes for Re=9800 obtained with (257×257) grid during
(a) t=500 to 600 before and during (b) t=1900 to 2000 after the secondary instability.
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a single mode and amplitudes are time-shifted by quarter cycle. While there is a distinct
secondary mode, but its amplitude is orders of magnitude smaller. The third and fourth
modes’ amplitude shows the peak which has a value that is twice of that noted for the first
pair. However, this mode-pair also shows modulation in the time plane, which is due to
the secondary peak shown in the FFT, which is the fundamental for the first and second
modes’ amplitude. In the same way, the fifth and sixth modes have the peak at thrice
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Fig. 10: Amplitude of POD modes and its DFT for Re = 9800 using (257×257) grid (a)
before [t=500 to 600] and (b) after [t=1900 to 2000] the secondary instability, for the case
of Fig. 9.
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the value noted for the first pair. The seventh and eighth modes have no correlation, as
noted in Fig. 10(a).

In Fig. 10(b), we note the amplitude functions corresponding to the eigenfunctions
shown in Fig. 9(b), obtained during t=1900 and 2000, when one is in the final limit cycle
stage. It is interesting to note that the action of the secondary instability is to shift the
fundamental frequency for the first pair (( f0)be f ore = 0.60) to a lower value ( f0 = 0.43), as
noted in the FFT plots. The second and third pair of amplitude functions have peaks
at 2 f0 and 3 f0, respectively. The seventh and eighth modes are characterized by very
high frequency fluctuations, and modulated at moderate frequencies, as a consequence
one can categorize these as anomalous mode of second kind [41]. This phenomenon is
explained by similar amplitudes of the leading peak (4 f0), with the next peak in ampli-
tude (5 f0) that interact to create modulations. This pattern is visible for each final state,
however, it is weaker for the finer grid in Fig. 3.

5 Conclusions

In the present research, we have used POD to characterize LDC flow for a range of Re for
simulations performed using two grids (257×257) and (513×513) points. The numerical
method is well established for similar exercise in Refs. [38,42], where very high accuracy
combined compact scheme have been used. Although, the two grids produce different
bifurcation sequences (in Fig. 2), the reason for this is explained in exciting the flow,
as determined by the aliasing error (which reduces with grid refinement), while the wall
vorticity increases with the refined mesh. As a consequence, the relative scaled amplitude
of disturbance field is lower for the finer mesh, and that also explains why primary Hopf
bifurcation is delayed for the refined grid. Furthermore, we show that despite difference
in bifurcation sequences in the two grids, the qualitative similarity of flow fields are noted
for points in the bifurcation diagram.

We note that the flow is better characterized by the bifurcation diagram (Fig. 2), rather
than Re. The flow in the two grids will be similar when A2

e versus Re curves have identical
slope, even if the Re are different. This is shown first by comparing the POD modes of the
flow field for Re=9700 for the two grids, which is expected from similarity of Re and the
slope of the bifurcation diagram at P1 and P2. The POD eigenmodes are shown in Fig. 3
and corresponding FFT amplitude functions are shown in Fig. 5 for P1 and P2. This is also
supported by comparing two points Q1 and Q2 in Fig. 2, which correspond to Re=10000
using the (513×513) grid and Re =10700 for the (257×257) grid without excitation. The
POD eigenfunctions and amplitudes together with FFT are shown in Figs. 6 and 7. These
observations are strongly supported by the cumulative enstrophy plots in Fig. 4, for these
four points, P1, P2, Q1 and Q2.

We also characterize the primary temporal instability without excitation (indicated
by point O in Fig. 2) by POD analysis, showing eigenfunctions and amplitudes in Fig. 8,
which shows clearly multi-periodic dynamics of the flow, with a single dominant funda-
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mental frequency and its super-harmonics. Finally, we characterize the secondary insta-
bility indicated in Fig. 1 by showing POD eigenmodes and the corresponding amplitudes
in Figs. 9 and 10, during t = 500 to 600 and then during t = 1900 and 2000. These time
intervals correspond to before and after the secondary instability for Re=9800, which has
been identified in Fig. 1. We note that such secondary instability does not occur for all
Reynolds number cases, but when it does occur, the effect is to change the fundamental
frequency from a higher value (0.60) to a lower value (0.43). The eigenfunctions are also
completely different, before and after the secondary instability.

This work reports the study of the LDC flow by DNS and resultant Hopf bifurcation
patterns. The added understanding of this flow instability behaviour will allow us to
build reduced order models relying on POD and the bifurcation diagram presented in
Fig. 2. It will focus on ranges of parameters for different ROMs, as we have shown that
the nature of the flow changes drastically through Hopf bifurcation process.
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*Correspondence:

llestandi@u-bordeaux.fr
2University of Bordeaux, I2M

UMR 5295, Bordeaux, France

Full list of author information is

available at the end of the article
†Equal contributor

Abstract

A new reduced order model (ROM) is proposed here for reconstructing
super-critical flow past circular cylinder and lid driven cavity (LDC) using
time-scaling of vorticity data directly. The present approach is a significant
improvement over instability-mode (developed from POD modes) based approach
implemented in Sengupta et al. [91, 82-115, PRE (2015)], where governing
Stuart-Landau-Eckhaus equations are solved. In the present method, we propose
a novel ROM that uses relation between Strouhal number (St) and Reynolds
number (Re). We provide a step by step approach for this new ROM for any Re
and is a general procedure with vorticity data requiring very limited storage as
well as being extremely fast. We emphasize on the scientific aspects of developing
ROM by taking data from close proximity of the target Re to produce
DNS-quality reconstruction, while the applied aspect is also shown. All the donor
points need not be immediate neighbors and the reconstructed solution has
equivalent relaxed accuracy. However, one would restrain the range where the
flow behavior is coherent between donors. The reported work is a proof of
concept utilizing the external and internal flow examples, and this can be
extended for other flows characterized by appropriate Re-St data.

Keywords: sample; article; author

1 Introduction
High performance computing using DNS for complex flow problems provide insight

into physical mechanism at prohibitive cost of data storage, as voluminous data

are created to resolve small scales in both space and time. DNS of Navier-Stokes

equation (NSE) to understand flow generates huge amount of data. The major

challenges of big data are processing, storage, transfer and analysis etc. One of the

motivations here is to replace time/ memory-intensive DNS for the model problems

of flow past a circular cylinder and LDC. Similar attempts are recorded in [25, 29]

and other references contained therein. Memory requirements of such instability

mode-based ROM in [25] come down drastically, due to the requirement of storing

only fewer coefficients of the SLE equations and initial conditions. Henceforth this

reference will be called SHPG for brevity.

There are numerous efforts in developing ROM’s, e.g. via Koopman modes, as in

[5, 20]; dynamic mode decomposition in [21]; POD-based analysis of Reynolds-

averaged Navier-Stokes (RANS) in [15, 16, 32]. In [3], authors reported low-

dimensional model for 3D flow past a square cylinder using solutions of NSE ob-

tained by a pseudo-spectral approach. However, even using thousands of snapshots,

the reconstruction error was of the order of 30%, indicating an exponential diver-

gence between any model prediction and the actual solution outside the snapshot
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range. In [17], authors used fourth order finite difference scheme for spatial dis-

cretization of NSE in primitive variable formulation for time accurate simulation

for POD analysis of the flow field. The time discretization used second order accu-

rate, three-time level discretization method, which invokes a numerical extraneous

mode. It was noted that with only four POD modes, the model without pressure

term gives rise to important amplitude errors which cannot be compensated by an

increase in the number of modes. In energy-based POD approaches, researchers cal-

culate amplitude functions of POD representation by solving ODE’s derived from

NSE by simplifying nonlinear and pressure terms. Various techniques have been

used in the attempt to reduce the resulting error, such as discrete empirical in-

terpolation method (DEIM) in [1, 4]. Authors in [18] have also used an adaptive

approach to construct ROM with respect to changes in parameters, by first iden-

tifying the parameters for which the error is high. Thereafter a surrogate model

based on error-indicator was constructed to achieve a desired error tolerance in this

work.

The flow governed by unsteady NSE presents the physical dispersion relation

linking each length scale (wavenumber) with corresponding time scale (circular fre-

quency). Thus, the ranges of time and length scales are important, even though

a single St and Re are often used to describe the flow field. Multitude of length

and time scales also are inherently noted in [13] via POD modes and multiple Hopf

bifurcations for flow in LDC. The existence of such ranges assists in developing

a ROM, when donor Re’s are in the same range, where the target Re resides. If

one takes one or two donor points far from the range where target Re resides, the

presented ROM will provide a reconstructed solution, still with acceptable accu-

racy. These aspects of multiple Hopf bifurcations and existence of ranges of Re is

highlighted in the present research, apart from developing an efficient ROM for this

model problem.

For a vortex dominated flow, the time scale is defined as St (= fD/U∞), relating

dominant physical frequency (f) with flow velocity, (U∞) and the length scale (D).

However the flow does not display a single frequency, as one notices several peaks for

both flows in figure 1. The time series of the vorticity data at indicated locations

are shown in the left hand side frames. While the flow past a circular cylinder

displays a single dominant peaks with side bands in the spectrum (shown on the

right hand side frames), the flow inside LDC clearly demonstrates multiple peaks.

This property has been explored thoroughly for the LDC in [12] to explain the roles

of multiple POD modes.

Specifically for flow past circular cylinders, an empirical relation of the type has

been provided

St = St∗ +m/
√
Re (1)

in [7] with experimental data, for variation of St with Re in the wide range of

47 < Re < 2 × 105, with values of St∗ and m being different, for different ranges

of Re. Instead of using such an algebraic additive relationship, here we propose a

power law relation and test it for the range: 55 ≤ Re ≤ 200, for the purpose of
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demonstration. Consequently a relationship between Re and St will be proposed,

in order to perform interpolation on the vorticity time series.

The existence of unique St for a fixed value of Re, as embodied in equation (1)

implies that employing simple-minded interpolation strategies like Lagrange inter-

polation, will display unphysical wave-packets in reconstructed solution, as the time

scales are function of Re at the target. This is clearly demonstrated in figure 3. The

proposed ROM tackles this issue with the time scaling technique that is presented

in this article.

The paper is formatted in the following manner. In the next section, governing

equations employed for DNS and associated auxiliary conditions are described. In

Section 3, the proposed time-scaling interpolation algorithm is presented. Time-

scaled ROM of vorticity field is applied to two complex flows in Section 5. Summary

and conclusions are provided in the last section.

2 Governing Equations and Numerical Methods
DNS of the 2D flow is carried out by solving NSE in stream function-vorticity

formulation given by,

∇2ψ = −ω (2)

∂ω

∂t
+ (~V · ∇)ω = 1

Re∇2ω (3)

where ω is the only non-zero, out-of-plane component of vorticity for the 2D problem

considered. The velocity is related to the stream function as ~V = ∇ × ~Ψ, where
~Ψ = [0 0 ψ]T , with (D) and (U∞) used as length and velocity scales for non-

dimensionalization. Equations (2) and (3) are solved in an orthogonal curvilinear

coordinates (ξ, η) and the governing equations in transformed plane are

∂

∂ξ

(
h2

h1

∂ψ

∂ξ

)
+

∂

∂η

(
h1

h2

∂ψ

∂η

)
= −h1h2ω (4)

h1h2
∂ω

∂t
+ h2u

∂ω

∂ξ
+ h1v

∂ω

∂η
=

1

Re

{
∂

∂ξ

(
h2

h1

∂ω

∂ξ

)
+

∂

∂η

(
h1

h2

∂ω

∂η

)}
(5)

where h1 and h2 are the scale factors of the transformation given by: h2
1 = x2

ξ + y2
ξ

and h2
2 = x2

η + y2
η. The co-ordinate given by ξ is along azimuthal direction for the

flow past the cylinder and along x-direction for flow inside LDC and the co-ordinate

η is in the wall-normal direction for flow past the cylinder and along y-direction for

the flow inside LDC. No-slip boundary condition is applied on the wall for both the

flows via

(
∂ψ

∂η

)

body

= 0 and ψ = constant

For the flow inside LDC, the corresponding conditions are given by the same

equations, except along the lid, the right hand side of the first condition is given by

U∞. These conditions are used to solve equation (4) and to obtain the wall vorticity
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Figure 1 DNS time series and their associated FFT’s are shown for (a) the flow inside a LDC and
(b) the external flow past a cylinder, at indicated points in the flow.
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Figure 2 Direct Lagrange interpolation of DNS vorticity disturbance time series between Re
causes wave packets in the cylinder wake at point (0.504,0.0).

ωb, which in turn provides the wall boundary condition for equation (5). At the outer

boundary of the domain for flow past cylinder, uniform flow boundary condition

(Dirichlet) is provided at the inflow and a convective condition (Sommerfeld) is

provided for the radial velocity at the outflow.

The convection terms of equation (5) are discretized using the high accuracy com-

pact OUCS3 scheme for flow past the cylinder and the combined compact difference

(CCD) scheme for the flow inside LDC, both of which provides near-spectral ac-

curacy for non-periodic value of the convective acceleration terms, as explained in

detail in [23]. A central differencing scheme is used to discretize the Laplacian op-

erator of equations (4) and (5) for the circular cylinder and the CCD scheme is

used for the flow inside LDC. An optimized four-stage, third-order Runge-Kutta

(OCRK3) dispersion relation preserving method in [27] is used for time marching.

Equation (4) is solved using Bi-CGSTAB method given in [35].

These same methods have been used earlier for validating and computing the

respective flows in [29], SHPG for flow over cylinder and in [26, 30, 31] for flow

inside the LDC. Here the simulations are performed in a fine grid, with (1001×401)

points in the ξ and η directions for the flow past circular cylinder, and (257× 257)

points are taken for the LDC problem.

3 Need for time scaling
The proposed ROM aims at interpolating vorticity fields at a target Re (Ret) from

precomputed DNS at different donor Re’s. If Lagrange interpolation is used directly,

then it will not work due to variation of St with Re. Even with close-by donor

Reynolds numbers data, upon interpolation, will produce wave-packets for flow

past a cylinder as shown in figure 3. In this figure, results are shown for Re = 83, as

obtained by DNS of NSE (shown by solid lines) and that is obtained by Lagrange

interpolation of NSE solution donor data obtained for Re = 78, 80, 86 and 90.

We have also noted in SHPG that the flow past a circular cylinder suffers multiple

Hopf bifurcations (experimentally shown in [9, 34]) and in [30] for flow inside LDC



Sengupta et al. Page 6 of 18

and flow over cylinder. Hence the accuracy of reconstruction naturally demands

that the target and donor Re’s should be in the same segments of figure 3, as the

flow fields are dynamically similar. In figure 3, the equilibrium amplitude of distur-

bance vorticity are plotted as a function of Re for both the flows. The equilibrium

amplitude refers to the value of the disturbance quantity, which settles down in a

quasi-periodic manner, due to nonlinear saturation after the primary and secondary

instabilities. Presence of multiple quadratic segments in figure 3, indicates multiple

bifurcations originating at different Re’s. Thus, it is imperative that one identifies

the target Re in the same segment of donor Re’s for DNS-quality reconstruction for

flow past circular cylinder as in SHPG and for flow inside LDC in [12]. In each of

these sectors of Re, the flow behaves similarly and the (St, Re)-relation is distinct. It

is to be emphasized that the present sets of simulations are performed using highly

accurate dispersion relation preserving numerical methods.

The physical frequency (f) varies slowly with Re and superposition of time-series

of donor data causes beat phenomenon observed by superposition of waves of slightly

different frequencies. Thus, the knowledge of variation of St with Re is imperative in

scaling out f -dependence of donor data before Lagrange interpolation and this is one

of the central aspects of the present work. After obtaining frequency-independent

data at target Re, one can put back the correct f -dependence via its variation with

Re at the target Reynolds number.

In figure 3(a), the range of Re from 8000 to 12000 for the LDC is subdivided

according to the bifurcation sequence uncovered in [13] using a (257 × 257)-grid.

For the purpose of interpolation, four ranges are defined with the first one given

by: RI = [8020 : 8660] that corresponds to externally excited range, which shows

rapid variation of the amplitude, nearly culminating in a vertical fall at the onset

of solution bifurcation. The used CCD scheme, for flow in LDC, has near-spectral

accuracy, as explained in [26, 31], and the onset of unsteadiness is due to aliasing

error predominant near the top right corner of LDC, while truncation, round-off

and dispersion errors are negligibly small. To avoid the issue of lower numerical

excitation in the present work, a pulsating vortex is placed (ωs) at x0 = 0.015625,

and y0 = 0.984375 whose spread is defined by the exponent α given in the following,

ωs = A0[1 + cos(π(r − r0)/0.0221)] sin(2πf0t) for (r − r0) ≤ 0.0221

where in the presented results here we have taken f0 = 0.41 for the single amplitude,

A0 = 1.0.

For the next two ranges, no explicit excitation is needed (i.e., A0 = 0) to achieve a

stable limit cycle. RII = [8660 : 9350] and RIII = [9450 : 10600] are ranges for which

the amplitude (Ae) follows a square root law, these are however different because

of the peculiar behavior of the flow in the vicinity of Re = 9400, which indicates

the onset of second Hopf bifurcation. Finally, RIV = [10600 : 12000] is difficult for

interpolation, as one can see two branches in this range, one of which is unstable (U-

branch) with respect to any miniscule vortical excitation, as opposed to the stable

one (S-branch). The flow past cylinder is also divided in ranges as shown in figure

3(b). The range of Re from 55 to 130 is subdivided according to the bifurcation

sequences by: 55 ≤ Re ≤ 68; 68 ≤ Re ≤ 78; 78 ≤ Re ≤ 90; 90 ≤ Re ≤ 100 and
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Figure 3. Variation of Equilibrium amplitude of disturbance vorticity with Re indicating the
segments of Re with respect to bifurcation sequences for (a) flow in LDC and (b) for flow past
a cylinder.

excited range, which shows rapid variation of the amplitude, nearly culminating in a
vertical fall at the onset of solution bifurcation. The used CCD scheme, for flow in LDC,
has near-spectral accuracy, as explained in Sengupta, Lakshmanan & Vijay (2009);
Sengupta, Vijay & Bhaumik (2009), and the onset of unsteadiness is due to aliasing
error predominant near the top right corner, while truncation, round-off and dispersion
errors are negligibly small. To avoid the issue of lower numerical excitation in the present
work, a pulsating vortex is placed at x0 = 0.015625, and y0 = 0.984375 whose spread is
defined by the exponent α given in the following,

ωs = A0(1 + cos(π(r − r0)/0.0221)) sin(2πf0t) for (r − r0) 6 0.0221

where in the presented results here we have taken f0 = 0.41 for the single amplitude,
A0 = 1.0.

Figure 3 Variation of Equilibrium amplitude of disturbance vorticity with Re indicating the
segments of Re with respect to bifurcation sequences for (a) flow in LDC and (b) for flow past a
cylinder.

100 ≤ Re ≤ 130. For example, to reconstruct solution for Re=83, we have used data

in the range of 78 ≤ Re ≤ 90 for the most accurate ROM.

3.1 Formulation and Modeling of ROM

In equation (1), a relation between St and Re is shown for a wide range, for the

latter. In the proposed ROM here, we do not need DNS data for the target Re, as

was the case in SHPG to train the ROM. This is a significant improvement over

the previous approaches. One should scale out dependence of DNS data on f or St,

for any Re, by a proposed power law scaling given below,



Sengupta et al. Page 8 of 18

St(Res)

St(Reb)
=

(
Reb
Res

)n
(6)

The exponent n will depend upon the segment of Re shown in figure 3, with Reb
denoting a base Reynolds number in each segment. Here in this equation, any donor

Re is indicated as Res. Thus in a cluster of four donor Re’s, one is identified as Reb
and the other three identified as Res. From equation (6) one identifies n, by the

following,

n =
log(St(Res)/St(Reb))

log(Reb/Res)
(7)

The scaling exponent n is a characteristic number of each segment and Reb. In

Table 1, we show five segments and the corresponding n, along with Reb used in

each range. For the flow past a circular cylinder, the value of n is obtained with the

tolerance of ±0.02 for all Re’s in the respective segment. As discussed in [13], f is

almost constant on each segment, so that we can set n = 0 for the LDC, individually

in each segment. Having fixed n for any Res in the segment of choice, time-scaling

is performed by the following,

ts = tb

(
Reb
Res

)n
+ t0(Reb, Res) (8)

To interpret equation (8), we plot the disturbance vorticity for the flow past a

cylinder at a fixed location in the wake center-line (x = 0.504, y = 0), in figure 4.

The same format of time scaling should apply to many other flows, including the

same for the internal flow inside a LDC. It is noted that there exists a time-shift

between the maximum of these two time series, shown as t0 in the figure. Let us

consider the time for Reb as tb, and then to apply the proposed time-scaling for

the data for Res, we change the physical time of Res, by the expression given in

equation (8). Consequently, the left hand side of equation (8) is the scaled time.

After obtaining t0, it is needed to collapse the two time series for Res and Reb,

so that the maximum for these two time series coincide. Thus having fixed the

base Reynolds number in each windows of bifurcation sequences, we can obtain the

time-scaled abscissa for each Res in that range.

The search for t0 is performed in such a way that the phases of both Reb and

Res match accurately. One should note that the effects of t0 are significant, despite

the fact that it has a very small value. There are many ways to compute t0, but

accuracy must be very high in estimating it. A specific way is to view the time

series in the spectral plane and using the imaginary part of FFT to be used as the

accuracy parameter, as described in the next subsection.

3.2 Computing the initial time-shift (t0)

The present method is both accurate and computationally cheap, since it relies on

the fast Fourier transform (FFT) that is provided in the numpy library. A FFT is
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Figure 4 Variation of disturbance vorticity at a point (0.504, 0.0) with tb and ts for Reb and Res,
respectively, for the pair of Reb = 80 and Res = 86 in the bifurcation sequence 78 ≤ Re ≤ 90.

applied to the vorticity time series at one relevant space point. On one hand, for

the LDC problem it has been shown in [13] that (0.95, 0.95) point near the top

right corner is relevant for monitoring the flow behavior. On the other hand for the

flow past a circular cylinder, point (0.504, 0.0) in the cylinder wake is adequate. For

each sampled frequency, a complex value (z(f) = Aeiθ) is obtained consisting of the

modulus (A), which corresponds to the amplitude and a phase (θ). Consequently,

we can recover the phase associated with the leading frequency (L) for both signals

θb and θs. Finally the time shift of signal s with respect to the signal b is given by

t0 =
θLb − θLs

2πfL
(9)

Table 1 Scaling Constant and Base Reb for Different Range of Res

Re Range Scaling Constant (n) Basic Re (Reb)
55− 68 −0.49± 0.02 60

68− 78 −0.41± 0.02 72

78− 90 −0.37± 0.02 80

90− 100 −0.32± 0.02 95

100− 130 −0.28± 0.02 110
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Algorithm-1: Time-scaling algorithm for discrete signals

input: ωb, Reb, ωs, Res, t = {ti}Ni=1

output: ω̂s /* the time scaled signal.*/

1. Perform FFT on both signals

2. Scale frequencies
(
C =

(
Reb
Res

)n)

3. Evaluate t0(Reb, Res) =
θLs −θLb
fLs 2π

4. New time ts = Ct+ t0 is associated with ωs

5. Interpolate the time-scaled signal ω̂s(t) from ωs(ts)

/* At this point, one can perform Lagrange interpolation between

the donor points to the target Re to obtain ω̄∗.*/

return ω̂s

Here, fL is the lead frequency in the amplitude spectrum for both the signals as

t0 is computed only after the frequency scaling has been performed, with θ as the

angle of the complex value of the FFT associated with the lead frequency for signal

b or s. This method yields reliable and accurate values of t0, as the ROM accuracy

will prove in the following sections.

3.3 Time-scaling ROM algorithm for discrete DNS data

In this subsection, a brief recap of the time shifting procedure for ROM building is

given for the simple case of discrete signals ωb(ti) and ωs(ti) with {ti}Ni=1 indicating

the time discretization. It can be directly applied to any space-time dependent field,

with a reference signal chosen at a reference point. The ROM is then built as follow:

1 Perform the algorithm (Algorithm-1) on all signals, except the base donor

signal, in order to scale their oscillations.

2 Perform Lagrange interpolation on the scaled donor signals at target Ret for

all discrete times ti.

ω̄?(ti) =
∑

s∈donors

ω̂s(ti)ls(Ret) (10)

where ω̄? is the target signal and ls are the Lagrange interpolation polynomi-

als.

3 Scale-back ω̄? to the physical time with t? = t−t0(Ret)
(Reb/Ret)n

.

The last step of the ROM is to scale back ω̄?(t) to the physical time, t?. Indeed,

the interpolation is performed at grid points for t, which is actually the time-scaled

representation of the target vorticity field. Thus the scale-back operation is com-

puted to associate ω̄? with the scaled-back time t?. One should note that the final

domain is cropped according to the information lost after each shift, despite this

the discrete time points match the original discretization.

4 Time-shifting ROM applied to the LDC flow
As we have shown in [13], the main frequency of the LDC flow is nearly constant

across large ranges of Re, as shown here in figure 5. Thus, the time-scaling proce-

dures simplify to a time-shifting procedure with n = 0, resulting in ts = t − t0 for

the donor and target points, which have the same frequency in figure 5.
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Figure 5 Frequency variation for Re=[8700,12000] for the first three leading frequencies of the
vorticity time series at point (0.95, 0.95) obtained for the last 50 periods. The dotted lines
indicate the presence of multiple dominating peaks in the spectrum.

Following Algorithm-1 given above, we have obtained the vorticity field for Re

= 10040, using the donor points at Re = 10000, 10020, 10060 and 10080. From

the reconstructed ROM data, we have shown the vorticity time series in figure 6

for four representative points near four corners. Despite the change in the vorticity

magnitude by two orders, the accuracy of reconstruction is excellent and match

almost exactly.

In figure 7, the reconstructed vorticity contours inside the LDC is shown for Re

= 10040, at the indicated time of t = 1900.199 by solid line, with the same donor

data of Re’s for the use in the ROM following Algorithm-1. The corresponding

solution obtained by DNS of NSE-Solution for Re=10040 is shown in the same

figure by dotted lines. It is readily observed that these exact and ROM solution

overlap each other in the full domain with a relative RMS error of 7.1× 10−4.

The above exercise shows the special case of a flow, which is multi-periodic with

respect to time, yet the predominant frequency remains constant over different

ranges of Re, allowing one to use the special version of time scaling with power law

exponent given by, n = 0 in equations (6) and (7). Thus, one needs to simply apply

a time-shift and reconstruct by the methods described in Subsections 3.2 and 3.3.

Next, ROM is performed for Re = 9600, with the donor points at Re = 9350, 9500,

9800 and 10000. The choice of the second target Re for LDC is made on purpose,

as the bifurcation diagram in figure 3(a) shows that the flow has discontinuity in

equilibrium amplitude in the chosen donors the bounds of RIII for Re = 9400 and

10600. The interpolated vorticity time series are compared with direct simulation

results, as shown in figure 8, at those same sampling points used in figure 6. Once

again the match is excellent between interpolated results with DNS data with a

very low RMS error of 5.6× 10−4.
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Figure 6 Reconstructed vorticity field at the points in the cavity: (a) the point near the bottom
left corner, x = 0.05, y = 0.05, (b) the point near the top left corner, x = 0.05, y = 0.95, (c) the
point near the bottom right corner, x = 0.95, y = 0.05 and (d) the point near the top right
corner, x = 0.95, y = 0.95 for the target Reynolds number, Re = 10040 with donor points having
Re as 10000, 10020, 10060 and 10080.

In figure 9, the interpolated vorticity contours for Re = 9600 are compared with

those computed directly from NSE to show that interpolation works globally in the

flow field and not merely at chosen sampling points. In this flow field, the power

law exponent is zero and the strength of the interpolation is in obtaining the initial

time shift (t0) obtained using Algorithm-1, obtained from the FFT of the donor

point vorticity with respect to the baseline Re chosen.

In the following, we study the case of flow past a circular cylinder to show the effi-

cacy of the proposed time-scaling algorithm used here. For this flow also one notices

presence of multiple time scales, but with a predominant frequency characterized

by St, which follows the power law given by equation (6), with nonzero power law

exponent, n.

5 Time-scaled ROM applied to the flow past a cylinder
All the time-scaled relation and corresponding power law exponent in equation (7),

is applicable here for ROM with ω obtained by DNS. The time scaled interpolation

of the ROM for disturbance vorticity for different combination of donor points, as

indicated in Table 2, are obtained and root mean square (RMS) error with respect

to DNS data are compiled in the table summed over all the points in the domain.

Case I in the table corresponds to the case of donor points at Re = 78, 80, 86

and 90, which is noted as the most accurate based on RMS error for the ROM

reconstruction for Re =83. When we choose the donors with Re = 55, 80, 86 and

130 for Case V in Table 2, the RMS error is again low, as compared to cases where

only one donor point is taken from the same segment containing the target Re. As



Sengupta et al. Page 13 of 18

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.2

0.4

0.6

0.8

1.0

Y

Vorticity contour

Figure 7 Disturbance vorticity contour plot for reconstructed vorticity (solid lines) and DNS
vorticity (dotted lines) field at nondimensional time t = 1900.199 for target Re=10040 with donor
points having Re = 10000, 10020, 10060and10080.

Table 2 RMS Error estimates of interpolation for Re = 83

Cases Re of donor points Error for interpolation
using donor points

I (78,80,86,90) 0.0434535949140671049

II (72,80,86,90) 0.0438833300701889223

III (68,80,86,90) 0.0445922677374889012

IV (55,80,86,90) 0.0624577915198629291

V (55,80,86,130) 0.140945940261735560

VI (55,68,72,86) 1.3159752726807628345

VII (55,68,72,130) 8.52240911220835436

has been noted before, for higher accuracy one must choose donor points from the

same segment of target Re, as clearly shown in Table 2 in a quantitative manner.

We draw the attention on error estimates provided in Table 2 for different com-

binations of donor Re’s. It is evident from the table that the best result is obtained

when all four donor points are in the same segment of target Re, as in Case I. In

Cases II to IV, we have taken the lowest Re, farther to the left with increase in RMS

error, with lowering of the smallest donor Re. But in Case V, the extreme Re’s are

chosen as 55 and 130, and yet the RMS error is acceptable, as two of the donor Re’s

belong to the segment of target Re. In contrast, for the Case VI, only a single donor

Re belongs to the same segment, resulting in RMS error increasing almost ten folds

as compared to the Case V. The worst case (Case VII) occurs in Table 2, when all

the donor Re’s are outside the target Re segment. This justifies the scientific basis

of the adopted ROM keeping the various ranges of Re punctuated by various Hopf

bifurcations shown in figure 3(b).

Role of t0 is also investigated here for ω′ (the disturbance vorticity field) and the

variation of t0 with the Re is shown in figure 10 in the subrange 55 ≤ Re ≤ 130.

Here, we obtain t0 for the data sets of (Re= 55, 80, 86, 130) and (Re= 78, 80, 86, 90),
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Figure 8 Reconstructed vorticity field at the same four points in LDC, as in figure 6 for a target
Re = 9600 with donor points for Re = {9350, 9500, 9800 and 10000}.

as indicated separately in the figure. Each of the discrete data are marked in the

figure with Re and necessary time shifts in brackets, with Reb = 80. It is noted that

the finding of single t0 is far easier and less time consuming for ω′ for the present

version of ROM, as compared to any method using POD or instability modes, which

would require finding different t0 for each retained modes.

In this method, ω′ is reconstructed using the identical procedure of interpolation

after time-scaling and initial time-shift, using equation 8 applied directly on ω

obtained by DNS. Thus, this procedure even circumvents the need to use the time-

consuming method of snapshots to obtain POD modes that is required for any POD

based ROM e.g. POD-Galerkin, interpolated POD. Unlike the methods of solving

SLE equations given in SHPG, proposed ROM in this paper requires storage of

at most four DNS data sets in each segment for most accurate reconstruction. If

one is willing to settle for lesser accuracy, then one can reduce the requirement of

performing DNS for two Re only, in each segment of figure 3. Hence this ROM is

not memory intensive and it is faster.

Figures 11(a) and (b) show the comparison between DNS and the time-scaled

interpolated ω′ at two different points for Re=70, located along the wake-center

line at (0.504, 0.0) and at (1.014, 0.0), respectively. Excellent match with the DNS

data even in the transient state proves the efficacy of the time-scaling interpolation

technique applied to vorticity data. It is to be noted that despite the presence of a

dominant St, the physical variables demonstrate multiple time-scales as discussed

in the introduction and shown in figure 1.

The case for Re= 83 are shown in figures 11(c) and (d), which compare the dis-

turbance vorticity at the same two locations with DNS data. Once again, the recon-

structed ROM solution is indistinguishable from the corresponding DNS data. Thus,
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Figure 9 Disturbance vorticity contour plot for reconstructed vorticity (solid lines) and DNS
vorticity (dotted line) field at nondimensional time t = 1900.199 for target Re = 9600 with donor
points {9350, 9500, 9800 and 10000}.

it is evident that spectrum with multiple peaks can be handled by the presented

approach of time-scaling with initial time-shift, utilizing the power law between Re

with St.

6 Summary and Conclusion
Here, we have proposed time-scaled ROM for reconstructing super-critical flow past

circular cylinder and flow inside LDC using time-scaled Lagrange interpolation of

vorticity data obtained by DNS for different donor data at Re’s, largely located

in the neighbourhood of the target Re. In performing the interpolation, a time-

scaling is performed following equation (8) along with an initial time-shift, as a

direct consequence of (St, Re)-relations given in equations (6) and (7).

The proposed method differ from the ROM based on instability modes in SHPG,

with respect to speed, accuracy and generality of application. ROM Reconstruction

at a target Re is of DNS-quality, if all the donor points belong in the same Re

subrange, identified by multiple Hopf bifurcations in figure 3(a), for flow inside the

LDC in the range 8700 ≤ Re ≤ 12000 and in figure 3(b) for flow past a circular

cylinder, in the range of 55 ≤ Re ≤ 130 and in Table 1.

Data requirement of present ROM is at most for four Re’s located in the same

subrange. If one wants to perform ROM with only three Re’s, then the reconstructed

data are of slightly lower accuracy, but of very acceptable quality (not shown here).

The present procedure provides scientific and applied basis of ROM, depending

upon the number and location of donor points of target Re.

In instability based ROM in SHPG, one stores only the coefficients of SLE equa-

tions. However, one needs to obtain optimal initial conditions for the stiff SLE

equations and is restricted to use of first five POD or three instability modes. This

is due to difficulty in finding optimal initial conditions for SLE equations and only
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of Table 2. Shown in parametric form are the pair of Reynolds number and corresponding optimal
t0.

three instability modes have been used in SHPG. In the present approach, one finds

initial time-shift (t0) for the donor vorticity data with respect to a base Reynolds

number. This time shift can be obtained by FFT based approach as proposed here.

Present study opens the scope of data mining in computational fluid dynamics.

DNS of NSE produces massive amount of data which can be used economically to

predict flow behavior of dynamical systems dominated by single or multiple peaks

in the spectrum. The proposed ROMs can be used at any arbitrary Re on demand,

by the proposed ROM performed with limited number of DNS at neighbouring Re’s.

The novel procedure proposed here has been tested for the internal flow inside a

LDC and an external flow over a circular cylinder, as proofs of concept.
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Figure 11 Reconstructed disturbance vorticity with time-scaling interpolation for (a) Re = 70
using Re = 68, 72, and 76 at (0.504, 0.0), (b) at (1.104, 0.0) and (c) Re = 83 using Re = 78, 80,
86 and 90 at (0.504, 0.0) and (d) at (1.104, 0.0). Within each subfigure, the top frame is for
comparison at early times, while the bottom frame shows comparison at later times.
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defined simultaneously for each direction through least square approxima-
tion. Figure from [VVM12]. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.13 A visual of the sequentially truncated HOSVD with the same axis as figure

2.12. Here each approximated tensor Ŝ
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Résumé

L’explosion de la puissance de calcul des ordinateurs ne répond à tous les besoins de la
communauté scientifique. En particulier, en ingénierie des fluides et structures, la concep-
tion demande des simulations toujours plus précises et nombreuses. Cela génère des quan-
tités de données très importante qui sont largement supérieures au téraoctet. Ainsi on
se propose d’explorer de nouvelles techniques de compression de données adaptées à la
physique pour représentée de façon approchée les données. Ces méthodes de séparation
des dimensions d’un problème permettent une réduction de la taille des données de plu-
sieurs ordres de grandeur pour une erreur inférieur à 1%. De plus elles apportent une
nouvelle analyse de la physique qui permet de construire des modèles dit d’ordre réduit.
Ces modèles sont très économes en temps de calcul (quelques secondes) en échange d’une
faible erreur. Un nouveau modèle d’interpolation est présenté ici pour des cas tests de la
mécanique des fluides.

Mots-clés : Réduction de données, réduction de modèle, MOR, POD, Cavitée entrainée,
HOSVD, Tensor train, tenseurs, formats tensoriels, approximation de tenseurs, interpo-
lation physique, approximation de rang faible.

Abstract

Rocketing computing power is not sufficient to fulfill the scientific community needs. In
particular, design in fluid and structures engineering field requires ever more numerous
and precise numerical simulations. It generates colossal amounts of data that largely
exceeds terabytes. Thus, we propose to explore new data compression techniques suited
for physics in order to provide approximated representations of the data. These problem
dimension separation methods enable reducing the data size by orders of magnitude while
keeping the error below 1%. Moreover they provide a new physics analysis tool that allow
construction of reduced order models. They offer very low computing time (a few seconds)
by slightly reducing accuracy. A new interpolation model is presented for fluid dynamics
test cases.

Key words: Data reduction, Model Reduction, MOR, POD, lid driven cavity, Low
rank approximation, tensors, HOSVD, Tensor train, tensor formats, tensor approximation,
physics interpolation, time-scaling.
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