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Résumé

La théorie des processus de branchement multi-type en environnement i.i.d. est consi-
dérablement moins développée que dans le cas univarié, et les questions fondamentales
ne sont pas résolues en totalité a ce jour. Les réponses exigent une compréhension pro-
fonde du comportement des produits des matrices i.i.d. a coefficients positifs.

Sous des hypotheses assez générales et lorsque les fonctions génératrices de probabi-
lité des lois de reproduction sont “linéaire fractionnaires”, nous montrons que la proba-
bilité de survie a 'instant n du processus de branchement multi-type en environnement

£ . s 1
— — 00,
aléatoire est proportionnelle a o lorsque n

La démonstration de ce résultat suit I’approche développée pour étudier les processus
de branchement uni-variés en environnement aléatoire i. i. d. Il utilise de fagon cruciale
des résultats récents portant sur les fluctuations des normes de produits de matrices
aléatoires i.i.d.

Mots clés: Multi-type branching process, Survival probability, Random environment,
Critical case, Exit time, Markov chains, Product of random matrices.
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Abstract

The theory of multi-type branching process in i.i.d. environment is considerably less
developed than for the univariate case, and fundamental questions are up to date un-
solved. Answers demand a deep understanding of the behaviour of products of i.i.d.
matrices with non-negative entries.

Under mild assumptions, when the probability generating functions of the reproduc-
tion laws are fractional-linear, the survival probability of the multi-type branching process
in random environment up to time 7 is proportional to % asn — oo.

Techniques for univariate branching processes in random environment and methods
from the theory of products of i.i.d. random matrices are required.

Keywords: Multi-type branching process, Survival probability, Random environment,
Critical case, Exit time, Markov chains, Product of random matrices.
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Introduction

A search of any Mathematical library may reveal a number of volumes devoted to
branching processes. Let us mention two books among the most fundamental ones where
we found many informations : the ones by T. E. Harris [Harris, 1963] and K. B. Athreya &
P. E. Ney [Athreya et Ney, 1972]. Not long after, P. Jagers [Jagers, 2005] introduced general
branching processes in a more systematic way.

Branching processes are stochastic processes describing the dynamics of a popula-
tion of individuals which reproduce and die independently, according to some specific
probability distributions. They have numerous applications in population biology and
phylogenetics. There are many types of branching processes : discrete time, continuous
time, single-type or multi-type (with finitely or infinitely many types), individual repro-
duction rules may depend on the actual size of the population (population size-dependent
branching process), immigration at any generation may disturb the evolution of the size
of the population, etc. The method employed in branching processes allow questions
about extinction and survival in ecology and evolutionary biology to be addressed.

The study of branching processes began in the 1840’s with Irénée-Jules Bienaymé
and was advanced in the 1870’s with the work of Reverend Henry William Watson and
Francis Galton. The simplest and most frequently applied branching process is named
after Galton and Watson (or GW-process for short), itis a fundamental example of discrete-
time Markov chain.

Informally, we may describe that a population of individuals evolves in discrete time
as follows. A Galton-Watson branching process starts with one initial ancestor, sometimes
itis possible to have a random number of initial ancestors, in which case it will be explicitly
stated. This single ancestor produces a certain number of offspring according to a given
probability distribution. All the individuals of the population are assumed to be of the
same type and only live for a single unit time period; but at the end of their life-length,
each of them produces a random number (possible 0) of offspring. The number of children
born by an individual does not depend on how many other individuals are present.
The number of offspring for distinct individuals are mutually independent, and also
independent of the offspring of other individuals from earlier generation. Furthermore,
they are identically distributed, with common distribution. And the system regenerates.

The following figure allows us to visuallize a Galton-Watson process in the image of
a tree, in which case it starts with one founding ancestor and has two children of the first

generation, two children of the second generation, four children of the third generation
and so on.
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Ficure 1 — Galton-Watson tree.

The expression “single” type refers to the fact that all individuals are of single type
such as the same gender, same cell type, or same geotype or phenotype while in the multi-
type process, each parent may have offspring of different types. For instance in genetics,
genes can be classified as wild or mutant types and mutation change a wild type into a
mutant type.

More rigorously, let us introduce a probability space (€, §,P) and, for any n > 0,
denote by Z,, the random number of individuals in the nth generation of this population;
the numbers Z,, are random variables defined on (Q, &, IP) and may present the population
size of animals, plants, cells, or genes at time n or generation n. At each generation n,
each individual i € {1, ..., Z,} has N} children, where (Nl.”,i >1,n> O) are i.i.d. random
variables with distribution u = (u(k))k>0. The number of individuals at generation n + 1 is
therefore :

Zns1 =Ny +N; +..+ N7,

with the convention if Z,, = 0 then Z,,.1 = 0. Since this is a sum of i.i.d. random variables,
its distribution depends only on the value of Z,, and neither on past values nor on time r;
in other words, the sequence (Z,),>0 is a time-homogeneous Markov chain on the set of
natural numbers IN. Having defined the process, we want to know the probability that the
random sequence Zy, Z1,Z», .. eventually goes to zero. In order to answer this question,
we take into account the recursive structure of the process which makes it amenable
to generating function method. Under some assumptions of the offspring distribution
u, we find some important information about the process, for instance the extinction
probability, when Z,, = 0 for some n > 1, or the asymptotic behavior of the process when
n tends to infinity. Moreover, according to the mean number m of offspring, the process is
dinstinguished into three classes : super-critical (m > 1), critical (m = 1) and sub-critical

20
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(m < 1). It is known that for subcritical and critical case, omitting the trivial cases, the
population has probability 1 to get extinction while the supercritical process has some
positive probability to explode.

In the multi-type case, when the population contains many different type of particles,
the process becomes a vector Markov process and the mean number of offspring changes
into matrix form M. In this case, the criteria to distinguish three classes depends on the
value of the Perron root p(M) of the mean matrix M : sub-critical (p(M) < 1), critical
(p(M) = 1) and super-critical (p(M) > 1).

Furthermore, it is natural that the offspring distribution y does not stay the same
over generation but varies with time, in a deterministic way which is fixed once and
for all; several contributions do exist in this direction, in single-type or multi-type cases,
let us mention for instance [Church, 1971], [Kersting, 2017] and references therein. It is
also natural to consider that these distributions have some random fluctuations, then
to replace the distribution u by a sequence of random distributions (u,),>0. We arrive
in a new scheme of a Branching Process in Random Environment (BPRE). The simplest
case in the one when the (u,,),>0 are assumed to be i.i.d. random probability measures.
Others situations may be explored, for instance Markovian random environment; we
refer to [Athreya et Karlin, 1971a] and [Athreya et Karlin, 1971b] for general results in
these directions.

The case of single-type in random environment is the object of several works over the
last 40 years. There are three cases of extinction, the speed of convergence to extinction
is smaller with the appearance of some new phenomenons (for instance the sub-critical
case is decomposed into three sub-cases).

The goal of this thesis is to find the asymptotic behavior of the survival probability of
a critical multi-type Galton-Watson branching process in i.i.d. environment. Before going
further to multi-type BPRE, we first pass through single-type BPRE; we present briefly
in Chapter 3 the more important contributions about extinction in this case, under quite
general and natural hypotheses. In fact, the behavior of the single-type BPRE is mainly
determined by the properties of its associated random walk, whose increments are the
logarithm of the mean of (random) offspring distributions. Therefore, further studies on
random walk interact the evolution on studies on BPRE. Several limit theorems studied
over the three classes of BPRE do exist for single-type BPRE [Kozlov, 1977], [Afanasyev
et al., 2005], [Geiger et al., 2003]... It is natural to expect a similar result in multi-type
case. However, it is not so easy since many useful tools known for ordinary random
walks on the real line with i.i.d. increments have no analogues in the case of dependent
increments. More precisely (but not exactly), the associated random walk in multi-type
case is composed by the logarithms of the norms of products of matrices. Therefore,
studies on limit theorems of products of matrices and fluctuations of the logarithm of
their norm are required.

In this thesis, we investigate the asymptotic behavior of the probability of non-
extinction up to time n of critical multi-type BPREs and obtain an optimal result in
the case of linear fractional generating functions. To formulate our main results, we first
introduce some standard notations and definitions.

We fix an integer d > 2 and denote R (resp. IN¥) the set of d-dimensional column
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and row vectors (with the abuse of notation) with real (resp., non-negative integers)
coordinates; for any column vector x = (xi)1<i<q € R?, we denote ¥ the row vector
X = (x1,...,x4). Let 1 (resp. 0) be the column vector of R? whose all coordinates equal

1 (resp., 0). We fix a basis {¢;,1 <i <d} in R? and denote |.| the corresponding L! norm
d

defined by |x] := Z |x;| for any column vector x = (x;)1<i<4. Let C be the cone of vectors in
i=1
RY with non-negative coordinates

C={xeR¥:x;>0foralll<i<d)
and X be the standard simplex defined by
X:={xeC:|x =1}

Let S be the set of d X d matrices with non-negative entries such that each column contains
at least one positive entry; its interior is S* := {g = (g(}, )1<i j<a/g(i j) > 0}. Endowed
with the standard multiplication of matrices, the set S is a semigroup and S* is the ideal
of S, more precisely, for any g € S* and h € S, it is evident that gh € S*.

We consider the following actions :

— the left linear action of S on C defined by (g, x) — gx for any g € Sandx €C,
— the left projective action of S on X defined by (g,x) - g-x := £ forany g € S and
xeX

For any ¢ = (¢(i, )1<i,j<d € S, let

v(g) == 1r£11<rb(2g1 ])> and |g|:= max (Zg(z ]))

then |- |is a norm on S and for any x € C,

IgXI

0 <o(g) Il < Igx| < Igl Ixl.
We set N(g) := max (%g), |g|> ; notice that N(g) > 1 for any g € S.

We consider a sequence of i.i.d. S-valued random matrices (g,),>0 defined on (Q2, ¥, IP)
with the same distribution y on S; let Ly = Id and L, := g,...g1 for any n > 1. The
associated “random walk” on R is defined by Sg :=a and S, = S,(x,a) := a + log |L,x| for
any n > 1, where a € R is fixed. We are interested in 7 := min{n > 1: S, < 0}, the first
time the random process (S,),>1 becomes non-positive.

Furthermore, from Theorem II.1 in [Hennion et Hervé, 2008], under conditions P1-P3
introduced below, there exists a unique probability measure v on X such that for any
bounded Borel function ¢ from X to R,

(L=v)(p) = / / P(g - Xv(dx)u(dg) = / Pp()v(dx) = v(p).

Such ameasure is said to be p-invariant. Moreover, the upper Lyapunov exponent (defined
in section 2.4) associated with y is finite and is expressed by

Y= /S /X p(g, X)v(dx)u(dg),
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where p(g, x) = log|gx| for any (g,x) € S x X.

Let Py, the probability measure on (€, #) conditioned on the event [Xy = x,Sg = a].
We specify the main hypotheses concerning the distribution u of the matrices under which
we obtain the main results of this thesis.

HYPOTHESES
P1. There exists €9 > 0 such that [ N(g)®u(dg) < oo.

P2. (Strong irreducibility). There exist no affine subspaces A of R? such that A N C is
non-empty, bounded and invariant under the action of all elements of the support of .

P3. There exists ng > 1 such that u**(S*) > 0.
P4. The upper Lyapunov exponent y,, of u is equal to 0.
P5. There exists 0 > 0 such that u{g € S : Vx € X, log|gx| > 0} > 0.

Let V be the harmonic function defined in Proposition 1.1, section 1.5. Then, we obtain
the following result.
Theorem 1 Assume P1-P5. Then for any x € Xanda > 0,
2V (x,a)
oV2nn

Py q(T > n) ~ as n — +oo,

1 . . . .
where 6% = liIIl flEx[Sfl] is the variance of the semi-markovian random walk (S,,)n>0. Moreover,
n—+0oo

there exists a constant ¢ such that forany x € X,a > 0andn > 1,
VP, 4(1 > 1) < cV(x,a).

As a direct consequence, we prove that the sequence (US(;E)”ZL conditioned on the

event T > n, converges in distribution to the Rayleigh law as stated below. It is not of
direct interest for our study of critical multi-type BPRE, but it is a natural question once
the estimate of the tail of the distribution of 7 is obtained.

Theorem 2 Assume P1-P5. Foranyx € X,a>0andt >0,

. Su 2
<« =1 -
ngerPx,a<W_t|T>n> 1 exp( 202>'
Using these results, we are able to make some significant progess regarding the main
topic of this thesis.

Respecting the common notation used in multi-type case, we denote by p the number
of types and then the multi-type Galton-Watson process is a temporally homogeneous
vector Markov process (Z,,),>0 whose states are row vectors in IN’. We always assume that
Zp is non-random. For any 1 < i < p, the i-th component Z, (i) of Z, may be interpreted as
the number of objects of type i in the n-th generation.

We consider a measurable function & = f; from IR to the set of multivariate probability
generating functions f: = ( fél))lsisp defined by :

26 =3 ps?,

aeNP
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for any s = (si)1<i<p € [0, 1]7, where
(i) a = (a;)i € NP and s* = 57" ...sg’g;
(if) pg)(a) = pg) (a1,...,ap) is the probability that an object of type 7 in environment &
has a; children of type 1,..., @, children of type p.
Let (&4)n>0 be a sequence of real valued i.i.d. random variables defined on (Q, ¥, IP).

The Galton-Watson process with p types of particles in a random environment (&;,),>0
describes the evolution of a particle population Z; = (Z;(i))1<i<p for n > 0.

We assume thatforanyn >0,i=1,...,pand £ € R, if &, = £ then each of the Z, (i) par-
ticles of type i existing at time n produces offspring in accordance with the p-dimensional

generating function féi)(s) independently of the reproduction of all other particles.

If Zy = &; then Z; has the generating function :

+o00
fig®) = 2 Pyl
a€NP
To simplify notation, we put f, = f¢,. In general, if Z, = (@;)1<i<p, then Z,;;1 is the sum of
a1 +...+a, independent random vectors, where q; particles of type i have the generating
function f,gl) fori=1,...,p. Itis obvious that if Z, = 0, then Z,;1 = 0.

As in the classical one-type case, the asymptotic behavior of the quantity above is
controlled by the mean of the offspring distributions. We assume that the offspring dis-
tributions have finite first and second moments; the generating functions féz), EeR 1<
i < p, are thus C2-functions on [0, 1]? and we introduce

a9
(i) the random mean matrices M, = (M (i, )<ij<p = ( sz( )) taken from the
] ..
L]
vector-valued random generating function f,(s) at s = 1, namely
OfM) )
dsq ds,
M, = :
fo” (1) fo (1)
851 o QSP

These matrices M, belong to the semi-group S of p X p matrices with non-negative
entries. For any 1 < i,j < p, the coefficient M, (i, j) of the mean matrix M, is the
mean number of offspring of type j produced by individual of type i at generation
n.

. . 0
(ii) the random Hessian matrices B,(f) = (B,(ql)(k, D<ki<p = (3:{(;5[ (1)> ,1<i<p,taken
k1

from the real-valued random generating function f,,(li)(s) ats =1.

For any 1 <i < p, the random variables M, and BY arei.i.d. in n. The common law of
the M,, is denoted by u.
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INTRODUCTION

Recall that L, = M,_1...Mp in this context. By [Furstenberg et Kesten, 1960], if

1
E(max(0,log|Mpl|)) < +oo, then the sequence (n log ILn|> converges [P-almost surely to

nx>1

- .1 . .
some constant limit y,, := hrJ]rn ;lE[log |L,|]. Furthermore, if there exists a constant B > 0
n—+0oo

1 .
such that B < Mu(i,j) £Band 0 < BY(k,1) < B P-almost surely for any 1 < i,7,k, 1 < p,
then the process is positively regular and not singular (see Section 2.2 for the definitions

of these notions); hence, by [Kaplan, 1974], the process (Z,),>0 becomes extinct IP-almost
surely if and only if y, < 0. These conditions seem to be a bit too strong, see (0.0.1) below.

In the present work, we focus our attention on the so-called critical case, thatis y, = 0,
and specify the speed of extinction of the Galton-Watson process. Then we introduce some
proper subset of the interior S™ of the semi-group S which is of interest in the sequel : for
any constant B > 1, let S*(B) denote the set of p X p matrices g = (g(i, j))1<i j<p With positive
coefficients such that forany 1 <7, j,k,[ <p,

1 _gGj)
5 < o) < B. (0.0.1)

~

Additionally, we consider “linear-fractional multi-dimensional generating functions”
f = fym of the form :

1
f(S) = f)/,M(S) =1- mM(l - S), (002)

for any s € [0,1]7, where 7 = (y,...,y) € R? with y > 0 and M € S*. For such a function
f = fym, wesety = y(f) and M = M(f) and notice that M(f) equals the mean matrix

o0 )
( 7 D 1<ij<p’

With the functions f, being linear-fractional generating functions, we specify hypo-
theses concerning the distribution u of the mean matrices M,, = M(f,),n > 1 and the
random variables y(f,),n > 0.

H1. There exists €9 > 0 such that [ N()®u(dg) < co.

H2. (Strong irreducibility). There exists no affine subspaces A of R such that A N C is
non-empty, bounded and invariant under the action of all elements of the support of .

H3. There exists B > 1 such that u(S*(B)) = 1.
H4. The upper Lyapunov exponent 'y, of u is equal to 0.
HS5. There exists 0 > 0 such that u(Es) > 0, where

Es:={geS"|VxeX, logligl > o).

1
He6. There exists B" > 1 such that B <Y(fu) <B" P—as.foranyn > 1.
We recall the result when p = 1.

Theorem 3 [Geiger et Kersting, 2000](Critical case)
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INTRODUCTION

Suppose that Elog f;(1) = 0,

f/l(l)
fry?

0 <E(log f/(1)? < +00 and ( (1+1og, f’(l))) < +oo.

Then, for some 0 < f < +09,

lP(Zn>0)~£ as n — +oo.

\n

Here comes the main results of this thesis.

Theorem 4 Assume that the random variables f, are linear fractional generating functions and
that hypotheses H1-H6 hold. Then, for any i € {1, ..., p}, there exists a number f; € (0, +o0) such
that
lirP VnP(Z, # 01Z = &) = Bi. (0.0.3)
n—+oo

For general generating functions, we obtain the following weaker result.

Theorem 5 Assume that the random variables f, are C>~functions on [0, 1]P such that
1. there exists A > 0 such that for any i, k,1 € {1,...,p},

2 £ 9
8Sk851 (1) < ATSk(l) P- a.s.

()
2. the distribution p of the matrices M,, = (ags"j (1)) satisfies hypotheses H1-H5.
P

1<i,j<
Then, there exist constants 0 < ¢1 < ca < +o00 such that foranyie(l,...,p}, andn > 1,

C2

\n

Notice that by recent work [Vatutin et Dyakonova, 2017], statement (0.0.3) holds in fact
true even when the f, are not assumed to be linear fractional generating functions. The
authors in [Vatutin et Dyakonova, 2017] apply the proof presented in this thesis, adding
an extension to the multitype case of Geiger & Kersting’s decomposition of the extinction
probability and taking into account the residual term which appears in this expression.

c ~ -
ﬁ <P(Z, #01Zp = &) <

This thesis is organised as follow : Chapter 1 provides the conditioned limit theorems
on products of matrices, which is an important tool to find the asymptotic behavior of ex-
tinction probability in BPRE. We recall general results about fluctuations of 1-dimensional
random walk with i.i.d. increments (section 1.1 and 1.2). Then we present general results
for products of random matrices and and fix the notations (section 1.3 and 1.4). The main
part of Chapter 1 is section 1.5. Chapter 2 concerns in more detail Galton-Watson bran-
ching processes in fixed and in random environment. Section 2.4 is the main part of this
chapter with the article that concerns the topic of this thesis. Chapter 3 gives some si-
mulations of the considered Galton-Watson process and the thesis ends with conclusions
with questions for future research.
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Chapitre 1

Random walks on R and products of
matrices

Many limit theorems which arose for the last 60 years, initiated by [Furstenberg
et Kesten, 1960], [Guivarc’h et Raugi, 1985], [Le Page, 1982]... and recently [Benoist et
Quint, 2016], describe the asymptotic behavior of random walks with i.i.d. increments,
for instance the strong law of large numbers, the central limit theorem, the invariant
principle... Moreover, the fluctuations of these processes are well studied, for example
functional central limit theorems for random walks conditioned on staying positive, or
the decay of the probability that the processes stay inside the half real line up to time n
or . A vast literature exists on this subject, see for instance [Bolthausen, 1976], [Iglehart,
1974b], [Iglehart, 1974a], [Iglehart, 1975] or [Kaigh, 1976] and references therein. The
Wiener-Hopf factorization is usually used in this case and so far, it seems to be impossible
to adapt in non-abelian context.

Recently, much efforts are made to apply the analogue results above for the logarithm
of the norm of the product of i.i.d. random matrices since it behaves similarly to a sum of
ii.d. random variables. Let us mention also the works by [Hennion, 1984] and [Hennion
et Hervé, 2008] for matrices with positive entries. However, the studies on the subject
of fluctuation was quite sparse a few years ago. Thanks to the approach of [Denisov
et Wachtel, 2015] for random walks in Euclidean spaces and motivated by branching
processes, I. Grama, E. Le Page and M. Peigné recently progressed for invertible matrices
( [Grama et al., 2014]). Here we propose to develop the same strategy for matrices with
positive entries by using [Hennion et Hervé, 2008].

In this chapter we tend to find the asymptotic behavior of the random process S, =
log|M,, ...M;x|, where M, are independent and identically distributed (i.i.d.) random
positive matrices and x is a random vector in R**. Notice that the increments S, — S,,_1
of this random process are not i.i.d. which is the main difference from classical random
walks on R.

First, we discuss random walks with i.i.d. increments and second, investigate the
Wiener-Hopf method used to obtain those results and the difficulties arising in the case of
non-i.i.d. increments, in particular for processes (S;).>0 over products of random matrices
as introduced above. Third, we consider the results obtained for products of random
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1.1. RANDOM WALKS WITH LI.D. INCREMENTS

positive matrices. Last but not least, some brief knowledge about Lyapunov’s exponent
is recalled for later use in an article put at the end of the present chapter.

1.1 Random walks with i.i.d. increments

The theory and applications of random walks are omnipresent in the modern proba-
bility literature, and random walks perhaps present the simplest and the most important
examples of stochastic processes. Let (Q, F,P) be a probability space. If we think of
X1,Xp, ... defined on (Q, , IP) as the gains or losses of a gambler on successive plays of a
gambling game, his cumulative gains or losses on the first n plays equal the partial sums

S,:=5+X1+...+X,,

where S is the initial fortune of the gambler. The behavior of the “random walk” (S,,),
describes the evolution of the gambler’s fortune. The simplest non-trivial case is to let
Xj, X2, ... be independent with distribution u and the basic operation that forms the nth
convolution powers are i, u? = p*p, ..., g = p*u 0.

When Sy = 0, one says that the random walk (S;),>0 starts from 0. One of the main
tool to study random walks is the characteristic function of the increments X,,, defined by

((t) == E[exp(itX,)] = /eitxy(dx);

it contains all the information on the distribution . Since the increments are i.i.d., we can
interprete the characteristic function of S, as follows

E[exp(itS,)] = / e (dx) = p(b).

Thanks to this expression, the asymptotic properties of (S,).>0 are closely related to the
local behavior near 0 of the function {I. The basic dichotomy of transience or recurrence
for random walks can be expressed in terms of characteristic functions, which extends to
locally compact abelian groups, like how the Fourrier analysis does to the general setting
of random walks on groups.

The transience-recurrence dichotomy of random walks depends on the existence of
the Green potential,

+00
G(x,dy) ==Y P"(x,dy).
n=0
If the Green potential is a Radon measure, that if G(x, K) = ZZ:(’) P*"(x,K) < 400 for every
x € R and any compact set K C IR, then the according random walk is transient, otherwise
the random walk is recurrent.
furthermore, since random walks are particularly simple and important Markov pro-
cesses, their potential theory is developed accordingly, where the concept of harmonic
function plays a crucial role to illustrate generalized results of classical potential theory.
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1.2. WIENER-HOPF FACTORIZATION METHOD

Formally, a function f is harmonic if it satisfies the equation Pf = f, where P is the
transition operator of the random walk (S;),>0; in other words, for every x € R,

fx) = /R FW)PC,dy) = /R Fx+ Du(dz).

Nevertheless, while the Fourrier and potential theory are classical tools, the coupling
method is more recent : we consider two independent processes on the same probability
space with given distributions, and seek to compare those distributions by comparing
the processes themselves directly. Proving the convergence theorem for Markov chains
and renewal theorems are two of the most successful applications of the coupling method
[Lindvall, 1992].

Much of the core of classical probability theory is concerned with the limit theory of
a sequence of partial sums S,, for example the following classical limit theorems : the
strong law of large numbers, the central limit theorem, the law of iterated logarithm, the
large deviation theorems... Informally, we concern with S, as n — +o0. As the number
of steps increases, the influence of each step decreases. Thus, we may expect a setting
of a stochastic process in continuous time and state-space, which is indeed true. In the
simplest case when the X, have finite variance then the limiting process obtained is a
Brownian motion. The necessary tool to handle the passage to the limit is the theory
of weak convergence of probability measures, see Billingsley [Billingsley, 1968] for an
excellent reference.

It frequently happens that we need to deal with a random walk in which we want
to condition on some event by time 7, that this event may have small probability and
vanishing in the limit. The classical method used to study the rate of convergence of a
random walk on Markov chain is spectral theory. If the transition matrix of the chain
is P, then the nth step transition matris is P". Using Perron-Frobenius theorem, we can
decompose the transition matrix as P = I + R, where IT is the diagonal matrix of the
Perron root 1 and the convergence behavior of P" is determinded by the second greatest
eigenvalue of P. Random walks in random environment is a variant of random walk to
model aspects of natural phenomena.

1.2 Wiener-Hopf factorization method

The idea of taking a function which is defined on a strip in the complex plane and
expressing it as a product of two functions in which each functions is defined in a half-
plane intersecting at this strip and analytic in their interior allows us to use the powerful
tools of complex analysis. It may be traced to the work of Wiener-Hopf [Paley et Wiener,
1987] and is known as the Wiener-Hopf factorization [Feller, 1968].

Let (X,,)s.>1 be a a sequence of real valued ii.d. random variables on (Q, ¥, IP). We
consider the random walk on R defined by So =0and S, := X; +...+ X, foreveryn > 1,
where the X arei.i.d. random variables with distribution u. Let C denote the characteristic
function of the Xj.

In order to study the first passage of a random walk to some given set A, it is often
useful to consider the joint distribution of the couple (N, Sy), where N is the hitting time
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1.2. WIENER-HOPF FACTORIZATION METHOD

of the random walk to A. Thus, to get some information about the distribution of this
couple, it is natural to keep in mind the “time” for all the process (S,),>0 and to consider
the process (1, S5,),>0 on IN X R; the characteristic function of this couple is a function
®(s, t) of two variables s and t, defined by @ : (s, t) — Y15 E[s"¢!*%], for every s €] -1, 1]
and t € R. It holds, foreverys €] —1,1[ and t € IR,

(s, t) = ZIE[s”eZtS ]= Zs“ﬁ(t)” = —1C ok (1.2.1)

n=0

In this subsection, we study the first passage of (Sn)n=0 to the subset ]0, +oo[ and its
complement ]| — oo, 0]. Namely, with the convention inf ) = +co, we define

I":=infln >0:5, >0} and I":=inf{n >0:S, <0}.
Set I = I; = 0 and for every k > 1, let [, [ be respectively the (strict) ascending and
descending k''-ladder epoch of the walk (S,,),>0, defined inductively by
fr=infln>15_;:5,>S: } and  [L:=infln>[_;:S5, <5 }.

For k > 0, the random variables [ and I are stopping times with respect to the random
walk (Sn)nZO-

By [Spitzer, 1976], we know that the random walk (S;),>0 may have three main
behavior :.

1. Either S, = +oco TP-a.s.; in this case E(I*) < +oo (in particular P(I* < +c0) = 1)

and P(I~ < +o00) < 1.
2. Either S, —» —oo IP-a.s.; in this case [E(I”) < +o0 and P(I" < +o0) < 1.
3. Or (Sy)nx0 oscillates, namely

liminfS, = —0 [P-a.s. and limsupS, =+co P-as.

n—eo n—>+00
In this case IP(I~ < +00) = P(I* < 4+00) =1 and E(I") = E(I*) = +c0.

For instance, assume that [E(|Xy|) < +o0; cases (1), (2) and (3) correspond respectively to
the conditions [E(X}) > 0, E(X;) < 0 and [E(X) =0

From now on, we assume that (S,),>0 oscillates, that is the stopping times [~ and [*
are finite [P-a.s.; this property holds in particular when the X,, have finite expectation
and are centered. In this case, for k > 0, all the random stopping times [; and I;_ are finite
IP-a.s. By a straightforward argument, one may check that the random variables [ - I_,,
fork > 1, arei.i.d. with the same distribution as I* (similarly the random variables l -l
for k > 1, are i.i.d. with the same distribution as [7). Furthermore, the random sums Sl;
and Sl; are well defined and the random variables Sl,j — Sll-:—ll for k > 1, (resp., the random
variables Sl; - Sl;_l, for k > 1) are also i.i.d. with the same distribution as S+ (resp., S;-).

For every sin [0, 1] and every t € IR, it holds
—_— }

Z]E[Sn ztS - E an itSy +E

an itS, ]
n=I+
'l*—l -

+00
- E an itS, + ]E[Sl+eit51+] ZIE[SkeitSk],

k=0
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1.2. WIENER-HOPF FACTORIZATION METHOD

which implies

I*-1

]E[Z s'e ltSn IE[Z s'e ztSn - E[Sl+eit51+]}_l. (1.2.2)

The random vectors (X1, X», ..., X,;) and (X, X;—1, ..., X1) have the same distribution :
this is the so-called duality property. By using the definition of I* and duality property, we
obtain

It-1
E[) s = ZIE[S” #Sn 1+ > p] (1.2.3)
= ZIE[s”eitS";Sl <0,...,5, <0]
+00 ‘
= Z]E[s”e”s" ;81 < Sp-1,..., 8, <0]
= Z]E neitSu; Jk > 01 = I1]
+00 +00 s
= X:Z:JE[SZI:eZ on=10]
n=0 k=0
= Z]E e, (1.2.4)
Notice that
{1-E[s T = Z(]E etk = Z]E e ] (1.2.5)
{1—E[s" et )1 = Z(]E[s’*eif51+])k - Z E[s%e . (1.2.6)
k=0 k=0

From (1.2.2), (1.2.4) and (1.2.5), we obtain
IE[ZS” ltSn] _ 1 IE[SI eltS,—]} 1{1 IE[SI elt51+]}

Therefore, from (1.2.1), it yields
1-sC(t) = (1 — E[s" " )1 - E[s" 5+ )), (1.2.7)

in which the right side contains two characteristic functions of measures which are sup-
ported on | — oo, 0] and ]0, +oo[, respectively.
We take into account some basic formal calculations which may be useful later :

1 +00 +00 xn
1_x:Zx” and log(l—x):—zg
n=0 n=0
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1.2. WIENER-HOPF FACTORIZATION METHOD

too 4

which implies 1-x = exp(log(1-x)) = exp <— Z %) . Therefore, we may also decompose

n=1

formally 1 — sC(t) as

+00

1-sC(t) = exp ( - Z %E[eiﬂ;n])
n=1

+oo 4, ‘ too 4 ‘
= exp [— > %E[elfsn iSu>01=) %]E[e”s" ;Sn < 0]]

n=1 n=1
+00 Sn ) +00 Sn ‘

= exp |- Z ;]E[e”S”;Sn >0]| exp |- Z ;lE[eltS”;Sn <0]|, (1.2.8)
n=1 n=1

in which the right side contains also two characteristic functions of measures supported
on ] — o0,0] and ]0, +oo[, respectively. Some may call these functions the left and right
Wiener-Hopf factors. Thus, comparing decompositions (1.2.5), (1.2.7) and (1.2.8) yields

+o0 -1 +o00
- - itS st
1-E[s" 5] = {,?_0 E[s’ ek ]} = exp [— E ;E[elts";sn < O]]

n=1

and
+00 s -1 +o0 §h
+ 7 + 1o+ 1
1-— ]E[Sl elt51+] = {kz(; E[Slke I ]} = exp [— z; ;:[E[eltSrl’- Sn > 0]] .
= n=

This is the so-called “Wiener-Hopf factorization” which furnishes a simple beautiful but
also powerful expression of the quantities E[s" ¢ ] and ]E[sﬁe”fsl+ ].
To be continued, notice that by (1.2.3) and (1.2.5) it holds

+00
an]E[eitSn;l+ > n] — {1 _ E[Sl’eitsr]}—ll

n=0

and similarly,

+00
> S"E[e"; 17 > n] = {1 - E[s e ) (1.2.9)

n=0
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1.2. WIENER-HOPF FACTORIZATION METHOD

We set t = 0in (1.2.9) and obtain

> P >n) = {1-E[ )T
n=0
= exp (Z %]P(Sn > O))
n=1
= exp (ZSZ <]P(Sn >0) — ;)) exp (; SZ)
n=1 n=1
o §" 1 1
= exp (nz:; m (]P(Sn >0)— 2)) exp (—2 log(1 - s))
= ! exp i s <]P(Sn >0) - 1) . (1.2.10)
1-s on 2

With the assumptions [E(X;) = 0 and E(X2) < +oo, the central limit theorem for ran-
dom walks on R yields lim;,_, 1. IP(S;; > 0) = % ; consequently % (IP(Sn > 0) — %) = % as
n — +oo. Under a stronger assumption E(X2™) < +oco for some 6 €]0,1[, a straight-
forward generalization of the Berry-Essen’s theorem [Chow et Teicher, 2012] yields
|]P(Sn >0) - %‘ < nb% for some constant C > 0, which implies

+00

1 1
E ‘ (Su > 0)

n=1

< +o00. (1.2.11)

Property (1.2.11) holds in fact under the hypothesis E(X2) < +oo, the proof is quite
technical (see [Spitzer, 1976]).

Now, let us briefly explain how to get the asymptotic behavior of the probability
P(I” > n); indeed, by (1.2.10) and (1.2.11), one may write

isnﬂj(l_ >n) = e (1 + o(s))

=0 V1 -5
+00 1 1
witha := Z . (]P(Sn >0) — 2> and o(s) — 0ass — 1. By a Tauberian theorem for power
n=1
series [Feller, 1968], it follows that % Z,’j:l P~ > k) ~ j;_n as n — +oo; using the fact that

the sequence (IP(I” > n)),>1 decreases, one concludes
o

Vi

The same approach leads to a more general statement (we refer to [Le Page et Peigné,

1997] for the details). For every a > 0, let 7, be the first entrance time in | — oo, —a] of the
random walk (5,,):>0 starting from O :

P >n) ~

as n — +oo.

T, :=inf{n >0: S, < —a}.
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1.3. PRODUCT OF RANDOM MATRICES

For a = 0 it holds 7, = I". One may prove that there exists a positive constant ¢, such that

c
P(t, >n) ~ —= as n— +oo.

\n

The constant ¢, may be expressed in terms of the renewal function of the increasing ladder
random walk (S;+),>0 and its behavior at infinity is controlled as follows : there exists a
positive constant ¢ such that ¢, ~ ca as a4 — +oo. Furthermore, the function a - ¢, is
harmonic for S, killed at leaving ]0, +ool.

It is worth mentioning that Wiener-Hopf method is powerful as one does not need to
impose any moment conditions on the random walk; indeed, other estimates as above
exist for random walks belonging to the domain of attraction of any stable distribution.
Nevertheless, it is based on the fact that (IR, +) is abelian and that its bounded characters
are the functions x +— ¢ for t € R. The fact that the increments are independent and
identically distributed is crucial in order to use the characters of the group as test functions ;
the decompositions (1.2.7) and (1.2.8) and the pairwise identification of the factors are
based on this key point.

In the following sections, we obtain a similar result for the process (log |M,, - - - M1x])n>1
where M,, are i.i.d. d X d random matrices with non-negative entries and x is an arbitrary
vector in (R**)4. By classical cocycle properties introduced to study products of random
matrices, the random variable log |M,, - - - M1 x| may be decomposed into the sum of real va-
lued random variables Y} ; unfortunately, the “increments” My of the product of matrices
M --- M, are ii.d. but this property fails for the increments Y}. Let us emphasize that the
process (log|M,, - - - M1x|)n>1 is not a Markov chain on R. Nevertheless, the matrices M
act projectively on some compact space X (see the next paragraph); this action yields to
some Markov chain (X,).>0 on X, starting from x. The key point of this construction is
to notice that the process (X, log |[M,, - - - M1x]),>0 becomes a Markov chain on X X R and
that the distribution of the increment Y} = log|My - -- Mix| — log |[Mj_; - - - M x| depends
only on Xj_;. The process (X,,log|M,, - - - M1x|)u>0 is called a semi-markovian random walk
on X X R; for short, one often say that (log |M,, - - - M1x]),>0 is a Markov walk on R.

This explains why we have to use a different approach from the Wiener-Hopf factori-
zation to study the fluctuations of the process (log|M,, - - - M1x|),>0. Recently in [Denisov
et Wachtel, 2015], D. Denisov and V. Wachtel developed a new strategy to get such results
for the first exit time of cones in the context of random walks on the Euclidean space
RY,d > 2; it is based on the weak invariance principle for random walks, with a control
of the rate of convergence. Grama, E. Le Page and M. Peigné adapted their approach to
sums of dependent real valued random variables and applied it to a wide class of Markov
walks on R, including the processes (log|M,, - - - M1x|),>1 mentioned above.

1.3 Product of random matrices
Product of random matrices is the object of many investigations and many limit

theorems exist in this context : for instance, the law of large numbers, the central limit
theorem, the large deviations principle (see [Bougerol et Lacroix, 1985] and references
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1.3. PRODUCT OF RANDOM MATRICES

therein). Unfortunately, since there is not any type of Wiener-Hopf factorization which is
available in the theory of fluctuations of products of random matrices, it remains to be
studied. In 2015, Denisov-Wachtel presented a new approach to studies of random walks
in Euclidean spaces and their fluctuations with respect to some cones. This approach is
totally different from the others before and based on weak functional limit theorems for
random walks, with a control of the rate of convergence.

In the following subsections, we introduce some notations used in the article presented
in this chapter and present some elements of proofs.

1.3.1 On the semi-group of matrices with non-negative entries

We fix an integer d > 2 and denote IR? the set of d-dimensional column vectors with
real coordinates; for every column vector x = (x;)1<i<s € R?, we denote % the row vector
X :=(x1,...,x4). Let 1 (resp. 0) be the column vector of R? whose all coordinates equal 1
(resp. 0). We fix a basis {e;, 1 < i < d}in R? and denote | - | the corresponding L'-norm and
(, ) the usual scalar product on R,

Let S be the general linear semi -group of d X d matrices with non-negative coefficients
such that each column contains at least one positive element; we denote S* the interior
of S, that is the set of matrices with all strictly positive coefficients. Let us endow S with
the L!-norm : for every matrix M in S, where M = (M(i, f)); j» then the norm of matrix M
is defined as follows

d
M) := max ;M(l, -

For any M, N € S, it holds |[MN| < |[M] |N|. Set C := R*) and X:={x e C: |x| = 1}.

Matrices in S act linearly on the cone C, this property is crucial in the sequel; they also
act on X as follows :

VM e S5 VxeX M-x::LMx.
|Mx|
We mention [Hennion, 1997] for further information about a distance denoted by d that
we endow X with. This distance d is a variant of the Hilbert metric, bounded on X and
every element g in S acts on (X, d) as a contraction. We summarise its construction and its
major properties as follows. For every x, y in X, we write :

m(x,y) = sup{A e R*|Vie(l,...,d}, Ay < xi)
= min{;IVi =1,...,d such that y; > 0}

It follows that 0 < m (x, y) < 1 and we define
d(xy) =¢[mxy)m ()],

1-—
where ¢ is the one-to-one function on [0, 1] defined by ¢ (s) := -=

1+s
For M € S, let c (M) := sup {d (M-x,M-y),x,yEX}.
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1.3. PRODUCT OF RANDOM MATRICES

Proposition 1.3.1 [Hennion, 1997] The function d is a distance on X which satisfies the
following properties.

1. supld(x,y) | x, ye X} =1.
2. For every M = (M(i, j))i,; € S,

_ IM(, j)M(k, I) — M(, )Mk, j)I
M) = IaX MG, )Mk, D) + MG, DM, )
In particular c(M) < 1 for every M € S*(B).
3. dM-x,M-y) < c(M)d(x,y) < c(M) for every x, y € Xand M € S.
4. ¢(MN) < c(M)c(N) for every M, N € S.

1.3.2 On some sub-semigroup of S* and its contraction properties

We consider some proper subset of S* which is of interest in the sequel : for every
constant B > 1, let $7(B) denote the set of d X d matrices M = (M(i, f))1<; j<a With positive
coefficients such that forany 1 <17, j,k, 1 <d,

1 < M(, j) <B.
B = Mk,

By Proposition 1.3.1, there exists kg € [0, 1] such that ¢(M) < «xp for every M € S*(B).

Indeed, we consider the function D : (x, y,z,t) — Iig;i: on the compact set [%, BJ*. Since D

is continuous on the given compact set, D attains its maximum here, that is the constant
xy —zt
Kp:=  max Iy | belongs to [0, 1] and depends on B.
(yzbeld Bl Xy + zt|
Denote by Ts+(p) the semigroup generated by the elements in S*(B). The following
lemma is the key argument to control the asymptotic behavior of the norm of products of

matrices in S*(B).

Notation. Let ¢ > 0 and ¢, ¢ be two functions of some variable x; we shall write ¢ < Y (or
simply ¢ < 1) when ¢(x) < cy(x) for any value of x. The notation ¢ = Y (or simply ¢ < )
means ¢ < Y < ¢.

Since [M| < |[M|" < d|M] for any matrix M in S, where |M|" := Z?,j:l M(i, ), then without
loss of generality, we locally use the norm | - |" in Lemma 1.3.2 and the same notation | - |
for the new norm.

Lemma 1.3.2 There exists c > 1 which depends on B such that for every M,N € Ts+p) and
x, yeX,

1. |Mx| = M| and | §M]| = |M],

2. [jMx| = M|,

3. [MN| = |[M]||NI.
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1.3. PRODUCT OF RANDOM MATRICES

We begin with the proof of Furstengberg-Kesten [Furstenberg et Kesten, 1960] and
then present an alternate proof which is based on spectral theory of matrices and contains
ideas from geometric arguments; this new proof may be used in work in progress on
stochastic dynamical systems generated by affine maps in R?.

The proof of Furstengberg-Kesten is based on the following simple result.

Lemma 1.3.3 For every n > 1, any matrices My, ..., M, in S*(B), letting L,, :== M, ... My, it

holds : . L)
C L L] 2
Vi, jki1=1,...,d B2 Lk S < B-.

Proof. For n = 1, it is obvious. For n > 2, setting L,,_1» = Mj,_1 ... M (with the convention
L1,2 = I), it holds

LG, j) _ 2rsmt Ma(i,)Lu-12(r,)Ma(s, )
Lu(k, ) — >0emi My(k, r)Ly—12(r, $)Ma(s, ])
> ore=1 Mmax My(i’, j)Ly-1 (7, s) max M1(1 i)

< 1<i’,j’<n
< 7 -
er 1 1<IZI,1},ILHM n(?’ r] )Ln—l,Z(rl s) l;{’t}gan(l /] ")
< B2
Similarly,
" M L M, 7

Lt ) 2=t o, M 209, i, M)y
LoD = iy max Mu@, )lur2(r9) max M(?,j) = B2

O
Proof of Lemma 1.3.2. By Lemma 1.3.3, for every M € Ts+gyand 1 <, j, k,I < d, it holds

MG, ) E Mk,

which yields

M| = ZM(Z ) Mk 1. (1.3.1)
i,j=1

Then, further properties can be easily deduced from (1.3.1). Indeed, the assertions we
need are obvious by noticing that for any x, y € X and for any M, M’ € S*(B),

d
. dSBZ
|Mx| = E M@, j)x; < M|,
i,j=1

d

. d2BZ
JMx = Z yiM(@, j)xj =< M|,
i,j=1

37



1.3. PRODUCT OF RANDOM MATRICES

d
/ . . 1 4B /
IMM'| = )~ MG, )M’ (j k) "< IMIIM'].
i,jk=1

O
We present an alternative proof of Lemma 1.3.2 which is based on the analysis of
the spectrum of elements of S*(B); we expect that this approach may be useful for a
larger class of matrices. We only get into the details for the assertion [Mx| < |M], the other

assertions are easy consequences.

Before getting into the proof, let us state a useful lemma.

Lemma 1.3.4 Ford > 2, there exists a compact set included in the interior of X, denoted by X,
such that M - x € Xp for every M € Ts+g)y and x € X.

Proof. Step 1 : Assume that the matrix M belongs to S*(B), where M = (M(i, /)1, j<4- For
everyi,j=1,...,d,
MG, ) 1

<M . 6]’, ei> = d )
> k=1 M(k, j) Zk 1 I]\\/I/I((z ]])

d
Thus M -e¢; € [i‘ L} . Fix eg > 0 such that

which implies that (M - ej, ey € [ B’ 141

1
B’ 1+ }
[d%; p%l} C [ep;1 — el and set Xg := XN [eB;l —eg]?;itholds M - x € X5 for every x € X
and M € S*(B).

Step 2 : If M € Ts+p), then there exists some k > 1 such that M = M; ... M; with
My, ..., My € S7(B). For k = 1, the vector M - x belongs to Xg by Step 1. For k > 1,
the Vector M, ... My - x belongs to X which yields M- x = M; - (Ma... M - x) € Xp.
O

Remark. First, we recall general results on spectral theory of matrices. Let M € Ts+ ),
then its characteristic polynomial is Py1(A), expressed by

Pup(A) = det(M — AI) = (A = A)* ... (A — A,)%,

where Ay, ..., A, are eigenvalues of M with respective algebraic multiplicities ay, ..., a.
For 1 < j < m, we denote by H,, the real part of the characteristic space of A; :

Hjy.

]

Re (Ker(M iyl jl)“f)
- {x eRY| Ay e RY, x + iy € Ker(M — )\jl)"‘f}
= {v+z7 | ve Ker(M—)\jI)“f} .
It is noticable that H,; are M-invariant subspaces of RY. By Cayley-Hamilton’s theorem,

it holds that C¥ = 69’171:1 Ker(M — A;I)*, which implies

R'=@&H
—_ ! A].
=1
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1.3. PRODUCT OF RANDOM MATRICES

Since M has positive entries, by Perron-Frobenius’ theorem, its spectral radius is the simple
real dominant eigenvalue, denoted by Ay;. Without loosing generality, we suppose that
Am = Aq, then a; = 1. Corresponding with Ay is the eigenvector uy in X. Since Ay is
dominant, all the other eigenvalues A; have modulus stricly less than Ay, for 2 < k < m.

SetHy := 69;-”:2 H A and notice that Hy; € C°U{0}. Indeed, if there exists some u € C such
that u € Hy and |u| = 1, then d(M" - u, M" - up) = c(M™)d(u, upm) < %, so that M" - u — up
as n — +oo. This contradicts the fact that u € Hy and Hy is an M-invariant subspace of
RY.

Therefore, by the inclusion Hy; € C° U {0}, there exists a positive constant 6p (Which
only depends on B) such that |cos(#,0)| = [(u,v)| < 1 — 6p for every u € Hy and v € Xp
such that |u| = 1.

Alternative proof of Lemma 1.3.2. Recall that Xz is defined in Lemma 1.3.4. We begin
to prove a part of the first assertion of Lemma 1.3.2, that there exists a positive constant

C
Cp such that |Mx] = IM| for every M € Ts+p) and x € X.

Let us fix x € X. The inequality |[Mx| < |M] is obvious; let us prove the converse
inequality, up to a multiplicative constant. If M € 5*(B), the conclusion follows from the
definition of S*(B) (IMx| > ;|M]). Assume that M = M; ... My, where My, ..., My € S*(B)

fork > 2;set My x_y = M; ... My_1, then M = M; y_1 My, which yields [Mx] = ‘Mllk_llﬁ—:j‘d x
|Mjx| with ﬁ’;il € Xp by Lemma 1.3.4. The conclusion follows if we can prove that
VN € Ts+), Yy € X3 INy| > ClBINI. (1.3.2)
Indeed, the assertion follows by taking into account that (1.3.2) implies
My = ]Ml,k_llM:fd X M
> ClB|M1,k—1| X élel
> M

where the last inequality follows from the fact that |[AB| > |A||B| for two matrices A and B.

It remains to prove inequality (1.3.2); we fix N € T+ and y € Xp. With the convention
1=(1,...,1), for A € R, notice that (A1 + C°) N Xp # 0 if and only if there exists a positive
constant ep that depends on B such that eg < A <1 - €. The vector y can be decomposed
asy = Al +y’,whereeg <A <1-epand y’ € Hy C C°U{0}; consequently Ny = AN1+Ny’
with Ny’ € Hy € C°U{0}. The L2-norm of the vector Ny satisfies the following inequalities :

INyIlE = AZINTI3 + INY'I + 2A¢N1, Ny)
AZINIG + INY/I5 + 24 cos(NT, Ny )INTILIINY Il

> A2IN1IB + INY'IB - 21211 - 6 INLILINY Il

2
= 22(1- (=002 INUIB + (AL - om)INL ~ INY/ )
> € (1 (- 53)2)||N1||§.
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1.4. LYAPUNOV EXPONENT FOR PRODUCT OF MATRICES IN S*

Hence, for every x € C, the double inequality [|x]> < |x| < Vd||x|l, and the fact that
|M| = |M1] yield

1-(1-06p)?

3 INI,

INyl > [INyll > eg /1 — (1 — 65)?IN1ll2 > €

which is the inequality (1.3.2) with Cz! := €5/ %.

1.4 Lyapunov exponent for product of matrices in S*

In this section, we give the definition of the upper Lyapunov exponent y which gives
the exponential rate of growth of the norm of products of i.i.d. matrices. We only speak
of Lyapunov’s exponent for positive matrices. For the case of invertible matrices, readers
can find in [Bougerol et Lacroix, 1985].

Let L, denote the left product L, := M, ... M;, where My, M,,... are ii.d. random
matrices in ST with common distribution u, defined on the probability space (Q, ¥, P).
It is well known that |L,| < [M,]...|M;l|. If E(log® |[M;]) < +co then log™ |L,| is integrable.
Furthermore for any n,p > 1,

E[log* ILnip]l = E[log|Myip...My41...Mi]]
E[log IMy+p...Mp+1| + log [M},...M]]
E[log |Ly|] + E[log |Ly|].

IA

Therefore, the sequence (E[log |L,|];>1)n>1 is sub-additive and
LElog ILull — 7y = inf —Ellog Ly]
p LOB V= 0 o8
asn — +oo with y, € RU {—co}.
Definition 1.4.1 If E[log" |[M;|] < 400, then the upper Lyapunov exponent associated with u

is the element 7y, of R U {—oo} defined by y,, = lirP %IE[log |Lul].

The convergence of the quantity %]E[log IL4|] towards y, may be strengthened as follows.

Theorem 1.4.2 [Bougerol et Lacroix, 1985] [Benoist et Quint, 2016] If E[log™ |M;]] < +co,
then

.1 _
nli)rfm " log|Ly| =y, P-as.

The upper Lyapunov exponent of u has an explicit expression, under stronger as-
sumptions on the semi-group generated by the support of u (namely, conditions P1-P3
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1.5. CONDITIONED LIMIT THEOREMS FOR PRODUCTS OF POSITIVE RANDOM
MATRICES

introduced below); from Theorem II.1 in [Hennion et Hervé, 2008], under these condi-
tions, there exists a unique probability measure v on X such that for every bounded Borel
functionp : X - R,

(u*v)(p) = /S /X P(g - X)v(dx)u(dg) = /x Pl)v(dx) = v(@).
Such a measure is said to be y-invariant. The Lyapunov exponent y, is expressed by
7= [ | ptgomdnug),
s Jx
where p(g, x) = log|gx| for any (g, x) € S x X.
1.5 Conditioned limit theorems for products of positive random
matrices

This section presents the article published in 2018 in the journal “Latin American
Journal of Probability and Mathematical Statistics". For the sake of unification, we change
the notation S in the following article into S*.
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Conditioned limit theorems for products of positive
random matrices

Thi Da Cam Pham

Institut Denis-Poisson, Université de Tours, Université d’Orléans, CNRS, Tours, France.
Parc de Grandmont,
37 200 Tours, France.

E-mail address: Thi-Da-Cam.Pham@lmpt.univ-tours.fr

Abstract. Inspired by a recent paper of I. Grama, E. Le Page and M. Peigné, we
consider a sequence (g, )n>1 of 1.i.d. random dx d-matrices with non-negative entries
and study the fluctuations of the process (log |gy, - - - g12|)n>1 for any non-zero vector
z in R? with non-negative coordinates. Our method involves approximating this
process by a martingale and studying harmonic functions for its restriction to the
upper half line. Under certain conditions, the probability for this process to stay
in the upper half real line up to time n decreases as ﬁ for some positive constant
c.

1. Introduction

Many limit theorems describe the asymptotic behaviour of random walks
with i.i.d. increments, for instance the strong law of large numbers, the central
limit theorem, the invariant principle... Besides, the fluctuations of these processes
are well studied, for example the decay of the probability that they stay inside
the half real line up to time n or functional central limit theorems for random
walks conditioned to stay positive. A vast literature exists on this subject, see
for instance Bolthausen (1976), Iglehart (1974a), Iglehart (1974b), Iglehart (1975),
Kaigh (1976) or Shimura (1983), and references therein. The Wiener-Hopf factor-
ization is usually used in this case and so far, it seems to be impossible to adapt in
non-abelian context. Recently, much efforts are made to apply the results above for
the logarithm of the norm of the product of i.i.d. random matrices since it behaves
similarly to a sum of i.i.d. random variables. Many limit theorems arose for the last
60 years, initiated by Furstenberg and Kesten (1960), Guivarc’h and Raugi (1985),
Le Page (1982)... and recently Benoist and Quint (2016). Let us mention also the
works by Hennion (1984) and Hennion and Hervé (2008) for matrices with positive
entries. However, the studies on the subject of fluctuation was quite sparse a few
years ago. Thanks to the approach of Denisov and Wachtel (2015) for random walks
in Euclidean spaces and motivated by branching processes, I. Grama, E. Le Page

2000 Mathematics Subject Classification. 60J80, 60F17, 60K37.

Key words and phrases. Exit time, Markov chains, Product of random matrices.
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68 Thi Da Cam Pham

and M. Peigné recently progressed for invertible matrices (Grama et al. (2014)).
Here we propose to develop the same strategy for matrices with positive entries by
using Hennion and Hervé (2008).

d

We endow R? with the norm | - | defined by |z| := Z |z;| for any column vector
i=1
x = (2;)1<i<d- Let C be the cone of vectors in R? with non-negative coordinates
C:={zxecR?:Vl<i<duxz >0}
and X be the standard simplex defined by
X:={zeC,|z| =1}.
Let S be the set of d x d matrices with non-negative entries such that each column
contains at least one positive entry; its interior is ST := {g = (9(i, j))1<i,j<a/9(i, J) >
0}. Endowed with the standard multiplication of matrices, the set S is a semigroup
and ST is the ideal of S, more precisely, for any g € St and h € 9, it is evident
that gh € ST.
We consider the following actions:

e the left linear action of S on C defined by (g,z) — gz for any g € S and
rzeC,
e the left projective action of S on X defined by (g,z) — g-x := I%I for any

g€ SandxeX.
For any g = (9(4,7))1<i,j<d € S, without confusion, let

d d
v(g) = 1rgnjigd(;g(i,:i)) and |[g] :== gfgd(;g(z}j)),

then | - | is a norm on S and for any = € C,
0 <w(g) |2 < lgz| < lg| |zl. (1.1)

We set N(g) := max (ﬁ, |g|); notice that N(g) > 1 for any g € S.

On some probability space (Q,F,P), we consider a sequence of i.i.d. S-valued
matrices (gp )n>0 with the same distribution pon S. Let Lo = Idand L,, :== gy, ... g1
for any n > 0. For any fixed = € X, we define the X-valued Markov chain (X7%),,>0
by setting X% := L,, - « for any n > 0 (or simply X,, if there is no confusion). We
denote by P the transition probability of (X,)n>0, defined by: for any = € X and
any bounded Borel function ¢ : X — C,

Pol(z) == /S o(g - 2)u(dg) = Elp(Ls - 7).
Hence, for any n > 1,
Pr(z) = Blp(Ly - 7).

We assume that with positive probability, after finitely many steps, the sequence
(Ly)n>1 reaches S7T. In mathematical term, it is equivalent to writing as

P| JLnestT| >0
n>1

On the product space SxX, we define the function p by setting for any (g, z) € SxX,
plg, ) := log |gz|.
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Conditioned limit theorems for products of positive random matrices 69

Notice that gz = e?(9%) g.z; in other terms, the linear action of S on C corresponds
to the couple (g-x, p(g,x)). This function p satisfies the cocycle property p(gh, x) =
p(g,h-x)+ p(h,x) for any g, h € S and = € X and implies the basic decomposition
for any z € X

n
log |Lnx| =Y plgk, Xi_1)-
k=1
For any a € R and n > 1, let Sy := a and S,, = Sp(z,a) :==a+ > 1_; p(gr, Xx—1)-
Then the sequence (X, Sy)n>0 is a Markov chain on X x R with transition prob-

ability P defined by: for any (z,a) € X x R and any bounded Borel function
P:XxR—=C,

By(z,a) = /S g~ z,a+ plg, x))u(dg).

For any (z,a) € X xR, we denote by P, , the probability measure on (2, F) condi-
tioned to the event [Xo = z, Sy = a] and by E, , the corresponding expectation; for
the sake of brevity, by P, we denote P, , when Sy = 0 and by E, the corresponding
expectation. Hence for any n > 1,

P(z,a) = B[Y(Ly - ,a + log | Ln])] = Eg.a[t)(Xn, Sp)]-

Now we consider the restriction Py to X x Rt of P defined by: for any (z,a) €
X x RT and any bounded function ¢ : X x R — C,

f’#ﬂ(%a) = P(wlxXRj)(xva)-

Let us emphasize that ﬁ+ may not be a Markov kernel on X x RT.

Let 7 := min{n > 1 : S, < 0} be the first time the random process (Sp)n>1
becomes non-positive; for any (z,a) € X x RT and any bounded Borel function
P: X xR —=C,

Pip(z,a) = By o[(X1,81);7 > 1] = E[tb(g1 - @, a + p(g1,@));a + plgr, x) > 0.

A positive ﬁ+-harmonic function V is any function from X x R* to R* satisfying
P,V =V. We extend V by setting V(x,a) = 0 for (z,a) € Xx R . In other words,
the function V' is Py-harmonic if and only if for any x € X and a > 0,

V(z,a) =E; o[V(X1,51);7 > 1]. (1.2)

From Theorem II.1 in Hennion and Hervé (2008), under conditions P1-P3 intro-
duced below, there exists a unique probability measure v on X such that for any
bounded Borel function ¢ from X to R,

(u#v)(p) = /S /x (g - 2)(de)u(dg) = /X o(@)v(dz) = v(p).

Such a measure is said to be p-invariant. Moreover, the upper Lyapunov exponent
associated with p is finite and is expressed by

= / / plg,2)v(dx)u(dg). (1.3)

Now we state the needed hypotheses for later work.
HYPOTHESES

P1 There exists &g > 0 such that / N(g)% u(dg) < +oo.
S
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P2 There exists no affine subspaces A of R such that A N C is non-empty and
bounded and invariant under the action of all elements of the support of u.

P3 There exists ng > 1 such that p*™(S1) > 0.

P4 The upper Lyapunov exponent v, is equal to 0.

P5 There exists 6 > 0 such that p{g € S : Va € X,log|gz| > 6} > 0.

Condition P1 requires exponential moments of the quantity log N(g). Condition
P2 roughly speaking requires that the dimension of the smallest closed semigroup
which contains the support of p can not be reduced. Condition P3 is called “Con-
traction property”, it says that there is a positive probability that after a finite
number ng of times, the product of ny matrices has positive coefficients, then those
products are contracting. Condition P4 does not imply that the event [ > n]
occurs with positive probability when n tends to infinity, so P5 ensures this fact.

In this paper, we establish the asymptotic behaviour of P, (7 > n) by studying
a ﬁJr-harmonic function V. More precisely, Proposition 1.1 concerns the existence
of a ]3+—harmonic function and its properties whereas Theorem 1.2 is about the
limit behaviour of the exit time 7.

Proposition 1.1. Assume hypotheses P1-P5.
(1) For any x € X and a > 0, the sequence (E%a[Sn; T > n]) Lo comverges to
n>0

the function V(x,a) := a — By oM, for (M,)n>o is a martingale defined
i Proposition 2.0.

(2) For any x € X the function V(z,-) is increasing on RT.

(3) There exist ¢ >0 and A > 0 such that for any v € X and a > 0,

%\/(a—A) <V(z,a) <c(1+a).

(4) For any x € X, the function V (x,.) satisfies liT
a—r+00
(5) The function V is ?+ -harmonic.

The function V' contains information of the part of the trajectory which stays in
R* as stated in Theorem 1.2.
Theorem 1.2. Assume P1-P5. Then for any x € X and a > 0,
2V (x,a)

Pyo(T >n) ~ — == as n — +o0,
oVv2mn

o1 . . . .
where 0? := lim —E,[S2] is the variance of the semi-markovian random walk
n—-+oo N

(Sn)n>0. Moreover, there exists a constant ¢ such that for any x € X, a > 0 and
n>1,

VNP o(T > n) < cV(z,a).

As a direct consequence, we prove that the sequence (L,Sﬁ)nzh conditioned to
the event 7 > n, converges in distribution to the Rayleigh law as stated below.

Theorem 1.3. Assume P1-P5. For any x € X, a > 0 and t > 0,

, S, t?
nll}r_‘r_looIP’x,a (\/% <t|7T> n) =1—exp (_W> .
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In section 2, we approximate the chain (S,),>0 by a martigale and in section
3, we study the harmonic function V' and state the proof of Proposition 1.1. We
use the coupling argument to prove Theorem 1.2 and Theorem 1.3 in section 4. At
last, in section 5 we check general conditions to apply an invariant principle stated
in Theorem 2.1 in Grama et al. (2014).

Throughout this paper, we denote the absolute constants such as C, ¢, c1,ca, ...
and the constants depending on their indices such as c.,c,,.... Notice that they
are not always the same when used in different formulas. The integer part of a real
constant a is denoted by [a].

2. Approximation of the chain (S,),>0

In this section, we discuss the spectral properties of P and then utilise
them to approximate the chain (Sy),>0. Throughout this section, we assume that
conditions P1-P4 hold true.

2.1. Spectral properties of the operators P and its Fourier transform.
Following Hennion (1997), we endow X with a bounded distance d such that g acts
on X as a contraction with respect to d for any g € S. For any x,y € X, we write:

— i Tiy,
m(z,y) = @?d{yi lyi > 0}

and it is clear that 0 < m (z,y) < 1. Forany z,y € X, let d (z,y) := ¢ (m (z,y) m (y,x)),

where ¢ is the one-to-one function defined for any s € [0,1] by ¢ (s) := 1—;8 Set-
s
ting ¢(g) := sup{d (9,9 -y),z,y € X} for g € S; the proposition below gives

some more properties of d and ¢(g).

Proposition 2.1. Hennion (1997) The quantity d is a distance on X satisfying the
following properties:
(1) sup{d(z,y) : xz,y € X} = 1.
) o —y| < 2d(x,y) for any x,y € X.
) c¢(g) <1 for any g € S, and c(g) < 1 if and only if g € ST.
(4) d(g-z,9-y) <clg)d(z,y) <clg) for any and z,y € X.
(5) c(gh) <c(g)c(h) for any g,h € S.

From now on, we consider a sequence (gn )n>0 of i.i.d. S-valued random variables,
we set ay := p(gk, Xk—1) for kK > 1 and hence S, = a+ > ;_,a; for n > 1. In
order to study the asymptotic behavior of the process (Sy)n>0, we need to consider
the “Fourier transform” of the random variables ay, under P,z € X, similarly for
classical random walks with independent increments on R. Let P; be the family of
“Fourier operators” defined for any ¢t € R, z € X and any bounded Borel function
v: X —=C by

Pro(@) = [ 0% plg - 2)u(dg) = B, [e"0o(X0)] (21)
and for any n > 1,

P'p(x) = E[e" 181l o(L, - )] = Eq e o(X)]. (2.2)
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Moreover, we can imply that

PUPlg(a) = E|etolonesnn@nnlor,, )]

= B [etemntrtenn) o (X, )| (23)
and when ¢ = 1, we obtain
E, [eitS”] = Pl(x) and E, [eit(‘“"’“+”'+“m+”)} = P"Pl'1(x).

We consider the space C(X) of continuous functions from X to C endowed with
the norm of uniform convergence |.|o. Let L be the subset of Lipschitz functions
on X defined by

L:={p € CX):lplL = [plo +m(p) < +o0},

where m(p) = SUp.,yex %. The spaces (C(X),]| - |oo) and (L,| - |r) are
wpy A

Banach spaces and the canonical injection from L into C'(X) is compact. The norm
of a bounded operation A from L to L is denoted by |A|r 1 := sup ¢y, [Ap[r. We
denote L’ the topological dual of L endowed with the norm |- |1 corresponding to
| - |1; notice that any probability measure v on X belongs to L'.

For further uses, we state here some helpful estimations.

Lemma 2.2. For g € S, z,y,z € X such that d(z,y) < 1,

lp(g,2)| < 2log N(g), (24)
and for any t € R,

jettr(en) — (62| < (4min2lt|log N(g), 1} +2C1t])d(y, =), (2.5)
where C' = sup{Zlog -1~ : 0 < u < 3} < +o0.

Proof. For the first assertion, from (1.1), we can imply that |log|gz|| < log N(g).
For the second assertion, we refer to the proof the Theorem III.2 in Hennion and
Hervé (2008).
d
The following Proposition is a combination of several results stated in Hennion
and Hervé (2008); for the sake of completeness, we present below the main steps of
its proof. Denote e(t) := [ min{2|t|log N(g),2}u(dg). Notice that lim;_, e(t) = 0.
Proposition 2.3. Under hypotheses P1, P2, P3 and P4, for any t € R, the
operator Py acts on L and there exists on X a unique P-invariant probability measure
v. Furthermore,

(1) If I : L — L denotes the rank one operator defined by 11(p) = v(p)1 for

any function ¢ € L and R := P — 11, the operator R : L — L satisfies

I[IR = RII =0,
and its spectral radius is less than 1. In other words, there exist constants
C >0 and 0 < k <1 such that |R™| 1, < Cr"™ for anyn > 1.

(2) There exist e >0 and 0 < r. < 1 such that for any t € [—¢, €], there exist a
complex number \; close to 1 with modulus less than or equal to 1, a rank
one operator Il; and an operator Ry on L with spectral radius less than or
equal to r. such that

Pt = )\th + Rt and Hth = Rth =0.
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Moreover, Cp := sup |P}'|r—1 < +00.
—e<t<e
n>0

(3) Foranyp>1,

supsup E;|p(gn+1, Xn)|P < +o0. (2.6)
n>0zeX

Proof. (a) We first check that P, acts on (L, |- |) for any ¢ € R. On one hand,
|Piploo < |@|oo for any ¢ € L. On the other hand, by (2.5) for any z,y € X such
that = # y,

eitr(9,@) _ oitp(g,y)

|Pro(z) — Pro(y)| o) | P E) —elg-y)
e N (R ”*’ a(.y) D“(dg)
< lplattz( + 20100 + | ('*"(i& 2 eld s e y)) u(dg).
< ploo(4e(t) + 2C1E) +m(e),

which implies m(Pyp) < |¢|oo(4e(t) + 2Ct) + m(p) < +00. Therefore Pyp € L.

(b) Let p*™ be the distribution of the random variable L,, and set

*n d(g "L, 9 y) *n
c(pu™) :=sup /7(1# gz, yeXxFy,.
o= [ S
By hypothesis P3 and Proposition 2.1 (3), it holds ¢(-) < 1. Furthermore, c(u*(™m+m) <
e(p*™)e(p*™) for any m,n > 0; in other words, the sequence (c(p*"))p>1 is sub-

multiplicative. Thus, its limit £ := lim (c(p*")) " does exist and is strictly less

n——+oo
than 1.
The existence and unicity of an invariant probability measure v on X is a direct
consequence of this contraction property, this is Theorem II-1 in Hennion and Hervé
(2008).

(¢) Now, let us achieve the proof of assertion (1) of the Proposition. Let IT be the
rank one projection on L defined by Il = v(¢)1 for any ¢ € L. Let R:= P — 1L
By definition, we obtain PII = IIP = IT and II? = II which implies IIR = RII = 0
and R" = P" —1II for any n > 1.

The same argument as in (a), with ¢ = 0 yields

m(P"g) < m(p)e(u™).
Notice that P"(¢ — IIp) belongs to Kerll for any ¢ € L and n > 0 and that
m(p) < |olL < 3m(p) for any ¢ € Kerll. Hence |[P"(¢ — )| < 3c(u™™)|o|L
which yields

|R" |z = |P" =1z = [P"(I = I)|p—1 < 3e(u™™).

Therefore, the spectral radius of R is less than or equal to k given above.

(d) By Hypothesis P1, the function ¢ — P, is analytic near 0. The theory of
perturbations (see Dunford and Schwarz (1958) Chapter VII, section 6) allows to
extend the decomposition P = II+ R to the operator P, when t is close to 0. Indeed,
for € > 0 small enough, there exists r. € [0, 1] such that, for any t € [—¢; €], the
operator P, may be decomposed as P; = M\Il; + Ry, where the spectral radius of
R; is less than or equal to r. and )\; is the unique eigenvalue of P; with modulus
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greater than r.; furthermore, the eigenvalue \; is simple. In order to control P},
we ask A} to be bounded. Notice that by Hypothesis P1, the function ¢ — P; is
analytic near 0. To prove that the sequence (P}"); is bounded in L, it suffices to
check |A;| <1 for any ¢ € [—¢, €.

When ¢(z) = 1(z), equality (2.2) becomes

PMi(z) = E [eiw@mw)} = \MILA(z) + RML(x). (2.7)

By the theory of perturbations, since ¢ — P, is analytic around 0, the same holds
for the map t — A;; thus, its local expansion near 0 is

t2
At = 1+tAg+5Ag[1+o(1)]. (2.8)

Taking the first derivative of (2.7) with respect to ¢, we may write for any n > 0,
. d
E(ip(Ly, z)e b)) = 2 PP (x)
d
= & T + Ri1(@)
= AP NILA () + AP () 4 (RY)'1(x)
Recall that A\g = 1, pl(z) = 1 and |R™|r—1 < Cr?; hence,

iE(p(Ln, x)) = nXj + M1 (x) — [(RY)'1(x)]i=o0,

1
which readily imply A\j =i liar_l —E[p(Ly, )] =iy, = 0.
n—+oo n
Similarly, by taking the second derivative of (2.7), one may write

, a2
—E(p(Ln,z)%e"Fn?)) = oz (ArTlel(2) + Ri'l(2))

=n(n — DAP2(N)2 () + n AP NI () +
+ 20PN 1 (2) 4+ AP 1(2) + (RY) 1 ().
This equality for t = 0 yields
—E(p(Ln, 2)*) = nAg + Mi1(x) + [(R})"1(2)]i=0

1
so that \j = — ll)ril E]E[p(Ln,x)Q] = —o?. Notice that \j = —0? < 0 by Lemma
n [e o]
5.3 in Bougerol and Lacroix (1985).
Therefore, for ¢ close to 0, expression (2.8) becomes

2
Ae=1- %t2(1 +o(1)),

hence || < 1 for ¢ small enough.

(e) In particular, inequality (1.1) implies |p(g,x)| < log N(g) for any = € X.
Therefore, for any p > 1, x € X and n > 1, Hypothesis P1 yields

p! . p!
Eo|p(gns1s Xn)|P < %Ezeéo\p(gm X)) < %EN(Q)(SO < +00.
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2.2. Martingale approzimation of the chain (Sp)n>0-

As announced in the abstract, we approximate the process (S, ),>0 by a martingale
(M,,)n>0- In order to construct the suitable martingale, we introduce the operator
P and then find the solution of the Poisson equation as follows. First, it is neccessary
to introduce some notation and basic properties. Let go = I and X_; := Xy. The
sequence ((gn, Xn—1))n>0 is a Markov chain on S x X, starting from (Id,z) and
with transition operator P defined by: for any (g,z) € S x X and any bounded
measurable function ¢ : S x X — R,

Po(g,z) = /S 0 y)P((9.2).dhdy) = /S o(h, g - 2)u(dh) (2.9)

(in other words, the measure P((g, ), dhdy) on S x X equals 6., (dy)u(dh)).
Notice that by (2.4), under assumption P1, for any g € S and x € X, the function
h s p(h,g-x) is p-integrable, so that Pp(g, x) is well defined.

Lemma 2.4. The function p: © / p(g,2)u(dg) belongs to L and for any g € S,
s
rzeXandn >0,

P plg.x) = P'p(g - w). (2.10)

Proof. (1) For any z € X, definition of p and (2.4) yield

p@) < /S | og gzl (dg) < /5 2log N (g)u(dg) < (o) /5 2N (g)" u(dg) < +o0,

where ¢(dg) is a constant depending on dy. Hence |p|oc < +00. For any z,y € X
such that d(z,y) > 3, we can see that

lp(g,2) — p(g,y)| < |p(g,z) — p(g,v)|2d(z,y) < 8log N(g)d(z,y). (2.11)

For any z,y € X such that d(z,y) < %, applying Lemma III.1 in Hennion and
Hervé (2008), we obtain

1
- <2log——— <2 2.12
[p(g, ) = plg,y)| < 2log - ) S Cd(z,y), (2.12)

where C' is given in Lemma 2.2. For any z,y € X, by (2.11) and (2.12) we obtain

p(x) - ()] < /S 10(9:2) — plg, )] u(dg)
< [ [8logN(g) + 2C)d(a,y)udg).
S
p(z) - p(v)|

Thus m(p) = sup < 400
(p) z,yeX,x#y d(I, y)

(2) From (2.9) and definition of p, it is obvious that

Pp(g,w):[gp(h7g-w)u(dh) =plg- ),
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which yields
Polg.a) = P(Pp)g.x) = / (Pp) (k. 4)P((g. x), dkdy)
SxX
- /S ()P (9. ). dkdy)
— /Sﬁ(k (9-2))u(dk) = Pp(g - ).

By induction, we obtain ﬁan(g,x) = P"p(g - ) for any n > 0.
O
Formally, the solution 6 : S x X — R of the equation § — P = p is the function

+oo
0:(g,z)— Z?np(gm).
n=0

Notice that we do not have any spectral property for P and p does not belong to
L. However, we still obtain the convergence of this series by taking into account
the important relation (2.10), as shown in the following lemma.

+o0o
Lemma 2.5. The sum 6 = Zﬁnp erists and satisfies the Poisson equation p =
n=0
6 — P8. Moreover,
|Pfloo = sup |0(g,z) — p(g, )| < +o0; (2.13)
geS,zeX
and for any p > 1, it holds
sup sup E;|0(gnt1, Xn)|P < +00. (2.14)
n>0zeX

Proof. (1) Since P acts on (L,| - |r) and p € L from Lemma 2.4, we obtain
Pp € L. Thanks to definition of p, (1.3) and P4, it follows that

o) = [ ptawias) = [ [ otg.apidsintdg) = 5, o

Proposition 2.3 and the relation (2.10) yield for any x € X and n > 0,

P p(g,x) = P"plg-2) = Up(g - 2) + R"p(g - ) = v(p) + R"plg - x) = R"p(g - )

and there exist C' > 0 and 0 < k < 1 such that for any z € X and n > 0,
[R"p(a)| < |R"Bl,, < IR, p |7l < O,

Hence for any g € S and z € X,

+oo
> Pplg,x)
n=1

1—k

+oo +oo C
SZ\P”ﬁ(g~x)|§CZR”= < +00.
n=0 n=0
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+oo
Therefore, the function 6 = Zﬁnp exists and obviously satisfies the Poisson
n=0

equation p = 6 — P. Finally, it is evident that

too
> P'p(g,)

n=1

sup |0(g,2) — plg,)| = sup < +o0.

geS,zeX geS,zeX

(2) Indeed, from (2.6), (2.13) and Minkowski’s inequality, the assertion arrives.
O

Now we contruct a martingale to approximate the Markov walk (Sy,)n>0. Hence,
from the definition of S, and the Poisson equation, by adding and removing the
term P0(go, X_1), we obtain

Sp = a+p(g,Xo)+ ...+ p(gn, Xn-1)
n—1
= a +ﬁ9(go,X,1) 7?0(.9”7)(”71) + Z [9(gk+17Xk) 7?9(9}67)(]@,1)] .
k=0

Let Fo:={0,Q} and F,, :=0{gr : 0 < k <n} forn > 1.

Proposition 2.6. For anyn >0, z € X, a > 0 and p > 2, the sequence (M,)n>0
defined by

n—1
My =Sy and My, := Mo+ Y [0(gks1, Xi) — PO(gk, Xi—1)] (2.15)
k=0
is a martingale in LP(Q, Py o, (Fpn)n>0) satisfying the properties:
sup [Sp, — M, | < 2|PO|loc Py q-a.s. (2.16)
n>0
supn*% supE; o|M,|P < 4o0. (2.17)

n>1 zeX

From now on, we set A :=2|P0|..
Proof. By definition (2.15), martingale property arrives.
(1) From the construction of M, and (2.13), we can see easily that

sup |S, — M,,| = sup ’FG(gO,X_l) — FG(ngn_l)’ <2 |ﬁ9|oo <400 P, ,-as..
n>0 n>0

(2) Denote &, := 0(gry1, Xx) — PO(gx, Xp—1). Thus M,, = Mg—FZZ;é &. Using
Burkholder’s inequality, for any p > 1, there exists some positive constant ¢, such
that for 0 < k < n,

p 1
3 P

(Em,a|Mn|p)% < Cp Exya

n—1

2
E &k
k=0

Now, with p > 2, applying Holder’s inequality, we obtain

, n—1 %
<n'Tw (Z |§k|p> ;
k=0

n—1

2
>
k=0

which implies
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£ 1
o
b _ y
<n2 By Y |GIP<n® sup  Egalél”.
=0 0<k<n—1

Em,a

n—1
>
k=0
Since (M,,), is a martingale, by using the convexity property, we can see that for

any k > 0,

— p p
POk, Xi)| = [Baa 1000011, Xi) ]| < B 1000041, X0 P17,

which implies E, , |ﬁ9(gk, Xk_1)|p < E; . |0(gr+1, Xk)[P. Therefore, we obtain

1 3 1
(E:L‘,a|Mn|p) g S cp <n12) Sup E:E,u|€k|p> S Cpn% Sup (Ez,a|£k|p) '

0<k<n—1 0<k<n—1

IA

cpn% sup [(Em7a|9(gk+1,Xk)|p) 1 + (Ez,a ?G(Qk,kalﬂp) 1/17}

0<k<n-—1

=

< 2cpn% sup (Ew,a|0(gk+lan)|p)
0<k<n—1

5 sup  Eg 4|0(gk+1, Xx)|? and the
0<k<n—1

Consequently, we obtain E, 4| M, |? < (2¢,)Pn

assertion arrives by using (2.14).

O

3. Proof of Proposition 1.1

In this section we construct explicitly a fﬂ.—harmonic function V' and study
its properties. We begin with the first time the martingale (M, )n>0 (2.15) visit
| — 00, 0], defined by

T = min{n > 1: M, <0}.

The equality v, = 0 yields lim infS = —oo P, 4-almost surely for any z € X
n——+oo
and a > 0. Thus, by Lemma 2.6, lim+inf M, = —oo P, 4-almost surely so that
n—-—+oo

T < +oo P, 4-a.s. for any € X and a > 0.

3.1. On the properties of T and (Mpy)y.-

We need to control the first moment of the random variable |Mpn,| under Py; we
consider the restriction of this variable to the event [I' < n] in Lemma 3.1 and
control the remaining term in Lemma 3.4.

Lemma 3.1. There exists g > 0 and ¢ > 0 such that for any e € (0,&0),n > 1,z €
X and a > n%_‘?,

E, a[|MT|;T < n} <2
: =

Proof. For any € > 0, consider the event A, := {0<rl?<ax . |€k| < n%_%}, where
&k = 0(grr1, Xi) — PO(gr, X—1); then

Ez,a[|MT|;T < n} -~ E,. {\MT\;T < n,An] +Eqq {\MT\;T < n,A;](gl)
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On the event [T' < n] N A,, we have |Mr| < |&r—1| < n2~2¢. Hence for any ¢ € X
and a > n%_a,

Ex,a |:‘MT|7T S naAni| S Ez,a |:|§T71|;T S nvAn S n%_2€ S (32)

nE
Let M := max |Mjg]; since |[Mp| < M} on the event [T < n], it is clear that, for
T 1<k<n "

anyxeXar;deEO,

IN

Evo|[MrliT SnAs] < oM A7)

IN

Ez.o {Mn*, MY > n%+25’A; + H%JFQEPL,I(A%)
+oo Ly
< /%HE Pouo(M: > t)dt +2n2 TP, ,(AS).  (3.3)

We bound the probability P, ,(A%) by using Markov’s inequality, martingale defi-
nition and (2.14) as follows: for any p > 1,

n—1
Pr