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Résumé en Francais

Préambule et Contexte

La distribution de contenu vidéo tend a devenir universelle. La diffusion vidéo, ini-
tialement limitée aux télévisions, est maintenant disponible pour les ordinateurs, tablettes
et smartphones. Les réseaux de diffusion comme la Transmission Numérique Terrestre
(TNT), la transmission par cable, satellite, t€léphone mobile et Internet sont tous utili-
sés pour transmettre des contenus images ou vidéos. Toutes ces évolutions bénéficient a
I’utilisateur final en terme d’accessibilité. Cependant, la quantité de données transmises
a énormément augmenté ces dernieres années, avec 1’avénement de plateformes comme
YouTube ou Netflix, et elle continue d’augmenter. Malgré des capacités de diffusion amé-
liorées, I’accroissement continu du nombre de contenus a transmettre nécessite une aug-
mentation des performances de compression.

Parallelement a I’évolution des dispositifs de visionnage et a I’évolution des réseaux,
les exigences de qualité et d’immersion ne cessent d’augmenter. En effet, ces dernieres
années, les résolutions vidéos ont rapidement évolué de définition standard (SD : Stan-
dard Definition) vers la haute définition (HD : High Definition), et plus récemment vers
I’ultra haute définition (UHD : Ultra High Definition). Ces améliorations permettent de
reproduire des vidéos plus nettes grace a un nombre accru de pixels par image. Simulta-
nément, cette augmentation croissante de résolution a été accompagnée par 1’introduction
d’autres modalités comme 1’augmentation du nombre d’images par seconde (HFR : High
Frame Rate), ou la stéréoscopie (3D) pour laquelle des images différentes sont adressées
a chaque oeil du spectateur. Une autre tendance récente est I’imagerie a haute dynamique
(HDR : High Dynamic Range) et a gamme de couleurs étendues (WCG : Wide Color Ga-
mut), qui permet respectivement de reproduire des images avec des niveaux de luminosité
a la fois plus sombres et plus clairs, et des couleurs plus intenses qu’avec les écrans clas-
siques. Toutes ces évolutions bénéficient a I’utilisateur final en terme d’immersion et de
qualité d’expérience. Cependant, elles augmentent drastiquement la taille des contenus et
nécessitent donc des capacités de traitement et de compression accrues.

Actuellement, la plus efficace des normes de compression et récemment standardisée,
en 2013, est HEVC/H.265. Elle a été développée pour remplacer 1’ancienne norme de
compression AVC/H.264 en améliorant ses performances de compression par un facteur 2.
Cependant, comme expliqué précédemment et en raison de 1’exigence croissante des per-
formances de compression, 1’effort de normalisation est toujours tres actif et un nouveau
standard est en cours de développement : VVC/H.266. Toutes ces normes sont congues
avec les mémes principes permettant de réduire les redondances spatiales et temporelles,
et elles peuvent facilement étre utilisées sur des contenus de différentes résolutions ou
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fréquences d’images. Par contre, pour d’autres modalités comme la 3D ou le HDR, ces
standards ne sont pas directement adaptables et des outils dédiés sont nécessaires. Ainsi,
les contenus 3D ou HDR sont, par défaut, non compatibles avec les décodeurs tradition-
nels et donc avec les télévisions traditionnelles.

En revanche, les méthodes de compression rétro compatibles sont spécifiquement
congues pour répondre a ce probleme. Cette méthode a été utilisée pour la premiere fois
lors de la transition du noir et blanc vers la couleur, de telle facon que les contenus cou-
leurs compressés étaient décodables par les télévisions noir et blanc traditionnelles. Une
partie du signal est extraite pour reconstruire le contenu noir et blanc et I’afficher. De
la méme maniere, des schémas de compression spécifiques peuvent étre utilisés pour la
compression de contenus HDR ou autres. Ces contenus HDR sont alors décodables par les
nouveaux décodeurs HDR mais aussi par les décodeurs traditionnels dit SDR (Standard
Dynamic Range).

Motivations

Comme introduit dans la section précédente, I’imagerie a haute dynamique permet
d’afficher des niveaux de lumiere a la fois plus sombres et plus intenses que les écrans
actuels. Cette quantité de lumiere est généralement mesurée en unité de Luminance expri-
mée en candela par metre carré (cd.m =2 ou nits). En revanche, la dynamique de luminance
est mesurée avec différentes unités. Dans tous les cas, cette dynamique est caractérisée
par les valeurs minimale L,,;, et maximale L,,,, de luminance perceptibles. Elle peut
étre décrite en unités de contraste (Lyqz/Lmin), €0 f-stops (loga(Lmaz) — l0ga(Lmin)) OU
en ordre de magnitude (log1o(Lmaz) — l0g10(Lmin)). Dans la suite de cette these, on utilise
principalement les ordres de magnitude par souci de cohérence et clarté.

L’ultime but de I’'imagerie HDR est de capturer et reproduire toute la dynamique de
lumiere visible et perceptible par I’oeil humain. Comme illustré en Figure 1, cette dyna-
mique va de 107 & 108 nits, pour un total de 14 ordres de magnitude de luminance. Cepen-
dant, I’oeil humain est capable de percevoir toute cette gamme de luminance uniquement
grace a plusieurs mécanismes d’adaptation. Sans ces adaptations, il peut instantanément
traiter 5 ordres de magnitude de luminance dans la plage [107¢; 10°] nits.

En revanche, comme décrit en Figure 1, les appareils de capture et écrans SDR peuvent
traiter uniquement 3 ordres de magnitude de luminance. Il est possible de créer des images
HDR en utilisant la syntheése d’images par ordinateur ou en combinant plusieurs appareils
de capture SDR avec différents niveaux d’exposition. Par contre, pour étre affiché sur des
écrans SDR, ces contenus HDR doivent étre convertis avec des algorithmes spécifiques
appelés TMO (Tone Mapping Operator). De nombreux TMO ont été développés ces der-
nieres années avec différentes intentions.

Plus récemment, plusieurs écrans HDR ont été proposés, avec un minimum de 5 ordres
de magnitude de luminance, pour correspondre au minimum a la vision instantanée de
I’oeil humain. Ainsi, ils offrent une expérience de visionnage améliorée en comparaison
des écrans SDR. Ces écrans HDR ouvrent aussi la possibilité¢ de diffuser des contenus
HDR au grand public, a condition de résoudre le probleme de la compression HDR. En
effet, les données HDR brutes sont généralement représentées avec des données flottantes
et ils utilisent ainsi jusqu’a 4 fois plus d’espace de stockage que les données SDR non
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Niveaux de Luminance [cd/m? ou nits]

10° 104 102 10° 102 104 108 108
_—ﬂ II * m

Lumiére Etoiles Lumiére Lune Lumiére Intérieur Lumiére Soleil Soleil direct

Gamme de luminance Visible

: <0eil humain sans adapt. (“‘1()5> e ot ettt
¢ Ecran SDR (~103) I
Ecran HDR (~10°) >

FIGURE 1 — Sources de lumieres et niveaux de luminances associés - Dynamique de 1’ oeil
humain, des écrans SDR et HDR

AN

compressées.

Pour gérer le probleme de compression des contenus HDR, un groupe de normalisa-
tion MPEG a été créé. Plusieurs solutions ont été proposées et celle qui a été sélectionnée
consiste a utiliser des étapes de pré/post traitement associées au standard de compression
traditionnels comme HEVC. Cette solution offre de bonnes performances de compression
et est compatible avec les nouveaux écrans HDR. Cependant, la majorité des utilisateurs
est actuellement équipé de télévisions classiques SDR qui ne peuvent pas interpréter ces
contenus compressés HDR. Les utilisateurs renouvellent lentement leurs télévisions pour
une HDR et il est donc trés important de pouvoir délivrer un signal HDR qui puisse étre
décodé par les télévisions SDR et HDR.

Pour ce faire, la plus simple maniere serait de créer un contenu SDR avec un TMO puis
d’envoyer chaque contenu dans des bitstreams différents. Cette solution, appelée simul-
cast, est clairement sous optimale en terme de performance de compression, car beaucoup
d’information redondante est envoyée dans les deux bitstreams. Comme vu dans la section
précédente, une meilleure alternative est 1’utilisation d’un schéma de compression rétro
compatible ou scalable qui encode le contenu HDR en un seul bitstream compatible avec
les télévisions HDR et SDR. Pour cela, le contenu HDR est premieérement tone mappé,
avec un TMO en une version SDR, elle est encodée avec un encodeur traditionnel comme
HEVC, puis envoyée avec des métadonnées. Ce signal peut étre décodé par les télévisions
classiques ou il peut étre inverse tone mappé, a I’aide des métadonnées, pour obtenir une
reconstruction du contenu HDR. Il est aussi possible d’envoyer un signal de raffinement
contenant le résidu HDR pour améliorer la reconstruction du contenu HDR.

Objectifs

L’ objectif de cette these est de proposer de nouvelles solutions pour améliorer la com-
pression HDR rétro compatible. En effet, le TMO est un élément essentiel pour permettre
la rétro compatibilité, mais il peut étre congu avec différentes intentions. Dans un pre-
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mier temps, les TMO étaient congus pour préserver I’ intention artistique du contenu HDR
dans le contenu SDR obtenu. De nombreuses solutions ont été¢ développées dans ce but
mais dans le contexte de la compression, les TMO peuvent €tre aussi congu pour optimi-
ser les performances débit distorsion. Certains pourraient opposer qu’optimiser les TMO
uniquement dans un but de compression résulte en un contenu SDR qui ne préserve pas
I’intention artistique du contenu HDR. Ainsi, il serait intéressant de faire un compro-
mis entre performances de compression pour le contenu HDR et qualité perceptuelle du
contenu SDR.

Les contributions de cette these traitent principalement les deux derniers types de
TMO. Elles utilisent des schémas de compression avec différentes configurations et pro-
posent de nouvelles solutions pour répondre a ces deux enjeux. Premierement, nous consi-
dérons un schéma de compression avec deux couches ol I’on envoie une couche SDR puis
une couche de raffinement contenant le résidu HDR. Dans une seconde contribution, on
étudie un schéma de compression utilisant uniquement la couche de base SDR. Fina-
lement, dans un troisieme temps, on se concentre sur les aspects spécifiques a la com-
pression vidéo. En effet, des problemes inexistants dans la compression d’images fixes
apparaissent quand on tone mappe des vidéos.

Structure de la these

Ce manuscrit peut étre divisé en deux grandes parties. La premicre traite de I’état de
I’art en imagerie HDR dans le Chapitre 1 et de la compression vidéo dans le Chapitre 2,
tandis que la seconde partie regroupe les contributions proposées dans les Chapitres 3, 4
and 5. Un bref résumé de chaque chapitre est donné ci-dessous :

Chapitre 1 : Ce chapitre fournit les informations générales et décrit les concepts de base
pour comprendre I’imagerie HDR. Premierement, on explique le systtme de mesure de
la lumiere avec la radiométrie et la photométrie, puis le systeme de mesure de la couleur
avec la colorimétrie et les espaces de couleur. Grice a ces fondamentaux, nous présen-
tons les différentes méthodes pour créer du contenu HDR. Elles peuvent étre classifiées
en deux groupes principaux : génération assistée par ordinateur ou acquisition a 1’aide de
différentes techniques. Ces contenus HDR sont alors généralement représentés avec des
valeurs flottantes, puis stockés avec des formats d’image dédiés pour un stockage plus
efficace. Plusieurs formats d’image HDR ont été proposés dans la littérature et sont dé-
crits dans ce chapitre. Finalement, nous présentons les différentes facons d’afficher ces
contenus HDR. Ils peuvent étre affichés sur les écrans classiques SDR a I’aide de TMO,
ou bien sur les nouveaux écrans HDR récemment introduits. Ces derniers utilisent diffé-
rentes nouveautés technologiques ayant chacunes leurs avantages et inconvénients.

Chapitre 2 : Bien que les formats d’images HDR présentés dans le chapitre 1 permettent
de réduire significativement, en taille, la représentation des contenus HDR, ils ne sont pas
suffisants pour des applications de distribution a grande échelle. La compression de ces
contenus est nécessaire pour réduire drastiquement leur taille et s’adapter aux capacités
des réseaux de distribution. Dans ce chapitre, on commence par présenter les principes
essentiels de la compression d’image et de vidéo SDR. Ils consistent & supprimer les
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redondances et I’information imperceptible du contenu, a travers des étapes de prédiction,
transformation, quantification et de codage entropique. Ensuite, nous détaillons la norme
de compression la plus récente HEVC/H.265 avec un résumé de chacun des principaux
outils. Tous les standards de compression SDR peuvent étre utilisés pour la compression
SDR avec un pré/post traitement adapté. Les méthodes de compression HDR classiques
et rétro compatibles sont plus précisément décrites dans ce chapitre.

A cause de I’étape de quantification additionnelle, la compression peut générer des
artefacts visibles sur le contenu décodé. Moins un standard ou un algorithme de compres-
sion introduit des artefacts, plus il est considéré comme efficace en terme de compression.
Ainsi, pour pouvoir comparer les algorithmes/standards entre eux, une étape d’évalua-
tion du contenu décodé est nécessaire. Ce chapitre présente plusieurs métriques de qualité
HDR et SDR couramment utilisées pour cette étape d’évaluation.

Chapitre 3 : Dans ce premier chapitre de contribution, on étudie un schéma de compres-
sion rétro compatible ou deux couches sont envoyées pour reconstruire le contenu HDR.
Une premiere couche de base avec le contenu SDR et les métadonnées et une couche
de raffinement contenant le résidu. Ce schéma de compression est con¢cu de maniere a
améliorer les performances de compression de la couche de raffinement. En effet, ce pro-
bleme est assez peu traité dans la littérature, surtout pour les TMO classiques congcus pour
le rendu artistique du contenu SDR. Dans un second temps, nous proposons un TMO
minimisant la distorsion du signal HDR sous une contrainte de débit total pour les deux
couches, tout en préservant une bonne qualité perceptuelle/artistique pour le contenu SDR.
Les modeles proposés pour la distorsion HDR et la qualit¢ SDR sont concus de fagon a
prendre en compte le débit des deux couches et sont ainsi plus optimaux que les méthodes
de I’état de I’art utilisant des simplifications ou hypotheses grossieres. Cette modélisation
précise nous permet de déterminer que minimiser la distorsion HDR dans un schéma de
compression a deux couches est équivalent a, premierement, une optimisation du TMO de
facon a minimiser la distorsion HDR dans un schéma de compression simple couche et,
deuxiemement, une étape d’allocation de débit pour trouver la répartition optimale entre
la couche de base et celle de raffinement. La premiere étape, 1’optimisation du TMO, est
résolue grace a une paramétrisation de la courbe de TMO par des courbes linéaires par
morceaux. Cette paramétrisation permet aussi de définir le TMO avec tres peu de para-
metres et ainsi de réduire la taille des métadonnées envoyées avec la couche de base. Les
résultats expérimentaux sont d’abord analysés apres la premiere étape d’optimisation dans
un contexte simple couche, puis, apres la seconde étape d’optimisation dans un contexte
double couche. Dans les deux cas, la solution proposée fournit le meilleur compromis
entre performances de compression et préservation de la qualité du signal SDR.

Chapitre 4 : Apres avoir démontré dans le chapitre 3 qu’optimiser un schéma de com-
pression double couche est équivalent a optimiser un schéma de compression simple
couche, puis a réaliser une optimisation de 1’allocation de débit entre les deux couches, le
chapitre 4 se concentre sur les schémas de compression simple couche. Comme pour le
chapitre précédent, nous essayons de minimiser la distorsion HDR sous une contrainte de
débit tout en préservant la qualité perceptuelle du contenu SDR. Cependant, nous conce-
vons aussi un TMO qui optimise uniquement les performances de compression. Dans
ce cas, le probleme de minimisation est tres similaire. Il suffit simplement d’enlever la
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contrainte sur la qualité perceptuelle SDR. La principale nouveauté de ce chapitre est la
proposition de nouveaux modeles améliorés pour la distorsion HDR, le débit SDR et la
qualité perceptuelle SDR. Plus précisement, les modeles de débit SDR et de distorsion
HDR sont basés sur le gradient de I’'image HDR. La précision supérieure de ces modeles,
par rapport a ceux de I’état de I’art, est démontrée sur plusieurs expériences. Les deux
mémes problemes d’optimisation que ceux traités dans le chapitre 3 sont traités grace
a une paramétrisation efficace en fonctions linéaires par morceaux. Les résultats expéri-
mentaux sont présentés pour les deux problemes de minimisation. Dans le premier cas, ol
I’on optimise uniquement les performances de compression, le TMO proposé fournit de
meilleures performances débit-distorsion que les méthodes de 1’état de I’art. Pour la se-
conde minimisation, avec la contrainte de qualité SDR, le TMO proposé fournit toujours
le meilleur compromis entre performances débit-distorsion et préservation de la qualité
du contenu SDR. Comme on pouvait le supposer, les performances débit-distorsion du
premier TMO sont toujours meilleures que celles du second TMO.

Chapitre 5 : Les problemes d’optimisation proposés dans les chapitres 3 et 4 sont
congus avec des statistiques d’image fixe et ainsi, les TMO obtenus sont testés sur des
images fixes. Il est facile d’étendre ces solutions a la vidéo en calculant un TMO pour
chaque image de la séquence vidéo. Cependant, tone mapper indépendamment chaque
frame d’une vidéo HDR peut entrainer d’importants changements temporels lumineux
dans la vidéo SDR. Cette particularité a certes un effet en terme de qualité perceptuelle
du contenu SDR, mais elle impacte également fortement les performances de compres-
sion, car elle pénalise 1’étape de prédiction de I’encodeur SDR. Dans ce chapitre, on se
concentre sur cet aspect temporel. Grace a un état de 1’art, nous concluons que la solution
optimale est de proposer un nouvel algorithme de Weighted Prediction (WP) et de nou-
velles fonctions de WP au sein de I’encodeur HEVC, pour prédire plus précisément les
variations lumineuses de la vidéo SDR. En effet, certaines solutions proposent d’adapter
directement le TMO pour réduire les variations lumineuses du contenu SDR mais cela
dégrade fortement sa cohérence temporelle. Le nouvel algorithme de WP est basé sur
une compensation de mouvement par flow optique pour faire correspondre les images
consécutives et ainsi identifier facilement les variations lumineuses. Pour compenser ces
variations, le standard HEVC est actuellement limité a une WP globale linéaire. Dans ce
chapitre, on introduit des fonctions non linéaires globales et locales paramétrisées avec
des courbes linéaires par morceaux. Ces nouvelles fonctions de WP permettent de réali-
ser une meilleure prédiction des variations lumineuses et grace a la paramétrisation, elles
ajoutent un faible exces de débit. La contribution de chaque nouveauté proposée est ana-
lysée indépendamment dans les résultats expérimentaux, mais nous étudions aussi une
mise en compétition entre les différentes fonctions de WP. Dans tous les cas, I’algorithme
proposé et les fonctions de WP améliorent les performances de compression.
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Preamble and Context

Video content distribution tends to become universal. Video diffusion, initially limited
to home television set, is now available for computer, tablets and smartphones. Broadcast
networks such as terrestrial transmission, cable, satellite, mobile phone and internet are all
exploited to transmit image and video content. All of these evolutions benefit the end-user
in terms of accessibility. However, the amount of transmitted data has grown enormously
over these last years, with the advent of platform such as YouTube or Netflix, and con-
tinues to grow. Despite improved broadcast capacities, this increasing amount of content
requires increasingly efficient compression methods.

In parallel with networks and devices evolutions, the quality and immersion require-
ments keep on increasing. Indeed, these last years, video resolutions went from Standard
Definition to High Definition (HD) and more recently to Ultra High Definition (UHD).
Each of these new resolutions increases the number of pixels per image and thus produces
sharper videos. The increasing resolution quality was simultaneously accompanied by the
evolution of other modalities such as Higher Frame Rate (HFR), where videos are dis-
played with an increased number of images per second, or the stereoscopy (3D), where
different images are addressed for each eye. The recent trend is now towards High Dy-
namic range (HDR) and Wide Color Gamut (WCG) imaging which respectively allow the
reproduction of much brighter and darker images with more saturated colors. All of these
evolutions benefit the end-user in terms of quality of experience and realism however, they
also increase the content size and therefore require increased processing and compression
capabilities.

The currently most efficient and latest released compression Standard, in 2013, is
HEVC/H.265. It was designed to replace the older compression standard AVC/H.264 by
improving the compression performances by two. However, as explained above and due
to the increasing requirement for more efficient compression standards, the standardiza-
tion effort is still pursued and a new one is currently under development: VVC/H.266. All
these standards are designed with the same principles to reduce the temporal and spatial
redundancies and they can easily be adapted to different resolutions or frame rates. How-
ever, for other modalities such as 3D or HDR, these standards are not directly adaptable
and dedicated tools are required. In this way, such content is, by default, not compatible
with standard legacy decoders and therefore with legacy displays.

On the other hand, backward compatible compression methods are especially designed
to address such specific problem. This compression type was first used for the transition
from black and white to color, such that colored compressed contents were decodable by

11
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legacy black and white televisions. A part of the signal is extracted to reconstruct a black
and white content. In the same way, specific compression schemes can also be used for
HDR content compression, or others modalities. HDR contents can then be decoded by
the new HDR decoders but also by legacy SDR (Standard Dynamic Range) ones.

Motivations

As introduced in the previous section, High Dynamic Range imaging allows the repro-
duction of much brighter and darker lights than Standard Dynamic Range imaging. The
amount of light is measured with Luminance unit in candela per square meter (cd.m 2
or nits), however, the dynamic range is measured with different units. In all cases, it is
characterized by the minimum L,,,;,, and maximum L,,,,, perceivable luminance values. It
can be described with contrast units (Laz/ Limin ), 10 f-stops (loga(Lmaz) — 10g2(Lmin)) OF
in orders of magnitude (log10(Lmaz) — [0g10(Lmin)). In the following, we mainly use the
orders of magnitude unit for sake of clarity.

The ultimate aim of HDR imaging is to capture and reproduce all the dynamic range
of the visible light perceivable by the human eye. As illustrated in Figure 2, this dynamic
range goes from 107° to 10® nits, thus providing 14 orders of luminance magnitude. How-
ever, the human is only able to perceive all this dynamic through several eye adaptation
mechanisms. Without these adaptations, the human eye can instantaneously perceive 5
orders of luminance magnitude, if it belongs to the luminance range [10~%; 108] nits.

Luminance Levels [cdlm2 or nits]
10° 108

_—ﬂ h -.I
Star light Moon light Indoor light Sun light Sun direct

I 1
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1 [ 1
I I

1 1
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Figure 2 — Light sources and associated luminance levels - Dynamic ranges of the human
eye, SDR displays and HDR displays

In contrast, as depicted in Figure 2, SDR capture devices and SDR displays can only
process 3 orders of luminance magnitude. It is possible to create HDR images using com-
puter graphics or SDR capture devices by combining multiple SDR images with different
camera exposures. However, to be displayed on SDR devices, these HDR images need to
be converted with specific algorithms called Tone Mapping Operator (TMO). Numerous
TMO have been developed these last years, with different purposes.
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More recently, several HDR displays were proposed, with a minimum of 5 orders of
luminance magnitude, to at least match the instantaneous human eye vision. Therefore,
they offer an enhanced viewing experience compared to SDR displays. HDR displays
also open the possibility to broadcast HDR content to the general public, if the problem of
HDR content compression is solved. Indeed, HDR raw data are represented with floating
point numbers and therefore they use 4 times more space than uncompressed SDR data.

To address the compression problem of HDR content, an MPEG normalization group
was created. Several solutions were proposed and the selected one consists in using pre
or post processing associated with legacy SDR compression standard such as HEVC.
This solution proposes good compression performances and can address the new HDR
displays. However, the majority of consumers are currently equipped with SDR displays
that cannot handle HDR compressed content. Consumers will slowly renew their display
to an HDR one and it is therefore of great importance to deliver an HDR signal that can
be decoded by both SDR and HDR displays.

The most simple way to address both HDR and SDR displays with the same HDR con-
tent would be to create the SDR content with a TMO then send each content with separate
bitstreams. This solution called simulcast is clearly not optimal in terms of compression
performances since redundant information is sent in both bitstreams. As introduced in the
previous section, a better alternative is to use backward compatible or scalable compres-
sion, which encodes an HDR content into a single bitstream that can be decoded by both
SDR and HDR displays. To do so, the HDR input is first tone mapped into an SDR version
which is encoded with a legacy codec such as HEVC and sent along with metadata. This
signal can be decoded with legacy SDR display or it can be inverse tone mapped to yield
an HDR reconstructed content. One can also send an enhancement layer containing the
HDR residue to improve the reconstruction of the HDR content.

Objectives

The aim of this thesis is to propose new solutions for improving the backward com-
patible HDR compression. As explained in the previous section, the TMO is an essential
component for backward compatibility, however it can be designed for different purposes.
At first, TMO were mostly designed to preserve the HDR artistic intent in the resulting
SDR content. Many TMOs have been developed for this purpose but in the context of
compression, TMOs can also be designed to optimize the compression performances.
Some might argue that optimizing the TMO only for compression purposes may yield
SDR content which does not preserve the artistic intent of the HDR content. Therefore, it
might be interesting to trade off between compression performance of the HDR content
and perceptual quality of the SDR one.

The contributions in this thesis mainly address these two last use cases. They use
different compression scheme configurations and propose new solutions to answer these
challenges. First, we considered dual-layer compression schemes where both a base SDR
layer and a residual layer are sent. In a second contribution, we studied compression
schemes using only the base layer. And finally, we focused on the specific aspects of
video compression. Indeed, problems not present in still image compression arise when
we tone mapped videos.
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Thesis structure

This manuscript can be divided in two main parts. The first one deals with the state
of the art in HDR imaging in Chapter 1 and video compression in Chapter 2, while the
second part gathers our contributions in Chapters 3, 4 and 5. A brief overview of each
chapter is outlined below.

Chapter 1 : This chapter provides background information and describes the basic con-
cepts to understand HDR imaging. First, we review the science of measuring light with
radiometry and photometry, then the science of measuring color with colorimetry and
color spaces. Thanks to these fundamentals, we present the different methods to create
HDR content. They can be classified in two main groups: generation with computer graph-
ics or acquisition using several techniques. These HDR contents are usually represented
with floating point values and then stored with dedicated image formats for more efficient
storage. Several formats were proposed in the literature and are described in this chap-
ter. Finally, we present the different ways to display these HDR contents. They can be
displayed on SDR devices using TMO or on newly introduced HDR devices based on
different technological innovations.

Chapter 2 : While the HDR image formats presented in the previous chapter success-
fully reduce the representation size of HDR content, they are not sufficient for broadcast
applications. Content compression is required to drastically reduce its size and fit the ca-
pacity of distribution networks. In this chapter, we start by reviewing the main concepts
of SDR image/video compression. It consists in removing the redundant and impercep-
tible information of the content through prediction, transform, quantization and entropy
coding. Then, we further detail the most recent compression standard HEVC/H.265 with
an overview of its main tools. All these SDR compression standards can be used for HDR
compression with adapted pre and post processing. HDR only and backward compatible
compression methods are further explained in this chapter.

Due to the additional quantization step, compression can generate visible artifacts on
the decoded content. The less a compression standard or algorithm introduces artifacts,
the more it is efficient. Therefore, to compare algorithms/standards between each other, a
quality evaluation is required. This chapter presents several SDR and HDR metrics used
to efficiently perform the quality evaluation.

Chapter 3 : In this first chapter of contribution, we study a backward compatible com-
pression scheme where both a base and an enhancement layer are sent to reconstruct the
HDR content. This compression scheme is designed in a specific way to improve the
compression of the enhancement layer. Indeed, this subject is not often discussed in the
literature, especially with classical TMOs intended for artistic purposes. In a second time,
we propose a TMO minimizing the HDR distortion under a total rate constraint for both
layers while preserving a good artistic/perceptual quality for the SDR content. The pro-
posed models for the HDR distortion and the SDR quality are designed to account for
both layer rates and therefore are more optimal than the state of the art ones using addi-
tional assumptions or simplifications. This precise modelization allows us to determine
that minimizing the HDR distortion in a dual layer compression scheme is equivalent
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to, first, a TMO optimization minimizing the HDR distortion in a single layer compres-
sion scheme and, secondly, a rate allocation step to find the optimal repartition between
the base and enhancement layers. The first step, the TMO optimization is successfully
solved thanks to a parameterization of the TMO curve by a piecewise linear function.
This parameterization also allows to defines the TMO with few parameters and therefore
allows to reduce the size of the metadata sent with the base layer. Experimental results
are analyzed after the first optimization step in a single layer context and after the second
optimization in a dual layer context. In both cases, the proposed solution provides the best
trade-off between compression performances and quality preservation of the SDR content.

Chapter 4 : Since we demonstrated in Chapter 3 that optimizing a dual layer compression
scheme is equivalent to optimize a single layer compression scheme with a rate allocation
optimization step, Chapter 4 focus on single layer compression schemes. As for the pre-
vious chapter, we attempt to minimize the HDR distortion under a rate constraint while
preserving the SDR perceptual quality. However, we also design a TMO only for com-
pression performances. In this case, the minimization problem is very similar. It simply
consists to remove the constraint on the SDR perceptual quality. The main novelty of this
chapter is the proposal of improved models for the HDR distortion, the SDR rate, and
the SDR perceptual quality. Especially for the SDR rate and the HDR distortion since
these models are based on the gradient of the HDR image. Their superior reliability, than
state of the art methods, to the real data is well demonstrated with several experiments.
As for Chapter 3, the two optimization problems are solved thanks to the efficient pa-
rameterization in piecewise linear functions. Experimental results are presented for the
two minimization problems. In the first case, where we only optimize the compression
performances, the proposed TMO provides the optimal rate distortion performances in
comparison with state of the art methods. For the second minimization, with the SDR
quality constraint, the proposed TMO always provides the best tradeoff between rate dis-
tortion performances and quality preservation of the SDR content. As easily deductible,
the rate distortion performances of the first TMO always outperforms the rate distortion
performances of the second TMO.

Chapter S : The optimization problems proposed in Chapter 3 and 4 are computed with
still image statistics and therefore the obtained TMOs are tested on still images. These
solutions are easily extendable to video by computing a TMO for each frame of the video
sequence. However, tone mapped each frame of an HDR video independently can result
in important temporal brightness variations in the SDR video. This particularity can be
discussed in terms of perceptual quality of the SDR content, however it is not optimal
for the compression performances since it penalize the prediction step of the encoder. In
chapter 5, we focus on this temporal aspect. Based on the literature, we conclude that
the optimal solution is to propose a new Weighted Prediction (WP) algorithm and new
WP functions inside the HEVC encoder to more accurately predict the SDR brightness
variations. Indeed some solutions proposed to adapt the TMO to reduce the brightness
variations in the SDR content, however they strongly degrade its temporal coherency. The
new Weighted Prediction algorithm is based on an optical flow motion compensation to
accurately match the consecutive frames and so easily identify the brightness variations.
To compensate these variations, the HEVC standard is currently limited to a global linear
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WP. In this chapter, we introduce global and local non linear functions parameterized
with piecewise linear curves. These new WP functions allows for a finer prediction of the
brightness variations and thanks to the parameterisation they results in a small rate excess.
The contribution of each proposed novelty is analyzed independently in the experimental
results but we also study a competition between the different WP functions. In all cases,
the proposed WP algorithm and functions improves the compression performances.



Chapter 1

High Dynamic Range Imaging
Overview

This chapter provides background information on High Dynamic Range (HDR) and
forms the basis of following chapters. It describes the fundamentals concepts to under-
stand HDR imaging.

The main aspect of HDR is to process a much larger scale of luminance than Stan-
dard Dynamic Range (SDR). Improving the dynamic range consists to increase the range
between the minimum and maximum luminance values. Indeed, SDR displays only re-
produce 3 orders of luminance magnitude (10%) although the average human eye can in-
stantaneously see around 5 orders of luminance magnitude (10°) and even more using the
pupil adaptation, around (10'4) [BADC17]. Thus, HDR imaging allows to better represent
the wide luminance range of real-world scenes.

The HDR pipeline is described Fig 1.1 and exhibits the many challenges of HDR
imaging [Man06]. The aim is to acquire, store and reproduce all physical values of light
[RWP*10, MR11]. Indeed, the field of HDR imaging encompasses various fields related
to light such as radiometry, photometry or colorimetry [RWP™10]. Each of them deals
with a specific aspect of light or its perception by the average human eye [RKAJ08]. In
Section 1.1, we present the fundamental aspects of light and color and explain how the
physical values are related to the digital ones.

Concerning the acquisition, there are two main ways to produce HDR contents. It
is either created by computer-generated imagery (CGI) or captured with HDR cameras
or complex set of legacy SDR cameras. In practice, capturing the perceivable wide lumi-
nance range of real-world scenes (14 orders of luminance magnitude) faces some technical
limitations. These aspects are further detailed in Section 1.2.

Most legacy SDR image representations generally use 3 components with 8 bits inte-
ger value to represent a pixel. For HDR imaging, this 8 bits-per-component representation
is deprecated and the physical light values can be stored using a floating-point representa-
tion with up to 32 bits per component [RWP™ 10]. For efficient storage and manipulation,
several HDR image formats have been proposed in the literature. They are described in
Section 1.3.

These HDR image formats can reduce the representation of HDR contents to 10 bits-
per-component, however this reduction is not enough and incompatible with efficient dis-
tribution or storage. Contents still need to be more efficiently compressed. To do so, you
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Figure 1.1 — High Dynamic Range (HDR) pipeline

can either use legacy SDR codecs with adequate pre and post processing or you can use
scalable approaches. Indeed, scalable solutions allow backward compatibility with legacy
SDR displays. This approach is the main topic of this thesis and for this reason the differ-
ent methods to compress HDR contents are thoroughly described in Chapter 2.

HDR displays aim at representing all the perceivable luminance range (14 orders of
luminance magnitude) although current technical limitations prevent it. Instead HDR dis-
plays aim at providing a dynamic at least as good as the instantaneous human eye vision
(5 orders of luminance magnitude). The different displays technologies achieving this lu-
minance range are described in Section 1.4. However, HDR displays are relatively recent
compared to the field of HDR imaging. For a long time, the display of HDR contents was
made on legacy SDR displays through algorithms called Tone Mapping Operator (TMO)
[RWPT10]. These algorithms allow a compatibility between HDR contents and SDR dis-
plays. For this reason, Section 1.4 also describes these TMOs.

Finally, the quality of the displayed content can be assessed using several new HDR er-
ror metrics. However, these metrics mostly measure the error introduced by the compres-
sion algorithms. Therefore, the HDR metrics are described with the compression methods
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in Chapter 2.

1.1 Light and Color - Fundamentals

1.1.1 Light - Radiometry

The field of Radiometry consists in measuring electromagnetic radiations. Electro-
magnetic radiations consist of different electromagnetic waves propagating through space
and time carrying some energy, called radiant energy. They are released in the space by
stars such as the Sun. Electromagnetic radiations takes many forms and are characterized
by their wavelength as described in Figure 1.2. Examples of these radiations, ordered by
increasing wavelength are: Gamma-rays, X-rays, UltraViolet (UV) rays, Light or Visible
Light, InfraRed (IR), Microwaves and Radio waves. We refer as light, the electromag-

Wavelength (meters)
10-11 10-% 107 10-¢ 103 10° 10°

Visible Light

UltraViolet
(uv)

Infrared
(IR)

400nm 500nm 600nm 700nm

Figure 1.2 — Electromagnetic Spectrum and Visible Light Spectrum (wavelengths going
from 380nm to 780nm)

netic radiations capable of producing a visual sensation for the human eye. Indeed, IR,
UV rays or others are not visible. The wavelength of visible light approximately ranges
from 380nm (nanometer) to 780nm [RKAJOS8].

Electromagnetic radiations or radiant energy, and therefore light, is measured in Joule
(J) in the International System of Units (SI). In real-world scenes, light propagates through
different environments (space, air, water, ...) and interacts with different materials that
either absorb, refract, reflect or transmit the light [BADC17]. To measure how light or
radiant energy propagates, the "Commission Internationale de I’Eclairage" (CIE - Inter-
national Commission of Lighting) standardized different quantities measuring radiant en-
ergy integrated over time, space, or angle. There are many of these quantities but the
main ones are the Radiant Intensity and the Radiance. The Radiant Intensity measures the
amount of light coming from different directions and converging on the same infinites-
imal small point. It measures light per amount of time and per unit of direction, and is
expressed in Watts per steradian (W.sr~!). The Radiance measures the amount of light
emitted/received on a point in a specific direction. It measures light per amount of time,
per unit of area and per unit of direction, and is expressed in Watts per square meter per
steradian (W.m~2.sr™1).



20 Chap 1 - HDR Imaging Overview

1.1.2 Human Vision - Photometry

While Radiometry measures physical absolute values, Photometry measures how light
interact with the human visual system (HVS), or basically, the human eye. Thus, Photom-
etry only focuses on electromagnetic radiations with wavelengths going from 380nm to
780nm (Figure 1.2).

The retina of the average human eye contains approximately 100 million light sensi-
tive cells, named photoreceptors and divided in two types: the rods (around 90 million)
and the cones (around 6 million) [BADCI17]. The rods are the most light sensitive cells
and therefore responsible for vision under low light conditions. They do not differentiate
colors, which is why we are unable to distinguish colors at night. The cones require more
light to be activated. They are responsible for color vision under normal to bright light
conditions [BPNS15]. Human eye vision under low light conditions, using only the rods,

- -
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Figure 1.3 — Vision regimes and photoreceptor activation levels

is called the scotopic vision regime, while under normal-bright conditions, using only the
cones, is called photopic vision regime. Between low light and normal light conditions,
both cones and rods are active. The vision under these conditions is called the mesopic
vision regime. Figure 1.3 illustrates these different vision regimes.

Within the visible light spectrum, these photoreceptors are not equally sensitive to all
wavelengths. Stimuli with different spectral distributions but with the same radiance level
provide different perception levels of brightness. This relative response of photoreceptors
differs depending on their type (rod or cone). Figure 1.4 shows these relative responses
called luminous efficiency functions or luminosity functions. V' (), the photopic lumi-
nosity function, was established in 1924 by the CIE and V’(\), the scotopic luminosity
function, adopted by the CIE in 1951 [Poy12].

These functions are used to weight the previously defined quantities Radiant Intensity
and Radiance into Luminous Intensity and, the widely used, Luminance. We do not mea-
sure a radiant power in Watts anymore but a photometrically weighted radiant power, or
luminous power, in Lumens. Therefore, the Luminous Intensity is expressed in Lumen per
steradian (Im.sr~1), also named candela (cd), and the Luminance is expressed in candela
per square meter (cd.m~?), also named nits. Luminance is the most used photometric unit
in HDR imaging since it is related to the human eye perception of brightness. Figure 1.3
illustrates the luminance levels of photoreceptors activation.
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Figure 1.4 — Luminous efficiency functions

1.1.3 Luminance Perception Models

As stated in the introduction, the HVS is able to handle a huge range of luminance
values, around 14 orders of magnitude from 1079 to 108 nits [BADC17]. Instantaneously,
this range is reduced but still contains 4 to 5 orders of luminance magnitude [RWP' 10,
BADCI17]. Section 1.1.2 described the response of the HVS to stimuli with different spec-
tral distributions. In this section, we will now describe the HVS adaptation depending on
the luminance level. While spectral sensitivity is only due to photoreceptor mechanisms,
the HVS luminance adaptation is multifactorial (pupils dilation and contraction, rods and
cones system, photoreceptor mechanisms and photo-chemical reactions). This thesis does
not focus on every factor but rather on their common adaptation.

1.1.3.1 Intensity-based models

The human senses (vision, hearing, smell, ...) do not perceive linearly the intensity
variations of a stimulus. Adding a 1 kg mass to a 1 kg package or to a 10 kg package does
not give the same sensation of mass variation. This observation was made by Weber in
1834 and generalized by Fechner in 1860 [Fec60]. Indeed, the same observation applies
to brightness sensation, the perception of luminance is not linearly linked to the luminance
intensity (in nits). If we define the intensity / of a luminous stimuli and P(/) the HVS
perceived intensity, the Weber-Fechner law states that the differential change in perceived
intensity A p(;) between two luminous stimuli depends on their intensity / [Hec24], more
precisely:

Af

Apgy = k. (1.1)

where A; is the difference in intensity that generates a Just Noticeable Difference (JND)
between the two stimuli and k a constant. The ratio A;/1 is called the contrast ' threshold
or Weber ratio/fraction and is assumed constant for any value of / (approximately 1%
[RWPT10]). Integrating equation (1.1):

I

P(I) = k.In(I)+C = k.ln([—o) (1.2)

1. The term contrast is ambiguous, it can define the difference in intensity A or the ratio Ay /T
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where C' is the constant of integration and I, the threshold intensity such that there is
no perception, P(Iy) = 0. Equation (1.2) shows that the perceived luminous intensity is
proportional to the logarithm of luminance intensity. This claim is still popular in HDR
image/video processing. For example, many early HDR image formats are based on a
logarithmic transformation (See Sec.1.3.2). However, Threshold vs. Intensity (TVI) ex-
periments, detailed below, show that this law is only representative of the HVS for high
luminance intensities (Photopic regime).

The TVI experiments consist in measuring the contrast threshold A;/I for differ-
ent luminance intensities using multiple observers. To do so, two adjacent patches with
intensity / and I + A; are projected on a uniform background. The JND in intensity cor-
responds to the smallest A; value providing a visible difference between the two patches.
The contrast threshold A; /1 is then plotted as a function of the intensity / thus providing
a TVI function. Multiple TVI functions have been proposed [BB71, Bod73, FPSPS96],
but the most popular one for SDR imaging is the power law.

Back in 1963, [SS63] shows that the Weber-Fechner law does not fit the experimental
data and that a power law function (with exponent ranging from 1/3 to 1/2) is a better
approximation. However, the power law is only representative of the HVS for normal lu-
minance intensities (mesopic regime - from 1 to 400 nits [Man06]). Actually, it covers the
luminance range of many SDR displays. This is one of the reasons why power law func-
tions are preferred in SDR video compression. This aspect is further detailed in Section
1.3.

All these TVI functions do not take into account a feature of the HVS that is spatial
frequency sensitivity, as explained in the following section.

1.1.3.2 Intensity and Spatial Frequency based models

The HVS sensitivity to contrast not only depends on intensity but also changes with the
spatial frequency. The JND will differ depending on the pattern used for the test. In TVI
experiments, the pattern only consists in two adjacent patches, but in Constrast Sensivity
Function (CSF) experiments the pattern used is sinusoidal, like in [VV72, Dal93, Bar99].
This pattern is illustrated in Figure 1.5(a). The contrast is constant along the horizontal
axis, only the spatial frequency increases. If the HVS was not sensible to spatial frequency,
the sensitivity curve should be a straight horizontal line. Figure 1.5(b) plots the sensitivity
curves for different background luminance levels. The higher the luminance level, the
higher the sensitivity to the frequency, even though a maximum seems to be reached at
1000 nits. A TVI function can be derived from the CSF by selecting one spatial frequency
or, to have the highest sensitivities, by selecting the peaks of each CSF.

The luminance without TVI correction is usually refereed to as linear-light luminance.
For TVI corrected luminance, several terms are used like uniform luminance, perceptually
uniform luminance or brightness.

1.1.4 Colorimetry - Chromaticity

The field of colorimetry measures color and color appearances. It consists in providing
physical values to colors perceived by the HVS. Under normal to bright light conditions,
only cones are activated. The human eye has three types of cone cells, this is referred to
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Figure 1.5 — Contrast Sensitivity Function - (a) Sinusoidal pattern - (b) Contrast sensitiv-
ity curves for different luminance adaptation levels

as trichromatic vision. Each cone type has different wavelength sensibilities, as illustrated
in Figure 1.6, and their weighted combination allows the brain to interpret colors. The
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Figure 1.6 — Relative response of L, M and S cone cells to the different wavelengths

different types of cones are named as follows: S-Cones (Short wavelengths) with a peak
sensitivity around 440nm, M-Cones (Medium wavelengths) with a peak sensivity around
545nm, and L-Cones (Long wavelengths) with a peak sensivity around 580nm [HunO5].
As an example, blue color is perceived by the human eye when the S cones are signifi-
cantly more stimulated than the M or L cones. In the same way, yellow is perceived when
L cones are stimulated slightly more than M cones and much more than the S cones.
Under low light conditions, rod cells are activated. The fact that we have only one
type of rod cells prevents us to distinguish colors in the scotopic vision regime and thus
explains our monochrome vision in low light conditions. Note that the function V'()) in
Figure 1.4 represents the common response of the three L, M and S cone cells and that the
response of the rod cells is in fact V' () since we only have one type of rod [Fai05]. It was
very difficult to obtain the individual response of each type of cone since their wavelength
sensibilites overlap a lot, as illustrated in Figure 1.6. Therefore it is impossible to stimulate
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only one type of cone cell [RKAJO8]. For these reasons, the sensitivity of each cone type
was measured rather recently.

1.1.4.1 The CIE 1931 Color Spaces

The best way to describe the color perceived by the HVS is to use a color space. A
color space is a defined range of colors were each color is described using, generally 2,
three code values called components (or channels). Each of these values represents an
amount of a specific color, called primary color. The use of three components is consis-
tent with the physiology of the human eye (three types of cones) but it is based on exper-
imental facts [Hun05]. Indeed, since the cones sensitivity was unknown, color matching
experiments were made and they showed that almost each color C' may be reproduced
using an additive weighted combination of three monochromatic primaries R, § and B
[FaiOS5]:

C=RR+GSG+B3B (1.3)

The values R, G and B represent the components of the color C' in the color space de-
fined with the primaries R, § and B. Thus, each color is defined in a color space with a
tristimulus value.

In 1931, the CIE standardized a set of primaries R (Red 700 nm), G (Green 546.1 nm)
and B (Blue 435.6 nm) [SG31]. Using these primaries, it is possible to represent almost
all colors of the visible light spectrum (See Fig.1.2). Figure 1.7(a) illustrates the set of
tristimulus values needed to reproduce the monochromatic color at each wavelength .
The contribution of each primary for the entire spectrum is represented by the functions
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Figure 1.7 — CIE 1931 Standard - (a) RGB color matching functions - (b) XYZ color
matching functions

7, g and b, also known as color matching functions. Using these functions, the tristimulus
value of a spectral stimulus C'y can be computed with the following equations:

R:/C’A.r()\)d)\ G:/C’A.g()\)d)\ B:/CA.b()\)d)\ (1.4)
A A A

2. Some color spaces use 4 and more components. For example, the CMYK color space, popular for
printers, uses 4 components.
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However, Figure 1.7(a) shows that, sometimes, a negative amount of primary is re-
quired to represent some colors. Motivated by the impracticality of negative amount of
primary, the CIE standardized, also in 1931, the X, Y and Z primaries. The CIE 1931
XYZ alternative color matching functions z, 4 and Zz are represented in Figure 1.7(b).
These functions show that all colors of the visible light spectrum can be represented using
positive amounts of primary. Another property of this color space is that the function 7(\)
was designed to match the photopic luminosity function V' () presented in Figure 1.4. In
this way, the Y component of any color provides its luminance value. The only way to do
so was to use imaginary primaries [RWP*10].

1.1.4.2 The CIE 1931 Chromacity Diagram

The CIE 1931 XYZ color space uses a 3-dimensional (3D) representation of colors.
For convenient representation, the CIE also standardized a practical 2D representation of
colors called the CIE Chromaticity Diagram. This is achieved by removing the luminance
information in colors, thus providing the chromaticity coordinates z, y and z defined by:

X Y Z

- - -~ 15
TTXtv+z YTX¥Y+zZ T X+vY+1z (1.5

Mathematically, this is a projection of the point M(X,Y,Z) on M(x,y, z) belonging
to the plane of equation x+y+z=1. Note that z is usually ignored since it can be easily
calculated with the two ohter coordinates: z = 1 — x — y. The luminance Y and the two
chromaticity coordinates x and y form the CIE xyY colorspace. These two coordinates
provide the chromaticity diagram plotted in Fig 1.8, it represents all colors perceivable
by the human eye. The points outside the colored shape are imaginary due to the use of
imaginary primaries (See Sec.1.1.4.1). All of the monochromatic colors from the visible
light spectrum are represented on the curved side of the colored shape.
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Figure 1.8 — CIE 1931 chromacity diagram - Note that colors near the edges cannot be
represented on classical displays
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Although the CIE 1931 color spaces were standardized long time ago, they are still
widely used even though many color spaces emerged later. They usually serve as a refer-
ence for color space conversions.

1.1.5 Color Spaces

In the previous section, we described the techniques to create color spaces using col-
orimetry. There are a large number of color spaces, each with a specific purpose. The
RGB color spaces are usually associated with displays because of the technique they used
to reproduce colors, similarly the CMYK color space is used for printers as it mimics
the way impression is performed. The CIELAB and CIELUV color spaces allow a more
perceptually uniform representation of colors and luminance. In this section, we describe
some color spaces and their interest for image/video compression.

Color spaces can be classified in two groups: device dependent and device indepen-
dent. A large majority of capture and display devices have their own color space which is
a subspace of the diagram of Figure 1.8. However, this subspace is not exactly the same
for all devices, explaining why there are called device-dependent. The problem with such
color spaces is that the captured/reproduced colors will be different for each device. Con-
versely, device-independent color spaces do not depend on the characteristics of a specific
device. Therefore, these color spaces are considered more accurate for color representa-
tion, however there primaries are usually not reproducible by any devices. The CIE XYZ
color space is a perfect example of device-independent color space.

1.1.5.1 RGB Color Spaces

There are many RGB color spaces in addition to the CIE 1931 RGB color space.
Indeed, the CIE RGB primaries were not reproducible due to technological limitations
of the capture and display devices. For these reasons, several RGB color spaces were
defined. The RGB system is very common and is used in almost every computer screen
and TV. Any RGB color space is defined by three additive primaries: one located in the
Red area, one in the Green area and one in the Blue area (see Fig.1.8). A fourth additional
point, called the white point, is also added. It is the color represented when each RGB
component is at its maximum (R=G=B=1). The three primaries define a triangle on the
CIE chromacity diagram, as illustrated on Figure 1.9. This triangle is called the color
gamut and it represents all the reproducible colors by additive combination of the three
primaries. Thus, RGB color spaces do not represent all colors but only a subset of the
chromacity diagram.

For explanation purposes, we focus only on the most common RGB color space,
named sRGB. This color space is used in many devices and is one of the most popular for
SDR imaging [SACM96]. Its gamut is represented on Figure 1.9 and is defined with the
three following primaries and their chromaticity coordinates R (xp = 0.64, yg = 0, 33),
G (xrg = 0.3, yg = 0.6), B (xp = 0.15, yg = 0.06). All colors outside this gamut can
not be captured/displayed with SRGB devices. The white point used in the sSRGB color
space is the CIE standard illuminant D65 white point (zy = 0.3127, yyr = 0.329). Itis a
commonly used white point standardized by the CIE representing the average daylight.

A linear relationship exists between the XYZ and RGB color spaces. Indeed, any
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Figure 1.9 — sSRGB color gamut and D65 white point

tristimulus color space can be converted to another tristimulus color space using a 3X3
transform matrix. It is defined with the three primaries and the white point coordinates as
following [RGB93]:

X IR Tg Ip CR 0 0 R
Y| =|yr Yo yp| |0 Cc 0] |G (1.6)
7 ZR RG <B 0 0 OB B

with z; = 1 — z; — y;, as explained in (1.5), and where Cg, C' and C'g are computed such
that the white point (x,,, ¥,,) and the maximum luminance value (Y = 1) are associated
to the RGB coordinate (1,1, 1):

-1
Cr TR To Tm T/ Y
Ce| = |yr Yo ¥B . 1 (1.7)
CG ZR RG <B Zw/yw

In the sSRGB color space case, we obtain the following matrices:

[0.4124 0.3576 0.1805 R
= 10.2126 0.7152 0.0722| - |G (1.8)
10.0193  0.1192 0.9505 B

[ 3.2405 —1.5371 —0.4985 X
=|1-0.9693 1.8760 0.0416 | - |Y (1.9)
| 0.0556 —0.2040 1.0572 Z

Note that the luminance Y is reproduced with a larger amount of green than red or blue.
Indeed, Figure 1.7 shows that the spectral distribution for the luminance ¥ looks a lot more
like the green spectral distribution g, therefore the luminance depends more on the green
primary.

More recent RGB primaries have been defined for HDR imaging. These primaries and
their color gamuts are described in Section 1.3.
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1.1.5.2 Color Opponent Spaces

Despite the fact that RGB is preferred for capture and display devices, these color
spaces are rarely used for image/video compression. One issue of this color space is the
high correlation between R, G and B values. For natural images, if a pixel has a large
value for one component, there is a high probability that the other two components have
a large value. This means that the three components have a lot of redundant information.

XYZ or zyY color spaces seems more appropriate for compression since they decorre-
late luminance and chrominance information but these color spaces also are inappropriate.
Indeed, in the XYZ chromaticity diagram the colors are not uniformly distributed. Two
equidistant colors in the green area or in the blue area will not be discriminated in the
same way, the differences are going up to 80:1 [Poyl12]. This aspect is well described
with the MacAdam ellipses [Mac42]. For compression, perceptually uniform representa-
tions are usually preferred. With such representations, two equidistant colors in any area
of the diagram will provide the same visual difference.

There is a lot of evidence that the LMS cone responses also carry a lot of redundant
information, as in the RGB color space [Man06]. Thus, to reduce the amount of informa-
tion transmitted to the brain, the HVS decorrelates the color information in two opponent
channels: a red-green one and a blue-yellow one. This property of the HVS allows us
to perceive color mixtures from these two channels like red-yellow (orange) or red-blue
(purple) but not mixtures of red-green or blue-yellow [Wan95]. Several color spaces are
based on this opponent property and proposed as an alternative to RGB and XYZ color
spaces: CIELAB, CIELUYV, IPT or Y’CbCer.

In 1976, the CIE standardized two new color spaces: the CIELAB [LAB76] or L*a*b*
and the CIELUV [LUV76] or L*u*v* after successive improvements. Each one has small
advantages over the other one but both of them reduce the non-uniform color distribution
of XYZ from 80:1 to approximately 6:1 [Poy12]. However, these color spaces still provide
some non-uniformity, which is why the most recent IPT color space [EF98] was devel-
oped. It is inspired from the HVS since IPT consists in an intensity channel I, a red-green
channel P and a blue-yellow channel T directly derived from the LMS primaries (Figure
1.6). These three color spaces are appreciated for their perceptually uniform distribution
of colors. However, among all color opponent spaces, the Y’CbCr one is always pre-
ferred for real-time compression or display (RGB conversion). The Y’ CbCr color space
is the less computationally expensive and therefore usually recommended in television
standards [Poy12].

1.1.5.3 Y’CbCr Color Space

The Y’CbCr color space is different from the previous color opponent spaces. It is
directly derived from RGB color spaces and so, it does not contain all the color of the
chromacity diagram but only a subset of color defined by the RBG primaries (see Fig.1.9).
The Y’CbCer is the standard color space used in television ITU-R Recommendations. This
color space has the advantage of providing backward compatibility with old black and
white television and it allows a simple transition between capture and display devices.
Indeed, this color space is made up of simple operations. First, a TVI function is applied
to each RGB components to account for the perceptual non uniformity of color and lumi-
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nance, as described in Section 1.1.3:
R = TVIR) G = TVI(G) B = TVI(B) (1.10)

The brightness information Y’ is then computed with a weighted combination of R’, G’
and B’ components. Similarly, the color difference components Cb and Cr that are com-
puted using a weighted subtraction:

Y' = kr.R + kq.G' + kg.B’
1
Cch=—— (B -Y @] 1.11
S )+ (111
1

= A )

-(R=Y')+0

where O is an offset value depending on the range of component values (O = 0.5 for
values between [0, 1]) and with kg, kg and kp values depending on the ITU-R Recom-
mendations. This color space is widely used for SDR and HDR compression but not with
the same TVI functions or k values. Some examples are provided in Section 1.3.3.3.
This approach allows to easily reconstruct the R’G’B’ components at the display side, us-
ing simple weighted additions and subtractions. The prime symbol in Y’ is here to avoid
confusion with the "true luminance" Y (see Eq(1.8)). Y is obtained according to a pro-
cess called constant luminance whereas Y’ is obtained according to a process called non-
constant luminance [Poy12]. Indeed, Y is directly computed with the linear-light RGB
components (1.8), then transformed with a TVI function. For Y’, the TVI is directly ap-
plied to the RGB components. In this way, some luminance information remain in the Cb
and Cr components. Constant and non-constant luminance is further explained in Section
1.3.1.2. For this reason, the component Y’ is called "luma" (Frequently called luminance,
wrongly) and the color components Cb and Cr are called Chroma.

The term YUV is widely used in video compression to describe the Y’ CbCr color
space. Rigorously, the terms YUV and Y’ UV were used for analog encoding in television
systems, while Y’CbCr is used for digital encoding [Poy12]. Note also that the U and V
components in YUV are not related to the CIELUV components.

1.1.5.4 Chrominance Subsampling

CIELAB, CIELUYV, IPT and Y ’CbCr consist in a luminance channel and two chromi-
nance ones (Chroma for Y’CbCr). This particularity allows to take advantage of another
HVS property which is its low chromatic sensitivity. The human eye perceives more
spatial details with brightness discrimination than with color discrimination [vdBLO1].
Therefore, the spatial resolution of chrominance channels can be reduced along with the
carried amount of information. This is very useful in image/video storing/compression
were several types of subsampling exist.

Considering a reference block with 2 lines, the subsampling types are described as a
three parts ratio: J:A:B. With J the number of luminance pixels by line in the reference
block, usually 4. With A, the number of chrominance pixels in the first line and B the
number of chrominance pixels in the second line. The most common formats are the
following ones:
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— 4:4:4 format: No subsampling is applied. All pixels are kept in each component.

— 4:2:2 format: An horizontal subsampling of factor 2 is applied, 2 chrominance
pixels are kept in each line.

— 4:2:0 format: An horizontal and vertical subsampling of factor of 2 are applied, 2
chrominance pixels are kept only in the first line

— 4:1:1 format: An horizontal subsampling of factor 4 is applied, 1 chrominance
pixel is kept in each line.

— 4:0:0 format: The chrominance components are discarded.

1.2 HDR Content Acquisition

The first step in the HDR pipeline (Fig.1.1) is to create the content. The acquisition
of SDR content is rather limited in terms of luminance range due to legacy capture and
display technologies. These devices only capture a limited dynamic range and limited
color gamut in a scene and therefore lead to several artifacts such as underexposure, over-
exposure, color saturation, ... Furthermore, SDR images are represented with a limited
number of values, so potentially with high contrast steps which results in quantization
artifacts. The ultimate HDR acquisition goal is to generate/capture all the luminance and
color information of a scene. In this way, we can obtain a physical description of the scene
and, despite HDR display limitations, HDR imaging can benefit from such information.
Indeed, several HDR applications like tone mapping or color processing are easier when
all the scene information are known.

This section describes different techniques for the creation of HDR contents. The first
method to create HDR contents is to generate them using computer graphics imaging
(CGI) techniques. This method is still widely used in animation or video games and the
CGI techniques keep evolving. The second method consists in capturing the wide lu-
minance range of real-world scenes. Due to limitations of SDR capture devices, several
bracketing algorithms were proposed to overcome these limitations and to build HDR
contents using SDR devices. More recently, HDR cameras were introduced. They allow
native HDR capture and remove the defects of the previous algorithms. Another method to
create HDR contents is to generate it by expanding legacy SDR contents. This method has
inevitable flaws and is usually described as a post-processing algorithm for HDR displays,
for these reasons, we describe it in Section 1.4.3.

1.2.1 Computer Graphics Contents

The field of CGI consists in rendering images/videos from a virtual camera looking
at a 3D virtual scene. This virtual scene is usually composed of different light sources,
different reflecting materials and objects of different shapes. Thus, the virtual scene can
simulate many light effects such as reflections, indirect lightning, shadows or even refrac-
tions. Based on such simulations, it is possible to compute the contribution of all these
effects for each pixel of a rendered image.

The rendering of 3D imagery with computer graphics is an old and well studied sub-
ject but still evolving. In the mid-eighties, the rendering of 3D imagery was improved
by combining realistic models with physically-based lighting simulation [PJH16]. This
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improvement allowed a representation of virtual scenes with radiometric or photometric
values (see Sec.1.1). In this way, we can obtain rendered images with pixel values ex-
pressed in Luminance unit, as for HDR imaging. The most used algorithms for CGI are
Radiosity [CW12], Ray tracing [LLS03] or Rasterization [AMHH16].

CGI allows the creation of many contents, furthermore without any constraint on dy-
namic range, color gamut or contrast step. It is therefore possible to "capture" all levels of
luminance or color.

1.2.2 HDR Capture - Bracketing Techniques

Current SDR sensors can detect a wide dynamic range of luminance but can only
capture a limited range in one shot. The lower and upper bound of this dynamic range
is defined by the exposure parameter. Values outside the defined range are clipped, thus
generating underexposed and overexposed areas. Figure 1.10 illustrates photographs of
the same scene taken with different Exposure Values (EV). On the leftmost pictures, we

Figure 1.10 — Different photographs of the same scene with different exposure values

can see many underexposed areas but with a lot of details in the areas with high luminance
levels, and conversely on the rightmost pictures, there are overexposed areas but we have
many details in the previously underexposed areas.

Another issue with SDR cameras is that they apply a nonlinear function to the lumi-
nance hitting the sensor, for storing or subjective purposes. This nonlinear response is
called the camera response function (CRF) and it differs depending on the brand or model
of the camera and is usually kept private. Therefore, it is difficult to recover the physical
luminance values. The best way to solve this problem is to measure the CRF with cali-
brated tests but this is complicated and time consuming. Automatic methods are usually
prefer such as [MP95], [DM97] or [RBS03].

Once the CRF is known, it’s possible to create High Dynamic Range images with
SDR sensors using the bracketing technique. This technique is used in photography to
overcome the limits of single shot captures. It simply consists in combining several shots
taken with different capture parameters. This technique is applied to different types of
parameters like Focus, ISO, or Exposure. In the latter case, one solution proposed by the
authors in [MP95], consists in combining several shots (with different EV) of the same
scene, like the ones in Figure 1.10. In this way, we obtain an HDR image containing
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details in the darkest and brightest areas of the scene. Well detailed equations and an
implementation of [MP95] is available in [BADC17]. The number of required shots with
different EVs depends on the dynamic range of the captured scene. For a scene with a
small dynamic range, one shot can be enough but this is not the case for most scenes. The
bracketing technique can be set up in several ways, as described in the following sections.

1.2.2.1 Temporal Bracketing

The temporal bracketing is the simplest method and achievable with only one SDR
capture device. It simply consists in taking shots of the same scene one after another. This
method is effective under two conditions, if the camera is motionless and if the scene has
no moving objects. Indeed, the merging of these shots consists in a weighting of each shot
and therefore misaligned structures or objects will appear on different places of the final
HDR image. This effect is known as ghosting artifacts. While it is easy to keep a camera
steady using tripods, it’s difficult to avoid moving objects. Even in static scenes of nature,
the wind moves all types of object like grass or branches. This problem is particularly
important for high resolution images. For the moving camera, the usual solution is to
use alignment methods. However, it is not adapted to moving objects. For this reason,
several deghosting algorithms were proposed, some based on optical flow computation
[GGC™09] and others based on local motion detection [KAR06, SKY"12].

Temporal bracketing is the method used in most smartphones, and labeled as "HDR
mode". Two exposures are automatically captured successively and combined. However,
the result is not the reconstruction of an HDR image but a tone mapped SDR image. Tone
mapping algorithms are described in Section 1.4.2.

This bracketing method can be extended to video but with some difficulties. One solu-
tion consists in capturing video frames with alternate exposures and combining them into
an HDR frame. In this case, it requires a high frame rate since multiple SDR frames are
combined into one HDR frame. For low framerate, [KSB " 13] proposed a solution where
each exposure frame is transformed into one HDR frame. In both cases, the misalignment
between frames and objects is corrected with deghosting algorithms but artifacts remains
easily noticeable, especially on videos.

1.2.2.2 Spatial Bracketing

Spatial bracketing avoids the temporal mismatch and can be achieved in several ways.
One method consists to trade spatial resolution against a wider dynamic range. Indeed,
using filters placed on the sensor, it is possible to capture different exposures on neigh-
boring pixels [NMO00, SBS*12]. However, on top of decreasing the frame resolution, this
method requires to make costly modifications to the sensor.

Another method of spatial bracketing consists in using multiple cameras or multiple
sensors embedded in the same camera. By placing them on a rig, each sensor can cap-
ture the scene at a different exposure but with geometrical disparities, thus requiring post
processing as for temporal bracketing. Another solution is to use a light beam splitter
[TKTS11]. As illustrated in Figure 1.11, the beam splitter divides the light in different
exposure levels and redirects it on multiple sensors/cameras. With high precision, this
solution removes all problems of disparity between exposure frames and preserves the
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Figure 1.11 — Different photographs of the same scene with different exposure values

spatial resolution. Methods using several sensors remain costly and the non-portability of
such systems limits their applications.

The dynamic range achievable with bracketing methods is theoretically unlimited
since it depends on the number of frames with different EVs. In practice, it’s difficult
to use more than 3 sensors for spatial bracketing and increasing the number of frames in
temporal bracketing enhances the ghosting artifacts.

1.2.3 HDR Cameras

The CCD and CMOS sensors used in SDR cameras respond linearly to the light
[RWPT10]. As explain in Section 1.1.3, the HVS does not respond linearly to luminance
but roughly logarithmically. Therefore, to extend the dynamic range, several CCD sen-
sors with a logarithmic response were introduced by different companies. Such sensors
allow the capture of a scene with strong lightning changes since they don’t require con-
trolled exposure levels, as for bracketing techniques. However, these sensors still use low
resolutions and produce visible noise in dark regions. Furthermore, their effective dy-
namic range is inferior to the HVS dynamic range. For example, the SpheronVR camera
[CBB'09] can capture a dynamic range of 6 magnitude orders of luminance.

All these HDR acquisition methods allow to create contents with a wider dynamic
range. However, to represent all these luminance levels, it is necessary to use a large
range of values. The following section presents several methods to store HDR contents.

1.3 HDR Content Storage

Most of SDR image formats (BMP, PNG, JPEG.,...) use 24 bits per pixel (8 bits per
component). Since HDR imaging is intended to represent much more data, 24 bits per
pixel become insufficient. Indeed, real-world scenes can contain up to 14 orders of lu-
minance magnitude. To avoid loss of information, HDR images are usually stored using
floating-point values, thus resulting in 96 bits per pixel (32 bits per component). Thus, the
amount of space needed for an image is increased by a factor four. For this reason, several
solutions were proposed to improve the storage of HDR images.
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The next section, we first explain how SDR storage works to help the understanding of
HDR storage. In a second part, we present several early HDR image formats and finally,
we present the most recent ones.

1.3.1 Legacy SDR Storage

One problem with SDR storing is the loss of all luminance information of the cap-
tured scene. Indeed, since SDR cameras can only capture around 3 orders of luminance
magnitude among the 14 perceivable by the HVS, and since SDR displays can only re-
produce around 3 orders of luminance magnitude, it was more convenient to scale the
captured luminance values to the ones reproducible by the display. Therefore, SDR image
formats only retain relative luminance information. For example, when capturing an out-
door scene in bright sunlight or under moonlight, the maximum luminance value in each
case will addresses the same value in the SDR image format. However, building standards
based on the characteristics of particular devices is not appropriate when technologies
evolves quickly, such as currently. In contrast, HDR storing is intended to preserve the
absolute luminance values of the captured scene. The maximum luminance value in each
scenes is different and therefore they address different values in the HDR image format.

1.3.1.1 Luminance Storage

Luminance storage on digital support requires quantization but this process induces
an inevitable loss of data. We usually use 8 bits or 256 integer values (=2%) to quantize
the approximate three luminance orders of SDR images. Thus, the lower luminance level
of a display is addressed with the integer value 0 and the highest luminance level with the
integer value 255.

As seen on Section 1.1.3, the luminance perception is not linear and can be described
using a TVI function. Therefore, it is advised to perform the quantization of luminance
after applying a TVI function. In the context of storing and quantization, this TVI function
is refered to as an OETF for Opto-Electronic Transfer Function. As stated in Section
1.1.3.1 and based on [SS63], the power law is a good OETF function for the luminance
range of SDR displays. It is widely used for luminance quantization in SDR imaging
and called the gamma-correction or inverse gamma function. Figure 1.12 illustrates the
differences between a quantization with and without using such inverse-gamma function.
In the linear case, the quantization is made directly on the luminance Y but in the gamma
case, the quantization is performed after applying the inverse-gamma OETF: Y'/7 with Y
normalized between [0; 1] and v € [2; 3] [SS63]. As we can see, on the left side of Figure
1.12, linear uniform quantization does not result in uniform perceptual error. Quantization
errors are more visible in the dark areas. However, with the inverse-gamma OETF, we
obtain a uniform perceptual error for the SDR luminance range.

At the display side, we apply an EOTF (Electro Optical Transfer Function = OETF})
to retrieve and display the relative luminance values. Note that, in practice, inverse-gamma
OETFs usually include a short linear part for the darker values to avoid amplifying the
capture noise.

Since quantization inevitably includes loss of data, the best choice is to keep quantiza-
tion errors below the visible threshold of the HVS. As you can see on Figure 1.13, for the
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Figure 1.12 — Luminance quantization differences in Linear and Gamma domain (v =
2.4). The quantization is done using 5 Bits (32 values) to enhance the quantization errors.

SDR luminance range, this is achieved for approximately 8 bits. For lower bit depth, quan-
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Figure 1.13 — Luminance Quantization with a power law (v = 2.4) using different number
of bits. Note that, based on your display capacity in luminance range, the luminance steps
will be more or less visible.

tization artifacts known as "banding" or "contouring" appear. For the luminance range of
HDR images, much bigger than the SDR ones, it is rather evident that 8 bits is not suffi-
cient. Furthermore, the gamma OETF is rather efficient for the SDR case but not adapted
to luminance values outside its range.

1.3.1.2 Gamma Correction - Constant vs. Non-Constant Luminance

Historically, the inverse-gamma OETF was imposed by a technological constraint of
cathode ray tube (CRT) displays. Indeed, due to physical characteristics, CRTs convert
the R’G’B’ input voltage into an RGB output intensity using a "gamma" function approx-
imated by a power law somewhere between 2.2 and 2.8. Thus, the RGB components of
an image need to be gamma-corrected prior to be displayed.

The optimal method for storing is to apply the inverse-gamma OETF only on the lu-
minance since it accounts for its nonlinear perception by the HVS. Thus, as illustrated
in the upper part of Figure 1.14, the luminance is retrieved with the gamma EOTF at the
display side and converted into RGB components. Then these components are gamma
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Figure 1.14 — Constant Luminance (upper) vs Non-Constant Luminance (lower) diagram

corrected, R’G’B’, to compensate for the display response (in the red box of Figure 1.14).
This encoding and transmission method is called constant luminance. With this method,
the display need to perform two power functions: the EOTF to compensate for the inverse-
gamma OETF applied prior to quantization, and a conversion to compensate for the dis-
play response. Since these two operations are approximately the inverse of each other
and since the two operations are computationally expensive, the non-constant luminance
process was adopted. In this case, as illustrated in the lower part of Figure 1.14, the RGB
components are directly transformed with the inverse-gamma OETF or gamma correction,
prior to quantization and to compensate for the display response. Note that gamma correc-
tion and OETF-EOTF are separate issues, however it is a coincidence that both problems
can be addressed with similar functions.

If the chroma components Cb and Cr are transmitted with the same resolution as the
luma Y’, then the non-constant luminance process poses no problem. But since chroma
components are usually subsampled (see Sec.1.1.5.4), it impacts the reconstruction of
RGB components and generate minor artifacts. Some alternative solutions were proposed
to correct these artifacts [SSD16].

To provide backward compatibility between CRT displays and more recent LCD dis-
plays, the non-constant luminance process was kept and is still used at this time. Mean-
ing that LCD displays mimics the CRT displays gamma response. The gamma EOTF
1s included in the definition of several standards such as the SRGB one [SACMO96], the
television ITU-R Recommendation 709 [ITU14] and the ITU-R Rec 1886 [ITU11a] with
slightly different gamma values. Usually, the OETF is not standardized, what matters is
the method used by the display to reconstruct the image, so the EOTF. For subjective
purposes, content producers can apply a slightly different OETF (OETF # EOTF™!).
Indeed, the CRF introduced in Section 1.2.2 modifies the OETFE.

1.3.1.3 SDR Image Formats and Color Spaces

In image formats, not only the luminance needs to be quantized but also the color
components. In terms of perceptual uniformity, since color and luminance information is
not distinguished in the same way, the best color spaces for image formats seems to be
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color opponent spaces (see Sec.1.1.5.2). Indeed, such color spaces separate luminance and
chrominance information and furthermore, they propose a perceptually uniform represen-
tation of color. Thus, chrominance components can be quantized uniformly and luminance
can be quantized using an OETF. In fact, the CIELAB, CIELUV and IPT color spaces, in-
troduced in Section 1.1.5.2, transform the luminance using an inverse-gamma OETF (v =
3 for CIELAB or CIELUV and v = 1/0.43 for IPT). However, these three color spaces are
derived from the XYZ color space and designed to represent all perceivable colors. There-
fore, there are many values that do not correspond to a physical color (for ex. x = 0.7,
y = 0.2 in Fig 1.8). This is not optimal for storage because some quantized values will
refer to "imaginary" colors. In addition, they are computationally expensive.

In practice, all perceivable colors of the chromacity diagram are not captured due to
technical limitations of cameras. Only the subset gamut (see Sec.1.1.5.1) is represented in
the resulting RGB color space. For this reason and for their low complexity, R’G’B’ color
spaces and their derived color space Y’ CbCr are usually preferred. In this way, the quan-
tized values only represent the limited acquirable range of colors and not the entire chro-
macity diagram plus imaginary values. These color spaces are quite perceptually uniform
(not on the same level as CIELUV or IPT) and can be uniformly quantized. The typical
SDR color gamut is equivalent to the one defined for the SRGB color space [SACM96]
such as in the ITU-R Rec 709 [ITU14] or the ITU-R Rec 601 [ITU11b].

1.3.2 Early HDR Image Formats

As seen in Section 1.1.3, the luminance perception by the HVS is roughly propor-
tional to logarithm of luminance. Based on this observation, early HDR image formats
represented the pixel value with three RGB floating point values using 32 bits (96 bits per
pixel). Indeed, the integer representation of floating point values is roughly comparable
to a quantization in the logarithm domain. It can encode 79 orders of luminance mag-
nitude [RWP10], which is way larger than the 14 orders perceived by the HVS. This
representation of HDR pixels is clearly not optimal and better alternatives were proposed.

1.3.2.1 The Radiance Format / RGBE-XYZE

One of the first common HDR image format was the Radiance picture format [War91]
or RGBE/XYZE. This is one of the first HDR image formats and it was mostly used for
HDR image rendering. It uses the extension .Ahdr or .pic. Its pixel representation is a kind
of floating representation using 32 bits per pixel (bpp), 8 bits for each of the three compo-
nents and a shared exponent using 8 bits. Due to that property, it performs a quantization
in a roughly logarithmic domain. This format can be used with the RGB color space or the
XYZ one and is thus refereed to as RGBE or XYZE. The RGBE format only improves the
dynamic range storing since it proposes the same color gamut than SDR standards, such
as [ITU14]. For this reason, the XYZE format was introduced allowing to represent all
colors in the chromacity diagram (see Sec.1.1.4.2). However, as for the XYZ color space
and its imaginary primaries, several XYZE values correspond to imaginary colors with
no physical values. Thus, this format is not optimal for storing. The conversion from the
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RGBE format to the captured/displayed RGB values is made with the following formula:

R 0.5 G 0.5 B 0.5
R:%.ZEMHS G:%.QEMUS B:%QEMHES (1.12)

with Ry, Gy, By and E); the components of the RGBE format. Note that the conversion
for the XYZE format is the same with the XYZ primaries.

This image format can represent around 76 orders of luminance magnitude [RWP*10],
still way more than the range perceived by the HVS, thanks to its shared exponent. It
results in high quantization steps since we keep the same dynamic range than the 96 bpp
representation. Note that the exponent of RGBE format was defined by taking advantage
of the correlation between R,G and B values in natural images (see Sec.1.1.5.2). However,
this property is not applicable to the XYZ values, which makes the XYZE format less
interesting.

1.3.2.2 EXR Format / OpenEXR

The OpenEXR or EXtended Range format is very popular in the movie industry. It
uses the extension .exr and was introduced in 2002 by Industrial Light & Magic (ILM)
with an open-source C++ implementation [BKHO3, LM]. This format is commonly used
in the special-effect industry. It offers several types of representation but the most popular
one consists in representing each RGB components with a 16 bits half precision floating
point value, or half float [Hou81]. Thus, each pixel is represented with 48 bits. As for
the RGBE format, the floating point representation allows a quantization in a roughly
logarithmic domain. But unlike RGBE, the OpenEXR format covers a more restricted
dynamic range, around 11 orders of luminance magnitude. This is a little less than the
HYVS range but, in practice, this range is lower for some people and extreme values are
not frequently captured. Using a reduced range allows a finer quantization, making the
quantization steps smaller than the visible threshold of the HVS (see Fig.1.15).

Concerning the color gamut, the OpenEXR format can be used with any RGB pri-
maries and is thus opened to wider color gamut, such as the recently introduced ones:
The P3 gamut [P311] or the REC.2020 [ITU15] (see Fig.1.17). Furthermore, this format
allows the use of negative values and therefore allows to consider negative amounts of
RGB primaries (see Sec.1.1.4.1). In this way, all colors of the chromacity diagram (Fig
1.8) can be represented.

1.3.2.3 LogLuv Format

Since the logarithm was considered to be a good TVI model (see Sec.1.1.3), the au-
thors of [Lar98] proposed two image formats based on the CIELUV color space where
the luminance is transformed using a logarithm function rather than an inverse-gamma
one (see Sec.1.3.1.3). The two image formats have different representations using either
32 bits per pixel (16 bits for the luminance including a sign bit and 8 bits for each chromi-
nance component) or 24 bpp (10 bits for the luminance and 7 bits for each chrominance
component). The 32 bpp format covers 38 orders of luminance magnitude, more than the
HVS range, and the 24 bpp format covers only 4.8 orders of luminance magnitude. Unlike
SDR image formats using the CIELUV colorspace and including "imaginary" colors (see
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Sec.1.3.1.3), the LogL.uv image format quantized only the perceivable colors of the chro-
macity diagram using a 2D look-up table. However, using only 7 or 8 bits for the entire
chromacity diagram is not enough and will result in color banding/contouring.

1.3.3 HDR Image Formats - Optimal OETF and Wider Color Gamut

One shortcoming of RGBE and OpenEXR formats is the use of floating point numbers
which roughly account for the HVS perception of luminance. A better alternative is to
quantize the values after applying an OETF function adapted to HDR luminance levels,
as for the SDR case in Section 1.3.1.1. In the HDR case, to avoid banding/contouring
artifacts, we need a higher bit depth than 8 to quantize the covered luminance range. This
can be achieved using the TIFF image format [Ado92] allowing the support of advanced
pixel data types, including integer with more than 8 bits per component or floating point
images. This format uses the extension .tif or .fiff.

The Logluv image format, described in Section 1.3.2.3, uses the TIFF format with
a logarithmic OETF. But as seen on Section 1.1.3, the logarithm is not a good approx-
imation of the HVS sensibility to luminance. Based on TVI and CSF experiments, sev-
eral OETF/EOTF were proposed [MKMS04, MDMSO05, MND12]. These proposals were
made in the context of HDR compression, however they are also used for HDR image
storing. The authors in [MKMSO04] proposed an OETF based on TVI experiments, cover-
ing the luminance range 10~ to 108 nits, followed by a quantization using 10 or 12 bits.
However, as explained in Section 1.1.3.1, TVI experiments are suboptimal compared to
CSF experiments. Therefore, the authors in [MKMS04] improved their model [MDMSO05]
using the Daly’s CSF [Dal93]. More recently, based on the more complete Barten’s CSF
[Bar99], a similar but more popular OETF was proposed [MND12]. This OETF and its
effectiveness are discussed in the next section.

1.3.3.1 ST2084 EOTF - Perceptual Quantizer (PQ-ST2084)

The perceptual quantizer (PQ) or ST2084 EOTF was proposed by Dolby and standard-
ized by the SMPTE [MND12]. The corresponding OETF is directly based on the Barten
threshold ramp, a TVI function derived from CSFs using different background luminance
levels, as explained in Section 1.1.3.2. The Barten ramp is based on the peak of each CSF
and thus represents the contrast threshold of the HVS in its conditions of highest sen-
sitivity. Figure 1.15 illustrates this ramp in dotted lines. In practice, this means that it’s
not possible to see a difference between two luminance patches with a contrast step (or
quantization error) below the Barten ramp. Just above that ramp, banding and contouring
artifacts may be visible and it gets worse when you move away up from that ramp.

However, since the Barten ramp takes into account the cases of higher sensitivity and
is computed on calibrated patches, it may not be a good representation of HVS sensitivity
for normal images. Another alternative is the Schreiber ramp which is a coarse approx-
imation of Schreiber contrast threshold experiment’s [Sch93]. This ramp is less optimal
than the Barten one since it doesn’t account for spatial frequency sensitivity of the HVS
(see Sec.1.1.3). It uses the Weber-Fechner law above 1 nits and an inverse-gamma law
below. This ramp is also illustrated in Figure 1.15. Note that the Schreiber ramp shape is
similar to the Barten one but results in higher quantization errors.
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The PQ-ST2084 OETF was designed to directly match the Barten ramp. Instead of a
look-up table (LUT) giving the contrast threshold for each luminance level, they proposed
the following equations:

Jr 1/m
OETF: V = (%) with J = clip( Y/10000, 0, 1)  (1.13)
c3.Jm
Vl/m _ 1/n
EOTF: Y = (ﬁ) - 10000 (1.14)
2 — 3.

m = 78.8438; n =0.1593; ¢; =0.8359; co = 18.8516; c3 = 18.6875

Using an equation is helpful for standardization and simpler for image and video pro-
cessing. This OETF covers 7 orders of luminance magnitude from 1073 to 10* nits, less
than the HVS range but enough to represent the future displays luminance range. Several
examples are provided in Figure 1.15 using different bit depths. Image formats using 12
bits for the luminance would be totally lossless since the 12 bits PQ-ST2084 is under the
Barten ramp for all luminance levels. Indeed, using 11 bits, the PQ-ST2084 is slightly
above the Barten ramp but under the Schreiber ramp, as for the 10 bits PQ-ST2084.
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Figure 1.15 — Evaluation of several OETFs compared to the Schreiber and Barten thresh-
old ramp

For comparison purposes, Figure 1.15 includes other previously introduced OETFs.
We can see that, to be under the Barten ramp with the inverse-gamma OETF, you need 15
bits. And with a logarithm OETF, you need 13 bits. The inverse-gamma (y = 2.4) OETF is
clearly not adapted to high luminance levels and conversely the logarithm is not adapted
to low luminance levels. Figure 1.15 also includes the quantization errors obtained with
the OpenEXR image format. As you can see, as stated in Section 1.3.2, using floating
point values is roughly similar to using a logarithmic OETF. Note that, the range of the
EXR format goes beyond the represented one.
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The PQ-ST2084 is included in television ITU-R Recommendations 2100 [ITU17] and
is used in the reference compression standard for HDR, as further explained in Chapter
2. The Rec 2100 covers the support of 10 and 12 bit depth but note that, currently and
in the near future, broadcast infrastructure and displays are going to operate with 10 bits.
Therefore, many HDR contents only uses a 10 bit representation.

The dynamic range covered by the PQ-ST2084 can be easily increased with higher
bit depth. However, for a given bit depth, you have to compromise between the covered
dynamic range and the quantization errors. Indeed, it would be easy to extend the 10 bits
PQ-ST2084 to higher dynamic range but it would result in higher quantization errors.
Therefore, a 10 bits PQ-2084 covering 7 orders of luminance magnitude is a good com-
promise since it is under the Schreiber ramp. To have a 10 bits PQ-ST2084 below the
Barten ramp, it is necessary to diminish the addressed dynamic range or conversely you
need to increase the bitdepth.

1.3.3.2 Other EOTFs - Hybrid Log-Gamma

Several new OETFs were proposed by several companies like Sony [GDY "], Philips
[BV15] or the BBC [BC15a] standardized in [BC15a]. Most of them were proposed in
the context of HDR compression [TSS™14], as an alternative to the PQ-ST2084. Only the
BBC one, the Hybrid Log-Gamma (HLG), was kept [KYH16] and included in the Rec
2100 [ITU17].

The HLG is based on the observation that inverse-gamma OETFs are efficient with
low luminance levels and that logarithm OETFs are efficient with high luminance levels.
As indicated by its name, the proposed OETF is a composition of inverse-gamma and
logarithm functions:

(3.J)05 0 <J<4

12 —b)+c¢ 5 <J<1 (1.13)

OETF: V = {
a.ln(
J =clip(Y/1000, 0, 1); a=0,17883277; b=1—4a; c¢=0,5—a.Iln(4a)

In some definition, the OETF includes a short linear part for the darker values to avoid
amplifying the capture noise. Unlike the PQ-ST2084, the HLG only covers the range 102
to 10? nits, as visible on Figure 1.16. Even on this limited range, the PQ-ST2084 gives
the most efficient use of bits throughout the entire range. The benefit spotlighted by the
authors is that the HLG has a behavior closer to the inverse-gamma one for low luminance
levels. This property is supposed to provide some compatibility between SDR displays
and HDR contents or between SDR EOTF and HLG OETF. In other terms, HDR contents
corrected with the HLG can be interpreted as SDR contents. However, in practice, directly
displaying HDR contents transformed with HDR-OETFs is clearly not optimal in terms
of subjective quality.

1.3.3.3 Wide Color Gamut - DCI-P3 and Rec.2020

"High Dynamic Range" is the commonly used expression to describe future standards
and technologies. However, High dynamic range only refers to luminance. The increased
capacity in colors is called Wide Color Gamut (WCG). As explain in Section 1.3.1.3,
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Figure 1.16 — Evaluation of the HLG and PQ-2084 compared to the Schreiber and Barten
threshold ramp

color opponent spaces (see Sec.1.1.5.2) covering more than the visible chromacity dia-
gram are not optimal for storing. To represent only the capturable color gamut and for
its simplicity, the Y’CbCr color space is preferred. However, in the context of HDR and
especially WCG, two wider color gamuts than the typical SDR one (Rec 709 [ITU14],
see Sec.1.3.1.3) have been standardized: the DCI-P3 [P311] and the Rec 2020 [ITU15].
All these color gamuts are illustrated in Figure 1.17 with their coordinates. The values
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Figure 1.17 — Color gamuts and corresponding coordinates

Kpr and Kp are for Y’CbCr conversion (see Eq(1.11)). The Rec 709 color gamut covers
only 35.9% of the chromacity diagram while the DCI-P3 and Rec 2020 ones respectly
cover 45.5% and 75.8%. The Rec 2020 color gamut is also part of the Rec 2100 [ITU17]
but, note that, this color gamut is currently beyond the capabilities of any consumer dis-
play. Still, recent HDR contents are usually stored using the Rec 2020 color gamut. Even
though, they contain only color fitting in the DCI-P3 color gamut.
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The Rec 2100 also includes a newly introduced color space, called ICtCp [Labl16],
which improves the original IPT color space by using the PQ-ST2084 OETF instead of
an inverse-gamma OETF. Furthermore, this color space is derived from RGB primaries
and thus only represents the capturable color gamut. It is intended as a replacement for
Y’ CbCr color space. However, Y’CbCer is still currently preferred for its computational
simplicity (see Sec.1.1.5.2).

1.4 HDR Content Display

SDR displays can usually reproduce 3 orders of luminance magnitude with a peak
luminance around 300/400 nits. This is less than the instantaneous luminance range per-
ceived by the HVS. The introduction of the term HDR is not recent and is sometimes
confusing. Indeed, HDR displays are more recent than HDR capture techniques. There-
fore, Tone Mapping Operators (TMO) were proposed to provide compatibility between
HDR contents and SDR displays. For example, the HDR mode in many smartphones is
not about HDR display but only about HDR capture. The displayed image is an SDR one.
More recently, HDR displays allowing higher luminance range than SDR ones were in-
troduced. Indeed, they can reproduce up to 5 or 6 orders of luminance magnitude with a
peak luminance around 10000 nits. For some displays, this increased luminance range is
mostly made on the black levels. Meaning that these HDR displays are slightly brighter
than the SDR ones. Indeed, very bright HDR screen requires a high power consumption
and they are therefore limited to professional uses.

In this section, we start by describing the different HDR display technologies and
available displays for professional or private use. Secondly, we present the conversion
from HDR to SDR contents using TMOs. Several types of TMO exists as well as Inverse
TMOs, to create HDR contents from SDR ones.

1.4.1 High Dynamic Range Displays
1.4.1.1 Professional Displays

In recent LCD SDR displays, the LCD panel is backlit with a uniform light over the
entire surface of the screen. Thus, the dynamic range using such technology is rather
limited. The first HDR displays proposed by [SHS"04] were based on two different tech-
nologies. The first one consists in using a Digital Light Processing (DLP) projector be-
hind an LCD screen to enhance its dynamic range, as illustrated in Figure 1.18(a). The
DLP projector usually has a low resolution and allows to boost the dynamic range of the
LCD panel, whereas the LCD panel displays the details with its higher resolution and
the color information. The achievable contrast is a multiplication of each contrast of the
two devices (DLP and LCD). However, this technology has many flaws. Indeed, using a
projector requires a display with a large depth (around one meter for a 15 inch display
[BADC17]). Furthermore, the projector is prone to significant heat generation and high
power consumption. For these reasons, the second method proposed by [SHS*04] con-
sists in replacing the DLP projector by an array of ultra bright Light Emitting Diodes
(LED), as illustrated in Figure 1.18(b). In this way, the display remains relatively thin
however, LEDs reduce the energy requirements but still have a high power consumption
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and require cooling. These LEDs can improve the luminance peak in small area without
impacting the rendering of black areas, thus improving the dynamic range of the display.
As for the first method, the achievable contrast is a multiplication of each contrast of the
two devices (LEDs and LCD). HDR displays using these technologies are referred to as
dual-modulation, local dimming or two-layer display.

Several prototypes were developed however the first commercially available display
and the most used one is the SIM2HDR47 [Mul]. This display was first introduced with
a peak luminance of 4000nits, then 6000nits, and more recently a display with a peak
of 10000 nits was announced [WB16]. This display is able to reproduce 5 orders of lu-
minance magnitude, the LED panel is composed of 2202 LED and the LCD panel has a
resolution of 1920x1080 pixels.

On top of improving the dynamic range of displays, improving the color gamut also
has technical challenges. A promising new technology is the organic LED (OLED) tech-
nology [MWDG13] made with organic compounds that light up when fed electricity. Each
pixel of the display has its own OLED which can be independently turned on or shut
off. Thanks to this flexibility, the pixels of OLED displays can appear completely black.
Therefore, unlike dual-modulation displays, OLED displays mostly increase the dynamic
range with lower luminance levels but also with more saturated colors. Indeed, using the
LED panel in dual modulation displays tends to desaturate the color [BPNS15]. However,
OLED displays can hardly reproduce the high luminance peak of dual modulation dis-
plays, well appreciated in HDR experience by viewers. The reference OLED display is
the Sony BVM-X300 OLED [SON] with a luminance peak of 1000 nits and 6 orders of
luminance magnitude.

1.4.1.2 Consumer Displays

Consumer displays usually have slightly lower performances than professional ones.
As for professional displays, there are two types of consumer displays but with lowest
capacities. For luminance, the most powerful consumer displays only achieve a luminance
peak around 1100 nits and for colors, there isn’t yet displays able to reproduce all color
within the gamut of Rec 2020 (see Fig.1.17), and there likely won’t be until few years.
Indeed, current consumer displays struggle to reproduce all color of the DCI-P3 gamut.
The Rec 2020 color gamut and OETFs with luminance peak around 10000 nits were
standardized to support the arrival of future displays.

Recently, the UHD alliance agreed on a label, "Ultra HD Premium", certifying the
new generation of displays [All17]. This label includes guidelines for supported color
gamuts, peak luminance and black levels. For OLED TVs, the requirements are to have
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a black level under 0.0005nits and a peak luminance over 540 nits, resulting in 6 orders
of luminance magnitude. For LED TVs, the requirements are to have a black level under
0.05nits and a peak luminance over 1000 nits, resulting in 5 orders of luminance magni-
tude. However, for colors, the requirement is the same for both technology: at least 90%
of the DCI-P3 color gamut (see Fig.1.17).

1.4.2 Tone Mapping Operator (TMO)

Currently, the vast majority of consumers is still equipped with traditional SDR dis-
plays. However, HDR signals contain a much bigger dynamic range than the one compat-
ible with SDR displays. In fact, HDR contents also contain luminance levels outside the
capacity of all current HDR displays. Therefore current displays are unable to represent
real-world luminance levels. To provide a compatibility between HDR contents and SDR
displays, we use an algorithm which remaps the wide luminance of an HDR image to an
SDR one. This algorithm is referred to as Tone Mapping Operator or TMO. For HDR
displays, the process is also called display retargeting [Bis17].

A simple solution to create an SDR image could be to mimics the behavior of SDR
cameras and select an exposition in an HDR image (see Fig.1.10). However, using this
method consists in deliberately introducing over/under exposed areas. TMOs are a better
alternative since they can create SDR images with the advantage of knowing the entire
dynamic range.

The development of TMOs is an active field since many years and many TMOs have
been proposed. All of them give very different results since they can have different intents.
Some try to mimics the HVS while others are designed for subjective purposes. However,
TMOs can be approximately classified in two types, Global TMOs and Local TMOs, as
described in the following sections. For a more detailed classification of TMOs, refer to
[BADCI17].

Usually the TMO is only applied on the luminance channel Y while colors remain
unprocessed. The resulting SDR luminance channel L is then applied to each RGB com-
ponents, however this process can create saturated colors. For this reason, a desaturation is
usually applied using a coefficient C' € [0, 1]. This process is described with the following
formulas:

Ls = TMO(Y) (1.16)
Rs . [R ¢
Gs| =Ls- |- |C (1.17)
By B

with Rg, Gg, and Bg the SDR RGB components. The desaturation method is rather simple
and can cause minor luminance and color artifacts. [MTHO09] proposed an alternative
formulation preserving the color appearance of HDR images in SDR images. Another
alternative is to use more decorrelated color spaces such as IPT [PAB*13].

The SDR RGB components are usually transformed with a gamma correction to ac-
count for the display response (see Sec.1.3.1.2) and quantized on 8 bits to match SDR
image formats (see Sec.1.3.1.1). Note that, due to this quantization step, the TMO is a
lossy process. A tone-mapped image may look like all luminance levels are kept but it’s
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not the case. Some luminance information are lost and cannot be retrieve using only the
SDR image. Furthermore, SDR image formats only contain relative luminance levels and
not absolute values. Therefore, the resulting SDR image loses the absolute luminance
values of the real scene.

1.4.2.1 Global TMOs

Global TMOs are the simplest ones, since they consist in applying the same operator
to all pixels of the HDR image. It usually consists in an increasing monotonous function
between HDR and SDR pixel values. The operator is generally based on global statistics
of the HDR image, like the average, min or max values. It is designed to preserve global
contrasts in an image to the detriment of local ones: Large luminance variations are kept
while small ones are discarded. Therefore, the resulting SDR image usually lacks finer
details.

The simplest TMO is a linear scaling, where the minimum and maximum values of
the HDR image are mapped to the minimum and maximum values of the SDR one. How-
ever, this is not well adapted to the HVS which perceives luminance nonlinearly, as illus-
trated in Figure 1.19(a). Global TMOs usually consists in a non-linear mapping of lumi-
nance levels. Either using power laws [TR93], logarithmic functions [FPSG96, DMACO03]
or sigmoid functions [Sch95]. Two global TMOs higlighted by subjective experiments
[LCTSO05, SOIMEMS12] are the photographic tone reproducer (PTR) [RSSFO2] and the
display adaptive tone mapping (DATM) [MDKO8], as illustrated in Figure 1.19. The
DATM is based on an histogram analysis and is designed to minimize the contrast ar-
tifacts inherent to TMO. Furthermore, it can be adjusted to the targeted SDR display. The
PTR is inspired from photographic techniques such as dodging and burning effects and
based on a sigmoid function. This TMO also exists in a local version, as described in the
following section, also well appreciated in subjective experiments.

1.4.2.2 Local TMOs

Local TMOs are more complex than the global ones since they apply different treat-
ments to pixels with the same value, based on their location on the image. Two pixels with
the same luminance level in the HDR image can have different values in the SDR one. The
operator is based on local statistics of the HDR image to preserve the local contrasts, gen-
erally to the detriment of the global ones. Bright and dark areas in the HDR image can
have the same average luminance in the SDR image. Enhancing the local contrast can
produce artifacts around edges such as halos.

Local TMOs can be designed to account for the spatial neighborhood of each pixel,
for example using a Gaussian filter [JRWO97] or Bilateral filter [DDO02]. This approach
is improved by using Gaussian or Laplacian pyramids [PFFG98, Ash02]. Other types of
local TMOs are based on segmentation, such as [MKRO7, RC09]. A different mapping
is applied in segmented areas. In this case, it consists in selecting the best looking areas
in different exposures of the HDR image. These operators are also known as exposures
fusion.

Regarding the global TMO previously introduced, the PTR [RSSFO02], it was extended
to a local version by using a Gaussian pyramid. By avoiding sharp edge contrasts, this
operator has the advantages to avoid halo artifacts. Figure 1.19 shows an HDR image
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tone mapped with the PTR in its global and local version. As visible, the local version

(a)

Figure 1.19 — HDR image Memorial, from [War(03], tone mapped with different TMOs:
(a) Linear TMO - (b) [RSSF02] Global Version - (c) [RSSF02] Local Version - (d)
[MDKOS]

enhances the local contrasts. Especially in the highest circular window, where the frame
is more visible.

1.4.2.3 Video TMOs

The previously cited TMOs were mostly designed for image tone mapping. Indeed,
using them directly on HDR videos can lead to different artifacts such as temporal in-
coherency or flickering [BCTB14a]. Global TMOs are usually preferred for videos since
they are less prone to such artifacts and more suitable to real-time applications compared
to local TMOs. Indeed, in most cases, a simple temporal filter on a global TMO is enough
[PTYG00, MDKO8] to remove temporal artifacts such as flickering. Besides, [ASC*14]
proposed a local video TMO, eligible to real time processing, based on an optical flow and
spatio-temporal filtering. Such processings remove the flickering artifacts usually brought
by local TMOs. In a recent PhD thesis [Boil4], several solutions were proposed with
techniques that adapts to any TMO. An experiment proposed by [EUWM13] provides an
overview of the recently proposed video TMOs and evaluates them with subjective tests.
This experiment also provides hints for future improvements in the field of video TMO.

1.4.3 Inverse TMOs / Expansion Operator

In opposition to TMO which provides compatibility between HDR contents and SDR
displays, Expansion Operator (EO) provides compatibility between SDR contents and
HDR displays. In this case, the problem is more complicated since it involves a recon-
struction of lost information. Simple solutions propose to simply invert the gamma cor-
rection of SDR content [FarO1, AFR"07], but these solutions do not account for the CRF
[LGYS04] (See Sec.1.2.2). Furthermore, several problems prevent the reconstruction of
HDR contents. First, since SDR contents only contain relative luminance values, the ab-
solute ones need to be estimated. Secondly, over/under exposed areas in the SDR image
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need to be filled. Thirdly, artifacts caused by the quantization to 8 bits are enhanced on
a wider dynamic range (see Sec.1.3.1.1). And finally, conversely to TMOs, colors in the
resulting HDR image can be desaturated.

Several EOs [MDS06, RTS*07, BLDC10] attempt to solve these problems, however
EOs need to make strong assumptions about the initial contents and therefore the result
may be not subjectively pleasant, depending on the input. Semi automatic methods are
also proposed [DMHSO08], however the computation becomes relatively slow since user
intervention is required.

The terms "Inverse TMO" (ITMO) and "Expansion Operator" are usually used without
distinctions but they describe different operations. Indeed, EOs, as defined in [BADC17],
expand SDR images without information about the scene, while ITMOs reconstruct an
HDR image previously tone mapped with a known TMO. SDR tone mapped images can
be stored with metadata and so solve many of the previously introduced problems. Indeed,
they usually do not contain over/under exposed areas, the absolute min and max luminance
values can be saved as for the color desaturation parameter. For global operators, the
only information lost is due to the quantization on 8 bits. However, for local TMOs the
reconstruction is more difficult since the operator is not invertible.

1.5 Summary

In this chapter, we provided background information on High Dynamic Range and its
pipeline. In Section 1.1, we presented how light and color are perceived by the human
eye with the basic concept of Radiometry, Photometry and Colorimetry. Section 1.2 de-
tailed the different techniques and devices used for the acquisition of HDR content. Then,
Section 1.3 addresses the issues to store these acquired HDR contents by explaining the
limitations of SDR image storing and the alternatives for HDR images. And finally, Sec-
tion 1.4 describes the different available HDR displays along with their technologies and
limitations. Besides, the methods used to provide compatibility between HDR/SDR con-
tent with SDR/HDR display are also introduced.



Chapter 2

High Dynamic Range Compression and
Evaluation

While image formats reduce the amount of information by selecting the optimal quan-
tization step and by restricting the represented range of luminance or color, compression
is about removing the redundant and imperceptible information in an image/video with
a lot of different techniques. The goal is to drastically reduce the content size, especially
for videos. Indeed, 10 minutes of SDR video, with a high definition and using 60 frames
per second (fps), requires an approximate space of 45 Gigabyte (24bpp x 1920 x 1080 x
60fps x 60sec x 10min). A just 10 min video is already more than a single-layer Blu-ray
Disc capacity (25 Gigabyte), thus a strong size reduction is required to store full movies.
The same conclusion can be drawn for broadcast applications with the limited bandwidth
of current video transmission pipelines.

To fit the capacity of these different distribution media, advanced compression tech-
niques and, usually, additional quantization are essential. In this case, the quantization
is made after several steps of prediction. Compression algorithms using the quantization
step are referred to as "lossy" while compression algorithms without this step are named
"lossless". In this chapter, we start by explaining the basic concepts of SDR image/video
compression and the different existing standards in Section 2.1. Then, the High Efficiency
Video Coding (HEVC/H.265) standard is further described in Section 2.2. Since many
compression standards exist, we focus only on this one which is, currently, the most effi-
cient for both image and video [EFP* 16, LHVA16].

As seen in the previous chapter, HDR content needs to be represented with higher
bit-depth. This new type of content bring new challenges regarding its distribution. The
HDR image formats described in Section 1.3.2 also proposed some simple compression
algorithms which can divide the file size by two. However, as stated above, this is highly
insufficient for Blu-ray storage or broadcast applications. New tools and several adapta-
tions were introduced to reuse legacy SDR compression standards, such as HEVC. These
compression solutions are described in Section 2.3.

Due to the additional quantization step, lossy compression leads to visible distortion
of the compressed content. The stronger the quantization, the more artifacts appear but
the smaller is the content size. To assess the efficiency of compression standards and
for algorithms validation, we perform a quality evaluation. It usually consists in creating
curves measuring the resulting distortion as a function of the content size/rate. By com-
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paring these curves, we can identify the most efficient compression methods. Section 2.4
further describes this process along with different methods to measure the distortion of
compressed content.

2.1 SDR Image/Video compression

2.1.1 Motivations and Standards

The motivation to further improve video compression is due to the ever growing size
of contents. Indeed, image and video contents keep evolving with higher bit depth, higher
resolution or higher frame rate. As seen in Section 1.3, HDR and WCG contents represent
a much larger range of light or color and need higher quantization steps, thus higher bit
depth, to avoid banding artifacts. The size of images and videos evolve fast. Indeed, in few
years, the video resolution went from Standard Definition (SD ~ 720x480 pixels), to High
Definition (HD = 1280x720 pixels), to Full HD (= 1920x1080 pixels), and finally to Ultra
HD (UHD = 3840x2160 pixels). Figure 2.1 illustrates the relative size of these resolutions.

Full HD

Ultra HD
Figure 2.1 — Evolution of television resolutions

The number of represented pixel is almost multiplied by 4 in each new resolution. Even
though a higher resolution than UHD does not seem to be useful for conventional TVs
[CV16], other devices/technologies could benefit from it such as virtual reality devices.

For video content only, another increasing parameter is the framerate or the number
of displayed frames per second (fps). Indeed, the common assumption that, using more
than 24 fps is unnecessary for the HVS, is false. Increasing the framerate to 50 fps, 100
fps and even 200 fps provides an improvement in perceived quality [CV16].

Compared to this fast content evolution, the broadcast capacities are evolving slowly.
Furthermore, the amount of transmitted videos has grown enormously with the multipli-
cation of video channels and the advent of internet video platforms such as YouTube or
Netflix. Therefore, better and better compression algorithms are required to fit the rate
capacity of broadcast pipelines. Over the years, numerous tools have been proposed for
image/video compression. And to ensure tool compatibility among devices, standardiza-
tion is essential. It allows to define a set of mandatory tools used at both the encoding and
decoding side.

Note that the standard only compels the decoding step. The encoding step can be per-
formed in different ways, the only requirement is to provide a compressed stream which
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can be decoded by the defined standard. In this way, an image/video compressed with a
specific standard can be decoded by all compatible devices.

Several standards dedicated to image compression have been proposed, the most popu-
lar ones being JPEG [Wal92] and JPEG2000 [CSEO0O], but most standards are now focused
on video compression. Anyway, video compression always start by image compression
to encode the first frame, as explained in Section 2.2.1. Concerning video compression
standardization, the most popular standards come from two bodies who started working
separately and now jointly. The first one is the Video Coding Expert Group (VCEG) from
the International Telecommunication Union (ITU-T) and the second one is the Moving
Picture Experts Group (MPEG), part of the ISO/IEC (Organization for Standardization /
International Electrotechnical Commission). Over the years, these bodies proposed sev-
eral video compression standards, as illustrated in Figure 2.2. The standard evolution is
a direct response to the content evolution explained above. Thanks to the increased com-
putational performances of encoding and decoding devices, standards can use more and
more complex algorithms and therefore improve the compression performances.

ITU-T H.261 H.263

ISO/IEC

2013 —
?

Figure 2.2 — Timeline for video compression standards

The first proposed and widely used standard introduced in 1990 was the Recommenda-
tion H.261 [H2693]. In this standard, the main steps of video compression such as predic-
tion, transform, quantization and entropy coding were defined. The most recent standards
still lie on these main steps, described in the following sections. In 1993, the ISO/IEC also
presents their first standard, MPEG-1 [MPE93], very similar to H.261 but with additional
algorithms. Then, a first collaboration between these two bodies was made to propose,
in 1994, the joint standard known as MPEG-2/H.262 [H2612, MPEO3]. It was massively
adopted through DVD applications or TV broadcast. Currently, this standard is still in use
for TV broadcast in the USA. After this proposal, both standardization bodies worked
independently to propose the Recommendation H.263 [H2605] in 1995 and the MPEG-4
Visual or MPEG-4 part2 [MPEO4] in 1998. These very similar standards both introduced
interesting tools such as the frame type in H.263 (see Sec.2.2.1) or the support of high
bit depth ! in MPEG-4 Visual. They both were more efficient than MPEG-2/H.262, how-
ever they did not replace it in TV broadcast or for DVD. Indeed, many consumers were
recently equipped with MPEG-2/H.262 compatible devices and content encoded with a
new standard would have involved to purchase new TVs or DVD players. The MPEG-4

1. more than 8 bits per component
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Visual standard was more popular for web diffusion, especially with the Xvid implemen-
tation of this standard. In 2003, a second collaborative standard was presented, the Rec-
ommendation H.264 [H2617] or the MPEG Advanced Video Coding (AVC) [MPE14].
It proposed a significant improvement over MPEG-2/H.262 [WSBLO03] and successfully
replaced it in TV broadcast and through Blu-Ray applications. AVC/H.264 is currently
the standard for TNT diffusion in France. Finally, in 2013, another collaborative standard
was presented, the Recommendation H.265 [H2618] or the MPEG High Efficiency Video
Coding (HEVC) [MPE17]. The HEVC standard improves the compression performances
of AVC/H.264 by 50% [OSS™12]. As for the MPEG-4 Visual and AVC/H.264 standards,
HEVC supports contents with a bit depth higher than 8 bits, up to 16 bits per component.
In practice, these higher bit depths were exclusively used for professional applications
since SDR devices only support 8 bits. However, they can be used to compress HDR and
WCG content, as explained in Section 2.3.

In Section 2.2, we present only the HEVC standard since it is currently one of the
most performing in both image compression [EFP™16] and video compression [SM16]
and it contains a majority of tools introduced over past standards. Furthermore, HEVC is
currently the only standard supporting HDR content distribution. Note that, a new collab-
orative standard is already in preparation under the name Versatile Video Coding (VVC)
or Recommendation H.266 [SBW17] to further improve the compression performances
of HEVC.

Several other video standards were proposed by several companies, however they
share many similarities with the ITU-T or ISO/IEC standards. The most popular ones
are the Daala codec from Xiph.Org (sponsored by Mozilla), AV1 recently promoted by
the Open Media Alliance and the VP codecs from On2 Technology, acquired by Google
in 2010.

2.1.2 General Compression concepts

The compression goal is to convert an input content into a bit stream containing as little
information as possible and allowing the content reconstruction. To make this bit stream
lighter than the input content, the techniques mainly consist in exploiting the limits of the
HVS and removing the redundant information in the input.

The first method to reduce the image/video size consists to sub-sample the Chroma
components as explained in Section 1.1.5.4. In general, the image/video uses the Y’ CbCr
colorspace sub-sampled with the 4:2:0 format. In this way, an SDR content goes from 24
bpp (8 bits for each component) to about 12 bpp (averaged for 4 pixels: 4x8 bits for Y’ and
1x8 bits for Cb or Cr), thus reducing the content size by a factor two. Usually, the input
content in compression schemes is considered to be already sub-sampled, meaning that the
measured compression efficiency does not account for this prior content size reduction.

The sub-sampled content is then divided into blocks of different size, depending on
the content, and each block is fed to the compression scheme as illustrated in Figure 2.3.
As explained above, this compression scheme structure is the same for all previously in-
troduced standards, including JPEG, and is referred to as hybrid block-based compression
scheme. The only exception is JPEG2000 which is a wavelet-based compression method
[CSE00].

The hybrid block-based scheme uses the prefix hybrid since it combines a prediction
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Figure 2.3 — Main operations performed in hybrid block-based compression schemes
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step, to remove the redundant information in the signal, and a transform/quantization step,
to further reduce the dependencies between pixels and also remove high-frequency signals
imperceptible by the HVS. These two steps significantly reduce the content size and each
block is thus represented with few bits. These few bits can be further compressed using
an entropy coding that will remove their statistical redundancies. All the compression
scheme steps are further described in the following sections.

2.1.2.1 Prediction

The prediction is a lossless step where we try to predict the current block only with
previously encoded ones, stored as reference blocks. Indeed, at the decoding side, only the
previously decoded blocks are available to reconstruct the prediction. The prediction block
is then subtracted from the current block, thus providing a residual block with smaller
pixel values centered on zero. These values usually have a smaller amplitude and can be
quantized with less than 8 bits to reduce the content size. However, applying a transform
step before is beneficial, as explained in the next section.

It is possible to distinguish two types of prediction. The first one is the temporal pre-
diction, also called inter prediction, and it is based on a block matching algorithm. It
consists in using a reference block from previously encoded frames to predict the current
one. This process is very efficient since in many videos the background is usually static,
therefore many blocks of the current frame can be predicted with collocated blocks from
previously encoded frames. For moving objects, a motion compensation allows to predict
the current block with a block from a different location in the previously encoded frames.
The most appropriate block in this motion compensation is selected through a motion es-
timation step. Temporal prediction is present in all video standards previously presented
but, obviously, not in the JPEG standard since there is no previous frame. HEVC temporal
prediction is further described in Section 2.2.3.2.

The second prediction type is the spatial prediction, also called intra prediction. Con-
versely to the temporal case, spatial prediction does not require a previously encoded
frame. It is designed to predict the current block with parts of the spatially neighbor-
ing blocks previously encoded. Only small features of spatial prediction were present
in early standards. It was much more enrich in the recent ones such as AVC/H.264 and
HEVC/H.265. The spatial prediction from HEVC is further described in Section 2.2.3.1.
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2.1.2.2 Transform and Quantization

The transform and quantization are directly applied after the prediction step, to the
residual block. The first goal of the transformation is to remove the correlation between
pixels. It is implemented by mean of a fixed transform called discrete cosine transform
(DCT). It consists in converting the samples of the residual block in a frequency domain,
where the different frequency signals are separated. The result is a transformed block of
the same size where lowest frequencies are located in the up-left transformed coefficients
and highest frequencies in the low-right transformed coefficients.

Note that for most contents, the information is mainly located on low frequency co-
efficients. This representation allows to reduce the remaining redundancy in the residual
block. For example, a residual block with the same pixel values is a very low frequency
block where all pixel values are redundant. After transformation, only one pixel will be
non-zero: the upper-left one. Since the information is located on fewer coefficients in the
transform block than in the residual one, the transform step improves the compression
performances. Indeed, thanks to the entropy coding details in the following section, the
zero coefficients of the transform block have a very low bit cost.

As demonstrated in Figure 1.5, the HVS is much less sensitive to high frequencies
than low ones. Thanks to this property, the quantization is not made uniformly in the
transform domain but with higher consideration for low frequency coefficients. In this
way, small quantization steps only remove imperceptible data. However, depending on
the rate requirement or storage capacity, the quantization steps usually need to be higher.
In this case, noticeable distortion is introduced. However, it still remains more efficient
than performing a uniform quantization of the residual block.

The quantization step is defined by the quantization parameter (QP). This QP regulates
the rate/size of the content and therefore the distortion level. Indeed, for small rate, the
QP needs to be higher and the distortion artifacts become increasingly visible. On the
contrary, small QP values limit the distortion but increase the rate/size of the content.

Note that only the quantization stage makes a compression scheme lossy, as opposed
to lossless compression schemes where the quantization is discarded and no distortion
is introduced. Indeed, quantization is the only non-reversible stage since original pixel
values can not be retrieved after applying it.

2.1.2.3 Entropy Coding

The Shannon entropy is a measure to quantify the amount of information in a signal.
For a random block X with n possible values and where p; represents the occurrence
probability of each pixel value 7, the entropy H is defined as follows:

H(X) = - Zpi-log2(pi) (2.1)
=0

H(X) provides the averaged necessary number of bits to represent each pixel value i of
the signal X . This entropy value H (.X) is the theoretical low limit that entropy coders aim
to achieve. To do so, entropy coders can use Variable Length Codes (VLC) to represent all
the pixel values. Short binary codes represent the most occurring pixel values (with high
p;), while the less occurring ones (with low p;) are represented with longest binary codes.
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In this way, the averaged number of bits used to represent each pixel of the random block
X is reduced and converges to H (X).

To have a block represented with a minimum of bits, it must have a low entropy.
Since the redundant information in the input block is removed by the prediction and the
transform step, the transformed residual block has a lower entropy than the original input
one, furthermore after the quantization step. Indeed, the distribution of the values from the
transformed and quantized residual block is generally narrower than the input block one.
Thus, the pixel values in this transformed and quantized residual block can be represented
with much less bits than the pixel values from the input block.

2.2 HEVC overview

The previous section presented the main stages of the typical hybrid block-based com-
pression scheme in a very general way. Indeed, HEVC is a gigantic tool box with many
algorithms newly introduced or inherited from older standards. Its superior compression
efficiency over earlier standards comes from the assembly of these numerous algorithms,
each providing a small improvement.

A reference software is usually developed along with the video standard definition.
For HEVC, this software is the result of a collaborative work and is called the HM test
model [HM]. Note that, the HEVC standard does not specify the encoding process. The
HM software only provides an example of encoding algorithms and specify the decoding
process.

The HEVC/HM codec structure is illustrated in Figure 2.4. Its structure is based on
the same principles than the ones introduced in Figure 2.3. First, the encoder splits the
video in different Group Of Pictures (GOP) and assignes a type to each of these pictures,
as explained in Section 2.2.1. Once a frame is selected, it is split into square blocks using a
newly introduced partitioning method based on a quadtree, detailed in Section 2.2.2. Each
of these blocks is then predicted with either Intra or Inter prediction. Section 2.2.3 presents
the new prediction features introduced in HEVC. The residual block obtained after the
prediction step is then transformed, scaled and quantized, as explained in Section 2.2.4.
To finish the encoding step, Section 2.2.6 details how the remaining quantized transform
coefficients are entropy coded with other signaling information. Note that, the encoder
also duplicates the decoder to ensure that the prediction process is identical in both cases.
After inverse transformation and prediction reconstruction, the reconstructed images are
filtered to remove commonly appearing artifacts. These filters are described in Section
2.2.5. The decoded pictures are then stored in a buffer for the prediction of future frames.

2.2.1 GOP and Frame Types

Due to the inter prediction, there are dependencies between the encoded frames. There-
fore, to decode the current frame and reconstruct its prediction, it is necessary to decode
all the previously encoded frames. However, when you watch TV or jump to a specific
time in your Blu-ray, the video must start right away. It cannot depends on all the previous
frames. To overcome this problem, the video is decomposed in several identical Groups
Of Pictures (GOP) mostly independent from each other. In this way, the decoding process
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Figure 2.4 — Block diagram of an HEVC encoder with built-in decoder. Source: [SBS14]

can be started from any one of these GOPs. Inside the same video, these GOPs use the
same pattern and thus define a coding period.

Inside these GOPs, the frames can be encoded/decoded in a different order than the
display order, as illustrated in Figure 2.5. The coding order is called Picture Order Count

predict from

Display order: 1 2 3 4 5 6 7 8 9
POC: 1 5 3 2 4 9 7 6 8

Figure 2.5 — Example of hierarchical GOP structure

(POC) [SOHW 12]. This hierarchical arrangement allows to have some frames predicted
from past and future frames (in display order) depending on their type. Indeed, each frame
is associated with one of the following frame type. For sake of simplification, we explain
the behavior in the case of non-multiple reference frames (which is an extension of what
is presented here).
— Frame Type I: Each GOP start with an intra coded frame which is coded inde-
pendently from all other frames. All blocks inside are predicted using only intra
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prediction. In this way, the frame can be decoded on its own since it does not
depend on other frames. However, preventing the use of inter prediction usually
results in poorer prediction of the frame. Thus, I-frames usually have an higher bit
cost than the other frame types.

— Frame Type P: The predictive coded frame encodes blocks using intra and inter
prediction, but only with previously decoded frames. P-frames can only be pre-
dicted from past I-frames or P-frames. The size cost of P-frames is usually lower
than the I-Frames one, thanks to the inter prediction.

— Frame Type B: The bidirectional predictive coded frame also encodes blocks us-
ing intra prediction and inter prediction but with forward and backward frames.
B-frames can thus be predicted from previously decoded I-frames, P-frames and
B-frames. Another advantage of B-frames is the possibility to generate predic-
tion combined from different reference blocks. This prediction mode is called bi-
prediction and it allows the current block to be predicted with two blocks from dif-
ferent frames. Thanks to these features, the size cost of B-frames is usually rather
small. This frame type significantly improves the compression performances.

Note that these frame types were firsly defined in the H.263 standard [H2605]. I-frame
encoding can be used for image compression since the prediction is only performed within
the frame [LHVA16]. Conversely, P and B-frames are typical of video compression since
they require previously encoded frames.

The size of the GOP influences the compression performances. Indeed, the higher the
GOP size, the smaller the number of I-frame, however, the longer the coding period. For
broadcast applications, it is generally advised to use a GOP size that does not exceed 1
second (depend on the GOP size and the frame rate).

Several GOP configurations are proposed in the HEVC reference software [HM]: All-
Intra, Low-Delay and Random-Access [SBS14]. The All-Intra configuration consists in
using only I-frames and therefore provides a video of independently decodable frames.
The Low-Delay configuration allows the use of all frame types, however the encoding
order is the same as the display order. Therefore, no prediction from future frames. This
configuration is useful in low-delay scenarios where decoding the multiple frames of a
GOP, before displaying them, is critical. The Random-Access configuration on the other
hand allows a hierarchical prediction of the frames as depicted in Figure 2.5. This last
configuration is the most efficient in terms of compression performances.

2.2.2 Block Partitioning Structures

Once the frame is selected, it is split into blocks of various sizes. One of the most
efficient tool introduced in HEVC is its block partitioning structure based on a recur-
sive quadtree [KML™12]. Indeed, the HEVC partitioning has a greater flexibility than the
macro-block approach of H.264/AVC and therefore it better adapts to the input frame. The
HEVC partitioning is made with the four following block units:

— The Coding Tree Unit (CTU): It is the largest block unit. The first partitioning
operation consists in splitting the frame into CTUs of the same size. This size is
defined during the encoding process and can take the following values: 64x64,
32x32 or 16x16 pixels [SBS14]. Note that, the largest block size in H.264/AVC
is 16x16 pixels. Indeed, HEVC targets larger video resolutions such as UHD and
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therefore requires a larger block size.
Once the frame is split into CTUs, they are processed iteratively in raster scan
order (from left to right then from top to bottom).

CTU CTU Tree

Depth 0: 64x64

Depth 1: 32x32

Depth 2: 16x16
/ ,."'IJ \ \

b 13-"__1';‘__1"5__1 = Depth 3: 8x8

Figure 2.6 — Example of CTU quadtree partitioning into CUs

— The Coding Unit (CU): Each CTU is further split into CUs using a quadtree
structure, as illustrated in Figure 2.6. The CTU can first be divided into one or
four CUs. Then, if the CTU is divided in four CUs, each of them can be recursively
divided into four smaller CUs. In this quadtree, the size of the CTU is the root node
and the leaves are the CUs. When the depth increases, the CUs size decreases. The
largest CU size is equal to the selected CTU size and the smallest CU size is 8x8
pixels thus, for a 64x64 CTU, the maximum depth is 3. The large CU sizes are
usually selected for uniform areas of the frame while the small ones are more
appropriate to the frame areas with high spatial activity. Each CU leaf is the base
unit for the prediction and transform step. They are processed in a Z-scanning
order, as numbered in Figure 2.6.

— The Prediction Unit (PU): Each CU is then predicted with either Intra or Inter
prediction. Depending on the prediction type, the CU can be further split into
PUs, as illustrated in Figure 2.7. The PU partitioning can be done in 8 ways (two
classical method 2Nx2N and NxN, two symmetrical methods 2NxN and Nx2N,
and four asymmetrical methods 2NxnU, 2NxnD, nLx2N and nRx2N [KML " 12]).
In the 2Nx2N case, the PU size is the same as the CU size. Note that inside a
CU the prediction type is the same for all PUs (either Intra or Inter), however the
prediction mode can be different for each PU (see Sec.2.2.3).

— The Transform Unit (TU): After the prediction step, each CU is then transformed
and quantized. As for the PUs, the CU can be further split into TUs. Similarly
to the CU partitioning process in Figure 2.6, the TU partitioning is made with
a quadtree structure where the maximum size of the TU is 32x32 pixels and its
minimum size is 4x4 pixels. Note that, the TU partitioning is independent from
the PU partitioning.

2.2.3 HEVC Prediction

As explained in the previous section, each CU can be predicted with either intra-
picture or inter-picture prediction and each PU can be predicted with several intra or inter
prediction modes. This section details the different prediction types and modes in HEVC.
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Intra & Inter Inter Prediction
Prediction Only
2N x 2N N x 2N 2N xnU nR x 2N
N x N 2N x N 2N xnD nL x 2N

Figure 2.7 — CU partitionning into PUs depending on the prediction type

2.2.3.1 Intra-Picture Prediction

Intra-picture prediction is briefly introduced in Section 2.1.2.1. It consists in creating a
prediction for the current PU using previously encoded CUs from the same frame. Indeed,
intra prediction exploits the spatial correlations that can occur in a frame. To construct
this prediction, the neighboring decoded pixels of the current PU are used. Due to the
Z-scanning order, the neighboring pixels are located in the top and left CUs and, due to
the quadtree approach, these neighboring CUs can be bigger than the current one, as for
the CU 13 in Figure 2.6. Therefore, some neighboring pixels can be located under or to
the right of the current PU. Figure 2.8(b) illustrates the neighboring pixels used to create
the intra prediction. Note that when these right and bottom pixels are not available, they
are padded from the available ones [SBS14]. In this way, all the intra prediction modes
can be tested.

2 Example: Directional mode 29

5 l |

0: Planar : ] ¢ \
L Neighboring
7z pixels from
_ ———

decoded PUs

1
14 Current PU

(a) (b)

Figure 2.8 — Intra prediction modes in HEVC - (a) 35 modes - (b) Example for mode 29.
Source: [SOHW12]

Indeed, the intra prediction can be derived with several modes. HEVC disposes of 35
intra prediction modes against a maximum of 9 for H.264/AVC: one DC mode, one planar
mode and 33 directional modes. These directional modes, illustrated in Figure 2.8(a),
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consist in propagating the neighboring pixels values in a given direction. An example for
the mode 29 is provided in Figure 2.8(b). The DC mode simply consists in predicting all
the pixels of the current block with the average value of all neighboring pixels. And finally,
the planar mode, designed to prevent the discontinuities along the block boundaries that
can occur with the DC mode, consists in averaging the horizontal (mode 10) and vertical
(mode 26) prediction modes [SBS14].

For each PU, the best? intra prediction is selected at the encoding side and signaled
in the bit stream using only the chosen mode index. At the decoding side, the prediction
reconstruction is determined by this index and reconstructed with the previously decoded
PUs. Note that, unlike the 35 available modes for luma component, only 5 modes can be
used for the chroma components: DC, planar, horizontal (mode 10), vertical (mode 26),
and the direct mode. The direct mode consists in using the same mode as for the luma.
Indeed, the spatial correlation between luma and chroma components is reflected in the
choice of the prediction mode for each component.

2.2.3.2 Inter-Picture Prediction

Conversely to intra-picture prediction which exploits the spatial correlation in still
image, inter-picture prediction takes advantage of the temporal correlations in video. In
HEVC, the inter prediction consists in performing a motion estimation and compensation
at the PU level. The currently encoded PU is motion compensated with a reference block
from a previously encoded frame selected with the motion estimation step. This motion
estimation step is usually performed with a block matching algorithm where several refer-
ence blocks are evaluated and the best one is selected. The chosen reference block is then
signaled in the bit stream by a motion vector and by its frame number to allow the same
motion compensation at the decoding side. In the case of bi-prediction, as introduced in
Section 2.2.1, the prediction is performed using two blocks potentially coming from dif-
ferent frames. Therefore, bi-prediction is signaled with two motion vectors and two frame
numbers.

The motion vector describes the horizontal and vertical displacements of the reference
block according to the position of the current PU with a quarter pixel precision. For full
pixel precision, the reference block is directly available in previously encoded/decoded
frames. However, in half or quarter pixel precision, the reference block needs to be inter-
polated with eight and seven-tap filters for the luma component and four-tap filters for the
chroma components [SOHW12].

As in AVC/H.264, HEVC proposes a Weighted Prediction (WP) algorithm to compen-
sate for strong light changes that can occur in videos. Indeed, this functionality improves
the temporal correlation between the different frames of the video and thus, improves
the inter prediction. Note that, Chapter 5 focuses on the HEVC Weighted Prediction and
describes it with more details.

The main advancement of HEVC for inter prediction, is the method used to predict
the motion vectors. Indeed, the Advanced Motion Vector Prediction (AMVP) of HEVC
consists in predicting the current motion vector with the ones from previously encoded
neighboring PUs (inter-predicted only). Additionally to this AMVP mode, HEVC also
defines two specific other modes: merge and skip. For these ones, no motion vector is

2. given a dedicated criterion
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signaled in the bit stream. It is directly derived from the previously encoded/decoded
neighboring PUs (inter-predicted only). A list of motion vectors is constructed and only
the index of the chosen one is sent in the bit stream. The main difference of the skip mode,
compared to the merge one, is to skip the transform and quantization part. The reference
block is consider sufficient to reconstruct the current PU and no residual data is sent in
the bit stream. The skip mode is very efficient for scenes with static background, where
the collocated blocks are identical.

2.2.3.3 Mode Selection

Either for intra-picture or inter-picture prediction, it is not easy to guess the most
efficient mode among the available ones. Especially since it should be jointly chosen with
the block partitioning structure. The best combination of partitioning and modes is not
the one providing the lower distortion but rather the one optimzing a Rate-Distortion (RD
or RDO for Rate Distortion Optimization) cost [SW98]. This RD cost allows to obtain
the best trade-off between rate and distortion. It is usually noted J and computed as a
Lagrangian function:

J=D+ AR (2.2)

where D is the distortion between the current block and the decoded one (after the trans-
form/quantization step), usually computed with the mean square error (MSE). R is the
rate/size of the block. And A is a Lagrangian multiplier depending on the quantization
parameter.

In the HM software implementation, an exhaustive evaluation among all available
modes and block partitioning structures is performed. Starting from the largest CU size
(same size as the CTU) to the lowest one, the encoder checks all the available intra/inter
modes for each partitioning and select the combination partitioning/modes bringing the
smallest RD cost. However, for the inter prediction, a huge amount of reference block is
available. All of them can not be evaluated, especially with a RD cost. The motion estima-
tion, which consists to find the best motion vector for the current PU, is usually performed
with a block-matching or template-matching algorithm [HCT*06] that evaluates a subset
of the available blocks.

Note that the mode selection is not defined by the HEVC standard and any other
method than a RDO can be used. Indeed, the mode selection is only performed at the
encoding side since the final choice of partitioning and modes is signaled in the bit stream.
At the decoding side, the prediction reconstruction is straightforward and therefore faster.

2.2.4 HEVC Transform and Quantization

After the prediction step, we obtain a residual CU which can be further split in TUs,
as explained in Section 2.2.2. These TUs are then transformed with a Discrete Cosine
Transform (DCT) in order to decorrelate the coefficients of the residual CU. The DCT is
usually preferred in compression standards since it has the advantage of being separable.
It can be computed independently on each line and then on each column of the TUs.
However, in the particular case of 4x4 PU predicted with intra modes, the Discrete Sine
Transform (DST) is preferred since it provides better results in that specific case.
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In comparison to previous standards, the best HEVC improvement in the transform
part, is due to the TU partionning. However, several new tools have also been introduced
to treat and signal the residual information such as mode dependent scanning, significance
map, coefficient level and sign coding [SINT12]. In AVC/H.264, only the zigzag scan was
available to scan the transformed TU, but in HEVC, several scan patterns are available:
diagonal, horizontal and vertical. While the diagonal one is used for all block types, the
horizontal and vertical mode are restricted to intra predicted block.

After being transformed, the TU is scaled to give more weight to lower frequency
coefficients, as advised for the HVS (see Sec.2.1.2.2), and quantized. A fixed quantization
step Qstep 1S used over these transform values and is defined as a function of a Quantization
Parameter (QP) ranging from O to 51:

QP-4

Qstep =25

(2.3)

The quantization step is designed such that every 6 QP values, the quantization step size
doubles. The amount of distortion and the resulting rate/size of the block is controlled by
this QP value. Indeed, as explained in Section 2.1.2.2, only the quantization step intro-
duces the distortion.

2.2.5 In-Loop Filtering

In most cases, the rate/size constraint of broadcast network is rather low and this re-
quires the use of high QP. Therefore, a strong quantization is applied to the content and it
can generate several artifacts such as banding in uniform areas or ringing around strong
edges in the frame [ZZRW14]. These artifacts are characterized by the appearance of
lines that are not present in the original content. Due to the block structure of compres-
sion schemes and that each block is treated differently, the block boundaries are also very
prone to the appearance of artifacts, commonly referred to as blocking since it is possible
to distinguish the blocks in the image. Some examples of these artifacts are illustrated in
Figure 2.9.

(a) R (b)

Figure 2.9 — Compression Artifacts - (a) Blocking - (b) Ringing. Source: [ZZRW 14]

To attenuate these banding, ringing and blocking artifacts, two filters are performed
during the HEVC encoding: the DeBlocking Filter (DBF) [NBF12] applied first, and
the Sample Adaptive Offset (SAO) [FAAT12]. The DBF, already present in H.264/AVC
is designed to reduce the blocking artifacts. It simply consists in performing an adaptive
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filtering to the vertical then to the horizontal block boundaries. Indeed, depending on the
smoothness of these boundaries, there is either no filter, a normal filter or a strong filter.
The SAO, firstly introduced in HEVC, attenuates the banding and ringing artifacts. It
consists in selecting regions of the frame containing one or multiple CTUs where two
SAO types can be applied: Edge Offset (EO) or Band Offset (BO). In both cases, each
sample/pixel is classified into a category (5 for EO and 32 for BO) and a common offset
is then added to each sample depending on its category. The offset is then signaled in the
bit stream for the decoder.

Since SAO and DBF focus on different artifacts, their benefits are additive and they
are usually both applied. They are referred to as In-Loop filters since they are included
in the encoding and decoding loop (See Fig.2.4). Indeed, the reference frames are filtered
before performing the inter prediction.

2.2.6 HEVC Entropy coding

Once a CTU is predicted, transformed and quantized, all the signaling information
(Partitioning, prediction modes, transform, SAOQ, ...) and the remaining coefficients of the
CTU (residual transformed and quantized) are converted into binary data and fed into an
entropy coder.

In HEVC, several entropy coders are used to compress and transmit the binary data
such as Variable Length Coding (VLC) or Context-adaptive binary arithmetic coding
(CABAC). All information at the CTU level is entropy coded with the CABAC while
the high level syntax (HLS) information (for the entire frame, GOP or Sequence) are en-
tropy coded with a VLC. The amount of information of the HLS is much lower than the
CTUs one. For this reason, the CABAC is usually considered as the only entropy coder of
HEVC.

The CABAC was firstly introduced in AVC/H.264 and kept in HEVC since it pro-
vides a higher coding efficiency than a VLC. On the other hand, CABAC requires a larger
amount of processing. It consists in three main steps: binarization, context modeling and
arithmetic coding [SB12]. The binarization is a step where all the information is con-
verted to binary symbol using different methods. Then for a sequence of these binary
symbols, the context modeling keeps track of the probability of each symbol, depend-
ing on a specific context. And finally, the arithmetic coding [WNC87] compresses these
binary symbols using the probability information.

2.3 Encoding techniques for HDR content

All previously presented standards were developed to compress SDR content. Instead
of creating new compression standards to compress HDR content, the main strategies has
been to adapt these content to the legacy compression standards such as JPEG or HEVC.
To do so, several methods were proposed and can be classified in two categories. The first
category, detailed in Section 2.3.1, includes high bit-depth solutions that focus only on
HDR and are therefore only compatible with new decoders. The second category, detailed
in Section 2.3.2, are the backward compatible approaches where the HDR content is trans-
formed into an SDR one and thus compatible with legacy decoders and SDR displays.
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2.3.1 High Bit-Depth HDR Compression

SDR content are always gamma corrected (See Sec.1.3.1.1), while HDR content are
usually considered in linear-light values (in nits). As explained in Section 1.3, an efficient
storage of HDR content requires to be transformed with an OETF. The high Bit-Depth
HDR compression methods share many similarities with HDR image storing since they
also consists in converting the linear-light HDR content into an uniform integer repre-
sentation using an OETFE. Once the HDR content is represented with 10, 12 or even 14
bits, it can be compressed with legacy SDR codecs supporting high bit-depth, such as
AVC/H.264 or HEVC (See Sec.2.1.1).

Multiple solutions based on this concept were proposed such as [MKMSO04] where the
HDR content is transformed on a 11 bits representation and encoded with AVC/H.264.
Another example is the solution provided by [MT10] which proposes to use the logluv
OETF [Lar98], described in Section 1.3.2.3, to represent the HDR content with 14 bits
and also encode it with AVC/H.264. These solutions are not optimal since the chosen
OETF is not optimal. Moreover, in [MT10], the HDR content is represented with 14 bits
while in Section 1.3.3 we demonstrated that 12 bits is enough with other OETFs.

More recently, an ad-hoc group was created by the ITU-T and the ISO/IEC to evaluate
the possible extensions of HEVC for HDR and WCG compression. Many issues were
addressed in this group and a Call for Evidence (CfE) was presented [LFH15] to determine
if the current compression standards were sufficient for HDR content. In this CFE, the
linear-light HDR content is transformed as described in Figure 2.10. The process is very

PQ-ST2084 Rt(iB Quantiz. 4 4 4 HEVC 1
OETF i i
Y'CbCr 10 bits a: 2 0 encoding

Transmission

Displayed | pq_sT2084 YCbcr | 4}20:0 HEVC
HDR values EOTF RGB L A:4:4 decoding

Figure 2.10 — Standardized HDR compression scheme
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similar to the one for SDR compression. The quantization is made with 10 bits instead of
8 and the gamma correction is replaced by the PQ-ST2084 OETF [MND12] presented in
Section 1.3.3.1. As aresponse to the CfE, many other OETFs were proposed, as explained
in Section 1.3.3.2. Only the HLG [BC15b] was retained and standardized in the television
Recommendation 2100 [ITU17].

These methods efficiently compress the HDR content however, they do not address
backward compatibility with legacy SDR displays. Indeed, most consumers are equipped
with SDR displays, that cannot decod HDR content compressed with new standards. Since
the consumers will slowly renew their display to an HDR one, it is of great importance
to deliver an HDR content that can be decoded by both SDR and HDR displays/decoders.
The following section described the backward compatible HDR compression schemes.
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2.3.2 Scalable and Backward Compatible HDR Compression

To address both SDR and HDR displays the simplest solution consists in performing
an independent coding of both SDR and HDR contents. This method is called simulcast
but it is clearly not optimal in terms of bandwidth utilization. Indeed, the SDR and HDR
content share many similarities and therefore the two compressed contents contain many
redundant information.

A better solution consists to use backward compatible or scalable compression solu-
tions, as illustrated in Figure 2.11. The HDR and SDR contents are jointly compressed,

HDR displays

( ) x
linear-light HDR "‘

HDR content Backward decoder

Compatible \ /

HDR )

_SDR content | Compression Legacy SDR

decoder

E—

SDR displays

Figure 2.11 — HDR backward compatible compression

thus resulting in better compression performances. At the decoding side, both HDR and
SDR displays/decoders can be addressed with the same bitstream. Note that with this
method, the HDR and SDR contents come from different input, however the SDR content
is usually created from the HDR one with TMOs (See Sec.1.4.2) or by manual grading.

Many backward compatible or scalable compression scenarios exist. Some solutions
consider that the SDR and HDR input are supplied separately, such as in [MEMSO06],
while other methods [OAQ7, BDLCO08] only use an HDR input which is tone mapped to
generate the SDR content as illustrated in Figure 2.12. This latter approach is the most
commonly studied in the literature, especially because the TMO can be designed for dif-
ferent purposes. The compression scheme in Figure 2.12 summarizes the typical backward
compatible approach. After the TMO, the SDR content is encoded with a legacy SDR en-
coder to generate an SDR base layer compatible with SDR displays. To predict the HDR
content, the SDR content is decoded, inverse tone mapped and subtracted from the HDR
one. Note that to be invertible the TMO needs to be a global one (See Sec.1.4.2.1). We
obtained a residual layer which can be encoded and send along with metadata containing
the inverse TMO information. At the HDR decoding side, the SDR content is decoded
and inverse tone mapped with the metadata, then the enhancement layer is decoded and
used to reconstruct the HDR content.

Other backward compatible methods replace the inverse tone mapping box by a divi-
sion like in JPEG-HDR [WSO06] or in [LK12]. In this method based on the JPEG standard,
each pixel value of the HDR image is divided by the pixel value of the SDR image. The
enhancement layer thus contains a ratio image instead of a residual. This approach has the
advantage to be compatible with non invertible TMOs.

Several solutions only encode and send the base layer, thus discarding the residual.
In this case, the enhancement layer only contains the inverse TMO metadata. All these
solutions differs by the used TMO. Indeed, some can be designed to preserve an artistic



66 Chap 2 - HDR Compression and Evaluation

Residual -

HDR content + T\
.kﬁ/ encoder HDR Enhancement
L _\\‘—; Layer
Tone

Mapgping Inverse
TMO

Operator

_/

Fy

Legacy SDR
encoder

SDR content SDR Base Layer

Figure 2.12 — Scalable and backward compatible compression scheme

intent producing a visually pleasing image [RSSF02, MDKO8], while other can be de-
signed to improve the compression performances [MMM™11]. These two goals are not
always compatible and a compromise must be made.

Note that it’s difficult to define a clear difference between HDR scalable compression
and HDR backward compatible compression. The term scalable is usually reserved to the
solutions considering the residual/ratio image in the enhancement layer.

2.4 Quality Evaluation

The quality evaluation is necessary to measure the amount of distortion brought by an
encoder and its algorithms. It allows to assess the efficiency of compression standards or
more simply the compression performances of a specific algorithm. One video compres-
sion standard/algorithm can be considered better than another one, if it provides a better
quality for the same compressed rate/size or conversely a lower rate for the same quality.

The most evident way to evaluate image or video is to use subjective experiments as
defined in [ITUO7, ITUOS]. In these methods, a panel of human observers assess com-
pressed contents then the results are averaged in the form of a Mean Opinion Score
(MOS). In this way, we obtain an estimation of the perceived distortion. These methods
remains the most reliable, however they are generally impractical for multiple reasons.

Indeed, performing a subjective experiment implies to have a significant number of
viewers and it takes a long time in set up and realization. In practice, new algorithms
are tested with many parameters variations and on large video sets, thus needing many
of these experiments. Therefore quality metrics quickly calculable are necessary. Such
metrics are also referred to as objective metrics since they are more determinist than the
subjective ones. Indeed MOS can slightly change depending on the viewer panel.

Objective quality metrics can be based on simple image difference or simulate the
behavior of the HVS to detect the perceptual differences between the compressed and
uncompressed content. The latter ones have different levels of precision depending on
how the HVS is modeled. Note that, all these metrics only modelize some aspects of the
HVS and not its entirety.

In this section, we start by a brief overview of the most used SDR quality metrics in
Section 2.4.1. Then, we explain how SDR quality metrics can adapt to HDR contents and
we also present a popular metric dedicated to HDR in Section 2.4.2.
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2.4.1 SDR Metrics
2.4.1.1 PSNR

The most straightforward metrics, to evaluate the differences between the compressed
and uncompressed image, are the pixel-based ones such as the MSE or its derivative the
Peak Signal to Noise Ratio (PSNR). The MSE is defined as follow:

S, (Teli) — Is(i))
N

MSE = (2.4)
where NV is the number of pixels, /g the source image and /- the decoded compressed
one. The PSNR, expressed in decibels (dB), is then derived with the following formula:

2~ 1)
where nb is the bit depth of the SDR signal, so usually nb = 8. In this case, the PSNR
value are typically around 30 dB and 50 dB where the higher one is the better. Indeed, if
the MSE tends to 0, the PSNR tends towards infinity.

The PSNR is the most commonly used metric to measure the distortion brought by
lossy compression. However, the MSE and PSNR metrics have rather limited considera-
tion for the HVS. The principal aspect is to consider a perceptually uniform representation
such as gamma correction (see Sec.1.3.1.1) and color opponent spaces (see Sec.1.3.1.3).
In HEVC and previous standards, the PSNR is computed with the Y’CbCr color space, in-
dependently for the three components and averaged with different weights. Since chroma
components are subsampled and since the HVS is more sensible to variations in the luma
component (see Sec.1.1.5.4), the PSNR is weighted as follows:

1
PSNRycoc: = 5 - (6.PSNRy: + PSNRe, + PSNRc, ) (2.6)
Note that for videos, the PSNR or other metrics are computed independently for each
frame and averaged for the entire sequence. Few metrics are dedicated to video and they
are rarely used in practice.

24.1.2 SSIM

The Structural SIMilarity (SSIM) is one of the most popular and influential quality
metrics in recent years. It is a structure based metric designed to provides a better correla-
tion with the MOS results than the PSNR [WBO02]. In contrast with the pixel-wise PSNR,
the SSIM is computed on blocks of the image displaced pixel by pixel. This method al-
lows to detect structural or contrast changes. Since the HVS is specialized in detecting
structural information, this metric can well approximate the perceived image quality.

Considering = a block in the compressed image and y the colocated block in the source
image, the SSIM for the block is:

(2papty + €1)(202y + c2)

SSIM(x, v) =
oY) = e o) (02 + 07 + )

(2.7)
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where 1, and p, are the average value of the blocks « and y, o2 and O'Z the variance of
each block, o, the co-variance, c1 = (0,01.(2"" — 1)) and ¢2 = (0,03.(2"* — 1)). The
typical size of the block x and y is 8x8. All block SSIM values are then averaged for the
entire frame. As for the PSNR, the SSIM is computed independently for the three Y’ CbCr
components and averaged with the same weights.

24.1.3 Bjontegaard Computation

It’s difficult to compare compression standards or algorithms using only the distortion.
Indeed, it implies to have two images/videos encoded with the same rate and see which
encoder introduces the least distortion. In practice, it is extremely difficult to have two
contents encoded with different encoder and with the exact same rate.

To overcome this problem, Bjontegaard [BjoO1] proposed to compute an average dif-
ference between Rate-Distortion (RD) curves. Instead of comparing two encoders with
one rate, the comparison is made with several ones. The idea is to encode the content with
both encoder at different rates and to compute the resulting distortions in each case. The
RD points are then plotted on a 2D graph, as illustrated in Figure 2.13 and the curves
are plotted with a 3rd order polynomial interpolation. The gain from one encoder over
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Figure 2.13 — Bjontegaard computation in rate and distortion

the other one is then computed as an averaged distortion or rate based on the area be-
tween the two RD curves. This area can be computed in two ways, either at equivalent
rate or at equivalent distortion. In the first case, the BjontegaarD rate (BD-rate) gain is
computed between the points R1 (maximum of the minimum rates for each encoder) and
R2 (minimum of the maximum rates for each encoder) and for the BD-distortion, the
gain is computed between the points D1 (maximum of the minimum distortions for each
encoder) and D2 (minimum of the maximum distortions for each encoder).

The Bjontegaard computation is widely used for the evaluation of compression stan-
dards or algorithms. Indeed, this method allows to make comparisons at different rate
levels. In some cases, new algorithms only improve the RD performances at low or high
rates. Therefore, computing the distortion at only one rate point does not reflect the im-
pact on the compression. Another advantage of this method is to adapt to every distortion
metric such as the PSNR or the SSIM.
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2.4.2 HDR Metrics
2.4.2.1 Based on Legacy SDR Metrics

As stated in Section 2.3.1, the main difference between HDR and SDR content is that
the HDR one provides linear-light values (in nits), while the SDR one is always corrected
with an OETF (gamma correction). Directly apply SDR metrics to the linear-light HDR
content provides distortion values poorly correlated to the human quality perception. The
first methods to evaluate the quality for HDR content were based on multiple exposures
techniques. It consists in decomposing the HDR images in multiple SDR ones with dif-
ferent exposure values, and averaging the SDR distortions. These methods were more
efficient than computing a distortion on the linear-light HDR content but they remains
complex and unnecessary.

Indeed, as for HDR compression, legacy SDR metrics can be used on perceptually
uniform HDR representations, such as the ones described in Section 1.3.3. This method
was proposed in [AMSO08] where the compressed and uncompressed HDR images are
transformed with an OETF in a Perceptually Uniform (PU) representation and evaluated
with the PSNR or the SSIM. These metrics are refereed to as PU-PSNR or PU-SSIM.
Other ones based on the same concept exist, such as the logPSNR, the PQ-ST2084 PSNR
(refereed to as HDR-PSNR in the following chapters), or the tPSNR advised in the HDR
CFE [LFH15]. The tPSNR combines two OETFs, where one of them is the PQ-ST2084
therefore, tPSNR and PQ-ST2084 PSNR are relatively similar.

These metrics are efficient, however they suffer the same defects than SDR metrics.
Indeed, PSNR and SSIM do not account for many properties of the HVS. With the advent
of HDR, a new metric based on many features of the HVS was put in light, the HDRVDP2,
which is discussed below.

2.4.2.2 HDRVDP2

The HDRVDP2 [MKRH11] is a quality metric accurately measuring the early stages
of the HVS. It is based on a comprehensive model of discrimination and detection, which
has been calibrated and validated on datasets of psychophysical experiments [Man16].
Therefore, the metric is rather complex and includes many steps as illustrated in Figure
2.14.
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The HDRVDP2 accounts for many vision phenomena, such as scattering of the light
in the eye and optics (glare), photoreceptors vision, luminance masking, spatial contrast
sensitivity, contrast masking, neural noise in visual channels and contrast consistency
[Man16]. This metric allows the detection of many artifacts ignored by most of standard
metrics however, it is not computationally efficient and it requires several additional input
such as the display brightness, the viewing distance, and the display size. In the end, the
HDRVDP?2 provides a visibility map (F,,qp and Py in Figure 2.14) where each pixel is
associated with the probability of detecting a difference, and a global quality score (Q 05
in Figure 2.14) between 0 and 100 (the higher the better).

Most studies show that the HDRVDP2 outperforms other metrics such as the PU-
PSNR or PU-SSIM however, the test set is usually limited and it is therefore difficult to
draw general conclusions [Manl16].

2.5 Summary

This chapter introduced the motivations behind content compression and the basic
functioning of popular compression standards. The most recent HEVC standard is then
further detailed with some of its major improvements. While the standardized HDR com-
pression scheme remains very similar to legacy SDR compression, backward compatible
techniques introduces several interesting concepts. This latter method must be empha-
sized to allow a smooth transition from SDR to HDR displays. Finally, several solutions
are presented to assess the quality of decoded SDR and HDR contents.

The following chapters focus on backward compatible compression solutions. Several
works from the literature are more precisely described and compared with the proposed
work.



Chapter 3

Rate-Distortion Optimization of a Tone
Mapping with SDR Quality Constraint
for Scalable HDR Compression

As explained in Section 1.4.2, HDR contents need to be tone mapped to be visualized
on legacy SDR displays. Many tone mapping operators (TMO) have been developed to
convert an HDR content into an SDR one, with the goal of preserving the perception of the
content or the artistic intent. One example of TMO is the photographic tone reproducer
(PTR) [RSSFO02], shown to be one of the two TMO that consistently performs well and to
be the best in terms of visual quality and image integrity [LCTS0S5, SOD(MEMS12].

In this chapter, we consider the problem of SDR backward compatible coding of HDR
content with two layers. In the proposed compression scheme, as introduced in Section
2.3.2, the input HDR content is first tone mapped with a global TMO into an 8 bit SDR
version which is encoded with a legacy SDR codec and send as a base layer. The decoded
SDR content is then inverse tone mapped and subtracted from the input HDR one to yield
an enhancement layer containing the HDR residue which is separately encoded. While
the TMOs introduced in Section 2.3.2 aim at preserving the perception and artistic intent
when converting the content, one can also try to design the TMO in order to optimize the
compression efficiency. The question of optimizing TMOs for compression purposes has
already been addressed in the literature [MMM™ 11, LVCD14, PGT14]. However, in all
these works no enhancement layer is considered. However, due to the similarities with our
context, we first review this work.

The authors in [MMM™ 11] design a TMO parameterized by a piecewise linear curve
which minimizes the distortion between the HDR content and the inverse tone mapped
HDR content. In their work, the HDR distortion is computed as the MSE in a roughly
perceptually uniform representation (logarithmic values, See Sec.1.1.3 and Sec.1.3.3) of
the HDR luminance values. A closed form expression is then derived for the slopes of the
TMO curve as a function of the HDR histogram.

In [LVCD14] and [PGT14], the authors notice that a TMO minimizing only the HDR
distortion is not optimal in terms of Rate Distortion (RD) performances. Indeed, the ap-
proach of [MMM™ 11] can increase the spatial complexity of the generated SDR content
and thus requires a higher rate. For this reason, the [MMM™11] approach is extended in
[LVCD14] and [PGT14] in order to minimize a RD cost, considering the rate cost of the
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SDR layer only. In [PGT14], this rate cost is considered proportional to the entropy of
the generated SDR content while in [LVCD14], it is considered as a function of the total
variation [ROF92] of the SDR content.

Optimizing the TMO only for compression purposes may yield SDR content in which
the perception and artistic intent of the HDR content is not preserved. Therefore, [KD13]
propose to trade-off between compression performances and perceptual quality of the
SDR content. To do so, they extend the HDR distortion minimization of [MMM™11] by
adding a constraint on the MSE between the tone mapped SDR signal and a reference
SDR content. However, as for MMM ™ 11], improving the compression performances by
considering only the HDR distortion is not optimal in terms of RD performances.

In addition, all the previous works propose TMOs optimized in a backward compatible
compression scheme where the HDR residual is discarded. They consider the inverse tone
mapped HDR content to be of sufficient quality for HDR display. However, this is not the
case when the base SDR layer is represented on only 8 bits. Indeed, the compression ar-
tifacts generated in the SDR content may be amplified in the HDR one, depending on the
slopes values of the TMO. Therefore, it is important to consider a scalable compression
scheme in which the HDR residue is encoded when optimizing the TMO. In [MMNW13],
the tone mapping curve is optimized in order to minimize a total (base plus enhancement
layers) bit rate with a constraint for the perceptual quality of the SDR content. Unfortu-
nately, their constraint for the base bitrate bring no or negative contribution to the coding
performance and is therefore discarded.

The SDR perpceptual quality constraint in [MMNW13] is based on the same prin-
ciple as in [KD13] and consists in a MSE distance between the uncoded tone mapped
SDR signal and a reference SDR content. However, in [MMNW 13], they chose a specific
weighting in their optimization problem that leads to a varying perceptual quality of the
SDR signal depending on the input HDR signal.

In this chapter, we present a new TMO that optimizes the total distortion of the HDR
scalable coding scheme by taking the rate of both the base and enhancement layers into
account, under a constraint on the perceptual quality of the compressed SDR signal. We
first show that, given a constraint on the sum of the SDR and HDR rates, at high rates, the
optimal TMO that minimizes the HDR distortion only depends on the SDR signal rate.
It is then shown that this optimization problem can be decomposed into two consecutive
minimization steps: (i)- a minimization of the enhancement layer variance depending on
the TMO and the base layer bitrate; (ii)- and a minimization of the total HDR distortion
depending on the rate repartition between the base and the enhancement layers. Part of
this chapter has been published in [GRG" 16].

The remainder of this chapter is organized as follows. Section 3.1 presents the se-
lected backward compatible HDR compression scheme and the model considered in this
Chapter. The tone mapping optimization problem is then formalized in Section 3.2 along
with the proposed models for each term. This problem is then simplified using several
assumptions detailed in the same section. The TMO is then parameterize as a piecewise
linear function to obtain the solution expressed in Section 3.3. Then, Section 3.4 presents
the experimental results in comparison with several other TMOs using either a single or
dual layer configuration. Finally, the conclusions are drawn in Section 3.5
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3.1 Proposed Scalable Compression Scheme and Modeli-
sation

3.1.1 HDR uniform representation and SDR gamma correction

In this section, we present the chosen scalable or backward-compatible compression
scheme. As explained in section 2.3.2, it consists in compressing HDR content with two
layers by using a tone mapping and inverse tone mapping process. Indeed, a residual is
computed between the input HDR image and the inverse tone mapped one, instead of a
ratio image computed by dividing the input HDR image by the SDR one. However, several
methods can be used, as explained below.

Since classical TMOs such as [RSSF02] operate on linear light HDR values, the clas-
sical backward compatible compression scheme [OA07, BDLCO8] treats linear light HDR
values. This scheme is illustrated in Figure 3.1. In this case, the TMO process usually in-
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Figure 3.1 — Classical Backward-compatible compression scheme

cludes a gamma correction step to account for the SDR display response (see Sec.1.3.1.2).
After the inverse Gamma and inverse TMO step, the residual is computed using linear
light values. However, the compression of this residual is really complex. Indeed, since
HDR images are not interpreted with perceptually uniform representations, the residual
values are not linked to the human eye contrast sensitivity (See Sec.1.1.3 and Sec.1.3.3).
For pixels with high luminance values in the HDR images, the corresponding residual
values can be more strongly quantized than for low luminance values. Since the lumi-
nance level information is lost in the residual image, it is therefore difficult to compress it
efficiently. Note that, this problem also transposes to compression schemes using a ratio
image instead of a residual.

In contrast, recent TMOs, designed for compression purposes [MMM™*11, MMNW 13,
KD13], start by transforming the linear light HDR content with an OETF (see Sec.1.3.3)
into a perceptually uniform integer representation, as illustrated in Figure 3.2. In this case,
since an OETF correction is already applied to the HDR content prior to the TMO, the
classical gamma correction for the SDR content is no longer needed. But more impor-
tantly, after the inverse TMO, the residual computation is made in perceptually uniform
representation. Therefore, this residual can be quantized uniformly and compress more
efficiently.

However, the OETF used in [MMM™ 11, KD13] is a logarithm (log,¢) and the one used
in [MMNW13] is a gamma function. As demonstrated in Section 1.3.3.1, these OETFs are
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Figure 3.2 — Backward-compatible compression scheme for optimized TMO

clearly not perceptually uniform. Instead, the proposed compression scheme uses the PQ-
ST2084 OETF [MND12] and a quantization on 12 bits. As explained in Section 1.3.3.1,
this prior quantization has no perceptual impact on the HDR content.

A simple alternative to the compression scheme illustrated in Figure 3.1 is depicted in
3.3. This solution allows to use classical TMO, that operates on linear light HDR values,
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Figure 3.3 — Adaptation of the Classical Backward-compatible compression scheme

and to have a uniform representation of the residual.

In the following, HDR content is assumed to be in a perceptually uniform integer
representation using the [MND12] OETF. For the sake of equality, the TMOs proposed in
[MMM*11, MMNW 13, KD13] are computed with this same OETF instead of the original
non-optimal one they used.

3.1.2 Compression Scheme Model

This section presents the compression scheme model illustrated in Figure 3.4. The
HDR input content consists of a sequence of luminance (or chrominance) pixel values.
Therefore, we model the HDR signal as a random process denoted X that generates se-
quences of luminance (or chrominance) values. For ease of presentation, and when there
is no ambiguity, we omit the pixel index and use the same notation for a random process
and one random variable of the process.

Then, the HDR signal X is tone mapped (3.1) and quantized on 8 bits. It leads to a
SDR signal with smaller dynamic range (See Fig.3.4), also modeled as a random process,
denoted Y. The TMO, denoted F'is global (one HDR value X leads to one SDR value
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Y') and is invertible such that F'~! exists. The SDR is then compressed with a legacy SDR
encoder, send as a base layer, and decoded to reconstruct a distorted SDR signal denoted
Y. Ep represents the quantization error brought by the SDR encoder and is defined by
(3.2).

To compute the enhancement layer, the decoded SDR signal Y is first inverse tone
mapped to yield a distorted HDR signal X (3.3), and a residue Z is computed (3.4).
Finally, this residue is compressed and the quantization error on the residue is Fy, (3.5).
Therefore, the encoding process can be summarized as follows:

Y = F(X) (3.1)
E, =Y -Y (3.2)
X =F4Y) (3.3)
Z=X-X (3.4)
Eyn=27-2 (3.5)

where (3.1) corresponds to the Tone mapping, (3.2) to the compression error on the SDR
signal, (3.3) to the inverse tone mapping, (3.4) to the HDR residue computation and (3.5)
to the encoding error on the residue.

The displayed content depends on which screen is available at the receiver and on
which bitstreams are received. If the available screen is an SDR one, then only the base
layer bitstream is decoded and the displayed video is Y. If the available screen is HDR,
there are two use cases. If only the base layer bitstream has been received (due to band-
width limitation for instance), then the displayed video is X. And if the viewer receives
both the base and enhancement layer bitstreams, then the displayed video is:

X=X+7Z (3.6)
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3.2 Problem Statement and assumptions

3.2.1 Problem Statement

Knowing the compression, the goal is now to find the TMO F' that minimizes the
distortion of the HDR signal Dy pp for a given rate budget. Indeed, the base and enhance-
ment layers are encoded at rate Rgpr and Ry pr and the optimization is performed under
a global rate budget R i.e. under the constraint that Rspr + Rypr < Rp. The RD func-
tion being decreasing [CT06, Ex10.5] with the rate Rz, the minimum distortion is obtained
when the rate is maximal i.e. when the rate budget is fully utilized. Therefore, the rate
inequality constraint can be turned into an equality constraint.

Most of the algorithms in the literature assume that the optimal TMO does not depend
on the encoding distortions. The originality of this work considers these distortions in the
global minimization problem. F; and Ey values depend on the rate repartition among
the two layers, impacting the global R-D performance. Depending on the total rate and
chosen distribution, the distortions F;, and Ey take on different values and impact the
R-D performances. Their influence is demonstrated in the proposed optimization problem
in Section 3.2.4.

As in [KD13] and [MMNW 13], this tone mapping optimization is performed while
computing the perceptual quality Dgpr rpr of the resulting SDR image such that it does
not exceed a maximum value Dy. This SDR quality constraint is computed as a distortion
between the compressed SDR signal Y and a provided SDR signal obtained with another
TMO G that preserves the perception and artistic intent of the HDR content. On the whole
the optimization problem can be stated as:

min DHDR (37)

F,Rspr,RuDR
Dspr rer < Dy
S.t. RSDR + RHDR = RT
Rspr > 0, Rupr = 0

To solve this optimization problems, we now express the distortions Dy pr and Dspr rer
as a function of the TMO curve F' in the following sections.

3.2.2 Proposed HDR distortion model

As explained in Section 3.1.1, X is considered as a uniformly perceptual representa-
tion. Thus, the Mean Square Error (MSE) is a relevant metric to estimate the quality of
the HDR signal and therefore:

Dupr = E[(X — X)?] (3.8)

One originality of the proposed work lies in the fact that (3.7) explicitly takes into ac-
count the compression of the enhancement layer. Indeed, this encoding is neglected in
[MMMT*11, KD13, MMNW 13] since the HDR distortion is measured between the origi-
nal (X) and inverse tone mapped (X) HDR signal. First, this causes a mismatch since the
TMO is optimized in order to have the best inverse tone mapped HDR X, which differs
from the HDR signal that is available at the receiver X. Second, the rate to encode the
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enhancement layer is not used as a parameter that can be optimized in order to perform a
rate allocation between the base and enhancement layer.

To further detail the HDR distortion term (3.8), note that, the RD performances for the
compression of the SDR signal (3.2) and of the HDR residue (3.5) is well approximated
by its Shannon bound. Therefore:

E[(Y —Y)?)] = -0 - 272Hsor (3.9)
Z)? = B - 0% - 27 2Rupr (3.10)

where o and ¢% are the variances of the SDR signal Y and of the residue Z, and where
« and (3 are constants depending on the type of distribution and quantizer. Indeed, this
model holds for many quantizers and in particular for high rate scalar quantization with
variable length codes of i.i.d. but also Markovian processes [WS11, Chap. 5]. Therefore,
we have used this model as an approximation for the compression of data with HEVC
although HEVC is not strictly a scalar quantizer.

Now, by construction of the two-layer compression scheme, we have that the quan-
tization error on the residue equals the error on the HDR signal. Indeed, from (3.4) and
(3.6), we have X — X = Z — Z. Therefore, from (3.8) and (3.10):

Dupr =E[(Z — Z)’] = - o3 - 272uvn (3.11)
Using equation (3.1) to (3.4):

X -FY) (3.12)
X-F

Z =
A (F(X)+EL) (3.13)

Following the first order Taylor expansion of the function F' as in [PGT14], we have at
high rates (i.e. when the error £}, takes small values):

Zm X = (FUF(X)) + By FV(F(X))) (3.14)
Z~—Ep FY(F(X)) = P:(E;) (3.15)

where ' stands for the first derivative.

We further assume that the quantization error is independent of the compressed signal.
This is a usual assumption, merely made for convenience. However, this can be justified
by the fact that the optimal quantization of an infinite length Gaussian signal is achieved
when the quantization noise is Gaussian and independent of the compressed signal [CTO06,
Chap. 10]. From the independence between the residue £, and X, and assuming that /
has zero mean, we have:

E[E}]

=B e

(3.16)

Another originality of the proposed work lies in the fact that the quantization error
E', that depends on the rate, has a significant impact on the overall R-D performances.
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State-of-the-art algorithms do not account for this distortion and therefore are sub-optimal.
Indeed, the encoding of Y (3.9) yields:

E[E?] = a - oy - 27 ispr (3.17)

—a-E [(F(X) - E[F(X)])Q] . 9~2Rspn (3.18)

Finally, from (3.16) and (3.18), the HDR distortion (3.11) can be rewritten as a func-

tion of only the HDR image X, the tone mapping F' and the rates of both layers Rspr
and R HDR-

Duypr=af-E [(F(X) . ]E[F(X)])2] . ]E[F’(X)d] .9~2(Rspr+Rupr) (3.19)

3.2.3 Proposed SDR quality constraint model

As for [KD13] and [MMNW 13], we chose to measure the SDR perceptual quality
constraint Dgpr rppr of the resulting SDR signal using a MSE with a reference SDR
signal G(X) obtained from the HDR image X with G a TMO preserving the perception
and artistic intent. However, we choose to compute this MSE with the coded SDR sig-
nal Y while previous works use the uncoded SDR signal Y. Indeed, we noticed that the
SDR quality constraint is usually not respected after the encoding step in [KD13] and
[MMNW13], especially at low bitrates. Therefore:

Dspr_rer = E[(G(X) = Y)?] (3.20)
Using equation (3.1) and (3.2):
Dspr rer = E[(G(X) — F(X) — EL)% (3.21)
Reusing the independence assumption introduced in (3.16), we obtain:
Dspr_rer = E[(G(X) — F(X)))] + E[(-EL)?] (3.22)

And finally, with (3.18), the distortion between the SDR signal and the reference can be
derived as:

Dsprnpr = E | (G(X) = F(X))*] + aE [(F(X) — E[F(X)))] 27272 (323)

3.2.4 Optimization Problem

Using the proposed models for the HDR distortion (3.19) and for the SDR quality
constraint (3.23), the optimization problem (3.7) becomes:

min  af-E [(F(X) —JE[F(X)]ﬂ CE[F'(X)7?] - 2 2RsprtRanr) (324)

o E [(G(X) . F(X))Q] +aE [(F(X) - ]E[F(X)])Q] .9=2Rspr < P,

s.t. Rspr + Rupr = Rr
Rspr > 0, Rgpr > 0



3.2. PROBLEM STATEMENT AND ASSUMPTIONS 79

Lemma 1. Consider a backward compatible compression scheme to encode a HDR signal
into two layers (SDR and HDR), while preserving a small distortion between the SDR
signal and a reference. A rate constraint is added on the sum of the rates for the SDR and
HDR layers. At high rates, the optimal tone mapping F that minimizes the HDR distortion
only depends on the rate needed to encode the SDR signal.

Proof. From (3.19) and the sum rate equality constraint Rspg+Rypr=Fr, the optimiza-
tion problem (3.24) is equivalent to first optimizing the tone mapping for each Rspr:

F*

Rspr

— argmin [(F(X) - ]E[F(X)])2] R[F(X)7] (3.25)
stE [(G(X) - F(X))Q} +aE [(F(X) - E[F(X)]ﬂ L2 2Rspr < Py
and then finding the optimal rate allocation between the base and enhancement layers:

min E [(F;;SDR(X) . E[FESDR(X)])Q] E[Fj, (X)) (3.26)

Rspr

s.t. 0 < RSDR < RT

The first optimization problem (3.25) consists in minimizing the distortion between
the HDR content and the inverse tone mapped HDR content under a constraint for the SDR
perceptual quality. This problem is equivalent to the ones solved in [MMM™11, KD13,
MMNW13], i.e. it searches to minimize the variance J%, but with a different model. For
clarification, a comparison is made in the following section. The second optimization
problem (3.26) minimizes the distortion between the HDR content and the reconstructed
HDR content using two layers.

3.2.5 Comparison with previous related works

As highlighted in previous section, the competitive methods are the following ones
[MMMT*11, KD13, MMNW13]. None of these previous method considered the separa-
tion in consecutive steps and they didn’t perform the second one (3.26). However, the
optimization problem they solved is equivalent to the first step (3.25) of the optimization
problem (3.24).

Indeed, for MMM ™ 11], the TMO is designed to minimize the distortion between the
HDR frame and it’s inverse tone mapped version:

F* = arg mFin Dupr(X — X) (3.27)

They do not account for the SDR perceptual quality nor an enhancement layer. And what-
ever the targeted rate for the base layer, they use the same Tone mapping in their com-
pression scheme.

The second method [KD13] proposes to minimize the exact same HDR distortion than
[MMM*11] under a quality constraint for the uncoded SDR content:

F* = argmin Dypr(X — X) (3.28)
S.t. DSDR_REF(G<X) — Y) < D[)
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The resulting solution does not account for an enhancement layer and as previously the
same TMO is used for all targeted base layer rates. Furthermore, since they did not end
up with an analytical solution to this problem, they considered a sub-optimal solution.
The third method [MMNW 13] improves the [MMM ™ 11] optimization problem by ac-
counting for the SDR quality constraint. However, they simplify the constrained problem
into an unconstrained one with lagrangian tuning and therefore choose an operating point:

F* = argmin 5+ Dypr(X — X)+ 1 Dspr_rer(G(X) —Y) (3.29)

Section 3.4 shows that this simplification can lead to various results for the SDR percep-
tual quality. In their model, they considered an enhancement layer, but the expression of
the HDR distortion remained the same, and the solution consists only in performing the
TMO optimization, like in the proposed first step (3.25). As for the previous methods,
they use the same TMO whatever the targeted base layer rate in the compression scheme.

In the first step of the proposed method (3.25), the expressions for the HDR distortion
and SDR quality constraint differ from the previous methods since they account for the
error £, introduced by the SDR encoder and adapt to the base layer rate.

As demonstrated in Lemma 1, the consideration of an enhancement layer consists in
adding a rate allocation step to the minimization problem. None of the previous method
considered the separation in consecutive steps but in the in the experimental tests (see
Sec.3.4), for fair comparison, we performed the best rate allocation for all methods.

3.3 Proposed Solution and TMO parameters

3.3.1 Piecewise Linear Tone Mapping

To solve the optimization problem (3.25), the TMO F'(X) is approximated as a contin-
uous piecewise linear function (3.30), as in [MMM™ 11, MMNW 13, KD13]. Let z denote
a realization of X. Then Vx € [z, zj41|

F(z) =y = (v — zp)sp + Yk (3.30)

where k£ € [0,n — 1[, n being the number of chosen linear pieces. And where s, and
are respectively the slope and the intercept of the linear piece corresponding to the current
value z.

To ease the optimization, we aim at reducing the number of unknowns. For this reason,
the interval between x and x;,; is considered the same and is noted J, as originally
proposed in [MMM ™ 11]. The values x, x,, are chosen to adaptively cover the entire range
from the minimum to the maximum values of the dynamic range of the input image.
Knowing z( and x,, ¢ is therefore fully determined with n the number of linear pieces.
The minimum and maximum values of y are chosen to span the whole range of the SDR
output. Therefore, y € [0,2"~1] (with n; the number of SDR bits) and finally, Vz €
[(zo + 0.k), (xg + 0.(k + 1))[ the tone mapping (3.30) is:

k—1
F(z) = <x— (xo—i-é.k)).sk +6Y s (3.31)

J=0
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In this new representation (3.31), the only unknowns are the slopes { sy} x=0..n_1-

Moreover, we seek for a global invertible TMO. The parameterization in (3.31) leads
to a continuous function. To add the invertibility constraint, it is further assume that the
slopes sj, are strictly positive. Therefore, the optimization will be performed under the
constraint that s; > 0. Finally, the tone mapping curve can be assumed to be rather
smooth. Therefore, the piecewise linear approximation is very accurate, even with a small
number of slopes.

Figure 3.5 illustrates an approximation of the TMO [RSSFO02] using a piecewise linear
function with either 5 or 20 slopes. As visible, using only 5 slopes allows to have a cor-

nb-1 nb-1

Ys=2 110 [RsSF02) = - 5 ¥o=2 1 —TmO [RSSFO2]
#Approx with 5 slopes -~ 3 # Approx with 20 slopes
S2
Sy
s > (%% i)
2 VA o
=2 =2
@ o
> >
4 4
o =]
2 Sg 7]
Yo=0 — 8 1 & [ & | Yo=0 85388
X=X Xs=X X=X X=X
0= min HDR values X 8 0 Sen HDR values X Ll

(a) (b)
Figure 3.5 — Piecewise linear function approximation of the TMO [RSSF02] for the Tibul
image (see Fig 3.6) - (a) Using 5 slopes - (b) Using 20 slopes

rect approximation while using 20 slopes allows to reproduce the TMO curve with great
precision. In the following, we use 20 slopes for all the tested TMOs (n = 20). Tests were
made with more slopes however, it does not noticeably impact the performances.

3.3.2 Parameterization of the Optimization Problem
Using the parameterization (3.30-3.31), the optimization problem (3.25-3.26) can be
redefined as follows. First, let’s express E[F'(X)] with the expression 3.30:

E[F(X)] = / " P p(t).dt (3.32)

Tmin

_ nz‘i /W ((t = w)se + ) (). (3.33)

k=0 * Tk

If we assume that for each slope V¢ € [xg, zj41[, E[t] & “4552%  then:

E[F(X)] = (w.sﬁyk). / U pt).de (3.34)
k=0 Tk
n—1 5
_ (E.sk + yk> i (3.35)
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where py = Pz, < t < xp41) = [ p(t).dt is easily computed from the HDR

T
image histogram and where x;,1 — x; = 0 as explained in Section 3.3.1. Since y; can be

expressed with the slopes s to s;_; then (3.35) can be rewritten:

n—1
E[F(X)] = ) c(s0.x)-px (3.36)
k=0
5 5 i
with c(s0. k) = 5.5k + Yk = 555 + 0 2% s (3.37)
=

In the same way, we can express the different terms ! of (3.25):

—_

7
AN
3

E[(F(X) ~ BF))] = 3 (et = Y, clso)ms) b (B3
E[F'(X)7"] = nz_l (i—g) (3.39)
E [(G(X ) - F(X ))2} -5 (c(ro..k) - c(s().‘k))gpk (3.40)

where 7(_(,—1) are the slopes of the reference TMO G/(X).
Therefore, the optimization problem (3.25-3.26) becomes (3.41) where the only unknown
parameters are the slopes sg_(,—1):

n—1

n—1 n—1
min min (c(so,k) — ZC(SO..k>-pk)2pk . Z (%) (3.41)
k=0 k

Rspr {si} P e
n— n— 2
(.27 2fson Zk:é (c(s0.k) = Zk:é (So.k)-Pr) i +
n— 2
ho (c(ro.x) — c(s0.x)) Pe < Do

0 < Rspr < Rr

— ny—1
\ Z:é(sk) = QbT

In this work, a closed form solution for the s, has not been identified. Instead, the
optimization problem can be solved using numerical approach. In this work, we use the
interior-point optimization method.

S.t.

3.4 Experimental Results

In this section, we show and explain the results obtained with the previously described
solution (3.41).

As explained in Section 3.2.4, solving the optimization problem in a dual layer sce-
nario is equivalent to first finding the optimal TMO, knowing Rgspr, in a single layer sce-
nario (3.25), and then optimizing the rate allocation (3.26) between the base layer Rspr

1. The derivation of these terms is detailed in Appendix A
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and the enhancement layer Rgpp for a given rate budget 2p. Therefore, the experimental
results are presented in two parts. In Section 3.4.1, we present the results of the TMO
optimization in a single layer scenario and in Section 3.4.2, we present the results of the
TMO optimization combined to the rate allocation optimization in a dual layer scenario.

3.4.1 Single Layer Results

For sake of equality, the experimental process is the same for all tested TMOs. First,
the original linear light HDR content is transformed such that the quantization becomes
uniform with respect to the human eye contrast sensitivity as explained in Section 3.1.1.
More precisely, the HDR signal is perceptually transformed with the PQ-2084 OETF
[MND12] and uniformly quantized to 12 bits. This builds the input HDR signal X.

For each HDR image X, the pixel distribution is computed to obtain an histogram
with n bins (n = 20 since we use 20 slopes for the TMO). In this way, we obtain the py
values in (3.41). For each SDR rate value Rgpr, a TMO is computed and then, the image
X is tone-mapped to produce the 8 bit base layer Y. The SDR image is encoded with the
HEVC reference software (HM 16.2) using several rates/QPs (= 18, 22, 26, 30, 34) and
finally inverse tone-mapped to obtain the reconstructed HDR image X.

Figure 3.6 — SDR reference images tone mapped with [RSSFO02]. Original HDR images
from [MPII, War(O3] or the MPEG test set. From left to right and top to bottom: Atrium-
Night, Nancy Cathedral, FireEater, Tibul.

In this experiment, the chosen SDR reference signal is generated using the PTR TMO
proposed in [RSSFO2]. Indeed, it is known to give good visual quality and image integrity
[LCTS05, SbDMEMS12]. Furthermore, this TMO is one of the most efficient in terms of
RD performances [MS08, MMM 11]. Thus, it seems to be the most appropriate TMO for
comparison since we want to optimize a tradeoff between RD performances and SDR per-
ceptual quality. Several HDR images from [MPII, War(03] of different sizes and dynamic
ranges have been tested. They are illustrated in Figure 3.6. The (a) graphs in Figure 3.7 to
Fig 3.10 plot the PSNR of the inverse tone mapped HDR image Dy pr(X — X) as a func-
tion of the base layer bitrate Rspr, while the (b) graphs plot the distortion Dspr rrr of
the decoded SDR frame Y with respect to the SDR reference G'(X) versus the base layer
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bitrate. For all images, the Dy constraint is adjusted such that the PSNR value between
the SDR reference and the tone mapped image equals to 34.2dB (MSE=25). The same D,
value is used for [KD13], while we kept the proposed weighting (3.29) for  MMNW13].

AtriumNight D,=25

Dypg (single layer X —X) vs Rgpp Dypr-rer (6(X)—F) vs Rspp
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(a) (b)

Figure 3.7 — RD performances for AtriumNight and for D, set to a MSE of 25 (a): Single
layer distortion (X — X)) vs rate of the base layer Rspr - (b): Distortion Dspr rer
between SDR reference and tone-mapped images (G(X) — Y) vs Rspr
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Figure 3.8 — RD performances for FireEater image and for Dy set to a MSE of 25 (a) and
(b): same as Figure 3.7

The proposed TMO gives the best tradeoff between RD performances and distortion
with respect to the SDR reference for the AtriumNight (Fig.3.7) and Nancy Cathedral
(Fig.3.9) images, especially at low bitrates where Dgspr rrr gets worse for [KD13] and
[MMNW 13]. Surprisingly, the proposed TMO provides better RD performances than the
[MMM™11] TMO which is not constrained for the SDR perceptual quality. These exam-
ples clearly show that minimizing only the HDR distortion is not optimal in terms of RD
performances.

In contrast, for FireEater in Fig.3.8(a) and Tibul in Fig.3.10(a), the unconstrained
TMO [MMM*11] outperforms all other tested TMOs including the proposed one. How-
ever, it provides an SDR content very different from the reference one, as depicted in
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Figure 3.9 — RD performances for Nancy Cathedral image and for D, set to a MSE of 25
(a) and (b): same as Figure 3.7
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Figure 3.10 — RD performances for Tibul image and for Dy set to a MSE of 25 (a) and
(b): same as Figure 3.7
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Figure 3.11 — RD performances for FireEater image and for Dy set to a MSE of 165 (a)
and (b): same as Figure 3.7
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Fig.3.8(b) and Fig.3.10(b). In these cases, the SDR content can have a poor perceptual
quality.

Tibul D,=70
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Figure 3.12 — RD performances for Tibul image and for Dy set to a MSE of 70 (a) and
(b): same as Figure 3.7

FireEater and Tibul RD results also illustrate the disadvantage of the [MMNW13] un-
constrained optimization problem. Since they use an operating point, the distortion with
the reference Dspr rer does not depend on the constraint Dy. The proposed optimiza-
tion and the one from [KD13] is easier to tune in order to meet the constraint on the
SDR signal. As we can see on Fig.3.8(b) and Fig.3.10(b), using [MMNW 13], the distor-
tion Dgpr rpr falls over 26dB for FireEater and 29.5dB for Tibul. For this reason, they
achieve better RD performances in Fig.3.8(a) and Fig.3.10(a) than the proposed TMO.
However, in this case, the trade off between RD performances and quality preservation of
the SDR content is difficult to evaluate.

For a fair comparison, we relax the SDR constraint Dy to 26dB (MSE=165) for
FireEater and 29.5dB (MSE=70) for Tibul. The results are plotted in Figure 3.11 and
3.12. We can see that the RD performances of [KD13] and the proposed TMO improve,
almost aligning the 3 methods on the same level of RD performances, as expected. In this
case, the trade off is easier to evaluate. As for the AtriumNight and Nancy Cathedral im-
ages, we can see that the proposed TMO keeps the best trade off between minimization of
the HDR distortion without sending an enhancement layer and quality preservation of the
SDR content, especially at low bitrates. Indeed, [KD13] and [MMNW 13] solve a similar
optimization problem, with however a simplified model of the variance of the residue,
which leads to suboptimality and worst results.

The presented results only assess the SDR perceptual quality with an objective mea-
sure Dspr rer. All resulting SDR images, tone mapped with the tested TMOs, are avail-
able in [GRG D] for subjective evaluation. They can be compared with the reference ones
tone mapped with the PTR.

Note that, the convergence time of the proposed algorithm is about 2s (Matlab imple-
mentation) i.e. of the same order of magnitude as [MMNW 13]. Initializing the algorithm
with the PTR or [MMM ™ 11] speeds up the convergence.
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3.4.2 Dual Layer Results

The second minimization aims to find the best rate allocation for the base and en-
hancement layers. The quality of the inverse tone mapped HDR image is improved by
adding the enhancement layer 7, that is the residue represented on 12 bits. This residue
is also encoded with the HM 16.2. Multiple encodings have been performed, with differ-
ent combinations of base and enhancement QPs to test different rate allocations. For each
value of the sum rate (Rspr + Rypr), the pair (Q Pspr, Q Py pr) leading to the best PSNR
is retained, thus yielding the best RD curve for each TMO.
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Figure 3.13 — Dual layer distortion (X — X)) vs rate of rate of both layers Ry for, from left
to right and top to bottom: AtriumNight with Dy = 25, FireEater with Dy = 165, Nancy
Cathedral with D, = 25, Tibul with Dy = 70.

The plots in Figure 3.13 show the distortion between the HDR frame and the recon-
structed HDR frame as a function of the base and enhancement layer bitrates. As we can
see, performing the best rate allocation for all TMO reduces the gap betwen the RD curves,
compared to the previous results where only the base layer is encoded. The enhancement
layer helps the least efficient TMO to improve the HDR reconstruction. However, the pro-
posed TMO still keeps the best trade off since it respects a stricter constraint on the SDR
perceptual quality, especially at low bitrates. Note that, if we did not perform the rate al-
location step on the state-of-the-art algorithms, their RD performances would have been
worse.
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3.5 Conclusion

To conclude, we demonstrated that the optimal solution for the minimization of the
HDR distortion, in a scalable compression scheme with two layers, can be split in two
consecutive optimization steps. First, a tone mapping optimization step in a single layer
HDR compression scenario and secondly, if we consider an enhancement layer, a rate
allocation optimization between the base and enhancement layer.

In this chapter, we also proposed a new TMO that maximizes the RD performance
of an HDR coding scheme, while preserving a good quality for the SDR signal. The
proposed method leads to the best trade off, in comparison to state-of-the-art methods
that solve approximations of the original optimization problem.

Since we demonstrated in this paper that optimizing a TMO for dual layer compression
scheme is equivalent to optimizing a TMO in a single layer one, the next chapter focuses
on TMO optimization with single layer schemes. The TMOs proposed in the following
chapter can be easily combined with a rate allocation optimization step.



Chapter 4

Gradient-Based Tone Mapping for Rate
Distortion Optimization in Backward
Compatible HDR Compression

As explained in Section 2.3.2, the TMO is an essential component for backward com-
patible HDR compression and it can be designed for different purposes. First, it can be
designed to preserve the HDR artistic intent in the SDR content and many TMOs have
been developed for this purpose (See Sec.1.4.2). Some examples that consistently perform
well [LCTS05, SODMEMS12] are the photographic tone reproducer (PTR) [RSSF02] and
the display adaptive tone mapping (DATM) [MDKO08]. Secondly, in the context of com-
pression, the tone mapping can be designed to optimize the compression performances
[MMMT11, LVCD14, PGT14].

In [MMM™11] the TMO is designed to minimize the distortion of the decoded HDR
content. However, this distortion model, also used in [LVCD14, PGT14], assumes that (i)
the quantization error is independent of the signal and that (ii) the variance of this quanti-
zation error does not depend on the statistics of the signal. In the previous chapter (Chap.
3), we proposed a distortion model only considering the assumption (1) and based on the
variance of the SDR signal. In this chapter, we propose a new distortion model based on
the image gradient and that better reflects the rate-distortion performance of actual en-
coders compared with state of the art models. Closed form expressions are derived for
this model which relies on the statistics of the HDR image and on the applied TMO.

Since the approach in [MMM™11] does not consider the rate cost of the SDR content,
the obtained TMO may lead to SDR data with increased spatial complexity, hence with
high rate cost. The authors in [LVCD14] and [PGT14] cope with this limitation by min-
imizing the HDR distortion under a constraint for the SDR content rate. In [LVCD14],
the SDR rate is modelized as a function of the total variation of the SDR signal and in
[PGT14] the SDR rate is modelized as a function of the SDR entropy. In this chapter,
we address the same minimization problem however, we propose a new rate model based
on the image gradient, as for the proposed distortion model. The rate gradient model is
shown to provide the highest correlation with the actual SDR rate. Note that, these new
gradient-based rate and distortion models hold when an image is first transformed with an
invertible piecewise affine function and then compressed with a predictive encoder such
as the intra mode of HEVC.

89
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Optimizing the TMO for compression purposes as in [MMM™ 11], where the authors
minimize only the distortion on the inverse tone mapped HDR, may yield SDR content
which does not preserve the artistic intent of the HDR. Thus the approach of [MMM*11]
is extended in [MMNW10, MMNW13, KD13, KD14] by adding a new constraint on
the SDR perceptual quality. It consists of a MSE between the tone mapped signal and
a reference SDR version. This problem is also address in the previous chapter (Chap.
3). However, in all these works this SDR quality constraint is usually computed based
on coarse assumptions. Instead, we propose a new model for the SDR quality constraint
using weaker assumptions.

The influence of the rate is neglected in [KD13, KD14] and thus results in a suboptimal
solution. In [MMNW 10, MMNW 13], the influence of the rate is studied but set aside since
it only worsens the RD performances in their implementation. Furthermore, the authors
simplified the constrained problem into an unconstrained one, where the value of the
lagrangian multiplier is fixed. This leads to choosing an operating point, which may not
be the optimal one. Therefore, all these simplifications affect the SDR perceptual quality.
In the proposed modelization, we keep and solve the constrained problem which allows
to obtain the optimal solution. In the previous chapter (Chap. 3), we study a scalable
compression scheme with two layers and therefore only consider the total rate of both
layers. The SDR rate is thus not express as a function of the TMO.

In this chapter, we address two use cases. First, we search for a new TMO, using
new gradient-based models for the HDR distortion and SDR rate, that optimizes the com-
pression performances of the HDR backward compatible scheme. In a second time, we
propose a new problem that optimizes the HDR distortion under a SDR rate constraint and
under a SDR perceptual quality constraint. In Chapter 3, we demonstrated that the opti-
mal tone mapping does not depend on the enhancement layer, therefore in this work we
only consider a single layer scheme. As explained in the previous chapter, the TMOs pro-
posed in this chapter can be used for dual layer compression optimization by performing
an optimal rate allocation step.

Finally, the two tone mapping optimizations lead us to two different conclusions:
(i) with the first tone mapping optimization we demonstrate that the proposed solution
achieves the optimal rate distortion performance; (ii) we demonstrate that the second tone
mapping optimization always provides the best trade-off between the overall rate dis-
tortion performance and the quality of the SDR content. Part of this chapter has been
published in [GRGT17].

The remainder of this chapter is organized as follows. Section 4.1 presents the com-
pression scheme for the two use cases and the corresponding optimization problems. The
models for the rate, distortion and SDR quality constraint are developed in section 4.2 as
well as the corresponding tone mapping minimizations. Finally, Section 4.3 presents the
results obtained with the two TMOs.

4.1 Problem statement and TMO parameters

4.1.1 Compression Scheme

In this section, two different optimization problems are introduced for backward com-
patible HDR compression using a single layer with metadata. The first problem is the
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minimization of the distortion on the reconstructed HDR signal under a rate constraint.
The second minimization involves the same aspects with an additional quality constraint
for the SDR signal. In both cases, the compression scheme is given in Figure 4.1.

To perform the R-D optimization, we model the HDR image as a random process de-
noted X. X generates sequences of random variable, where each random variable models
a pixel value. X is tone-mapped to generate an SDR image Y encoded at a given rate
Rspr such that the decoded SDR image Y is compatible with legacy SDR displays. Fy
is the error between Y and Y. The MSE between Y and Y is the distortion introduced
on Y by the encoder at a given rate Rgpg. To reconstruct the HDR image X, from the
decoded SDR image Y, an inverse tone mapping is performed. This decoded HDR image
X is compatible with new HDR displays. Since no enhancement layer is considered, the

HDR distortion Dy pr, generated by the encoding process, is now computed between X
and X.
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Figure 4.1 — Backward-compatible HDR compression scheme

The HDR image X is considered to be in a uniformly perceptual integer representa-
tion. So in practice:

X =|TF(Xpp,np)] (4.1)

with X the linear-light HDR signal, n; the number of bits to represent X and T'F' the
chosen transfer function. In this Chapter, as in Chapter 3, X is quantized on 12 bits with
the PQ-2084 OETF [MND12], the MPEG recommended transfer function [LFH15].

As X is considered as a uniformly perceptual representation, the Mean Square Error
(MSE) is a relevant metric to estimate HDR signals quality [MMM™ 11, KD14]. There-
fore:

Dypr = E|(X - X)?] 42)
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4.1.2 Rate-Distortion Optimization of the HDR

The goal is to find the tone mapping that minimizes Dy pr for a given rate budget 1.
Therefore the minimization problem is:

s.t. Rspr = Ry

We use an equality constraint instead of an inequality constraint since the R-D function is
decreasing [CTO06, Ex10.5] with the rate R, therefore the minimum distortion is obtained
when the rate is maximal i.e. when Rgpr = Rj.

Problem (4.3) aims at optimizing the RD performances only. Therefore, there is no
guarantee that the SDR content will have a good perceptual quality.

4.1.3 Rate-Distortion Optimization of the HDR under a SDR quality
constraint

To improve the SDR perceptual quality, in the second optimization problem, the TMO
is designed to minimize the HDR distortion under a rate constraint but also under a quality
constraint for the SDR signal. This constraint Dgprrpr 1s modeled as in [MMNW 13] and
[KD13]. It is a distortion between Y and an SDR image that preserves the perception and
artistic intent of the HDR image. This SDR reference image is noted G(X) since it is
related to the HDR image by a tone mapping curve G that has been specially designed to
preserve the perception of the HDR content. Therefore:

Dsprrer = E|(G(X) ~Y)? @)
With this new constraint, the problem (4.3) becomes:

Ry Dmon )

ot Rspr < Ry
o Dsprrer < Dy

The contributions in this chapter are twofold. First, we propose novel rate and distortion
models based on the gradient of the HDR image. We show in the following that these
models lead to a good approximation of the rate and of the distortion measured with a
predictive codec such as HEVC [MPE17]. Second, we derive the optimal solution of the
global optimization problems (4.3) and (4.5).

To solve these optimization problems (4.3) and (4.5), the TMO is approximated by a
piecewise affine function (3.30) as in [MMM™* 11, MMNW 13, KD13] and as in Chapter
3. A more detailed presentation of this parameterization is made in Section 3.3.1.

In the following sections, only the luminance compression is considered but it could be
extended to color by computing in a similar manner a TMO for the U and V components
or separately for each RGB color channel.
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4.2 Gradient-Based Models And Proposed Solution

4.2.1 Gradient-Based SDR Bit-Rate Model

Different studies for Rate Control compare the H.264/ AVC Intra-Frame rate to differ-
ent estimators based on either the gradient, the entropy, the variance and other measures
of the HDR image [KYK99, CMZ09]. In these studies, the gradient is shown to be the
most reliable estimator.

Similarly, in [TZC14] it is shown that the HEVC Intra-Frame rate and the spatial
gradient of the SDR image are highly correlated. For these reasons, we choose to model
the SDR rate as a function of the SDR gradient Vy- as:

Rspn = f(E[Vy]) (4.6)

In the sequel, we consider the following estimation for the spatial gradient of the SDR
image which are then shown to accurately predict the actual rate:

Vy = (Y = Y5+ Y - YY) 4.7)
Vy =min (|Y = Y}|, [Y =Y} (4.8)

where Y7, and Y7, are the shifted versions of the image Y in the horizontal and vertical
directions respectively. In (4.7), the sum of the horizontal and vertical gradient absolute
values is computed. In (4.8) instead, the minimum between the vertical and horizontal
gradients is computed.

To solve the optimization problems (4.3) and (4.5), we now need to express the SDR
gradient (4.6) as a function of the parameters of the TMO. Since the TMO is related to
the SDR luminance values Y, we first introduce Y in the gradient expression:

Ymazx

Z P(Y =y)-E[Vy]Y =] (4.9)
Ymazx VYmaz
y= ) P =y)- >V, P(Vy =V, |V =y (4.10)
=0 Vy=0
Ymaz VYmaz
=Y ) V() -P(Vy =V, Y =y) (4.11)
y=0 Vy=0

where Vy stands for the random variable and V,, its realization. V,(y) stands for the
gradient value V, at a given y SDR luminance value.

Let us assume that a pixel value X and its neighbor X'’ have similar values. Therefore,
the same slope sy, is used to tone map these two values and:

VY :Y—Y,:X.Sk—X,.Sk:VX.Sk (412)

Therefore, Yy € [yk, Yk+1], VT € [2k, Tt ]

VYmaz VZmaz

Y V) P(Vy =V, Y =y)= > V() s P(Vx =V, X =2) (413)

Vy=0 Vz=0
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This approximation holds when two neighboring pixels belong to the same bin (i.e same
slope). This is in general true except for highly textured image region. In addition, it is
interesting to note that the number of slopes used for the approximation of the TMO has
little influence on the accuracy of the gradient computation (4.13). Indeed, reducing the
number of slopes, will increase the chances that neighboring pixels are transformed with
the same slope. Thus, it reduces the number of occurrence of approximation errors, but
the value of these errors is potentially larger. On the other hand, increasing the number
of slopes reduces the chances that neighboring pixels are transformed by the same slope
but the neighboring slopes values are increasingly closer, hence the approximation errors
have a small amplitude.
Using the equations (4.11) and (4.13), the SDR gradient is now approximated by:

n—1 Tk+1 VZmaz
Vy]= Z Z Z Ve(z) sk P(Vx =V, X =) (4.14)
k=0 z=z) V=0

Tk+1 VZmaz

Zsk Z Z Va x =V X =) (4.15)

E[Vy] =) sk o (4.16)

where g, only depends on the pdf of the HDR image and its gradients.

This model is written for a generic formulation of the gradient and it is valid for
different expressions of the gradient, as (4.7) and (4.8). More generally, the model is valid
as long as the gradient is a sum of differences (as in (4.7)) or a minimum of differences
(as in (4.8)). We studied different expressions for the gradient but (4.7) and (4.8) seemed
to be the most reliable to the actual rate.

To validate the model (4.16), we compare its value to the SDR gradient directly com-
puted on the SDR image. This test has been carried out with 26 different HDR images
and 3 different TMOs F'(sy_1), where the slopes in {s¢_x} are randomly drawn to yield a
strictly increasing TMO that maps the whole range of the input HDR image. Each point
is computed with a pair (image, TMO). The HDR images used for this test are very di-
verse and are all depicted in [GRG™a]. They have different resolutions, up to 4K, different
dynamic ranges, and issued from various sets (natural/animations, high/low spatial com-
plexity).

Figure 4.2(a), (b) and (c) show the estimated gradient with two estimators (the pro-
posed gradient estimator given in (4.7) and (4.16) and the one proposed in [MMNW13]
against the actual gradient values per pixel. The proposed model is more reliable what-
ever the number of slopes. As mentioned by the authors of [MMNW13], their estimator
becomes worse when the number of slopes decreases. This aspect is confirmed in Fig.4.2.
Indeed, the estimator in [MMNW 13] used a totally different model and is based on the
assumption that, inside a given bin, the values of all the pixels are the same as the one
of the centers of the bins. This approximation is only valid if the bin size is sufficiently
small i.e. if the number of slopes/bins is high. Therefore, their model is only accurate
when using more than 50 slopes for the TMO. Figure 4.2(d) further shows the gradient
estimated as the minimum of the horizontal and vertical gradient (4.8) as a function of the
true gradient.
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Figure 4.2 — Relation between SDR gradient measured on the SDR image and the val-
ues given by the proposed SDR gradient estimator (4.16) and the estimator used in
[MMNW13] - (a) sum of the vertical and horizontal gradients (4.7) for 10 slopes - (b)
for 20 slopes - (c) for 50 slopes - (d) min of the vertical and horizontal gradients (4.8) for
20 slopes

By comparing Figure 4.2(b) and Figure 4.2(d), we conclude that both models (4.7) and
(4.8) provide a very accurate estimation of the SDR bitrate. In the following, we decide to
use the (4.8) model as it mimics the selection of an intra prediction mode in a predictive
coding scheme (as in HEVC-Intra). Indeed, the Intra coding of a block (see Sec.2.2.3.1)
in HEVC or H.264/AVC consists in computing the difference between the current block
and several shifted version of the causal neighborhood. The shifted version minimizing
the RD cost is then selected. This selection process is similar to the gradient (4.8) where
we select the best gradient direction (in a predictive sense) for each pixel, either horizontal
or vertical.

To ensure that the proposed model (4.16) is well correllated to the actual SDR rate,
the scatter plots in Figure 4.3 compare the Intra-Frame HEVC rate of the SDR content
and its estimate. The SDR rate estimate is based on the gradient (4.16) in Figure 4.3(a)
and on the entropy of the SDR signal [PGT14] in Figure 4.3(b). We use the same test set
used in Figure 4.2 (26 images combined with 3 TMOs) using 20 slopes for the TMOs.
As for Figure 4.2, tests were made with different numbers of slopes but since the results
were similar, we only keep the ones with 20 slopes. Note that, each point represents a pair
(image, TMO).
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Figure 4.3 — Experimental validation of the proposed rate model - (a) Cloud point of the
rate as a function of the gradient based estimator for QP = [10, 20, 30, 40] - (b) Cloud
point of the rate as a function of the Entropy-based estimator for QP = [10, 20, 30, 40]

Figure 4.3(a) clearly shows less dispersion than the scatter plots in Figure 4.3(b).
Therefore, we can conclude that the HDR image gradient provides a more accurate es-
timate of the actual rate, for all QP (Quantization parameter in HEVC), than the entropy.
Moreover, an affine function seems sufficient to model the relationship between the HDR
image gradient and the rate of any images. For this reason, the SDR rate function (4.6)
can be rewritten as:

RSDR =a- E[Vy] +b (417)
-1

(sk - gk> +b (4.18)
k=0

3

Il
S

where the coefficients a and b are different for each QP since the affine function varies in
Figure 4.3(a).

Using least squares fitting, we search for the most appropriate a and b values for (4.18)
to approximate the cloud points in Figure 4.3(a). The obtained values are represented in
Figure 4.4. Using these values allows us to find the SDR rate of any image, knowing the
HDR image gradient g, and the applied TMO s;. Moreover, a relationship between the
QPs and the coefficients a’ and 0’ have been obtained through nonlinear least squares
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Figure 4.4 — Values of coefficients ’a’ and b’ versus QP and related models

fitting (Trust-Region algorithm [MS83]):

_ <QP76,337> :
a=0,7567-¢ \ 7 (4.19)
b=5,161-e "228QP _( 044 (4.20)

The model (4.18) and the coefficients (4.19) and (4.20) allow to estimate the rate of any
HDR image using only its gradient and the chosen TMO.

4.2.2 Classical HDR Distortion Model

Considering the MSE in the chosen transfer domain, the HDR distortion in [MMM™ 11,
PGT14, MMNW 13, KD13] and in the precedent chapter is:

Dupn = E[(X - Xﬂ 4.21)
In [MMM*11, MMNW 13, KD13], using the parameterization (3.30), the HDR distortion

becomes

n—1 Tk11 Jrt1

Dapr =33 3 (#.5) —2) B(By = (5-v). X=2) @22

k=0 z=zk =0

In the previous chapter as in [MMM™ 11, PGT14, MMNW 13, KD13], it is assumed
that the quantization error on the SDR signal Fy = Y —Yis independent of the SDR
image Y (called independence assumption). Under this assumption, the HDR distortion
becomes:

Dupp = 0%, - E[F’(X)‘Q] (4.23)
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where I is the TMO, ’ stands for the first derivative and where O'%Y is the variance of
the SDR signal error Ey. Using the parameterization (3.30) of [MMM™11, MMNW 13,
KD13], the HDR distortion (4.23) becomes:

Dupr=0p, - Y 55 D (4.24)
vk

where pp, = P(xp < X < 2441).

The equation (4.24) leads to an accurate estimation as shown in Figure 4.5. Indeed, the
scatter plots shows a high correlation between the actual HDR distortion and the estimated
one (4.24). This experimental validation uses the same test set as in Figure 4.2 (26 images
combined with 3 TMOs = 78 points). However, equation (4.24) is intractable in practice
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Figure 4.5 — Experimental validation of the estimated distortion (4.24) - (a) At very-high
rate (QP1) and high rate (QP10) - (b) At medium-low rate (QP30)

since to evaluate the variance ogEy, one needs to compress the data and get Y:it’s a vicious
circle. In order to overcome this difficulty, [PGT14, MMNW 13, KD13] assume that JJQEY
depends on the QP factor only but does not depend on the statistics of the SDR image
(called invariance assumption). In [MMM™11], they assume that O’%y is multiplicative
constant and neglect it. Thus, in both cases, Dy pp is rewritten as:

Dupr E[F’(X)‘Q] (4.25)
Dupr o< Y s;°pk (4.26)
Vk

To test the validity of the independence and the statistics invariance assumptions, we
compute the estimated distortion expressed in (4.26) and compare it to the corresponding
HDR distortion at different QPs, as in Figure 4.5. Figure 4.6 shows that the distortion
Dy ppr scales linearly with the estimated Dypr (4.26) at low QP only. At QP=10, the
correlation coefficient is much lower and it decreases as the QP increases. At QP=30,
there is little correlation between the measured and estimated values. Figure 4.6 shows
the distortion when the TMO use 20 slopes but, as in Figure 4.2, the results were the
same with 50 slopes. All these observations are mainly due to the assumed independence
between the SDR image Y and its compression error Ey-, which is not valid as shown in
Figure 4.7. Indeed, the error Ey still contains details of the original image Y, especially
for high QP.



4.2. GRADIENT-BASED MODELS AND PROPOSED SOLUTION 99

Estimated Distortion vs HDR Distortion - 20 bins

100 - $ 4000 -
R2=0,8149 o ¢

80

)
o
(=]
o

] ]
x X QP30
2 60 | = |
g & 2000
g a0 - g R?=0,2432

20 J - 1000 -

R?=0,9776
0 4 a4
0 50 100 150 200 250 0 50 100 150 200 250
Estimated Distortion per pixel Estimated Distortion per pixel
(a) (b)

Figure 4.6 — Experimental validation of the estimated distortion (4.26) - (a) At very-high
rate (QP1) and high rate (QP10) - (b) At medium-low rate (QP30)

4.2.3 Proposed Gradient-Based HDR Distortion Model

As in the previous chapter and in [MMM™11, PGT14, MMNW 13, KD13], the pro-
posed HDR distortion model is a MSE in the chosen transfer domain. Therefore, using
the parameterization (3.30), we use the expression (4.22) for the HDR distortion. Here we
neither use the independence nor the invariance assumption, instead, the proposed formu-
lation takes into account the joint distribution of the HDR image X and the compression
error By .

Considering that the luminance value of the original and reconstructed SDR image (y
and g respectively) belong to the same bin [z}, 24 1[ and therefore the same slope sy, the
HDR distortion (4.22) becomes:

—1 k41 Uk+1 (

Duon=3">" 3

k=0 z=zk J=U

)) BBy = (5-u). X =) (4.27)

Th+1 Yk+1

DHDR_Z > ZE2<y,x sk) ~P<Ey: (- ), X:x) (4.28)
T=T =Yk
where £, (.) stands for the function that computes the SDR error from the HDR content
x, the reconstructed SDR 3 and the TMO slope sj.

Figure 4.7 shows that the compression error [y depends on the gradient of the SDR
signal and that this dependence increases with the QP value. We propose to model EZ as
an affine function of (Vy )7, where the coefficients of the affine function and v depend on
the QP value only. This leads to a new model for Dy pr where (4.28) becomes:

Tk+1 Vyma:v

DHDRocz Y () P(r =V, X =2)  @29)

=z Vy=0

Following the same assumption as in (4.12) and (4.13), we obtain:

n—1
Dyps o S %) (4.30)

k=0
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Figure 4.7 — Error Ey between SDR source and reconstructed SDR compared to SDR
source gradient Vy - (a) error at QP=10 - (b) error at QP=20 - (c¢) error at QP=30 - (d)
error at QP=40 - (e) Gradient — For display and print purposes, the displayed images are
modified as follows: (E2)'/® and (Vy)/®

where:

Tk+1 Vamaz

0 =Y > (Val@) -B(Vx = V., X =2) (431

x=x, V=0

Note that the gy (+y) values depend on the HDR image and 7 only.

To complete the HDR distortion model, we need to estimate the relationship between
v, the affine coefficients and QP. We first consider the estimation of ~y. With sufficient
image tests (same test set as in Figure 4.2), we compare the estimated distortion (4.30),
computed with different y values, to the corresponding HDR distortion at a given QP. For
each QP value, we retain the v value which maximizes the correlation coefficient between
the distortion and its estimation. The best v values are plotted in Figure 4.8(a). In the
worst case, the correlation coefficient is 0.945 at QP16.
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Figure 4.8 — (a) vy values versus QP - (b) values of coefficient ¢ versus QP and related
model - (¢) values of coefficient d versus QP and related model

We now establish a relationship between the affine coefficients ¢ and d of the HDR
distortion model (4.32) and QP:

n—1
Dipr = c- (g Z@) +d (4.32)
k=0 %k
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where the best ¢ and d values are plotted in Figure 4.8(b) and (c). As shown in this figure,
the relationship between c, d and the QP can be modeled using a nonlinear least squares
fitting (Trust-Region algorithm [MS83]) as:

( 8.939.1077) - QP*™* +0.124 (4.33)
(—2,223.107%) - QP>577 1 0.034 (4.34)

¢

d

Finally, the parameters of the functions (4.33-4.34) and a table for v (one value per QP
is stored leading to 51 entries) are stored at the encoder to perform the TMO. Since these
values are used at the encoder side only, there is no need to send them.

As we made this learning process with different numbers of slopes and that the result-
ing values were the same, we conclude that -, ¢ and d relations are valid for any number
of slopes. Figure 4.9 shows that the proposed distortion estimator (4.30) is better than
the classical model (4.26) represented in Figure 4.6. Based on the well correlated offline

Estimated Distortion vs HDR Distortion - 20 bins

100 +

80 -

60 QP30
| ) R? =0,9801

40 -

MSE per pixel

1000
20 +

R?=0,9784

0 50 100 150 200 250 0 200 400 600
Estimated Distortion per pixel Estimated Distortion per pixel

(a) (b)

Figure 4.9 — Experimental validation of the distortion estimated with the model proposed
in (4.32) - (a) At very-high rate (QP1) and high rate (QP10) - (b) At medium-low rate
(QP30)

models for ¢, d and ~y parameters, the proposed estimator (4.32) has the advantage to esti-
mate the distortion for any input HDR image; while in the classical estimator (4.24), O’%Y
remains unknown and dependent of the image.

Note that, although the proposed distortion model is here applied in the context of
HDR encoding, it could be used to predict the encoder distortion at a given rate using
only the SDR image and its gradient.

4.2.4 Rate-Distortion Optimization

We now aim at solving the optimization problem (4.3). As explained in Section 3.3.1,
the TMO is chosen to span the whole range of the SDR output. Therefore, we need to add a
new constraint to the minimization problem to obtain an image in the specified SDR range.
Moreover, the model for Rgpr (4.18) and Dyppr (4.32) introduce the hidden parameter
Q@ P. Therefore, (4.3) requires an additional optimization over this hidden parameter () P
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and becomes:

n—1
min min c¢- (ng(l)) +d (4.35a)
QP s1...5n o Sk
= Ro—b
> s gi(l) = Oa (4.35b)
st. < k=0
n—1 an,1
Z St = (4.35¢)
\ k?:O

where s; represents the slopes of the TMO, g () is defined in (4.31), a and b in (4.19-
4.20), c and d in (4.33-4.34), n;, and ¢ in Section 3.3.1.

The optimization over the QP parameter is either solved exhaustively or by learning a
relationship between QP and the rate constraint R, see Section 4.3.1 for details. We now
solve the second minimization problem over the TMO parameters {sq_x} and assume that
the QP parameter is fixed. The Karush-Kuhn-Tucker necessary conditions for optimality
[BV04, Chap5.5.3] on the Lagrangian expression of (4.35) lead to:

—(2—7)g;(7).c ,
( 5(3‘)7)]( ) +Agi(1)+p=0 Vjel0,n] (4.36a)
J

— Ry —b

(sr-g1(1)) = =——— =0 (4.36b)
k=0 a
n—1 an_l

(%) ——5— =0 (4.36¢)

\ k=0

Fortunately, (4.36a) depends on one s; value only. Therefore, the optimal solution of
(4.35) is:

1

(2—7)-91()-c\*
= 4.37
ol = v “
where 1 and )\ are the solutions of:
n—1
(2—7)-gx(y )C) Ry—b
cgr(1) = (4.38a)
H( 1+ Agr(1) ¢(1) a
n—1
(2—=7).95(7).c\? 5 gmel
= — 4.38b
\k:o( ES WA 5 (4.35b)

where g () is defined in (4.31), a and b in (4.19-4.20), ¢ and d in (4.33-4.34), n;, and § in
Section 3.3.1. The system (4.38) is solved numerically. The results of this minimization
are discussed in Section 4.3

Note that, one can find a suboptimal but analytical solution to (4.35) by omitting the
rate constraint (4.35b), we only minimize the distortion and find the following analytical
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solution:

#
2 g (y)3

g Zk ogk( )3 =

The solution proposed in [MMM™11] is a particular case of equation (4.39). More pre-
cisely, the TMO in [MMM™11] is the same as our high rate regime TMO, computed for
v =0 (and thus V] = 1, g,(0) = > 75! P(X = z)).

On the other hand, if we remove the spanning constraint (4.35c), we obtain:

(4.39)

o
Sk =

_1

f— gk(’Y)B‘
g ()77 - 52 (9e(1)7 - gul)77)

where « is adjusted to respect the removed spanning constraint. The derivation of these
two TMOs (4.39) and (4.40) is detailed in Appendix B.

Remark. Experimentally, we observe that the TMO curve defined by (4.37) is always
between the TMO curves defined by {s|} and {s9} respectively. This observation also
holds when the TMO curves defined by {s|} and {2} intersect.

(4.40)

4.2.5 R-D Optimization with SDR quality constraint

We now consider the use of an additional SDR quality constraint, i.e, the optimiza-
tion problem given by (4.5). The models for Dy pr and Rspr, expressed in the previous
section, remain the same, however we also need to model the SDR constraint quality
DspRrRrEF-

As in [MMNW 13, KD13], the SDR quality compared with a reference tone-mapped
SDR is computed as:

Dspner = B|(G(X) =Y 441)
n—1 Tk41

Dsprrer = Z Z (G(x) — F(m)>2 P(X = 1) (4.42)
k=0 x=x

with G a global TMO optimized for the SDR perceptual quality and F' the optimized
TMO. In [MMNW 13, KD13], a coarse assumption is made:

Vo € [xg, Tre, T = w (4.43)
which yields a correct result if the function to integrate (G(z) — F (a:))2 is linear in = and
if the distribution is uniform on [z, x5 1[. This leads to a piecewise constant distortion
measure. Instead, we propose to keep only the uniform distribution assumption (4.44):

Pz, < X < @p41)

Vo € [xp,apn], P(X =2x)= 5 (4.44)
Then (4.42) becomes:
n—1 i Th41 9
Dsprrer = Z 5 Z <G(3:) — F(:v)) (4.45)

k=0 T=x}
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where p, = Pz < X < zp41).
If we parameterize the function F' with (3.30) and the function G with:

G(z) = ((z — p).te + 21) Vo € [Tk, Tria| (4.46)

Then, the expression (4.45) becomes:

n—1
DSDRREF = Zpk'h(to...tk, S0---Sk» 5) (447)
k=0
with:
3 3
(5.tk + 2 — (S.Sk - yk> - (Zk — yk>
h(to..tk, 50--5k, 5) _ PR (4.48)

The derivation of (4.48) is detailed in Appendix C.

To test the validity of the assumption (4.44), we compare the MSE described in (4.42)
and the estimated distortion expressed in (4.47) in Figure 4.10. This test has been carried
out with 26 different images and 3 different TMOs F'(s¢_x) (same test set as in Figure 4.2),
where the slopes in {sy x} are randomly drawn to yield a strictly increasing TMO that
maps the whole range of the input HDR image. In this test, the reference TMO G(t_y) is
always the same global TMO [RSSFO02] approximated with n slopes. The correlation be-

Accuracy of the modeling of the SDR
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Figure 4.10 — Experimental validation of the estimated SDR quality constraint (4.47)

tween the estimated and real values (4.42) is very high, demonstrating that the assumption
made is very acceptable. Figure 4.10 shows the distortion when we use 20 slopes for both
TMOs. As in Figure 4.2, the results were the same with 50 slopes. This test is also per-
formed with the SDR quality constraint proposed in [MMNW 13], the results are the same.
One possible explanation of the close results obtained for both Dsprrpr €xpression is
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the use of very different tone mapping curves for the comparison. We suppose that with
the use of closer tone mapping curves, expression in [MMNW 13] leads to approximation
errors for DsprrEer.

With the developed models for Rgpr (4.18), Dypr (4.32), Dsprrer (4.47) and with
the spanning constraint, the minimization problem (4.5) becomes:

n—1

. . gk(’Y))
min min c¢- Z ( 5 +d (4.49)
QP si1...5n o Skz v
Soho sk gi(l) < fosb
s.t. oSk = 2n’:{1

zz;é Pk - h(to...tk, 80...8k75) S Do

This problem can be solved numerically with the interior-point optimization method. The
results of this minimization are discussed in Section 4.3.

4.3 Experimental Results

4.3.1 R-D Optimization

In this section, we show the RD performances achieved with the backward compatible
HDR compression scheme of Figure 4.1 with the TMO curve obtained in Section 4.2.4.
As in the previous experiments, the TMOs are computed with 20 slopes. Tests were made
with 20 and 50 slopes and the RD performances were the same.

The proposed TMO design considers one TMO per frame hence assumes the TMO
parameters to be sent for each frame. This cost has been counted in the rate cost. However,
the rate cost for transmitting the TMO parameters is negligible. Using 16 bits for each of
our 20 slopes leads to an extra rate of 0.0002 bits/pixel for a 1920x1080 image ({g50ma0=5).
This cost can be further reduced by considering entropy coding of the slopes.

The original HDR image is first perceptually transformed using the PQ-2084 OETF to
follow the contrast sensitivity function of the human eye, and uniformly quantized to 12
bits. This provides the HDR content denoted X. X is then tone mapped using the TMO
that minimizes (4.35) and the resulting SDR content is encoded with the HEVC reference
software (HM 16.2).

First, the optimal TMO is derived. Rather than solving Problem (4.35), where an ex-
haustive search over the QP parameter is performed for a given rate constraint R, we
solve an equivalent problem, where an exhaustive search over the rate constraint Ry is
performed for a given QP parameter, as described in Algorithm 1.
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Algorithm 1 RD simulation: convex hull
Require: HDR image X
for all QP do
Compute V x, then p(X, V)
Compute a, b, ¢, d, v and gx(7y) from (4.19), (4.20), (4.33), (4.34), Fig-4.8(a) and
(4.31) respectively.
Compute the two TMO bounds {s! } (4.39) and {53} (4.40)
For each bound, compute the necessary rate: Rg pr and Rgpp from (4.18)
Quantize the interval [RL, ., R%pp| to get 20 values.
for all R, € [RL,,, R3pp] do
Solve numerically (4.38) to get \,
Compute {s} with (4.37)
Apply the TMO (defined by s;) to X — SDR image
Encode the SDR image — Rspr
Inverse Tone Mapping of the decoded SDR image
Compute Dypr
end for
end for
Choose the best Rspr — Dy pr point

Note that in Algorithm 1, the search over the optimal R, is performed in a reduced
interval [RL pr: B%pprl- This is possible because the TMO curves (4.39) and (4.40) are
obtained without the spanning and rate constraints respectively and therefore lead to lower
and upper bounds on the required encoding rate.

Figure 4.11 shows the RD performance obtained with Algorithm 1. For each QP value,
a RD curve parameterized by R, shows the RD performance obtained with the optimized
TMO. Note that the left-most and right-most points of each curve at QP fixed correspond

PSNR HDR vs. SDR Rate
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Figure 4.11 — RD optimization without SDR quality constraint Algorithm-1. Given a QP
value, different R, values are tested. The best RD performance is given by the convex
envelop of all the points.
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to the rates R:rg pr and Rgp . Then the convex hull of all these curves is drawn. The
optimal rate constraints R correspond to the case, where each individual curve (QP fixed)
is tangent to the convex hull.
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Figure 4.12 — Distortion between the original HDR image X and the reconstructed image
X vs SDR rate. From top to bottom: Results for image AtriumNight at low and high rates
- Results for image Balloon at low and high rates - Results for image FireEater at low and
high rates

The exhaustive search in Algorithm 1 is rather complex as it requires encoding the
SDR image for each Ry value. However, the loop over 7y can be avoided by learning a
correspondence between this rate constraint 7y and the QP parameter. To learn such a
relation, an exhaustive search is performed for multiple images such that we obtain the
optimal R, values for each QP. Then, a law is fitted to these optimal R, points. Given a QP
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value, at run time, this law allows us to have directly the optimal R, value. Deducing the
optimal TMO then becomes feasible in real-time. Fig 4.12 shows the RD performances
obtained with this straightforward method, in comparison with several existing TMOs: a
simple linear TMO, a TMO that minimizes the distortion only [MMM™*11] and a TMO
optimized according to a RD criterion, but with a RD model valid in the high rate regime
only [PGT14]. The experiment is done with images from the MPEG test set and the one
proposed in [MPII, War03]. Figure 4.13 shows different tested images. More images are
tested in the supplementary materials [GRG™'a]. The upper charts show the PSNR of the

Figure 4.13 — Sample of tested HDR images. For display purposes, the HDR images are
tone-mapped with [RSSF02]. From left to right: AtriumNight, Balloon, FireEater

reconstructed HDR image versus the SDR image bitrate for high QPs (0 to 1 bit/pixel)
while the lower ones show the same results for lower QPs.

First, we notice that, as expected, the proposed algorithm, performing a RD opti-
mization, allows to outperform the linear and [MMM ™ 11] TMOs at any rate. More pre-
cisely, the Bjontegaard [Bjo0O1] rate gains between the proposed and the linear TMOs are
3.0% for AtriumNight, 11.4% for FireEater and 1.4% for Balloon. The Bjontegaard rate
gains between the proposed TMO and [MMM ™ 11] are 15.5% for AtriumNight, 26.9% for
FireEater and 7.5% for Balloon. At high rates, the TMO always seems to converge towards
the same R-D performances as [MMM™11] and towards the same R-D performances as
the linear TMO at low rates. For each image, the R-D performances are different but the
behavior seems to be the same regardless of the dynamic range or spatial activity (defined
in [VSLD14]), as one can see in Table 4.1.

AtriumNight Balloon FireEater

RD Gain to [MMM*11] 15.5% 7.5% 26.9%

RD Gain to Linear 3.0% 1.4% 11.4%

Dynamic Range 4.10° 9.107 7.106
Spatial Activity 76 82 38

Table 4.1 — RD Gains, Dynamic Range and Spatial Activity of the tested images as
defined in [VSLD14]

Regarding [PGT14], the performances are very close to the proposed method for all
the tested images. This result is surprising since we demonstrated the better accuracy of
the proposed model for the rate and distortion in Section 4.2.1 and Section 4.2.3. However,
[PGT14] learns the Lagrangian multiplier in the RD optimization. This learning compen-
sates for the independence and invariance assumptions (see Section 4.2.2) made in their
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distortion model and leads to a corrected RD model, which is as accurate as our. This
shows indeed how important the accuracy of the RD model is.

4.3.2 R-D Optimization with SDR quality constraint

We now analyze the RD performance obtained with the TMO solution of (4.49) with
a new constraint on the SDR perceptual quality. The problem is solved with the interior
point algorithm (optimization toolbox from Matlab). The resulting TMO depends on two
parameters: the Dgprrrr constraint Dy and the rate constraint Ry. Dy is adjusted to
34.2dB (MSE=25) to insure sufficient similarity with the SDR reference image.
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Figure 4.14 — Different tone mapping curves for the following images - (a) AtriumNight
- (b) Ballon - (c) Fireater. The (4.39) bound by the slopes s}, the (4.40) bound is defined
by the slopes sz and the SDR perceptual reference TMO is [RSSF02]

The rate constraint Ry needs to be higher than in the previous Section 4.3.1 since
adding a new constraint will necessarily increase the required rate. Second, the rate con-
straint will depend on the reference Tone-Mapping chosen. For instance, Figure 4.14 plots
the bounding TMOs described in Section 4.3.1 and the chosen reference Tone-Mapping
[RSSFO02], the PTR (Photographic tone reproductor). For AtriumNight and Ballon im-
ages, the PTR is close to the two bounding TMOs, whereas the PTR is quite far from
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Figure 4.15 — Results for the images AtriumNight Ballon and FireEater. Distortion be-
tween the original HDR image X and the reconstructed image X vs SDR rate - Left: at
low rates - Right: at high rates

these bounds for FireEater and this will significantly increase the rate (since we observed
that the optimal TMO with best RD trade off lies in between the two bounds). Therefore,
to find the optimal TMO for a given QP parameter, a first rate constraint 2,,,,, 1s com-
puted as the maximum between the rate needed with the PTR TMO and the rate needed
for {s,t}kzo.,n (4.39), i.e. the upper bound on the rate constraint computed in the previ-
ous Section 4.3.1. R,,,, ensure to find a solution to (4.49). Using the previously learnt
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Figure 4.16 — Results for the images AtriumNight Ballon and FireEater - SDR quality
constraint vs SDR rate

relationship between R, and the QP parameter for the RD optimization without SDR con-
straint (Section 4.3.1), we can compute the optimal rate constraint R. If the optimal R
does not satisfy the SDR quality constraint when solving (4.49), R, is increased until we
reach R,,,.. The loop stops when we find the smallest R value that satisfies the SDR con-
straint. The complexity of this solution is fast: under 1 sec with the Matlab optimization
toolbox.

The R-D performance of this TMO is compared with two state of the art TMO de-
signed for R-D performances under a quality constraint for the SDR image [MMNW 13,
KD13] and with the unconstrained one defined in the previous section. With this test, the
R-D losses induced by the SDR quality constraint can be measured. Experimental test
conditions are identical to the previous section. The results are shown on Figure 4.15 and
Figure 4.16.

The left and right charts in Figure 4.15 plot the PSNR of the reconstructed HDR im-
age versus the SDR image bitrate at low and high rate respectively. The charts in Figure
4.16 plot the PSNR of the SDR constraint quality Dsprrer versus the SDR bitrate. The
proposed tone mapping saves 11.78% 39.17% and 2% of bitrate for the image Atrium-
Night, FireEater and Ballon compared to [KD13] and 5.44%, 1.95% and 2.66% compared
to [MMNW 13] for the same or even better SDR quality constraint. This can be explained
by the fact that our proposed RD model is more accurate than those in [MMNW13] and
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[KD13]. Moreover, as expected from Figure 4.14, the SDR quality constraint has a much
bigger impact on the image FireEater.

4.4 Conclusion

This chapter presented two new TMOs for HDR backward compatible compression.
Using the HDR image gradient, we provided new statistical models for estimating Dy pp,
Rspr and Dsprrpr and showed their accuracy to the real data. The first TMO minimizes
the distortion of the HDR image under a rate constraint on the SDR layer. The second
TMO remains the same minimization with an additional constraint to preserve the SDR
perceptual quality.

Experimental results show that the first TMO achieves the optimal rate-distortion per-
formances with a global tone mapping and can be computed in real-time. As expected, the
second TMO leads to the best trade-off between rate-distortion performances and qual-
ity preservation of the SDR signal, in comparison to state of the art methods that solve
approximations of the original optimization problem. Besides, we showed that spatial gra-
dient is an accurate estimator of both rate and distortion.

The TMOs presented in this chapter only encode still image, but they can be easily
extended to video by computing them for each frame. However, one could argue about the
formation of temporal artifacts like flickering, or about the optimality of the TMOs for RD
performances. Indeed, the proposed TMO minimizations could be reformulate to account
for a temporal gradient instead or along with the spatial one. The following chapter will
consider the extension to video compression, taking into account a better utilization of the
temporal axis for additional RD gains and an improved temporal consistency.



Chapter 5

Optical-Flow Based Weighted
Prediction for SDR and Backward
Compatible HDR Video Coding

In the previous chapter, we have developed efficient TMOs to compress HDR images
and videos using only spatial information. For videos, the TMO is independently com-
puted for each frame and its parameters are sent as metadata. However, one can argue that
the temporal coherence on the resulting SDR video is not preserved and thus has an im-
pact on the compression performances. In this chapter, we focus on backward-compatible
compression of HDR videos. Combining spatial and temporal information to compute the
TMO is expected to further improve the coding performances.

SDR contents generated with a TMO usually present more temporal brightness varia-
tions than manually-graded or recorded SDR contents. Two major problems can arise from
these observations. The first problem is a poor SDR temporal quality. Indeed, as explained
in Section 1.4.2.3, when compared to HDR video, SDR content can present different tem-
poral artifacts [BCTB14a]. The second problem of TMO-generated SDR videos is their
compression. More temporal variations almost always means worse rate-distortion (RD)
performances. In backward-compatible schemes, this problem also impacts the HDR RD
performances since the total rate also includes the SDR rate.

Improving the temporal quality of tone mapped SDR videos has been extensively
addressed in the literature. Some works proposed to apply a temporal filtering on the TMO
curve of each frame [PTYG00, MDKO08] and others proposed more elaborate operators
[IFMO5, BCTB14b]. These works were evaluated in terms of subjective temporal quality
[EUWM13] but hardly ever in terms of RD performances. To the best of our knowledge,
only [BTCB13] studied the RD impact of their temporal-quality designed TMO. They
concluded that temporally filtered TMOs, such as [PTYG00, MDKOS8], have no impact on
either the SDR and HDR RD performances whereas their TMO diminishes the HDR RD
performances but improves the SDR ones. However, the SDR RD performances should be
treated with caution since the SDR reference differs for each evaluated TMO, especially
since their TMO reduces the dynamic range of each SDR frame.

Some solutions were proposed to improve the HDR RD performances of backward
compatible schemes by modifying the SDR signals in order to reduce the temporal dis-
continuities in the resulting SDR video. A first set of propositions consists in applying a

113
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temporal filter over the TMO curves of each frame. However, this solution experimented
in [MMM™11] and [KD14], as in [BTCB13], did not improve the HDR RD performances
and sometimes even worsened them. Probably because the temporal filtering modifies the
optimal tone curve for each frame. Another contribution [OLVD16] consists in compen-
sating the temporal variations in the TMO optimization process. The authors in [OLVD16]
introduced a new TMO minimizing the HDR distortion under a temporal constraint. This
TMO is only optimized to improve the HDR RD performances but on the other hand the
SDR video is modified, which may strongly alter the original artistic intent.

In this chapter, we propose novel weighted prediction modes and algorithm to com-
pensate for illumination variations in the SDR signals that allows preserving the artistic
intent present in the HDR signal rather than altering the temporal effect. In this way, we
improve the SDR RD performances and therefore the HDR ones, but also preserve the
SDR temporal quality, as well as the original artistic intent. Indeed, by improving the
coding efficiency of the SDR content, we improve the overall coding efficiency of back-
ward compatible compression schemes. And since the processing is directly applied into
the video codec, the SDR content is not impacted and therefore its temporal quality is
preserved.

Weighted prediction (WP) is already available in the H264 and HEVC codec and
has already been addressed in many works. In the HEVC reference software, the WP
process is rather simple. It consists of computing a simple linear transformation between
the source image and a reference image without motion compensation [SBS14, Chap. 5].
Using a global WP is efficient to predict global temporal brightness variations but several
solutions were proposed to improve the WP for local temporal brightness variations. In
[RASdFO1], they proposed to compute a linear WP for each block and send along the
WP parameters with each block. The authors in [YTBO0S5] noticed that the overhead of
sending the WP parameters for each block is non negligible and therefore impacts the RD
performances in H264. Instead, they proposed to compute the local linear WP for each
block using the neighboring pixels. In this way, no overhead cost is added since the WP
can be recovered at the decoding process with the previously decoded pixels. However,
the WP parameters will lack of precision since they do not use the current block values but
the neighboring ones. This method was also studied in HEVC [ZLF*15] and proposed as
a new tool [LCC*15] for future video codec standardization [SBB™17]. Another solution
is to take advantage of the multiple reference frames in H264 or HEVC [KK11, TLCS13,
TCS13]. Each reference frame contains the same frame with different WP parameters and
each block can point to the most appropriate one. However, the number of different WP is
limited by the number of reference frames. The common characteristic of all these works
is to use a block-based motion compensation for the computation of their local WPs and
to always use linear functions, for global WP or local WP. Indeed, the block-based motion
compensation often fails to recover the real motion between two frames, especially with
temporal brightness variations.

In this chapter, we propose both a new algorithm to compute the WP mode parameters
and different WP models. Instead of computing the WP directly between the consecutive
images, the proposed WP algorithm uses an optical-flow based motion compensation. Fur-
thermore, to predict the complex temporal variations between SDR frames, two new WP
models, implying syntax and decoder modifications, are introduced: a global non-linear
WP and a local non-linear WP. The chapter is organized as follows. Section 5.1 demon-
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strates the equivalence between the proposed global non-linear WP and the temporally
constrained TMO [OLVD16]. An overview of the proposed WP algorithm is proposed
in section 5.2 with further details on the HEVC implementation in section 5.3. Finally,
experimental results are presented in section 5.4.

5.1 Temporally constrained TMO and Weighted Predic-
tion

5.1.1 Temporally constrained TMO

In [OLVDI16], the authors proposed to improve the TMO optimization described in
[MMM™11] by accounting for the rate of the tone mapped SDR video. They expressed
this rate as a function of the temporal activity C'(.S;) of the SDR content, i.e. as:

RocC(S) = (8i(0.3) = M(Sia(1.9)) ) (5.1

1]

with S; the current tone mapped SDR frame, S;_; the previous tone mapped SDR frame,
(1, 7) the pixel position in the respective frame, and M the motion compensation between
S;_1 and S;. However, when computing the current TMO, called F}, the SDR frame .S; is
unknown and the motion compensation cannot be computed. This is illustrated in Figure
5.1. To overcome the motion compensation problem, the authors estimated )/ between the
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Figure 5.1 — Tone Mapping computation for two consecutive HDR frames.

HDR frames, H; ; and H;, and applied it to the SDR frame .S; ;. However, the constraint
(5.1) still needs to be expressed as a function of the TMO F;. To do so, they parameterize
F; as a piecewise linear tone curve (see Sec.3.3.1), but also make a coarse assumption over
the distribution of the HDR values in each bin of the HDR histogram (same assumption
as in (4.43)). We do not detail the obtained expression here since it has no interest in the
proposed development, we only wanted to show the approximations in their solution.
Adding the rate constraint (5.1) to the distortion optimization problem proposed in
[MMM*11], already defined in equation (4.26), the optimization problem in [OLVD16]
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is:

N
n;in Z (pr-sy?) + X.C(Sy) (5.2)
k=1

N
P
s.t. Z S = 5
k=1

Vk, s >0

with nb the bit-depth for the SDR frame, § the selected interval for the HDR frame his-
togram, pj, the probability of the k-th histogram bin, s; the TMO (F; in Fig 5.1) slope for
the k£-th bin and A\ a Lagrangian multiplier to simplify the constrained problem into an
unconstrained one (For more details about the TMO parameterization see Sec.3.3.1). The
remaining constraint ensures that the TMO curve covers all the SDR dynamic.

Focusing only on the minimization of the rate constraint (5.1) (i.e. the specific case
where A\ = oo in (5.2)), and ignoring the simplifications made in [OLVD16], then (5.1)
becomes:

2
(8 = (S = M(Si-1)) (5.3)
i3
Note that, in this equation and the following ones, we removed the pixel index (¢, j) for a
simpler notation.

2
C(5) =Y (FiHy) = M(Fia (Hi)) ) (54
1,3
With £}, the TMO applied at the ¢-th HDR frame /; therefore providing the SDR frame
S;. If one defines BV the brightness variations from M (H,;_;) the motion compensated
HDR frame H,_,, to H;, then H, = BV (M(Ht_l)) and:

C(8) = S (R - M(E (7 BV (1) ) ex)

%,J

2
C(8) = 3 (FiHy) = Fa (BT (H))) (56)
,J
Thus, the optimal solution becomes obvious:

E(..)=F_1(BV'(.)) (5.7)

The TMO F,_; is a global invertible function and BV ~! usually is a pixelwise non-
invertible function. The challenge here, is to reproduce BV ~! with the global invertible
function Fj.

However, optimizing (5.2) with A = oo is clearly not optimal in the context of back-
ward compatible compression. First, the term considering the HDR distortion is then com-
pletely ignored which is clearly not optimal for RD performances. Secondly, the visual
quality of the resulting SDR video will be strongly impacted. Using the optimal solution,
all global luminance variations over an HDR video will disappear in the SDR video. It
is therefore necessary to compromise between distortion and rate minimization but also
temporal regularization. In practice the authors in [OLVD16] empirically chose A = 0.1
for their experiments.
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5.1.2 Weighted Prediction vs. Temporally constrained TMO

As explained previously, the aim of the proposed weighted prediction is to improve the
RD performances of the temporally constrained TMO proposed in [OLVD16] but with an
additional constraint namely to improve the SDR temporal quality. The proposed method
shares many similarities with this TMO but also differs on key points, as illustrated in Fig-
ure 5.2. Indeed, using a WP avoids to compromise between distortion minimization and

Figure 5.2 — Weighted prediction computation for two consecutive HDR frames

temporal regularization. It transforms the constrained problem (5.2) into two consecutive
problems, first minimizing the HDR distortion of H; using the TMO [MMM™11] and in
a second step, inside the video codec, minimizing the brightness variations between S;_1
and S; with a WP. Consequently, the proposed strategy is easily adaptable to any TMO,
which is not the case for [OLVD16]. One can use a TMO that preserves the SDR percep-
tual quality or a TMO that minimizes the distortion under a rate constraint for the still
image, like in Chapter 4, and thus benefit from a reduction of spatial and temporal com-
plexity. Having two steps also allows to know the two SDR frames before computing the
WP and therefore allows to directly compute the optical flow between S;_; and S;. One
could argue that the computation of the optical flow is more accurate on the HDR level
however, experimentally, we didn’t found noticeable differences between the computed
motions.

Another advantage of the proposed WP is to preserve the temporal consistency of the
SDR content. Indeed, in [OLVD16] the frame S, is deliberately modified for compression
purposes, therefore impacting the original temporal consistency when compared to HDR
content. Using a weighted prediction, the frame S;_; is used to predict S; directly inside
the encoding loop. Therefore, the original input SDR video is preserved.

Focusing on the second step, minimizing the brightness variations with a WP is really
similar to minimizing (5.3):

0(s) =3 (S~ wr(s,))) (5.8)

1]

C(St) = Z (St - WP(M(Ftl(Htl)))>2 (5.9)

/[:7j
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With BV the brightness variations from M (H;_1) to H:

O(Sy) = Z (St . WP(M(Ft_l(M‘l(BV‘l(Ht))))))2 (5.10)
c(s)= Y (8- wP(RABV (1)) 5.1
C(S) =) (St - WP(FH(Bvl(FMSt)))))Q (5.12)

i?j

where (5.11) follows from the fact that M ! can be permuted with F,_; since M !is a
pixels displacement and F}_; a global function over the pixel values. And therefore, the
optimal solution is to find:

WPY(.) = Ft,1<BV*1(F[1(...))> (5.13)

By comparing (5.7) and (5.13), one realizes that the proposed WP needs to reproduce a
composition of three functions instead of two for (5.7). As explained previously, the most
difficult part is to estimate the pixelwise non-invertible function BV since F;_; and I}
are non-linear invertible functions. Approximating W P by a linear function, as currently
done in HEVC, seems suboptimal as it is a composition of three functions, which are
each of them non linear. Therefore, our first proposal is to use a non-linear function as
W P model in HEVC. To the best of our knowledge, global non-linear WP has never been
proposed so far. As demonstrated in this section, this WP is supposed to provide better
RD performances than the ones obtained by [OLVD16]. Indeed, we have removed the
compromise between HDR distortion and SDR temporal regularization and in addition,
the proposed non-linear WP is not limited to invertible functions since it is not needed to
reconstruct the HDR content.

Regarding the second proposed WP model, to better estimate the function BV, we
extend our global approach to non-linear local WP. As explained previously, global and
local linear WP have already been studied however, for comparison purposes, we also im-
plemented these solutions in our framework. In this way, we can better assess the benefits
of non-linear WPs.

5.2 New models of Weighted Prediction

As explained in the introduction, we present a new WP algorithm and new WP modes.
To clarify, the WP modes describe the functions W P used to create the frame P, =
W P(S;-1) which predicts S; and the WP algorithm is the method used to estimate the
WP model parameters. Note that, the proposed WP algorithm only implies encoder modi-
fications and is therefore compatible with the current HEVC standard. In contrast, the new
WP modes require decoder modifications and thus, a modification of the HEVC standard.

Figure 5.3 summarizes the WP algorithm and WP modes presented in the following
sections. The HEVC standard algorithm is improved with an optical flow based algorithm
and the WP modes are extended from one type to four.
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Figure 5.3 — Weighted Prediction Scheme - WP algorithms and WP modes.

5.2.1 HEVC Weighted prediction

In the HEVC reference software (HM16.2), the WP is a global linear function directly
computed between S;_; and S; using the mean and variance of each frame. The prediction
frame for S; is obtained with:

with (4, j) the pixel position in the frame and where:

> i (St(iaj) = D vij %)

W = .. Sy—1(4,4) O
> i (St—l(la]) = D vij N )
Si(i, ) Si-1(0,5)
0=y 50Dy 5 Salid) (5.16)
Vi j Vi.j

with /V the number of pixels. Then the sum of absolute differences (SAD) is estimated
between S; and S;_; and between .S; and P,. If:
SAD (S ty Pt)

SAD(S;, Si-1)

the WP is applied in the encoding process. This method is simple and fast but provides an
imprecise WP and thus an imprecise luminance compensation.

<0.99 (5.17)

5.2.2 Proposed Weighted Prediction

For fair comparison with [OLVD16], we choose to compute the proposed WPs be-
tween M (S;_1) and S; using the same optical-flow M proposed by [CP11]. This optical-
flow was successfully used in real time for 30 fps videos with 640x480 pixels, thus eligi-
ble for video compression. As in the HM16.2, the WP activation in the proposed encoding
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process is determined by a threshold:

SAD(S;, M(F,))
SAD(S;, M(S;-1))

<0.95 (5.18)

As opposed to (5.17), the SADs are computed between .S; and the motion compensated
frame S;_1, thus providing much lower values. In practice, a threshold of 0.99 was leading
to an over-activation of the WP with (5.18). For these reasons, we decrease the threshold
to 0.95. The same activation threshold is used for all the following WP modes.

5.2.2.1 Global and Local WP

Using the same WP for the entire frame results in a rather small rate cost since we send
only few coefficients by frame. However, using a global WP suggests that the brightness
variations between two frames is global. For many contents, this assumption is false hence
the use of local WP. As explained in the introduction, the local WP can be implemented
with different methods. In this case, we choose to send the local WP as metadata within
each CTU (Coding tree unit/maximum block size) in HEVC. Some could argue about
the overhead cost of local solutions. Indeed, as explained in the introduction, [YTBOS5]
noticed that sending the WP parameters for each block in the AVC/H.264 standard results
in a significant overhead cost and wrongly impacts the RD performances. However, the
maximum block size in AVC/H.264 is rather small (16x16) when compared to HEVC
(64x64). For a sequence with a 1920x1080 resolution, supposing that each block uses the
WP, it results in sending 8160 WP for AVC/H.264 against 510 WP for HEVC. It can be
concluded that the overhead cost is significantly reduced for the particular case of HEVC.

As previously mentioned, we implemented 4 WP modes: global linear (GL), global
non-linear (GNL), local linear (LL), local non-linear (LNL). GL and LL WPs have al-
ready been proposed in the literature, however we implemented them to compare their
RD performances to the ones obtained with the GNL and LNL WPs. Furthermore the GL
WP allows us to assess the performance of the proposed WP algorithm based on an optical
flow. Indeed, since the GL. WP mode is the same as in HEVC, the RD performance gains
of the GL WP will only be due to the luminance compensation estimation with proposed
WP algorithm.

Global methods and local ones are computed using the same process, only the input
pixels change. Indeed, for global methods, all matching pixels of S; and M (S;_1) are con-
sidered, but for local methods, we consider the matching pixels in each matching 64x64
block of S; and M (S;_1). The next sections detail the linear and non-linear WPs.

5.2.2.2 Linear WP

For the linear WP modes, the prediction frame is computed using (5.14). All match-
ing pixels of the input are plotted on a 2D graph, as illustrated in Figure 5.4, and the
parameters I/ and O are obtained with linear least square fitting. In practice, we chose to
constrain the minimum and maximum values of W and O:

—128 < W <127 (5.19)
—256 < O <255 (5.20)
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Figure 5.4 — Computed WP for two images (top: BodyPainting, bottom: KoreanPop). The
left charts show the global linear and global non-linear WP (using 20 slopes) for the entire
frame. The right charts show the local linear and local non-linear WP (using 5 slopes) for
four different 64x64 blocks

Figure 5.4 also shows some examples of GL and L. WPs. Some samples of the corre-
sponding SDR videos are visible in Figure 5.5. For the GL WP, the metadata for each
frame only consists in the two coefficients W and O. On the other hand, the metadata
for the LL WP depend on the video size but also on the activation frequency of the WP.
The coefficients W and O are sent for each CTU where the WP improves the RD perfor-
mances.

5.2.2.3 Non-linear WP

For the non-linear WP modes, as in [OLVD16], we chose to parameterize W P as a
piece wise linear function. Therefore, the prediction frame is computed using the follow-
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Figure 5.5 — Samples of tested SDR sequences. Each row represents three selected frames
of each sequence. From top to bottom: BodyPainting Frame 4-6-8, Tangerine Frame 1-
10-20, KoreanPop Frame 1-4-18

ing equation:
Vi,j N VSi_1(4,4) € [0.k,0(k + 1)]

k—1

Py(i,§) = (Si1(iy §) = 0k) - s+ 0> s (5.21)

J=0

with s, the k-th slope in the piece wise linear function and 0 the interval where each
slope applies. In practice, W P always spans all the possible values of S;_; (0 to 255).
Therefore, § = % with n the chosen number of slopes.

As for the linear methods, all matching pixels of the input are plotted on a 2D graph
and the slopes sj, are obtained with piecewise linear least square fitting. An example of
GNL and LNL WP is visible in Figure 5.4. The value of n was fixed empirically for both
methods, we chose n = 20 for the GNL WP and n = 5 for the LNL WP.

Knowing n, the W P function is fully determined with the slopes s;. These slopes
are represented with real values and therefore need many bits for their representation. In
practice, we chose to represent the n slopes with n + 1 ordinates. Indeed, the ordinates
can be easily rounded without much precision loss. Therefore, using the GNL WP, the
metadata consists in 19 ordinates. The first and the last ones are always the same, 0 and
255, and are therefore ignored. As for the LL. WP, the metadata of the LNL WP depend
on the input size and efficiency of the WP. Each CTU where the WP improves the RD
performances is sent with 4 ordinates.
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5.3 HEVC Implementation

The WP algorithm and WP modes are computed once, as a first step, on the uncom-
pressed video using a Matlab implementation. Then, in a second time, all these WP modes
are parsed and used in the HEVC reference software (HM16.2) to encode the video. In
this way, it allows us to test multiple strategies in HEVC without recomputing all the
WP modes parameters and optical flows. This section details the specificity of the HEVC
implementation, especially the chosen signaling for each mode.

5.3.1 Frame Level Activation

The first strategy used consists in choosing the WP mode at a frame level, as illustrated
in Figure 5.3. Each frame meeting the constraint (5.18) is compressed twice, one time
without WP, and a second time with the current WP (GL, GNL, LL, or LNL). The frame
with the best RD performances is then encoded along with its metadata.

For the linear WPs, the coefficients W and O use a real representation requiring many
bits, in practice, we choose to round up these values. Empirically, we found that the most
efficient way was to round them after a multiplication by 2°. The coefficient W then
needs 13 bits and the coefficient O 14 bits. For the non-linear WPs, each ordinate value
requires 8 bits but we choose a more efficient way to compress these ordinates using the
VLC (Variable Length entropy Coding) in the HM16.2. Instead, we keep the difference
between each ordinate to which we subtract the values ¢ defined in (5.21). This process
gives us values closer to 0, therefore costing less than 8 bits per slopes.

For the global WPs and local WPs, we just signal the metadata for each frame where
the WP applies. Regarding the local WPs, one could simply send the WP parameters for
all the CTU in the frame, however we found that it was much efficient to signal a one
bit flag for each CTU then sending the WP when it improves the CTU RD performances.
Therefore, each CTU is compressed with and without the WP then encoded with the
corresponding flag and potentially with the WP parameters.

As mentioned previously, the brightness between two frames varies greatly depending
on the input, even in the same video. To further improve the RD performances, we also
choose to put all these WP modes in competition since each of them outperforms the other
ones for specific frames. To do so, each frame is compressed with each WP mode and the
best one is encoded along with the frame. This competition mode needs an additional
signaling at frame level, indeed an index is sent to signal the chosen WP mode. When
using four competing WP modes the index uses two bits. We also put only two modes in
competition, in this case the index uses only one bit.

The algorithm 2 details the HEVC signaling for all WPs and for the competition modes
when we choose the WP at a frame level.

5.3.2 CTU Level Activation

For the frame level activation, only the local WPs were decided at a CTU level. In this
case, this strategy is applied to all WP modes. If a frame meets the constraint (5.18) each
CTU is compressed twice, one time without WP, and a second time with the current WP
(GL, GNL, LL, or LNL). The frame with the best RD performances is then encoded along
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Algorithm 2 Frame Level Activation - HEVC Signaling at the encoder side
for all Frame do
Signal if the WP is activated, using 1 bit
if WP is activated then
if Competition between modes is used then
Signal the WP mode for the current frame
1 bit if two competing modes, 2 bits if four competing modes
end if
if WP == GL then
Write W using 13 bits and O using 14 bits
else if WP == GNL then
Write the 19 ordinates values using the VLC
else
for all CTU do
Signal if the WP is used for the current CTU, using 1 bit
if WP CTU turn on then
if WP == LL then
Write W using 13 bits and O using 14 bits
else if WP == LNL then
Write the 4 ordinates values using the VLC
end if
end if
end for
end if
end if
end for

with its metadata. As for section 5.3.1, we put the different WP modes in competition
using different combinations. Each competing modes is then used to compress the CTU
and the best one in terms of RD performance is selected.

All WPs use the same representation as the one presented in section 5.3.1, however the
signaling syntax changes in some cases, as visible in Algorithm 3. When evaluating only
one WP mode, the process is almost similar. For the global WPs, we only add one flag
by CTU to signal the activation of the WP, and for the local WPs only the frame decision
changes. Indeed, in section 5.3.1 the decision was made after encoding the frame twice,
in this case we only evaluate (5.18). The biggest difference concerns the competition of
WP modes, indeed the chosen mode needs to be signaled for each CTU against only
once with frame level competition. Since the signaling cost is larger, we evaluated several
combinations of WP modes using two, three or the four of them. The detailed signaling
for each case is explained in Algorithm 3.

Using 4 WP modes, two levels of activation and different modes of WP competition
yield many test cases. The RD performances of all these different strategies are presented
in the following section.
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Algorithm 3 CTU Level Activation - HEVC Signaling at the encoder side
for all Frame do
Signal the result of (5.18) using 1 bit
if (5.18) then
if WP == GL then
Write the GL WP, W using 13 bits and O using 14 bits
end if
if WP == GNL then
Write the GNL WP, 19 ordinates values using the VLC
end if
for all CTU do
if Competition between modes is used then
Signal the WP mode for the current CTU
if 1 mode, 1 bit to signal if the WP is used
if 2 competing modes, 1 bit for no WP or 2 bits for other modes ( 0, 10, 11)
if 3 competing modes, 2 bits by mode, including no WP (00, 01, 10, 11)
if 4 competing modes, 1 bit for no WP or 3 bits for other ones (0, 100, 101,
110, 111)
end if
if WP local turn on for the CTU then
if WP == LL then
Write W using 13 bits and O using 14 bits
else if WP == LNL then
Write the 19 ordinates values using the VLC
end if
end if
end for
end if
end for

5.4 Experimental Results

To compare the proposed WP methods with the HEVC WP, we used different test sets.
The first one consists of 12 SDR video sequences of about 20 frames with different types
of brightness variations (see figure 5.5). These contents include quite common brightness
variations like fades, concert spot lights or TV shows and could benefit from a better WP.
The second test set consists of 6 HDR videos tone-mapped using 6 different TMOs from
the literature, therefore providing 36 SDR sequences. We point out that the selected HDR
test set is less representative of the possible illumination changes you may encounter in TV
broadcasting for instance, with some sequences presenting very few brightness variations.
The motivation behind this test set selection is to see if some TMOs create brightness
variations at the SDR level that can be compensated by one proposed WP modes thus
providing better RD performances for these TMOs.

Only the luminance compression is considered in the following results, however it
could be easily extended to the chrominance components by computing the WP in a sim-
ilar manner. As said in the previous section, the WPs were implemented in the HM16.2
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using the default lowdelay_P_Main configuration file [Sull3]. However, for sake of sim-
plicity, we reduce the number of reference frames from 4 to 1. In this way, each P frame
only use one reference frame. The encoding were performed using four quantization pa-
rameters (QP) (i.e. QP=22, 27, 32, and 37) and therefore the Bjontegaard rate (BD-rate)
gains [BjoO1] were computed on the 4 resulting RD points. All the following BD-rate
gains are computed using the HM16.2 without WP as a reference. The RD performances
of the HEVC reference software WP are reported in each table for comparison purposes.

5.4.1 Rate-distortion performances using frame level activation

HEVC GNL

Sequences WP GL GNL LL LNL 4 WP LL
BodyPainting  -9,15% -10,26% -11,13% -10,65% 999% -12,76% -13.22%
Concert -2,35% -2,38% -2,44% -0,59% -1,48% -2,96% -2,49%
Eurovision 0,01% 0,01% 0,01% 0,01% -0,15% 0,01% 0,01%
KoreanPop 8,17% -3,02% -0,79% -4,49% -3,30% -4,62% -4,51%
LeMatch 0,04% 0,04% 0,04% 0,12% -0,06% -0,15% 0,12%
Guetta-0 3,65% -0,30% -0,27% -0,26% -0,06% -0,52% -0,44%
Guetta-2 -0,37% -0,06% -0,10% -0,16% 0,02% -0,18% -0,29%
RedBull -37,08% -36,20% -40,91% -4,03% -6,86% -40,65% -40,70%
Popldol 0,61% -1,34% -0,54% -2,07% -1,35% -2,07% -2,23%

SkyFade -12,60% -13,63% -13,66% -0,06%  -2,26% -13,81% -12,88%
SunFade -23,00%  -24,17%  -25,72% 5,89% 4,63% -24,73% -24,59%
Tangerine -10,27% -10,30% -16,64% 3,51% 0,74% -17,55% -16,72%

Average -6,86% -847% 934% -1,07% -1,68% -999%  -9.83%
Min 817%  0,04% 004%  589%  4,63% 001%  0,12%
Max -37,08% -3620% -4091% -10,65% -9,99% -40,65% -40,70%

Table 5.1 — BD-Rate gains of the weighted prediction of HEVC (column 1) and of the proposed
WP using Frame activation with respect to the HEVC standard without any weighted prediction.
SDR test sequences

Table 5.1 shows the results using the frame level activation presented in section 5.3.
The first column represents the BD-rate gains ' of the HEVC reference software WP,
therefore with a global linear function. The second one represents the BD-rate gains of
the GL WP. In these two cases, the WP uses the same model, therefore, the gains are
due to the proposed optical flow based algorithm for WP parameter estimation. For al-
most each sequence the proposed algorithm outperforms the existing one and on average
it provides around 1.6% BD-rate gains. It can be noticed that the current HEVC WP is
sometimes responsible of significant loss, especially for the sequences KoreanPop, Popl-
dol and GuettaO. Actually, these three sequences present mainly local variations which
may explain why the HEVC WP fails. The first new WP model, GNL, further improves
the RD performances, around 2.5% BD-rate gains. However, for the three same sequences
with local variations, we observe some losses compared to the GL algorithm. Indeed, pre-
dict a local transformation with a global one can be tricky and it’s more difficult to find

1. BD-rate gains correspond to the negative values
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Sequences T™O H‘I,EV‘II,C GL GNL LL LNL 4 WP
Mai 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %

Reinhard 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %
Ferwerda 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %

Balloon '\, tens  001%  002% 024% 004% 015% -0.12%
Raman  -595% -574% -71.88% -230% -397% -1.52%
Schlick 005% 005% 005% 005%  005%  0.05%
Mai 20.03% -0.13% -001% 025% -0.17% -0.13 %
Reinhard  -032%  -040%  -0.09% -043% -049%  -0.61 %
Ferwerda -0.07% -031% -003% -0.15% -040% -028%
Carousel3
Mertens  -0.07%  001% -0.01% -033% -023% -0.28%
Raman  -400%  -3.58% -353% -2.11% -2.15% -3.52%
Schlick  -0.07%  0.02%  001% -037% -034%  -0.43 %
Mai 000% -022% -014% -033% -053% -0.60 %
Reinhard  -0.04%  -047% -037% -053% -080%  -0.86%
Ferwerda -022% -079% -047% -1.06% -1.12% -128%
Carousel4

Mertens 0.00 % -0.02 % 0.04 % -0.46 % -0.42 % -0.56 %
Raman -3.00 % -2.94 % -3.26 % -1.80 % -2.09 % -3.06 %
Schlick -0.06 % -0.36 % -0.28 % -0.65 % -0.99 % -1.00 %

Mai -010% -012%  -0.10% 0.06 % 001% -037%

Reinhard 0.06 % 0.01 % 014% -019% -024%  -0.18%

FireEater Ferwerda -067% -069% -097% -197% -064% -2.16%
Mertens -0.01 % 000% -001% -024% -0.11% -025%

Raman 580%  -534% -492%  -282%  -263%  -528%

Schlick -2.42 % -2.53 % -5.25 % -3.15 % -2.86 % -5.41 %

Mai 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %
Reinhard 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %
Ferwerda 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %

Market — \ ortens  005% 004%  005% -027% 045%  -042%
Raman  -3022% -2590% -32.84% -1725% -21.83% -31.51%

Schlick  -484% -1379% -31.02% -1601% -27.68% -37.33 %

Mai 2001% -1.62% -129% -158%  -3.13%  -333 %

Reinhard  -0.15%  -2.03% -2.53% -2.92% -450%  -4.71%

Libg  Ferwerda  038%  -145%  2.67% -475% -520% 576 %
Mertens  -0.25%  -046% -031% -278% -2.88%  -3.06%

Raman  -6.12% -612% 977% -603% -136%  -9.17 %

Schlick  -1.51%  -228%  -528% -567% -159%  -7.60 %

Average 185% 214% -3.12% 211% 280 %  -3.80 %
Min 006% 005% 014% 025% 005%  0.05%
Max 3022 % 2590 % -32.84% -17.25% -27.68% -37.33 %

Table 5.2 — BD-Rate gains of the weighted prediction of HEVC (column 1) and of the proposed
WP using Frame activation with respect to the HEVC standard without any weighted prediction.
SDR tone-mapped test sequences

the optimal solution. Figure 5.4 perfectly illustrates this problem. For the KoreanPop se-
quence, we can see a large point cloud which is difficult to predict using a global WP.
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However, in the local case, the point clouds are narrowed and the local WPs better fit
them. These observations are confirmed by the RD results using local WPs for these three
sequences. On the other hand, the average RD results are much worse than the ones using
global WPs. For the other sequences with global brightness variations, the local WPs are
not efficient since it requires a non negligible overhead cost for each CTU.

This first result analysis shows that the global and local WPs are complementary and
not competing. Using all the WPs in the same encoder could only provide better RD per-
formances, as visible in Table 5.1. The combination of the 4 WP modes provides around
3.13% BD-rate gains compared to the HEVC WP. We tested different combinations using
one global and one local WP and the most efficient match is GNL-LL which provides
around 2.97% BD-rate gains compared to the HEVC WP. Limiting the frame competition
to 2 modes isn’t more efficient since the overhead cost savings is negligible. Therefore,
for the second test set, we only tested the combination of the 4 WP modes.

Table 5.2 shows the results using the second test set, the 36 SDR tone-mapped se-
quences. The TMOs mentionned in Table 5.2 are the following ones: Mai [MMM™*11],
Reinhard [RSSFO02], Ferwerda [FPSG96], Mertens [MKRO07], Raman [RC09] and Schlick
[Sch95]. On average, the observations are the same than for Table 5.1. The non-linear WPs
improve the RD performances and the combination of the 4 WP modes provides the best
RD performances. Some HDR sequences, like Balloon or Market, present very few bright-
ness variations and therefore presents no improvement in RD performances using the
TMOs [MMM ™11, RSSF02, FPSG96, MKRO07]. However, for the TMOs [Sch95, RC09],
these sequences present high RD gains. For the other sequences also, these TMOs are
usually presenting the higher RD gains. Indeed, these TMOs can generate temporal flick-
ering on the resulting SDR sequences therefore increasing the SDR temporal variations.
The proposed WP modes can predict efficiently these flickering artifacts, therefore com-
pensate it and improve the RD performances.

To conclude on the first results, we can notice that the proposed optical flow based
algorithm is better for the estimation of WP model parameters than the actual one in
the HM16.2, and that the proposed non-linear WPs outperforms the linear ones. We also
demonstrated that global and local weighted prediction are complementary and their com-
bination further improves the RD performances.

5.4.2 Rate-distortion performances using CTU level activation

Table 5.3 shows the results using the CTU level activation presented in section 5.3.
On average, the observations for the frame level activation remains valid for this case.
The principal difference with the previous results of Table 5.1 is that each mode needs
an overhead cost for each CTU. Surprisingly, it does not impact the RD performances of
global WPs. On the contrary, the GL and GNL WPs using CTU activation present 0.43%
BD-rate gains and 0.37% BD-rate gains compared to the ones using frame activation.
However, in this case, the overhead cost is relatively small (1 bit by CTU). As explained
in section 5.3, the process for local WPs using CTU activation is almost similar as the
ones using frame activation. In this case, we rely on the threshold (5.18) to decide the
activation of the WP. The RD performances show that this threshold choice is not optimal
and could be improved.

Using the combination of 4 WP at CTU level provides the same results as those ob-
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HEVC GL

Sequences WP GL GNL LL LNL 4 WP GNL LL
BodyPainting  -9,15% -12,12% -12,58% -10,60% -9,88% -14,46% -14,45%
Concert -2,35% -4,48% -4,38% -0,60% -1,52% -4,88% -5,17%
Eurovision 0,01% 0,01% 0,01% 0,01% 0,01% 0,01% 0,01%
KoreanPop 8,17% -5,54% -4,54% -4,49% -3,30% -7,35% -7,28%
LeMatch 0,04% -0,14% -0,15% 0,12% -0,16% -0,24% -0,27%
Guetta-0 3,65% -0,64% -0,61% -0,26% -0,08% -1,22% -1,12%
Guetta-2 -0,37% -0,42% -0,60% -0,16% -0,04% -0,95% -0,78%
RedBull -37,08% -35,05% -39,02% -3,92% -6,24% -36,49%  -38,68%
Popldol 0,61% -2,44% -2,24% -2,07% -1,36% -3,99% -3,85%

SkyFade -12,60% -1298% -13,54% 0,16% -1,83% -1421%  -15,25%
SunFade -23,00% -21,43% -22,95% 6,13% 451% -2131% -21,80%
Tangerine -10,27% -11,55% -15,93% 4,01% 2,03% -14,50% -14,95%

Average -6,86% -890% -9,71% -097% -149% -997% -10,30%
Min 8,17 % 0,01 % 0,01 % 6,13% 4,51% 0,01% 0,01%
Max -37,08% -3505% -39,02% -10,60% -988% -36,49% -38,68%

Table 5.3 — BD-Rate gains of the weighted prediction of HEVC (column 1) and of the proposed
WP using CTU activation with respect to the HEVC standard without any weighted prediction.
SDR test sequences

tained at frame level. The better accuracy of this competition just counterbalance the over-
head cost for each CTU. Also here, we tested several combinations of WP, as explained
in section 5.3. Table 5.3 only presents the RD performance of the most efficient combina-
tion, which is GL-GNL-LL WPs, providing on average 3.44% BD-rate gains against the
classical HEVC WP. In this case, limiting the competition to these three modes is more
efficient than using the 4 WP model since we move from a cost of 3 bits by CTU to 2 bits
by CTU.

Table 5.4 shows the results using the same test set as in Table 5.2. On average, the
observations are the same than for Table 5.2 or 5.3, except that in this case the competi-
tion of four WP modes provides the best RD performances instead of GL-GNL-LL. The
proposed WP modes outperforms the RD performances of the existing WP modes and the
better RD gains are achieved with the TMOs that generate temporal flickering artifacts.

To conclude on these results, we showed that using a CTU competition for WPs modes
can be more interesting than the frame level activation except for some marginal cases
where the overhead cost limits the BD-rate gains.

5.4.3 HDR rate-distortion performances using best WP modes

The previous sections 5.4.1 and 5.4.2 present the RD gains on SDR sequences. In
this section, we present the RD performances obtained on the HDR level using the TMO
[MMM™11], which is easily invertible, and the best WP modes: the 4 WP modes with
frame level activation, the 4WP modes and GL-GNL-LL modes with CTU level activa-
tion. The SDR RD performances of this configuration are already presented in Table 5.2
and 5.4. In this case, the SDR videos are inverse tone mapped to reconstruct the HDR se-
quences and the RD performances are computed using different HDR metrics: the tPSNR
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HEVC GL
Sequences TMO WP GL GNL LL LNL 4 WP GNL LL
Mai 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %
Reinhard 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %
Balloon Ferwerda 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %
Mertens 0.01 % -0.09 % -0.14 % -0.04 % -0.12 % -0.33 % -0.24 %
Raman -5.95 % -5.72 % -7.59 % -2.30 % -4.01 % -1.74 % -7.73 %
Schlick 0.05 % 0.05 % 0.05 % 0.05 % 0.05 % 0.05 % 0.05 %
Mai -0.03 % -0.58 % -0.59 % 0.15 % -0.14 % -1.04 % -0.84 %
Reinhard -0.32 % -0.82 % -0.88 % -0.43 % -0.51 % -1.67 % -1.58 %
Carousel3 Ferwerda -0.07 % -1.17 % -0.99 % -0.16 % -0.36 % -1.91 % -1.55 %
Mertens -0.07 % -0.37 % -0.32 % -0.33 % -0.21 % -0.77 % -0.73 %
Raman -4.00 % -4.06 % -4.16 % -2.08 % -2.04 % -5.29 % -5.20 %
Schlick -0.07 % -0.60 % -0.52 % -0.37 % -0.36 % -1.04 % -1.03 %
Mai 0.00 % -0.83 % -0.76 % -0.33 % -0.53 % -1.57 % -1.38 %
Reinhard -0.04 % -1.16 % -1.20 % -0.52 % -0.79 % -2.07 % -1.88 %
Carouseld Ferwerda -0.22 % -1.63 % -1.52 % -1.06 % -1.12 % -2.80 % -2.62 %
Mertens 0.00 % -0.60 % -0.57 % -0.45 % -0.42 % -1.36 % -1.18 %
Raman -3.00 % -3.59 % -4.01 % -1.79 % -2.07 % -4.90 % -4.76 %
Schlick -0.06 % -1.13 % -1.05 % -0.65 % -0.95 % -2.18 % -1.89 %
Mai -0.10 % -0.87 % -0.62 % 0.06 % 0.01 % -1.62 % -1.22 %
Reinhard 0.06 % -0.14 % -0.23 % -0.19 % -0.04 % -1.25 % -0.81 %
FireEater Ferwerda -0.67 % -2.04 % -2.03 % -1.97 % -1.51 % -4.75 % -3.85 %
Mertens -0.01 % -0.28 % -0.23 % -0.24 % -0.13 % -0.66 % -0.59 %
Raman -5.80 % -5.90 % -5.70 % -2.82 % -2.62 % -7.52 % -7.32 %
Schlick -2.42 % -2.78 % -5.71 % -3.15 % -2.86 % -6.70 % -6.39 %
Mai 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %
Reinhard 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %
Market Ferwerda 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %
Mertens -0.05 % -0.34 % -0.35 % -0.27 % -0.38 % -0.95 % -0.70 %
Raman 3022 %  -2635% -31.27% -1726% -2132% -31.60% -31.88 %
Schlick 484 % -16.10% -38.67% -16.00% -2792% -39.73% -39.48 %
Mai -0.01 % -3.93 % -3.19 % -1.58 % -3.11 % -5.82 % -5.29 %
Reinhard -0.15 % -3.90 % -4.31 % -2.92 % -4.46 % -7.13 % -6.49 %
Tibul Ferwerda -0.38 % -3.27 % -4.78 % -4.75 % -5.20 % -8.73 % -8.13 %
Mertens -0.25 % -1.71 % -1.69 % -2.78 % -2.88 % -4.60 % -4.03 %
Raman -6.12 % 740 %  -11.04 % -6.05 % 7104 %  -1221 %  -12.09 %
Schlick -1.51 % -3.76 % -7.14 % -5.67 % -7.54 % -9.94 % -8.99 %
Average 185 % -281% -392% -211% -279% -494% -4.72 %
Min 0.06 % 0.05 % 0.05 % 0.15 % 0.05 % 0.05 % 0.05 %
Max -30.22 % -2635 % -38.67 % -17.26 % -2792% -39.73 % -39.48 %

Table 5.4 — BD-Rate gains of the weighted prediction of HEVC (column 1) and of the proposed
WP using CTU activation with respect to the HEVC standard without any weighted prediction.

SDR tone-mapped test sequences

[LFH15] in Table 5.5, the PU-PSNR [AMSO08] in Table 5.6, the PU-SSIM [AMSO08] in

Table 5.7 and the HDRVDP [MKRHI11] in Table 5.8.
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CTU/

Sequences TMO HEVC WP Frame/4WP CTU/4WP GL GNL LL
Balloon Mai 0.01 % 0.01 % 0.01 % 0.01 %
Carousel3 Mai -0.10 % -0.14 % -0.91 % 0.39 %
Carouseld Mai 0.05 % -0.63 % -1.56 % -1.34 %
FireEater Mai -0.15 % -0.33 % -1.94 % -1.57 %
Market Mai 0.01 % 0.01 % 0.01 % 0.01 %
Tibul Mai -0.05 % -3.24 % -5.83 % -5.18 %
Average -0.04 % -0.72 % -1.70 % -1.41 %
Min 0.05 % 0.01 % 0.01 % 0.01 %
Max -0.15 % -3.24 % -5.83 % -5.18 %

Table 5.5 — HDR BD-Rate gains using tPSNR of the weighted prediction of HEVC (column 1)
and of the proposed WP with respect to the HEVC standard without any weighted prediction. HDR

test sequences

CTU/

Sequences TMO HEVC WP  Frame/4WP CTU/4WP GL GNL LL
Balloon Mai 0.01 % 0.01 % 0.01 % 0.01 %
Carousel3 Mai -0.08 % -0.02 % -0.87 % -0.34 %
Carousel4d Mai 0.07 % -0.62 % -1.53 % -1.31 %
FireEater = Mai -0.12 % -0.34 % -1.95 % -1.63 %
Market Mai 0.01 % 0.01 % 0.01 % 0.01 %
Tibul Mai -0.03 % -3.25 % -5.80 % -5.15 %
Average -0.02 % -0.70 % -1.69 % -1.40 %
Min 0.07 % 0.01 % 0.01 % 0.01 %
Max -0.12 % -3.25 % -5.80 % -5.15 %

Table 5.6 — HDR BD-Rate gains using PU-PSNR of the weighted prediction of HEVC (column
1) and of the proposed WP with respect to the HEVC standard without any weighted prediction.
HDR test sequences

CTU/

Sequences TMO HEVC WP Frame/4WP CTU/4WP GL GNL LL
Balloon Mai 0.01 % 0.01 % 0.01 % 0.01 %
Carousel3 Mai 0.34 % 0.22 % -0.72 % -0.08 %
Carousel4d Mai 0.16 % -0.39 % -1.45 % -1.12 %
FireEater Mai -0.13 % -0.21 % -1.55 % -1.36 %
Market Mai 0.02 % 0.02 % 0.02 % 0.02 %
Tibul Mai -0.03 % -2.76 % -5.28 % -4.89 %
Average 0.06 % -0.52 % -1.50 % -1.24 %
Min 0.34 % 0.22 % 0.02 % 0.02 %
Max -0.13 % -2.76 % -5.28 % -4.89 %

Table 5.7 — HDR BD-Rate gains using PU-SSIM of the weighted prediction of HEVC (column
1) and of the proposed WP with respect to the HEVC standard without any weighted prediction.
HDR test sequences

On average, the RD gains are consistent with all metrics, a little lower for the HDRVDP.
These RD performances are consistent with the TMO-generated SDR ones and demon-
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CTU/

Sequences TMO HEVC WP  Frame/4WP CTU/4WP GL GNL LL
Balloon Mai 0.01 % 0.01 % 0.01 % 0.01 %
Carousel3 Mai 0.17 % 0.45 % 0.46 % 1.12 %
Carouseld Mai 033 % -0.78 % -2.04 % -1.56 %
FireEater Mai 0.47 % -0.29 % -1.29 % -1.37 %
Market Mai 0.01 % 0.01 % 0.01 % 0.01 %
Tibul Mai -0.02 % -3.02 % -5.21 % -4.55 %
Average 0.16 % -0.60 % -1.34 % -1.06 %
Min 0.47 % 0.45 % 0.46 % 1.12 %
Max -0.02 % -3.02 % -5.21 % -4.55 %

Table 5.8 — HDR BD-Rate gains using HDRVDP of the weighted prediction of HEVC (column
1) and of the proposed WP with respect to the HEVC standard without any weighted prediction.
HDR test sequences

strate that improving the SDR RD performances can improve the HDR ones. Furthermore,
the SDR content is not impacted and therefore the temporal quality is preserved.

5.4.4 Rate-distortion performances using multiple references

The previous result were presented using the default HEVC lowdelay_P_Main config-
uration file with only one reference frame. This configuration allows to more accurately
assess the contribution of each WP models. Indeed, with multiple references frames, lo-
cal blocks can be predicted using different reference frames, thus allowing implicit local
brightness adaptation when using only global WP. Furthermore, with the use of B frame
type, the weighted bi prediction also add another candidate for each local block, again
implicitly accounting for local illumination change compensation.

To assess the performance of the proposed optical flow based algorithm and new WP
models, we also perform tests using the default HEVC lowdelay_B_Main configuration
file while maintaining the 4 reference frames. Table 5.9 shows the results using the frame
level activation and Table 5.10, the results with CTU level activation. For these tests, we
only focus on the SDR test set.

With the GL results in Table 5.9, we can see that the proposed optical flow based
algorithm still outperforms the HEVC algorithm with a BD-rate improvement of 3%.
However, unlike the configuration using one reference frame, the non linear WP models
do not outperform the linear one. This observation is mainly explained with the overhead
difference between the linear WP model and the non linear ones. In this case, the non
linear WP overhead is multiplied by four since we use four reference frames. However,
we also tested several competitions of WP model and using the GL and GNL models, we
obtain a BD-rate improvement of 0.5% when compared to the GL model.

For the CTU level results in Table 5.10, we can noticed that the GNL WP model
outperform the GL one with a BD-rate gain around 0.5%. However, for the local WP
models, the LL. WP model provides better results than the LNL WP model. As in Section
5.4.2, the 4 WP competition is penalized by a signaling cost of 3 bits by CTU while
the competition GL, GNL and LL only uses 2 bits by CTU. For these reasons, only the
competition of GL, GNL and LL provides BD-rate gains, around 0,8%, when compared
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HEVC GL

Sequences WP GL GNL LL LNL 4 WP GNL
BodyPainting -13,58% -14,37% -13,60% -12,14% -10,97% -1487% -15,15%
Concert -18,28% -1829% -17,55%  -5,04%  -3,89% -18,30% -18,35%
Eurovision 0,02% 0,01% -0,13% 0,10% -040%  -0,68% -0,14%
KoreanPop 2,69%  -477%  -326%  -3,59% < -2,17%  -3,21% -4,85%
LeMatch 0,12% -0,11% -0,11% 0,10% 0,19% 0,15% -0,10%
Guetta-0 295%  -0,671%  -0,63% -0,79%  -0,16%  -0,70% -0,94%
Guetta-2 -0,15%  -048%  -0.52%  -0,35%  -0,26%  -0,56% -0,66%
RedBull -4281% -50,55% -50,45%  -2,28%  -0,31% -50,49% -51,09%
Popldol 046%  -2,36%  -221%  -2,08% -127%  -2,24% -2,92%

SkyFade  -2130% -2337% -23,13%  -034%  1,09% -23,66% -24,34%
SunFade  -38,17% -44,89% -4128%  698%  8,64% -42.95%  -44.46%
Tangerine  -17,99% -21,84% -22.86%  4,15%  3,60% -25,15% -24.81%
Average  -1217% -15,14% -14,64% -127% -049% -1522% -15,66%
Min 295%  0.01% -0.11% 698% 8.64%  0.15% -0.10 %
Max 4281% -50.55% -50.45% -12.14% -1097% -50.49% -51.09%

Table 5.9 — BD-Rate gains of the weighted prediction of HEVC (column 1) and of the proposed
WP using Frame activation with respect to the HEVC standard without any weighted prediction.
SDR test sequences in a low delay configuration using 4B frames

HEVC GL
Sequences WP GL GNL LL LNL 4 WP GNL LL
BodyPainting -13,58% -13,68% -13,55% -12,07% -10,88% -14,78% -15,56%
Concert -18,28% -1741% -17,17%  -496%  -3,718% -16,89% -18,63%

Eurovision 0,02%  -021%  -0,53% 029%  -0,34%  -1,19% -0,54%
KoreanPop 2,69%  -647%  -637T%  -3,59%  -2,17%  -1,13% -8,37%

LeMatch 0,12% 0,54% 0,81% 0,53% 0,25% 0,27% 1,15%
Guetta-0 2,95% -0,84% -1,06% -0,61% -0,02%  -1,50% -1,86%
Guetta-2 -0,15% -0,67% -1,20% -0,24% -0,05%  -1,13% -1,33%
RedBull -42,81% -45,22%  -47,14% -0,17% -0,20% -42,56% -46,83%
Popldol 0,46% -3,03% -3,50% -2,07% -1,27%  -4,25% -4,94%

SkyFade -21,30%  -1998% -21,21% 0,99% 1,10% -17,43% -21,38%
SunFade -38,17%  -3494%  -33,75% 9,28% 9,55% -2691% -31,08%
Tangerine -17.99% -17,62% -19,81% 5,60% 5,19% -17,19% -19,13%
Average -12.17%  -13.29% -13.711%  -0.59%  -0.22% -12.56% -14.04%
Min 2.95% 0,54 % 0,81% 9.28% 9.55% 0.27 % 1.15%
Max -42.81% -4522% -47.14% -12.07% -10.88% -42.56% -46.83%

Table 5.10 — BD-Rate gains of the weighted prediction of HEVC (column 1) and of the proposed
WP using CTU activation with respect to the HEVC standard without any weighted prediction.
SDR test sequences in a low delay configuration using 4B frames

to the GL WP model.
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5.4.5 Localized rate-distortion performances

Evaluating the RD performances of the WP in a fair manner is not obvious. For some
sequences, the gains can be localized on a specific frame and therefore minimized when
averaging the gains over the entire sequence. To overcome this problem, we computed the
BD-rate gains, using 4 RD points (4 QPs), for each frame and plotted them on Figure 5.6.
The green curves represent the best competition mode using frame competition and the
blue curves represent the best ones using the CTU competition. The abscissa represents
the frame index in display order of the sequence and the ordinates, the associated BD-Rate
gains. For the BodyPainting sequence, limiting the test sequence to the frame 4 to 9, the
BD-rate gains would have been even better. Note that, each gain represented in the figure
is associated with a rate value. If the rate value is high the gain has a big impact on the
average gain and conversely if the rate value is low the gain has a small impact on the
average gain.

On average, the proposed WPs always outperforms the HEVC weighted prediction
except in a specific case at the beginning of the Tangerine sequence using the combination
of GL-GNL-LL. In this case, the threshold (5.18) wrongly activates the WP for the current
frame therefore imposing an overhead cost for all CTUs. Since we are at the beginning
of a fade-in, the corresponding rate of the frame is very low therefore the overhead cost
result in a large BD-rate loss, while in fact it’s negligible compared to the other frame
rates. This presentation for the BD-rate gains also allows to appreciate the performance of
the WP. Indeed, for some frame, the BD-rate gains go up to 26% for BodyPainting, 14%
for KoreanPop and 45% for Tangerine.

Figure 5.7 shows the BD-rate gains computed on the HDR sequences Tibul, FireEater
and Caroussel4 using the HDRVDP metric. In this case, we show the results using the 4
WP modes with CTU competition since it provides the best RD performances in Tables
5.2 and 5.4. The HDR sequences contain around 200 frames, however for sake of clarity
we only plotted the gains for a subset of frame with much temporal variations. As explain
above, encoding all the frame of the sequence can round down the WP gains, thereby
Figure 5.7 shows BD-Rate gains up to 14% for Tibul, 21% for FireEater and 7% for
Carousel4

5.4.6 Discussions

We didn’t compare the obtained RD performances in section 5.4.3 to the ones obtained
with [OLVD16]. Indeed, we implemented their solution meticulously using the same con-
figuration and same inputs but we were unable to achieve better RD performances than
the ones obtained with [MMM ™ 11]. The conclusion was the same using different metrics,
different A\ values for (5.2), or different optimization algorithms. This observation coin-
cides with the one made in the introduction stating that all others temporally constrained
TMO failed to improve the HDR RD performances.

As explained in section 5.3 the optical flows and WPs are computed prior to the en-
coding process. The accuracy of WPs could possibly be improved if done directly in the
encoding loop. Indeed, all computation could be made with the reconstructed frame S;_;
instead of the source frame. Besides, regarding the optical flow, we tested a few others
[LMB™15, QV16] but the preliminary results were better using the presented one. How-
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ever, it’s quite likely that more robust optical flows could improve the precision of the
weighted prediction and therefore the RD performances.

Another possible improvement could be to reduce the rate by taking advantage of
the HEVC CABAC context model [MSWO03] to encode the different indexes signaled for
each CTU. This solution both applies for the WP using CTU or frame level activation.
Indeed, in the CTU level optimal solution (GL-GNL-LL), each 2 bits CTU index is hard-
coded. The entropy of all these indexes in the frame could be reduced using the CTU
context. In the frame level case, the GNL WP is signaled with 19 ordinates and there
entropy is reduced by keeping the differences between each ordinates. However, using
the CABAC context model, these ordinates could be more efficiently predict using the
ones from previously encoded frames. This improvement should especially benefit to the
multiple reference frames configurations, where 19 ordinates are sent for each reference
frame.

Regarding the encoding performances, the algorithm and WPs computation is rather
straightforward. The optical flow is computed and applied once on the entire frame and
the WPs are quickly computed with least square fitting. As explained in section 5.2, the
optical flow was performed in real time for 30 fps videos with 640x480 pixels [CP11].
However, performing multiple compression of the frame or the CTU increases the encoder
complexity. Instead of multiple compression, some fast pre-decision between WP modes
could be easily implemented thus resulting in a complexity equivalent to the original
scheme and this probably with limited impact on the RD performances. However, the
motivation here was to evaluate the best WP modes and not the efficiency of any fast pre-
decision algorithms. Further works will focus on the conception of such algorithms. One
option could be to analyze the variance of the point cloud presented in Figure 5.4.

Contrary to the encoder, the decoder complexity is not impacted. Indeed, the decoding
process only consists in parsing the WP parameters for the current frame and applying it
to the reference one, as in the HEVC reference software.

Finally, the proposed optical flow based WP algorithm can easily be used with the
current HEVC standard but the new WP model parameters introduce decoder modifica-
tions and are not compatible with HEVC. These models could be suggested for the new
standard in preparation VVC/H.266 [SBW 17]. However, a new coding tool for luminance
compensation has already been introduced in this standard under the name Local I1lumi-
nation Compensation (LIC) [LCC*15]. Therefore, the contribution of the proposed WP
algorithm and models should be compared with it.

5.5 Conclusion

In the context of the backward compatible HDR compression of videos, we demon-
strated that using a weighted prediction is better than using a temporally optimized TMO
in terms of RD performances. This is explained by the fact that, with the weighted pre-
diction, the joint optimization problem of the TMO and the WP is separable into two
problems: (i) the TMO optimization, and (ii) the WP optimization. Instead, the tempo-
rally optimized TMO requires to jointly optimize the two functions, which requires some
simplifying assumptions to compromise between rate and distortion minimization, as well
as temporal regularization. Another benefit of the WP approach is that the SDR can be op-
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timized with respect to some other criterion, not only for compression but rather aesthetic
purpose. Therefore, we proposed a new weighted prediction algorithm and new weighted
prediction modes to handle more efficiently the large diversity of brightness variations in
video sequences.

The proposed algorithm consists in performing a global motion compensation, based
on an optical-flow, followed by the computation of different weighted predictions modes
or models. The proposed modes consist in computing a global or local non-linear func-
tions to predict the current frame, unlike state-of-the-art methods always based on linear
functions. The performances of the proposed algorithm and each mode is evaluated to
identify the best ones, then all modes are put in competition in the same encoding pro-
cess. This competing strategy is made at two levels, frame and CTU, and different modes
combinations are studied.

The several proposed weighted prediction modes range from a complex (many meta-
data) but accurate prediction model (local non-linear) to a less complex and rough pre-
diction model (global linear). It has been shown that depending on the image, there exists
always at least one proposed weighted predictor that outperforms the WP implemented in
HEVC. Therefore, we propose to allow competition between all the proposed WP modes,
and this brings BD-rate gain of about 10% with respect to the HEVC reference software
and about 3.5% with respect to the HEVC software with existing WP enabled. Indeed, this
competition allows to compensate more types of brightness variation. The RD results also
show the superiority of non-linear functions, either in global or local weighted prediction,
compared to linear ones despite a higher signaling overhead. The RD performances are
improved on SDR graded content and also with TMO-generated SDR content, especially
when the TMO introduces flickering artifacts. The RD performances were also improved
on the HDR level and thus shows that the proposed solution can improve the HDR RD
performances while maintaining the SDR temporal consistency.

In the proposed method, the compression is performed multiple times in some cases,
therefore increasing the complexity at the encoder-side only. Further studies will investi-
gate pre-decision algorithms to determine the weighted prediction activation and to allow
for fast decision of the proposed WP modes. Additionally, the signaling of the WP will
be implemented with the CABAC entropy coder to further reduce syntax overhead and
improve the overall RD performances.



Conclusion

In this thesis, we investigated the backward compatible compression methods for High
Dynamic Range (HDR) content. As detailed in Sections 1.3 and 2.3, the standard HDR
compression pipeline consists in using legacy SDR compression standards with new Opto-
Electonic Transfer Functions (OETF) and a high bit depth representation instead of the
classical SDR format using the gamma OETF and the 3x8 bits per pixel representation.
While standard HDR compression is incompatible with legacy SDR decoder/display, the
backward compatible HDR compression presented in Section 2.3 allows to address both
the new HDR displays and the legacy SDR ones. To do so, the HDR content is first trans-
formed into an 8 bit SDR one with a Tone Mapping Operator (TMO), introduced in Sec-
tion 1.4, then encoded with a legacy SDR encoder such as HEVC, presented in Section 2.2.
This SDR signal is thus compatible with an SDR display/decoder but it can also be inverse
tone mapped to yield an HDR reconstructed content. Additionally, the residue between the
original HDR content and its reconstructed version can be sent as an enhancement layer
to improve the HDR content reconstruction. In this context, we proposed several solutions
to improve the Rate Distortion performances (RD) of backward compatible compression
schemes.

Initially, we focused on backward compatible compression schemes where both an
SDR base layer and an enhancement layer are sent to reconstruct the HDR content. In
Chapter 3, we proposed a TMO minimizing the distortion of the HDR signal under a total
rate constraint for both layers, while preserving a good perceptual quality for the resulting
SDR signal. Indeed, some TMOs only optimized for compression purposes may yield
SDR content in which the artistic intent of the HDR content is not preserved. The proposed
modelisation explicitly account for both layer rates and brings us to the early conclusion
that optimizing a dual layer compression scheme can be split into two consecutive steps:
a TMO optimization considering only the base layer rate and a rate allocation to find
the best rate repartition between the base and enhancement layers. To solve the TMO
optimization, the tone curve is parameterized as a piecewise linear function. Furthermore,
this parameterization allows to send the TMO with few coefficients and therefore with a
small impact on the base layer rate. In the end, in comparison to state-of-the-art methods,
the proposed solution provides the best trade-off between RD performances and quality
preservation of the SDR content.

Based on the previous conclusion that optimizing a TMO for a dual layer compression
scheme is equivalent to, first, a TMO optimization with only the base layer, and secondly,
a rate allocation optimization, then we focused on single layer compression schemes in
Chapter 4. In this chapter, we proposed new models for the HDR distortion, the SDR rate
and the SDR perceptual quality based on the spatial gradient of the HDR image. These
models are compared to state-of-the-art ones and the superior accuracy of the gradient
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based models is experimentally demonstrated. These improved models are then used to
optimize a single layer compression scheme in two use cases. The first one consists to
minimize the HDR distortion under a rate constraint for the SDR content, in this way we
optimize the RD performances of the compression and ensure an efficient transmission of
the HDR content. In the second use case, we kept the same minimization problem but we
add a constraint on the SDR perceptual quality to tradeoff the RD performances with a
visually pleasing SDR content. Experimental results demonstrate than both TMO provide
either the optimal RD performances or the best tradeoff between RD performances and
quality preservation of the SDR content.

Note that these two TMOs and the one proposed in Chapter 3 are computed with still
images statistics. They can easily be used for video by computing a TMO for each frame,
however one could argue about the optimality of such solution in terms of compression
performances. Indeed, TMOs reduce a large dynamic of luminance to a smaller one and
performing this reduction on consecutive images can create temporal artifacts such as
flickering. Therefore, we chose to focus on this temporal aspect.

In Chapter 5, we studied the TMO specially designed for videos and distinguish two
types. One type consists to reduce the temporal discontinuities in the SDR sequence, using
techniques such as temporal filtering of the tone curves or more complex ones, to reduce
the temporal artifacts and therefore provide a temporally coherent SDR content. How-
ever, these solutions have a rather limited and varying impact on the RD performances.
In contrast, the other type of video TMO is designed to modify the SDR video in order
to optimize the RD performances. These latter methods remove artifacts such as flicker-
ing, however, they strongly degrade the temporal coherency of the SDR video. In Chapter
5, we combine the benefits of the two methods by introducing new Weighted Prediction
(WP) methods inside the HEVC SDR encoder. As a first step, we demonstrate the interest
of the WP methods compared to TMO optimized for RD performances. Then we present
the newly introduced WP algorithm and WP modes. The WP algorithm consists in per-
forming a global motion compensation between frames using an optical flow, and the new
modes are based on non linear functions in contrast with the literature using only linear
functions. The contribution of each novelty is studied independently and in a second time
they are all put in competition to maximize the RD performances. Tests were made in
backward compatible compression scheme but also on SDR compression only. In both
cases, the proposed WP methods improve the RD performances while maintaining the
SDR temporal coherency.

To conclude this thesis, all the proposed solutions focused on different aspects of
backward compatible HDR compression and successfully improved it. In Chapter 3, we
tackle compression scheme using two layers and demonstrate that the TMO optimization
only depends on the base layer. Then in Chapter 4, we proposed improved and well re-
fined models of a single layer compression to obtain an optimal TMO providing either
the best RD performances or the best tradeoff between RD performances and perceptual
quality preservation of the SDR content. Finally, in Chapter 5, we demonstrate that the
extension of TMO optimization to video can successfully be replaced by the use of a
new weighted prediction algorithm for SDR encoder. However, all these works could be
further improved as discussed below.
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Perspectives

First, all the previously presented work applies to the luma channel only, while the
chroma channels are discarded. A simple approach is to use RGB color space with a TMO
optimization for each channel however, as explained in Chapter 1, this method is not the
optimal one for compression applications. The proposed TMOs are all optimized on the
statistics of the luma component which are very different from the chroma components.
For both compression performances and subjective quality of the SDR content, several
adjustments are likely required. For Chapter 5, the benefits of a non linear WP still needs
to be demonstrated for the chroma components. Therefore, further research is necessary
to determine the best practices for the treatment of color.

Secondly, the quality constraint of the SDR content Dspr _rrr proposed in Chapter 3
and 4 is based on the MSE. It could be argued than using a metric based on a MSE with
a reference SDR image is not an optimal indicator of the visual quality of the resulting
SDR content. Other quality evaluation algorithms should be studied and integrate in the
TMO optimization process. The optimal method would be to use subjective evaluation
with several users, however this is a time-consuming process and clearly not integrable
within an optimization scheme. Note that, this last observation also applies for the quality
evaluation of the HDR content.

Thirdly, for sake of simplicity, the slopes of the non-linear WP in Chapter 5 are pre-
dicted by subtracting the same fixed value to all slopes and these residual slopes are then
entropy encoded with a VLC. The encoding cost of the slopes could be reduced with more
advanced prediction techniques using previously encoded slopes from previous frames or
previous block. Furthermore, the entropy coding of the residual slopes could be improved
with the CABAC entropy coder. Indeed, as explained in Chapter 2, the CABAC is known
to be more efficient than the VLC in terms of compression performances.

Several other approaches are considered to extend the work of this thesis. We studied
only global TMO in these thesis since it consists in applying the same invertible function
to the entire image and therefore ensure a simple reconstruction of the HDR content at
the decoding side. It could be considered to use different TMO curves depending on re-
gions of the image. Since for each region the dynamic range would be reduced, the HDR
reconstruction would be improved. This idea is introduced in [LKVD13a, LKVDI13b]
however with limited regions since they only use two, simply chosen with a luma thresh-
old. The disadvantage of a luma threshold is the loss of spatial coherence in the SDR
image since values just below the threshold is mapped to the maximum SDR value while
values just above the threshold are mapped to the minimum SDR value. More advanced
region selection can be made with segmentation algorithms, such as the SLIC superpixels
[ASS™12], to improve the coherency of the SDR content. The main difficulty of these
local approaches is to find a RD compromise for the number of selected regions. Indeed,
these approaches allow a better reconstruction of the HDR content but each TMO needs to
be sent along with the compressed SDR image and therefore, it can result in a significant
rate increase.

Another approach concerns the use case where both SDR and HDR contents are avail-
able. The two contents are independently graded by an artist and sent as such. In this case,
the TMO is a manual operation usually not invertible and the inverse transformation from
the SDR to the HDR content is too complex/expensive to be signaled in the bitstream. In
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this context, the best strategy is to use dedicated scalable codecs such as SHVC to predict
the HDR content with the SDR one using inter layer prediction. This work has already
been addressed in [GT12, PGT15].

Note that, the HDR distortion and SDR rate models developed in Chapter 4 could
be used for SDR compression. Indeed, the gradient is already mainly used in rate control
applications to estimate the rate fluctuation in a video. The proposed model is an extension
of this estimator to the HDR image through the TMO. However, the HDR distortion model
is a novelty and could easily be adapted to the SDR case. In this way, we have a fast and
low-complexity estimator of both the expected average distortion for all the image but also
its distribution on the image, as illustrated in Figure 4.7. This distortion estimator could
be used in many other compression applications to preserve the quality of some regions
of interest.
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Appendix A

Derivation of the optimization problem
terms

Derivation of Equation 3.38

First, let’s express E [(F (X) —E[F(X )])2} with the slope parameterization of F de-
tailed in Section 3.3.1:

E [(F(X)—]E[F(X)])Q] - / | (F(t)—E[F(X)]) p(1).dt A.D)
E [(F(X) - ]E[F(X)D?] _ ”Zl /:m ((t )0 S (s;) E[F(X>]>2 p(t).dt
(A.2)

Using the same assumption than for (3.35), that for each slope:

Vit € [on, zpn], Elf] ~ “%W (A3)
The equation (A.2) becomes:
- . n—1l ey 5~Sk k—1 9
E|(F(X)-E[F(X)])"| = / (7 + 4. Z (s;) — E[F(X)]) p(t).dt
) . k=0 v Tk j=0

B [(F(X) ~ EP))?] = 3 (clso.0) ~ EF X)) e (A6)

where the function c defined in (3.37) and where:

Th+1
pr=Play <t <apq) = / p(t).dt (A7)
Tk
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Using the expression of E[F(X)] defined in (3.36), the equation (A.2) can be finally
rewritten:

3
—

n

E [(F(X) — } ( c(S0..k) S C(SO..k)-pk> 22% (A.8)

k=0 k=

Derivation of Equation 3.39

Now, we express E [F’ (X )_2} with the same slope parameterization (see Sec.3.3.1):

E[F/(X)—Q] :/ - Zf/((t))zdt (A9)

Z / e (A.10)
ket dt

E[F'(X)?] = Z jj’”'ﬂs—?() (A.11)
k=0 k
n—1

E[F(X)?] = % (A.12)
k=0 K

where py, is defined in (A.7).

Derivation of Equation 3.40

Now, we express [E [(G(X ) — F(X ))2] with the same slope parameterization (see
Sec.3.3.1):

E[(G(X) - P(0)] = / mm (Gt~ (o)) plt) (A13)
E [(G(X ) — F(X ))2] = g / (G(t) - F(t))Q.p(t»dt (A.14)

with:
G(t) — F(t) = (t— 24).1s + 6. 5" (r}) — (¢ — 2).50 — 6. ¥ (A.15)

Il
=)

J J=0

where 7_(,—1) are the slopes of the reference TMO G' and sg_(,,—1) are the slopes of the

reference TMO F'.
Using the assumption (A.3):

k-1 5.5 k-1
G(t)—F(t)= =245 (r)) - —’“ 6.3 (s) (A.16)
j=0 3=0

G(t) — F(t) = c(ro.x) — c(s0.x) (A.17)
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with the function ¢ defined in (3.37). Since G(t) — F'(t) is now independent from ¢, the
equation (A.14) becomes:

Th+1

E[(60) = )] = X (o) =) - [ pt0nae s

E [(G(X) . F(X))Q] - (c(ro,,k) - c(sonk)>2.pk (A.19)

where py, is defined in (A.7).
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Appendix B
Derivation of TMO Bounds

Derivation of Equation 4.39

Removing the rate constraint from (4.35), the problem becomes:

n—1
min c- Z (gg(ﬁ:)) +d (B.1)
51...5n — sy,
t n—1 2nb—1
S.L. =
Sk 5
k=0

Zeroing partial derivatives with respect to s; (Karush-Kuhn-Tucker necessary conditions)
in (B.1) leads to:

—(2—=7)g;(7).c

) +upu=0 Vjel0,n] (B.2a)
5j
-1
2nb 1
Z =0 (B.2b)
k=0
As (B.2a) depends on s; only, we can exhibit the expression for each s3:
2 — ).gk(7).c\ T
50— (( 7)-9x(7) C) (B.3)
1
To get p, (B.3) is used in the constraint (B.2b):
n—1 _1
— ). c\37  2nvl
(2—17)-9:() C) _ (BA)
k=0 H 0

This leads:

1

=1 5.((2=~).gr(7).c) T\
:(; ( 7ZnIfIfl7 > ) (B.5)

Finally (B.5) and (B.3) give:

2nb—1

gk(V)ll (B.6)
0 Zk ogk( )7
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Derivation of Equation 4.40

Removing the spanning constraint from (4.35), turns the problem into:

. 9x(7)
: +d (B.7)
w5 (40)
n—1
s.t. Z Sk - gk(l) = R()a_ b
k=0

The Karush-Kuhn-Tucker necessary conditions for optimality on the Lagrangian expres-
sion of (B.7) lead to:

—(2 —=7)g;(7).c

B +Agij(1)=0 Vjel0,n] (B.8a)
s
n—1 R _b
> (skgr( 0 — =0 (B.8b)
k=0 a

Interestingly (B.8a) depends on one s; value only. Therefore, we can deduce the same
expression for all sL:

1

i (2 =7).gk(7).c\*
To get A\, we use (B.9) in the constraint (B.8b):
n—1 _1
) C) 3= RO —b
can(1) = B.1
z:;( ,U"')\gk() 91(1) a (310

This leads:

A= (f %.9+(1) <<2 - 7)'9’“@'6) _ )3_7 (B.11)
\Z (Re—0).(g:(1)7) '

Finally, with (B.11), (B.9) becomes:

st = — : (B.12)




Appendix C

Derivation of SDR quality constraint

2
The derivation from (4.45) to (4.47), requires to express the (G (x)—F (x)) term for

x € [xy, T4 1[. By using numerical integration with rectangle rule, we have the following
approximation:

Tk41

Tk+1 2 — 2
/_ (G(x) - F(:c)) dr ~ % >y (G(x) - F(x)) (C.1)
where ®+—F — 1. Integration by parts leads:
2 [ (Gla) = Fla)® ]
[, (cw-rw) e - 55500 2

i /+ (G) - F(x))g.S.(G”(x) - F'(a))
v=m 0.(Gr(a) ~ F(a))

Since (G”(x) - F”(x)) = 0, then (C.2) becomes:

[T T CESEk L

From (C.1) and (C.3), we can deduce that:

Th+1 2 (G(z) — F(x))®> 17
G(z)-F = C4
2 (Gt)—F@) owe Ff(o:))Lk €4
This can be rewritten with the piecewise parameterization for /' and GG given in (3.30) and
(4.46):
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with 2, = 05 ¢; and yp = 6 30 s;. And finally, from (4.45) and (C.5), we get:

n—1

Dsprrer = Zpk'h<t0--~tk7 0.+ Sk 5) (C.6)

k=0
with:

(5.tk + 21 — 0.8 — yk)3 — (Zk — yk>3

h(to..tk, so..sk,(S) _ =) (C.7)




List of abbreviations

AMVP Advanced Motion Vector Prediction

AVC/H.264  Advanced Video Coding

BD BjontegaarD

bpp bits per pixel

CABAC Context Adaptive Binary Arithmetic Coding

CfE Call for Evidence (refer to the HDR CfE [LFH15])

CIE Commission Internationale de 1’Eclairage (International Commission of Lighting)
CGI Computer Generated Imagery

CRF Camera Response Function

CSF Contrast Sensitivity Function

CTU Coding Tree Unit (in HEVC)

CU Coding Unit (in HEVC)

DATM Display Adaptive Tone Mapping [MDKOS]

DBF DeBlocking Filter

DCT Discrete Cosine Transform

DLP Digital Light Processing

DST Discrete Sine Transform

EO Expansion Operator

EOTF Electro Optical Transfer Function

EV Exposure Values

FPS Frames Per Second

GL Global Linear (refer to the Weighted Prediction in Chapter.5)
GNL Global Non-Linear (refer to the Weighted Prediction in Chapter.5)
GOP Group Of Pictures

JND Just Noticeable Difference

HD High Definition - Resolutions between 1280x720 and 1920x1080
HDR High Dynamic Range

HEVC/H.265 High Efficiency Video Coding

HLG Hybrid Log Gamma transfer function

HVS Human Visual System

IR Infra Red

ITMO Inverse Tone Mapping Operator

IEC International Electrotechnical Commission

ISO International Organization for Standardization

ITU-T International Telecommunication Union

LCU Largest Coding Unit (or CTU)

LDR Low Dynamic Range (Same as SDR)
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LED Light Emitting Diode

LL Local Linear (refer to the Weighted Prediction in Chapter.5)
LNL Local Non-Linear (refer to the Weighted Prediction in Chapter.5)
LUT Look Up Table

MOS Mean Opinion Score

MPEG Moving Picture Experts Group

MSE Mean Square Error

OETF Opto Electronic Transfer Function

OLED Organic Light Emitting Diode

POC Picture Order Count

PQ Perceptual Quantizer (usually refer to [MND12])

PSNR Peak to Signal Noise Ratio

PTR Photographic Tone Reproductor [RSSF02]

PU Prediction Unit (in HEVC)

PU Perceptually uniform (refer to the metrics like PU-PSNR or PU-SSIM)
QP Quantization Parameter

RD Rate-Distortion

SAD Sum of Absolute Differences

SAO Sample Adaptive Offset

SD Standard Definition - Resolutions below than 1280x720
SDR Standard Dynamic Range (Same as LDR)

SSIM Structural SIMilarity

T™MO Tone Mapping Operator

TU Transform Unit (in HEVC)

TV TeleVision

TVI Threshold Versus Intensity

UHD Ultra High Definition - Resolutions higher than 1920x1080
UV Ultra Violet

VLC Variable Length Coding

VVC/H.266  Future Video Coding

WCG Wide Color Gamut

WP Weighted Prediction
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Titre : Méthodes pour améliorer la compression HDR (High Dynamic Range) rétro compatible.

Mots clés : High Dynamic range (HDR), Compression Vidéo, Tone Mapping (TMO), HEVC

Résumé: Ces derniéres années, les contenus videéos
ont évolué trés rapidement. En effet, les télévisions
(TV) ont rapidement évolué vers ['Ultra Haute
résolution (UHD), la Haute Fréquence d’images
(HFR) ou la stéréoscopie (3D). La tendance actuelle
est a limagerie @ Haute Dynamique de luminance
(HDR). Ces technologies permettent de reproduire
des images beaucoup plus lumineuses que celles des
écrans actuels. Chacune de ces améliorations
représente une augmentation du colt de stockage et
nécessite la création de nouveaux standards de
compression vidéo, toujours plus performant. La
majorité des consommateurs est actuellement équipé
de TV ayant une Dynamique Standard (SDR) qui ne
supportent pas les contenus HDR et ils vont
lentement renouveler leurs écrans pour un HDR. Il est
donc important de délivrer un signal HDR qui puisse
étre décodé par ces deux types d’écrans. Cette rétro
compatibilité est rendue possible par un outil appelé
TMO (Tone Mapping Operator) qui transforme un
contenu HDR en une version SDR. Au travers de
cette thése, nous explorons de nouvelles méthodes
pour améliorer la compression HDR rétro compatible.

Premiérement, nous concevons un TMO qui
optimise les performances dun schéma de
compression scalable ou une couche de base et
d’amélioration sont envoyées pour reconstruire les
contenus HDR et SDR. Il est démontré que le TMO
optimal dépend seulement de la couche SDR de
base et que le probleme de minimisation peut étre
séparé en deux étapes consécutives. Pour ces
raisons, nous proposons ensuite un autre TMO
congu pour optimiser les performances d’'un schéma
de compression utilisant uniquement une couche de
base mais avec un modéle amélioré et plus précis.
Ces deux travaux optimisent des TMO pour images
fixes. Par la suite, la thése se concentre sur
I'optimisation de TMO spécifiques a la vidéo.
Cependant, on y démontre que [lutilisation d’'une
prédiction pondérée pour la compression SDR est
aussi bon voir meilleur que d’utiliser un TMO
optimisé temporellement. Pour ces raisons, un
nouvel algorithme et de nouveaux modes de
prédictions pondérées sont proposés pour gérer plus
efficacement la large diversité des changements
lumineux dans les séquences vidéos.
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Abstract: In recent years, video content evolved very
quickly. Indeed, televisions (TV) quickly evolved to
Ultra High Definition (UHD), High Frame Rate (HFR)
or stereoscopy (3D). The recent trend is towards High
Dynamic range (HDR). These new technologies allow
the reproduction of much brighter images than for
actual displays. Each of these improvements
represents an increase in storage cost and therefore
requires the creation of new video compression
standards, always more efficient. The majority of
consumers are currently equipped with Standard
Dynamic Range (SDR) displays, that cannot handle
HDR content. Consumers will slowly renew their
display to an HDR one and it is therefore of great
importance to deliver an HDR signal that can be
decoded by both SDR and HDR displays. Such
backward compatibility is provided by a tool called
Tone Mapping Operator (TMO) which transforms an
HDR content into an SDR version. In this thesis, we
explore new methods to improve the backward
compatible HDR compression. First, we design a

Tone Mapping to optimize scalable compression
scheme performances where a base and an
enhancement layer are sent to reconstruct the SDR
and HDR content. It is demonstrated that the
optimum TMO only depends on the SDR base layer
and that the minimization problem can be separated
in two consecutive minimization steps. Based on
these observations, we then propose another TMO
designed to optimize the performances of
compression schemes using only a base layer but
with an enhanced and more precise model. Both of
these works optimize TMO for still images.
Thereafter, this thesis focuses on the optimization of
video-specific TMO. However, we demonstrate that
using a weighted prediction for the SDR
compression is as good or even better than using a
temporally optimized TMO. Therefore, we proposed
a new weighted prediction algorithm and new
weighted prediction modes to handle more efficiently
the large diversity of brightness variations in video
sequences.
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