
HAL Id: tel-01948329
https://theses.hal.science/tel-01948329

Submitted on 7 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ingénierie des sytèmes sécurisés : patrons, modèles et
analyses
Anas Motii

To cite this version:
Anas Motii. Ingénierie des sytèmes sécurisés : patrons, modèles et analyses. Networking and Internet
Architecture [cs.NI]. Université Paul Sabatier - Toulouse III, 2017. English. �NNT : 2017TOU30274�.
�tel-01948329�

https://theses.hal.science/tel-01948329
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE
TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 10/11/2017 par :
Anas MOTII

Engineering Secure Software Architectures: Patterns,
Models and Analysis

JURY
Abdelmalek BENZEKRI Professeur d’Université Membre du Jury
Antonio Manã Professeur d’Université Membre du Jury
Jean-Michel BRUEL Professeur d’Université Membre du Jury
Laurent PAUTET Professeur d’Université Membre du Jury
Yves ROUDIER Professeur d’Université Membre du Jury
Brahim HAMID Maître de Conférences Membre du Jury
Agnès LANUSSE Ingénieur Chercheur Membre du Jury
Claire PAGETTI Ingénieur Chercheur Membre du Jury

École doctorale et spécialité :
MITT : Domaine STIC : Sureté de logiciel et calcul de haute performance

Unité de Recherche :
Institut de Recherche en Informatique de Toulouse (UMR 5505)

Directeur(s) de Thèse :
Brahim HAMID et Agnès LANUSSE

Rapporteurs :
Antonio MANÃ et Laurent PAUTET

Résumé

De nos jours la plupart des organisations pour ne pas dire toutes, dépendent des tech-
nologies de l’information et de la communication (TIC) pour supporter plusieurs tâches
et processus (quelquefois critiques). Cependant, dans la plupart des cas, les organisations
et en particulier les petites entreprises accordent une importance limitée à l’information
et à sa sécurité. En outre, sécuriser de tels systèmes est une tâche difficile en raison de la
complexité et de la connectivité croissante du matériel et du logiciel dans le développe-
ment des TICs. Cet aspect doit alors être pris en compte dès les premières phases de
conception. Dans ce travail, nous proposons une approche basée sur les modèles perme-
ttant de sécuriser des architectures logicielles en utilisant des patrons. Les contributions
de ce travail sont : (1) un cadre de conception intégré pour la spécification et l’analyse
d’architectures logicielles sécurisées, (2) une nouvelle méthodologie à base de modèles et
de patrons et (3) une suite d’outils.

Le fondement de l’approche associe un environnement basé sur des langages de modéli-
sation pour la spécification et l’analyse des modèles d’architectures sécurisées et un dépôt
à base de modèles d’artéfacts dédiés à la sécurité (modèle de patrons de sécurité, menaces
et propriétés de sécurités) permettant la réutilisation de savoir-faire et de connaissances
capitalisées. Pour cela on utilise des langages de modélisation pour la spécification et
l’analyse de l’architecture. Le processus associé est constitué des activités suivantes : (a)
analyse de risques à base de modèle appliquée à l’architecture du système pour identifier
des menaces, (b) sélection et importation de modèles de patrons de sécurité, afin d’arrêter
ou de mitiger les menaces identifiées, vers l’environnement de modélisation cible, (c) inté-
gration de modèles de patrons dans le modèle d’architecture, (d) analyse de l’architecture
obtenue par rapports aux exigences non-fonctionnelles et aux menaces résiduelles. Dans
ce cadre, on s’est focalisé sur la vérification du maintien du respect des contraintes tem-
porelles après application des patrons. La recherche de menaces résiduelles est réalisée à
l’aide de techniques de vérification exploitant une représentation formelle des scénarios de
menaces issus du modèle STRIDE et basés sur des référentiels de menaces existants (ex.,
CAPEC).

iii

Dans le cadre de l’assistance pour le développement des architectures sécurisées, nous
avons implémenté une suite structurée d’outils autour du framework SEMCO et de la
plateforme Eclipse Papyrus pour supporter les différentes activités basées sur un ensemble
de langages de modélisation conforme à des standards OMG (UML et ses profils). Les
solutions proposées ont été évaluées à travers l’utilisation d’un cas d’étude autour des
systèmes SCADA (systèmes de contrôle et d’acquisition de données).

iv

Abstract

Nowadays most organizations depend on Information and Communication Technologies
(ICT) to perform their daily tasks (sometimes highly critical). However, in most cases,
organizations and particularly small ones place limited value on information and its secu-
rity. In the same time, achieving security in such systems is a difficult task because of the
increasing complexity and connectivity in ICT development. In addition, security has im-
pacts on many attributes such as openness, safety and usability. Thus, security becomes
a very important aspect that should be considered in early phases of development. In this
work, we propose an approach in order to secure ICT software architectures during their
development by considering the aforementioned issues. The contributions of this work are
threefold: (1) an integrated design framework for the specification and analysis of secure
software architectures, (2) a novel model- and pattern-based methodology and (3) a set
of supporting tools.

The approach associates a modeling environment based on a set of modeling languages
for specifying and analyzing architecture models and a reuse model repository of model-
ing artifacts (security pattern, threat and security property models) which allows reuse of
capitalized security related know-how. The approach consists of the following steps: (a)
model-based risk assessment performed on the architecture to identify threats, (b) selec-
tion and instantiation of security pattern models towards the modeling environment for
stopping or mitigating the identified threats, (c) integration of security pattern models
into the architecture model, (d) analysis of the produced architecture model with re-
gards to other non-functional requirements and residual threats. In this context, we focus
on real-time constraints satisfaction preservation after application of security patterns.
Enumerating the residual threats is done by checking techniques over the architecture
against formalized threat scenarios from the STRIDE model and based on existing threat
references (e.g., CAPEC).

As part of the assistance for the development of secure architectures, we have im-
plemented a tool chain based on SEMCO and Eclipse Papyrus to support the different
activities based on a set of modeling languages compliant with OMG standards (UML and

v

its profiles). The assessment of our work is presented via a SCADA system (Supervisory
Control And Data Acquisition) case study.

Keywords: ICT, Security Engineering, Risk Assessment, Pattern-Based System En-
gineering (PBSE), Security patterns, Model-Driven Engineering (MDE), UML.

vi

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisors Dr. Agnès Lanusse
and Dr. Brahim Hamid and Prof. Jean-Michel Bruel for their continuous support of my
Ph.D. study and related research, for their patience, motivation, and immense knowledge.
Their guidance helped me in all the time of research and writing of this thesis.

Besides my advisors, I would like to thank my thesis reviewers: Prof. Antonio Manã
and Prof. Laurent Pautet for their insightful comments and encouragement, but also for
the hard questions which incented me to widen my research from various perspectives. I
would like also to thank my thesis committee: Prof. Abdelmalek Benzekri, Prof. Yves
Roudier and Dr. Claire Pagetti.

My sincere thanks also goes to Dr. Sébastien Gérard who provided me an opportunity
to join his team as a Ph.D. student, and who gave me access to the laboratory and research
facilities. Without his precious support it would not be possible to conduct this research.

I would like to thank Ansgar and Chokri for their valuable support. I would like to
thank all my Ph.D. colleagues for the fun times that we spent together.

Last but not the least, I would like to thank my wife Jamila who encouraged me during
the rough times when I lost hope. I could not have imagined how this thesis would have
gone without her support. I thank my son Mohammad Malik who, although is only two
years old, motivated me when I was back home after a tough day (you are my hero). I
thank my parents and my brothers for supporting me spiritually throughout writing this
thesis and my life in general

vii

viii

Table of Contents

Contents ix

List of Figures xv

List of Tables xix

List of Listings xxi

1 Introduction 1
1.1 Context . 1
1.2 Problem statement . 2
1.3 Research goals . 3
1.4 Contributions . 4
1.5 Publications . 6
1.6 Thesis outline . 8

2 Context 9
2.1 Introduction . 9
2.2 Software System Development . 10

2.2.1 Software System Engineering . 10
2.2.2 Component-Based Engineering . 10
2.2.3 Model-Based Engineering (MBE) 12

2.3 Incorporating Security in Software Development 16
2.3.1 Software Systems Security Engineering 16
2.3.2 Security Risk Management . 19

2.4 Incorporating Security Patterns in Software Development 25
2.4.1 Software and Security Patterns . 25
2.4.2 Pattern-Based System engineering 27

ix

2.4.3 Patterns in Model Repositories . 28
2.5 Tooling . 28

2.5.1 Eclipse Modeling Framework tools 28
2.5.2 Modeling and Analysis Environment: Papyrus 29
2.5.3 Pattern-Based Development Environment: SEMCO 30

2.6 Introduction to the Case Studies . 37
2.6.1 Working Example: Microsoft’s web application 37
2.6.2 SCADA system . 37

2.7 Conclusion . 39

3 Approach 41
3.1 Introduction . 41
3.2 Approach . 41
3.3 Definitions . 44
3.4 Conclusion . 45

4 Risk Treatment with Patterns: Selection, Instantiation and Integration 47
4.1 Introduction . 47
4.2 Related Work . 48

4.2.1 Pattern Specification . 49
4.2.2 Pattern Selection . 49
4.2.3 Pattern Composition and Application 50
4.2.4 Positioning . 52

4.3 Patterns Selection and Instantiation . 53
4.3.1 SEMCO Model repository . 53
4.3.2 Access Tool . 55

4.4 Pattern Integration . 57
4.4.1 Methodology description . 57
4.4.2 Pattern Integration Artifacts . 58
4.4.3 Hypothesis . 58
4.4.4 Phase 1: Preparation . 59
4.4.5 Phase 2: Elicitation . 59
4.4.6 Phase 3: Context Validation . 60
4.4.7 Phase 4: Merge . 60
4.4.8 Phase 5: Verification & Validation 61

4.5 MDE Framework . 62

x

4.5.1 Architecture Design Modeling . 62
4.5.2 EBIOS Risk Assessment . 65
4.5.3 Selection and Instantiation . 68
4.5.4 Integration: Preparation . 75
4.5.5 Integration: Elicitation . 80
4.5.6 Integration: Context checking . 80
4.5.7 Integration: Merge . 81
4.5.8 Integration: Verification & Validation 83

4.6 Tool Support . 86
4.6.1 Tool support Requirements . 87
4.6.2 Semco4Papyrus . 88
4.6.3 Access Tool . 89
4.6.4 Integration Module . 91

4.7 Conclusion . 92

5 Software Threat Analysis of Software Architectures 93
5.1 Introduction . 93
5.2 Related work . 94

5.2.1 Scenario-based Analysis . 94
5.2.2 Property-Based Analysis . 95
5.2.3 Property and Scenario-Based Analysis 96
5.2.4 Positioning . 96

5.3 Threat analysis based on formalized threat scenarios 97
5.3.1 Methodology description . 97
5.3.2 Step 0: Threat scenarios formalization 97
5.3.3 Step 1: Analysis module . 99

5.4 Formalizing threat scenarios using OCL . 99
5.4.1 Iteration Evaluation Metrics . 101
5.4.2 Iteration 1 . 102
5.4.3 Iteration 2 . 105
5.4.4 Iteration 3 . 109
5.4.5 Iteration 4 . 111

5.5 Tool Support . 113
5.6 Illustration . 114

5.6.1 Software architecture and platform 114
5.6.2 Selection of Constraints . 115

xi

5.6.3 Results . 115
5.7 Conclusion . 116

6 Real-Time Analysis of Software Architectures 119
6.1 Introduction . 119
6.2 Related Work . 120

6.2.1 Analysis of software architecture solutions with regards to real-time
Requirements . 121

6.2.2 Architecture Decision and Trade-off Analysis 121
6.2.3 Positioning . 122

6.3 Analyzing software architectures with regards to real-time requiments . . . 122
6.3.1 Methodology description . 123
6.3.2 End-to-end Flows Modeling (Step 1) 123
6.3.3 Timing parameters (Step 2) . 123
6.3.4 Task Model Generation (Step 3) . 123
6.3.5 Schedulability Analysis (Step 4) . 125

6.4 Model-Based Real-Time Analysis . 126
6.4.1 Model-based analysis with MARTE 126
6.4.2 End-to-end Flows Modeling (Step 1) 128
6.4.3 Timing Parameters (Step 2) . 128
6.4.4 Task Model Generation (Step 3) . 132
6.4.5 Schedulability Analysis (Step 4) . 132
6.4.6 Discussion . 132

6.5 Tool Support . 136
6.6 Conclusion . 137

7 Assessment of the contributions 139
7.1 Introduction . 139
7.2 SCADA case study . 140

7.2.1 Description . 140
7.2.2 An Overview of the Model Repository Content 143
7.2.3 Modeling the SCADA architecture 145
7.2.4 EBIOS Risk Assessment . 145
7.2.5 Selection and Instantiation . 150
7.2.6 Pattern Integration . 153
7.2.7 Software Threat Analysis . 153

xii

7.2.8 Real-time Analysis . 155
7.3 Feasibility of the approach . 158

7.3.1 Software Threat Analysis . 159
7.3.2 Pattern Integration . 160
7.3.3 Real-time Analysis . 161

7.4 Conclusion . 162

8 Conclusion and Future Work 163
8.1 Summary and Contributions . 163

8.1.1 Integrated Design Framework . 164
8.1.2 Model- and Pattern-Based Methodology 164
8.1.3 Tool Support . 165
8.1.4 Assessment . 167

8.2 Limitations and Future Work . 168
8.3 Perspectives . 170

Appendices 173

A Security Pattern Description 175
A.1 Transport Layer Security (TLS) . 175
A.2 Firewall . 177
A.3 Intrusion Detection System (IDS) . 178
A.4 Logger and Auditor . 179
A.5 Authorization . 180
A.6 Role-Based Access Control (RBAC) . 181

B Extracts from the threat scenarios formalized in OCL 183
B.1 Iteration 1 . 183

B.1.1 Man-In-The-Middle version 1 . 183
B.1.2 Tampering version 1 . 184

B.2 Iteration 2 . 184
B.2.1 Man-In-The-Middle version 2 . 184
B.2.2 Tampering version 2 . 186

B.3 Iteration 3 . 189
B.3.1 Denial of Service version 1 . 189
B.3.2 Injection threat version 1 . 190

xiii

B.4 Iteration 4 . 191
B.4.1 Denial of Service version 2 . 191
B.4.2 Injection threat version 2 . 192

Bibliography 195

xiv

List of Figures

2.1 Component-Based Software Development Process and Used Artifacts [18] . 12
2.2 MDE: Overview on Model-To-Model Transformation [113] 13
2.3 Fragment of the UML metamodel for the definition a UML profile 15
2.4 Simplified Risk management conceptual model 21
2.5 ISO 27005 risk management process model [79] 22
2.6 EBIOS analysis method . 24
2.7 Overview of the SEMCO tool suite architecture 33
2.8 SEMCO DSL building process and artifacts 33
2.9 The (simplified) SEPM Metamodel . 34
2.10 The (simplified) SEPM Metamodel: System of Patterns 36
2.11 Middle tier web application architecture model [110] 38
2.12 A typical SCADA system architecture [151] 38

3.1 Approach mapped with Software Development Process focusing on System
and Software Architecture phases . 42

4.1 Selection and Instantiation of security pattern models according to threat
models . 55

4.2 Pattern Integration Process . 57
4.3 UML profile for component-based software architectures 62
4.4 StructuredContainer from UML 2.5 . 63
4.5 Messages from UML 2.5 . 64
4.6 Deployment from UML 2.5 . 64
4.7 Web application system architecture model 66
4.8 Web application software architecture model and Types 67
4.9 Excerpt of EBIOS UML profile . 68
4.10 EBIOS analysis diagrams . 69
4.11 Excerpt of web application attack trees . 69

xv

4.12 SepmUML UML profile . 70
4.13 SepmUML UML profile: System of Patterns 71
4.14 A partial view of the considered security mechanisms 72
4.15 Mapping rules from SEPM concepts to SepmUML+ComponentUML using

QVTo . 73
4.16 System of Patterns: Secure Communication (SSL, IPsec) 74
4.17 Web application system architecture with pattern usage 75
4.18 SSL Pattern: SEPM . 76
4.19 SSL Pattern instantiated SepmUML . 76
4.20 SSL Pattern Solution . 77
4.21 SSL Pattern Types and Interfaces . 78
4.22 Application and SSL Secure Communication Pattern Casting diagram . . . 80
4.23 Merge phase with QVTo . 83
4.24 New Application diagram . 84
4.25 New Application Types (modified and added) 85
4.26 Semco4Papyrus eclipse update site . 89
4.27 Semco4Papyrus access tool . 90
4.28 PatternIntegrator commands . 91

5.1 Threat Analysis Process . 98
5.2 Web application platform . 99
5.3 Augmented ComponentUML model . 105
5.4 Selection of Constraints to be enabled during checking 115
5.5 Threat analysis results . 116

6.1 Real-time analysis of software architectures process 124
6.2 Model-Based Real-Time Analysis with MARTE 127
6.3 Sequence diagram for the use case ’User Logging Securely’ 129
6.4 End-to-end flow for the use case ’User Logging Securely’ 130
6.5 Tasks partitioning . 133
6.6 Tasks allocation . 134
6.7 Node and channel utilizations . 135
6.8 Task WCRTs . 135

7.1 A typical SCADA system hardware architecture for smart grids [161] . . . 140
7.2 SCADA system use cases [35] . 141
7.3 Model repository content: pattern and property models 144

xvi

7.4 SCADA system architecture model . 146
7.5 SCADA software architecture model . 147
7.6 SCADA types and interfaces . 148
7.7 SCADA platform . 149
7.8 System of Patterns instantiated in Papyrus 151
7.9 SCADA system architecture with pattern usage 152
7.10 SCADA software architecture after the integration of configuration 1 . . . 154
7.11 End-to-end flows and deployment . 156
7.12 Task partitioning and allocation . 156
7.13 Node and channel utilizations . 158
7.14 Task WCRTs . 159

8.1 Tool-flow of the MDE-tool suite . 166

A.1 Structure of TLS pattern . 176
A.2 Behavior of TLS pattern . 177
A.3 Possible placement of an IDS in a network 179
A.4 Authorization Pattern Structure . 180
A.5 RBAC Pattern Structure . 181

xvii

xviii

List of Tables

4.1 Positioning of our contribution with regards to pattern/aspect integration
processes . 53

4.2 ComponentUML stereotypes and extensions 65
4.3 SepmUML stereotypes and extensions . 71
4.4 SEPM to SepmUML+ComponentUML Mappings 73

5.1 Positioning of our contribution with regards to scenario-based approaches . 97
5.2 Deployment of the software component on the hardware nodes 100
5.3 Web application vulnerabilities and their threat categories [110] 100
5.4 Number of threats per scenario . 101
5.5 Number of threats per scenario . 104
5.6 Evaluation metrics results . 105
5.7 Number of threats per scenario . 108
5.8 Evaluation metrics results . 109
5.9 Number of threats per scenario . 111
5.10 Evaluation metrics results . 112
5.11 Number of threats per scenario . 113
5.12 Evaluation metrics results . 113
5.13 Deployment of the software component on the hardware nodes 114

6.1 MARTE stereotypes and extensions . 128
6.2 SaSteps Execution times (WCET) . 131
6.3 SaCommSteps Execution times (WCTT) 131

7.1 SCADA system feared events and threats [48] 150
7.2 System of Patterns configurations . 153
7.3 Detected threats per threat scenario before pattern integration 155

xix

7.4 Detected threats per threat scenario after pattern integration for the four
security pattern-based software architectures 155

7.5 Timing parameters and deployment of SCADA functions 157
7.6 Timing parameters and deployment of security pattern functions 157
7.7 Threat Analysis results comparison . 160

xx

List of Listings

4.1 Merge algorithm . 60
4.2 Precondition 1: All pattern participants should be bound (one participant

per component) . 80
4.3 Precondition 2: all communications in the pattern should exist in the ap-

plication . 81
4.4 Model-Based Merge algorithm . 82
4.5 OCL Queries for pattern property verification 83
5.1 Man-In-The-Middle (MITM) threat scenario formalized using OCL 102
5.2 Tampering threat scenario formalized using OCL 103
5.3 Man-In-The-Middle (MITM) threat scenario version 2 formalized using OCL106
5.4 Tampering threat scenario version 2 formalized using OCL 107
5.5 Denial of Service (DoS) threat scenario formalized using OCL 109
5.6 Injection threat scenario formalized using OCL 110
5.7 Denial of Service (DoS) threat scenario formalized using OCL 112
5.8 Injection threat scenario formalized using OCL 112
B.1 Man-In-The-Middle threat scenario formalized in OCL 183
B.2 Tampering threat scenario formalized using OCL 184
B.3 Man-In-The-Middle threat scenario version 2 formalized in OCL 184
B.4 Tampering threat scenario version 2 formalized using OCL 186
B.5 Denial of Service threat scenario formalized using OCL 189
B.6 Injection threat scenario formalized using OCL 190
B.7 Denial of Service threat scenario formalized using OCL 191
B.8 Injection threat scenario formalized using OCL 192

xxi

LIST OF LISTINGS

xxii

Chapter 1

Introduction

Contents
1.1 Context . 1
1.2 Problem statement . 2
1.3 Research goals . 3
1.4 Contributions . 4
1.5 Publications . 6
1.6 Thesis outline . 8

1.1 Context

Recently, our society has become more dependent on software-intensive systems, such as
Information and Communication Technologies (ICTs), not only in safety-critical areas but
also in areas such as finance, medical information management and systems using web
applications. In such areas, protecting information is compulsory because much of the
value of a business is concentrated in the value of its information. Threats to information
systems from criminals and terrorists are increasing. Therefore, these systems should also
satisfy assurance requirements and standards such as ISO 27005 [78]. In the past, security
was not as critical because the connectivity was limited and thus protection was based
on the principle of obscurity and isolation [32]. Nowadays ICTs have grown in terms of
functionality, complexity and connectivity. Therefore, security requirements become more
important as well as more difficult to achieve. These challenges have lead ICT experts to
search for new methods and tools for securing ICTs.

Industry and academia both claim that security should be treated in early stages of
the software and systems development life cycle [160]. Otherwise, security vulnerabilities

1

CHAPTER 1. INTRODUCTION

are more likely to be introduced in various stages [108] and the cost of protecting them
becomes increasingly more important. In a recent event [6] in March 2016, a hacktivist
cyber-attack impacted a water treatment system by altering flow rates and chemical
quantities. A security risk assessment performed on the company’s IT systems showed
that the hackers exploited a lack of security control such as authentication mechanisms
that could have been identified at architecture level. In that sense, information security
risk assessment is essential to detect potential architectural vulnerabilities.

Security risk assessment is usually done by a security risk analyst in order to verify
the actual status of an information system that is already deployed. Risk assessment
is performed by a set of meetings between security experts and persons responsible for
the information system. The main goal is to produce a report with actual security risks
targeting the system, the security strategy to adopt and the security measures to deploy
in order to achieve this strategy. After achieving risk assessment, ICT architects and
developers implement and deploy the software security measures.

The first issue here is that developers are constrained by the functional requirements
of the information system that can hardly change because it would mean choosing a new
software system which is very expensive. In order to solve the first problem, security must
be thought at early stages. In our work we focus on the architecture development stage
where design decisions are still flexible.

The second issue is related to the fact that ICT architects and developers usually have
basic knowledge in security engineering but lack expertise and best practices to apply
the correct recommendations issued by security risk assessment (if any). One solution is
to use patterns. In fact, capturing and providing this expertise by the way of security
patterns has become an area of research in the last years. Security can be captured
within patterns that provide reusable generic solutions for recurring security problems,
here dealing with architectural problems. Recently a complete catalog of security patterns
has been introduced by Fernandez [48].

1.2 Problem statement

Based on the previous discussion, we specify our general research problem coming from
the lack of methodological tool support of both the system architecture and security.

The need to address the problem of defining a methodological tool support
for the specification and analysis of secure software architectures, which
reduces the cost of engineering secure ICT systems.

2

1.1.3 Research goals

1.3 Research goals

Taking into account the previous discussion, we specify our research problem as an overall
research goal of this thesis:

Define and assess an innovative framework for the development of sys-
tem architecture and security using patterns. More precisely, the aim of
this work is to provide formalisms, techniques, methods and tools allow-
ing a safer secure system architecture development, in the context of future
automated security-by-design for the development of ICT systems.

Special emphasis will be to devoted to promote the particularly challenging task of
selecting and integrating security solutions within restricted design space of real-time ICT.
Furthermore, potential benefits of the combination of Model-Driven Engineering (MDE)
with a pattern-based representation of security solutions will be considered and evaluated.

Unfortunately the use of patterns brings two major problems. First, traditional se-
curity patterns are usually described as informal guidelines to solve a certain problem
using templates such as POSA [29] and GoF [52]. Hence even if security patterns have
advantages in fostering reuse, their use is difficult in reality. In fact, there is a major
gap of understanding between threats issued by risk assessment and the description of a
security pattern against these threats with a template. Furthermore, another difficulty
is added during their integration i.e., incorporation into the architecture. Due to manual
security pattern integration, the problem of incorrect integration (one of the most im-
portant source of security problems) remains unsolved. Second, ICTs generally involve
multi-concern objectives. Indeed, systems such as Cyber-Physical Systems (CPS) must
satisfy a number of requirements (real-time, physical, energy efficiency and others) where
security may have an impact on. Therefore, architects must apply trade-offs to satisfy
security requirements and other non-functional requirements. However, even if the use
of security patterns has its advantages by fostering reuse, other development life cycle
process quality attributes must be guaranteed (e.g., cost, time and efficiency).

These two problems can be solved with Model-Driven Engineering (MDE). In fact
MDE provides a useful contribution for the design and analysis of secure systems due to
abstraction and generation mechanisms. In addition, it makes easier the enactment of
the separation of concern paradigm (security, real-time, performance, etc.). It helps the
architect to analyse and to evaluate in a separate view non-functional requirements such
as security at a high level of abstraction. We leverage on this idea to propose a tool-
supported model-based process for the use of security patterns at the architectural level
and the analysis of the architecture solution (obtained after the use of security patterns)

3

CHAPTER 1. INTRODUCTION

intended for systems with stringent security requirements.
Though there is research dealing with model-based security engineering [85, 99, 82,

100], more research is needed for improving the selection and integration of security pat-
terns based on security requirements and recommendations and the analysis of architec-
ture refinements against other non-functional requirements.

In this work, we present a model-based approach for engineering secure software sys-
tems that uses patterns to represent security solutions and knowledge, which fosters reuse.
Based on the above, this work has the following top-level research goals:

Research goal 1.

Develop new modeling languages for the specification and analysis of software system
architecture and security. RG1

Research goal 2.

Develop a methodological holistic approach towards software system architecture and se-
curity engineering using patterns. RG2

Research goal 3.

Build security and architecture techniques for the analysis of software architecture against
security and real-time requirements. RG3

Research goal 4.

Build a new operational tool suite to support the proposed approach. RG4

Research goal 5.

Study the feasibility of the proposed approach through its application to different sectors.
RG5

1.4 Contributions
The contributions of this work are threefold: (1) an integrated design framework for the
specification and analysis of secure software architectures, (2) a novel model- and pattern-
based methodology and (3) a set of supporting tools. Here, we map the contributions of
this thesis to the goals formulated earlier.

4

1.1.4 Contributions

RG1 is addressed in the following contributions:

1. EBIOS UML profile. EBIOS concepts [14] are used to create a UML profile in
order o represent risk assessment artifacts.

2. Architecture specification. We use the extension mechanisms of UML [130] and
create a UML profile for component-based software architectures. The profile is then
augmented with verifiable constraints, written in the Object Constraint Language
(OCL), that help system architect in systematically identifying security threats.

3. Pattern specification. The SEPM metamodel [61] is used to create a UML profile
in order o represent security patterns. This UML profile has been developed to allow
the instantiation of patterns in the targeted modeling environment.

4. Integration. In order support the pattern integration methodology, we create a
UML profile that helps architects in relating the concepts of the solution provided
by the pattern to those of the target architecture.

RG2 is addressed in the following contributions:

1. Pattern selection and instantiation. We propose a method to select and in-
stantiate proper architectural security patterns from a model repository based on
risk assessment recommendations.

2. Pattern integration. We propose method for pattern integration based on Model-
To-Model transformations and constraints checking.

RG3 is addressed in the following contributions:

1. Architecture threat analysis. We propose an iterative process for threat identi-
fication in secure software architecture solutions against formalized threat scenarios.
The process comes in complement to security risk assessment. In fact risk assessment
is done on a system architecture. In our context a risk assessment phase is achieved
at system architecture level, then threats are reevaluated at each refinement stage
in the software architecture design.

2. Architecture real-time analysis. We propose a process for analyzing software
architecture candidate solutions against real-time constraints.

RG4 is addressed in the following contributions:

5

CHAPTER 1. INTRODUCTION

1. EBIOS Risk Analysis. This module enables the modeling of feared events, threats
and risks. It allows the automatic computation of risk level from likelihood and
impact levels. These risks can be categorized according to security property and
threat categories.

2. Automatic Threat Analysis. This module enables architects to evaluate a soft-
ware architecture solution against formalized attack scenarios.

3. Access tool. This module takes the form of a GUI access tool where the architect
requests a set pattern models providing a number of security properties. Thanks
to Model-To-Model transformations, these pattern models are instantiated into the
modeling environment.

4. PatternIntegrator. This module enables architects to integrate correctly selected
security pattern models into the software architecture. This integration is achieved
through Model-To-Model transformation and devoted constraints verification using
OMG standards (QVTo and OCL).

RG5 is addressed in the following contributions:

• Feasibility: the overall methodology and the related tools have been applied on
a reference SCADA (Supervisory Control and Data Acquisition) case study [161].
The results are compared with literature results and discussed.

1.5 Publications

This section presents our published papers related to the thesis.

• Paper A. [117] Guiding the selection of security patterns for real-time systems
(regular paper). Anas Motii, Brahim Hamid, Agnes Lanusse, Jean-Michel Bruel. :
IEEE International Conference on Engineering Complex Computer Systems (ICECCS
2016), IEEE, November 2016.

Summary: In this paper, we propose a model-based approach for evaluating proper
security solution alternatives composed of security patterns at early design stage
against real-time requirements. We provide a generalizable and tool-supported so-
lution to support the approach using UML and its profiles. A validation of the
work is presented via a simplified version of SCADA (Supervisory Control and Data
Acquisition) system case study.

6

1.1.5 Publications

• Paper B. [118] Towards the integration of security patterns in UML component-
based applications. Anas Motii, Brahim Hamid, Agnes Lanusse, Jean-Michel Bruel.
PAME workshop (Models 2016), Springer, October 2016.

Summary: This paper is about the use of patterns in secure systems and soft-
ware engineering, in particular in Model-Driven Engineering. In this paper, we are
proposing a model-based process for security pattern integration aimed to secure
component-based software system architectures in UML. The methodology is based
on merging techniques and verifications against integration constraints described in
OCL language. The paper illustrates the method through a Virtual Private Network
(VPN) pattern.

• Paper C. [119]Model-Based Real-Time Evaluation of Security Patterns: A SCADA
System Case Study. Anas Motii, Agnes Lanusse, Brahim Hamid, Jean-Michel
Bruel. TIPS workshop (SAFECOMP 2016), Springer, September 2016.

Summary: In this paper, a detailed illustration of a SCADA system case study
and tool chain, is presented based on Papyrus UML.

• Paper D. [116] Guiding the selection of security patterns based on security require-
ments and pattern classification. Anas Motii, Brahim Hamid, Agnes Lanusse,
Jean-Michel Bruel. European Pattern Languages of Programs Conference (PLOP
2013), ACM DL, July 2015.

Summary: In this paper, security patterns are selected by developers based on
security requirements. On the other hand, security risk management is an iterative
approach that consists of: (1) a risk assessment activity for identifying, analyzing
and evaluating security risks and (2) a risk treatment activity to mitigate these
risks which results in issuing security requirements. Hence, risk management and
security PBSE can be used together. In this context, this paper aims at guiding the
selection of security patterns in security PBSE based on security risk management
results and pattern classification. For illustration purposes, we consider an example
of a SCADA (Supervisory Control And Data Acquisition) system.

• Paper E. [7] Using Model Driven Engineering to Support Multi-paradigms Security
Analysis (Revised Selected Papers). Rouwaida Abdallah, Anas Motii, Nataliya
Yakymets, Agnes Lanusse. International Conference on Model-Driven Engineering
and Software Development (MODELSWARD 2015), Springer, 2015

Summary: In this work, we propose a methodology and associated framework for

7

CHAPTER 1. INTRODUCTION

security analysis. The methodology relies upon model-driven engineering approach
and combines two types of methods: a qualitative method named EBIOS that is
usually simple and helps to identify critical parts of the system; then a quantitative
method, the Attack Trees method, that is more complex but gives more accurate
results. We present the automatic generation of Attack trees from EBIOS analysis
phase. We show on a SCADA system case study how our process can be applied.

1.6 Thesis outline
The outline of the thesis dissertation is as follows. Chapter 2 presents the background and
context of our work. Case studies are also introduced in this section. Chapter 3 presents
a global overview of our approach and its positioning with regards to the software devel-
opment process. Following are chapters 4, 5 and 6 relevant to the contributions and their
positioning with regards to related research. Chapter 4 presents an approach and tool-
support for the selection, instantiation and integration of proper security patterns during
architecture design based on risk assessment recommendations. Chapters 5 and 6 present
the analysis process and its tool support for analyzing architecture solution candidates
with regards to real-time requirements and formalized threat scenarios. In chapter 7, the
feasibility of the contributions are studied and discussed through a SCADA (Supervi-
sory Control and Data Acquisition) system case study. Finally, chapter 8 concludes the
dissertation and proposes some future works and perspectives.

8

Chapter 2

Context

Contents
2.1 Introduction . 9
2.2 Software System Development 10
2.3 Incorporating Security in Software Development 16
2.4 Incorporating Security Patterns in Software Development . . 25
2.5 Tooling . 28
2.6 Introduction to the Case Studies 37
2.7 Conclusion . 39

2.1 Introduction

The design of ICT is an inherently complex endeavor. In particular, the integration of
non-functional requirements such as security is exacerbating this complexity. MDE is a
promising approach for the design of trusted systems, since it bridges the gap between
design issues and implementation concerns. MDE has the potential to greatly ease re-
curring activities of architects. MDE supports the architect to resolve in a separate way
non-functional requirements such as security at a higher abstraction level.

In this chapter we present the context of our work, including a set of concepts, defini-
tions that might prove useful in understanding our approach, and an introduction to the
case studies.

9

CHAPTER 2. CONTEXT

2.2 Software System Development

2.2.1 Software System Engineering

Shortly after the beginning of software development, the way software is developed has
been analyzed and guidelines and best practices have evolved over time in the different
application domains. Since then, software system engineering has evolved to an engi-
neering domain, having impacts on the different fields of system development, such as
development processes and software product life cycles. The IEEE defines in their Stan-
dard ISI/IEC/IEEE 24765:2010 [5] Software Engineering as follows: Software engineering
is the application of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software; that is, the application of engineering to software.
In software systems engineering, two principal concepts intervene in the construction of
a system, a) the practical use and economic value, being the balance of what the cus-
tomer wants and what the customer is ready to pay for, b) the correctness, suitability and
safety, being the attempt to ensure the correctness and the suitability of resulting prod-
uct and the absence of safety critical failures. Tackling these two principal concepts are
the challenges of the software engineering discipline, which is based and evolves through
application of scientific and mathematical knowledge.

2.2.2 Component-Based Engineering

Description

Component models provide a way to cope with some limitations of the object model.
Component models complement the object model by providing an architectural view of
the application. Therefore component models provide a coarser grain representation of the
application: a component is typically implemented as a compound of objects or of other
components, therefore providing different levels of abstraction for representing complex
systems. The main additions of component models to object models can be summarized
as follows:

• Identification of connection points between components and the associated links,

• Identification of the services required by a client (instead of just the services provided
by a server)

• New communication patterns (for example event-based communication).

10

2.2.2 Software System Development

Component technology has become a central focus of software engineering in research
and development due to its great success in market. Reuse is a key factor that contributes
to this success. The basic idea in component-based software engineering (CBSE) is build-
ing systems from existing components rather than "reinventing the wheel" each time. The
components are built to be reused in different systems and the component development
process is separated from the system development process [154].

Szyperski’s definition of a component [150]: A software component is a unit of com-
position with contractually specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject to composition by third
parties. There are several component-based methodologies Catalysis [41], KobrA [16],
Fusion (Coleman 1993), OPEN process framework [54]. Flex-eWare [81] is model-driven
solution for designing and implementing embedded distributed systems. It combines
Model-Driven Engineering and Component-Based Engineering. Bagnato et al. present
a framework called EAST-AADL [18] which is an architecture description language for
the automotive domain supported with a methodology compliant with the ISO 26262
standard. The language and the methodology set the stage for a high-level of automation
and integration of advanced analyses and optimization capabilities to effectively improve
development processes of modern cars.

Component-Based Development Process

Component-Based Development (CBD) processes are flexible to many software develop-
ment processes (e.g., V cycle, Waterfall, Agile, etc.). In our context, the main concern
is to achieve architecture design with components rather than foster their reuse [34]. To
explain CBD processes, reference development phases corresponding to four abstraction
levels of a system model, are identified in Figure 2.1: Requirements, System Architecture
Design, Software Architecture Design and Component Internal Design.

In addition, Figure 2.1 shows the different artifacts at each phase (features, analy-
sis functions, design functions and software components) and their m-to-n relationships
[18]. Typically, “m-to-n” relationships (from n entities of a higher level to m entities of
the lower level) allow refining models throughout the process for an incremental system
concretization.

Requirements. During this phase, requirements are analyzed in order to construct a
set of features that the system is expected to provide.

System Architecture Design. In this phase, each feature is analyzed and refined with
a set of individual function units (e.g., sensing and actuating functions). Hence, the

11

CHAPTER 2. CONTEXT

Requirements

System
Architecture

Software
Architecture

Component Internal
 Development

Requirements

Requirements

Requirements

Requirements

Feature Feature Feature

Function Function Function

SW
Component

SW
Component

SW
Component

SW
Component

SW
Component

Node Node

Function

Requirements

Design

Implementation

Figure 2.1: Component-Based Software Development Process and Used Artifacts [18]

functions are abstract and independent from any hardware or software.
Software Architecture Design. Each function is refined with a set of software compo-

nents (which define software components in terms of provided and required interfaces)
and hardware nodes.

Component Internal Design. In this phase, each software component is realized. The
realization may be done by: (1) combining existing software components or (2) from
scratch. Particularly, in CBD methods using UML such as Catalysis [41], each component
is designed and implemented internally as a set of classes that implement the interfaces
required externally. In addition, internal interactions are realized.

2.2.3 Model-Based Engineering (MBE)

Models are used to denote abstract representation of systems. Especially, we need models
to represent software architecture and software platforms to test, to simulate and to
validate the proposed solutions. Model-Based Engineering (MBE) solutions seem very
promising to meet the needs of secure ICT development. The idea promoted by MBE is
to use models at different levels of abstraction for developing systems. In other words,
models provide input and output at all stages of system development until the final system

12

2.2.2 Software System Development

constructed.

Model-Driven Engineering (MDE)

The concept of model is becoming a major paradigm in software engineering. Its use
represents a significant advance in terms of level of abstraction, continuity, generality,
scalability, etc. Model-Driven Engineering (MDE) is a form of generative engineering
[139], in which all or a part of an application is generated from models. MDE is a
promising approach since it offers tools to deal with the development of complex systems
improving their quality and reducing their development life cycles. The development is
based on model approaches, metamodeling, Model-To-Model transformations, develop-
ment processes and execution platforms. The advantage of having an MDE process is
that it clearly defines each step to be taken, forcing the developers to follow a defined
methodology. MDE allows to increase software quality and to reduce the software sys-
tems development life cycle. Moreover, from a model it is possible to automatize steps by
model refinements and generate code for all or parts of the application.

Figure 2.2: MDE: Overview on Model-To-Model Transformation [113]

MDE provides a useful contribution for the design of trusted systems, since it bridges
the gap between design issues and implementation concerns. It helps the designer to spec-
ify in a separate way non-functional requirements such as security and/or dependability

13

CHAPTER 2. CONTEXT

needs at a higher level of abstraction. This allows implementation independent validation
of models, generally considered as an important assurance step.

The development process cycles are mainly iterative, resulting in different levels of
model refinement from analysis to design. There are implementation platforms that ad-
dress these issues in a specific context (e.g. the MDA standard [25]), but in many other
contexts, the links between models refined or processed to solve references (to non-existent
elements, elements not referenced, created elements, etc.) are still solved in ad-hoc man-
ner, without adequate support from generic technologies.

A Model-To-Model transformation specifies mechanisms to automatically create target
models from source models. The Object Management Group (OMG) defines a Model-To-
Model transformation as: the process of converting a model into another model of the same
system [113]. Similarly, [91] defines a Model-To-Model transformation as the automatic
generation of a target model from a source model, according to a transformation descrip-
tion. Figure 2.2 shows the conceptual background on Model-To-Model transformations
as they are used in MDE.

The Meta-Object Facility (MOF) [129] is a standard defined by the OMG to describe
modeling languages such as the Unified Modeling Language (UML) [130]. Query View
Transformation (QVT) [127], based on the Object Constraint Language (OCL) [126], is
an OMG standard to specify Model-To-Model transformations in a formal way, between
metamodels conforming to MOF.

Domain Specific Modeling Language (DSML)

A language is defined by an abstract syntax, a concrete syntax and the description of
semantics [50, 70, 90]. The abstract syntax defines the concepts and their relationships
which is often expressed by a metamodel. The concrete syntax defines the appearance
of the language. In this way, a grammar or regular expressions is most of the time
used to design this one. On the other hand, semantics define the sense and meaning
of the structure by defining sets of rules. Domain Specific Modeling (DSM) is used
as a methodology using models as first class citizens to specify applications within a
particular domain. The purpose of DSM is to raise the level of abstraction by only using
the concepts of the domain and hiding low level implementation details [56]. A Domain
Modeling Specific Language (DSML) typically defines concepts and rules of the domain
using a metamodel for the abstract syntax, and a concrete syntax (graphical or textual).
DSMLs allow to specify systems in a domain-friendly manner. As we shall see, processes
in Domain Specific Modeling reuse a lot of practices from Model-Driven Engineering, for

14

2.2.2 Software System Development

instance, metamodeling and transformation techniques.

DSML: implementation using UML profiles

In order to implement a DSML, there are two methodologies: (1) Defining all concepts
from scratch using a meta-metamodel, (2) Using a UML profile. The first methodology
consists on defining the abstract syntax using MOF-based languages such as Ecore us-
ing frameworks like Eclipse Modeling Framework (EMF) (see section 2.5.1). The second
methodology allows reuse of relevant existing concepts from UML and/or extends them
according to specific needs using the UML standardised extension mechanism (UML pro-
files).

Figure 2.3: Fragment of the UML metamodel for the definition a UML profile

A UML profile [130] is a generic extension mechanism for customizing UML models for
specific domains. It is a flexible way to enrich UML models with additional information.
Generally, these information cannot be expressed with the use of UML. UML profiles are
one way to implement a DSML. The definition of a UML profile consists in extending
existing UML concepts, called UML metaclasses (e.g., Class, Association, etc.). These
extensions are called stereotypes and represent concepts of the DSML. The advantage of
using such mechanism is to focus only on the definition of the DSML. Another advantage
is exploit the existent tools that are based on UML (editors, compilers, simulators) (such
as Papyrus, see section 2.5.2).

15

CHAPTER 2. CONTEXT

Constraints, such as OCL constraints, can also be defined in a profile. They can be
applied to stereotypes defined in the profile or those imported by the profile. They can
also be used to further constrain elements of the UML metamodel. Figure 2.3 shows UML
metamodel fragment to consider while defining a UML profile. In our work, we use UML
profiles as technological solution for defining DSMLs.

2.3 Incorporating Security in Software Development

In system engineering, security may be compromised on several system layers. Usually,
security is considered when design decisions are made leading to potentially conflicting
implementations. The integration of security features requires the availability of system
architects, application domain specific knowledge and security expertise at the same time
to manage the potential consequences of design decisions on the security of a system and
on the rest of the architecture. For instance, at architectural level, security means to have
a mechanism (it may be a component or integrated into a component). Once a system
is engineered, it must be assessed to detect and evaluate risks in order to treat them.
Section 2.3.1 presents software systems engineering approaches incorporating security. We
mainly elicit the forefront ones: Microsoft SDL, CLASP and Touchpoints. Section 2.3.2
presents risk management, its concepts and the different phases of its process. A special
focus is dedicated to the EBIOS methodology.

2.3.1 Software Systems Security Engineering

Approaches taking into account security aspects in software/systems engineering are of-
ten considered as Software Systems Security Engineering. In this section we will analyze
the state of the art of different approaches in software systems security engineering. On
the one hand we will take a look at the integrated approaches taking into account the
engineering life cycle from requirements engineering down to software release. In a sec-
ond section, we will analyze more specific approaches in the Model-Driven Engineering
domain, which are in general less holistic and are specialized on different phases, such as
requirements engineering or system design.

Generic Software Systems Security Engineering

For the study of existing general purpose security engineering approaches, we limit our-
selves to approaches covering a broad spectrum of the development life cycle and proposing

16

2.2.3 Incorporating Security in Software Development

an extensive set of security oriented activities. We will focus on the three forefront repre-
sentatives, namely Microsoft’s Security Development Life cycle (SDL), OWASP’s Compre-
hensive, Lightweight Application Security Process (CLASP) and McGraw’s Touchpoints,
as they are recognized as the major players in the field. These three secure software
development approaches or processes have been extensively validated, either by usage in
large-scale development projects [94], reviews by security specialized companies [111, 157]
or by being inspired by industrial projects [108]. An overview will also be given on further
standards or approaches.

Microsoft SDL. Microsoft’s Security Development Life cycle [112] is probably the most
rigorous, most tool-supported and more oriented towards large organizations (e.g., Mi-
crosoft uses it internally). Microsoft defined this process in 2002 to address security issues
frequently faced in development. It contains an extensive set of (security oriented) activ-
ities, which can be used as supporting activities in development process models. These
activities are often related to functionality-oriented activities and complement them by
adding security aspects. Proposed activities are grouped into classical development phases
(i.e., Education, Design, Implementation, Verification, Release) to ease the introduction
into existing approaches. Vast guidance, such as detailed description of methods and tool
support, is available, enabling even less qualified practitioners to achieve the required
outcome. These guidances go as far down as to give coding and compiling guidelines,
which do not map to process model activities anymore.

CLASP. The Comprehensive, Lightweight Application Security Process (CLASP)
[133] by the OWASP Consortium is a lightweight process containing 24 main security
activities. It can be customized to fit different projects (activities can be integrated) and
focuses on security as the central role of the system. The main focus of Comprehensive,
Lightweight Application Security Process (CLASP) is to support engineering processes
in which security takes a central role. For this approach the foundations of a secure sys-
tem are built in the architectural design and though focus is given on this part of the
process model. The activities proposed are developed to cover a wide range of security
aspects and are conceived from a security-theoretical perspective and defined in an in-
dependent manner to allow process designer, wishing to integrate them, a large field of
flexibility. Recommendations are given on how to integrate these activities in an existing
process, but there is no direct mapping and the coordination is less direct than in other
approaches (such as in SDL or Touchpoints). CLASP also offers a rich set of security
support resources, such as an extensive list of security vulnerabilities which can be used
at different checkpoints throughout the process. The drawbacks of the approach defined
by the OWASP consortium are mainly some activity descriptions, although crucial for se-

17

CHAPTER 2. CONTEXT

cure software development, fail to give detailed methodological indications, and the lack
of work product descriptions for the proposed activities.

Touchpoints. McGraw’s work [107] is based on industrial experience and has been
validated over time. It provides a set of best practices regrouped into 7 so-called touch-
points. These touchpoints express the interactions among process developers and security
and how the developer can take into account the security aspects by using the framework
(e.g., Risk Management, Attack Analysis, Code Review but also Examples and Basic
Security Knowledge). The activities focus on risk management and flexibility and offer
white-hat and black-hat approaches to increase security. For McGraw, risk management
is of elemental importance in software security. The approach tries to enable this by
providing a risk management framework supporting the security activities. In [84] Mc-
Graw offers, in addition to an extensive set of security knowledge and links to resources,
a rich set of examples on security analysis activities and solutions. In giving general
guidelines and adaptive activities, the approach can be tailored to most existing software
processes focusing on the touchpoints of the existing process and the proposed security
enhancements.

ISO/IEC 27001:2005/27034:2011 ISO/IEC 27000 is a family of standards [80], or-
ganizations in security tend to implement. It is based on the PDCA (Plan-Do-Check-
Act) philosophy. Ideally, with a process approach following ISO/IEC 27000, not only
are requirements defined, but the processes to fulfill the requirements are defined as well.
ISO/IEC 27001 Information Security Management System (ISMS) requirements standard
and ISO/IEC 27034 are providing guidelines for application security and take explicitly
a process approach. Like other ISO standards, certification is possible.

Model-Based Software Systems Security Engineering

Model-based security engineering approaches tackle security aspects at different phases
of the development. From the organizational context over requirements engineering down
to system design and implementation different independent approaches exist. Several
approaches have been proposed in literature dealing with security engineering in the re-
quirements phase. Using abuse frames to model and develop the constraints of security
requirements on functional requirements and trust assumptions is proposed in [59, 60],
allowing the extension of problem frames to determine security requirements. This allows
defining security requirements as constraints on functional requirements and trust as-
sumptions. Another approach for security-oriented requirements engineering is proposed
by extending use cases to misuse cases [132, 145] to elaborate security threat identifica-

18

2.2.3 Incorporating Security in Software Development

tion. The idea behind this approach is to describe functions the system should not allow,
eliciting security requirements and the following constraints on assets. System design
model-driven software engineering processes use UML profiles such as SecureMDD [115],
SecureUML [99] and UMLsec [84, 85] providing formal specifications for verification of
security-oriented systems. SecureUML provides a UML profile based on Role-Based Ac-
cess Control (RBAC) allowing specifying access control in the overall system design. This
information can be used to generate access control infrastructures, helping the developers
to improve productivity and the quality of the system-under-construction. SecureMDD
proposes a methodology which allows generating platform-specific models (e.g., JavaCard)
from a high-level stereotyped UML model. In addition to guidelines in modeling security
aspects, the framework offers verification based on a formal approach on the produced
models [55]. UMLsec is a UML profile aiming to support modeling of security-critical
systems. The profile allows expressing security relevant information within the existing
model and diagrams and thus taking security aspect into account in the overall system
development. In addition to approaches focusing on one phase of the development life
cycle, one notable holistic MDE approach is given in literature. In [96, 95], the authors
propose an integration model for integrating security engineering approaches into software
life cycle standards, mapping the concepts of the software life cycle (Institute of Electrical
and Electronics Engineers (IEEE) 12207) to security engineering concepts (a set of con-
cepts collected from various security engineering approaches [96]). The approach tries to
give an understanding to stakeholders where and when security activities intervene and
interact with standard process life cycle activities.

2.3.2 Security Risk Management

Security Risk Management Methods

There are several risk management methods which can be broken down mainly into two
essential types: qualitative and quantitative. Quantitative approaches use numbers to
rate the probability of an event and its impact. Hence, the risk related to an event is
the multiplication of these numbers. The issue with this model is that using numbers is
unreliable because probability is not accurate in general. Some quantitative approaches
are CORA, ISRAM and Attack trees. Qualitative approaches rate the magnitude of the
potential impact of a threat as threshold level (high, low or medium). Some qualitative
approaches are: EBIOS [14], CORAS [39], OCTAVE [31], Information System Security
Risk Management method (ISSRM) [42] and NIST SP 800-30 [83].

19

CHAPTER 2. CONTEXT

Model-Based Risk Management methods

Authors of [39] propose a framework (CORAS) by offering a UML profile for risk manage-
ment and system development based on the Unified Process approach. The model-based
methodology integrates several techniques to create a complete report of the system risks,
gathering all the necessary documentation and threats diagrams. The Microsoft Threat
Analysis & Modeling framework [114] allows non-security domain experts to produce a
threat model using already known information including business requirements and ap-
plication architectures. The framework supports automatic threat detection and also
produces valuable security features such as: data access control matrix, component ac-
cess control matrix, subject-object matrix, data flow, call flow, trust flow attack surface
and security reports. The RACOMAT framework [57] combines risk assessment and secu-
rity testing in both ways. In this context Test-Based Risk Assessment (TBRA) improves
security testing results and Risk-Based Security Testing improves risk assessment results.

Definitions

Figure 2.4 shows a simplified conceptual model of risk management. For presenting the
concepts, we choose the Information System Security Risk Management method (ISSRM)
which is in compliance with the ISO/IEC 27005 standard.

The definitions of these concepts are based on [42].
Asset related definitions:
Definition 1 (Asset). An asset is something that has value in an organization and

is essential to reach its objectives. This concept generalizes the business asset and the IS
(Information System) asset.

Definition 2 (Business Asset). A business asset is an information, process or skill
inherent to the business of the organization. It is essential for achieving its objectives (e.g.,
technical plan, structure calculation process, architectural competence, etc.). Business
assets are immaterial.

Definition 3 (IS Asset). An IS asset is a component or part of an IS that has
value to the organization and is necessary for reaching its goals. IS assets are classified
according to these categories: hardware, software, networks, people or facilities involved
in the IS security. IS assets are material with the exception of software.

Definition 4 (Security property). A security property is a constraint at organi-
zation level over business assets that reflects their security needs (e.g., confidentiality,
integrity, availability, non-repudiation, accountability etc.). Security properties are used
to express security objectives of an IS (e.g., confidentiality of client data) that must be

20

2.2.3 Incorporating Security in Software Development

Figure 2.4: Simplified Risk management conceptual model

guaranteed (security requirements)..
Risk related definitions:
Definition 5 (Vulnerability). A vulnerability is flaw in an IS asset that constitutes

a weakness.
Definition 6 (Threat). A threat is a potential attack by a threat agent using an

attack method. It has a likelihood level.
Definition 7 (Attack). An attack is the combination of a threat and one or more

vulnerabilities. It has a likelihood level, which is the maximum level among all threats.
For example: a hacker uses social engineering on an inexperienced employee exploiting
weak awareness.

Definition 8 (Impact). A impact is a negative consequence of a risk that harms an
asset, when a threat or an attack is accomplished. It has an impact level.

Definition 9 (Risk). A risk is the combination of threats with one or more vulner-
abilities leading to an impact that harms one or more assets. The risk level is computed
as the product of the consequence of impact times the likelihood of the threats.

Definition 10 (Security requirement). Security requirements are properties that
the system must possess over the environment by installing the IS, in order to mitigate
risks.

21

CHAPTER 2. CONTEXT

ISO/IEC 27005 Process

The ISO 27005 [78] standard belongs to the family of ISO 27000 [80] standards. It
provides guidelines for security risk management and supports the concepts defined in ISO
27001 [79] which specifies requirement for the establishment of an Information Security
Management System (ISMS). The standard does not provide a particular methodology.
However methodologies that claim to perform information security risk management may
conform to security standards such as the ISO 27005. The process model of this risk
management approach is displayed in Figure 2.5.

Figure 2.5: ISO 27005 risk management process model [79]

The information security risk management process consists of three main phases:

• Context establishment. The aim of this phase is to describe the system under
study and to put boundaries to risk management. The system is described in terms
of business assets and IT assets supporting them and the current security controls.

• Risk assessment. This phase consists of:

22

2.2.3 Incorporating Security in Software Development

– Risk identification: aims at identifying feared events targeting assets and threats
to the IT assets supporting them. A risk is a combination of feared event and
a set of threats. There are several ways to enumerate threats e.g., attack trees
[140], misuse cases [145] , misuse [27] activities, etc.

– Risk estimation: aims at assigning a likelihood level (occurrence) and impact
level (consequence) to each risk by security risk analysts. The assignment of
likelihood considers factors such as threat source motivation and capability,
nature of the vulnerability and existence and effectiveness of current controls
[149]. In the same way, impact is determined by performing an impact anal-
ysis [149] that requires information related to the system mission (e.g., the
process performed by an IT system expert), system and data criticality (e.g.,
the system’s value or importance to an organization), and system and data
sensitivity.

– Risk evaluation: evaluates the risk level that is computed starting from the
likelihood and impact levels according to a risk matrix.

• Risk treatment. This phase aims at reducing, avoiding, accepting or transferring
risks. The output of this activity is a set of security measures.

Risk communication and monitoring are processes that communicate risk information
to all decision makers and ensure monitoring of risk levels respectively.

EBIOS method

EBIOS [14] is a security risk management method dedicated to manage risks in informa-
tion systems operating in steady environments. EBIOS is used by many organizations
in both public and private sectors to perform Information System Security (ISS) risk
analyzes.

EBIOS method provides uniform vocabulary and concepts that allows attending se-
curity objectives. It can be adapted to the context of each organization (its tools and
methodologies) and then used to develop either a complete global study of the informa-
tion system or a detailed study of a particular system. EBIOS consists of five modules as
shown in Figure 2.6:

• Phase 1 deals with context analysis. It establishes the environment, purpose and
operation of the target system and identifies the essential (assets) on which they are
based.

23

CHAPTER 2. CONTEXT

Figure 2.6: EBIOS analysis method

• Phase 2 conducts the security needs analysis. The identified security needs of the
essential elements are evaluated in terms of availability, integrity and confidentiality,
etc. In other terms we identify the feared events of the system. We also define a
security level to the feared event based on the harm that it may induce.

• Phase 3 consists of identifying and describing the threats affecting the system. We
identify their origin called threat sources, and the vulnerabilities of the systems’
elements that can be exploited to apply each attack method. We associate to each
threat the likelihood of occurrence.

• Phase 4 contributes to risk evaluation and treatment. It formalizes the real risks
affecting the system by combining threats and feared events. In addition, each risk
is treated with a certain strategy (reduce, avoid, transfer or accept).

• Phase 5 determines how to specify security countermeasures allowing the security

24

2.2.4 Incorporating Security Patterns in Software Development

objectives to be fulfilled and how to validate these measures and the residual risk.
Actually, for each feared event we associate a risk level. This level is computed
based on the likelihood level of the threats and the impact level of the feared event.
The risk level is deduced from a predefined matrix. A residual risk is the risk level
computed after application of existing or new countermeasures that may decrease
the risk level.

Positioning

In our work, we use EBIOS method in order to perform risk assessment. The risk treat-
ment phase is done with the use of security patterns. The goal is to have of repository
of patterns and provide facilities to software architects to select and integrate patterns
in their environment. In this context, Model-Based Engineering (MBE) provides several
techniques to facilitate these tasks.

2.4 Incorporating Security Patterns in Software De-
velopment

Pattern-Based System and Software Engineering (PBSE) is a discipline that fosters reuse
during system and software development. In our context, PBSE is used during the design
of secure ICT software architectures.

2.4.1 Software and Security Patterns

Patterns were introduced by Christopher Alexander [8] in the context of urban planing
and building architecture. Since then patterns became popular in the software community.
In fact, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, the Gang of
Four (GoF), published the book Design Patterns - Elements of reusable Object-Oriented
Software [52] about a compilation of design patterns in software engineering. Another
book Pattern Oriented Software Architecture - A System of Patterns [29] (also known as
the POSA book) was published by Buschmann.

Christopher Alexander defined patterns in [8] as follows: Each pattern describes a
problem which occurs over and over again in our environment and then describes the core
of the solution to that problem. In the context of software engineering, Bushmann in
the POSA book [29], subdivided patterns into three pattern categories according to the
software development process: architecture definition, design and implementation.

25

CHAPTER 2. CONTEXT

• Architectural patterns are relevant to the software architecture. They describe: sub-
systems or components, their interfaces and relationships.

• Design patterns refine components and relationships of a software system. They are
independent of any programming language.

• Idioms are code related patterns and contain best practices for implementation.
They are built upon the features of a programming language

In order to describe a security pattern and a pattern in general, a template is needed.
A template consists of three fundamental sections: context, problem and solution. There
are other sections that add more details about the pattern (e.g., related patterns). There
are different templates to describe patterns in software engineering. The most notable
ones are POSA and GoF templates. The two templates are similar as they share the same
structure. The GoF and POSA differ in classifying the patterns in a catalog. The typical
structure of a security pattern is as follow:

• Name: is the name of the security pattern

• Context: describes the environment where the security pattern may be used

• Problem: describes the recurring security problem and the goals and security ob-
jectives that pattern wants to reach.

• Forces: define the types of trade-offs that must be considered in the presence of
conflicts they might create (e.g., security vs usability)

• Solution: are techniques, structures and mechanisms to solve the problem.

• Related patterns: are relationships with other patterns.

Next to software patterns, several works were interested in security patterns. In 1997,
Yoder and Barcalow[163] were the first to work on security pattern documentations. In
2013, Fernandez [48] published a complete book about software security patterns with a
methodology to use them through the software development process. Fernandez defines
security patterns in [48] as follows: A security pattern provides a solution to protect a
system against a specific threat. There have been several arguments on the nature of
security patterns with regards to the development process. Some authors consider that
security patterns are design patterns as in some cases they take the form of the aspect of a
subsystem. Some authors considered security patterns as a type of architectural patterns

26

2.2.4 Incorporating Security Patterns in Software Development

because they provide solution to software architecture. In our view, security is a global
property hence we share the idea that security patterns are architectural.

In order to benefit from all these patterns, pattern catalogs may reveal very useful.
Pattern catalogs consist of individual security patterns. The issue behind constructing a
catalog of patterns resides in finding out the relationships between them. One challenge
is that patterns can follow different templates so incorporating them in a single catalog
requires structuring and organizing their sections. Another challenge is the classification
of patterns. POSA and GoF propose two different classification approaches. GoF patterns
are classified according to three categories: creational, structural, and behavioral. Hence,
it is not extensible. It cannot describe other patterns (“architectural patterns”) or low
level patterns (“idioms”). POSA template is extensible because it classifies each pattern
according to its categories and development process. Hence new categories can be added
in the classification.

2.4.2 Pattern-Based System engineering

Pattern-Based System Engineering (PBSE) is a system and software engineering discipline
that focuses on patterns as its first class citizen. PBSE is similar to Component-Based
Software Engineering (CBSE) when it comes to using components but differs in the fact
that patterns are not ready-to-use artifacts. This is because patterns are generic and
guide towards a solution.

In the context of security patterns, several methods proposed security PBSE methods.
In [74], authors have defined a pattern-based security requirements engineering method
that is applicable after the security goals and an initial set of security requirements are
elicited. The approach does not consider the elicitation of the initial set of security re-
quirements, since only dependent security requirements are elicited. Works from authors
in [141] present a detailed description of patterns used in security engineering in different
domains. These include patterns on risk management such as patterns on Enterprise Secu-
rity Approaches and Threat Assessment. These patterns are to be integrated in method-
ologies and will, for example, guide an enterprise in selecting security approaches or lead
the engineer to use patterns during the development life cycle to resolve recurring secu-
rity challenges. In [64], the authors considered building a security-oriented Pattern-Based
System and Software Engineering life cycle based on a repository of security patterns.
The central idea of the approach is to assist the system designer through interactions
with a repository of security patterns in resolving recurrent security problems at the right
moment in a MBE life cycle.

27

CHAPTER 2. CONTEXT

Recently, authors of [67] propose an approach for supporting pattern-based depend-
ability engineering via Model-Driven Development based on the reuse of dedicated sub-
systems, i.e., so-called dependability patterns that have been pre-engineered to adapt to a
specific domain. Model-Driven Engineering (MDE) is used to describe dependability pat-
terns and a methodology for developing dependable software systems using these patterns
is proposed.

PBSE must use a catalogue of patterns. Generally catalogues are books, websites, etc.
In this case, the development is error-prone and time-consuming which is the opposite
of the philosophy of using patterns. PBSE can be coupled with a model repository to
benefit from the advantages of MDE.

2.4.3 Patterns in Model Repositories

In the context of MDE, patterns are models. Instead of using a catalog of patterns,
patterns are stored in model repositories to comprehensibly explain their classification [63].
A model repository should provide a modeling container to support modeling artifacts
associated with different methodologies.

The storage of patterns in a model repository allows to discover the relationships
among them and to facilitate the selection of the most appropriate ones. The reposi-
tory should have a structure in order to optimize the accesses (selecting patterns with
criterion’s and publishing new patterns into it). Finding the appropriate pattern to solve
a particular security or/and dependability problem is difficult because of the lack of a
scientific classification scheme for security patterns.

2.5 Tooling

2.5.1 Eclipse Modeling Framework tools

There are several DSM environments, one of them being the open-source Eclipse Modeling
Framework (EMF) [148]. EMF provides an implementation of EMOF (Essential MOF),
a subset of MOF, called Ecore2. EMF offers a set of tools to specify metamodels in Ecore
and to generate other representations of them, for instance Java. In our context, we use
the Eclipse Modeling Framework. Note, however, that our vision is not limited to the
EMF platform. Here, we outline the different Eclipse tools used in the development of
the DSLs to support the modeling of the Security and Dependability (S&D) artifacts, the
repository and its APIs. Among the tools used here are cited:

28

2.2.5 Tooling

• Eclipse is an open-source software project providing a highly integrated tool plat-
form. The applications in Eclipse are implemented in Java and target many oper-
ating systems including Windows, Mac OSX, and Linux [148].

• EMF is a modeling framework and code generation facility for building applications
based on a structured data model. In addition, EMF provides the foundation for
interoperability with other EMF-based tools and applications [148].

• QVT-O (QVT Operational) [44] allows the implementation of Model-To-Model
transformation in Eclipse.

• Acceleo [124] allows the implementation of Model-To-Text transformations in Eclipse.

• CDO (Connected Data Objects) Model Repository is a 3-tier distributed shared
model framework for EMF models and metamodels [43].

• RCP plug-in allows developers to use the Eclipse platform to create flexible and
extensible desktop applications upon a plug-in architecture [158, 106].

2.5.2 Modeling and Analysis Environment: Papyrus

Papyrus1 is built on Eclipse Modeling framework (EMF) and offers an implementation of
the OMG (Object Management Group) specification Unified Modeling Language (UML)
[130]. Papyrus is a UML modeling environment, where many diagrams can be used to
view different aspects of a system. Behind all diagrams, there is a model where all model-
ing elements, used in these diagrams, are kept. The model keeps the consistency between
the diagrams. UML diagrams can help system architects and developers understand, col-
laborate and develop a system. Architects and managers can use diagrams to visualize an
entire system or project and separate systems into smaller components for development.
System developers can use diagrams to specify, visualize and document systems, which
can increase efficiency and improve their system design. Also code can be generated from
UML models. Since UML is general-purpose modeling language in the field of software
engineering, it is possible to adapt UML to specific domains. This is done by creating and
applying UML profiles. Papyrus offers a complete UML modeling environment, which can
be used to develop UML profiles. It offers also SysML [125], MARTE [128] and other ded-
icated profiles implementing DSMLs. In the context of Component-Based Development
(CBD), Papyrus supports UCM [131].

1https://eclipse.org/papyrus/

29

CHAPTER 2. CONTEXT

2.5.3 Pattern-Based Development Environment: SEMCO

The development of SEMCO (System and software Engineering for embedded systems
applications with Multi-COncerns) was started in 2010 by B. Hamid [142]. The SEMCO
foundation is a reuse repository of models and patterns and thereby supports a pattern-
based development methodology. In SEMCO, a pattern is a subsystem dedicated to
non-functional aspects, to be specified by a non-functional aspects experts, and reused by
domain engineers to improve systems/software engineering facing non-functional require-
ments. It is a good application and promotion of Model-Driven Engineering. The core of
SEMCO is a set of Domain Specific Modeling Languages (DSMLs), search engines and
transformations. The DSMLs are devoted to specify patterns, a System of Patterns as a
set of models to govern their use, and thereby to organize, analyze, evaluate and finally
validate the potential for reuse. Engines allow to find/select these artifacts from a repos-
itory and then transform the results towards specific domain development environments
such as Unified Modeling Language (UML).

In addition, we provide an operational architecture for a tool suite to support the pro-
posed approach. An example of this tool suite, which is termed Semcomdt, is constructed
using EMFT 2 and a CDO-based 3 repository and is currently provided in the form of
Eclipse plugins 4.

Definitions

To allow common understanding in the context of the SEMCO framework, we recall a set
of definitions elaborated in [164]:

Definition 11 (Domain). We define a domain as a field or a scope of knowledge
or activity that is characterized by the concerns, methods, mechanisms, . . . employed in
the development of a system. The actual clustering into domains depends on the given
group/community implementing the target methodology.

Definition 12 (Modeling artifact). We define a modeling artifact as a formalized
piece of knowledge for understanding and communicating ideas produced and/or consumed
during certain activities of the system engineering processes. The modeling artifact may
be classified in accordance with engineering process levels.

Definition 13 (Modeling artifact system). A modeling artifact system is a collec-
tion of modeling artifacts forming a vocabulary. Such a collection may be skillfully woven

2https://eclipse.org/modeling/emft/
3https://eclipse.org/cdo/
4http://www.semcomdt.org/semco/tools/updates/1.2

30

2.2.5 Tooling

together into a cohesive “whole” that reveals the inherent structures and relationships of
its constituent parts toward fulfilling a shared objective.

Definition 14 (Resource). We define a Resource as a modeling artifact which rep-
resents a piece of the platform.

Definition 15 (Platform). The platform is defined as a set of interconnected
hardware resources on which the software elements can be deployed.

Definition 16 (Security Pattern). A security pattern is an architectural pattern
that describes a particular recurring security problem that arises in specific contexts and
presents a well-proven generic scheme for its solution. In our context, a pattern can be
abstract or concrete.

• Abstract Patterns: are used at System Architecture level.

• Concrete Patterns: are used at Software Architecture level.

Definition 17 (S&D Pattern). A Security and Dependability (S&D) pattern de-
scribes a particular recurring security and/or dependability problem that arises in specific
contexts and presents a well-proven generic scheme for its solution.

Definition 18 (System of Patterns). We define a System of Patterns as a system
of modeling artifacts where its constituent parts are patterns (abstract and concrete), its
referenced property models and their relationships.

Definition 19 (System of Patterns configuration). A System of Patterns con-
figuration is one of the possible configurations derived from the System of Patterns. It
represents the structure of an application based on patterns which will be applied on the
application.

Definition 20 (Repository). A repository is a shared knowledge base of information
on engineered artifacts. They introduce the fact that a repository has (1) a Manager for
modeling, retrieving, and managing the objects in a repository, (2) a Database to store
the data and (3) features to interact with the repository.

Definition 21 (Pattern Selection). An instantiation activity takes a pattern and
its related artifacts from the repository and adds it to the end-developer environment. This
task enables the pattern to be used while modeling.

The Selection activity is composed of the following steps:

1. Define needs in terms of properties and/or keywords.

2. Search a pattern in the repository.

3. Identify the appropriate pattern from those proposed by the repository.

31

CHAPTER 2. CONTEXT

Definition 22 (Pattern Instantiation). An instantiation activity enables the im-
port of the selected pattern(s) into the development environment using Model-To-Model
transformation techniques.

Definition 23 (Pattern Integration). An integration activity happens within the
development environment when a pattern and its related artifacts are introduced into an
application design. Some development environments may come with native support for
the integration.

SEMCO

SEMCO is a PBSE approach. It is a federated modeling framework built on an integrated
repository of metamodels to deal with system engineering. The end-user part of such a
framework is an integrated repository of modeling artifacts to be used in order (i) to
model several concerns of embedded systems engineering: extra functional properties; (ii)
to model systems parts: logical software, hardware components and infrastructure. The
main goal of SEMCO is to deal with multi-concerns embedded system engineering for
several domains. PBSE in SEMCO identifies two kinds of processes that interact with
the aforementioned model repository:

• Pattern Development. concerns designing pattern models from expertise for reuse
and storing them in the repository.

• System Development with Patterns. concerns selecting appropriate pattern models
from the repository with regards to the system-under-development’s requirements.

A theory wa built and novel methods based on a repository of models which (1)
promote engineering separation of concerns, (2) supports multi-concerns, (3) use model
libraries to embed solutions of engineering concerns and (4) supports multi-domain specific
process. This framework is threefold: providing repository of modeling artifacts, tools to
manage these artifacts and guidelines to build methodologies for system engineering.

As shown in Figure 2.7, SEMCO foundation is a federated DSL processes working
as a group on how relevant each one is to the key concern. A DSL building process
2 is divided into several kinds of activities: DSL definition, transformation, consistency
and relationships rules, design with DSL and Qualification. The three first activities are
achieved by the DSL designer and the two last activities are used by the final DSL user.
Figure 2.8 illustrates the use of the Eclipse Modeling Framework (EMF) to support the
SEMCO process to create our tool suite.

32

2.2.5 Tooling

Figure 2.7: Overview of the SEMCO tool suite architecture

Figure 2.8: SEMCO DSL building process and artifacts

SEPM: A Metamodel for S&D patterns

The System and Software Engineering Pattern Metamodel (SEPM) [61] is a metamodel
for describing Security and Dependability (S&D) patterns, and constitutes the base of
our pattern modeling language. Here we consider patterns as sub-systems that expose
services (via interfaces) and manage S&D and Resource properties (via features) yielding
a unified way to capture meta-information related to a pattern and its context of use. The
following paragraph details the principal concepts of the SEPM metamodel to specify an
S&D pattern, as described with Ecore notations. Figure 2.9 shows the core concepts of
SEPM:

33

CHAPTER 2. CONTEXT

SepmPattern

publisher_identity : EString

origin : EString

also_known_as : EString

consequences : EString

problem : EString

context : EString

examples : EString

SepmInternalStructure

SepmDocument

uri : EString

kind : SepmArtifactKind = InternalStructure

SepmKeyWord

name : EString

SepmExternalInterface

SepmProperty

semantic : EString

SepmParticipant

name : EString

SepmConstraint

name : EString

SepmInterface

kind : SepmInterfaceKind = provided

SepmInternalInterface

SepmDSPattern

mechanism : EString

SepmDIPattern

SepmInterfaceKind

provided

required

SeLifecycleStageable

stage : SeLifecycleStageList

SeLifecycleStageList

SystemArchitecture

SWArchitecture

DetailedDesign

Analysis

Requirements

Implementation

Test

Operation

Maintenance

HwArchitecture

SepmOperation

name : EString

GprmProperty

computable : EBoolean = false

name : EString

GprmPropertyCategory

GprmCategoryLibrary

SepmMechanism

kind :
SepmMechanism
Kind = Encryption

SepmMechanis
mKind

Encryption

Signing

Filtering

ACL

SepmParameter

name : EString

SepmLink

name : EString

[0..*] solutions

[0..*] attachedDocuments

[1..*] keywords

[0..*] properties

[0..*] sepmparticipant

[0..*] sepmparticipant

[0..*] constraints

[0..*] sepmoperation

[0..*] sepmoperation

[1..1] category

[0..*] categories

[0..*] parameters

[0..*] sepmlink

[0..*] externalInterfaces

[0..1] sepmtechnicalinterfaceSource

[0..1] sepmtechnicalinterfaceTarget

[0..*] sepmtechnicalinterface

[0..*] sepmparameter

Figure 2.9: The (simplified) SEPM Metamodel

• SepmPattern. This concept represents a security pattern as a subsystem describing
a solution for a particular recurring design problem that arises in specific design
context. It can be either at Domain Independent (DI) or Domain Specific (DS)
levels.

• SepmDIPattern. (abstract pattern) It inherits from Pattern. A SepmDIPattern is
concrete pattern that may be manifested by one or more artifacts, and in turn, that
artifact may be deployed by its execution environment. This is the key entry artifact
to model pattern at DI level. A DIPattern can be refined from another DIPattern.
We call this relation: DILevelRefinement.

• SepmDSPattern. (concrete pattern) It inherits from SepmPattern. It is a concrete
pattern used to build a pattern at Domain Specific (DS) level. Furthermore a
DSPattern has Internal Interfaces in order to interact with the domain specific
platform. This is the key entry artifact to model pattern at domain specific level.
On one hand, a DSPattern can be built starting from an existing DIPattern. We

34

2.2.5 Tooling

call this relation: DomainRefinement. On another hand, a DSPattern can be refined
from another DSPattern. We call this relation: DSLevelRefinement.

• SepmExternalInterface. A SepmPattern interacts with its environment with Inter-
faces.

• SepmProperty. A property denotes a particular characteristic of a pattern related
to the concern it is dealing with and dedicated to capture its intent in a certain way
(e.g., security, dependability and resource properties).

• SepmInternStructure. This concept constitutes the implementation of the solution
proposed by the pattern. It is composed of SempParticipant and SepmLink.

• SepmInternalInterface. It represents an internal interface composed of a set of
operations.

• SepmOperation. It represents an operation.

• SepmParameter. It represents data that is processed by an operation.

• SepmLink. It constitutes the basic link of the Static Structure. It is the connection
between two Entities.

• SepmParticipant. This concept is the main constituent of the solution. It requires
and offers a set of interfaces (SepmInternalInterfaces). A participant represents a
role that shall be played by an element of the target application. This element is
replaced by the participant as a result of pattern integration.

• SepmMechanism. is a SepmParticipant with a security-specific purpose (encryption,
decryption, signing, etc.). Its role is to add new functionality to the system that is
specific to a security property the system should uphold.

Figure 2.10 shows the relevant concepts of System of Patterns:

• SepmSystemOfPatterns. is a set of individual pattern (abstract and concrete) with
their relationships (References). Thus dependencies between specific problems can
be considered in a comprehensive way.

• SeReference. This link is used to specify the relationship between patterns with
regard to the domain and software life cycle stage in the form of a pattern language.
For example, a pattern at a certain software life cycle stage uses another pattern

35

CHAPTER 2. CONTEXT

SepmPattern

publisher_identity : EString

origin : EString

also_known_as : EString

consequences : EString

problem : EString

context : EString

examples : EString

SepmProperty

SeArtefact

SeReference

SeReferenceKind

name : EString

SeReferenceKindLibrary

SepmSystemOfPatternsSepmModel

[0..*] properties

[1..1] source

[1..1] target

[1..1] referenceKind

[0..*] items
[0..*] references

[0..*] patterns

[0..*] patterns

[0..*] references

Figure 2.10: The (simplified) SEPM Metamodel: System of Patterns

at the same or at a different software life cycle stage. SeReferenceKind contains
examples of these links. Here, we create the SeReferenceKind model library to
support the specification of relationships across artifacts (e.g., refines, specializes
and uses) as an extension of the relationship classification proposed in [123].

– refines. It is used to represent the refinement relationship between two pat-
terns.

– specializes. It is used to represent the specialization relationship (detail).

– uses. It is used to represent the functional dependency relationship between
two patterns.

– isSimilar. It allows to link two patterns that perform the same functionality.
This link is often used to link software patterns to their equivalent hardware
patterns.

– isAnAlternative. It allows to link tow patterns that solve the same problem,
but propose different solutions.

Example. We illustrate the usage of the SEPM for specifying a pattern with the ex-
ample of secure communication pattern based on SSL5 mechanism. Here, we specify
an S&D property: “authenticity of sender and receiver”. To type the category of this

5The TLS Protocol Version 1.2. rfc5246, 2008.

36

2.2.6 Introduction to the Case Studies

property we use a category from the S&D category library: Authenticity. Moreover, we
identify some resource properties, such as “CPU resource time for encryption” and “CPU
resource time for authentication” that belong to category CPUTime, and “extra energy
cost for encryption” and “extra energy cost for authentication” that belong to category
PowerConsumption.

In our work, we focus on securing ICT software architectures during development
using security patterns. Hence, we do not deal with Pattern Development. We assume
that patterns are designed and validated by security engineering experts.

2.6 Introduction to the Case Studies

This section focuses on the introduction of the domain applications, which are addressed
within the illustration and assessment of the proposed approach.

2.6.1 Working Example: Microsoft’s web application

We use a web application example presented by Microsoft in [110] as a working example to
illustrate the different contributions. Figure 2.11 shows the high level architecture of the
web application. It consists of a client, a web server and a database server. The application
includes assumptions on the trust boundary. It is a boundary where components can trust
other components but cannot trust others outside it. In this case, it was considered that
the web and data servers are in same trust boundary.

2.6.2 SCADA system

This case study is used for the assessment in section 7. SCADA systems are meant to
control processes through local controllers, acquiring field data and returning them to a
SCADA master computer system. Figure 2.12 shows a typical SCADA system architec-
ture. It consists of a SCADA master, an operator workstation and a number of field de-
vices connected by a communication infra-structure. Field devices can be Programmable
Logic Controllers (PLC), Remote Terminal units (RTU), sensors and actuators. The
SCADA master provides the operator with a Human-Machine Interface (HMI) through a
work station to issue commands to PLCs and gather field data from them. PLCs are dig-
ital computers programmed to continuously monitor sensors and control actuators (e.g.,
valves, pumps, etc.). RTUs are used for converting sensor data into digital data. As
SCADA systems cover large areas, they use Wide Area Networks (WAN). SCADA sys-

37

CHAPTER 2. CONTEXT

Figure 2.11: Middle tier web application architecture model [110]

Figure 2.12: A typical SCADA system architecture [151]

38

2.2.7 Conclusion

tems provide the following features: data acquisition and handling (e.g., polling data from
controllers, alarm handling, calculations, logging and archiving) on a set of parameters,
typically those they are connected to.

2.7 Conclusion
MDE promotes models as a first class element. A model can be represented at different
levels of abstraction and the MDE vision is based on (1) metamodeling techniques to
describe these models and (2) mechanisms to specify the relations between them. Model
exchange is within the heart of the MDE approach as well as the transformation/refine-
ment relation between models. MDE frameworks may help software engineering specialists
in their tasks, but indeed it would be interesting to use (partial) solutions and to guide
them fulfilling recurring requirements. In software engineering, patterns meet this need.
We leverage on this idea to propose a Pattern-Based Development process where architect
can select, instantiate, integrate patterns and analyze software architecture solutions.

PBSE addresses challenges similar to those studied in software engineering focusing
on patterns and from this viewpoint addresses two kind of processes: the process of
pattern development and system development with patterns. In this work we focus on
system development with patterns where the architect uses security patterns to secure
ICT applications.

In this thesis, we propose to design and evaluate secure ICT applications using security
patterns. The integration of security features requires the availability of both application
domain specific knowledge and security expertise at the same time. Currently, the in-
tegration of security mechanisms is still new in many domains, hence embedded ICT
architects usually have limited security expertise. We propose an integrated, MDE based
tool supported approach for providing this expertise by the mean of security patterns.
The proposed approach is based on selection, instantiation, integration of security pat-
terns into the target application and a set of analyzes.

39

CHAPTER 2. CONTEXT

40

Chapter 3

Approach

Contents
3.1 Introduction . 41
3.2 Approach . 41
3.3 Definitions . 44
3.4 Conclusion . 45

3.1 Introduction

In this chapter, we give on overview of the approach coupled with a software development
process. In this work, we illustrate the approach with a component-based development
(CBD) process described in Figure 2.1. The remainder of this chapter is organized as
follows. Section 3.2 describes the process of the approach mapped with a software de-
velopment process. In section 3.3, we present some definitions essential for a common
understanding of concepts. Finally, in section 4.7, we sum up and locate our contribu-
tions with regards of the activities of the approach.

3.2 Approach

The conceptual vision of our process model is visualized in Figure 3.1. In this vision, the
software development process (Phases A1 to A4) is augmented with a risk assessment,
risk treatment with patterns and real-time analyzes. The usage of this process proceeds
as follow:

41

CHAPTER 3. APPROACH

A2.2. Risk Assessment

A2.3. Risk Treatment with
Patterns

OK

A2. System Architecture
Design

A3. Software Architecture
Design

A2.2.1. Feared event
Identification

A2.2.2. Threat scenarios
analysis

A2.2.3. Risk evaluation

KO

Acceptable Risk
?

A2.3.1. Pattern Selection
and Instantiation

A2.3.2. Pattern Integration

A2.1. Context Establishment

P1

P2

A3.1. Risk Assessment

A3.2. Risk Treatment with
Patterns

OK

A3.1.1. Threat analysis

A3.1.2. Reevaluate Risk

KO

Acceptable Risk ?

A3.2.1. Pattern Selection
and Instantiation

A3.2.2. Pattern Integration

A4. Implementation

P11 P12

A3.3. Analyze Architecture
Candidates (Real-Time)

P1 P2

P21 P22

OK

Acceptable Results ?
KO

Abstract patterns
Concrete
patterns

Model Repository
P1 P2

P11 P12 P21 P22

System of Patterns

A1. Requirements
Specification

Software development process

System architecture

Software architecture

Software architecture candidates

Software architecture solutions

Figure 3.1: Approach mapped with Software Development Process focusing on System
and Software Architecture phases

• Requirement Specifications (A1.). At this phase, requirement specifications are
established (out of the scope of this thesis).

• System Architecture Design (A2.). The system architecture model is designed after
performing functional analysis. The model is then submitted to risk management
steps (EBIOS):

– Context Establishment (A2.1.). The context of the analysis is set.

– Risk Assessment (A2.2.). In this step, risk assessment is performed to enu-
merate and evaluate feared events, threat scenarios and risks at the system
architecture. This process is done by a security risk analyst. Following this

42

3.3.2 Approach

step is the risk treatment phase.

– Risk Treatment with patterns (A2.3.). In this step, the architect interacts
with the model repository based on risk assessment recommendations:

∗ Pattern Selection (A2.3.1.). The selection of a System of Patterns relies
on a model repository [61]. A System of Patterns consists of a set of
security patterns (abstract and concrete) stopping identified threats. At
the system architecture design phase, abstract patterns are instantiated in
the modeling environment.
∗ Pattern integration (A2.3.2). At the system architecture design phase,

the integration of abstract patterns means specifying where the patterns
are used. The process iterates from step (A2.2.) until risks are acceptable.
Once risks are acceptable, the process moves to step (A3.2.).

• Software Architecture Design (A3.). At this phase the software architecture is
designed by refining the system architecture.

– Risk Assessment (A3.1.). The software architecture is submitted to risk assess-
ment. Risk assessment at the software architecture level complements the one
at the system architecture because software threats appear due to the level of
details of the software architecture model. Hence, we formalize threat scenarios
based on STRIDE [144] in order to detect threats in the software architecture.
Concretely, a report is generated giving the number of software threats per
threat scenario. Since new threats may appear due to level of details at the
software architecture design level, identified risks may also be reevaluated.

– Risk Treatment (A3.2) The risk treatment phase is done with:

∗ Pattern Selection (A3.2.1). The selection of a System of Patterns consist-
ing of a set of security patterns (abstract and concrete). At the software
architecture phase, concrete patterns are instantiated in the modeling en-
vironment. These concrete patterns refine abstract patterns identified in
the system architecture design phase. Since, different concrete patterns
may refine a same abstract pattern, we obtain different System of Pat-
terns configurations. Each System of Patterns configuration is a possible
solution.
∗ Pattern Integration (A3.2.2) At the software architecture phase, pattern

integration consists of applying System of Patterns configurations on the

43

CHAPTER 3. APPROACH

software architecture. Hence, since there may be different System of Pat-
terns configurations, different software architecture solution candidates
may be produced. The process iterates from step (A3.1.) until risks
are acceptable.

– Real-time Analysis of Architecture Candidates (A3.3). The architecture so-
lution candidates that pass activity (A3.1.), i.e. the risks are acceptable,
are analyzed with regards to the impact of security patterns on the real-time
aspects. In this case, scheduling analyzes are performed to verify that the
software tasks respect their deadlines.

• Implementation (A4). This phase deals with the implementation of software com-
ponents (out of the scope of this thesis).

Our scientific contributions are located in activities A2.3 and A3.2 to answer a part of:
RG1, RG2 and RG4, and A3.1 and A3.3 to answer a part of: RG1, RG3 and RG4.
The activities (A2.1 and A2.2) are essential to our work in the sense that their results are
used as an input. However a complete tool chain support was developed to link all the
activities (in the scope of the thesis).

3.3 Definitions

To allow common understanding in the context of the aforementioned approach, we have
elaborated a set of definitions:

Definition 24 (Component). A component is a modeling artifact which represents
a piece of the software architecture. It has a set of required and provided interfaces.

Definition 25 (System architecture). A system architecture is a set of intercon-
nected high level components.

Definition 26 (Software architecture). A software architecture is a set of inter-
connected software components refining the system architecture.

Definition 27 (Application model). An application model is the model of the
system at two levels: system and software architecture levels (i.e., relevant to System
Architecture and Software Architecture models respectively).

In our context we refine Definition 5 of a vulnerability :
Definition 28 (Vulnerability) A vulnerability is a flaw in the architecture that con-

stitute a weakness.

44

3.3.4 Conclusion

• System vulnerability: is a weakness of the system architecture due to the non-
existence of a certain countermeasure.

• Software vulnerability: is a weakness of the system architecture due to the non-
existence of a certain countermeasure or the incorrect integration of the counter-
measure in the software architecture.

In our context we refine Definition 6 of a Threat :
Definition 29 (Threat) A threat is a potential attack by a threat agent using an

attack method.

• System threat: exploits a System vulnerability

• Software threat: exploits a Software vulnerability

3.4 Conclusion
In this chapter, we have presented a global view of the proposed approach. It associates a
generic software development life cycle, Pattern-Based System Engineering (PBSE) and
a set of analyzes (threat and real-time analysis). In addition, we have introduced a set
of definitions necessary for the understanding of the next chapters. Next, we present our
contributions relevant to activities A2.3 and A3.2 to answer a part of: RG1, RG2 and
RG4, and A3.1 and A3.3 to answer a part of: RG1, RG3 and RG4. In addition we
study the feasibility of these contributions to answer RG5.

45

CHAPTER 3. APPROACH

46

Chapter 4

Risk Treatment with Patterns:
Selection, Instantiation and
Integration

Contents
4.1 Introduction . 47
4.2 Related Work . 48
4.3 Patterns Selection and Instantiation 53
4.4 Pattern Integration . 57
4.5 MDE Framework . 62
4.6 Tool Support . 86
4.7 Conclusion . 92

4.1 Introduction

System and Software Architects usually have basic knowledge in security engineering but
lack expertise and best practices to apply the correct recommendations issued by security
risk assessment (if any). Hence capturing and providing this expertise by the way of se-
curity patterns has become an area of research in the last years. Security can be captured
within patterns that provide reusable generic solutions for recurring security problems,
here dealing with architectural problems. Recently a complete catalog of security pat-
terns has been introduced by Fernandez [48]. Unfortunately there are two major issues.
First, traditional security patterns are usually described as informal guidelines to solve a

47

CHAPTER 4. RISK TREATMENT WITH PATTERNS: SELECTION,
INSTANTIATION AND INTEGRATION

certain problem using templates such as POSA [29] and GoF[52]. Hence even if security
patterns have advantages in fostering reuse, using them is difficult in reality. In fact,
There is a major gap of understanding between threats issued by risk assessment and the
description of a security patterns to protect against these threats. Furthermore, another
difficulty is added during their integration i.e., incorporation into the architecture. Due
to manual security pattern integration, the problem of incorrect integration (one of the
most important source of security problems) remains unsolved.

In this chapter, we tackle these problems. We present an approach and tool support for
the selection, instantiation and integration of proper security patterns during architecture
design based on risk assessment recommendations (to answer a part of: RG1, RG2
and RG4), as visualized in activities (A2.2), (A2.3) and (A3.2) of Figure 3.1. Activity
(A2.2) is supported with EBIOS method [14]. Its goal is to assess risks, feared events
and system threats. The identified threats are then used as input to the next activities.
Activities (A2.3) and (A3.2) are devoted to risk treatment with security patterns. Activity
(A2.3) consists on the selection and instantiation of security patterns and their integration
producing architecture candidates. The application modeling is based on accepted OMG
standards (UML, its Profile extension mechanism and OCL).

The remainder of the chapter is organized as follows. In section 4.2, we present
related work and discuss the positioning of our contributions. In section 4.3, we give
an overview of the selection and instantiation activity based on the identified system
threats. This step outputs a System of Patterns. In section 4.4, we describe the manner
of integrating a security pattern into an application. In section 4.5, we describe the
model-based framework and illustrate it with Microsoft’s web application. In section 4.7,
we conclude and sum up the contributions.

4.2 Related Work

Over the years there has been a noticeable divorce between pattern experts and pattern
users [102]. On one hand pattern experts create and document patterns and on the other
hand pattern users are rarely aware of relevant patterns. In addition, the latter does not
have a good understanding about how to leverage and apply a pattern. Research relevant
to pattern specification, selection and integration is discussed bellow.

48

4.4.2 Related Work

4.2.1 Pattern Specification

Most of works focus on guidelines which are pattern-specific, which means that they
specify the essence of patterns, in other words what the pattern does (e.g., describing the
frame of the pattern and its implementation) and how to interact with another pattern
(describing how to refine a pattern from another one and how to combine two patterns).
In this context, DPML [103] and the work of [20] were interested in pattern composition
and formalization. In [51], the authors were interested in the process of composing several
security patterns and their impact with regards to the composed security property. The
pattern also gives the reasons for design decisions [58], which means that it includes
descriptions of not only what, but also why [21]. In that sense, A pattern modeling
language can be considered pattern-specific oriented because its goal is to support the
design of a pattern.

4.2.2 Pattern Selection

Selecting appropriate patterns is an essential phase during the development of secure soft-
ware and systems. So, many works are tackling this subject. We present here a selection
of them regarding several aspects of this concern. The discussion is thus organized ac-
cording to: secure development methodologies, general pattern selection techniques, and
more specific methods devoted to the domain of security issues.

In [47], the authors presented a secure development methodology where the selection
of security patterns is aided with a multidimensional classification of patterns according
to: life cycle stage, concern, domain, architectural level and response type. In [155], the
authors have surveyed and compared relevant methodologies for distributed systems. The
surveyed methodologies use different ways for the selection of security patterns. Some use
ad-hoc fashion, i.e. directly from security requirements. Others base the selection on a
structured catalog of patterns, following guidelines in the overall approach or according
to predefined schemas and conceptual frameworks.

Other works have presented methods for selecting patterns. They used different tech-
niques: goal oriented formalization [160], text classification [73], classification based on
properties and threats [28, 12], and ontologies [45].

These works have been applied more specifically for security patterns, in [160], the
authors formalized security patterns using Goal-oriented Requirements Language (GRL)
[13] in order to assist a designer with the selection of security patterns. In [72], the authors
proposed an automatic security pattern selection method based on text classification and
learning techniques for the classification of security patterns. The process is automated

49

CHAPTER 4. RISK TREATMENT WITH PATTERNS: SELECTION,
INSTANTIATION AND INTEGRATION

for selecting security patterns from security requirements. The experiments showed that
Naive Bayes is the most appropriate learning technique for selecting security patterns.
In [45], the authors proposed a security pattern selection method based on ontological
mappings at two different levels: (1) at design level: between requirements for design-
based developer profiles and (2) at implementation level: between threat models, bugs
and errors for implementation-based developer profiles.

In [12], the authors provided a classification of security patterns for each development
life cycle stage. For instance, they proposed generic security properties for the design
phase. In [28], the authors introduced classification schemes based on application domains,
security aspects (e.g., confidentiality, integrity, availability, accountability, authentication
and access control) and pattern recognition needs.

4.2.3 Pattern Composition and Application

Pattern integration [58], [52], [29] is a difficult task. Indeed, all the elements of the
pattern must be integrated in an application without compromising the system integrity
and quality while guaranteeing the new properties introduced by the pattern. In [58]
the authors say that applying a design pattern may be understood as transforming the
system from one stage of development to the next. One of the difficulties is that the
pattern integration is a human-centered task [52] where the human has to understand the
context and consequences related to a specific pattern – An important issue is given in
[89]: tools that work with patterns would have to be able to semantically understand your
design as well as the pattern’s trade-offs. Furthermore, the integration topology must be
taken into account. Eliel Saarinen (a Finnish-American architect and city planner) said:
Always design a thing by considering it in its next larger context - a chair in a room,
a room in a house, a house in an environment, an environment in a city plan. Once
a pattern is integrated into an application, multiple problems can occur such as: side
effects, functional regression, property needed is not reached, or yet patterns lose their
essence because of multiple indirection cascade.

Works relevant to the integration of patterns and aspects are discussed since this issue
(i.e., integration) has been tackled in both research areas.

Pattern integration

Buschmann [29], has defined three types of pattern collection: pattern catalog, pattern
language and System of Patterns. The solutions proposed are based on kinds of patterns
to describe pattern integration processes. In view of all this, Martin Flower [49] proposes

50

4.4.2 Related Work

several types of integration styles. In SERENITY [4], integration schemes are defined
to describe the pattern integration – An Integration Scheme is an S&D Pattern that
describes a complex S&D Solution. The implementation of these solutions can be realized
by following guidelines and according to Buschmann [29], with pattern collections such
as pattern catalog, pattern language and System of Patterns.

In [143], the authors explained how pattern integration can be achieved by using a
library of precisely described and formally verified solutions. In [136], the authors present
an approach for creating of a security-enhanced system model using the SecFutur Engi-
neering Process and the SecFutur Process Tool (SPT). In [101], the authors introduced
a method and tool support called for developing secure and private IT systems using
COmputer Supported Security Patterns (COSSP). The integration process targets object
oriented applications. The tool support allows merging the solution of the pattern and
the application and validating the result against a set of OCL rules in order to guarantee
correct integration.

Aspect integration

Aspect-Oriented Modeling is similar to pattern modeling with regards to encapsulating
concerns such as security for use. However the difference is that aspects are part of a
software fulfilling a function dealing with the design stage, whereas patterns can deal
with different development stages.

Some works focused on modeling security patterns as reusable aspects and integrating
them in the design application. These works use weaving techniques and some form of
Verification & Validation to prove that the aspect has been correctly integrated.

In [122], Nguyen et al. presented a pattern-driven secure system development process
combined with an aspect-oriented security design methodology. To use this approach, the
designer is required to manually construct security solutions, as a set of security patterns,
of the considered system and the definition of a mapping for integration purposes of
these solutions into the model-under-development. The remaining activities, including
the effective integration are generated automatically using model weaving. Mouheb et
al. [120] developed a UML profile that allows modeling security mechanisms as UML
annotated aspect models to be woven automatically into a UML design model. Horcas
et al. [75] propose an Aspect-Oriented Modeling (AOM) approach to weave customized
security models into an application using the Common Variability Language (CVL) and
the Atlas Transformation Language (ATL).
These works have left dealing with the Verification & Validation activity for future work.

51

CHAPTER 4. RISK TREATMENT WITH PATTERNS: SELECTION,
INSTANTIATION AND INTEGRATION

In addition, conflicts between the design and other architectural attributes, may occur
during this task after the weaving (i.e., merge activity).

In [53], Georg et al. proposed an approach for modeling security mechanisms and
attacks as aspects using UML. In order to prove that the integration is correct, they use
model verification on the application composed with the attack model and the security
mechanisms.
This work is similar to ours, the main difference is that the integration is at a lower level:
at Object-Oriented Modeling Level. The Verification & Validation is similar as they
use OCL to model the security properties. However, these properties must be created
and specified for each application and for each used aspect. In our case the properties
and constraints are modeled together with the security patterns. The properties and
constraints become specific by using the bindings.

4.2.4 Positioning

Contributions related to selection and integration are positioned. First, the selection
approach is based on works of pattern classification [47, 28] according to security properties
and asset categories which is a subset of pattern dimensions. It adds the usage of risk
assessment to derive security properties. Table 4.1 positions the integration approach with
the aforementioned ones mainly the work of: Ngugyen et al. [122], Mouheb et al. [120],
Horas et al. [75] and Georg et al. [53]. We list a set of criteria that an aspect/pattern
integration approach must hold in order for the integration to be correct:

• Pattern properties and constraints are considered in the approach and specified
using a formal language (Criterion 1).

• Pattern preconditions and postconditions should be application-independent (Cri-
terion 2).

• The application should be validated against postconditions (Criterion 3).

52

4.4.3 Patterns Selection and Instantiation

Approaches (Criterion 1) (Criterion 2) (Criterion 3)
Our approach 3 3 3

Nguyen et al. [122] 5 5 5

Mouheb et al.[120] 5 5 5

Horcas et al. [75] 5 5 5

Georg et al. [53] 3 5 3

Table 4.1: Positioning of our contribution with regards to pattern/aspect integration
processes

4.3 Patterns Selection and Instantiation

In this section, We first present the model repository structure and then the access tool
allowing to selection of security pattern models.

4.3.1 SEMCO Model repository

Model repository structure

The model repository in Figure 4.1 is populated with a set of modeling artifacts:

• Security patterns abstract (domain independent) and concrete (domain specific)
providing a set of security properties.

• Property models resource or security property models

• Threat category models: are categorized according to defined libraries. In our con-
text, our categorization is based on STRIDE categories. STRIDE [144] refers to
the following categories: Spoofing, Tampering, Repudiation, Information Disclo-
sure, Denial Of Service (DoS) and Elevation of privilege. We choose to focus on
the following categories: Man-In-The-Middle (MITM), Tampering, Injection and
Denial of Service (DoS). This is neither a comprehensive nor a complete list but
we tried to cover well-known categories frequently used. For instance, the injection
category includes SQL injections, OS command injections and XPath injections and
is ranked number 1 in OWASP top 10 [10].

Pattern Modeling Artifacts

The structure of the pattern consists of the following modeling artifacts :

53

CHAPTER 4. RISK TREATMENT WITH PATTERNS: SELECTION,
INSTANTIATION AND INTEGRATION

• Security Pattern represents a modular part of a system that encapsulates a solu-
tion of a recurrent security problem in a specific context. It can be either abstract
or concrete (see Definition 16 in section 2.5.3).

• Security Pattern Solution represents the architectural solution of the pattern. It
consists of a number of software components: participants and security mechanisms.

• Participants (roles) represent generic components of a security pattern solution.
They are the roles potentially played by components of the application.

• Security mechanisms are software components part of security pattern solution.
They provide primitive security functions (e.g., encryption, signing). We provide a
library of these functions in order to allow security pattern solution modeling.

• Security Property is a property model relevant to security provided by the pattern
in order to stop or mitigate one or more threats. Security property categories are
[48]:

– Confidentiality: is a property category related to the protection against unau-
thorized information disclosure.

– Integrity: is a property category related to the protection against unauthorized
modification of data.

– Authenticity: is a property category related to guaranteeing the data coming
from an expected party.

– Availability: is the protection against Denial of Service (DoS).

– Non-repudiation: is the protection against the ability of a user to deny their
actions.

• Constraints. Assumptions which will have to be satisfied by the application.

Repository sources and Target Formalisms

Where does these artifacts come from ? The design of the artifacts comes from a set of
sources:

• industrial applications domains [152]

• academic [48]

54

4.4.3 Patterns Selection and Instantiation

• standards [147][30]

What target formalism does it support ? It is intended for modeling design tools based
on:

• Domain Specific Modeling Languages: UML profiles

• General-Purpose Languages: UML [130], SysML [125]

However for each target formalism, an access tool must be specified. In this context, an
access tool for component-based architectures relying on a dedicated UML profile named
ComponentUML. This profile is described in section 4.5.1.

4.3.2 Access Tool

Here we focus on the repository accessing techniques providing simple interfaces. The
model repository is accessed through an access tool intended for Papyrus.

Threat
Category 1

Model Repository

Security
Pattern 1

Threat
Category 2

Security
Pattern 2

Security
Property 1

Security
Property 2

Security
Property 3

Access Tool

Security
Pattern 2

Security
Pattern 1

Threats & categories

Threat 1
Threat 2
Threat 3
Threat 4

category 1
category 1
category 2
category 2

Instantiation Selection

Figure 4.1: Selection and Instantiation of security pattern models according to threat
models

The Access tool in Figure 4.1 allows selection and instantiation of patterns from the
model repository:

55

CHAPTER 4. RISK TREATMENT WITH PATTERNS: SELECTION,
INSTANTIATION AND INTEGRATION

• Search for security patterns using:

– Keyword search

– Context search according to:

∗ Development life cycle stage (e.g., Architecture, Design, Implementation)
∗ Domain (e.g., DI, DS)

– Threat category: by selecting one or more threat category. The architect needs
to search for architectural security patterns giving solution for identified secu-
rity threats. For this to happen the architect needs to categorize the identified
threats at the output of Activity (A2.2.3.) according to a threat category in
4.3.1.

• Search Results: The access tool suggests a System of Patterns which is a set of
abstract security patterns protecting against the specified threats, their refinements
(concrete patterns) and their relationships.

• Artifacts Instantiation: Instantiating patterns is a crucial step because it allows to
translate the patterns from their formalism towards the UML-based formalism.

56

4.4.4 Pattern Integration

4.4 Pattern Integration

4.4.1 Methodology description

Once the System of Patterns is selected and instantiated in the UML-based modeling
environment as mentioned in section 4.3, the fundamental question now is: Given a UML
security pattern and an application constituted of a UML application diagram, how to
integrate correctly the first one into the second one ? To respond to this question we see
the security pattern solution as software architecture solution and we consider, as input of
the process, patterns which are already validated. This process is based on previous work
done in [66] which provides a first solution of design pattern integration in the context
of object-oriented applications. We have further formalized the validation of security
properties and constraints with OCL [126].

Role2Role1

Encryption Encrytion

Role2Role1

Encryption Encryption

PREPARATION

ELICITATION

Identification Role Binding

CONTEXT VALIDATION

Checking
(Constraints)

Properties &
Constraints

Pattern Model

Application Diagram

{?}
Extraction

Pattern Representation Artifact

Pattern Representation Artifact

Constraints

{?}

Validation result artifact

MERGE

Merge
(component creation, ports, interfaces)

OK/NOK

comp1 comp2

Casting diagram

comp1 comp2

Role2Role1

Encryption Encryption

plays
plays

Casting diagram

comp1 comp2

Role2Role1

Encryption Encryption

plays plays

comp2comp1

Encryption Encryption

resulting application diagram

VERIFICATION &
VALIDATION

Checking
(Pattern Properties)

{?}

- Application Diagram
- Pattern Representation

Artifact
- Casting Diagram

- Resulting Application Diagram
- Pattern Properties
- Trace (Casting Diagram)

Validation result artifact

OK/NOK

Figure 4.2: Pattern Integration Process

Figure 4.2 depicts our Pattern Integration Process which consists of five phases: Prepa-
ration, Elicitation, Context Validation, Merge and Verification & Validation. The phases
are described after we present pattern integration artifacts consumed and produced by

57

CHAPTER 4. RISK TREATMENT WITH PATTERNS: SELECTION,
INSTANTIATION AND INTEGRATION

each phase.

4.4.2 Pattern Integration Artifacts

The pattern integration process interacts with the following artifacts:

• Application Diagram is the representation of the software architecture of the
application.

• Pattern representation artifact is the security pattern solution.

• Preconditions are the constraints that the application must verify in order for the
integration to work.

• Postconditions are pattern properties that the application verifies after the inte-
gration of the pattern.

• Pattern representation artifact is the security pattern solution.

• Casting Diagram consists of the application diagram, the pattern representation
artifact diagram and the bindings between components of the two diagrams. The
bindings constitute mappings to identify the application components that play roles
(participants) in the security pattern solution.

• Resulting Application Diagram is the final software architecture diagram once
the pattern has been integrated into the application.

4.4.3 Hypothesis

We list a set of assumptions that we used to construct our integration process:

• Hypothesis 1: Security feature incorporation. The pattern integration process is only
intended to incorporate security features. We verify that the application diagram
contains the necessary functional features before starting the integration.

For example: In order to integrate a secure channel Pattern between a Client and
Server components:

– There must be a communication.

– Client and Server interfaces must have Send() and Receive()

58

4.4.4 Pattern Integration

• Hypothesis 2: Pattern properties relevant to messages. We focus particularly on the
following pattern properties intended for transmitted messages:

– Property 1. Confidentiality of messages

– Property 2. Integrity of messages

– Property 3. Authenticity of messages

• Hypothesis 3: Pattern constraints. In this context we focus on two major precondi-
tions for all the patterns:

– Precondition 1. All pattern participants should be bound (one participant
per component)

– Precondition 2. All communications in the pattern should exist in the ap-
plication.

4.4.4 Phase 1: Preparation

The goal of this phase is to extract from a UML security pattern the necessary artifacts
dedicated to the second phase: UML pattern representation artifact, properties (postcon-
ditions), constraints (preconditions). This phase can be considered as the warm-up of the
pattern integration process during which the artifacts which are needed as real input of
the process are prepared.

4.4.5 Phase 2: Elicitation

The aim of this phase is to identify where and how the pattern will be applied. Concretely,
the Elicitation consists of: identification and role binding

• Identification. First the architect identifies the software components in the ap-
plication diagram where the pattern representation artifact needs to be applied.
This is done by searching for the components that shall play roles in the pattern
representation artifacts.

• Role bindings. Once the software components are identified, the architect binds
them with their corresponding roles in the patterns represented in Figure 4.2 by
dashed arrows annotated by plays stereotypes.

59

CHAPTER 4. RISK TREATMENT WITH PATTERNS: SELECTION,
INSTANTIATION AND INTEGRATION

4.4.6 Phase 3: Context Validation

The goal of this phase is to check whether the pattern preconditions are verified by the
application. This phase takes as input the Casting Diagram and pattern Preconditions
and provides as output a Result Artifact (that contains, for each constraint, the result of
the checking). All constraints must be valid before moving to the next phase.

4.4.7 Phase 4: Merge

The aim of this phase is to correctly integrate the pattern using the Casting Diagram.
The Merge phase consists of correctly adding Security Mechanisms, ports, interfaces and
communications from the Pattern Representation Artifact into the application diagram.
This results is a new version of the application. It is a candidate version for improved
security of the application.

Let A be an application, Pattern a pattern representation artifact and C a casting
diagram containing a set of bindings bi. The resulting application obtained by integration
RA is defined by the algorithm in Listing 4.1.

1 Algorithm Merge
2

3 Input : A, Pattern , C .
4 Output : RA.
5

6 RA:= d u p l i c a t e (A)
7 for each b i in C’
8 component1 = bi . component
9 p a t t e r n P a r t i c i p a n t 1 = bi . p a t t e r n P a r t i c i p a n t

10

11 for each pPort in p a t t e r n P a r t i c i p a n t 1
12 i f pPort . communication . p r t s . component−>i n c l u d e s (SecurityMechanism)
13 Prt1 = RA. dup l i ca t ePor t (pPort , component1)
14 securityMechanism = RA. duplicateComponent (Port . securityMechanism)
15 RA. CreateCommunication (Prt1 , securityMechanism . port)
16 else
17 patte rnPart ipant2 = Port . communication . por t s . component−>s e l e c t (PP | PP !=

p a t t e r n P a r t i c i p a n t 1)
18 component2 = p a t t e r n P a r t i c i p a n t . b inding . component
19 Prt1 = RA. ports−>s e l e c t (prt | prt . owner = component1 and Prt1 . communication . connects (

component1 , component2))
20

21 for each pOperation in Port . i n t e r f a c e . o p e r a t i o n s
22 i f Prt1 . i n t e r f a c e . operat ions−>i n c l u d e s (pOperation) == f a l s e
23 RA. addOperation (pOperation , Prt1 . i n t e r f a c e)
24 endif
25 endfor
26

27 endif

60

4.4.4 Pattern Integration

28 endfor
29 endfor

Listing 4.1: Merge algorithm

Application diagram duplication (Line 6-11). First, the application diagram A

and casting diagram C are duplicated and named RA and C ′ respectively. The set of
bindings in C ′ are parsed. For each binding bi, patternParticipant1 and component1
are the pattern participant and the application component bound by bi respectively. In
addition, ports owned by patternParticipant1 are looked up.

Security mechanism deployment (Line 12-15). These lines aim at deploying a
security mechanism to application components.
For each port pPort, if pPort connects patternParticipant1 to a security mechanism, then
it is duplicated, added to component1 in RA and named Prt1. The security mechanism
is duplicated, added to RA and named securityMechanism. A communication is created
between Prt1 and securityMechanism.port (securityMechanism port).

Security mechanism deployment (Line 16-23) These lines aim at adding the nec-
essary operations to the interfaces of the application components in order to correctly call
the operations of the security mechanisms. If pPort does not connect patternParticipant1
to a security mechanism, then it is connected to another pattern participant that we
name patternParticipant2. We name component2 the application component bound to
patternParticipant2. According to the assumptions, there must be a communication
between application components (this is a precondition). In this case, component1 is
connected to component2 via port Prt1. The operations of pPort interface are looked
up. For each operation pOperation in pPort interface, if pOperation does not exist in
Prt1 interface, pOperation is added to the operations of Prt1 interface.

After the merge phase, the resulting application verifies the pattern postconditions

4.4.8 Phase 5: Verification & Validation

This phase consists in checking the resulting application model against the pattern post-
conditions at each model change. The verification of postconditions (pattern security
properties) over the new application is guaranteed by the checking module. Changes,
after the integration, can result from ad-hoc tailoring or from the integration of another
security pattern. The validation of the application against pattern postconditions is done
by verifying that:

61

CHAPTER 4. RISK TREATMENT WITH PATTERNS: SELECTION,
INSTANTIATION AND INTEGRATION

• The necessary security mechanisms ensuring pattern properties exist in the appli-
cation. For example: the existence of the encryptor mechanism for confidentiality

• The security mechanisms are correctly used to protect messages. For example: the
encryption of a message to ensure its confidentiality during transmission.

4.5 MDE Framework
In this section, we describe an MDE framework to support activities Risk Assessment and
Pattern Selection and Integration. We use metamodeling, existing modeling languages
and Model-To-Model transformation techniques for building a secure system and software
architecture model. For the illustration, we consider the web application presented in
section 2.6.1.

4.5.1 Architecture Design Modeling

Figure 4.3: UML profile for component-based software architectures

In the context of the CBD process presented in section 2.2.2, we are interested in
component-based architectures. We defined the UML profile in Figure 4.3 in order to
model the application (i.e., system and software architecture). The need to define this

62

4.4.5 MDE Framework

profile occurred during the formalization process of preconditions and postconditions, and
later threat scenarios, using OCL. The OCL rules were difficult when using UML because
concepts that were not relevant appeared. Hence this profile was used for a matter of
simplification. This profile is not a final solution. This point is discussed later in future
works.

Figure 4.4: StructuredContainer from UML 2.5

The UML profile has been defined based on the following concepts: StructuredClas-
sifiers (Figure 4.4), Messages (Figure 4.5) and Deployments from UML 2.5 [130] (Fig-
ure 4.5). When we study distributed systems, often we use models to denote some abstract
representation (environment) of a distributed system. To encode distributed computing
(protocols) in such systems, we use message passing model [17], where system components
have only local vision of the system and communicate only with their neighbors by mes-
sages. The program executed at each node consists of a set of variables (state) and a finite
set of actions. A component can write to its own variables, send and/or receive messages
from its neighbors. The stereotypes and the UML extensions are given in Table 4.2:

The architecture design of the application is modeled at two levels as displayed in
Figure 3.1 using ComponentUML:

63

CHAPTER 4. RISK TREATMENT WITH PATTERNS: SELECTION,
INSTANTIATION AND INTEGRATION

Figure 4.5: Messages from UML 2.5

Figure 4.6: Deployment from UML 2.5

64

4.4.5 MDE Framework

Stereotypes UML extensions
Application Class
Component Property
Port Port
Interface Interface
Operation Operation
Send Operation
Receive Operation
Communication Connector
Message Property
Platform Class
Node Property
Channel Connector

Table 4.2: ComponentUML stereotypes and extensions

System Architecture Design. At this stage, the application model consists of system
components (independent of the software and hardware choice) connected with commu-
nications.

Figure 4.7 shows the system architecture of the web application. It is composed of
two system components: (1) client and (2) website.

Software Architecture Design. The software architecture model is obtained by re-
fining the system architecture model. Hence, Ports, Interfaces , operations and messages
are added to the application. The platform consists of a set of nodes connected with
channels.

Figure 4.8 shows the software architecture of the application. Ports, interfaces, data
types, and messages are added. The component website is refined into two software
components: (1) webserver and (2) database.

4.5.2 EBIOS Risk Assessment

We have implemented a framework that supports the EBIOS method and integrated it
into our modeling environment Papyrus. This framework includes a UML profile and
tools to automate some steps in the EBIOS method (generation of an attack tree). We
can also generate tables (list of risks, feared events and system threats) specified in the
EBIOS method.

65

CHAPTER 4. RISK TREATMENT WITH PATTERNS: SELECTION,
INSTANTIATION AND INTEGRATION

Figure 4.7: Web application system architecture model

66

4.4.5 MDE Framework

Figure 4.8: Web application software architecture model and Types

67

CHAPTER 4. RISK TREATMENT WITH PATTERNS: SELECTION,
INSTANTIATION AND INTEGRATION

EBIOS UML profile

Figure 4.9 presents an excerpt of EBIOS UML profile. It contains all the concepts pre-
sented in section 2.3.2.

Figure 4.9: Excerpt of EBIOS UML profile

Illustration

Figure 4.10 shows the different diagrams used to model the system architecture (diagram
(1, 2)), feared events and associated system threats (diagram 3) and a table view of
feared events and system threats (diagram 4) with their likelihood and impact levels.
Figure 4.11 shows an excerpt of automatically generated Attack Trees based on the results
of the EBIOS risk assessment. Each attack tree describes a risk within the application. In
this Attack Tree, the top nodes (Communication disruption, Client disruption, Website
Disruption) correspond to a feared event in the EBIOS analysis. Following this node is
an OR node. Children nodes corresponding to the system threats that may lead to the
feared event.

4.5.3 Selection and Instantiation

Once the system threats are identified, the selected System of Patterns in the pattern
repository needs to be instantiated into the modeling environment. We describe the
target UML profile (SepmUML) and the mappings necessary for the instantiation.

68

4.4.5 MDE Framework

Figure 4.10: EBIOS analysis diagrams

Communication
disruption

th
1

th
2

Man-In-The
Middle

Tampering

Client disruption

th
3

th
4

Denial of Service Injection

Website
disruption

th
5

th
6

Denial of Service Injection

OR OR OR

Figure 4.11: Excerpt of web application attack trees

69

CHAPTER 4. RISK TREATMENT WITH PATTERNS: SELECTION,
INSTANTIATION AND INTEGRATION

SepmUML: UML profile

Figure 4.12: SepmUML UML profile

SepmUML is a UML profile for modeling security patterns in the context of CBD
(see Figure 4.12). SepmUML contains the necessary stereotypes for modeling a security
pattern in UML environment (stereotypes in white). It extends the SEPM conceptual
model presented in section 2.5.3 with integration related concepts (stereotypes in blue).
SEPM is a generic metamodel, hence the target application modeling language is not
specified. The solution of the pattern is modeled using ComponentUML (stereotypes in
Grey). Figure 4.13 shows the stereotypes relevant to a System of Patterns based on SEPM
in Figure 2.10. Table 4.3 shows SepmUML stereotypes and UML extensions.

SepmUML Security Mechanisms Library

Five main security mechanism categories of SempUML are considered: Authenticity, Au-
thorisation, Authentication, Cryptography, Monitoring and Filtering as it can be seen in

70

4.4.5 MDE Framework

Figure 4.13: SepmUML UML profile: System of Patterns

Stereotypes UML extensions
Pattern Package
Property Comment
PropertySpecification Comment
Constraint Comment
Solution Package
Structure Package
StructureContainer Class
Behavior Package
Participant Property
SecurityMechanism Property
Play Dependency
Castings Package
PatternIntegration Package

Table 4.3: SepmUML stereotypes and extensions

71

CHAPTER 4. RISK TREATMENT WITH PATTERNS: SELECTION,
INSTANTIATION AND INTEGRATION

Figure 4.14. Derived from security requirements, a customised security pattern solution
can be built up from a combination of these security mechanisms categories.

Figure 4.14: A partial view of the considered security mechanisms

Transformation for Instantiation: SEPM towards SepmUML+ComponentUML

System of Patterns need to be instantiated from the model-based repository SEMCO the
UMLmodeling environment. We define mappings from SEPM to SempUML+ComponentUML
(i.e., SempUML and ComponentUML) as shown in Table. 4.4 in order to instantiate one
pattern. For instantiating a System of Patterns, the transformation is performed for each
pattern and for each reference. These mappings are implemented using QVTo as shown
in Figure 4.15. Figure 4.15 shows an overview of a set of transformation rules using
QVTo under EMF. SEPM and SepmUML are specified using Ecore and UML Profiles
respectively, as source and target metamodels for the transformation rules.

72

4.4.5 MDE Framework

Source Target
SEPM SepmUML/ComponentUML
SepmPattern elements Pattern
SepmProperty Property
SepmConstraint Constraint
SepmInternalStructure Solution
SepmStaticInternalStructure Structure/StructureContainer
SepmStaticInternalStructure Behavior
SepmParticipant Participant
SepmSecurityMechanism SecurityMechanism
SepmInternalInterface Ports/Interface
SepmOperation Operation
SepmLink Communication
SepmParameter Message

Table 4.4: SEPM to SepmUML+ComponentUML Mappings

Figure 4.15: Mapping rules from SEPM concepts to SepmUML+ComponentUML using
QVTo

73

CHAPTER 4. RISK TREATMENT WITH PATTERNS: SELECTION,
INSTANTIATION AND INTEGRATION

Illustration

We illustrate the selection and instantiation activity for threats th1 and th2 shown in
Figure 4.11. The objective is to protect the communication between the Website and
Client against Man-In-The-Middle (MITM) (th1) and Tampering attacks (th2).

System of Patterns: Secure Communication (SSL, IPsec). The technical details of
the access tool will be presented in section 4.6. The access tool suggests the System of
Patterns as described in Figure 4.16:

• 1 abstract pattern: Secure Communication Pattern (SCP)

• 2 concrete patterns: SSL and IPsec patterns refining SCP

Figure 4.16: System of Patterns: Secure Communication (SSL, IPsec)

Using Figure 4.11, the abstract patterns are linked with the web application system
architecture to identify where they are used. This is possible because each feared event is
relevant to a system component and each threat is stopped or mitigated with an abstract
pattern. Figure 4.17 shows where the abstract patterns are used with regards to the
system architecture.

74

4.4.5 MDE Framework

Figure 4.17: Web application system architecture with pattern usage

SCP has two refinements and thus two alternatives. Hence, there are two System of
Patterns configurations (see Definition 19 in section 2.5.3). It means that after the next
step (integration), we would have two produced architectures candidates. The goal of the
SCP and its refinements is to ensure that the data is secure during transmission knowing
that messages passing across any public network can be intercepted. These pattern are
described in Appendix. A.

SSL Pattern model with SEPM. For illustration, purposes, we focus on the SSL pattern.
Figure 4.18 shows the pattern model in SEPM.

SSL Pattern model with SepmUML+ComponentUML. The instantiation activates the
Model-To-Model transformation in Figure 4.15 from SEPM into SepmUML+ComponentUML.
The pattern contains: its properties (Postconditions) and constraints (Preconditions).
They are expressed with natural language to provide a quick understanding of the pat-
tern. Figure 4.19 shows the pattern model in SepmUML.

4.5.4 Integration: Preparation

In this phase, the aim is the extraction of the pattern solution and pattern preconditions
and postconditions.

75

CHAPTER 4. RISK TREATMENT WITH PATTERNS: SELECTION,
INSTANTIATION AND INTEGRATION

Figure 4.18: SSL Pattern: SEPM

Figure 4.19: SSL Pattern instantiated SepmUML

76

4.4.5 MDE Framework

Figure 4.20: SSL Pattern Solution

77

CHAPTER 4. RISK TREATMENT WITH PATTERNS: SELECTION,
INSTANTIATION AND INTEGRATION

Figure 4.21: SSL Pattern Types and Interfaces

78

4.4.5 MDE Framework

Pattern Solution

Figure 4.20 shows the solution of the SSL pattern. It has two pattern participants client-
Participant and serverParticipant. It contains the following security mechanisms:

• Protocol controller: main component that controls all the other security mechanisms
to perform the SSL Handshake and SSL record protocols.

• Authenticator: authenticates client or server sides holding a certificate.

• KeyExchange: computes the client key exchange used to encrypt messages.

• Encryptor: encrypts transmitted messages.

• Decryptor: decrypts received messages.

• Signer: produces for each message a signature that guarantees authenticity and
integrity of the message. It is sent together with the message.

• Verifier: verifies the integrity and authenticity of the message via its accompanied
signature.

In addition, all the types and interfaces used to model the secure communication SSL
pattern are represented in Figure 4.21. The pattern solution also contains transmitted
messages.

Pattern Properties (Postconditions)

The specification of the properties is represented under the form of a comment stereotyped
with «PropertySpecification» with the following attributes confidentiality, integrity and
authenticity. As presented in Figure 4.20, the pattern provides the following properties:

• Property 1. confidentiality of messages m1 and m2.

• Property 2. integrity of messages m1 and m2.

• Property 3. authenticity of messages m1 and m2.

Pattern constraints (Preconditions)

Following the hypothesis in section 4.4.3. The preconditions are the following:

• Precondition 1. All pattern participants should be bound (one participant per
component).

• Precondition 2. All communications in the pattern should exist in the application.

79

CHAPTER 4. RISK TREATMENT WITH PATTERNS: SELECTION,
INSTANTIATION AND INTEGRATION

4.5.5 Integration: Elicitation

Figure 4.22: Application and SSL Secure Communication Pattern Casting diagram

In this phase, the casting diagram is established. Figure 4.22 shows the following
bindings between the SSL patterns and components of the web application:

• b1: client plays role clientParticipant

• b2: server plays role serverParticipant

4.5.6 Integration: Context checking

In this phase, the casting diagram is validated against Preconditions 1 and 2. The valida-
tion of the castings against the preconditions is done using OCL invariants. Listing. 4.2
and Listing. 4.3 validate Preconditions 1 and Preconditions 2 respectively. In this case
The preconditions are valid so we move to the next phase.

1 // Precond i t ion 1 : Al l pattern p a r t i c i p a n t s should be bound (one p a r t i c i p a n t per
component)

2 Context Cast ings
3 s e l f . play−>s e l e c t (p1 , p2 |
4

5 (p1 . p a r t i c i p a n t = p2 . p a r t i c i p a n t

80

4.4.5 MDE Framework

6 i m p l i e s
7 p1 . component = p2 . p a r t i c i p a n t)
8

9 and
10

11 (p1 . component = p2 . p a r t i c i p a n t
12 i m p l i e s
13 p1 . p a r t i c i p a n t = p2 . p a r t i c i p a n t)
14

15 and
16 p1 . p a r t i c i p a n t . s t r u c t u r e C o n t a i n t e r . p a r t i c i p a n t s−>f o r A l l (p a r t i c i p a n t | s e l f . play−>e x i s t s (

p_ | p_. p a r t i c i p a n t = p a r t i c i p a n t)))

Listing 4.2: Precondition 1: All pattern participants should be bound (one participant
per component)

1

2 // Precond i t ion 2 : a l l communications in the pattern should e x i s t s in the a p p l i c a t i o n
3 Context Cast ings
4 s e l f . play−>f o r A l l (p1 , p2 |
5 (p1 ._’<>’(p2) and p1 . p a r t i c i p a n t . ports−>e x i s t s (p1_in | p2 . p a r t i c i p a n t . ports−>e x i s t s (

p2_in | p1_in . communication = p2_in . communication)))
6 i m p l i e s
7 p1 . component . ports−>e x i s t s (p1_in | p2 . component . ports−>e x i s t s (p2_in | p1_in .

communication = p2_in . communication))
8)

Listing 4.3: Precondition 2: all communications in the pattern should exist in the
application

4.5.7 Integration: Merge

Here we detail the merge algorithm in Listing. 4.1 with the elements of SepmUML and
ComponentUML. We also show its implementation using QVTo and the result of the
phase for the working example.

Merge algorithm with modeling artifacts

In the merge phase, the goal is to merge the StructureContainer and the application
based on casting diagram. The algorithm in Listing. 4.4 is a detailed version of the
merge algorithm in Listing. 4.1. We add information about the used modeling elements
of SepmUML and ComponentUML.

81

CHAPTER 4. RISK TREATMENT WITH PATTERNS: SELECTION,
INSTANTIATION AND INTEGRATION

1

2 Algorithm Merge
3

4 modeltypes : SepmUML, ComponentUML
5

6 Input : A : ComponentUML : : Appl icat ion , Pattern : SepmUML : : Pattern , C :
7 Set (SepmUML : : Play) .
8 Output : RA : ComponentUML : : App l i ca t ion .
9

10 RA:= d u p l i c a t e (A)
11 RA. addProperty (Pattern . s t r u c t u r e . s t r uc t ur eC o nt a i n e r . p r o p e r t y S p e c i f i c a t i o n)
12 for each play : SepmUML : : Play in C’ do
13 component1 = play . component
14 p a t t e r n P a r t i c i p a n t 1 = play . p a t t e r n P a r t i c i p a n t
15

16 for each pPort : ComponentUML : : Port in p a t t e r n P a r t i c i p a n t 1
17 i f pPort . communication . por t s . component−>i n c l u d e s (c |
18 c . isKindOf (SepmUML : : SecurityMechanism)) Port1 =
19 RA. dup l i ca t ePor t (pPort , component1) securityMechanism =
20 RA. duplicateComponent (pPort . communication . por t s . component−>s e l e c t (c | c . isKindOf (

SecurityMechanism))
21 RA. CreateCommunication (Port1 , securityMechanism . port) else
22 patte rnPart ipant2 = pPort . communication . por t s . component−>s e l e c t (PP | PP !=
23 p a t t e r n P a r t i c i p a n t 1) component2 = p a t t e r n P a r t i c i p a n t . play . component
24 Port1 = RA. ports−>s e l e c t (input | por t t . component = component1 and
25 Port1 . communication . connects (component1 , component2))
26 for each pOperation : ComponentUML : : Operation in pPort . i n t e r f a c e . o p e r a t i o n s
27 i f Port1 . i n t e r f a c e . operat ions−>i n c l u d e s (pOperation) == f a l s e
28 RA. addOperation (pOperation , Port1 . i n t e r f a c e)
29 endif
30 endfor
31

32 endif
33 endfor
34 endfor

Listing 4.4: Model-Based Merge algorithm

Implementing the algorithm using QVTo

Figure 4.23 shows an overview of the transformation rules using QVTo under EMF and
presented in Listing. 4.4.

Illustration

In this phase, we perform the Model-To-Model transformation presented in section 4.5.7.
The transformation takes as input, the application in Figure 4.8 and the castings in
Figure 4.22. The Merge outputs a new application model in Figure 4.24. In addition,

82

4.4.5 MDE Framework

Figure 4.23: Merge phase with QVTo

Figure 4.25 shows that types and interfaces of the initial application have been modi-
fied adding new attributes and operations. In addition, new interfaces have been added
relevant to security mechanisms.

4.5.8 Integration: Verification & Validation

At this stage, the new application verifies the postconditions. At each change (e.g., ad-hoc
tailoring or the integration of another pattern), the application is validated against the
postconditions. The validation of the application against the postconditions is done using
the OCL invariant in Listing. 4.5. If the postconditions still hold, the change is accepted
and committed. Else, the change is dismissed.

In the illustration, the application is validated against Property 1 by verifying these
statements :

• There must be one Encryptor and Signer mechanisms for each component sending
messages m1 and m2

• Messages m1 and m2 must be encrypted before being sent.

1 // P o s t c o nd i t i o n s v a l i d a t i o n
2 Context Appl i ca t ion
3 s e l f . base_c lass . ownedAttributes−>s e l e c t (c | c . i soc lAsKind (Comment))−>s e l e c t (c |
4 c . i s S t e r e o t y p e A p p l i e d (P r o p e r t y S p e c i f i c a t i o n))−>f o r A l l (p |
5

83

CHAPTER 4. RISK TREATMENT WITH PATTERNS: SELECTION,
INSTANTIATION AND INTEGRATION

Figure 4.24: New Application diagram

84

4.4.5 MDE Framework

Figure 4.25: New Application Types (modified and added)

85

CHAPTER 4. RISK TREATMENT WITH PATTERNS: SELECTION,
INSTANTIATION AND INTEGRATION

6 p . c o n f i d e n l i t y−>f o r A l l (m_conf ident ia l |
7 // There e x i s t s a component that produces m_conf ident ia l and an ec ryptor connected to

t h i s component that encrypts m_conf ident ia l
8 s e l f . components−>e x i s t s (c1 |
9 c1 . por t s . msg_out = m c o n f i d e n t i a l

10 and
11 s e l f . components−>e x i s t s (enc |
12 enc . isOclKindOf (Encryptor)
13 and
14 c1 . ports−>e x i s t s (c1_in | enc . ports−>e x i s t s (enc_in | c1_in . communication =
15 enc_in . communciation)))))
16

17 and
18

19 p . i n t e g r i t y−>f o r A l l (m_integrity |
20 // There e x i s t s a component that produces m_integrity and an s i g n e r connected to t h i s

component that s i g n s m_integrity
21 s e l f . components−>e x i s t s (c1 |
22 c1 . por t s . msg_out = m_integrity
23 and
24 s e l f . components−>e x i s t s (s i g n e r |
25 s i g n e r . isOclKindOf (S igner)
26 and
27 c1 . ports−>e x i s t s (c1_in | s i g n e r . ports−>e x i s t s (s i gner_in | c1_in . communication =
28 enc_in . communciation)))))
29

30 and
31

32 p . a u t h e n t i c i t y−>f o r A l l (m_authenticity |
33 // There e x i s t s a component that produces m_authenticity and an s i g n e r connected to t h i s

component that s i g n s m_authenticity
34 s e l f . components−>e x i s t s (c1 |
35 c1 . por t s . msg_out = m_authenticity
36 and
37 s e l f . components−>e x i s t s (s i g n e r |
38 s i g n e r . isOclKindOf (S igner)
39 and
40 c1 . ports−>e x i s t s (c1_in | s i g n e r . ports−>e x i s t s (s i gner_in | c1_in . communication =
41 enc_in . communciation)))))
42

43

44)

Listing 4.5: OCL Queries for pattern property verification

4.6 Tool Support

We have rapidly described a global process for selecting, instantiating and integrating tech-
nical solutions capitalized in patterns in order to improve security of software architecture

86

4.4.6 Tool Support

designs. As we have seen, this takes several aspects and stages that must be supported
by specific modeling and tooling. Indeed this approach requires first an improved pattern
description formalism, second, the integration of dedicated merging techniques and finally
verification facilities to ensure correct integration of these technical solutions. In the next
section we refine the requirements for a convenient tooling support for this approach.

4.6.1 Tool support Requirements

The proposed tool chain is designed to support the proposed metamodels and Model-To-
Model transformations. In order to support our approach, tools must fulfill the following
key requirements:

• Enable the creation of the UML models used to describe system and software ar-
chitecture.

• Allow the creation of a custom UML profile.

• Support the implementation of a repository to store pattern models and the related
model libraries for classification and relationships.

• Enable the creation of visualizations of the repository to facilitate its access.

• Support the access to the repository. Create views on the repository according to
its APIs, its organization and the needs of the targeted system engineering process.

• Enable transformations of the pattern models from the repository format into the
target-modeling environment.

• Enable the creation of System of Patterns models in the target-modeling environ-
ment.

• Enable the creation of System of Patterns configuration models in the target-
modeling environment.

• Enable the integration of application models and models imported from the reposi-
tory.

In our case, we have chosen the following support tools :

• UML modeling environment: Papyrus1 (Existing)
1https://eclipse.org/papyrus/

87

CHAPTER 4. RISK TREATMENT WITH PATTERNS: SELECTION,
INSTANTIATION AND INTEGRATION

• Model Repository : SEMCOMDT2 (SEMCO Model Development Tools, IRIT’s
editor and platform plugins) is used to support pattern repository (Existing).

• Selection, Instantiation and Integration of Pattern Models: Semco4Papyrus (Imple-
mented)

4.6.2 Semco4Papyrus

Semco4Papyrus is an eclipse feature. It is based on the modeling environment Papyrus
and composed of two plug-ins (modules):

• Access Tool providing:

– GUI exposed to the end user

– Selection of patterns stored in SEMCOMDT repository

– Instantiation of patterns into Papyrus

• PatternIntegrator:

– A tool support for correct pattern integration in Papyrus.

– Provides a generic scheme for pattern integration instead of ad-hoc transfor-
mation. It is based on merge and verification techniques.

To install we provide an update site (see Figure 4.26) so that the user can select the
needed modules.

2http://www.semcomdt.org

88

4.4.6 Tool Support

Figure 4.26: Semco4Papyrus eclipse update site

4.6.3 Access Tool

The access tool is a GUI for selecting patterns from SEMCOMDT and instantiating them
into Papyrus. The GUI offers the possibility to search for DI and DS patterns at different
life cycle stages. The GUI is composed of three areas

1. Search: the basic search is done by keyword and the advanced search by:

• Domain (DI/DS)

• Name

• Threat Category (Man-In-The-Middle (MITM), Tampering, Injection, Denial
of Service)

• Security Property Category (confidentiality, integrity, authenticity, authenti-
cation, availability, non-repudiation)

• Resource category

• Life cycle stage (Requirements, Analysis, System Architecture, SW/HW archi-
tecture, Detailed design)

• Architecture Layer

89

CHAPTER 4. RISK TREATMENT WITH PATTERNS: SELECTION,
INSTANTIATION AND INTEGRATION

Figure 4.27: Semco4Papyrus access tool

90

4.4.6 Tool Support

2. Result: shows the result of the basic/advanced search. The results are a set of
patterns (System of Patterns).

3. Retrieve Patterns into Papyrus: allows the retrieval of the selected System of Pat-
terns into Papyrus.

4.6.4 Integration Module

PatternIntegrator is the integration module in charge of pattern model integration into
the application. Figure 4.28 shows the commands responsible for the integration phases.

• Validate Preconditions: responsible for Phase 3

• Merge pattern: responsible for Phase 4

• Validate Postconditions: responsible for Phase 5

Figure 4.28: PatternIntegrator commands

91

CHAPTER 4. RISK TREATMENT WITH PATTERNS: SELECTION,
INSTANTIATION AND INTEGRATION

4.7 Conclusion
In this chapter, we have proposed an approach and tool support for the selection, instanti-
ation and integration of proper security patterns during architecture design based on risk
assessment recommendations (to answer a part of: RG1, RG2 and RG4). The mod-
eling is based on accepted OMG standards (UML, its profile extension mechanism and
OCL). The integration process is based on merge and OCL verification techniques using
an MDE-based approach for security patterns. The integration process is composed of five
phases: preparation, elicitation, context validation, Merge and Verification & Validation
and offers to the user a flexible framework to integrate patterns. The pattern integration
is a difficult task because all the elements of the pattern must be integrated in an applica-
tion without compromising the system integrity and quality while guaranteeing the new
properties introduced by the pattern. While most of works focus on Merging techniques
for integrating patterns in an application, we pay more attention to the Verification &
Validation phase to validate the integration.

The real added value of our approach is to make the validation of the integration
in an easier way. On most of works, when the Verification & Validation is treated, the
user must specify what property they should validate and generally in a specific formal
language that the user is not familiar with. In our case, the properties are already part
of the pattern, the user nearly needs to perform a binding in order to verify and validate
the integration.

As a future work, we intend to use common Component-Based Modeling Languages
e.g., Unified Component Model (UCM) [131], in order to increase acceptance of the ap-
proach. In addition, we also need to consider behavior during the integration process.
Currently, we consider messages as part of the structure of the solution. Hence, messages
should be represented in a dedicated diagram such as the UML information diagram that
takes into account the order of messages.

In the next chapter, we discuss the analysis resulting software architecture candidates
of the application according to residual threats. Indeed, the selected System of Patterns
stops or mitigates specific system threats derived from risk assessment. However other
system threats have been accepted. The goal of the next chapter is a holistic exploration
of the software architecture of the application for the elicitation of unprotected flaws.

92

Chapter 5

Software Threat Analysis of Software
Architectures

Contents
5.1 Introduction . 93
5.2 Related work . 94
5.3 Threat analysis based on formalized threat scenarios 97
5.4 Formalizing threat scenarios using OCL 99
5.5 Tool Support . 113
5.6 Illustration . 114
5.7 Conclusion . 116

5.1 Introduction

Architecture threat analysis is very useful when it comes to detecting threats at early
stages. Reported vulnerabilities show that architecture design weaknesses represent half
of the total vulnerabilities of a system. Existing threat classification references can be
used in that sense. However, the complexity of systems requires automated tool support.

In this chapter, we propose a scenario-based approach and its tool support for ana-
lyzing software architectures in order to allow automatic threat detection (to answer a
part of: RG1, RG3 and RG4). Software threat analysis at the level of the software
architecture is a complement to risk assessment at the system architecture because soft-
ware threats appear due to the level of details of the software architecture. Hence, risks
identified by risks assessment are reevaluated and can be treated accordingly. We have
formalized four threat scenarios namely: Man-In-the-Middle (MITM), Tampering, Injec-

93

CHAPTER 5. SOFTWARE THREAT ANALYSIS OF SOFTWARE
ARCHITECTURES

tion and Denial of Service (DoS). We explain the formalization process through iterations.
For each iteration, the soundness and completeness of the results are evaluated.

We recall the process described in Figure 3.1. Here, we focus on activity (A3.1). The
remainder of the chapter is organized as follows. In section 5.2, we present related work
tackling software architecture threat analysis and discuss the contributions of our work.
In Section 5.3, we give an overview of the threat analysis process applied to a software
architecture. We explain the threat scenarios formalization process using OCL through
four iterations in section 5.4. In section 5.5, we give an overview of the tool support
requirements and describe the used one. In section 5.6, we illustrate threat analysis on
Microsoft’s web application working example after the application of SSL pattern. In
section 5.7, we conclude and sum up the contributions.

5.2 Related work

Several efforts have focused on assessing quality attributes in software architectures such
as modifiability, portability, maintainability, etc. The Architecture Trade-off Analysis
Method (ATAM) [87] and the Software Architecture Analysis Method (SAAM) [86] are
well-known methods for performing assessment of quality attributes. Hence some ap-
proaches extended these methods in order to assess security. Architecture assessment
approaches can be categorized into two groups: scenario-based and property-based ap-
proaches.

5.2.1 Scenario-based Analysis

Scenario-based approaches consist on modeling security scenarios and then analyzing the
architecture with regards to these scenarios. These approaches are generally refinements
of ATAM and SAAM. In literature, most of these works [10, 9, 156, 22] have limitations
in formalizing scenarios, in reusing and extending them, in automatizing the verification
process and they also lack tool support.

Modeling threat scenarios is based on experience in the security domain. Threat sce-
nario classifications (e.g., STRIDE, Common Attack Pattern Enumeration and Classifica-
tion (CAPEC) [1] and Common Weakness Enumeration (CWE) [2]) help understanding
how attackers may exploit flaws in the architecture. The problem is that these references,
although interesting and useful are not formalized. To this end, some works have used
OCL language to specify signatures of these threats to automatically detect threats in the
software architecture. In [156], the authors propose a framework for detecting architec-

94

5.5.2 Related work

tural flaws over a code. It starts by generating a graph describing a run-time architecture
using static analysis. Then they assign security properties on the graph of objects. The
process is incremental and semi-automatic since the architect gains knowledge about the
software architecture by querying and annotating the objects of the graph with security
properties such as trust, criticality, etc. The architect defines a security policy as a set
of constraints over sets returned by queries. The constraints in this approach are highly
dependent on the application and are not generic or reusable. In our approach we aim
at fostering reuse. In [22], the authors present a framework for detecting flaws in the
code. The code is first transformed in STRIDE Data Flow Diagrams (DFDs) using static
analysis. Then based on a ’best practice’ repository where threat patterns are stored,
an automatic check is performed to detect the threats and security measures that may
be applied as annotations to DFDs to mitigate these threats. SecureUML [99] is a mod-
eling language for specifying access control requirements in terms of declarative aspects
based on Role-based Access Control (RBAC) but extends the latter with authorization
constraints to specify dynamic properties in terms of programmatic aspects. Basin et
al. [19] use a metamodel called SecureUML+ComponentUML that combines SecureUML
[99] and ComponentUML (a system design modeling language for component-based sys-
tems). This metamodel is used to model security design models and security scenarios
starting from an informal security policy. The two artifacts are analyzed by evaluating
OCL queries. The evaluation serves on one hand to detect and correct design flaws, if
there are any, in the security design model or in the security scenario. On the other
hand it allows having information about the allowed accesses of each user. SecureUML is
specifically designed for evaluating the authorizations of the access controls of an appli-
cation whereas our approach evaluates if the architecture has the necessary mechanisms
to mitigate threats. In that sense, the two approaches are complementary. Other works
do not formalize security scenarios such as [9]. In this work, Alkussayer et al. report a
security scenario-based and risk-based evaluation framework for assessing software archi-
tecture. The process generates security scenarios and evaluates threats. If the results are
unsatisfactory then a set of security patterns are integrated to mitigate them.

5.2.2 Property-Based Analysis

Property-based approaches focus on formalizing security properties to assess a software
architecture Antonino et al. [15] presented a method for analyzing security in Service
Oriented Architectures (SOA) named SiSOA. The method exploites reverse engineering
to extract security-relevant facts. They then use system-independent indicators and a

95

CHAPTER 5. SOFTWARE THREAT ANALYSIS OF SOFTWARE
ARCHITECTURES

knowledge base which stores a set of rules consisting of security goals and indicators
relevant for every goal. The approach is extensible but not fully automated since it
requires an expert to analyze the architecture according to system-related information
and the rules stored in the knowledge base. Santanna et al. [138] proposed an approach to
measure the modularity of cross-cutting concerns at architectural level. They defined a set
of modularity properties used for analyzing the architecture. Recently, Hamid et al. [65]
proposed a modeling language for the specification of security patterns. In addition, the
authors provided a formal language and a validation mechanism to enable the verification
and security properties.

5.2.3 Property and Scenario-Based Analysis

Property-based and Scenario-based belong to both categories of approaches. A forefront
approach is the work of [85]. Jürjens defines a UML profile that authorizes the expression
of information related to security using UML diagrams. The UMLsec profile has been es-
tablished using three mechanisms of UML extensions which are stereotypes, tagged values
attached to the stereotypes and constraints. These mechanisms define generic security
properties (Confidentiality, Integrity, Data flow security, Access control, Auditability and
traceability). These properties are verified during the analysis of the design against an
adversary model. In [10], Almorsy et al. have formalized using OCL four threat sce-
narios (Denial of Service, Tampering, Injection and Man-In-The-Middle) and a set of
properties that measure the attack surface, compartmentalization, least privilege and fail
securely. The software architecture is modeled using UML called System Description
Model (SDM). It is then mapped to the Security Specification Model (SSM) that repre-
sents security mechanisms. Our added value is that the analysis does not only check if
the needed security mechanisms exist but also that they are correctly used to mitigate
the threat scenarios.

5.2.4 Positioning

Our approach is a scenario-based approach. We have formalized a number of threat
scenarios. Table 5.1, compares our approach to the aforementioned ones mainly: Almorsy
et al. [10], Vanciu et al. [156] and Berger et al. [22]. A scenario-based analysis approach
has to:

• Foster reuse of the formalized threat scenario (Criteria 1).

• Verify that the architecture has the right security mechanisms (Criteria 2).

96

5.5.3 Threat analysis based on formalized threat scenarios

• Verify that these security mechanisms are used correctly (Criteria 3).

• Have a list of well-known threat scenarios. (Criteria 4).

Approaches (Criteria 1) (Criteria 2) (Criteria 3) (Criteria 4)
Our approach 3 3 3 DoS, MITM,

Tampering,
Injection

Almorsy et al.
[10]

3 3 5 DoS, MITM,
Tampering,
Injection

Vanciu et al.
[156]

5 3 3 Information
disclo-
sure,Tampering

Berger et al. [22] 3 3 5 Information
Disclosure

Table 5.1: Positioning of our contribution with regards to scenario-based approaches

5.3 Threat analysis based on formalized threat sce-
narios

We propose an approach for detecting threats in the software architecture based on a set
of formalized threat scenarios.

5.3.1 Methodology description

The approach depicted in Figure 5.1 allows the analysis of software architectures in order
to detect existing threats according to formalized threat scenarios. The first step consists
in formalizing threat scenarios using OCL from existing threat classification references
(step 0). Once these threat scenarios are formalized, the software architecture model,
obtained by security pattern integration, is passed to the analysis module (step 1). This
step outputs existing threats.

5.3.2 Step 0: Threat scenarios formalization

Specifying threat scenarios is based on experience in the security domain thus this activity
should be done by security experts. Once formalized, these threat scenarios are stored in
a knowledge base.

97

CHAPTER 5. SOFTWARE THREAT ANALYSIS OF SOFTWARE
ARCHITECTURES

Threat
scenarios

(OCL)

Software
architecture ThreatsAnalysis module

Threat classification references
(STRIDE, CAPEC, CWE)

1

Formalization
of threat scenarios

0

Figure 5.1: Threat Analysis Process

Inputs during our formalization process are existing threat classifications: STRIDE
[144], Common Attack Pattern Enumeration and Classification (CAPEC) [1], Common
Weakness Enumeration (CWE)[2]. These references describe informally a set of threat
scenarios. Each threat scenario has a signature. This signature specifies the conditions
in which a threat can occur. Thus it defines the threats according to a certain scenario.
However, the threat scenarios are described informally and thus applying them manually
is error-prone and time consuming. Formalizing threat scenarios allows the automation of
security architecture threat analysis by detecting existing threats. We discuss below the
considered threat scenarios that we have taken from the classifications discussed above.
This is neither a comprehensive nor a complete list but we tried to cover well-known
categories frequently used. For instance, the injection category includes SQL injections,
OS command injections and XPath injections and is ranked number 1 in OWASP top 10:

• Man-In-The-Middle (MITM): is responsible for relaying or altering messages be-
tween two parties. The signature of this threat scenario is: lack and/or weakness of
encryption and Authenticity mechanisms.

• Denial of Service (DoS): can make the system resources unavailable for authorized
users. The signature of this threat scenario is: lack and/or weakness of Firewall,
Authentication and Authorization mechanisms.

• Tampering: is responsible for altering data at storage or during transmission. The

98

5.5.4 Formalizing threat scenarios using OCL

signature of this threat scenario is: lack and/or weakness of Authenticity mecha-
nisms.

• Injection: is responsible for passing malicious inputs in order to gain higher privi-
leges, alter data, or crash the system. The signature of this threat scenario is: lack
and/or weakness of Firewall, Authentication and Authorization mechanisms.

We use OCL language [126] to formalize the aforementioned threat scenarios as OCL
invariants. These invariants are stored and used by the analysis module in the next step.

5.3.3 Step 1: Analysis module

The analysis module is responsible for analyzing the software architecture model. If an
invariant is violated then there is a threat relevant to the threat scenario.

5.4 Formalizing threat scenarios using OCL
To illustrate the formalization process presented in the next section of this chapter, we
use the web application working example in Figure 2.11 presented in section 2.6.1. This
architecture is deployed on a platform described hereunder in Figure 5.2. Table 5.2
describes the deployment of software components on the platform nodes.

Figure 5.2: Web application platform

We enumerate the list of software threats using Microsoft threat modeling process
[110] for the web application and their category in Table 5.3.

In order to exploit these results during the formalization process, we give the number
of threats for each threat category and the total number of threats in the web application
shown in Table 5.4.

99

CHAPTER 5. SOFTWARE THREAT ANALYSIS OF SOFTWARE
ARCHITECTURES

Software Components Hardware Nodes
client (browser) client
website web server
database database server

Table 5.2: Deployment of the software component on the hardware nodes

Vulnerabilities Threat category
Using poor input validation that leads to cross-site
scripting (XSS), SQL injection, and buffer overflow
attacks.

Denial of Service (DoS), In-
jection

Passing authentication credentials or authentica-
tion cookies over unencrypted network links, which
can lead to credential capture or session hijacking.

Man-In-The-Middle
(MITM)

Using weak password and account policies, which
can lead to unauthorized access.

Elevation of Privilege, De-
nial of Service (DoS)

Failing to secure the configuration management as-
pects of your application, including administration
interfaces.

Denial of Service (DoS)

Storing configuration secrets, such as connection
strings and service account credentials, in clear
text.

Information disclosure

Using over-privileged process and service accounts. Elevation of privilege
Using insecure data access coding techniques,
which can increase the threat posed by SQL in-
jection.

Injection

Using weak or custom encryption and failing to
adequately secure encryption keys.

Information Disclosure

Relying on the integrity of parameters that are
passed from the Web browser, for example, form
fields, query strings, cookie data, and HTTP head-
ers.

Tampering

Using insecure exception handling, which can lead
to Denial of Service (DoS) attacks and the disclo-
sure of system-level details that are useful to an
attacker.

Denial of Service (DoS), In-
formation disclosure

Doing inadequate auditing and logging, which can
lead to repudiation threats.

Repudiation

Table 5.3: Web application vulnerabilities and their threat categories [110]

100

5.5.4 Formalizing threat scenarios using OCL

Threat scenario Number of threats
Man-In-The-Middle 2
Tampering 2
Denial of Service 2
Injection 2
Total 8

Table 5.4: Number of threats per scenario

The main objective of this work is to analyze software architectures allowing the
detection of threats according to formalized threats. In this section, we describe the
iterations that allowed detecting threats. This has required the addition of threats analysis
concepts in ComponentUML. In addition we have formalized at each iteration threat
scenarios using OCL. We show, at each iteration, the improvement of the soundness and
completeness of the results with regards to the web application working example:

• Iteration 1: It starts with the initial ComponentUML. In this iteration we consider
only Man-In-The-Middle (MITM) and Tampering threat scenarios. For each threat
scenario, we explore the software architecture to check if the necessary cryptographic
mechanisms exist for two components that are deployed into two different nodes.

• Iteration 2: In this iteration, we verify not only the existence of security mechanism
but that they are correctly used i.e., we verify that transmitted messages between
two components are encrypted and/or signed. We add the concept of trust boundary
i.e., we check if the component is deployed in a trusted or untrusted zone.

• Iteration 3: In this iteration, we consider Denial of Service (DoS) and Injection
threat scenarios.

• Iteration 4: In this iteration, we add the concept of port kind i.e., if the port is
external (public) or internal (private).

5.4.1 Iteration Evaluation Metrics

In order to evaluate the formalized threat scenarios, we use a set of evaluation metrics
[134] to measure at each iteration the soundness and completeness of the detection results.

• Precision rate measures the soundness of the results. A high precision rate means
that the detected threats contain more True Positives (TP) i.e., valid results than

101

CHAPTER 5. SOFTWARE THREAT ANALYSIS OF SOFTWARE
ARCHITECTURES

False Positives (FP) i.e., false results. It is computed as follows:

Precision = TP

TP + FP
(5.1)

• Recall rate measures the completeness of the results. A high recall rate means
that the detected threats give more valid results than misses them (False Negatives
(FN)). It is computed as follows:

Recall = TP

TP + FN
(5.2)

• F-Measure measures the soundness and completeness of the results with weights
for each metric. We assume that the two metrics have equal weights. It is computed
as follows:

F −Measure = 2 ∗ Precision ∗Recall
Precision+Recall

(5.3)

5.4.2 Iteration 1

In this iteration, we start with ComponentUML in Figure 4.3 and we consider only Man-
In-The-Middle (MITM) and Tampering threat scenarios. For each threat scenario, we
explore the software architecture to check that the necessary cryptographic mechanisms
exist for two components that are deployed into two different nodes.

Threat scenarios formalization

We formalize Man-In-The-Middle (MITM) and Tampering threat scenarios using OCL.
In order to do this we inspect the threats relevant to these scenarios:

• Man-In the middle threats exploit the lack of encryption and integrity protection
mechanisms

• Tampering threat scenarios exploit the lack of integrity protection mechanisms

Based on the previous, in Listings 5.1 and 5.2 are given these OCL constraints of Man-
In-The middle and Tampering threat scenarios.

1 Context Appl i ca t ion inv Man−In−The−Middle_v1
2 s e l f . components−>s e l e c t (c1 |
3 s e l f . components−>e x i s t s (c2 |
4 not (c1 . oclIsKindOf (P a t t e r n P r o f i l e : : SecurityMechanism))
5 and
6 not (c2 . oclIsKindOf (P a t t e r n P r o f i l e : : SecurityMechanism))

102

5.5.4 Formalizing threat scenarios using OCL

7 and
8 /∗ i f c1 and c2 are d i f f e r e n t ∗/
9 c1 ._’<>’(c2)

10 and
11 /∗ i f c1 and c2 are deployed in d i f f e r e n t nodes ∗/
12 (c1 . node) ._’<>’(c2 . node)
13 and
14 c1 . node . channels−>e x i s t s (ch | c2 . node . channels−>i n c l u d e s (ch))
15 and
16 /∗ c1 and c2 communicate ∗/
17 (c1 . ports−>e x i s t s (inp | c2 . ports−>e x i s t s (inpt2 | inpt2 . communication = inp . communication))

)
18 and
19

20 /∗ The s e c u r i t y mechanisms e x i s t : encryptor , decryptor , s i g n e r and v e r i f i e r ∗/
21

22 (s e l f . components−>s e l e c t (enc | s e l f . components−>e x i s t s (dec , mac1 | s e l f . components−>
e x i s t s (mac2 |

23

24 enc . oclIsKindOf (P a t t e r n P r o f i l e : : Encryptor)
25 and
26 dec . oclIsKindOf (P a t t e r n P r o f i l e : : Decryptor)
27 and
28 mac1 . oclIsKindOf (P a t t e r n P r o f i l e : : S igner)
29 and
30 mac2 . oclIsKindOf (P a t t e r n P r o f i l e : : V e r i f i e r)
31 and
32 (enc . node = c1 . node)
33 and
34 (dec . node = c2 . node)
35 and
36 (mac1 . node = c1 . node)
37 and
38 (mac2 . node = c2 . node)
39))))))−>s i z e ()

Listing 5.1: Man-In-The-Middle (MITM) threat scenario formalized using OCL

1 Context Appl i ca t ion inv Tampering_v1
2

3 s e l f . components−>s e l e c t (c1 |
4 s e l f . components−>e x i s t s (c2 |
5 not (c1 . oclIsKindOf (P a t t e r n P r o f i l e : : SecurityMechanism))
6 and
7 not (c2 . oclIsKindOf (P a t t e r n P r o f i l e : : SecurityMechanism))
8 and
9 c1 ._’<>’(c2)

10 and
11 (c1 . node) ._’<>’(c2 . node)
12 and
13 c1 . node . channels−>e x i s t s (ch | c2 . node . channels−>i n c l u d e s (ch))
14 and
15 /∗ c1 and c2 communicate ∗/
16

103

CHAPTER 5. SOFTWARE THREAT ANALYSIS OF SOFTWARE
ARCHITECTURES

17 (c1 . ports−>e x i s t s (inp | c2 . ports−>e x i s t s (inpt2 | inpt2 . communication = inp . communication))
)

18 and
19 /∗ The s e c u r i t y mechanisms e x i s t : s i g n e r and v e r i f i e r ∗/
20

21 (s e l f . components−>e x i s t s (mac1 , mac2 |
22 mac1 . oclIsKindOf (P a t t e r n P r o f i l e : : S igner)
23 and
24 mac2 . oclIsKindOf (P a t t e r n P r o f i l e : : V e r i f i e r)
25 and
26 (mac1 . node = c1 . node)
27 and
28 (mac2 . node = c2 . node)))))−>s i z e ()

Listing 5.2: Tampering threat scenario formalized using OCL

Threat Analysis Results

Threat categories Detected Threats TP FP FN
Man-In-The-Middle 3 2 1 0
Tampering 3 2 1 0
Denial of Service 0 0 0 2
Injection 0 0 0 2
Total 6 4 2 4

Table 5.5: Number of threats per scenario

After checking OCL constraints over the working example, we obtain the results in
Table 5.5.

Evaluation Metrics Results

From the threat analysis results, we compute Precision, Recall and F-Measure metrics.
The results are shown in Table 5.6. The actual version of the threat scenarios formalized
with OCL has a Precision, Recall and F-Measure rates of 66,66%, 50% and 57,14%.
The precision rate, that measures soundness, means that more than half of the detected
threats are FNs i.e, not threats. In order to increase the precision we must consider trust
boundaries. Indeed, server and database have been considered trusted during Microsoft’s
threat modeling in Figure 2.11.

104

5.5.4 Formalizing threat scenarios using OCL

Metrics Values(%)
Precision 66,66
Recall 50
F-Measure 57,14

Table 5.6: Evaluation metrics results

5.4.3 Iteration 2

In this iteration, We add the concept of trust boundary i.e., we check if the component is
deployed in a trusted or untrusted zone. Figure 5.3 shows ComponentUML model with
the TrustLevel enumeration with two literals trusted and untrusted. In addition, we verify
not only the existence of security mechanisms but that they are correctly used. This is
done by verifying that the transmitted messages between two components are encrypted
and/or signed.

Figure 5.3: Augmented ComponentUML model

105

CHAPTER 5. SOFTWARE THREAT ANALYSIS OF SOFTWARE
ARCHITECTURES

Threat scenarios formalization

We consider trust level of components and obtain a new version of the OCL constraints.
In Listing 5.3 and Listing 5.4 are given extracts of these OCL constraints. Note that a
full listing of the threat scenarios can be found in Appendix B.

1 Context Appl i ca t ion inv Man−In−The−Middle_v2
2 s e l f . components−>s e l e c t (c1 |
3

4 s e l f . components−>e x i s t s (c2 |
5

6 /∗ c1 or c2 are deployed in an untrusted node ∗/
7 (c1 . node . t r u s t l e v e l= TrustLevel : : untrusted or c2 . node . t r u s t l e v e l = TrustLevel : : untrusted

)
8 and
9

10 /∗ c1 and c2 two components commnunicating deployed in d i f f e r e n t nodes
11 [. . .]
12

13 and
14 /∗ The s e c u r i t y mechanisms e x i s t : encryptor , decryptor , s i g n e r and v e r i f i e r ∗/
15

16 [. . .]
17 and
18 (
19

20 /∗ Mecanisms are connected to components ∗/
21

22 (c1 . ports−>e x i s t s (inp_c1 | enc . ports−>e x i s t s (inp_enc | inp_c1 . communication = inp_enc .
communication and inp_enc . communication ._’<>’(n u l l)))

23 and
24 c1 . ports−>e x i s t s (inp_enc | mac1 . ports−>e x i s t s (inp_mac1 | inp_mac1 . communication =

inp_enc . communication and inp_enc . communication ._’<>’(n u l l)))
25 and
26 c2 . ports−>e x i s t s (inp_mac1 | mac2 . ports−>e x i s t s (inp_mac2 | inp_mac2 . communication =

inp_mac1 . communication and inp_mac1 . communication ._’<>’(n u l l)))
27 and
28 c2 . ports−>e x i s t s (inp_mac2 | dec . ports−>e x i s t s (inp_dec | inp_mac2 . communication =

inp_dec . communication and inp_dec . communication ._’<>’(n u l l)))
29 and
30

31 /∗ the mechanisms are c a l l e d c o r r e c t l y ∗/
32 c1 . ports−>s e l e c t (inp_c1_c2 | inp_c1_c2 . msg_out ._’<>’(n u l l) and (c1 . ports−>e x i s t s (inp | c2 .

ports−>e x i s t s (inpt2 | inpt2 . communication = inp_c1_c2 . communication))))−>f o r A l l (
inp_c1_c2 | mac1 . ports−>e x i s t s (s ign_in | c1 . ports−>e x i s t s (c1_inp | c1_inp . communication
= sign_in . communication)

33 and
34 (enc . ports−>e x i s t s (enc_in | c1 . ports−>e x i s t s (c1_signorEnc |
35 −− case 1 : message f low s i g n and then encrypt
36 (c1_signorEnc . communication = enc_in . communication
37 and
38 s ign_in . msg_out = inp_c1_c2 . msg_out
39 and
40 s ign_in . msg_in = enc_in . msg_out

106

5.5.4 Formalizing threat scenarios using OCL

41 and
42 enc_in . msg_in = c1_signorEnc . msg_out)
43 or
44 −− case 2 : message f low encrypt and then s i g n
45 (c1_signorEnc . communication = sign_in . communication
46 and
47 enc_in . msg_out = inp_c1_c2 . msg_out
48 and
49 enc_in . msg_in = sign_in . msg_out
50 and
51 s ign_in . msg_in = c1_signorEnc . msg_out)))))))))))−>isEmpty ()
52)))−>s i z e ()

Listing 5.3: Man-In-The-Middle (MITM) threat scenario version 2 formalized using OCL

1 Context Appl i ca t ion inv Tampering_v2
2

3 s e l f . components−>s e l e c t (c1 |
4

5 s e l f . components−>e x i s t s (c2 |
6

7 /∗ c1 or c2 are deployed in an untrusted node ∗/
8 (c1 . node . t r u s t l e v e l= TrustLevel : : untrusted or c2 . node . t r u s t l e v e l = TrustLevel : : untrusted

)
9 and

10

11 /∗ c1 and c2 two components communicating deployed in d i f f e r e n t nodes
12 [. . .]
13

14 and
15

16 /∗ case1 : The s e c u r i t y mechanisms e x i s t : s i g n e r and v e r i f i e r ∗/
17 s e l f . components−>s e l e c t (s i g n e r |
18 s i g n e r . oclIsKindOf (S igner)
19 and
20 s i g n e r . node = c1 . node
21 and
22 s e l f . components−>e x i s t s (v e r i f i e r |
23 v e r i f i e r . oclIsKindOf (V e r i f i e r)
24 and
25 v e r i f i e r . node = c2 . node
26

27 /∗ Mechanisms are connected to components ∗/
28 and
29 c1 . ports−>e x i s t s (inp_mac1 | s i g n e r . ports−>e x i s t s (inp_mac2 | inp_mac2 . communication =

inp_mac1 . communication and inp_mac1 . communication ._’<>’(n u l l)))
30 and
31 c2 . ports−>e x i s t s (inp_dec | v e r i f i e r . ports−>e x i s t s (inp_c2 | inp_c2 . communication =

inp_dec . communication and inp_dec . communication ._’<>’(n u l l))))
32 and
33

34 /∗ the mechanisms are c a l l e d c o r r e c t l y ∗/
35

36 c1 . ports−>s e l e c t (inp_c1_c2 | inp_c1_c2 . msg_out ._’<>’(n u l l) and (c1 . ports−>e x i s t s (inp | c2 .

107

CHAPTER 5. SOFTWARE THREAT ANALYSIS OF SOFTWARE
ARCHITECTURES

ports−>e x i s t s (inpt2 | inpt2 . communication = inp_c1_c2 . communication))))−>f o r A l l (
inp_c1_c2 |

37 s i g n e r . ports−>e x i s t s (s ign_in |
38 c1 . ports−>e x i s t s (c1_inp | c1_inp . communication = sign_in . communication)
39 and
40 c1 . ports−>e x i s t s (c1_sign |
41

42 (c1_sign . communication = sign_in . communication
43 and
44 s ign_in . msg_out = inp_c1_c2 . msg_out
45 and
46 c1_sign . msg_out = sign_in . msg_in
47)))))−>isEmpty ()
48

49 and
50

51 /∗ case2 : The s e c u r i t y mechanisms e x i s t : s i g n e r and v e r i f i e r and encrypt ion
52 mechanisms ∗/
53 [. . .]
54

55)))−>s i z e ()

Listing 5.4: Tampering threat scenario version 2 formalized using OCL

Threat Analysis Results

Threat categories Detected threats TP FP FN
Man-In-The-Middle 2 2 0 0
Tampering 2 2 0 0
Denial of Service
(DoS)

0 0 0 2

Injection 0 0 0 2
Total 4 4 0 4

Table 5.7: Number of threats per scenario

After checking the OCL constraints over the working example, we obtain the results
in Table 5.7. The results show that four threats have been detected and are TPs.

Evaluation Metrics Results

From threat analysis results, we compute Precision, Recall and F-Measure metrics. The
results are shown in Table 5.8. The second version of Man-In-The-Middle (MITM) and
Tampering threat scenarios formalized with OCL has a Precision, Recall and F-Measure
rates of 100%, 50% and 66,66% respectively. The precision rate, that measures soundness,

108

5.5.4 Formalizing threat scenarios using OCL

has increased to its maximum because all the detected threats are TP. The recall rate is
still the same because Denial of Service (DoS) and Injection threat scenarios have not yet
been formalized.

Metrics Values(%)
Precision 100
Recall 50
F-Measure 66,66

Table 5.8: Evaluation metrics results

5.4.4 Iteration 3

In this iteration, we consider Denial of Service (DoS) and Injection threat scenarios.

Threat scenarios formalization

We formalize Denial of Service (DoS) and Injection threat scenarios using OCL. In order
to do so, threats relevant to each scenario are inspected. Denial of Service and Injection
threat scenarios exploit the lack of firewall, authentication and authorization mechanisms.
In Listings 5.5 and 5.6 are given these OCL constraints. Note that a full listing of the
threat scenarios can be found in Appendix B.

1 Context Appl i ca t ion inv Denia lo fServ ice_v1
2 s e l f . components−>s e l e c t (c1 |
3 c1 . ports−>e x i s t s (port |
4

5 /∗ Firewa l l , authent i ca tor , and a u t h o r i z e r mechanisms e x i s t ∗/
6 s e l f . components−>s e l e c t (f i r e w a l l |
7 f i r e w a l l . oclIsKindOf (F i r e w a l l)
8 and
9 f i r e w a l l . node = c1 . node

10 and
11 s e l f . components−>e x i s t s (auth |
12 auth . oclIsKindOf (Authent icator)
13 and
14 auth . node = c1 . node
15 and
16 s e l f . components−>e x i s t s (a u t h o r i z e r |
17 a u t h o r i z e r . oclIsKindOf (Author izer)
18 and
19 a u t h o r i z e r . node = c1 . node
20 and
21

22 /∗ S e c u r i t y mechanisms are connected to component c1 and message f low i s c o r r e c t ∗/
23

24 −− f i r e w a l l and c1 are connected and input messages go from c1 to f i r e w a l l −−

109

CHAPTER 5. SOFTWARE THREAT ANALYSIS OF SOFTWARE
ARCHITECTURES

25 c1 . ports−>e x i s t s (in_c1_f i r ewa l l | f i r e w a l l . ports−>e x i s t s (i n p _ f i r e w a l l |
26 [. . .]
27

28 and
29 −−a u t h e n t i c a t o r and c1 are connected and input messages go from f i r e w a l l to a u t h e n t i c a t o r

−−
30 c1 . ports−>e x i s t s (in_c1_auth | auth . ports−>e x i s t s (inp_auth |
31 [. . .]
32

33 and
34 −−a u t h o r i z e r and c1 are connected and input messages go from f i r e w a l l to
35 a u t h e n t i c a t o r −− c1 . ports−>e x i s t s (in_c1_author izer | a u t h o r i z e r . ports−>e x i s t s (

inp_author i zer |
36 [. . .]
37

38)))))))))−>s i z e ()
39

40))−>isEmpty ()

Listing 5.5: Denial of Service (DoS) threat scenario formalized using OCL

1 Context Appl i ca t ion inv In ject ion_v1
2

3 Context Appl i ca t ion inv Denia lo fServ ice_v1
4 s e l f . components−>s e l e c t (c1 |
5 c1 . ports−>e x i s t s (port |
6

7 /∗ Firewa l l , authent i ca tor , and a u t h o r i z e r mechanisms e x i s t ∗/
8 s e l f . components−>s e l e c t (f i r e w a l l |
9 f i r e w a l l . oclIsKindOf (F i r e w a l l)

10 and
11 f i r e w a l l . node = c1 . node
12 and
13 s e l f . components−>e x i s t s (auth |
14 auth . oclIsKindOf (Authent icator)
15 and
16 auth . node = c1 . node
17 and
18 s e l f . components−>e x i s t s (a u t h o r i z e r |
19 a u t h o r i z e r . oclIsKindOf (Author izer)
20 and
21 a u t h o r i z e r . node = c1 . node
22 and
23

24 /∗ S e c u r i t y mechanisms are connected to component c1 and message f low i s c o r r e c t ∗/
25

26 −− f i r e w a l l and c1 are connected and input messages go from c1 to f i r e w a l l −−
27 c1 . ports−>e x i s t s (in_c1_f i r ewa l l | f i r e w a l l . ports−>e x i s t s (i n p _ f i r e w a l l |
28 [. . .]
29

30 and
31 −−a u t h e n t i c a t o r and c1 are connected and input messages go from f i r e w a l l to a u t h e n t i c a t o r

−−
32 c1 . ports−>e x i s t s (in_c1_auth | auth . ports−>e x i s t s (inp_auth |

110

5.5.4 Formalizing threat scenarios using OCL

33 [. . .]
34

35 and
36 −−a u t h o r i z e r and c1 are connected and input messages go from f i r e w a l l to
37 a u t h e n t i c a t o r −− c1 . ports−>e x i s t s (in_c1_author izer | a u t h o r i z e r . ports−>e x i s t s (

inp_author i zer |
38 [. . .]
39

40)))))))))−>isEmpty ()
41

42))−>s i z e ()

Listing 5.6: Injection threat scenario formalized using OCL

Threat Analysis Results

Threat categories Detected threats TP FP FN
Man-In-The-Middle 2 2 0 0
Tampering 2 2 0 0
Denial of Service 3 2 1 0
Injection 3 2 1 0
Total 10 8 2 0

Table 5.9: Number of threats per scenario

After checking OCL constraints over the working example, we obtain the results pre-
sented in Table 5.9.

Evaluation Metrics Results

From threat analysis results, we compute Precision, Recall and F-Measure metrics. The
results are shown in Table 5.10. The actual version of the threat scenarios formalized with
OCL has a Precision, Recall and F-Measure rates of 80%, 100% and 85,88% respectively.
The precision rate, that measures soundness, indicates that 20% are FN. In order to
increase the precision we must consider port kinds (internal or external). Indeed, server
and database communicating ports have been considered internal in the working example
in Figure 2.11 during Microsoft’s threat modeling.

5.4.5 Iteration 4

In this iteration, we add the concept of port kinds. Figure 5.3 shows ComponentUML
with the PortKind enumeration with two literals external (public ports) and internal
(private ports).

111

CHAPTER 5. SOFTWARE THREAT ANALYSIS OF SOFTWARE
ARCHITECTURES

Metrics Values(%)
Precision 80
Recall 100
F-Measure 85,88

Table 5.10: Evaluation metrics results

Threat scenarios formalization

We consider trust level of components and obtain a new version of the OCL constraints.
In Listings 5.7 and 5.8 are given extracts of these OCL constraints. Note that a full listing
of the OCL constraints can be found in Appendix B.

1 Context Appl i ca t ion inv Denia lo fServ ice_v2
2

3 s e l f . components−>s e l e c t (c1 |
4 /∗P u b l i c l y a c c e s s i b l e port ∗/
5 c1 . ports−>e x i s t s (publ ic_port |
6 (publ ic_port . portk ind = PortKind : : e x t e r n a l)
7 and
8 /∗ Firewa l l , a u t h e n t i c a t i o n and a u t h o r i z a t i o n mechanisms e x i s t
9 [. . .]

10 /∗ S e c u r i t y mechanisms are connected to component c1 and message f low i s c o r r e c t ∗/
11 [. . .]
12)−>s i z e ()

Listing 5.7: Denial of Service (DoS) threat scenario formalized using OCL

1 Context Appl i ca t ion inv In ject ion_v2
2

3 s e l f . components−>s e l e c t (c1 |
4 /∗P u b l i c l y a c c e s s i b l e port ∗/
5 c1 . ports−>e x i s t s (publ ic_port |
6 (publ ic_port . portk ind = PortKind : : e x t e r n a l)
7 and
8 /∗ Firewa l l , a u t h e n t i c a t i o n and a u t h o r i z a t i o n mechanisms e x i s t
9 [. . .]

10 /∗ S e c u r i t y mechanisms are connected to component c1 and message f low i s c o r r e c t ∗/
11 [. . .]
12)−>s i z e ()

Listing 5.8: Injection threat scenario formalized using OCL

Threat Analysis Results

After checking OCL constraints over the working example, we obtain the results in Ta-
ble 5.11.

112

5.5.5 Tool Support

Threat categories Detected threats TP FP FN
Man-In-The-Middle 2 2 0 0
Tampering 2 2 0 0
Denial of Service 2 2 0 0
Injection 2 2 0 0
Total 8 8 0 0

Table 5.11: Number of threats per scenario

Evaluation Metrics Results

From threat analysis, we compute Precision, Recall and F-Measure metrics. The results
are shown in Table 5.12. The fourth version of the threat scenarios formalized with OCL
has a Precision, Recall and F-Measure rates of 100%. This means that these formalizations
allow the detection of exactly the same threats of the web application in Figure 2.11 using
Microsoft’s threat modeling.

Metrics Values(%)
Precision 100
Recall 100
F-Measure 100

Table 5.12: Evaluation metrics results

5.5 Tool Support
We have rapidly described a global process for automating threat analysis based on for-
malized threat scenarios. Indeed this approach requires first an improved architecture
description formalism. Second, the relevant threat scenarios have to be formalized using
OCL.

In order to support our approach, tools must fulfill requirements in section 4.6.1 and
the following key ones:

• Allows the creation of OCL constraints and the specification of OCL invariants (step
0).

• Allows the validation of OCL constraints over a UML model (step 1).

• Allows report generation.

In our case, we have chosen the following support tools :

113

CHAPTER 5. SOFTWARE THREAT ANALYSIS OF SOFTWARE
ARCHITECTURES

• OCL constraint specification: included in Papyrus.

• OCL verification module : Papyrus DSML Validation Feature1.

5.6 Illustration

In this section, we use formalized threat scenarios in Iteration 4 over the Microsoft’s web
application architecture secured with the SSL pattern.

5.6.1 Software architecture and platform

We recall that the software architecture of the application presented in Figure 4.24 was ob-
tained with the integration process illustrated in section 4.5. This architecture is deployed
on a platform described in Figure 5.2. Table 5.13 describes this deployment.

Software Components Hardware Nodes
client (browser) client
encryptor client
decryptor client
signer client
verifier client
client_ProtocolController client
key_Exchange client
authenticator client
website web server
encryptor_1 web server
decryptor_1 web server
signer_1 web server
verifier_1 web server
server_ProtocolController web server
key_Exchange_1 web server
authenticator_1 web server
database Database server

Table 5.13: Deployment of the software component on the hardware nodes

1https://wiki.eclipse.org/Papyrus/UserGuide/Profile_Constraints

114

5.5.6 Illustration

5.6.2 Selection of Constraints

The selection of OCL constraints is allowed by a pop-up that lists the available constraints.
We select the four threat scenarios formalized using OCL as shown in Figure 5.4.

Figure 5.4: Selection of Constraints to be enabled during checking

5.6.3 Results

The results of threat analysis are presented in Figure 5.5. The results show that there are
no threats relevant to Man-In-The-Middle (MITM) or Tampering threat scenarios and 2
threats relevant to Denial of Service (DoS) and Injection threat scenarios. The integration
of the SSL pattern provides confidentiality, authenticity and integrity properties between
client and college server. Thus, this pattern stops Man-In-The-Middle (MITM) and Tam-
pering threats. However, there are two residual threats relevant to Denial of Service
(DoS) and Injection threat scenarios. This is due to a lack of Firewall and Authorization
mechanisms for client and server components.

115

CHAPTER 5. SOFTWARE THREAT ANALYSIS OF SOFTWARE
ARCHITECTURES

Figure 5.5: Threat analysis results

5.7 Conclusion

In this chapter, we have answered a part of RG1, RG3 and RG4. We have proposed
a threat scenario-based approach for analyzing a software architecture. We have used
OCL to formalize Denial of Service (DoS), Tampering, Injection and Man-In-The-Middle
(MITM) threat scenarios. We also explain the formalization process through four iter-
ations. For each iteration, we evaluate the soundness and completeness of the threat
scenarios formalization.

The contributions of this work are twofold. First the approach enables a detailed
exploration of the software architecture. The formalized threat scenarios allow not only
the verification of the existence of security mechanisms but also the verification of their
correct usage. Second, the approach fosters reuse and extensibility of threats scenarios
thanks to a rigorous formalization. In fact, we have provided a formalization process
based on iterations and evaluation metrics. This formalization process may be reused in
order to formalize other threat scenarios. In addition, the formalized threat scenarios are
application independent and are stored together with ComponentUML. As a future work,
we intend to use common Component-Based Modeling Languages e.g., Unified Component
Model (UCM) [131]. In addition, we will simplify the OCL rules with a library of helpers
that will allow security experts to contribute to the formalization to threat scenarios with
less effort.

In the next chapter, we discuss the analysis of software architecture candidates re-
sulting from different System of Patterns configurations with regards to non-functional

116

5.5.7 Conclusion

requirements. We focus more on real-time aspects. The aim is to analyze these candidates
(with the same security properties but can having different impact on performance) with
regards to real-time requirements.

117

CHAPTER 5. SOFTWARE THREAT ANALYSIS OF SOFTWARE
ARCHITECTURES

118

Chapter 6

Real-Time Analysis of Software
Architectures

Contents
6.1 Introduction . 119
6.2 Related Work . 120
6.3 Analyzing software architectures with regards to real-time

requiments . 122
6.4 Model-Based Real-Time Analysis 126
6.5 Tool Support . 136
6.6 Conclusion . 137

6.1 Introduction

ICTs generally involve multi-concern objectives. In this context, software systems must
satisfy a number of requirements (real-time, physical, energy efficiency and others). Se-
curity concerns have an impact on other concerns. Therefore, architects must apply
trade-offs to satisfy non-functional requirements and security requirements.

In this chapter, we focus on the analysis of software architecture solution candidates.
It is important to check if architecture candidates meet other non-functional requirements
(in our case real-time). Actually, adding security mechanisms may impact response time
and/or resource consumption. It is thus important to be able to evaluate that such re-
quirements are still satisfied after application of patterns. We extend previous works of the
team [121, 62]. In [121], a MARTE-based framework for real-time schedulability analysis
for early design stages was presented. In [62], an approach to support Security, De-

119

CHAPTER 6. REAL-TIME ANALYSIS OF SOFTWARE
ARCHITECTURES

pendability and Resource Trade-offs using Pattern-based Development and Model-driven
Engineering was presented. Here we go one step further. We propose a process and its
tool support for the analysis of security software architecture candidate solutions against
real-time requirements (to answer a part of: RG1, RG3 and RG4). The aim here is to
evaluate the impact of security patterns on real-time performance, as visualized in activity
A3.3 of Figure 3.1.

Previous works have focused on security and real-time requirements separately: de-
pendability and security modeling and analysis [23][24] and real time requirements [109][69].
A survey of dependability modeling and analysis frameworks with UML can be found in
[24]. The approaches focus on software systems Reliability, Availability, Maintenance and
Safety (RAMS). Many methods support early life cycle phases (from requirements to
design). The survey indicates that the tool support needs more automation and has to
return analysis results directly to the designer environment. In [23], the authors have
extended MARTE with a Dependability Analysis and Modeling (DAM) UML profile and
applied it to an intrusion-tolerant message service case study. The results showed a need
of dependability annotations. In [109], the authors presented a staged approach to op-
timize the deployment in the context of real-time distributed systems. Harbour et al.
presented in [68], MAST (Modeling and Analysis Suite for Real-Time Applications). It is
a tool suite that allows the modeling and schedulability analysis of timing behavior of real-
time systems. The tool suite was extended in [69] to enable an automatic schedulability
analysis of a distributed application using switched networks and clock synchronization
mechanisms.

The remaining sections are organized as follows: Section 6.3 presents the main steps
of real-time analysis approach for software architecture candidates. Section 6.4 presents
the approach with the used modeling languages and is illustrated via Microsoft’s web
application working example. For the illustration, we use the following techniques: (1)
Fixed offset-based scheduling with Rate-Monotonic Analysis (RMA) [153] and (2) Deter-
ministic (static) Task Partitioning strategy. In section 6.5, we give an overview of the tool
support requirements and describe the used one. In section 6.6, we conclude and sum up
the contributions.

6.2 Related Work
The analysis of the overhead of security with regards to quality attributes is not new.
However the analysis of the integrated security solution with regards to the overall sys-
tem architecture quality and performance is a fresh topic. The contribution of this work is

120

6.6.2 Related Work

a step towards this goal. It presents a model-based method for evaluating security pattern-
based architectures for decision purposes. The analysis is done in the context of real-time
analysis. We distinguish two categories of related works: (1) approaches that evaluate se-
curity solutions with regards to other non-functional requirements; (2) approaches dealing
with general trade-off analysis between several non-functional requirements.

6.2.1 Analysis of software architecture solutions with regards to
real-time Requirements

Concerning security solution evaluation, similarly to our approach, in [33] the authors pro-
pose a framework to evaluate the impact of using security mechanisms. The approache
uses languages such as UML [130] and MARTE [128] for modeling the architecture and
security mechanism components. They also use predefined security components for se-
curity solutions. The difference is that in our approach, security concerns are handled
through the application of security patterns rather than direct use of predefined security
components. Woodsite et al. [162] focused on the analysis of the performance effects of
security solutions modeled as UML non-functional aspects. They used SPT UML profile
for annotating a UML design with schedulability, time and performance data. The result-
ing model and the security aspects were transformed separately and composed into one
model which was then analyzed. In [104], the authors present an automatic approach for
improving quality attributes (performance, cost, configuration options) of a system archi-
tecture. The degrees of freedom depend on design options (e.g., component allocations,
processing rates). The difference with our approach is that it acts only on the initial
system architecture without refinements. However, this approach can be used to optimize
the refined architectures obtained after pattern integration.

6.2.2 Architecture Decision and Trade-off Analysis

Other works focused on large scale architecture optimization, decision and trade-off anal-
ysis. The Architecture Trade-off Analysis Method (ATAM) [87] and the Software Archi-
tecture Analysis Method (SAAM) [86] are well-known methods for performing assessment
of quality attributes for deciding between several architecture design alternatives. The
SVDT [76] approach is security-oriented and uses UMLsec [85] for modeling security
solutions and modules to check their validity with regards to other Non-Functional Re-
quirements (NFPs). The validated solutions are evaluated using security solution trade-off
analysis. The main difference with our approach is that we consider a higher level model-

121

CHAPTER 6. REAL-TIME ANALYSIS OF SOFTWARE
ARCHITECTURES

ing and solutions are expressed in terms of patterns. In the automotive domain, a multi-
objective automatic optimization approach based on EAST-ADL modeling is proposed
[159]. It supports the evaluation of alternative architectures according to dependability,
timing performance, cost etc. A similar work in [98] presented a method for the search of
optimal architecture design according to multi-objectives such as cost, performance and
reliability based on SysML modeling. In [46], the authors identified limitations in UML
language to support architecture decision according to non-functional attributes. They
propose a framework based on parametric analysis specification that aims at evaluating
design decisions.

6.2.3 Positioning

The difference between our work and the aforementioned works is as follows:

• Security Solution Analysis with regards to NFPs. Our approach is part of this
category as it focuses on the analysis of architecture candidates with regards to
real-time requirements. The approach makes extensive use of UML and MARTE.
In [33], it is not clear how MARTE is used to give feedback of the results to the
user. In addition, our input architecture models represent a software architecture
with applied security patterns which is not the case in [33] where an analysis model is
used with annotations referring to some security mechanisms. We can benefit from
Martens et al. in [104] to improve a chosen security-pattern-based architecture
according to quality attributes (performance, cost, configuration options) and in
that sense this work completes our approach.

• Architecture Decision and Trade-off Analysis. These approaches allow trade-off anal-
ysis between several architectures or optimize quality attributes of certain architec-
ture. In the two cases, these approaches are complementary to our approach.

6.3 Analyzing software architectures with regards to
real-time requiments

In this section we present an overview of the proposed methodology in Figure 6.1. The
aim here is the analysis of software architecture candidates with regards to real-time
requirements. It is important to recall that these candidates may be obtained because
there can be different System of Patterns configurations (see Figure 4.16). This process

122

6.6.3 Analyzing software architectures with regards to real-time requiments

relies on two main artifacts: (1) a software architecture candidate and (2) a platform
model with deployment. Hence the process is performed for each candidate.

6.3.1 Methodology description

As described in Figure 6.1, the software architecture candidate and the platform models
are used to model end-to-end flows (step 1). Each end-to-end flow contains a sequence
of functions connected with each other and triggered with an event. The functions rep-
resent operations and the end-to-end flow represents a message sequence in the software
architecture. For each end-to-end flow, timing parameters are added (step 2): end-to-
end flow deadlines, worst case execution times (WCET) and worst case transmission
times (WCTT), activation event patterns (periodic, aperiodic, sporadic). A task model
is generated based on the end-to-end flows architecture, the platform specification and
the deployment (step 3) and submitted to schedulability (step 4). The task model is
schedulable if all tasks are schedulable.

6.3.2 End-to-end Flows Modeling (Step 1)

The modeling process starts by eliciting all end-to-end flows in the software architecture
according to existing messages. An end-to-end flow consists of a set of communicating
functions from one end to the other. For example, in Figure 6.1, the messages in the
software architecture are used to model End-To-End Flow 1 which consists of functions:
Login, Encrypt, Decrypt and OpenSession.

6.3.3 Timing parameters (Step 2)

End-to-end flows are then annotated with timing parameters: (1) end-to-end flows dead-
lines, (2) WCET and WCTT for functions and communications (3) activation event pat-
terns (periodic, aperiodic, sporadic) and activation periods. In addition, The platform
model is annotated with execution hosts and channels maximum capacities.

6.3.4 Task Model Generation (Step 3)

In this step, the task model is generated from the end-to-end flows and the deployment on
the platform according to task partitioning and allocation techniques. A survey was made
in [88] and listed different strategies and techniques. We assume that tasks are periodic. In
the illustration, we use a deterministic (static) task partitioning and allocation technique.

123

CHAPTER 6. REAL-TIME ANALYSIS OF SOFTWARE
ARCHITECTURES

Clien::login() Enncrypt() Decrytpt()

End-to-End flows

Task model

Schedulability Analysis
4

Task Model Generation

3

End to End Flow modeling

1

Task2Task1
Event1 period = T1 D12

E1

Timing parameters

2

Clien::login() Enncrypt() Decrytpt()

Server::OpenSession()

Clien::login() Enncrypt() Decrytpt() Server::OpenSession()

Clien::login() Enncrypt() Decrytpt()

E1

Server::OpenSession()

Clien::login() Enncrypt() Decrytpt()

EndToEndFlow2
EndToEndFlow1

Server::OpenSession()

Event1 period = T1

Deadline= D1
t1 t2 t3 t4

Server::OpenSession()

EndToEndFlow2
EndToEndFlow1

t1 t2 t3 t4

Deadline= D1

N1 N2
Bus

Platform

Software Architecture solution

ServerClient

Encryption Encryption

DecryptionDecryption

messages

D12

Schedulability analysis results

Figure 6.1: Real-time analysis of software architectures process

124

6.6.3 Analyzing software architectures with regards to real-time requiments

6.3.5 Schedulability Analysis (Step 4)

Once the task model is generated, each task must be performed before its deadline ac-
cording to a specified scheduling policy. We assume that the system is distributed i.e., the
platform consists of more than one execution node. Hence the scheduling policy must be
adapted for distributed systems. Davis et al. [36] have made a survey of scheduling poli-
cies for real-time multi-processors. In this illustration, we use fixed priority offset-based
scheduling with Rate-Monotonic Analysis (RMA) [153].

Let P be a platform consisting of nodes {N1,N2,. . . ,Na } connected through channels
{B1,B2,. . . ,Bb }. We denote F as a set of functions {f1,f2,. . . ,fc } and S the set of
communications {s1,s2,. . . ,sd }. Each function and communication has a WCET (c(fi))
and a WCTT (c(si)) respectively. Both nodes and channels have a maximal capacity
cmax(Ni) and cmax(Bi) that must not be exceeded. In the context of multiple processors,
each execution node Ni runs an independent real-time operating system and executes a
set of tasks:

Ti = {t(i,1), t(i,2), . . . , t(i,ni)} (6.1)

Each task t(i,j) consists of a subset of functions from F and is characterized with
an activation period P(i,j), a total WCET c(i,j) (computed as the sum of WCETs of all
allocated functions) and a deadline D(i,j). Scheduling analyzes generally consists of two
steps:

1. Processor utilization: is used to compute nodes utilizations. All node and channel
utilizations UNi and UBi must be less than cmax(Ni) and cmax(Bi) respectively. In
this case we move to step 2. If not, the node is overloaded and response time analysis
is not performed.

UNi =
∑

t(i,j)∈Ti

c(i,j)

P(i,j)
(6.2)

UBi =
∑

si∈Bi

c(si)

P(si)
(6.3)

UNi ≤ cmax(Ni) (6.4)

UBi ≤ cmax(Bi) (6.5)

125

CHAPTER 6. REAL-TIME ANALYSIS OF SOFTWARE
ARCHITECTURES

In case of RMA [97], cmax is equal to 1.

2. Worst case response-time computation: concerns the computation of the
Worst Case Response Time (WCET) R(t(i,j)) of every task. In case of fixed-priority
offset-based scheduling with RMA [153], each task is assigned a fixed priority. The
shortest the task, the higher the priority.

The task model is schedulable if for each task t(i,j):

R(t(i,j)) ≤ D(i,j). (6.6)

6.4 Model-Based Real-Time Analysis
In this section we describe an MDE framework to support real-time analysis. In sec-
tion 6.4.1, we describe the modeling principle based on MARTE in order to support real
time analysis process presented in section 6.3. In the next sections, we illustrate the steps
of the process via Microsoft’s web application working example. For illustration purposes,
we consider one software architecture candidate obtained with the integration of the SSL
pattern illustrated in section 4.5. The input software architecture and platform are shown
in Figure 4.24 and Figure 5.2.

We also use the following techniques:

• Scheduling policy : Fixed offset-based scheduling with Rate-Monotonic Analysis
(RMA) [153].

• Task partitioning and allocation : Deterministic (static) Task Partitioning strategy.

6.4.1 Model-based analysis with MARTE

The process presented in Figure 6.2 is supported with MARTE (Modeling and Analysis
of Real-Time and Embedded systems) [128] as shown in Figure 6.1. MARTE is a UML
profile domain-specific modeling language for model-based design and analysis of real-
time embedded software of CPSs. MARTE 1 is an OMG standard that was designed
to supplement UML with capabilities relevant to real-time systems that are missing or
poorly supported in UML. In our context, we use a subset of MARTE in order to model:
(1) end-to-end flows, (2) timing parameters and (3) task models. Table 6.1 shows the
used stereotypes .

1http://www.omg.org/spec/MARTE/

126

6.6.4 Model-Based Real-Time Analysis

Figure 6.2: Model-Based Real-Time Analysis with MARTE

127

CHAPTER 6. REAL-TIME ANALYSIS OF SOFTWARE
ARCHITECTURES

MARTE Stereotype UML extension
End-to-end flows and Task Model stereotypes

GQAM::GaWorkloadBehavior Activity
GQAM::GaWorkloadEvent AcceptEventAction
SAM:: SaEndToEndFlow ActivityPartition
SAM::SaStep CallActionBehavior
Alloc::Allocate Abstraction
Alloc::Allocated CallAction, Property

Platform Stereotypes
GQAM::GaPlatformResources Class
SAM::SaExecHost Property
SAM ::SaCommHost Connector
SAM::SaSharedResource Property
GRM::SchedulableResource Property

Allocation Model
Alloc::Allocate Abstraction
Allocated CallAction, Property

Table 6.1: MARTE stereotypes and extensions

6.4.2 End-to-end Flows Modeling (Step 1)

The end-to-end flows and the platform are modeled using a subset of MARTE based on
the software architecture model. For illustration purposes, we only consider one software
architecture candidate presented in Figure 4.24. The platform is described in Figure 5.2
and Table 5.13 describes the deployment of software components on the platform nodes.
We also consider one use case called ’User Logging Securely’. Figure 6.3 describes sequence
diagram of this use case. This sequence diagram is mandatory to model the end-to-
end flow used for real-time analysis. As shown in Figure 6.4, the modeled end-to-end
flow consists of an SaEndtoEndFlow that consists of a set of SaSteps connected with
SaCommSteps and triggered with a GaWorkLoadEvent.

6.4.3 Timing Parameters (Step 2)

End-to-end flows are then annotated with timing parameters: (1) end-to-end flows dead-
lines (reactionTimeConstraint), (2) WCET and WCTT for functions and communications
(executionTimeConstraint) (3) activation event pattern (periodic, aperiodic, sporadic)
and its period (ArrivalPattern). In addition, the platform model is annotated with exe-
cution hosts (SaExecHost) and channels (SaExecComm) maximum capacity.

128

6.6.4 Model-Based Real-Time Analysis

Figure 6.3: Sequence diagram for the use case ’User Logging Securely’

129

CHAPTER 6. REAL-TIME ANALYSIS OF SOFTWARE
ARCHITECTURES

Figure 6.4: End-to-end flow for the use case ’User Logging Securely’

130

6.6.4 Model-Based Real-Time Analysis

Illustration

SaStep WCET (ms)
submitLoginDetails 10
sendSecure 10
sendHello 10
sendCerificate 10
verifyCertificate 10
clientKeyExchange 10
changeToCyberSpec 10
computeMasterSecret 10
changeToCyberSpec 10
encryptFinishedMessage 10
decryptFinishedMessage 10
encryptMessage 10
signMessage 10
verifyMessage 10
decryptMessage 10
loginUser 10
FetchDataBase 25
returnLoginResults 10

Table 6.2: SaSteps Execution times (WCET)

SaCommStep WCTT (ms)
client to server 10
server to database 15

Table 6.3: SaCommSteps Execution times (WCTT)

End-to-end flow ’Logging User Securely’ in Figure 6.4 is annotated with:

• Event periods for each GaWorkloadEvent. The end-to-end flow is triggered with a
periodic event of 300 ms.

• WCET and WCTT for each SaStep and SaCommStep respectively. WCETs and
WCTTs are weighted values and used only for illustration purposes. Table 6.2 and
Table 6.3 show the WCETs and WCTTs of each SaStep annotated to the end-to-end
flow.

• End-to-end flow deadline of 300 ms.

131

CHAPTER 6. REAL-TIME ANALYSIS OF SOFTWARE
ARCHITECTURES

The Platform maximum capacity of the nodes and communications is assumed to be
100%.

6.4.4 Task Model Generation (Step 3)

Task model generation is performed in two steps. Each step is performed according to
specific techniques:

1. Task Partitioning. The task model structure is described using activity diagrams. It
can be directly obtained from the end-to-end flows and the deployment of functions
onto execution nodes and communications into channels. Each task is represented
with a parent SaStep nesting a set of SaSteps and SaCommSteps.

2. Task Allocation. Finally an allocation model is described in a composite diagram
that shows the allocation (Alloc::Allocate) from tasks to execution nodes and from
communications to channels.

Illustration

The task model is generated according to a static task partitioning and allocation tech-
nique. The task model consists of eight tasks as represented in Figure 6.5. Each task
consists of a set of SaSteps and is allocated in an execution node. The task allocation is
described in Figure 6.6.

6.4.5 Schedulability Analysis (Step 4)

The task model is submitted to schedulability analysis. Tasks of the same node are
assigned a priority according to RMA [97]. Node and channel utilizations are shown in
Figure 6.7. The utilizations are less less than 1 for each node. Figure 6.8 gives the WCRT
of the tasks. All tasks respect their deadlines.

6.4.6 Discussion

The analysis shows that the software architecture with overhead induced by the SSL pat-
tern respects real-time constraints within the specified schedulability policy. In addition,
in case of multiple software architecture candidates produced by integration of different
System of Patterns configurations, this work can be beneficial. It can enable the architect

132

6.6.4 Model-Based Real-Time Analysis

Figure 6.5: Tasks partitioning

133

CHAPTER 6. REAL-TIME ANALYSIS OF SOFTWARE
ARCHITECTURES

Figure 6.6: Tasks allocation

134

6.6.4 Model-Based Real-Time Analysis

Figure 6.7: Node and channel utilizations

Figure 6.8: Task WCRTs

135

CHAPTER 6. REAL-TIME ANALYSIS OF SOFTWARE
ARCHITECTURES

to have early evaluation results and decide between the architecture alternatives accord-
ing to specified criteria. In the worst case scenario and if the evaluation results of all the
architecture alternatives are not satisfactory, the architecture can be rethought.

6.5 Tool Support
Appropriate tools for supporting the approach must fulfill the following key requirements:

• Enable the creation of the UML models used to describe system and software ar-
chitecture.

• Allow the creation of a custom UML profile.

• Support the implementation of a repository to store pattern models and the related
model libraries for classification and relationships.

• Enable the creation of visualizations of the repository to facilitate its access.

• Support the access to the repository. Create views on the repository according to
its APIs, its organization and the needs of the targeted system engineering process.

• Enable transformations of the pattern models from the repository format into the
target-modeling environment (Papyrus pattern format).

• Enable the creation of System of Patterns in the target-modeling environment.

• Enable the creation of pattern configuration models in the target-modeling environ-
ment.

• Enable the integration of application models and models imported from the reposi-
tory.

• Support the calculation of resource consumption and real-time scheduling.

• Provide the ability to create customized reports by querying the resulting models.

Amongst the existing alternatives, we have chosen Papyrus2 to create UML diagrams
for the model of the application. SEMCOMDT 3(SEMCO Model Development Tools,
IRIT’s editor and platform plugins) is used to support pattern repository. The generation

2https://eclipse.org/papyrus/
3http://www.semcomdt.org

136

6.6.6 Conclusion

of System of Patterns configurations from a System of Patterns has been described in
[62]. The MARTE UML profile is already integrated into Papyrus. Real-time analysis
have been performed using a tool called “Qompass Architect” [92] integrated in the Pa-
pyrus environment. It is a model-based tool developed in CEA LIST for QoS assessment
and optimization of real-time architectures. Qompass Architect explores non-functional
properties of real-time architectures to finally synthesize an optimized architecture. Note
that other tools performing schedulability analysis can be used such as cheddar[146].

6.6 Conclusion
In this chapter, we answered a part of RG1, RG3 and RG4. We have proposed a process
and its tool support for the analysis of software architecture candidates of the application
against real-time requirements.

The main benefits rely on providing a tooling support to allow early evaluation of
software architecture candidates. The results obtained help the architect to evaluate the
overhead of security patterns on the software architecture to reinforce security and to
compare possible alternative solutions. The methodology relies on UML and MARTE for
the modeling to perform architectural analysis for timing concerns. As a future work, we
want to address other concerns such as the interplay of safety and security.

In the next chapter, we assess the feasibility of the contributions (from RG1 to RG4)
through the modeling and analysis of a SCADA system case study (to answer RG5).

137

CHAPTER 6. REAL-TIME ANALYSIS OF SOFTWARE
ARCHITECTURES

138

Chapter 7

Assessment of the contributions

Contents
7.1 Introduction . 139
7.2 SCADA case study . 140
7.3 Feasibility of the approach . 158
7.4 Conclusion . 162

7.1 Introduction

This chapter assesses the feasibility of the contributions of our work (from RG1 to RG4)
through the modeling and analysis of a SCADA (Supervisory Control And Data Ac-
quisition) system (to answer RG5). We discuss the assessment of the results for each
contribution. The selection of an application for the proposed approach has to be consid-
ered as a very important decision for our work. It has a direct impact on the selection of
patterns, and thus on the whole assessment. The main characteristic considered to select
the SCADA system application was the fact that these system are target to many attacks
(e.g., March 2016 event [6]). In fact, the key issue nowadays is SCADA security and
governments all over the world are worried about the security of SCADA systems that
run over critical infrastructures. In addition, SCADA system applications are different
from classical ICTs and have strong security demands.

The remainder of this chapter is organized as follows. In section 7.2, we describe
the SCADA system case study including the platform and the software architecture.
We also give an overview of SCADA system security issues and their general impact on
performance. Then, we model the SCADA application using our tool chain and describe
the obtained results. section 7.3, discusses the feasibility of the approach by assessing the

139

CHAPTER 7. ASSESSMENT OF THE CONTRIBUTIONS

results obtained for each contribution. Finally, we sum up the assessment and conclude
in section 7.4.

7.2 SCADA case study

7.2.1 Description

SCADA stands for Supervisory Control and Data Acquisition systems. As its name indi-
cates SCADA systems are meant to continuously control, monitor processes and acquire
field information. The applications of SCADA systems are various. They are used in
most industrial processes (e.g. power generation and distribution in the context of smart
grids, chemistry, food industry, etc.).

In the following sections we use the case study displayed in Figure 7.1. It shows a
typical SCADA architecture used in the context of smart grids [161]. In this context,
the controlled process is power distribution. It consists of a control center and a num-
ber of field devices connected by a communication infra-structure. Field devices can be
Programmable Logic Controllers (PLC), sensors and actuators.

Figure 7.1: A typical SCADA system hardware architecture for smart grids [161]

The control center consists of a control and a corporate network. The corporate net-

140

7.7.2 SCADA case study

work provides the operator with a Human-Machine Interface (HMI) that allows the access
to system data, SCADA servers and databases that store operational and financial infor-
mation. The SCADA server controls and gathers field information from geographically
distributed substations or Remote Terminal Units (RTUs). As SCADA systems cover
large areas, they use Wide Area Networks (WAN). Each substation manages power dis-
tribution in a given area. They consist of a Programmable Logical Controllers (PLCs)
which are digital computers connected to a set of sensors and control actuators. PLCs
also convert sensor data into digital data.

Figure 7.2: SCADA system use cases [35]

Figure 7.2 shows the use case diagram of the SCADA system. The use cases are the
following [161]:

141

CHAPTER 7. ASSESSMENT OF THE CONTRIBUTIONS

• Acquire Field Data

• Perform Control

• Poll Data

• System Start-up/shutdown

• Adjust Parameter Settings

• Log Field Data

• Archive Data

• Trigger Alarm

• Perform Trending

– Select parameters

– Display parameters

– Zooming

– Scrolling

SCADA security issues

Security is important for SCADA systems because of the high availability and reliability
requirement of the critical infrastructure. It is sometimes very hard to shut down part of
the system to change things or to repair them because they must be continuously available.
Failure in SCADA systems can threaten life directly, or can have serious economic impact
due the controlled critical infrastructure. It is very important for SCADA system to be
safe and reliable. They have a good reputation in this field. However, the key issue
nowadays is SCADA security. First generation of SCADA were introduced in the 1970’s
and second generation in 1980’s. Many of these are still in operation especially second
generations. They relied on two approaches for security:

• Security by isolation: based on the principle that if the system is not connected to
the Ethernet then it cannot be attacked by external attackers. There is an Air gap
which cannot be crossed. However it is still vulnerable to insider attacks.

142

7.7.2 SCADA case study

• Security obscurity: based on the fact that SCADA systems used unusual program-
ming languages and communication protocols. However this is also vulnerable to
insider attackers who know about these technologies. In addition the documentation
can be found on Internet or can be stolen.

Third generation SCADA systems use standard IT technologies and protocols (e.g., or-
ganizational wireless networking, Microsoft windows, TCP/IP and web browsers as in-
terfaces). The third generation systems which are web connected are integrated with an
interface to second generation systems. Internet-based SCADA is becoming the standard.
The problems of connecting modern SCADA systems to the Internet that is not different
from second generation systems is that their development was not thought in a security-
aware environment. Air gap cannot exist anymore with modern SCADA system. In
practice SCADA systems are connected to other systems in an organization and so infor-
mation is passed. They are connected to maintenance systems provided by manufacturers.
Workstations used by the operators as standard terminal are multipurpose machine that
are Internet connected. In addition, operators still transfer information with USB drives.
Hence, SCADA systems may be infected by malware from this. Because SCADA by large
were not developed in security-aware environment, people are finding lots of security vul-
nerabilities (e.g., weak passwords, no firewalls, no input validation, unencrypted traffic
through the Internet, etc.).

Security and Performance

The first challenge comes from the fact that SCADA systems are developed by domain
engineers (e.g., power engineering). They generally have no background or training in
software security techniques. Another challenge comes from the fact that it is often not
possible to use standard security techniques. For instance, running checking systems in
conjunction with SCADA system affects its performance in such way that process control
is compromised. It may not be possible to install malware detection on some SCADA
systems because of the lack of processing power of the system or because of the age of
the used operating system. It is also difficult to take systems off-line because of the 24/7
availability requirements which would allow software security loopholes to be patched and
maintained.

7.2.2 An Overview of the Model Repository Content

Before modeling and analyzing the case study, we give some information about the used
model repository. The model repository contains so far :

143

CHAPTER 7. ASSESSMENT OF THE CONTRIBUTIONS

Figure 7.3: Model repository content: pattern and property models

144

7.7.2 SCADA case study

• Property Libraries. 69 property model libraries (see the left part of Figure. 7.3):

– 16 Unit Libraries

– 23 Type Libraries

– 20 Property Category Libraries

• Pattern Libraries. 59 pattern models (see the left part of Figure 7.3):

– 20 System Level patterns (12 DI, 8 DS)

– 25 Architecture Level patterns (9 DI, 16 DS)

7.2.3 Modeling the SCADA architecture

This section deals with the modeling of the SCADA system platform and software ar-
chitecture using our tool chain. The models, are used to produce software architecture
candidates which are evaluated with regards to formalized threat scenarios and real-time
constraints.

System Architecture

The SCADA system architecture is composed of two system components as shown in
Figure 7.4: Control center and RTUs that communicate. In addition, we show all the
types used to model the component types.

Software Architecture and Platform

The software architecture and platform refines the system architecture. Figure 7.5 shows
the software architecture model based on [35]. In addition, ports, interfaces, data types
and transmitted messages are added in Figure 7.6 to provide a more detailed model of the
application. The platform is modeled in Figure 7.7. We show the relationship between
the system components and hardware nodes.

7.2.4 EBIOS Risk Assessment

Table 7.1 shows a list of feared events and threats causing them [48]. Each couple of
(feared event, threats) constitutes a risk. Hence, three risks are identified.

145

CHAPTER 7. ASSESSMENT OF THE CONTRIBUTIONS

Figure 7.4: SCADA system architecture model

146

7.7.2 SCADA case study
«A

pp
lic

at
io

n»
SC

AD
A_

sy
st

em

«C
om

po
ne

nt
»

 +
 R

T_
Ev

en
t_

M
an

ag
er

: R
T_

Ev
en

t_
...

 +
 p

rt
_E

RM
_H

M
I:

H
M

I_
RT

Ev
en

tM
ng

_I
nt

 [
1]

 +
 p

rt
_E

RM
_T

rn
: T

re
nd

_R
TE

ve
nt

M
ng

_I
nt

 [
1]

 +
 p

rt
__

ER
M

_l
og

D
is

pl
ay

: L
og

D
is

pl
ay

_R
TE

ve
nt

M
ng

_I
nt

 [
1]

+
pr

t_
ER

M
_A

lrm
D

:A
la

rm
D

is
pl

ay
_R

TE
ve

nt
M

ng
_I

nt
[1

]

+
 E

RT
M

_L
og

_p
rt

: L
og

_I
nt

 [
1]

 +
 E

RT
M

_A
rc

hi
ve

_p
rt

: A
rc

hi
ve

_I
nt

 [
1]

+
ER

TM
_R

pr
tG

n_
pr

t:
Re

po
rt

G
en

_I
nt

[1
]

+
 E

RT
M

_P
rc

ss
_p

rt
: R

TE
ve

nt
M

ng
_d

at
aP

ro
ce

ss
in

g_
In

t
[1

]

+
ER

TM
_A

lrm
_p

rt
:A

la
rm

_H
an

dl
er

_I
nt

[1
]

«C
om

po
ne

nt
»

 +
 H

M
I:

H
M

I [
1]

«C
om

po
ne

nt
»

+
Tr

en
di

ng
:T

re
nd

in
g

[1
]

«C
om

po
ne

nt
»

 +
 L

og
D

is
pl

ay
: L

og
D

is
pl

ay
 [

1]

«C
om

po
ne

nt
»

+
 A

la
rm

D
is

pl
ay

: A
la

rm
D

is
pl

ay
 [

1]

«C
om

po
ne

nt
»

 +
 a

la
rm

_H
an

dl
er

: A
la

rm
_H

an
dl

er
 [

1]

 +
 A

lrm
_D

B_
Pr

t:
 D

BI
nt

 [
1]

«C
om

po
ne

nt
»

+
lo

g_
H

an
dl

er
:L

og
_H

an
dl

er
[1

]

 +
 L

og
_D

B_
Pr

t:
 D

BI
nt

 [
1]

«C
om

po
ne

nt
»

 +
 a

rc
hi

ve
: A

rc
hi

ve
 [

1]

+
Ar

ch
_D

B_
pr

t:
D

BI
nt

[1
]

«C
om

po
ne

nt
»

 +
 d

at
aP

ro
ce

ss
in

g:
 D

at
aP

ro
ce

ss
in

g
[1

]
+

Pr
cs

s_
RW

_p
rt

:d
at

a_
RW

_I
nt

[1
]

«C
om

po
ne

nt
»

 +
 r

ep
or

t_
G

en
er

at
io

n:
 R

ep
or

t_
G

en
er

at
io

n
[1

]
+

 R
pr

tG
n_

RT
D

B_
pr

t:
 D

BI
nt

 [
1]

«C
om

po
ne

nt
»

 +
 d

at
a_

R_
W

: D
at

a_
R_

W
 [

1]
+

RW
_P

rc
ss

_p
rt

:d
at

a_
RW

_I
nt

[1
]

 +
 R

W
_D

riv
er

_P
rt

: d
riv

er
In

t
[1

]

«C
om

po
ne

nt
»

 +
 d

riv
er

1:
 D

riv
er

 [
1]

 +
 R

W
_d

riv
er

1_
Pr

t:
 d

riv
er

In
t

[1
]

+
dr

iv
er

1_
pl

c1
_P

rt
:P

LC
_I

nt
[1

]

«C
om

po
ne

nt
»

 +
 d

riv
e2

: D
riv

er
2

[1
]

 +
 R

W
_d

riv
er

2_
Pr

t:
 d

riv
er

In
t

[1
]

+
dr

iv
er

2_
pl

c2
_P

rt
:P

LC
_I

nt
[1

]

«C
om

po
ne

nt
»

+
dr

iv
er

3:
D

riv
er

3
[1

]

 +
 R

W
_d

riv
er

3_
Pr

t:
 d

riv
er

In
t

[1
]

 +
 d

riv
er

3_
pl

c3
_P

rt
: P

LC
_I

nt
 [

1]

 +
 P

or
t1

: <
U

nd
efi

ne
d>

 [
1]

«C
om

po
ne

nt
»

 +
 p

LC
1:

 P
LC

1
[1

]

 +
 p

lc
1_

Pr
t:

 P
LC

_I
nt

 [
1]

«C
om

po
ne

nt
»

 +
 p

LC
2:

 P
LC

2
[1

]

+
pl

c2
_P

rt
:P

LC
_I

nt
[1

]

«C
om

po
ne

nt
»

 +
 p

LC
3:

 P
LC

3
[1

]

+
 p

lc
3_

Pr
t:

 P
LC

_I
nt

 [
1]

«C
om

po
ne

nt
»

 +
 a

la
rm

D
B:

 A
la

rm
D

B
[1

]
 +

 A
lrm

D
B_

Pr
t:

 D
BI

nt
 [

1]

«C
om

po
ne

nt
»

+
lo

gD
B:

Lo
gD

B
[1

]
 +

 L
og

D
B_

Pr
t:

 D
BI

nt
 [

1]

«C
om

po
ne

nt
»

 +
 a

rc
hi

ve
D

B:
 A

rc
hi

ve
D

B
[1

]
 +

 A
rc

hD
B_

pr
t:

 D
BI

nt
 [

1]

«C
om

po
ne

nt
»

 +
 R

TD
B:

 R
TD

B
[1

]

+
RT

D
B_

Pr
t:

D
BI

nt
[1

]

1
1

1
1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1
1

1
1

1

1
1

1

1

1

1

1

1
1

1
1

1

1

1
1

1

1

1
1

1
1

1

1

1

1

1

1

1

1

1
1

1
1

1
1

1
1

1

1

1

1

11

1

1

1

1

1

1

1

1

1
1

Figure 7.5: SCADA software architecture model

147

CHAPTER 7. ASSESSMENT OF THE CONTRIBUTIONS

In
te

rfa
ce

s

«I
nt

er
fa

ce
»

PL
C_

In
t

«S
en

d»
 +

 se
nd

()
«R

ec
ei

ve
»

 +
 re

ce
iv

e(
)

+
co

m
pu

te
Co

m
m

a.
..

+
pr

ep
ro

ce
ss

Da
ta

()
+

Di
ag

no
sis

()
+

po
llS

en
so

rD
at

a(
)

«I
nt

er
fa

ce
»

DB
In

t

+
st

or
eD

at
a(

)

«I
nt

er
fa

ce
»

HM
I_R

TE
ve

nt
M

ng
_In

t

 +
 v

isu
al

ize
Lo

g(
)

 +
 v

isu
al

ize
Al

rm
()

 +
 se

tP
oi

nt
Co

m
m

an
d(

)

«I
nt

er
fa

ce
»

Tr
en

d_
RT

Ev
en

tM
ng

_In
t

 +
 Tr

en
dP

ar
am

et
er

()

«I
nt

er
fa

ce
»

Lo
gD

isp
la

y_
RT

Ev
en

tM
ng

_In
t

+
di

sp
la

yL
og

()

«I
nt

er
fa

ce
»

Al
ar

m
Di

sp
la

y_
RT

Ev
en

tM
ng

_In
t

+
di

sp
la

yA
la

rm
()

«I
nt

er
fa

ce
»

Al
ar

m
_H

an
dl

er
_In

t

+
ch

ec
kS

ta
tu

s(
)

+
tri

gg
er

Al
ar

m
()

«I
nt

er
fa

ce
»

Lo
g_

In
t

 +
 L

og
_D

at
a(

)

«I
nt

er
fa

ce
»

Ar
ch

iv
e_

In
t

+
ar

ch
iv

eD
at

a(
)

«I
nt

er
fa

ce
»

RT
Ev

en
tM

ng
_d

at
aP

ro
...

+
Pr

oc
es

sD
at

a(
)

«I
nt

er
fa

ce
»

Re
po

rtG
en

_In
t

 +
 g

en
Re

po
rt(

)

«I
nt

er
fa

ce
»

da
ta

_R
W

_In
t

+
re

ad
Da

ta
()

+
wr

ite
Da

ta
()

«I
nt

er
fa

ce
»

dr
iv

er
In

t

«S
en

d»
 +

 se
nd

()
«R

ec
ei

ve
»

 +
 re

ce
iv.

..
 +

 c
on

ve
rtD

at
a(

)
 +

 p
ol

l_d
at

a(
)

Co
m

po
ne

nt
Ty

pe
s

HM
I

«M
es

sa
ge

»
 +

 se
tp

oi
nt

: D
at

a
[1

]
«M

es
sa

ge
»

 +
 a

la
rm

s:
 B

oo
le

a.
..

«M
es

sa
ge

»
 +

 Fi
el

dD
at

a:
 D

at
a.

..

Tr
en

di
ng

«M
es

sa
ge

»
 +

 tr
en

de
dP

ar
am

et
er

s:
 D

at
a

[1
..*

]

Lo
gD

isp
la

y

«M
es

sa
ge

»
+

di
sp

la
y:

Da
ta

[1
]

Al
ar

m
Di

sp
la

y

«M
es

sa
ge

»
+

al
ar

m
:D

at
a

[1
]

Al
ar

m
_H

an
dl

er

«M
es

sa
ge

»
 +

 st
at

us
: B

oo
le

an
 [1

]

Lo
g_

Ha
nd

le
r

«M
es

sa
ge

»
 +

 fi
le

: D
at

a
[1

]

Ar
ch

iv
e

«M
es

sa
ge

»
 +

 a
rc

hi
ve

dD
at

a:
...

Da
ta

Pr
oc

es
sin

g

«M
es

sa
ge

»
+

pr
oc

es
se

d_
da

ta
:D

at
a

[1
]

Re
po

rt_
Ge

ne
ra

tio
n

«M
es

sa
ge

»
 +

 re
po

rt:
 Fi

le
 [1

]

Da
ta

_R
_W

«M
es

sa
ge

»
 +

 re
ad

: D
at

a
[1

]
«M

es
sa

ge
»

 +
 w

rit
e:

 D
at

a
[1

]

Dr
iv

er

«M
es

sa
ge

»
 +

 p
ol

le
dD

at
a:

 D
at

a
[1

]

PL
C1

«M
es

sa
ge

»
 +

 c
om

m
an

d:
 D

at
a

[1
..*

]
«M

es
sa

ge
»

 +
 se

ns
or

Da
ta

: D
at

a
[1

..*
]

RT
_E

ve
nt

_M
an

ag
er

«M
es

sa
ge

»
 +

 e
ve

nt
: D

at
a

[1
]

Al
ar

m
DB

«M
es

sa
ge

»
 +

 a
la

rm
s:

 D
at

a
[1

..

Lo
gD

B

«M
es

sa
ge

»
+

lo
gg

ed
Da

ta
:D

at
a

[1
..*

]

Ar
ch

iv
eD

B

«C
om

po
ne

nt
»

 +
 a

rc
hi

ve
: D

at
a

[1

RT
DB

«M
es

sa
ge

»
 +

 st
or

ed
_d

at
a:

 D
at

a
[1

]

Dr
iv

er
3

PL
C2

PL
C3

Dr
iv

er
2

Da
ta

Ty
pe

s

«D
at

aT
yp

e»
Da

ta
«D

at
aT

yp
e»

Fil
e

Figure 7.6: SCADA types and interfaces

148

7.7.2 SCADA case study

Figure 7.7: SCADA platform

149

CHAPTER 7. ASSESSMENT OF THE CONTRIBUTIONS

Feared event Threats Threat cate-
gory

Property Cat-
egory

Control Center
Disruption

th1. Physical attacks Tampering Integrity

th2. Malicious settings of
the field units

Tampering Integrity

th3. Wrong commands sent
to the field units

Repudiation Non-
Repudiation

th4. Malicious alteration
of the parameters of the
SCADA master

Tampering Integrity

th5. Denial of service at-
tack

Denial of Service Availability

Communication
Disruption

th6. Sniffing commands Information Dis-
closure

Confidentiality

th7. Spoofing Spoofing Authenticity
th8. Denial of service at-
tack

Denial of Service Availability

RTU Disruption th9. Physical attacks Tampering Integrity
th10. Malicious alteration
of the run-time parameters

Tampering Integrity

th11. Incorrect commands
sent to the central controller

Repudiation Non-
Repudiation

th12. Malicious alarms
sent to the central controller

Spoofing Authenticity

th13. Denial of service at-
tack

Denial of Service Availability

Table 7.1: SCADA system feared events and threats [48]

7.2.5 Selection and Instantiation

A System of Patterns is selected from the model repository protecting the system against
the identified threats in Table 7.1. The System of Patterns is then instantiated in the
modeling environment Papyrus (see Figure 7.8) thanks to Semco4Papyrus access tool.

The System of Patterns consists of a set of abstract patterns refined by concrete ones.
The description of these patterns can be found in Appendix. A:

• Secure Communication: ensures that data passing across a network is secure. It can
be refined by two alternative patterns:

– SSL

150

7.7.2 SCADA case study

«Pattern»

Secure_Communication

«Pattern»

Logger

«Pattern»

IntrusionDectectionSystem «Pattern»

Firewall

«Pattern»

Authenticator

«Pattern»

Authorization

«Pattern»

RBAC

«Pattern»

SecureChannel

PacketFirewall StatefulFirewall

«Pattern»

IPsec

«Pattern»

SSL

«Pattern»

SignatureBased_IDS

«Pattern»

BehaviorBased_IDS

<<uses>>

<<uses>>

<<isAlternative>>

<<refines>>
<<refines>>

<<refines>> <<refines>>

<<isAnAlternative>>

<<refines>>
<<refines>>

<<isAnAlternative>>

Figure 7.8: System of Patterns instantiated in Papyrus

– IPsec

• Firewall: restricts access to internal network. It can be refined by the following
alternative patterns:

– Packet Firewall

– Stateful Firewall

• Intrusion Detection System (IDS)

• Authorization

• RBAC

• Logger and Auditor

Using Table 7.1, the abstract patterns are linked with the SCADA system architec-
ture to identify where they are used. This is possible because each feared event is relevant
to a system component and each threat is stopped or mitigated with an abstract pat-
tern. Figure 7.9 shows where the abstract patterns are used with regards to the system
architecture.

151

CHAPTER 7. ASSESSMENT OF THE CONTRIBUTIONS

Figure 7.9: SCADA system architecture with pattern usage

152

7.7.2 SCADA case study

Configurations Concrete Security Patterns
Configuration 1 SSL, Packet Filtering
Configuration 2 SSL, Stateful Filtering
Configuration 3 IPsec, Packet Filtering
Configuration 4 IPsec, Stateful Filtering

Table 7.2: System of Patterns configurations

A System of Patterns configuration is a combination of concrete patterns (if any)
refining an abstract pattern. Among the different System of Patterns configurations, we
have selected four, described in Table 7.2, to be analyzed.

7.2.6 Pattern Integration

For each configuration, patterns are integrated into the SCADA system software architec-
ture described in Figure 7.5. Thus, we obtain software architecture candidates 1, 2, 3 and
4 for each pattern configuration 1, 2, 3 and 4. Figure 7.10 shows software architecture
candidate 1. The integration aims at protecting: (1) the communication between the
SCADA server and PLCs against information disclosure and spoofing (e.g., Man-In-The
middle attacks), (2) the SCADA server and PLCs against Denial of Service attacks. The
integration adds security mechanisms relevant to the SSL pattern (protocol controller, en-
cryptor, decryptor, signer, verifier, key exchange, authenticator) and one Packet Filtering
pattern security mechanism of the same name.

7.2.7 Software Threat Analysis

The software architecture candidates and the initial software architecture are submitted
to threat analysis. Table 7.3 and Table 7.4 shows the number of threats per threat
category before and after the integration of security patterns. The number of threats
in the four software architecture candidates is the same because, the concrete patterns
alternatives provide the same security property. There are no Man-In-The-Middle and
Tampering (during transmission) threats after the integration because of the application of
SSL pattern that guarantees confidentiality and integrity of messages between the SCADA
server and the PLCs. Four Denial of Service and Injection threats remain because four
software components (HMI, Trending, LogDisplay and AlarmDisplay) have public ports
and there is a lack of Firewall and Authorization mechanisms.

153

CHAPTER 7. ASSESSMENT OF THE CONTRIBUTIONS
«
A

p
p

lic
a
ti

o
n
»

S
C

A
D

A
_s

y
st

e
m

«
C

o
m

p
o
n
e
n
t»

+
R
T
_E

v
e
n
t_

M
a
n
a
g

e
r:

R
T
_E

v
e
n
t_

..
.

 +
 p

rt
_E

R
M

_H
M

I:
 H

M
I_

R
T
E
v
e
n

tM
n
g

_I
n
t

[1
]

 +
 p

rt
_E

R
M

_T
rn

:
Tr

e
n
d

_R
T
E
v
e
n
tM

n
g

_I
n
t

[1
]

 +
 p

rt
__

E
R

M
_l

o
g

D
is

p
la

y:
 L

o
g

D
is

p
la

y
_R

T
E
v
e
n

tM
n
g

_I
n

t
[1

]

 +
 p

rt
_E

R
M

_A
lr

m
D

:
A

la
rm

D
is

p
la

y
_R

T
E
v
e
n

tM
n
g

_I
n

t
[1

]

+
 E

R
T
M

_L
o
g

_p
rt

:
Lo

g
_I

n
t

[1
]

 +
 E

R
T
M

_A
rc

h
iv

e
_p

rt
:

A
rc

h
iv

e
_I

n
t

[1
]

+
E
R
T
M

_R
p

rt
G

n
_p

rt
:

R
e
p

o
rt

G
e
n

_I
n
t

[1
]

+
E
R
T
M

_P
rc

ss
_p

rt
:

R
T
E
v
e
n
tM

n
g

_d
a
ta

P
ro

ce
ss

in
g

_I
n

t
[1

]

 +
 E

R
T
M

_A
lr

m
_p

rt
:

A
la

rm
_H

a
n
d

le
r_

In
t

[1
]

«
C

o
m

p
o
n
e
n
t»

 +
 H

M
I:
 H

M
I
[1

]

«
C

o
m

p
o
n
e
n
t»

 +
 T

re
n
d

in
g

:
Tr

e
n
d

in
g

 [
1

]

«
C

o
m

p
o
n
e
n
t»

+
Lo

g
D

is
p

la
y:

Lo
g

D
is

p
la

y
[1

]

«
C

o
m

p
o
n
e
n
t»

+
 A

la
rm

D
is

p
la

y:
 A

la
rm

D
is

p
la

y
 [

1
]

«
C

o
m

p
o
n
e
n
t»

 +
 a

la
rm

_H
a
n
d

le
r:

 A
la

rm
_H

a
n
d

le
r

[1
]

 +
 A

lr
m

_D
B

_P
rt

:
D

B
In

t
[1

]

«
C

o
m

p
o
n
e
n
t»

 +
 l
o
g

_H
a
n
d

le
r:

 L
o
g

_H
a
n
d

le
r

[1
]

+
Lo

g
_D

B
_P

rt
:

D
B

In
t

[1
]

«
C

o
m

p
o
n
e
n
t»

 +
 a

rc
h
iv

e
:

A
rc

h
iv

e
 [

1
]

 +
 A

rc
h
_D

B
_p

rt
:

D
B

In
t

[1
]

«
C

o
m

p
o
n
e
n
t»

+
d

a
ta

P
ro

ce
ss

in
g

:
D

a
ta

P
ro

ce
ss

in
g

[1
]

 +
 P

rc
ss

_R
W

_p
rt

:
d

a
ta

_R
W

_I
n
t

[1
]

«
C

o
m

p
o
n
e
n
t»

 +
 r

e
p

o
rt

_G
e
n

e
ra

ti
o
n
:

R
e
p

o
rt

_G
e
n
e
ra

ti
o
n
 [

1
]

 +
 R

p
rt

G
n
_R

T
D

B
_p

rt
:

D
B

In
t

[1
]

«
C

o
m

p
o
n
e
n
t»

 +
 d

a
ta

_R
_W

:
D

a
ta

_R
_W

 [
1

]

+
R

W
_P

rc
ss

_p
rt

:
d

a
ta

_R
W

_I
n
t

[1
]

+
 R

W
_D

ri
v
e
r_

P
rt

:
d

ri
v
e
rI

n
t

[1
]

 +
 P

o
rt

2
:

<
U

n
d

e
fi
n
e
d

>
 [

1
]

«
C

o
m

p
o
n
e
n
t»

+
d

ri
v
e
r3

:
D

ri
v
e
r

[1
]

«
C

o
m

p
o
n
e
n
t»

 +
 p

LC
3

:
P
LC

 [
1

]

«
C

o
m

p
o
n
e
n
t»

+
a
la

rm
D

B
:

A
la

rm
D

B
[1

]
 +

 A
lr

m
D

B
_P

rt
:

D
B

In
t

[1
]

«
C

o
m

p
o
n
e
n
t»

 +
 l
o
g

D
B

:
Lo

g
D

B
 [

1
]

 +
 L

o
g

D
B

_P
rt

:
D

B
In

t
[1

]

«
C

o
m

p
o
n
e
n
t»

+
a
rc

h
iv

e
D

B
:

A
rc

h
iv

e
D

B
[1

]
 +

 A
rc

h
D

B
_p

rt
:

D
B

In
t

[1
]

«
C

o
m

p
o
n
e
n
t»

 +
 R

T
D

B
:

R
T
D

B
 [

1
]

 +
 R

T
D

B
_P

rt
:

D
B

In
t

[1
]

+
e
n
cr

y
p

to
r_

3
:

E
..

.

+
d

e
cr

y
p

to
r_

3
:

D
e
cr

y
p

to
r

[1
]

 +
 s

ig
n
e
r_

3
:

S
ig

n
e
r

[1
]

+
v
e
ri
fi
e
r_

3
:

V
e
ri
fi
e
r

..
.

 +
 a

u
th

e
n
ti

ca
to

r_
3

:
A

u
th

e
..

.
 +

 a
u
th

_c
lie

n
t_

p
o
rt

:
A

u
th

e
n
ti

ca
to

rI
n
t

[1
]

+
d

ri
v
e
r_

P
ro

to
co

lC
o
n
tr

o
lle

r_
3

..
.

+
ke

y
_E

xc
h
a
n

g
e
_3

:
K

..
.

 +
 e

n
cr

y
p

to
r_

d
ri

v
e
r3

:
E

n
cr

y
p

to
r

..
.

 +
 d

e
cr

y
p

to
r_

d
ri

v
e
r3

:
D

e
cr

y
p

to
r

[1
]

+
si

g
n
e
r_

d
ri

v
e
r3

:
S

ig
n
e
r

[1
]

 +
 v

e
ri
fi
e
r_

d
ri

v
e
r_

3
:

V
e
ri
fi
e
r

[1
]

+
a
u
th

e
n
ti

ca
to

r_
d

ri
v
e
r3

:
A

..
.

 +
 P

ro
to

co
lC

o
n
tr

o
lle

r_
d

ri
v
e
r3

:
..

.

 +
 k

e
y
_E

xc
h
a
n
g

e
_d

ri
v
e
r3

:
K
e
..

.

+
p

a
ck

e
t_
fi
re

w
a
ll_

3
:

p
a
ck

..
.

+
fi
re

w
a
ll_

3
:

p
a
ck

e
t_
fi
re

w
a
ll_

3
[1

]

+
P
ro

to
co

lC
o
n
tr

o
lle

r_
P
LC

_2
:.

..

+
ke

y
_E

xc
h
a
n

g
e
_2

:
K
e
y
_E

xc
h
a
n

g
e

..
.

 +
 v

e
ri
fi
e
r_

d
ri

v
e
r2

:
V
e
ri
fi
e
r

[1
]

 +
 e

n
cr

y
p

to
r_

1
:

E
..

.

+
si

g
n
e
r2

_1
:

S
ig

n
e
r

[1
]

 +
 P

ro
to

co
lC

o
n
tr

o
lle

r_
d

ri
v
e
r2

:
D

ri
..

.

 +
 e

n
cr

y
p

to
r_

d
ri

v
e
r2

:
E

n
cr

y
p

to
r

..
.

+
v
e
ri
fi
e
r_

1
:

V
e
ri
fi
e
r

..
.

«
C

o
m

p
o
n
e
n
t»

+
d

ri
v
e
r2

:
D

ri
v
e
r

[1
]

+
a
u
th

e
n
ti

ca
to

r_
d

ri
v
e
r2

:
A

u
th

e
n

ti
ca

to
r

[1
]

+
a
u
th

e
n
ti

ca
to

r2
_1

:
A

u
th

..
.

+
 d

e
cr

y
p

to
r2

_1
:

D
e
cr

y
p

to
r

[1
]

+
si

g
n
e
r_

d
ri

v
e
r2

:
S

ig
n
e
r

[1
]

 +
 p

a
ck

e
t_
fi
re

w
a
ll_

2
_1

:
p

..
.

 +
 d

e
cr

y
p

to
r_

d
ri

v
e
r2

:
D

e
cr

y
p

to
r

[1
]

+
p

a
ck

e
t_
fi
re

w
a
ll2

:
p

a
ck

e
..

.

+
ke

y
_E

xc
h
a
n

g
e
_2

_1
:.

..

«
C

o
m

p
o
n
e
n
t»

+
p

LC
_2

:
P
LC

[1
]

+
e
n
cr

y
p

to
r_

d
ri

v
e
r1

:
E
n
cr

y
p

to
r

..
.

 +
 k

e
y
_E

xc
h
a
n
g

e
_1

:
K
e
..

.

+
 a

u
th

e
n
ti

ca
to

r_
d

ri
v
e
r1

:
A

u
th

e
n
ti

ca
to

r
[1

]

 +
 s

ig
n
e
r_

1
_1

:
S

ig
n

e
r

[1
]

«
C

o
m

p
o
n
e
n
t»

+
 p

LC
_1

_1
:

P
LC

 [
1

]

«
C

o
m

p
o
n
e
n
t»

 +
 d

ri
v
e
r1

:
D

ri
v
e
r

[1
]

+
e
n
cr

y
p

to
r_

1
:

E
..

.

+
d

e
cr

y
p

to
r_

1
_1

:
D

e
cr

y
p

to
r

[1
]

 +
 k

e
y
_E

xc
h
a
n
g

e
_1

_1
:.

..

 +
 v

e
ri
fi
e
r_

d
ri

v
e
r1

:
V
e
ri
fi
e
r

[1
]

+
P
ro

to
co

lC
o
n
tr

o
lle

r_
P
LC

1
:

D
ri

v.
..

 +
 p

a
ck

e
t_
fi
re

w
a
ll_

1
_1

:
p

..
.

+
 P

ro
to

co
lC

o
n
tr

o
lle

r_
d

ri
v
e
r1

:
D

ri
..

.

 +
 d

e
cr

y
p

to
r_

d
ri

v
e
r1

:
D

e
cr

y
p

to
r

[1
]

 +
 p

a
ck

e
t_
fi
re

w
a
ll1

:
p

a
ck

e
..

.

+
a
u
th

e
n
ti

ca
to

r1
..

.

+
 s

ig
n
e
r_

d
ri

v
e
r1

:
S

ig
n
e
r

[1
]

+
v
e
ri
fi
e
r_

1
_1

:
V
e
ri
fi
..

.

1
1

1
1

1

1

C
o
n
n
e
ct

o
r3

9

1

1

1
1

1

1

1

1

1 1

1

1

1
1

1

1

1

1

C
o
n
n
e
ct

o
r2

2
1

1

1

1

1
1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1
1

1

1

1
1

1

1

C
o
n
n
e
ct

o
r6

3

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1
1

1

1

1
1

1
1

1

1

1
1

1

1

1

1

1

1

11

1

1

1

1

1
1

1

1

1

1

1

1
1

1

11

1

1

1
1

1

1

1

1

1
1

1
1

1

1

1

1

1
1

1

1

1
1

1
1

1

1

1

1

1

1

1

1

1
1

1
1

1
1

1
1

11

1

1

11

1
1

1

1

C
o
n
n
e
ct

o
r2

2
1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

C
o
n
n
e
ct

o
r3

9

1

1

1
1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1
1

1
1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1
1

1

C
o
n
n
e
ct

o
r6

3

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1
1

1
1

1

1

1 1

Figure 7.10: SCADA software architecture after the integration of configuration 1

154

7.7.2 SCADA case study

Threat categories Detected threats
Man-In-The-Middle 6
Tampering 6
Denial of Service 10
Injection 10
Total 24

Table 7.3: Detected threats per threat scenario before pattern integration

Threat categories Detected threats
Man-In-The-Middle 0
Tampering 0
Denial of Service 4
Injection 4
Total 8

Table 7.4: Detected threats per threat scenario after pattern integration for the four
security pattern-based software architectures

7.2.8 Real-time Analysis

In this step, The aim is to keep only the architecture candidates that satisfy real-time
requirements. We evaluate software architecture candidates 1, 2, 3 and 4 with regards to
real-time constraints. In the analysis, we consider the transactions between the SCADA
Server and the PLCs. Since the three PLCs are similar the study focuses on one PLC.
For the case study, we have used the following techniques:

• Scheduling policy : Fixed offset-based scheduling with Rate-Monotonic Analysis
(RMA) [153].

• Task partitioning and allocation : Deterministic (static) Task Partitioning strategy.

Figure 7.11 shows the end-to-end flows before pattern integration and the deployment
on the platform. These end-to-end flows are modeled according to messages in the ar-
chitecture. The partitioning of end-to-end flows into tasks and allocation of tasks into
nodes are also shown. Figure 7.12 shows the generated task model that consists of seven
tasks with timing parameters. The values of the SCADA system timing parameters are
based on IEEE 1646 standard [3] specifying communication deadlines and IEC 61850 [77]
specifying communication network delays in different information categories. Functions
WCET, the assigned tasks and nodes are shown in Table 7.5.

Security pattern function WCETs and their assigned tasks are shown in Table 7.6.
Alternative concrete patterns have the same functions but have different WCETs. The

155

CHAPTER 7. ASSESSMENT OF THE CONTRIBUTIONS

Figure 7.11: End-to-end flows and deployment

Figure 7.12: Task partitioning and allocation

156

7.7.2 SCADA case study

Functions WCET Task Node
Setpoint
Processing

8.7 τ1 SCADA
Server

Poll Data 9.6 τ1, τ6, τ7 SCADA
Server

Log Data 8.5 τ5 SCADA
Server

Check Sta-
tus

9.6 τ6 SCADA
Server

Visualize
Data

10.5 τ5 SCADA
Server

Alarm
Handler

10.3 τ6 SCADA
Server

Archive
Data

9.5 τ7 SCADA
Server

Command
Computa-
tion

10 τ2, τ3, τ4 PLC

Data Pre-
processing

9.5 τ3 PLC

Diagnosis 8.9 τ4 PLC

Table 7.5: Timing parameters and deployment of SCADA functions

timing parameters are based on a review of technical reports of SSL/IPsec [11], and
stateful/packet firewall [71].

Patterns Functions WCET Task
(1) (2)

SSL (1)
IPsec (2)

Authentication 9.7 38.7 τ1

Key exchange 10.1 39.6 τ1
Encryption 9.9 9.9 τ1
HMAC 9.2 9.2 τ1
Decryption 10.3 10.3 τ2
Integrity check-
ing

10.2 10.2 τ2

Packet Filtering
(1)
Stateful Filter-
ing (2)

Filtering 10 40 τ7

Table 7.6: Timing parameters and deployment of security pattern functions

157

CHAPTER 7. ASSESSMENT OF THE CONTRIBUTIONS

Figure 7.13: Node and channel utilizations

Figure 7.13 shows node and channel utilization results of the four software architec-
ture candidates. Candidate 4 is rejected because the SCADA master utilization 103.33%
exceeds the threshold (100%). This is because authentication and key exchange functions
in SSL have higher processor demands then in IPsec. In addition stateful filtering is more
demanding then packet filtering. Response time analysis is performed for candidates 1, 2
and 3 since they pass the processor utilization test. Figure 7.14 shows task WCRTs for
each software architecture candidate 1, 2 and 3.

7.3 Feasibility of the approach

We study the feasibility of the approach by analyzing the results obtained on the SCADA
system case study. We show the feasibility of the approach through the execution of three
activities: (1) threat analysis - we compare the detected threats to threats obtained with
an attack scenario simulation framework named ASTORIA [161]; (2) pattern integration -
we compare threats before and after security pattern integration; (3) Real-time evaluation
- we discuss the benefits of such evaluation at early stage.

158

7.7.3 Feasibility of the approach

Figure 7.14: Task WCRTs

7.3.1 Software Threat Analysis

To assess the threat analysis module, we compare the results obtained to the work in [161].
The paper proposes a framework named ASTORIA [161] for attack scenario simulation
for smart grid systems. The selection of the framework was motivated by the fact that
ASTORIA is a simulation framework whereas ours is a formal verification-like framework.
The ASTORIA team have simulated attack scenarios and evaluated their impact on the
smart grid system to discover existing threats. Table 7.7 presents the results obtained
with ASTORIA framework and our threat analysis framework.

For each asset, we conclude that all the detected threats are TPs i.e., all detected
threats are threats. In addition, our framework detected at the level of RTUs and com-
munication new threats i.e, Denial of Service and Tampering. FNs, i.e., threats that were
not detected are due to different reasons:

• Some attack scenarios were simply not formalized or out of scope of our framework.
For instance, Phishing is an attack scenario that attempts to obtain sensitive infor-
mation such as credentials, and credit card details for malicious reasons using an
electronic communication generally emails. This attack exploits social engineering
was which is out of scope the study.

159

CHAPTER 7. ASSESSMENT OF THE CONTRIBUTIONS

Assets Threats with ASTORIA [161] Detected threats with
our framework

Control Center Malicious Software Injection
Phishing Denial of Service
Ping sweeps
Port Scanning
Spyware
Injection
Unauthorized access
Spoofing
Replay
Denial of Service

RTU Malicious Software Injection
Phishing Denial of Service
Ping sweeps
Port Scanning
Spyware
Unauthorized access
Spoofing
Replay
Denial of Service

Communication Eavesdropping Man-In-The-Middle
Sniffing Tampering
Man-In-The-Middle
Denial of Service
Replay

Table 7.7: Threat Analysis results comparison

• Some attack scenarios are of the same kind or are consequences of some formalized
threat scenarios. For instance, replay attacks are a kind of Man-In-The-Middle
attacks where the attacker maliciously or fraudulently repeats or delays a valid data
transmission. Ping sweeps are generally used to check if a node is alive or dead. It
can be used as flooding technique and becomes a Denial of Service attack.

• Some attack scenarios are at a lower stage (implementation) such as malicious soft-
ware. In fact, we deal with software architecture analysis and not with code analysis.

7.3.2 Pattern Integration

The pattern integration process is evaluated via software threat analysis. Indeed, Table 7.3
and Table 7.3 show threats before and after pattern integration respectively. We conclude

160

7.7.3 Feasibility of the approach

that the patterns that were selected have accomplished their task by decreasing the threats
related to the threat categories that they were selected for. However, since we have not
formalized other attack scenarios, it is very likely some threats are left unmitigated. This
issue should be investigated as a future work. Another form of assessment is due the fact
that the pattern brings a certain security property. We have shown that the result of the
integration verifies this property in chapter 4.

7.3.3 Real-time Analysis

Incorporating security during architecture design may produce different architecture can-
didates. If all these alternatives are expected to be correct regarding security issues their
impact in terms of other non-functional requirements such as real-time constraints, mem-
ory or energy consumption should also be considered to select a solution offering a good
trade-off. In this work, we have focused on real-time analysis of architecture candidates
illustrated through a SCADA system with strong real-time and security needs. This work
can be beneficial to resource constrained embedded systems e.g., automotive, avionics.
For instance in EAST-ADL [37], trade-off analysis is performed for one design model with
different parameters whose values determine whether the design satisfies multi-concern
objectives. Our work adds a step forward which is the analysis of different design al-
ternative models against non-functional concerns (security in our case). One important
point is that the experiment has required some effort in quantifying real-time parameters
of security pattern security functions. Some function WCETs were estimations. For ex-
ample, HMAC function may have different WCETs as it depends on the used algorithm
(e.g., HMAC-SHA-1-96, HMAC-MD5). However, we believe that estimations are enough
as the approach is meant for high level evaluation and architecture decision making. For
example, if none of the architecture candidates respected the real-time requirements be-
cause of overload; the architecture of SCADA can be rethought leading to adding an
execution node. However, if there is a big gap in timing parameters for the same security
functions, estimations can affect the soundness of the results. The solution in this case
is to define timing configurations which are possible by defining upper and lower bounds
using MARTE. Hence optimization heuristics (supported by “Qompass Architect”) can
provide an optimal architecture candidate. This point needs further investigations and is
left as a future work.

161

CHAPTER 7. ASSESSMENT OF THE CONTRIBUTIONS

7.4 Conclusion
In this chapter we have assessed the feasibility of the contributions (from RG1 to RG4)
through the modeling and analysis of a SCADA system case study with strong demands
in security and responded to (RG5).

SCADA systems are interesting case study because security is a high-critical issue
and they are different from classical ICT system such as the web application working
example used for the illustration. We have used Domain Specific Languages to model
the software and hardware architecture of the system. Once the modeling has been
performed, risk assessment was applied to identify potential system threats. These threats
were categorized in order to select a number of security patterns constituting a System
of Patterns. The resulting security architecture candidates were analyzed according to
real-time constraints and formalized threat scenarios.

The results obtained from each contribution were analyzed to assess the feasibility of
the approach. We have assessed the threat analysis framework, discussed in chapter 5,
by comparing it to the attack scenario simulation framework. The integration process,
discussed in chapter 6, was assessed with regards to the detected threats before and after
pattern integration. Finally real-time analysis in chapter 4 was assessed by discussing the
benefits that it can give to a number of domains such as avionics and automotive, the
potential improvements by using existing work and the difficulties and efforts to perform
such analysis. According to the results of the assessment, the overall feasibility of the
different contributions of the approach is given. Now, this approach needs to be assessed
according to the acceptance of software architects. As a future work, we intend to assess
the acceptance of the approach by performing a survey. This point is detailed in future
works.

162

Chapter 8

Conclusion and Future Work

Contents
8.1 Summary and Contributions . 163
8.2 Limitations and Future Work 168
8.3 Perspectives . 170

8.1 Summary and Contributions

In this thesis we propose a framework for engineering secure software architectures through
modeling techniques, a set of devoted analyzes components and the use of security pat-
terns. The proposed framework consists of several features to assist architects in building
secure architectures using a repository of secure solutions models. The contributions of
this work are threefold: (1) an integrated design framework for the specification and anal-
ysis of secure software architectures, (2) a novel model- and pattern-based methodology
and (3) a set of supporting tools.

The approach consists of the following steps (a) model-based risk assessment per-
formed on the architecture to identify threats, (b) selection and instantiation of security
pattern models towards the modeling environment for stopping or mitigating the identified
threats, (c) correct integration of security pattern models into the architecture model, (d)
model-based analysis of architecture candidates with regards to real-time requirements
and residual threats. The aim is to compare these architecture candidates and keep only
the ones satisfying real-time constraints. The detection of residual threats is done by
validating the architecture model against formalized threat scenarios from STRIDE and
based on existing threat references (e.g., CAPEC).

163

CHAPTER 8. CONCLUSION AND FUTURE WORK

8.1.1 Integrated Design Framework

We have defined an integrated design framework, using UML profiles, for the specification
and analysis of secure software architectures (to answer RG1):

• EBIOS UML profile. EBIOS concepts [61] are used to create a UML profile in
order o represent risk assessment artifacts.

• Architecture specification. We use the extension mechanisms of UML [130] and
create a UML profile for component-based software architectures. The profile is then
augmented with verifiable constraints, written in the Object Constraint Language
(OCL), that help system architect in systematically identifying security threats.

• Pattern specification. The SEPM metamodel [61] is used to create a UML profile
in order o represent security patterns. This UML profile has been developed to allow
the instantiation of patterns in the targeted modeling environment.

• Integration. In order support pattern integration methodology, we create a UML
profile that helps architects in relating the concepts of the solution provided by the
pattern to those of the target architecture.

8.1.2 Model- and Pattern-Based Methodology

In chapter 4, we extend previous work of the team [66] and [135] which provide a first
solution of design pattern integration in the context of object-oriented applications and
safety requirements respectively. We present a process for the selection, instantiation
and integration of proper security patterns during architecture design based on risk as-
sessment recommendations (to answer RG2). The modeling is based on accepted OMG
standards: UML, its extension mechanism (Profiles) and OCL to express constraints. Our
main goal is to develop a way to select relevant security pattern models from a patterns
repository (SEMCO in our case) according to recommendations issued by a risk analy-
sis of an architecture model. These patterns are instantiated on the fly under the form
of compatible UML models and then integrated into the application to build a secured
software architecture candidates.

In chapter 5, we discuss threat analysis of the software architecture candidates after
the application of security patterns with regards to residual threats (to answer a part of
RG3). Indeed, the selected System of Patterns stops or mitigates specific system threats
derived from risk assessment. However some system threats have been accepted and other
software threats may appear due to the level of detail of the software architecture model.

164

8.8.1 Summary and Contributions

The goal is a holistic exploration of application software architectures for the elicitation
of potential threats. In order to do this, we show the formalization process of a set of
threat scenarios in OCL language.

In chapter 6, we extend previous works of the team [121, 62]. In [121], a MARTE-
based framework for real-time schedulability analysis at early design stages was presented.
In [62], an approach to support Security, Dependability and Resource Trade-offs using
Pattern-based Development and Model-driven Engineering was presented. Here we go
one step further, we propose a process and its tool support for the analysis of architecture
candidates against real-time requirements (to answer a part of RG3).

8.1.3 Tool Support

Furthermore, we walk through a prototype supporting the approach (to answer RG4).
In our context, we use the Eclipse Modeling Framework and its accompanying modeling
tools developed around Papyrus. Currently the tool is composed of different modules
provided as Eclipse plugins. An example of scenario of using the proposed integrated set
of tools is visualized in Figure 8.1. Note, however, that our vision is not limited to the
Eclipse platform. Here, we outline the different Eclipse tools used in the development of
the proposed tool suite. Among the tools used here are cited:

• Papyrus is a modeling and analysis environment. This tool has been described
in section 2.5.2. In our context, it is used to model the architecture which is then
submitted to Sophia (1).

• Sophia is integrated in Papyrus and is dedicated to safety of systems described in
UML or its extensions. We have contributed to the extension of Sophia for security
analysis.

• SEMCOMDT1 is an environment for the specification and development of a reuse
model repository [63]. This tool has been described in section 2.5.3.

• Qompass Architect [92] is integrated in the Papyrus environment. It is a model-
based tool developed in CEA LIST for QoS assessment and optimization of real-time
architectures. Qompass Architect explores non-functional properties of real-time
architectures to finally synthesize an optimized architecture.

To evaluate the proposed approach to support the modeling and analysis of secure
architectures with patterns, we developed the following modules:

1http://www.semcomdt.org

165

CHAPTER 8. CONCLUSION AND FUTURE WORK

Papyrus
(Modeling and Analysis Environment)

UML
ComponentUML
SepmUML

Modeling

Pattern models (instantiated)
Architecture
design model

Qompass Architect
(Real-time Analysis)

MARTE

Generate Task model

Scheduling analysis

Architecture design model

Sophia (Security Analysis)

Risk Analysis (EBIOS) Automated Threat
Analysis

EBIOS
 UML Profile

OCL rules

SEMCOMDT
(Model Repository)

SEPM

Pattern models

Semco4Papyrus

Access Tool

Select

Instantiate

PatternIntegrator
Verify Preconditions

Verify Post conditions

Merge

1

2

3

4

5

7

8

9

10

Figure 8.1: Tool-flow of the MDE-tool suite

166

8.8.1 Summary and Contributions

• EBIOS Risk Analysis enables the modeling of feared events, threats and risks.
It allows the automatic computation of risk level from likelihood and impact lev-
els. These risks can be categorized according to security property categories and
threat categories. Once risks are categorized, this information serves as input for
Semco4Papyrus (2) to select patterns and instantiate them.

• Automatic Threat Analysis enables a holistic exploration of the software archi-
tecture and detects threats according to formalized threat scenarios. The current
version supports four threat scenarios: Man-In-The-Middle, Tampering, Injection
and Denial of Service. The results allow the revaluation of risks. If not risks are
acceptable, the architecture is rejected.

• Semco4Papyrus is composed of two modules:

– Access tool is a GUI exposed to the end user. It enables selection (3) and
instantiation (4) of patterns stored in a SEMCOMDT based on EBIOS risk
analysis results. The instantiation is performed with a Model-To-Model trans-
formation towards Papyrus (5).

– PatternIntegrator supports correct pattern integration in Papyrus and pro-
vides a generic scheme for pattern integration instead of ad-hoc transforma-
tion. It is based on merge and verification techniques. Instantiated patterns
together with the architecture design model are submitted to PatternIntegrator
(6). The results are architecture candidates (7). Each architecture candidate
is submitted for Automated Threat Analysis (8). If the candidate is accepted,
it is submitted to Qompass Architect (9).

8.1.4 Assessment

The proposed approach, its modeling framework and its tool support have been applied
to a SCADA system case study in Chapter 7. Following the description of the use case
and its implementation using the proposed framework, we have assessed the feasibility of
the contributions of our work (from RG1 to RG4) through the modeling and analysis of
a SCADA (Supervisory Control And Data Acquisition) system (RG5). We discuss the
assessment of the results for each contribution. The selection of an application for the
proposed approach has to be considered as a very important decision for our work. It has
a direct impact on the selection of patterns, and thus on the whole assessment.

167

CHAPTER 8. CONCLUSION AND FUTURE WORK

8.2 Limitations and Future Work

After having analyzed the case study and the conducted assessment, we identified lacks
in the current version of our approach and defined future work objectives to enhance the
proposed approach.

The limitations and future work consider different parts of the approach, namely (1)
risk assessment, (2) pattern selection, (3) pattern integration, (4) model-based real-time
analysis, (5) model-based software threat analysis and (6) the assessment. In the following
section we detail the identified limitations and give ideas of possible solutions:

1. Risk assessment. Risk assessment can be improved by automating the identification
of system threats. This is possible by reusing the work of software threat analysis.
In fact, software threat analysis is used to detect threats at the software architecture
design level according to formalized rules. The formalization of rules describes the
context in which a certain threat may exploit an absence of one or more security
mechanisms, their weakness or their incorrect integration. Therefore, at the level
of system architecture, the formalization of system threats may be simplified to the
non-existence of security mechanism.

2. Pattern selection. Pattern selection results can be improved by specifying the type
of components where to apply the pattern. For example between a client and server.
This can be done by reusing the work of [73].

3. Pattern integration:

• a. Role binding. Similarly to 2, the work of [73] can be used to propose
bindings. Indeed, once a pattern is proposed, bindings can be proposed to the
user according to the type of components where we want to apply the pattern
.

• b. Behavior. During the integration we have considered a structural view of the
architecture represented in UML composite diagram. We also need to consider
behavior during the integration process. Currently, we consider messages as
part of the structure of the solution. Hence, messages should be represented
in a dedicated diagram such as the UML information diagram that takes into
account the order of messages. A starting point can be the work of [40] where
the authors studied the composition of security patterns behaviors modeled in
a sequence diagram.

168

8.8.2 Limitations and Future Work

4. Model-Based Real-Time Analysis. We have considered estimations during real-time
analysis. However, if there is a big gap in timing parameters for the same security
functions, estimations can affect the soundness of the results. The solution in this
case is to define timing configurations which are possible by defining upper and
lower bounds using MARTE. The current version of the tool “Qompass Architect”
can perform real-time analysis for a model with timing configurations as input. In
this case, for one architecture candidate with timing configurations, node utiliza-
tions and response-time would have an upper and lower bound. Hence optimization
heuristics (supported by “Qompass Architect”) can provide an optimal architecture
candidate. In addition, this work can benefit from [37] by extending trade-off anal-
ysis for different design alternative models instead of design space exploration for
one design model. After the analysis of the secure architecture candidates is done
and if multiple solutions remain, the “best” solution (if any) can be looked up by
quantifying security and real-time objectives (e.g., number of threats of the archi-
tecture candidate as security objective and response time of an end-to-end flow as
a real-time objective). Hence, these objective may be optimzed.

5. Model-Based Software Threat Analysis:

• Threat analysis can be generalized by replacing ComponentUML with OMG
standards for Component-Based Development particularly UCM [131]. The
second step is to construct a library of helpers to easily formalize threat sce-
narios.

• The specification of threats was done using OCL. OCL is a general language for
constraining UML models. We want to enable security experts to contribute
to the threat knowledge-base, who are not necessarily familiar with OCL, with
less effort. In this context, we can inspect DSMLs for specifying these rules
and then study mappings towards OCL. In literature we can find a number of
Existing DSMLs for security specification (requirements, properties) [26, 105]
which can be a starting point.

6. Assessment.

In the near future, we plan to conduct an experiment in which we will present
the approach and the solution of our case study to collect feedback from industry
practitioners through a survey. In particular, we wanted to assess the perception of
using patterns coupled with the modeling approaches to engineering secure systems.
Duplicate the study to address secure software system development in other domains

169

CHAPTER 8. CONCLUSION AND FUTURE WORK

and perform the survey with other subjects (e.g., students) have been considered
also as future work.

8.3 Perspectives
Perspectives emerging from this thesis are manifold. These perspectives are long-term
objectives and consist of enhancements related to (1) enabling traceability during pattern
integration process, (2) performing interplay between security and safety, (3) linking the
approach with the implementation phase and (4) finally to managing the implemented
and deployed system.

1. Traceability. It can be useful to keep traceability links between patterns that have
been integrated and where they have been applied in the architecture. This can
be interesting when justifying that risks of architecture have been mitigated. For
this end, the casting diagram consists of bindings which contain implicit semantics
for the traceability link (i.e., between elements of the architecture and roles within
the applied patterns). However, we lose traceability when creating new elements
after the integration process. This is the case for security mechanisms. We have
used the concepts of “Plays” for bindings. We propose to use a new concept called
“Create” that links added elements in the architecture and their origin from the
pattern. For instance, when integrating an SSL pattern an encryption mechanism is
added in the target architecture. Hence, a link stereotyped with “Create” between
this mechanism in the architecture and the SSL patten can be created. This issue of
traceability has been tackled in [93]. The authors presented a traceability approach
during model composition operation. Using this approach composed models contain
two categories of elements: (1) elements that originate from an input model (security
mechanisms in our case) and (2) elements that are the result of a merge of elements
of different input models (components linked with “Plays” links in our case). Hence,
they have defined two categories of traceability links: (1) Translation links and (2)
Merge links. Thus, the approach reflects what have said about the need of “Create”
traceability links.

2. Interplay of concerns. We plan to do research about safety concerns and study their
interplay with security concerns. The interplay of Security and Dependability was
started in the team in [62] but in a semi-formal way.

3. Implementation Phase. Our approach focused on the architecture design phases. We

170

8.8.3 Perspectives

need to inspect a way to move to the implementation phase without compromising
security enforced at prior phases. For instance, Delange et al. [38] introduced an
approach based on AADL [137] where the aim is to build secure applications from
specifications to implementation using code generation techniques.

4. Governance Risk and Compliance. In this PhD thesis, we have focused on designing
secure software architectures through security risk management, patterns and ana-
lyzes. However, once a software system is implemented and deployed, risks need to
be managed. These risks should be linked to an organization’s strategy. Governance,
Risk and Compliance (GRC) refers to an organization’s strategy for managing the
broad issues of corporate governance, enterprise risk management (ERM) and cor-
porate compliance with regards to regulations. For instance, Identity and Access
Management (IAM) is a kind of governance about managing the life cycle of identi-
ties inside an organization (from recruitment to departure) and their impact on the
information system.

171

CHAPTER 8. CONCLUSION AND FUTURE WORK

172

Appendices

173

Appendix A

Security Pattern Description

This appendix describes the patterns used along the manuscript taken from [48]. We have
simplified the pattern description in order to have three sections: context, problem and
solution.

A.1 Transport Layer Security (TLS)

The Transport Layer Security (TLS) pattern is the latest version of Secure Socket Layer
(SSL). It describes how to provide secure channel between a client and a server by which
application messages are communicated over the transport layer of the Internet. The client
and the server are mutually authenticated and the integrity of their data is preserved.

Context

Users using applications that exchange sensitive information such as browsers for e-
commerce or similar activities. The transport layer in TCP/IP provides end-to-end
communication services for applications within a layered architecture of network com-
ponents and protocols, and specifically convenient services such as connection-oriented
data stream support, flow control and multiplexing.

Problem

The messages communicated between applications and servers on the transport layer are
vulnerable to attack by intruders, who may try to read or modify them. Either the server
or the client may be an impostor.

175

CHAPTER A. SECURITY PATTERN DESCRIPTION

Solution

Establish a cryptographic secure channel between the client using algorithms that can be
negotiated between the client and the server. Provide the means for client and server to
authenticate each other. Provide a way to preserve the integrity of messages.

Structure

Figure A.1: Structure of TLS pattern

Figure A.1 shows a class diagram for the basic architecture of the TRANSPORT
LAYER SECURITY pattern. A Client requests some Service from the Server. The
TLSProtocol controller conveys this request using an Authenticator to mutually au-
thenticate the Client, and creates a Secure Channel between them. AUTHENTICATOR
and Secure Channel are patterns.

Behavior

We describe the behavior of the transport layer security pattern using a sequence diagram
for the following use case:

Use Case: Request a Service – Figure A.2

• Summary: A client requests a service and the TLSProtocol authenticates the request
and creates a secure channel.

• Actors: Client, Server

• Precondition: The security parameters of the secure exchange have been predefined.

176

A.A.2 Firewall

Figure A.2: Behavior of TLS pattern

• Description:

1. The Client makes a service request to the Server

2. The TLSProtocol authenticates the Server to the Client and to the Server.

3. The TLSProtocol creates a secure channel between the Server and the Client.

• Alternate Flows:

– The authentication can fail

– The creation of a secure channel can fail.

• Postconditions: The Server accepts the request and grants the service.

A.2 Firewall
The Firewall pattern allows filtering of calls and responds to/from enterprise application,
based on institution’s access control policies.

Context

Enterprise applications executing in distributed systems accessed from a local network,
the Internet, or other external networks. These distributed systems typically include

177

CHAPTER A. SECURITY PATTERN DESCRIPTION

packet filter and/or proxy-based firewall.

Problem

Enterprise application in an organization’s internal network are accessed by a broad spec-
trum of users that may attempt to abuse its resource (leakage, modification or destruction
of data). These applications can be numerous, and thus implement access control indepen-
dently in ad-hoc ways, making the system more complex and thus less secure. Moreover,
traditional network firewalls (application layer firewalls or packet filters), do not make it
possible to define high-level rules (role-based or individual-based rules) that could make
the implementation of security policies easier and simpler. How can we control the hostile
actions of users who access our application ?

Solution

Interpose a firewall that can analyze incoming requests for application services and check
them for authorization. A client (user, role) can access a service of an application only if
a specific policy authorizes it to do so.

A.3 Intrusion Detection System (IDS)
The IDS pattern monitors traffic as it passes through a network. It analyzes and its
analysis

Context

Nodes of a local system need to communicate through an insecure network such as Inter-
net.

Problem

An attacker may try to infiltrate the system and disrupt information integrity and confi-
dentiality.

Solution

Each request to access the network is checked with regards to the definition of an attack.
In an attack is detected, alerts are triggered and countermeasures are taken. The IDS

178

A.A.4 Logger and Auditor

patterns can be realized by two concrete IDSs that operate based on the attack signature
ou based abnormal behavior in the network: Signature-Based IDS or Behavior-Based IDS.

Internet Internal NetworkFirewall IDS

Figure A.3: Possible placement of an IDS in a network

Figure A.3 shows the basic placement of an IDS in a network as it complements a
firewall. The Firewall filters the traffic and IDS checks suspicious pattern in request
sequences. In this case the network operated is alerted which tells the firewall to block
some or all traffic.

A.4 Logger and Auditor

The Logger and Auditor patterns keeps track of user actions when performing sensitive
actions logging the identity and the time of the actions. This is useful for audit purposes.

Context

An environment with sensitive information where access to data needs to be controlled
by keeping track of users actions.

Problem

How can we keep track of users actions in order to determine the responsible identity and
the time of the action.

Solution

Each time a user accesses some object we record this access, indicating the user identifier,
the type of access, the object accessed and the time when the access happened. The
access database must be protected with authentication, authorization and encryption
capabilities.

179

CHAPTER A. SECURITY PATTERN DESCRIPTION

A.5 Authorization

The Authorization pattern, also known as the access matrix, describes who is authorized
to access a resources in a system.

Context

A computing environment where resources have value.

Problem

Access to resources needs to be controlled, otherwise any entity (user or process) may
access any resource. This may lead to information tampering and information disclosure.
Hence, how to describe who is authorized to access a certain resource.

Solution

The solution is to indicate for each subject what resource it access and access type.
Figure A.4, shows the different entities involved in the Authorization pattern. This pattern

Figure A.4: Authorization Pattern Structure

is realized by two concrete Authorization patterns that are kept with resources to indicate
who is authorized to access them or with processes to define their execution rights: Access
Control Lists (ACLs) or Capabilities.

180

A.A.6 Role-Based Access Control (RBAC)

A.6 Role-Based Access Control (RBAC)
The Role-Based Access Control Pattern describes how to assign rights based on the func-
tions or tasks of users in which control of access to computing resources is required.

Context

An environment where access control is needed and in which there is a large number of
users or resources.

Problem

A way of factoring access rights is needed. Otherwise the number of rights would be very
large, granting rights to individual users would require storing many authorization rules;
and the administration of rights would be difficult. Hence, how can we reduce the number
of rights and the make their semantics clearer ?

Solution

The solution is to assign rights to users based on their job function and their tasks. Job
functions can be seen as roles that users play while perfoming their duties. For example, in
the context of a web-based systems, roles are: company employee, employees, customers,
partners, search engines, etc. Hence, each role would be assigned a set of rights and
any user playing this role would automatically have these rights. Figure A.5 shows the
different entities involved in the RBAC pattern.

Figure A.5: RBAC Pattern Structure

181

CHAPTER A. SECURITY PATTERN DESCRIPTION

182

Appendix B

Extracts from the threat scenarios
formalized in OCL

B.1 Iteration 1

B.1.1 Man-In-The-Middle version 1

1 Context Appl i ca t ion inv Man−In−The−Middle_v1
2

3 s e l f . components−>s e l e c t (c1 |
4 s e l f . components−>e x i s t s (c2 |
5 not (c1 . oclIsKindOf (P a t t e r n P r o f i l e : : SecurityMechanism)) and
6 not (c2 . oclIsKindOf (P a t t e r n P r o f i l e : : SecurityMechanism)) and c1 ._’<>’(c2) and
7 (c1 . node) ._’<>’(c2 . node) and
8 c1 . node . channels−>e x i s t s (ch | c2 . node . channels−>i n c l u d e s (ch)) and (c1 . ports−>e x i s t s (inp |

c2 . ports−>e x i s t s (inpt2 | inpt2 . communication = inp . communication)))
9 and (s e l f . components−>e x i s t s (enc | s e l f . components−>e x i s t s (mac1 , mac2 | s e l f . components−>

e x i s t s (dec | mac1 . oclIsKindOf (P a t t e r n P r o f i l e : : S igner)
10 and mac2 . oclIsKindOf (P a t t e r n P r o f i l e : : V e r i f i e r)
11 and dec . oclIsKindOf (P a t t e r n P r o f i l e : : Encryptor)
12 and enc . oclIsKindOf (P a t t e r n P r o f i l e : : Decryptor)
13 and
14 (mac1 . node = c1 . node)
15 and
16 (mac2 . node = c2 . node)
17 and
18 (enc . node = c1 . node)
19 and
20 (dec . node = c2 . node)
21))))))−>s i z e ()

Listing B.1: Man-In-The-Middle threat scenario formalized in OCL

183

CHAPTER B. EXTRACTS FROM THE THREAT SCENARIOS
FORMALIZED IN OCL

B.1.2 Tampering version 1

1 Context Appl i ca t ion inv Tampering_v1
2

3 s e l f . components−>s e l e c t (c1 |
4 s e l f . components−>e x i s t s (c2 |
5 not (c1 . oclIsKindOf (P a t t e r n P r o f i l e : : SecurityMechanism))
6 and
7 not (c2 . oclIsKindOf (P a t t e r n P r o f i l e : : SecurityMechanism))
8 and
9 c1 ._’<>’(c2)

10 and
11 (c1 . node) ._’<>’(c2 . node)
12 and
13 c1 . node . channels−>e x i s t s (ch | c2 . node . channels−>i n c l u d e s (ch))
14 and
15 (c1 . ports−>e x i s t s (inp | c2 . ports−>e x i s t s (inpt2 | inpt2 . communication = inp . communication))

)
16 and
17 (s e l f . components−>e x i s t s (mac1 , mac2 |
18 mac1 . oclIsKindOf (P a t t e r n P r o f i l e : : S igner)
19 and
20 mac2 . oclIsKindOf (P a t t e r n P r o f i l e : : V e r i f i e r)
21 and
22 (mac1 . node = c1 . node)
23 and
24 (mac2 . node = c2 . node)))))−>s i z e ()

Listing B.2: Tampering threat scenario formalized using OCL

B.2 Iteration 2

B.2.1 Man-In-The-Middle version 2

1 Context Appl i ca t ion inv Man−In−The−Middle_v2
2 s e l f . components−>s e l e c t (c1 |
3 (c1 . node . t r u s t l e v e l=TrustLevel : : untrusted or
4 c1 . node . t r u s t l e v e l=TrustLevel : : untrusted)
5

6 and
7 s e l f . components−>s i z e (c2 |
8 not (c1 . oclIsKindOf (P a t t e r n P r o f i l e : : SecurityMechanism))
9 and

10 not (c2 . oclIsKindOf (P a t t e r n P r o f i l e : : SecurityMechanism))
11 and
12 c1 ._’<>’(c2)
13 and
14 (c1 . node) ._’<>’(c2 . node)
15 and
16

184

B.B.2 Iteration 2

17 c1 . node . channels−>e x i s t s (ch | c2 . node . channels−>i n c l u d e s (ch))
18 and
19 −−does c1 and c2 communicate ?
20 (c1 . ports−>e x i s t s (inp | c2 . ports−>e x i s t s (inpt2 | inpt2 . communication = inp . communication))

)
21 and
22 −−the s e c u r i t y components are c o r r e c t l y used
23 (s e l f . components−>s e l e c t (enc | s e l f . components−>e x i s t s (dec , mac1 | s e l f . components−>

e x i s t s (mac2 | enc . oclIsKindOf (P a t t e r n P r o f i l e : : Encryptor)
24 and
25 dec . oclIsKindOf (P a t t e r n P r o f i l e : : Decryptor)
26 and
27 mac1 . oclIsKindOf (P a t t e r n P r o f i l e : : S igner)
28 and
29 mac2 . oclIsKindOf (P a t t e r n P r o f i l e : : V e r i f i e r)
30 and
31 (enc . node = c1 . node)
32 and
33 (dec . node = c2 . node)
34 and
35 (mac1 . node = c1 . node)
36 and
37 (mac2 . node = c2 . node)
38 and
39 (
40 −− Mecanisms are connected to components
41

42 (c1 . ports−>e x i s t s (inp_c1 | enc . ports−>e x i s t s (inp_enc | inp_c1 . communication = inp_enc .
communication and inp_enc . communication ._’<>’(n u l l)))

43 and
44 c1 . ports−>e x i s t s (inp_enc | mac1 . ports−>e x i s t s (inp_mac1 | inp_mac1 . communication =

inp_enc . communication and inp_enc . communication ._’<>’(n u l l)))
45 and
46 c2 . ports−>e x i s t s (inp_mac1 | mac2 . ports−>e x i s t s (inp_mac2 | inp_mac2 . communication =

inp_mac1 . communication and inp_mac1 . communication ._’<>’(n u l l)))
47 and
48 c2 . ports−>e x i s t s (inp_mac2 | dec . ports−>e x i s t s (inp_dec | inp_mac2 . communication =

inp_dec . communication and inp_dec . communication ._’<>’(n u l l)))
49 and
50

51 −− the mechanisms are c a l l e d c o r r e c t l y and s e c r e t data goes through ’ encryptor ’ and ’
s i gne r ’ b e f o r e to the other component

52 c1 . ports−>s e l e c t (inp_c1_c2 | inp_c1_c2 . msg_out ._’<>’(n u l l) and (c1 . ports−>e x i s t s (inp | c2 .
ports−>e x i s t s (inpt2 | inpt2 . communication = inp_c1_c2 . communication))))−>f o r A l l (
inp_c1_c2 | mac1 . ports−>e x i s t s (s ign_in | c1 . ports−>e x i s t s (c1_inp | c1_inp . communication
= sign_in . communication)

53 and
54 (enc . ports−>e x i s t s (enc_in | c1 . ports−>e x i s t s (c1_signorEnc |
55 −−message f low s c e n a r i o 1
56 (c1_signorEnc . communication = enc_in . communication
57 and
58 s ign_in . msg_out = inp_c1_c2 . msg_out
59 and
60 s ign_in . msg_in = enc_in . msg_out

185

CHAPTER B. EXTRACTS FROM THE THREAT SCENARIOS
FORMALIZED IN OCL

61 and
62 enc_in . msg_in = c1_signorEnc . msg_out)
63 or
64 −−message f low s c e n a r i o 2
65 (c1_signorEnc . communication = sign_in . communication
66 and
67 enc_in . msg_out = inp_c1_c2 . msg_out
68 and
69 enc_in . msg_in = sign_in . msg_out
70 and
71 s ign_in . msg_in = c1_signorEnc . msg_out)))))))))))−>isEmpty ())))−>s i z e ()

Listing B.3: Man-In-The-Middle threat scenario version 2 formalized in OCL

B.2.2 Tampering version 2

1 Context Appl i ca t ion inv Tampering_v2
2

3 s e l f . components−>s e l e c t (c1 |
4 s e l f . components−>e x i s t s (c2 |
5 not (c1 . oclIsKindOf (P a t t e r n P r o f i l e : : SecurityMechanism))
6 and
7 not (c2 . oclIsKindOf (P a t t e r n P r o f i l e : : SecurityMechanism))
8 and
9 c1 ._’<>’(c2)

10 and
11 (c1 . node) ._’<>’(c2 . node)
12 and
13

14 c1 . node . channels−>e x i s t s (ch | c2 . node . channels−>i n c l u d e s (ch))
15 and
16 −−does c1 and c2 communicate ?
17 (c1 . ports−>e x i s t s (inp | c2 . ports−>e x i s t s (inpt2 | inpt2 . communication = inp . communication))

)
18 and
19 −−the s e c u r i t y components are c o r r e c t l y used
20 (
21

22 s e l f . components−>s e l e c t (enc |
23 s e l f . components−>e x i s t s (dec , mac1 |
24 s e l f . components−>e x i s t s (mac2 |
25 enc . oclIsKindOf (P a t t e r n P r o f i l e : : Encryptor)
26 and
27 dec . oclIsKindOf (P a t t e r n P r o f i l e : : Decryptor)
28 and
29 mac1 . oclIsKindOf (P a t t e r n P r o f i l e : : S igner)
30 and
31 mac2 . oclIsKindOf (P a t t e r n P r o f i l e : : V e r i f i e r)
32 and
33 (enc . node = c1 . node)
34 and
35 (dec . node = c2 . node)

186

B.B.2 Iteration 2

36 and
37 (mac1 . node = c1 . node)
38 and
39 (mac2 . node = c2 . node)
40 and
41 mac1 ._’<>’(mac2)
42 −− and
43 −− (mac1 . oclAsType (S igner) . usedKeyKind) ._’<>’(KeyKind : : None)
44 −− and
45 −− (mac2 . oclAsType (V e r i f i e r) . usedKeyKind) ._’<>’(KeyKind : : None)
46

47 and
48 (mac2 . oclAsType (V e r i f i e r) . usedKeyKind) = mac1 . oclAsType (S igner) . usedKeyKind
49

50 and
51

52

53 (
54 −−Encryption f o l l o w e d by HMAC e . g . , IPsec
55 −− Mecanisms are connected to components
56 (c1 . ports−>e x i s t s (inp_c1 | enc . ports−>e x i s t s (inp_enc | inp_c1 . communication = inp_enc

. communication and inp_enc . communication ._’<>’(n u l l)))
57 and
58

59 c1 . ports−>e x i s t s (inp_enc | mac1 . ports−>e x i s t s (inp_mac1 | inp_mac1 . communication =
inp_enc . communication and inp_enc . communication ._’<>’(n u l l)))

60 and
61 c2 . ports−>e x i s t s (inp_mac1 | mac2 . ports−>e x i s t s (inp_mac2 | inp_mac2 . communication =

inp_mac1 . communication and inp_mac1 . communication ._’<>’(n u l l)))
62 and
63 c2 . ports−>e x i s t s (inp_mac2 | dec . ports−>e x i s t s (inp_dec | inp_mac2 . communication =

inp_dec . communication and inp_dec . communication ._’<>’(n u l l)))
64 and
65 −− the mechanisms are c a l l e d c o r r e c t l y and s e c r e t data goes through ’ encryptot ’ and ’

s i gne r ’ b e f o r e to the other component
66 c1 . ports−>s e l e c t (inp_c1_c2 | inp_c1_c2 . msg_out ._’<>’(n u l l) and (c1 . ports−>e x i s t s (inp |

c2 . ports−>e x i s t s (inpt2 | inpt2 . communication = inp_c1_c2 . communication))))−>f o r A l l
(inp_c1_c2 |

67 mac1 . ports−>e x i s t s (s ign_in |
68 c1 . ports−>e x i s t s (c1_inp | c1_inp . communication = sign_in . communication)
69 and
70 (enc . ports−>e x i s t s (enc_in |
71 c1 . ports−>e x i s t s (c1_signorEnc |
72 −−data f low s c e n a r i o 1
73 (c1_signorEnc . communication = enc_in . communication
74 and
75 s ign_in . msg_out = inp_c1_c2 . msg_out
76 and
77 s ign_in . msg_in = enc_in . msg_out
78 and
79 enc_in . msg_in = c1_signorEnc . msg_out)
80 or
81

82 −−data f low s c e n a r i o 2

187

CHAPTER B. EXTRACTS FROM THE THREAT SCENARIOS
FORMALIZED IN OCL

83 (c1_signorEnc . communication = sign_in . communication
84 and
85 enc_in . msg_out = inp_c1_c2 . msg_out
86 and
87 enc_in . msg_in = sign_in . msg_out
88 and
89 s ign_in . msg_in = c1_signorEnc . msg_out)
90

91))
92))))
93)
94

95)
96))−>isEmpty ()
97

98 and
99 −− No Message p r o t e c t i o n f u n c t i o n s s e t o f mac1 and mac2 l i n k e d to c1 and c2 i s empty

100 s e l f . components−>s e l e c t (s i g n e r |
101 s i g n e r . oclIsKindOf (S igner)
102 and
103 s i g n e r . node = c1 . node
104 and
105 s e l f . components−>e x i s t s (v e r i f i e r |
106 v e r i f i e r . oclIsKindOf (V e r i f i e r)
107 and
108 v e r i f i e r . node = c2 . node
109

110 and
111 (v e r i f i e r . oclAsType (V e r i f i e r) . usedKeyKind) =s i g n e r . oclAsType (S igner) . usedKeyKind
112 and
113 c1 . ports−>e x i s t s (inp_mac1 | s i g n e r . ports−>e x i s t s (inp_mac2 | inp_mac2 . communication =

inp_mac1 . communication and inp_mac1 . communication ._’<>’(n u l l)))
114 and
115 c2 . ports−>e x i s t s (inp_dec | v e r i f i e r . ports−>e x i s t s (inp_c2 | inp_c2 . communication =

inp_dec . communication and inp_dec . communication ._’<>’(n u l l))))
116

117 and
118 −− the mechanisms are c a l l e d c o r r e c t l y and s e c r e t data goes through ’ encryptot ’ and ’

s i gne r ’ b e f o r e to the other component
119 c1 . ports−>s e l e c t (inp_c1_c2 | inp_c1_c2 . msg_out ._’<>’(n u l l) and (c1 . ports−>e x i s t s (inp |

c2 . ports−>e x i s t s (inpt2 | inpt2 . communication = inp_c1_c2 . communication))))−>f o r A l l
(inp_c1_c2 |

120 s i g n e r . ports−>e x i s t s (s ign_in |
121 c1 . ports−>e x i s t s (c1_inp | c1_inp . communication = sign_in . communication)
122 and
123

124 c1 . ports−>e x i s t s (c1_sign |
125

126 −−data f low s c e n a r i o 3
127 (c1_sign . communication = sign_in . communication
128 and
129 s ign_in . msg_out = inp_c1_c2 . msg_out
130 and
131 c1_sign . msg_out = sign_in . msg_in

188

B.B.3 Iteration 3

132)))))−>isEmpty ()
133)
134))−>s i z e ()

Listing B.4: Tampering threat scenario version 2 formalized using OCL

B.3 Iteration 3
In this iteration, we consider Denial-of-Service and Injection threat scenarios.

B.3.1 Denial of Service version 1

1 Context Appl i ca t ion inv Denia lo fServ ice_v1
2 s e l f . components−>s e l e c t (c1 |
3 c1 . ports−>e x i s t s (port |
4 s e l f . components−>s e l e c t (f i r e w a l l |
5 −−any kind o f f i r e w a l l
6 f i r e w a l l . oclIsKindOf (F i r e w a l l)
7 and
8 f i r e w a l l . node = c1 . node
9 and

10 s e l f . components−>e x i s t s (auth |
11 auth . oclIsKindOf (Authent icator)
12 and
13 auth . node = c1 . node
14 and
15 s e l f . components−>e x i s t s (a u t h o r i z e r |
16 a u t h o r i z e r . oclIsKindOf (Author izer)
17 and
18 a u t h o r i z e r . node = c1 . node
19 and
20 c1 . ports−>e x i s t s (in_c1_f i r ewa l l | f i r e w a l l . ports−>e x i s t s (i n p _ f i r e w a l l |
21 i n_c1_f i r ewa l l . communication = in_c1_f i r ewa l l . communication
22 and
23 i n_c1_f i r ewa l l . communication ._’<>’(n u l l)
24 and
25 port . msg_in = in_c1_f i r ewa l l . msg_out
26 and
27 i n_c1_f i r ewa l l . msg_out = i n p _ f i r e w a l l . msg_in
28 and
29 i n_c1_f i r ewa l l . msg_in = i n p _ f i r e w a l l . msg_out
30 and
31 c1 . ports−>e x i s t s (in_c1_auth | auth . ports−>e x i s t s (inp_auth |
32 in_c1_auth . communication = inp_auth . communication
33 and
34 in_c1_auth . communication ._’<>’(n u l l)
35 and
36 in_c1_auth . msg_out = in_c1_f i r ewa l l . msg_in
37 and
38 inp_auth . msg_in = in_c1_auth . msg_out

189

CHAPTER B. EXTRACTS FROM THE THREAT SCENARIOS
FORMALIZED IN OCL

39 and
40 inp_auth . msg_out = in_c1_auth . msg_in
41 and
42 c1 . ports−>e x i s t s (in_c1_author izer | a u t h o r i z e r . ports−>e x i s t s (inp_author i zer |
43 inp_author i zer . communication = in_c1_author izer . communication
44 and
45 in_c1_author izer . communication ._’<>’(n u l l)
46 and
47 in_c1_author izer . msg_out = in_c1_auth . msg_in
48 and
49 inp_author i zer . msg_in = in_c1_author izer . msg_out
50 and
51 inp_author i zer . msg_out = in_c1_author izer . msg_in)))))))))−>isEmpty ()))−>s i z e ()

Listing B.5: Denial of Service threat scenario formalized using OCL

B.3.2 Injection threat version 1

1 Context Appl i ca t ion inv In ject ion_v1
2 s e l f . components−>s e l e c t (c1 |
3 c1 . ports−>e x i s t s (port |
4 s e l f . components−>s e l e c t (f i r e w a l l |
5 −−any kind o f f i r e w a l l
6 f i r e w a l l . oclIsKindOf (F i r e w a l l)
7 and
8 f i r e w a l l . node = c1 . node
9 and

10 s e l f . components−>e x i s t s (auth |
11 auth . oclIsKindOf (Authent icator)
12 and
13 auth . node = c1 . node
14 and
15 s e l f . components−>e x i s t s (a u t h o r i z e r |
16 a u t h o r i z e r . oclIsKindOf (Author izer)
17 and
18 a u t h o r i z e r . node = c1 . node
19 and
20 c1 . ports−>e x i s t s (in_c1_f i r ewa l l | f i r e w a l l . ports−>e x i s t s (i n p _ f i r e w a l l |
21 i n_c1_f i r ewa l l . communication = in_c1_f i r ewa l l . communication
22 and
23 i n_c1_f i r ewa l l . communication ._’<>’(n u l l)
24 and
25 port . msg_in = in_c1_f i r ewa l l . msg_out
26 and
27 i n_c1_f i r ewa l l . msg_out = i n p _ f i r e w a l l . msg_in
28 and
29 i n_c1_f i r ewa l l . msg_in = i n p _ f i r e w a l l . msg_out
30 and
31 c1 . ports−>e x i s t s (in_c1_auth | auth . ports−>e x i s t s (inp_auth |
32 in_c1_auth . communication = inp_auth . communication
33 and
34 in_c1_auth . communication ._’<>’(n u l l)

190

B.B.4 Iteration 4

35 and
36 in_c1_auth . msg_out = in_c1_f i r ewa l l . msg_in
37 and
38 inp_auth . msg_in = in_c1_auth . msg_out
39 and
40 inp_auth . msg_out = in_c1_auth . msg_in
41 and
42 c1 . ports−>e x i s t s (in_c1_author izer | a u t h o r i z e r . ports−>e x i s t s (inp_author i zer |
43 inp_author i zer . communication = in_c1_author izer . communication
44 and
45 in_c1_author izer . communication ._’<>’(n u l l)
46 and
47 in_c1_author izer . msg_out = in_c1_auth . msg_in
48 and
49 inp_author i zer . msg_in = in_c1_author izer . msg_out
50 and
51 inp_author i zer . msg_out = in_c1_author izer . msg_in)))))))))−>isEmpty ()))−>s i z e ()

Listing B.6: Injection threat scenario formalized using OCL

B.4 Iteration 4
In this iteration, we add the concept of port types i.e., if the port is public or private.

B.4.1 Denial of Service version 2

1 Context Appl i ca t ion inv Denia lo fServ ice_v1
2 s e l f . components−>s e l e c t (c1 |
3 c1 . ports−>e x i s t s (publ ic_port |
4 (publ ic_port . portk ind = portKind : : e x t e r n a l)
5 and
6 s e l f . components−>s e l e c t (f i r e w a l l |
7 −−any kind o f f i r e w a l l
8 f i r e w a l l . oclIsKindOf (F i r e w a l l)
9 and

10 f i r e w a l l . node = c1 . node
11 and
12 s e l f . components−>e x i s t s (auth |
13 auth . oclIsKindOf (Authent icator)
14 and
15 auth . node = c1 . node
16 and
17 s e l f . components−>e x i s t s (a u t h o r i z e r |
18 a u t h o r i z e r . oclIsKindOf (Author izer)
19 and
20 a u t h o r i z e r . node = c1 . node
21 and
22 c1 . ports−>e x i s t s (in_c1_f i r ewa l l | f i r e w a l l . ports−>e x i s t s (i n p _ f i r e w a l l |
23 i n_c1_f i r ewa l l . communication = in_c1_f i r ewa l l . communication
24 and

191

CHAPTER B. EXTRACTS FROM THE THREAT SCENARIOS
FORMALIZED IN OCL

25 i n_c1_f i r ewa l l . communication ._’<>’(n u l l)
26 and
27 publ ic_port . msg_in = in_c1_f i r ewa l l . msg_out
28 and
29 i n_c1_f i r ewa l l . msg_out = i n p _ f i r e w a l l . msg_in
30 and
31 i n_c1_f i r ewa l l . msg_in = i n p _ f i r e w a l l . msg_out
32 and
33 c1 . ports−>e x i s t s (in_c1_auth | auth . ports−>e x i s t s (inp_auth |
34 in_c1_auth . communication = inp_auth . communication
35 and
36 in_c1_auth . communication ._’<>’(n u l l)
37 and
38 in_c1_auth . msg_out = in_c1_f i r ewa l l . msg_in
39 and
40 inp_auth . msg_in = in_c1_auth . msg_out
41 and
42 inp_auth . msg_out = in_c1_auth . msg_in
43 and
44 c1 . ports−>e x i s t s (in_c1_author izer | a u t h o r i z e r . ports−>e x i s t s (inp_author i zer |
45 inp_author i zer . communication = in_c1_author izer . communication
46 and
47 in_c1_author izer . communication ._’<>’(n u l l)
48 and
49 in_c1_author izer . msg_out = in_c1_auth . msg_in
50 and
51 inp_author i zer . msg_in = in_c1_author izer . msg_out
52 and
53 inp_author i zer . msg_out = in_c1_author izer . msg_in)))))))))−>isEmpty ()))−>s i z e ()

Listing B.7: Denial of Service threat scenario formalized using OCL

B.4.2 Injection threat version 2

1 Context Appl i ca t ion inv In ject ion_v1
2 s e l f . components−>s e l e c t (c1 |
3 c1 . ports−>e x i s t s (publ ic_port |
4 (publ ic_port . Portkind = PortKind : : e x t e r n a l)
5 and
6 s e l f . components−>s e l e c t (f i r e w a l l |
7 −−any kind o f f i r e w a l l
8 f i r e w a l l . oclIsKindOf (F i r e w a l l)
9 and

10 f i r e w a l l . node = c1 . node
11 and
12 s e l f . components−>e x i s t s (auth |
13 auth . oclIsKindOf (Authent icator)
14 and
15 auth . node = c1 . node
16 and
17 s e l f . components−>e x i s t s (a u t h o r i z e r |
18 a u t h o r i z e r . oclIsKindOf (Author izer)

192

B.B.4 Iteration 4

19 and
20 a u t h o r i z e r . node = c1 . node
21 and
22 portputs−>e x i s t s (in_c1_f i r ewa l l | f i r e w a l l . ports−>e x i s t s (i n p _ f i r e w a l l |
23 i n_c1_f i r ewa l l . communication = in_c1_f i r ewa l l . communication
24 and
25 i n_c1_f i r ewa l l . communication ._’<>’(n u l l)
26 and
27 publ ic_port . msg_in = in_c1_f i r ewa l l . msg_out
28 and
29 i n_c1_f i r ewa l l . msg_out = i n p _ f i r e w a l l . msg_in
30 and
31 i n_c1_f i r ewa l l . msg_in = i n p _ f i r e w a l l . msg_out
32 and
33 c1 . ports−>e x i s t s (in_c1_auth | auth . ports−>e x i s t s (inp_auth |
34 in_c1_auth . communication = inp_auth . communication
35 and
36 in_c1_auth . communication ._’<>’(n u l l)
37 and
38 in_c1_auth . msg_out = in_c1_f i r ewa l l . msg_in
39 and
40 inp_auth . msg_in = in_c1_auth . msg_out
41 and
42 inp_auth . msg_out = in_c1_auth . msg_in
43 and
44 c1 . ports−>e x i s t s (in_c1_author izer | a u t h o r i z e r . ports−>e x i s t s (inp_author i zer |
45 inp_author i zer . communication = in_c1_author izer . communication
46 and
47 in_c1_author izer . communication ._’<>’(n u l l)
48 and
49 in_c1_author izer . msg_out = in_c1_auth . msg_in
50 and
51 inp_author i zer . msg_in = in_c1_author izer . msg_out
52 and
53 inp_author i zer . msg_out = in_c1_author izer . msg_in)))))))))−>isEmpty ()))−>s i z e ()

Listing B.8: Injection threat scenario formalized using OCL

193

194

Bibliography

[1] CAPEC - Common Attack Pattern Enumeration and Classification (CAPEC).
http://capec.mitre.org/. [Accessed: May-2016].

[2] CWE - Common Weakness Enumeration. https://cwe.mitre.org/. [Accessed:
April-2016].

[3] IEEE Standard Communication Delivery Time Performance Requirements for Elec-
tric Power Substation Automation. IEEE Std 1646-2004, pages 0_1–24, 2005.

[4] European Commission : CORDIS : Projects & Results Service : System engineering
for security and dependability. http://cordis.europa.eu/project/rcn/78381_
en.html, 2006. [Accessed: April-2016].

[5] Systems and software engineering Vocabulary. ISO/IEC/IEEE 24765:2010(E),
pages 1–418, 2010.

[6] Attackers Alter Water Treatment Systems in Utility Hack: Re-
port | SecurityWeek.Com. http://www.securityweek.com/
attackers-alter-water-treatment-systems-utility-hack-report, 2015.
[Accessed: December-2016].

[7] R. Abdallah, A. Motii, N. Yakymets, and A. Lanusse. Using Model Driven En-
gineering to Support Multi-paradigms Security Analysis. In Model-Driven Engi-
neering and Software Development - Third International Conference, volume 580 of
MODELSWARD ’15, pages 278–292. Springer, 2015.

[8] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. An-
gel. A Pattern Language: Towns, Buildings, Construction. Oxford University Press,
1977.

[9] A. Alkussayer and W. H. Allen. A scenario-based framework for the security eval-
uation of software architecture. In 2010 3rd IEEE International Conference on

195

http://capec.mitre.org/
https://cwe.mitre.org/
http://cordis.europa.eu/project/rcn/78381_en.html
http://cordis.europa.eu/project/rcn/78381_en.html
http://www.securityweek.com/attackers-alter-water-treatment-systems-utility-hack-report
http://www.securityweek.com/attackers-alter-water-treatment-systems-utility-hack-report

Computer Science and Information Technology (ICCSIT), volume 5, pages 687–
695, 2010.

[10] M. Almorsy, J. Grundy, and A. S. Ibrahim. Automated Software Architecture
Security Risk Analysis Using Formalized Signatures. In Proceedings of the 2013
International Conference on Software Engineering, ICSE ’13, pages 662–671. IEEE
Press, 2013.

[11] A. Alshamsi and T. Saito. A technical comparison of IPSec and SSL. In 19th
International Conference on Advanced Information Networking and Applications,
volume 2 of AINA ’05, pages 395–398 vol.2, 2005.

[12] A. Alvi and M. Zulkernine. A Comparative Study of Software Security Pattern
Classifications. In 2012 Seventh International Conference on Availability, Reliability
and Security, ARES’12, pages 582–589, 2012.

[13] D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L. Peyton, and E. Yu. Evalu-
ating Goal Models Within the Goal-oriented Requirement Language. Int. J. Intell.
Syst., 25(8):841–877, 2010.

[14] ANSSI. EBIOS 2010: Expression des besoins et Identification des Objectifs de
Sécurité (2010). http://www.ssi.gouv.fr/, 2010. [Accessed: May-2014].

[15] P. Antonino, S. Duszynski, C. Jung, and M. Rudolph. Indicator-based Architecture-
level Security Evaluation in a Service-oriented Environment. In Proceedings of the
Fourth European Conference on Software Architecture: Companion Volume, ECSA
’10, pages 221–228. ACM, 2010.

[16] C. Atkinson, J. Bayer, and D. Muthig. Component-Based Product Line Develop-
ment: The KobrA Approach. In Software Product Lines, The Springer International
Series in Engineering and Computer Science, pages 289–309. Springer, Boston, MA,
2000.

[17] H. Attiya and J. Welch. Basic Algorithms in Message-Passing Systems. In Dis-
tributed Computing, pages 7–29. John Wiley & Sons, Inc., 2004.

[18] A. Bagnato and Bagnato. Handbook of Research on Embedded Systems Design. IGI
Global, 2014.

[19] D. Basin, M. Clavel, J. Doser, and M. Egea. Automated analysis of security-design
models. Information and Software Technology, (5):815, 2009.

196

http://www.ssi.gouv.fr/

[20] I. Bayley and H. Zhu. Formalising design patterns in predicate logic. In Software
Engineering and Formal Methods, 2007. SEFM 2007. Fifth IEEE International Con-
ference on, pages 25–36. IEEE, 2007.

[21] K. Beck and R. Johnson. Patterns generate architectures, pages 139–149. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1994.

[22] B. J. Berger, K. Sohr, and R. Koschke. Extracting and Analyzing the Implemented
Security Architecture of Business Applications. In 2013 17th European Conference
on Software Maintenance and Reengineering, pages 285–294. IEEE, 2013.

[23] S. Bernardi, J. Merseguer, and D. C. Petriu. A dependability profile within MARTE.
Software and System Modeling, 10(3):313–336, 2011.

[24] S. Bernardi, J. Merseguer, and D. C. Petriu. Dependability modeling and analysis
of software systems specified with UML. ACM Comput. Surv., 45(1):2, 2012.

[25] J. Bézivin. Towards a precise definition of the omg/mda framework. In Proceedings
of ASE’01, pages 273–280. IEEE Computer Society Press, 2001.

[26] M. Borek, N. Moebius, K. Stenzel, and W. Reif. Security requirements formalized
with OCL in a model-driven approach. In 2013 3rd International Workshop on
Model-Driven Requirements Engineering (MoDRE), pages 65–73, July 2013.

[27] F. Braz, E. Fernandez, and M. VanHilst. Eliciting Security Requirements through
Misuse Activities. In 19th International Workshop on Database and Expert Systems
Application, 2008. DEXA ’08, pages 328–333, Sept. 2008.

[28] M. Bunke, R. Koschke, and K. Sohr. Organizing security patterns related to secu-
rity and pattern recognition requirements. International Journal on Advances in
Security, 5:46–67, 2012.

[29] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture, Volume 1: A System of Patterns. John Wiley &
Son Ltd, 1996.

[30] A. Calder. Information Security Based on ISO 27001/ISO 27002: A Management
Guide - Best Practice. Van Haren Publishing, 2009.

[31] R. Caralli, J. Stevens, L. Young, and W. Wilson. Introducing OCTAVE Allegro:
Improving the Information Security Risk Assessment Process. http://resources.

197

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8419
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8419
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8419

sei.cmu.edu/library/asset-view.cfm?AssetID=8419, 2007. [Accessed: June-
2014].

[32] R. S. Chakraborty and S. Bhunia. Security through obscurity: An approach for pro-
tecting Register Transfer Level hardware IP. In 2009 IEEE International Workshop
on Hardware-Oriented Security and Trust, pages 96–99. IEEE, 2009.

[33] V. Cortellessa, C. Trubiani, L. Mostarda, and N. Dulay. An Architectural Frame-
work for Analyzing Tradeoffs between Software Security and Performance. In Archi-
tecting Critical Systems, number 6150 in Lecture Notes in Computer Science, pages
1–18. Springer Berlin Heidelberg, 2010.

[34] I. Crnkovic. Building Reliable Component-Based Software Systems. Artech House,
Inc., Norwood, MA, USA, 2002.

[35] A. Daneels and W. Salter. What is SCADA? In International Conference on
Accelerator and Large Experimental Physics Control Systems, ICALEPCS’99, 1999.

[36] R. I. Davis and A. Burns. A survey of hard real-time scheduling for multiprocessor
systems. ACM Comput. Surv., 43(35):35:1–35:44, 2011.

[37] V. Debruyne, F. Simonot-Lion, and Y. Trinquet. EAST-ADL - An Architecture De-
scription Language. In Architecture Description Languages, IFIP The International
Federation for Information Processing, pages 181–195. Springer US, 2005.

[38] J. Delange, L. Pautet, and F. Kordon. Design, implementation and verification of
MILS systems. Softw., Pract. Exper., 42(7):799–816, 2012.

[39] F. den Braber, I. Hogganvik, M. S. Lund, K. Stølen, and F. Vraalsen. Model-based
security analysis in seven steps — a guided tour to the coras method. BT Technology
Journal, 25(1):101–117, 2007.

[40] J. Dong, T. Peng, and Y. Zhao. Automated verification of security pattern compo-
sitions. Information and Software Technology, 52(3):274–295, 2010.

[41] D. F. D’Souza and A. C. Wills. Objects, components, and frameworks with UML :
the catalysis approach. Addison-Wesley Professional, 1998.

[42] E. Dubois, P. Heymans, N. Mayer, and R. Matulevičius. A Systematic Approach to
Define the Domain of Information System Security Risk Management. In Intentional

198

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8419
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8419
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8419

Perspectives on Information Systems Engineering, pages 289–306. Springer Berlin
Heidelberg, 2010.

[43] Eclipse Foundantion. CDO Model Repository Overview. http://www.eclipse.
org/cdo/, 2013. [Accessed: August-2017].

[44] Eclipse Foundation. Qvt operational language.
https://projects.eclipse.org/projects/modeling.mmt.qvt-oml, 2013.

[45] P. El Khoury, A. Mokhtari, E. Coquery, and M.-S. Hacid. An Ontological Interface
for Software Developers to Select Security Patterns. In 19th International Workshop
on Database and Expert Systems Application, 2008. DEXA ’08, pages 297–301, Sept.
2008.

[46] H. Espinoza, D. Servat, and S. Gérard. Leveraging analysis-aided design decision
knowledge in UML-based development of embedded systems. In Proceedings of
the 3rd International Workshop on Sharing and Reusing Architectural Knowledge,
SHARK ’08, pages 55–62, 2008.

[47] E. B. Fernandez. Using security patterns to develop secure systems. In Software
engineering for secure systems. Industrial and research perspectives, pages 16–31,
2011.

[48] E. B. Fernandez. Security patterns in practice: Building secure architectures using
software patterns. Software Design Patterns. Wiley, 2013.

[49] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley Pro-
fessional, 2002.

[50] R. B. France and B. Rumpe. Domain specific modeling. Software and System
Modeling, 4(1):1–3, 2005.

[51] A. Fuchs, S. Gurgens, and C. Rudolph. Towards a Generic Process for Security Pat-
tern Integration. In 20th International Workshop on Database and Expert Systems
Application, 2009. DEXA ’09, pages 171–175, Aug. 2009.

[52] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and G. Booch. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, 1
edition edition, 1994.

199

http://www.eclipse.org/cdo/
http://www.eclipse.org/cdo/

[53] G. Georg, I. Ray, K. Anastasakis, B. Bordbar, M. Toahchoodee, and S. H. Houmb.
An aspect-oriented methodology for designing secure applications. Information and
Software Technology, 51(5):846–864, May 2009.

[54] I. Graham, B. Henderson-Sellers, and H. Younessi. The OPEN Process Specification.
ACM Press/Addison-Wesley Publishing Co., 1997.

[55] H. Grandy, D. Haneberg, W. Reif, and K. Stenzel. Developing Provable Secure M-
Commerce Applications. In Emerging Trends in Information and Communication
Security, pages 115–129. Springer, Berlin, Heidelberg, 2006.

[56] J. Gray, J.-P. Tolvanen, S. Kelly, A. Gokhale, S. Neema, and J. Sprinkle. Domain-
Specific Modeling. Chapman & Hall/CRC, 2007.

[57] J. Großmann and F. Seehusen. Combining Security Risk Assessment and Security
Testing Based on Standards. In Risk Assessment and Risk-Driven Testing, pages
18–33. Springer, 2015.

[58] D. Gross and E. Yu. From Non-Functional Requirements to Design through Pat-
terns. Requirements Engineering, 6(1):18–36, 2001.

[59] C. Haley, R. Laney, J. Moffett, and B. Nuseibeh. Security requirements engineering:
A framework for representation and analysis. volume 34, pages 133–153. IEEE, 2008.

[60] J. G. Hall, M. Jackson, R. C. Laney, B. Nuseibeh, and L. Rapanotti. Relating
software requirements and architectures using problem frames. In IEEE Joint In-
ternational Conference on Requirements Engineering, pages 137–144. IEEE, 2002.

[61] B. Hamid. Modeling of Secure and Dependable Applications Based on a Repository
of Patterns: The SEMCO Approach. Reliability Digest, IEEE Reliability Society,
Special Issue on Trustworthy Computing and Cybersecurity, 1(1):9–17, 2014.

[62] B. Hamid. Interplay of Security&Dependability and Resource Using Model-Driven
and Pattern-Based Development. In 2015 IEEE Trustcom/BigDataSE/ISPA, vol-
ume 1, pages 254–262. IEEE, 2015.

[63] B. Hamid. A Model-Driven Approach for Developing a Model Repository: Method-
ology and Tool Support. Future Generation Computer Systems, Elsevier, 68:473–
490, 2017.

200

[64] B. Hamid, J. Geisel, A. Ziani, J. Bruel, and J. Perez. Model-driven engineering for
trusted embedded systems based on security and dependability patterns. In SDL
Forum, pages 72–90, 2013.

[65] B. Hamid, S. Gürgens, and A. Fuchs. Security patterns modeling and formalization
for pattern-based development of secure software systems. ISSE, 12(2):109–140,
2016.

[66] B. Hamid, C. Percebois, and D. Gouteux. A Methodology for Integration of Patterns
with Validation Purpose. In Proceedings of the 17th European Conference on Pattern
Languages of Programs, EuroPLoP ’12, pages 8:1–8:14. ACM, 2012.

[67] B. Hamid and J. Perez. Supporting Pattern-Based Dependability Engineering via
Model-Driven Development: Approach, tool-support and empirical validation. Jour-
nal of Systems and Software, Elsevier, 122:239–273, 2016.

[68] M. G. Harbour, J. J. G. García, J. C. P. Gutiérrez, and J. M. D. Moyano. Mast:
Modeling and analysis suite for real time applications. In Proceedings of the 13th
Euromicro Conference on Real-Time Systems, ECRTS ’01, pages 125–134. IEEE
Computer Society, 2001.

[69] M. G. Harbour, J. J. Gutiérrez, J. M. Drake, P. L. Martínez, and J. C. Palen-
cia. Modeling distributed real-time systems with MAST 2. Journal of Systems
Architecture, 59(6):331 – 340, 2013.

[70] D. Harel and B. Rumpe. Modeling languages: Syntax, semantics and all that
stuff, part i: The basic stuff. http://www.se-rwth.de/~rumpe/publications/
Modeling-Languages-Syntax-Semantics-and-All-That-Stuff.pdf, 2000. [Ac-
cessed: July-2014].

[71] D. Hartmeier. Design and Performance of the OpenBSD Stateful Packet Filter
(Pf). In Proceedings of the FREENIX Track: 2002 USENIX Annual Technical
Conference, pages 171–180. USENIX Association, 2002.

[72] S. Hasheminejad and S. Jalili. Selecting Proper Security Patterns Using Text Clas-
sification. In International Conference on Computational Intelligence and Software
Engineering, 2009. CiSE 2009, pages 1–5, 2009.

[73] S. M. H. Hasheminejad and S. Jalili. Design patterns selection: An automatic
two-phase method. Journal of Systems and Software, 85(2):408–424, 2012.

201

http://www.se-rwth.de/~rumpe/publications/Modeling-Languages-Syntax-Semantics-and-All-That-Stuff.pdf
http://www.se-rwth.de/~rumpe/publications/Modeling-Languages-Syntax-Semantics-and-All-That-Stuff.pdf

[74] D. Hatebur, M. Heisel, and H. Schmidt. A Security Engineering Process based on
Patterns. In 18th International Workshop on Database and Expert Systems Appli-
cations, DEXA’07, pages 734–738, 2007.

[75] J. M. Horcas, M. Pinto, and L. Fuentes. An Aspect-Oriented Model transformation
to weave security using CVL. In 2014 2nd International Conference on Model-
Driven Engineering and Software Development (MODELSWARD), pages 138–150,
Jan. 2014.

[76] S. H. Houmb, G. Georg, J. Jürjens, and R. France. An integrated security verifica-
tion and security solution design trade-off analysis approach. Integrating Security
and Software Engineering: Advances and Future Visions/Mouratidis, Haralambos,
pages 190–219, 2007.

[77] IEC. Communication networks and systems in substations – Part 5: Communi-
cation requirements for functions and device models. https://iecwebstore.com/
p-preview/info_iec61850-5%7Bed1.0%7Den.pdf, 2003. [Accessed: April-2016].

[78] ISO/IEC. Information technology – Security techniques – Information secu-
rity risk management. http://www.iso.org/iso/home/store/catalogue_ics/
catalogue_detail_ics.htm?csnumber=56742, 2011. [Accessed: April-2016].

[79] ISO/IEC. Information technology – Security techniques – Information security
management systems – Requirements, 2013.

[80] ISO/IEC. Information technology – Security techniques – Information security
management systems – Overview and vocabulary, 2014.

[81] M. Jan, C. Jouvray, F. Kordon, A. Kung, J. Lalande, F. Loiret, J. F. Navas,
L. Pautet, J. Pulou, A. Radermacher, and L. Seinturier. Flex-eware: a flexible
model driven solution for designing and implementing embedded distributed sys-
tems. Softw., Pract. Exper., 42(12):1467–1494, 2012.

[82] J. Jensen and M. G. Jaatun. Security in model driven development: A survey. In
Proceedings of the 2011 Sixth International Conference on Availability, Reliability
and Security. ARES ’11, pages 704–709. IEEE Computer Society, 2011.

[83] Joint Task Force Transformation Initiative. Guide for conducting risk assessments.
Technical report, National Institute of Standards and Technology, 2012. [Accessed:
August-2014].

202

https://iecwebstore.com/p-preview/info_iec61850-5%7Bed1.0%7Den.pdf
https://iecwebstore.com/p-preview/info_iec61850-5%7Bed1.0%7Den.pdf
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=56742
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=56742

[84] J. Jürjens. Towards development of secure systems using umlsec. In Proceedings
of the 4th International Conference on Fundamental Approaches to Software Engi-
neering, FASE ’01, pages 187–200. Springer-Verlag, 2001.

[85] J. Jürjens. UMLsec: Extending UML for Secure Systems Development. In J.-M.
Jézéquel, H. H. smann, and S. Cook, editors, UML 2002 - The Unified Modeling
Language, 5th International Conference, Dresden, Germany, September 30 - Octo-
ber 4, 2002, Proceedings, volume 2460 of Lecture Notes in Computer Science, pages
412–425. Springer, 2002.

[86] R. Kazman, L. Bass, G. Abowd, and M. Webb. SAAM: A method for analyzing the
properties of software architectures. In 16th International Conference on Software
Engineering, ICSE’16, pages 81–90. IEEE, 1994.

[87] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere. The
architecture tradeoff analysis method. In Fourth IEEE International Conference on
Engineering of Complex Computer Systems, ICECCS’98, pages 68–78, 1998.

[88] R. Z. Khan and J. Ali. Classification of task partitioning and load balancing strate-
gies in distributed parallel computing systems. International Journal of Computer
Applications, 60(17), 2012.

[89] M. Kircher and M. Völter. Guest Editors’ Introduction: Software Patterns. IEEE
Software, 24(4):28–30, 2007.

[90] A. G. Kleppe. A language description is more than a metamodel. In Fourth In-
ternational Workshop on Software Language Engineering, Nashville, USA, page 9.
megaplanet.org, 2007.

[91] A. G. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model Driven Ar-
chitecture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003.

[92] R. T. Kolagari, D. Chen, A. Lanusse, R. Librino, H. Lönn, N. Mahmud, C. Mraidha,
M. Reiser, S. Torchiaro, S. T. Piergiovanni, T. Wägemann, and N. Yakymets. Model-
based analysis and engineering of automotive architectures with EAST-ADL: revis-
ited. IJCSSA, 3(2):25–70, 2015.

[93] Y. Laghouaouta, A. Anwar, M. Nassar, and J. Bruel. A generic traceability frame-
work for model composition operation. In Enterprise, Business-Process and In-

203

formation Systems Modeling - 16th International Conference, BPMDS’15, pages
461–475, 2015.

[94] S. Lamb. Security features in windows vista and ie7 microsoft’s view. Network
Security, 2006(8):3 – 7, 2006.

[95] Y. Lee, J. Lee, and Z. Lee. Integrating Software Lifecycle Process Standards with
Security Engineering. Computers & Security, 21(4):345–355, 2002.

[96] Y. Lee, Z. Lee, and C. K. Lee. A study of integrating the security engineering
process into the software lifecycle process standard (IEEE/EIA 12207). AMCIS
2000 Proceedings, page 182, 2000.

[97] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: exact
characterization and average case behavior. In Proceedings. Real-Time Systems
Symposium, pages 166–171, 1989.

[98] P. Leserf, P. d. Saqui-Sannes, and J. Hugues. Multi domain optimization with
SysML modeling. In 20th Conference on Emerging Technologies Factory Automa-
tion, ETFA ’15, pages 1–8. IEEE, 2015.

[99] T. Lodderstedt, D. A. Basin, and J. Doser. Secureuml: A uml-based modeling lan-
guage for model-driven security. In Proceedings of the 5th International Conference
on The Unified Modeling Language, UML ’02, pages 426–441. Springer-Verlag, 2002.

[100] L. Lucio, Q. Zhang, P. H. Nguyen, M. Amrani, J. Klein, H. Vangheluwe, and Y. L.
Traon. Advances in model-driven security. Advances in Computers, 93:103–152,
2014.

[101] A. Maña, E. Damiani, S. Gürgens, and G. Spanoudakis. Extensions to Pattern
Formats for Cyber Physical Systems. In Proceedings of the 31st Conference on
Pattern Languages of Programs, number 15 in PLoP’14, pages 15:1–15:8. ACM,
2014.

[102] D. Manolescu, W. Kozaczynski, A. Miller, and J. Hogg. The Growing Divide in the
Patterns World. IEEE Software, 24(4):61–67, July 2007.

[103] D. Mapelsden, J. Hosking, and J. Grundy. Design pattern modelling and instan-
tiation using DPML. In Proceedings of the Fortieth International Conference on
Tools Pacific: Objects for internet, mobile and embedded applications, pages 3–11.
Australian Computer Society, Inc., 2002.

204

[104] A. Martens, H. Koziolek, S. Becker, and R. Reussner. Automatically improve soft-
ware architecture models for performance, reliability, and cost using evolutionary
algorithms. page 105. ACM Press, 2010.

[105] F. Massacci, J. Mylopoulos, and N. Zannone. Security Requirements Engineering:
The SI* Modeling Language and the Secure Tropos Methodology. In Advances in
Intelligent Information Systems, number 265 in Studies in Computational Intelli-
gence, pages 147–174. Springer Berlin Heidelberg, 2010.

[106] J. McAffer, J.-M. Lemieux, and C. Aniszczyk. Eclipse Rich Client Platform.
Addison-Wesley Professional, 2nd edition, 2010.

[107] G. McGraw. The security lifecycle-the 7 touchpoints of secure software-just as you
can’t test quality into software, you can’t bolt security features onto code and expect
it to become hack-proof security. In Software Development, volume 13, pages 42–43,
2005.

[108] G. McGraw. Software Security: Building Security In. Addison-Wesley Professional,
2006.

[109] A. Mehiaoui, E. Wozniak, S. T. Piergiovanni, C. Mraidha, M. D. Natale, H. Zeng, J.-
P. Babau, L. Lemarchand, and S. GÃ c©rard. A two-step optimization technique for
functions placement, partitioning, and priority assignment in distributed systems. In
SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded
Systems, LCTES’13, pages 121–132, 2013.

[110] J. D. Meier, A. Mackman, M. Dunner, S. Vasireddy, R. Escamilla, and A. Murukan.
Improving web application security: threats and countermeasures. Microsoft Cor-
poration, 3, 2003.

[111] D. Mellado, C. Blanco, L. E. Sánchez, and E. Fernández-Medina. A Systematic Re-
view of Security Requirements Engineering. Comput. Stand. Interfaces, 32(4):153–
165, June 2010.

[112] Microsoft. Microsoft Security Development Lifecycle (SDL) version 5.2, 2012.

[113] J. Miller and J. Mukerji. Mda guide version 1.0.1. Technical report, Object Man-
agement Group (OMG), 2003.

205

[114] T. M. Mir, A. K. V. Revuru, D. J. Manohar, and V. Batta. Threat analysis and
modeling during a software development lifecycle of a software application. Google
Patents, Jan. 2012.

[115] N. Moebius, K. Stenzel, H. Grandy, and W. Reif. SecureMDD: A Model-Driven De-
velopment Method for Secure Smart Card Applications. In International Conference
on Availability, Reliability and Security, ARES’09, pages 841–846, 2009.

[116] A. Motii, B. Hamid, A. Lanusse, and J.-M. Bruel. Guiding the Selection of Security
Patterns Based on Security Requirements and Pattern Classification. In Proceedings
of the 20th European Conference on Pattern Languages of Programs, EuroPLoP ’15,
pages 10:1–10:17. ACM, 2015.

[117] A. Motii, B. Hamid, A. Lanusse, and J. M. Bruel. Guiding the selection of security
patterns for real-time systems. In 21st International Conference on Engineering of
Complex Computer Systems, ICECCS’16, pages 155–164. IEEE, 2016.

[118] A. Motii, B. Hamid, A. Lanusse, and J.-M. Bruel. Towards the integration of
security patterns in UML component-based applications. In Joint Proceedings of
the Second International Workshop on Patterns in Model Engineering and the Fifth
International Workshop on the Verification of Model Transformation, volume 1693
of PAME ’16, pages 2–6. CEUR-WS.org, 2016.

[119] A. Motii, A. Lanusse, B. Hamid, and J.-M. Bruel. Model-Based Real-Time Eval-
uation of Security Patterns: A SCADA System Case Study. In Computer Safety,
Reliability, and Security - SAFECOMP 2016 Workshops, ASSURE, DECSoS, SAS-
SUR, and TIPS, Trondheim, Norway, September 20, 2016, Proceedings, volume
9923 of Lecture Notes in Computer Science, pages 375–389. Springer, 2016.

[120] D. Mouheb, C. Talhi, M. Nouh, V. Lima, M. Debbabi, L. Wang, and M. Pourzandi.
Aspect-Oriented Modeling for Representing and Integrating Security Concerns in
UML. In Software Engineering Research, Management and Applications, number
296 in Studies in Computational Intelligence, pages 197–213. Springer Berlin Hei-
delberg, 2010.

[121] C. Mraidha, S. Tucci-Piergiovanni, and S. Gérard. Optimum: a MARTE-based
methodology for schedulability analysis at early design stages. SIGSOFT Softw.
Eng. Notes, 36(1):1–8, 2011.

206

[122] P. H. Nguyen, K. Yskout, T. Heyman, J. Klein, R. Scandariato, and Y. L. Traon.
SoSPa: A system of Security design Patterns for systematically engineering secure
systems. In 2015 ACM/IEEE 18th International Conference on Model Driven En-
gineering Languages and Systems (MODELS), pages 246–255, Sept. 2015.

[123] J. Noble. Classifying Relationships Between Object-Oriented Design Patterns. In
Proceedings of the Australian Software Engineering Conference, ASWEC ’98, pages
98–. IEEE Computer Society, 1998.

[124] OBEO. Acceleo. http://www.eclipse.org/acceleo/, 2014. [Accessed: January-
2015].

[125] OMG. OMG Systems Modeling Language (OMG SysML). http://www.omg.org/
spec/SysML/1.1/, 2008. [Accessed: May-2014].

[126] OMG. OCL 2.2 Specification. http://www.omg.org/spec/OCL/2.2, 2010.

[127] OMG. MOF QVT 1.1 Specification. http://www.omg.org/spec/QVT/1.1, 2011.
[Accessed: June-2014].

[128] OMG. UML profile for Modeling and Analysis of Real-Time and Embedded Systems
(MARTE), Version 1.1. http://www.omg.org/spec/MARTE/1.1/, 2011. [Accessed:
January-2013].

[129] OMG. MetaObject Facility 2.4.2, Specification. http://www.omg.org/spec/MOF/
2.4.2/, 2014. [Accessed: July-2014].

[130] OMG. UML 2.5. http://www.omg.org/spec/UML/2.5/, 2015. [Accessed: April-
2016].

[131] OMG. Unified Component Model For Distributed, Real-Time And Embedded Sys-
tems Version 1.0 - Beta1. http://www.omg.org/spec/UCM/1.0/Beta1/, 2016. [Ac-
cessed: January-2017].

[132] A. L. Opdahl and G. Sindre. Experimental comparison of attack trees and misuse
cases for security threat identification. Inf. Softw. Technol., 51(5):916–932, 2009.

[133] OWASP. OWASP CLASP V.A.2. Technical report, Nov. 2007.

[134] D. M. Powers. Evaluation: from Precision, Recall and F-measure to ROC, Informed-
ness, Markedness and Correlation. Journal of Machine Learning Technologies, pages
37–63, 2011.

207

http://www.eclipse.org/acceleo/
http://www.omg.org/spec/SysML/1.1/
http://www.omg.org/spec/SysML/1.1/
http://www.omg.org/spec/OCL/2.2
http://www.omg.org/spec/QVT/1.1
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/MOF/2.4.2/
http://www.omg.org/spec/MOF/2.4.2/
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UCM/1.0/Beta1/

[135] A. Radermacher, B. Hamid, M. Fredj, and J.-L. Profizi. In Proceedings of the 18th
European Conference on Pattern Languages of Program, EuroPLoP ’13, pages 8:1–
8:16. ACM, 2013.

[136] J. F. Ruíz, M. Arjona, A. Maña, and N. Carstens. Secure engineering and modelling
of a metering devices system. In 2013 International Conference on Availability,
Reliability and Security, SecSE’13, pages 418–427. IEEE, 2013.

[137] SAE. Architecture Analysis & Design Language (AADL).
http://www.sae.org/technical/standards/AS5506A, 2009. [Accessed: July-2014].

[138] C. Sant’Anna, E. Figueiredo, A. Garcia, and C. J. Lucena. On the modularity
of software architectures: A concern-driven measurement framework. In European
Conference on Software Architecture, pages 207–224. Springer Berlin Heidelberg,
2007.

[139] D. Schmidt. Model-driven engineering. in IEEE computer, 39(2):41–47, 2006.

[140] B. Schneier. Secrets & Lies: Digital Security in a Networked World. John Wiley
& Sons, Inc., New York, NY, USA, 1st edition, 2000.

[141] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, and P. Som-
merlad. Security Patterns: Integrating security and systems engineering. JohnWiley
& Sons, 2013.

[142] SEMCO. System and software Engineering for embedded systems applications with
Multi-COncerns support. http://www.semcomdt.org, 2010. [Accessed: May-2014].

[143] D. Serrano, A. Mana, and A.-D. Sotirious. Towards Precise and Certified Security
Patterns. In Proceedings of 2nd International Workshop on Secure systems method-
ologies using patterns (Spattern 2008), pages 287–291. IEEE Computer Society,
September 2008.

[144] A. Shostack. Experiences threat modeling at microsoft. In Proceedings of the Work-
shop on Modeling Security, volume 413, pages 5:1–5:12. CEUR-WS.org, 2008.

[145] G. Sindre and A. L. Opdahl. Eliciting security requirements by misuse cases. In 37th
International Conference on Technology of Object-Oriented Languages and Systems,
2000. TOOLS-Pacific 2000. Proceedings, pages 120–131, 2000.

208

http://www.semcomdt.org

[146] F. Singhoff, J. Legrand, L. Nana, and L. Marcé. Cheddar: A Flexible Real Time
Scheduling Framework. In Proceedings of the 2004 Annual ACM SIGAda Interna-
tional Conference on Ada: The Engineering of Correct and Reliable Software for
Real-time & Distributed Systems Using Ada and Related Technologies, SIGAda ’04,
pages 1–8. ACM, 2004.

[147] N. I. O. Standards and Technology. NIST Special Publication 800-53 Information
Security. CreateSpace, Paramount, CA, 2011.

[148] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling
Framework 2.0. Addison-Wesley Professional, 2nd edition, 2009.

[149] G. Stoneburner, A. Goguen, and A. Feringa. Risk management guide for information
technology systems. Nist special publication, 800(30):800–30, 2002.

[150] C. Szyperski. Component Software: Beyond Object-oriented Programming. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1998.

[151] Technical Information Bulletin 04-1. Supervisory Control and Data Acquisition
(SCADA) System. https://scadahacker.com/library/Documents/ICS_Basics/
SCADA%20Basics%20-%20NCS%20TIB%2004-1.pdf, 2004. [Accessed: April-2016].

[152] TERESA Consortium. TERESA Project (Trusted Computing Engineering for Re-
source Constrained Embedded Systems Applications). http://cordis.europa.eu/
project/rcn/93271_en.html. [Accessed: September-2014].

[153] K. Tindell. Adding Time-offsets to Schedulability Analysis. University of York,
Department of Computer Science, 1994.

[154] M. Torngren, D. Chen, and I. Crnkovic. Component-based vs. model-based devel-
opment: a comparison in the context of vehicular embedded systems. In 31st EU-
ROMICRO Conference on Software Engineering and Advanced Applications, pages
432–440, 2005.

[155] A. V. Uzunov, E. B. Fernandez, and K. Falkner. Securing distributed systems using
patterns: A survey. Computers & Security, 31(5):681–703, 2012.

[156] R. Vanciu and M. Abi-Antoun. Finding architectural flaws using constraints. In
2013 28th IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pages 334–344, 2013.

209

https://scadahacker.com/library/Documents/ICS_Basics/SCADA%20Basics%20-%20NCS%20TIB%2004-1.pdf
https://scadahacker.com/library/Documents/ICS_Basics/SCADA%20Basics%20-%20NCS%20TIB%2004-1.pdf
http://cordis.europa.eu/project/rcn/93271_en.html
http://cordis.europa.eu/project/rcn/93271_en.html

[157] J. Viega. Building Security Requirements with CLASP. In Proceedings of the
2005 Workshop on Software Engineering for Secure SystemsBuilding Trustworthy
Applications, SESS ’05, pages 1–7. ACM, 2005.

[158] L. Vogel. Eclipse RCP. http://www.vogella.de/articles/EclipseRCP/, 2015.
[Accessed: August-2016].

[159] M. Walker, M.-O. Reiser, S. T. Piergiovanni, Y. Papadopoulos, H. Lönn,
C. Mraidha, D. Parker, D.-J. Chen, and D. Servat. Automatic optimisation of sys-
tem architectures using EAST-ADL. Journal of Systems and Software, 86(10):2467–
2487, 2013.

[160] M. Weiss and H. Mouratidis. Selecting Security Patterns that Fulfill Security Re-
quirements. In 16th IEEE International Requirements Engineering, 2008. RE ’08,
pages 169–172, Sept. 2008.

[161] A. G. Wermann, M. C. Bortolozzo, E. G. d. Silva, A. Schaeffer-Filho, L. P. Gaspary,
and M. Barcellos. ASTORIA: A framework for attack simulation and evaluation in
smart grids. In NOMS 2016 - 2016 IEEE/IFIP Network Operations and Manage-
ment Symposium, pages 273–280, Apr. 2016.

[162] M. Woodside, D. C. Petriu, D. B. Petriu, J. Xu, T. Israr, G. Georg, R. France, J. M.
Bieman, S. H. Houmb, and J. Jürjens. Performance analysis of security aspects by
weaving scenarios extracted from UML models. Journal of Systems and Software,
82(1):56–74, 2009.

[163] J. Yoder and J. Barcalow. Architectural patterns for enabling application security.
In Proceedings of the 20th European Conference on Pattern Languages of Programs,
volume 51. ACM, 1998.

[164] A. Ziani. Modeling of Secure Dependable (S&D) applications based on patterns for
Resource-Constrained Embedded Systems (RCES). phdthesis, Université Toulouse
le Mirail - Toulouse II, 2013. [Accessed: June-2014].

210

http://www.vogella.de/articles/EclipseRCP/

211

