
ÉCOLE DOCTORALE EDITE DE PARIS (ED130)
INFORMATIQUE, TÉLÉCOMMUNICATION ET ÉLECTRONIQUE

THÈSE DE DOCTORAT DE SORBONNE UNIVERSITÉ

SPÉCIALITÉ : INGÉNIERIE / SYSTÈMES INFORMATIQUES

PRÉSENTÉE PAR : GAUTHIER VORON

POUR OBTENIR LE GRADE DE :

DOCTEUR DE SORBONNE UNIVERSITÉ

SUJET DE LA THÈSE :

VIRTUALISATION EFFICACE D’ARCHITECTURES NUMA

SOUTENUE LE : 8 MARS 2018

DEVANT LE JURY COMPOSÉ DE :

Rapporteurs : R. GUERRAOUI Professeur, École Polytechnique Fédérale de Lausanne
L. RÉVEILLÈRE Professeur, Université de Bordeaux

Examinateurs : V. QUÉMA Professeur, Université Grenoble-Alpes
E. ENCRENAZ Maître de conférences, Sorbonne Université
P. SENS Professeur, Sorbonne Université
G. THOMAS Professeur, Télécom SudParis

cbnd This work is licensed under http://creativecommons.org/licenses/by-nc-nd/3.0/

À Bernard, Chantal, Jean-Baptiste et Thibault

REMERCIEMENTS

Lors d’un cours de master, Gaël Thomas soutint que la pièce la plus importante d’un lab-
oratoire était la salle café. À l’époque, je mis cette digression sur le compte de l’addiction
notable de mon professeur pour la caféine. Je me rend compte aujourd’hui à quel point
l’échange et la communication, en salle café ou ailleurs, sont importants, car la recherche
est avant tout un effort collectif. Il est donc naturel de remercier ici tous ceux qui ont con-
tribué, directement ou pas, à ces années de recherche, pour l’aide, le soutient ou le café
qu’ils m’ont apporté.

Je tiens tout d’abord à remercier mes directeurs de thèse, Gaël Thomas pour son encarde-
ment suffisamment strict pour me permettre de progresser et suffisamment souple pour
me laisser maître de ma thèse, ainsi que Pierre Sens qui a su observer mes travaux avec as-
sez de recul pour m’apporter les conseils et le bon sens qui manque parfois cruellement aux
doctorants trop concentrés sur leur tâche. Leur soutient et leurs encouragements m’ont
aidé à surmonter de nombreuses déconvenues. Nos conversations furent pour moi une
source de satisfaction et d’enrichissement, tant sur un plan scientifique et technique que
sur un plan humain.

Merci ensuite à Vivien Quéma sans qui le sujet même de cette thèse aurait été bien dif-
férent. Sa capacité à identifier les pistes de recherche prometteuses fut la bienvenue à de
nombreuses reprises. Merci également aux membres de mon jury et notamment aux deux
rapporteurs de ce travail, Rachid Guerraoui et Laurent Réveillère qui ont accepté de pren-
dre du temps sur leurs propres recherches pour relire et évaluer ce manuscrit.

Je souhaite également remercier tous les membres du LIP6, en particulier Julien Sopena
pour son enthousiasme à pousser les idées les plus improbables jusqu’à leurs limites. Le
dévouement dont il fait preuve en tant qu’enseignant a largement contribué à mon in-
térêt pour ce domaine de recherche, d’abord en tant qu’étudiant puis comme enseignant.
Merci à Marc Shapiro pour ses judicieux conseils en matière d’exposé, ils me furent d’une
aide précieuse quand vint l’heure de présenter mes travaux à la communauté scientifique.
Merci à Yann Thierry-Mieg dont les questions aussi simples qu’incessantes me forcèrent à
prendre le recul nécessaire vis-à-vis de mes recherches.

Viennent ensuite les autres membres des différentes équipes Delys, Move et Whisper du
LIP6 et de l’équipe HP2 de Télécom SudParis avec lesquels j’ai eu la chance de travailler.
Ainsi je tiens à remercier Hakan Metin, d’abord ingénieur puis doctorant mais toujours
spécialiste des usines à gaz et Damien Carver, grand amateur de checksum et convaincu

v

vi

qu’il vaut parfois mieux être un problème qu’une solution. Un grand merci à Alexis Le-
scouet, le seul doctorant avec qui j’ai pu échanger sur l’absurde comportement du bit
EFER[SVME]. Merci également à Ilyas Toumlilt qui a compris l’intérêt du +2 ; au Stéphanois
Francis Laniel qui connaît la beauté du Perl ; à Maxime Bittan qui mieux que personne
sait marier vidéos et PDF ainsi qu’à Lyes Hamidouche et à Florent Coriat nos spécialistes
réseau. Merci aussi à Maxime Lorrillere, Antoine Blin, Florian David, Rudyar Cortés, Redha
Gouicem, Cedric Courtaud et Lucas Serrano avec qui j’ai partagé maintes conversations
passionantes.

Le travail du doctorant ne s’arrête pas aux portes du laboratoire et pour cette raison je tiens
bien sûr à remercier ma famille et mes amis. Vous avez célébré avec moi les petites victoires
qui parsèment la recherche et m’avez aidé à aller de l’avant quand je baissai les bras. Merci
à la Team Njut : Geoffroy Blesbois, Alexis Barbier, Lou Laurent et François Rollot. Vous
avez trouvé la patience de supporter mes élucubrations geeks sans queue ni tête en sachant
qu’une oreille attentive et une bonne bière m’aideraient sûrement à y voir plus clair.

Finalement je tiens à remercier toute ma famille pour ses encouragements constants du-
rant toute cette thèse et depuis bien avant cela. Grâce à votre soutient inconditionnel, j’ai
pu étudier ce domaine qui me passionne et m’investir dans cette tâche de longue haleine.
Ce travail que j’achève après plus de trois ans, c’est en grande partie à vous que je le dois.

À tous, merci infiniment !

RÉSUMÉ

Alors que le surcoût de la virtualisation reste marginal sur des machines peu puissantes,
la situation change radicalement quand le nombre de cœur disponible augmente. Il existe
aujourd’hui des machines de plusieurs dizaines de cœurs dans les data centers dédiés au
cloud computing, un modèle de gestion de ressources qui utilise largement la virtualisation.
Ces machines reposent sur une architecture Non Uniform Memory Access (NUMA) pour
laquelle le placement des tâches sur les cœurs ainsi que celui des données en mémoire est
déterminant pour les performances.

Cette thèse montre d’une part comment la virtualisation affecte le comportement des ap-
plications en les empêchant notamment d’utiliser un placement efficace de leurs données
en mémoire. Cette étude montre que les erreurs de placement ainsi provoquées engen-
drent une dégradation des performances allant jusqu’à 700%.

D’autre part, cette thèse propose une méthode qui permet la virtualisation efficace d’archi-
tectures NUMA par la mise en œuvre dans l’hyperviseur Xen de politiques génériques de
placement mémoire. Une évaluation sur un ensemble de 29 applications exécutées sur une
machine NUMA de 48 cœurs montre que ces politiques multiplient les performances de 9
de ces applications par 2 ou plus et diminuent le surcoût de la virtualisation à moins de
50% pour 23 d’entre elles.

vii

ABSTRACT

While virtualization only introduces a negligible overhead on machines with few cores, this
is not the case when the number of cores increases. We can find such computers with tens
of cores in todays data centers dedicated to the cloud computing, a resource management
model which relies on virtualization. These large multicore machines have a complex ar-
chitecture, called Non Uniform Memory Access (NUMA). Achieving high performance on
a NUMA architecture requires to wisely place application threads on the appropriate cores
and application data in the appropriate memory bank.

In this thesis, we show how virtualization techniques modify the applications behavior by
preventing them to efficiently place their data in memory. We show that the data misplace-
ment leads to a serious performance degradation, up to 700%.

Additionally, we suggest a method which allows the Xen hypervisor to efficiently virtualize
NUMA architectures by implementing a set of generic memory placement policies. With
an evaluation over a set of 29 applications on a 48-cores machine, we show that the NUMA
policies can multiply the performance of 9 applications by more than 2 and decrease the
virtualization overhead below 50% for 23 of them.

ix

CONTENTS

Contents x

1 Introduction 1

2 State of the Art 7
2.1 Multicore architectures . 8

Architecture details . 9
Related challenges . 13

2.2 Non Uniform Memory Access architectures . 20
Architecture details . 21
Linux NUMA policies . 26
Related challenges . 27

2.3 System virtualization . 34
Technical details . 35
Architecture details . 38
Related challenges . 41

2.4 Software settings . 47
2.5 Conclusion . 48

3 The Well-Known Bottlenecks 49
3.1 The Virtualized I/O Overhead . 49

Hardware Emulation . 49
The I/O Memory Management Unit . 50
Evaluation of IOMMU . 53

3.2 The virtualized IPI overhead . 54
Usage of the IPI . 54
Implementations of IPI . 55
The libactive library . 57
Evaluation of vIPI . 58

3.3 The Xen load balancer . 59
Completely Fair Scheduler . 60
Credit Scheduler . 60
The libpin . 60
Evaluation of pining scheme . 62

x

CONTENTS xi

3.4 Conclusion . 64

4 The NUMA Bottleneck 65
4.1 NUMA policies under study . 65

Comparison of NUMA policies effects . 66
The NUMA policy selection metric . 66

4.2 Current hypervisor NUMA management . 69
The default round-1G policy . 69
Huge pages and splinterring . 70
Evaluation of the default policy . 71

4.3 Conclusion . 72

5 Virtualization of NUMA Architectures 73
5.1 Improved hypervisor NUMA management . 74

The Xen implementation of round-4K . 75
The Xen implementation of Carrefour . 75
Limitations of PEBS with virtualization . 79
The Xen implementation of first-touch . 79
Limitations of first-touch with IOMMU . 82
The Xen NUMA policy selection interface . 82

5.2 Evaluation . 83
Evaluation of vNUMA on a single machine . 83
Evaluation of vNUMA on several machines . 87

5.3 Conclusion . 88

6 Conclusion 91
6.1 Future works . 92
6.2 Perspectives . 93

Bibliography 95

C
H

A
P

T
E

R

1
INTRODUCTION

In 1965, Gordon E. Moore publishes a short paper, named “Cramming More Components
onto Integrated Circuits” [50], containing one of the best-known conjectures in computer
science: “The number of components per integrated circuit will double every 18 months”.
Until the early 2000s, this conjecture nonetheless was verified, but also had the effect, as a
fortunate consequence, to rise up the clocks frequency. In these years, simply waiting for
the next generation hardware was sufficient to increase the software performance. How-
ever, physical constraints, such as thermal dissipation difficulties, prevent CPU manufac-
turers to keep increasing the clock frequency. Thus, until this year (2018), the Moore con-
jecture is still verified since the number of transistors in a chip actually keeps doubling. The
manufacturers then use these additional components to provide more than a computing
unit per chip, naming them cores1. As a result, it is common nowadays to have a dozen
cores in a single personal computer.

While the increasing number of cores in a chip makes it able to execute more instructions in
a given time, these instructions have to be executed in parallel. This constraint drastically
changes the conditions for software to gain performance on new hardware. A program-
mer now needs to design its algorithms to be parallelizable so when the number of core
increases, the amount of instruction executed in parallel increases too. Parallelizing a pro-
gram is, however, a difficult task as it generally implies to add synchronization mechanisms
for the different cores to coordinate with each other.

Furthermore, increasing the number of core worsens an already existing problem. As each
core needs to access the memory, either to fetch instructions or to manipulate data, adding
more cores puts more pressure on the memory system. This issue was already known be-
fore the 2000s as the memory system clock was not as fast as the cpu clock, and then unable

1In this document, we use terms CPU and core interchangeably as they both designate some circuitry
able to execute a sequence of instructions.

1

2 CHAPTER 1. INTRODUCTION

to satisfy every CPU request. The hardware designers used to add fast memory caches to
absorb the cost of the memory accesses. With more than a dozen cores, however, even this
cache mechanism is not sufficient to contain the memory load and the memory system
saturates. This gap between the cores needing more information to work and a memory
system unable to scale up to serve the cores requests led to a major modification in the
computer’s architecture. As the processor has been redesigned to contain multiple cores
when it became impossible to improve a single processing unit performance, the mem-
ory system now contains multiple memory banks and controllers as it became impossible
to speed up a single memory unit. Because of this distributed aspect of the memory, the
access time to data is not uniform anymore and depends on where it is placed on the com-
puter. This architecture is thence called Non-Uniform Memory Access (NUMA) architec-
ture. As a result, the performance of a process is today constrained by the parallelization of
its algorithms but also by a good dispatch of its data.

In parallel to the evolution of hardware architecture, the hardware usage also changes with
the rise of cloud computing. Indeed, as the hardware becomes more powerful, it executes
more complex tasks more quickly. Nevertheless, this hardware power and complexity are
nothing but a waste of processing power if there is no consuming task to execute. As this
waste of electricity also means a proportional waste of money, a common practice is to
share the same hardware between multiple users to maximize the computer usage. This
way of using computers is not particularly new, the UNIX operating system already was
multiuser. Nowadays, however, this tendency is so widespread that tens of completely un-
related users can share the same hardware somewhere in a data center owned by a cloud
provider. As the users generally have different needs, such as what operating system they
want to use, the cloud providers usually emulate several virtual machines on their power-
ful hardware and rent them to users. With this technology, called virtualization, the same
hardware can be shared between several users where each of them has the illusion to con-
trol its own computer with the freedom to configure it to suit its needs.

The virtualization technology and the NUMA architecture both evolved independently to
tackle different issues: reduce hardware usage cost for the first, produce more powerful
hardware for the second. Nonetheless, nowadays, the hardware used in the cloud data
centers uses NUMA architectures and thus, the virtual machines are executed atop such
hardware. The virtualization software has, however, not been designed for NUMA architec-
tures. Because of this poor integration, the applications executed inside a virtual machine
running atop of a NUMA architecture may have low performance. As the combined use of
NUMA architectures and virtualization is relatively recent, because of the cloud computing
emergence, only a few works [56, 44] address this performance issue.

My PhD thesis addresses the challenge of efficiently virtualizing a NUMA architecture in a
cloud infrastructure. In detail, my research is twofold. On the first side, my research has the
goal of measuring how virtualization behaves on a NUMA architecture, and how and why
a NUMA architecture changes the performance of virtualized applications. On the other
side, my PhD thesis proposes new techniques to efficiently use NUMA architectures when
the hardware is virtualized. The contributions of this research are:

3

• A systematic performance analysis of a large set of applications from different bench-
marks suites on a large NUMA virtualized system.

• For each already known performance bottleneck due to virtualization, the imple-
mentation of a solution showing that the overhead is not affected by the NUMA ar-
chitecture.

• An evaluation of the already known NUMA memory management algorithms in op-
erating systems and the proposition of a metric to choose which algorithm provides
the best performance.

• The adaptation of the main NUMA memory management algorithms in operating
systems to a virtualized system, an implementation of them on the Xen hypervisor
and an evaluation of this implementation with a representative set of 29 applications.

Each contribution is explained in the following chapters of this document. These contri-
butions, as well as the experimental evaluations lead to the following conclusions:

• With a single virtual machine spanning 48 cores, our systematic performance anal-
ysis shows that, in the set of applications we choose, the overhead is mainly caused
by the I/O virtualization, the inter-processor interrupts (IPI) virtualization, and a bad
NUMA memory management by the hypervisor.

• While the I/O and IPI virtualization causes important performance losses, the ex-
isting approaches to solve these issues give good results, even on a 8 nodes NUMA
hardware. Additionally, a third supposed bottleneck, the thread and virtual CPU load
balancing only causes marginal performance losses on a NUMA architecture.

• The metric we propose allows the user to choose the best NUMA memory manage-
ment algorithm by executing the application once. This algorithm is nonetheless the
best one for a native system but is also the best option in most cases for a virtualized
system.

• The adaptation and evaluation of the main NUMA memory management algorithms
in operating systems to virtualized systems show that the current Xen hypervisor
NUMA management is highly inefficient. More precisely, with a single virtual ma-
chine spanning 48 cores, using an efficient NUMA policy divides the completion
time of 9 applications by more than 2, with an observed maximum improvement of
6 times. With consolidated workloads of multiple virtual machines, among the 11
tested configurations, using an efficient NUMA policy reduces the completion time
of at least one virtual machine by more than 2 in 9 cases.

The remaining of this document is organized in 5 chapters. Chapter 2 describes the state of
the art for NUMA architectures and system virtualization, Chapter 3 focuses on the already
known virtualization bottlenecks, Chapter 4 focuses on the NUMA architecture effects on

4 CHAPTER 1. INTRODUCTION

performance for both native and virtualized systems, Chapter 5 describes our solution to
implement a NUMA management in the Xen hypervisor as well as an evaluation of this
solution and Chapter 6 concludes the thesis. More precisely:

State of the Art
Chapter 2 describes the existing work related to NUMA architectures and system virtual-
ization with the aim to show that on one side, achieving good performance on a NUMA ar-
chitecture requires explicit communication and resource management, while on the other
side, the virtualization, by design, hides hardware and software aspects, thus preventing ex-
plicit approaches. Prior to focusing on NUMA architecture details, the first part describes
the general multicore architecture and the main mechanisms for several cores to synchro-
nize. This part also presents some previous works that aim to improve multicore perfor-
mance and shows that a way to achieve that is to not use the synchronization mechanisms
provided by the hardware and instead make the synchronization explicit in the software.
The second part describes some key characteristics of the NUMA architecture as well as
some well-known NUMA memory management policies. This part also describes related
works that aim to improve performance by exploiting the knowledge of the NUMA topol-
ogy. The last part briefly presents the different virtualization techniques and gives addi-
tional details about the techniques we focus on in this research, especially about memory
management. This part also presents some previous works addressing the issues caused by
virtualization.

The Well-Known Bottlenecks
Chapter 3 evaluates three possible performance bottlenecks for virtualized applications.
The first bottleneck is the I/O virtualization which is described at an architectural level in
the first part. We show that we can remove this bottleneck by using a dedicated part of the
hardware implemented in modern computers. In the second part, we describe how this
hardware part works and interacts with the memory management circuitry. In the third
part, we evaluate the effects of this hardware part on the applications performance. The
second bottleneck is the inter-processor interrupts virtualization. We first describe how
the IPI mechanism is implemented in a native system, then in a virtualized one and show
what causes the overhead. We then describe a solution to remove the vIPI overhead, based
on previous works. We finally evaluate the performance of applications when using this
solution. The third supposed bottleneck is the load balancer. A first part describes how
the hypervisor and guest operating system load balancers work. A second part describes
a tool we use to evaluate the impact of the load balancer on application performance by
constraining the decisions it can take. A third part evaluates the impact of the load balancer
decisions on the applications performance.

The NUMA Bottlenecks
Chapter 4 focuses on the impact of the NUMA architecture on application performance in
both native and virtualized systems. A first part evaluates the importance of the NUMA
memory management on application performance on a native system. This is done by
comparing the effects of the NUMA memory management algorithms described in Chap-
ter 2 on application execution times. This part also describes the NUMA policy selection

5

metric and evaluates its efficiency. A second part describes the NUMA memory manage-
ment algorithm used in the Xen hypervisor. We also describe what effects this algorithm
has on the memory accesses of the virtual machine. This algorithm is then evaluated by
comparing the applications performance executed in Xen and in a native system.

Virtualization of NUMA Architectures
Chapter 5 describes how we implement an efficient NUMA management in the hypervi-
sor. In the first part, we show how we adapt each of the NUMA memory management algo-
rithms described in Chapter 2 to a virtualized configuration. We also outline the limitations
we encountered while adapting these NUMA policies and how a cloud user could use them
through a policy selection interface. Then, the second part evaluates the performance gains
of the applications when using these NUMA memory management algorithms in a virtu-
alized system. We evaluate both single virtual machine configurations and consolidated
virtual machine configurations.

Conclusion
Chapter 6 concludes the thesis with a summary of the lessons learnt about the virtualiza-
tion of NUMA architectures. The thesis shows that combining the system virtualization
technology with the NUMA architecture raises resource management issues. When the ar-
chitecture becomes complex, like with NUMA hardware, the software layer that manages
the hardware resources has to know the hardware details so it can use it efficiently. The
system virtualization technology isolates the guest operating system from the hardware,
preventing it from taking efficient decisions. We show that we can overcome this issue by
shifting the NUMA management from the guest operating system to the hypervisor. Ad-
ditionally we show, with an implementation in the Xen hypervisor and with an evaluation
over a large set of applications, that existing NUMA management techniques are as effec-
tive in the hypervisor as in an operating system. Moreover, we show that a hypervisor that
uses the appropriate NUMA policies executes NUMA virtual machines with no overhead.
This chapter also discusses future work and perspective. The future work that we propose
focuses on three axes: (i) increase the performance of already implemented NUMA poli-
cies, (ii) implement additional NUMA policies and (iii) compare our approach to address
the virtual NUMA management to other possible approaches. In the perspective part, we
look at this thesis from a larger point of view and discuss the implications of this work and
of the lessons we learnt.

C
H

A
P

T
E

R

2
STATE OF THE ART

My PhD thesis addresses the challenge of efficiently virtualizing a NUMA architecture. This
chapter presents the existing works in both NUMA architecture and system virtualization
fields with the following goals:

• Describe the concepts related to NUMA architectures and explain how to reach good
performance on this hardware. Specifically, this chapter shows that the more the end
user program knows about the NUMA topology and the hardware details, the more it
can use the machine efficiently.

• Describe the concepts related to system virtualization and especially to the virtual-
ization of memory. In particular, this chapter shows that, by design, nowadays vir-
tualization isolates the virtualized system from the hardware and hides the topology
details.

Achieving good performance on a NUMA hardware requires an explicit access to the hard-
ware information that, precisely, the system virtualization hides to the guest system. This
contradiction makes the efficient virtualization of NUMA architectures a challenging task.

As an introduction to NUMA architectures, this chapter presents the general multicore ar-
chitectures. Indeed, the NUMA architecture is a special kind of multicore architecture. It is
then necessary to understand how an application can be efficient on a multicore hardware.
The first part of this chapter thus focus on the specificities of multicore architectures and
how a poor awareness of these characteristics can lead to scalability issues. This first part
also presents existing works that address these performance issues.

Interestingly, this chapter shows that, as for NUMA architectures, the more an application
knows about the multicore hardware details, the more it can scale. Moreover, the third

7

8 CHAPTER 2. STATE OF THE ART

core core core core

system bus . . .

memory controller

memory

I/O controller

. . .

Figure 2.1: The architectural view of an multicore architecture

part of this chapter, dedicated to system virtualization, shows that existing works related to
multicore virtualization address issues caused by the opacity enforced by the virtualization.
This opacity prevents the virtualized software to use the hardware details to scale. The
parallel we can make between multicore and NUMA virtualization tends to show that the
virtualization opacity causes issues that require important research efforts.

2.1 Multicore architectures

As stated in Chapter 1, in order to use an increasing number of transistors, modern pro-
cessors are built from several computation units called cores, each executing a different in-
struction sequence. In this section, we focus on multicores without considering the NUMA
architectures. We consider thus a small multicore, in which the cores, the devices and the
memory are all connected to a single bus. Figure 2.1 illustrates this architecture. This (rela-
tively simplified) architecture is currently used in desktops, laptops and smartphones when
the processor provides several cores.

On this architecture, the main performance concern for a program is to efficiently exploit
all the available cores. To this end, a common method is to split the program algorithm in
smaller and independent tasks. Each of these tasks are executed on different cores. It is,
however, necessary to collect the results of these tasks and to merge them in order to ob-
tain the final result. Moreover, it may be impossible to split an algorithm into completely
independant tasks. Instead, some computations can only be decomposed in mostly inde-
pendant tasks that must occasionally synchronize. Since these synchronization steps may
limit the scalability of applications, we study them in this section.

This section first presents the synchronization mechanisms provided by modern multicore
architectures, namely the MOESI cache coherency protocol, and the inter-processor in-
terrupts. For each of these mechanisms, this section describes its purpose, how it works
and what performance issue it can cause when used without caution. Some existing works
focusing on the performance improvement on multicore architecture are then presented
with a specific emphasis on how the described solutions use, or avoid using, the implicit
multicore synchronization mechanisms.

2.1. MULTICORE ARCHITECTURES 9

Architecture details

The hardware provides several synchronization mechanisms, but two of them are espe-
cially important in the context of my study. The first mechanism is the MOESI cache co-
herency protocol that allows all the cores of a system to have the same view of the mem-
ory, even if the main memory data is outdated with respect to some core local cache. This
first mechanism is implicit since the program has no explicit control on this coherency,
except to not work on the same data from different cores. The second mechanism is the
inter-processor interrupt: the way for cores to asynchronously notify other cores that an
event occurred. As opposite to the MOESI protocol, the inter-processor interrupt is an ex-
plicit mechanism since the communication aspect, as a synchronization mechanism is ul-
timately a form of communication, is explicit.

The MOESI protocol

As a processor consumes instructions much faster than the memory can serve data1, chip
manufacturers include a cache hierarchy between the processing unit and the memory
controller. When the processor modifies the data, it stores them in the cache and data are
eventually, at an unpredictable time, committed to memory. During the time the modified
data are in the cache but not yet committed to the main memory, the main memory stores
an outdated state of the data. On a monocore architecture, this is not an issue since the only
accessing core asks the cache controller for the data before to ask memory. The unique core
of the system is thus sure to fetch the most up-to-date state of the data. On a multicore
architecture, each core has its own cache hierarchy, at least for the first levels of cache.
Each of these caches is able to store modified states of data and commit them to the main
memory, possibly in a different order than the writes occurred. This breaks the sequential
consistency property of the memory.

To overcome the resulting consistency issues, the hardware implements a cache coherency
protocol. When a cache controller is asked for a data item, it ensures that the state it has
of this data item is the most up to date state known by any cache controller in the system.
To do so, modern cache controllers implement a distributed reader-writer lock algorithm.
Several versions of this algorithm exist, but they all follow these two principles:

• Several cache controllers can hold the same data item in parallel as lon as none of
them try to modify the data item. When asked by a core to read a data item, a cache
controller thus probes the other cache controllers for the sought data item. The other
controllers can share it without breaking the sequential consistency.

• Only a single cache controller can modify a data item at a given time. When asked by
a core to modify a data item, a cache controller must ensure that none of the other
controllers hold the data item. To this end, this cache controller sends invalidation
requests to the other controllers for the modified data item. The other controllers can
later probe for this data item and fetch the modified state.

1On today hardware, a single core can consume data 100 times faster than the main memory can serve it.

10 CHAPTER 2. STATE OF THE ART

Not last writter Last writter
Exclusive owner Exclusive Modified
Sharing owner Shared Owned
Not owner Invalid

Table 2.1: MOESI States

A cache controller conforming to these principles ensures that it always provides the most
recent version of a data known in the memory system. By doing so, the cache controllers
ensure the memory is sequentially consistent.

In addition to preserve the memory sequential consistency, the cache controllers try to
minimize the number of communications. Indeed, accessing to the cache is a frequent
operation for a core. Hence, broadcasting to every cache controller of the system each time
a core asks for a data item would be inefficient and not scalable. A common way to provide
a reader-writer lock semantic with a low number of required communcation is the MOESI
procotol. This protocol defines a set of possible states a data item can have. The state
of a data item is relative to a cache controller. Different cache controllers in the system
may thus associate different states to the same data item. The state of a data indicates
to the cache controller if the data can be read or written, or if the cache controller must
communicate with the other controllers first. The MOESI protocol defines five states. One
of them, the Modified state represents the read-write acquisition of the lock. Three other
ones, the Exclusive, Shared and Owned states represent the read-only acquisition of the
lock. The last one is the Invalid state that represents the not acquired lock.

From a communication point of view, the Invalid state indicates that the data item is not
present in the local cache and that it is necessary to probe all the other caches, then if none
of them holds the latest state of the data item, fetch it from main memory. The four remain-
ing states indicates (i) if the local cache holds the unique copy of the data item outside of
the main memory and (ii) if the local cache is the last one that has modified the data item.
The first indication is useful to avoid communications: if the local cache is the only one to
work on a data item, there is no need to probe the other caches when reading or writing
the data item. The indication of what is the last modifier of a data item is used to know if
the data item must be committed from the local cache to the main memory if the cache is
flushed. Table 2.1 presents the MOESI states and what they indicate.

Excepted if a data is Invalid, a cache controller can always read it without changing its state.
Reading a data with an Invalid state leads the cache controller to probe the other caches.
If one other cache contains the data, it is fetched with the Shared state, otherwise it is read
from the main memory and has the Exclusive state. Since the local cache does not mod-
ify the data, both the Exclusive and the Shared state indicate the local cache is not the last
writer. Modifying a data from any state puts it in the Modified state, which effectively indi-
cates the local cache is the last modifier. The Modified state also indicates the local cache
is the exclusive owner. Indeed, when a cache modifies a data, the other copies become
outdated and are invalidated by a probe. The probes are not sent if the data was in the

2.1. MULTICORE ARCHITECTURES 11

Invalid Exclusive

Shared Modified

Owned

Reset

INVD, WBINVD
Read Hit

Read Hit

Write Hit

Read Hit

Probe Read Hit
Read Hit

Probe Read Hit

Probe Write Hit

Read Miss, Exclusive

W
rite

H
it

R
ea

d
M

is
s,

Sh
ar

ed
Pr

ob
e

W
ri

te
H

it
Probe Read Hit

Write Hit

Pro
be Read Hit

Write Miss

Probe Write Hit

Probe
W

rite
H

it

Write Hit

Figure 2.2: MOESI State Transitions

Exclusive state since no copy could exist in this case. If a cache owns a data in the Exclu-
sive state and another cache probes to read this data, it goes in the Shared state. If a cache
owns a data in the Modified state and another cache probes to read this data, it goes in the
Owned state. The Owned state indicates that the data is shared between several caches but
the last writer on this data is local cache. The local cache is then responsible to commit
the data to main memory if the cache is flushed. Beside this, there is no difference with the
Shared state. Figure 2.2 summarizes the transitions between the MOESI states.

By conforming to the MOESI protocol, the cache controllers hide the complexity of hard-
ware to the cores. Whereas the memory system is composed of the main memory and of
several caches, the cache controllers expose a flat topology to the cores. While this sim-
plifies the task of programmers, ignoring the communications a memory access can cause
may lead to produce highly inefficient applications. These are typical examples of hidden
communication inefficiencies.

• False sharing: If two or more variables are packed in a small address range, they may
be considered by the cache controllers as a single data. If these variables are modified
by different cores, the data keeps moving from a cache to another, causing a lot of
costly communications.

• Migration cost: It is frequent that several tasks update successively the same data
structure. If different cores execute these tasks, even one by one, the data has to

12 CHAPTER 2. STATE OF THE ART

migrate from one cache to another, again causing costly communications.

• Ticket lock: A simple implementation of a spinlock is the ticket lock where several
cores spin reading the same variable. This variable is updated at each lock release. If
the lock is highly contended, each release causes an invalidation for all the waiters,
which then broadcast probe requests. If the lock is frequently released, it causes a
massive amount of useless communications.

The downside of the cache coherency protocol is that, by hiding the communcation caused
by memory accesses, it generates a high number of messages on the system bus and makes
the cores spend a lot of time stalled, waiting for cache controllers answers. As presented in
Section 2.2, this phenomenon worsens on a NUMA architecture where the number of cores
is higher and even the main memory is distributed. The issues related to the MOESI proto-
col is also a good example of the performance overhead an application may encounter if it
does not take the hardware details into account, which is the case for virtualized software
as we explain in Section 2.3.

Inter-processor interrupts

The MOESI protocol and the cache coherency mechanisms in general allow the core to
communicate by exchanging data. Synchronization, however, requires that a core signals
an event to one or many other cores. This can be done by using only memory, as for the
spinlocks. This method, however, has two drawbacks. First, a waiting core has to spin on a
memory location and to continuously pull a possible update issued by the signaling core.
This constant pulling causes a waste of CPU cycles and, despite the modern processors
energy saving instructions, a waste of energy. Then, since a processor can only pull with this
method, it is impossible for a core to asynchronously notify another core of an unexpected
event.

In order to provide a push notification mechanism, modern processors provide the notion
of interrupt. Conceptually, an interrupt is a message emitted by a device and received by
one or several cores. When the core receives the message, it reacts by executing some code
defined by the system prior to the reception. When the core has executed this code, it
continues its previous execution. This mechanism can be used by I/O devices to signal
that an I/O operation occured, for instance, a disk controller has finished transfering a disk
sector into main memory. Additionally, on modern hardware, a core can stop fetching new
instructions and halt. Once halted, a core only consumes a very low amount of energy. The
reception of an interrupt wakes a core up and allows it to fetch instructions again.

A special kind of interrupt is the inter-processor interrupt (IPI). A core can issue an IPI to
notify another core that some system defined event should be handled. To indicate pre-
cisely the nature of the event, it is common for the sending core to store information in a
well known memory location that the receiving core can read upon receiving the interrupt.
In addition, the sending core sometimes needs to be sure the target core has handled the
event before to continue its execution. In this case the sending core can use a pull method,
as spinning on an acknowledgement memory location.

2.1. MULTICORE ARCHITECTURES 13

On the architecture we use, the IPI mechanism goes through a special device called the
Advanced Programmable Interrupt Controller (APIC). There is one APIC per core, included
in the processor chip. Sending an IPI is thus an extremely fast operation since it does not
require to acquire the system bus or any circuitry shared by the other cores. For security
reasons, however, it is common for the operating system to restrict the APIC usage to the
kernel only.

The inter-processor interrupts are thus an explicit communication mechanism. As oppo-
site to the cache coherency mechanism, the system programmer is fully aware of every
transmitted message. However, since the access to the APIC, and thus the ability to send
IPI, is restricted to the kernel code, application programmers cannot use this mechanism
explicitely. Additionally, the kernel programmers assume that sending an IPI is a fast, al-
most instantaneous, operation and then use it in critical path code, such as synchroniza-
tion primitives provided to applications. Section 3.2 shows that sending an IPI can be a
slow operation in a virtualized system and explains how this incorrect assumption reduces
the application performance.

Synthesis

In this part, we show that modern multicore hardware provides several mechanisms for
the different cores to communicate and synchronize. Some of these mechanisms, like the
cache coherency MOESI protocol, are implicit: they hide hardware complexity to the end
programmer by presenting a simple hardware with more convenient properties, like se-
quential consistency. Some of these mechanisms, like the IPI, are explicit: they allow the
programmer to deal with the hardware complexity and to exploit it. These two kinds of
mechanisms have a cost. The only difference is that the programmer is most likely to have
this cost in mind when dealing with explicit mechanisms than with implicit ones.

Related challenges

In the previous section, we describe several communication mechanisms provided by mul-
ticore architectures. The study of these mechanisms is an introduction to the specificities
of the NUMA architectures. In this section, we present works focusing on how to exploit or
deliberately avoid exploiting these communication mechanisms in order to improve per-
formance. These works only address inter-core communication issues. Especially, this sec-
tion does not present works addressing cache pollution issues or other multithread related
issues, as these are not specific to multicore architectures.

Table 2.2 enumerates the works we present. For each of them, we present the issue they ad-
dress and the approach they use. We can classify the addressed issues in two categories: (i)
contention issues where too many cores access the same resource at the same time, which
cause access serialization, (ii) hardware related issues where there is no contention but a
naive usage of the hardware leads to hidden expensive operations. We can also characterize
the used approach by looking the amount of inter-core communication it induces:

14 CHAPTER 2. STATE OF THE ART

Solution Issue Approach Exposure

Remix Hardware MOESI awareness Hidden

Scalloc Contention
MOESI awareness

Hidden
+ Private data space

Sloppy Counter Hardware
Private data space

Hidden
+ Lazy merging

The Multikernel Hardware Private data space Explicit
The Factored OS Hardware Share nothing Explicit
The Scalable

Contention No communication Explicit
Commutativity Rule

Table 2.2: Works related to multicore architectures

MOESI awareness These approaches use the hardware efficiently, making sure to not gen-
erate unnecessary communications between the cache controllers. They consider
worst-case scenarios where a lot of cache invalidation occurs but could be avoided,
for instance, with a different memory layout. Except for these specific worst cases,
the application still relies on cache coherency.

Private data space The different cores only work on their own data located in a memory
zone they access exclusively. By avoiding to share data, the cores avoid to synchronize
by cache coherency messages. The software can however use the memory as an ex-
plicit communication channel between cores. Several data spaces can be merged on
demand. Communicating by memory is efficient but requires that a cache coherency
protocol is implemented by hardware. Additionally, communicating by memory is
not well suited for asynchronous notifications.

Share nothing The cores cannot share memory. The cores then do not exchange cache co-
herency messages. The cores can, however, communicate by explicit channels, like
IPI or I/O. Such approaches do not require a cache coherency protocol to be imple-
mented by hardware. It is then appropriate to be used in large scale systems with
hundreds of cores and even in distributed systems.

No communication The system is designed so there is no need for the cores to communi-
cate. This approach is the most scalable but also the most compelling. Indeed, using
this approach may require to change the design of the application at a high level.

In addition to the Issue and Approach criteria, Table 2.2 indicates in the last column if the
presented work hides the hardware details to the end user application or if it exposes them.

Remix

In a multicore system, several cores sharing data need to synchronize. This synchroniza-
tion causes inter-core communication and often worsens the application performance. By
contrast, if each core works on its own data, there is no need to communicate. In modern
processors, the cache controllers work on data item of fixed size, called cache line. If two

2.1. MULTICORE ARCHITECTURES 15

or more variables are packed in an address range smaller than a cache line size, they are
considered by the cache controllers as a single data. Two or more cores can thus work on
unrelated variables but still force cache controllers to communicate. This problem is called
false sharing.

In optimized native applications, experimented programmers can ensure there is no false
sharing by choosing wisely the memory layout of their variables. In a managed runtime
environment, like a Java Virtual Machine, the memory layout is chosen by the environment.
It is then difficult for the programmer to fix false sharing issues.

Eizenberg et al. [32] address this problem by modifying the JVM. At runtime, the JVM uses
hardware sampling counters to detect where false sharing occurs. The sampling counters
capture, for each core, which memory addresses are set in the Modified state. If two or
more addresses are set in the Modified state by different cores in the same cache line, the
JVM considers the cache line is falsely shared.

Once the JVM has detected which cache line is falsely shared, it repairs it. The JVM first
identifies the objects containing the problematic cache lines. Then, the JVM stops the mu-
tator threads and for each problematic object, modifies the memory layout of all the objects
of the same class. Technically, the JVM adds padding between the fields accessed by several
cores to place them on different cache lines. The JVM finally resumes the mutator threads.

This work thus addresses a hardware related issue: the inability of the cache controllers to
manage data smaller than a cache line size. The approach is to change the memory layout
to match the implicit memory partitioning made by the cache controller. This solution,
however, is invisible to the end user application.

Scalloc

The false sharing is a special case of data sharing. When several cores access the same vari-
able to modify it, it is called true sharing or simply sharing. Usually, the application protects
this shared data with locks. These locks force to serialize the accesses, thus nullifying the
performance gain of the multicore chip.

Memory allocators are typical programs that try to avoid sharing situations [4, 11, 57]. We
call a memory allocator a library that provides the malloc() and free() primitives. This
library is a bridge between the mmap() system call that allocates memory at a memory
page granularity and the application which allocates memory at various granularities, from
the byte to several megabytes. Memory allocators usually implement several buffers larger
than a memory page that can be fragmented into smaller regions. The memory allocator
returns these regions, called objects, to the application on a malloc(). There are different
fragmentation size, or class size, for these buffers, so the allocator can allocate for several
granularities. When the application releases an object, it is tagged free in its buffer and is
added to the free list of the buffer.

In a multicore context, several cores may concurrently allocate objects of the same size. A
naive solution would be to protect the size class buffers with locks. This solution would

16 CHAPTER 2. STATE OF THE ART

result in a sharing situation, causing poor allocation performance. Instead, memory al-
locators usually maintain one size class buffer per application thread. These buffers are
called Thread Local Allocation Buffers (TLAB). With this design, the threads do not share
any buffer and allocating an object requires no lock.

However, using TLAB causes 2 issues. First, if a thread releases all the objects of a TLAB, the
memory allocator should make this TLAB available to the other threads. Indeed, a mem-
ory allocator should avoid wasting memory space. Transferring a TLAB from a thread to
another one is a form of sharing. Second, a thread can allocate an object, and another
thread can release it. This means that using TLAB does not prevent several threads to share
buffers.

Aigner et al. solve these issues with Scalloc [3]. First, Scalloc implements a buffer backend
where the threads put empty TLAB. This backend is an array of lock-free stacks, with as
many stacks as there are cores. Each application thread is associated to one of these stacks.
The stacks are evenly associated to the threads. Each application thread releases and allo-
cates TLAB from its associated stack. This design ensures that TLAB are shared between a
relatively small number of threads. If its associated stack is free, a thread allocates a new
TLAB from a larger zone called the arena. The arena is shared between all the threads but
is rarely used.

When a thread releases an object it has allocated previously, it puts it in the free list of its
TLAB. The thread can pop an object from this free list on a later allocation. But when a
thread releases an object that another thread has allocated, using the free list of the allocat-
ing TLAB would mean to share this free list. Since the free list may be frequently used by the
thread owner of the TLAB, sharing this list could cause a serialization overhead. A scalloc
TLAB uses 2 free lists. The first one is the local free list, used only by the owner thread. The
second one is the remote free list. If a thread releases an object from a TLAB not owned by
the thread, the object goes to the remote free list of the TLAB. The remote free list is thus
shared between the threads not owning the TLAB. Since releasing an object allocated by
another thread is an uncommon operation, this does not affect the performance. When
the owner thread allocates an object, it tries to pop one from the local free list. When the
local list is empty, it looks the size of the remote free list. Only if this free list is full enough, it
moves the content of this remote free list to the local one. Otherwise, the allocating thread
fetches a new TLAB from the backend.

Scalloc addresses a contention problem: how to handle a large amount of threads allo-
cating and releasing objects concurrently. The general solution is to use TLAB, which are
private allocation spaces and avoid communication between threads, and thus, between
cores. When it is necessary to communicate, Scalloc makes sure to reduce the amount
of implied cores and that communication happens as rarely as possible. However, as an
allocator, Scalloc only expose the malloc() and free() primitives without exposing the
hardware details to the application.

2.1. MULTICORE ARCHITECTURES 17

Sloppy Counter

Memory allocators such Scalloc solve the issue of shared data structures by using several
private thread local structures instead. This kind of per thread or per core replication avoids
the cores to communicate and thus, improves performance.

However, some data structures are intended to be shared between cores to allow them to
communicate. This is the case for the reference counter. This kind of counter is often used
for reference-counted garbage collection of various resources. While a core uses a resource,
it keeps a reference on this resource. Keeping a reference means that before using the re-
source, the core increments the associated reference couter. When the core stops to use the
resource, it releases the reference by decrementing the counter. When the counter drops to
zero, the resource is garbage collected. The reference counter is hence a communication
protocol between the cores.

Usually, a reference counter is implemented with atomic operations. Atomic operations are
special instructions provided by the processor making a read then a, possibliy conditional,
write on a cache line while keeping the cache line locked. Because the processor keeps
the cache line locked, it prevents other cores to access it between the read and the write.
However, atomic operations are implemented atop cache coherent caches. Many cores
updating the same reference counter concurrently thus generate a high amount of cache
coherency messages. These communication decrease the application performance.

Boyd-Wickizer et al. [14] propose a scalable implementation of the reference counter called
the Sloppy Counter. The sloppy counter is composed of a global counter and one local
counter per core. In this structure, the local counter acts as a cache for the global counter.
When a core takes a reference, it tries to acquire one in its local counter. If the local counter
is non-zero, the core decrements it and no communication occured. If the local counter is
zero, the core then increments the global counter. To release a reference, a core only incre-
ments its local counter and, once again, no communication occurs. Because references are
released in the local counter, this one rarely reaches zero. Accessing the global counter is
thus an uncommon operation.

The global counter and the local ones are then merged only when the system decides to
perform a garbage collection. The merge operation simply consists to subtract the local
counters to the global one. The result is the new value of the global counter while all the
local counters are reset to zero. If the global counter is zero, then the resource is garbage
collected.

The sloppy counter thus avoids unnecessary cache coherency communications between
cores. To this end, it is structured with one shared space accessed rarely: the global counter,
and one private space per core, accessed frequently: the local counters. The sloppy counter
is an implementation of an existing mechanism, the reference counter, and hence does not
expose any additional hardware details.

18 CHAPTER 2. STATE OF THE ART

The Multikernel

The previous approaches systematically hide the multicore aspect of the hardware. In-
deed, Remix [32] silently modifies the classes memory layout, Scalloc [3] only provides the
malloc() and free() primitives and the sloppy counter [14] provides put() and get()
primitives.

In the problem addressed by Remix, the false sharing, the JVM is the cause: it prevents
the programmer to choose an efficient memory layout, which would avoid to create false
sharing. The solution is thus implemented in the JVM. There is no reason to inform the
user application about the JVM decisions.

By contrast, in the problems addressed by Scalloc and the sloppy counter, the cause is the
user application. The congestion occurs because too many threadd access the same re-
source pool or because too many cores modifies the same counter. Both Scalloc and the
sloppy counter solve the problem by duplicating the implied data structures. However,
the threads or cores ultimately need to communicate. Because of that, Scalloc sometimes
share TLAB between threads and the sloppy counter merges its local and global parts on a
garbage collection.

Hiding the multicore nature of the hardware is convenient because it makes the new solu-
tions compatible with existing software. Nontheless, while the system hides the multicore
details of the hardware to the application, this application will, at some point, require ex-
pensive communication between cores, decreasing its performance. The following works
expose the hardware to the user application.

Several works [13, 40, 52] address the multicore scalability problem by redesigning oper-
ating systems. The Multikernel [9] is representative of these works. The general idea is to
consider each core as a separated computer with its own operating system. Each of these
operating system has its own data structures and work only on them. This is typically the
case for the scheduler structures.

For other operating system functions that need a global state, like process memory man-
agement, each operating system has its own replicate of the global state. The cores keep the
replicated states consistent with explicit synchronization based on message passing. The
message passing is implemented with some dedicated memory zones used as a channel to
transfer cache-line-sized messages point-to-point between single writer and reader cores.

The Multikernel thus avoid unnecessary communication between cores, whether cache
coherency messages or inter processor interrupts. To this end, each operating system in
the Multikernel only works on its own private space and perform explicit communication
when needed.

The Factored Operating System

The previously presented works make communication explicit by avoiding to use shared
memory. Instead they maintain private state that can be synchronized with message pass-
ing. This message passing is implemented with cache coherency.

2.1. MULTICORE ARCHITECTURES 19

Wentzlaff et al. [69] argue that implementing a cache coherency protocol may not even be
possible in a computer with thousands of cores. Indeed, even if the software rarely use
cache coherency, a local cache controller with a cache line in an Invalid state still needs to
probe other cache controllers if the core requires the cache line. Thus, the cache controllers
still exchange messages, even if the cores only use private data structures.

The Factored Operating System (FOS) is an operating system designed to execute in a com-
puter without a global cache coherency. The FOS is based on an idea similar to the Multik-
ernel [9]: execute an autonomous part of the system on each core. Unlike the Multikernel,
the FOS does not maintain any global state. Instead, each core works as a server that per-
form one task: either execute application threads, one at a time, or execute a kernel service.
Additionally, each core maintains a name cache. The name cache is a routing table that in-
dicate what core to contact for a given service to execute. The cores communicate with
message passing that is architecture dependent.

The Scalable Commutativity Rule

The works presented in this section address the communication effects on performance.
The first work, namely Remix [32], remove the useless cache coherency messages. Indeed
false sharing messages do not actually maintain coherency because the cores work on dis-
tinct variables. The next works, namely Scalloc [3] and the sloppy counter [14], reduce the
amount of exchanged message by batching them. The cores make most of the updates on
private data and commit these changes to a global state when required. The two last works,
namely the Multikernel [9] and the FOS [69], reduce the amount of required messages. Be-
cause they are designed like distributed systems, they maintain private states, one per core
that rarely or never have to be synchronized.

All of these presented works however require that the cores synchronize between each oth-
ers at some point. Clements et al. describe a general method to design a software which
does not require that the core synchronize. To be so, a software must provides an interface
that follows the Scalable Commutativity Rule [22]. This rules states that, given a set S of
operation executed concurrently, the result of an operation o executed after S must not de-
pends on the ordering of operations inside S. If a software interface follows that rule, then
it exists an implementation of this interface that can executes the operations concurrently
with no need of synchronization.

By using this rule, a programmer can design a system which does not require any expensive
communication. This actually solves contention issues by making the multicore aspect of
the underlying hardware part of the software conception.

Conclusion

Previous works brings different solutions to address the problem of system efficiency and
scalability in a multicore context. However, they are all built atop of at least one of these
two general concept: (i) synchronization necessarily induces serialization, thus a system
can be scalable only if its data is shared as little as possible between the cores, (ii) hardware

20 CHAPTER 2. STATE OF THE ART

core core core core

memory
controller

NUMA
controller

m
em

o
ry

core core core core

memory
controller

NUMA
controller

m
em

o
ry

memory
controller

NUMA
controller

core core core corem
em

o
ry

memory
controller

NUMA
controller

core core core core m
em

o
ry

Figure 2.3: The architectural view of a NUMA architecture

coherency makes programmation easier but is expensive, an efficient system should make
every inter-core communication explicit and avoid to rely on hardware coherency.

As a consequence, we can assume that (i) to bring the best performance, nontheless the
software must avoid inter core sharing, but also the hardware must do. Especially, we de-
scribe in Section 2.2 that with a large number of core, hardware components, like memory,
must be partitioned in private subcomponents instead of shared.

Also, we can assume that (ii) to bring the best performance, all the sofware layers must be
aware of the communication mechanisms their actions imply and use them explicitely. We
describe in Section 2.3 that the virtualization layer makes it difficult.

2.2 Non Uniform Memory Access architectures

As we show in Section 2.1, cores synchronizations cause the serialization of operations and
hence, poor performance. We show that a good software design reduces the number of
core synchronizations on shared data, which improve application performance. However,
in a simple multicore architecture, as illustrated in Figure 2.1, the cores still share hardware
components. Indeed, each core accesses the memory through a single memory controller
and a single system bus. Thus, even if each core accesses to its own private data space,
all the cores still share the same memory controller. Since this controller serves the core
requests sequentially, it causes the serialization of operations.

The local memory caches of the cores serve a large part of the memory requests. When
there is no more than about ten cores in the machine, the number of memory requests sent
to the memory controller is then too low to cause a serialization. By contrast, in a machine
with several tens of cores, the cache mechanism is not sufficient anymore. It then becomes
necessary that several cores can access the memory concurrently. In a Non Uniform Mem-
ory Access (NUMA) architecture, the available cores and memory banks are partitioned in
several nodes, with each node having a separated bus and dedicated memory controllers.
All the nodes are bound together with an internal network called the interconnect. This ar-

2.2. NON UNIFORM MEMORY ACCESS ARCHITECTURES 21

chitecture is illustrated in Figure 2.3. Using several nodes and thus several buses spreads
the memory load across the nodes.

This section first presents how the cores communicate in a NUMA architecture. In par-
ticular, we describe the HT Assist cache coherency protocol: an extension of the MOESI
protocol for NUMA architectures. We also describe the NUMA hardware that we use for
our evaluations. We then explain how Linux handle the distributed aspect of the memory.
To this end, we present two NUMA memory management policies provided by the Linux
kernel. These explanations help to understand what aspects of a NUMA hardware impact
the application performance. Finally, we present some existing works that focus on how to
use the NUMA architecture specificities to bring good applications performance.

Architecture details

In a NUMA architecture, there are several memory controllers that can serve requests con-
currently. Each of these controller serves the requests to its associated memory banks. A
cache coherent NUMA (ccNUMA) architecture presents these memory banks as a single ad-
dress space to the software: the first gigabytes stand for the memory banks of the first node,
the following gigabytes for the next node and so on. Thanks to this unified address space,
legacy applications can execute on ccNUMA computers. In the remainder of this thesis, we
focus exclusively on ccNUMA architecture. We thus simply use the term NUMA instead of
ccNUMA.

As suggested by the architecture name, the memory access time, in a NUMA architecture,
varies depending on the memory bank a core access to. Intuitively, we can assume that a
core access a memory bank of this node faster than a memory bank of a remote node. In
Chapter 4, we explain that several other factors may impact the memory access time. As a
result, accessing to the unified memory address space without considering the underlying
memory banks located in different nodes may lead to poor application performance.

In this part, we describe how a NUMA hardware exposes a unified address space out of
several memory banks accessed through independent memory controllers. We also give
some key characteristics of the hardware we use for our evaluations.

HT Assist protocol

As we explain in Section 2.1, in a modern multicore, the cores access to the memory through
a cache hierarchy. A cache coherency protocol maintains sequential consistency for the
memory accesses. A usual way to achieve this consistency is to implement a reader-writer
lock for each cache line. This lock ensures that at any given time, either one cache contains
the cache line and can modify it or many caches contain a read-only copy of the cache line.
When the core requires a cache line, the cache controller acquires the lock of this cache line
in the appropriate mode.

To acquire a lock in a simple multicore architecture, the cache controller broadcasts mes-
sages, called probes, to the other cache controllers. This approach works well with a small

22 CHAPTER 2. STATE OF THE ART

number of cores. In a NUMA architecture with tens of cores, the broadcast approach would
saturate the communication links. Thus, using the MOESI cache coherency protocol would
be inefficient.

The AMD implementations of the NUMA architecture [23] do not apply the MOESI protocol
to all the cores of a machine. Instead, only the cores of the same NUMA node synchronize
between each others with the MOESI protocol. Since the number of cores in a single NUMA
node is low, using the legacy MOESI broadcast inside a node does not saturate communi-
cation links.

Using the MOESI protocol inside each NUMA node is however not sufficient to ensure a
sequential consistency over the whole machine. Specifically, the nodes still have to syn-
chronize in two cases:

Read case If a core reads a cache line, the cache controller has to acquire the lock in read-
only mode. If no other core in the local node owns the lock, then another core in a
remote node may own the lock in the read-write mode.

Write case If a core writes a cache line, the cache controller has to acquire the lock in read-
write mode. If no other core in the local node already owns the lock in read-write
mode, then other cores in a remote node may own the lock.

For these two cases, the nodes must synchronize to ensure they respect the reader-writer
lock invariants.

The NUMA node synchronization has the form of another reader-writer lock, this time at
the node granularity. The invariant of this lock is that at any time, either several NUMA
nodes can own the lock in read-only mode or at most one NUMA node can own the lock
in read-write mode. The synchronization for the Read case thus translates into a read-only
lock acquisition. Similarly, the synchronization for the Write case translates into a read-
write lock acquisition. We can notice that the node grained lock and the core grained locks
are tied together by two logical relations. If a core owns the core grained lock in read-write
mode, then the node of this core owns the node grained lock in read-write mode. Also, if
a core owns the core grained lock in read-only mode, then the node of this core owns the
node grained lock.

The AMD implementation of the reader-writer lock between the NUMA nodes is called HT
Assist. In this implementation, each cache line has an associated NUMA node called the
home node. The home node stores, for each of its associated cache line, a corresponding
state. There are 4 possible states. These states have the same name that the MOESI protocol
states, however, they have slightly different meanings. The state Exclusive/Modified repre-
sents a lock in read-wite mode. The states Owned and Shared represent a lock in read-only
mode. The state Invalid represents a lock not acquired2.

2The AMD documentation [23] actually defines a fifth state called Shared-1. However, it seems that this
state is not used, whether in the protocol description or in the experimental evaluation.

2.2. NON UNIFORM MEMORY ACCESS ARCHITECTURES 23

No owner One owner Many owners
Clean copy Invalid Shared
Dirty copy Exclusive/Modified Owned

Table 2.3: HT Assist States

Invalid Shared Owned Exclusive/Modified
Read-only - - probe owner probe owner
Read-write - broadcast broadcast probe owner
Eviction - broadcast broadcast probe owner

Table 2.4: HT Assist probing policy of the home node

The HT Assist protocol thus implements a reader-writer lock between the nodes for each
cache line. Additionally, the HT Assist protocol tries to minimize the number of messages
that the NUMA nodes exchange. From this perspective, the reader-writer lock state indi-
cates if no, one or many nodes have a copy of the cache line. Furthermore, the HT Assist
states also indicate if the cache line is clean or dirty, and thus if it can be fetched from main
memory. This indication matters because the home node, which stores the state of its asso-
ciated cache lines, is also the node where the cache line has its original main memory copy.
Fetching a cache line from main memory then means that the home node does not have
to probe any other NUMA nodes and can respond to the acquiring node. Table 2.3 shows,
for each state, how many nodes can have a copy of the cache line and if the copy is clean or
dirty. For the states storing a dirty copy of the cache line, the home node also stores the id
of the NUMA node to probe to fetch the data, called the owner node.

To acquire the lock of a cache line, a NUMA node first computes the id of its home node,
basing on the cache line address. The acquiring node then probes the home node indicat-
ing if it requires a read-only or a read-write lock. Based on the required lock mode and on
the cache line state, the home node decides what probe messages it sends.

If the acquiring node requires a read-only lock and the cache line is clean, so Invalid or
Shared state, the home node serves the cache line from its main memory and updates the
cache line state to Shared. If the cache line is dirty, so Owned or Exclusive/Modified, the
home node probes the owner node and updates the cache line state to Owned. The owner
node sends its cache line copy to the acquiring node. Additionally, if the node was in the
Exclusive/Modified state, it ensures that its cores update their MOESI state from Exclusive
to Shared and from Modified to Owned.

If the acquiring node requires a read-write lock and many NUMA nodes may own a copy
of the cache line, so Shared or Owned states, the home node broadcasts an invalidation
probe for this cache line. If the cache line is in the Exclusive/Modified state, the home
node only sends an invalidation probe to the owner node. In both cases, the home node
updates the cache line state to Exclusive/Modified and sets the acquiring node as the owner
node. Table 2.4 summarizes the probes that the home node sends for each combination of

24 CHAPTER 2. STATE OF THE ART

required modes and cache line states.

Because the home node of a cache line always knows its associated state, it sends probes
only if the cache line cannot be served from main memory. Additionally, the home node
only sends directed probes when possible, as opposed to broadcast probe. However, the
home node can only store a limited number of cache line states. These states are stored
along with the owner node of a cache line in the last level cache of the node. This storage
area is called the cache directory.

When a cache line is loaded from the main memory for the first time, the home node creates
a new corresponding entry in the cache directory. If the cache directory is already full, an
older entry is evicted. The HT Assist protocol however requires that any cache line that has
a copy in any cache also has an entry in the cache directory. A cache entry eviction thus
implies that the corresponding cache line is invalidated from all the caches.

The home node uses the state of the evicted cache line to decide to which node it sends
invalidation messages. If the cache line may be owned by many NUMA nodes, so Shared
or Owned states, the home node broadcasts invalidation probes. Instead, if the cache line
is in the Exclusive/Modified state, the home node only sends an invalidation probe to the
owner node. Table 2.4 summarizes the probes that the home node sends on a cache line
eviction depending on the cache line state.

Using both the node grained lock for the whole NUMA machine and a core grained lock in
each NUMA node guarantees that at most one core in the machine modifies a cache line
at a time. Using these locks also guarantees that the cores always read the freshest state of
a cache line, which is a way to provide sequential consistency. By this mean, the HT Assist
protocol ensures the memory accesses from all the cores are sequentially consistent, only
using a low number of internode messages.

Synthesis

In Section 2.1, we show that understanding the MOESI protocol helps to design software
that use the hardware more efficiently. In the same way, a software understanding the HT
Assist protocol is more likely to avoid performance killer patterns:

• Transferring a cache line between two NUMA nodes. This happens if two cores of
different nodes modify the same cache line. The performance loss is even larger than
in MOESI cache line sharing since a HT Assist read-write acquisition may involve up
to three NUMA nodes. Also the internode messages go through the interconnect,
which is slower and has less bandwidth than intranode links.

• Misplacing data in the main memory. Surprisingly, the HT Assist cache coherency
protocol makes the main memory data placement quite important for performance.
Indeed, when a NUMA node fetches a cache line, it reads it from main memory, even
if another node owns a copy of this cache line. However, the cache line copies have to
be clean. More importantly, an internode communication always involves the home

2.2. NON UNIFORM MEMORY ACCESS ARCHITECTURES 25

Cache
Memory

1 thread 48 threads
L1 cache 5 cycles Local 156 cycles 697 cycles
L2 cache 16 cycles Remote (1 hop) 276 cycles 740 cycles
L3 cache 48 cycles Remote (2 hops) 383 cycles 863 cycles

Table 2.5: Cache and memory access latency on the experimental machine.

node of the cache line. Furthermore, the home node of a cache line depends on the
cache line memory address.

By knowing the NUMA aspect of the hardware, the software can thus take efficient place-
ment decisions. By placing the tasks that work on the same data on the same NUMA node,
the software avoids internode cache line transfers. By placing its cache lines on the same
node than the tasks using them, the software decreases the memory access latency. Also,
spreading its cache lines over several NUMA nodes, the software ensures that the memory
pressure spreads evenly and that no home node saturates.

Hardware used for the evaluation

This section presents the NUMA machine used in the evaluation. We use an AMD machine
having 8 NUMA nodes with 6 CPUs/16 GiB per node for a total of 48 cores and 128 GiB
of RAM. In summary, this machine has four Opteron 6174 sockets, each one containing
two NUMA nodes. Each node is connected to 16 GiB of RAM through a memory controller
having a maximum throughput of 13 GiB/s. The 6 CPUs of a node share a unified L3 cache
of 5 MiB. A CPU of a NUMA node runs at 2.2 GHz. It has two L1 caches of 64 KiB each (a
data and a code cache), and a single unified L2 cache of 512 KiB.

The nodes are interconnected by HyperTransport links, with a maximum distance of two
hops. The bandwidth between nodes is asymmetric, with a maximum bandwidth of 6 GiB/s.
Two of the nodes (nodes 0 and 6) are connected to a PCI bus. The network and the disk that
contains the system files are connected to the bus of node 0. The disk that contains all the
benchmarks and the datasets is connected to the bus of node 6.

Table 2.5 reports the time to access the caches and the memory. In order to measure the
memory access latency, we present two results. With 1 thread, we measure an uncontended
case, in which a single thread accesses a single NUMA node. With 48 threads, we measure
a contended case, in which 48 threads access the same NUMA node. This result shows that
the diameter has only a small impact on performance (276 cycles for a 1-hop access versus
383 cycles for a 2-hops access in the uncontended case). On the contrary, we observe that
a contended memory controller drastically slows down memory access latency (697 cycles
to access a local NUMA node when this last is contended).

On the machine we use, accessing a saturated node, even the local one, is twice more ex-
pensive than accessing a remote but uncontended node. To reach good performance, it is

26 CHAPTER 2. STATE OF THE ART

core

RAM

NUMA node 0 NUMA node 1 NUMA node 2

1 2 3

Figure 2.4: First touch allocation policy. Each red line is an allocation. Here the core allo-
cates memory in its local node.

thus more important to avoid node saturation than maximizing locality.

Linux NUMA policies

This part presents some default NUMA memory management policies. We call a NUMA
memory management policy, or simply NUMA policy, a strategy that software uses to place
its data on the NUMA nodes. The software can be the end user application or another layer
software, often the operating system. An end user application uses a NUMA policy suited
for its own memory access pattern. In this thesis, we focus on NUMA management policies
working for a vast set of applications. Thus we describe here two NUMA policies that the
Linux kernel provides.

First-Touch

The default policy is the First Touch. It aims at maximizing the data locality, which avoids
expensive remote accesses and prevents interconnect saturation. The idea behind this pol-
icy is that the core that access a data item the first is probably the exclusive accessor of this
data. This is typically the case for the variables of the stack. As Linux lazily allocates appli-
cation memory by only reserving unmapped virtual addresses, a first access to data leads
to a page fault. When the Linux kernel handles the page fault to make the actual memory
allocation, it knows which core is making the access. It thus can allocate space in the lo-
cal NUMA node. An allocation in another node is also possible if there is not enough free
memory in the local node. This allocation policy is illustrated in Figure 2.4.

This allocation strategy actually maximizes locality for many applications. Indeed, in many
applications, the threads use mostly the memory areas that they allocate and rarely the
memory areas that the other threads allocate.

However, some applications use a master-slave design, in which the master thread allocates
and initializes a large portion of the memory. The slave threads then perform computations
on this memory area. In this scenario, all the memory is allocated on a single NUMA node.
When the slave threads start to access this memory, they cause an important saturation of
the memory controller, leading to terrible performance.

2.2. NON UNIFORM MEMORY ACCESS ARCHITECTURES 27

core

RAM

NUMA node 0 NUMA node 1 NUMA node 2

1 2 3

Figure 2.5: Round-4k allocation policy. Each red line is an allocation. Here the core allo-
cates memory in every node one after another.

Round-4k

The Linux kernel offers the possibility to spread the memory allocation across a set of
NUMA nodes regardless of the first accessor. This is called the round-4K policy and has
to be enabled by the user for each application using this policy. For these applications, the
memory is allocated in a round robin fashion over a set of given NUMA nodes. When the
memory cannot be allocated on this set of nodes, it is allocated from the other nodes. This
policy ensures that the allocated space is evenly spread over the NUMA nodes. Thus, if each
core accesses randomly to the allocated memory, or a large enough subset of memory, then
the memory load is also evenly spread over the NUMA nodes. As a result, no NUMA node
saturates. The counterpart is that each core only makes a small number of local accesses.
Figure 2.5 illustrates this allocation policy.

Synthesis

Linux provides two NUMA policies, first-touch and round-4K. The first one assumes that
threads mostly use the memory they allocate. If so, the first-touch maximizes the amount of
local access and prevents node saturation. The round-4K policy only assumes that threads
access randomly to a large enough subset of the memory they allocate. If so, this policy pre-
vents saturation. However, the round-4K policy does not maximize the amount of access
locality.

Each of the two presented policies is better suited for one type of application, but none of
them is absolutely better than the other one. Because of that, Linux lets the application
administrator decide which policy to use with a dedicated tool: numactl. Additionally, the
Linux kernel provides an API to let userland software finely tune on which node to allocate
memory or execute a thread. This interface allows either the application programmer or
the system administrator to choose how to deal with the NUMA architecture specificities.

Related challenges

In the previous section, we describe the NUMA architecture. Specifically, we show that the
placement of both the tasks and the data is a critical factor for the application performance.
In this section, we present works that aim at leveraging high performance from a NUMA
hardware. As we explain in Section 2.2, we focus on NUMA policies that work for a vast set

28 CHAPTER 2. STATE OF THE ART

Solution
Hardware

Software
Memory locality Memory contention

Lock Cohorting + -
Everyth. about Synchro. ++ - lock contention
NumaGiC ++ + object allocation
Carrefour + ++ memory access

Table 2.6: Works related to NUMA architectures

of applications. We thus do not present any work where a NUMA policy is especially crafted
for a particular application.

Table 2.6 enumerates the works we present. We choose to present and classify these works
from the memory placement perspective, instead of the task placement perspective. As we
explain is Section 2.2, an efficient NUMA memory placement is a compromise between a
high access locality and a low contention on the home nodes. We show the importance
these works give to each of these two memory placement aspects. Knowing the details of a
NUMA hardware is, however, not sufficient to achieve good performance. A NUMA policy
also has to be well suited for the software that makes the memory accesses. We thus report,
as a third classification criteria, what aspect of the software the presented works take into
account.

Lock Cohorting

In a multicore architecture, whether NUMA or not, communication between cores has a
major impact on performance. One of the most common communication patterns is the
lock acquisition and releasing. For this reason, many works [45, 2, 24, 59, 1] address the
problem of efficient locking. More precisely, these works address the scalability of a locking
system. This scalability is often related to the amount of communication a lock acquisition
generates. While this aspect of locks has a great impact on performance, it is not specific to
the NUMA architecture.

In addition to the scalability of a locking system, Dice et al. also tackle, with the Lock Co-
horting technique [28], the problem of task scheduling. Indeed, a locking system deter-
mines in what order the threads execute by choosing the lock acquisition order. Usually,
a lock protects a shared data item that several threads access concurrently. Additionally,
some of the accessing threads modify the shared data item, otherwise no lock would be
needed. The lock acquisition order thus also determines the shared data access and modi-
fication order.

In a NUMA architecture, sharing and modifying a data concurrently inside of a NUMA node
is far less expensive than doing so between several NUMA nodes. In a set of threads that
want to modify the same data item, it is thus more efficient to execute the threads in a same
NUMA node before to execute the threads of the other nodes. By doing so, a locking system
minimizes the amount of internode cache line transfer.

2.2. NON UNIFORM MEMORY ACCESS ARCHITECTURES 29

The Lock Cohorting is a technique that combines two well-known types of lock into a co-
hort lock. When released by a thread, a cohort lock gives ownership to the threads of the
local NUMA node in priority. To ensure fairness, a cohort lock transfers ownership to a
thread of another node after a configured number of releases. A cohort lock is composed of
a global lock G and one local lock Si per NUMA node. To acquire the cohort lock, a thread
must acquire both S and G , in this order. To release the cohort lock, a thread first checks
if some other thread is waiting for S. This other thread is thus a local concurrent. If so,
it releases S and transfers the G ownership to this local concurrent. Otherwise, it releases
both S and G .

The Lock Cohorting technique increases the cache locality of an application. It does so by
scheduling threads on the same NUMA node together when these threads compete for the
same lock. The cache locality slightly differs from memory locality as the main memory is
not necessarily implied. However, as we see in Section 2.2, even a cache to cache transfer
always implies the home node of the cache line. This home node can saturate when it has to
handle too many HT Assist requests. The Lock Cohorting technique does not consider this
aspect of NUMA architecture. Moreover, a cohort lock does not use additional properties
of the end user application to improve efficiency.

Everything about Synchronization

The Lock Cohorting technique is not the only work that tackles the locking efficiency in
a NUMA architecture. Other designs [27, 55] has been proposed to efficiently lock in this
architecture. David et al. do not propose a new lock design but instead, give a quite com-
plete study of the relations between the locking system, the hardware and the software.
This study, named Everything You Always Wanted to Know About Synchronization but Were
Afraid to Ask [26], evaluates and describes the behavior of several state-of-the-art locks over
several types of hardware, and especially NUMA hardware, with several workloads. As this
work does not give any new solution but focuses on understanding how existing solutions
behave, we here analyze the observations the study makes.

The first observation is that, as expected, synchronizing cores of different nodes kills the
performance. More formally, the acquisition of a lock owned by a thread on a remote node
can be a dozen times more expensive than if the owner thread was on the local node. In-
terestingly, this phenomenon worsens as the lock gets (i) more contended and (ii) more
complex. This second assertion does not stand if the complexity is added to make the lock
NUMA aware.

The second observation is that, considering the NUMA aspect of the hardware at a high
level is not always sufficient. The study highlights a surprising consequence of the HT Assist
protocol described in Section 2.2. Even if a synchronization, or any concurrent memory
modification, is limited to the cores of a single node, it may lead to internode broadcasts.
Indeed, if a cache line is in the Shared or Owned state, a modification of this line forces the
home node to broadcast invalidation probes. This occurs even if only the local cores own a
copy of the cache line. David et al. propose a fix that consists in forcing the cache line state
to Exclusive/Modified with a dedicated instruction.

30 CHAPTER 2. STATE OF THE ART

The third observation is that the lock complexity often adds overhead in NUMA architec-
ture, but can improve performance under specific conditions. As David et al. state in the
first observation, using a lock across NUMA nodes is more expensive when this lock is more
complex. However, under high contention, these locks perform better than the simple
locks.

This study also gives other observations that are not related to the NUMA architecture. We
choose to elude them and summarize the three observations that we present. First, soft-
ware aware of the high level NUMA topology is more efficient by avoiding internode data
sharing, increasing the locality. Second, software aware of the low level NUMA details is
more efficient by avoiding hardware mispredictions or degenerated behaviors. Third, soft-
ware aware of the end user application details, like the locks contention, is more efficient
by choosing an appropriate strategy. This third point is not specific to NUMA. However, it
is closely related to the necessity for a system to know the needs of the end user application
to choose the appropriate strategy, whether a lock implementation or a NUMA policy.

NumaGiC

The locking system is not the only software layer that can take advantage of the NUMA
topology to improve application performance. A managed runtime environment, typically
a Java Virtual Machine (JVM), usually handles the low level memory allocation details. This
is especially the case when the runtime provides a garbage collection system. In a runtime
with a garbage collector, some runtime threads walk the objects graph of the application to
separate reachable objects from unreachable objects. These threads then copy the reach-
able objects in a new memory zone, then free the old zone. The runtime threads, called GC
threads, execute either concurrently with the application threads, called mutator threads,
or during a stop-the-world phase. When the application objects graph is large, walking the
whole graph becomes expensive and affects the overall application performance. Modern
JVMs use several threads that walk the objects graph concurrently.

When the application objects graph is spread over several NUMA nodes, a GC thread can
blindly follow internode references. Following such a reference implies that the core fetches
data from the memory of a remote node through the interconnect. If too many GC threads
use the interconnect, this last saturates, causing an important performance drop. Gidra
et al. address this issue with NumaGiC [34], a garbage collector designed to improve the
memory locality during a collection.

NumaGiC improves the collection memory locality by using four heuristics. The first heuris-
tic is to allocate new objects on the same NUMA node than the allocating mutator thread.
The reason is similar to the one behind the first-touch NUMA policy: a thread often works
on the objects it allocates. This implies that a mutator likely allocates new objects and binds
them with references, which happen to be local references. As a second heuristic, the GC
threads process local objects in priority. The NumaGiC is designed so a GC thread knows
the home node of an object basing on its virtual address. If the object has a remote home
node, the GC thread sends its reference to the GC threads of this remote node. Only if a GC

2.2. NON UNIFORM MEMORY ACCESS ARCHITECTURES 31

thread becomes idle, it starts to steal work to remote GC threads. These first two heuristics
improve the memory locality by making the GC threads process mostly local references.

The third heuristic is to copy reachable objects to the node of the GC thread that collected
it. If the GC thread processes local references, this heuristic preserves the memory locality.
If the GC thread steals work, this heuristic rebalances the memory load. Indeed, if too
many objects are located on the same node, mutator threads likely access this unique node,
possibly creating memory saturation. In this case, the GC threads of this overloaded node
have more work than the GC threads of the other nodes. These last threads thus steal work
and then rebalance the memory load.

The fourth heuristic is to copy old reachable objects to the same node they were on be-
fore the collection. In NumaGiC, an object is old if it survives to 3 collections. This fourth
heuristic moderates the third one and prevents GC threads to copy old objects back and
forth across the NUMA nodes when there is only a negligible imbalance.

The NumaGiC thus focuses on memory access locality by (i) ensuring objects that refer-
ence each others are on the same node, (ii) ensuring that GC threads mostly process local
references and (iii) preventing useless object migrations. Additionally, NumaGiC prevents
a memory imbalance scenario by rebalancing young objects location during the garbage
collection. While the last three heuristics concern the GC threads, the first heuristic takes
into account and modifies the objects allocation made by the mutator threads.

Carrefour

The three previous works improve the memory access locality and only place a few weight
on memory access balance. For the synchronization study [26], this makes sense because
the target is the lock itself. It seems unlikely for a lock to generate so many memory ac-
cesses that it saturates a home node. The NumaGiC is also a special case as the GC threads
explicitly avoid accessing to the memory of a remote node. Furthermore, only the Lock Co-
horting technique aims to improve the end user application memory accesses. NumaGiC
also improves the end user application memory locality and balance but only as a side ef-
fect.

Dashti et al. present Carrefour [25], a NUMA policy. The only goal of the Carrefour policy
is to improve the end user application memory accesses. Also, Carrefour puts emphasis on
balancing the memory accesses over improving access locality. We actually use this work
as a base policy later in this thesis. For this reason, we describe here precisely how it works.
We present an experimental evaluation of this policy in Chapter 4.

Carrefour is a dynamic memory placement policy for NUMA architectures. This contrasts
with the first-touch and round-4K policies that we say static: when a memory area is allo-
cated, the first-touch or round-4K policy decides on what node to allocate. Instead, Car-
refour dynamically migrates memory pages, which have already been allocated, in order
to improve the memory access balance, while improving the memory access locality as a
secondary goal.

32 CHAPTER 2. STATE OF THE ART

core

RAM

NUMA node 0 NUMA node 1 NUMA node 2

core

NUMA node 0 NUMA node 1 NUMA node 2

Figure 2.6: Carrefour interleaving heuristic: when a memory controller is overloaded (top
part of the diagram), the hot pages of this memory controller (the read rectangles in the
bottom part of the diagram), are spread between the NUMA nodes

To this end, Carrefour monitors the memory access pattern of the application threads us-
ing hardware counters. A first set of counters, called Performance Monitoring Counters,
accounts the number of memory access per second. These counters are cheap to use and
Carrefour uses them constantly. If the number of memory access per second exceeds a
fixed threshold, then Carrefour enables a second set of hardware counters: the Sampling
Counters. The Sampling Counters are more expensive to use, so Carrefour enables them
only if the application uses the memory intensely. Periodically, the Sampling Counters take
the current instruction of the monitored application and report to Carrefour what memory
address it accesses. With this information, Carrefour builds a map between the threads of
the application and the memory pages they access to. Since Carrefour builds this map with
sampling, it is only statistically valid.

Given this access map, Carrefour implements three heuristics to migrate or replicate the
hottest pages i.e. the most accessed pages. The first heuristic implemented by Carrefour
is the interleaved heuristic. Carrefour executes this heuristic when it detects that memory
controllers are overloaded. It randomly migrates hot pages from overloaded nodes to un-
derloaded nodes. By doing so, this first heuristic balances the memory access load between
the NUMA nodes. Figure 2.6 illustrates this first heuristic.

Carrefour also implements two heuristics that it triggers when it detects that the intercon-
nect saturates. Indeed, balancing the memory accesses between the nodes does not reduce
the load on the interconnect. Quite the contrary it increases it. The migration heuristic mi-

2.2. NON UNIFORM MEMORY ACCESS ARCHITECTURES 33

core

NUMA node 0 NUMA node 1

core

NUMA node 0 NUMA node 1

Figure 2.7: Carrefour migration heuristic: when a hot page is accesses only by remote cores
of the same node (top part of the diagram), this hot page is migrated on the accessing
NUMA node

grates hot pages that are remotely accessed by only a single node towards the node that
performs the accesses. The replication heuristic replicates hot pages that are accessed in
read-only mode by a set of threads. These two heuristics improve the memory access local-
ity. As a result, Carrefour reduces the memory access latency and reduces the load on the
interconnect. Figure 2.7 illustrates the migration heuristic.

Carrefour is thus a compromise between the first-touch and round-4K policies. On one
side, it balances the memory load across the NUMA nodes, like the round-4K policy. Un-
less the round-4K policy, Carrefour only interleaves the hot pages. On the other side, it
improves the memory access locality, like the first-touch policy. Carrefour does so by mi-
grating the pages accessed by a unique node towards this node. However, Carrefour is
a dynamic policy. Carrefour first observes the application memory access pattern, then
modifies its memory layout. The advantage is that Carrefour adapts to an application that
changes its behavior over time. The downside is that Carrefour is unable to take immediate
decisions. It must work aside from another static policy.

Conclusion

The presented works address the problem of tasks and memory placement in a NUMA
architecture. This placement problem is difficult because an efficient placement depends
on several factors. The memory access locality and the memory access balance are high-
level concerns and largely impact the end user application performance. To achieve a good
access locality and balance, the software has to (i) know the hardware details as precisely
as possible and (ii) know the application behavior as finely as possible.

34 CHAPTER 2. STATE OF THE ART

The condition (i) is necessary for the software to find a good compromise between memory
locality and memory balance. Placing a memory page on the local node instead of sending
it on an unbalanced node may or may not be a good decision depending on the bandwidth
of the interconnect and the memory controller. Additionally, by knowing the details of the
hardware, the software stack avoids degenerated behavior of the hardware.

The condition (ii) is necessary for the software to use the best suited NUMA policy. As we
explain in Section 2.2 and as we confirm it in Chapter 4, there is no policy that outperforms
all the other policies for all applications. Knowing the behavior of the application is then
essential to bring good application performance. The software can know the application
behavior either with monitoring techniques, like Carrefour, or with administrator clues,
like numactl.

We show in Section 2.3 that system virtualization prevents the virtualized software to know
the hardware details. Additionally, the software responsible of the virtualization only sees
virtual machines as a black box and thus cannot know the end user application behavior.

2.3 System virtualization

Aside from the evolution of hardware allowing the execution of more complex applications,
the way to use computers also change. An increasing number of users now prefers to exe-
cute their applications on distant and allocated on demand hardware, called the Cloud. We
call the Cloud, the aggregation of machines owned by a company called the provider which
are rented to users called the clients.

A provider can allow its clients to use the machines in various form. We focus on the In-
frastructure As A Service form, where each client rents a complete computer. With this
type of service, the client can install its own operating system on the computer and has full
privileges on it.

Usually, the provider does not give directly a physical machine to its clients. The first rea-
son is that the Cloud machines are powerful server while the client generally only needs a
fraction of this computing power. The second reason is that giving the full privileges on the
provider servers is a security issue.

Instead of directly giving access to the physical machine, the Cloud provider executes one
or several computer simulations on its servers. As the machine simulation, called virtual
machine behaves exactly like a regular computer, the provider can rent it to the client. By
executing several virtual machines on a single physical machine, the Cloud provider splits
the computing power of a server between several clients. Also, giving full privileges to a
virtual machine is not a security concern since the client cannot escape the machine sim-
ulation.

Executing virtual machines is a technique called system virtualization. In this section, we
explain how the system virtualization works and what challenges it brings. In the first part,
we describe, at a coarse grain, the different methods ones can use to achieve system virtu-

2.3. SYSTEM VIRTUALIZATION 35

alization. Then, we focus on one of these methods, called the Hardware Assisted Virtual-
ization, and explain specific details we then use in the remainder of the document. Finally,
we present some challenges brought by the virtualization and how existing works address
them.

Technical details

The system virtualization is neither a recent technology nor a technique specific to the
Cloud computing. Quite the contrary, virtualizing entire computers has been used in the
first place to execute software designed for an Instruction Set Architecture (ISA) different
that available hardware. The ability to execute software compatible to ISA A on hardware
with an ISA B reduces the costs of porting software on multiple architectures. The ported
software is called the guest and the computer executing the virtual machine is called the
host.

In second place, system virtualization has been largely used for operating system devel-
opment and debugging. In this case, the virtual machine may, or not, have the same ISA
than the physical machine. The main goal is to simulate a machine with the same behavior
than a physical machine while providing useful debugging mechanisms, like the ability to
breakpoint or to inspect the processor state.

With the operating systems becoming more complex, involving more operations, their pro-
grammers needed to execute virtual machines more quickly to avoid slowing down the de-
velopment process. The virtualization techniques thus evolved to become more efficient.

The system virtualization became so efficient that it is now possible to execute usual soft-
ware inside a virtual machine with acceptable overhead. It is then suitable for Cloud com-
puting usage. In the context of the Cloud computing, the execution speed of virtual ma-
chines directly impact the benefits of the provider: the more its virtual machines are effec-
tive, the more it can execute virtual machines on the same hardware for the same quality
of service. The system virtualization techniques thus evolved again to become even more
efficient, this time with the support of processors manufacturers.

This thesis focus on the performance of virtualized applications. In this first part, we then
describe successive virtualization techniques from the most naive to the most effective
from the angle of performance.

Cycle accurate simulation

The most obvious solution to provide a virtual machine is to use a program that simulates
the behavior of each chip and each wire of the actual machine. This kind of program is
called a cycle accurate simulator. A cycle accurate simulator can thus simulate hardware
with any desired ISA. Additionally, the behavior of the virtual machine matches exactly the
behavior of a physical one.

Computers are however complex beasts, and to execute one instruction, the processor ac-
tivates a plethora of chips and wires. Simulating each of them requires an important com-

36 CHAPTER 2. STATE OF THE ART

puting power. Despite the accuracy of the virtual machine behavior they execute, cycle
accurate simulators are thus extremely slow.

Hardware emulation

As stated at the beginning of this section, before the Cloud computing, most of the virtual
machines users only needed to port software to multiple ISA or to develop operating sys-
tems. For these tasks, having an exact reproduction of the physical machine circuitry is not
necessary. Having a virtual machine functionally equivalent to the physical one is actually
sufficient.

A simple technique to avoid simulating the whole hardware is to translate the guest in-
structions into what should be executed instead on the host. The program in charge of
virtualization, called emulator, reads each instruction of the virtualized software, whether
operating system or userland program. When reading an instruction, the emulator de-
codes it and executes a code with a corresponding behavior. The executed code is a part
of the emulator and hence, compatible with the physical machine ISA. Additionally, any
privileged instruction of the guest is replaced by an emulated behavior.

An example of emulated behavior is the disk controller emulation. Typically, the processor
usually communicates with disk controllers by sending word sized commands on the I/O
bus. To program a disk read, the processor sends a command indicating where to read on
the disk, then another command indicating where to write on the memory, then a com-
mand to trigger the read. On the x86 architecture, sending a command to a device uses
a privileged instruction. To emulate a disk controller, the emulator maintains the state of
the virtual disk controller in a structure in memory. It then decodes each of the privileged
I/O instructions and updates the state of the virtual controller accordingly. The final I/O
command indicates the emulator to look at this virtual state to fetch the disk sector and
memory offset to use. The emulator finally reads the virtual disk, which can be a file or a
dedicated physical disk of the physical machine.

An emulator thus maintains a set of virtual devices. It updates them in response to priv-
ileged instructions issued by the virtualized software. These virtual devices are not sim-
ulated, like in a cycle accurate simulator. Instead, they only behave like an actual device
would do. For this reason, hardware emulation is more efficient than cycle accurate simu-
lation. Additionally, it is still well suited for operating system development since the state
of the virtual device can be inspected at any moment during the execution. Also, inserting
breakpoints is an easy task: it only requires to insert hooks between two virtual instructions
decoding.

Dynamic Binary Translation

Hardware emulation is more efficient than cycle accurate simulation but still can be im-
proved. Indeed, decoding each virtual instruction induces a significant overhead. In par-
ticular, an emulator decodes the instructions in the body of a loop at every iteration. It is
very unlikely the guest modifies its own code from an iteration to the other.

2.3. SYSTEM VIRTUALIZATION 37

Caching this instruction decoding for later use is a powerful optimization. A common way
to cache these decodings is named the Dynamic Binary Translation. A DBT emulator de-
codes complete blocks of instructions of the guest and translate them to blocks of instruc-
tions compatible with the host ISA. Most ISAs often provide very similar functionalities so
most of the guest instructions can be translated into one or a few host instructions. Guest
instructions that cannot be easily translated or privileged instructions are replaced by calls
to the emulator code. The resulting block of instructions is then executed and stored in
memory for future use. If the guest wants to execute this block of instructions later, it is
already translated and can be executed directly.

Since a decoded block is directly executed by the host processor, unprivileged guest code
induces no overhead once translated. Usage of privileged devices however, still requires
additional operations for the host to update the virtual devices state. Translating the guest
blocks of instructions when encountered for the first time also adds overhead. Additionally,
the counterpart of the improved performance is that inspecting the hardware state is not
possible anymore for the CPU. Indeed, the CPU is not emulated by a DBT emulator since
the host CPU is directly used. Devices can however still be inspected and breakpoints are
still possible by inserting hooks in the produced instruction blocks.

Dynamic Binary Translation for same ISA

A special case of DBT occurs when the guest and the host have the same ISA. This is typi-
cally the case for operating system development or debugging. In this case translating an
instruction block is straightforward. The DBT emulator only replaces privileged instruc-
tions by calls to the emulator code. The processor hence executes most of the guest code
unmodified. In this common scenario, the DBT emulation only causes a small performance
overhead.

In the remainder of this document, we call hypervisor or Virtual Machine Monitor (VMM),
an emulator specifically designed to execute virtual machines with the same ISA than the
physical machine [60, 36, 35, 17]. We now focus exclusively on hypervisors since Cloud
computing virtualization relies on these programs.

Paravirtualization

While a hypervisor, thanks to hardware emulation or DBT, executes unprivileged instruc-
tions with a reduced overhead, emulating devices remains a slow process. Emulating a disk,
for instance, requires to emulate the complete behavior or a disk controller. As stated ear-
lier, a processor requires a disk read by sending several word sized commands on the I/O
bus with privileged instructions. Each command updates the state of the disk controller
and the last command tells the controller to actually perform the read. To emulate this de-
vice correctly, the hypervisor needs to catch every I/O instructions to update a virtual disk
controller. This causes an important overhead.

To remove the device emulation overhead, some hypervisors trade their ability to mimic
the exact behavior of a physical machine against the ability to cooperate with the guest op-

38 CHAPTER 2. STATE OF THE ART

erating system. This technique is called paravirtualization [8, 7, 53, 31, 42]. A paravirtualiz-
ing hypervisor notifies the guest operating system that it executes inside a virtual machine.
The operating system, which is modified so it can use paravirtualization, directly requests
services to the hypervisor instead of using emulated devices. In the same way we name
syscall, a request to the operating system, we name hypercall, a request to the hypervisor.
To read from a disk, a paravirtualization enabled operating system makes a single hypercall
that is less expensive that executing several privileged instructions that are caught by the
hypervisor. Furthermore, a paravirtualizing hypervisor does not need to maintain virtual
device states since there is no more need to delude the guest into thinking that there is an
actual device.

By using the paravirtualizaion technique a hypervisor, whether a hardware emulator or a
DBT hypervisor, provides access to privileged operations with a low overhead. The counter-
part is that the guest operating system has to be modified to replace the low level hardware
management routines by hypercalls. It is thus not possible to execute any operating system
in a paravirtualized machine. This constraint makes a paravirtualizing hypervisor unsuit-
able for operating system development, except for paravirtualization enabled operating
systems. However, it is adapted to the Cloud computing where performance and security
are the main concerns.

Hardware Assisted Virtualization

The paravirtualization technique reduces the number of interceptions that the hypervisor
makes and thus the number of context switches between the guest and the host. It however
has some drawbacks. First, the guest operating system has to be paravirtualization enabled.
Second, the paravirtualization works well only for privileged operations that update state-
ful devices, like disk controllers. This is because the complete emulation of a stateful device
requires several interceptions and thus several expensive context switches while paravirtu-
alizating this same device requires only one context switch. For other special but frequent
operations, like performing a syscall, the paravirtualization does not help since it results in
one context switch anyway.

With the growing amount of Cloud services relying on virtualization, making hypervisors
efficient became an economical necessity. Processor manufacturers then began to add vir-
tualization support in their chips [51, 54, 33, 68, 30]. With this hardware assistance, mod-
ern hypervisors emulate hardware for unmodified guest systems with good performance.
In this thesis, we focus on this last type of virtualization. For this reason, we describe the
Hardware Assisted Virtualization with more details in the next section.

Architecture details

Modern processors provide assistance for virtualization to hypervisors. This results in the
addition of several features to classical processor functionalities. In this section we de-
scribe some general concepts related to Hardware Assisted Virtualization (HAV). Moreover,
this thesis focuses on NUMA architecture, in addition to system virtualization. These archi-

2.3. SYSTEM VIRTUALIZATION 39

tectures require a specific memory management to be efficient. We thus give more specific
details about how the memory management works with HAV. On x86 architectures, the HAV
features differ between the two manufacturers Intel and AMD. As we use AMD processors
in our evaluation, we focus on this implementation but if the low level aspects of the HAV
change, the concepts remain the sames.

Guest mode

The general idea behind HAV is that the processor can operate in two modes: the host
mode and the guest mode. These modes are orthogonal to the kernel mode and user mode
(protection rings in the x86 nomenclature). In host mode, the behavior of the processor is
unchanged. The hypervisor code is executed in host mode where it has full access to the
hardware and can execute privileged instructions. The guest operating system and guest
applications execute in guest mode. In guest mode, the processor itself emulates the priv-
ileged hardware. When the guest operating system executes a privileged instruction, the
processor updates a virtual state and answer to the guest without involving the hypervisor.
The processor actually implements predefined behaviors for every device. The hypervisor
only configures the processor while in host mode to select what behavior the processor
should follow when in guest mode. The hypervisor only handles complex operations such
as high level virtual machines management.

Technically, an AMD processor boots in host mode. To execute a new virtual machine, the
hypervisor configures a memory zone called the Virtual Machine Control Block (VMCB).
This zone has a predefined layout and the processor can parse it. This layout defines two
parts: (i) the control fields and (ii) the guest state. The control fields indicate what behavior
the processor should follow when in guest mode: what privileged instruction to intercept,
how to emulate interrupts and so on. The guest state contains the values of the processor
virtual registers: the registers seen by the guest system. These registers include the gen-
eral purpose registers, the instruction pointer register but also the x86 control registers and
other privileged registers.

After configuring the VMCB, the hypervisor enters in guest mode with the special instruc-
tion VMRUN. At this point, the host state is saved in a dedicated memory zone while the guest
state is loaded from the VMCB. The processor begins to fetch instructions from the address
specified by the virtual instruction pointer. If an event occurs that the processor cannot
handle by itself, for instance the guest system trying to halt an idle core, it switches back
to host mode and resume the hypervisor execution right after the VMRUN instruction. This
switch back is called a VMEXIT in the AMD nomenclature. During the VMEXIT, the guest
state is saved in the VMCB and the host state is restored. Additionally, the processor indi-
cates in dedicated VMCB fields what caused the VMEXIT. Basing on these fields and on the
guest state, the hypervisor decides how to handle the event that occurred in the guest.

The VMEXIT is a convenient way for the processor to delegate complex management to the
hypervisor. A good example of complex management is virtual CPU (vCPU) scheduling. A
vCPU is an execution thread that the guest system sees a physical core. Just like an operat-
ing system schedules threads on available cores, a hypervisor schedules vCPUs on physical

40 CHAPTER 2. STATE OF THE ART

cores. There are many scheduling strategies and some of them are quite complex. This
kind of high level decisions is not achievable by a processor predefined behavior.

In contrast, the processor handles simple operations by itself. An instance of a simple op-
eration is the system call. Since x86 protection rings (user and kernel mode) are orthogonal
to host and guest mode, the processor is able to switch from user to guest without implying
the hypervisor.

Hardware Assisted Paging

To isolate the guest system from the physical machine and from the other guests, the hy-
pervisor provides memory isolation of virtual machines. This isolation is roughly similar to
the memory isolation between processes that an operating system provides. In this part, we
quickly remind how memory isolation of processes works in native configurations (without
any virtualization). We then describe how memory isolation of virtual machines works in
HAV.

In a native configuration, the operating system maintains, for each user process a mapping
between virtual and physical addresses. The user processes only see and access to virtual
addresses. The operating system ensures that the virtual addresses of several processes
never map to the same physical address, which indicates an actual position in memory. By
doing so, the operating system ensures memory isolation of processes, since two processes
can never access the same physical address.

Technically, when a process accesses to memory, the processor issues a memory request for
a virtual address. This request goes through the Memory Management Unit (MMU), which
translates the virtual address into a physical address. The request is then forwarded to the
memory. The MMU translates virtual addresses by looking into a page table. The page table
is a data structure stored in memory and filled by the operating system. On x86 processors,
the page table address is indicated by a control register, named CR3. The operating system
can modify the CR3 at any moment to indicate another page table, thus changing the used
mapping. This is typically the case when context switching from a process to another one.

In a virtualized configuration, there are two levels of memory isolation. In a given virtual
machine, the operating system has to isolate the processes from each other. On the physical
machine, the hypervisor has to isolate the virtual machines from each other. HAV capable
processors achieve that with the Hardware Assisted Paging (HAP) feature.

When the HAP is enabled and the processor executes in guest mode, the MMU operates
two translations instead of one. First, the processor issues a memory request for a virtual
address. The MMU translates this virtual address to a guest physical address: an address on
the emulated physical space as seen from the guest system. To operate this first translation,
the MMU looks in a page table indicated by the virtual CR3. Indeed, just like many other
registers, the CR3 is emulated by the processor when in guest mode. This first page table
is filled by the operating system with no intervention of the hypervisor. In a second step,
the MMU translates the guest physical address into a host physical address. To operate this
second translation, the MMU looks in a second page table indicated by a field of the VMCB

2.3. SYSTEM VIRTUALIZATION 41

named nCR3. The hypervisor is responsible for filling this second page table. The MMU
then forwards the request to the memory.

In the remainder of this document, we use the AMD nomenclature to name the different
address spaces. We use the term physical address to designate the guest physical addresses
and machine address to designate the host physical addresses.

In the same way an operating system maintains a page table per process and ensures two
page tables never map to the same physical addresses, a hypervisor maintains a page table
per virtual machine and ensures they never map to the same machine address. By doing
so, the hypervisor ensures the memory isolation between virtual machines.

Synthesis

In this section, we showed the different methods of system virtualization and their evo-
lution over time from the performance perspective. We show that the role of the virtual-
ization program changed. In the first place, the cycle accurate simulator was intended to
reproduce precisely every aspect of the hardware. Later, the hardware emulator and the
DBT emulator traded this precision to improve performance by only emulating the exter-
nal behavior of a physical machine. Finally, the paravirtualizing hypervisor, then the HAV
compatible hypervisor delegate most of the emulation work. The paravirtualizing hyper-
visor simply leaves this emulation, letting the guest system knowing it executes in a virtual
machine. The HAV compatible hypervisor lets the processor handle most of the simple
emulation operations. Both of these hypervisor thus focus on high level virtual machine
management. In the next section, we describe virtual machine management issues that
can occur and how existing works address them.

Related challenges

In Section 2.3, we show that the role of modern hypervisors is to implement high level re-
source management for the virtual machines. This contrasts with the older virtualization
systems that focus on how to efficiently emulate a virtual hardware. To ease the resource
management, today hypervisors usually expose simple hardware to their guests. Typically,
a hypervisor exposes a set of vCPUs to the guest system. From the guest point of view, a
vCPU is a device that constantly fetches and processes new instructions until the operating
system stops it. From the host point of view, a vCPU is an execution thread that is arbitrarily
paused, restarted or moved from a core to another one by the hypervisor scheduler.

Exposing simple hardware abstractions to the guest system has many benefits. First, there
is no need to modify the guest operating system. Since the vCPU behaves exactly like a
physical CPU, the operating system interacts with hardware it is used to. Second, using
abstractions makes the hypervisor maintainable. Handling many types of device is a source
of software complexity3. Providing many types of device is too. Third, by hiding the details

3For this reason, some hypervisors, like Xen, delegate this task to a special Linux guest

42 CHAPTER 2. STATE OF THE ART

Solution
Opacity

Approach
Ignoring layer Ignored layer

AQL_Sched hypervisor application monitoring
Vscale operating system hypervisor transparency
AASH operating system hardware transparency

Bias Random Migration
operating system

hardware
monitoringother guests

hypervisor application

Table 2.7: Works related to system virtualization

of resource management behind abstractions, the hypervisor improves security. Indeed,
exposing the internals of the hypervisor to a malicious guest increases the attack surface.

On the other side, exposing simple hardware abstractions to the guest system also has
drawbacks. As the hypervisor hides the hardware details to the operating system, it thus
prevents this last to use the hardware efficiently. This opacity between the guest software
and the hardware has a huge impact on application performance, as we explain in Sec-
tion 2.1 and Section 2.2. Moreover, the hypervisor hides its own behavior to the guest op-
erating system. These two software layers, the hypervisor and the operating system, both
manage a set of resources. Because of the opacity between these two layers, they can take
contradictory decisions that cause performance drops.

In Section 2.2, we show that some policies rely on the end user application behavior to
optimize the memory placement. From the hypervisor point of view, a virtual machine
is a black box. The hypervisor only sees a set of vCPUs that sometimes access virtual de-
vices or cause a VMEXIT. The hypervisor has no access to the end user applications and is
thus unable to know their behavior. This other kind of opacity likewise impacts the appli-
cation performance by preventing the hypervisor to take accurate resource management
decisions.

Table 2.7 enumerates the works we present in this section. For each of them, we describe
the issue it addresses, and emphasize the opacity that causes this issue. We characterize
the opacity by its ignoring part and its ignored part. The ignoring part is the software layer
that lacks information about the ignored part to take efficient decisions. We also indicate
what approach these works use, either a monitoring or a transparency approach.

Monitoring In this approach, the hypervisor uses a set of hardware of software counters to
capture the guest behavior. This approach does not involve the guest. The hypervisor
then uses the metrics it has collected to take decisions.

Transparency In the transparency approach, the hypervisor and the guest operating sys-
tem exchange information to weaken the opacity. Both these layers can exchange
about their own internals or about another layer they have access to. For instance,
the hypervisor can expose the hardware details to the guest operating system.

2.3. SYSTEM VIRTUALIZATION 43

AQL_Sched

A modern hypervisor is responsible of high-level resource management for its virtual ma-
chines. One of the resources it manages is the CPU time. The hypervisor schedules the
vCPUs of the virtual machines on the physical cores. A hypervisor scheduler roughly has
the same goals than an operating system scheduler: ensure fairness4, prevent starvation
and maximize responsiveness. The vCPUs, scheduled by a hypervisor, are however slightly
different than threads scheduled by an operating system. On the one hand, a thread be-
haves quite simply: it executes constantly until the end of its quantum. Optionally, a thread
can also perform blocking operations. On the other hand, a vCPU executes several guest
threads with their own quantum and serves virtual interrupts.

A vCPU is thus a composite execution thread i.e. it is the aggregation of several execu-
tion threads at the guest level. For this reason, hypervisors usually schedule vCPUs with
larger quanta than the operating systems do with their threads. A typical hypervisor quan-
tum length is 50 ms against 1 ms for an operating system quantum length. As Teabe et
al. [66] point it, this large quantum length is beneficial to computation intensive guest ap-
plications, since it lowers cache pollution. A large quantum is however detrimental to I/O
intensive ones. Indeed, an application performs an I/O by sending a request to an I/O de-
vice, then blocks. When the device has served the request, it sends an interrupt to one of
the vCPUs, chosen by the guest operating system, to resume the application. If the vCPU
is not scheduled, the interrupt is pending. This interrupt remains pending until the hy-
pervisor schedules the targeted vCPU. A large scheduling quantum thus lowers the guest
responsiveness.

Teabe et al. propose a new scheduler for the Xen hypervisor that adapts its quantum length
to the application: the AQL_Scheduler [66]. This scheduler classifies the vCPUs in three
types that determine their quantum length. This classification bases on four criteria: the
LLC access frequency, the LLC miss rate, the PAUSE instruction frequency and the number
of I/O request. The PAUSE instruction purpose is to detect vCPUs that spinlocks. We dis-
cuss more about the virtualized spinlocks in the Vscale work. The hypervisor obtains the
first two criteria with hardware performance counters, the third criterion with instruction
interception and the fourth one with a software counter.

The classifier first separates the vCPUs with a high LLC miss rate from the other ones. The
vCPUs of the same group are placed on the sames LLC. Inside of each group, vCPUs with a
high LLC access frequency are scheduled on the same cores with a large quantum length. A
high LLC access frequency indicates that the vCPU is computation intensive. Also, vCPUs
with a high frequency of PAUSE instruction or a large amount of I/O need responsiveness
and are thus scheduled on cores with small quantum length.

The AQL_Sched thus monitors the guest vCPUs to capture the high level behavior of the
guest applications. Depending on this behavior: computation intensive, I/O intensive
or synchronization intensive, the hypervisor schedules the vCPUs with different quantum
length.

4The machine administrator can however attribute different priorities to different virtual machines

44 CHAPTER 2. STATE OF THE ART

Vscale

As stated in the presentation of AQL_Sched, virtualized spinlocks, and actually, any syn-
chronization between vCPUs, are a special performance concern. A guest system uses
spinlocks to protect critical sections that a thread can executes quickly. Indeed, waiting
on a spinlock consumes CPU cycles. Thus, synchronizing large critical sections with spin-
locks would be a waste of computing power. Using spinlocks in a non virtualized kernel
is safe because (i) the operating system ensures that a thread that owns a spinlock is not
scheduled out and (ii) this thread executes on a core that fetches and executes instructions
until told otherwise by the system. A thread that owns a spinlock is thus guaranteed to
release the spinlock in short delays.

Contrary to a physical core, a vCPU may be paused by the hypervisor scheduler. As a result,
a vCPU not necessarily fetches and executes instructions until told otherwise by the guest
system. A guest thread executing on a scheduled vCPU can thus acquire a spinlock, then
the vCPU of this thread is scheduled out by the hypervisor. If another guest thread execut-
ing on another vCPU now tries to acquire the spinlock, it has to wait for the hypervisor to
reschedule the owner vCPU. Since vCPUs quanta are usually tens of milliseconds, acquir-
ing a spinlock in a guest is potentially a huge waste of time and CPU cycles. This scenario
is called the lock holder preemption.

This lock holder preemption problem is caused by the opacity between the guest operating
system and the hypervisor. Indeed, the hypervisor usually presents a fixed number of vC-
PUs to the guest, independently of the total number of vCPUs that compete for execution
on physical cores. The guest thus assumes a fixed amount of processing power, equally
spread between the vCPUs. This assumption does not hold when the hypervisor consoli-
dates several guests on the same hardware. When more guests compete for the same cores,
the amount of processing power per guest decreases. This opacity between the hypervisor
and the guest operating system leads the last to acquire spinlocks with vCPUs that are likely
to be preempted.

Cheng et al. address the lock holder preemption problem with Vscale [19]. The main idea
of Vscale is to expose the amount of physical CPU time to the guest system. To this end,
the hypervisor does not expose a fixed number of vCPUs to the guest. Instead, it exposes a
number of vCPUs proportional to the number of physical CPUs allowed to the guest. The
scheduling strategy thus shifts from “having a fixed number of vCPUs, each with a decreas-
ing execution time” to “having a decreasing number of vCPUs, each with a fixed execution
time”. When changing the number of vCPUs of a guest, the hypervisor notifies it. The guest
operating system thus migrates the threads away from the vCPUs that are removed, or to
the vCPUs that has been added.

AASH

In this chapter, we only discussed symmetric multicores, where all of the cores are equiv-
alent. In asymmetric multicores, different sets of cores deliver different computing pow-
ers. The fast cores process instructions with high throughput but consume a lot of energy

2.3. SYSTEM VIRTUALIZATION 45

while the slow cores process instructions more slowly but with a lower energy consump-
tion. When both the fast and the slow cores expose the same ISA, the load balancer chooses
carefully on which core to execute each thread. Executing a thread that frequently stalls the
core, waiting for memory, on the fast cores causes an energy waste. Executing a thread that
could benefit of high instruction throughput on the slow cores decreases the performance.

Efficiently placing threads on asymmetric architectures is addressed in several works [10,
41, 62] for native configurations. These solutions typically monitor application threads to
determine the benefits of placing them on fast cores. This monitoring is made by the op-
erating system. These solutions do not work in a virtualized configuration. The hypervisor
isolates the guest operating system from the actual hardware. Specifically, the hypervisor
does not expose the fast or slow characteristic of the vCPU. The guest operating system
thus sees a symmetric multicore and does not make any optimization.

Kazempour et al. tackle this problem with the Asymmetry-Aware Scheduler for Hypervi-
sor [39]. This scheduler, implemented in Xen, is aware of the asymmetric nature of the
hardware. AASH uses this knowledge to expose the asymmetry to the guests. In addition,
AASH uses the asymmetry awareness to ensure a fair sharing of the fast cores among the
guests, but this optimization is out of this document scope. Exposing a particular vCPU as
fast for the guest is trivial. The hypervisor intercepts and emulates the instructions used by
the guest to discover the properties of the vCPUs. The main difficulty is for the hypervisor
to ensure that fast vCPUs always execute on fast physical cores.

On a symmetric multicore, the Xen hypervisor uses a credit-based scheduler. One credit
stands for 100 µs of physical CPU time. Periodically, each vCPU receives an amount of
credit proportional to its priority. The global amount of given credits for a period is propor-
tional to the amount of physical core. When a vCPU executes, it consumes its credits. The
scheduler selects the next vCPU to execute by looking the one that has the largest amount
of credits.

On an asymmetric multicore, AASH uses two types of credits. The fast credits stand for fast
CPU time while the slow credits stand for slow CPU time. Only a vCPU with fast credits can
execute on a fast core. Both fast and slow credits are distributed periodically. The global
amount of given fast credits (resp. slow credits) for a period is proportional to the number
of fast cores (resp. slow cores). AASH chooses which vCPUs receive fast credits in a round-
robin fashion. Each period, N vCPUs marked as fast receive fast credits, with N being the
number of fast cores. Once a vCPU has consumed all of its fast credits, AASH migrates this
vCPU to a slow core. This vCPU then only receives slow credits until all the other fast vCPUs
have received fast credits.

By exposing fast vCPUs that effectively execute on fast physical cores, the hypervisor re-
moves the opacity between the operating system and the hardware. This transparency al-
lows the guest operating system to assign computation heavy application threads to the
fast cores.

46 CHAPTER 2. STATE OF THE ART

Bias Random Migration

Efficiently placing vCPUs on an asymmetric multicore or on a NUMA hardware are similar
problems. In both cases, the main difficulty is to execute the application threads on the
most appropriate physical cores. On an asymmetric multiprocessor, there is two types of
cores: fast and slow. Furthermore, the operating system classifies the application threads
in two types: fast and slow. The scheduler reaches an efficient placement when the fast
threads execute on the fast cores. On a NUMA architecture, their are several performance
factors. The data locality and the memory access balance are some of them, as we explain
in Section 2.2. The contention on LLC is another performance factor. An efficient vCPU
scheduler for NUMA hardware thus tries to optimize all of these performance criteria.

Several works [70, 67, 20] address the problem of efficient vCPU scheduling on NUMA hard-
ware. We present one of them, the Bias Random vCPU Migration [56] system that charac-
terizes several performance factors with a unique metric. This metric is called the uncore
penalty and is the number of cycles a vCPU stays stalled because of memory accesses. The
uncore penalty captures the cost of an inefficient memory placement whether it be a local-
ity or balance issue.

The uncore penalty metric actually measures the consequence of a memory placement
rather than the causes of an inefficient placement. When a vCPU executes in a given NUMA
node, the BRM records the uncore penalty associated to the pair (vCPU, node). The BRM
system uses these uncore penalties to decide on which node to move a vCPU when asked
by the hypervisor scheduler. The node is decided randomly but with a bias: the BRM more
likely chooses to place a vCPU on a node if the uncore penalty of the (vCPU, node) pair is
low. Because of this bias, the BRM migrates the vCPUs on the NUMA nodes it knows the
placement is efficient. Because the BRM decides randomly, it eventually explores all the
pair (vCPU, node) and collect the uncore penalty metric for each of these pairs.

Like many other works related to NUMA virtualization [44, 21], the BRM system tackles an
opacity problem that has several aspects. On one side, the hypervisor does not see the ap-
plication behavior: which thread accesses to what memory zone. On the other side, the
guest operating system is unaware of the NUMA hardware. Additionally, the guest sys-
tem does not see the other guests either. These other guests generate their own memory
accesses. Accounting this additional memory load is important to prevent memory con-
tention. Like many other works related to NUMA virtualization, the BRM uses performance
counters to monitor the guests. The BRM then takes placement decisions depending on the
collected information.

Conclusion

The presented works address the problem caused by the virtualization opacity. The hyper-
visor isolates the guest operating system and applications from the hardware. Additionally,
the hypervisor sees the guest as a black box and hence isolates itself from the end user
application. This opacity prevents all the software layers to take efficient decisions. This
situation is particularly detrimental when the hardware has a NUMA architecture. As we

2.4. SOFTWARE SETTINGS 47

Hard drive
Context Memory
switches footprint

MB/s k/s MB

Parsec

bodytrack 0 17.7 7
facesim 0 11.7 328

fluidanimate 0 4.2 223
streamcluster 0 29.5 106

swaptions 0 0.0 4
x264 0 0.6 1129

NPB

bt.C 0 1.2 698
cg.C 0 5.9 889
dc.B 175 0.1 39273
ep.D 0 0.0 49
ft.C 0 0.3 5156
lu.C 0 1.5 600

mg.D 0 1.5 27095
sp.C 0 2.0 869
ua.C 0 37.4 483

Hard drive
Context Memory
switches footprint

MB/s k/s MB

Mosbench

wc 0 3.9 16682
wr 1 5.2 19016

wrmem 5 7.5 11610
pca 0 0.3 5779

kmeans 0 0.1 4178
psearchy 54 0.8 28576

memcached 0 127.1 2205

X-Stream

belief 234 0.0 12292
bfs 236 0.0 12291
cc 249 0.0 12291

pagerank 240 0.0 12291
sssp 261 0.0 12291

YCSB
cassandra 16 10.7 1111
mongodb 184 14.6 1092

Table 2.8: Behavior of the applications

show in Section 2.2, knowing the hardware and application details is essential to (i) imple-
ment efficient NUMA policies and (ii) choose what NUMA policy to apply. In particular, the
virtualization opacity prevents to use existing solutions that work in native configurations.

To break the opacity, the presented works rely on two methods. In the first method, the hy-
pervisor monitors, with hardware or software counters, the behavior of the end user appli-
cation. After collecting enough information, the hypervisor takes a placement decision. In
the second method, the hypervisor and the guest communicate and exchange information
so one of the software layer has enough information to take decisions. In the remainder of
this thesis, we show that both of these methods can be used to implement already existing
NUMA policies.

2.4 Software settings

In the remaining of this document, we frequently evaluate the impact of different config-
urations by measuring their impact on application performances. We describe here the
applications we use for those evaluations.

We take 29 applications from 5 different benchmark suites. The first suite is Parsec 2.1 (pre-
compiled version) which contain applications working on complex data structures such
as fluid simulation, vertice clustering or video encoding. The second suite is Nas Parallel
Benchmark 3.3 (openMP version) which contain applications performing a lot of compu-
tation over simple data structures. Conjugate gradient computation and Block tri-diagonal
solvers are good examples. The third suite is the Mosbench containing Metis applications
(in memory map reduce), a parallel search engine and memcached. These applications al-
locate large amount of memory and some of them have a high allocation rate. For these
reason they use a tuned memory allocator: Streamflow [58]. The fourth suite is a set of
X-Stream applications. X-Stream is a framework designed to process graph formatted data
too large to fit in memory and thus focus on efficient disk access patterns. The fifth and last

48 CHAPTER 2. STATE OF THE ART

benchmark suite is YCSB which contains scaling database applications using the disk but
in a reactive way whereas the X-Stream applications do it in a batch way.

We report in Table 2.8 the application we use, the benchmark suite from which they come
and for each of them, three characteristics measured on Linux with the default configura-
tion: the hard drive usage, reported as the average MB/s of read and write, the average rate
of voluntary context switch and the maximum memory footprint, reported in MB. For the
different evaluations, we use Linux 3.9 along with gcc 4.6.3, libgomp 3.0 and glibc 6. For
virtualized configurations, we use Xen 4.5.

2.5 Conclusion

Computers usage is evolving. From a hardware perspective, the NUMA architecture, a 30-
years-old technology, is becoming common in data centers. This popularity comes with
performance improvements. The cost of a remote node memory access is no more the
main bottleneck, thanks to the high throughput interconnect and to the cache coherency
protocols. Instead, performance in NUMA architectures are now achieved by using NUMA
policies. These resource management policies take several hardware and software aspects
into account and optimize memory locality, memory balance and task placement. From
a software perspective, the system virtualization is now mainstream in cloud computing.
This additional software layer changed from slow simulations of hardware wires to low
overhead event interception systems. The performance of virtualized applications is no
more conditioned by the hypervisor ability to emulate the hardware at a low level. Instead,
the resource management policies of the hypervisor is now the main performance factor.

These two technologies, NUMA architectures and system virtualization have already been
studied by many works, independently. They now tend to be used together in the context
of the cloud computing. Virtualized NUMA architectures is a relatively new topic. As the
virtualization isolates the guest from the hardware, the traditional NUMA policies do not
work. The existing works follow one of these two approaches: (i) use new hypervisor spe-
cific policies relying on guest monitoring, (ii) expose the hardware details to the guest so
this last can use traditional policies. In this PhD thesis, we explore a third approach: shift-
ing the traditional NUMA policies from the guest to the hypervisor.

C
H

A
P

T
E

R

3
THE WELL-KNOWN BOTTLENECKS

In this work, we mainly focus on NUMA related overhead of virtualization. However, real
world application are generally affected by several factors, some of them are well known.
In order to highlight the NUMA effects on virtualization, we try to remove already known
performance limitation factors. As removing these other factors is not the goal of this thesis,
we only provide quick fixes, unsuitable for production uses, but convenient for our main
work.

We identify two bottlenecks affecting our applications: the virtualized I/O overhead and
virtual IPI overhead, that we successfully remove. We also study a NUMA related perfor-
mance factor, the task load balancing, which surprisingly has only a low impact on appli-
cation performance.

3.1 The Virtualized I/O Overhead

In this section, we provide some background on the I/O subsystems available in Xen. These
techniques are not specific to Xen and can be found in the other mainstream hypervisors.
The implementation design of Xen however may lead to additional costs. The causes of
these costs are also explained in this section.

Hardware Emulation

For isolation purpose, the hypervisor isolates the guest operating system from I/O devices.
Indeed, in order to allow several virtual machines to use the same device, the hypervisor
intercepts guest requests and multiplexes the accesses. Besides this aspect, even devices
dedicated to a single virtual machine must be isolated. This is typically the case for DMA
devices. These devices take a memory address to know where to read or write in memory.

49

50 CHAPTER 3. THE WELL-KNOWN BOTTLENECKS

In common architectures, the device controllers are connected to the main memory with-
out any Memory Management Unit in between them. As a result, the device controllers use
untranslated memory addresses. For this reason, the hypervisor cannot use paging tech-
niques (see Section 2.3) to isolate DMA devices. Hence, the hypervisor intercepts guest
accesses to DMA devices.

As stated in Section 2.3, a simple technique is to make the hypervisor emulate the desired
controller. When the guest sends a command to the controller, the hypervisor intercepts
the privileged I/O instructions and updates the state of the virtual controller. Eventually,
the hypervisor translates the intercepted memory address and sends a request to the actual
device controller. While this approach is straightforward, intercepting privileged instruc-
tions and maintaining a state for an emulated device are expensive.

The paravirtualization technique avoids this overhead by letting the guest to directly call
the hypervisor, asking it to perform the I/O. The hypervisor then only checks if the guest has
sufficient permissions i.e. it is allowed to use the device and the memory address it gives
is correct. If the guest request is valid, the hypervisor translates the memory address and
transmits the request to the actual device controller. These two techniques still require the
hypervisor performs a software translation of memory addresses, thus adding an overhead
to each I/O operation.

Moreover, the way Xen performs I/O operations adds an overhead. Besides the user virtual
machines, called domU, Xen maintains a privileged virtual machine called dom0 for ad-
ministration purposes. Instead of implementing its own I/O drivers, Xen uses the drivers
of the dom0 to perform I/O operations1,2. While this technique allows Xen to use existing
drivers, it also forces it to schedule the dom0 at each I/O request.

The address translation and dom0 scheduling thus adds an important overhead. On the
machine we use for our experiments, we measure it with a microbenchmark performing
a read of 4 KiB from the disk (using the POSIX O_DIRECT flag to avoid caching). This read
takes 74µs on a native Linux but 307µs in a virtual machine with the paravirtualized driver.

The I/O Memory Management Unit

The interception of I/O requests and the software translation of memory addresses neces-
sarily add overhead to I/O operations. The hypervisor however must intercept and trans-
late I/O requests to guarantee the guest isolation. Otherwise, the guest could command the
I/O controllers to write to arbitrary memory locations without any control of the hypervi-
sor. Modern hardware provides various ways to address this issue. The machine we use for
our experiment implements the I/O Memory Management Unit (IOMMU) [6]. Just like the
usual CPU MMU, the IOMMU performs an automatic translation of addresses. While the
CPU MMU, implemented in the processor, the IOMMU is located in an I/O controller3, as

1The dom0 is usually a paravirtualized Linux especially configured for this usage.
2For heavy I/O configurations, this work can be delegated to dedicated virtual machines called backend

domains
3We call I/O controller the circuitry controlling to which device the data is sent or received.

3.1. THE VIRTUALIZED I/O OVERHEAD 51

Core

MMU

Cache

Memory Controller

DRAM

IO
M

M
U

I/O
ControllerInterconnect I/O Device

I/O Device

I/O DeviceP
C

Ie
B

u
s

Figure 3.1: A topology example of a system with an IOMMU. Both MMU and IOMMU have
their own TLB they refill by reading the page table in DRAM.

illustrated in Figure 3.1. The IOMMU thus translates the memory addresses used by I/O
devices. In the remainder of this document, we use the term MMU to designate the CPU
MMU and use the specific term IOMMU otherwise.

At the guest boot time, the machine administrator can choose to dedicate a device to the
guest. In this case, the hypervisor configures the IOMMU to use a page table located in
the main memory. This page table has the same structure than a usual MMU page table4.
Moreover, the IOMMU and MMU page tables use the same structure bits i.e. address of the
next page table level and presence bit. Because of this specificity, the hypervisor can con-
figure both the MMU and the IOMMU with the same page table. Additionally, the IOMMU
and MMU use different bits to encode permissions. The MMU reads permissions on the
least significant bits and ignore the most significant bits, while the IOMMU does the con-
trary. The hypervisor can thus grant different permissions to vCPU and devices. Table 3.1
and Table 3.2 indicate the layout of MMU and IOMMU entries.

The IOMMU also uses a table to remap device initiated interrupts. This table associates
vCPU ids to pCPU ids. The hypervisor configures this table and updates it after each vCPU
migration so the devices send interrupts to the appropriate pCPUs. This automatic inter-
rupt redirection allows the guest system to implement its own interrupt policies without
any hypervisor interception. The IOMMU also implements several other features not dis-
cussed here. Also, like a regular MMU, the IOMMU uses a TLB to cache already performed
translations. The hypervisor can flush this TLB when needed, for instance after an entry
update.

An important difference between the IOMMU and the usual MMU is that the IOMMU is lo-
cated outside of the processor. As a consequence, the IOMMU cannot work synchronously
with the CPU. This becomes important in the case of a page fault. When the MMU fails to
translate an address, it triggers a fault on the CPU. The CPU then resolves the fault or kills
the faulting task, then resumes to normal execution. The IOMMU is located far from the
faulting CPU, possibly on a remote NUMA node. The communication between the IOMMU
and the CPU is thus too expensive for synchronous faults. Instead, the IOMMU registers a
page fault event in a memory buffer and notifies the CPU with an asynchronous interrupt.

4The IOMMU page table however has a configurable depth between 1 and 6 levels, while the MMU page
table has 4 levels on modern hardware

52 CHAPTER 3. THE WELL-KNOWN BOTTLENECKS

NX Available Page Address [51:32]

Page Address [31:12] Avail. G PA
T

D A

P
C

D

P
W

T

U
/S

R
/W PR

63 62 52 51 32

31 12 11 9 8 7 6 5 4 3 2 1 0

Table 3.1: Format of a page table entry for the MMU. The Page Address indicates the physi-
cal address of the next level, the PR bit indicates if this entry is valid, the other bits indicate
permissions or caching behavior.

Ign IW IR FC U Reserved Page Address [51:32]

Page Address [31:12] Next Level Ignored PR

63 62 61 60 59 58 52 51 32

31 12 11 9 8 1 0

Table 3.2: Format of a page table entry for the IOMMU. The Page Address indicates the
physical address of the next level, the PR bit indicates if the entry is valid, the Next Level
allows more flexible table topologies, the other bits indicate permissions, coherency re-
quirements or are used for ATS protocol.

The hypervisor is responsible for checking the event memory buffer on the interrupt re-
ception. During this time, the IOMMU does not stop and simply reports an I/O error to the
guest.

Intel implements an alternative technology called SR-IOV [38, 61]. An SR-IOV enabled de-
vice can emulate one or more virtual versions of itself. During the guest boot, the hypervi-
sor configures the SR-IOV device to create a new virtual configuration space. The hypervi-
sor then gives this virtual configuration space, whatever its nature, to the guest. The SR-IOV
device then handles the memory translation and guest multiplexing by itself. This technol-
ogy has more requirements than the IOMMU technology since legacy devices cannot be
used. Since this technology is not available in our experimental hardware, we focus on the
IOMMU approach.

Xen can use an available IOMMU by using the PCI-passthrough driver. The machine ad-
ministrator can configure a guest to use some devices with this driver. In this case, the
hypervisor gives the guest an exclusive access to these devices and configures the IOMMU.
The guest thus directly accesses the devices without any hypervisor interception. With this
setting, we have measured that reading a 4 KiB block takes 186 µs (compared to the 307 µs
of the paravirtualized driver and the 74 µs of a native configuration). Note that the larger
the amount of bytes read, the lower the overhead caused by virtualization. This is explained
by the fact that when the number of bytes to read increases, the time it takes to start a DMA
transfer becomes negligible compared to the time it takes to perform the transfer itself.

The PCI-passthrough driver is relatively restrictive. While the IOMMU can associate de-
vices to virtual machines at the device granularity, the PCI-passthrough driver associates

3.1. THE VIRTUALIZED I/O OVERHEAD 53

 0

 0.5

 1

 1.5

 2

 2.5

dc.B bfs cc pagerank sssp mongodb

 Xen Paravirtualized Xen IOMMU

Figure 3.2: Relative overhead of various configurations compared to the best known native
configuration for I/O applications. (lower is better)

devices to virtual machines at the PCI bus granularity. All the devices belonging to a PCI
bus must be exclusively associated to a unique guest. Fortunately, as we describe in Sec-
tion 2.2, the machine that we use has two PCI buses. In our experiment, we reserve a PCI
bus for a domu virtual machine. The dom0 uses the other PCI bus.

Evaluation of IOMMU

To evaluate the impact of virtualized I/O on real-world applications, we execute the I/O
intensive applications of our benchmark suite, namely dc.B, mongodb and the x-stream
applications: bfs, cc, pagerank and sssp, on different configurations. The configuration 1
is the best native configuration we know on Linux (see Section 5.2). The configuration 2 is
the default Xen configuration with the paravirtualized driver. The configuration 3 is the de-
fault Xen configuration with the PCI-passthrough driver. We compare the execution times
of the applications under these configurations. The overhead of configuration 2 (Xen par-
avirtualized) against configuration 1 (Linux) is the cost of the virtualization, including I/O
emulation. The overhead of configuration 3 (Xen PCI-passthrough) against the configura-
tion 1 (Linux) is the cost of the virtualization with no I/O emulation. Hence, the overhead
difference between configuration 2 and configuration 3 is the cost of the I/O emulation.

Figure 3.2 shows the results of the evaluation. We observe that all the evaluated appli-
cations in configuration 2 (Xen paravirtualized) have an overhead above 1.5 compared to
configuration 1 (Linux), with a maximum overhead of 2.5 for sssp. With the configuration
3 (Xen PCI-passthrough), we observe two behaviors. For dc.B and mongodb, the overhead
falls below 1.3, which confirms the microbenchmark result: using the IOMMU makes the
I/O operations faster for the guest. For the x-stream applications, the overhead falls below
1, down to 0.86 meaning that the virtualized version is faster that the best known native
configuration.

We have no definitive explanation of this counter-intuitive result, since the virtualized I/O
performance is not the goal of this thesis. We however propose the following hypothesis:
on a native configuration, Linux allocates DMA buffer as a contiguous region in memory,
thus from a single NUMA node. Then when the DMA controller performs the read or write,

54 CHAPTER 3. THE WELL-KNOWN BOTTLENECKS

it accesses to this single NUMA node, saturating the interconnect link. This saturation may
be detrimental nonetheless for the I/O operation itself, but also for the other access to this
node memory. On the other side, when Xen uses the IOMMU, the DMA buffer is spread
across several NUMA nodes. The load is thus balanced on several nodes, causing less satu-
ration. This difference can explain the speedup of Xen compared to Linux.

3.2 The virtualized IPI overhead

As we describe in Section 2.1, an Inter-Processor Interrupt is a special kind of interrupt. A
core asynchronously notifies another core that an event happened. The IPI by itself does
not carry any information about the event. Usually, the sending core fills a dedicated mem-
ory location with information about the event. The receiving core reads this information
when handling the IPI. In this section, we focus on how an IPI is implemented, both in a
native and in a virtualized configuration. We see how the implementation differences may
lead to performance overheads and how we remove them.

Usage of the IPI

Sending an IPI is a way for a core to asynchronously notify a remote core of an event. Oper-
ating systems use this mechanism to implement blocking synchronization on multicores.
When a thread tries to acquire a blocking lock, for instance a pthread_mutex, it checks
with an atomic operation if another thread already holds the lock5. If so, the acquiring
thread registers itself in a waiting queue associated to the lock, then the operating system
schedules the thread out. Additionally, if there is no other thread to execute on a core, the
operating system puts it in halt mode. In halt mode, the core stops to fetch new instruc-
tions. This reduces the energy consumption of this core.

When a thread releases a blocking lock, it checks if there are other threads registered in the
waiting queue of the lock. If so, it notifies the operating system to wake up one of them.
The operating system then selects the next thread to acquire the lock and on what core to
execute it. We call this core, the selected core. The selected core may be a different core
than the releasing core. In this case, the releasing core sends an IPI to inform the selected
core to schedule the selected thread. Additionally, a core in halt mode automatically wakes
up when receiving an interrupt.

The IPI mechanism is a critical operation in blocking synchronization. Indeed, every time
a thread transfers a lock ownership to another thread on a remote core, it sends an IPI.
Moreover, neither the releasing thread nor the waiting threads execute while the IPI has
not been sent and handled. The execution time of the IPI sending sequence thus has a
large impact on applications that heavily use blocking synchronization.

5The pthread glibc implementation is actually more complex, see [64].

3.2. THE VIRTUALIZED IPI OVERHEAD 55

Core

MMU

Cache

APIC

Memory Controller

DRAM

APIC
Core

IPI request

interrupt

IPI delivery

Figure 3.3: Architectural view of an IPI sending.

Implementations of IPI

On the x86 architecture, each core has an associated Advanced Programmable Interrupt
Controller (APIC). This device is responsible for delivering interrupts to the core. When
a device sends an interrupt to a core, this interrupt is received by the APIC associated to
this core. Upon an interrupt reception, the APIC decides either to wait or to deliver the
interrupt to the core i.e. making the core handle the interrupt. Typically, an APIC delivers
the interrupt to its core only if the core is not already handling a higher priority interrupt.
In this case, the interrupt is pending until the core gets ready to handle it.

The APIC is a memory mapped device. At boot, the operating system writes a physical
memory address in a dedicated register (the APIC Base Address Register[5]). Then, the
memory controller forwards all read and write requests in the specified memory address
range to the APIC6. This mapped memory range has a well known layout. The operating
system thus configures the APIC of a core my making this core writing at the appropriate
offset in this memory range.

In addition to the interrupt delivery, the APIC also enables its associated core to send inter-
rupts to other cores. A core sends an IPI by writing an IPI request in the mapped memory
area (at the Interrupt Command Register offset). The IPI request is a 64 bits message that
contains the id of the target core. An IPI request also contains properties like the priority
of the message or the delivery mode. We do not discuss these aspects of the IPI. When the
core writes the IPI request at the appropriate memory location, the local APIC sends an in-
terrupt to the destination APIC. The destination APIC eventually delivers this interrupt to
the destination core. Figure 3.3 illustrates the multicore architecture with the APIC and the
whole process of IPI sending.

In a virtualized configuration, the hypervisor does not allow the guest to directly access the
APIC. Indeed, the IPI request indicates the id of the physical target core, whereas a guest
only sees ids of vCPU. Xen provides a paravirtualized APIC interface to the guest. The guest
operating system configures a virtual APIC with hypercalls. Specifically, the guest operating
system sends IPI with a dedicated hypercall that transmits an IPI request to the hypervisor.

6The operating system informs the cache hierarchy to forward requests for this mapped memory range,
directly to the memory controller

56 CHAPTER 3. THE WELL-KNOWN BOTTLENECKS

T
im

e
(n

s)

 0

 2000

 4000

 6000

 8000

 10000

 12000

linux xen

call arg perm apic

Figure 3.4: IPI cost repartition

On modern hardware, the processor provides a feature called Advanced Virtual Interrupt
Controller. The hypervisor can use this feature to define a regular memory page as fake
APIC mapped memory region, called backing page. Every read or write performed by the
guest on the backing page is intercepted by hardware and transmitted to the hypervisor.

In the first place, we want to measure the overhead of using a virtualized version of the
APIC instead of the native one. To this end, we instrument the Linux kernel and the Xen
hypervisor. In each of them, we measure the execution time of the functions responsible
for sending an IPI. We report these measurements in the Figure 3.4. We found that the IPI
sending can be roughly partitioned in four parts. The first part is the one shared by both
the native and the virtualized version: the write in hardware mapped memory which lasts
1 µs. This first part is also the total duration of the native operation.

The virtualized version of the IPI sending has three additional steps. The first one is the
hypercall that lasts 2.5µs. The hypercall is an expensive operation, far more expensive than
a system call. Indeed, the hypercall makes the processor switching from guest mode to host
mode. During this switch, the processor saves the guest state to memory and loads the host
state. This save and load operation represents a transfer of about 800 bytes. Moreover, the
processor performs the reverse operation when switching back to guest mode, at the end
of the hypercall.

The second additional step is the hypercall argument copy, accounting for 1 µs. In Xen,
the hypervisor and the guest do not share the same memory space. As a consequence, the
Xen hypervisor cannot access directly to a guest memory region. Instead, Xen maps the
memory region that contains the hypervisor arguments to a dedicated address, copies the
arguments in a buffer, then unmaps the guest region. This whole process causes expensive
TLB misses.

Finally, the most expensive additional step is the permission check, which lasts 6 µs. In-
deed, the hypervisor guarantees that the guest operating system cannot perform illegal
operations, like sending an IPI to another guest. Additionally, if the destination vCPU is
not scheduled, Xen cannot deliver the virtual IPI. In this case, the hypervisor schedules the
destination vCPU (under certain conditions [72]) and injects the vIPI in it. Scheduling a
vCPU is also an expensive operation.

3.2. THE VIRTUALIZED IPI OVERHEAD 57

As a result, the virtualized version of IPI sending takes 10 µs more than for the native ver-
sion, making it 11 times slower. An overhead of 10 µs may seem negligible. However, as
we explain in Section 3.2 the operating system uses IPI to wake up waiting tasks. This ad-
ditional time is thus located on the critical path of the application. We ensure an overhead
of 10 µs has perceptible impact on performance with a microbenchmark. We modify the
Linux kernel to add an artificial overhead of 10 µs on the native version of IPI sending7.
With this modified version of Linux, we execute the facesim application in a native config-
uration. As we show in Section 2.4, facesim makes about 11700 voluntary context switch
per second. We found these context switches are induced by blocking synchronizations.
We observed an overhead of 50% compared to the default version of Linux. This result is a
good indication that these 10 µs impact the overall performance of an application.

The libactive library

The virtualization overhead for the IPI mechanism may affect the application performance.
Ding et al. [29, 63] already report this issue and propose to solve the problem with a complex
algorithm which can handle multiple consolidated workloads. For the sake of simplicity, we
use a more straightforward approach. We redefine the pthread synchronization primitives
of pthread_mutex and pthread_cond to spin instead of blocking. By this mean, we en-
sure the cores communicate through memory instead of sending IPI. Contrary to the IPI,
a memory access has no virtualization overhead. Thus, a spining implementation of the
pthread primitives should not suffer any performance issue in a virtualized configuration.

We implement these primitives as a shared library, called libactive. When starting the
benchmark application, we preload the libactive8. To avoid cache line contention issues,
we use the MCS algorithm [49] to implement the pthread_mutex primitives. We also use
an extension of the MCS algorithm for the pthread_cond primitives, with a special care for
the pthread_cond_broadcast performance.

Figure 3.5 shows a typical usage of pthread_cond. At line 2, the waiter thread takes a lock.
At line 3, the waiter thread checks if some condition to be satisfied. Checking if the condi-
tion is satisfied usually is a critical code protected by the lock taken at line 2. If the condition
is not satisfied, the waiter thread releases the lock and blocks at line 4. The notifier thread
at lines 10 and 11 sporadically wakes up all the threads waiting at line 4. When a waiter
thread wakes up, it acquires the lock that it previously released and checks the condition
again. When eventually the condition is satisfied, the thread do some useful work at line 5
and releases the lock at line 6.

When the notifier thread uses pthread_cond_broadcast at line 11 to wake up all the wait-
ing threads, these awaken threads compete to acquire the same lock. We observed that a
naive implementation of pthread_cond_broadcast causes a high contention on the lock.
This contention has a negative impact on the application performance.

7We use an empty while loop to this end.
8The symbols of our library override the symbols of the default pthread library at run time.

58 CHAPTER 3. THE WELL-KNOWN BOTTLENECKS

1 void waiter_thread (void) {
2 pthread_mutex_lock(&mutex) ;
3 while (condit ion_not_satisf ied ())
4 pthread_cond_wait(&cond , &mutex) ;
5 usefull_work () ;
6 pthread_mutex_unlock(&mutex) ;
7 }
8
9 void no ti f ier_thread (void) {

10 while (something_happens ())
11 pthread_cond_broadcast(&cond) ;
12 }

Figure 3.5: A typical usage of the pthread_cond primitives

We provide an efficient implementation. When a thread executes the pthread_cond_-
wait function, it inserts itself in a queue associated to the condition variable before to re-
lease the lock. When a thread executes the pthread_cond_signal (resp. pthread_cond_-
broadcast) function, this thread moves one (resp. all) thread from the condition queue to
the queue of the lock to acquire9. If the lock is not already hold, the first thread of the queue
is woken up.

We observe that the amount of context switch for facesim drops to 0 when we use the libac-
tive. This confirms that the libactive implementation effectively prevents the application
threads to block. As a side effect, our implementation is more effective, in a single ap-
plication context, than the standard implementation. Indeed, using busy waiting avoids
entering in kernel mode and performing scheduling, reducing the synchronization laten-
cies. For this reason, when we compare native and virtualized configurations, we ensure
that either both or none of the configuration use the libactive.

This solution however has some limitations. First, the libactive is unsuitable for configura-
tions with time sharing. Indeed, a thread that uses the libactive waits in a spin loop. Thus
this thread wastes CPU cycles instead of releasing the processor and then, prevents other
ready threads to execute. Second, the spining only occurs on pthread based synchroniza-
tion. Applications synchronized with other methods, like openMP based applications, or
network intensive applications still block and thus may use IPI.

Evaluation of vIPI

In this section, we evaluate the impact of virtualized IPI on real-world applications. We
found that two applications of our benchmark suite heavily use the pthread synchroniza-
tion primitives: facesim and streamcluster. We execute these two applications on different
configurations. The configuration 1 is a native configuration with the default implemen-

9Actualy, several threads may wait on the same pthread_cond but on different pthread_mutex. Our
implementation dispatches them correctly.

3.3. THE XEN LOAD BALANCER 59

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

facesim streamcluster

 default libactive

Figure 3.6: Relative overhead of various configurations compared to the best known native
configuration for pthread synchronization intensive applications.

tation of pthread. The configuration 2 is a Xen configuration with the default implemen-
tation of pthread. The configuration 3 and 4 are the same configurations that 1 and 2 but
with the libactive implementation of pthread. For fairness, all of these implementations
use the round-4K NUMA policy (we describe how we implement the round-4K policy in
Xen in Section 5.1).

We compare two overheads. The overhead of configuration 2 (Xen pthread) against con-
figuration 1 (Linux pthread) is the cost of the virtualization, including virtualized IPI. The
overhead of configuration 4 (Xen libactive) against configuration 3 (Linux libactive) is the
cost of the virtualization with no virtualized IPI. Hence, the difference between these two
overheads is the cost of the virtualized IPI.

Figure 3.6 shows the result of the evaluation. We observe that with the default implementa-
tion of pthread, the virtualized applications have an overhead above 1.4 compared to their
native version. With the libactive implementation however, the overhead drops below 1.1
for both the applications. This evaluation confirms that virtualized IPI cause an overhead
for synchronization intensive applications.

3.3 The Xen load balancer

As the number of available cores of a physical machine grows, balancing the load among
these cores becomes more and more challenging. This is true for an operating system, like
Linux, which balances the threads across available cores [46] and it seems reasonable to
think it is also true for a hypervisor, like Xen, which balances vCPUs across available pCPUs.
Writing an efficient load balancer for a hypervisor appears as even more difficult because
of the double blind decision making: the guest operating system moves threads between
vCPUs to balance the load but the hypervisor then moves the vCPUs between the pCPUs
with the possibility to cancel out the guest work.

A common practice when working on systems performance is to pin the threads or the vC-
PUs to avoid performance variations. This practice lowers the variation of execution times.
However, it also disables potential performance improvements that the load balancer pro-
vides. In this section, we evaluate how much the pining strategies applied to operating sys-
tem and hypervisor impact the application performances. To this end, we designed a tool:
the libpin, a pining library to override system and application pining decisions. First, we

60 CHAPTER 3. THE WELL-KNOWN BOTTLENECKS

describe in this section how the Linux and Xen load balancers work. Then we present sim-
ple pining strategies and how we implement them in the libpin. Finally, we evaluate these
strategies.

Completely Fair Scheduler

The Completely Fair Scheduler (CFS) is the default Linux placement policy. It balances
the load of the ready threads among all the physical cores [46]. Linux favors locality by
considering the machine as a tree, in which a node represents a level of the topology (e.g.,
machine level, NUMA level, core level). Linux balances the load by starting the balancing
algorithm at the lowest level of the hierarchy, which ensures that the threads tend to stay
on their NUMA nodes. Moreover, when a thread wakes up another thread because of a
synchronization, the awaken thread is placed on a neighbor, which ensures that threads
that synchronize often also tend to stay on the same NUMA node. When Linux executes as
a guest, it only views a flat hardware topology, and CFS can thus not enforce NUMA locality.

Credit Scheduler

The Credit Scheduler is the default Xen placement policy. It also balances the load among
all the physical cores [66]. During the virtual machine boot, Xen eagerly allocates the
needed physical memory, trying to pack this memory and the virtual machine vCPUs on
the minimal number of underloaded NUMA nodes by reserving a pCPU per vCPU [71].
This minimal number of NUMA nodes forms the home-nodes of the virtual machine. Xen
favors locality by scheduling the vCPUs on the virtual machine’s home-nodes. In case of
overloaded home-nodes, Xen schedules the vCPUs on any NUMA node.

The libpin

To measure the impact of the Linux and Xen load balancers, we define the following pining
strategies:

core each execution thread is pined to exactly one execution unit. The load balancer has
no effect on the execution thread.

node each execution thread is pined to every execution unit of a same NUMA node. The
load balancer can thus balance the load inside a NUMA node but can never move an
execution thread between two different nodes.

all each execution thread is not pined and the load balancer thus moves the execution
threads on any execution unit.

These strategies (core, node, all) may be used on native Linux, referred as the tc, tn and ta
strategies. Figure 3.7 illustrates the tc, tn and ta strategies.

3.3. THE XEN LOAD BALANCER 61

core

NUMA node

thread

tc pining

NUMA node

thread

tn pining

NUMA node NUMA node

thread

ta pining

Figure 3.7: The different thread pining strategies that we evaluate. The red arrows indicate
on what core a thread can execute for each pining strategy.

pcpu

NUMA node

vcpu

thread

vctn pining

NUMA node

thread

vntc pining

Figure 3.8: Some thread/vCPU pining strategies that we evaluate. The red arrow indicate
on what vCPU a thread can execute and on what pCPU each vCPU can execute.

We can also apply the three strategies (core, node, all) to the vCPUs, in Xen. The complete
pining strategy is thus a combination of the vCPU pining at the host level and the pining
of the threads at the guest level. As a result, there is a total of 9 strategies combinations.
We refer to these strategies combinations as vαtδ, where α is the strategy used to pin the
vCPUs and δ is the strategy used to pin the guest threads. For instance, the strategy vctn
indicates a configuration where each vCPU is pined to exactly one pCPU but each guest
thread is pined to all the vCPUs running on a same NUMA node. Figure 3.8 illustrates the
vctn and vntc strategies.

The strategy vatn has a special meaning. Indeed, with this strategy, the vCPUs are free to
move between NUMA nodes. Since the guest operating system does not see the NUMA
topology, it cannot ensure its threads are not moved between physical NUMA nodes. In-
stead, the vatn strategy means the vCPUs are free to move on any physical CPUs and the
guest threads are restricted to arbitrary disjoint groups of vCPUs having the same size than
the amount of core in a NUMA node.

62 CHAPTER 3. THE WELL-KNOWN BOTTLENECKS

Pining the vCPUs of a virtual machine is simple. The hypervisor allocates the vCPUs of
a virtual machine during the guest boot. The amount of vCPU does not change until the
virtual machine halts. Pining the threads of an application is more difficult. Some applica-
tions create new threads during the execution. This is the case for x264. Additionally, some
applications use the sched_setaffinity system call to explicitly pin their threads. This is
the case for some Mosbench applications. As a result, we cannot use simple tools such as
the Linux taskset command to apply the pining strategies we defined. We overcome this
issue by designing a more powerful mechanism named the libpin.

The libpin is, just like the libactive, a shared library that we preload when we start the
benchmark application. The libpin allows the user to define a core pining order. The user
defines a list of core, or core set, before the application starts. The libpin then intercepts
the thread creation requests (the calls to the pthread_create primitive10). Each time the
application creates a new thread, the libpin pins this new thread to one of the cores, or core
sets, of the list. The libpin assigns the cores, or core sets, in a round-robin fashion. We de-
sign the list of core, or core set, to reflect the tc, tn or ta strategy. This pining method can
cause severe load imbalance for adversary thread creation patterns. However, we found
that it performs well for the applications of our benchmark.

Additionally, the libpin intercepts the application calls to sched_setaffinity and remap
the pining request to the user defined pining. Some applications, like the Mosbench ap-
plications, define their own pining scheme. We however found that these pining schemes
relies on false assumptions. For instance, the Mosbench applications assume that cores
with consecutive ids belong to the same NUMA nodes. The applications use this assump-
tion to place communicating threads on the same NUMA node. The assumption does not
stand on the hardware we use: two cores with consecutive ids are never on the same NUMA
node. As a result, default Mosbench applications access to the memory with a poor locality.

Evaluation of pining scheme

In this section, we evaluate the impact of the load balancer decisions on the applications
performance under native and virtualized configurations. To this end, we execute several
applications from our benchmark suite with different pining strategies. Each of these ap-
plications is executed with one of the 3 native pining strategies and with one of the 9 vir-
tualized pining strategies. We try to observe if (i) some of the pining strategies perform
systematically better than the other ones and (ii) there is a correlation between the best na-
tive pining strategy and the best virtualized pining strategy. Additionally, for the virtualized
strategies, we want to know if the threads pining has the same impact on performance than
the vCPUs pining.

We report in the table 3.3 a set of 15 metrics per application. For each application, the 3
upper cells indicate the overhead of the thread pining strategies on Linux as compared to
the best Linux strategy. For instance, for ua.C, pining the threads by core (resp. by node)
is 20% (resp. 17%) slower than not pining them on Linux. The 3 cells below indicate the

10Our version of OpenMP also uses the pthread_create primitive to create tasks.

3.3. THE XEN LOAD BALANCER 63

Linux thread pining core node all

Xen
thread pining core node all
vcpu pining core node all core node all core node all

bodytrack
2% 0% 5%

21% 13% 0%
0% 0% 1% 11% 9% 0% 1% 0% 4%

facesim
0% 0% 6%
0% 2% 0%

6% 6% 0% 4% 4% 0% 2% 0% 2%

fluidanimate
0% 3% 0%
0% 0% 1%

0% 0% 0% 0% 1% 0% 1% 0% 0%

streamcluster
0% 0% 0%
0% 2% 0%

0% 1% 1% 0% 1% 1% 3% 0% 0%

swaptions
7% 0% 0%
0% 0% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0%

x264
56% 0% 0%
61% 7% 0%

0% 7% 7% 3% 0% 0% 15% 0% 3%

bt.C
0% 64% 57%
0% 0% 0%

1% 2% 0% 3% 3% 0% 0% 0% 0%

cg.C
0% 27% 0%
8% 4% 0%

0% 0% 1% 4% 5% 0% 0% 1% 0%

dc.B
0% 38% 41%
3% 0% 2%

4% 1% 0% 4% 4% 0% 2% 0% 2%

Linux thread pining core node all

Xen
thread pining core node all
vcpu pining core node all core node all core node all

ep.D
0% 1% 26%
0% 0% 0%

3% 0% 0% 1% 32% 0% 0% 0% 1%

ft.C
1% 4% 0%
0% 2% 2%

0% 2% 2% 0% 1% 0% 0% 1% 1%

lu.C
0% 13% 3%
0% 1% 0%

0% 1% 1% 1% 3% 0% 0% 0% 0%

mg.D
0% 0% 0%
1% 0% 0%

1% 1% 0% 1% 2% 0% 0% 0% 0%

sp.C
1% 2% 0%
1% 1% 0%

5% 5% 0% 6% 6% 0% 3% 1% 0%

ua.C
20% 17% 0%
46% 24% 0%

0% 0% 0% 23% 23% 0% 0% 0% 0%

kmeans
1% 0% 1%
0% 2% 2%

0% 4% 3% 0% 1% 0% 0% 0% 0%

psearchy
0% 26% 24%
0% 0% 1%

19% 0% 2% 2% 0% 4% 1% 0% 3%

memcached
16% 0% 0%
15% 0% 16%

18% 9% 0% 0% 3% 17% 1% 0% 0%

Table 3.3: Effect of pining strategies on various applications. Each slot in the array is the
overhead of the corresponding strategy compared to the best strategy. Overheads larger
than 10% are in bold.

overhead of thread pining strategies on Xen for the best possible vCPU pining strategy as
compared to the best Xen strategy. For instance, for bodytrack, pining the threads by core
(resp. by node) is 21% (resp. 13%) slower than not pining them on Xen. The 3 groups of
3 cells below indicate for each Xen thread pining strategy, the overhead of vCPU pining
strategies as compared to the best vCPU pining strategy for this thread pining strategy on
Xen. For instance, for bodytrack in Xen with the threads pined by node, pining the vCPUs
by core (resp. by node) is 11% (resp. 9%) slower than not pining them. The percentages are
made proportionally to the best possible pining strategy for the considered system (Linux
or Xen). The values below 10% are in light gray.

The first observation we make is that for a large amount of application, the pining strategy
has no impact: over the 18 evaluated applications, only 9 of them under Linux and 6 of
them under Xen have a performance gap higher than 10% between the different strategies.
As a second observation, we notice that if the pining strategy has an impact in Linux, it does
not necessarily has an impact in Xen. This is the case for bt.C, cg.C, dc.B and lu.C. Finally as
a third observation, we see that when the thread pining strategy is important in both Linux
and Xen, the best pining strategy is the same. This is visible for the applications x264, ua.C
and memcached.

This evaluation suggests that the pining strategy has only a marginal impact on the ap-
plications performance, always below 64%. When the pining strategy has an impact, very
few correlation can be made between the effects on Linux and Xen. Since the overhead
variation differs between Linux and Xen in 26% at maximum when using the tc and vctc
strategies, which pin every execution thread to exactly one execution unit, we use these

64 CHAPTER 3. THE WELL-KNOWN BOTTLENECKS

strategies in the next evaluations.

3.4 Conclusion

This chapter describes three possible causes of performance degradation for applications
executed in a virtualized environment: the overhead of virtualized I/O, virtualized IPI and
the interactions between the guest and hypervisor load balancers. We show that the first
two effectively decrease the application performances and we thus provide a fix for each of
them: we delegate the direct control of I/O devices to the guest to remove the virtualized
I/O and their overhead, and we synchronize guest threads without using IPI to remove the
cost of virtualized IPI. We also show that if the load balancers interactions have an impact
on application performance, this impact is limited and there seems to be no correlation
between the best native and the best virtualized strategy. We thus choose to cancel every
load balancer effects by pining every vCPU and every thread manually.

Previous works [65, 43, 12] tackles other problems related to virtualization. These problems
are however not related to the NUMA topology and only occurs when two virtual machines
or more are collocated on the same physical machine. Since this work focus on NUMA
related effects on virtualization, we mainly evaluate the application performances by exe-
cuting either alone on a virtual machine executed exclusively on the physical host. In com-
bination with the fixes we describe in this chapter, this removes most of the virtualization
overhead causes, only letting NUMA related overhead.

C
H

A
P

T
E

R

4
THE NUMA BOTTLENECK

In Chapter 3, we describe some well-known virtualization bottlenecks. We also show how,
with simple fixes, we improve the performance of virtualized applications. The fixes we de-
scribe already remove a large portion of the virtualization overhead: the I/O intensive ap-
plications overhead falls below 1.3 and the IPI intensive applications (based on pthread)
overhead falls below 1.1. We can wonder if the NUMA management is a bottleneck in vir-
tualized configurations.

In this Chapter, we evaluate the impact of the NUMA management on native and virtu-
alized configurations. In a first part, we show how the NUMA policies impact the appli-
cations performance in native configurations. This first part helps to understand (i) how
much improvement we can expect from an appropriate NUMA management in virtualized
configurations and (ii) how to choose an efficient NUMA policy for a given application. In
a second part, what NUMA policy the Xen hypervisor provides and how it affect the appli-
cations performance.

4.1 NUMA policies under study

This section evaluates the performance impacts of the NUMA policies presented in Sec-
tion 2.2, namely the first-touch policy, the round-4K policy and the Carrefour policy. To
this end, we measure the execution time of each of the 29 applications of our benchmark,
presented in Section 2.4 on a Linux kernel with the different policies. We configure the ap-
plications to use all of the 48 available CPUs. We also measure various metrics with hard-
ware counters to understand how these policies affect the applications performances.

65

66 CHAPTER 4. THE NUMA BOTTLENECK

R
el

at
iv

e
im

p
ro

ve
m

en
t

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

bodytrack
facesim
fluidanim

ate
stream

cluster

sw
aptions

x264
bt.C
cg.C
dc.B
ep.D
ft.C
lu.C
m

g.D
sp.C
ua.C
w

c
w

r
w

rm
em

pca
km

eans
psearchy
m

em
cached

belief
bfs
cc pagerank
sssp
cassandra
m

ongodb
first-touch

first-touch/Carrefour
 round-4k
round-4k/Carrefour

Figure 4.1: Improvement of the completion time of various NUMA policies in Linux on
AMD48 with 48 threads relative to the first-touch policy (higher is better).

Comparison of NUMA policies effects

In the following experiment, we execute each application on Linux with four policies com-
binations: first-touch, round-4K and Carrefour associated with either first-touch or round-
4K (named first-touch/Carrefour and round-4K/Carrefour). It is possible to associate Car-
refour with one of the other policies because it is a dynamic policy: given an initial memory
placement, provided by first-touch or round-4K, it migrates pages to improve the perfor-
mance. In our setting, we use the libactive synchronization (see Section 3.2) and the tc
pining strategy (see Section 3.3).

Figure 4.1 reports for each application, the execution time under a given NUMA policy as
compared to the execution time under the first-touch policy. First, we observe that the
NUMA policy has a huge impact on performance for many applications. Indeed, 17 of the
29 applications are improved by more than 25% when we compare the best against the
worst NUMA policy (12 applications by more than 50% and 5 by more than 100%). We also
observe that each possible combination is for some applications the one yielding the best
possible performance (e.g. first-touch for cg.C, first-touch/Carrefour for bt.C, round-4K
for pca or round-4K/Carrefour for sp.C).

Based on these experiment results, we make an assertion: since the best NUMA policy de-
pends on the application, a NUMA system should provide several NUMA policies. There
should be enough NUMA policies that, for each application, at least one policy is efficient
with this application. This assertion leads to ask how to choose the NUMA policy to use for
a given application in order to bring the best performance.

The NUMA policy selection metric

In the following experiment, we show how a NUMA policy affects the application perfor-
mance. More specifically, we show how the NUMA policies modify the way the applications

4.1. NUMA POLICIES UNDER STUDY 67

use the underlying hardware. To this end, we execute the applications of our benchmark
in a native configuration with either a first-touch policy or a round-4K policy. We measure
two metrics with hardware performance counters: the load imbalance and the intercon-
nect load. The load imbalance is defined as the relative standard deviation around the
average number of accesses per node. The interconnect load is defined as the average of
the percentage of the bandwidth used on the most loaded interconnect links during each
second.1 We do not measure these metrics with Carrefour because Carrefour already uses
all the available performance counters.

Table 4.1 reports the two metrics measured with the first-touch and the round-4K policies.
We classify the applications in three groups, indicated in the last column of Table 4.1. The
11 “low” applications exhibit a low memory access imbalance of less than 85% with the
first-touch policy in Linux. As presented in Section 2.2, for these applications, the first-
touch policy is perfect, because each thread tends to mostly access data structures that it
has allocated. Carrefour tends to degrade their performance. Technically, a page mainly
accessed from its node may be temporarily heavily accessed by remote nodes. In this case,
Carrefour observes a temporary interconnect traffic burst and migrates the page to another
node. As the remote accesses are only temporary, migrating the pages does not improve
performance. The migration has, however, the consequence of degrading the memory ac-
cess locality for the remainder of the run. The round-4K policy also degrades performance
because it decreases memory access locality: the round-4K policy roughly multiplies by 4
the interconnect load for 7 of the 11 applications (from roughly 10% to 40%, see the column
Interconnect). As a result, we have measured that the first-touch policy is only 1% slower
in average than the best NUMA policy for these applications, with a worst case of 10% for
ft.C.

At the opposite, the 13 “high” applications exhibit a high memory access imbalance of more
than 130% with the first-touch policy in Linux. As presented in Section 2.2, a single thread
tends to allocate the memory for the other threads. The round-4K policy prevents the large
imbalance of the first-touch policy (see columns imbalance in Table 4.1). Carrefour tends to
improve their performance because it improves their memory access locality (the intercon-
nect load is large for 5 applications). As a result, we have measured that the round-4K/Car-
refour policy is only 2% slower in average than the best NUMA policy for these applications,
with a worst case of 7% for pca.

Finally, the 5 remaining “moderate” applications exhibit a moderate memory access imbal-
ance between 85% and 130% with the first-touch policy in Linux. For these applications,
the first-touch policy does not perfectly balance the load on all the nodes, but ensures a
satisfactory memory access locality. Using the round-4K policy degrades performance be-
cause this policy destroys the memory access locality. The Carrefour policy is useful for

1The hardware counters actually give a metric which varies between 50% when the link is idle and 80%
when the link is saturated. We report only the variation of the bandwidth relative to this 30% amplitude. When
the machine is idle, the hardware uses 50% of the bandwidth to send hardware related commands such as
link synchronization commands. Those commands can be piggy-backed on software related packets. When
a link saturates, it reaches only 80% of bandwidth because each remote memory request exclusively locks the
link while accessing remote components such as the remote memory controller.

68 CHAPTER 4. THE NUMA BOTTLENECK

Load imbalance Interconnect load Imbalance level
First-touch Round-4k First-touch Round-4k with first-touch

bodytrack 135% 48% 9% 8% high
facesim 253% 27% 39% 16% high

fluidanimate 65% 16% 18% 16% low
streamcluster 219% 45% 31% 18% high

swaptions 175% 180% 4% 5% high
x264 84% 28% 17% 13% low
bt.C 89% 8% 51% 35% moderate
cg.C 7% 5% 11% 46% low
dc.B 45% 19% 10% 22% low
ep.D 263% 116% 48% 9% high
ft.C 60% 19% 17% 46% low
lu.C 47% 30% 18% 41% low

mg.D 8% 1% 12% 51% low
sp.C 113% 4% 43% 58% moderate
ua.C 5% 7% 14% 37% low
wc 101% 41% 18% 17% moderate
wr 110% 57% 18% 18% moderate

wrmem 135% 102% 10% 11% high
pca 235% 14% 52% 41% high

kmeans 251% 26% 61% 42% high
psearchy 19% 8% 6% 46% low

memcached 85% 74% 13% 12% low
belief 206% 80% 19% 10% high

bfs 190% 24% 17% 12% high
cc 185% 31% 17% 11% high

pagerank 183% 23% 17% 11% high
sssp 193% 10% 17% 11% high

cassandra 65% 50% 14% 14% low
mongodb 130% 95% 16% 14% moderate

Table 4.1: Effect of the static NUMA policies in Linux on AMD48 with 48 threads

4.2. CURRENT HYPERVISOR NUMA MANAGEMENT 69

these applications, because it better balances the load and slightly improves the memory
access locality. As a result, we have measured that the first-touch/Carrefour policy is only
2% slower in average than the best NUMA policy for these applications, with a worst case
of 10% for sp.C.

To summarize this analysis, we confirm that all the studied NUMA policies are useful. This
is explained by the fact that different sets of applications have different memory behaviors.
More precisely, the round-4K/Carrefour policy is required for the “high” applications, the
first-touch/Carrefour policy is required for the “moderate” applications, and the first-touch
policy is required for the “low” applications.

This classification predicts, with a good accuracy, what is the best suited NUMA policy for a
given application. However, classifying an application requires to measure this application
behavior by executing it a first time. Moreover, the classification is relative to the hardware
used for the metric measurement. This implies that the application must be run at least
once with the first-touch policy to predict which policy to use for each hardware the ap-
plication is deployed on. A good approach would be to provide an automatic classifier to
the system administrator. The administrator is then able to classify each deployed appli-
cation. Based on this classification, the system administrator chooses what policy to use
when launching the application.

4.2 Current hypervisor NUMA management

In this section, we study the NUMA effects on virtualization. More precisely, we describe
the Xen NUMA management policy, that we call round-1G, and explain the reason behind
its design. We then explain what effects this policy has on the virtual machine memory
layout and on the guest application memory access patterns. Finally, we evaluate how this
Xen default NUMA policy affects the virtualized application performance.

The default round-1G policy

Xen uses a default NUMA policy, that we call the round-1G policy. When Xen creates a new
virtual machine, it eagerly allocates the associated machine memory. Xen tries to pack the
memory and the vCPUs of the new virtual machine on the minimal number of underloaded
NUMA nodes by reserving a pCPU per vCPU. These NUMA nodes are called the home-
nodes. If the system administrator explicitly pins a vCPU on a NUMA node, this NUMA
node is included in the home-nodes. In our experiment, we always pin the vCPUs. As a
consequence, we explicitly define the home-nodes of the virtual machines.

Xen favors locality by allocating the memory of a virtual machine from its home-nodes. It
first tries, to allocate the memory by regions of 1 GiB with a round-robin algorithm from the
home-nodes. In case of fragmentation or if the virtual machine needs less than 1 GiB (resp.
2 MiB), Xen allocates the memory by regions of 2 MiB (resp. 4 KiB). Because of the BIOS and
I/O memory regions, the first and last GiBs of a virtual machine are always fragmented.

70 CHAPTER 4. THE NUMA BOTTLENECK

1 GiB 1 GiB 1 GiB 1 GiB 1 GiB 1 GiB

alignement split

pseudo BIOS

alignement split

regular chunks

alignement split

Linux code

application memory

daemons memory

∼ physical space allocation order

4 KiB

2 MiB

Figure 4.2: Typical physical space allocated with the default policy of Xen.

With this allocation strategy, the physical memory allocated for each virtual machine often
follows the pattern illustrated in Figure 4.2. The first and last GiB of memory are fragmented
in small regions of 4 KiB and some larger regions of 2 MiB, while the space in between is
composed of 1 GiB regions evenly spread across the home nodes of the virtual machine.
Because Xen allocates the regions with a round-robin algorithm, each consecutive region
on Figure 4.2 is allocated on a different node.

Huge pages and splinterring

Allocating the virtual machine memory by regions of 1 GiB and 2 MiB instead of a page
size is not a trivial choice. When the software accesses to the memory, the MMU translates
the virtual address into a machine address. To this end, the MMU reads the page tables
configured by the hypervisor and by the operating system. Reading a page table is a costly
operation. To reduce the translation cost, the MMU uses a dedicated cache, the TLB. The
TLB stores a limited amount of already translated page addresses.

Usually, the size of a memory page is 4 KiB. However, on modern processors, the operating
system and the hypervisor can configure a page table to use larger pages of 2 MiB or 1 GiB,
called huge pages. A TLB entry stores the translation of a page, whatever the size of the
page. An operating system or a hypervisor usually maps large continuous memory regions
with huge pages to reduce the number of used TLB entry. Using less TLB entries reduces
the TLB miss rate and increases the application performance.

When the hypervisor enables the Hardware Assisted Paging, the TLB stores the translation
from virtual address to machine address. The TLB does not store any intermediate transla-
tion to, or from, physical address. If the guest translation (from virtual address to physical
address) and the host translation (from physical address to machine address) use different
page sizes, a page splinterring occurs. In case of page splinterring, the smallest page size
is used for the translation and the MMU adds an entry of this small page size in the TLB.
Thus if the guest uses huge pages but the hypervisor only uses default 4 KiB pages, then the

4.2. CURRENT HYPERVISOR NUMA MANAGEMENT 71

R
el

at
iv

e
ov

er
h

ea
d

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

bodytrack
facesim
fluidanim

ate
stream

cluster

sw
aptions

x264
bt.C
cg.C
dc.B
ep.D
ft.C
lu.C
m

g.D
sp.C
ua.C
w

c

w
r

w
rm

em
pca
km

eans
psearchy
m

em
cached

belief
bfs
cc pagerank
sssp
cassandra
m

ongodb
Linux Xen

Figure 4.3: Relative overhead of Linux and Xen as compared to LinuxNUMA (lower is bet-
ter).

MMU uses only 4 KiB entries: the host cancels the guest huge page optimization. For this
reason, Xen tries to use 1 GiB huge pages. This allows the guest to use huge pages.

Evaluation of the default policy

In the following evaluation, we show the impact of the Xen default NUMA policy on the
application performances. To this end, we execute the 29 applications of our benchmark
in three configurations: LinuxNUMA is a native execution on Linux with the best NUMA
policy we know for this application (see Section 4.1). Linux is a native execution on Linux
with the default NUMA policy (i.e. first-touch). Xen is a virtualized execution on Linux/Xen
with the default NUMA policy of Xen (i.e. round-1G). The Xen virtual machine has 48 vC-
PUs, each vCPU is pined to one pCPU. We configure the applications to use the 48 avail-
able CPUs. For these configurations, we enable the usage of libactive (see Section 3.2) for
facesim and streamcluster and for the Xen configuration, we use the pci-passthrough
driver (see Section 3.1) for dc.B, bfs, cc, pagerank, sssp and mongodb. We compare the
overhead of Linux against LinuxNUMA and the overhead of Xen against LinuxNUMA. Since
we remove the well-known bottlenecks, the overhead difference between the Linux and the
Xen configurations is probably a consequence of their NUMA management (we confirm
this hypothesis in Chapter 5).

The Figure 4.3 shows the relative overhead of each application with the configurations
Linux and Xen compared to LinuxNUMA. The first observation we can make is that the
Xen configuration has a negative impact on application performance: 17 of the 29 applica-
tions are slowed down by more than 50%, 12 of them by more than 100% and this slowdown
reaches 700% for cg.C. Since we removed the already known bottlenecks (see Chapter 3),
we highly suspect that this negative impact comes from the default NUMA policy of Xen.

Additionally, we observe that the suspected impact of the NUMA policy is higher on Xen
than on Linux: only 7 applications on Linux are slowed down by more than 50% with a

72 CHAPTER 4. THE NUMA BOTTLENECK

maximum of 250% for bt.C. Moreover, the applications slowed down on Linux are not the
ones slowed down on Xen. As we saw on Section 4.1, the impact of the NUMA policy on an
application largely depends on the memory access pattern of this application and different
NUMA policies bring better performance applied to different memory access patterns.

As explained above in Section 4.2, the default NUMA policy of Xen is to allocate chunks of 1
GiB in round-robin over the NUMA nodes. While this allocation pattern enables the usage
of huge pages, it has a significant impact on both the access locality and on the load imbal-
ance. On the first side the applications have a poor locality. Linux allocates the application
memory without any knowledge of the NUMA topology. As a consequence, the allocated
memory is unlikely on the same NUMA node than the accessor thread. On the other side,
the memory load is imbalanced. Indeed, the Linux guest sees a UMA hardware and tends
to allocate memory in continuous regions. As a result, the allocated memory is likely to
be on a unique 1 GiB region on a single NUMA node for applications with small memory
footprints. This explains why the default Xen NUMA policy has such a negative impact on
application performances, and especially on applications of the low group (see Table 4.1)
since they nonetheless experiment bad data locality that we know is an important factor,
but also bad memory balance. We can confirm this by observing that the 7 applications
with an overhead on Xen higher than 200% are cg.C, memcached, lu.C, ft.C, sp.C, ua.C
and mg.D, which are applications of the low and moderate groups.

4.3 Conclusion

This Chapter shows the impact of NUMA memory management strategies on applications
performance. In a first part, we show that, on a 48 cores NUMA hardware and a large set of
applications, the choice of an appropriate NUMA memory management policy on a native
configuration improve the performance up to 250%. We also confirm that, in some cases,
Carrefour [25] improves the applications performance as compared with standard Linux
policies described in Section 2.2. In this first part, we finally propose a metric to choose
what is the best policy for a given application on a given hardware. In a second part, we
describe the default NUMA management policy of the Xen hypervisor. Along with this de-
scription, we detail what effects of this policy on the virtual machine memory layout. We
then show, with an evaluation of this policy compared to native execution times, that the
virtualization causes an important performance overhead, up to 700%. We explain that is
overhead is probably a consequence of the virtual machine memory layout, caused by the
Xen NUMA policy.

C
H

A
P

T
E

R

5
VIRTUALIZATION OF NUMA

ARCHITECTURES

In Chapter 4, we show the impact of NUMA policies on the native application performance.
Each application has a specific memory access pattern. Each NUMA policy better fits with
a specific access pattern. Choosing an appropriate NUMA policy for a given application is
thus essential to bring good performance. We also investigate the effects of virtualization
on a NUMA hardware. We show that, in a virtualized configuration where we remove the
well-known virtualization bottlenecks (see Chapter 3), using a large number of CPU on a
NUMA hardware leads to a huge performance overhead compared to a native execution.
We suspect that the NUMA policy of the Xen hypervisor is the cause of this overhead.

In this chapter, we show how to bring good application performance on a virtualized NUMA
hardware. We assume that the overhead we observe in Section 4.2 between native and vir-
tualized configuration comes from the Xen round-1G NUMA policy. We also know that one
of the native policies, first-touch, round-4K or Carrefour, enables good application perfor-
mance. Our goal is thus to use these native policies in virtualized configurations. Using
these policies directly in the guest system is not possible. Indeed, as we explain in Sec-
tion 2.3, the virtualization isolates the guest system from the hardware. The Linux guest
does not see the NUMA topology and cannot use NUMA policies. We see two methods to
solve this problem: (i) modify the hypervisor to expose the NUMA topology to the guest or
(ii) implement NUMA policies in the hypervisor, which has access to the NUMA topology.

In this thesis, we choose to implement NUMA policies in the hypervisor. We start this chap-
ter by explaining why. Then, we explain how we implement the NUMA policies in the Xen
hypervisor. Finally, we evaluate these policies. In this evaluation, we show that we improve
the virtualized application performance up to 500% compared to the round-1G policy. Ad-
ditionally, we show that using an efficient NUMA policy reduces the virtualization overhead

73

74 CHAPTER 5. VIRTUALIZATION OF NUMA ARCHITECTURES

below 50% for most of the applications. This last observation confirms that the round-1G
NUMA policy is the cause of the overhead observed in Section 4.2.

5.1 Improved hypervisor NUMA management

In this chapter, we provide a way to use the native policies, first-touch, round-4K and Car-
refour, in virtualized configurations. One could be tempted to delegate this task to the guest
operating system, as it already implements these policies. On a classical hypervisor this is
not possible: the hypervisor hides the actual NUMA topology to the guest, showing instead
a flat UMA topology. With no information about how the vCPUs are clustered on the NUMA
nodes, and how the memory is spread across the NUMA nodes, the guest operating system
cannot take any useful NUMA related decision.

Some hypervisors, like the Amazon EC2 modified Xen hypervisor, solve this problem by
exposing the NUMA topology to their guests. However, we see many drawbacks to this ap-
proach. First, exposing the hardware creates a security issue. A malicious guest could use
the hardware information to select specific attacks exploiting known flaws of this hardware.
Second, exposing the NUMA topology may prevent virtual machine optimizations. Several
works [66, 70] migrate the vCPUs between the pCPUs to balance the load. Such a migration
would result, from the guest point of view, in a physical topology modification. As much as
we know, none of the mainstream operating systems is able to handle such online topology
modifications. Third, a knowledge of the NUMA topology is necessary but not sufficient to
take efficient NUMA placement decisions. A knowledge of the resource usage is also nec-
essary to prevent contention. Typically, two virtual machines that see the NUMA topology
could allocate hot data on the same node. For each of the guest systems, this would be an
efficient decision. However, from a global point of view, the total load on the allocation
NUMA node could saturate the memory controller, inducing a performance degradation
for the two virtual machines.

Instead of exposing the NUMA topology to the guest, we choose to implement the NUMA
policies in the hypervisor. We consider that the hypervisor uses a single NUMA policy for
a whole virtual machine. Indeed, in the cloud computing, clients often use one virtual ma-
chine per task. A single virtual machine thus executes a unique application in addition to
system daemons. Additionally, as we state in Section 4.1, the NUMA policy to use varies
from an application to another. For this reason, the hypervisor should allow the guest sys-
tem administrator to choose what NUMA policy to use.

In the following sections, we explain how we implement each of the native NUMA policies
in the Xen hypervisor. For the first-touch and Carrefour policies, we encounter limitations.
We describe these limitations, how they affect our implementation and we explain how
future works could overcome them. We also present an interface allowing the guest admin-
istrator to choose the NUMA policy to use from inside the virtual machine.

5.1. IMPROVED HYPERVISOR NUMA MANAGEMENT 75

The Xen implementation of round-4K

Just like the Xen default round-1G policy, the round-4K policy allocates memory chunks in
round-robin among the possible NUMA nodes while there is available memory on them.
Unless the Xen default policy which allocates chunks with the largest possible size, the
round-4K policy systematically allocates chunks as small as possible. As explained in Sec-
tion 2.2, this difference ensures that, under the round-4K policy, application memory is as
spread as it could be among the NUMA nodes of the system, and thus, the memory load is
balanced among the memory controllers.

Implementing the round-4K policy in Xen is straightforward. We reuse the round-1G al-
location algorithm and disable allocation of memory regions larger than 4 KiB. Since Xen
allocates its memory eagerly, at the virtual machine boot, the guest administrator must
choose to use this policy before to boot the virtual machine. This is not a problem in prac-
tice since, as we show in Section 5.2, the round-4K policy outperforms the round-1G policy
for all the applications we evaluate. We thus set the round-4K allocation policy as the new
default policy of Xen. Also, there is no technical limitation that prevent to switch from a
round-4K memory layout to a round-1G memory layout after the virtual machine boot.
Indeed, the hypervisor is able to transparently migrate pages from a machine address to
another one.

The Xen implementation of Carrefour

Section 2.2 describes the principles of the Carrefour policy. In this section, we briefly re-
mind these principles. We also describe the native implementation and we explain how we
adapt this implementation to the Xen hypervisor.

Carrefour is a dynamic policy that detects memory load imbalance or bad access locality
and migrates memory pages while the application is running. To this end, Carrefour uses
two sets of counters: the Performance Monitoring Counters (PMC) and the sampling coun-
ters (IBS1). The PMC are cheap to use and Carrefour uses them to decide if the application
intensively uses the memory. If this is not the case, Carrefour remains idle. If the appli-
cation uses the memory, Carrefour uses the IBS counters to identify the hot pages of the
application and what cores access them. Based on this information, Carrefour either (i)
dispatches the hot pages on the available NUMA nodes to balance the memory load, (ii)
migrates the pages on the same NUMA node than the accessor cores if they are all on the
same node, (iii) replicates the pages accessed in read mostly mode on the NUMA nodes.

Figure 5.1 illustrates the software architecture of Carrefour in a native configuration. Car-
refour is composed of two distinct parts: the userland component and the privileged com-
ponent. The userland component uses the PMC to make a coarse measure of the machine
state. A PMC is a pair of hardware registers: a control register and a count register. Carrefour
configures the type of event to count (accesses to the memory, see Section 2.2) by writing

1IBS stands for Instruction Based Sampling and is the AMD version of sampling counters. Intel provides
Precise Event Based Sampling counters. We explain in Section 5.1 why we only discuss AMD counters.

76 CHAPTER 5. VIRTUALIZATION OF NUMA ARCHITECTURES

Userland Comp.

PMC

Kernel Comp.

IBS

Page Table

ApplicationUserland

Kernel

Hardware

collect global
metrics

enable/disable

collect page metrics

migrate
pages

define
memory
layout

Figure 5.1: Architecture of the native version of Carrefour. The modules filled with gray are
the Carrefour components.

on the control register. Each time the event occurs, the count register is incremented. The
two registers are only available from kernel mode. The userland module of Carrefour uses
a system call to access them. In our Xen implementation, the userland module executes in
the dom0 (i.e. the privileged administration guest) and accesses the PMC through a new
hypercall we add to Xen.

Using correctly the PMC is not trivial. There is only a limited amount of PMC, typically
there are only four PMC per core on our experimental machine. Moreover, some events
cannot be counted simultaneously by more than one core. This is typically the case for
the amount of access to shared hardware components. Finally, some events are discarded
when the counting core is halted2. In a native configuration, the operating system handles
these aspects and provides a simple abstract view of the counters to the userland Carrefour
component. Xen has no such mechanism. We thus choose to provide raw access to them
through hypercalls. We modify the Carrefour userland component to carefully use the per-
formance counters assuming an exclusive control on the PMC.

The second component of Carrefour executes in the most privileged mode of the machine:
in kernel mode for native configurations and in host mode for virtualized configurations.
This second component uses the IBS counters and performs the page migrations. There
is one IBS counter per core, composed of several control registers, one countdown reg-
ister and several information registers. Carrefour configures the type of event to sample
(any write on main memory) by writing the control registers. Carrefour also configures the
sampling frequency by setting an initial value to the countdown register. Each time the
sampled event occurs, the countdown registers is decremented. When the countdown reg-

2When the only load of the machine is a single application with synchronized threads, the cores go to halt
mode quite often.

5.1. IMPROVED HYPERVISOR NUMA MANAGEMENT 77

R/WA

Application X

Page table of
Application X

n
o

d
e

A
n

o
d

e
B

virtual
page

physical page

read: OKa
write: OK

RO/A

Application X

Page table of
Application X

n
o

d
e

A
n

o
d

e
B

virtual
page

old
page

new
page

read: OKa
write: wait

memcpy

R/WA

Application X

Page table of
Application X

n
o

d
e

A
n

o
d

e
B

virtual
page

old page

new
page

read: OK
write: OK

Figure 5.2: Transparent page migration. The leftmost picture is the initial state with the
virtual page pointing on the source node (node A). The middle picture is the transitory
state with the virtual page pointing in read-only on the old page while the system copies
the page to the new node. The rightmost picture is the final state where with virtual page
pointing on the target node (node B).

ister reaches zero, the processor fills the information registers. In our case, the information
registers contain the virtual addresses of the last memory access. The processor also trig-
gers an exception, handled by the system. On the native Carrefour, Linux creates a tuple
containing (i) the sampled virtual address, (ii) the current process id and (iii) the id of the
current core, which is the accessing core. The tuple is then stored for future use.

The privileged module of Carrefour periodically computes the set of hot pages: the pages
with more than two associated tuples. The tuples also indicate which core access the pages.
Based on this information, Carrefour decides which page to migrate or replicate as we ex-
plain in Section 2.2. To migrate a page, the native version of Carrefour removes the write
permission on the page. Carrefour then copies the page on the target NUMA node. If the
application attempts to write on the page during the copy, the processor triggers a page
fault and the application blocks. When the copy is done, Carrefour updates the page ta-
ble so the virtual address of the page is now associated to the new physical address, on the
target NUMA node. Carrefour also gives back the normal permission to the page, so the
blocked application threads continue. Figure 5.2 illustrates the whole page migration pro-
cess. We can notice that Carrefour needs the process id and the virtual address of the page
to modify it in the page table.

78 CHAPTER 5. VIRTUALIZATION OF NUMA ARCHITECTURES

Userland Comp.

PMC

Hyperv. Comp.

IBS

Host Page Table

Application

Guest Page Table

dom0 domU

Userland

Kernel

Hypervisor

Hardware

collect global
metrics

enable/disable

collect page metrics

migrate
pages

translate
virtual address

define
memory
layout

define
memory
layout

Figure 5.3: Architecture of the virtualized version of Carrefour. The modules filled with gray
are the Carrefour components. The links in red are the modified or added links compared
to the native version.

On the virtualized Carrefour, an additional step is required during sampling. When the
processor triggers a sampling exception, the hypervisor sees the current virtual machine id
instead of the current process id. Also, the hypervisor still sees the sampled virtual address.
However, a virtual machine id and a virtual address are not sufficient to identify a page:
several processes of the same virtual machine may use the same virtual address. Addition-
ally, the hypervisor migrates pages by updating its own page tables (see Section 2.3). The
hypervisor needs the virtual machine id and the physical address of the page to modify the
page tables. For this reason, the virtualized Carrefour must translate the sampled virtual
address into its physical address. To this end, Carrefour has to walk the guest page table.
We are sure that the guest system respect the page table structure because it is intended to
be read by the hardware. However, in a multicore context, nothing prevents the guest to
modify the page table while the hypervisor is walking it.

A safe approach to translate virtual addresses would be to stop the entire virtual machine
during the walk, or to write protect the page table as the hypervisor reads it. These ap-
proaches are slow and difficult to implement. Instead, we observe that the Carrefour priv-
ileged component relies on statistics. Indeed, nothing ensures that a page having a lot of

5.1. IMPROVED HYPERVISOR NUMA MANAGEMENT 79

associated tuple is effectively a hot page. Carrefour may then compute a spurious vision
of memory accesses, leading to bad decisions. However, with a good probability, the Car-
refour vision of memory accesses is valid when the amount of sampled access is high. In
the same way, a virtual address translation may fail because of concurrent modification by
the guest. With a good probability, however, Carrefour successfully translates virtual ad-
dresses to physical addresses without synchronizing with the guest. Figure 5.3 illustrates
the software architecture of Carrefour in a virtualized configuration.

Limitations of PEBS with virtualization

In Section 5.1, we only discuss the IBS counters, which is the AMD implementation of sam-
pling counters. Intel provides its own implementation, named PEBS. The native version of
Carrefour can use PEBS, however, the virtualized version of Carrefour cannot. Actually, the
PEBS counters are unusable when the Hardware Assisted Paging is enabled. The reason is
that PEBS stores the sampled information in memory instead of dedicated registers. The
hypervisor must configure the PEBS storage address by writing its virtual address in a dedi-
cated register. However, when the Hardware Assisted Paging is enabled, the hypervisor has
no control over the mapping of virtual addresses. Instead, the guest system chooses to allo-
cate virtual space to itself or to its applications. If the processor samples an event while the
guest is already using the PEBS virtual address, then the processor overwrite the guest data.
In the best case, this causes a guest system crash. In the worst case, this silently corrupts a
guest application memory.

Several methods could be used to circumvent this problem. The first one would be to write
protect the part of the guest page tables that maps the virtual address of the PEBS buffer.
The hypervisor could then intercept the guest allocation of the PEBS virtual address and
reconfigure the PEBS to use another virtual address. Another way would be to use paravir-
tualization. The hypervisor would reserve virtual addresses in the guest system and use
these addresses for the PEBS storage area. As these two techniques would require complex
engineering, we choose to not implement them and to focus on the AMD hardware.

The Xen implementation of first-touch

As we explain in Section 2.2, the first-touch policy provides a good access locality as long as
each application thread uses mostly the memory zones it allocates. As shown in Figure 4.1,
many applications reach good performance with this allocation policy. In a native configu-
ration, Linux allocates the physical memory lazily. When the application asks for memory,
Linux allocates a virtual address range but does not map it on any physical memory. Later,
when the application accesses these virtual addresses, the MMU triggers a page fault. Only
then, Linux allocates physical memory from the NUMA node performing the access and
maps the faulting virtual address on it.

This first-touch implementation is not possible for a hypervisor. On one side, it is a usual
operation for an application to ask and release memory. On the other side, there is no
concept of “asking memory” or “releasing memory” for a guest operating system. Indeed,

80 CHAPTER 5. VIRTUALIZATION OF NUMA ARCHITECTURES

Virtual page V0 Virtual page V1

Physical page P0

Machine page M0

Old address space New address space

Old mapping New mapping

Figure 5.4: Issue to implement first-touch
in Xen.

Virtual page V0 Virtual page V1

Physical page P0

Machine page M0 Machine page M1

Old address space New address space

Old mapping New mapping

Old mapping New mapping

Figure 5.5: Implementation of first-touch in
Xen.

an operating system is designed to make the best usage of a fixed amount of hardware re-
sources. For this reason, the hypervisor cannot simply allocate the guest physical memory
lazily. The guest operating system uses the same physical addresses for many different pur-
pose during the virtual machine lifetime: boot time scripts, I/O cache, main application,
etc. . . Figure 5.4 illustrates this issue. Beside this, it is not possible for the hypervisor to
detect application level memory allocation. Indeed, with Hardware Assisted Paging, the
processor delivers the guest application page fault directly to the guest system without in-
volving the hypervisor.

We choose to implement first-touch in the Xen hypervisor with paravirtualization. We in-
troduce a new hypercall usable from the guest kernel mode. This hypercall is used by the
guest operating system to indicate that a physical page is free (i.e. it does not contain
any useful data anymore). This hypercall has the same semantic than the Linux syscall
madvise(..., MADV_FREE). From the guest point of view, invoking this hypercall on a
physical page is the same as filling the page with zeroes. From the hypervisor point of
view, this hypercall means that the physical page can be unmapped and the corresponding
machine page can be released. If the guest operating system uses this unmapped physical
page later, the MMU delivers a nested page fault to the hypervisor. The hypervisor can thus
allocate a machine page from the appropriate NUMA node, like for the native first-touch
policy. Figure 5.5 illustrates this solution.

With the physical release hypercall, the Xen hypervisor effectively implements a first-touch
policy. This implementation however brings two issues. First, the first-touch policy leads to
virtual I/O failures when using the IOMMU. This first issue is specific to Xen and discussed
in Section 5.1. Second, releasing the physical pages is an expensive operation. Indeed, a
hypercall is far more expensive than a system call. The x86 system call instructions are
optimized to be low latency by minimizing the amount of operation and security check
the processor performs. The processor only does a few memory read and some opera-
tions on registers. To the contrary, during a hypercall, the processor stores the state of the

5.1. IMPROVED HYPERVISOR NUMA MANAGEMENT 81

virtual registers in memory and restore the state of the host registers from memory (see
Section 2.3). This load and save roughly costs an entire 4 KiB memory read and write. As a
result, a naive implementation of the first-touch policy with one hypercall by page release
would result in a dramatic performance drop.

We address the hypercall cost issue by slightly modifying the hypercall. The physical release
hypercall takes a queue of physical page addresses to release instead of a single one. This
technique amortizes the cost of an hypercall proportionally to the size of the queue. On the
guest side, all the vCPUs share the same queue of released pages. The queue is then pro-
tected by a lock. Batching the page releases however raises a new challenge. The operating
system may reallocate a page while it is in the page queue but not yet sent to the hypervi-
sor. When the hypervisor receives the page queue, it can thus not ignore the content of a
page as the page may already be reused by a process. Without any other mechanism, the
hypervisor would thus have to copy the old content of the page when it migrates the page
to a new NUMA node, which is expensive.

We solve the problem by trapping both the page allocation and release of the guest op-
erating system. Each entry in the queue contains a pair (op, page), in which op is the
operation (allocation or release) and page is the address of the physical page. When the
guest operating system allocates or releases a page, it acquires a lock before adding the pair
to the queue. Then, before releasing the lock, the guest operating system sends the queue
to the hypervisor through an hypercall when the queue is full. The guest operating sys-
tem has to keep the lock during the hypercall in order to ensure that another core cannot
reallocate a free page of the queue during the hypercall.

When the hypervisor receives the queue, it starts with the most recent operations, i.e., the
end of the queue. Then, the NUMA policy keeps a list of the visited pages and only takes
into account the most recent operation associated to a page. If the most recent operation is
a release, the hypervisor knows that the physical page is no longer used and it can invalidate
its entry. If the most recent operation is an allocation, the hypervisor knows that the page
may already be reused by a process. This case is rare and we simply handle it by letting a
reallocated page on its current node. Indeed, copying the old content of a page would be
too expensive in the common case and would thus not be efficient.

Finally, using a single global queue protected by a lock is a bottleneck when the virtual
machine uses many cores. As a final solution, we partition the global queue in independent
queues. We associate each page address to a single queue by using the two less significant
bits of the page frame number. As a result, each queue has its own independent lock, which
increases the parallelism. With the partitioned queue, we have measured that 87.5% of the
time is spent invalidating the pages during an hypercall, while sending the queue only takes
12.5% of this time. For this reason, we have not used more efficient and scalable queue
algorithms [37].

82 CHAPTER 5. VIRTUALIZATION OF NUMA ARCHITECTURES

Limitations of first-touch with IOMMU

The previous section indicates the impossibility to use the first-touch strategy while using
the IOMMU. This is actually a design incompatibility more than a conceptual issue. As
described in Section 3.1, the IOMMU is the device responsible for translating physical ad-
dresses to machine addresses for I/O devices. This translation allows a guest to have full
access to a device without the need to intercept the requests with the hypervisor and thus
enables virtualized I/O with no overhead.

Besides it, the first-touch policy relies on lazy allocation. The hypervisor leaves physical
addresses unmapped. When the processor accesses an unmapped physical address, the
MMU triggers an exception and expect the hypervisor to handle the cause of this fault. The
hypervisor then allocates machine memory, updates the page table and gives control back
to the main process (see Section 5.1). Because the IOMMU is connected to the faulting
core by an external bus, the IOMMU cannot act synchronously with the core. Thus, when
an I/O device tries to access to an unmapped physical address, the IOMMU notifies the
guest system that a hardware error occurred. The IOMMU does not notify the hypervisor.

The hypervisor impossibility to handle IOMMU faults prevents it from using the first-touch
policy along with the Xen pci-passthrough driver. Several methods could be used to cir-
cumvent this issue. The most straightforward approach would be for the guest to system-
atically touch any page (i.e. reading its first byte) before to require a DMA access on it. This
however may need modifications in several places in the code of the guest including in the
many driver codes. A more transparent approach would be to affect different permissions
to MMU and IOMMU on the same physical page. As described in Figure 3.1 and Figure 3.2,
different bits are used for permissions of the processor and I/O peripherals. It is then pos-
sible to let the released page mapped but forbidden to the guest by clearing the U bit3 but
setting the IR and IW bits to let the DMA peripherals work as usual.

The Xen NUMA policy selection interface

In the previous sections, we explain how to implement NUMA policies in a virtualized con-
figuration to bring good applications performance. This is not sufficient, as stated in Sec-
tion 5.1, the virtual machine administrator should be able to choose what policy to use
depending on the application to execute, helped by the policy selection metric described
in Section 4.1.

To this end, the modified version on Xen provides a new hypercall to select what policy to
use. As stated in Section 5.1, the round-4K policy is the new default policy, replacing the
round-1G policy. A new virtual machine thus always boots its memory interleaved with a 4
KiB granularity.

The guest administrator can enable Carrefour and first-touch while the virtual machine is
running. Just like its native version, Carrefour is a dynamic policy and thus can be enabled
or disabled at any time. The only requirement is to have the Carrefour userland component

3A guest can only access physical pages with the user permission.

5.2. EVALUATION 83

always running in the dom0, ready to be used. This Carrefour component can be shared be-
tween several guests wanting to enable the Carrefour policy for their own benefits. Enabling
the first-touch policy means to accept the release hypercalls described in Section 5.1. When
disabled, the hypervisor only zeroes the page to respect the specification of the hypercall
from the guest point of view while letting them mapped. When using the first-touch policy,
the guest system administrator should configure the operating system to limit the memory
usable by the I/O cache. Indeed, if the guest operating system uses all the free pages for I/O
cache instead of releasing them, the first-touch policy cannot work.

5.2 Evaluation

In this section, we evaluate the NUMA policies implemented in Xen to answer several ques-
tions. Does the impact of the NUMA placement is as high in a virtualized configuration
than in a native one ? Does an appropriate NUMA policy used in a virtualized configura-
tion reduce the execution overhead of applications on large NUMA machines ? Does the
metric presented in Section 4.1 is still valid in a virtualized configuration ? To this end,
we evaluate the execution time of the 29 applications of our benchmark suite, described
in Section 2.4, under the implemented NUMA policies, described in Section 5.1, using the
hardware configuration described in Section 2.2.

Evaluation of vNUMA on a single machine

We describe here some experiments with a single native application running, aside from
mostly idle system daemons. Each application uses as many threads as the number of core
or vCPU. For virtualized configuration, we execute a single domu, consolidated with the
dom0. The dom0 only executes the Carrefour userland component and the benchmarking
scripts that remain idle most of the time. The domu uses as many vCPUs as the number of
pCPU. We use the tc pining strategy in native configurations and the vctc pining strategy
in virtualized configurations (see Section 3.3). For these configurations, we enable the us-
age of libactive (see Section 3.2) for facesim and streamcluster and for the Xen config-
uration, we use the pci-passthrough driver (see Section 3.1) for dc.B, bfs, cc, pagerank,
sssp and mongodb.

Comparison of the virtualized NUMA policies

In a first experiment we execute the 29 applications of our benchmark suite under four
different NUMA policies: round-4K, round-4K/Carrefour, first-touch and first-touch/Car-
refour. For each application, we compare the execution times under these policies to the
execution time under the default round-1G policy. With this comparison, we want to eval-
uate the impact of the NUMA policy on the virtualized application performance.

Figure 5.6 reports, for each of the 29 applications, the speedup for each NUMA policy as
compared to the round-1G policy. First, we observe that using an efficient NUMA policy
drastically improves the performance. Indeed, for 9 applications, the execution time is

84 CHAPTER 5. VIRTUALIZATION OF NUMA ARCHITECTURES

R
el

at
iv

e
im

p
ro

ve
m

en
t

 0

 1

 2

 3

 4

 5

 6

 7

bodytrack
facesim
fluidanim

ate

stream
cluster

sw
aptions

x264
bt.C
cg.C
dc.B
ep.D
ft.C
lu.C
m

g.D
sp.C
ua.C
w

c
w

r
w

rm
em

pca
km

eans
psearchy
m

em
cached

belief
bfs
cc pagerank
sssp
cassandra
m

ongodb
Xen FT Xen FT/Carrefour Xen 4K Xen 4K/Carrefour

Figure 5.6: Relative improvement of the Xen NUMA policies as compared to the default
round-1G policy (higher is better).

improved by more than 100%. In the best case, for cg.C, the completion time is divided
by 6. Moreover, we observe that each NUMA policy yields the best performance for some
applications. The first-touch/Carrefour policy is the best for bt.C and it improves the per-
formance by 100%, the round-4K/Carrefour policy is the best for sp.C and it improves the
performance by 290%, the first-touch policy is the best for kmeans and it improves the per-
formance by 170%, and the round-4K policy is the best for ft.C and it improves the perfor-
mance by 315%.

Additionally, we observe that the default round-1G policy is much less efficient than the
NUMA policies we implement. The round-1G policy is only better than the other policies
for four applications. For these applications, as presented in Figure 5.6, if we replace the
round-1G policy by the second best policy, the maximum performance degradation we ob-
serve is 10%.

Finally, we observe that for the disk intensive applications improved by the pci-passthrough
driver (dc.B, bfs, cc, pagerank, sssp and mongodb, see Section 3.1), the first-touch policy
seems to systematically degrade their performance as compared to the round-1G policy.
For these applications, we disable the pci-passthrough driver when we enable the first-
touch policy (see Section 5.1). This is the cause of the observed overhead.

Comparison between native NUMA and virtualized NUMA policies

In a second experiment, we execute the 29 applications of our benchmark suite in three
configurations. The first configuration is LinuxNUMA, a native configuration with the best
known NUMA policy for each application. The second configuration is Xen, a virtualized
configuration with the default round-1G NUMA policy. The third configuration is Xen-
NUMA, a virtualized configuration with the best known NUMA policy for each application.
We indicate the best NUMA policies for native and virtualized configurations in Table 5.2.
The other parameters (pining, amount of threads, etc. . .) are the same as in the previous

5.2. EVALUATION 85

R
el

at
iv

e
ov

er
h

ea
d

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

bodytrack
facesim
fluidanim

ate
stream

cluster

sw
aptions

x264
bt.C
cg.C
dc.B
ep.D
ft.C
lu.C
m

g.D
sp.C
ua.C
w

c

w
r

w
rm

em
pca
km

eans
psearchy
m

em
cached

belief
bfs
cc pagerank
sssp
cassandra
m

ongodb
Xen XenNUMA

Figure 5.7: Relative overhead of Xen and XenNUMA as compared to LinuxNUMA (lower is
better).

experiment. With this experiment we show that the large overhead of Xen is caused by an
inefficient NUMA placement and not by other virtualization overheads. To this end, we
compare the overhead of Xen against LinuxNUMA and the overhead of XenNUMA against
LinuxNUMA. The only difference between the Xen and XenNUMA configurations is the
used NUMA policy. Consequently, any overhead difference between these configurations
is caused by the NUMA effects.

Figure 5.7 reports the overhead of Xen and XenNUMA as compared to LinuxNUMA. We
observe that with efficient NUMA policies, only 4 applications remain degraded by more
than 50%, while 14 applications have an overhead of more than 50% with Xen. This result
shows that a large overhead of virtualization on large multicores is caused by the NUMA
placement policy. We have shown that by integrating inside Xen the efficient NUMA poli-
cies that have been implemented within the context of operating systems, we successfully
reduce the virtualization overhead.

For the 4 remaining applications, we can observe that memcached, cassandra, and ua.C
frequently leave the CPU (column context switch of Table 2.8). These applications suffer
from the cost of virtualized IPIs. They are not corrected by our libactive solution, which
targets the pthread locks and condition variables. Memcached and cassandra continuously
wait for network packets because they intensively use the network. Ua.C intensively uses an
ad-hoc synchronization mechanism that relies on the Futex of Linux. These applications
are thus probably slowed down by the cost of virtualized IPIs. Psearchy intensively uses
the hard drive (see Table 2.8) and, despite the use of the IOMMU, may activate a bottleneck
in the I/O stack that we have not yet identified.

Selection of native and virtualized NUMA policies

In this experiment, we compare the best policies in both native and virtualized configura-
tion. The goal of this comparison is to know if the best NUMA policy for an application is

86 CHAPTER 5. VIRTUALIZATION OF NUMA ARCHITECTURES

LinuxNUMA XenNUMA
bodytrack Round-4K Round-4K

facesim Round-4K Round-4K
fluidanimate Round 4K / Carrefour Round 4K / Carrefour
streamcluster Round-4K Round-4K

swaptions Round-4K Round-4K
x264 First-Touch Round-4K
bt.C First-Touch / Carrefour First-Touch / Carrefour
cg.C First-Touch First-Touch
dc.B First-Touch Round-1G
ep.D Round-4K Round-4K
ft.C Round-4K Round-4K
lu.C First-Touch First-Touch

mg.D First-Touch First-Touch
sp.C Round 4K / Carrefour Round 4K / Carrefour
ua.C First-Touch First-Touch
wc First-Touch / Carrefour Round-4K
wr First-Touch Round-4K

wrmem First-Touch Round-4K
pca Round-4K Round 4K / Carrefour

kmeans Round-4K Round-4K
psearchy First-Touch Round-4K

memcached Round 4K / Carrefour Round 4K / Carrefour
belief Round-4K Round 4K / Carrefour

bfs Round-4K Round-4K
cc Round 4K / Carrefour Round 4K / Carrefour

pagerank Round 4K / Carrefour Round 4K / Carrefour
sssp Round 4K / Carrefour Round 4K / Carrefour

cassandra First-Touch / Carrefour Round-1G
mongodb First-Touch / Carrefour Round-1G

Table 5.1: Best NUMA policies.

the same in native and virtualized configurations. We know that the metric described in
Section 4.1 indicates, with a good accuracy, the best native NUMA policy. If the best na-
tive and virtualized NUMA policies are the same, then our metric is also efficient to predict
what policy to use inside a virtual machine.

Table 5.1 shows what are the NUMA policies used for each application in both LinuxNUMA
and XenNUMA. We observe that, among the 29 executed applications, 19 of them execute
the fastest with the same NUMA policy. In the applications not having the same best NUMA
policy, 3 of them, wc, wr and wrmem make memory allocations at a high rate, thus stressing
the first-touch hypercall. The overhead of this hypercall is sufficient to make the best policy
become round-4K instead of first-touch or first-touch/Carrefour.

For 2 other applications, pca and belief, the best policy only differs by an enabled Car-
refour in the virtualized configuration along with a round-4K static policy. As we saw in
Section 2.2, Carrefour is useful either to spread contention prone memory areas or to relo-
cate pages on an exclusive accessing node. As the round-4K policy already perfectly spread
the memory, we can assume only the second mechanism (the migration heuristic) is used
in round-4K/Carrefour. An explanation could be that some structures of the kernel could
be relocated to reach better performances, typically the per CPU structures, since, in a vir-
tualized configuration, the kernel memory can also be migrated by Carrefour.

The 5 remaining applications, x264, dc.B, psearchy, mongodb and cassandra have com-

5.2. EVALUATION 87

R
el

at
iv

e
im

p
ro

ve
m

en
t

 0

 1

 2

 3

 4

 5

 6

 cg.C
cg.C

 lu.C
cg.C

 sp.C
cg.C

 lu.C
facesim

 sp.C
km

eans

guest 1 guest 2

Figure 5.8: Relative improvement of XenNUMA over Xen with 2 collocated VMs (24 cores
each, higher is better)

pletely different best NUMA policies in native and virtualized configuration. For dc.B,
cassandra and mongodb, the best virtualized policy is round-1G, which is not available
in a native configuration. The 2 remaining applications, x264 and psearchy are the fastest
with first-touch in LinuxNUMA and round-4K in XenNUMA but we have no definitive ex-
planation for them.

Evaluation of vNUMA on several machines

Evaluating the execution time of applications in single virtual machines is convenient to
exhibit the NUMA policy impact on performances. However, this is not a realistic scenario.
In this section, we present an evaluation of the virtualized NUMA policies in workloads
with two virtual machines. In the following experiments, each virtual machine executes a
single application with as many threads as available vCPUs in the virtual machine. For each
of the applications, we select the best Xen NUMA policy (see column XenNUMA of Table 5.1).
The figures report the improvement of the best NUMA policy over the default NUMA policy
on Xen.

Collocated virtual machines

In Figure 5.8, each virtual machine has 24 vCPUs. We pin the first virtual machine on one
half of the NUMA nodes and the second virtual machine on the other half. Each physical
CPU thus executes a single vCPU. We have observed that, for some of the applications,
performance varies when we select different NUMA nodes for a virtual machine. For this
reason, we execute each configuration twice, by swapping the nodes used by the virtual
machines, and we compute the average completion time of the two runs.

We can observe that it is nonetheless possible but also efficient to use NUMA policies on
several virtual machines, even if the policy to use is different from a virtual machine to
the other. For 2 of the 5 tested pair of application, namely cg.C + lu.C and facesim +

88 CHAPTER 5. VIRTUALIZATION OF NUMA ARCHITECTURES

R
el

at
iv

e
im

p
ro

ve
m

en
t

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 swaptions

bodytrack

 cg.C
cg.C

 lu.C
cg.C

 sp.C
cg.C

 sp.C
km

eans

 wrm
em

wc

guest 1 guest 2

Figure 5.9: Relative improvement of XenNUMA over Xen with 2 consolidated VMs (48 cores
each, higher is better)

lu.C, one of the applications is neither improved nor degraded while the second one is
improved, with up to 300% speedup for lu.C when collocated with cg.C. For the 3 other
pairs, both applications are improved, with a maximum improvement of 440% speedup for
sp.C when collocated with cg.C. Overall, for every application pair we executed, one of
the applications is systematically improved by at least 100% and the other application is
not degraded.

Consolidated virtual machines

In Figure 5.9, each virtual machine has 48 vCPUs. We pin each vCPU to a single physical
CPU in order to avoid performance variations caused by the vCPU placement policy of Xen.
With this setting, each physical CPU executes two vCPUs, one belonging to the first virtual
machine and one belonging to the second virtual machine.

We can observe that, for consolidated workloads as well, using NUMA policies improve the
performance of the applications. As for collocated workloads, two situations occur. In the
first case, one of the application is improved while the second one is not degraded, this is
the case of cg.C consolidated with lu.C where cg.C is speeded up by 50%. In the second
case, both applications are improved. This is the case for the pairs cg.C + cg.C, cg.C +
sp.C and kmeans + sp.C with a maximum speedup of 200%. However, a new case shows
up where none of the application is improved. This is the case for the pairs bodytrack +
swaptions and wc + wrmem.

5.3 Conclusion

This chapter shows how to implement efficient NUMA memory management policies in a
hypervisor. This chapter also evaluates the impact of NUMA management on virtualized
application performance. First, we describe the implementation, in the Xen hypervisor,

5.3. CONCLUSION 89

of the three main NUMA management policies which exist in native configurations: first-
touch, round-4K and Carrefour. For two of these policies, first-touch and Carrefour, we
encountered limitations to their implementation. For Carrefour, the limitation is inherent
to the architecture of Intel processors. For the first-touch policy, the limitation is due to
the software design of the Xen hypervisor. Then, we evaluate the NUMA policies we imple-
mented on single and multiple virtual machines configurations. On single virtual machine
experiments, we show that, the choice of an appropriate NUMA memory management pol-
icy improves the application performance, up to 500%. This performance improvement is
the result of the reduction of the virtualization overhead which drops below 50% for 25 of
the 29 evaluated applications. This overhead diminution confirms that the virtualization
overhead observed with the default NUMA memory management policy of Xen is caused
by an ineffective NUMA management. Multiple virtual machines experiments show that,
as in native configurations, the usage of an appropriate NUMA memory management pol-
icy increases the performance of several virtual machines that share the same hardware.

C
H

A
P

T
E

R

6
CONCLUSION

The NUMA architecture is becoming quite common. Even if this kind of hardware remains
rare for individual users, it is now pervasive in datacenters. In parallel, individual users as
well as industries now use the cloud computing for everyday tasks. The cloud computing
relies on virtualization of large and powerfull computers, bundled in datacenters. This si-
multaneous growing of both the NUMA architecture and system virtualization leads these
two technologies, which evolved independently, to now combine. This thesis presents an
analysis of the issues this combination involve and possible solutions to tackle them. The
first idea it brings is that when executing large virtual machines, which spread on many
NUMA nodes, one of the main performance factor is the NUMA management of the virtual
machine memory. The second and main idea it brings is that already existing NUMA mem-
ory management algorithms perform well even in virtualized configurations and they only
need to be implemented in the hypervisor instead of the guest operating system.

We show these ideas by analysing the causes of virtualization performance overhead for a
large set of applications from 5 different benchmark suites: Parsec 2.1, Nas Parallel Bench-
mark 3.3, the Mosbench, X-Stream applications and YCSB. We show that a part of this over-
head is due to already studied causes: the I/O virtualization and the IPI virtualization. We
then explain how to implement three state of the art native NUMA memory management
policies: first-touch, round-4K and Carrefour, in the Xen hypervisor. These policies work
differently. We show how to adapt each of these policies to an hypervisor which have no
access to the applications. The round-4K policy perform an eager allocation of memory
and do not need to worry about applications. The first-touch policy lazily allocates mem-
ory and needs to be notified by the guest operating system of some applications requests.
The Carrefour policy migrates memory regions after observing accesses patterns using the
sampling functionalities of the hardware. We evaluate the performance of virtualized ap-
plications using an appropriate NUMA policy and show that the overhead compared to

91

92 CHAPTER 6. CONCLUSION

native execution drops from up to 500% to below 50% for almost all the applications.

Overall, this work answers to the precise question: “Is it possible to efficiently shift the
NUMA management from the guest operating system to the hypervisor ?”. We clearly show
that the answer is yes, but this answer brings new questions. Some of these questions are
pratical and short term while some others are more about the large picture. The two fol-
lowing sections cover these two types of question.

6.1 Future works

Our implementation of traditional NUMA policies in a hypervisor is a proof of feasibility.
This implementation also allows us to evaluate the benefits of shifting the existing NUMA
management to the hypervisor. Our work could however be improved in several ways.

First, the round-1G policy, despite of being the less efficient policy for the applications we
evaluate, is the only one to allow an actual usage of large pages to the guest. Designing poli-
cies able to provide large pages but still providing an efficient NUMA memory management
could increase the performance for TLB miss sensitive applications.

Second, on our current implementation, the first-touch policy cannot be used along with
the IOMMU. As we stated in Section 5.1, this constraint is caused by the Xen design. An
implementation which overcome this constraint could bring better performance for I/O
intensive applications which need a first-touch policy.

Third, our implementation of first-touch is efficient enough when the application does not
stress the page allocation system of the guest. For more memory allocation intensive tasks,
such as the Metis applications: wc, wr and wrmem, our hypercall batching induces an over-
head which could be avoided with a better implementation, as we explain in Section 5.2.
Using an allocator such as scalloc [3] or llalloc [4], which only rarely releases pages, should
prevent this overhead.

We choose to implement the NUMA memory management inside the hypervisor. We did so
because the hypervisor is the only software which should have a complete vision of the ma-
chine resources usage and thus is the best suited to manage the memory resource. Another
approach is to expose the NUMA topology to the guest and let the state of the art native
NUMA policies work in the guest. We believe this approach would be inefficient in a multi-
ple virtual machines scenario as two or more virtual machine could use the same intercon-
nect links and saturate it without noticing, leading the NUMA policies to take inefficient
decisions. A comparison between the two approaches could nonetheless be interesting.

Additionally, we could explore the possibility of using NUMA management in the guest,
even with a hypervisor that does not cooperate. Indeed, hypervisors that neither expose the
NUMA topology to their guest nor perform efficient NUMA management are common. We
can ask if the guest applications have no hope to execute efficiently or if there is a way for
the guest system to discover the harware details wihout any help of the hypervisor. Chat-

6.2. PERSPECTIVES 93

zopoulos et al. suggest with their work on MCTOP [18] that it is possible for the guest to
discover the NUMA topology only with performance measurement.

6.2 Perspectives

Our work could be improved in many ways, either performance improvement, adaptation
to new hardware features or better cooperation with the guest. This work also brings new
questions about virtualized NUMA management. Is our approach the best one ? Can we
add more constraints ? Additionally, we can take a step backward and look at the larger
picture. In our approach, we shift the NUMA decision process from the guest operating
system to the hypervisor. As we explain in Chapter 4, we do so because the hypervisor
is the only software layer that has a complete view of the hardware resources utilization.
Moreover, we show in Chapter 3 that a guest operating system that uses emulated hard-
ware or take complex decisions, like scheduling, may suffer from performance drops. As a
result, it seems not feasable nor desirable to implement resources management in a guest
operating system. We can then ask what is the role of an operating system in a virtualized
configuration.

Some recent works [47, 15, 16] bring some answers to this question. The unikernel is a
specialized kernel compiled along with an application. A unikernel extensively relies on
the hypervisor for resource management and isolation. The only protection a unikernel
provides come from the compiler that ensures the application makes no malicious opera-
tions. Alternatively, Manco et al. propose a less radical approach with Tinyx [48], a build
system that creates minimalistic guest systems targeting single applications. In both cases,
the operating system and the end user application tend to merge in a single application like
software layer. While the resource management that tends to move to the hypervisor and
the guest that becomes applications, we can ask is the hypervisor is becoming just another
operating system.

BIBLIOGRAPHY

[1] J. L. Abell, J. Fern, M. E. Acacio, et al. Glocks: Efficient support for highly-contended
locks in many-core cmps. In Parallel & Distributed Processing Symposium (IPDPS),
2011 IEEE International, pages 893–905. IEEE, 2011.

[2] A. Agarwal and M. Cherian. Adaptive backoff synchronization techniques, volume 17.
ACM, 1989.

[3] M. Aigner, C. M. Kirsch, M. Lippautz, and A. Sokolova. Fast, multicore-scalable,
low-fragmentation memory allocation through large virtual memory and global data
structures. In Proceedings of the conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA’15, pages 451–469, 2015.

[4] llalloc: Lockless memory allocator. http://locklessinc.com/.

[5] Amd64 architecture programmer’s manual volume 2: System programming. https:
//http://support.amd.com/TechDocs/24593.pdf, 2017.

[6] Amd i/o virtualization technology (iommu) specification. http://support.amd.
com/TechDocs/48882_IOMMU.pdf, 2015.

[7] A. Amiri Sani, K. Boos, S. Qin, and L. Zhong. I/o paravirtualization at the device file
boundary. In Proceedings of the 19th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS ’14, pages 319–332,
New York, NY, USA, 2014. ACM.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,
and A. Warfield. Xen and the art of virtualization. In Proceedings of the Symposium on
Operating Systems Principles, SOSP’03, pages 164–177, 2003.

[9] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe, A. Schüp-
bach, and A. Singhania. The multikernel: A new OS architecture for scalable multicore
systems. In Proceedings of the Symposium on Operating Systems Principles, SOSP’09,
pages 29–44, 2009.

[10] M. Becchi and P. Crowley. Dynamic thread assignment on heterogeneous multiproces-
sor architectures. In Proceedings of the 3rd conference on Computing frontiers, pages
29–40. ACM, 2006.

95

https://http://support.amd.com/TechDocs/24593.pdf
https://http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/48882_IOMMU.pdf
http://support.amd.com/TechDocs/48882_IOMMU.pdf

96 BIBLIOGRAPHY

[11] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson. Hoard: A scalable memory
allocator for multithreaded applications. ACM Sigplan Notices, 35(11):117–128, 2000.

[12] J.-P. Billaud and A. Gulati. hclock: Hierarchical qos for packet scheduling in a hypervi-
sor. In Proceedings of the 8th ACM European Conference on Computer Systems, pages
309–322. ACM, 2013.

[13] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, M. F. Kaashoek, R. Morris, A. Pesterev,
L. Stein, M. Wu, Y.-h. Dai, et al. Corey: An operating system for many cores. In OSDI,
volume 8, pages 43–57, 2008.

[14] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek, R. Morris, and
N. Zeldovich. An analysis of linux scalability to many cores. In Proceedings of the
conference on Operating Systems Design and Implementation, OSDI’10, pages 1–16,
2010.

[15] A. Bratterud, A.-A. Walla, H. Haugerud, P. E. Engelstad, and K. Begnum. Includeos: A
minimal, resource efficient unikernel for cloud services. In Cloud Computing Technol-
ogy and Science (CloudCom), 2015 IEEE 7th International Conference on, pages 250–
257. IEEE, 2015.

[16] I. Briggs, M. Day, Y. Guo, P. Marheine, and E. Eide. A performance evaluation of uniker-
nels. 2015.

[17] E. Bugnion, S. Devine, and M. Rosenblum. Disco: Running commodity operating sys-
tems on scalable multiprocessors. In Proceedings of the Symposium on Operating Sys-
tems Principles, SOSP’97, pages 143–156, 1997.

[18] G. Chatzopoulos, R. Guerraoui, T. Harris, and V. Trigonakis. Abstracting multi-core
topologies with mctop. In Proceedings of the Twelfth European Conference on Com-
puter Systems-EuroSys" 17, number EPFL-CONF-227458, pages 544–559. ACM Press,
2017.

[19] L. Cheng, J. Rao, and F. C. M. Lau. vscale: Automatic and efficient processor scaling
for smp virtual machines. In Proceedings of the European Conference on Computer
Systems, EuroSys’16, pages 2:1–2:14, 2016.

[20] Y. Cheng, W. Chen, X. Chen, B. Xu, and S. Zhang. A user-level numa-aware scheduler
for optimizing virtual machine performance. In International Workshop on Advanced
Parallel Processing Technologies, pages 32–46. Springer, 2013.

[21] Y. Cheng, W. Chen, Z. Wang, and X. Yu. Performance-monitoring-based traffic-aware
virtual machine deployment on numa systems. IEEE Systems Journal, 11(2):973–982,
2017.

[22] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and E. Kohler. The scalable
commutativity rule: Designing scalable software for multicore processors. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP ’13,
pages 1–17, New York, NY, USA, 2013. ACM.

BIBLIOGRAPHY 97

[23] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes. Cache hier-
archy and memory subsystem of the amd opteron processor. IEEE Micro, 30:16–29,
2010.

[24] T. Craig. Building fifo and priorityqueuing spin locks from atomic swap. Tech-
nical report, Technical Report TR 93-02-02, University of Washington, 02 1993.(ftp
tr/1993/02/UW-CSE-93-02-02. PS. Z from cs. washington. edu), 1993.

[25] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers, V. Quema, and
M. Roth. Traffic management: A holistic approach to memory placement on numa
systems. In Proceedings of the conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS’13, pages 381–394, 2013.

[26] T. David, R. Guerraoui, and V. Trigonakis. Everything you always wanted to know about
synchronization but were afraid to ask. In Proceedings of the Symposium on Operating
Systems Principles, SOSP’13, pages 33–48, 2013.

[27] D. Dice, V. J. Marathe, and N. Shavit. Flat-combining numa locks. In Proceedings of the
twenty-third annual ACM symposium on Parallelism in algorithms and architectures,
pages 65–74. ACM, 2011.

[28] D. Dice, V. J. Marathe, and N. Shavit. Lock cohorting: A general technique for designing
NUMA locks. In Proceedings of the symposium on Principles and Practices of Parallel
Programming, PPoPP’12, pages 247–256, 2012.

[29] X. Ding, P. B. Gibbons, M. A. Kozuch, and J. Shan. Gleaner: Mitigating the blocked-
waiter wakeup problem for virtualized multicore applications. In Proceedings of the
Usenix Annual Technical Conference, USENIX ATC’14, pages 73–84, 2014.

[30] Y. Dong, S. Li, A. Mallick, J. Nakajima, K. Tian, X. Xu, F. Yang, and W. Yu. Extending xen
with intel virtualization technology. Intel Technology Journal, 10(3), 2006.

[31] M. Dowty and J. Sugerman. Gpu virtualization on vmware’s hosted i/o architecture.
SIGOPS Oper. Syst. Rev., 43(3):73–82, July 2009.

[32] A. Eizenberg, S. Hu, G. Pokam, and J. Devietti. Remix: Online detection and repair of
cache contention for the jvm. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’16, pages 251–265, New
York, NY, USA, 2016. ACM.

[33] R. Ganesan, Y. Murarka, S. Sarkar, and K. Frey. Empirical study of performance benefits
of hardware assisted virtualization. In Proceedings of the 6th ACM India Computing
Convention, Compute ’13, pages 1:1–1:8, New York, NY, USA, 2013. ACM.

[34] L. Gidra, G. Thomas, J. Sopena, M. Shapiro, and N. Nguyen. NumaGiC: a garbage
collector for big data on big NUMA machines. In Proceedings of the conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS’15,
pages 661–673, 2015.

98 BIBLIOGRAPHY

[35] R. P. Goldberg. Survey of virtual machine research. Computer, 7(6):34–45, 1974.

[36] P. H. Gum. System/370 extended architecture: facilities for virtual machines. IBM
Journal of Research and Development, 27(6):530–544, 1983.

[37] A. Haas, M. Lippautz, T. A. Henzinger, H. Payer, A. Sokolova, C. M. Kirsch, and A. Sez-
gin. Distributed queues in shared memory: Multicore performance and scalability
through quantitative relaxation. In Proceedings of the ACM International Conference
on Computing Frontiers, pages 17:1–17:9, 2013.

[38] Pci-sig sr-iov primer. https://www.intel.sg/content/dam/doc/application-
note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf, 2011.

[39] V. Kazempour, A. Kamali, and A. Fedorova. Aash: An asymmetry-aware scheduler for
hypervisors. In Proceedings of the 6th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, VEE ’10, pages 85–96, New York, NY, USA, 2010.
ACM.

[40] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wisniewski, J. Xenidis, D. Da Silva, M. Os-
trowski, J. Appavoo, M. Butrico, M. Mergen, et al. K42: building a complete operating
system. ACM SIGOPS Operating Systems Review, 40(4):133–145, 2006.

[41] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas. Single-isa
heterogeneous multi-core architectures for multithreaded workload performance. In
Computer Architecture, 2004. Proceedings. 31st Annual International Symposium on,
pages 64–75. IEEE, 2004.

[42] H. A. Lagar-Cavilla, N. Tolia, M. Satyanarayanan, and E. de Lara. Vmm-independent
graphics acceleration. In Proceedings of the 3rd International Conference on Virtual
Execution Environments, VEE ’07, pages 33–43, New York, NY, USA, 2007. ACM.

[43] J. R. Lange, K. Pedretti, P. Dinda, P. G. Bridges, C. Bae, P. Soltero, and A. Merritt.
Minimal-overhead virtualization of a large scale supercomputer. In ACM SIGPLAN
Notices, volume 46, pages 169–180. ACM, 2011.

[44] M. Liu and T. Li. Optimizing virtual machine consolidation performance on numa
server architecture for cloud workloads. In Proceedings of the International Sympo-
sium on Computer Architecture, ISCA’14, pages 325–336, 2014.

[45] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller. Remote core locking: Migrat-
ing critical-section execution to improve the performance of multithreaded applica-
tions. In Proceedings of the 2012 USENIX Conference on Annual Technical Conference,
USENIX ATC’12, pages 6–6, Berkeley, CA, USA, 2012. USENIX Association.

[46] J.-P. Lozi, B. Lepers, J. Funston, F. Gaud, V. Quéma, and A. Fedorova. The linux sched-
uler: A decade of wasted cores. In Proceedings of the European Conference on Com-
puter Systems, EuroSys’16, pages 1:1–1:16, 2016.

https://www.intel.sg/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf
https://www.intel.sg/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf

BIBLIOGRAPHY 99

[47] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazagnaire, S. Smith,
S. Hand, and J. Crowcroft. Unikernels: Library operating systems for the cloud. In
ACM SIGPLAN Notices, volume 48, pages 461–472. ACM, 2013.

[48] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati, K. Yasukata, C. Raiciu,
and F. Huici. My vm is lighter (and safer) than your container. In Proceedings of the
26th Symposium on Operating Systems Principles, SOSP ’17, pages 218–233, New York,
NY, USA, 2017. ACM.

[49] J. M. Mellor-Crummey and M. L. Scott. Synchronization without contention. In Pro-
ceedings of the conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS’91, pages 269–278, 1991.

[50] G. E. Moore. Cramming more components onto integrated circuits. In M. D. Hill,
N. P. Jouppi, and G. S. Sohi, editors, Readings in Computer Architecture, pages 56–59.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2000.

[51] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig. Intel virtualization technol-
ogy: Hardware support for efficient processor virtualization. Intel Technology Journal,
10(3), 2006.

[52] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and G. Hunt. Helios: heteroge-
neous multiprocessing with satellite kernels. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pages 221–234. ACM, 2009.

[53] A. Nordal, A. Kvalnes, and D. Johansen. Paravirtualizing tcp. In Proceedings of the
6th International Workshop on Virtualization Technologies in Distributed Computing
Date, VTDC ’12, pages 3–10, New York, NY, USA, 2012. ACM.

[54] H. N. Palit, X. Li, S. Lu, L. C. Larsen, and J. A. Setia. Evaluating hardware-assisted
virtualization for deploying hpc-as-a-service. In Proceedings of the 7th International
Workshop on Virtualization Technologies in Distributed Computing, VTDC ’13, pages
11–20, New York, NY, USA, 2013. ACM.

[55] Z. Radovic and E. Hagersten. Hierarchical backoff locks for nonuniform communica-
tion architectures. In High-Performance Computer Architecture, 2003. HPCA-9 2003.
Proceedings. The Ninth International Symposium on, pages 241–252. IEEE, 2003.

[56] J. Rao, K. Wang, X. Zhou, and C.-Z. Xu. Optimizing virtual machine scheduling in
NUMA multicore systems. In Proceedings of the symposium on High Performance
Computer Architecture, HPCA’13, pages 306–317, 2013.

[57] S. Schneider, C. D. Antonopoulos, and D. S. Nikolopoulos. Scalable locality-conscious
multithreaded memory allocation. In Proceedings of the 5th international symposium
on Memory management, pages 84–94. ACM, 2006.

100 BIBLIOGRAPHY

[58] S. Schneider, C. D. Antonopoulos, and D. S. Nikolopoulos. Scalable locality-conscious
multithreaded memory allocation. In Proceedings of the International Symposium on
Memory Management, ISMM’06, pages 84–94, 2006.

[59] M. L. Scott and W. N. Scherer. Scalable queue-based spin locks with timeout. In ACM
SIGPLAN Notices, volume 36, pages 44–52. ACM, 2001.

[60] L. H. Seawright and R. A. MacKinnon. Vm/370—a study of multiplicity and usefulness.
IBM Systems Journal, 18(1):4–17, 1979.

[61] R. Shea and J. Liu. Network interface virtualization: challenges and solutions. IEEE
Network, 26(5), 2012.

[62] D. Shelepov, J. C. Saez Alcaide, S. Jeffery, A. Fedorova, N. Perez, Z. F. Huang, S. Blago-
durov, and V. Kumar. Hass: a scheduler for heterogeneous multicore systems. ACM
SIGOPS Operating Systems Review, 43(2):66–75, 2009.

[63] X. Song, H. Chen, and B. Zang. Characterizing the performance and scalability of
many-core applications on virtualized platforms. Technical report, Parallel Processing
Institute, Fudan University, 2010.

[64] Pthread mutex lock. https://sourceware.org/git/?p=glibc.git;a=blob_
plain;f=nptl/pthread_mutex_lock.c;hb=HEAD, 2017.

[65] B. Teabe, V. Nitu, A. Tchana, and D. Hagimont. The lock holder and the lock waiter
pre-emption problems: nip them in the bud using informed spinlocks (i-spinlock). In
Proceedings of the Twelfth European Conference on Computer Systems, pages 286–297.
ACM, 2017.

[66] B. Teabe, A. Tchana, and D. Hagimont. Application-specific quantum for multi-core
platform scheduler. In Proceedings of the European Conference on Computer Systems,
EuroSys’16, pages 3:1–3:14, 2016.

[67] P. Tembey, A. Gavrilovska, and K. Schwan. Merlin: Application-and platform-aware
resource allocation in consolidated server systems. In Proceedings of the ACM Sympo-
sium on Cloud Computing, pages 1–14. ACM, 2014.

[68] L. van Doorn. Hardware virtualization trends. In Proceedings of the 2Nd International
Conference on Virtual Execution Environments, VEE ’06, pages 45–45, New York, NY,
USA, 2006. ACM.

[69] D. Wentzlaff and A. Agarwal. Factored operating systems (fos): The case for a scalable
operating system for multicores. SIGOPS Oper. Syst. Rev., 43(2):76–85, Apr. 2009.

[70] S. Wu, H. Sun, L. Zhou, Q. Gan, and H. Jin. vprobe: Scheduling virtual machines on
numa systems. In Cluster Computing (CLUSTER), 2016 IEEE International Conference
on, pages 70–79. IEEE, 2016.

https://sourceware.org/git/?p=glibc.git;a=blob_plain;f=nptl/pthread_mutex_lock.c;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob_plain;f=nptl/pthread_mutex_lock.c;hb=HEAD

BIBLIOGRAPHY 101

[71] Numa aware scheduling. https://wiki.xen.org/wiki/Xen_4.3_NUMA_Aware_
Scheduling, 2015.

[72] Credit scheduler. https://wiki.xenproject.org/wiki/Credit_Scheduler, 2017.

https://wiki.xen.org/wiki/Xen_4.3_NUMA_Aware_Scheduling
https://wiki.xen.org/wiki/Xen_4.3_NUMA_Aware_Scheduling
https://wiki.xenproject.org/wiki/Credit_Scheduler

