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La question de la conception de médias interactifs s'est posée dès l'apparition d'ordinateurs ayant des capacités audio-visuelles. Un thème récurrent est la question de la spécification temporelle d'objets multimédia interactifs : comment peut-on créer des présentations multimédia dont le déroulé prend en compte des événements extérieurs au système.

Ce problème rejoint un autre champ d'application, qui est celui de la musique et plus spécifiquement des partitions interactives : des pièces musicales dont l'interprétation pourra varier dans le temps en fonction d'indications données par la partition. Dans les deux cas, il est nécessaire de spécifier les médias et données musicales qui seront orchestrées par le système. C'est le sujet de la première partie de cette thèse, qui présente un modèle adapté pour la conception d'applications multimédia permettant de répondre à des problématiques d'accès réparti et de contrôle à distance, ainsi que de documentation.

Une fois ce modèle défini, on construit en s'inspirant des systèmes à flots de donnée courants dans les environnements adaptés à la musique en temps réel un environnement de calcul permettant de contrôler les paramètres des applications définies précédemment, ainsi que de générer des entrées et sorties sous forme audio-visuelle. En particulier, une notion d'environnement permanent dans ce modèle de données est introduite. Elle simplifie certains cas d'usages courants en informatique musicale, et améliore les performances par rapport à une solution uniquement basée sur de la communication entre noeuds explicites du système. Enfin, une structure de graphe temporel est introduite : elle permet de définir les parties du graphe de données qui vont être actives à un instant donné d'une partition interactive. En particulier, les connections entre objets du graphe de données sont étudiées dans le cadre de déroulements synchrones et différés.

Un langage d'édition visuel est introduit pour l'écriture de scénarios dans un modèle graphique réunissant les éléments introduits précédemment. La structure temporelle est par la suite étudiée sous l'axe de la répartition. On montre notamment qu'il est possible d'acquérir un pouvoir expressif supplémentaire en supposant une exécution concurrente de certains objets de la structure temporelle.

Enfin, on présente comment le système permet de recréer nombre de systèmes musicaux existants : séquenceurs, live-loopers, et patchers, ainsi que les nouveaux types de comportements multimédias rendus possibles.

Résumé français

Cette thèse CIFRE a pour ambition de répondre à des questions courantes lors de la création de médias interactifs, principalement dans un contexte artistique et musical, mais sans restriction à un domaine particulier. La présentation de cette thèse est déroulée en trois parties :

• La première partie introduit les problématiques, présente l'état de l'art et les objectifs de recherche en se comparant d'une part à des modèles existants et d'autre part en prenant en compte les notions issues de la recherche en créativité. On s'intéresse notamment aux méthodes de conception de logiciels auteur telles que la créativité de ses utilisateurs soit maximisée, en se basant sur les travaux de Eaglestone [START_REF] Eaglestone | Information Systems and Creativity: An Empirical Study[END_REF], Turner [START_REF] Turner | Towards a Supportive Technological Environment for Digital Art in Proceedings of the Annual conference of the Computer-Human Interaction[END_REF] et Resnick [START_REF] Resnick | Design Principles for Tools to Support Creative Thinking[END_REF]. • La seconde partie présente le modèle proposé pour l'exécution des partitions interactives, et détaille l'implémentation du logiciel auteur. • La troisième partie présente les applications de ce modèle à des cas d'usage réels.

Une des problématiques principales de ce travail est celle du lien entre l'écoulement du temps et l'exécution de programmes : comment peut-on modéliser efficacement un programme dont le comportement évolue au cours du temps, en fonction d'interactions extérieures prévues par l'auteur de ce même programme. Pour y répondre, on choisit de se baser sur la théorie des partitions interactives (Interactive Scores), développée par Myriam Desainte-Catherine [START_REF] Desainte-Catherine | Towards a Hybrid Temporal Paradigm for Musical Composition and Performance: The Case of Musical Interpretation[END_REF], Antoine Allombert [5], Mauricio Toro [START_REF] Toro | Structured Interactive Scores: From a simple structural description of a multimedia scenario to a real-time capable implementation with formal semantics[END_REF], Jaime Arias [START_REF] Arias | Formal Semantics and Automatic Verification of Hierarchical Multimedia Scenarios with Interactive Choices[END_REF], que l'on rapproche du domaine des applications multimédia interactives (interactive media). Le Chapitre 2 présente les modèles existants en détail, non seulement pour les partitions interactives, mais pour les thèmes plus généraux du multimédia interactif et de la création musicale assistée par ordinateur.

Un des points centraux de cette thèse est l'introduction de calculs dans les partitions interactives : on donne une sémantique synchrone pour l'exécution de processus temporels produisant des résultats réutilisés par d'autres processus. Ce cadre ajoute une difficulté par rapport à des modèles d'exécution classiques : on cherche à réaliser une exécution cohérente même quand tous les noeuds de calcul ne sont pas actifs. Pour ce faire, plusieurs outils sont proposés aux auteurs ; ces outils sont décrits tout au long de cette thèse.

On propose d'abord de modéliser les applications interactives existantes sous forme d'arbre de paramètres associés à des méta-données spécifiques au domaine visé, présentées en détail dans le Chapitre 4. Ce modèle permet d'avoir une vision simple de systèmes répartis, avec différents logiciels spécialisés sur différentes machines (pour le son, la vidéo, la lumière, …). On définit notamment la notion de périphérique arborescent (Définition 4) qui associe à un protocole de communication un arbre de données répliquant l'état d'un périphérique ou logiciel réel. On associe en particulier aux noeuds du périphérique un domaine de définition et un comportement aux bornes de ce domaine, ainsi qu'un système d'unités permettant de prendre en compte les cas usuels nécessaires aux pratiques multimédia, tels que l'encodage des couleurs, la représentation du volume sonore, ou les positions cartésiennes ou polaires.

Les opérations définies sur cet arbre sont présentées en Section 4.2 : lire et écrire des données depuis cet arbre de manière synchrone ou asynchrone, ainsi qu'être notifié lors d'un changement, qu'il ait lieu de manière locale ou distante. Enfin, plusieurs protocoles supportant ces opérations, dont un implémenté en partie durant cette thèse, OSCQuery, sont présentés. On introduit par la suite dans le Chapitre 5 un modèle pour l'exécution de calculs apte à être utilisé pour des applications basées sur l'évolution de temps. Ce modèle se base sur les graphes à flots de données. On introduit une notion d'activation sur les noeuds du graphe, afin de pouvoir considérer le cas ou certains noeuds du graphe ne sont pas actifs -une métaphore utilisée est celle du pédalier de guitare dans lequel toutes les pédales ne sont pas forcément actives en même temps, mais ou le signal continue de s'écouler de la guitare jusqu'à l'amplificateur. La spécification du fonctionnement de ce graphe se base en partie sur les travaux de Arumi [START_REF] Arumı | A Dataflow Pattern Catalog for Sound and Music Computing[END_REF] et du projet Jamoma AudioGraph [START_REF] Place | The Jamoma Audio Graph Layer in Proceedings of the International Conference on Digital Audio Effects (DaFX)[END_REF].

On introduit deux élements :

• Un environnement avec lequel on spécifie la manière dont les noeuds lisent et écrivent des données dans les arbres de périphériques décrits au Chapitre 4. Cet environnement est présenté en Section 5.3. • Différents types de connections entre noeuds qui permettent de gérer différents cas d'exécution : les connections directes et délayées, ainsi que glouttones et strictes. Ces types sont décrits en Définition 20. Plusieurs sémantiques d'exécution possibles sont discutées : on propose des méthodes paramétrisées pouvant répondre à différents ensembles de besoins, en particulier par rapport aux méthodes d'ordonnancement possibles, ainsi que de fusion des messages envoyés.

Une fois ce graphe de données défini, on construit dans le Chapitre 6 un modèle pour la spécification temporelle de l'exécution de processus, qui va définir à quels instants les noeuds du graphe de données sont actifs ou non. Ce modèle est basé sur deux éléments qui permettent de définir d'une part une hiérarchie de processus à exécuter et d'autre part une structure temporelle : les intervalles temporels (time intervals) peuvent contenir des processus (processes), et sont débutés et terminés par des conditions instantanées (instantaneous condition), elles-mêmes portées par des conditions temporelles (temporal condition).

Une forme simple d'expressions booléennes entre paramètres des arbres de périphériques, munie d'un opérateur supplémentaire permettant d'être notifié en cas de réception asynchrone d'un message, est présentée en Section 6.1 : ces expressions sont celles qui servent au déclenchement et à la vérification des conditions temporelles et instantanées.

Deux processus particuliers sont introduits :

• Le scénario est un graphe dirigé acyclique d'éléments temporels : il contient un graphe dont les noeuds sont les noeuds temporels et les arêtes sont les intervalles temporels. • La boucle permet de répéter un intervalle un nombre arbitraire de fois. Un intervalle peut contenir un nombre arbitraire de processus, dont les scénarios et boucles, ce qui permet une hiérarchie arbitraire de processus. Les algorithmes d'exécution de ces deux processus sont donnés en annexes A et B.

On considère ensuite la combinaison du graphe temporel du Chapitre 6 et du graphe de données du Chapitre 5 : adjointe à plusieurs fonctions permettant la paramétrisation de l'exécution, cela permet de définir la notion de partition interactive computationnelle, dans le Chapitre 7. Notamment, chaque processus et chaque intervalle du graphe temporel est associé à un noeud du graphe de données. On montre en particulier dans ce chapitre la manière dont le modèle peut être utilisé pour implémenter un mixage audio hiérarchique, en créant automatiquement des connections dans le graphe de données à partir de la position hiérarchique des processus.

La figure Figure 7.2, reproduite en Figure 1, présente le fonctionnement général du système. Une fois le modèle défini, on s'intéresse à une forme de syntaxe visuelle pour la création de telles partitions : un des objectifs initiaux est en effet de simplifier l'écriture de contenu interactif, on cherche donc une forme adaptée.

La figure Figure 7.6, reproduite en Figure 2, présente les éléments principaux de cette syntaxe sur un scénario d'example.

On propose par la suite dans le Chapitre 9 une extension à ce modèle, pour la définition de scénarios répartis : on cherche à exprimer des scénarios pour lesquels certaines parties doivent s'exécuter sur différentes machines, en parallèle comme en série. On introduit plusieurs notions : celle de document, courante dans les systèmes de création distribués, ainsi que celles de clients et de groupes de clients. Les clients font parties de groupes, et les objets du document sont annotés avec des groupes et des indications de répartition. Ces annotations permettent de choisir le degré de synchronisation désiré et de réaliser des compromis entre les besoins de synchronisation et de latence.

L'implémentation principale de l'environnement est présentée dans le Chapitre 10. Elle est réalisée sous la forme de deux logiciels libres :

• libossia1 est un ensemble de bibliothèques (écrit en C++) permettant la communication réseau et implémentant les algorithmes d'exécution des structures de graphe temporel et de données. Des portages de libossia ont été réalisés dans la majorité des environnements de code créatif (creative coding) : Max/MSP, PureData, SuperCollider, etc. • ossia score2 est l'environnement graphique (écrit en C++ avec Qt), dans lequel les documents sont créés. Il est basé sur une architecture en plug-ins qui permet d'étendre facilement le logiciel avec de nouveaux processus et protocoles par exemple. Une capture de l'écran de ossia score est montrée en Figure 3. Les caractéristiques de performance des différentes méthodes proposées dans la seconde partie de cette thèse sont fournies en Section 10.4. En particulier, on notera l'analyse de la durée moyenne d'un tic d'exécution, ainsi que de la jigue en Section 10.4.6, qui montrent que le logiciel est apte à fonctionner avec des échéances d'exécution (deadlines) de l'ordre de 50 microsecondes, sur un système d'exploitation non-temps réel (Linux) avec des scénarios simples.

On présente une discussion ainsi que diverses applications du système dans le Chapitre 11 : Une ligne horizontale remplie signifie que le temps ne peut pas être interrompu, tandis qu'une ligne horizontale en pointillé signifie que l'exécution peut être interrompue à cet endroit pour passer à la suite de l'exécution de la partition en réponse à un évènement extérieur. L'exécution se déroule sur cet exemple comme suit : l'intervalle A s'exécute pour une durée fixée. Lorsqu'il se termine, une condition est évaluée : si elle est fausse, la branche qui commence par B ne s'exécutera pas. Sinon, après un certain temps, le flot du temps dans B atteint une zone flexible centrée sur un point d'interaction. Si une interaction a lieu, B s'arrête et D démarre. S'il n'y en a pas, D démarre lorsque la borne max de B est atteinte. Tout comme à la suite de A, une condition va permettre ou non l'exécution de G. Dans tous les cas, C a démarré son exécution à la suite de A. C attend une interaction, sans temps d'expiration. Si l'interaction a lieu, les deux conditions instantanées qui suivent C sont évaluées : la valeur de vérité de chacune décidera de l'exécution de E et F . 

. Motivation and position

This thesis presents a model and an implementation for the authoring of interactive multimedia applications. This will cover the modelling of individual multimedia content-producing and interactive software, such as video or music players. The resulting model is to be used uniformly whether over the network or locally. The question of time will be asked: time is an integral part of most multimedia processes and work, but authoring in the time domain is still a hard problem when interactivity is involved. The main question asked is: how to model multimedia applications where the time is not fixed by an author before performance and execution, but depends upon interactive actions of the users of the application. In the context of this thesis, author will refer to the designers, creators, and developers of interactive artworks. This implies latency and performance guarantees for applications with strict small-scale time requirements, such as virtual music instruments: else, the model may fall short of any possibility of real world usage; its adequacy will be covered with regards to these metrics. Finally, the work will be expanded to consider not only multiple applications communicating over the network, but the possibilities offered by a single program explicitly designed to perform on multiple computers at a time, and the additional authoring perspectives that this opens.

The context of this CIFRE1 thesis is the research which has occurred at the LaBRI and SCRIME since 1997 on ISs2 , and its implications for the development of interactive software at the company Blue Yeti. Starting points for this research are the ISs model proposed by Desainte-Catherine and Allombert in [START_REF] Desainte-Catherine | Interactive Scores: A Model for Specifying Temporal Relations between Interactive and Static Events[END_REF] and evolved in many ways, the research done in the Jamoma project [START_REF] Place | The Jamoma Audio Graph Layer in Proceedings of the International Conference on Digital Audio Effects (DaFX)[END_REF][START_REF] Place | Jamoma: A Modular Standard for Structuring Patches in Max[END_REF][START_REF] Place | A Flexible And Dynamic C++ Framework And Library For Digital Audio Signal Processing[END_REF], and the french research projects Virage3 [START_REF] Baltazar | Une réflexion pluridisciplinaire autour du temps dans la création numérique[END_REF] and OSSIA 4 . Virage was born out of a study about tools and practices for sound in live performance. It extended this study towards the search for common tooling in live shows, not only for sound but also light, video and other controls common in performing arts. Its main realisation is a set of specifications for the development of control and authoring interfaces of multimedia content in the context of artistic creation and museography. OSSIA was a follow-up project which tried to formalize precisely a question raised during Virage: how to organize a score orchestrating different kinds of multimedia elements in time. The main research axis was the notion of temporal constraint: how are they defined, how can they be authored intuitively. An important part of OSSIA was the specification of looping and branching behaviours in interactive scores.

Motivation and position

ISs are a tool for temporal layout: they allow writing scores such as "Play a sound for five seconds, then, if I press this button, play this other sound and shut down the lights on a span of two seconds". That is, in ISs, the author deliberately allows for variations of a given part of the score, for instance at the note level where onsets and durations can vary, or at the scope of greater musical phrases. This can be likened to the concepts of ossias 1 and fermatas 2 in Western music notation. The three central questions relative to ISs are: "How does one write an IS", "How are such scores performed", and "How can such scores be checked for inconsistencies". The majority of existing literature on the subject covers the two last points. In this work, we will instead focus on the two first points: in particular, we believe that current IS models have fell short of providing an acceptable experience for the authoring process, which leads to a lack of a sufficient IS corpus on which formal verifications could then be applied, as well as relevant experience that could be gained from study of their currently scarce usage.

In order to improve on this state of affairs, this work takes cues from studies originating in the creativity research community. Part of this research community's focus is for instance on what makes for an efficient creative environment and workspace for designers. We will consider these ideas in order to provide a new environment for the authoring of ISs, and by extension of multimedia applications.

While the temporal aspect will be fundamental in this work, we will also show that ISs can be a suitable model for embedding computations within the score itself, which leads to data relationship between elements of the score and enables extended authoring possibilities. The proposed IS model will be able to perform autonomously: previous research generally assumed cooperation with other software in order to enable multimedia data inputs and outputs since only control of external software and hardware was covered. Finally, an overarching goal of this research is to provide a baseline platform for further research on the possibilities of ISs for music and multimedia. This implies to take into account the extensibility problem: how can the IS model allow for introduction of new concepts in the scores themselves. In particular, we believe that a viable long-term approach for IS research lies in the divergent-convergent approach often cited in engineering and design research [START_REF] Howard | Describing the Creative Design Process by the Integration of Engineering Design and Cognitive Psychology Literature[END_REF]. This work will take the point of view of a research on the design space of interactive media authoring environments and provide an open and extensible implementation of the models described thereafter; future works would then focus on a restriction of part of this thesis, for instance for the sake of formal verification of specific cases that would have been found to be worthy of interest by authors, composers, and more generally users of this model.

Score is generally understood as a musical term, and this work heavily takes its root in the musical and more generally creative and artistic domain. Yet, we strive for generality: musically relevant questions and concepts, such as pitch or polyphony will not be considered directly. We instead try to provide a general organization of processes that may occur during a given span of time. These processes could very well be the assembly line of a factory, stage plays, or museum installations; various examples will be presented. Still, existing research in computer music will serve as a basis for a large part of the work. 

Problem space

This section explores the various artistic endeavours that led to IS models: specific elements of Western music notation, conditional music scores, and more general interactive artistic installations.

Before the advent of computing, writing scores containing informations of transport was already possible: in Western sheet music, manifestations of this are the D. S. Al Coda, D. S. Al Fine, Da Capo, and repetition sign. There is however no choice left for the performer.

A case with more freedom for the performer is the fermata, shown in fig. 1.1. It allows for the duration of a musical note to be chosen during the interpretation of the musical piece: the score moves from purely static to interactive, since there can be multiple interpretations of the lengths written in the sheet. Likewise, an ossia allows the performer to choose an alternative part to play during one or more bars; an example of notation is given in fig. 1.2. Finally, improvisational parts have been in common usage in jazz sheet music -the musician has freedom of interpretation during a few bars -or even a whole piece. An example of improvisational notation is given in fig. 1.3.

Conditional works of art

Interactivity in music, and more generally in arts has been covered by Umberto Eco in [START_REF] Eco | The Open Work translated by Cancogini[END_REF]: a strong difference between recent open works and previous forms of art is that these works actively encourage the performer to act not only on individual parameters, but on the structure of the work itself. A way to enable this is to enumerate the possible cases that the performer will encounter, and let him choose amongst them. Some of the most interesting cases happen in more recent times, with the advent of composers trying to push the boundaries of the composition techniques. John Cage's Two (1987), is a suite of phrases augmented with flexible timing marked with brackets. The brackets are of the form: 2 ′ 00 ′′ ↔ 2 ′ 45 ′′ and are indicated at the top of each sequence.

Each part has ten time brackets, nine which are flexible with respect to beginning and ending, and one, the eighth, which is fixed. No sound is to be repeated within a bracket.

(Two, John Cage)

Branching scores can be found in Boulez's Third sonata for Piano or in Boucourechliev's Archipels (1967-70) where the interpreter is left to decide which paths to follow at several points of bifurcation along the score. This principle is pushed even further in the polyvalent forms found in Stockhausen's Klavierstücke XI (1957) where different parts can be linked to each other to create a unique combination at each interpretation. Some of these compositions have already been implemented in computers, however it was generally done in a case-by-case basis, for instance using specific Max/MSP patches that are only suitable for a single composition. The use of patches to record and preserve complex interactive musical pieces is described in [START_REF] Bonardi | Le patch comme document numérique: support de création et de constitution de connaissances pour les arts de la performance[END_REF].

In particular, we note the following quotes related to the design and performance of conditional and open works:

The role of the composer here is not one of setting a mechanism and watching it run, but one of setting the conditions that will allow him or her to perform musical actions.

(Horacio Vaggione [START_REF] Vaggione | Some Ontological Remarks about Music Composition Processes[END_REF])

1. Introduction

Interactivity

This work is heavily rooted in the notion of reactivity and further, interactivity. Traditional media forms such as paintings, TV or sculpture are entirely passive: we are interested in dynamicity and motion instead. In [START_REF] Dixon | Digital Performance: A History of New Media in Theater, Dance, Performance Art, and Installation[END_REF], the question of interactivity in the context of artistic performance in the digital age is addressed as the author states that interactivity is not a "feature" that a performance may have, but instead a discrete spectrum in which the user interaction with the work is involved. The proposed hierarchical levels of interactivity are:

• Navigation: the audience can explore the work: a static virtual reality environment can for instance enter this category, or simply pressing "next" on a web page to go to the next part. This can be known as "interactive cinema": freedom but only in predetermined paths. • Participation: the audience can have an influence in the work which other audience members will be subjected to. This can be done by leaving marks on the work. An example of participation is the introduction of voting in interactive cinema when experienced by multiple persons. This has been in part formalized by Krueger's notion of reactive environments:

The environments described suggest a new art medium based on a commitment to real-time interaction between men and machines. The medium is comprised of sensing, display and control systems. It accepts inputs from or about the participant and then outputs in a way he can recognize as corresponding to his behaviour. The relationship between inputs and outputs is arbitrary and variable, allowing the artist to intervene between the participant's action and the results perceived.

(Responsive Environments [START_REF] Krueger | Responsive Environments in Proceedings of the National Computer Conference[END_REF], Myron Krueger)

• Conversation: the audience can have a meaningful request-response-like interaction with the work; behaviours can emerge from participation from audience members. This can be likened to the interactions between musicians in live improvisation performances. • Collaboration: the audience can have an influence on the work of art's meaning; it is not restricted to a pre-programmed "interaction loop". It also covers for instance collaborative performances between musicians that would take place over internet. Interactive pieces can also be extended towards full audio-visual experiences, in the case of artistic installations, exhibitions and experimental video games. Multiple case studies of interactive installations involving conditional constraints (Concert Prolongé, Mariona, The Priest, Le promeneur écoutant) were conducted during the OSSIA project. Concert Prolongé offers an individual listening experience, controllable on a touch screen where the user can choose between different "virtual rooms" and listen to a distinct musical piece in each room, while continuously moving his virtual listening point -thus making him aware of the importance of the room acoustics in the listening experience. Mariona [6, section 7.5.3] is an interactive pedagogic installation relying on automatic choices made by the computer, in response to the users behaviours. This installation relies on a hierarchical scenarisation, in order to coordinate several competing subroutines. The Priest is an interactive system where a mapping occurs between the position of a person in a room, and the gaze of a virtual priest. Le promeneur écoutant1 is a stand-alone interactive sound installation designed as a video game with different levels of exploration, mainly through auditory means.

Interactive scores

The theory of ISs addresses the writing and execution of temporal constraints between musical objects, with the ability to describe the use of interactivity in the scores.

Interactive scores, as presented in [START_REF] Allombert | A System of Interactive Scores Based on Petri Nets[END_REF], allow a composer to write musical scores hierarchically and introduce interactivity by setting interaction points. This enables different executions of the same score to be performed, while maintaining a global consistency by the use of constraints on either the values of the controlled parameters, or the time at which they must occur.

In particular, an IS allows the author to specify all the choices that a performer may be able to take. In our case, the choices might involve multiple people at the same time (for instance multiple dancers each with his position mapped and used as a parameter), and lead to completely different results.

[...] the score is a restricted space of potential realizations, delimited by the indications of the composer. Under this approach, any one interpretation can be considered as an exploration of this space.

(Desainte-Catherine et al. in [START_REF] Desainte-Catherine | Towards a Hybrid Temporal Paradigm for Musical Composition and Performance: The Case of Musical Interpretation[END_REF])

Multimedia authoring and interactive works of art

We must note a few differences with the general research topics in the fields of interactive multimedia presentations and interactive scores and more generally interactive art. First, interactive multimedia generally focuses on both temporal and spatial relationships of objects, while research in the field of interactive art is nearly always focused on temporal relationships. In particular, visual requirements in the field of interactive arts are quite often driven by procedural generation or mutation of graphics, instead of a layout of graphical objects such as images or videos: a corpus of such artworks is provided in [START_REF] Bohnacker | Generative Design: Visualize, Program, and Create with Processing[END_REF]. There are still sometimes recognizable spatial features, but they end up being emergent features of such works instead of authoring means. In this work, we will only consider the temporal dimension.

Another difference is that in artistic fields, the boundary between the artistic object, and the means of creation is sometimes blurry. Even though specific and generally non-interactionoriented art aesthetics such as vaporwave1 may sometimes leverage the use of traditional WIMP 2 interfaces as an ironic critic and a nostalgia for earlier periods of the digital age [START_REF] Bach | Aesthetics Of Post-Internet Electronic Music[END_REF], authoring software such as the ones provided in multimedia authoring are scarcely the center or even the periphery of the performance itself, while manipulation of specific interactive art authoring software can sometimes be part of the performance itself, for instance in the field of livecoding [START_REF] Magnusson | Algorithms As Scores: Coding Live Music[END_REF][START_REF] Magnusson | The Threnoscope: A Musical Work for Live Coding Performance in Proceedings of the International Workshop on Live Programming[END_REF].

In [START_REF] Meikle | Examining the Effects of Experimental/academic Electroacoustic and Popular Electronic Musics on the Evolution and Development of Human-computer Interaction in Music[END_REF], Meikle assesses the current state of interactive music making tools adapted to the mainstream audience. In particular, he notes that since the last decade, the rise of touchscreen devices has led to a reinvigorated interactive music software and hardware market, as well as the current musical trends:

Introduction

Although experimental interactive audiovisual installations are still relatively commonplace nowadays, it is the rise in popularity in recent years of popular electronic music that has been the driving force behind the transition of HCI in music into mainstream popular culture.

(George Meikle in [START_REF] Meikle | Examining the Effects of Experimental/academic Electroacoustic and Popular Electronic Musics on the Evolution and Development of Human-computer Interaction in Music[END_REF])

Overall, the literature review conducted has shown that even though some differences exist in terms of relationship between the author and the software, the underlying models used are generally similar between interactive scores and interactive multimedia applications. Research on the interactive media fields however generally focus more on the overall synchronisation of media objects, and less on the methods necessary to achieve precise, sample-based synchronisation necessary for musical performance; research on spatial knowledge and constraints is sometimes considered in the field of interactive art, but is not as prevalent as it is in interactive media.

Methodology and approach

The main context in which this research did take place is the crossroads between art and science: the research process was heavily intertwined with discussion and feedback with and from artists and members of the creative community.

In particular, the work will refer to the notion of creative environments. This refers to software environments commonly used by artists to produce interactive digital artworks: Max/MSP, openFrameworks, Processing, Pure Data to name a few.

In particular, the main practical outcome of this work is a visual DSL1 tailored for the authoring of multimedia interactive scores. The software ossia score provides a working implementation of this DSL, used by multiple artists during the course of the thesis.

As was noted by Spinellis in [START_REF] Spinellis | Notable Design Patterns for Domain-specific Languages[END_REF], it is important for the design process to keep the domain experts as close as possible from the design process of the language: in the present case, these experts are the artists, scenographers, multimedia authors and composers such as live-coders and creative coders, or more generally "New Media" artists.

A tight feedback loop was ensured through:

• Regular meetings and artistic residencies of such authors, generally lasting up to a week, multiple times per year. • Regular communication through internet communication: in particular, a software development pipeline had been put in place to enable users to receive updates as soon as the software was modified, which enabled constructive feedback and external assessment of the model evolutions regularly. In practice, this led to almost 1402 distinct iterations of the main visual environment over the course of three years. This has implications in the evaluation of the work: multiple of the concrete applications and artistic productions presented in the last part of this thesis used inprogress implementations; two of them are using the exact model described in this document. Likewise, papers published at multiple points during this thesis represent intermediary states of this research and visual and execution models that were since reconsidered [START_REF] Celerier | Towards a Unified Interface for Scoring Time and Interaction in Proceedings of the International Conference on Technologies for Music Notation and Representation (TENOR)[END_REF][START_REF] Celerier | Rethinking the Audio Workstation: Tree-based Sequencing with i-score and the LibAudioStream[END_REF][START_REF] De La Hogue | Présentation D'un Formalisme Graphique Pour L'écriture De Scénarios Interactifs[END_REF].

We can relate the following quote which follows an external assessment of a meeting with participants of the project: 1.4. Contributions This work methodology, which empirically links in a tight loop experimentation to design and development, is however not without difficulty in practice. Professional show designers indeed cannot implement a work until the software has been developed, but the development can only happen following existing specifications, which are defined through speculation and extrapolation from situations lived by the professionals; however, the concrete cases, originating from artistic practice, regularly question the model and change the specifications. The work of scientists, whose formalisation models are regularly questioned and reevaluated, as well as of engineers, used to well-defined specifications, is hence challenged, even chaotic. It happened that the software had to be rewritten: since the beginning of Virage, there has been four distinct versions, and the sight of its completion is still not reached at the end of the OSSIA project.

Cette méthodologie de travail, qui noue empiriquement en une boucle serrée l'expérimentation à la conception et au développement, n'est toutefois pas sans difficultés dans les faits. Les professionnels du spectacle ne peuvent en effet réaliser un chantier qu'à partir du moment où le logiciel a été développé, mais le développement ne peut se faire que suivant un cahier des charges, lequel est défini de façon spéculative et par extrapolations à partir de situations vécues par les professionnels; or, les cas concrets, surgis des pratiques artistiques, viennent régulièrement remettre en question le modèle et modifier le cahier des charges. Le travail aussi bien des scientifiques, dont les modèles de formalisation se trouvent régulièrement remis en question, que des ingénieurs, habitués à des cahiers des charges bien définis, s'en trouve ainsi bousculé, voire chaotique. Il est arrivé que le logiciel doive être repris à zéro: depuis le début de Virage, il y en a eu quatre versions différentes, et l'horizon de sa finalisation n'est, à la fin du projet OSSIA, toujours pas atteint.

(Mireille Losco-Lena in [START_REF] Losco-Lena | Faire théâtre sous le signe de la recherche[END_REF])

The approach, differs fundamentally with previous works on interactive scores: the core of this thesis is not about providing an infallible formal model, but rather, given the expectation of artists and authors, assume that compromises are sometimes possible between correctness and other requirements of the authors.

Contributions

This works aims to provide a complete workflow and model for the interactive multimedia application creation chain, starting from the architecture of independent multimedia applications and going to the specification of their behaviour in time and over the network.

The main contribution is the description of a semantic to associate reactive multimedia processing with interactive scores.

This semantic is twofold: the data flow is separated from the temporal control flow. A particular combination and restriction of these two structures is proposed to simplify authoring. It can then be leveraged in a proposed visual language.

The temporal control flow is applied to the distribution of the execution of interactive scores across multiple computers: in particular, we are interested in the gain in expressive power that a distributed execution can bring to the temporal structure.

An over-arching goal of this work is to lay the ground for an easily extensible environment which would serve as a base for further research. This has implications in terms of modelling: the proposed model must be tolerant to modifications and extensions.

Organization

The chapters of the work can be read in linear order, however, skimming through Chapter 8 before reading Chapters 5,[START_REF] Toro | Structured Interactive Scores: From a simple structural description of a multimedia scenario to a real-time capable implementation with formal semantics[END_REF][START_REF] Arias | Formal Semantics and Automatic Verification of Hierarchical Multimedia Scenarios with Interactive Choices[END_REF] can be useful to form mental images of the resulting work.

Chapter 1 introduces the domain and problem space.

Chapter 2 presents existing solutions for interactive media scores.

Chapter 3 exposes the objectives and goals for this thesis, in reference to current and previous artistic and research works. This chapter ends the first part.

Chapter 4 proposes a homogeneous model for networked creative multimedia applications.

The model is used to structure such applications in the context of common creative environments. This chapter defines the scope of the work: which software are to be controlled, and in which ways.

Chapter 5 introduces a data model for ISs: how can scores and parts of scores produce meaningful inputs and outputs, such as sounds, visuals or network message for controlling the applications presented in the previous chapter.

Chapter 6 introduces a temporal model for ISs: how can the previous data model be orchestrated in time, how is time represented within the system, and how can a composer or author create interactive works with multiple competing time-lines, conditions and loops.

Chapter 7 showcases a specific union of the two previous models. The model resulting of this union aims to simplify authoring of the scores. In particular, this model is the one used during the execution of scores by the ossia score software.

Chapter 8 transposes the model of Chapter 7 to a visual syntax, which is used by the authors during edition in the ossia score software.

Chapter 9 presents distributed extensions to the theory of interactive scores: how can the temporal model of Chapter 6 be extended to work in a distributed fashion, and what expressive power can be added this way. This concludes the second part.

Chapter 10 discusses the software implementation of the various models established in the second part. In particular, the possible pathways for extending the system are presented. The performance characteristics of various parts of the system are benchmarked.

Chapter 11 discusses the shortcomings and remaining questions about the presented models. It also introduces specific patterns useful for the design of multimedia software in the visual language. In particular, this chapter covers how common multimedia software paradigms such as audio sequencing and live-looping can be recreated with minimal added complexity in the present environment, and how these patterns can be extended in ways impossible in the environments they originate from. In addition, applications of the current work are covered, such as musical creations or interactive installations created during this thesis by associate artists. 
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State of the art

We present in this chapter existing works and methods in the literature for the authoring, modelling, and interpretation of interactive music, media and art. A first overview of the field of interactive multimedia systems is given in Section 2.1. Then, common approaches for modelling such systems, are presented in Section 2.2. Formal models for reactive systems are exposed in Section 2.3. Section 2.4 gives an overview of music authoring environments, whether they target real-time music performance or not. The distributed aspects of multimedia authoring and execution are considered in Section 2.5. Finally, existing approaches for interactive scores are discussed in Section 2.6.

Interactive multimedia

Interactive multimedia systems, sometimes called interactive multimedia presentations in the literature are generally defined as multimedia systems with temporal and spatial flexibility:

[...] system or application supporting the integrated processing of several types of objects or information, being at least one of them time-dependent.

(A media synchronisation survey: Reference model, specification, and case studies, Gerold Blakowski, Ralf Steinmetz [START_REF] Blakowski | A Media Synchronization Survey: Reference Model, Specification, and Case Studies[END_REF])

A major part of interactive multimedia is temporal reasoning: how to describe the relationships between different media elements in time. We will provide a short overview of the most common models for this. Then, we will discuss multimedia approaches that have been proposed and accepted as international standards and data formats: they implement most of the points on which there is a strong consensus in the multimedia research community.

Finally, we will discuss important works in the interactive multimedia field. Note that a large part of interactive multimedia research is done on the notion of media files, encoding and network transport; this is outside the scope of this work and will not be discussed.

Temporal reasoning

Allen introduced in 1983 a temporal interval algebra [START_REF] Allen | Maintaining knowledge about temporal intervals[END_REF], used for reasoning on temporal knowledge. It is based on a set of relations:

• X before Y (Abbr. X < Y): X finishes at some point in time before Y.

• X meets Y (Abbr. X m Y): the end of X coincides with the start of Y.

• X overlaps Y (Abbr. X o Y): X starts before Y and ends during Y.

• X starts Y (Abbr. X s Y): the start of X coincides with the start of Y, Y ends before X.

• X during Y (Abbr. X d Y): X is entirely contained in Y.
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• X finishes Y (Abbr. X f Y): the end of X coincides with the end of Y, Y starts after X.

• X equals Y (Abbr. X = Y): the intervals start and end at the same time. The relations before, meets, overlaps, starts, during and finishes all have inverses: for instance, the inverse of X before Y is Y after X.

This algebra is able to express formally situations such as: "Simon reads Haskell papers during his lunch. Once his lunch is finished, he walks to the laboratory and calls his friend on the phone as he starts walking.".

The following informations can be deduced in the Allen interval algebra:

• Paper-reading {s, d, f, =} "lunch".

• Lunch {<, m} Walk.

• Walk s Phone call. Another way to reason about time was proposed by Vilain and Kautz in [START_REF] Vilain | Constraint propagation algorithms for temporal reasoning: A revised report[END_REF]: the instant, or point-based algebra. Objects of this algebra are single points in time.

This algebra only needs three relations, which can simplify formal reasoning:

• X < Y: X occurs before Y.

• X = Y: X coincides with Y.

• X > Y: X occurs after Y.

Allen relations can be expressed using the point algebra. An interval is equivalent to two points, its start and end: X → (X -, X + ), where X -is the start of X and X + the end of X. This can be written X -< X + .

Then, for instance the relation X starts Y can be translated into the following set of formulas:

• X -< X + : X is a correct interval. • Y -< Y + : Y is a correct interval.
• X -= Y -: X and Y start at the same time.

• X -< Y + : X starts before Y ends.

• X + > Y -: X ends after Y starts.

• X + < Y + : X ends before Y ends. Both of these models can be useful to provide reasoning abilities on time. They are used for instance in the OWL-Time ontology 1 which aims to provide a general framework for reasoning on time. The music ontology [START_REF] Giasson | The Music Ontology in Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)[END_REF] proposed by Giasson, Raimond, Abdallah and Sandler is itself based on OWL-Time and provides a formalism for music representation which leverages both point-based and interval-based relations.

Multimedia standards and formats

Quite early there has been interest on standardisation of interactive media systems: as soon as 1991 with HyTime [START_REF] Goldfarb | Hytime: A Standard for Structured Hypermedia Interchange[END_REF], based on SGML2 and which incorporated concepts from the upcoming SMDL 3 [46] standard. However, as noted later by the designers of the MusicXML [START_REF] Good | An internet-friendly format for sheet music[END_REF] format, these previous standards were not used due to difficulty of implementation and inadequacy to the actual needs of the composers.

More recently, the SMIL1 model [START_REF] Bulterman | SMIL 3.0: Flexible Multimedia for Web, Mobile Devices and Daisy Talking Books[END_REF] for interactive multimedia applications has been introduced: it is an "XML-based language that allows authors to write interactive multimedia presentations", generally used in a web context due to the presence of hyperlinks in the structure of SMIL documents. Media objects are represented in a graph structure. Temporal properties can be associated to objects: start and end time, duration, and other properties are available. SMIL has been modelled by Petri nets by Chung in [START_REF] Chung | Timed Petri Net Representation of SMIL[END_REF].

The MPEG-4 standard provides some ways to embed interactivity in an MPEG stream [START_REF] Schäfer | MPEG-4: A Multimedia Compression Standard for Interactive Applications and Services[END_REF]. A hierarchical structuring based on SMIL is used: the features are similar, but the XML2 syntax used changes. A novel point of this standard is the adaptation of video encoding and decoding with regards to the video layers that are shown. Interaction can be specified through either ECMAScript scripts or the MPEG-J Java API 3 and related applets -MPEGlets -which can be broadcast as part of the MPEG-4 stream.

Interactive multimedia systems

Interest in modelling such systems has been constant over the years. Ackermann in [START_REF] Ackermann | Direct Manipulation of Temporal Structures in a Multimedia Application Framework[END_REF] proposes a separation of hierarchical media systems, time-line based media systems and language-based media systems. Hierarchical systems work by representing media constructions as a tree of media objects. For instance, if a sound starts during another sound, it will be nested hierarchically during the longer sound. Time-line based systems provide a temporal axis which maps generally linearly to the passing of time. Objects are put by the authors on this time-line: their position defines at which point in time they will start. Finally, language systems are any kind of domainspecific language used for the specification of temporal media: this can be for instance command languages or declarative languages. The system proposed by Ackermann aims to combine the hierarchical and time-line model: he proposes an object-oriented approach to the modelling of such systems, by representing media composition by nestable time-lines. Execution occurs by regular sending of messages to objects. Every data-producing process interacts independently with the audio or video subsystems in ways hidden by encapsulation.

Hirzalla proposes in [START_REF] Hirzalla | A Temporal Model for Interactive Multimedia Scenarios[END_REF] a system of branching time-lines: that is, a condition will determine at a given time whether a set of time-lines will execute. Song et al. in [53] and Vazirgiannis et al. in [54] both model the temporal constraints by a system inspired from Allen relations [START_REF] Allen | Maintaining knowledge about temporal intervals[END_REF]. Multiple other authors follow this approach. A recent survey [START_REF] Meixner | Hypervideos and Interactive Multimedia Presentations[END_REF] identified more than 400 papers covering the notion of interactive multimedia, most of them providing some means to solve the temporal constraint problems.

The Madeus system for interactive media presentation has been introduced by Layaïda in his thesis [START_REF] Layaıda | Système d'édition et de présentation de documents structurés multimédia[END_REF]. It is based on a set of relations between temporal objects: Parmin(A, B), Parmax(A, B), Parmaster(A, B). In Parmin, two elements start at the same time. The end of the first element happening causes the second element to end, too. Parmax is similar: the construction stops when the longest element stops. Parmaster stops when A stops: B is dominated by A.

Modelling multimedia software

Improvements for the distribution of Madeus documents have been studied by Loay in [START_REF] Sabry Ismail | Schéma d'exécution pour les documents multimédia distribués[END_REF]: in particular, he considers the problems due to network synchronisation with remote media sources. In addition, web technologies such as HTTP 1 and RTSP 2 are presented as a viable presentation layer for Madeus documents. Madeus has been linked to SMIL by an XSLT 3 translation provided by Villard in his thesis [START_REF] Villard | Modèles de documents pour l'édition et l'adaptation de présentations multimédias[END_REF]. Tardif [START_REF] Tardif | réalisation d'une boıte à outils pour la construction d'environnements d'édition de documents multimédias[END_REF] focuses on the authoring part of Madeus and multimedia documents.

A special case of interactive media thoroughly studied in scientific literature is the hypervideo: a video which is not structured linearly and for whom the viewer can change the general course of the movie during the playback, generally through choice mechanisms. A hypervideo may not necessarily be a single video file: hypervideos are commonly arranged as graphs of such files. They can harbour additional media content, such as images or texts.

Modelling multimedia software

This section exposes the software architecture models and patterns commonly used to write multimedia and more generally art-related software.

Hierarchical entity models

A simple model often used in graphical environments is a hierarchical one: entities manipulated by the author are encapsulated recursively. Some environments provide implicit hierarchization. For instance, patchers such as Max/MSP and Pure Data are hierarchic in nature: patches can contain sub-patches. Other environments provide explicit hierarchization, through a tree of objects that can be dragged and dropped: this is the case of the Unity3D environment. Example of both cases are given in fig. 2.1.

Object-oriented models

More complex graphical applications written in programming languages such as Java, C ++ , SmallTalk, often use the MVC 4 pattern. It covers mainly the relationship with the Model, which contains the data on which the software operates, and the View, which allows interaction from external sources, generally user interface widgets. Multiple variants exist, such as Model-View-Presenter (MVP) or Model-View-View Model (MVVM) which provide different ways of communicating information between the model and the view, or the external interactions and the model. While this pattern is most often used as part of the design of authoring applications themselves, it has also been used in environments themselves embedded in authoring environments: for instance in the Jamoma [START_REF] Lossius | Modelview-controller separation in Max using Jamoma[END_REF] framework in particular as a set of Max/MSP objects, and for the design of web-based audio applications by Taylor in [START_REF] Taylor | A Web Audio Instrument Builder with Embedded Code Blocks in Proceedings of the International Web Audio Conference[END_REF].

An example of distributed object-oriented system with a similar approach is D-Bus [START_REF] Love | Get on the D-BUS[END_REF]. D-Bus is a successor to distributed object models such as ORB 5 , CORBA 6 , DCOP 7 .

1 Hyper-Text Transfer Protocol. 2 Real-Time Streaming Protocol. 3 eXtensible Stylesheet Language Transformations. 4 Model-View-Controller. 5 Object Request Broker. 6 Common Object Request Broker Architecture. In its case, interfaces have to be first declared in some way. The most common approaches for the declaration of D-bus interfaces, in XML format, are either writing them manually or leveraging reflection and code analysis to generate it automatically from code written in Java, C ++ , etc. Then, instances of given objects in these languages are bound to such interfaces; this can be again a semi-automatic or manual process depending on the environment used.

The D-bus concepts are instantiated inside two namespaces:

• The interface namespace: for instance org.myapp.synth would point to the declaration an interface with the parameters of a synthesizer. • The object namespace: for instance /org/myapp/synth would be the actual path to an instance of this synthesizer. While this approach allows a better separation of concern, since interfaces can be defined externally, it also leads to a duplication of concepts, and an increased workload for the software author.

Reactive systems

Reactive systems are systems which continuously transforms the input from an external environment into an output. Research on reactive systems takes its roots in research on concurrent processing. Part of this research considers the fundamental computational models: we note for instance Petri nets as a classical tool used when modelling computing systems [START_REF] Peterson | Petri Net Theory and the Modeling of Systems[END_REF], including reactive ones. Other aspects of the research on reactive systems are the design of convenient programming language to specify reactive programs. This generally implies that the language must have some built-in notion of time management. For instance, PEARL90 [START_REF] Halang | Safe Object Oriented Programming of Distributed Real Time Systems in PEARL[END_REF] 1 provides temporal primitives allowing for instance to perform loops at a given rate for a given amount of time. We present here an overview of various techniques used when modelling such systems.

Data-flow graphs

First researches on data-flow models date back to the late 1960, and are originally concerned with computer architecture -at this point, data-flow programming is as much a hardware than a software concept. Dennis introduces in [START_REF] Dennis | First Version of a Data Flow Procedure Language in Proceedings of the Programming Symposium -Colloque Sur La Programmation[END_REF] one of the first formalisation of a programming language based on data-flow graphs.

In a data flow representation, execution of a test or operation is enabled by availability of the required values. The completion of one operation or test makes the resulting value or decision available to the elements of the program whose execution depends on them.

(First Version of a Data Flow Procedure Language, Jack B. Dennis [START_REF] Dennis | First Version of a Data Flow Procedure Language in Proceedings of the Programming Symposium -Colloque Sur La Programmation[END_REF])

The amount of research on this field has led to various definitions of data-flow graphs and programs, sometimes incompatible [START_REF] Lee | Dataflow process networks[END_REF]. Kahn process networks (KPNs) [START_REF] Kahn | Coroutines and Networks of Parallel Processes Research Report[END_REF] are directed graphs which model concurrent processes (the vertices) communicating with infinite FIFOs2 (the edges). Processes can write to the FIFOs without blocking, but will block when reading.

Synchronous data-flow graphs extends Kahn process networks by adding an upper bound on the number of tokens in queues. This allows to compute a deterministic schedule statically and thus enables the program to run with static memory allocations. Other extensions of data-flow graph exist: for instance cycle-static data-flow. Most of the extensions aim to trade some of the generality of DFGs3 against stronger execution guarantees.

Dynamicity in DFGs is generally separated in two independent aspects: dynamicity of the data, and of the topology. The first relates to the variability on the streams of tokens, while the second is about changes to the structure of the graph. Boolean parametric data-flows [START_REF] Bempelis | Boolean Parametric Data Flow Modeling-Analyses-Implementation[END_REF] have been proposed to solve dynamicity of topology, by introducing conditionals at the edges.

Specific implementation aspects of data-flow systems are discussed in the Handbook of Signal Processing Systems [START_REF] Bhattacharyya | Handbook of Signal Processing Systems[END_REF].

Functional Reactive Programming

Research in functional programming, inspired by Backus's work on denotational functional languages [START_REF] Backus | Can Programming Be Liberated from the Von Neumann Style? A Functional Style and Its Algebra of Programs[END_REF], has led to modelling reactive systems in a pure functional way. A reactive system is in this context defined as a function that takes signals as inputs and returns signals as outputs. Signals are defined as functions taking the time as input, and returning a value of a type relevant for the application -for instance a floating-point number. This approach has been titled Functional Reactive Programming [START_REF] Elliott | Functional reactive animation[END_REF], and has been applied to various fields such as animation or robot control [START_REF] Hudak | Advanced Functional Programming: 4th International School. Revised Lectures[END_REF] through domain-specific languages embedded in Haskell.

Synchronous programming languages

Synchronous programming languages admit the synchrony hypothesis, useful in a reactive context. It assumes that computations can be divided in small steps, called reactions. These reactions are assumed to be instantaneous. Inputs and outputs to reactions are given a coherent logical date, instead of a physical time:

In practice, the synchrony hypothesis is the assumption that the program reacts rapidly enough to perceive all the external events in suitable order.

(Synchronous programming of reactive systems, Nicolas Hawlbachs [START_REF] Halbwachs | Synchronous programming of reactive systems[END_REF])

Multiple programming languages allow expressing synchronous data-flows, due to their use in real-time safety critical systems: ESTEREL, LUSTRE [START_REF] Halbwachs | The Synchronous Data Flow Programming Language LUSTRE[END_REF], Signal [START_REF] Halbwachs | Synchronous programming of reactive systems[END_REF][START_REF] Benveniste | Data-flow Synchronous Languages[END_REF], and more recently Lucid Synchrone and ReactiveML are all languages based on these core principles. Some, such as ESTEREL, use an imperative programming paradigm, while others, such as LUSTRE and Signal, are based on a declarative programming paradigm. Lucid Synchrone and ReactiveML are embedded in the OCaml functional programming language. Céu has recently been introduced as a synchronous data-flow language with temporal operators, and applications to multimedia [START_REF] Santos | CÉU-MEDIA: Local Inter-Media Synchronization Using CÉU in Proceedings of the Brazilian Symposium on Multimedia and the Web[END_REF].

Scheduling in multimedia reactive systems

A large majority of reactive multimedia software is based on data-flow principles [START_REF] Arumı | A Dataflow Pattern Catalog for Sound and Music Computing[END_REF]: domainspecific unit generators such as sound generators, video effects are connected together in a DFG. For instance, for low-level audio engines, one of the predominant methods is the audio-graph. Prime examples are Jamoma AudioGraph [START_REF] Place | The Jamoma Audio Graph Layer in Proceedings of the International Conference on Digital Audio Effects (DaFX)[END_REF] and Integra Framework [START_REF] Bullock | The Integra Framework for Rapid Modular Audio Application Development[END_REF]. Audio processing is thought of as a graph of audio nodes, where the output of a node can go to the input of one or multiple other nodes. Audio workstations such as Magix Samplitude (with the flexible plug-in routing) and Apple Logic Pro (with the Environment) provide access to the underlying audio graph.

A common approach in real-time interactive environments based on data-flow graphs is to pre-perform a topological sort of the nodes and then execute the nodes in the said order: this approach is for instance used as part of the Antescofo reactive loop [START_REF] Donat-Bouillud | Embedding Native Audio-processing in a Score Following System with Quasi Sample Accuracy[END_REF], in Dannenberg's Aura system [START_REF] Dannenberg | Combining Visual and Textual Representations for Flexible Interactive Audio Signal Processing[END_REF], in Pure Data and others. Donat-Bouillud gives in [START_REF] Donat-Bouillud | Multimedia Scheduling for Interactive Multimedia Systems Master's thesis[END_REF] an overview of the scheduling algorithms for other common real-time interactive music environments. Orlarey and Letz,[START_REF] Orlarey | Multicore Technologies in Jack and FAUST[END_REF], give simple steps in order to enable parallelism for dependency graphs of audio nodes, by adding counters to the input of nodes and distributing parallelizable nodes over multiple cores. Another approach for parallelization is proposed by Sadek in [START_REF] Sadek | Automatic Parallelism for Dataflow Graphs in Proceedings of the Audio Engineering Society Convention (AES)[END_REF], which looks for whole chains in the execution graph and schedules them in different worker threads.

Some environments allow cycles by delaying data in a circular execution by one clock cycle: this is the approach that can be taken in the LUSTRE language [START_REF] Halbwachs | The Synchronous Data Flow Programming Language LUSTRE[END_REF] with the operator pre.

The first steps towards music making on computers were made by Max Mathews in the well-known MUSIC-N family of programming languages.

There are multiple axes to consider when reflecting on programming environments for music. Many recent programmatic environments are based on preexisting general programming language, such as LISP, and extend it with constructs useful for the description of music. In general, programming languages of this kind offer a fair amount of flexibility in term of flowcontrol. However, they require additional programming knowledge for the composer to write scores with it. Other languages are built from the ground up with the explicit intent of being used for music. Various music programming languages are axed towards interpretation and execution of a given score, which can take the form of the program itself, while others will generate a score that is to be played by musicians.

Algorithm 2

Antescofo. A first quarter note, labeled "NoteA" is played. Then, a chord is played for a half note. Finally, another note "NoteB" is played, and execution jumps back to "NoteA".

BPM 120 NOTE C4 1 NoteA CHORD (A4 G4) 2 NOTE A4 1 NoteB @jump NoteA Algorithm 3 ChucK. Two sines are generated. One changes frequency every 50ms, the other every 100ms. Abjad [START_REF] Adán | Abjad Documentation[END_REF], based on Python and Lilypond, is a music typesetting software which uses a T E X-like syntax. Csound [START_REF] Vercoe | Csound: A manual for the audio processing system and supporting programs with tutorials[END_REF] and CommonMusic [START_REF] Taube | An Introduction to Common Music[END_REF] are score interpreters. Csound is its own language, descended from the MUSIC-N languages, while CommonMusic is based on LISP.

SuperCollider is a SmallTalk-inspired language and networked execution environment [START_REF] Mccartney | Rethinking the Computer Music Language: SuperCollider[END_REF] specialized for audio synthesis, as well as live and algorithmic sound composition. An example is given in Algorithm 1.

Antescofo is a programming language tailored for score following [START_REF] Cont | Anticipatory Synchronization and Control of Interactive Parameters in Computer Music[END_REF]. An example of trivial score in Antescofo is given in Algorithm 2. The main difference with other score following systems is its anticipatory nature: it couples the result of multiple estimation agents which operate probabilistically on both audio data, and evenemential data. Actions and variations of the position in the score are enacted according to these estimations. The scheduling strategies, along with an overview of the system, are described in [START_REF] Echeveste | A Dynamic Timed-Language for Computer-Human Musical Interaction[END_REF].

ChucK [START_REF] Wang | ChucK: A Programming Language for On-the-fly, Real-time Audio Synthesis and Multimedia[END_REF] is a programming language specialized for music, presented by its author Ge Wang as a "Strongly-timed, Concurrent, and On-the-fly Music Programming Language". It is sample-accurate and allows combining audio-rate and control-rate signals uniformly. An example is given in Algorithm 3.

Recent advances by Donat-Bouillud lead towards the use of dependent typing in the Antescofo language to enable verifications on buffer sizes for multi-rate schedulings [START_REF] Donat-Bouillud | Typing Heterogeneous Dataflow Graphs for Static Buffering and Scheduling[END_REF], following the introduction of signal processing in the system [START_REF] Donat-Bouillud | Embedding Native Audio-processing in a Score Following System with Quasi Sample Accuracy[END_REF]. Some environments provide a textual interface for input, but allow for a graphical rendering of the score: this is the case of INscore, introduced by Fober in [START_REF] Fober | Programmation Événementielle De Partitions Musicales Interactives[END_REF][START_REF] Fober | Programming Interactive Music Scores with INScore[END_REF] which is entirely event-driven, with scores being specified through an extended language taking its root in OSC messages. INScore provides many facilities for generating graphical or standard notation, and embedding reactive events in this notation [START_REF] Fober | Augmented Interactive Scores for Music Creation[END_REF][START_REF] Fober | Representation of Musical Computer Processes[END_REF]; an explicit time model has recently been introduced [START_REF] Fober | INScore Time Model in Proceedings of the International Computer Music Conference (ICMC)[END_REF]. Fig. 2.2 gives an example of interactive graphic score authored with the environment. Software in this category are audio sequencers such as Steinberg Cubase or Avid Pro Tools: they are mostly used to record and produce non-interactive music. They are generally considered to be digital versions of the traditional tools used in recording studios: tape recorders, mixing desks, effect racks, etc. Many commercial environments follow this paradigm very closely, with concepts of tracks, buses, linear time, which are a skeuomorphic reinterpretation of the multi-track tape recorder [100].

Fixed-pipeline visual music environments

These environments generally provide a limited flexibility in terms of routing and programming: it is not possible to provide new behaviours not expected by the developers. Extension is done through plug-in systems which allow inserting audio computations at specific points in the signal processing chain.

Interactivity is still possible: environments such as Ableton Live and Bitwig Studio allow to trigger and loop sounds upon external interactions, for instance through a control surface, which allows live usage.

Open visual music environments

We consider in this section extensible music environments, mostly of two categories: patchers and sequencers. Some of these environments are tailored for the authoring of static scores, with for instance an emphasis on generative features, and which will ultimately produce a score that can be for instance printable and handed out to musicians. Others are tailored for the authoring of dynamic programs part of actual live performance. The frontier between these two categories tends to blur in time: reactive environments are generally able to output static data if required, and static environments end up adding dynamic or reactive features.

These environments can sometimes be qualified as visual programming languages. They have often been subject to debate. An assessment of empirical evidence was led in 1996 by Whitley in [101]. He noted at that time that there was a need for more empirical evidence of the usefulness and added value of such languages, even though multiple studies had shown positive effects:

Properly-used visuals result in quantifiable performance benefits. Several studies showed visuals outperforming text in either time or correctness, sometimes in both. (Whitley,in [101]) This is not true for all specific programming cases: research presents evidence for textual languages being better at specific problems, and visual languages being better at others [102]. Of particular interest is the Maquette: a specific object which allows laying out generative patches in time and compose them functionally. Timed sequences specify temporal organization of musical objects [107]; visual editors are provided for various kinds of sequences. While OpenMusic used to be purely compositional, a recent extension has allowed OpenMusic to be used as a reactive system [108]. Denotational semantics have been provided for the visual language. PWGL [109] is another descendant of PatchWork, based on CommonLisp, which features a reworked user interface design. Like OpenMusic, execution in a PWGL environment is demand-driven: that is, the author requests the execution of a particular node of a program, which produces an output by recalling the dependent expressions recursively.

We can note in particular for PWGL the Expressive Notation Package [110]: a set of objects tailored for the creation of custom graphical notations for music.

Scores in patchers

Some of these graphic environments allow compositions of scores without the need to type commands, with end results much closer to traditional scores that the default objects provided with the patchers. Elements of these scores can sometimes interact reactively with the rest of the environment: they are not necessarily static. For instance, multiple Max/MSP externals, Bach for Max/MSP [111,112], note~1, rs.delos 2 and MaxScore [113] allow scoring in a piano roll, time-line, or sheet music from within Max. They are geared towards traditional, linear music-making, but it is possible to construct non-linear interactive song by combining multiple instances, or sending messages to the externals from the outside.

The Bach library for Max [112] allows to define temporal variations of parameters during the playing of a note by with the mechanism of slots. The processes controlled by such parameters are then available to use in the Max patch.

PureData has been proposed as a free-form score language by Puckette in [114].

The Max for Live extension to Ableton Live allows to embed Max patches in the Ableton Live sequencer. Through the API provided, one can control the execution of various elements of the sequencer in Max; automations in Live can also be used to send data to Max patches at a given time. This allows in some way to create Live scores which embed explicit programmatic elements.

A method for dynamic patching of Max abstractions based on CommonLisp has been proposed by Thomas Hummel [115] to reduce resource usage by enabling and disabling sub-patches at different points in the execution of a program.

Sequencers

Sequencers, unlike patchers, provide a visual depiction of time in their user interface, generally in the horizontal axis. They allow to layout media processes in time visually: sound files, au-tomations…Unlike fixed-pipeline sequencers discussed earlier, we consider here sequencers which allow some kind of extensibility: they are generally integrated with programming languages which allows to script part of the sequences instead of enforcing graphical interaction.

AscoGraph is a user interface (fig. 2.4a) for Antescofo. It binds the score specification language with a sequence-based visual representation, in order to help composers to introduce their scores in the system [116].

IanniX (fig. 2.4b
) is a score control system created by Coduys [117] based on the musical ideas of Iannis Xenakis, and in particular its work on UPIC.

It has strong ties with the notion of graphical score: the elements of the score in IanniX are geometrical entities such as circles, lines…These elements act as individual time-lines which can send commands through the network, according to the position of play-heads on their shape. Integra Live is a visual modular environment for sound and music composition, based in part on Pure Data [START_REF] Bullock | The Integra Framework for Rapid Modular Audio Application Development[END_REF]. It combines a track-based metaphor with advanced routing capabilities: parameters can interact across tracks and are not restrained to external control sources as they commonly are in simpler audio sequencers. A screen capture of the environment is given in Fig. 2.4e. The center part of the software contains the tracks with various sequences and automations inside clips and scenes. The right panel is a library. The bottom panel allows to change routings and parameters inside each clip.

Drile [118] is a virtual reality music creation software package. Loops are manipulated and bound together in sequences in a virtual reality 3D environment, through instrumental interaction. Hierarchy is achieved by representing the musical loops in a tree structure: the technique is called HLL 1 .

Elody [119] is a visual language for music composition taking its roots from λ-calculus. In particular, the environment allows positioning functions which will handle events at specific points in a time-line. It has been extended with real-time streams by Letz [120], which allows the environment to be used in live settings. Elody is visible in Fig. 2.4d.

Kyma is a hybrid software and hardware environment for sound composition [121], shown in Fig. 2.4c. It offers multiple pre-built facilities for sound creation such as multi-dimensional preset interpolation, sound composition by addition and mutation, or sequential and parallel sound composition on a time-line. Kyma has basis in object-oriented programming theory, its first versions being entirely reliant on SmallTalk-80. The main entity of Kyma is the Sound Object: a DAG2 of individual computations or media files. A vast library of Sound Objects is provided, in order to make the environment able to support multi-paradigm composition: with an instrument-score split à la Csound, with time-lines and virtual tape decks, or with traditional notation.

Live-coding and performance tools

Live-coding is a creative technique which appeared along the use of computers in artistic creations: in this case, the performer at the center of the stage is a programmer, who creates media associations generally in specially tailored programming languages. As an example, we can take Thor Magnusson's seminal work on the interaction of scores and live code: [START_REF] Magnusson | Algorithms As Scores: Coding Live Music[END_REF]. We note in particular the Threnoscope from the same author, an innovative pattern-based livecoding environment allowing the musician to dispose bricks of code in a looping sequencer [START_REF] Magnusson | The Threnoscope: A Musical Work for Live Coding Performance in Proceedings of the International Workshop on Live Programming[END_REF].

A screen shot is provided in fig. 2.5.

AudioMulch is an environment for live music performance, which also provides preset space exploration thanks to the Metasurface concept [122]. Cantabile Performer3 is also an environment geared towards live performance, with the ability to trigger sounds, and a temporal ordering. It is closer to the cue metaphor than the sequencer metaphor. 

Distributed multimedia

There are several families of software and tools that provide networking for multimedia authoring, and in particular music production. We distinguish low-level methods to synchronise audio streams across multiple machines, applications that enable collaboration when authoring media art, and applications for distributed musical performance. Then, we discuss of the link between temporal relationships and distribution: clocks.

Distributed applications

For audio synchronisation, we mainly note the multiple incarnations of the NetJack server [123] which aim to make accessible the elements of a Jack connection bay on several machines. These are master-slave Jack extensions that allow one machine to send one audio or MIDI stream to another by connecting a virtual cable. Carôt presents in [124] a more complete census of the sound servers adapted to the distributed musical game.

Different software allowing collaborative, desynchronised authoring, are presented in the literature or as commercial offerings: Ohm Studio [125] takes the principle of traditional sequencers and allows a sharing of documents to several users, on the internet. Splice [126] follows the same principle, but is oriented towards the community of beat-makers.

Distributed multimedia

Finally, there is a large family of tools geared towards real-time music improvisation [127]. These include NINJAM1 and eJamming 2 .

The OSC protocol [128] is commonly used to communicate between different parts of distributed music applications; while the protocol itself does not specify a transport mechanism, most implementations leverage an UDP3 transport.

Mobile and web applications are being increasingly used to create music, but they are often embedded in a bigger score or framework and act more as an instrument than in other systems. An interesting example of a web-based live sequencer is JamOn [129] which allows multiple users to collaboratively and interactively author music by drawing within a web page interface. A deeper overview of the collaborative music authoring environments is given in [130].

Clocks

Due to the temporal nature of the distribution problem discussed earlier, we are interested in possible mechanisms for time management between several machines.

The literature on distributed systems distinguishes several families of clocks:

• Physical: they mark the progress of time in the material world.

• Logical: they mark the advancement of time in the steps of a distributed algorithm, so no relation with time in seconds. • Hybrid clocks have recently been introduced to reconcile these two families. The two main methods for synchronising physical clocks are NTP 4 [131] and PTP 5 [132]. NTP is available on many platforms and allows in practice to achieve a synchronisation accuracy of a few milliseconds on the internet. PTP is more accurate and promises near-microsecond accuracy. However, this depends on the accuracy with which the packages are timestamped and thus the quality of the implementation of the PTP clock. In practice, the interest of PTP will be more pronounced when dedicated and expensive hardware (Grand Master Clock) is available to stamp the packages.

A monotonous clock has the characteristic of always progressing forward. Physical clocks are not monotonous 6 and thus cannot be used for stamping. Logical clocks were introduced by Lamport into [133] to provide formal reasoning and verification possibilities over the flow of time in distributed systems: they give a partial order between the messages exchanged in a distributed system.

Solutions exist to maintain a link between logical and physical clocks. For example, Google introduced TrueTime as part of the distributed Spanner [134] database. TrueTime works with intervals rather than precise dates, and requires synchronisation of physical clocks.

The hybrid [135] logical clocks offer guarantees of causality on a physical clock close to the precision of NTP, with a granularity close to the microsecond.

Finally, for musicians, clocks based not on a time in seconds, but on a musical time have been presented recently. They make sure that several machines will play on the same beat. This is the case for example with Ableton Link1 . Note also the Global Metronome [136], which uses Raspberry Pi and a GPS connection to offer this kind of synchronisation.

Interactive scores

This section will present the formal models that were used in different families of interactive scores, as well as the resulting software allowing to use and execute these models graphically.

Models

Previous work on the subject of interactive scores did take place in part at the LaBRI with the work of Jaime Arias, Mauricio Toro and Antoine Allombert, that attempts both to formalize the composition semantics and to provide ways for real-time performance of ISs. In order to give a formal foundation for interactive scores, and allow proofs and verification of temporal properties on the scores, multiple formalisms were researched for ISs. They focus mainly on the temporal semantics ( [START_REF] Allombert | Aspects temporels d'un système de partitions musicales interactives pour la composition et l'interprétation[END_REF][START_REF] Toro | Structured Interactive Scores: From a simple structural description of a multimedia scenario to a real-time capable implementation with formal semantics[END_REF][START_REF] Arias | Formal Semantics and Automatic Verification of Hierarchical Multimedia Scenarios with Interactive Choices[END_REF]).

Petri nets

Petri nets have been proposed as a model for music representation as soon as 1986 with the work of Camurri and Haus [137]. A prominent idea in the field is the use of Petri nets in order to model ISs, by focusing on agogic variations. The methodology followed by Allombert was to define basic nets for each Allen relation [START_REF] Allen | Maintaining knowledge about temporal intervals[END_REF], and then to apply a transformation algorithm, described in [5, section 9.2].

Coloured Petri nets were also used to model complex data processing in ISs [138], in order to allow the description and execution of sound processes to occur directly in the score.

In [139], Barate et al. extends P-Timed Petri nets with real-time alteration semantics, which permits the score to change in real-time without loosing consistency.

Temporal Concurrent Constraint Programming

Since the ISs can be expressed in terms of constraints (A is after B), one of the recurrent ideas for their formalisation was to use TCC2 and more particularly NTCC3 , since it allows constraint solving. This approach was studied by Antoine Allombert [140] and Mauricio Toro [START_REF] Toro | Structured Interactive Scores: From a simple structural description of a multimedia scenario to a real-time capable implementation with formal semantics[END_REF]141].

Reactive programming languages

Due to the static nature of models involving Petri nets and temporal constraints, a domainspecific language, ReactiveIS[142], was conceived in order to give dynamic properties to ISs. An operational semantic is defined using the synchronous paradigm, to allow both static and dynamic analysis of the ISs. This also allows composers to easily describe parts of their score that cannot be efficiently represented visually.

Timed Automata

Another model of ISs using the extended timed automata of UPPAAL has been developed by Arias [143]. Timed Automata allow to describe both logical and temporal properties of ISs. Moreover, the shared variables provided by UPPAAL allow to model the conditionals. They are also used for hardware synthesis [144]. Real-time execution semantics are implemented with this method; however, it does not cover loops.

Software implementations

The models described before were often subject to validation through implementation; sometimes as prototypes and proofs of concept, and sometimes as software actually used in an artistic setting. Boxes [146] is a software allowing free-form hierarchical composition of sounds in time. Constraints based on Allen relations can be added between boxes. It has two particularities not found in any of its successors:

Boxes

• A given composition (hierarchical object) can be referenced multiple times in a given score, which makes the hierarchy a DAG instead of a tree. [START_REF] Allombert | Aspects temporels d'un système de partitions musicales interactives pour la composition et l'interprétation[END_REF]. They are successors of Boxes [145]. The main novel point is the introduction of interactivity in the scores, with the notion of interaction point: some parts of the score can wait for an external event to happen before resuming their execution. In i-score, when a score is played, it is compiled into a HTSPN1 which is in turn executed using a Petri net simulator. The visual model is based on two basic elements: boxes and relationships between boxes. Boxes can contain either automation curves or other boxes. Interaction points can be put at the beginning and end of boxes. This introduces a graphical coupling between data and conditions: there has to be an automation curve in order to have interactions in the score, which led composers to create extremely small boxes only to be able to use interaction points. 

Conclusion

This section presented an overview of the various fields related to this thesis: the modelling and description of existing multimedia software is one of the first questions we must ask. Multiple models are provided in the literature: for instance object-oriented, hierarchic, with denotational or operational semantics. Various music and art systems are presented, most with specific interaction paradigm tailored to artistic use cases. We note specifically Antescofo, Kyma and IanniX, whose models and implementations aim to solve problems akin to those presented in this document. The discussion on distributed media in Section 2.5 serves as a preliminary introduction to the concepts used in Chapter 9. Finally, Section 2.6 provides an history of the research on which the proposed system is rooted.

3

Goals and objectives

Introduction

Following the state of the art, we can state that ISs and more generally real-time media authoring tools present in the literature tend to exhibit common characteristics:

• A hierarchical arrangement of time and structured temporal relationships between objects, often following Allen relations. • A hierarchical arrangement of logical relations between objects, as seen in Boxes, Virage, i-score. • A codification of interaction and variable, non-linear time.

• Conditional relationships between elements of the structure. • Looping.

• Communication with inputs and outputs: sound cards, MIDI1 or OSC2 devices, … This works aims to construct a new interactive score model offering these characteristics, and the associated score creation tool in a way that will foster creativity and enable, if not new designs, at least simplifications on common patterns used by artistic multimedia application authors. The following chapter presents various ideas that will be considered during this thesis, whenever design choices and questions arise: this chapter helps us define the goals and the design space for the authoring environment we seek to provide.

Context and discussion

Common definitions

Note that scientific literature provides multiple different and sometimes incompatible definitions for DFGs and surrounding concepts. We give here the simplest definition that allows an understanding of the problem of this thesis.

Definition 1 (Graphs)

An undirected graph G is a pair (V, E), with V a set of vertices and E a set of edges. An edge is a set of two vertices

V 1 , V 2 both in V .
A directed graph G is a pair (V, E), with V a set vertices and E a set of edges. An edge is a pair of two vertices

(V 1 , V 2 ) both in V ; in this case, V 2 is a successor of V 1 .
A path is a sequence of adjacent edges:

(V i , V j ), (V j , V k ), (V k , V l ), ...
A directed acyclic graph is a directed finite graph which admits a maximum path length: all paths are finite.

Definition 2 (Data-flow graph)

A DFG is a directed graph which models data relationships between operations. Vertices of the graph are associated with input and output ports; edges are pairs of ports instead of pairs of vertices.

Vertices, also called actors in this context, model a mechanism which consumes data from their input ports and produce data in their output ports.

Edges, also called channels in this context, model a mechanism which carries data from the output of a vertex to the input of another vertex.

Execution of an actor is called firing.

The data produced by actors is called token.

Definition 3 (Tick)

In real-time synchronous systems, a tick is the amount of time in which a program ran periodically must execute.

In artistic contexts, soft real-time is achieved if the duration of a tick is consistently shorter than the minimal duration perceived by a human. This allows for instance to apply effects to musical instruments without creating a delay for the performer.

On creativity

Even at the modelling stage, it is necessary to keep in mind the objective of enabling usage by creators, artists, and more generally people in a creative mindset. In particular, we use as a reference some design principles proposed by Resnick et al. in [3], given the focus on composition tools -taken in this case at the raw meaning of "composing objects together":

• Support Exploration: it must be easy to try, fail, retry different possibilities, as well as be explicit in the possible capabilities of the environment. • Low Threshold, High Ceiling, and Wide Walls: the environment must be easy to use for beginners, not limiting for expert users, and suggest the idea of exploration, for instance by providing a blank canvas. • Support Collaboration: the environment must support multiple persons working on the documents written in it. • Support Open Interchange: the environment must be compatible with other environments in similar domains. • Make It As Simple As Possible -and Maybe Even Simpler: it is allowed to add limitations, if it is done to simplify some cases. • Choose Black Boxes Carefully: when designing programming languages, the primitive elements of the language must be specified with consideration of the design space that should be allowed for authors, and adequate abstraction levels must be provided. • Balance user suggestions, with observation and participatory processes: users sometimes offer ideas according to their perceived problems, which may or may not match actual scientific observation. Likewise, Turner et al. in [2] run a study of digital art pieces, their design, and the design of the tools used to create the pieces. In particular, how immersive a tool is, how easily it permits hierarchisation of objects of the composition, how clear is the visualization of the objects used during creation are all identified as key elements of the creative software design. Eaglestone et al. present in [1] the results of a study on the electro-acoustic music composer's relationship to the software they use, and its impact on creativity. In particular, they noted that "All composers involved within the observations elected to work with multiple applications.", in agreement with previous studies on the same subject.

Finally, the end goal of creativity is to improve problem-solving for users of an environment: in particular, we aim to provide a visual programming environment. The field of visual programming languages has provided multiple studies [101,102] providing partial verification of the Gilmore-Green match-mismatch hypothesis: "problem-solving performance depends upon whether the structure of a problem is matched by the structure of a notation.".

On models and verifications

The end goal of this work is to provide a model suited for real-time usage, and a corresponding implementation. The model is given in the OCaml [147] language, which we intentionally restrict to pure functions and strictly functional semantics in order to give simpler grounds for a formal assessment of the method presented. In particular, we take care of staying within the bounds of the OCaml light system for which a complete formal semantics exists [148] and has been verified with the help of the proof assistant. This is done in order to leave open the possibility of a complete formal verification of the system proposed here at a later time, without requiring a rewrite in a sound environment. This is in contrast with previous work on the subject of interactive scores such as mentioned in Section 2.6, which focused on operational semantics through translation to intermediate models such as Petri nets, time automatas, or concurrent constraint networks.

The reasons for this are twofold:

• This keeps more proximity between the visual language and the objects of the model, and reduces the number of concepts required to describe it. The objects we use in the model of execution are almost exactly the objects used by the composer for authoring. For instance, in the method proposed by Allombert [START_REF] Allombert | Aspects temporels d'un système de partitions musicales interactives pour la composition et l'interprétation[END_REF], the score is written by the composer in a visual language, which is then translated to Petri nets; the nets are then executed with an interpreter. • This simplifies the description of general graph-like structures, and allows for faster iteration. This point is particularly important: as mentioned before, the conception of a system tailored for creation requires many iterations, generally involving back-and-forth in semantics and even kind of objects, as well as frequent refactoring; a textual language for which well-tested compilers and toolchains exist helps to reduce the cost of each iteration greatly in contrast with for instance Petri net models. We however loose the possibility to apply common tools used for instance for constraint or soundness verification directly. This does not mean that verification is impossible. For instance, we give in [START_REF] Arias | Authoring and Automatic Verification of Interactive Multimedia Scores[END_REF] a method to transcribe a part of this work -the temporal model -to the time automata model proposed by Arias. This translation is then used to verify properties with CTL1 formulas in the UPPAAL model checker [150] as an offline step. For instance, formulas such as: ∀ ⋄ sound1.f inished ∧ clock < 30000 can be checked to ensure that a given sound of the score guarantees termination before a certain amount of time (in this case 30000ms).

It is also important to note a few differences between the OCaml model and the C ++ implementation (the latter described with more details in Chapter 10):

• The model uses closed polymorphism to enumerate a small set of unit generators [151] of the system. The C ++ implementation uses open polymorphism through inheritance, as this is the standard way to provide extensibility to object-oriented systems. • Due to the real-time requirements of the software, we have to take specific care of minimizing memory allocations and system calls during execution, due to the design of current desktop operating systems [152]. This implies for instance that most allocations will be cached and reused. Translating this to the functional model would blurry its definition without helping the cause of the temporal semantics. To achieve this, the C ++ algorithms are not pure and most structures are mutable.

In particular, we take care in the model to separate the immutable structure of the entities we work with, and the state that will variate in time; the C ++ implementation merges both, to allow for better cache behaviour: structural and variable data relating to the same objects are generally related enough that being physically close in computer memory can provide important performance benefits. Sadek in particular identifies in [START_REF] Sadek | Automatic Parallelism for Dataflow Graphs in Proceedings of the Audio Engineering Society Convention (AES)[END_REF] the importance of cache in audio applications by showing that increasing the number of threads in a multi-threaded data-flow paradigm can cause buffer underruns to happen faster due to the decreased cache efficiency. This leads to more audio clicks, an undesirable behaviour; this was corroborated by Orlarey and Letz while providing a method to parallelize Faust code with OpenMP in [START_REF] Orlarey | Multicore Technologies in Jack and FAUST[END_REF].

On authoring and interaction

The system presented here is meant to be used directly by authors and creators of multimedia works; we must question its position in relationship with other creation tools that were mentioned in Chapter 2.

At a purely technical level, we wish to provide the same expressive power than common multimedia creation software: Max/MSP, Pure Data, SuperCollider …At the very least, enough extension points must be provided to enable general computations on different multimedia data types in the system.

We also have to take into account the temporal nature of the programs we want to author, and the constraints that this implies in terms of user interaction, as well as the possibilities that this opens. Bailey states in [153] the following about multimedia authoring applications which uses a synchronisation model, in reference to the work of Gross and Do related to pen-based design process: Synchronisation models provide inadequate support for modelling innovative user interaction, which is required for an innovative multimedia application. Also, in order for a specification to be executable, it must be both precise and complete. However, early in the design process, a designer needs to be ambiguous, imprecise, and vague.

(Ambiguous Intentions: A Paper-like Interface for Creative Design [154] Mark D. Gross, Ellen Yi-Luen Do) The present model shall then be able to cater to both aspects of the problem: enabling authors to produce behaviour without requiring an over-specification of their design, while still enforcing rigorous semantics.

The authoring environment should focus on higher-level default building blocks than the ones generally provided in media programming language. The user should seldom have to manipulate lists, write complex data processing algorithms or precise filters, even though the possibility must exist should the need arise. This is done in accordance with the Low Threshold, High Ceiling and Support Many Paths, Many Styles guidelines given above.

Another important point is the plurality of data types that should be manipulated in a single environment, and the relationship between multiple authors that may intervene on a single multimedia work of art, each with a specialized focus:

It is not anymore about isolating a particular media, but about having a conception on the authoring of a dynamic scenography. This raises the question of knowing who does the writing: the sound designer, the light designer, the scenographer, the director ?

Il n'est plus question d'isoler tel ou tel média mais d'avoir une pensée sur l'écriture d'une scénographie dynamique. Ça me pose la question de savoir qui écrit: la personne qui est au son, à la lumière, le scénographe, le metteur en scène ? (François Weber, teacher at the ENSATT1 )

A practical application is the focus on integration with other environments, workflows and programming styles. This integration can happen in two ways:

• External: the model communicates, for instance with network messages, with other software or hardware tailored to specific tasks: for instance video processing, sound synthesis…While such integration is easy to put in place, and the focus of multiple of the interactive score systems presented before. There is however a large drawback: asynchronism and non-determinism are introduced in the score system. • Internal: the model integrates other environments as unit generators directly in its execution loop. This allows, if the target system supports it, to keep stronger semantics for the overall system. Both cases are studied and allowed in this thesis: the following chapter presents an abstraction that covers them both, and enables their use from the execution model. In particular, the following environments are supported through internal embedding within the software, some built-in, other through plug-ins:

• Faust2 [155], a well-known audio programming language tailored for efficient real-time processing. • The QML3 language can be used. It is a superset of Javascript -in particular, ECMA-262 5th edition [156]. It is relevant for general computations and algorithms. • An entry point to the GLSL4 language is provided for generating real-time GPU graphics. • The Mathematical Expression Toolkit Library (ExprTK) [157] is provided as an optimized environment for simple mathematical computations in the score. • Pure Data is embedded thanks to libpd [158]. This allows users experienced with dataflow programming to easily leverage their knowledge while authoring the score. The support of these environments is done in accordance with the positive consensus in the programming community around DSLs: [159][160][161].

For many applications, however, there are more natural ways to express the solution to a problem than those afforded by general purpose programming languages. [...] With an appropriate DSL, one can develop complete application programs for a domain more quickly and more effectively than with a general purpose language.

(Domain Specific Languages, Paul Hudak [159])

In particular, media applications themselves cover various domains, such as audio processing or graphics; we assert that providing a wealth of specific languages adapted to each task, and orchestrating them from a host environment is a necessary pathway to efficient intermedia authoring.

Targeted behaviours

A study of the field shows that there are common expectations on multimedia and especially audio software. We consider four categories of specifications:

• The creative environment specification, which is about the interaction of the author with the software: how the software can help the author to produce relevant scores. • Technical specifications are about the precise behaviour in terms of performance to enable usage in a real-time reactive context. • Distribution specification is about the interaction of the environment in a setting with multiple processes or computers. • Model specification is about the representation of concepts general enough to cater to the needs of the previous categories. Some of these expectations will serve as explicit goals that the implementation should be able to meet to be relevant; others are more general guideline principles that are used whenever a choice is possible between different possibilities for the model. Most of these goals are related to more precise requirements that were put in place during the OSSIA and Virage research projects.

A system for creativity

Intention before correctness

In the field of temporal interval and multimedia object layout, it is commonplace to leverage constraint resolution systems [START_REF] Song | Interactive Authoring of Multimedia Documents in a Constraint-based Authoring System[END_REF]141] in order to enforce valid temporal intervals between objects. These constraint systems would enforce that the constraints put by authors in such environments were respected, generally by moving the position of objects to satisfy the constraints in real-time. However, it has appeared when exchanging with users of such environments that this was not a desirable behaviour for authoring -at least, not if enforced: this can cause precise arrangements of temporal objects to break due to underspecification by the author. A possible solution would be to put more constraints, but this would then often break the creative flow of the author for the sake of protecting the work from the very algorithm that is supposed to help it. Besides, while it makes sense for the final resulting program at the end of the authoring process, during this same process, it is generally impossible to enforce permanent coherence. That is, even if generally the author wants to go from one coherent program to another coherent program after an edition, the shortest path between these two programs is not always a coherent program itself. A practical example is textual programming: generally, most the program text between two keystrokes will not even respect the language syntax, but these steps are necessary to go from one valid program to another. This also apply to visual languages, especially those with constraints: it can sometimes be easier to temporarily have an invalid constraint which will be made valid soon afterwards, than enforce validity at every program state change which would prevent many edits to be made.

Hence, we believe that the model should primarily respect the intention of the composer, even at the cost of producing incorrect or temporally incoherent behaviours at some point during execution: it is always possible to add off-line or explicit on-line verification passes later, but these must not be a hindrance to the author during the creation of artistic works.

Freedom of extensibility

Generally, we do not wish to impose constraints on the extensible parts of the system: that is, as far as possible creative freedom is encouraged, even at the expense of program safety. This stems from a simple observation: as soon as external code is allowed in the system, in languages without strong temporal and spatial bounding guarantees, such as dependently-typed programming languages (for instance, McCarthy provided library-level solutions in the Coq proof assistant [162] to enforce bounds on temporal complexity [163]), it becomes extremely hard to guarantee program behaviour. But, as mentioned before, extensibility is a main tenant of creative authoring environments. Hence, we make the choice of not imposing artificial restrictions on the system which we would not technically be able to enforce.

Visual interaction

We want to provide a well-defined visual language to interact with the model. It is clear from [START_REF] Turner | Towards a Supportive Technological Environment for Digital Art in Proceedings of the Annual conference of the Computer-Human Interaction[END_REF] and [START_REF] Resnick | Design Principles for Tools to Support Creative Thinking[END_REF] that most creative types are better able to express themselves in visual environments. A major reason for this is the discoverability and explorability of such environments, in contrast with textual languages which require a learning step. This has also been verified by Stowell and McLean in [164] in which the importance of a visual language as primary syntax is noted in the context of live audio performance.

Live-coding

Live-coding has been briefly introduced in Section 2. 4.3.3. The model should be amenable to live-coding and reactive editing without limitations: the environment must allow changes during the execution to adapt to live performance conditions. This necessity has been made explicit during seminars with practitioners from the scenic arts field: however good and complete the specification of the score may be beforehand, there must always be a way to take care of unattended events. In particular, the user must not be stuck or loose time during a critical moment of the performance because of a constraint that may have been placed on the score during the main composition process.

Freedom of data production

The model should guarantee the ability to produce large amounts of data in a short period. This is one of the most problematic choices we are to make: in practice, this means that the synchronous hypothesis as generally used in synchronous data-flow systems cannot be formally accepted in our case, as it requires a bounded number of tokens in a given logical time unit to be valid.

The main reason for this is to allow for specific kinds of music piece which rely on arbitrarily high number of messages occurring at the same time: for instance, we can refer to so-called "black MIDI" musical pieces for which a compositional goal is to fit the maximal possible number of MIDI notes that a computer may play in a song. Fig. 3.1 showcases this. A current record is more than 688 million notes in a 5:40 span which amounts to an average of 2.26 million notes per second, or 15601 notes per audio sample at a standard sample rate of 44.1kHz. Likewise,in [165], Coleman experiments musical composition with large-scale replication of musical entities in order to study the timbral properties of such sounds: in practice, this leads to songs with millions of duplicated and separately time-shifted audio tracks such as the author's a multitude, before creation 1 .

Of course, it is impossible to guarantee real-time behaviour in such cases, but we do not wish to restrict their expression; a similar design choice has been expressed made by Bresson and Giavitto in the design of the reactive extension to OpenMusic [108]. Another aspect is the magnitude bounding of values, generally done for safety of the execution of programs. Artistic creations sometimes rely on overdriving the "safe" set of values [166]:

As I began to play with the code, setting weird numbers in the functions, I found a way of generating leaves by really upping the number of iterations and using a couple of conditional statements [...] (Processing -Creative Coding and Computational Art, Ira Greenberg)

Other examples could be going beyond the Nyquist frequency2 in a digital oscillator to get an aliasing effect: kernel_panic is a fixed-format work that explores the use digital audio artifacts as musical material: The byproducts of aliasing, quantization noise, and clipping are liberated to the forefront of the composition process [...] (kernel_panic, Jerod Sommerfeldt)

Hence no restrictions shall be enforced, though value bounding should be available for the majority of .

Edition and execution

We must take care to separate clearly the authoring time needs, and the execution time needs. In [START_REF] Desainte-Catherine | Towards a Hybrid Temporal Paradigm for Musical Composition and Performance: The Case of Musical Interpretation[END_REF], Desainte-Catherine et al. distinguishes between environments catering to either needs, as writing-oriented for the first ones, and performance-oriented for the second ones, and mentions the need for a convergence of both approaches. However, it is important to consider that different needs arise in both cases, for instance in terms of verification: while in multimedia authoring environments the authors can generally insert temporal constraints between elements, as mentioned before, there may be cases during the edition where these constraints should not be enforced: else it would be either impossible or at least tedious to write scores.

Integration

As mentioned before, we want to be able to do both internal and external integration of multimedia software. In particular, the programs and media scores authored should stay independent of the actual external software: it should be possible for instance to replace an instance of Maxbased sound synthesis with an equivalent sound synthesis built in SuperCollider without needing to change the score. The motivation for this is mainly platform independence: it is nowadays common to run media software on multiple platforms, some being traditional desktop systems, and others being embedded boards which run specialized operating systems. Porting to such platforms should not require more work than ensuring that every generator is available, and if one is not, that there is a way to replace it easily.

An efficient environment

We use an integral logical time, based on a multiple of the media streams part of the score to ensure no loss of precision.

Audio must be buffered, and execution must happens on regular ticks whose physical duration matches the logical duration in samples of this buffer: this is in adequacy with how current audio hardware and middleware operate [167][168][169][170]. This method, generally named pull or buffersynchronous in the literature, is necessary in order to provide the lowest achievable latency on common operating systems. The buffer size may not always be a constant.

In particular, in the context of this thesis, we call audio sample the individual data point and audio buffer a sequence of audio samples.

A common method in creative environments is to have two rates: one for control signals, which can be once per buffer with the value of parameters being set by events at the beginning of the execution, and one for audio signals [START_REF] Vercoe | Csound: A manual for the audio processing system and supporting programs with tutorials[END_REF]103]. We wish to provide a more general multi-rate enabled behaviour:

Sample-accuracy

Sound generation and control must be sample-accurate. Sample-accuracy is generally meant as the possibility for the composer to describe events occurring at the level of a single audioframe [START_REF] Wang | ChucK: A Programming Language for On-the-fly, Real-time Audio Synthesis and Multimedia[END_REF]. That is, an event happening at a given time position must have repercussions exactly at this logical time in following processes or unit generators. It does not mean that every process must generate data at each individual audio sample, though: this would be costly in performance while not necessarily improving perceptual cues.

Liveness

No deadlocks must happen: the multimedia scenarios must never find themselves in a configuration where the execution would be stuck with no possibility of forward progress. In particular, this means that we have to handle cases where deadlocks would happen due to invalid temporal intervals, as mentioned previously. A first solution is to make impossible the creation of obviously invalid constructions: for instance, A occurs before B and B occurs before A. A second solution is to have well-defined backup strategies to use whenever a constraint cannot be satisfied at run-time. These strategies can then be given under the form of hints by interactive score authors.

A general model

The model should not come with strong limits on temporal dispositions of objects. For instance, the model for time conditional-branching scores described by Toro in [START_REF] Toro | Structured Interactive Scores: From a simple structural description of a multimedia scenario to a real-time capable implementation with formal semantics[END_REF] does not support multiple interactive musical structures starting at the same logical time. We want to preserve the freedom of the author to dispose temporal objects as arbitrarily as possible.

Hierarchisation

The model should be hierarchical: this has been noted as a defining feature of creative environments [START_REF] Turner | Towards a Supportive Technological Environment for Digital Art in Proceedings of the Annual conference of the Computer-Human Interaction[END_REF]. We also refer to the work done by Berthaut in [118] which focus on the notion of HLL. Interesting points of HLL noted by the author are the ability to choose the complexity level at which one wants to operate during playing, adaptability to different levels of experience, and easier collaboration due to the ability to work on different independent nodes of the tree.

Multi-scale data

In relationship with the hierarchy, the model should support multi-scale control on the data. That is, media data can generally be studied at the macroscopic, sometimes semantic scale: for instance, a sequence of audio clips, musical notes, and abstract description of processes such as a musical accelerando. They can also be studied at the microscopic scale: for instance the individual audio sample. Vaggione notes the following in [START_REF] Vaggione | Some Ontological Remarks about Music Composition Processes[END_REF]:

By using an increasingly sophisticated palette of signal processing tools, composers are now intervening not only at the macro-time domain (which can be defined as the time domain standing above the level of the "note"), but they are also intervening at the micro-time domain (which can be defined as the time domain standing within the "note") (Horacio Vaggione [START_REF] Vaggione | Some Ontological Remarks about Music Composition Processes[END_REF])

Relative conception of time

While music composition environments such as audio sequencers generally adopt an absolute view of time, in the context of interactive media and interactive scores "temporal objects" must necessarily be laid out relatively to each other at least at the authoring phase, since anything that would follow an interactive event cannot be given an a priori date. Methods to represent relative temporal intervals generally relate to Allen [START_REF] Allen | Maintaining knowledge about temporal intervals[END_REF]'s work on temporal knowledge.

However, while Allen intervals are indubitably useful to perform an a posteriori analysis and reasoning of an existing work, we believe that they do not map to the state of mind of authors during the authoring process. Vazirgiannis notes in [START_REF] Vazirgiannis | Specifying and Authoring Multimedia Scenarios[END_REF] in particular, that while they are useful as a tool to model time as a relative notion between objects, they are not immediately practical for multimedia applications:

Multimedia applications demand that a relationship doesn't change when the duration changes. The descriptive character of Allen's relations doesn't convey the cause and result in a relationship. (Vazirgiannis et al. in [54])

That is, Allen relations are able to state A meets B and C overlaps A and B. However, in the case of interactivity, if A becomes longer or shorter during the execution, Allen relations by themselves provides no ways to ensure that A will still be meeting B: it is necessary to add a model on top of it, very often under the form of temporal constraints networks.

A distributed system

Distribution covers the ability of the system to be used over multiple processes or computers.

We consider the questions of distributed authoring and distributed performance separately.

Distribution of tools

The Virage and OSSIA research projects have put in evidence the need for interoperability of tools in a creative setting. For a new musical or media application to be relevant for artists and creators, it should be able to exchange informations with the existing set-ups. This can be as simple as receiving "play", or "stop" messages to control playback for instance, but also cover deeper temporal synchronisation or network communication with common software and hardware. This is enabled by the use of common protocols in the field of media arts: MIDI, OSC, DMX 1 to name a few.

Distributed authoring

While research on distributed authoring systems -sometimes called collaborative editionstarted multiple decades ago, it is with the rise of web applications that such features have become mainstream. These systems allow multiple users to edit concurrently a single document, while maintaining consistency of the document: for instance, two users editing a text document or a spreadsheet online. There are two main approaches to distributed authoring: operational transformation and conflict-free replicated data types. Operational transformation relies on the idea that the various clients will perform edition actions on their document, and broadcast their changes through command sent to other networked instances editing the document. The instances receiving the messages will then adapt the received command in order to keep consistency with its current internal state. Conflict-free replicated data types [171] covers a specific kind of data structures which support concurrent non-blocking operations natively. Each computer applies the local and remote operations indiscriminately; for each data structure a merging algorithm between two concurrent instances is defined. For instance, grow-only counters are counters where the only possible operations is to increment it. Merging the state across multiple replicated instances is done by taking the max of the counter. The system is then able to converge towards a consistent state over time -this is sometimes called eventual consistency.

Hence, distributed authoring is a problem well-covered in the literature: it is generally possible to take most GUI authoring systems and transform them to enable collaboration. We will not consider it further in this document.

Distributed performance

A less covered question is its of distributed performance and execution, in particular in the context of reactive systems. In particular, what are the cues that can be provided by the author to enable distribution of some parts of an interactive work, and how can interactivity, for instance with sensors and other parts, can be defined across multiple machines, each with their distinct physical inputs and outputs.

Supporting distributed performance natively can have multiple advantages in the context of interactive media: in contrast with approaches where a root instance sends messages to all the clients for each change of parameter in time, we can instead consider the case where the score is known beforehand to each instance and as such can be executed with only the exchange of required temporal synchronisation messages, plus any message necessary for the actual score. This frees network bandwidth, which can be relevant for small, embedded systems nowadays commonly used in interactive art. For instance, multiple works by the artists Les Baltazars leverage Raspberry Pi Zero; benchmarks have shown that network performance of these devices could be estimated at between 50Mbit s -1 and 100Mbit s -1 ; if data transfer such as real-time sound or video is necessary as part of the work, we should strive to minimize the overhead of other parts of the system. In addition, this reduces common undesirable behaviours such as network jitter or packet loss.

Applications can range from simple synchronous playback of media between multiple computers, for instance to enable synchronised video walls, or native support of redundancy for the system: should a computer crash during performance, a backup one should be able to carry on with the performance. In particular, for performance involving multiple machines in a single location, it is important for delays between the outputs of the machines to be minimized.

Introductive example

Let us first present a small example of the meaning of these various concepts, and how the construction we provide maps to them. This example uses the constructions that will be presented throughout this document. It is useful as a medium to keep in mind the kind of behaviours that we expect to be able to easily construct by the end of this thesis. An example of organization of the objects will be introduced.

We will consider a small score which operates on two output parameters:

• The first is an external control: for instance, the intensity of a light.

• The second is a sound output. The score is described as follows:

• For five seconds, an automation1 curve produces a value at regular intervals. The curve itself is shorter than five seconds: it is looped periodically. • If an external toggle was enabled when the score started, this value should be transformed through an easing function2 before being sent to the light intensity parameter controlled by an external software. Else, it should be sent directly to this parameter, without taking the mapping into account. • After these five seconds, a five-second sound starts playing.

• At some point in the score, upon the triggering of a physical switch, an audio filter id applied to the sound. If the switch does not trigger, the effect eventually starts at 7 seconds. • When the sound stops, the effect stops, too. This score can be seen under multiple aspects.

Data aspect

The aspect the reader of this document will certainly be most familiar with is the data-flow. 

Hierarchical aspect

Note that the previous graph does not mention in any way time or hierarchical relationships between its objects. Yet, the temporal behaviours described implicitly reference a hierarchisation of objects: in particular, the unit generators are expected to run for a given duration. A simple way to achieve this is to consider that durations are modelled by an explicit domain object, and nest unit generators under these objects. This method will be developed in Chapter 6; for now it is enough to say that these objects will be named interval; an example of such a hierarchical layout is given in Fig. 3.3.

Then, we need to consider the temporal layout of such intervals. In previous literature, this layout what was generally defined as the notion of interactive score. In our case, we will give a different definition of interactive scores, which takes the data semantics into account.

As such, this temporal layout will be modelled by an object named scenario. Likewise, a looping behaviour was mentioned: another object will serve to model such loops. 

Temporal aspect

We now have to introduce the interactivity and durations mentioned in the score. This is done by laying out the intervals in a graph-like structure which will be explained in detail in Chapter 6. In a few words, in addition to the interval, we introduce two objects: one to handle temporal conditions (TC) such as when …then …, and another to handle logical, instantaneous conditions (IC) such as if …then ….

We will show that introducing these two kinds of condition as vertices of the graph whose edges are intervals of a single hierarchical level is enough to allow the specification and authoring of a large panel of interactive media. An example of such a graph is given in Fig. 3.4.
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Figure 3.4.: An approximation of temporal graph for the score discussed in this section: elements will be scheduled in the order given by a visitation of this graph.

Visual aspect

Once the models are defined, some method to interact with them is necessary. A visual language directly based on the domain objects will be presented in Section 8.1. It is developed with the help of designers and artists with the goal of making the authoring of scores in the given model an attainable task. To achieve this, some restrictions are imposed on the model: this language will either forbid some constructs or provide simple pre-set semantics that will not be modifiable directly. 

Problem exposition and goals

The main goal of this thesis is to specify these graphs in order to allow a generalized data-flow to take place during the execution of the aforementioned temporal tree. This raises questions related to the interactivity:

• What happens if the physical switch is triggered too early?

• How does the temporal structure relate to the audio buffering method which expects the system to produce a given number of samples at a regular pace, and in particular, how to execute this temporal structure while keeping the performance advantage of multi-rate systems? • How do external controls enter the system, and how is data produced?

The main idea will be to split the user-defined data-flow in separate flows that will occur at different point in time, according to the current state of the temporal tree.

In particular, we show in Fig. 3.6 and Fig. 3.7 the cases that can occur according to the date of triggering of the external switch. Each cell of the table shows the data-flow associated to a particular logical tick, which is defined by the intervals running during that tick.

Note that for instance some ticks contain sets of intervals that are in sequence; it can legitimately be asked why objects arranged in sequence would be active at the same time. The rationale for this behaviour will be explained in Chapter 5.

In addition to these cases, we must also take into account the possibility of the toggle not being toggled, which would cause the mapping unit generator to be absent of the data-flow and the automation to output directly to the OSC address /light/intens. This is the central point: how to handle data-flow with dynamically enabled nodes in the context of interactive scores.

A software

The ideas and models of this thesis are implemented in the free and open-source software ossia score. This software is developed and promoted by a community of users and artists, many of whom have provided a lot of input, ideas (and, most of all, bug reports!).

A particular care has been given in ensuring that the implementation works on common operating systems on a wide range of hardware. User experience has been verified to be sufficient to allow a practitioner without programming experience to learn to use it autonomously. Chapter 10 details the software environment.

A research environment

An additional objective is the creation of a new research platform for interactive scores: this means that the software and model must be easily extensible to allow for experiments to take place within its bounds. Two categories of research can be explored: the various approaches for the continuous redefinition of interactive scores themselves, and the extensions that ISs can bring to other models or paradigms. The first thematic for instance would be about comparison between multiple semantics for data execution in the score, such as synchronous or asynchronous: hence, the environment must allow for instance to swap different execution engines. The second is about the use of interactive scores as a support for a specific musical or artistic work: the present work has been for instance used by Arias and Dubnov in [38] to construct a musical environment adapted to improvisation by segmenting pre-recorded audio phrases, to allow constrained improvisation according to high-level musical structures. Likewise, Miranda and Antoine used it in [START_REF] Miranda | Interactive Computer-Aided Orchestration with Temporal Control in Proceedings of the International Conference on New Music Concepts (ICNMC)[END_REF][START_REF] Antoine | Generating Orchestral Sequences with Timbral Descriptors in Proceedings of the Timbre Conference[END_REF] in order to generate orchestrated musical phrases according to timbre directives, such as "bright violins" or "cellos from warm to dull in five seconds" as a tool for timbre-based compositions.

Conclusion

This section presented the various goals and design questions that we have to ask before introducing a model for interactivity. These goals were evaluated during the thesis, through communication with authors and analysis of existing works of art and media installations. In particular, we insist on the importance of enhancing, or at least not harming, the creative and artistic process: authoring tools in the field of interactive arts should not put themselves in the way of creation.
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Autom. Part II.

Mapping

A model for temporal interactive media

The goal of this part is to associate traditional DFGs with temporal semantics tailored for interactive execution. In terms of model, three structures are presented in the following order:

• Chapter 4 presents a model to architect and structure multimedia software able to communicate over the network. • Chapter 5 uses this model as a foundation upon which a data graph expressing data relationships between objects of the score is built. In particular, in contrast with other flow-based approaches for media authoring, an explicit environment notion is introduced. • Chapter 6 introduces a temporal tree which orchestrates the data relationships in time.

• Finally, the data graph and temporal tree are combined in Chapter 7. The resulting object of this combination is the embodiment of the notion of computational interactive score. The temporal tree allows three things:

• Embedding interaction choices in the time-line.

• Arbitrary hierarchy.

• Merging of loop-based and timeline-based control: we show later in Section 11.4 that this is enough to allow both time-based and loop-based behaviours to co-exist in a single structure and user interface, unlike existing approaches which splits those in two mostly distinct domains. This enables a large array of possible intermediary behaviours. We give here for the sake of reference a short overview of the resulting overall execution method: At each tick, the temporal tree runs as described in Chapter 6. This produces tokens in the DFG nodes. Once tokens have been produced for every temporal structure, the data graph runs as described in Chapter 5. Graph nodes which did not receive any token for a given tick will not be executed.

To accommodate for the temporal semantics, data semantics are extended with:

• The ability to specify input and output addresses to ports. This allows nodes to read and write directly from the global environment, in a specified way and can be used to leverage type information associated with the parameters. • Special connection types between edges to leverage the fact that not all nodes may be running at the same time. When the graph runs, nodes read and write from their input and output ports; relevant values are then copied in other ports or in the environment by the supervising algorithm. The environment is separated in two parts: a local part which can serve to reuse the result of given computations in further node executions, and a global part which maps to messages sent to external devices.

4

Models and control of interactive media

The goal of this chapter is to present a model for the authoring and execution of ISs, as described in Section 1.2.3.

It is important to note that there are two levels of distribution addressed in this work. The present chapter covers distribution of a general artistic system (for instance, a specific work of art) over multiple software and hardware, each specialized for different tasks. For instance, a software produces sounds while another produces visuals; a third software receives inputs from a MIDI controller and dispatches them to the two previous ones over the network. These programs could be preexisting environments, such as Max/MSP or VDMX, but also new environments created by the authors specifically for a given work of art. This only requires individual messages exchange: for instance, "set the video background colour to blue on software X".

Chapter 9 proposes another distinct form of distribution: the distribution of the execution model of a single software over multiple computers. That is, specific parts of the control flow of a single program are deported to other machines according to rules that will be presented.

Data and environment

In order to be able to control a given piece of software or hardware, it is necessary to have a model of it. Given the focus on artistic applications, the model that we propose has specificities tailored to this particular kind of work.

Then, we present how this model is mapped to actual applications and hardware, either preexisting or future ones, and how it allows to orchestrate them through the network. From now on, we will refer to the model of such an application, either hardware or software, as a device.

We are interested in the control of specific parameters: for instance, the cut-off of a filter in a synthesizer, the colour and intensity of a projector, the welcome text displayed in a software. A device can communicate through various protocols: one of the most common in this field is OSC [128]. Section 10.1.6.2 has a quick reminder on the OSC protocol. Following the OSC specification, we consider a device to be a tree of addressable parameters: Definition 4 (Device Tree) A device tree is a n-ary tree of nodes, associated with a communication protocol: Device = Protocol × Node.

The definition for nodes is given in Definition 12. For now, we simply consider labelled nodes, as in fig. 4.1. Such nodes can optionally be associated to a parameter, and various metadata properties which will be described afterwards. Protocols will not be defined explicitly: an overview of the various supported protocols are presented at the end of this chapter.

It is possible to refer to a node of this tree by its path: /sound/lopass, which implies that children nodes of a given node may not share the same name. Definition 5 (Device Tree Path) A path of a node N in a device tree is the sequence of node labels in the path going from the root of the tree to N . A mapping exists from node paths to character strings: the labels are concatenated with the / character. By convention, the path of the root of a device tree is the / character.

A node has attached data and optional metadata. The most important is the value; this chapter describes the meta-data and the operations such metadata enable. We call these metadata attributes.

Data types

We choose a limited set of data types relevant to media software authoring. This set is inspired from real-world usages and protocols such as OSC, MIDI, DMX. Values can be sent and received through this parameter, between multiple software.

Value

Let T list be a list of elements of type T. The value is defined as a union of fundamental types.

Definition 7 (Value) Value

= Float | Int | Impulse | Bool | String | Char | Vec2f | Vec3f | Vec4f | Value list | Nothing
Some remarks on the choices of types:

• 32-bit types are used instead of 64-bit for two reasons: most OSC-compliant software currently expect 32-bit values, and higher precision is generally useful to prevent precision loss when doing computations, while these data types are the ones used at the boundaries of the system. Instead, using 32-bit types reduces network bandwidth usage. • One can remark that the Vec2f, Vec3f, Vec4f are redundant with Value list if the list has 2, 3, or 4 floats. In practice, offering specific fixed-length types is useful for data types commonly used in creative fields: coordinates (x, y, z), colours (r, g, b, a), etc. This can also serve as a way to limit dynamic memory allocations, which can negatively impact latency in real-time applications [172]. For the sake of simplicity, we will from now on just refer to these three types as VecNf.

Domain

It is uncommon for a given problem domain to accept unbounded inputs. For instance, the frequency of an audio filter will generally be in the human audible range. The intensity of a light will be given between zero and one and then translated in hardware to the real scale. As such, we associate domain-related attributes to the parameter.

Definition 8 (Range)

Option T = Some T | Nothing Range T = Option T × Option T × Set T Range String = Set T Range Impulse = ∅ Range VecNf = Option Float N × Option Float N Range Value list = Option Value list × Option Value list Definition 9 (Domain) Domain = Range Float | Range Int | Range Char | Range String | Range Vecf | Range Value list | Range Impulse
The common numeric types such as Int, Float use a generic domain with a minimum, a maximum and a set of values.

The filtering of a value through the domain operates as follows:

1. If the set of values isn't empty, the value is allowed to pass if it is contained in a set. 2. Else, a bounding algorithm is applied to bound the value between the min and max. Multiple bounding algorithms are possible for number-like values; they can be useful to keep the value in a given range while loosing less information than a simple clipping.

Examples are given for x ∈ [-4; 4], min = -1, max = 1:

• No bounding: the domain is only indicative; the filter is the identity function.

• Clipping: • Wrapping: the value wraps around the domain. Only defined when both min and max are set. x f mod y is the floating-point modulo of x relative to y, x f rem y is the floatingpoint remainder of x relative to y and d = |min -max|: • Folding: the value goes back in the opposite direction if it goes beyond a bound. Only defined when both min and max are set.

clip(x, min, max) = ⎧ ⎪ ⎨ ⎪ ⎩ x, if min ≤ x ≤ max min, if x ≤ min max otherwise -4 -3 -2 -1 0 1 2 3 4 -1 0 1 Figure 4.
wrap(x, min, max) = ⎧ ⎪ ⎨ ⎪ ⎩ x, if min ≤ x ≤ max min + (x -min fmod d), if x ≥ max max -(min -x fmod d), otherwise -4 -3 -2 -1 0 1 2 3 4 -1 0 1 Figure 4.
fold(x, min, max) = { x, if min ≤ x ≤ max min + |(x -min frem 2d)|, otherwise
Array-like values behave similarly, but can be filtered on a per-value fashion. Values ought to be filtered both according to a range and temporally: another attribute, the repetition filter, filters a new value if it did not change from the current value of the parameter. 

Dataspaces

A last attribute is associated to parameters: the semantic category they pertain to. This category is called unit.

For instance, the frequency of an oscillator is controlled in hertz, the colour of a projector with a RGB1 triplet.

Definition 10 (Unit) An unit is an attribute associating a semantic meaning to a value.

Definition 11 (Dataspace) A dataspace is a set of units convertible between each other.

Units are not necessarily those of the international unit system. Dataspaces are similar to the notion of physical quantities, but they can have an abstract meaning instead of a physical one.

Note that dataspaces and domains are dissociated: a value may go beyond the physical boundaries generally associated with the dataspace. For instance, the domain of an angle is generally in the [0; 2π[ range, but going beyond 2π can mean that multiple turns are maderemember in particular the examples of Section 3.3.1.5.

A given dataspace is defined as a union of units:

Color = ARGB | RGBA | BGR | ...
Each dataspace have a neutral unit, which can be considered the default unit for this dataspace. These units are chosen according to their prevalence in artistic and creative environments. Conversions to other units in a given dataspace are done by converting from and to this unit.

Each unit has an associated storage format. For instance:

Type ARGB = Vec4f Type BGR = Vec3f Type Degree = Float
Hence, any given unit consists in a pair of functions:

Unit = FromNeutral × ToNeutral
Where, given an unit T and a neutral unit N :

FromNeutral : Type N → Type T ToNeutral : Type T → Type N
For instance, the ARGB1 colour format is the neutral for the colour dataspace. The BGR2 colour format is defined as: BGR = argb → (argb [START_REF] Resnick | Design Principles for Tools to Support Creative Thinking[END_REF], argb [START_REF] Turner | Towards a Supportive Technological Environment for Digital Art in Proceedings of the Annual conference of the Computer-Human Interaction[END_REF], argb [START_REF] Eaglestone | Information Systems and Creativity: An Empirical Study[END_REF]), bgr → (1.0, bgr [START_REF] Turner | Towards a Supportive Technological Environment for Digital Art in Proceedings of the Annual conference of the Computer-Human Interaction[END_REF], bgr [START_REF] Eaglestone | Information Systems and Creativity: An Empirical Study[END_REF], bgr[0])

Converting from BGR to RGB means that the conversion goes from BGR to ARGB to RGB. This method is chosen in opposition to writing all the possible conversions separately as this would mean P |Units| 2 conversion functions to write instead of 2(|Units| -1) 1 . However, a drawback exists: for conversions involving more complex floating-point arithmetic, some precision may be lost in the process.

Parameter

The parameter is a product of the attributes defined previously. Coherence between the attributes is kept by converting the relevant types in a best-effort fashion. This is needed because the framework is meant to be used in a dynamic context: for instance, the meaning and semantics of a given parameter may change for an author during the composition process; hence mutating operations have to be provided to allow for live experimentation.

For instance, changing the unit of a parameter from "RGB colour"to "ARGB colour", implies that the value representation format may change too, from Vec3f to Vec4f. In this case, the type of the domain would be changed to match the new type of the value.

Node

Nodes of the tree mentioned earlier can now be defined. A node identifies an element of the software we aim to model; it is given a human-readable name. Using names for identifiers in this fashion has the advantage of enabling pattern-matching-like behaviour, and keeping a simple compatibility with OSC. Another requirement is being able to add any kind of user-relevant meta-data to a given node: for instance, descriptions, tags, etc. This attribute is encoded in a dictionary Dict String Any which allows storing where Any is a value of unspecified type; that is, the type of a value is erased from the type system and stored at run-time instead.

Hence, we get the definition of a node:

Definition 12 A node is a labeled n-ary tree, where nodes may be associated with a set of fixed attributes and a set of variable attributes.

Node = String × Option Parameter × Dict String Any × Node list

On Any

A relevant question is: why leverage type erasure for some attributes when stronger typing is available ? The reasoning is that this can be used as a prototyping tool for future requirements. New attributes can be added without modification of the object's data structures, in order to allow testing of their use-case by users of the system, without requiring harder code change steps. Then, if the utility of an attribute is proven after practical experience with it, it can be migrated to the stronger typed definitions provided, which will also have the benefit of increased performance due to fewer indirections required to access the data.

Device tree: operations, considerations and usage

Operations on a device tree

The simplest operations we can have on a node are the usual ones for a tree: adding and removing children.

Standard reading operations are available on parameters of the tree:

• get: parameter -> value: retrieve the current value stored for a parameter. It is undefined whether the value is the latest being applied in practice in the remote device. • pull: parameter -> value: retrieve the current value stored for a parameter, with a synchronous request to the remote end: the value returned is guaranteed to be at least as recent as the one present on the remote end when the request was made. • pull_async: parameter -> value future: retrieve the current value stored for a parameter, under the form of a future1 : the remote end will reply asynchronously; the future object can then be queried for the replied value at a later time, without blocking the control flow of the program. • request: parameter -> unit: requests the remote end to send a message with its current value to the local end; no guarantee is provided. These four actions allow to adapt the implementation of multimedia software to the different latency and performance compromises that they may require. The default recommendation is to use pull, which provides the strongest correctness guarantees.

Likewise, writing is possible in different ways:

• set: update the local copy of the value.

• push: update the local and the remote copy of the value. Finally, it is possible to request notifications on value changes:

• add_callback: parameter -> (value -> unit) -> callback_index: a function is registered in the parameter, and will be called whenever it is updated. • remove_callback: parameter -> callback_index -> unit: unregister a previously registered function.

Device tree: operations, considerations and usage

Using these functions allows multimedia software to be built in an event-driven fashion. This is the mechanism upon which the request function is built: the requested value will be notified to all the callbacks when it is received. The support for notification is specific to each protocol implementation. This can provide optimization opportunities: a protocol can for instance enable data transfer only for listened parameters1 .

Applications with multiple devices

We may have more than a single device considered in a given multimedia software. Consider for instance a musical instrument which would accept OSC inputs from the network and send MIDI outputs to sound hardware. The following convention is put in place: every device will have an identifier -such as myDevice -and prefix the addresses. An actual address would then be myDevice:/my/address: this allows preventing ambiguities in the software and to make possible unique determination of multiple identical devices across a single software.

Unless it is necessary, in this document, we will omit the device part since there will generally be no ambiguity.

Patterns and accessors

The OSC protocol supports some form of pattern-matching of addresses, through a pattern language similar to XPath3 traditionally used to represent paths in XML documents. That is, a single OSC address pattern can refer to multiple addresses: /a*/ refers to all the addresses of a server with a single fragment beginning with an "a", so /ami, /a.a.aaa would match, but not /ami/b. This can apply as well to nodes of our tree, since we follow the same structure.

We also extend this notion with the idea of accessors: it is very common for array-like parameters to require the ability to access a single value of the parameter: for instance, 4 in the [START_REF] Resnick | Design Principles for Tools to Support Creative Thinking[END_REF][START_REF] Toro | Structured Interactive Scores: From a simple structural description of a multimedia scenario to a real-time capable implementation with formal semantics[END_REF][START_REF] Desainte-Catherine | Towards a Hybrid Temporal Paradigm for Musical Composition and Performance: The Case of Musical Interpretation[END_REF][START_REF] Allombert | Aspects temporels d'un système de partitions musicales interactives pour la composition et l'interprétation[END_REF]. No explicit way is provided in the OSC protocol to handle this: it is the responsibility of the software to implement array access. We believe that a unified solution should be provided for this, and propose the following grammar for accessing array elements: (* e.g. color.rgb or color.rgb.r; we make a precomputed table with only the valid combinations. *) unit-qualifier: dataspace, '.', unit, ('.', unit-accessor)?; osc-accessor := osc-address, `@', array-accessors | unit-qualifier; ], /a@[1] [START_REF] Turner | Towards a Supportive Technological Environment for Digital Art in Proceedings of the Annual conference of the Computer-Human Interaction[END_REF] for instance would yield the sixth float value in the message order. • Unit conversion: taking a value and getting it in another unit of the same dataspace: for instance, given an address /a in the RGB colour space, /a@[color.lab] gives the same value converted in the La * b * colour space. • Unit conversion and array access: it is also possible to access a single component of a multi-dimensional unit: /a@[color.rgb.r] gives the red colour component of the value. This is equivalent to /a@[0] if /a is in the RGB colour space or /a@ [START_REF] Eaglestone | Information Systems and Creativity: An Empirical Study[END_REF] if in the ARGB colour space, providing a simple example of how this can reduce the mental hurdles of the author who often works with this kind of data. Accessing an undefined value, is implementation-defined to leave open the door to performanceoptimized implementations tailored for small devices: OSC is often used on microcontrollers, for instance, where bound checks can have a measurable cost. In our implementation, an outof-bound access or an impossible conversion such as a frequency to a 2d position, yields a value of the Nothing type; others could for instance throw an exception.

On instances

A common use case must be considered: node duplication. For instance, a simple polyphonic synthesizer can be modelled by nodes for each sine, with gain and frequency child parameters.

When the software author wants to add more bands, he would simply duplicate the objects corresponding to the existing bands and set new parameters on them.

Since the name of a node serves for its identification, when duplicating a part of the tree, we ensure that if the requested name is already used we create or increment an identifier.

The syntax for the names given in regular expression format is:

\[a-zA-Z0-9.\]+(.[a-zA-Z0-9])?
where the first part is the root object and the second part the instance identifier.

We extend the pattern-matching features of OSC with a special case for instances: The character ! allows to select all the instances of an object.

For instance, in fig. 4.5, the expression /synth/sin!/gain refers to /synth/sin.0/gain, /synth/sin.1/gain, /synth/sin.2/gain.

Conclusion

In this chapter, we presented an application model which allows both the reflection of current, existing media software and network APIs, and the easy authoring of new applications, based on OSC-like semantics. Unlike existing RPC1 approaches such as D-Bus, it aims to be used both in a local software, to refer and control to different parts of a creative application easily, and remotely, where it can be used to interact with other software. This application model is implemented on multiple creative environments, which allows them to interoperate easily. The implementation is detailed in Section 10.1. Attributes of objects are tailored for multimedia creation; in particular, the set of attributes associated to objects is split in a constant part which can always be expected and allows for better performance, and a variable part which allows for further extensions of the model in the case of new artistic needs. Protocols for querying the state of the model are discussed: in particular, the OSCQuery protocol, is shown as viable for the required use-case.

In addition, we note that this model is useful for the documentation of media applications: the device tree provides an abstract specification of such an application, which could then be used for recreation of equivalents or re-implementations due to future hardware or software limitations such as operating system incompatibilities.

A point not considered in this chapter is the temporal semantics: for instance, OSC allows to associate time-tags to messages, in order to specify at which date they may occur: further developments would include these in the model. Another concern not discussed here is the dynamicity of the system: to what extent can the model be extended at run-time while maintaining coherency in the network.

5

Data graph

Introduction

In this chapter, we will introduce the necessary elements that will be used to perform computations and generate data in interactive scores. In particular, we try to provide execution semantics able to take into account dynamic activation of nodes. That is, we must not assume that at a given point during the execution of a score, all the nodes of the graph provided by the author will be active: some may not have started playing yet, for instance. In addition, as explained before, the programs in the given model are meant to be executed in heterogeneous environments. Some computations can take place locally, in the course of a single tick, while others can take place in different programs, sometimes in different computers altogether. To simplify authoring, the solution must strive to make both intra-process and inter-process communication seamless from the point of view of the software user.

We argue that in some cases, it can be meaningful in terms of authoring behaviour to acknowledge that some circumstances can cause a unit generator from a DFG to not execute, while still keeping following nodes executing. A common musical occurrence of this case is the guitar pedalboard: it is part of the normal flow that some pedals may become enabled at some time and not at another. As an example, take Fig. 5.1: it is not unthinkable to assume that the patch would still be useful musical material if the [lop~] low-pass filter, or the following reverb [rev1~] was to be temporarily disabled. In this case, we would still want sound to flow through the soundcard by the [dac~] objects. However, this case is much less convincing for the [mtof] object, which converts values in the MIDI range into the corresponding frequency in Hz, or for the [osc~] object which converts this frequency into a corresponding sine wave.

Hence, we need a way to specify that some dependencies between nodes are critical to conserve a correct behaviour, while some others can be bypassed. While in the guitar pedalboard case this effect can be implemented by a simple bypass at the unit generator level, we show that we can achieve more general dynamic behaviours without abandoning safety and reasoning abilities on the program, through the introduction of two elements:

• An environment in which unit generators will be able to read from and write to.

• Qualifiers on connections between ports of the unit generators. This chapter is structured as follows: we first introduce an environment which will store values used for local computations between unit generators, and communicate with the outside world. Then, we present the design of the data graph we use: how ports, connections, and nodes are defined; the notion of node activation is introduced. New attributes are applied on connections, in order to specify the inter-node behaviour in cases where all the unit generators are not active. The notion of scope in context of the environment is discussed. Finally, the overall scheduling and execution semantics are provided: in particular, multiple execution semantics are discussed, relative to the level of dynamicity acceptable in the system. Some ideas presented in this chapter have been published in [START_REF] Celerier | Extending Dataflow with Temporal Graphs[END_REF]. In particular, we will keep the same introducing example and motivation: we consider two unit generators f 1 and f 2 . Both execute for a finite amount of time, but the order in which they execute is not defined: for instance, we can consider the execution traces in fig. 5.3a and fig. 5.3b. The data relationships between the unit generators are also left undefined -the possibilities are showcased in fig. 5.2.

f 1 f 2 (a) f 1 f 2 (b) f 1 f 2 (c)
Figure 5.2.: Possible data-flows between f 1 and f 2 when no specification is provided. 

f 1 f 2 t 0 t 1 t 2 (a) A possible trace of execution for f 1 and f 2 . f 1 f 2 t 0 t 1 t 2 (b) Another trace of ex- ecution.

On design choices

The overview conducted by Arumi et al. in [START_REF] Arumı | A Dataflow Pattern Catalog for Sound and Music Computing[END_REF] provides many insights for the design of a dataflow system for music. This work provides insights about common data-flow patterns found in music software, and more importantly what are benefits and drawbacks of each of these patterns and design choices: operating in pull mode or push mode, separating hot and cold inlets1 and outlets2 , monitoring the content of such ports without too much negative performance impact, etc.

In this work, we strive to restrict the design to the minimal concepts able to make it viable for the intended usage: as such, some of these common patterns are not considered directly. In particular, it is important to note that the goal of this data-flow system is only to be supportive of the temporal structure presented in the next chapter: as such, the software should stay open to alternative designs and behaviours for data processing, as long as they respect the same guarantees for inactivity of unit generators.

In particular, for the sake of simplicity, we choose to operate in push mode at the unit generator granularity: unit generators will write to buffers that are copied to the input of the successor unit generators. Remember that the root tick operates in pull mode: the push mode mentioned here is only used inside the tick. While this has an impact on performance, Section 10.4 will show that the implementation is competitive with other data-flow audio frameworks. Both inlets and outlets are passive: no processing occur in any other place than the main function of each unit generator. The graph is responsible from copying data from the environment to the nodes, between nodes, and from nodes to the environment.

This work also acknowledges concepts introduced by the Jamoma project, with the Jamoma Audio Graph Layer [START_REF] Place | The Jamoma Audio Graph Layer in Proceedings of the International Conference on Digital Audio Effects (DaFX)[END_REF][START_REF] Place | A Flexible And Dynamic C++ Framework And Library For Digital Audio Signal Processing[END_REF]: in particular, contrarily to other patching environments, the authors assert that "connections between objects must be capable of delivering multiple channels of audio" and make a convincing case of the simplification this enables, as shown in Fig. 5.4. 

General execution method

As mentioned before, we aim to leverage a common method in media and particularly audio environments: callback-driven execution (sometimes also called pull mode by opposition with a push mode where data has to be read and written regularly to the output devices). The entire execution must happen in a callback requested by the sound card driver; the contract is that the application will write data corresponding to the amount of time requested by the driver, generally counted in terms of audio samples There is no guarantee that the number of requested audio samples will be a constant across different ticks.

Durations and tokens

Doing so allows to provide low to very low latency guarantees: with specialized audio hardware, it is possible to reach minimal latencies smaller than five milliseconds. The onus is then put on the application to perform all the relevant computations in the given time span. Some specific platforms allow for even better performance through this paradigm: Moro et al. showcase in [173] the use of Pure Data in the Bela embedded board, which allows for latencies smaller than a millisecond; such low latencies can be necessary for applications requiring tight feedback loops such as specific human-machine interfaces for musical expression.

It is always possible in such cases to simplify the semantic by treating each sample individually and running the whole execution algorithm on it. This would often be wasteful on resources: many algorithms are able to produce data for longer periods with no difference on their output. But the performance cost of running a complete execution algorithm for each time unit can be wasteful. A classical example is playing a sound file: it is always possible to write all the requested samples in one go, instead of writing them one by one. In particular, with current compilers and processors, this provides an important advantage: when copying more than one sample, it will generally be possible, either to auto-vectorize1 if the number of elements is a known compile-time constant, or if it is not possible, to call specialized implementations at run-time. Even if auto-vectorization is not possible, cache effects remain: there is a lower chance of cache misses if a unit generator is able to compute successive samples one after each other; cache misses can incur strong run-time penalties 3 .

In this work, since we aim for real-time performance, it is only normal that we try to take advantage of longer buffers, and try to run the processing steps as scarcely as possible, without sacrificing more accuracy than acceptable in the computations.

Definition 13 (Root tick) A root tick is a complete execution step of an interactive score.

Since the audio hardware will generally be the driver of all following operations, this execution step will have to happen during the time left by an audio callback.

Durations and tokens

Since the work is predominantly concerned with time intervals and temporal processes, it is necessary to define relevant data types which will be useful for the execution: During a tick, unit generators will be requested data for specific time spans. We call this request a token request:

Definition 15 (Token request)

type token_request = { token_date: duration; position: position; offset: duration; };; token_date is the date that an object reaches at the end of a request. position is the position in the execution of the object relative to its parent in the temporal tree. The reason for the position will be explained in Chapter 7. offset is the index, relative to the beginning of the current root tick, at which the first data must be written for this tick, if any.

Environment

We use the data structures presented in Chapter 4 as a base for an environment: in particular, parameters and values. Keys in the environments are paths to parameters of a device tree, similar to OSC paths: /sound/lopass. From now on, we will be able to refer to such addresses as variables.

The environment is twofold:

• A global part refers to the external devices and outside world. As far as possible, it always represents the state of the outside world: if a physical slider moves, the environment should reflect the change in value as quickly and accurately as possible in order to allow for reactions in the score. • A local part will be used as a store for intermediary computations during an execution tick.

In particular, this local part will not be subject to any external influence, which allows better reasoning on the program behaviour. Note that we are considering not only fixed values, generally called controls, but also messages. It would be unwieldy to represent a MIDI message as a variable of the environment since there is no guarantee that a single message would happen, and considering that we wish not to lose any message that may have been received by the system. Likewise, the Impulse data type presented earlier is not useful if we consider only a variable with a value of such type; we are interested in the happening of such events.

To reconcile this with the notion of environment, we define the value associated to a parameter in the environment at a given tick as a time-stamped list of values. We keep track of two timestamps: a temporal one which corresponds to a date relative to the beginning of the current root tick, and a logical one which is a message index. Different unit generators can insert messages at any temporal index during their executions. However, message indices are handled by the system to ensure that every message happens can happen in the order of unit generator execution if necessary. An example is given in fig. 5 At the beginning of a root tick, the local environment is empty, and the global environment contains the list of messages which were received since the beginning of the previous tick. At the end of the tick, some data may have been written in the local environment: it is then merged and written to the global environment. We call this operation commit. Its semantics will be given in Section 5.5.4.2. Specific functions are provided to read and write the global environment; their implementation caters to each protocol supported. We will assume the existence of the following functions: push_global will send network messages, MIDI messages, commit audio data to the soundcardprovided buffer…pull_global will read the current running value of a parameter in the device tree. In particular, pull_global is used if a value is needed but no message has been received recently.

Even though this can make reasoning on programs harder, the implementation keeps the possibility for unit generators to write to the global environment at any time, even in the midst of a tick: this can be useful for any kind of emergency stop message.

Graph structure

In this section, we present the graph structure we use. This structure will operate on the environment introduced previously. It can be defined as a task graph: each execution of a node corresponds to a task that must be run after the nodes it depends upon have executed. Objects are identified in the graph by unique integers. For instance:

Definition 17 (Identifiers)

type edgeId = EdgeId of int;; type portId = PortId of int;; type nodeId = NodeId of int;;

Ports

A defining feature of common unit generators in media applications is the multiplicity of input and output ports: a synthesizer might be built upon multiple parallel oscillators, the frequency of each defined by the value in a different port.

Ports are defined with a unique identifier, an optional address, ingoing or outgoing edges and a scoping information. The use of this scoping information is explained in Section 5.4.4. We separate the constant part of ports and the variable part: port is constant during a normal execution, while port_state will change at each tick. We contrast this with other approaches, where objects of the model are themselves addressed, either at a low level -e.g. with pointers in some programming languages -or a high level with objects being themselves part of an object tree itself discoverable and addressable through remote procedure call protocols or the device tree presented in the previous chapter.

In systems such as Duration1 , attributes of the object model itself are encoded by fixed OSC addresses. For instance, setting an attribute of a track in Duration is done with the following OSC message:

/duration/valuerange "my track" -1. 1.

In our case, we want the model and data-flow to be freely definable by the author. This provides multiple benefits:

• Apply a single address to a group of ports: if many unit generator share a tempo information, there can be a single "truth source" for this value. • Leverage pattern matching to receive inputs from multiple addresses in a single port: this enables to react to a class of events easily. The data copying method from ports and to ports depends on the presence of an address and edges. Ports can have multiple inputs. The order in which values are copied to the inputs depends in part on the order of execution of the nodes. In Section 5.5, we discuss how this order can be assured to be deterministic. Upon execution, the input stream of the port would contain the list of values corresponding to the matching addresses.

Pattern matching

Given a global environment with the variables:

/foo/bar/ba 1.0 /foo.1/bob/bu 2.0 /foo.2/bar/be -1.0 /foo.42/bar/bo -3.0 Such a pattern would yield the values -1.0 and -3.0 at the input of the port matching the pattern. These values can be combined by an optional merging step: for instance by keeping only the latest one.

Writing to the environment supports expression of pattern-matched nodes. Patterns are resolved immediately on insertion: that is, the environment itself does not store a single message with the generic pattern, but distinct messages for every node existing in the tree that matches the message.

While this seems wasteful in terms of memory usage, it also reduces search complexity when looking for a value in the environment: if the pattern was stored as-is, it would be necessary to check most patterns when looking for a specific value; in contrast, storing directly each addressvalue pair allows using simple hash maps when looking for the value of a given address which greatly reduces average time complexity which is the main parameter we are optimising for.

Another advantage of this approach is that it eliminates the double-pattern problem. For instance, given a unit generator writing to the pattern /foo/ba*r and another that reads from the pattern /f??/b?dr, ensuring an exchange of value if the patterns match ends up being an expensive problem: it can be likened to the question of regular expression intersection, with exponential lower bounds in spatial complexity for the size of the intersecting expression provided by Goulad et al. in [175].

Connections

We are interested in the relationships between unit generators of the DFG when they produce compatible values, whether explicitly through cables or implicitly through addresses. In particular, we must take into account deactivated unit generators to be able to provide temporal semantics, as explained in Section 3.5. Given a node of the DFG executing and producing values, we must define which following nodes, if any, will receive the values and when will they execute.

We introduce specific connection types, to cater with the use in interactive scores. These relationships are expressed between ports of two nodes of the data graph.

We propose two attributes on the connections, defined more precisely thereafter:

• Strictness of the relationship: a strict relationship implies a strong dependency between two ports. That is, if an inlet engaged in a strict relationship with an outlet, and the node of the outlet is disabled in the current tick, then the node of the inlet is also disabled. In contrast, a relaxed relationship implies that one of the nodes can not run and the program still be valid. 

Connection as an access control

Strict connection In a given tick, an execution of a node engaged in a strict relationship with another node depends on the other node being active.

Consider the case in fig. 5.3a where f 1 and f 2 both read from a and write to a where a is an address of the environment. We use the DFG given in fig. 5.2a.

We consider a simplified case to explain the general desired behaviour with the following function definitions:

• commit(a, x, e) writes a value x to the address a in the local scope of the environment e. In the general case, committing does not simply mean that the value replaces the existing value in the environment: remember that we store a timestamped list of values as per Definition 16. Various methods of commit which leverage this list are discussed in Section 5.5.4.2. In this example, however, we assume a simple replacement. • pull(x, e) the function that reads the value of the address x from the environment e. The local environment, by the end of each logical tick, should be defined as:

• During t 0 : ∅. • During t 1 : commit(a, (f 2 • f 1 )(pull(a, e)), e). • During t 2 : ∅.
Relaxed connection An execution of a node will happen even if the nodes it is connected to through relaxed relationships are not active. Instead, data will be read and written from the environment if an address has been given to the port.

• t 0 : commit(a, f 1 (pull(a, e)), e).

• t 1 : commit(a, f 2 (f 1 (pull(a, e)), e).

• t 2 : commit(a, f 2 (pull(a, e)), e).

In the explicit case, the output of f 1 goes to the input of f 2 through a cable. If an address has been specified for each port in addition to the explicit connection:

• If f 1 is not active, f 2 reads from the local scope instead, or the global scope if the required address is not available. • If f 2 is not active, f 1 writes to the local scope instead. Such a behaviour is conceptually similar to a guitarist's pedal board: not all pedals will always be active, but we want the signal to keep flowing even if a pedal is disabled.

No connection Even if there is no direct connection, we still have to handle the case where a node writes from an address in the environment and another reads from this same address.

In this case, the expected behaviour would be:

• t 0 : commit(a, f 1 (pull(a, e)), e).

• t 1 : commit(a, f 2 (pull(a, commit(a, f 1 (pull(a, e)))))).

• t 2 : commit(a, f 2 (pull(a, e)), e).

That is, f 2 would read from the value that was written in the environment instead of directly from f 1 . Note however that there is a possibility for this value to be replaced with another which came from an external source between the two ticks. If it is not desirable, the author always has the possibility to create a custom local variable not linked to any external source.

Hence, this makes apparent that even if the composer did not create an explicit connection between two unit generators, we have to consider implicit data dependencies between ports, which will have implications on the scheduling algorithm.

Connection as a buffering tool

A connection between an outlet and an inlet can be delayed through buffering in a FIFO queue.

There are two possibilities for the semantics of this connection:

• Readers of the buffer always start from the same point: the beginning of the previous function in the callback chain. The frame pointer would be located in each delayed connection, and would not be shared between processes. • Readers of the buffer continue from the latest read position. The frame pointer would be located in the source port, and would be shared across all processes reading from it. This behaviour can be useful when multiple functions should apply successively to a single buffer, as in fig. 5.7. However, it would also create concurrent accesses problems if two nodes happened to read an output at the same time. Arumi discusses in [START_REF] Arumı | A Dataflow Pattern Catalog for Sound and Music Computing[END_REF] the advantages and drawbacks of storing tokens at the output or input ports. In our case, however, since there can be multiple output nodes, the tokens are stored inside the cable structure.

If we have a delay connection from f 1 to f 2 , the first call to f 2 will use the values that were produced during the first tick during which f 1 ran. Note that the output of actual messages is not necessary: the only necessity is that the source node used to execute: it can be necessary to be able to react to silence or lack of messages while still knowing that the overall process was executing.

The strictness level is also defined for the delayed connection. In the strict case, a node will only be able to execute if the source has produced enough tokens; else it is disabled.

That is, in fig. 5.6, f 2 would only execute during t 1 .

Finally, note that the current implementation is unbounded. Given two arbitrary nodes whose start and end depend on an interaction, it is not possible to know when the sink node will start executing and thus emptying the FIFO queue, if ever. It is necessary to store all the messages in case of the interaction happening. It is then the responsibility of the author to ensure that memory will be sufficient for his use case. However, if temporal constraints are introduced between the nodes, giving an upper bound on the number of messages produced will become possible. 

Scopes

It is possible to link the previous behaviours to the notion of scope in textual programming languages. In traditional data-flow programming, there is no notion of variable scope: inputs and outputs represented by the model are entirely driven by the connections between nodes.

In the present case, the presence of the environment means that reading and writing values to variables follows rules similar to the ones that govern reading and writing to variables in common imperative programming languages such as C or Java. During a tick, ports have access to three sets of values, corresponding to scopes:

• Global scope: The values that were in the environment at the beginning of the tick. These values are accessible for reading to every node, at every moment of the tick. • Local scope: The values produced by previous output ports in the data-flow under relevant conditions explained before. • Connection scope: the explicit scope between two ports; the data flowing from one output port can only go to input ports it is connected to. With this in mind, we can define the scope attribute of ports seen earlier.

Default scoping mechanism

Remember that the model is restricted to using the variables defined in the device tree. This implies that for every value in the local scope, the key of this value also exists in global scope. This allows us to enable the following default resolution behaviour:

• If it is not possible to read from a connection, the value will be read from an address, if given. • When reading from an address, if the address is not available in the local scope, it will be read in the global scope. The first case only happens for relaxed connections: if the connection was strict, the reading node would be disabled and thus would not be reading.

Strict Relaxed

Immediate If a node is not active, the other is disabled. Else, the data is copied directly from one to another.

A node can execute even if the other is disabled. If an outlet does not have any outgoing edges, or at least one outgoing node is disabled, then the value is written to the environment. If an inlet does not have any ingoing edges, or at least one ingoing node is disabled, then the value is copied from the environment.

Buffered

The inlet receives tokens as long as there are tokens in the buffer. When there are not anymore, its node is disabled.

The inlet keeps executing even when there is no data in the buffer. Writing by default operates in the other direction: if possible, data is written through a connection, else it is written to the local scope, in order to constrain scope as much as possible. This is done in adequacy with the current principles of scope limiting in software design [176][177][178].

Explicit scoping

The three other cases of scoping simply sets an explicit scope to which data can be written to:

• None: the data can only be read and written in other connections.

• Local: the data can only be read and written in the local scope.

• Global: the data can only be read and written in the global scope. Finally, note that the set of parameters available in the environment is supposed fixed before the beginning of the execution: all the possible variables are known beforehand and available in the global scope. If a user of the system specifies a non-existing address, it should be treated equivalently as the absence of address.

Graph nodes

Now that ports, connections and scopes are specified, we can precise the type of the graph nodes (unit generators). This is the final step leading to the description of the execution algorithms.

The definition is twofold: grNode is the static, immutable part of the node: executed serves as a flag to indicate that the node has already been executed during a tick. prevDate holds the date at which the object currently is, before executing the following tick. tokens holds the successive date spans that a node must execute in the current root tick.

We introduce two additional "tick levels" in addition to the root tick mentioned before:

• A sub-tick is the execution of a node for a single token. Its specific algorithm depends on each node's specific type. • A base tick is the execution of all ticks of a node. Note that "tokens" as used here bear no relationship to the notion of "token" in other dataflow environments where "token" is generally used to mean the values exchanged between nodes during execution.

Graph execution

We can now consider the scheduling question: how to decide in which order should the nodes execute.

Some environments, mentioned in Section 2.3.4, separate scheduling for event-like data and stream-like data such as audio signals. In our case we are interested in giving the simplest semantics on which temporal behaviours can be built upon, hence we consider a single scheduling for the whole graph. In addition, this lessens the hurdles in obtaining sample-accurate behaviours.

A graph admits a topological sort only if directed and acyclic: while the directed constraint is natural for data dependency graph, since data-flows from one node to another, acyclicity is more constraining. For the same simplicity reasons as stated above, we only consider the acyclic case. The authoring environment must then ensure that no cycle can be created. The first question is the behaviour of cases such as the one in Fig. 5.8: should the nodes execute in the order A, B, C, D or A, C, B, D ? Both orders are valid topological sorts. This order is important to settle to ensure determinism in the graph execution algorithm. Various strategies exist in the visual programming world: Max/MSP orders nodes right-to-left and bottom-to-top according to the position of their left corner in the visual canvas, and Pure Data leverages the order in which connections were constructed for message nodes. In both environments, the order of execution for audio signals is undefined: both cases can happen. This is generally not a problem if only audio signals are involved: the accepted behaviour is to mix signals together, a mathematically associative operation1 . However, problems can then arise if the execution of an audio unit generator also produces a message value, or has side effects. This can be the case for instance in filters that compute the RMS2 value of an input signal across a block.

At this point, we will only consider a generic order function which produces a given ordering of nodes. Chapter 7 will detail some aspects of the orderings, in particular in dynamic cases.

Finally, it is possible the graph structure we use: in our model, a simple definition of G = (V, E) with V the unit generators and E the connections, with additional functions to define the algorithms used for execution.

Definition 24 (Data graph)

type graph = { nodes: grNode list; edges: edge list; order: graph -> grNode list; };;

The run-time state is necessary for execution of the graph: it holds the current state of each port and node; in particular, the values that were produced during the current tick: That is, the specific execution algorithm of the node is called and transforms the current graph state with a new inner state and new port states.

Executing a node during a root tick means that it will be executed for every token request registered for it. Reasons for this are given in Chapter 6. The main point is to enable:

• Sample-accurate execution: there has to be a way to tell musical objects to render data from t = 17 to t = 23 in time units. • Temporal looping when the size of a loop is smaller than the duration of a root tick: if a looped sound lasts for 10 time units, and the root tick duration is 512 time units, the execution has to repeat multiple times. With this in hand, we can define the base tick algorithm: Assuming a static scheduling of nodes given as a list of nodes in dependency order, we can give a first example of a trivial root tick function, which assumes that all nodes are active: We also have to consider what happens from inside a unit generator implementation: what is the programming contract that node developers must respect to provide adequate behaviour. An important design choice is to leave open possibilities for inaccurate execution. The reasons for this are twofold:

• Some particular unit generators may be unable to conform to strong timing requirements, because they can only work with a fixed tick-rate or do not support timing of input messages, yet still provide artistic value: a pathway to integration in the system should be provided. • In some cases, performance requirements may dwarf precision requirements. For instance, if a score's sole point is to send OSC messages over UDP, most of the time spent ensuring sample-accurate positioning of messages will be potentially lost due to the weak guarantees provided by the protocol. Remember that a graph node's execution function has for type:

graph_node -> graph_state -> token_request -> environment -> (node_state * ((portId * port_state) list) * environment)
Each node has a certain number of inlets and outlets registered with them: these are stored in the graph_state in the present model. The general objective in the run function is reading from inlets and writing to outlets, in adequacy with the timing information given in the token_request. A node is free not to write anything, or write as many values as it wants to the output port, in order to follow the principles of Section 3.3 and especially 3.3.1.5: some artistic demeanors may require unbounded token production.

Written values are time-stamped in zero-indexed time units and are relative to the beginning of the current root tick. The first timestamp must be at least at the offset provided in the token_request structure. The last timestamp must be strictly inferior to this offset plus the date minus the previous date. These restrictions hold not only for a single token request, but for the sum of all requested tokens for a node in a given root tick; the temporal tree will in particular preserve this guarantee. Fig. 5.9 shows a valid example.

That is, given a prevDate of 12, and a token request such as {tokenDate = 17; offset = 35}, the values produced by the node must have a minimal timestamp of 35, and a maximal timestamp of 35 + 17 -12 -1 = 39.

A more complete example is given in Fig. 5.9. The root tick duration is 5 samples: three of such ticks are represented. At the beginning of the execution, the prevDate of the node is at zero. We ignore the position for now. The first token is: {date: 2; offset: 3}; during the execution of this token, values can be produced for timestamps 3 and 4. The second token is: {date: 7; offset: 0} and prevDate is set to 2. The third token is: {date: 0; offset: 2}: no production of data should take place. The fourth token is {date: 1; offset: 2} and the fifth token is {date: 3; offset: 3}.

In addition, if we wanted to be able to satisfy the synchronous hypothesis, we would have to bound the number of tokens produced, for instance at tokenDate -date; this is not done here for reasons explained earlier. Note also that tokenDate -date may be negative: in this case no data shall be produced.

In practice, this means that multi-rate data production is possible: one data node may produce for instance values for every time unit, while another may produce once every N time units with N greater than the root tick buffer size. The common case of control-signal separation, where control events happens once per root tick, and signal production happens for every time unit, can be approximated by limiting the production of non-audio data to 1 value per token request: in the case where the token request implies a duration of the length of the root tick -which is by far the most common case as will be evidenced later -it is exactly the same. While it is up to each node to provide an implementation that corresponds to the desired behaviour, Section 10.3 will present a method to enable the node developer to simplify the choice between different behaviours without requiring rewrites: for instance, running at each time unit, running once per buffer, running at a defined fixed rate, …

On sample accuracy and precision

Note that as-is, given root_tick_static we can respect sample-accurate behaviours: nodes can produce tokens at a given time-stamp and subsequent nodes will be able to apply the effect of this token starting from this sample.

However, operating in a buffer-synchronous manner has temporal implications on the precision of processing: the value of a signal can still be affected by the duration of a buffer. In practice, it is common in node implementations in data-flow languages to produce data at most once per run call; for instance in the case of automation curves, low-frequency oscillators or noise generators. An example is the use of the environment. Consider for instance the graph in Fig. 5.10: assuming that A produces one output value per input value, precision of execution would be maximized if the execution was run at a tick rate of 1. Suppose that execution is run at a tick rate greater than 1: A runs with a request of N > 1 samples. The value of /address is set at timestamp 0 at A's inlet, and A produces a value at the same time-stamp, which is then committed to the environment. The next time A runs will be at least 2 units after the beginning of its previous token: at least one time-stamp is missed.

There are multiple ways to get closer to ideal precision: A /address /address Figure 5.10.: A problematic graph when trying to be sample accurate.

• Fixing t = 1 as the root tick buffer size: at most token requests of duration 1 will be produced. This is the only way to achieve a perfectly precise rendering given a lack of control on external nodes. • A possibility which optimizes for the case where nodes produce one value per tick is as follows: data production will occur at the greatest common divisor of the token requests that occur in the graph. Given a set of nodes, we enumerate all the token requests and store the beginning and ending of each relative to the root tick duration in a set. Then, for each node, the token requests are split for each value in the set. Finally, the graph executes for one complete tick for each interval in the set. This ensures that if a node produces a value for 1 sample, all the other nodes will be able to react to the production of this value. An example of this process is given in Fig. 5.11. Overall, we establish that once we step out of the "tick for every sample" ideal case, some precision is sacrificed: every choice other than this one given black-box unit generators will come with trade-offs that must be handled in some way; in particular, different environments catering to specific media practices may focus on different sides of the scale. 

A 1 A 2 B 1 C 1 A 1 A 2 A 3 A 4 B 1 B 2 C 1

Scheduling methods

Graph ordering and messages

The main question in this work is the relationship of node ordering and messages exchanged through the local state: we also want operations that uses the state to be deterministic to enable authors to reason about their work.

The simplest case would be to ignore values exchanged through the environment altogether and only consider the explicit connections made by the author. In particular, note that a connection case was not discussed: the Dependency case, which allows to introduce an explicit dependency between two nodes without requiring any data transfer between either. By using this special edge, it is always possible to get a unique total order between nodes if necessary by introducing new edges until the graph admits an Hamiltonian path [179], without changing the data semantics of the program. This way, a path exists to allow the author to get deterministic behaviour. However, in many cases, introducing enough edges to ensure a unique order would be relatively tedious; besides, indeterminacy at the graph edge level means that determinacy can be inserted through other means which can improve expressive capabilities of the environment.

Hence, we have to provide a method to order nodes relative to these messages. We will only consider messages written to the local state. Messages written to the global state directly are not considered as part of the normal program flow but are intended for specific cases where sending a message as soon as possible is critical.

We will consider two cases:

• The first case is the dynamic address case: here, we do not assume that nodes restrict themselves to writing to their output ports; they can instead directly write to the local environment. • The second case is the static case: the inputs and outputs of each node is fixed to specific addresses. In this case, exec_node becomes: In the dynamic case, scheduling will have to occur at each tick, since a given node could write to any number of different addresses during its execution. In the static case, we can instead perform scheduling beforehand, which leaves more time for running actual processes during the tick.

It is generally hard to infer an order. Consider for instance the graph in Fig. 5 the presence of heuristics: object creation order, visual position, …However, we argue that an assumption can be made on the order of operations: if a node A reads from an address x, and another node B writes to this address x, we assert that in the context of media authoring, the desired order of execution is generally B; A. We will show that in concert with a basic structuring of certain graph nodes presented in Chapter 7, this allows to author meaningful multimedia pieces with only a small number of connections explicitly specified by the composer.

Ordering strategies

In the literature, multiple possibilities for ordering nodes in DFGs are provided. Some environments leverage the object creation order, while some others rely on the visual position of objects in a canvas: bottom-left to top-right for instance. In addition, the current approach allows to leverage the execution time of objects to define an order. That is, if the absolute start date of an object A is before the absolute start date of an object B, then A will execute before B in a given tick. This is only possible with a dynamic schedule, since the order would be updated at run-time.

The current implementation relies by default on the creation order of objects to settle execution, with a hook to introduce any other ordering strategy; three other strategies are in the midst of implementation. The proposed temporal execution, as well as two static strategies: one which considers first the static X position of objects in a visual canvas, then their Y position (X going from left to right and Y from top to bottom), and a similar one which considers the reverse order: Y then X.

Dynamic scheduling

In this case, we do not know on which addresses each graph node will write to in the local state. Hence, we have to run a scheduling pass at each tick to be able to provide an order. This can open interesting creative possibilities: for instance, it allows to write a node which would output on a random parameter amongst a set of parameters, or to have effects which would run before or after each other in different ticks.

We give hereafter the complete base_tick algorithm for the dynamic case. 

Static scheduling

In this case, we know the addresses that each node reads from and writes to. This enables the following general strategy: let connect G n1 n2 the function that creates a dependency connection between the vertices n1 and n2 of the graph G:

Algorithm 4 Adding connections between nodes.

V ←sorted(G.nodes)

for i ∈ [0; |V |[ do for j ∈]i; |V |[ do if
No path exists in G between i and j or j and i then if A connection is possible from i to j then connect(G, i, j) else if A connection is possible from j to i then connect(G, j, i)

end if end if end for end for

There are two ways to perform this algorithm; their performance on various graphs is compared in Section 10.4:

• The first one is to do either a breadth-first or depth-first search every time to look for a path in the graph: the overall worst-case time complexity is

O(|V | 2 * (|V | + |E|)).
• The second is to compute the transitive closure of the graph at the beginning, and after each insertion. We recall that the transitive closure of a graph G = (V, E) is the graph

G ′ = (V, E ′
) where E ′ contains an edge e between two nodes v 1 , v 2 of V iff there is a path from v 1 to v 2 in G. This generally makes possible to retrieve in constant time the existence of a path between two nodes in G; however, we need to recompute the transitive closure after every connection which can be reduced to the quadratic matrix multiplication problem [180].

Operations and combinations

Value combination

Any value combination method has to be considered in function of the data type. As mentioned before, if we are considering audio data, it is quite common to use sample-by-sample addition as a combination function. However, we have to consider other data types: in particular, individual control-like values. We propose three different merging methods, which can be applied in inlets and outlets:

• Appending: New values are listed after the previous ones in the data list. Some OSC applications may require for instance that the same message be sent multiple times. This is the default case.

• Replacing: new values take the place of existing values at a given timestamp.

• Merging: Remember that the device tree allows to specify both units and indices: for instance, given an address representing a RGB colour value /color, it can be accessed through the pattern /color@ [START_REF] Eaglestone | Information Systems and Creativity: An Empirical Study[END_REF] which would give the green component, or In particular, for the second message, the previous value [1., 1., 0.5] is converted to the hue-saturation-value domain [0.16, 0.5, 1.]; then, the new value (in the HSV sense) is set: [0.16, 0.5, 0.3] and the resulting colour is converted back to the original RGB dataspace.

The value in the global tree is always preprended as first value of the chain. That is, it is possible to change a single component of a colour, for instance by sending the message /color@[rgb.r].

Data commit strategies

We now want to consider more precisely the question of writing data to the environment: since multiple values can be output by a node for a single address, we have to provide ways to combine them and apply them to the global external state.

There are two axes to consider:

• Should values on the same address be merged or sent individually? If they are merged, should only values at a given timestamp be merged? • Should values ignore any order, respect their timestamp order, respect the parameter priority order, or respect the global order in which they were written? We propose the implementation of a few combinations of these behaviours, which allows to adapt to different cases requiring either precision at the expense of performance or the reverse. Section 10.4 presents performance comparisons of these different cases.

Merged This is the fastest case: all the values of a parameter are merged in a single value which is then sent, without consideration of order amongst other parameters.

Per address order

In this case, the commit function merges individual values in their order of arrival in the buffer size: as such, any kind of timestamping is lost and the last node to execute has the final word. No particular order is used between addresses: all the messages of an address are sent together.

Priority order This case is the same as before, but we additionally leverage the priority attribute set by the author on specific device tree parameters, and described in Table 10.1: the highest the priority on a parameter, the soonest a message should be sent. Since the attributes of a parameter are immutable and all parameters are known, the sort can be executed only once.

Global order

We want to ensure a possibility to send messages to the global environment in the exact order in which they were produced by the data graph, to preserve causality, while still allowing merging to take place. In particular, messages are globally sorted in lexicographical order across the pair P = (T l , T g ) where T g is the global message index and T l is the timestamp of the message: this ensures that messages are sent first by order of their timestamps, and then in a first-to-last fashion if there is an ambiguity.

However, it is necessary to be aware that the protocols used underneath message sending, like UDP which is commonly used in OSC protocol implementations, might not always have strong timing and ordering guarantees.

Overall tick description

Finally, we can give a general graph tick algorithm, which will execute all the enabled nodes during a root tick. 

Closing words

We have presented in this chapter an exploration of the design space of data-flow methods to cater to interactive score execution. Research that led to the current definition has been published in [START_REF] Celerier | Extending Dataflow with Temporal Graphs[END_REF]. The specificity of such scores is that parts of the scores will run at unknown dates: in particular, the order in which media processes run must be assumed to be undefined. There are implications for the execution of unit generators: not all nodes of DFGs defined by the author will be active at the same time, even though data dependencies may exist. Hence, we introduce two notions: an environment, in which nodes can read and write in addition of the usual connections of DFGs, and attributes on connections. These attributes specify the dependencies and temporal relationships between the nodes: strict or relaxed, and immediate or buffered. Various scheduling cases are considered, function of the desired attributes and dynamicity of the system. Finally, we consider different possibilities for the reading and writing of data values, which have implications on the correctness and the performance of the overall system. The various possibilities are represented in fig. 5.13 for the sake of clarity. Without considering the next chapter which introduces temporal semantics on top of this structure, the concepts introduced in this chapter can already be useful: in particular, this execution model allows to treat indifferently remote and local values from within a program; it makes trivial the creation of network-aware media applications, such as synthesizers, or video players. Such an example is given in Section 10.1.8.

It is important to note that this chapter is mainly used as support for the following chapters: in particular, there is no doubt that other execution semantics with relaxed accuracy requirements, for instance with more asynchronous behaviours, would be viable for at least a large panel of media works: future research on this topic should strive to extend the range of data-flow methods compatible with the execution of interactive scores.

Finally, the various possibilities for the execution are presented as global choices which would impact the whole execution. Further work should be done in order to relax this requirement: for instance by making specific choices at the node level instead of the graph level, and potentially grouping nodes in sets of shared behaviours.

Static Dynamic

None BFS TC

Creation XY YX Temporal Append Replace Merge Default Merged Ordered Priorized M E T H O D S C H E D U L E O R D E R M E R G E C O M M I T Figure 5.
13.: Overall design and possible steps of the data execution engine: first the general execution method must be chosen, then schedule can be setup using breadth-first search or transitive closure for the static case; in addition, the dynamic algorithm can use the temporal execution order since it is known only at run-time. Finally, the methods used to write to nodes and to the local environment, and the final commit to the global environment are chosen.
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Temporal process tree

We can now introduce the temporal constructs which schedule the data graph in time. Time is assumed to always progress from past to future. The goal is to introduce a structure amenable to structuring interactive scores in time: that is, the computations of the data graph presented earlier must now be planned and scheduled at the macroscopic scale. The objective of this chapter is to construct a set of objects able to encode the temporal relationships in works of art such as the branching scores mentioned in Section 1.2.3.

The first of these objects, presented in Section 6.1 is a predicate logic expression, with extensions to support interactive contexts. Expressions are used in the definition of the temporal objects that will serve as a backbone to build temporal and logical behaviours upon.

The temporal objects, defined in Section 6.2, are processes which enable the execution of data graph nodes, intervals which describe the continuous passing of time, instantaneous conditions and temporal conditions. In this context, instantaneous condition means: "B will run if A is true", while temporal condition means: "B will run when A is true".

This set of objects allows to express a wide breadth of interactive scenarios: chapters 11.5 and 11.4 present various constructions using these elements.

These objects are then put in relationships, in Section 6.3 and Section 6.4 which will describe various temporal scenarios; the definitions of the objects are subsequently extended to accommodate for the needs of the execution of the ISs.

Conditions and expressions

Conditions operate on expressions which will be assigned a truth value at run-time according to events either internal or external to the score.

These expressions are restrained to simple logic operands: and, or, not. They operate on addresses and values of the device tree presented in Chapter 4, according to the grammar in Appendix D.

Formally, expressions are defined as a tree: Let Comparator be an identifier for standard value comparison operations: <, ≤, >, ≥, =, ̸ = and Operator standard logical operators and and or. 

Conditions and expressions

Two operations are defined on expressions and the data types that compose them:

• update : Expression × Environment → Expression. Used to reset any internal state and query up-to-date values for the expressions. For instance, update on an Atom fetches if possible new values for the parameters from the global environment. Precisely: • evaluate : Expression → Bool. Performs the actual logical expression evaluation, according to the expected logical rules. • An atom is a comparison between two parameters, a parameter and a value, or two values.

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ update : Composition → Composition (e 1 ,
• Negations and compositions are the traditional predicate logic building blocks. • A specific operator, "impulse", is introduced: it allows to decide whether a value was received. Appendix D gives the complete grammar for expressions. For instance, checks on the arrival of a specific network message, or checks on a remote or local address's value with a specific expression, can be expressed with the following syntax:

• For parameters that can have a value, there can be comparisons between the values. For instance:

{ dev:/some/parameter > 35 } && { { dev:/other/parameter != "a string" } || { dev:/last/parameter == true } }

• Parameters can be compared between themselves: dev:/some/parameter > other:/another

• Value-less parameters (akin to bangs in Pure Data) can also be used as triggers for the evaluation of expressions. In this mode, logical operators have a different meaning. For instance:

impulse( /some/bang ) && !impulse( /another/bang ) will trigger if: -/some/bang is received, and -/another/bang is not received within the synchronisation interval.

• This is not to be confused with the comparison with boolean values:

{ /a/val == true } && { /another/val == false } which will trigger when the parameters will both be set (not necessarily at the same time) to the required values.

Temporal objects

Existing work on interactive scores makes apparent the need for two kinds of conditional structures:

• Temporal conditions: the author must be able to write "When a condition becomes true, then something happens". It is equivalent to saying "Something happens until a condition becomes true" (and different from the when construct in the reactive language Lustre which does sample a signal every time a condition is true.). • Logical conditions: the author must be able to write "If a condition becomes true, then something happens". The first case can easily be unbounded and allow infinite processes to occur, by using alwaysfalse conditions.

In our case, a happening is defined as a temporal execution step of a musical, artistic, or more generally computational process. That is, the playback of a part of a sound file can be a happening, just like the emission of a single network message.

These structures are meshed together with temporal intervals. Execution of artistic processes happen during the execution of such intervals.

Processes

Processes are the principal link with unit generators in the temporal tree, and the main extension point of the temporal tree. Some processes are built-in: in particular, the layouts of objects described in this chapter are themselves processes. This enables nesting of temporal objects in a simple manner. The general function of processes will be to add token requests to nodes of the data graph, and to execute temporal behaviours. procId identifies the process uniquely. nodeId refers to a data graph node. impl holds data relevant to the specific implementation of a given process. start, stop, tick are three functions which define the execution of a process: in particular, tick will advance the time inside this process and return a function which will be applied to the data graph state.

The relationship with the data graph will be explained more in detail in the following chapter. For now we simply give the following definition: 

Instantaneous condition

Instantaneous conditions (ICs) serve to enable or disable intervals according to an expression, given in the expression language seen in Section 6.1. They are defined as follows:

Definition 31 (Instantaneous condition)

type condition = { icId: instCondId; condExpr: expression; previousItv: intervalId list; nextItv: intervalId list; } ICs are preceded and followed by intervals (previousItv, nextItv). In addition, IC are associated with a running status which will change during the execution: ICs are disabled, or disposed, either when they are false or when they are preceded by a non-null number of intervals, all of them already disabled through other conditions. This will propagate to the following intervals and conditions: entire branches of the score can be disabled.

They can be linked in literature to concepts such as Hirzalla's branching choices [START_REF] Hirzalla | A Temporal Model for Interactive Multimedia Scenarios[END_REF]: however in our case we allow multiple concurrent choices to execute at the same time, which enables an easy way to control and limit concurrent processes.

Temporal conditions

Temporal conditions (TCs) are used to synchronise starts and ends of intervals, while allowing implementation of behaviours such as: "start part B when the fader is at 0". Each TC carries a condition of execution. The default condition is simply Atom true true (==). They are associated to a list of ICs.

Definition 33 (Temporal condition)

type temporalCondition = { tcId: tempCondId; syncExpr: expression; conds: condition list }

Temporal graph: scenario

Consider a DAG whose vertices are instantaneous conditions and edges are intervals, S = (I, C). Such DAG, associated with a specific execution semantic, is called a scenario.

Scenarios allow to organize the temporal elements in time. They follow these basic rules:

• A scenario begins with a TC.

• There can be multiple interval explicitly synchronised by a single TC.

• An interval is always started by an IC and finished by another, distinct IC.

• The direction of execution follows the flow of time, starting from the first TC.

During the authoring step, these rules, as well as acyclicity of the scenario graph, are enforced thanks to the visual syntax presented later, in Section 8.1.

ICs and intervals are chained sequentially. Multiple intervals can span from a single IC and finish on a single IC, as shown in fig. 8.4. This allows different processes to start and/or stop in a synchronised manner.

Definition 34 (Scenario)

type scenario = { intervals: interval list; triggers: temporalCondition list; };;

We introduce a type which will keep the variable part of a temporal tree: the current duration of each interval, the status of each condition.

Definition 35 (Temporal graph state)

type score_state = { itv_dates: (intervalId * duration) list; ic_statuses: (instCondId * status) list; rootTCs: (processId * tempCondId list) list; scoreEnv: environment };;

Execution of scenarios

The central point in the execution of scenarios is the execution of the temporal conditions.

The overall progression of the execution algorithm is as follows:

1. Check for any root of the scenario that may start; try to process them. 2. Increase the date of every running time interval up to their max (if any), in the capacity allowed by the remaining time in the tick. 3. Check for finished temporal conditions, process them, and potentially propagate remaining parts of the tick to following time intervals. 4. Return to step 2. as long as any time interval can execute. Finally, note that scenarios themselves are processes: this allows a simple implementation of hierarchy in the temporal tree since processes are nested in intervals, themselves parts of scenarios.

Execution of a temporal condition

First, let us define the following concepts for instantaneous conditions:

Definition 36 (Execution area) An instantaneous condition I is said to be in its execution area if for all previous non-disabled time intervals of I, the date of the interval is in the range defined by the min and max durations of the interval. If I does not have previous intervals, it is always in its execution area.

A temporal condition T is said to be in its execution area if all its associated instantaneous conditions are in their execution area.

ICs can be in different states:

• Waiting: the execution area has not been reached yet.

• Pending: the execution area has been reached.

• Happened: has been executed successfully.

• Disposed: has not been executed due to a false condition. The effective range of time for the execution of ICs and TCs is only known until run-time: even though min and max durations themselves cannot vary, the start date of an interval can vary since it may follow an already interactive TC. For the TC to enter its execution range, all the intervals that finish on the ICs in the TC must lie between their minimal and maximal duration. The evaluation of a TC's expression is performed at each tick, as soon as all instantaneous conditions are pending.

IC are evaluated by TCs when their parent TC is triggered. The triggering of a TC can occur in two ways: either when its expression becomes true, or when any previous non-disabled interval reaches its max duration.

A IC is executed when its expression evaluates to true upon evaluation. Executing an IC means checking its expression.

• If it is true: the previous intervals are stopped, the next intervals are started, and it is marked as happened. • Else, the previous intervals are stopped, and it is marked as disposed. Branching occurs when, at a single point in the score, multiple intervals follow a TC. In particular, if the intervals are on distinct ICs, different executions can happen according to the expression evaluation, which leads the scenario to distinct states. For example, the classic if -then -else construct can be implemented by having two ICs with opposite conditions -an example in the visual language is given in Section 11.4.2.1. It is also possible to consider other cases: for instance, there could be a set of conditions that would lead to either both interval, or no interval executed. Multiple intervals can follow from a same single condition.

Convergence occurs when parts of a scenario that previously branched are synchronised.

A special case for interactivity

We separate two cases: interactive and fixed.

• A TC is said to be fixed when its expression equals the default expression, which evaluates to true. • A TC is said to be interactive case when any other expression is used. During the execution of an interactive TC, a delay of one tick is introduced if its execution is not due to a max bound being reached. This is to prevent automatic triggering of a whole sequence of TCs which would share the same expression, which was a pattern used by authors when creating scores with the model. The reasoning is that for authors, a TC embodies the notion of interaction. Such interactions generally occur at human time scales, such as triggering a sensor or pressing a button. Having multiple subsequent parts of the score trigger due to a single interaction then does not map to the physical reality of the score's surrounding environment. Algorithm 5 presents the execution of a given interval. tick_interval exposes the relationship between the temporal and the data graph; it will be presented on the following chapter. Algorithm 6 presents the starting of an interval: tokens are requested when they start in order to allow the data node to perform an initialization routine if necessary, or to send a message on start.

Execution of a single interval

General execution algorithm

The complete execution algorithm is given in Appendix A; an overview follows. The algorithm works by propagating the time across the intervals, and keeping in memory for each interval of how much it goes past its max duration. Then, at every TC, we devise of how much the time must go forward past it. If there is a single interval before the TC, this amount is simply the duration that went past the max bound of the interval.

When there are multiple interval, there are possibilities of conflict: one interval may only go past two time units after the TC, while another might go ten time units past the TC. In accordance with the liveness principle discussed earlier, we choose to advance the time of the maximal duration recorded that goes past an individual TC. This allows branches without interactivity (that is, whose TCs and ICs have default true conditions) to execute at the expected rate. Consider the scenario which consists of: a starting IC, followed by two "branches" of intervals. The first (top) branch consists of a sequence of N intervals T i with minimal duration T min and maximal duration T max . The second (bottom) branch consists of a sequence of N intervals B i with minimal duration and maximal duration equal to B nom where T min < B nom < T max . For each index i, the intervals T i and B i share the same start and end TC. The TC expressions for all but the starting one are set to false: they will only trigger whenever a max is reached. If after each TC, the time was advanced by any duration smaller than the max, then executing a tick of a duration of N * B nom would not be enough to reach the end of B N , thus at least a maximal constraint of a B i would be broken.

The execution begins by checking for waiting TCs: in particular, the root of the scenario must be checked in the case where it waits for an event to happen before starting the execution 1 . If the TC executes and has happened, then for ICs whose expressions evaluated to true, if they are followed by intervals, these intervals are started (Algorithm 6) and put in the running set in the scenario execution state. Then, for every running interval in the execution state, the whole duration of the requested tick duration is applied, according to the algorithm in Algorithm 5. If the duration is greater than what the interval can accept, the remaining part is added to a set which associates it to the TC at the end of the interval.

The execution then consists in a loop: as long as there are remaining time units to consume in the over-tick set, they are applied to the following intervals. We have two cases to consider:

• The interval has a fixed duration: either the remaining time units are smaller or equal than the remaining duration for this interval, and all the remaining time units are consumed for this branch, or the remaining time units are greater than the remaining duration for this interval, and smaller time units are inserted in the set. • The interval has an infinite duration: all the remaining time units in this branch are consumed and no time units are inserted in the set. Since the maximum time unit requested is strictly decreasing in time, the execution loop eventually terminates.

Loop

The first idea for loops would be to create a cycle in the scenario graph presented earlier. However, acyclicity of this graph is a desirable property: this allows to keep the complexity of graph traversal operations used lower, which matters in a real-time execution context.

Definition

The loop is modeled as its own process with simpler semantics than the scenario's: a single interval will loop. Since intervals can contain other processes, we can still encounter complex musical behaviour in it: whole scenarios and furthermore any hierarchic construction can loop.

Definition 37 (Loop)

type loop = { pattern: interval; startTC: temporalCondition; endTC: temporalCondition; };; At each tick of the loop, the interval is itself executed. If either of the temporal conditions is interactive, we follow the same process than for the scenario: we wait until the next tick to perform the triggering instead of doing it immediately. Else, further tokens are added to the interval and its child processes, starting from zero. An example of this process is given in fig. 7.5.

Null loop pattern durations are prevented since the duration of intervals is non-null: else, any tick operation would cause an infinite loop since there would never be any progression in the loop.

Whenever the first IC is disposed, or the second IC is either happened or disposed, the status of events and intervals is reset and execution stops for this process. This means in particular that a loop whose first IC's expression evaluates to false is re-checked the next time the process runs.

Execution algorithm

The execution algorithm for the loop is separated in two cases: the first is the case of a loop with no interactive behaviour. That is, the temporal and instantaneous condition at the beginning and the end of the loop have only trivial true expressions. In this case, the algorithm given in Annex B.1 is used: we can reach a sample-accurate looping of the datas in the interval.

In the other case, a more general algorithm which checks the conditions and interactions is used, given in Annex B.2. In this case, the technique of delaying by one tick is also used.

This separation is also done for efficiency concerns: checking conditions has a small but nonnegligible cost, and we want the loop to be able to function at very high rates, up to looping only a few samples of audio data. Hence, the common fast path of no conditions is more optimized.

Conclusion

We provide in this chapter a structural definition of temporal relationships in interactive scores. The current definition has been reached after multiple evolution steps, showcased in [START_REF] Celerier | Towards a Unified Interface for Scoring Time and Interaction in Proceedings of the International Conference on Technologies for Music Notation and Representation (TENOR)[END_REF][START_REF] Arias | Authoring and Automatic Verification of Interactive Multimedia Scores[END_REF][START_REF] Celerier | Graphical Temporal Structured Programming for Interactive Music[END_REF]. That is, scores are represented as graphs of objects. Time can be thought of as flowing through the edges at a rate imposed hierarchically, the root rate being imposed by the duration of the root tick. Edges of this graph decide of the execution of the following parts according to instantaneous conditions. Multiple edges can be synchronised with temporal conditions. These conditions are triggered whenever a boolean expression becomes true. Two particular layouts are considered: the scenario, which is a general structure allowing to represent various temporal relationships between objects, and the loop, which is a fixed structure which allows a part of a score to repeat itself in time.
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Combining temporal tree and data graph

This chapter presents the relationship between the temporal and data graph presented earlier.

The system consisting in these two graphs and the relation is the model which is proposed to be used by authors.

In order to simplify interaction with and usage of the model, the number of objects with which the author creates the score is limited: this is presented in Section 7.1. A contribution is deduced in Section 7.2 from this limitation: the model can be used as a hierarchical mixing environment with simple set-up steps.

Then, the overall execution algorithm tying both graphs and the external environment is presented in Section 7.4. Finally, Section 7.5 presents some applied examples of simple programs based on the model.

Relationships between temporal process tree and data graph

Specific objects of the temporal tree are associated with nodes of the data graph. During the execution, as a first step, objects of the temporal tree will add token requests (defined in Definition 15) to nodes of the data graph, according to their current state and date. Multiple objects of the temporal tree relate to data graph nodes:

• Every time process is associated to a data node.

• Every interval is associated to a data node. Some optimization opportunities exist, if the interval does not carry any time processes and is not connected to any object. In particular, we consider two structural objects: • The forwarding data node, defined as the node which copies data from its input ports to its output ports untouched. • The default time process, which adds a token request to the data node it is associated with in its execution function. The forwarding data node is used in intervals, in the scenario process and in the loop process. The default time process is used for most processes: it merely adds a token request to the matching data node, at the requested time. This will have the effect of enabling the data node and having it run for the second part of the execution tick; most audio filters or generators for instance do not need any particular processing besides this. Likewise, if an interval is not running, either because it did not start yet or already stopped, its data node as well as the data node of its processes will be disabled and will not take part in data production for this tick.

Hierarchical audio mixing

In the model, the elements of the temporal tree will return a list of functions when executed, each of the form graph_state -> graph_state. The main function used at this step is add_tick_to_node, which simply appends a token request for a given node in graph_state. Algorithm 7 presents its usage from the function which performs execution of intervals.

Algorithm 7

This function is the main step of the execution of an interval: it advances the time, computes a token request, and adds ticks to relevant nodes. 

Hierarchical audio mixing

In order to simplify authoring further, optional default connections are introduced between elements. As explained in Section 3.3.3.1, an objective of this work is to provide a hierarchical organization of the audio flow graph, without requiring excessive manual intervention from the composer. Simple cases, such as playing a sound file, should work as effortlessly as possible in order to respect the Low Threshold, High Ceiling, and Wide Walls principle; yet the author must still be able to perform more complex mixing operations.

As per definitions 29 and 30, both scenario and loop processes have child intervals, and intervals have child processes. This forms a hierarchy between these two families of objects.

Definition 38 (Root interval)

The root of an interactive score is an interval, called root interval.

Audio connections are automatically created in the following cases: • Remember that intervals are associated to a forwarding data node: a relationship is created between each interval data node audio output port and its parent process' audio input port. The forwarding data node is given an audio input and output; these are chained towards the root interval .

• Between each audio output port of each time process marked with a special propagate attribute, and the audio input port of their parent interval. The audio output of the scenario and the loop is marked with this attribute. By default, the audio output of the root interval is associated to the address corresponding to the main output of the sound card in a device representing the sound card. Multiple intervals with each a sound file process will play together withtout the need to add explicit cables.

This can be done because there is a commonly accepted combination function between multiple signals of audio type: summing them. The sum can then be used in effect buses for instance, in order to share CPU-consuming effect processing such as reverberation for multiple sound processes. Likewise, for the MIDI data type, it would be meaningful to combine messages together in a list. However, for other data types, such as the various network messages, there is no particular way to combine them through a single port, hence this is not done; messages will be lost if a value outlet has neither address nor outgoing connections.

Relevant audio processes are marked as such by default:

• Sound files.

• Audio effect and various audio generators. This is however optional and can be changed in the score for each output port. 

Automatic dependency connections according to the score process order

It is possible to give an ordering of the nodes of the data graph according to the temporal objects, by creating dependency connections between relevant data nodes. This way, even without any explicit data connection, the execution will still happen in a definite order. The proposed order is:

• In an interval, every process's node depends on the previous one in the order of the list held by the interval. • In a scenario or a loop, every interval depends on its parent process; no new connection needs to be introduced there since there is already a data connection. • The nodes of the intervals before and after ICs are chained by dependency relationships in the temporal order.

This leaves one possible indeterminacy question open: the order of multiple intervals in a scenario. One possibility is to leverage additional static information provided by the author in the visual language such as the position of objects; the default would just be the object creation order, since intervals are stored in a list.

Main tick algorithm

We give in Algorithm 8 the main algorithm which drives the execution of the graphs defined previously. The root of a temporal score is by convention a single interval.

The general behaviour is easily described:

1. Retrieve the current data from the external global state. 2. Run the temporal tree tick: the time is advanced in the root interval, and recursively in its child processes. Functions modifying the graph state are gathered and applied: token requests are written in various data nodes. 3. Run the data graph tick, with one of the methods chosen as mentioned in Section 5.6. 

Execution behaviour

In this section, we present more precisely the application of the execution algorithm on explicit data buffers.

Algorithm 8

Example of a main tick algorithm which binds together data graph and temporal tree. The environment provides multiple functions similar to this one, which allow to use the various behaviours described in this document by changing the functions used to tick the data graph nodes. 

Fixed case

We consider the following score, in Fig. 7.3: an automation runs for 13 time units. Concurrently, a sound runs for 7 time units, and is followed by another sound which runs for 8 time units. The root tick duration is five time units. Table 7 

(0 → 0, 0) Sound 1 (0 → 0, 0) (0 → 5, 0) (5 → 7, 0) Sound 2 (0 → 3, 2) (3 → 8, 0) Scenario (0 → 0, 0) (0 → 5, 0) (5 → 10, 0) (10 → 15, 0)
Table 7.1.: Value of token requests for the scenario 7.3.

Interactive case

In this case, we consider a score similar to the previous: however, the time between the two sounds is not fixed and can be interrupted by an external event such as an OSC message. In this case, the second sound will only start at the beginning of the next tick, at t = 10, for the reasons explained in Section 6.3.2.1.

Sound 1 Sound 2

An external event happens (0 → 5, 0) Scenario (0 → 0, 0) (0 → 5, 0) (5 → 10, 0) (10 → 15, 0) Table 7.2.: Value of token requests for the scenario 7.4.

Loop example

This example presents the execution in the case of a non-interactive loop: that is, a loop with a fixed duration and no conditions.

Loop

Loop pattern (sound) Repetition 

Well-formed score

It is now possible to define completely the central object of this thesis: interactive scores.

Definition 39 (Computational interactive score)

A computational interactive score is defined as the combination of:

• An environment E.

• A process and interval hierarchy with a root interval: P .

• An acyclic data graph: G. A bijective function associates nodes of G to processes and intervals of P .

• fSplit which provides an optional resampling of a computation tick.

• fOrder which handles the execution order of nodes in case of ambiguity.

• fSchedule which schedules the data graph statically or dynamically.

• fMerge which combines inputs of data graph nodes.

• fCommit which writes the local environment, into the global environment.

Conclusion

This chapter introduces the relationships between the temporal and data graph: how the temporal controls will define which computations will be running at each tick. These particular relationships represent the model with which the author will interact: only one graph-like structure has to be edited, which in turn produces elements of both the temporal and the data model.

Objects of the temporal tree are associated with objects of the data graph: this reduces the number of concepts required during the authoring phase in the most common cases. In addition, the system aims to provide a simple implementation of the notion of hierarchical mixing: the provided method, following research presented in [START_REF] Celerier | Rethinking the Audio Workstation: Tree-based Sequencing with i-score and the LibAudioStream[END_REF], allows to enable this behaviour easily. Section 11.4.1 will in particular present how this facilitates the recreation of common audio software paradigms.

In terms of perspectives, a point important in music environments has not been covered: it sometimes happens in the authoring of interactive scores that one wants a behaviour to last a tad longer than the actual duration given in the score, because some musical processes may have some kind of post-end fade-out and would not produce aesthetically pleasant results when stopped directly as would happen right now. While a solution is proposed in Section 11.4.2.7 using an explicit construction of the elements of the model, we could also consider the proposition of Dannenberg in the Nyquist language [181], where it is possible to declare a post-execution duration directly in musical processes: notes can have "logical stop times" and "termination"; while subsequent processes can begin after the logical stop times, sound keeps being produced until termination.

Part III.

Leveraging the model

This part presents two extensions of the model: the first one, in Chapter 8, is a visual syntax which allows efficient authoring of interactive scores.

The interactive musical score examples discussed in Chapter 1 operate at a macroscopic level: the choices of the performer generally concerns sections, but at the phrase level, these are often traditional scores, as can be seen from an excerpt from Klavierstücke XI in fig. 1.4. However, the case of a single note which would last longer depending on a given condition can also happen.

The main problem is that there is generally no specific symbol to indicate conditional execution; instead, the explanation is part of the description of the musical piece. Hence, we have to devise a graphical notation simple enough and yet able to convey easily these different levels of conditions.

These conditions operate on a span of time, which can range from instantaneous, like in the Stockhausen piece, where the performer has to choose his next phrase at the end of the one he is currently playing, to indeterminate, in the case of a perpetual artistic installation waiting for the next visitor. A single symbol might then not be enough to convey the whole meaning, and multiple symbols would be necessary to explain the articulation of the time in the musical piece.

Given the model defined in Part II, it is only natural to map its elements, TC, IC, intervals, to a visual language that will be used by authors for the creation process. A short reference example covering all the syntax elements of this language is presented in fig. 7.6. This visual language contains primitives tailored for the authoring of open works discussed earlier and translates almost directly to the models exposed previously: some abstractions are introduced, over specific arrangements of objects in our model, to cover common artistic use cases.

We then consider in Chapter 9 the question of distribution of the scores: in particular, what can be gained from the execution of such scores in multiple computers. Only the distribution of the temporal tree will be covered: data generation is currently considered local to each computer, and media data has to be exchanged explicitly between computers through usual means such as network messages.

We study different cases for the execution of processes: can a same process be run in parallel by different machines, and what can it bring to the author that is not possible to do easily with a score running on a single computer. Conversely, is it possible to write a single score that would enable multiple computers to run different parts: the main use case is for instance to have one machine run a kind of media such as video, and another a different kind of media, such as audio, while keeping the objects synchronised.

We also consider the different kinds of synchronisation between computers during the temporality of a score: how can multiple distinct computers synchronise and desynchronise at different points of the score, as to provide each a different interpretation of this part, just like multiple musicians will perform the same part in different ways.

The questions raised in the context of open works must be re-evaluated: for instance, what does it mean for a score to be branching, if multiple instances of this score take different branches at a single point in time.

In practice, this chapter introduces distribution annotations that are explicitly added by the composer on some parts of the score, and a notion of machine group, which abstracts over individual computers and allows the composer to author his work without requiring all the computers of the score to be connected. A translation of these annotations into the primitives of the temporal model introduced earlier is given. A full horizontal line means that the time must not be interrupted, while a dashed horizontal line means that the time of the interval can be interrupted to continue to the next part of the score according to an external event. Execution occurs as follows: the interval A runs for a fixed duration. When it ends, an IC is evaluated: if it is false, the branch which contains B will not run. Else, after some time, the flow of time in B reaches a flexible area centered on an interaction point, also called a TC. If an interaction happens, B stops and D starts. If there is none, D starts when the max bound of B is reached by the flow of time in B. Just like after A, an instantaneous condition will make G execute or not execute. In all cases, C started executing after A. C expects an interaction, without time-outs. If the interaction happens, the two instantaneous conditions which follow C are evaluated: the truth value of each will decide of the execution of E and F .

Direction of the flow of time

8

Interaction language

A visual language

This chapter presents the mapping from the temporal and data graph objects to the visual language that will serve as a main gateway to authoring scores with the model: this is the central part of the ossia score software. The visual language closely follows the fused model described in Chapter 7: items and entities of the visual language are arranged in a similar graphlike fashion and map and even directly to the model objects. It is mainly the result of a collegial decision process, involving multiple iterations with users and contributors to the software.

The main focus of the visual language is on the temporal design aspect. Structures and elements used by the interactive score author are those of the temporal tree in Chapter 6: intervals, processes, etc.

We will first present these elements, and then describe the rules used by the authoring interface to allow for an efficient compositional process.

General considerations

The set of graphical elements presented here are called the Ossia graphical formalism, in reference to the research project in which they were devised.

Data-flow features only appear at a small scale: it is possible to draw connections between outputs and inputs of processes, and give addresses to ports.

Introduction of the state

A new element is introduced, which abstracts a specific case of the model: the state1 . A state is the score element used to model a punctual element in time: for instance, the onset of a note. It corresponds to an interval of duration 1: in the visual model in particular it is represented as a dot. Like intervals, states can carry processes; in addition, specific edition features are provided to simplify a common authoring task: sending a message or a set of messages at a single point in time. However, due to ergonomic reasons, processes in states cannot be connected to others through cables and have to use addresses: representing the ports for each state in the interface would introduce too much visual complexity. For instance, the Nebula score provided by an associate artist, Pascal Baltazar, contains 365 states over the course of a 27-minutes score. This score will be discussed in more details in Section 11.5.2.

Relationships between elements of the visual model

In the visual model, the temporal tree has a specificity with regards to the version described earlier: instead of a chaining of IC and interval, the visual chaining is done between IC, states, and interval. That is, every interval is preceded and followed by exactly a single state; the IC holds a list of such states. When translating the visual model to the execution model, states are put in parallel with their following visual interval.

Finally, remember that Chapter 7 introduced a possibility of automatic dependency connection between objects. If these automatic dependencies are used, in addition, previous intervals will have a connection from their start state and to their end state. This way, in a tick, the previous state is always executed before and the following state is always executed after in the data graph: this allows to preserve a coherent intra-tick ordering between objects since this guarantees that the states' processes will produce data before the interval starts, while enforcing that this data pertains to the same time units.

States have an impact on the loop model. Instead of a single interval being looped, there are now three: the main interval, one that runs for one time unit at the beginning, and one that runs for one time unit at the end. The visual language restricts states to non-audio processes: only messages can be sent. It is then possible to consider states as punctual objects, for which the values produced are messages without duration, and which are executed just before the first logical time unit (or just after the end of the last time unit of the main interval).

In certain cases, the splitting of the tick in sub-ticks exposed in Section 5.5.2 is necessary to have correct execution semantics: given a loop beginning and ending with states S b and S e , and an interval I, if the duration of the interval is smaller than the root tick duration, and there is no interaction, the basic algorithm would mean that the states would execute before the interval multiple times. Given a root tick duration of N time units, and the duration T I for I, the nodes would execute in the following order: N T I × S b ; N T I × I; N T I × S e , instead of the expected N T I × (S b ; I; S e ) where x; y means that x executes before y and x × y means that y executes x times.

TC and IC are represented in different ways according to the condition they carry: in particular, the default case of a true condition is made less explicit in comparison to the case where an expression has been given by the composer.

Scratch space

The visual model allows for sub-scores not tied to the root score: they can serve as a scratch space, which is an often discussed property of creative authoring environments. The importance of such scratch spaces in creative endeavours has been studied for instance by Karlesky in [182] in the context of tangible interaction, and at a large visual scale with two projectors, one using as a scratch buffer in [183]. Especially relevant to the work is the use of a sandbox, a similar concept to the scratch space, in the DEMAIS system [153] for multimedia authoring.

In the present case, we choose to not dissociate the scratch space from the working space: what defines the appartenance of an object to the scratch part is whether it is connected to the root of the scenario graph or not. In particular, this makes the central design area a free design space where ideas can be "doodled" in some part and easily introduced and removed from the score, for instance for testing different behaviours during execution. 

Differences with previous instalments of score

In contrast with the previous approach, implemented in the software i-score 0.2 (fig. 8.1), note that by virtue of sharing a close proximity with the model presented earlier, the visual model ends up being simplified: in particular, it is now possible to have processes which exactly follow each other, in a sample-accurate way. Previous versions worked by separating boxes which contained processes (mainly automation curves) by constraints instead.

Graphical elements

We can now consider the various elements that constitute the visual syntax of scores written in the model. Part of the iconography, the general design, and colours were provided by professional designers of Blue Yeti. They were discussed and reworked in a feedback loop with artists and users of the software.

An important point is to enable the notation to be used easily on physical medium such as pen and paper, to improve the creative design process. As such, shapes are restricted to simple lines, dots, and very few special symbols. This is also one of the points noted as part of the research project of the Music Notation Modernization Association and its follow up, the Music Notation Project1 .

Scenario vertices: temporal and instantaneous conditions

Both TC and IC are vertical line: an IC spans at most a TC vertically. A state is a dot on an IC. If there is a condition other than the default on the TC, a small arrow in T -shape indicates it. This case is named a trigger2 in the software. TCs themselves are named time syncs.

If there is a condition other than the default on the IC, or the user has explicitly modified it, a surrounding C indicates it. This case is named a condition3 in the visual syntax; ICs themselves are named events.

These elements are presented in fig. 8.2. 

Processes and hierarchy

As could be seen earlier, intervals can contain processes: these processes are shown under each interval, in what we call racks and slots. Fig. 8.5 show the visual depiction of common processes. Fig. 8.6 shows in addition how an interval can synchronise multiple processes.

Complete processes

Some processes use the standard graphical representation associated to their effect: for instance, a waveform for soundfiles, a curve for automations. The two special processes are the scenario and loop: both are layouts of the elements of the graphical language. The scenario, in 8.7a is a dynamic layout: elements can be added, moved, and removed by the composer, for instance by double-click, drag-and-drop, etc. The loop 8.7b is a static layout: new objects cannot be created. The only interaction possible is changing the duration of the loop pattern, which exists as soon as the loop process is created. During execution, processes will execute for exactly as long as their parent interval, as we could see before. However, note that the user interface captures presented only shows the part of the process that goes to the default duration of the intervals: what happens if for instance an interval has an infinite duration ? Thanks to the nesting capabilities, it is possible to visualize an interval in what is called the "full-view" mode, by opposition to the "small-view" shown here. In full-view, it is possible to edit past the default duration of intervals; remember that in terms of position, the beginning will have position 0, and the default duration will have position 1; everything past this will just have position greater than 1 in the token requests.

Note in particular that the blank canvas in which authoring starts when a new document is created simply consists of a root interval loaded with a scenario process. This interval is shown in full-view. Figure 8.9.: Adding a process to an interval: when an interval is selected, a small "+" is shown on top, which indicates to the user that he can add an element. Clicking on it shows a popup allowing to add new processes.

Data connections

The data connections between objects are represented in a common way in interactive art environments: with explicit ports and cables. The colour of a port determine its supported types. The visual language currently supports three kinds of ports: green for value data, red for audio data, and purple for MIDI data; connections are likewise coloured. An example is given in Fig. 8.8. Note that in contrast with patcher software where the ports are always located in specific places (such as the top and bottom of nodes), here more freedom is allowed: ports are objects that can be leveraged by each process's graphical implementation. For instance, control processes with parameters accessible on-screen have their ports displayed next to each parameter. This allows to adapt the ports layout with each process user interface, akin to traditional modular synthesizers.

Editing

Editing in the visual interface works by using the Command pattern: actions from the user are transformed into command objects which are put in an undo-redo queue and executed. In all cases, various checks are put in place at the presentation layer to ensure that invalid scores cannot be written: for instance, it should not be possible to create negative duration intervals or render them negative through a displacement 1 , to ensure that the scenario graph stays acyclic. Some of the commands available and relevant to the authoring of scores follows.

Creation operations

There are three main categories of creational operations:

• Creation of elements of the temporal tree.

• Creation of processes in intervals (fig. 8.9).

• Creation of connection between ports, and setting addresses to ports. The second and third elements are trivial: creating a connection only consists in dragging and dropping from one port to another. Likewise, addresses can be input manually set in ports through text fields, or dropped from other parts of the software. Creating processes can be done through standard user interface interaction means: dialogs, pop-up menu… More interesting are the object creations in the temporal tree. Three main interactions are possible:

• Double-clicking on the background of a scenario creates a set of {state, event, time sync}.

The state is on the event, and the event on the time sync. • Drag-and-drop operations. As an example, dragging a sound file or a MIDI file from other software creates structures that consists in:

-An interval started and stopped by two sets of {state, event, time sync }.

-Relevant processes in this interval: sound file process, MIDI process, etc. • Dragging from a state to another instantaneous element in order to create a synchronisation, or to an empty space in the scenario. Various items are created depending on the target of the drag and the vertical position relative to the original state. Between two states, if no interval currently exist, a new one is created. Between a state and an event, an interval and an ending state is created. Between a state and a time sync, an interval, an ending state, and an ending event are created on the target time sync. Dragging backwards is prohibited: object creation can only go in the direction given by the time flow. Finally, dragging from a state to an empty space creates a set of {state, event, time sync } at the end of the new interval.

In addition, even though no model object is created, visual objects appear when custom conditions are set on TCs and ICs. when an expression is added on a TC, every interval preceding the TC has default min and max bounds appear: this is because a TC entirely constrained by its previous intervals is useless since it will execute identically than the fixed case.

Removal operations

The removal operations available depend on the kind of object selected. Note that no interaction or combination of interactions ever allows to end up in a situation where a TC with no IC or an IC with no state exists. Likewise, intervals are always started and ended by a state: states can be thought of as graphical anchors to the start and end of temporal intervals; they are also loaded with a semantic meaning.

Removal operations preserve this state of things. In addition, the removal operation depends on the content of objects. As could be seen in the previous section, many objects can be created automatically in a single action: dropping a sound file for instance inserts six different objects in the scenario graph.

In order to not overload the composer with burdensome removal tasks, we assume that an instantaneous element without any kind of media content (no processes or no messages in states) can safely be removed if it was adjacent to an interval being removed. This means that for instance, an interval between two non-empty states will be removed when the action is applied; however, the states themselves won't be. If either state is empty and not followed or preceded by another interval, it is removed. If this causes the event and the time sync to become empty, they also are removed.

Move operations

A challenge during the design of the authoring features is to provide move operations that allow the composer to perform the change he finds relevant in the score in the easiest way possible, while still maintaining temporal constraint coherency. While for simple cases, such as straight lines, it does not causes problems, it is very easy to create ambiguous cases, as shown in the cases of Fig. 8.10.

Only vertical elements, that is, IC, TC, and states, can be moved horizontally and affect durations. Changing bounds of an interval do not affect any other elements. Two algorithms for moving elements are currently provided: forward move (in Section 8.2.3.1) and constrained move (in Section 8.2.3.2). A third one based on constraint solving has been envisaged but not implemented yet.

We consider δ, the duration corresponding to the current displacement of the mouse: a 10pixel displacement to the right is a positive duration corresponding to the current zoom level; for instance 1 second.

Forward move

This move algorithm considers that the elements following the object being moved should not undergo duration changes: it behaves as if a force was pushing or pulling objects in the direction of the mouse cursor. This means that previous objects' durations generally must change. In some cases, objects not directly following nor preceding the moved object must also change: consider D in Fig. 8.10. Since it is connected to the end of B which is pushed or pulled when moving the IC, its duration adapts. A difference with other approaches to solve the displacement problem is that we are not considering this as an optimization problem: as explained in Section 3.3.1.1, this can create cases where users have to track which (and how) objects were displaced by the constraint-solving algorithm. Instead, we specify the objects allowed to move explicitly: the changes of durations are limited to intervals that occur before TC that would be displaced.

The algorithm is as follows:

1. Compute the list of TC that must be displaced by the move. For a given element in the score, the TC to displace are fixed: they don't change in function of the distance. This allows to have a very fast move since they can be computed once and reused for subsequent move updates. The TC to translate are simply the ones which occur after the current element in the scenario DAG, including the current element. 2. Apply δ to the date of each TC.

If there is an interval after the clicked element in the DAG, its duration is conserved: the selected TC's date increases by δ, just like the TC after itself. However, every interval whose ending TC is after the moved one, but beginning TC is not, will have its duration modified in order to compensate.

Constrained move

This simple move algorithm considers that a minimal number of intervals should change: that is, only the ones before and after the moved TC. The durations are constrained between the two closest TC, as to not create negative durations.

This method simply adds and subtracts δ to the duration of the previous and following intervals. 

Constraint-aware move

This unimplemented move operation would respect the temporal constraints set up by the composer: that is, fixed scores such as the one in Fig. 8.10 would not be able to move at all; min and max durations would have to be introduced to enable some degrees of freedom. Such a method allows to explore the state space of "valid" executions for scores featuring interactivity with TCs.

Moving intervals

It is possible to "move" an interval (by pressing shift when dragging it): however, this is only a short-cut to moving its previous event in forward-move operation mode, which gives the impression of moving a box in the score space.

Moving and processes

Notice that when moving an object, most of the time an interval will see its duration being changed. This has implications for processes nested under these intervals: how must they react to their parent's duration changing ? Two modes for this case are available in the software:

• The scaling move: nested objects are resized proportionally to their parent. That is, if an interval containing a scenario has its nominal duration multiplied by 2, every interval in the child scenario will also be scaled by a factor of two, recursively. • The constant duration move: nested objects are expected to keep their current duration. The first case may be useful for instance to make a transition (generally in the form of automation curves) last longer: the author wants to go from state A to state B in the score in a given time. The second case is useful when a specific temporal layout has been made in the score, but the parent has to be extended to last longer (or shorter).

Note that making objects shorter does not remove child objects that end up past the nominal duration of the parent interval: if this interval has an infinite duration, for instance, these objects may still execute but will have to be edited in the full-view.

Encapsulation operations

As per the hierarchic requirements mentioned before, some commands relative to the hierarchy levels are provided:

• Encapsulate in a scenario.

• Encapsulate in a loop.

• Decapsulate.

The encapsulation commands replace the selected elements by a new interval, and inserts them in a scenario inside this interval.

In the case of loop encapsulation, the scenario goes in the pattern of the loop. If a single interval was originally selected, then add a loop process to it, duplicate all the other existing processes of this interval in the loop pattern, and remove them from the original interval: this allows to easily loop the content of an interval.

The decapsulation command provides the opposite mechanism: it puts the content of a scenario in a parent scenario, if any. 

Representing execution

The representation of execution uses a simple colour pattern: green for the portions and objects that were executed, and red for the disabled parts1 . The position of the green bars indicates the current dates at which each interval currently is. As soon as interactivity is involved, it is indeed impossible to use a global playhead common in audio sequencers, unless we are willing to rescale the objects. Fig. 8.11 shows the cases that can happen during execution.

Note that at any moment, it is possible to execute either the root interval (that is, the whole score starting from the beginning), or a specific interval which is then considered as the root of the score which will be translated to the execution model.

Execution offset

For a score lasting only a few minutes, if the author want to test a change at the end of the score, waiting a full play-through between each edit would be untenable, let alone for scores lasting hours. Hence, we must enable in some way the score to be executed from any point: we apply an offset to the starting point of execution. However, this is not as straightforward in the context of interactive scores as it would be in the context of fixed scores. It is not possible to know which branch did execute, or when an expression became true. In general, this is not possible to do without executing the score from the beginning since the conditions can depend on previously-executed values.

But cues can still be given by the author. For instance, even if an interval just repeats an infinite behaviour, such as a mapping from a value to another executed at each tick, its default duration can still differ: it is a hint given by the author about the duration he expects this part of the score to take. Hence, when performing a playback from a non-zero date, we consider that every interval before the current date did execute for exactly its default duration: in this particular case, the visual dates will map perfectly to a virtual perfect execution -even though this execution did not really happen up to the offset date. Hints can be given on ICs. They can be given a default offset behaviour: the truth value they should evaluate to in case they are before the offset date. Three values are possible: always true, always false, and default. Default evaluates the condition as given: this can be useful for instance to quickly test different branches of a score through an external control. Fig. 8.12 provides an example of execution leveraging this mechanism.

Reactive edition mechanism and live-coding

Reactive edition is the process by which the author can modify the score during the performance. It allows to partly free interactive scores from the limitation remarked in previous models by Desainte-Catherine et al. [START_REF] Desainte-Catherine | Towards a Hybrid Temporal Paradigm for Musical Composition and Performance: The Case of Musical Interpretation[END_REF]: "all events to be played at performance time must be explicitly written in the score": if scores can change during performance, new interactive events can be added at further points in time.

The mechanism by which reactive editing is implemented is fairly standard for multimedia applications. Remember that we want to minimize latency and ensure correct performance for the user of the program. To enable this, user interface operation (including edition of the score) and execution run in separate threads of execution. The UI thread, driven by the event loop, handles display, but also application of the edition commands to the model. The audio thread, generally driven by sound card interrupts, has no knowledge of the structures of the UI thread and model: the execution algorithm is part of a smaller library with its own set of structures. These structures have no data members other than those required to perform execution, and no knowledge of the user interface. To enable reactive edition, and further down the road live-coding abilities, the UI thread needs to communicate changes to the execution thread: this is done with a simple lock-free command queue mechanism.

Commands for reactive editing

The command queue transmits closures which apply atomic transformations to the structures of the execution thread that are executed at the end of the audio callback. Currently, the number of commands executed is unbounded; while this can be scary, measurements during run-time edition tasks have shown that the maximum number of commands during a given tick would seldom exceed 2 or 3. This can be explained by the fact that the execution tick runs generally at a higher frequency than the UI tick which triggers the emission of commands; common period for UI ticks are 16 millisecond ticks, since the user interface is commonly driven by the display refresh rate, while the default execution tick is at 1.45 milliseconds.

Using a command queue ensures that the execution structures are not modified concurrently of their use, which greatly simplifies reasoning and implementation: in particular, this way there is no need to add locks, which may damage performance1 , to the execution structures.

As far as possible and practical, memory allocation and time-consuming algorithms are performed in the UI thread, where deadlines are not as critical as in the real-time execution thread.

An important point was ensuring that as few memory allocations as possible would take place in average cases such as changing the duration of elements: this has lead to a static constraining of the size of closures transmitted to the execution thread, at 128 bytes. A compile-time error prevents the usage of closures that would not fit in the command queue, instead of silent memory allocations or runtime exceptions. The command queue itself is bounded at a static limit of 1024 commands.

For instance, an extract of the code that updates the sound file loaded in a sound process is given in Algorithm 9. [n=std::dynamic_pointer_cast<ossia::sound_node>(OSSIAProcess().node) ,data=to_double(process().file().data()) ,upmix=process().upmixChannels() ,start=process().startChannel() ] { // This code will be called from the execution thread. // The data is transferred to the dataflow node in the execution thread // without requiring allocation: only a pointer swap occurs. // However, the previous memory held by the sound node may be freed. n->set_sound(std::move(data)); n->set_start(start); n->set_upmix(upmix); }); } Likewise, feedback commands are written in a command queue read from the UI thread at a regular interval. These feedback commands are currently only used to update the current execution position and status for each graphical element. Fig. 8.13 synthesizes the overall behaviour.

Consistency of the score

Consistency is ensured by providing closures which have an atomic behaviour on the score. That is, every individual transformation sent to the execution engine must be allowed to be applied without the others and still yield an executable score. This is due to the asynchronous callback mechanism used in the user interface: there is no guarantee that a large editing operation from the user interface -for instance, removing a whole set of elements -will happen in the course of a single execution tick and fill the command queue in time for every command to be applied before the next execution tick. Hence, operations are divided in small sub-steps: every step applied to the execution data structures must leave them in a coherent state, since the next execution tick can occur at any point in the overall larger transformation.

This means for instance that editing operations must have an order: for instance, removing all the elements in a scenario would:

• Ask for a removal of intervals first.

• This would cause a removal of processes in intervals before the intervals themselves are removed. Note that there is no need for removal to be a recursive process: it is sufficient to remove the handle to a scenario or loop instead of performing a deep removal of every element recursively. Each process removal would be a single command sent to the execution engine. • Then, intervals are removed: most punctual elements such as TCs, ICs will float disconnected from the rest of the score, and will not be considered anymore by the scenario execution algorithm. • Then, states are removed, followed by ICs, followed by TCs. At this point, the removal operation is complete. In case of an "undo" operation, a similar sequence of events happens, but in reverse order.

Enabling live coding

The interactive scenario model we presented does not easily lends itself to live-coding. An attribute of live-coding environments is that the programmer can directly submit commands to the execution engine, that will be executed either as soon as possible, or in a delay manually specified. This can be for instance at the beginning of the next bar, or after a few seconds.

This causes problems with the edition and execution model: remember that the time starts from the beginning and that any element not linked to the root node of the scenario DAG will not be executed, as it would be considered part of the scratch pad.

There are two possibilities for newly-created score elements:

• They are linked to an element of the score.

• They are not part of the score in itself but in the scratch pad.

(a) An automatic loop: it will start playing automatically, and will restart from the beginning when the end trigger of its pattern is pressed.

(b) A manual loop: it will play when the first trigger is pressed then stop when the end trigger of its pattern is pressed. The only possibility for a temporal object to execute is to be linked to an element of the score that has not executed yet: else, the TC will not be considered for the course of the execution and the objects added after it will not execute. But new elements inserted during playback would generally be connected directly to the root node of the scenario if dropped, which has already finished executing, hence they would not execute; besides, it can be complex for the user to track down the timeline after which the new temporal object should go, especially in a stressful live performance situation.

However, this can be helped by using loops. The basic construct is given in Fig. 8.14. During execution, when the loop starts again, every new interval will be able to execute: this ensures that the processes will happen as desired by the composer. A trigger is put on the end state of the loop. It allows the live-coder to choose at which point he wants to start the loop again: this leaves the time to remove unwanted intervals for instance. This process is showcased in fig. 8.15.

Conclusion

This chapter presented a mapping of the previous models to a visual syntax, and the operations that can be applied on it. This visual syntax had first been presented in [START_REF] De La Hogue | Présentation D'un Formalisme Graphique Pour L'écriture De Scénarios Interactifs[END_REF]. The mapping is straightforward: graphical elements are introduced for special cases, but the temporal tree structure is otherwise kept identical. Objects of the data graph are related to different elements of the visual language: processes but also intervals have ports, which manifest themselves in different ways.

This enables authors to create interactive scores with only few building blocks, each with a defined semantic: temporal and instantaneous condition, state, and interval. The environment is kept extensible: new processes can be added to the system; these processes can leverage the elements of the temporal syntax, as for example the two provided temporal processes, the scenario and the loop.

These interactive scores can be modified during the course of execution: a reactive edition mechanism is implemented in order to allow increased possibilities of live performance. The next step for this work is to provide a formal evaluation of this environment in accordance with established human-machine interface procedures. Another important point is the representation of a particular execution, and more precisely, of the state of each data graph during the execution: the current visual model only provides visual cues relative to the temporal tree and not to the actual data nodes being enabled or disabled. 9

Distribution considerations

Introduction

Western music notation solves the problem of sharing and separating information between musicians by dividing a score into staves. Most music software will interpret these staves on a single machine, keeping the possibility of tracks with independent settings. This part presents a generalization of this notion of sharing to interactive scenarios, allowing a synchronous or asynchronous execution of different parts of the same scenario on several machines, during a single execution. It follows from ideas originating in the Virage project, where it was made apparent that multi-seat operation was relevant to artistic creation, both from the point of view of the authoring and the execution of interactive scores.

We try to define a semantic to describe the execution of an interactive partition on several machines of a local network, taking into account the parallel executions: two machines play together, synchronously or not, as well as serial performances: one machine plays one part, then another plays the next part.

From an extraction of requirements from real-life use cases presented in Section 11.5, we try to define the necessary adjustments to the execution model to make it possible to express simply the distribution of the structures composing an interactive partition. One of the first questions is the nature of the desired synchronisation between machines. For example, implementation choices are necessary depending on the desired accuracy. There is also a need for this work to operate on consumer equipment, commercially available off-the-shelf.

Then, the distribution possibilities studied will be presented, by analysing the impact that the known problems in the field of the distributed computing can have on the writing of such partitions. In particular, we will give different semantics possible for several elements of the model, which allows solving different distribution problems: the information sharing that can exist between machines running the same task in parallel, and the different ways to synchronise these machines together. To conclude, the details of a preliminary implementation will be presented.

Approach

This section details the choices made when devising the desired distribution mechanism.

We want to modify as little as possible the temporal model, by adding necessary and sufficient notions to offer a specific distribution precision.

Section 9.3 presents in detail the possibilities available on the basis of simple cases.

Section 9.4 defines these possibilities using the objects of the temporal model. Note that this method would be prohibitive to perform manually by the composer: it is a guide to develop the implementation. The distribution is done automatically from the high-level specification given by the composer via the tools presented in Section 9.3.

The implementation will be discussed later, in Section 10.2.6. Care should be taken not to confuse this work with the distribution form that already exists in the project using the device tree of Chapter 4 to orchestrate other software via protocols such as OSC.

We find ourselves in the presence of several computers that communicate and share the same data structure: a document. We introduce some definitions related to it.

Definition 40 (Session)

A session 1 is a set of instances of score associated with a document. Definition 41 (Client) A client 2 is an individual instance of score connected to a session.

The physical machine for the execution of this instance is not specified: in order to simplify usage, we have to get rid of notions related to physical machines and problems specific to network connections (such as IP addresses, machine ports, …), when authoring a distributed scenario.

To enable this, the notion of group 3 is introduced.

Definition 42 (Group)

A group is a virtual set of clients: groups are created by the author and associated to elements of the score. Clients can be assigned to one or more groups during execution.

Composers never directly manipulate clients in their score, only groups that can contain zero, one, or more clients. A client not part of a group will not execute anything.

In general, when several clients are part of the same group, it means that they will perform the same tasks at varying degrees of synchronisation: for instance, playing a given sound.

One of the advantages of this approach is the tolerance to faults, disconnections, and other unexpected changes in the physical environment. For example, if a machine breaks down, it should be possible to replace it with another simply by assigning it to the same group as the broken machine, without needing to update the scenario. 1 In the distributed score model, a score and the set of clients connected together in order to execute this score. 2 In the distributed score model, an individual instance of score connected to a network session. 3 In the distributed score model, a virtual set of clients.

G 3 G 2 G 1 Figure 9.1.: Multiple heterogeneous groups G 1 , G 2 , G 3 .

Distributed execution description

The temporal structure (scenarios, loops, intervals, IC and TC) is considered separately from time processes (automations, sound files, etc.). Scenarios and loops will have a specific behaviour during distribution. Other time processes can simply be considered as data sources and sinks: their specific behaviour is not affected by distribution.

Synchronisation groups and indications are assigned to these objects by the composer. In practice, this information is saved as a list of metadata associated with the objects.

Scenario

Several ways of distributing the execution of a scenario, offering different writing possibilities, are detailed below. We separate the general case allowing interactivity in a scenario of the simplest case where the dates are fixed. In the first case (scenario 9.1), the progress depends on the triggering of an external event, while in the second (scenario 9.4), the progress does not depend on external parameters.

The following examples feature several groups G 1...N , each with an unknown number of clients. We can assume that all the intervals can carry one or more time processes, for instance automations. They are not always represented in order to keep the figures simple.

A first analysis considers the choices that must be made to translate this mechanism into the distributed case. Then the impact on the entire scenario process by presenting the high level distribution policies is studied.

Synchronisation modes

Providing a strong synchronisation in a distributed system, for example with millisecond accuracy, is a difficult problem [184]. An additional interval that is imposed is the ability of the system to operate on consumer-grade hardware. This kind of hardware will not always support features such as Synchronous Ethernet [185] or PTP.

We identify two possibilities of synchronisation, useful in different cases:

• Synchronous mode: respects the temporal semantics. The elements run in the same order as if the scenario was not distributed, at the cost of increased latency in the presence of interactivity. • Asynchronous mode: does not respect the temporal semantics. An execution of an object can finish after the execution of the next object has started. On the other hand, latency is decreased.

In addition, we consider how information propagates in the system:

• Instant propagation: when interactive information is available in the system (for example "an expression is true"), it is propagated as quickly as possible to other clients who must apply the result of this information. This mode reduces latency, at the cost of larger offsets between different clients.

• Compensated Propagation: When information is available in the system, it is propagated with a time-stamp so that the absolute completion date is the same (for an external observer) for all clients. We take into account for this purpose the clocks and the relative latency of each client. The fixed dates are offset against this information. This is particularly useful in the non-interactive case: as soon as a date can be fixed, it is, and the clients do not wait for a message announcing the end. Note that it is physically impossible to reliably execute objects with the same time precision as if they were running in the same clock tick on the same client: the goal is to minimize these time offsets. The four possible modes enables authoring choices according to the consistency and latency requirements of the score.

Instant asynchronous mode will offer the lowest latencies to the detriment of the execution order of the objects. Conversely, the compensated synchronous mode provides strong synchronisation that can be useful for media processes. For example, we would tend to choose this mode to start synchronised video playback on multiple machines.

The different synchronisation modes will impact:

• The execution of TCs.

• Verification of the validity of conditions. When a choice has to be made, a consensus can be reached at the level of the group to which the object is assigned. The possible consensus mechanisms are subsequently discussed in Section 9.3.1.5.

Interactive case

G 3 G 1 G 4 G 2 G 5 G 4
Scenario 9.1.: An interactive scenario with interactions and conditions; G 1...5 are the groups associated with the elements of the model. We assume that each interval is loaded with some content-generating process: automation, sound file…

G 1 G 2 G 1 G 2 G 2 G 1 G 2
Scenario 9.2.: Two intervals, each with a hierarchical sub-scenario.

We consider three methods to share the information in a distributed scenario:

• No sharing: a given process is executed independently by all the clients in the process' group. Others do not execute it. This case is useful for sub-scenarios where several participants in an art installation plays individually in a shared experience, while keeping a higher level overall direction for the execution. Typically, one can imagine this case for a mobile application.

If, for example, the G 1 group is assigned to Scenario 9.1, each G 1 client executes all the intervals and evaluates all the expressions. The clients do not communicate their results with each other. Thus, for two clients of G 1 , the TC can fire at different times, and the condition may have another truth value. In this case, the distribution can not operate hierarchically: each execution on each client will have different execution times for each of the TCs: no synchronisation is possible inside a given process. Group annotations that could have been assigned to the objects in the scenario are ignored: this is the case for G 2..5 in Scenario 9.1. • Full Sharing: There is a single time-line common to all clients. Group annotations indicate the execution location of the content processes and the list of clients that must reach consensus for a given expression. This makes it possible to manage the distribution of objects at different hierarchical levels: in the scenario 9.2, if the root scenario is in this mode, then we can correctly execute the children scenarios taking into account the groups of their objects.

The evaluation of TCs is shared across clients: in Scenario 9.1, the clients of G 3 would wait for the clients of G 1 and G 2 to enter evaluation, then resolve the evaluation of the TC as described in Section 9.3.1.4, and pass the control to clients of G 4 and G 5 . • Mixed: There can be multiple timelines belonging to different groups in the same scenario.

These lines can then resynchronise at a given time.

We consider the scenario graph1 . The time-lines are the sets of intervals and related ICs of this graph, such that all the elements of this set are associated with the same group. Annotations are used to provide the location for executing intervals, processes, and checking expressions. Consider Scenario 9.3. The difference with the full sharing case is that only clients in the G 1 group will run the top branch I 0 , T 1 , I 2 . They may or may not have to synchronise with each other. This requires a synchronisation for all clients belonging to G 1 and G 2 during the last TC, located on the right. As for the first case, due to the possibility of different executions of the same content, it is impossible to offer a coherent hierarchical distribution.

Non-interactive case

If scenario authoring is restricted to non-interactive constructs, it is possible to optimize the compensated mode described above. As the actual dates at which the objects are supposed to run are known, it is possible to fix them in advance on each client. A graph is used to obtain an estimate of the minimum dates at which it will be possible to set the execution dates of the elements according to a given TC. This method is particularly developed in [START_REF] Celerier | Rethinking the Audio Workstation: Tree-based Sequencing with i-score and the LibAudioStream[END_REF].

This principle of pre-computation makes it possible to offer to a certain extent a tolerance to partitioning: if there is a disconnection, the execution will continue to function at least until the next TC. This can leave time to fix the problem in a stage performance situation. On the other hand, since there is no scheduling at the moment of the TCs, any small delay would cause the beginning of the execution on G 2 to occur before the end of the execution on G 1 , in Scenario 9.4. It is therefore particularly important in this case to keep the clocks of the machines synchronised. 

T 0 : G 2 T 1 : G 1 T 3 : G 1 T 2 : G 2 I 0 : G 1 I 2 : G 1 I 1 : G 2 I 3 : G 2

Expressions and interactivity

In the case of no sharing, where a scenario is run entirely in parallel by different clients, there is no particular situation to manage. Each client verifies expressions based on the data they have, and validates them whenever they are able to. This can be useful if for example the partition involves several phones that all run a similar scenario, but where each individual phone can choose to advance its own local scenario at the rate he wants. In the case of sharing certain time lines by several clients, it is necessary to synchronise shared information. These are, for example, the evaluation dates of expressions.

• If there is a single timeline, each expression must bear only one truth value over the whole system. There must be a consensus on the value of these expressions. Several ways to reach consensus are possible: -In the case of ICs, at least one client validates or denies the expression.

-In the case of TCs, we can set the value of the expression to that of the first client who verifies it, using the stamps. -In the case of TCs, a majority of clients validate the expression.

-All clients validate or deny the expression. • In the mixed case, the synchronisation must be done at the entry or exit of a branch. There are several possible problems:

• Disconnecting a client when making a decision. In this case, we can learn about the disconnection, by performing a regular ping, and make the decision with the remaining participants. • The case of an ex-aequo, if a group has an even number of participants. There are several resolution possibilities:

-Choose according to the stamps: the first choice is the one chosen.

-Name a group leader who makes a decision.

-Choose at random.

Consensus

As mentioned in Section 9.3.1.4, when sharing TCs and ICs, different clients have to agree on the result of an expression. We separate the synchronisation of the consensus of the execution mechanism that follows the resolution of this consensus:

1. The nodes involved in the expression decide the truth value. 2. Once this value is known, all the nodes preceding, following, and involving the expression are included in the decision of the execution date.

Alternative: low-level distribution

Another approach not considered in this work would be to perform the synchronisation at each clock tick, via a master-slave servo mechanism.

The master runs with a physical clock. At each tick, he sends all clients the date on which they must perform their own tick. When clients receive this message, they apply an active wait1 : the program loops until a trigger condition is validated. Until this, the execution of the tick takes place.

Summary

We introduce a notion of client (potentially a physical machine) and group. A group can contain multiple clients, and a client can be present in more than one group.

A shared document template is chosen for distribution: all clients see the same document, but can each interpret subparts differently, at the discretion of the composer.

Different objects of the score model can be assigned to one or more groups:

• Processes.

• Temporal conditions.

• Intervals.

In the case of TCs, several synchronisation levels are presented. Given a group, an interval propagates this group recursively to all its child processes.

For the case of the scenario process, the distribution can take place with varying degrees of information sharing between clients.

Semantics

We describe here the semantics of the various synchronisation methods studied previously. They are described through the temporal model primitives: we already have synchronisation through TC and message-passing with intervals and the environment, which are enough to implement distributed systems. For each annotation given by the author, such as in Scenarios 9.5, 9.6, 9.7, we give the required transformation into distributed scores.

Displacement without interactivity

I 1 : G 1 I 2 : G 2
Scenario 9.5.: Two time intervals follow each other on two different groups.

The first case, visible in Scenario 9.5, is the case of displacement. Two intervals I 1 , I 2 follow each other.

We note I 1 : G 1 when the interval I 1 runs on the computers of the group G 1 . Passing from I 1 to I 2 happens at a date known beforehand: the system is not waiting for any interaction.

The following transformations are applied: 1. A bifurcation is created at the first TC, before I 1 .

2. A temporal interval is introduced I 1→2 .

3. I 2 is moved to after the end of this new interval I 2 . 4a. In the instantaneous asynchronous case (fig. 9.3a).

A message M 1 is created at the end of I 1 ; it will trigger T 1 automatically. This implies that I 1→2 is flexible. This message will be sent when a consensus on the G 1 group will be established, with one of the policies described in Section 9.3.1.4. 4b. Compensated asynchronous case (fig. 9.3a).

When a consensus is established on the ending date of I 1 , a message M 1 is sent to the G 2 clients with this date. This way, they will start executing at the same time that the end of I 1 . 4c. Compensated synchronous case (fig. 9.3b).

The M 1 message is sent at the beginning of I 1 rather than the end. On the G 1 machines, the T 1 TC does not wait for anything. On the G 2 machines, it waits for M 1 . The clients of the group G 1 and G 2 can be disconnected after the beginning of the playback: they will keep working as expected. A few remarks: • Since there are no expressions, the instantaneous synchronous mode does not bring anything with regards to the instantaneous asynchronous case. Indeed, the beginning of I 2 implies in all cases the end of I 1 , because the clients of the group evaluating I 1 are the ones deciding of the evaluation date of the TC. This is in opposition with the case where an expression would be evaluated by another group than G 1 or G 2 . • The compensated case with pre-computations is not compatible with a strong synchronisation: in this case, we expect the synchronisation to take place only thanks to the underlying clocks' synchronisation, for instance with protocols such as NTP.

M 1 T 1 I 1 I 1→2 I 2
(a) Instantaneous, compensated, synchronous case.

M 1 T 1 I 1 I 1→2 I 2
(b) Pre-computed compensated asynchronous case. 

Displacement with interactivity: simple case

We now consider a simple case, similar to the non-interactive case, but where an external event is waited upon for the triggering.

T 1 : G 2 I 1 : G 1 I 2 : G 3
Scenario 9.6.: The groups G 1 and G 3 execute the two intervals, while a group G 2 awaits for a consensus on the expression. Scenario 9.6 can be solved in multiple ways:

• If the execution of the TC happens instantaneously, all the clients of G 2 send the triggering information to all the clients of G 1 and G 3 , without ordering guaranteed; all the TC trigger immediately. • If the execution of the TC is compensated:

-When its expression becomes true, a stop date for the G 1 clients is fixed in the synchronous case, and for G 1 and G 3 in the asynchronous case. Besides, in the synchronous case, a consensus mechanism allowing to ensure that all the members of G 1 have terminated their execution before the start of the interval assigned to G 3 . -If a max bound is reached: a client is necessarily the first to reach this bound. It can then inform the other clients; this will in turn trigger the continuation of the score.

Displacement with interactivity: extended case

T : G 2 I 1 : G 1 I 3 : G 3 I 4 : G 4
Scenario 9.7.: A scenario with a TC to be distributed over the groups G 1,..,4 .

We consider in this case the score 9.7, which has a TC T , managed by the G 2 group .

T e T 2 T 1 T 3 T 4 I 1 : G 1 I 3 : G 3 I 4 : G 4 G 2 G 2 G 3 M 1 , M 3 , M 4
Scenario 9.8.: Distribution of the scenario 9.7 in the asynchronous instantaneous case: intervals associated with the groups G 1 , G 4 , and the interval associated to the group G 3 will stop and start without an order known beforehand.

We note:

• T e : The TC which marks the beginning of the evaluation of the expression of T .

• T 2 : The TC which marks the consensus on the expression of T .

• T 1 : The TC which marks the end of the execution of the interval in G 1 . It is triggered by M 1 . • T 4 : The TC which marks the end of the execution of the interval in G 4 . It is triggered by M 4 . • T 3 : The TC which marks the end of the execution of the interval in G 3 . It is triggered by M 3 . In the asynchronous case, in Scenario 9.8, M 1 , M 3 , M 4 are messages which will trigger T 1 , T 3 , T 4 as soon as they are received.

In the synchronous case, in Scenario 9.9, the messages are sent as early as possible, but the triggering of T 3 implies the end of the execution of I 1 and I 4 . T 3 will start when all the M 3 messages have been sent: its expression is a logical conjunction on the reception of M 3 1,..N with 1, ..N the groups before T .

In the compensated case, the structure does not change. The sent messages do change, however: M 1 , M 3 , M 4 fix the date at which T 1 , T 3 , T 4 must execute, in order to happen at the same time.

It would be possible to express other variants: for instance enforcing simultaneity for the termination of I 1 , I 4 but not the start of I 3 . However, this would often be detrimental to authoring: we prefer giving access to a few high-level concepts whose necessity has been made apparent when researching the use cases with the authors.

Conclusion

A method (previously published in [START_REF] Celerier | Exécution Répartie De Scénarios Interactifs[END_REF]) is presented for splitting the execution of parts of an interactive scenario based on the temporal model on different machines on a local network.

I 4 : G 4 G 2 G 3 T e G 2 T 2 T 1 T 3 T 4 I 1 : G 1 I 3 : G 3 M 1 , M 4 M 3 M 3
Scenario 9.9.: Distribution of the scenario 9.7 in the synchronous instantaneous case: intervals associated with the groups G 1 , G 4 and the interval associated with the group G 3 will stop in order with a potential delay between the end of G 1 , G 4 and the beginning of G 3 .

The goal is to offer new writing possibilities to composers working in a heterogeneous environment, including phones, embedded cards like Raspberry Pi, and much more powerful desktop machines.

The different possibilities of synchronisation of the temporal structures are introduced. First at a TC, allowing various degrees of cohesion with the structure given by the composer, ranging from executions not necessarily simultaneous but with low latency, to executions with a higher latency, but allowing greater simultaneity for the observer. Then in a scenario, where we consider the possibilities of sharing that there can be between several machines running the same scenario: all in parallel, some in series and any other variations.

Note that in contrast to the published version, we do not consider the case of varying interval speed. This is because this work had been originally based on a different data production model, which did not support audio data but made easier variations of speed for intervals; this will be reintroduced once the specification of time variations in the current system are devised.

The remaining work is about extending the writing possibilities to include more complex interaction information. For example, we would like to be able to control a parameter such as the volume of a sound in real time, taking into account the interactions of several participants on their phone. Behaviours such as "take the average value", "take the highest value" could then be introduced into the palette available to the author. This part presents the implementation of the research done in this thesis, in Chapter 10: the library libossia for multimedia application modelling, and the software ossia score for the execution of interactive scores. Performance characteristics of the environment are exhibited through benchmarks of the various layers of the implementation corresponding to the organization used for this thesis. Then, Chapter 11 discusses of the remaining problems with the model, and presents practical uses in artistic installations.
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Implementation

We present in this chapter details on the implementation of the concepts presented earlier. Two main software artefacts are provided: libossia, the base library, and ossia score (referred to simply as score in the rest of this chapter), the visual authoring and execution software. The libossia library provides an implementation of the chapters 4, 5, 6, 7: data structures and execution algorithms for the process tree, the data graph, and the parameter tree along with multiple communication protocols. The ossia score software implements Section 8.1. A work-in-progress score plug-in implements the content of Chapter 9: distributed execution. The ossia score software itself does not necessarily needs to run with its whole graphic interface: it can be used as a command-line player in headless environments such as embedded boards. A work-inprogress experiment seeks the integration of score itself in other visual environments, such as Max/MSP and Pure Data.

Both are written in C ++ 17, using mainly the Qt and Boost libraries, and are supported across the three main desktop platforms, Linux, macOS and Windows. In addition, libossia has been used on mobile platforms such as Android. A recent version of the C ++ language is used for the added expressive capacity without loss of performance: clear ownership of data with unique_ptr, lambda-expressions, variants and closed polymorphism.

Care is taken to limit allocations on hot paths: message emission and reception, and graph execution.

Whenever relevant, flat data structures are used: they enable better cache coherency and an overall better performance for search than the default data structures provided by the language [186], at the cost of larger insertion speed. In the present case, we aim to make the execution of a fixed score as fast as possible: insertions must seldom happen in the hot path. For instance, during the execution of the scenario process, insertions only happen whenever a TC executes in a given tick since the over-ticks are stored in such a data structure. In the practical scores presented earlier, the number of insertions in such sets is negligible: very few intervals have synchronised ends.

libossia: general software design libossia consists of multiple elements:

• A base C ++ library, split in three parts: network, dataflow, editor. The first part provides an implementation of the device tree, as well as bindings and implementations of the various transport protocols mentioned earlier: OSC using a fork of the OSCPack library1 , MIDIusing a fork of the ModernMIDI and RtMidi libraries2 , Minuit3 , OSC-Query, WebSockets4 , HTTP, serial port, and an audio protocol implementation using PortAudio [167], JACK [187] or SDL 5 …The second part provides the data graph, and the third the temporal tree as well as common processes and data nodes implementations such as automations, mappings, sound files. • Bindings of the network part to various creative environments: Max/MSP, Pure Data, Unity3D and C#, SuperCollider, openFrameworks, QML, Faust, Processing and Java as well as more general purpose programming languages: Python, C89, C ++ 98. Documentation for the usage of the library in these environments can be found at https: //ossia.github.io/#introduction. In particular, instead of trying to offer an identical API across all environments, libossia provides primitives adapted to each system. That is, object-oriented environments such as Python, Unity3D are offered an object-oriented API which maps the received values of the network tree to a message queue, since threading is generally not supported. Data-flow environments such as Max/MSP and Pure Data have specific nodes used for the sake of referencing a tree parameter across multiple patches easily: the [ossia.remote] object; in addition, they offer primitives to enable encapsulation of behaviour within a patch. That is, using the ossia.model and ossia.view objects, it is possible to reflect the patch organization in the device tree hierarchy: each new ossia.model will create a hierarchical level in the tree to which all the surrounding parameters and node will aggregate.

It is hosted at https://github.com/OSSIA/libossia.

Structuring multimedia software with libossia

One of the core problems of software authoring is giving a structure to the software, to facilitate extensibility and modifications: fixing bugs, adding features…

As mentioned in Chapter 2, artistic software and hardware can generally be modelled by a tree of parameters. The device tree presented in Chapter 4 is proposed as a way to structure such software, to make it both easier for its author to focus on the artistic features of its works of art, and easier for computers to work with this structure.

Algorithm 13 Creating a tree with as single node in C#. We can make a parallel with prototypal object systems such as JavaScript1 's. In classical objectoriented languages, one separate the definition of classes with their instantiation. Instead, in the present system, the class definition is its instantiation. That is, the nodes of a tree represent at the same time the type of an object, and an instance of this type. The main point of this is, like before, to enable faster prototyping and development in artistic contexts: doing separate definition and instantiation would require more work from composers.

Instead, prototypal behaviour allows to construct types along with a usable instance of this type.

Another example of hierarchical environment with reactive elements is Unity3D: properties of classes can be changed graphically in real-time through user interface widgets. This feature is leveraged to provide automatic creation of libossia objects for Unity3D object trees: whole scenes can be exposed automatically to the network with no programmatic intervention.

libossia: network implementation notes

The network implementation provides ZeroConf / Bonjour support: that is, the network devices are automatically visible from other OSSIA-compatible software. This allows to simplify the research for devices in the network: there is no need for the author to remember the IP address and port of the software to which he wishes to connect to.

The implementation is based on a tree structure built with linked references. The nodes themselves only contain data; a protocol object is associated with each device and performs the actual conversion of messages in the API into network messages and conversely.

libossia: messaging pipeline

Overall, the proposed framework for controlling parameters behaves as in fig. 

libossia: node attributes reference

As mentioned in Section 4.1.6, attributes are attached to nodes. for instance a TCP instead of an UDP connection. This attribute can be useful for parameter changes which can cause problems if they are missing: for instance, a /play message should not ever be missed, while a value change can be discarded by a network router if there is another value that comes in the next few milliseconds. hidden The parameter is an implementation detail and should not be exposed to the network. zombie The node used to exist but does not exist anymore. This is useful in the context of dynamic nodes. For instance, given an equalizer with a variable number of bands, this allows to remember that at some point, a particular band existed and keep its parameters in memory.

Control

enable An enabled parameter will send and receive messages. mute A mute parameter will not send or receive messages. Unlike the enable attribute, muting and unmuting is not propagated to the network. refresh rate The maximum rate at which a parameter should receive and send changes. step size If the parameter is numeric, the minimal steps a user interface control should operate at: for instance 0.5. default value The value with which a parameter shall be initialized. access mode A value that indicates whether a parameter is read-only (e.g. a measured value), write-only (e.g. a play message), or both (most controllable parameters: frequencies, colours, etc.) instance bounds A pair of integers representing the minimal and maximal number of instances for a given object. This can be useful to enforce limits on remote objects creation. 

libossia: units and dataspaces

Remember that a dataspace is a union of units pertaining to the same semantic domain, as defined in Section 4.1.4; any value specified in a unit of a given dataspace can be converted to any other unit of the same dataspace. For instance, both polar and cartesian unit systems pertain to the same "position" dataspace.

Table 10.2 presents the dataspaces and units supported by the current version of the system. These units were chosen from the set offered by the Jamoma project following a discussion with its users. 

libossia: protocols

Multiple communication protocols can be used with the present system. Some may only be able to leverage a part of the feature: for instance the MIDI protocol offers no way to exchange any kind of metadata. The OSCQuery implementation with the proposed extensions allows to leverage the entirety of the present framework.

MIDI

MIDI is a famous protocol published in 1983 for the control of electronic music instruments. Its original goal was to allow synthesizers from different brands to be able to send control signals to each other.

The protocol is based on message exchange, originally at a fixed baud rate, though more recent software implementations do not rely on this anymore.

A message generally consists of between 1 and 3 bytes; most values are stored on seven bits out of eight as the most significant bit of each byte is reserved for identification. Some parameters, such as the pitch bend, combine two bytes for their value to provide more precision.

Most MIDI messages are semantically charged: for instance Note On, Note Off, Pitch Bend, refer specifically to musical concepts; though they can of course be leveraged for other kinds of controls.

In order to support common MIDI usage, a mapping from usual messages to a tree, schematized in fig. 10.4 is provided:

• The first level of the tree is the MIDI channel.

• The second level of the tree is the MIDI command.

• The third level of the tree is the first MIDI byte, if it is a command.

• The value of a parameter is the second MIDI byte.

The nodes and parameters are set up according to the following rules and conventions:

• Channels start at 1. OSC servers are software or hardware peripherals, with associated OSC methods that receive OSC messages. An OSC method has an associated address; the OSC server routes any OSC message whose pattern matches with its address. OSC containers are akin to folders in file system: they contain children containers or methods. We refer to OSC methods or OSC containers indifferently as OSC nodes. Addresses are as such similar to traditional UNIX system paths: /synth/frequency. Patterns can use a limited form of pattern-matching: /equalizer/*/{freq,gain} would for instance match /equalizer/123/freq /equalizer/main/gain but not /equalizer/123/Q /equalizer/freq

• Dedication of a sub-namespace of the OSC tree to reflection abilities: for instance, Schemder and Freed proposed the use of the /osc sub-namespace to store queries on the timing and synchronisation abilities of the system; the /osc sub-namespace has then been extended by others to include for instance the ability to list the nodes of the OSC server.

Minuit

Minuit has been introduced by the Jamoma project in [START_REF] Lossius | Modelview-controller separation in Max using Jamoma[END_REF]. It is a bidirectional query protocol based on a superset of OSC which does not support advanced pattern-matching expressions.

The protocol specifies a way to communicate attributes between two peers through the OSC protocol, and extends its semantics with a notion of parameter and associated attributes that can be queried. UDP is used as a transport protocol between both peers.

The protocol provides multiple actions:

• get: Allows to query the current value of a given OSC method.

• set: A standard OSC message.

• listen: Request the remote peer to send OSC messages to this peer whenever the parameter associated with the OSC method changes. • namespace: Request the remote peer to send the list of nodes and associated attributes to this peer. Setting values is done by plain OSC messages. The EBNF syntax grammar for a Minuit message is given in Appendix C. The Minuit message arguments constitute themselves a language built with OSC strings on top of the OSC arguments. For instance, a namespace request and reply is as follows. Vertical lines indicate a separation between two OSC values, the OSC address pattern being the first column:

A?namespace /some/address B:namespace /some/address nodes={ foo bar } ... The complete specification of the possible messages is provided at https://github.com/Minuit/ Minuit. Due to its lack of conformance with the OSC specification, some OSC implementations do not accept Minuit messages.

OSCQuery

OSCQuery is an in-development protocol proposed originally by Ray Cutler [190], which aims to provide querying capabilities on a separate server associated to an existing OSC server. This separate server is to be queried through standard HTTP requests; it answers with the requested data in JSON1 format.

Unlike the previous protocols, OSCQuery is meant to be used on a TCP connection, in order to enforce a greater reliability of the transmission. In its simplest incarnation, an OSCQuery server could just act like an HTTP server which communicates in a request-reply fashion. However, in order to provide additional functionality, streaming protocols like WebSockets can be used for lasting connections between a client and the server.

The protocol supports multiple requests, described thereafter.

Additionally, the protocol supports notification of changes to the structure of the OSC server: for instance, if nodes are added, updated or modified at run-time, the clients are kept aware of such changes through the streaming connection. Likewise, the critical attribute mentioned in Table 10.1 can be leveraged: critical OSC messages would be sent through the WebSocket connection instead of the OSC UDP connection. Furthermore, using WebSockets for OSC transport would allow web clients to connect to an existing OSC server, which is not possible with usual OSC implementations.

Multiple extensions and improvements were proposed by the author to the protocol: in particular, the semantics of various attributes defined earlier, such as the critical attribute, and changes due to implementation experience with the protocol.

Scriptable protocols

The previous protocols, in particular OSC, Minuit, and OSCQuery, are viable for creating structured software: they allow their user to build the tree according to their application's needs. The main mechanism for this is creating the relevant domain objects in their authoring environment. Others, such as MIDI, are fixed due to a rigid specification.

Finally, in some cases, external programs cannot be simply represented in a tree structure due to the lack of any schema, or one that would be too complex or too large to duplicate in a single device tree. One may want to be able to leverage Web APIs -for instance, real-time weather forecast has sometimes been used in artistic installations; weather information can be provided through web REST1 endpoints and given in specific formats, sometimes custom JSON. It is then necessary to have a way to map these APIs to our structure. Likewise, embedded devices will often communicate with specialized, custom-made protocols (see Section 11.5.3 for an example of communication with robots).

Hence, we propose the use of an embedded general scripting language to create trees that may map to such protocols. The JavaScript language is used for this, as part of the QML environment.

Three protocols, sitting under the application OSI2 layer, are available to build upon: Web-Sockets, HTTP, and serial communication.

WebSockets

The WebSocket protocol is a web protocol which allows packet-oriented connections as an upgrade over an HTTP connection: it is for instance very often used with websites that have live-feed updated as is nowadays common. Of course, every application is free to send whatever data it wants: there is no structuring of data. We give the method for binding a custom WebSocket API to our device tree: A QML object has to be provided as in Algorithm 16, with two functions: onMessage and createTree.

• onMessage is called whenever a message is received from the WebSocket server the object is connected to, with the message data. This function should return messages to be applied to the device tree, in the form of an array of JavaScript object representing key-value pairs, the keys being paths in the device tree, and the values being the values to set in the tree.

Other protocols

This mechanism can be easily extended to other transport protocols, with sometimes different specifications. For instance, HTTP, by virtue of being a request-response protocol, supports setting a custom onMessage function, per parameter of the tree. This is possible because the underlying protocol guarantees that the response corresponds to the request that had been done.

libossia: data graph implementation notes

We discuss here some specific choices, problems and open questions in the implementation of the data graph. ) with E the edges and V the vertices in the graph. The problem has since been shown to be reducible to square matrix multiplication [192]. A possibility for further performance improvements when editing the score during its execution can be made through a dynamic computation of the transitive closure [193], that is, updating an existing transitive closure after an edge or node addition or removal. Current best algorithms have a complexity of O(|V | 2 ) on update of the closure, with constant query time.

Representing audio data

Given the definitions presented earlier, the only relevant way to represent audio data in the data graph would be as an array of value * int where each value is a floating-point value. In practice, this would be wasteful for audio data which comes in buffers: instead, an array where the timestamp is the index of each sample in the array is used. Unused samples are set at 0 if at the beginning of the array. Double-precision floating-point values are used for audio storage and computation.

Graph-only program

We give in Fig. 10.6 an example of program that can be written by leveraging only the data graph part of libossia. This program is an additive synthesizer built on 60 sine waves. The frequency of each sine, and the output volume, can both be controlled by OSC or WebSocket messages. 

ossia score, the user interface

The main software artefact, ossia score, is the implementation of the editor and player for the visual language. It is hosted at https://github.com/OSSIA/score. The interface is split in multiple parts, visible in fig. 10.7: by default, the left pane contains the device trees, the central pane contains the score, and the right pane contains an inspector which can give informations and perform actions on selected objects. Multiple other panes are available but hidden by default.

Translation glossary

Particularly, naming the concepts of the software has been a long-lived debate in the community: terms that bear a specific meaning in a scientific context may have a very different meaning in the audio-visual community, which may sometimes lead to misunderstandings from the users of the software due to their different technical backgrounds. Hence, the choice has been made to use less correct but more easily graspable terms in the software implementation. This thesis uses a different naming convention, which maps more closely to the model definitions. Wherever applicable, the difference in terms will be highlighted. The equivalence table is given in Table 10 

Current limitations

The latest release of the current implementation still harbors some design choices which were relevant to previous iterations of the software: in particular, durations are given in milliseconds instead of audio samples. Some additional limitations are imposed due to the constraints of graphical manipulation. For instance, the length of an element in time may not be less than 10 milliseconds: this is to prevent accidentally creating microscopic elements in the interface which would require extreme zooming to notice1 .

Plug-in system

The software relies heavily on a plug-in system: all the features of the software are brought through plug-ins arranged in a dependency graph. Some plug-ins provide specific processes: for instance Javascript scripting or Pure Data integration, while some others are more fundamental and provide for instance the whole execution algorithm and the whole visual model, while other provide the distribution features. All the panels are provided as plug-ins; an overview is given in Fig. 10.8. During the development, a main benefit of this architecture was to make explicit the dependencies between modules, and to allow users of the software to only use the parts that were necessary, without risking the use of more experimental developments that could jeopardize a show. It will also allow to provide a number of new features easily: multiple example plug-ins are provided in https://github.com/OSSIA. Another benefit is reusability: the application shell and framework developed for the program can be leveraged in other, unrelated environments. It is for instance the case with the SEGMent project on game studies, which benefits from the implementation of basic authoring software features, such as undo-redo, serialization, multiple panels, and restoration upon crash, for a game creation software.

Local device

score exposes its own dynamic device in order to provide some kind of external control at run-time, through the OSCQuery protocol. That is, the device reflects the state of the score itself: some of the intervals, TCs, ICs's properties are available for the composer to change.

For example, the conditions can be changed prior to their evaluation, in order to set them in advance at true or false according to ICs that might have occurred previously during the execution of the score. Some attributes of processes are also made available through this means.

However, while the software supports undo-redo features during the authoring, commands received through the local tree are not submitted to the undo stack.

For instance, Fig. 10.9 show how to control the local device of score through libossia in Max/MSP.

Component-based design

The software relies on an idea mainly explored in video-game software design: a separation between Entities, Components, and Systems [194]. Entities are the domain objects on which we operate. In standard ECS1 systems, they can be as simple as a single integer. In our case, they are simple objects with core model data which is only specific to each object's type: for instance, durations for intervals, or vertical position for states. The entities, in addition, are hierarchical, according to the visual model's rules.

Then, these entities are associated with specific objects tasked with visual rendering, communication with the execution engine, exposition in the local device, …These specific objects are components: they are arranged in hierarchies which mirror the entities.

Finally, at the root of each component tree, a system is present: it will contain all the relevant information for correct operation of the components of its hierarchy.

New families of components and systems can be added through plug-ins and then inserted or removed dynamically. In contrast with game engines where components can be associated to individual objects, we instead perform an automatic creation and association of the components for all the objects in the entity tree as soon as the system is inserted; anything else would be extremely unwieldy for the author.

This software development method has been instrumental to the quick iterative development process: general systems can be put in place, and components written independently for each entity when they become necessary, without jeopardizing the general operation of the software. For instance, the execution engine will simply ignore any process which does not provide a component for execution: some provided processes do not have impact on execution itself, such as the possibility to insert images in the score as a guide.

Distribution implementation

The system presented in Chapter 9 is agnostic to the underlying topology of the network: we define the messages that must be sent and received, but not the way they transit.

A prototype implementation, made in C ++ as a score plug-in, has been made in order to validate the approach, without seeking maximum performance. For reasons of simplicity, a star network topology was chosen. A master manages the general execution of the score. The different clients communicate through this master through messages, with the compromises that this implies:

• Ease of analysis and debugging during development: all the messages are exchanged with their timestamps and can be analysed from the master. • Simplicity of consensus: the master makes the decision with the information sent by each client, then informs them. • Intolerance to failure: If the master fails, no recovery is possible.

• Non-minimal latency: more messages are exchanged than if all clients were communicating directly. Other implementations in peer-to-peer mode would be possible. In the implementation, the TCP protocol is used for all the messages relating to the distribution, in particular for its scheduling guarantees.

Finally, in general, we rely on a good synchronisation of the clocks at the system level. The closer the synchronisation of the clocks between the clients, the closer the execution will be to the unallocated theoretical execution.

Extensibility and node authoring

The environment provides some facilities for creating custom processes, through new plug-ins.

The plug-in API has two levels:

• A low-level API which provides complete access to drawing, component trees, execution, undo-redo commands. • A high-level API specialized for the authoring of data nodes. While limited, the high-level API has the advantage of providing better type safety, as well as automatic user interface generation for a given set of controls (sliders, combo boxes, etc.).

This API, showcased in Fig. 10.10, works in the following way:

• The node author creates a structure, and a nested structure named Metadata.

• This nested structure carries constexpr1 informations about inputs, controls and outputs of the node, as well as relevant metadata to show to the user, such as a human-readable name. Controls are expressed through relevant user interface element names (sliders, text edits, combo boxes, as well as music-specific ones such as tempo chooser, logarithmic slider, waveform chooser). • If a nested struct named State is present in the main structure, it will allow the node to have ongoing state preserved across ticks. • The main structure has two required members:

-A run method which performs the actual execution algorithm. Static type checking through template meta-programming enforces that the arguments passed to this method correspond to the inputs and outputs declared in the Metadata struct. -A control_policy type which states the strategy to use for the execution, detailed shortly after. It provides two benefits: • Type safety: it is impossible to use an incorrect type for the inputs and outputs. For instance, if the Metadata declares a float slider, a text edit, and a MIDI output, the first arguments to the run function will be (const timed_vec<float>&, const timed_vec<std::string>&, ossia:: midi_port&, ...)

where timed_vec is an array which associates values to timestamps. Any other function prototype would produce a compile-time error, which makes it impossible to mistake the type of an input or output of a node. • Adaptable time handling: the tick itself be split in separate parts according to the input messages and token requests. This is done to cater to common cases in audio processing: for instance, a sound effect must react every time a value is updated or a message is received.

In usual APIs, the node programmer must encode this behaviour explicitly for instance by looping over the received messages.

Extensibility and node authoring

The high-level API proposed here optionally allows a node to choose how it will be executed: only for the first or last token requests, or once for every input messages in value ports (in the current implementation, support for MIDI messages on this part has not yet been implemented), with adjusted token requests. This way, the actual authoring code is simplified. Note that this is a compile-time transformation: code for these intra-tick algorithms are also generated at compile-time using template meta-programming. The author only needs to add a type member to his structure: using control_policy = last_tick; would for instance trigger an algorithm that runs the node at the last recorded token request, with the last control values for every parameter. If we take the same case as before, the acceptable prototype will be:

(const float&, const std::string&, ossia::midi_port&, ...)

This way, simple node prototypes which only execute once per root tick can be provided, and then further refactored towards a more precise time handling if necessary. This test is a benchmark of the TCP and UDP network implementation provided for the OSCQuery protocol, when considering the exchange of OSC and OSC-like float messages between clients and server. For varying numbers of nodes, random device trees are created. In addition, a special pair of start / stop messages are available on the server. This means that the more addresses there is in the set, the longer the hierarchic depth will be on average; we are interested in particular in the impact of this depth on the communication performance.

The client sends the start message and starts a timer. Then, for ten seconds, messages are sent from the client to the server; a counter keeps track of the number of messages sent. After ten seconds, a stop message is sent to the server. The server stops when it receives the stop message, and measures the time taken. The TCP test is identical to the UDP test, but all the nodes are marked as critical.

Results are shown in Fig. 10.11. They present a bottleneck on emission on the UDP side; there is a slight downward trend.

Note that we only consider local transfer: this is the maximal theoretic performance achievable on a single computer. Usage over a network will heavily depend on the network performance. For instance, assuming a 308-bytes payload (the average packet length as measured with Wireshark1 for this benchmark), the peak transfer rate observed would be approximatively 1057 megabits per second, which can saturate most current commodity network hardware.

While the TCP performance is assuredly lower than the UDP performance, we must note two factors:

• Generally, the critical attribute should be reserved to specific attributes, and not applied blindly to every parameter since most will not benefit particularly from the stricter TCP guarantees.

• The current TCP implementation sends messages one-by-one on each parameter push.

It would be feasible to pack them in a single message at each tick instead: doing so reduces the TCP overhead and can improve performance.

Performance of common processes and nodes

In this section, we study the performance of the nodes of the data graph: in particular, how many nodes can a user expect to use simultaneously in a given score for various kinds of nodes. This first benchmark tries to assess the impact of the various commit strategies on a set of automation processes. Results are presented in Fig. 10.12. We study two cases: one which only covers the data graph, and one which provides an arrangement of object similar to what can be authored in the visual language, with intervals and processes, in order to assess the impact of the temporal structure on the overall execution time.

In both cases, all the objects execute in a given tick; we measure the duration of the tick relative to the number of automations. We can see that the duration of a tick increases linearly with the number of elements.

The automations write messages in a pool of five parameters: this is to ensure that there will be multiple messages per parameter in the local environment at the end of the tick, to be able to measure the commit performance.

As expected, merging the values can allow running more nodes concurrently: for the cost of 1000 merged nodes, it is only possible to run on average 630 ordered nodes.

Audio nodes performance

This benchmark now focuses on audio performance: it is based on one of the benchmark proposed by Robinson et al. in [198], the MixNSines benchmark: a number of nodes (originally 60) generate sine waves. A value generator sets the sine wave frequency. The sines are mixed, and a gain is applied to the result.

Discussion on the metrics

We believe that some of the metrics in this paper are, if not flawed, at least suboptimal for the researched use case.

• The CPU meter of the system is used: this is fairly unreliable and can lead to hard-toreproduce results considering that the metering algorithm used by the operating system can vary from version to version. We believe that instead, audio-related measurements should be used: in particular, an oft requested metric is the maximal capacity of the system: how many objects will I be able to use without audio drop-outs. This is the approach followed by the audio benchmarking suite DAWBench1 . In our case, we will provide for instance the maximal number of sines at which no buffer underruns happen for ten seconds. Another possibility would be an accurate count instructions and clock cycles taken by the execution algorithm. This is possible to do in simulation environments such as Valgrind. • The cyclomatic complexity of the code has not yet been proven as being a reliable code quality and maintainability metric: multiple experiments have failed to prove any kind of correlations between cyclomatic complexity and the amount of bugs in a software [199].

We will still provide the measured numbers. Without addresses This first case is identical to the benchmark proposed in the Robinson paper.

The measured cyclomatic complexity of the C ++ example is of 2; the main function consists of 23 lines of code. There was at most 638 sines before audio drop-outs started happening (hence 1277 total nodes being executed). A measurement using the Valgrind analyser shows that the greatest part of the execution time is spent in the sine nodes; the frequency generation node cost is negligible. Memory usage statistics are presented in Fig. 10.13. There was at most 679 sines before audio drop-outs started happening. Memory usage increases a bit: this is due to the data structures used for the WebSocket and OSC server, and the need to create a parameter for each sine.

However, this attests than using a specific external environment structure for the control of objects in a multimedia software, instead of input-output graph nodes, can allow for better performance, while offering more possibilities at the same time, such as remote control with mobile devices.

Connection performance

In the following benchmarks, the score is set up with half automation nodes, and half mapping nodes. A certain amount of cables is distributed according to a random Bernoulli distribution between nodes. Initially, the nodes are sorted so that automations come first and mappings second. For each pair of connectable nodes (that is, an automation and a mapping, or two mappings if their connection does not create a cycle), there is a probability p that a connection will happen; p = 1 would mean that every output is connected to every possible input. Various values of p are tested. In addition, every input and output node is assigned a random address amongst five from a device tree: this means that in the relaxed case, if a node is not connected to any input or output node, it will still read and produce data. We also count the number of messages written in the local state every time before commit in the second graph for each benchmark: as can be seen, in the absence of merging at the input of nodes, the amount of messages stored is exponential, since mappings will produce new messages for every input they have.

We compare nodes linked with relaxed connections (in Fig. 10.15), strict connections (in Section 10.4.4.3), and no connections (in Fig. 10.17, where all the messages are exchanged through the local state).

The main observation is that execution time is almost entirely driven by the number of messages created in the tick. No meaningful difference exists between relaxed and strict connections. However, without any connection, every node will produce tokens for all the tokens which were produced before it: this causes a very fast increase in the number of messages generated -on a 100 runs average, 15343 messages will be produced for only 41 nodes. Hence, it is important for any score leveraging the environment for computations to ensure that inputs and outputs will be merged during execution. 

Scheduling cost

Scheduling the data graph is an important part of the overall execution. We present in Fig. 10.18 benchmarks for the different scheduling algorithms. Benchmarks were done with varying number of nodes, addresses at inputs and outputs, and edges between nodes. The measurement is done for the whole tick: this includes not only the scheduling part but also the execution part, since both are inseparable in the dynamic cases. The baseline is the cost of execution with the static scheduling already applied for the given score. Two cases are presented here due to the interesting inversion that happens: in one case, using breadth-first search for creation of edges between messages is slower, while in the other case, recomputing the transitive closure is slower. Generally, the cost of the transitive closure-based scheduling will increase with the number of ports with addresses: every connection done this way will re-trigger a computation of the transitive closure. If no addresses are used, or a Hamiltonian path exists in the data graph, then the transitive closure will only be computed once since no connection can be added.

Temporal graph execution benchmark

We now consider the performance of the temporal tree only: in these cases, no data will be produced. We are mainly interested in the execution time relative to the number of intervals. The benchmark consists in a single scenario, with varying number of intervals disposed as following:

• One after each other (serial case). • All together in parallel, with fixed durations (hence no triggers).

• The same, but with each interval ending with a trigger.

• The random case is constructed as follows: for every new interval, there is half a chance that it is put after another, and half a chance that it is put in parallel of another.

Results are presented in Fig. 10.19.

The main information is that the cost for intervals in parallel is linear, and constant for interval in series. In practice, unless huge parallelism happens, this means that the cost of executing the temporal tree can be considered negligible regarding the overall execution cost of the model. 

Temporal analysis of a real score

We conclude by a benchmark of the tick duration and jitter obtained from the execution of the score presented at the end of Section 3.4. This test measures the time taken by the computations of each tick in a complete score example ran in the visual environment, as well as the variation of this duration in time. Results are presented in Fig. 10. 20 and Fig. 10.21. This test helps to ensure that the execution does not have other hidden costs, and can, at least for simple scores, be suitable for real-time operation: the duration of an execution tick never goes past a hundred µs, and except for four outliers, all the ticks last for less than 50µs. The reasons for these outliers can vary: the very first tick is the longest, since it may perform required memory allocations. Others can be due to remaining interrupts by the operating system. The graph can be divided in three parts: the first one, between t = 0 and t = 4000 corresponds to the execution of the automation and mapping at the beginning. The second, between t = 4000 and t = 10500 corresponds to the audio file and effect. During the last part, nothing is playing. The average measured jitter is 671ns. Figure 10.20.: Jitter analysis. 
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Conclusion

This chapter presents specificities on the implementation of the work. It was designed to be portable from the ground up; the only remaining common platform where it does not run correctly is embedded in web pages. Recent advances in cross-compilation from C ++ to Javascript and WebAssembly are converging: it is currently possible to build the whole environment with a WebAssembly target, but the user interface support is not finished. In terms of development, multiple persons did contribute to the C ++ software code. Counts from the main part of the libossia and score code repositories (not counting tests and other amenities) are given for the principal authors in Table 10.5.

In addition, a part of the work takes place as documentation and help for environments, such as Max/MSP or Pure Data patchers: the contributions of Pascal Baltazar, Julien Rabin, Pierre Cochard, Renaud Rubiano in these areas are extensive. The porting to various environments could not have been possible without the contributions of these authors, but also Akané Lévy and Thomas Pachoud. Even if they are not represented in this list due to numerous refactors and redesigns, we note the work of Clément Bossut and Jaime Chao who laid the groundwork for the current state of affairs. Finally, various students and colleagues provided code contributions: Magali Chauvat, Laurent Garnier, Simon Jamain, Lucile Thienot, and others.

Discussion on the model

This chapter will reflect on the overall content of the second part of the thesis: in particular, in order to identify missing or problematic parts of the model, in Section 11.1. Then, the model is compared with other models used to describe interactive media, in Section 11.2. The main coherency problem is discussed in Section 11.3. Various applications will be presented: some can be used as building blocks for writing scores, in Section 11.4 and others are full-fledged artistic installations made with the environment, in Section 11.5.

Execution speed management

Previous instalments of interactive scores have sometimes provided a way to control the execution speed of some parts of the score: for instance, Marczak et al. provide in [200] an extension of Allombert's work which allows real-time temporal control of the processes' execution speed. However, this was not yet discussed in the present document. This is due to the complexity involving a change of execution speed of audio in real-time. Pitch-invariant time-stretch is the ability to slow down or increase the execution speed, without changing the apparent pitch of a musical sound. In order to provide pitch-invariant time-stretch for real-time input, latency needs to be introduced in the system [201], and thus taken into account into both the data graph and the temporal tree to maintain temporal coherency during the course of execution.

Latency compensation

Latency, or delay compensation consists in propagating either statically or dynamically known delays introduced by nodes of an execution graph up to root nodes of this graph.

Consider the following graph, where tokens are requested for identical dates:

Automation Sound Effect A Effect B
If the effect A introduces a latency δ in time-units, then at the input of effect B, the automation value will be in advance of δ relative to the sound data. For instance, if the automation is a volume fade-in controlling a gain in effect B, the first δ time units will be silence, and the sound will start playing while the gain value is already greater than zero, which could lead to clicks in the sound. Hence, it is necessary to delay back the automation from δ, for instance by buffering its output.

Execution speed management

However, latency compensation is generally undesirable in the case of interaction with the system: there is a trade-off to make between accuracy and reaction. Possible trade-offs are proposed; they were studied in the context of an experiment in connecting the temporal model with the LibAudioStream [202] to achieve hierarchical mixing in the system [START_REF] Celerier | Rethinking the Audio Workstation: Tree-based Sequencing with i-score and the LibAudioStream[END_REF].

The first possibility, is to have no latency compensation at all: some sounds will begin either too early or too late with the kind of problems discussed before. If the score is mainly centered around interactivity and fast reactions, this can be the best behaviour. Another possibility is to use an algorithm for total latency propagation, such as proposed by Dannenberg in [203]. This will ensure some form of temporal correctness between objects of the DFG. However, the main drawback is the need for every value stored in the environment to be buffered, so that the values are exposed to the data graph at the logical time at which they were received. The delay can sometimes be as long as multiple thousand audio samples: if a lot of data is received by the score, this could require more memory allocations and lower overall performance. Finally, intermediary steps are possible: an experiment was made with the LibAudioStream that would add an attribute to processes of the temporal tree if they were depending at some point on external input. If it is the case, speed control is disabled, recursively up to the top hierarchic level. This means that for instance sound files, or recorded MIDI parts feeding virtual instruments can still be slowed down or up: we can statically precompute the delay and start feeding the time stretch engine earlier. However, speed control has no effect on parts marked as interactive.

Speed implementation

To handle speed in the system, the following method is proposed.

• Each interval is associated with a speed relative to its parent process. • Each interval and each time process is associated with an absolute speed: the speed of the object relative to the root tick clock. • The execution algorithm of the scenario and the loop multiply the durations by the relative speed of each interval when processing it: an interval going twice as fast will request twice as many time units to its child processes in a given time. • The absolute speed of each interval and process is added to token requests for the data nodes.

Then, when the data graph runs, the timestamps of the inputs and outputs of each node are scaled with regards to the absolute speed of each token request. Scaling to the absolute clock is necessary: it is also the speed at which the external environment runs. Hence, any node writing to ports with addresses must be able to scale back to the environment's time scales. Scaling the timestamps of individual messages and values is simple, if we keep in mind that using integers for timestamps can lead to a loss of precision. That is, given the time-stamps 0, 1, 2, 3 and a speed factor ×0.4, the new time-stamps would be 0, 0, 1, 1.

However, scaling audio data leads to the latency drawback mentioned earlier if one wants to provide pitch-constant audio playback. In static cases, an analysis of the graph could be possible in order to reduce temporal downscales and upscales if for instance two connected nodes share the same token requests.

Comparison with existing models

We provide in this section a comparison of the model of this thesis with various existing models for interactive media presented in Chapter 2.

Allen relations

(a) Allen relations between fixed elements. We do not consider the temporal objects that led to such disposition in time, that is, the intervals before X and Y are not represented.

(b) Enforcing particular relationships between any two given elements. • The Parmin(A, B) case can be done with a variable v, and two intervals ending with a state sending a message on v. The trigger T 0 stops when v is received: this will terminate the execution for the whole structure. Another simpler alternative would be to have triggers on both A and B's end, each reacting to v. • The Parmax(A, B) case can be done with a similar temporal setup. Instead of a single variable, each end state in the scenario is associated with its own boolean variable v 1 , v 2 which it sets to true. The trigger's expression is simply v 1 ∧ v 2 . • The Parmaster(A, B) case can be modelled by a use of hierarchy. Note that a specific use case given by Layaïda for the use case of Parmaster relationships can be described even more simply in our model. The proposed example was using Parmaster to terminate the playback of a video when a button is pressed. This can simply be implemented in our model by an interval carrying a video-producing process, followed by a trigger reaction on the pressure of such a button. This also implies that the proposed model could support SMIL since a translation from Madeus to SMIL exists [START_REF] Villard | Modèles de documents pour l'édition et l'adaptation de présentations multimédias[END_REF].

Potentially incoherent programs and their solutions

An important goal mentioned in Section 3.3.2.2 was the liveness of the system: that is, it must not end up in a configuration which would lead to no time interval progressing. The main problem occurs when a synchronisation is at the same time requested by the author through the introduction of a TC, and impossible because its afferent elements are set up in a way that prevents them from finishing synchronously. Fig. 11.5 provides an example of such case. In this case, the policy is to wait until each element has reached its minimal duration to be able to continue to the next part: conservation of minimal durations is estimated more important than early synchronisation. Time will progress in the branches which have not reached their min yet. As soon as the min is reached for every afferent interval, the TC is executed. We can assume that if the bounds of an interval are stricter than [0; +∞[, it is due to an explicit choice of the author which should be prioritized: it means that the interval absolutely has to run until the min bound set by the author and must absolutely stop running after the max bound. This assumption is done because authors always have the possibility to change these bounds, until the removal of the inconsistency.

Potentially incoherent programs and their solutions

To reflect on the validity of this solution, we can consider an iterative method: given a scenario S = (I, C) where I are intervals and C are ICs.

1. Consider the scenario S ′ identical to S, but where all intervals have their min bound set to zero and no max bound. This scenario cannot become incoherent: the execution time of a given interval is always comprised in [0; +∞[ by definition, hence every reachable state is a valid state. 2. Now, consider S ′′ where one of the bounds of an interval is set to its value in the original scenario S. There are two possibilities: either the new, potentially stricter bound does not create a possibility of inconsistency, or it does. If it does not, the bound is kept, and the same process can be applied iteratively to another bound. 3. If S had no possibility of inconsistency, then by repeated application of this process, we obtain S again. Else, we get a scenario similar to S but with at least a min bound left at 0 or a max bound left at ∞ and no inconsistency.

Toolbox and common patterns

In this section, we present some common patterns for the usage of the model. We also show that the model is powerful enough to describe both sequential and loop-based audio sequencing models, with only a few elements of the visual syntax. In this part we give example of reconstruction of standard audio software behaviours with the score model: multi-track audio sequencer, looping sequencer and patcher. Both multi-track sequencers and patchers are commonly used for instance by electro-acoustic music composers, as evidenced by Eaglestone et al. in [START_REF] Eaglestone | Information Systems and Creativity: An Empirical Study[END_REF] Every example has more complexity than the original paradigm it intends to emulate. However, the expressive power is also improved, as shown in Section 11.4.1.4.

Audio sequencer

Notable software in this category includes Steinberg Cubase, Avid Pro Tools, …The common metaphor for audio sequencers is the track, inspired from mixing desks and tape recorders. We will take the example of audio and MIDI tracks. Such an audio sequencer can be modelled by:

Live-looping and hierarchical live-looping

More recently, a different kind of sequencer has emerged: the looping, non-linear sequencer.

The prime example of this is Ableton Live. We give the example in fig. 11.7 for a simplified model of live-looping without quantization. These sequencers are also organized in tracks; however, within a track, the musician can choose a single loop that is currently playing, and regularly switch the current loop.

Hence, the general organization stays the same than for the audio sequencer: most importantly, the way effect buses are applied does not change.

• Each clip of a track is given an index.

• Each track has two parameters in the device tree: the next clip to play, /track/N/next of type int, and the ending, /track/N/end of type pulse. These parameters can be used to enable remote control with specific hardware. • Both audio and MIDI tracks are intervals containing a scenario process and an effect chain. • For each clip, an interval with a loop process is inserted in the scenario.

• The pattern of the loop processes is given a specific ending temporal condition: pulse / track/N/end.

• Inside the loop pattern, there is a single scenario process. This scenario process has a set of parallel intervals, each with one sound file. • Every such interval begins with an instantaneous condition that compares the next parameter to the current clip's index. Hence, at most one clip is playing at the same time in each track. If the next does not change, the track keeps looping on the sound file. • These intervals finish with a state which sends the message /track/N/end.

Since loops are time processes, it is possible to nest them arbitrarily, instead of having loops which operate on a single sound file more common in music software. This makes the environment able to support the hierarchical looper paradigm proposed by Berthaut [118]. It is possible to restrict oneself to the capabilities of patching software: the general pattern for this is simply to have infinite intervals with processes corresponding to unit generators.

Each interval carrying a process is preceded by an interval connected to the beginning of the scenario. For each of these intervals, the beginning TC has a true expression, and the end TC has a false expression. This allows to position boxes arbitrarily on the horizontal axis: the visual length of the interval linking them to the beginning does not matter since it will execute in a single tick. This can help readability as shown in fig. 11.8, since they will all start executing one tick after the beginning of the execution. The actual processes will run indefinitely. This is mainly given as an example: should the need for a data-flow-only part in the score arise, we advise to leverage instead the Pure Data integration and write the purely data-flow oriented part in a data-flow-tailored environment, as per the DSL principles discussed at the end of Section 3.2.4.

Combining different paradigms

We give in fig. 11.9 an example of more complex behaviour which showcases in the same score, both sequential tracks and hierarchic loops, as well as patched effects. Other possibilities of behaviours not commonly available in well-known audio sequencers is for instance audio tracks where every sound file has a different sound effect applied to, but for which a single automation curve controls the parameter changes.

We can conclude by saying that the expressive power of the current model is enough to cover the most common cases of music software, with a complexity penalty. One of the next steps of this work would be to abstract the most common cases in simpler structures that would be less flexible but also require less setup, in order to encourage usage by authors familiar with other composition paradigms. 

Methods and tools

In this section, we present smaller individual patterns that can be useful while authoring larger scores.

If-then-else and nested conditions

A first example shows how to leverage both IC and TC to perform condition nesting. The construction is as follows: the IC have the expression set as indicated in Fig. 11.10. Both TC have their expression set to true; the previous intervals have no minimal duration. Hence, at most a tick will pass between the first and the second condition, no matter how long is the interval visually.

This also showcases how common programming cases of condition can be implemented:

• Exclusive if-else is set by having contradictory expressions on two synchronised events: x = 1 and x ̸ = 1 • Exclusive if-else if-else if-... can be supported by nesting sub-cases in the else clause. Another possibility is to embed the negative conditionals in every IC's expression, but this can lead to a combinatorial explosion of conditions to write. • More general non-exclusive pattern matching is possible, as evidenced by the group of intervals following the conditions on /y. In particular, this leads to the following cases:

-If y < 0: only the fourth interval executes.

-If y = 0: no interval executes.

-If y = 1: the first and third interval executes.

-If y = 3: the second and third interval executes.

-For any other value of y, only the third interval executes.

When playing, the sound of the interval goes to the audio mapping processes in sequence: during the first child interval, it goes directly to the parent interval through the mapping process. Then, it goes through the reverb which goes through the parent interval.

Note that for the first segment, since the same audio effect is used for the whole length of the sequence, we keep the reverb queue. However, it is lost at the end of the second case unless the top-level interval is set to a duration longer than the sound file's. A subsequent example, in Section 11.4.2.7, will show a way to solve this.

Finally, the use of addresses has an additional benefit with regards to cable connection: it enables easier copy-pasting of similar structures. While a cable-based approach would require to explicitly create new cables for each sub-sequence, addresses can be copied and pasted as part of the port data structures.

Tempo simulation

One of the simplest use of loops is to build a metronome, shown in Fig. 11.12a.

It can be done as follows:

• A variable that will receive the pulse needs to be set up; for instance, simply /my/tempo.

• The basis is an infinite interval.

• A loop process is added to this interval.

• The desired tempo has to be converted and be set as the duration of the loop pattern.

• The state at the end of the loop pattern will send a message at a regular interval which can then be leveraged by other processes. 

Event counter

This simple example, in Fig. 11.12b shows how to build an event counter: that is, a variable that increases every time an event happens. An address, for instance /count is created: it will carry the count we want to keep. At the beginning of the score, the count is set to zero by a message. An infinite loop runs. The TC at the end of the loop pattern is set to the expression pulse /message/to/count. The pattern has no minimal nor maximal duration. The state at the end of the pattern contains a process which takes for both input and output the /count address, and increments it; a math expression process leveraging the ExprTk library is provided to this end. It is constructed by embedding a scenario in a loop. The duration of the loop pattern is the duration of the whole sequence. The scenario contains a sequence of intervals; the states at the beginning and between each consecutive intervals holds the note message that must be sent. For instance, given the Pure Data patch in Fig. 11.13, the messages would be akin to /note 12, /note 27, with 12 and 27 being MIDI note numbers.

This first implementation of step sequencing has the advantage of being sample-accurate. However, the composer has to set all the durations explicitly while traditional step sequencers generally use a fixed duration for all notes.

Dynamic step sequencer

The next example is a step sequencer which opens for more dynamic possibilities: each successive note will be triggered on reception of a message. For example, we can reuse the earlier metronome object as a trigger source, in the expression of a TC.

Another alternative would be to use an external controller, for instance to trigger each note on a successive keypress; this would be the first step towards a reimplementation of the Métapiano [206], a piano-like instrument with only 9 keys which allows to interpret songs by following a pre-written score.

It is important to note that given the restriction on TC execution dates presented before, this will not be sample-accurate in the current implementation, even if the message source is part of the score: the note will be activated at the beginning of the following audio buffer.

However, an interesting point is that it is possible to control multiple sequencers with a single tempo source. Another possibility is to introduce rhythmic variations such as syncopation, by replacing the metronome by a syncopated metronome, which can easily be built by using the same idea than for the fixed step sequencer. These two step-sequencing examples are presented as a token of the flexibility of the method at a low level. In practice, for the sake of the ease of use, a step sequencer with a more traditional interface is provided as a process.

However, this construct can be useful to provide more advanced behaviours that are not commonly found on step sequencer objects in other musical environments: for instance, it is possible to automate parameters during the transition between two notes.

Auto-stopping reverb

This final construct is a solution to the problem presented in the audio part extraction example: how to handle reverb cuts. A simple solution would be to leave the reverb running for a long time manually by giving a large max to the parent interval, in Fig. 11.11.

However, this can be wasteful in resources: the reverb will keep executing its algorithm until the end of the current hierarchical level, even though it would only input and output silence.

The example in Fig. 11.14 shows how we can simply use a RMS measure of the signal in order to trigger the end of the parent interval. The only required adjustment is the introduction of an envelope follower process, which will measure the running RMS signal during the execution of the process. The RMS output of the envelope follower is set to a custom address, for instance /track1/rms. The ending TC has for condition /track1/rms < 0.0001 (or any other value adjusted according to the dynamic range desired by the author; it would however be unwise to force /track1/rms == 0 since some reverberation algorithms could have numerical instabilities in their computations which could cause the signal to oscillate perpetually around 0).

Resource usage could be further optimized: the envelope follower can be inserted in a scenario instead and be set up to run only when nearing the end of the audio track.

Applications

As mentioned at the beginning of this document, the main context in which the model was developed is at the crossroads of art and science.

In practice, multiple installations and works of art were realised by artists and creators during this thesis, in order to define the model and put it and the implementation to trial. In this chapter, we present some of these installations and artistic works.

Open-form piano

In [START_REF] Celerier | Graphical Temporal Structured Programming for Interactive Music[END_REF], I proposed a musical example inspired from Stockhausen's Klavierstücke XI, under the form of a collaborative connected experiment at the International Computer Music Conference, in 2016.

The implementation, in Fig. 11.15, follows the general live-looping principle proposed in Section 11.4. The score itself is based on a loop where different MIDI parts can play one at a time, according to the choice of multiple persons connected through their mobile phones.

The score uses multiple devices:

• A first device, self, contains local variables: /exit and /count_1 to /count_6.

• A MIDI device is used to send the notes to a synthesizer.

• A device, ws is used to communicate with a web server.

The first state at the beginning of the score resets all the counters to zero. The top-level TC has for condition /count_1 == 2 || /count_2 == 2 || ...: if any part is played more than twice, the score stops.

The pattern TC has for condition pulse /exit. Its state carries a Javascript script process which is charged from incrementing the play count for each part once it is finished; its code is given in Fig. 11.15b.

Each TC at the beginning of parts has for condition /next == i with i the number of the part. Each state at the end of parts sends the message /exit: when the end of a part is reached, the loop pattern stops and goes back to the beginning of the loop.

The setup uses a Node.js server which hosts a web application to which the participants are connected. When specific requests are made by the web page, WebSocket messages are sent from the Node.js server, to the ws device in the score, in a simple JSON protocol devised for this example. The two possible messages are { "speed": k } where k will be a coefficient applied to the global execution speed of the score, and { "next": n } where n ∈ [1; 6] controls the next part that will play. The score also sends messages to inform the server from the currently playing part, so that participants can see it on their phone. 

Nebula

Nebula is an artistic installation created by the Baltazars: http://www.baltazars.org/project/ nebula/. It is based on the control of smoke generators and LEDs. The score, given in Fig. 11.16 has no interactivity, lasts for 24 minutes and consists of 217 automations and 295 non-empty states used to drive a Max/MSP patch through three devices using the Minuit protocol which in turn controls the smoke generators and LEDs through specific protocols. The score only features automations and states: it is a fixed score; the composers were focused on a precise authoring of events in time rather than on introducing interactivity.

Metabots

Metabots1 are small quadruped robots, controllable through a custom serial port command protocol. A sequence of such commands could be, for instance:

Command Meaning dx 2

Set lateral speed at 2cm s -1 .

dy -3

Set forward speed at -3cm s -1 .

crab Invert the leg joints as to walk like a crab.

Experiments have been made to use metabots as music instruments by leveraging sounds made by the robot's displacements. One of such experiments is portrayed in fig. 11.17. The score mainly consists of various mappings from a joystick to commands sent to the robot; these mappings evolve in time.

There are two devices: • An OSCQuery device is used to receive joystick information from an HID patch made in Pure Data. • A serial device is used to convert messages in the device tree to the serial port protocol expected by the robot.

L'Arbre Intégral

L'Arbre Intégral1 is a contemporary show based on the exploration of a virtual world by dancers on a stage. The setup involves communication between Unity3D doing real-time 3D rendering, the dancers controlling the progressions and events through the use of mobile phones, and music instruments spatialised through Reaper. One of the dancer is immersed inside the virtual world thanks to a virtual reality headset. The score, part of which is shown in fig. 11.18, is used to synchronise the multiple software used together for the duration of the show: for instance, the mobile phone of a dancer will send messages to score, which will in turn trigger a sequence that will start sound effects. The duration of the performance is variable according to the choices made by the dancers. The performance lasts for half an hour. At different moments during the show, the mobile applications of some participants show that some interactions are available. The possible actions vary according to the number of participants. The app warns them with a countdown a few seconds before their next interaction. They then have a definite duration to interact: they can change the parameter of an effect (such as chorus, distortion), trigger new sounds, or spatialise a sound object.

For instance, between t = 1m30 et t = 2m, two attendees will be able to change the intensity of a chorus effect, while two other will be able to move a sound object in the spatial scene.

This project has been an important pathway towards the distribution work presented in Chapter 9, by giving practical cases of distribution across multiple mobile devices.

Besides, we can note in this score an effective use of hierarchy, for splitting the show in multiple distinct acts. Few processes are used: most controls are done live by the participants.

La Nuit Des Chercheurs

La Nuit Européenne des Chercheurs is a french event where the public can meet researchers in various domains. For this occasion, in 2017, a score showcasing recent advances was made: it is visible in fig. Fig. 11.20. It is an example of research centered about the notion of distribution. One computer is at the SCRIME, located in Bordeaux; another is at the GMEA located at Albi, 300 kilometers to the south-east. Both laboratories have sound spatialisation apparatus set up: a dome at the SCRIME, and a wavefield synthesis system at the GMEA.

In the score, participants in both cities will control spatialised sounds according to the score, which is split in two scenes which each convey a different musical imagery. The objects and the controls vary in time: for instance, during the first scenery, Albi controls a sound for at most one minute, then Bordeaux controls another sound, then Albi takes the control back. Triggers allow one city to give back the control to the other city when they decide to with this one minute limitation. Some parts are shared between both places: the beginning, transition and ending of the score are driven by fade-ins and fade-outs.

Carrousel

The Carrousel Musical (in fig. 11.21) is an example of large-scale musical instrument built with ossia score by the company Blue Yeti, for the Musical City of the Abbaye aux Dames in Saintes, France.

Each seat on the carrousel has different instrument-like input devices: reactive pads, motion sensors, etc. A run in the carousel generally operates as follows:

• The first few seconds, the rules of the carousel are explained to the participants. They can play with their instrument for a minute. • The song starts: the passengers can start interacting with their instruments. An overall music is generated from their interpretation. Played notes stay in predefined scales which may vary over time; pre-recorded parts can also be layered on top. The overall song structure can vary according to the intensity of the played music: for instance, if everyone plays piano, different instruments may become available in the next section of the song, a part may be shorter or longer, etc. Such variations are written by the composer for each song. • At the end of the song, the participants hear a summarized version of the song they just played, with the best parts being highlighted. This version also has additional corrections and adjustments applied algorithmically: for instance, more quantization.

This project, being one of the most recent being done with the system, leverages most of the work presented earlier: in particular, static and address connections, and buffered connections. The score is built around multiple tracks, each corresponding to an instrument; in addition, a global scenario gives informations such as intensity and tempo. This is visible in part in fig . 11.22. In each track, there is:

• A MIDI piano roll which gives the notes that the performer is allowed to play at a given time. • A MIDI piano roll which gives the notes that should be played in case no performer is currently on the seat, or if there is no musical input for a long time. • A Javascript script which combines inputs from both piano rolls and from an OSC message, to produce the MIDI note which will be played. • The script is connected to an effect chain, which performs quantization, sound generation through the virtual instruments Kontakt™and Battery™from Native Instruments™, and dynamic compression. • Each effect chain for individual instruments has its main output going to a main effect chain: the global mix bus, which is then spatialised through 8 loudspeakers with a Faust script. • The output of the virtual instruments is also sent to another effect chain for each instrument before dynamic compression: in addition of the 8 main loudspeakers, each musician has a custom monitoring where he hears only his own sound.

An example of such a track is given in fig. 11.23. 

Conclusion

The aforementioned installations were all done at different research and development states of this work. For instance, Nebula, one of the earliest long-lasting score produced with the proposed environment, does not use a wide variety of processes, and does not leverage any interactive features. More recent scores expand the vocabulary used.

From the statistics in Appendix E and Appendix F, and a study of these scores, we can extract multiple informations about the composition process of the scores:

• Composers indeed make use of hierarchical nesting, as suggested by the existing research in creativity. In particular, the author of the Metabot scores, Thibaud Keller, reported an explicit focus on the automatic hierarchisation features (presented in Section 8.2.4) during the authoring process. • Scores can vary in scales ranging from entirely fixed (Nebula) to mostly interaction-driven (Voyage). • Most scores refer to multiple external software or hardware devices and create mappings between these devices during the execution. Further research would be warranted in this area: in particular, the research field of instrumental interaction can provide insights on how to ease the creation of such mappings between controllers and controlled elements, and how to relate such mappings with interactive music [207,208]. • Most scores make an extensive use of documentational features of the environment: explicit naming of objects, labels, floating comment boxes for instance to indicate the actions to take during the playback or details on the score. • Some scores are more instant-based while others are more interval-based: that is, some scores rely on successive punctual events happening, while other scores use evolving behaviours such as automations and other processes. We can for instance take as a metric the ratio of non-empty state over non-empty interval: the highest it is, and the more instant-based the score is. • Some capabilities were not used at all, by any author: for instance, char types in the device tree. Likewise, as expected the most common data type is the float type, followed by the int type and list type, as can be seen in Part V.

Conclusion

12

Concluding remarks

This thesis introduced a new model for multimedia software and ISs. A major focus is put on the relationship between ISs and their surrounding environment: other software and hardware.

In order to provide new possibilities to the authors of such scores, a DFG allowing to perform computations between the processes occurring in the score is introduced. In comparison with existing approaches, nodes of the graph are allowed to interoperate with the environment directly through the use of addresses representing specific data in the environment. Variables of this environment can indistinctly refer to local or remote objects: this allows ISs and more generally interactive applications to be authored using an abstraction of the various software and hardware which will produce the media content. Unlike previous approaches for interactive scores, we do not only rely on external entities to perform audio-visual generation and processing: the implementation, based on a plug-in approach, can act as an autonomous media sequencer to produce output. This ensures more rigorous synchronisation between distinct audio and media processes, since we can rely on precise timing deadlines due to buffer-synchronous operation.

The proposed temporal model, inspired from the various artistic considerations on the notion of open works, diverges from previous research in the field of interactive scores and interactive media in that it does not seek to ensure that the scores written by authors are always temporally coherent. In particular, we consider that while mistakes during the authoring phase are possible, preventing the execution of the score due to invalid constraints would be detrimental to the authoring and creative process. Hence, the temporal model instead allows for temporal constraints to be sometimes unsatisfied, while still providing a relevant behaviour defined during interactions and exchanges with domain experts: artists, multimedia developers. However, it is still possible to translate part of our model into formally verifiable semantics as an off-line process: for instance, time automatas as defined by Arias [START_REF] Arias | Formal Semantics and Automatic Verification of Hierarchical Multimedia Scenarios with Interactive Choices[END_REF] can be used to assert temporal properties on the scores of the model, even though the current algorithmic cost of this process makes it hard to set-up for large scores. A visual language is proposed for this model. Its objects are directly based onthe structures that are executed, which allows easier debugging and visualization of program state: while using an operational model for execution opens the door to reuse of well-known semantics and analysis tools, it also means that there can be bugs at two different levels: the implementation of the operational model itself (for instance coloured Petri nets), and the visual model itself. Finally, an extension to distributed environments is introduced: scores can be written not only for one machine, but for a group -or, may we say, an orchestra -of machines which will execute their processes locally and synchronise temporally with the others in the fashion required by the author.

12.1. Perspective: a declarative language for authoring 12.4. Perspective: scoping Three levels of scoping are supported in the current work: connection scope, local scope, and global scope. It has been proposed to link elements of the temporal tree to the notion of scope, in order to make scope of processes a visual element.

Perspective: spatial representation and reasoning

Interactive media taken at large generally covers the concept of spatial relationship between objects. Some approaches have been explored by the author [START_REF] Celerier | Outils d'écriture spatiale pour les partitions interactives[END_REF], under the form of specific processes. Further work would be warranted in this area to extend the current model to dimensions other than time: for instance, intervals could be considered as N-dimensional spheres with a variable radius, where the position of an interactor in N-dim defines the triggering of TCs.

Perspective: formal usability studies

As in many visual language environments presented in the literature, most of the arguments in favour of it are empirical: we can attest that the current incarnation of the language enables composers to easily create media art thanks to the artistic production realised with it. In order to improve on it, the next step would be to apply one of the existing analysis framework proposed in scientific literature, and devise relevant metrics to compare different interactive score authoring systems in terms of efficiency of artistic production. As a starting point, the measures made on existing scenarios and referenced in Appendix E could be used, to study more precisely how the authors are using the software.

Perspective: real-time transport

Another point not discussed is a GOTO-like mechanism to change the playhead position at run-time in the score. A first step towards this direction is the content of Section 8.4: the ability to execute a score with an offset. Of particular interest to the users of the software is the visual representation of this concept in a score. leap second Seconds introduced or deleted regularly in the legal hours systems to compensate for the divergence between the terrestrial rotation and the UTC time. UTC time is obtained by measuring the resonance frequency of cesium atoms, which allows to precisely define the duration of a second. A leap second was for example introduced on December 31, 2016 after 23:59 and 59 seconds. Their introduction regularly disrupts distributed systems based on physical clocks: it is possible that two successive calls to the system functions giving the wall clock time return dates in the reverse order that expected, which makes the duration computations incorrect.. 214 Musical Instrument Digital Interface. 36,[START_REF] Smdl | Standard Music Description Language[END_REF][START_REF] Layaıda | Système d'édition et de présentation de documents structurés multimédia[END_REF][START_REF] Sabry Ismail | Schéma d'exécution pour les documents multimédia distribués[END_REF][START_REF] Peterson | Petri Net Theory and the Modeling of Systems[END_REF][START_REF] Lee | Dataflow process networks[END_REF][START_REF] Backus | Can Programming Be Liberated from the Von Neumann Style? A Functional Style and Its Algebra of Programs[END_REF][START_REF] Elliott | Functional reactive animation[END_REF]124,151,157,158,162,171,[190][191][192]197,199,206, 214 Minuit An OSC-based query protocol, discussed in Section 10. 1.6.3. 151,[160][161][162]201,214 NTP Network Time Protocol. 31,143,214 ORB Object Request Broker. 19,214 OSC Open Sound Control. 36,[START_REF] Smdl | Standard Music Description Language[END_REF][START_REF] Layaıda | Système d'édition et de présentation de documents structurés multimédia[END_REF][START_REF] Sabry Ismail | Schéma d'exécution pour les documents multimédia distribués[END_REF][START_REF] Peterson | Petri Net Theory and the Modeling of Systems[END_REF][START_REF] Halang | Safe Object Oriented Programming of Distributed Real Time Systems in PEARL[END_REF][START_REF] Dennis | First Version of a Data Flow Procedure Language in Proceedings of the Programming Symposium -Colloque Sur La Programmation[END_REF][START_REF] Backus | Can Programming Be Liberated from the Von Neumann Style? A Functional Style and Its Algebra of Programs[END_REF][START_REF] Hudak | Advanced Functional Programming: 4th International School. Revised Lectures[END_REF][START_REF] Sadek | Automatic Parallelism for Dataflow Graphs in Proceedings of the Audio Engineering Society Convention (AES)[END_REF][START_REF] Fober | Les Nouveaux Espaces De La Notation Musicale in Proceedings of the Journées d'Informatique Musicale (JIM)[END_REF]137,151,[158][159][160][161][162]164, 214 OSCQuery An OSC and WebSocket-based query protocol, discussed in Section 10. 1.6.4. 63, 65, 151, 157, 160-162 
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Score statistics

The following tables contains statistics for the scores themselves. Table F.1 contains general statistics on the number of temporal elements in the scores: number of intervals, number of intervals without processes, IC count, TC count, states count, empty states count, conditions (nondefault IC), triggers (non-default TC), and maximal hierarchy depth (the depth of the deepest interval where the root is at level 0).

Table F.2 contains statistics on the usage of specific processes: the number of processes, the average number of processes per interval, the average number of processes per non-empty interval, and the count for multiple specific categories of processes. 
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 1 Fig. 1. : Schéma général d'exécution.

Fig. 2 .

 2 Fig. 2.: Présentation du langage visuel proposé. Une ligne horizontale remplie signifie que le temps ne peut pas être interrompu, tandis qu'une ligne horizontale en pointillé signifie que l'exécution peut être interrompue à cet endroit pour passer à la suite de l'exécution de la partition en réponse à un évènement extérieur. L'exécution se déroule sur cet exemple comme suit : l'intervalle A s'exécute pour une durée fixée. Lorsqu'il se termine, une condition est évaluée : si elle est fausse, la branche qui commence par B ne s'exécutera pas. Sinon, après un certain temps, le flot du temps dans B atteint une zone flexible centrée sur un point d'interaction. Si une interaction a lieu, B s'arrête et D démarre. S'il n'y en a pas, D démarre lorsque la borne max de B est atteinte. Tout comme à la suite de A, une condition va permettre ou non l'exécution de G. Dans tous les cas, C a démarré son exécution à la suite de A. C attend une interaction, sans temps d'expiration.Si l'interaction a lieu, les deux conditions instantanées qui suivent C sont évaluées : la valeur de vérité de chacune décidera de l'exécution de E et F .

Fig. 3 .

 3 Fig. 3.: Un exemple de partition dans ossia score. Le panneau de gauche montre l'arbre des paramètres externes. La partie centrale est la partition actuellement ouverte. Le panneau de droit est un inspecteur qui montre des informations sur l'objet actuellement sélectionné.
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 1 Figure 1.1.: A fermata is present on the last note of the bar.

Figure 1 .

 1 Figure 1.2.: An ossia is possible for the second bar.

Figure 1 .

 1 Figure 1.3.: The performer should improvise during the second bar.

Figure 1 .

 1 Figure 1.4.: Fragments B2, C1, C3 of Klavierstücke XI, Karlheinz Stockhausen. 1

  (a) Hierarchical object inspector for a small application in Unity3D. (b) Hierarchical patch organization in Pure-Data.

Figure 2 . 1 .

 21 Figure 2.1.: Hierarchical models of multimedia applications.
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 2 Figure 2.2.: INscore.

Figure 2 . 3 .

 23 Figure 2.3.: Patchs and Maquette in the OpenMusic environment.
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 2 Figure 2.4.: Various software which can provide elements of the sequencer paradigm.
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 2 Figure 2.5.: The Threnoscope. The left, circular part is the score: blocks indicate which code will be running; polyphony is supported. The right part allows the live-coder to input the programs that will run during a block.
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 2 Figure 2.6.: Boxes. Screenshot taken from [145].
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 2 Figure 2.7.: Virage. At the left, a mock-up. At the right, a screenshot. Images taken from [13].
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 2 Figure 2.8.: An extract of score in i-score 0.2.
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 3 Figure 3.1.: An extract rendition of a black MIDI song.
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 33 Figure 3.2.: A simple data-flow which could match the description of the score of Section 3.4.

1 mappingFigure 3

 13 Figure 3.3.: A hierarchical tree which is used to associate durations to the elements of the score of Section 3.4 by nesting them.
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 3 5 presents the example score rendered in the proposed visual syntax.
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 3 Figure 3.5.: An example of score in the visual syntax.

Figure 3 . 6 . 5 I 4 Figure 3 . 7 .

 365437 Figure 3.6.: Possible valid data graph states if TC 2 occurs before TC 3 .

Figure 4 . 1 .

 41 Figure 4.1.: An example of tree for a simple media application.

Definition 6 ( 2 Vec3f : Float 3 Vec4f : Float 4

 6234 Data types) Float : 32-bit floating-point Int : 32-bit signed integer Vec2f : Float Impulse : No data, just a signal Bool : Boolean value String : Null-terminated character string Char : ASCII character Nothing : No value Nodes may carry an associated parameter, which contains a value and value-related attributes.

  Figure 4.2.: Clip bounding mode.

  Figure 4.3.: Wrap bounding mode.

Figure 4 . 4 .

 44 Figure 4.4.: Fold bounding mode.

  array-accessor := `[ `0' .. `9' , { `0' .. `9' }, `]`; array-accessors := array-accessor, { array-accessor }; (* as defined earlier: *) dataspace := 'color' || 'distance' || ...; (* valid units for each dataspace *) unit := 'rgb' | 'xyz' | ...; (* valid accessors for each unit *) unit-accessor := 'x' | 'y' | 'z' | 'r' | 'g' | 'b' | ...;

  (a) The definition of a synthesizer band in a PureData abstraction (sine). (b) The definition of the whole synthesizer. The equivalent tree.

Figure 4 .

 4 Figure 4.5.: The tree of a simple device.

Figure 5 .

 5 Figure 5.1.: A Pure Data patch which generates a sine and filters it.

Figure 5 .

 5 Figure 5.3.: Activation traces.

  (a) Single-channel ports.(b) Multi-channel ports using Jamoma objects.

Figure 5 .

 5 Figure 5.4.: Comparison between the same audio graph with single-channel and multi-channel ports and connections.

Definition 14 (

 14 Duration and position) type duration = int;; type position = float;;

Figure 5 . 5 .

 55 Figure 5.5.: Messages with their timestamps, across two root ticks of 5 time units each. They are written (x, y, z) with x the message, y the time stamp, z the message index.

  let push_global key value = (* ... *);; let pull_global key : value = (* ... *);;

  Section 4.1.6 mentions the notion of OSC pattern. Instead of accepting data from a single source, a port can specify an input pattern such as: /foo.*/bar/b[a-zA-Z], as proposed in the OSC specification.

2 Figure 5 . 6 . 4 Figure 5 . 7 .

 256457 Figure 5.6.: Another execution trace. f 2 's input corresponds to f 1 's output, delayed: this creates a causality problem.

Figure 5 . 8 .

 58 Figure 5.8.: A simple case with an ambiguous execution order.
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 5 Figure 5.9.: A visual representation of the token requests for a node.

Figure 5 .

 5 Figure 5.11.: Splitting tokens and running individual parts, assuming a root tick of 10 time units. A, B, C are nodes: K i means the ith token request of node K. Ticks of the whole execution graph are represented by the black underline under individual bins.

  graph) (gs:graph_state) (n:graph_node) (ns:node_state) (token:token_request) (e:environment) = let (ns, plist, { global = g }) = n.run n gs token e in ({ nodeStates = list_assoc_replace gs.nodeStates n.nodeId { ns with executed = true; prevDate = token.tokenDate; data = ns.data; }; portStates = list_assoc_merge gs.portStates plist }, { local = e.local; global = g }) ;;

Figure 5 .

 5 Figure 5.12.: A graph with messages but no apparent unique schedule: the author has to provide additional information to ensure deterministic operation.

  mark the nodes which had tokens posted to as enabled *) let gs = disable_strict_nodes (get_enabled_nodes graph gs) gs in let enabled_nodes = (get_enabled_nodes graph gs) in let sorted_nodes = topo_sort graph in let filtered_nodes = List.filter (fun n -> (List.mem n enabled_nodes)) sorted_nodes in (* we have a set of nodes that we now run: *) let (gs, e) = base_tick graph gs filtered_nodes e in (* once all the nodes are ran, remove their tokens *) (clear_tokens gs, e);; mark the nodes which had tokens posted to as enabled *) let gs = disable_strict_nodes (get_enabled_nodes graph gs) gs in (* we have a set of nodes that we now run: *) let (gs, e) = base_tick_static graph gs e in (* once all the nodes are ran, remove their tokens *) (clear_tokens gs, e);;

  Parameter | Value) × (Parameter | Value) × Comparator Negation : Expression Composition : Expression × Expression × Operator Impulse : Parameter × Bool Expression : Atom | Negation | Composition | Impulse

Definition 27 (

 27 Process) type processImpl = Scenario of scenario | Loop of loop | DefaultProcess ;; type processId = int;; type process = {

Definition 32 (

 32 Execution status) type status = Waiting | Pending | Happened | Disposed;;

Fig. 7 . 1 mappingFigure 7

 717 Figure 7.1.: Hierarchical tree: coloured edges indicate that an automatic connection is created between the associated nodes of the data graph.

  Figure 7.2.: Overall execution schema.

4 .

 4 Write the local state to the external global state. It is represented in fig. 7.2.

Figure 7 .

 7 Figure 7.4.: A scenario with an interaction.

Figure 7

 7 Figure 7.5.: A loop containing a sound.

Figure 7 . 6 .

 76 Figure 7.6.: Showcase of the proposed temporal syntax. A full horizontal line means that the time must not be interrupted, while a dashed horizontal line means that the time of the interval can be interrupted to continue to the next part of the score according to an external event. Execution occurs as follows: the interval A runs for a fixed duration. When it ends, an IC is evaluated: if it is false, the branch which contains B will not run. Else, after some time, the flow of time in B reaches a flexible area centered on an interaction point, also called a TC. If an interaction happens, B stops and D starts. If there is none, D starts when the max bound of B is reached by the flow of time in B. Just like after A, an instantaneous condition will make G execute or not execute. In all cases, C started executing after A. C expects an interaction, without time-outs. If the interaction happens, the two instantaneous conditions which follow C are evaluated: the truth value of each will decide of the execution of E and F .

Figure 8 .

 8 Figure 8.1.: A screenshot of the previous graphical model of i-score, in the 0.2 version.

  (a) A single, empty state. The IC and TC are not shown since they are behind: they are scaled to the height of states on it. (b) A single state which contains data: processes or messages. (c) The vertical elements of the model represented in the software. TC are represented by a gray dash; the TC goes from the bottom to the top of the vertical element, but has the lowest z-position. The IC are represented in white and states are on top. The yellow T -like arrow indicates that this interaction point has a non-default expression. Likewise, the bottommost IC has an expression.

Figure 8 . 2 .Figure 8 .

 828 Figure 8.2.: Elements of the visual syntax related to the notion of instant.

  (a) An empty interval of fixed duration. (b) An interval with a min and no max. (c) An interval with a max and no min. (d) An interval with a min and a max.(e) A graphic widget which allows to set specific durations for an interval.

Figure 8 .

 8 Figure 8.3.: Intervals, related to the notion of duration. Note that the handles can be dragged, and appear and disappear dynamically if they are needed. Precise durations can be set in a visual inspector.

Figure 8 .

 8 Figure 8.4.: A TC which exhibits various synchronisation behaviours and possibilities. There are two synchronised IC. Two intervals converge on the top one; the second has a max duration. If both A and B were disabled due to previous conditions, then C would be disabled, too. Likewise, had D been disabled, E and F would not run. In this case, the min and max are not necessarily coherent: in practice, the evaluation period of the expression will start at the latest min bound, that is, its of B. If the expression of the TC never becomes true, and since both B and D have max bounds, then the execution is guaranteed to continue.

  (a) An automation process in an interval. (b) A MIDI process: a piano roll.
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 8 Figure 8.5.: Various processes. Note the different port colours for various data types: green for normal values, red for audio and purple for MIDI.
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 86 Figure 8.6.: Multiple slots under a process, each resizeable.

Figure 8 .

 8 Figure 8.7.: Organizational processes.

Figure 8 .

 8 Figure 8.8.: A generator's output is connected to a mapping's input.

  Forward move: The TC after A has been moved to the left: B has kept its length, A and D are shorter. (c) Forward move: The TC after A has been moved to the right: B has kept its length, A and D are longer. (d) Constrained move: The TC after A has been moved to the left: B is longer, A is shorter.

Figure 8 .

 8 Figure 8.10.: The various cases of displacement that can occur and their effect on the score.

Figure 8 .

 8 Figure 8.11.: A paused execution. An interval, in red, was disabled by a false condition. It is ignored, as well as the following interval not dependant on other ICs. The first trigger, starting from the bottom left, was triggered early, and the second trigger, at the top right of the first, waited for much longer: these cases show why a single playhead would not visually be possible.

Figure 8 .

 8 Figure 8.12.: Execution offset. The white bar indicates the point at which execution was requested. Branches with false conditions are discarded, and all other branches are set up as if their run duration had been exactly the nominal duration of the intervals.

Algorithm 9

 9 Reactive update mechanism for the sound file process. // This function is called from the GUI thread when a soundfile changes void SoundComponent::recompute() { // Processing in the execution thread is in double precision, convert the soundfile auto to_double = [] (const auto& float_vec) { std::vector<std::vector<double>> v; v.reserve(float_vec.size()); for(auto& chan : float_vec) { v.emplace_back(chan.begin(), chan.end()); } return v; }; // The closure is constructed in the UI thread, too in_exec(

Figure 8 .

 8 Figure 8.13.: The model used in the software for reactive edition of the score.

Figure 8 .

 8 Figure 8.14.: A pattern that allows to introduce new elements in the composition at run-time.New elements would be added as processes in the loop patterns.

  (a) An empty loop is created. (b) An automation is added, execution starts.(c) The automation is replaced with a gradient.(d) Execution of the gradient starts when the live-coder triggers the pattern's end.

Figure 8 .

 8 Figure 8.15.: Complete example of a live replacement of a process by another.

  Two branches, each executed by a distinct group.

  The groups G 1 , G 2 , G 3 execute intervals which may contain processes, one after each other.

Figure 9 . 3 .

 93 Figure 9.3.: Transformations for the execution of two intervals in series on two separate clients.

  var dev = new Ossia.Device(new Ossia.OSCQuery (1234, 5678), "newDevice"); var root = dev.GetRootNode (); var n = Ossia.Node.CreateNode (root, "/color"); var p = n.CreateParameter (Ossia.ossia_type.VEC3F); p.SetUnit("rgb"); p.SetBoundingMode(Ossia.ossia_bounding_mode.CLIP); p.SetMin(0); p.SetMax(255); p.PushValue(255, 0, 0); (a) A PureData synthesizer organized with explicit parameters. (b) A PureData client that can remotecontrol the device. (c) Another client for the same device, written in HTML.

Figure 10 .

 10 Figure 10.1.: A PureData patch (courtesy of Antoine Villeret) can be organized with parameters that bear associated attributes. These attributes allow for better control from other software. This example has no hierarchy.

  Figure 10.2.: Message emission pipeline.

Figure 10 . 3 .

 103 Figure 10.3.: Overall communication pipeline. The steps of message emission showcased above are provided as a convenience function that can be used in each protocol's implementation.

10. 1 . 7 . 1 .

 171 Computing the transitive closureCurrently, the transitive closure algorithm used as part of the static schedule, in Section 5.5.3.4 is static: the transitive closure of the data graph must be recomputed entirely every time an addition or removal of a data node happens in the score; traditional methods for this have a time complexity of O(|V | 3

Figure 10 .

 10 Figure 10.7.: An example of score in ossia score.

  Complete example: data graph and temporal tree.

Figure 10 .

 10 Figure 10.12.: Automation performance. Test names: ossia_AutomFloat_benchmark and ossia_AutomFloat_databench.

Figure 10 .

 10 Figure 10.13.: Cumulative memory allocations over time for the MixNSines benchmark without addresses. Deallocations are not considered. No memory allocation take place after the startup part ended. Allocations are segregated in colour groups corresponding to the functions which called the allocations functions in the code; the largest groups, in orange at the bottom, corresponds to the audio buffers reserved for the audio nodes. The sum of all allocations is shown in red at the top. Peak allocation, 4.6MB, is reached after 398 milliseconds.

Figure 10 .

 10 Figure 10.14.: Heap memory usage over time for the MixNSines benchmark with addresses.Peak allocation, 5.4mb, is reached after 433 milliseconds.

  with relaxed connection, p = 0.00001.

Figure 10 .

 10 Figure 10.15.: Performance with relaxed connection.

  Performance with strict connection, p = 0.00001.

Figure 10 .

 10 Figure 10.17.: Performance with addresses.

  chance of edge between two nodes, 90% chance of address in each port.

Figure 10 .

 10 Figure 10.18.: Scheduling costs.

Figure 10 .

 10 Figure 10.19.: Scenario execution performance relative to the number of intervals.

  Duration of each tick in microseconds, for the example score given inSection 3.4. Jitter between consecutive ticks in nanoseconds, for the example score given in Section 3.4.

Figure 10 .

 10 Figure 10.21.: Categorization of the jitter measurements of Fig. 10.20b in temporal bins.

Figure 11 .

 11 Figure 11.1.: Allen relations.

Figure 11 .

 11 Figure 11.4.: Example for parmin and parmax Madeus relationships.

  A trace of execution for this score: B stops executing early since its max was reached.

Figure 11 . 5 .

 115 Figure 11.5.: A problematic case. A and C can have different durations during the execution, but the end of B and D are synchronised. In this case, the choice made is to stop executing the intervals that reached their max duration, and keep executing the others until their reach their min. The other alternative would be to keep the max constraint.

11. 4 . 1 .

 41 Reconstructing existing paradigms(a) A screenshot of the Cubase audio sequencer. Audio and MIDI tracks are arranged horizontally, with the possibility of having multiple clips on each track. (b) Implementation of a two-tracks sequencer in our model.

Figure 11 . 6 .

 116 Figure 11.6.: Multi-track sequencing.

  (a) A screenshot of the Ableton Live audio sequencer in the session view, which provides a live looping implementation. (b) Example of an audio live-looping audio track implementation in our model.

Figure 11 . 7 .

 117 Figure 11.7.: Live-looping.

  Plogue Bidule, a music patcher. (b) An implementation of patching in our model.

Figure 11 . 8 .

 118 Figure 11.8.: Patching.

Figure 11

 11 Figure 11.9.: An example of more general score, which does not fit exactly in the sequential, live-looping or patcher model.

  (a) A metronome.(b) An event counter.

Figure 11 .

 11 Figure 11.12.: Simple patterns.

  (a) The implementation of the fixed step sequencer in the model. (b) The messages are sent to this Pure Data patch over the network. (c) A dynamic step sequencer built on the fig. 11.12a metronome.

Figure 11 5 .

 115 Figure 11.13.: Step sequencers.

Figure 11

 11 Figure 11.14.: A construct that automatically stops reverberation.

  (a) The score. function() { var n = iscore.value('ws:/next'); var root = 'self:/part/' The script used to update the count.

Figure 11 .

 11 Figure 11.15.: Score for open-form piano.

Figure 11 .

 11 Figure 11.16.: An excerpt of the Nebula score. ©Pascal and Aurélie Baltazar 2015-2017.

  (a) The hardware set-up: a joystick and a Metabot. (b) The score: multiple mappings between the joystick controls and the Metabot commands evolve in time. In the first part of the score, some mappings are written in Javascript, and others with visual mapping functions.In the second part of the score, some controls of the Metabot are enforced directly with automations, while some mappings change.

Figure 11 .

 11 Figure 11.17.: Controlling a Metabot with a joystick whose mappings evolve in time. ©Thibaud Keller, Edgar Nicouleau 2017.

Figure 11 .

 11 Figure 11.18.: An excerpt of the score for l'Arbre Intégral. ©Donatien Garnier, Pierre Cochard 2017.

Quarrè 2 (

 2 Fig. 11.19) is an interactive spatialised sound installation created by Pierre Cochard at the SCRIME. It uses Max/MSP, score, and a mobile application developed for the show. Multiple participants (between one and four) are given a mobile phone.

  (a) The installation; participants take place in the center of the loudspeaker circle. (b) One scene of the score.

Figure 11 .

 11 Figure 11.19.: Quarrè. ©Pierre Cochard 2016 -2018.

Figure 11 .

 11 Figure 11.20.: An excerpt of the score for the "Nuit des Chercheurs".

Figure 11 .

 11 Figure 11.21.: Inside the carrousel. L'Abbaye aux Dames, Saintes, France.

Figure 11 .

 11 Figure 11.22.: General temporal logic in one of the scores for the carrousel, "Gatebourse". The same-sized intervals on top contain the handling of each instrument. The intervals and ICs in the middle of the score handle the changes of volumes, and the different states of the song: demo mode, play mode, restitution.

Figure 11 .

 11 Figure 11.23.: One of the instruments of the carrousel in the score "Baroque Électro". Thevirtual instrument changes at some point in the score: it starts as a piano, and continues as an electric organ.

  Fig. E.1 in Appendix E. This should be a deciding factor for optimizations.

  

  

  Miranda, E., Antoine, A., Celerier, J.-M. & Desainte-Catherine, M. i-Berlioz: Interactive Computer-Aided Orchestration with Temporal Control in Proceedings of the International Conference on New Music Concepts (ICNMC) (Turin, Italy, 2018) Antoine, A., Miranda, E., Celerier, J.-M. & Desainte-Catherine, M. Generating Orchestral Sequences with Timbral Descriptors in Proceedings of the Timbre Conference(Montréal, Canada, 2018) 

2.6.2.2. Virage and i-score

  • Sounds are based on an additive spectral synthesis model, which allows re-scaling and stretching without audio artefacts. It is shown in fig. 2.6.

	Virage (shown in fig. 2.7), and i-score 0.1 and 0.2 (shown in fig. 2.8) are software which
	implement various stages of the research of Allombert as described in

  .5.

	Definition 16 (Environment)
	type environment = {
	local: (string * ((value * int * int) list)) list;
	global: (string * ((value * int * int) list)) list
	};;

Definition 18 (Scope)

  

	type scope = None | Local | Global | Default;;
	Definition 19 (Port)
	type port = {
	portId: portId;
	portAddr: string option;
	portEdges: edgeId list;
	portScope: scope;
	};;
	type port_state = {
	values: (value * int) list
	};;

Table 5 .

 5 

1.: Summary of the proposed connection semantics.

Definition 22 (Graph node data)

  dataNode is the implementation-specific state of each node, which we will not consider in further detail:

	type dataNode =
	Automation of automation
	| Sound of sound
	| Mapping of mapping
	| Passthrough of passthrough
	| ...;;
	grNodeState is the part which will vary at each tick:
	Definition 21 (Graph node)
	type graph_node = {
	nodeId: nodeId;
	run: graph_node -> graph_state -> token_request -> environment ->
	(node_state * ((portId * port_state) list) * environment);
	inlets: graph_node -> graph_state -> port list;
	outlets: graph_node -> graph_state -> port list;
	};;

Definition 23 (Graph node state)

  

	type node_state = {
	executed: bool;
	prevDate: duration;
	tokens: token_request list;
	data: node_data;
	};;

Definition 25 (Data graph state)

  

	let exec_node
	(g:graph) (gs:graph_state)
	(n:graph_node) (ns:node_state)
	(token:token_request) (e:environment) =
	let (ns, plist, e) = n.run n gs token e in
	({ nodeStates = list_assoc_replace gs.nodeStates n.nodeId {
	ns with
	executed = true;
	prevDate = token.tokenDate;
	data = ns.data;
	};
	portStates = list_assoc_merge gs.portStates plist
	}, e)
	;;
	type graph_state = {
	nodeStates: (nodeId * node_state) list;
	portStates: (portId * port_state) list
	};;
	The sub-tick is defined as:

  And the init and teardown functions, which copy the data to the node and from the node to the environment:These functions clears the data in inlets and outlets from previous ticks.

	let teardown_node (n:grNode) (g:graph) (gs:graph_state) (e:environment) =
		let rec write_outlets outlets gs =
		match outlets with
		| []	-> gs
		| h::t -> write_outlets (write_outlet h g gs e)
		in
		let gs = clear_inlets (n.inlets n gs) gs in
		write_outlets (n.inlets n gs) gs
	;;
	let rec clear_ports ports gs =
		match ports with
		| [] -> gs
		| h::t -> clear_ports t (clear_port h gs)
	;;
	let clear_port (p:port) (gs:graph_state) =
	{ gs with
		port_state = list_assoc_replace gs.port_state p.portId (p.portId, [])
	};;
	let init_inlet (p:port) g gs (e:environment) =
		match p.portEdges with
		(* no edges: read from the env *)
	| [] -> let pv = match p.portAddr with let base_tick (cur_node:graph_node) (graph:graph) (gs:graph_state) (e: | None -> None environment) = | Some str -> Some (pull str e) let rec exec g gs n tokens e = in match tokens with replace_value p gs pv | [] -> (gs, e) (* edges: read from them *) | token::t -> let (gs, e) = (exec_node g gs n (List.assoc n.nodeId gs. | _ -> replace_value p gs (List.fold_left (aggregate_data g gs) None ( nodeStates) token e) get_edges p.portEdges g) ) in exec g gs n t e in ;;
	let (gs, e) = exec graph (init_node cur_node graph gs e) cur_node
			(List.assoc cur_node.nodeId gs.nodeStates).tokens
	e in let write_outlet p (g:graph) (gs:graph_state) (e:environment) =
	teardown_node cur_node graph gs e let has_targets = (p.portEdges = []) in
	;;	let all_targets_disabled =
		has_targets &&
		List.for_all (fun x -> in_port_disabled x g gs) p.portEdges in
		if(not has_targets || all_targets_disabled) then
		(gs, write_port_env p gs e)
	else let init_node (n:grNode) (g:graph) (gs:graph_state) (e:environment) = (write_port_edges p gs, e) let rec init_inlets inlets gs = match inlets with ;;
		| []	-> gs
		| h::t -> setup_inlets t (init_inlet h g gs e)
	in	
	let gs = clear_outlets (n.outlets n gs) gs in
	setup_inlets (n.inlets n gs) gs
	;;	

  /color@[ rgb.b] which would give the blue component, or /color@[hsv.h] which would give the hue component of the same colour in hue-saturation-value space. Values produced by nodes can hence be given piece-wise: a node can generate the red component of a colour and another the blue component. Likewise, individual array values can be given. This enables a specific merging method: for a given set of messages, piecewise parts are applied directly if no unit is involved. If units are involved, then the transformation occurs in the dataspace of the newest value and is then converted back to the original type. For instance, given a sequence of messages, we get the following behaviour:

	Index	Applied message	Resulting merge
	0	/color@[rgb] 0.5 1. 0.5	/color@[rgb] 0.5 1. 0.5
	1	/color@[rgb.r] 1.	/color@[rgb] 1. 1. 0.5
	2	/color@[hsv.v] 0.3	/color@[rgb] 0.3. 0.3 0.15

  e 2 , o) ↦ → (update e 1 , update e 2 , o) , parameter p 2 , o) ↦ → (pull p 1 , pull p 2 , o) (parameter p 1 , value v 2 , o) ↦ → (pull p 1 , v 2 , o) . . .

	update : Negation → Negation
	e 1 ↦ → update e 1
	update : Atom → Atom
	⎧ ⎪ ⎨ (parameter p 1
	⎪ ⎩

update : Impulse → Impulse (p, b) ↦ → (p, false)

Algorithm 5

 5 Executing intervals.

	let scenario_run_interval
	scenario overticks tick offset interval (state:score_state) =
	let end_TC = find_end_TC interval scenario in
	let interval_date = (List.assoc interval.itvId state.itv_dates) in
	match interval.maxDuration with
	(* if there is no max, we can go to the whole length of the tick *)
	| None -> (tick_interval interval tick offset state, overticks)
	(* if there is a max, we have to stop at the max and save the remainings
	*)
	| Some maxdur ->
	let actual_tick = min tick (maxdur -interval_date) in
	let tick_res = tick_interval interval actual_tick offset state in
	let overtick = tick -(maxdur -interval_date) in

(* find if there was already over-ticks recorded for this TC, and if so , update them *) match List.assoc_opt end_TC.tcId overticks with | None -> (tick_res, (end_TC.tcId, (overtick, overtick))::overticks) | Some (min_ot, max_ot) -> let new_overtick = (min overtick min_ot, max overtick max_ot) in (tick_res, list_assoc_replace overticks end_TC.tcId new_overtick)

Algorithm 6

 6 Starting intervals.

	let start_interval itv (state:score_state) =
	let rec start_processes procs funs (state:score_state) =
	match procs with
	| [] -> (funs, (state:score_state))
	| proc::t -> let (state, nf) = start_process proc state in
	start_processes t (funs@[nf]) state
	in
	let (funs, state) = start_processes itv.processes [] state in
	({ state with itv_dates = list_assoc_replace state.itv_dates itv.itvId 0 },
	(funs @ [ add_tick_to_node itv.itvNode (make_token 0 0. 0) ])
	)
	;;

  .1 presents the token requests(Definition 15) put in each data node for successive ticks, under the form (previous date → current date, offset). Figure 7.3.: A score. The small bins represent individual audio samples; the bigger bins representthe tick rate of the sound card. For the sake of the example, one can assume that the automation curve is used to control the output volume of the englobing scenario, not represented here.

	Automation curve		
	Sound 1		Sound 2	
	Start	Tick 1	Tick 2	Tick 3
	Automation			

Table 7 . 3

 73 

.: Value of token requests for the scenario 7.5.

Table 10

 10 An integer. The higher the priority and the sooner it should be ordered if multiples messages are to be sent at the same time. critical A critical node should use if available safer means of communication:

	.1 lists the attributes

Table 10 .

 10 1.: Attributes on nodes.

Table 10 .

 10 2.: Units and dataspaces.

	Colour	Position	Angle Orientation Distance	Gain	Speed	Timing
	ARGB	XYZ	Degree	Quaternion	m	Linear	m s -1	s
	RGBA	XY	Radian	Euler	dm	Midi	mph	Bark
	RGB	Spherical		Axes	cm	16-bit dB km h -1	BPM
	BGR	Polar			mm	dB	Knots	Cent
	ARGB (8-bit)	GL			µm		Ft s -1	Hz
	HSV	Cylindrical			nm		Ft h -1	Mel
	CMY (8-bit)				pm			Midi Pitch
	XYZ				Inch			ms
					Foot			
					Mile			

10.1.6.2. OSC Since

  • Note On, note Off, Control Change nodes are integers bounded between 0 and 127; the data is either the velocity or the Control Change value. • Program Change nodes are impulses. • Pitch bend is an integer bounded between 0 and 16383; the default value is 8192. • When relevant, convenience nodes are provided: array messages to set both note pitch and velocity, or integer message to set a program change by value. For instance: • The message /12/noteon/64 127 represents a C3 at maximal velocity. It is equivalent to the message /12/noteon 64 127. • The message /1/pitchbend 0 bends to the lowest pitch on the first channel. • The message /3/program/15 sends program change 15 to channel 3. It is equivalent to the message /3/program 15. this work uses many core concepts of OSC, let us recapitulate the basics of it. The OSC protocol was introduced in 1997 [128, 188]. In contrast with MIDI, it is not based on domainspecific messages. As such, it can be more easily leveraged for fields other than music: video, robotics [189], etc.

					1		. . .	16
		noteon	noteoff	control	program	pitchbend
	1	. . .	127	. . .	. . .	. . .
				Figure 10.4.: MIDI tree.

Table 10 .

 10 .3 . 3.: Name equivalencies between this document and the software.

	Name in the model	Name in Score
	Process	Process
	Interval	Interval
	Instantaneous condition	Event
	Temporal condition	Synchronization

10.4.3. Benchmarks: network communication

  

		•10 6				
		5				
	Messages per second	1 2 3 4	UDP Client UDP Server TCP Client TCP Server	
			0.5	1	1.5	2	2.5	3
				Parameter count	•10 4
	Figure 10.11.: Network performance. Test name: ossia_DeviceBenchmark_Nsec_client
	and ossia_DeviceBenchmark_Nsec_server.

  , 214 OSI Open Systems Interconnection model. 162, 214 ossia In music, a section which can be played in place of another. 5, 214 outlets Output ports of a node in a data graph. 67, 68, 214 PTP Precision Time Protocol. 31, 214 QML Qt Markup Language. 40, 162, 214 REST Representational State Transfer. 162, 214 RGB Red-Green-Blue. 60, 61, 64, 88, 214 RMS Root mean square: in audio, a way to compute the average value of a signal over a short span of time. 79, 214 RPC Remote Procedure Calls: environments able to provide function or method calls across processes or networks. 65, 214 RTSP Real-Time Streaming Protocol. 19, 214 session In the distributed score model, a score and the set of clients connected together in order to execute this score. 137, 214 SGML Standard Generalized Markup Language. 17, 214 SIMD Single Instruction Multiple Data. 69, 214 SMDL Standard Music Description Language. 17, 214 SMIL Synchronized Multimedia Integration Language. 18, 19, 214 state In the visual model, an object which represents a set of instantaneous actions to be executed by the score at a given point in time.. 116, 214 TC Time Constraint. 214 TCC Temporal Concurrent Constraints. 32, 214 TCP Transmission Control Protocol. 156, 159, 160, 214 TP Time Process. 214 trigger In the visual model, an object which represents a temporal condition with an active expression. 118, 214 UDP User Datagram Protocol. 31, 82, 156, 159, 160, 162, 214 WebSocket A bidirectional communication protocol available for use in web pages. 151, 159, 160, 162-164, 199, 214 WIMP Windows, Icons, Menus, Pointer, a standard method for human-machine interface design. 9, 214 XML eXtensible Markup Language. 18, 20, 63, 214 XPath An expression language used to locate objects in a XML document. 63, 214 XSLT eXtensible Stylesheet Language Transformations. 19, 214 Table E.1.: Device statistics.

	Device	Protocol	Nodes NonLeaf MaxDepth MaxCld AvgCld AvgNCld
	score	Local	7,942	1,364	8	397	1	5.82
	Nebula	Minuit	325	58	4	41	0.96	5.36
	Eclipse	Minuit	35	8	4	8	0.91	4
	Shadow	Minuit	18	4	4	8	0.89	4
	MainVoyage	Minuit	866	251	6	16	0.99	3.41
	score	Local	4,119	831	14	91	1	4.95
	reapermidi	Midi	8,288	80	3	128	1	103.4
	wsserver	WebSocket	53	16	4	9	0.91	3
	ALBILEMUR	OSC	6	2	2	1	0.33	1
	var	Variables	3	0	1	0	0	0
	DOME	OSCQuery	76	19	4	24	0.92	3.68
	ALBIWFS	Minuit	292	50	4	41	0.99	5.8
	local	Variables	5	0	1	0	0	0
	quarreserver	Minuit	372	98	6	30	0.99	3.74
	voxelstrack	OSCQuery	73	9	2	7	0.86	7
	dynamicmapping OSCQuery	20	3	2	8	0.7	4.67
	ROBOTIS	Serial	18	1	2	17	0.94	17
	MidiDevice	MIDI	8,288	80	3	128	1	103.4
	ContactCollider OSCQuery	13	1	2	12	0.92	12
	score	Local	1,279	270	24	12	1	4.72
	PdHid	OSCQuery	19	3	2	10	0.84	5.33

Table F .

 F 1.: Score statistics. Table F.2.: Process statistics.

	Score	Intervals EmptyItv IC TC States EmptyStates Conds Trigs MaxDepth
	Nebula	217	140	226 223	397	102	0	69	1
	Voyage	33	15	42	40	54	19	0	36	3
	ArbreIntegral	103	59	176 176	183	119	0	176	2
	NuitCherch	21	7	25	25	29	8	0	17	2
	Quarre	187	175	206 191	276	92	14	191	2
	Antoine	41	18	54	54	68	33	0	46	3
	Metabot	25	5	54	49	44	35	4	6	5
	Score									

Procs ProcsPerItv ProcsPerLoadedItv Autom Mapping Scenar Loop Script

  

	Nebula	218	1	2.83	217	0	1	0
	Voyage	36	1.09	2	27	0	6	2
	ArbreIntegral	45	0.44	1.02	8	0	37	0
	NuitCherch	82	3.9	5.86	27	52	3	0
	Quarre	13	7 • 10 -2	1.08	3	6	4	0
	Antoine	25	0.61	1.09	18	0	1	4
	Metabot	36	1.44	1.8	6	16	1	6
	256							

https ://github.com/OSSIA/libossia

https ://github.com/OSSIA/score vi

French Ph.D. agreement between a company and a research laboratory.

Interactive Score.

www.gmea.net/Plateforme-VIRAGE

http://ossia.gmea.net/

In music, a section which can be played in place of another.

In music, an indication that a particular note may be played for a longer duration than the one written on the sheet.

©1957 by Universal Edition (London) Ltd., London/UE 12654. Retrieved from[START_REF] Guigue | La répartition spectrale comme vecteur formel dans la Klavierstück n.11 de Stockhausen[END_REF].

http://goo.gl/et4yPd

An artistic style rooted in post-modern aesthetics, characterized by its use of 1990 to

computer interfaces as an art medium as well as japanese pop music sampling[START_REF] Turner | Towards a Supportive Technological Environment for Digital Art in Proceedings of the Annual conference of the Computer-Human Interaction[END_REF] Windows, Icons, Menus, Pointer, a standard method for human-machine interface design.

Domain-Specific Language. 

https://github.com/OSSIA/score/releases

https://www.w3.org/TR/owl-time

Standard Generalized Markup Language.

Standard Music Description Language.

Synchronized Multimedia Integration Language.

eXtensible Markup Language.

Application Programming Interface.

Not to be mistaken with the Perl language commonly used for text processing.

First-In First-Out, a common model for data exchange.

Data-flow Graph. 

http://www.noteformax.net

http://arts.lu/roby/index.php/site/maxmsp/rs_delos

Hierarchical Live-Looping.

Directed Acylic Graph.

https://www.cantabilesoftware.com/

http://ninjam.com

http://www.ejamming.com/

User Datagram Protocol.

Network Time Protocol.

Precision Time Protocol.

For instance, the hardware clocks shipped with most computers drift when temperature varies -sometimes by up to a second per day. Internet clock synchronization can remedy to this, but may cause the computer time to go backwards upon resynchronization. Some measurements on such clocks are provided here: switchdoc.com/ 2014/12/benchmarks-realtime-clocks-ds3231-pcf8563-mcp79400-ds1307

https://www.ableton.com/en/link/

Temporal Concurrent Constraints.

Non-deterministic Temporal Concurrent Constraints. 

Hierarchical Time Stream Petri Net.

Musical Instrument Digital Interface.

Open Sound Control.

Computational Tree Logic.

École Nationale Supérieure des Arts et Techniques du Théâtre: french performing arts graduate school.

Functional Audio Stream, a programming language for signal processing.

Qt Markup Language.

GL Shading Language.

https://soundcloud.com/christopher-coleman-603014064/a-multitude-before-creation

Half the sampling frequency of a signal per the Nyquist-Shannon theorem.

Digital Multiplexing.

Term used to denote the variation of a parameter over time following a given curve.

Specific mathematical functions often used in artistic applications for transitions and smooth movement of objects. See http://easings.net for a list.

Red-Green-Blue.

Alpha-Red-Green-Blue.

Blue-Green-Red.[START_REF] Eaglestone | Information Systems and Creativity: An Empirical Study[END_REF] That is, given 47 distinct units, it means 2162 distinct conversion functions instead of 92.

In programming, a future is a way to encode the result of an asynchronous computation: when the computation is done, the future can be used to perform an action on its result.

This is the case for the OSCQuery

protocol presented inSection 10.1.6.4; in contrast, the MIDI protocol always transfers every message.

An expression language used to locate objects in a XML document.

Remote Procedure Calls: environments able to provide function or method calls across processes or networks.

Input ports of a node in a data graph.

Output ports of a node in a data graph.

 is the process by which a compiler will produce SIMD

instructions from a scalar definition of a given computation. For instance, a loop which adds 1 to every element of an array could be compiled with instructions allowing to process the array 8 elements at a time.

Some figures for a contemporary Intel processor are given here: https://www. 

https://github.com/YCAMInterlab/Duration

On most audio software implementations, this is not the case: audio computations are often done in floatingpoint mode with limited precision: in this case, addition is not associative.

[START_REF] Turner | Towards a Supportive Technological Environment for Digital Art in Proceedings of the Annual conference of the Computer-Human Interaction[END_REF] Root mean square: in audio, a way to compute the average value of a signal over a short span of time.

In the implementation, this has been extended to work for an arbitrary number of root TCs: this allows to build the score from many interactively triggered sub-scores easily, but will not be covered here.

In the visual model, an object which represents a set of instantaneous actions to be executed by the score at a given point in time..

http://musicnotation.org/systems/criteria/

In the visual model, an object which represents a temporal condition with an active expression.

In the visual model, an object which represents an instantaneous condition with an active expression.

A current unsolved bug in the implementation can cause negative intervals to appear; however, the offending elements are visibly marked as invalid.

A tester from the Norwegian art company Verdensteatret (http://verdensteatret.com) has remarked that this colour scheme was not adapted for visually impaired persons: some kinds of colour-blindness make differentiating blue and green impossible; hence making alternative colour schemes should be made possible.

By virtue of the priority inversion problem, exposed in great details byRoss Bencina in [152] 

As defined in Section 6.3: DAG whose vertices are the ICs and the edges the intervals

also known as busy wait.

http://www.rossbencina.com/code/oscpack

https://github.com/jcelerier/RtMidi17

An OSC-based query protocol, discussed in Section 10.1.6.3. 

A bidirectional communication protocol available for use in web pages.

https://www.libsdl.org

A programming language mainly used in web browsers.

JavaScript Object Notation.

Representational State Transfer. 

Open Systems Interconnection model.

At the usual audio sample rate, a single sample has a duration of roughly

microseconds; assuming a onehour length show and at least 100 pixels in width to enable to edit comfortably the content of the audio sample, for instance by giving a name to the behaviour or add several processes, the total width of the score in pixels would be N = 15876000000 pixels. 2 33 < N < 2 34 : the logical width of the graphical scene would not fit on a traditional 32-bit CPU integer which can cause some software engineering problems relative to the drawing library used.

Entity Component System.

constexpr variables in C ++ are compile-time constants: it is possible to map such a variable into a type checked by the type system according to its value.

https://www.wireshark.org

http://www.dawbench.com

http://www.metabot.fr

http://arbre-integral.net/, video at https://vimeo.com/200048739

https://scrime.labri.fr/blog/quarre-composition-interactive

Remerciements

Temporal objects

procId: processId; procNode: nodeId; impl: processImpl; start: process -> score_state -> score_state; stop: process -> score_state -> score_state; tick: process -> duration -> duration -> position -> duration -> score_state -> ((graph_state -> graph_state) * score_state) };;

Interval

Intervals express the passing of time, for a given duration. This duration may or may not be finite; it may also vary between different executions of a score.

A duration is defined as a strictly positive integer. An interval is at its core a set of durations: a min, an optional max, a default duration and the current position, part of the score_state structure which will be presented thereafter. A similar set of durations have been proposed in the elastic time model proposed by Sung [START_REF] Song | Interactive Authoring of Multimedia Documents in a Constraint-based Authoring System[END_REF]: a min, a max, and a length at rest called by the authors "most desirable play length". The lack of max means infinity; conversely, an interval is said to be fixed when its min equals its max.

The interval is defined as:

Definition 28 (Interval)

type interval = { itvId: intervalId; itvNode: nodeId; minDuration: duration; maxDuration: duration option; nominalDuration: duration; processes: process list };;

An interval is uniquely identified across the score with itvId, and is associated to a data graph node with itvNode.

For the sake of clarity, two hierarchical notions are defined:

Definition 29 (Parent interval)

A process admits a unique parent interval which is the interval carrying it in its process list.

Definition 30 (Parent process)

An interval admits at most a unique parent process.

Position of the execution in processes is defined as current date nominal duration ; their date is the same as their parent interval date. In Section 8.1, this allows to provide a simple mapping between the visual position of execution and the actual computation taking place.

Part IV.

Implementation and practical applications 10.1.1.1. Traditional programming languages

The most basic case is the integration in traditional imperative and object-oriented programming languages. In these cases, libossia is used as a simple library, in line with expectations of programmers in these languages. Examples are given for C (listing 10), C (listing 11), C# (listing 13), Python (listing 12).

Algorithm 10 Creating a tree with as single node in C.

ossia_protocol_t proto = ossia_protocol_oscquery_server_create (1234,5678); ossia_device_t dev = ossia_device_create(proto, "newDevice"); ossia_node_t root = ossia_device_get_root_node(dev); ossia_node_t n1 = ossia_node_create(root, "/color"); ossia_parameter_t p = ossia_node_create_parameter(n1, VEC3F_T); ossia_parameter_set_bounding_mode(p, CLIP); ossia_domain_t dom = ossia_domain_make_min_max(0, 255); ossia_parameter_set_domain(p, dom); ossia_parameter_set_unit(p, "rgb"); ossia_parameter_push_3f(p, 255, 0, 0);

Algorithm 11 Creating a tree with as single node in C++.

generic_device dev{ std::make_unique<oscquery_server_protocol>(), "newDevice"}; auto& n = create_node(dev, "/color"); auto& p = *n2.create_parameter(val_type::VEC3F); p.set_domain(make_domain(0, 255)); p.set_unit(rgb_u{}); p.push_value({255,0,0}); Algorithm 12 Creating a tree with as single node in Python. Further improvements would leverage decorators. local_device = ossia.LocalDevice("newDevice") local_device.create_oscquery_server(1234, 5678, False) node = local_device.add_node("/color") parameter = node.create_parameter(ossia.ValueType.Vec3f) parameter.bounding_mode = ossia.BoundingMode.Clip parameter.unit = 'rgb' parameter.make_domain(0,255) parameter.value = [255,0,0]

Patch-like environments

Objects are provided to the composer to allow the construction of this tree, and the binding of this tree to the parameters of the software. Section 10.1 presents the facilities that were developed in various creative environments to make this step seamless.

QML and reactive environments

Remember that QML is a reactive programming language, optimized for the creation of user interfaces. A simple QML program is given in example in fig. 14. The reactive semantics can be leveraged to provide a set of objects with a similar behaviour than the ones provided for patcher environments. In particular, QML programs are structured as tree of objects; this structure can be followed by the libossia objects to provide a simple experience to the programmer. An example of QML program using libossia is given in fig. 15. In this example, a device tree consisting of the following addresses is created:

• /main/text of string type.

• /main/text.1 of string type.

• /main/rect/background of vec3f type, with an ARGB unit.

• /main/rect/width of float type.

• /main/rect/height of float type. Network update to the values will be propagated reactively to the QML objects.

Algorithm 14

An example of program in the QML language. A button and a text are displayed. Whenever the button is pressed, a counter increases and the text is updated with the new value of the counter. An OSC message consists of a pattern and a sequence of values. Values are typed. The available types per the first version of the protocol are: 32-bit integer, 32-bit float, null-terminated string and blob, an array of raw bytes associated with a fixed size. A further revision of the protocol, OSC 1.1, introduces new required types following existing usage patterns: booleans, a null type, and an impulse type.

Examples of OSC messages in a readable form are:

/equalizer/freq 440.0 /color/? "hello" 1 2 1 -1

These messages are encoded by introducing the type of the parameters after the pattern, and padding the parts of the message with zeros so that each data fits on 4-bytes alignment; numeric values are in network byte order:

'/' 'e' 'q' 'u' 'a' 'l' 'i' 'z' 'e' 'r' '/' 'f' 'r' 'e' 'q' 0 ',' 'f' 0 0 67 220 0 0 (a) OSC encoding of the above message The most common transport protocol for OSC is UDP, though it has also seen some usage on top of TCP, WebSockets and serial port layers. This has the drawback of leading to lost messages, due to the lack of guarantees by UDP. This effect varies in practice, depending on the network configuration: for instance, most operating system kernels have a space-limited input and output message queue for UDP; any message departing or arriving while the queue is full would silently be dropped.

Messages can be grouped in bundles; the OSC server shall then apply the messages of the bundle in order. This allows circumventing the lack of ordering guarantees in UDP.

Queries

The OSC protocol does not come with any query mechanism; that is, there is no standard way to query the current state of an OSC server, or know in a machine-readable way what are the objects and attributes that it exposes.

Some approaches are sometimes used to retrieve some information on the state of the server:

• dump message: a special message that, when sent to the OSC server, makes it send OSC messages for all of its methods to the client that requests it. This is also useful for a client to discover what are the available OSC methods in a given server. • Argumentless queries: given an OSC method such as /synth/volume with a float parameter, sending an argumentless message triggers the server in responding with the current value of the parameter.

Namespace request

The OSC methods are mapped to the HTTP GET Request URI [191, page 5.1.2]; this is convenient due to the similar path-like format used for both. Making a request for a given node returns a JSON object that describes the method or container and its children.

An OSC container or method is mapped to the JSON object with the following required fields:

• DESCRIPTION: user-readable description.

• CONTENTS: If any, a JSON array with the children of the given OSC node.

• FULL_PATH: OSC address of a given node. Additional fields can be provided depending on the attributes associated with a particular node. For instance, if the node is an OSC method, its OSC typetag will be sent in the TYPE field.

Requesting the information for the OSC method /synth/volume on an OSCQuery server running on the same computer on port 5678 can be done by the request: http://127.0.0.1:5678/synth/volume

The returned data if the node exists would be: { "DESCRIPTION": "Main volume of the synthesizer", "FULL_PATH": "/synth/volume", "ACCESS": 1, "TYPE": "f", "VALUE": 0.5, "RANGE": { "MIN": 0.0, "MAX": 1.0 } }

The various attributes mentioned earlier are all encoded as key-value pairs in such objects.

Attribute request

A single attribute can be queried with the GET request's query parameters: http://127.0.0.1:5678/synth/volume?VALUE&TYPE would return: { "TYPE": "f", "VALUE": 0.5 } Listening request Listening has the same semantics as in Minuit: enabling listening on a method means that as soon as the value of the method changes on the OSC server, the clients should be notified of the change.

• createTree is called at the initialization of the device: it allows to give a structure to the device tree, by returning a tree-like JavaScript object. In particular, it is necessary to have a way to send messages from our environment to the external server: a mapping has to be provided. This is done with the request member.

-If request is a string, then the string is sent as a message through the connection whenever a value is pushed to the network. $val can be used as a wildcard that will be replaced with an automated string conversion of the value fitting with JavaScript semantics. In the underlying example, sending locally a green colour to the parameter /mysocket/lights will send the JSON { "name": "set light", "value": [0.0, 1.0, 0.0] } over the network. -If more complex behaviours are required, it is possible to provide a real function instead; this function will be called with the value as an argument. In the example, sending a value of 5.0 to the parameter /mysocket/volume will send the message intensity = 13.9794000867; over the WS connection. // the gain node can be controlled through the OSC address /volume, // and sends data to the sound card auto gain_param = ossia::create_parameter(osc.device, "/volume", "dB "); gain_param->push_value(-60); // we start at -60dB gain->inputs() [START_REF] Eaglestone | Information Systems and Creativity: An Empirical Study[END_REF] This library then proceeds to scan the available plug-ins and load them in order. Some plug-ins are considered to be "core", that is, they define the elements used for the model presented in this thesis. Then, further plug-ins add optional functionalities: loops, processes, sound file and audio effects. Most plug-ins depend on the base libraries: lib-state, lib-device, lib-process, which provide the basic data structures and interfaces.

Figure 10.9.: A libossia-based Max/MSP patch to control score. The ossia.client device is used to enumerate the remote device. Two ossia.remote objects allow to control the /play and /stop parameters of score: the first one is a boolean, the second an impulse; the type conversions are handled automatically by the ossia.remote object. Note that there is no need to specify an absolute address: parameters are aware of their hierarchy level and will try to find a corresponding node in the tree according to their hierarchical position in the patchs. All Intel features relative to run-time CPU frequency adjustment are disabled in the system: in particular, Intel® TurboBoost, Intel® SpeedStep. Sleep states are disabled: the CPU operates entirely in C0 mode [195]. This is done to ensure meaningful benchmarks: this way, the CPU clock does not deviate from the given 3.2GHz frequency which averts latency spikes. See also [196,197]. While the optimizations in these guides are mainly targeted at Microsoft Windows, the general idea stays applicable in every desktop operating system. The benchmarks can be reproduced on a Unix-like environment by following the given steps, assuming recent versions of the libraries listed in Table 10.4: git clone --recursive https://github.com/OSSIA/libossia -b v3 mkdir build && cd build cmake ../libossia \ -DCMAKE_BUILD_TYPE=Release -DOSSIA_TESTING=1 -DOSSIA_STATIC=1 \ -DCMAKE_C_FLAGS="-O3 -march=native -flto" \ -DCMAKE_CXX_FLAGS="-O3 -march=native -flto" \ -DCMAKE_EXE_LINKER_FLAGS="-Wl,-O3 -flto" cmake --build . ---j8

The various benchmarks are built in the resulting Tests folders and can then be executed.

Building relevant benchmarks

The following tests are built with a focus on real-world usage: in particular, we optimize for the most common use cases found when studying the scores written by associated composers and artists; likewise, scales are given for relevant values in a musical and artistic setting: we cover only the durations smaller than a few milliseconds since more would go beyond the latency constraints that we are trying to fulfil. 

Author libossia

Series-parallel models

Multiple models for musical and media composition [202,204] are based on two base primitives: serial composition and parallel composition. Serial composition of two media objects A and B creates a new object which will execute A then execute B. Parallel composition of two media objects A and B creates a new object which will execute A and B at the same time. However, this restricts the possible compositions: consider the graph G = (V, E) where V is the set of the beginning and end times of media objects, and E is the set of media objects. Remember that K N is the complete graph with N vertices, that is, the graph where each vertex is connected to every other. Examples are given in fig. 11.2. A single media object is the K 2 complete graph: the object lies between its start and end time. A composition built through repeated application of serial and parallel composition of K 2 graphs forms a series-parallel graph. Series-parallel graphs are exactly graphs constructed through this method.

In particular, any graph which admits a subdivision of K 4 as a subgraph is not a series-parallel graph [205]. This excludes every simple graph with minimum degree greater than 3.

The present model is able to express the K 4 graph when considering ICs as vertices and intervals as edges: a construction is provided in fig. 11.3, and thus, a large class of media compositions.

Madeus

Madeus extends the Allen relations with three additional relations mentioned in Section 2. • A root: an infinite interval.

Cubase

• This interval contains two processes: a scenario and an effect bus. The sound output of the scenario goes to the input of the effect bus. • The scenario contains the actual tracks.

• These tracks are also modelled by infinite constraints. Tracks are generally divided in two categories: audio and instrument. Audio tracks are built with:

• A scenario with a single sequence of intervals, some of which may bear sound file processes and others being empty. The propagate attribute is disabled on the scenario audio output. • An effect bus process. The output of the scenario goes to the input of the effect bus.

Generally, this effect bus would end by channel operations such as panning and volume adjustment, in a similar fashion to mixing desks. MIDI tracks are built with: • A scenario with a single sequence of intervals, some of which may bear MIDI notes processes and others being empty. • An instrument process, which takes MIDI data and outputs sound.

• Like before, an effect bus applied to the instrument's output. This can easily be extended with further features: sends, automations, etc. We can compare the number of strong semantic elements between the target implementation and our method, in fig. 11.1. we call strong semantic element, an element that the user of the interface has to set up himself: for instance, an interval must be created by an explicit mouse movement. However, this also creates automatically temporal conditions and states if necessary, which the user does not need to care about if he does not intend to use them. The goal of this part is to show how to apply effects only on specific parts of a sound source -for instance, a sound file. That is, we want, given a 30-second sound file, to apply an effect from 10 to 20 seconds, and from 25 seconds to the end of the sound.

In order to simplify authoring, in this case we will use addresses to exchange data. Two addresses are used: /sound and /verb.

The score is as follows: an interval carries three processes: a sound file, a scenario, and an audio effect. The scenario contains a sequence of intervals: one from the beginning to 10 seconds, one from 10 seconds to 20, one from 20 to 25 and one from 25 to the end. The sound outputs data to the /sound address. The intervals in the scenario are loaded with a dummy audio mapping process which copies its inputs to its outputs.

• For the first (copy1) and the third (copy2) one, the input is set to audio:/sound and the propagate attribute is enabled. This means that the audio will be copied from audio:/sound to the parent hierarchic level when these intervals execute. • For the second and the fourth one, the input is set to audio:/sound, the output to audio:/verb and the propagate attribute is disabled. This means that the audio will be copied from audio:/sound to audio:/verb when these intervals execute. The reverb audio effect input is set to audio:/verb; its output's propagate attribute is set. Authoring in the system can currently be done in two ways: either through the graphical interface of score, or through the C ++ API directly. We believe that it can be relevant to be able to specify scores in a textual general-purpose programming language: in particular, we propose the use of the QML language to enable the creation of interactive media presentations which would allow self-mutating behaviours: for instance, creating a new element in the score every time the ending of an interval is reached. More generally, this would free the environment from constraints necessary in the visual syntax. Some work has already been engaged in order to find a suitable syntax. The next steps are the integration of the QML environment with the reactive edition loop: the QML script would be seen by the execution engine exactly like the user modifying the score in the visual interface during an execution. A short example QML script is provided afterwards. It models a IC followed by a TC. Every time the TC is triggered before the end of the interval, the interval's maximum duration increases by two seconds: 

Perspective: distribution of the data graph

The distribution research covers only the execution of the temporal tree: both the device tree and the data graph are not taken into account. The next step for this work is to provide accurate translations of these models in the distributed space: how can data production be combined across machines ?

Perspective: abstractions in the environment

The visual language currently lacks a way for an author to provide parametrizable abstractions. It is possible to have "presets" by means such as copy-paste, however, there is no way to repurpose easily a hierarchical part of the score according to a variable: for instance one could want to copy a scenario ten times to make a musical canon, but with each scenario operating on a different set of instruments. Currently, this requires the author to copy and change the used instrument -for instance a node in the device tree -in every place in which it could be referenced in the scenario.

Glossary

API Application Programming Interface. [START_REF] Vaggione | Some Ontological Remarks about Music Composition Processes[END_REF][START_REF] Dennis | First Version of a Data Flow Procedure Language in Proceedings of the Programming Symposium -Colloque Sur La Programmation[END_REF]151,155,162,170,171,[START_REF] Halang | Safe Object Oriented Programming of Distributed Real Time Systems in PEARL[END_REF] [START_REF] Dixon | Digital Performance: A History of New Media in Theater, Dance, Performance Art, and Installation[END_REF]214 CTL Computational Tree Logic. 38,214 DAG Directed Acylic Graph. 29,[START_REF] Celerier | Graphical Temporal Structured Programming for Interactive Music[END_REF][START_REF] Fober | Programming Interactive Music Scores with INScore[END_REF]132,140,214 DCOP Desktop COmmunication Protocol. 19,[START_REF] Bohnacker | Generative Design: Visualize, Program, and Create with Processing[END_REF][START_REF] Celerier | Exécution Répartie De Scénarios Interactifs[END_REF][START_REF] Celerier | Leveraging Domain-specific Languages in an Interactive Score System in Proceedings of the Acoustical Society of Japan Regular Meeting[END_REF][START_REF] Vazirgiannis | Specifying and Authoring Multimedia Scenarios[END_REF][START_REF] Lee | Dataflow process networks[END_REF][START_REF] Halbwachs | Synchronous programming of reactive systems[END_REF][START_REF] Halbwachs | The Synchronous Data Flow Programming Language LUSTRE[END_REF][START_REF] Mccartney | Rethinking the Computer Music Language: SuperCollider[END_REF][START_REF] Taube | An Introduction to Common Music[END_REF]185,212,214 DMX Digital Multiplexing. 46,[START_REF] Sabry Ismail | Schéma d'exécution pour les documents multimédia distribués[END_REF][START_REF] Antoine | Generating Orchestral Sequences with Timbral Descriptors in Proceedings of the Timbre Conference[END_REF]193,214 easing function Specific mathematical functions often used in artistic applications for transitions and smooth movement of objects. See http://easings.net for a list. [START_REF] Bulterman | SMIL 3.0: Flexible Multimedia for Web, Mobile Devices and Daisy Talking Books[END_REF]214 ECS Entity Component System. 169,214 Faust Functional Audio Stream, a programming language for signal processing. 40, 214 fermata In music, an indication that a particular note may be played for a longer duration than the one written on the sheet. 5, 214 FIFO First-In First-Out, a common model for data exchange. 21, 75, 214 FPGA Field-Programmable Gate Array. 214 future In programming, a future is a way to encode the result of an asynchronous computation: when the computation is done, the future can be used to perform an action on its result. [START_REF] Celerier | Rethinking the Audio Workstation: Tree-based Sequencing with i-score and the LibAudioStream[END_REF][START_REF] Goldfarb | Hytime: A Standard for Structured Hypermedia Interchange[END_REF]214 HTSPN Hierarchical Time Stream Petri Net. 34,151,[160][161][162]164,214 inlets Input ports of a node in a data graph. 67, 68, 214 IS Interactive Score. 4-6, 9, 12, 32, 33, 36, 51, 56, 92, 212, 214 JavaScript A programming language mainly used in web browsers. 153,162,163,165,199 

B.2. Loop execution in the interactive case

This algorithm is used whenever an interactive event is non-default. There are specific cases to handle: for instance, we must take care of not falling in a deadlock when the start IC has a false condition, and must ensure that re-evaluation will take place on every tick until the execution is possible. (* e.g. color.rgb or color.rgb.r; we make a precomputed table. *) unit_qualifier: dataspace, '.', unit, ('.', unit_accessor)?; address_accessor := Address, '@', (('[', [:int:] 

E

Device statistics

The following tables contains statistics for various scores made by artists with the software. The first table contains general statistics on the device tree: the devices used, their protocol, the total number of nodes and the number of non-leaf nodes, the depth of the deepest leaf, the maximum number of children for a single node, the average number of children for each node, and the average number of children for each non-leaf node.

The Variables protocol means that a device was only created for the sake of having local variables to use within the score; by default, in the software, this is done with an OSC device. We can also note that the Local and Midi device, due to their generative nature, bear a large number of nodes. They are not taken into account for the study of the authoring methods used by each author, since they only reflect an implementation detail and are not constructed explicitly by the author.

Each part of Table E.1 lists all the devices for a given score, in order:

• The first four devices, from score to Nebula are from the Nebula score from the Baltazars (see Section 11.