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Introduction

Looking back over almost a decade of research after I graduated in 2010,
I realized that what fascinates me the most in physics are the analogies be-
tween apparently unrelated phenomena. Connecting microscopic descriptions
and macroscopic quantities as does thermodynamics, or the general framework
of spin 1/2 particle from NMR to quantum information... These are just two
examples but one can find this everywhere in modern physics.

I cover in this work the links between what is known today as quantum
technologies and the more fundamental topic of quantum fluids. I have always
envisioned myself as a fundamental physicist, remotely interested in real-life ap-
plications. However, it is funny to note that part of what I believed to be funda-
mental science 10 years ago (quantum memories, squeezing, entanglement...) is
today entering in the phase of technological development and applications with
the major e↵ort of the EU towards quantum technologies. This is exactly what
should motivate basic science: sometimes it does bring applications to make our
life easier and a better society and sometimes it just provides knowledge itself
without any immediate application (which also pushes toward a better society
by making it smarter). I am curious to see what quantum fluids will bring in
10 years. This work summarizes my (modest) contribution to this field.

The main goal of this manuscript is to provide the tools to connect non-linear
and quantum optics to quantum fluids of light. Because the physics of matter
quantum fluids and fluids of light has long been the territory of condensed mat-
ter physicists, it is uncommon to find textbooks which draw the analogies with
quantum optics. I have taken the reverse trajectory, being trained as a quantum
optician and moving progressively to quantum gases and quantum fluids of light.
Naturally, I try to use the concepts and resources developed by the quantum
optics community to improve experiment about fluids of light, but I also reverse
the approach and ask a very simple question: what does the concept of fluid
of light bring to our understanding of non-linear and quantum optics ? It can
be rephrased as an operational question: which new e↵ects can we predict (and
possibly observe) using the photon fluid formalism ?

This is actually a very exciting time, as we have recently demonstrated the
validity of this approach with an experiment about the dispersion relation in
a fluid of light [1]. In this experiment, described in details in the chapter 4,
we have shown that light in a non-linear medium follows the Bogoliubov dis-
persion: a constant group velocity at small wavevectors and a linear increase
with k at large wavevectors. If you trust the formal analogy between the non-
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6 CONTENTS

linear Schrödinger equation and the paraxial propagation of light in a non-linear
medium, this result is not surprising. However, what is amazing is that, this
description allowed us to design a non-linear optics experiment and helped us
to understand it. This experiment can also be thought as a correction to the
Snell-Descartes law in a non-linear medium. In this analogy,the group velocity is
directly linked to the position of the beam in the transverse plane at the output
of the medium. A linear increase with k at large wavevectors translates to the
standard refraction law: increasing the incidence angle will increase the distance
from the optical axis after the medium. However, at small angle the constant
(non-zero) group velocity tells us that, whatever the angle of incidence, the beam
will exit the medium at the same position ! The refraction law is independent
of the incident angle. Moreover, another idea can be extracted from quantum
gases formalism: the group velocity depends on the medium density (at small
k). Therefore the refraction law does not depend on the incident angle but on
the light intensity ! Can we do something with this ? I don’t know. Maybe
we can use this novel understanding to image through non-linear medium. Or
maybe we just understand a bit more of non-linear optics now.

This time is a very exciting one also because now we know that this approach
works and we have tens of ideas for novel non-linear optics experiments testing
the cancellation of drag force due to superfluidity, observing the Hawking radi-
ation, or the Zel’dhovich e↵ect... The next challenge is to bring this description
to the field of quantum optics, where quantum noise and entanglement are of
primary importance. What is the hydrodynamic analogue of squeezing or of
an homodyne detection ? Understanding the e↵ects of interactions in complex
quantum systems beyond the mean-field paradigm constitutes a fundamental
problem in physics. This manuscript just briefly ventures in this territory...
But this will be, for sure, the next direction of my scientific career.

In fact I did not venture in this territory, but this manuscript intends to
provide the tools to do so in the future. Chapter 1 is a brief summary of what
are the tools needed for quantum optics in a warm atomic medium: the two-
level atoms model, electromagnetically induced transparency, four-wave-mixing,
cooperative e↵ects and decoherence. In chapter 2, I describe one type of optical
quantum memory based on the gradient echo memory protocol. I present two
implementations: in a warm vapor and in high optical depth cold atomic cloud
and cover how these two implementations are complementary with their specific
strengths and weaknesses. In chapter 3, I move to quantum optics with the study
of imaging using the noise properties of light and propagation of quantum noise
in a fast light medium. I complete the description of my previous works in
chapter 4 including more recent experiments about fluid of light in an exciton-
polariton microcavity and in an atomic vapor. The final chapter is devoted to
describe several outlooks and collaborative projects I have recently initiated.



Chapter 1

Hot atomic vapor

1.1 Atomic ensembles

When learning about light-atom interaction, various approaches can be dis-
cussed. Light can be described as a classical electromagnetic field or as quan-
tum elementary excitations: the photons. Similarly an atom can be seen as a
classical oscillating dipole or treated using quantum mechanics. The description
of the interaction can then take any form mixing these 4 di↵erent perspectives.
While for most experiments a classical approach is su�cient, it is sometimes
needed to invoke h̄ and its friends to explain a specific behaviour. In this work,
I will try, as much as possible, to avoid an artificial distinction between quantum
and classical phenomena, as it does not bring much to the understanding of the
e↵ects. Sometimes, a purely classical description is even more intuitive.

In this first section, I remind readers of the basic tools to appreciate atomic
ensemble physics, without entering into the details and complexities of genuine
alkali atomic structures. I describe the di↵erences in light-matter interaction
between the case of one single atom and an atomic ensemble, and explain what
I call a dense atomic medium. A short discussion will illustrate the relationship
between collective excitations and Dicke states [2]. This work is mainly focused
on warm atomic ensembles (with the notable exception of section 2.2) and there-
fore a discussion on the role of Doppler broadening and the assumptions linked
to it will conclude this part.

1.1.1 Light–matter interaction

Let us start with the simplest case: one atom interacting with light in free
space. Two processes, time-reversals of each other, can happen: absorption
and stimulated emission1. An important question is: what is the shadow of
an atom ? Or more precisely what is the dipole cross-section �0 of one atom
interacting with light in free space ? It is interesting to note that the answer
to this question does not depend on the description of the atom as a classical
oscillating dipole or a two-level atom. With � being the light wavelength, we

1
Obviously, a third process, called spontaneous emission, is also possible, but for this

specific discussion we do not need it.
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8 CHAPTER 1. HOT ATOMIC VAPOR

have the resonant cross section for a two-level atom2 can be written as: [3]:

�0 =
3�2

2⇡
. (1.1)

From this relation, we can immediately conclude that it is a di�cult task
to make light interact with a single atom. Indeed, focusing light in free-space
is limited by di↵raction to a spot of area ⇠ ⇡�

2
/4. Therefore, even a fully

optimized optical system, will not reach a focusing area of �0. What is surprising
here, is that it does not depend on the choice of your favorite atom.

Nevertheless various tricks can be tested to improve this coupling. A com-
mon criteria to discuss the interaction strength is called cooperativity C and is
given by the ratio between the dipole cross section and the mode area of the
light:

C =
�0

Areamode
. (1.2)

The cooperativity gives the ratio between the photons into the targeted mode
and those emitted to other modes.

A simple way of increasing C is to put your single atom in an optical cavity.
By doing so you will approximately multiply C by the number of round trips
inside the cavity. The cooperativity will be modified to:

C =
�0

Areamode

1

T
, (1.3)

with T being the output mirror transmission. A second approach would be to
reduce the area of the mode below di↵raction limit. It is obviously impossible
with a propagating field but it has been observed that using the evanescent field
near a nano-structure can indeed provide a mode area well below ⇡�

2
/4. In this

work we will use another way of improving coupling: by adding more than one
atom we can increase the cooperativity by the number of atoms N as

C =
�0

Areamode
N. (1.4)

The cooperativity is therefore equal to the inverse of the number of atoms needed
to observe non-linear e↵ects. Unfortunately, adding more atoms comes with a
long list of associated problems that we will discuss throughout this work.

1.1.2 Dicke states and collective excitation

Getting a large cooperativity means having a large probability for a photon
to be absorbed by the atomic medium. However, we find here an important
conceptual question: if a photon is absorbed by the atomic ensemble, in what
direction should I expect the photon to be re-emitted ? If there is an optical
cavity around the atomic ensemble, it is natural to expect the photon to be
more likely emitted in the cavity mode, since it is most strongly coupled to the
atoms. The coupling e�ciency � is the ratio between the decay rate in the
cavity mode to the total decay rate and is given by:

C =
�

1 � �
. (1.5)

2
More generally, the cross section for an atom with Fg and Fe being the total angular

momenta for the ground and the excited states respectively, has the form � =
2Fe+1
2Fg+1

�2

2⇡ .
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But, what if we do not place the atoms in a cavity ? Why shouldn’t we expect
the recovered field in any arbitrary direction ? This would make the job of an
experimental physicist way trickier...

Dicke states

We can get a physical intuition of why light is mainly re-emitted in the for-
ward direction by introducing Dicke states. In 1954, Robert Dicke predicted in
Ref. [2] that the behaviour of a cloud of excited atoms would change dramati-
cally above a density of 1 atom per �3. Indeed, when the inter-atomic distance
becomes smaller than the wavelength of the emitted photons, it becomes impos-
sible to distinguish which atoms are responsible for the emission of individual
photons. This indistinguishability lead to a spontaneous phase-locking of all
atomic dipoles everywhere in the medium, and therefore a short and directional
burst of light is emitted in the forward direction. The anisotropic nature of
the emission can be understood simply as a constructive interference due to the
alignment of atomic dipoles thanks to the dipole-dipole interaction [4, 5].

Collective excitation

When the atomic density is lower than �
�3, the dipole-dipole interaction be-

comes negligible but, fortunately, directional emission can still occur. The
mechanism involved here is similar to the Dicke prediction. When one pho-
ton interacts with the atomic ensemble, the created excitation is delocalized in
the entire cloud. Every atom participates in the absorption process and each
of them retains the phase of the incoming field in the coherence between the
ground and the excited states. If the Fock state with only one photon is sent
into the medium, the collective state of the atomic cloud |ei will be written as a
coherent superposition of all possible combinations of a single atom excited |ei
and all the other ones in the ground state |gi:

|ei =
1p
N

NX

i=1

|g1, g2, ..., gi�1, ei, gi+1, ..., gN i. (1.6)

Once again the collective enhancement comes from a constructive interference
e↵ect [6]. During the scattering process, an atom at position ~ri in the cloud

interacts with an incoming photon of wavevector ~k and therefore acquires (in

the rotating frame) a static phase term e
i~k~ri in the collective state superposition

|ei. After the scattering3 of a photon in the direction of a wavevector ~k0, the
atomic ensemble is back in the collective ground state |gi but with an additional
phase. The cloud state is:

 
1p
N

NX

i=1

e
i(~k�~k0).~ri

!
|gi. (1.7)

The global factor before |gi gives the square root of the probability of this

process. To benefit from the 1
N enhancement the phase term must be equal to

3
We assume here an elastic Rayleigh scattering process and therefore the norm of ~k0 is

fixed, only its direction is a free parameter.
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zero and therefore we must have ~k = ~k
0. The probability of scattering is then

maximum in the forward direction with the same wavevector ~k as the incident
photon.

Decoherence

With these two configurations (Dicke states and collective enhancement) we
have understood qualitatively why emission will be in the forward direction
after scattering through atomic vapor. Obviously there are many restrictions to
these simple explanations, because the phase coherence is not always conserved.
These troublemakers are grouped under the term: decoherence.

One main reason for the decoherence will come from the fact that atoms
are moving (and moving quite fast in a hot atomic vapor). Taking this into
account, the position of re-emission for atom i will not be ~ri and cancellation

of the phase e
i(~k�~k0).~ri will not be perfect anymore. This will be discussed in

more detail in paragraph 1.1.4.
Another drawback with real atoms is that they often have more than one

excited state with slightly di↵erent energies. If light couples to these states
(even with di↵erent coupling constants), the atomic ensemble state will acquire
a temporal phase of the order of e

i�Et/h̄ with�E being the characteristic energy
di↵erence between excited states. We will come back to this point when we will
discuss 2-level atoms and rubidium D-lines (see paragraph 1.2.1).

1.1.3 What is a dense atomic medium ?

As an associate professor, I am member of a CNU (Conseil National des Uni-
versités) thematic section called dilute media and optics. Then why do I entitle
this work ”Quantum Optics in dense atomic medium”. What does dense mean
in this context ? I do not mean that I have been working with dense media in
condensed matter sense (with the notable exception of section 4.4) but rather
with an optically dense cloud. In the continuation I describe the relationship
between temperature and atomic density in a warm vapor and the method to
provide a good measure of the optical density: the optical depth.

Atomic density

A strong advantage of atomic vapors is that their density can be tuned at will by
simply changing their temperature. As alkali vapors are not perfect gases, there
is a correction to the Boyle law given by C. Alcock, V. Itkin and M. Horrigan
in Ref. [7]. The vapor pressure p in Pascal is given by:

p(Pa) = 10A+B
T , (1.8)

with A = 9.318 and B�4040 K. The atomic density nat is then given by dividing
the vapor pressure by kB the Boltzmann constant times the temperature T :

nat =
p(Pa)

kBT
. (1.9)
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Figure 1.1: Atomic density of rubidium as function of temperature in Celsius.
Right scale is given in unit of �3 for the D2 line.

Optical depth

Taking into account the density, light propagating in an atomic medium will
have a linear absorption ↵ given by:

↵ = nat�0. (1.10)

The optical depth is simply defined as the product of ↵ by L, the length of the
atomic medium. Based on this definition we can directly write the Beer law of
absorption for a beam of initial intensity I0:

I = I0 exp [�↵L]. (1.11)

For the D2 line of rubidium �0 = 1.25⇥10�9 cm�2. We can note that the value
is slightly di↵erent from Eq. 1.1 due to the multiplicity of atomic states.

Saturation intensity

This derivation is only valid on resonance and with a weak electromagnetic field.
In fact, saturation can modify the behaviour of the medium. To quantify this
e↵ect, we introduce the saturation intensity Isat which is defined as the value
of intensity for which the cross section is reduced by half compared to the low
intensity case. This leads to the redefinition of the atomic cross section � as [8]:

� =
�0

1 + I/Isat
. (1.12)

We can refine even more this model by adding a detuning � = !L �!0 between
the excitation (laser) field frequency and the atomic transition. In this case we
have:

�(�) =
�0

1 + 4(�/�)2 + I/Isat
. (1.13)
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Figure 1.2: Doppler linewidth of rubidium D2 line as function of temperature.

The saturation intensity is defined for a resonant excitation. However, in prac-
tice, it is often useful to know if the atomic medium is saturated or not at a large
detuning from the resonance. A simple way to obtain a quick insight on this
question is defining an o↵-resonance saturation intensity Isat(�). It is given by
[8]:

Isat(�) =


1 + 4

�2

�2

�
I
0
sat, (1.14)

with I
0
sat the resonant saturation intensity. We have then reformulated Eq.

1.12 with Isat(�) instead of Isat. We can remember that, when I = Isat(�),
the cross section is reduced by half compared to low intensity.

1.1.4 Doppler broadening

Unfortunately, in an atomic cloud, every atom does not contribute equally to the
light-matter interaction. This is a consequence of the Doppler e↵ect. Indeed,
atoms moving at the velocity ~v will result to a frequency shift ⇠ ~k~v. In a warm
atomic vapor this e↵ect is crucial to understand the dynamics of the system, as
Doppler broadening can be much greater than the natural linewidth �. For an
atom of a mass m at temperature T the Doppler linewidth �D is given by:

�D =

r
kBT

m�2
. (1.15)

At 100�C, this gives �D ⇡ 250 MHz for Rb D2 line, compared to � ⇡ 6 MHz.

An important consequence is that the atomic response, derived in the next
section, will have to be integrated over the atomic velocity distribution to obtain
quantitative predictions. We will not include this calculation here, as it adds
unnecessary complexity but no immediate intelligibility. We refer the interested
reader to [9, 10, 11]
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1.2 Non-linear optics in dense atomic media

There is no two-level atom and
rubidium is not one of them

William D. Phillips

This famous quote from Bill Phillips reminds us, that how useful can the
two-level atom model be, it still remains simplistic compared to the complexity
of alkali atomic structures. In this section, I briefly recall three important fea-
tures of this model: linear absorption Im(�(1)), linear phase shift Re(�(1)) and
non-linearity �

(3) near a two-level atomic resonance. This well known deriva-
tion is an important concept settling the background of this work. Along this
section I will highlight the theoretical tools one by one to progressively cover
more and more complex situations. Specifically, we are in this work focusing on
non-linear e↵ects with large intensities. This means not only a large Re(�(3))
but also a large Re(�(3)) ⇥ I.

Therefore I introduce:

• the saturation of non-linearity at larger intensity (�(5) correction term);

• the concept of electromagnetically induced transparency (EIT) and pos-
sible extension when the probe beam is not perturbative anymore;

• the process of four-wave-mixing.

1.2.1 2–level atoms

Let us consider the interaction of a monochromatic electric field with a system
of N two-level atoms. This interaction process can be described by the optical
Bloch equation [12]:

d⇢̂

dt
= �i

i

h̄

h
Ĥ, ⇢̂

i
� �̂⇢̂, (1.16)

where ⇢̂ is the density matrix of the atomic system, � is the decay rate of
the excited state, Ĥ = Ĥ0 + V̂ is the Hamiltonian of the system with the
non-perturbative part Ĥ0 and the interaction V̂ which can be written as V̂ =
�d · E = �h̄⌦/2 in the dipole approximation. ⌦ is the Rabi frequency.

We can denote the ground and the excited state of the atom as |gi and |ei
respectively with the resonant transition frequency !eg. With these notations
we can rewrite the Bloch equation (1.16) for the slowly varying amplitudes �ij(t)
of the density matrix elements ⇢ij(t) = �ij(t) exp(�i!ijt) in the following form:

⇢̇gg = i
⌦

2
(�ge � �eg) + �⇢ee

⇢̇ee = �i
⌦

2
(�ge � �eg) � �⇢ee

�̇ge = �i(�� i�/2)�ge � i
⌦

2
(⇢ee � ⇢gg) , (1.17)

where ⌦ is the Rabi frequency of the probe field and � = ! � !eg is the laser
detuning from the excited state. To obtain this system of equations we have
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applied the Rotating Wave Approximation (RWA). This approximation allows
to eliminate the fast decaying terms and to rewrite the Bloch equation for slow-
varying amplitudes [12]. The elements ⇢gg and ⇢ee correspond to population
of the ground and the excited states respectively, while the elements �eg = �

⇤
ge

correspond to the atomic coherence. We can rewrite the system of equations
(1.17) as:

⇢̇ee � ⇢̇gg = �i⌦ (�ge � �eg) � � (⇢ee � ⇢gg + 1)

�̇ge = �i(�� i�/2)�ge � i
⌦

2
(⇢ee � ⇢gg) , (1.18)

taking into account the condition that ⇢gg + ⇢ee = 1. Because the amplitudes
⇢gg, ⇢ee and �eg are slow-varying we can assume that ⇢̇gg = ⇢̇ee = �̇ge = 0 and
the solution of (1.18) can be found in the following form:

�ge = �⌦/2 (⇢ee � ⇢gg)

�� i�/2
,

⇢ee � ⇢gg = � �2 + �2/4

�2 + �2/4 + ⌦2/2
. (1.19)

The response of the medium on the interaction with light can be described
in terms of the atomic polarization P. The vector of polarization relates to the
electric field with a proportional coe�cient:

P = "0�E, (1.20)

where � is the atomic susceptibility.
In general, if we neglect frequency conversion processes, the polarization P

can be written as an expansion in Taylor series in the electric field as:

P = "0�
(1)

E+"0�
(2)|E|2+"0�

(3)|E|2 ·E+"0�
(4)|E|4+"0�

(5)|E|4 ·E+... (1.21)

Here �
(1) is known as a linear susceptibility, higher order terms are known

as a second-order, a third-order, or n-order susceptibilities. In general, for
anisotropic materials the susceptibility is a (n � 1)-order rank tensor. In our
consideration we expand the Taylor series up to the rank 5 to take into account
the nonlinear response of the atomic medium. For a centro-symmetric medium,
the even terms vanish and the polarization of the system can be written as [12]:

P = "0�
(1)

E + "0�
(3)|E|2 · E + "0�

(5)|E|4 · E + ... (1.22)

The polarization can be found in terms of the density matrix elements:

P = N µeg�ge, (1.23)

where µeg is the dipole moment of the transition. From this expression we can
find a full polarization of the atomic system:

P = � N |µeg|2(�+ i�/2)

h̄(�2 + �2/4 + ⌦2/2)
E = �4N |µeg|2

h̄�2
· �+ i�/2

1 + 4�2/�2 + 2⌦2/�2
E. (1.24)

We can write P as function of the saturation intensity Isat using:

I

Isat
= 2


⌦

�

�2
with I =

1

2
n0"0cE

2
. (1.25)
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One obtains:

P = �4N |µeg|2

h̄�2
· �+ i�/2

1 + 4�2/�2 + I/Isat
E. (1.26)

We should note that the real part of the susceptibility corresponds to the re-
fractive index of the medium, while the imaginary part gives information about
the absorption.

Next we calculate the zeroth, first and second contributions to the polariza-
tion of a collection of two-level atoms. By performing a power series expansion
of Eq. (1.26) in the quantity I/Isat:

P ⇡ �4N |µeg|2

h̄�2
�+ i�/2

(1 + 4�2/�2)
E ·

1 � I/Isat

1 + 4�2/�2
+

I
2
/I

2
sat

(1 + 4�2/�2)2

�
. (1.27)

We now equate this expression with Eq. 1.22 to find the three first orders of
the atomic polarization:

"0�
(1) = �4N |µeg|2

h̄�2
· �+ i�/2

(1 + 4�2/�2)

"0�
(3)|E|2 =

4N |µeg|2

h̄�2
· �+ i�/2

(1 + 4�2/�2)
· I/Isat

1 + 4�2/�2

"0�
(5)|E|4 = �4N |µeg|2

h̄�2
· �+ i�/2

(1 + 4�2/�2)
· I

2
/I

2
sat

(1 + 4�2/�2)2
. (1.28)

We introduce the usual4 power series expansion:

�e↵ = �
(1) + 3�(3)|E|2 + 10�(5)|E|4. (1.29)

This notation allows us to write the e↵ective refractive index ne↵ as:

n
2
e↵ = 1 + �e↵. (1.30)

We use the standard definition [12] of the non-linear indices (n2 and n3) : ne↵ =
n0 + n2I + n3I

2 and we can expand n
2
e↵ in:

n
2
e↵ = n

2
0 + 2n0n2I + (2n0n3 + n

2
2)I

2
. (1.31)

We can then connect the indices to the expression of Re(�). We show the scaling
of Re(�) in Figure 1.3.

n0 =
q

1 + Re
⇥
�(1)

⇤
,

n2 =
3Re

⇥
�
(3)
⇤

n
2
0"0c

,

n3 =
20Re

⇥
�
(5)
⇤

n
3
0"

2
0c

2
� n

2
2

2n0
. (1.32)

4
The coe�cients 1, 3 and 10 are used because we are only concern with the non-linear

e↵ects conserving the input frequency. For example the �(3)
term can lead to several frequency

conversion, and we only keep triplets like: (+!,+!,�!), (+!,�!,+!) and (�!,+!,+!).
This coe�cient is given by the binomial coe�cient

�3
2

�
.
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Figure 1.3: Re(�(1)) in black ,Re(�(3)) in dashed green,Re(�(5)) in dashed red

What to optimize ?

When looking at the previous derivation of the non-linear susceptibility, we
see that 3 di↵erent quantities can be optimized depending on the goal of your
experiments.

• If you want to observe non-linear e↵ects at the single photon level, for
example to create a photonic transistor, you want to optimize the value
of Re

⇥
�
(3)
⇤

in the limit I ⌧ Isat;

• If you want to observe dispersive e↵ects as slow and fast light propagation,
you will want to optimize the value of derivative of Re[�] as function of
the frequency. This is the configuration we will study in chapter 3;

• If you are interested in a large value for �n = n2 ⇥ I, you have access to
2 knobs: increasing n2 or increasing I. However you must stay within the
limit of I < Isat otherwise the Taylor expansion does not hold anymore.
That is why we have done the calculation to the next order I/Isat. This
is the configuration we will study in chapter 4.

Scaling for e↵ective 2-level atoms.

We briefly review the dispersive limit. When the laser is detuned far enough
from the atomic transition, we have a simplification of the atomic response.

First, the approximation of the 2-level atoms becomes more precise because
the contribution from all the levels averages to an e↵ective contribution. This is
the case when the detuning � is much larger than the hyperfine splitting energy
scale (typically around ⇠ 500 MHz for Rb).
The second consequence is that the absorptive part of the susceptibility Im(�)
becomes negligible with respect to the dispersive part Re(�). In this limit, the
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medium is virtually transparent but there is still a non-negligible phase shift (a
linear and a non-linear one). At � � �, we can simplify Eq. 1.28 to obtain for
the linear part of the absorption:

absorption: Im(�(1)) / N

�2
, (1.33)

and for the non-linear dispersive part:

phase shift: Re(�(3)) / N

�3
. (1.34)

The non-linear absorption is neglected as it scales with 1
�4 , as well as the

linear phase shift which just results in a redefinition of the phase reference.

In the far detuned limit, an intuitive idea to improve the non-linear phase
shift is to simply increase the atomic density, by rising the cloud temperature
as described in section 1.1.3. This is indeed true as Re(�(3)) scales with N .
However, this is often critical to conserve a large (fixed) transmission while
increasing the non-linear phase shift. This condition of fixed transmission means
that N

�2 is a constant. In other words, we can rewrite the phase shift Re(�(3))
as this constant times 1

� .
We see that the intuitive vision is no longer valid if we want to keep a fixed

transmission: to maximize the phase shift at a given transmission it is therefore
favorable to reduce �, which in consequence leads to a lower temperature (to
keep N

�2 constant). This is obviously limited by the initial hypothesis of far
detuned laser (� � �).

In order to verify this model we have measured the non-linear phase shift
for various temperatures and detuning and this is reported in chapter 4. In the
next paragraph, I explain how to conduct this measurement.

Measurement of the non-linear phase shift for e↵ective 2-level atoms.

The typical method to measure the non-linear phase shift of a sample is to
realize a z-scan experiment [13, 14]. However this technique works better with a
thin layer of material. For thick samples, we can use a technique demonstrated
in Ref. [15]. This allows to measure the accumulated phase �� along the
propagation. The phase accumulated can be written as:

��(r) = k

Z z0+L

z0

n2I(r, z)dz, (1.35)

with z0 is the coordinate of the front of the sample and L is its length. The
intensity profile of the beam can then be replaced by the Gaussian profile of a
TEM(0,0) beam at the input plane. We obtain:

��(r) = k

Z z0+L

z0

n2��(r)
w

2
0

w(z)2
e
�2r2/w(z)2

dz, (1.36)

with w0 is the waist radius, w(z) = w0

r
1 +

⇣
z
zR

⌘2
and zR = ⇡w2

0
� . It is then

possible to derive the far field di↵raction pattern in the Fraunhofer limit (see
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Figure 1.4: Typical non-linear phase shift measurement for e↵ective 2-level
atomic cloud. Detuning � is given to D1 Rb85 line. Cell temperature is 130C.
For larger intensity a clear deviation is observed due to n3 term (not shown).
Insets are examples of obtained far field measurements.
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Figure 1.5: Comparison between 2-level atoms model and experimental mea-
surement of n2. Blue dots are experimental data presented in Fig. 1.4, and
black line is the model of Eq. 1.32. The model is scaled by the atomic density
which is a fitting parameter.
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Ref. [15] for details). From Eq. 1.36, it is clear that the phase shift in the center
: ��(r = 0) is directly proportional to n2 and the central intensity I(0, 0). We
will therefore observe a switch from a bright spot to dark spot in the center of
the di↵raction pattern when the phase is modified by ⇡ and back to a bright
spot again for a phase change of 2⇡. By simply counting the number of rings
NRings that appear while slowly increasing I(0, 0), we can estimate the non-
linear phase shift accumulated along z. In the limit of long Rayleigh length
(z ⌧ zR) we can approximate �n to:

�n = n2I ' �

L
NRings. (1.37)

In Figure 1.4, I present an experimental characterization of n2 for rubidium 85.
From this figure, we have extracted the value of n2 as function of the detuning
from the atomic transition. To validate the 2-level atoms model, I plot in Fig-
ure 1.5, the results of the numerical model (Eq. 1.32) after integration over the
Doppler profile and compare it to the experimental data. We see that for large
detuning the model is in excellent agreement. However as we get closer to the
resonance the contribution of the �(5) term start to be not negligible anymore
and n2 is reduced5 compared to the value predicted by �(3). This is the main
limitation to obtain a larger �n = n2I in experiments.

To get a better understanding of this e↵ect we have compared �
(5)

I
2 and

�
(3)

I for the two-level model. We see in Fig. 1.6, that the contribution of
|�(5)

I
2| is huge when we get closer to resonance but at detuning larger than

2.5 GHz, it can be safely neglected at this intensity.
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Figure 1.6: Comparison between |�(5)
I
2| and |�(3)

I|. Here I = 2.105 W/m2

(which is still much smaller than the e↵ective saturation intensity at this de-
tuning).

5 �(3)
and �(5)

are of opposite signs.
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1.2.2 Electromagnetically induced transparency

In the previous section we have discussed non-linearity in a 2-level atoms model.
If we add one more level, more complex schemes using atomic coherences can be
exploited. Here, I briefly describe the interaction of the system of 3-level atoms
with two electromagnetic fields in order to study the e↵ect of electromagnetically
induced transparency (EIT) [16, 17].

The interaction process can be described by the evolution of the optical
Bloch equations, as it was done in the section 1.2.1. The three levels are noted:
|gi for ground, |ei for excited, |si for supplementary third level. The optical
Bloch equation (1.16) can be rewritten for slowly-varying amplitudes in the case
of a 3-level atom as following [9, 12]:

⇢̇gg = i
⌦p

2
(�ge � �eg) + �eg⇢ee

⇢̇ss = i
⌦c

2
(�se � �es) + �es⇢ee

⇢̇ee = �i
⌦p

2
(�ge � �eg) � i

⌦c

2
(�se � �es) � �⇢ee (1.38)

�̇ge = �i(�p � i�/2)�ge � i
⌦p

2
(⇢ee � ⇢gg) + i

⌦c

2
�gs

�̇se = �i(�c � i�/2)�se � i
⌦c

2
(⇢ee � ⇢ss) + i

⌦p

2
�sg

�̇gs = �i(�p ��c � i�0)�gs � i
⌦p

2
�es + i

⌦c

2
�ge.

Here we characterize two electromagnetic fields: the probe field with the Rabi
frequency ⌦p interacts between the initially populated ground state |gi and the
excited state |ei, while the control field with the Rabi frequency ⌦c couples the
excited state |ei with the initially empty second ground state |si. The probe
and the control fields are detuned from the corresponding atomic resonances
with detunings �p = !p � !eg and �c = !c � !es respectively. Decay rates �eg
and �es can be found with the Clebsch-Gordan coe�cients of the corresponding
transitions, and they satisfy to the condition �eg + �es = �. The decay rate �0
corresponds to the decay rate of the ground states coherence between |gi and
|si.

In the RWA we assume ⇢ii and �ij as slowly varying amplitudes. With these
conditions the system (1.38) can be solved in the steady-state regime when

⇢̇gg = ⇢̇ee = ⇢̇ss = �̇ge = �̇se = �̇gs = 0.

In the following, we are interested in the nonlinear components of the atomic
susceptibility �, which is the proportionality coe�cient between the atomic
polarization and the electric field, see Eq. 1.20. We solve the system (1.38)
numerically. The polarization induced by the probe field can be found in terms
of the coherence at the corresponding atomic transition �ge, in the same way
how it was done in Eq. 1.23.

We can extract quantities similar to 2-level atoms: �
(1)

,�
(3)

,�
(5) from a

linear expansion of � obtained numerically. The code to implement these sim-
ulations in Mathematica is available here.

https://www.wolframcloud.com/objects/9fcca8a8-82e3-42fc-9966-327534f43d15
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1.2.3 Four-wave-mixing

Adding one more level, one can add even more complexity (and also more fun)
in the light-matter interactions. I describe here, a typical configuration called
double-⇤, where two intense pumps, one probe beam and one conjugate beam
interact (see Figure 1.7). A lot of details about this configuration can be found
in [18, 19, 20, 21, 22, 23, 24].

ω0

Δ+δ+ω0

Δ

δ
|2

|1

|3 |4

co
nt
ro
l probe

co
nj
ug

at
e

control

Figure 1.7: Levels scheme for four-wave-mixing in the double-⇤ configuration.

Here, I will just give an intuitive description of a few phenomenon. One
important point to understand, is there is only one pump laser in real experi-
mental configuration. So if it is detuned by � from the transition |1i ! |3i it
has to be detuned by �+!0 from the transition |2i ! |4i. If � > 0 and � � �,
it directly implies a steady state for the population with a large amount of the
atoms in state |2i.
An interesting approach, to understand the quantum correlations which ap-
pears between the probe and conjugate is to think of four-wave-mixing as a
DLCZ memory protocol [25]. Indeed, one starts with all the population in |2i.
Sometimes (not often because of the large detuning) a |2i ! |4i pump photon
will write his phase in the atomic coherence and induce the emission of an anti-
Stokes (conjugate) photon. In the DLCZ [25] language, when this anti-Stokes
(conjugate) photon is detected it implies that the memory has been loaded. Af-
ter a given time, the memory can be read (e�ciently due to small detuning) by
a pump photon on the |1i ! |3i transition. This process is accompanied by the
emission of a probe photon, in a coherent manner (as describe in section 1.1.2).

In chapter 3, I use this technique to generate entangled pulses of light be-
tween the probe and the conjugate [20]. I also use another property of this
system: to provide small group velocity and anomalous dispersion, in order to
observe slow and fast light [26].
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1.2.4 Slow and fast light

We begin by applying the curl operator to the Maxwell equations to obtain the
Helmholtz equation

(r2
E + k

2)E = 0, (1.39)

where we have k = µ0✏0✏r!
2. As usual we assume the beam to propagate

along the +z direction and we ignore polarization. Solutions of the Helmholtz
equation that fulfills these conditions are:

E(z, t) = E0(z)ei(kz�!t)
. (1.40)

The phase velocity is defined as the velocity at which the phase of this solution
moves:

v� =
!

k
(1.41)

By replacing k with its definition, it can be rewritten with the speed of light in
vacuum c and the index of refraction n:

v� =
!p

µ0✏0✏r(!)!2
=

c

n(!)
. (1.42)

This is a well known result but it hides in the dependency on ! of ✏r(!) that
di↵erent frequency will propagate at di↵erent velocities. It has no consequence
for monochromatic waves, but it implies that a pulse will distort while propa-
gating in a dispersive media. Slow and fast light terminology comes from this
e↵ect: a light pulse (basically a wave-packet) that propagates slower than c will
be qualified as slow-light and reciprocally if it does propagate faster than c it
will be qualified as fast-light [27, 28]. Let us precise this terminology.

A wavepacket has the general form:

E(z, t) =

Z
E0(k)ei(kz�!(k)t)dk, (1.43)

where E0(k) is the Fourier transform of E0(z) at t = 0. If the spectrum E0(k) is
su�ciently narrowband (i.e. the pulse is not too short), we can call the central
value kc and Taylor expand ! around kc:

!(k) ⇡ !c +
@!

@k

����
k=kc

(k � kc). (1.44)

Using this approximation we can write:

E(z, t) ⇡ E

 
z � t

@!

@k

����
kc

, 0

!
⇥ e

i(kc
@!
@k |

kc
�!c)t

. (1.45)

In this simple results we can see that the pulse will propagate largely undistorted
(up to an overall factor phase and as long as Eq. 1.44 is a good approximation)
at the group velocity given by:

vg =
@!

@k

����
kc

. (1.46)
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As derived previously about 2-level atoms, it is often more convenient to
express the group velocity as a function of the variation of n with frequency.
We have

@!

@k
=

c

n
� ck

n2

@n

@k

=
c

n
� !

n

@!

@k

@n

@!
. (1.47)

We can then write the group velocity:

vg =
c

n(!c) + !c
@n
@!

��
!c

. (1.48)

This equation gives us direct access of the group velocity if we know n(!c)
(which is the case now that we master optical Bloch equations). The group
velocity is then given by the speed of light in vacuum divided by a term that
includes both the index of refraction at the carrier frequency and the derivative
of the index around the carrier frequency. The denominator is commonly called
the group index ng and it can take values larger or smaller than unity [29].

In the vast majority of dielectric media, far away from resonance, @n
@!

��
!c

is

usually positive and ng > 1. However, it is possible (using EIT for example) to
obtain @n

@!

��
!c

< 0. This type of medium is said to have anomalous dispersion.
For su�ciently large negative value, it is possible to reach ng < 1: a negative
group velocity. I report on the use of this type of medium in chapter 3.
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Figure 1.8: Real part of the the linear refractive index for the EIT configuration
described in section 1.2.2. We can see that around !�!c = 0 the slope of @n

@! is
large and negative. This is a perfect place of observe a negative group velocity.
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Chapter 2

Multimode optical memory
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2.1 Gradient Echo Memory

Light in vacuum propagates at c. This statement is not only a fundamental
principle of physics it is also the foundation of the definition of the meter in the
international system of units. Delaying [30], storing [31] or advancing [32] light
are therefore only possible in a medium (i.e. not in vacuum). In the next two
chapters, I will show how to play with the speed of light in a optically dense
atomic medium [33].

The main motivation to delay or store photons in matter is the need to syn-
chronize light-based communication protocols. Quantum technologies promise
an intrinsically secure network of long distance quantum communication. How-
ever for a realistic implementation, the quantum internet will need quantum
repeaters in order to compensate losses in long distance channels [34]. The
core element of a quantum repeater is a quantum memory [35] which can store
and release photons, coherently and on demand. This chapter is covering this
topic with the presentation of an important memory protocol: the gradient echo
memory and two implementations of this protocol one in a warm vapor [36] and
the second in a cold atomic cloud [37].

If you are somewhat familiar with MRI, understanding qualitatively gradient
echo memory (GEM) is straightforward. Imagine you want to encode quantum
information in a light. Various approaches are available (from polarization en-
coding, time-bin, orbital angular momentum...) but for qubit encoding (i.e. an
Hilbert space of dimension 2), you always can map your information into a spin
1/2 system and represent it on the Bloch sphere. Let’s say your information is of
the generic form | i = 1p

2

�
|0i + e

i�|1i
�
, this means on the equator of the Bloch

sphere with a latitude � as shown on Fig. 2.1 i). In GEM, during the storage
process one applies a spatially dependant energy shift in order to enlarge the
transition [38, 39]. This technique enables the storage of photons with a broad
spectrum (i.e. short in time).

i) ii) iii)

Figure 2.1: GEM protocol. i) Bloch sphere with the state initialized on the
equator. ii) and iii) are views from top of the equatorial plan. ii) Dephasing
with the gradient in one direction. iii) Rephasing with the gradient in the other
direction. The dephasing is shown in the rotating frame.

Because | i is not the energy ground state, the state will start to rotate in the
equatorial plane of the Bloch sphere. However, due to the spatially dependant
energy shift, each frequency component will rotate at a di↵erent speed and
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dephase as shown in figure 2.1 ii) The trick used in gradient echo techniques
is to reverse the time evolution of the dephasing process. By simply inverting
the energy gradient after the evolution time T , we can see on figure 2.1 iii) that
the frequency components will start to precess in the opposite direction with
opposite speed1. At a time 2T , all frequency components will be in phase again
and the collective enhancement described in chapter 1 can occur.

Various approaches have been tested to produce a spatially varying energy
shift. The two most successful techniques are using an AC-Stark shift in rare-
earth crystal and using a Zeeman shift on atomic vapors by applying a magnetic
field gradient. In this chapter I describe the Zeeman shift implementation in
warm and cold atomic ensembles [40, 36, 37].

2.1.1 Storage time and decoherence

I should now describe how to convert coherent light excitation into a matter
excitation. In the two-level-atom configuration, a quantum field Ê(z, t) (carrying
the information) is sent into the atomic vapor with ground state |gi and excited
state |ei.

Here, we are focusing on the propagation of a light pulse into a medium,
therefore the time derivative terms in the Maxwell-Bloch equations have to be
conserved, but the transverse gradient is neglected2. Using the rotating wave
approximation described in chapter 1, and in the presence of a spatially varying
magnetic field, the evolution equations are given by:

@
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�̂ge(z, t) = [��+ i⌘(t)z]�̂ge(z, t) � igÊ(z, t)
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@t
+ c

@
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Ê(z, t) = igN �̂ge(z, t). (2.1)

We have introduced the term i⌘(t)z which represents the energy shift form the
spatially varying magnetic field. ⌘(t) is the gradient slope that can be inverted
(or modified in a more complex manner) at the desired time. From this coupled
equations it is straightforward to point out the problem of the two-level-atom
configuration. The information is transferred from the field to the atomic co-
herence �̂ge(z, t). However this coherence will decay with the decay rate of the
excited state �. This is a terrible problem for a quantum memory ! The good
news is: this problem can be solved using a third level.

The solution comes from mapping the photonic excitation into the ground
state coherence of a three-level atom as discussed in section 1.2.2. Using a
two-photon detuning equal to zero and a large one photon detuning compared
to �, it is possible to apply the adiabatic elimination of the excited state and
rewrite the evolution equation for the ground state coherence in a way similar

1
This is true if not only the energy gradient is switched but also the sign of the energy. If

only the energy gradient changes sign, the components will still precess in the same direction

but the slowest components will become the fastest.
2
The opposite approximation is done in the Chapter 4, where the time evolution is not

considered but the di↵raction in the transverse plan is.



28 CHAPTER 2. MULTIMODE OPTICAL MEMORY

a) b)

Figure 2.2: Adiabatic elimination notation summary.

to equations 2.1:
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We apply a transformation to this equations by going into the rotating frame at

frequency g2N
� . Moreover we neglect the ac-Stark shift induced by the control

field and we finally obtain [40, 41]:
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We found an equation similar to Eq. 2.1 but where the decoherence � has
been replaced by � which is the long-lived coherence between the two ground
states. This is a major improvement as the ground state coherent is immune
from spontaneous emission, and therefore much longer memory time can be
envisioned (and demonstrated actually [42]). Another important improvement
is obtained by going to three levels and modifying the coupling g to g⌦

� , which
can be modified and tuned with the Rabi frequency of the control field.

A final transformation [26] is made to the equations 2.3 by changing z to
the retarded frame z

0 = z + ct:
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�̂gs = [�� + i⌘(t)z]�̂gs � i
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�
Ê
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@z0
Ê = iN

g⌦

�
�̂gs. (2.4)

2.1.2 GEM polaritons

Equations 2.4 can be solved numerically but new insights emerge when writing
them in the picture of normal modes called GEM-polaritons [39, 43]. The polari-
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ton picture for light-matter interaction in a 3-level system has been pioneered
by Lukin and Fleischhauer with the introduction of the dark-state polariton [6].
This pseudo particle is a mixed excitation of light and matter (atomic coher-
ence) where the relative weight can be manipulated with the external control
field. This is a boson-like particle which propagates with no dispersion and a
tunable group velocity. It is possible to consider a similar approach for GEM.
Neglecting the decoherence and taking the spatial Fourier transform of Eq. 2.4,
we can write [43]:
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�
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In analogy to [6], we consider the polariton-like operator in k-space:

 ̂(k, t) = kÊ(t, k) + N
g⌦

�
�̂gs(t, k). (2.6)

This particle will follow an equation of motion:
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◆
 ̂(k, t) = 0 (2.7)

This equation indicates that | (k, t)| propagates un-distorted along the k-axis
with a speed defined by the gradient ⌘. We are here in front of a strange
polariton.

The first di↵erence with dark-state-polariton is that it does propagate in the
k-plane instead of the normal space.

The second di↵erence, maybe more fundamental is that the weight of one of
the two components depends on k. If the polariton is normalized (and it has to
be, in order to fulfill the bosonic commutation relation), lower spatial frequencies
(short k) will be more an atomic excitation and higher spatial frequencies will be
more a field excitation. We see here the limit of the analogy with the dark-state
polariton. The GEM polariton picture is mainly useful to understand that the
velocity of the pseudo particle is given by ⌘(t) and therefore will change sign
when ⌘(t) will be flipped. We have here another interpretation of the rephasing
process explained with the Bloch sphere, earlier in the chapter.

2.1.3 GEM in rubidium vapor

I give here a short description of the implementation of GEM in a hot Rubidium
85 vapor. More details are given in the article: Temporally multiplexed storage
of images in a gradient echo memory, attached to this work [36]. The first task
is to isolate a pair of ground states that can be individually addressed by light
fields and whose energy splitting can be tuned by a linear Zeeman shift. This
is done by applying a bias magnetic field (about 50 G) to lift the degeneracy of
the mF sub-levels for F=2 and F=3 ground states (see figure 2.3).
The second step is to apply a gradient magnetic field along the atomic vapor
(a 20 cm long cell) to control the inhomogeneous broadening of the two-photon
Raman transition. The amplitude of this gradient field must be smaller than
the bias field and large enough to accept the full bandwidth of the light pulse
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Figure 2.3: a) Orthogonal linearly polarized Raman beams used in the ⇤â“GEM
experiments presented in this thesis. When propagating along the direction of
the magnetic field, a linear polarization can be viewed as a superposition of �+
and �� polarizations. We therefore simultaneously drive two Raman transitions
in any given echo experiment. b) An unshifted hyperfine structure for the D1
transition in 85Rb. c) A weak bias magnetic field to Zeeman shift the hyperfine
structure of the ground state. In the weak field limit, the mF levels are linearly
and oppositely shifted in the F = 2 and F = 3 manifolds. For the Îâ“GEM
protocol, we couple mF = 2 and mF = 0 magnetic sublevels. d) Complete
depiction of the two Raman transitions. Figure and caption are extracted from
the J. Clark thesis [26], whom I supervised at NIST.
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we expect to store. Typically, in rubidium a rule of thumb is a Zeeman shift of
1 MHz per Gauss. So a gradient with 1 Gauss amplitude already allows for the
storage of 1 microsecond Gaussian pulses.
An important part of the development of such setup consists in the precise con-
trol of the gradient and the ability to reverse it quickly. Indeed in the echo
description we have done so far, the inversion of the gradient is supposed to
be instantaneous. It is clear that switching a large current in an inductor in-
stantaneously is a tricky issue. More details on the methods used are given
in the article Gradient echo memory in an ultra-high optical depth cold atomic
ensemble attached to this work [37].

Finally, an important reason why GEM is a powerful tool for storing and
retrieving light is that it is intrinsically temporally multimode: one can store
multiple pulses at di↵erent times inside the memory and retrieve them indepen-
dently [44, 36, 45]. But it is also spatially multimode, so images can be stored
in the transverse plane (only limited by decoherence due to atomic di↵usion).
We have leveraged these two advantages to demonstrate the first storage of a
”movie” inside an atomic memory [36]. Results are presented in the next pages.

2.1.4 Press releases

These results led to multiple press articles covering this topic. I reproduce here
some excerpts.

The sequence of images that constitute Hollywood movies can be stored hand-
ily on solid-state media such as magnetic tape or compact diskettes. At the Joint
Quantum Institute images can be stored in something as insubstantial as a gas
of rubidium atoms. No one expects a vapor to compete with a solid in terms of
density of storage. But when the ”images” being stored are part of a quantum
movie –the coherent sequential input to or output from a quantum computer –
then the pinpoint control possible with vapor will be essential. Phys.org

One of the enabling technologies for a quantum internet is the ability to store
and retrieve quantum information in a reliable and repeatable way. One of the
more promising ways to do this involves photons and clouds of rubidium gas.
Rubidium atoms have an interesting property in that a magnetic field causes
their electronic energy levels to split, creating a multitude of new levels. MIT
Technology Review

Having stored one image (the letter N), the JQI physicists then stored a
second image, the letter T, before reading both letters back in quick succession.
The two ”frames” of this movie, about a microsecond apart, were played back
successfully every time, although typically only about 8 percent of the original
light was redeemed, a percentage that will improve with practice. According to
Paul Lett, one of the great challenges in storing images this way is to keep the
atoms embodying the image from di↵using away. The longer the storage time
(measured so far to be about 20 microseconds) the more di↵usion occurs. The
result is a fuzzy image. Science Daily.
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1. Introduction

Storage and retrieval of non-classical states of light has recently become a topic of interest due
to the need for quantum memories (QM) in quantum network protocols [1]. Indeed, a QM is
required for quantum repeaters which allow long distance distribution of entanglement [2, 3].
In the perfect case, a QM should preserve the quantum state of a light pulse during the longest
storage time possible. A large number of techniques have been investigated (see [4,5] and refer-
ences therein). An attractive way to improve the performance of a QM is by multiplexing com-
munication channels [6,7]. Temporal multiplexing can be used to increase the rate of entangle-
ment distribution [8, 9]. Similarly, a spatially multimode approach can, in principle, reduce the
requirements on the storage time for a realistic implementation of a quantum repeater [10, 11].
Experimentally, temporal and spatial multiplexing have been demonstrated independently with
different techniques in atomic memories. Temporal multiplexing, in an atomic medium, has
been recently demonstrated using the gradient echo memory (GEM) technique [12]. Corre-
spondingly, using the electromagnetically induced transparency (EIT) technique, several groups
have stored an image in an atomic vapor [13–15]. In this paper, we first demonstrate the abil-
ity of the GEM in an atomic vapor to store multi-spatial-mode images and we show that the
resolution of the retrieved images is ultimately limited by the atomic diffusion of the atoms.
Given that there exists a straightforward method for the generation of multi-spatial-mode

quantum states of light near the Rb atomic resonance [16, 17], we would like to eventually be
able to store such states in an atomic vapor memory. While a large number of other approaches
to a quantum memory are available, our experiment is implemented using the promising tech-
nique of gradient echo memory in an atomic vapor introduced by Buchler and coworkers [18].
This technique has recently led to a recovery efficiency of 87 % [19], temporal multiplex-
ing [12], and storage of a weak coherent state with a recovery fidelity above the no-cloning
limit [20]. Thus, the GEM is a promising candidate for quantum memory because it has a very
high recovery efficiency not achieved yet with other techniques in a hot atomic vapor. It is also
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relatively easy to implement, not requiring laser-cooled atoms or cryogenics. The ability of the
GEM to store and recover multi-spatial-mode images, and to do so with high spatial fidelity
has, however, not yet been demonstrated, and the present experiments are designed to verify
the image storage properties of the GEM in much the same way as has been done for other
techniques.
It is also interesting to combine multiplexing techniques for both time and space. So far stor-

ing multiple images has been demonstrated only in solid-state systems. Several experiments
using holographic memories have been able to record trains of images by storing the informa-
tion in the atomic population [21,22] and have opened the way to photon-echo protocols. Here,
we report the coherent storage and retrieval of a sequence of two different images using an
atomic vapor gradient echo memory.

2. Gradient echo memory

In our GEM experiments a light pulse is sent into a 85Rb atomic vapor which can be considered,
for simplicity, as a collection of three-level systems in a Λ configuration. A spatially-dependent
Zeeman shift is applied using a linearly varying magnetic field along the axis of propagation.
For a total Zeeman shift larger than the pulse frequency bandwidth, a high optical density, and
the presence of an intense co-propagating control field that drives the Raman transition, each
frequency component of the pulse can be absorbed. The photonic excitation is therefore trans-
ferred into the long lived collective coherence of the hyperfine atomic ground states. Similar to
nuclear magnetic resonance or photon echo techniques, the spectral components of the signal
are mapped into the medium along the length of the cell. After the excitation, the collective
dipole dephases due to the inhomogenous magnetic field. It is possible, however, to rephase
the collective excitation by reversing the magnetic field gradient. The time evolution is then
reversed, and when all the dipoles have rephased the retrieved light pulse emerges in the for-
ward direction provided that the control field is again present. As demonstrated in [19], this
technique preserves a phase relationship between the input and retrieved pulses and is therefore
a coherent storage.
In our experiment, the transverse profile of the signal field is shaped using a mask and im-

aged into the atomic medium. For a control field much wider than the signal, the transverse
profile of the collective excitation of the atomic coherence directly mimics the profile of the
signal field, so spatial information can be stored in the atomic memory. In this paper we first
describe the experimental setup and present results on the storage of two images into the atomic
medium. We then introduce the criterion of similarity, based on a normalized cross–correlation,
to analyze the spatial fidelity of the retrieved images with respect to its input reference image.
The crosstalk between the first and second retrieved images is investigated with regard to this
criteria. Finally, we use a resolution chart to measure and quantify the effect of atomic diffu-
sion at a given buffer gas partial pressure on the storage of spatial information. We investigate
primarily the transverse spatial diffusion, as longitudinal diffusion along the direction of the
field gradient effectively prevents atoms from contributing to the coherent echo signal, and we
show that the resolution of the retrieved images primarily depend on the storage duration, as
expected and similar to what is found with EIT techniques.

3. Experimental setup

The experimental setup is shown in Fig. 1. The light from a Ti:sapphire laser, blue detuned
by 1.5 GHz from the 5S1/2, F=2 ! 5P1/2, F=3 transition, is used as a control field for the
Raman coupling. The signal beam is generated using a double-passed 1.5 GHz acousto-optic
modulator to downshift the frequency by the amount of the hyperfine splitting (3.036 GHz).
The signal and control beams are overlapped with crossed linear polarizations in the 5 cm long
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1.5 GHz

3036 MHz

signalcontrol

5S      F=21/2

5P      F=31/2

5S      F=31/2

Fig. 1. Schematic of the experimental setup for image storage in a GEM. The signal beam
is previously shaped temporally with an acousto-optic-modulator (not shown). The spatial
profile is fixed using a mask in the beam path and the mask is then imaged into the 85Rb
cell with a magnification of 0.75. A control field is overlapped with the signal using a po-
larizing beam splitter (PBS), and finally, the retrieved image is recorded using a fast–gated
intensified camera. A small fraction of the signal is sent to a fast photodiode for monitoring
the spatially-integrated retrieved power. For the storage of two consecutive images, two
signal beams are combined with the same polarization on a non-polarizing beam splitter.
Inset: three-level system for 85Rb.

memory cell. The cell contains isotopically pure 85Rb and 667 Pa (5 Torr) of Ne buffer gas and
is heated up to 80 �C. A bias magnetic field of 1 mT (10 G) is applied to the cell to split the
ground state Zeeman sublevels and select a specific three-level system (see Fig. 1 inset). The
Raman absorption line is broadened by a 15 µT/cm magnetic field gradient we apply in the
propagation direction. The spatial profile of the signal beam is shaped by placing a mask in its
path and imaging it into the memory cell. In order to store two different images, two distinct
signal beams have to be shaped independently. The temporal profile of each signal pulse is
Gaussian with a full width at 1/e2 of 1.1 µs. The storage duration is set by the delay between
the input pulse and the flip of the magnetic gradient. The flip duration is less than 1 µs. After the
cell, the control field is filtered with a polarizing beam splitter. A fast–gated intensified camera
records the time–integrated light intensity during 100 ns wide frames. For convenience, a small
fraction of the retrieved image beam is sent to a photodiode for recording the retrieved power
as function of time.

4. Temporal and spatial multiplexing

In Fig. 2(a) we present the timeline of the storage and retrieval of two consecutive images.
The amplitude of the retrieved pulse is normalized to the input amplitude. In this particular
configuration (control beam diameter of 3 mm and power 120 mW, and a probe beam diameter
of 1 mm) we report a retrieval efficiency of 8 %. Improvements to this can be obtained by
using a longer memory cell, thereby improving the optical depth for the Raman absorption.
The optical depth on resonance is approximatively 200, nevertheless, the probe beam is far
detuned from resonance, and the absorption is due to a 2-photon Raman absorption. In the
results presented here, the absorption of the input beam is on the order of 30 %, leading to a
maximum theoretical retrieval efficiency of 9 %. (We have measured a recovery efficiency of

#164994 - $15.00 USD Received 19 Mar 2012; revised 27 Apr 2012; accepted 1 May 2012; published 16 May 2012
(C) 2012 OSA 21 May 2012 / Vol. 20,  No. 11 / OPTICS EXPRESS  12353



(

(

(

Fig. 2. Storage and retrieval of two images in a GEM. (a) The spatially-integrated intensity
from the retrieval of the single letter T (blue) and N (red). The input pulse is at negative time
and the retrieved pulse is at the symmetric positive time after the magnetic field gradient
flip. The yellow curve shows the storage of two images, and the curves are vertically dis-
placed for clarity. Retrieved images at time 0.3 µs and 2.7 µs are presented, respectively, in
Fig. 2(a), i and ii. (b) The detailed timeline of the retrieved images for 7 frames. The frame
number is indicated in the images and the time corresponds to the time after the magnetic
flip. (c) SN (red) and ST (blue) as function of the frame number. The reference for N or T
has a similarity of 1 and is plotted before 0.
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up to 62 % for a 6.5 ms storage time in a similar configuration by using a 20 cm long memory
cell.) As we are interested in the spatial properties of the GEM in this work we do not focus
on the overall efficiency of the process. We first check that a single image can be stored, and
optimize the alignment independently for the two different signal beams corresponding to the
images of the letters N and T (the red and blue traces in Fig. 2(a), respectively). To store both
images in the atomic memory, the two input pulses are combined on a beam splitter with a delay
of 1 µs between them. Two frames from the gated intensified camera of the retrieved images
after a storage time of 0.5 µs (frame 3) and 4.5 µs (frame 27) are presented, respectively, in
Fig. 2(a), i and ii. As GEM in this configuration is a first-in-last-out memory [12], the first
retrieved image corresponds to the letter T and the second one to the letter N.
A more detailed timeline of 7 frames for the retrieved images is included in Fig. 2(b). This

figure shows the intensity profile of the retrieved light for different times and clearly exhibits
an overlap between the two letters in frame 25. To study the overlap quantitatively we define
the similarity S to be the cross–correlation of a given frame with a reference image, normalized
by the square root of the auto–correlation product :

S=
∑i, j Nin

i j Necho
i jq

∑i, j (Nin
i j )

2∑i, j (Necho
i j )2

, (1)

where Nin
i, j is the intensity recorded for pixel i,j of the input pulse image and Necho

i, j for the
retrieved image. The reference image is selected from among the frames of the input pulse
for each letter. In Fig. 2(c) we plot the similarities for the retrieved images with respect to the
N and the T reference images (respectively denoted SN and ST ). For reference, the similarity
between the T and the N input images is 35 %. The evolution as function of time is given for 28
non-overlapping frames representing successive 100 ns time intervals. The first frame is taken
100 ns after the magnetic field gradient is switched. We temporally expand the retrieved pulse
compared to the input (expansion ratio of 1.4) using a different magnetic field gradient for the
recovery [12]. This allowed for a slightly longer diffusion time and made it easier to measure
its effect in the retrieved images. The total storage time is therefore given by twice the time
measured from the magnetic field flip corrected by the expansion ratio. For the retrieved image
the initial value of ST is 88 % and it decreases at a rate of 1.1 % per frame due to the atomic
diffusion that blurs the image. After 19 frames the value of ST starts to drop faster, at a rate of
4.6 % per frame. On the other hand, SN is initially low (35 %) and after 21 frames it suddenly
rises at a rate of 8.5 % per frame. After frame 28 SN reaches 78 %, corresponding to when the
second echo is retrieved from the memory. The two curves cross during the 24th frame with
ST = 47 % and SN = 51 %. This is close to a value of 50 %, which we take to be a threshold
for distinguishing the images. As shown by the yellow curve of Fig. 2(a), there is a temporal
overlap between the two input images. The similarities corresponding to this overlapping input
frame are ST = 55 % and SN = 48 %. On the other hand, the frame just before can be identified
as an N and the frame just after as a T, with a difference D = |SN � ST | > 0.5. The retrieved
images mimic this behavior with an overlap during frame 24. The value of D immediately
before (frame 23) and after (frame 25) is greater than 0.15. These similar qualitative behaviors
suggest that there is no significant crosstalk between the two images and that the reduction of
D between the input and the output is a consequence of the blurring of the images.

5. Effect of atomic diffusion

It has been proposed that the decay of S during the storage in an EIT based memory is mainly
due to atomic diffusion [14, 23]. We show that our experiment using a GEM technique is con-
sistent with this statement and demonstrate that the expected spatial resolution of the retrieved
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Fig. 3. (a) The input and retrieved pulses for three different delays. Time t = 0 is taken to be
the time of the magnetic field flip. The maximum of the input pulses are at -1.4 µs, -1.1 µs,
-0.8 µs (respectively green, red, and black curves). (b) The input images for horizontal (H)
and vertical (V) lines. 1/2a is the spatial frequency of the bars, where the distance between
a black and a white line is denoted a. (c) Contrast for the retrieved image (vertical) as
function of storage time for 21 frames. The symbol colors correspond to those in a).

images can be predicted from the buffer gas partial pressure and the storage time. The internal
dynamics of the atoms are described by the optical Bloch equations [24]. In the presence of a
buffer gas, the Rb atoms are subject to velocity changing collisions with the gas that are as-
sumed to preserve the internal state. The atomic excitation ρ(x,y,z, t) therefore diffuses in the
transverse directions as follows:

∂
∂ tρ(x,y,z, t) = D∇2ρ(x,y,z, t), (2)

where D is the diffusion coefficient. The diffusion along the propagation axis is neglected as
it induces only loss in the process and does not affect the spatial information in the transverse
plane. Indeed, if one atom diffuses along the direction of the magnetic gradient, it will not
rephase at the same time as others and therefore will not contribute to the expected retrieved
image. Using the Green’s function formalism, the evolution in time and space of a single point
initially at the position X � = (x�,y�) can be calculated. Thus the evolution of the atomic ex-
citation from an arbitrary initial condition can be derived by knowing the spatial distribution
ρ(x�,y�,0) of the excitation at t = 0 as follows:

ρ(x,y, t) =
1p
4πDt

Z
e

�(x�x�)2�(y�y�)2
4Dt ρ(x�,y�,0)dx� dy�. (3)
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Fig. 4. (a) Contrast and theoretical fit for four images such as shown in Fig. 3(b), with bar
widths, a, as indicated in the figure. The fits are done without free parameters using Eq (3).
D = 105 cm2/s, t0 = 0 and C0 is given in the legend. (b) Modulation transfer function for
four different storage times.

To evaluate quantitatively the effect of diffusion on the spatial resolution we stored and re-
trieved images of a resolution test chart consisting of a group of three bars oriented vertically or
horizontally as shown in Fig. 3(b). The resolution chart is imaged into the memory with a mag-
nification of 0.75. For three different pulse delays relative to the magnetic field switching time
(Fig. 3(a)) we record 100 ns frames during the retrieval process. The contrastC(t) is defined as:

C(t) =
I(x= a, t)� I(x= 0, t)
I(x= a, t)+ I(x= 0, t)

, (4)

where x can refer to the vertical or the horizontal direction and a is the width of a stored line
taking into account the magnification (see Fig. 3(b)). At t = 0, x = 0 refers to the center dark
line and x = a to the center of a bright line. I(x, t) is the intensity recorded by the camera at
position x for a frame recorded at time t, integrated over the extent of the pattern in y. With
this definition C can fall below zero for a long storage time as the atoms diffuse from bright
lines to dark lines resulting in I(x = 0) > I(x = a). As shown in Fig. 3(c), the contrast for a
given spatial frequency does not depend on the time between the input pulse maximum and
the magnetic field switching, but only on the total storage time. We have also independently
checked that the orientation of the lines does not affect the contrast. The fact that the only
parameter that affects the contrast is the storage duration strongly suggests that diffusion is the
main source of the degradation of the resolution.
To confirm this observation we have compared 4 masks with different spatial frequencies.

The resolution of the mask varies from of 1 to 1.6 line pairs/mm, resulting in lines of 375 µm
to 240 µm in the image plane in the memory after taking into account the magnification. In
Fig. 4(a), we plot the contrast as function of storage time for the different masks and the fit
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of the data to the model of Eq. (3). In order to take into account independently the quality
of our optical system and the contrast degradation due to the memory we have measured the
initial contrast of the input pulse C0. C0 is measured for the different masks and is a fixed
normalization parameter for the fit. We take the value of the diffusion coefficient for 667 Pa of
Ne buffer gas at 80 �C to be 105 cm2/s as previously reported [25, 26], and therefore no free
parameters are allowed for the fit. The good agreement between our theoretical model based
on atomic diffusion and the experimental data confirms the key role of diffusion in the contrast
of the retrieved image for the GEM technique. In Fig. 4(b) we plot the modulation transfer
function (contrast as a function of spatial frequency) for different storage times. This graph
could be a useful benchmark for spatial channel multiplexing for a quantum communication
network, as the three lines of the test chart can be seen as three parallel information channels.
Since the contrast needed for a given multi-spatial-mode quantum repeater protocol can be
defined a priori, Fig. 4(b) provides the maximum spatial frequency allowed for a fixed storage
time and therefore the number of spatial channels which can be simultaneously used to store
quantum information.

6. Conclusion

We have shown that a multi-spatial-mode image can be stored using the GEM protocol. More-
over, we have demonstrated that multiple images can be stored and retrieved at different times,
allowing the storage of a short movie in an atomic memory. This opens the way to multiplex-
ing simultaneously in time and in space for future quantum memory applications. We confirm
that the main limitation of this technique, similar to that in EIT-based memory [14, 23], is the
atomic diffusion during the storage time. We expect that this could be overcome by using a
cold atomic sample [27, 28] or mitigated by storing the Fourier transform of the image into
the memory as suggested in [14, 29]. Finally, as the different spectral components of the input
signal are mapped along the length of the cell with GEM, unlike EIT, it would be interesting
to investigate if there is an effect of longitudinal diffusion on the signal spectral properties and
noise.
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2.2. GEM IN A COLD ATOM ENSEMBLE 41

2.2 GEM in a cold atom ensemble

Shifting from warm atomic vapor (with the simplicity of high and tunable den-
sity) to laser-cooled atoms trapped in a magneto-optical trap (MOT) has many
advantages. The first of them being the reduction of decoherence due to atomic
motion. However, in order to obtain the large optical depth required for an e�-
cient gradient echo memory, a substantial optimization work has been needed.
In the paper attached to this work, I highlight the various techniques I devel-
oped and used during my stay at the Australian National University under the
supervision of Ping Koy Lam.

For quantum memory applications we aim to reach low temperatures and
the very large optical depths (OD) required for high e�ciency. Because OD is
related to the integrated absorption of photons through a sample, there are a
number of ways to increase the OD. These include: increase the atom number
(for instance by increasing the length of the cloud) or increase the density. Low
temperature is also important as the thermal di↵usion of atoms is a limiting
factor for the memory lifetime.

In the attached paper, I present a MOT that achieves a peak OD of over
1000 at a temperature of 200 µK. We obtain this result by combining three
techniques:

• The optimization of the static loading of the MOT through geometry. The
optimal shape for our atomic ensemble is a cylinder along the direction of
the memory beams to allow for maximum absorption of the probe. This
can be achieved by using rectangular, rather than circular, quadrupole
coils or using a 2D MOT configuration.

• The use of a spatial dark spot. The density in the trapped atomic state is
limited by re-absorption of fluorescence photons within the MOT (leading
to an e↵ective outwards radiation pressure). By placing a dark spot of
approximately 7.5 mm in diameter in the repump, atoms at the centre
of the MOT are quickly pumped into the lower ground state and become
immune to this unwanted e↵ect, allowing for a higher density of atoms in
the centre of the trap, as first demonstrated in [46].

• The use of optical de-pumping, followed by a compression phase with a
temporal dark spot [47].

With the setup built using these techniques, we have implemented the gra-
dient echo memory scheme on the D1 line of Rubidium. The results shown here
demonstrate a memory e�ciency of 80 ± 2% and a coherence time up to 195 µs.
This coherence time is a factor of eight greater than GEM experiments done in
atomic vapor (described in the previous section).
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1. Introduction

The development of quantum key distribution (QKD) over the last few decades [1] brings with it
the promise of secure global communication. Although there have been some heroic efforts, the
current maximum distance for QKD is 260 km [2], achieved using optical fibres. Beyond this
length scale, the loss of photons from the quantum channel makes provably secure single-step
QKD impossible. One way of overcoming the distance limitation is to use a quantum repeater
(QR), a device based on entanglement swapping along nodes placed between the start and
end locations of the signal [3]. A working QR will require two key components: a source of
entanglement and a quantum memory to store the entanglement at the nodes [4, 5]. Storage is
required because the generation, detection and distillation of entanglement is not deterministic.
In order to establish entanglement between repeater nodes, entanglement has to be stored and
recalled on demand.

For use in a QR, a quantum memory must meet a number of requirements. The efficiency of
the memory must be as high as possible, ideally approaching unity. The efficiency is important
for bit rates: inefficient storage means that the chance of generating entanglement in any given
attempt is lower and it will take longer to complete a swapping operation. The storage time
must be long as this will limit the maximum distance between nodes in a QR network. For
instance, if the distance between nodes were to be 100 km, then more than half a millisecond
of storage is required. A high storage bandwidth is also desirable. The bandwidth will limit
the kind of entanglement that can be stored in the memory. The most common sources of
entangled photons are based on spontaneous parametric downconversion and these sources
have a wide bandwidth. A narrow bandwidth memory will therefore require new sources of
entanglement [6–8]. A multimode quantum memory, in which many entangled states can be
stored simultaneously, would allow for faster bit-rates in QRs, and there are QR protocols that
can use multi-mode memories to improve QR designs [9, 10]. The product of the storage time
and the bandwidth, known as the delay-bandwidth product gives an indication of the number of
pieces of information that can usefully be stored in a multimode memory.

The challenge for experimentalists developing quantum memory prototypes is to realize
all these properties in a single system. The practicalities of achieving this are intertwined with
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the choice of atomic ensemble. The current menu has a choice of three: warm gaseous atomic
ensembles [11–13]; solid state systems [14–17]; and cold gaseous atomic ensembles, which will
be the focus of this work.

No matter what the storage medium, the key to achieving high efficiencies is to have a high
optical depth (OD). This is normally achieved by having as high a density of absorbers in the
interaction volume as possible. To date the highest efficiency of any unconditioned quantum
memory prototype is 87% [11]. This was achieved using the gradient echo memory (GEM)
scheme in a warm atomic vapour. This system used a 20 cm-long cell of isotopically pure 87Rb
and 0.07 kPa of Kr buffer gas and had a resonant OD in the thousands [18]. The thermal motion
of the atoms is the primary obstacle to increasing the storage lifetime in warm vapour [18, 19],
which was found to decay with a time constant of around 50 µs.

Reducing atomic motion is not the only way to increase storage times—it depends on
the storage protocol. For example, it has been demonstrated that long storage times can be
obtained in an electromagnetically induced transparency (EIT)-based warm memory by using
high buffer gas pressure [20]. In a GEM scheme, however, high buffer gas pressure increases
collisional broadening and absorption of the coupling beam [18]. The effect of transverse
diffusion can be minimized by increasing the interaction volume and using anti-relaxation
coatings to minimize inelastic wall collisions [21, 22]. Although this technique would reduce
transverse diffusion, the longitudinal diffusion would eventually limit coherence times. This is
because, owing to the longitudinal frequency gradient needed for GEM, longitudinal diffusion
introduces random frequency changes to the atoms during storage, which lowers the memory
fidelity.

One obvious way to overcome the impact of atomic motion is to use slow-moving atoms.
Laser cooling provides an efficient way to achieve this, and cold atom memories have been the
subject of many experiments aiming for longer memory storage times. The majority of these
cold atom experiments have used EIT as the storage method. A coherence time of 540 ms was
achieved by cooling approximately 3 ⇥ 106 Na atoms into a Bose–Einstein condensate (BEC)
and placing them in a dipole trap [23]. The maximum memory efficiency in this ensemble was,
however, just a few per cent. A much longer coherence time of 3 s was achieved using a cross-
beam dipole trap of 3 ⇥ 105 87Rb atoms [24], although no memory was demonstrated in this
experiment. This was recently improved on further, with a coherence time of 16 s [25].

By optimizing for higher atom number and therefore higher OD, high efficiency is also
possible in cold atom systems, although this can come at the expense of long storage time due
to higher temperatures. A memory efficiency of 50% was achieved using a two-dimensional
(2D) magneto-optical trap (MOT) of 85Rb with an OD < 140, and a coherence time of a few
hundred nanoseconds [26]. Similar efficiencies were achieved for single-photon storage in a
87Rb BEC in a cross-beam dipole trap containing 1.2 ⇥ 106 atoms [27]. The coherence time for
this experiment was approximately 500 µs. More recently, 78% efficiency and a coherence time
of 98 µs [28] has been achieved using a MOT with 109 atoms and an OD of 160. It has also
been demonstrated that, by creating a MOT inside a ring cavity, single photons can be generated
efficiently with the atomic coherence being maintained for up to 3 ms [29]. Finally, experiments
have also been done showing the interaction of quantum states of light with cold-atom-based
EIT. Continuous-wave sideband squeezing [30] and discrete variable entanglement [7] have
both been investigated.

In this paper we introduce a cold atom realization of the GEM scheme. This protocol
has resulted in the highest efficiencies in both warm vapour [11] and solid-state memory
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systems [15]. In both these realizations, it was shown that GEM adds no noise to the output.
It has also been shown to be temporally [11], spatially [19, 31] and spectrally multi-mode [32].
Given that the warm vapour GEM storage time is limited by atomic motion, a cold atom version
of this protocol is well motivated. To achieve this we first had to develop an ultra-high OD
atomic source to allow for high efficiency recall.

The body of the paper is split into two sections: in section 2 we will present the
experimental details of our cold atomic source; and in section 3 we will present the basic theory
behind GEM and a high efficiency demonstration of GEM using cold atoms. In section 4 we
discuss possible improvements and other experiments that could benefit from a high OD atomic
source. Conclusions are presented in section 5.

2. The cold atomic source

The MOT is a workhorse of modern atomic physics as it offers the robust and efficient collection,
cooling and storage of cold atoms. A typical MOT operating on 87Rb will quickly cool (tens
of milliseconds) and trap 108 atoms from a dilute thermal background gas at densities of
approximately 1010 atoms cm�3 and temperatures on the order of 100 µK.

For quantum memory applications we aim to reach low temperatures and the very large
ODs required for high efficiencies. Because OD is related to the integrated absorption of photons
through a sample, there are a number of clear ways to increase the OD. These include increase
the atom number (for instance by increasing the length of the cloud) or increase the density.
Low temperature is also important as the thermal diffusion of atoms is a limiting factor for
the memory lifetime. In addition, the memory cannot be operated while either the magnetic or
optical trapping fields are active. Cold atoms expand ballistically when released from a MOT,
with a typically Gaussian velocity distribution related to their kinetic temperature. The density
of a sample decreases as it expands, reducing the OD. A lower temperature means a slower
expansion of the cloud and therefore higher densities after switch off of the trap.

In the following we present a MOT that achieves a peak OD of over 1000 at a temperature
of 200 µK. We obtain this result by optimizing both the static loading of the MOT through
geometry, a spatial dark spot and optical de-pumping, followed by a compression phase using
a temporal dark spot [33]. After describing the application of these techniques, we present a
characterization of the system using near resonant absorption imaging.

2.1. Loading phase

Our 87Rb MOT is in a three beam retro-reflection configuration. The trapping and cooling laser
has a total power of 400 mW after spatial filtering and is red-detuned by 30 MHz from the D2
F = 2 ! F

0 = 3 transition for the loading of the MOT. The repumping field is on resonance
with the D2 F = 1 ! F

0 = 2 transition, as shown in figure 1(a). Figure 1(b) shows the MOT
beam configuration, with trapping and repump beams being combined on a polarizing beam-
splitter (PBS) and then split further using another PBS (neither pictured) to create three cooling
beams of approximately 3.5 cm diameter, all of which are then appropriately polarized and
retro-reflected.

The optimal shape for our atomic ensemble is a cylinder along the direction of the memory
beams to allow for maximum absorption of the probe. This can be achieved by using rectangular,
rather than circular, quadrupole coils [34, 35] or using a 2D MOT configuration [26, 36].
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Figure 1. Experimental set-up. (a) Energy level diagram for all fields present:
C—coupling; P—probe; LO—local oscillator; I—Imaging; T—trapping;
R—repump. Also shown are one- and two-photon detunings for probe
and coupling fields (1 and � respectively). (b) Three-dimensional (3D)
representation of MOT configuration: TR—trapping and repump fields; 2D—x

and y MOT coils (green); Ax—axial (z) coils (blue). (c) 2D schematic diagram
of experiment: 87Rb—atomic ensemble; BS—50:50 beam-splitter; L—lens;
D—photo-diode detector; I1(2)—imaging beam 1(2); CCD—charged-coupled
device camera; PH—pin-hole; GC—GEM coils; P1 and P2—positions for
inserting mirrors for axial (z) imaging with I2. MOT coil configuration not
shown, neither is vertical (y) MOT beam.

To create this shape while still allowing easy access for the memory beams we use four
elongated coils in a quadrupole configuration to create a 2D MOT in the z direction (memory
axis) and position the horizontal MOT beams at 45� to the long axis of the MOT. An extra set
of axial coils in the z direction creates 3D confinement. The shape of the MOT can then be
determined by the currents in the 2D and axial coils, as well as the relative intensities of the
trapping fields.

For the loading phase, the cylindrically symmetric magnetic field gradient produced by the
2D MOT coils is 16 G cm�1, and for the axial coils is 2 G cm�1. The 87Rb atoms are produced
from a natural-mixture Rb dispenser inside a 100 ⇥ 50 ⇥ 50 mm3 single-sided, anti-reflection
coated cell shown in figure 1(b). This cell is attached to a vacuum system consisting of a 70 L s�1

ion pump supplemented by a passive titanium sublimation pump; with the dispenser running in
the cell we measure a background pressure at the ion pump of 1.5 ⇥ 10�9 kPa.

The density in the trapped atomic state (F = 2 here) is limited by reabsorption of
fluorescence photons within the MOT (leading to an effective outwards radiation pressure [37]).
By placing a dark spot of approximately 7.5 mm in diameter in the repump, atoms at the centre
of the MOT are quickly pumped into the lower ground state (F = 1) and become immune to
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this unwanted effect, allowing for a higher density of atoms in the centre of the trap, as first
demonstrated in [38].

We can collect over 1010 atoms in this configuration. However, we find that the static MOT
parameters that optimize atom number do not optimize density in the compression and cooling
phase of the MOT, and we typically work with a sample of 4 ⇥ 109 atoms.

2.2. Compression phase

In this second stage of the ensemble preparation we utilize a temporal dark spot to transiently
increase the density of the sample by simultaneously increasing the trapping laser and repump
detunings and increasing the magnetic field gradient [33, 39, 40]. Detuning the trapping laser
creates some of the conditions for polarization-gradient cooling [41], which can be used to
achieve much colder and denser ensembles than in a standard MOT. We smoothly ramp the
frequency of the trapping beam from 30 to 70 MHz below resonance, and the repump beam to
8 MHz below resonance, over a period of 20 ms. The 2D magnetic field gradient in the x and y

directions is ramped up to 40 G cm�1 as the trapping and repump lasers are detuned. We do not
ramp the axial field.

Finally, we optically pump the atoms into the desired ground state (F = 1, see figure 1(a))
by simply turning off the repump 50 µs before the trapping beam.

2.3. Magneto-optical trap characterization

Absorption imaging was used to optimize and characterize the MOT. The set-up and frequency
of the imaging beams are shown in figure 1. We perform imaging both across (I1) and along
(I2) the z-axis (in which case two mirrors are temporarily placed at locations P1 and P2).

Absorption imaging allows us to measure the OD of the MOT using Beer’s law

OD ' ln(It/Io), (1)

where It is the transmitted imaging beam intensity after passing through the MOT and Io is the
intensity measured without the MOT present. This is calculated for every point in the imaging
plane.

As the absorption of light by atoms away from resonance will follow a Lorentzian decay, to
be able to have a precise value for OD it is important to have a well calibrated line centre. This
is especially important as one goes further off resonance as the relation between on-resonance
OD and off-resonance OD depends on the one-photon detuning (1) as follows:

ODres = 12 + � 2/4
� 2/4

OD1, (2)

where � is the excited state decay rate. For Rb � is approximately 6 MHz.
To measure 1 accurately we lowered the atom number in our trap until the OD did not

saturate on resonance and plotted out the resonance curve as a function of detuning to accurately
locate the line centre. This is shown in figure 2(a).

Images of the MOT for various configurations are shown in figure 3. For these imaging
runs, we used a 4.98 s load time followed by 20 ms of ramping fields as described in section 2.2.
All fields were then turned off and an image of the MOT was taken 500 µs later (unless
otherwise stated), with a comparison image being taken 150 ms later to obtain as precise a
measure of Io as possible while ensuring no atoms were still present. As the imaging beam is on
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Figure 2. OD characterization. (a) Normalized OD as a function of imaging
beam frequency, with low atom number. (b) Averaged scaled (left-hand
scale) and unscaled (right-hand scale) OD cross-sections, taken across ten
y-plane slices for seven traces, as a function of x position for an imaging beam
detuning of �60.8 MHz from resonance (OD scale factor = 410) and (c) for
+59.2 MHz (OD scale factor = 390). Points represent data, red lines represent
fits (Lorentzian in (a) and Gaussian in (b) and (c)).

the closed D2 F = 2 ! F
0 = 3 transition, it was necessary to pump atoms back into the F = 2

state before these images were taken. This was achieved with a 200 µs pulse of on-resonance
repump light immediately before the image. For side-on imaging the imaging beam was detuned
by �20 MHz and front-on by �60 MHz to avoid complete absorption and therefore saturation
of the measured OD, as well as diffraction effects.

Figure 3 shows images of the atomic ensemble for various MOT parameters. The images
in figure 3(a) were taken of a cloud with all the optimization protocols described in sections 2.1
and 2.2, with approximately 4 ⇥ 109 atoms present. The peak, front-on OD was measured to
be 1000 on resonance with the F = 2 ! F

0 = 3 transition. This was achieved by detuning the
imaging beam approximately 60 MHz for both positive and negative detunings to ensure no
diffraction effects were present and using equation (2). Two averaged uncalibrated OD cross-
sections, taken across ten y-plane slices, for these detunings are shown in figures 2(b) and (c).
The scaled peak ODs are 900 and 1100 for minus and plus detunings respectively. Averaging the
maximum peak height of the individual traces gives over 1000 for both plus and minus detuning.
The drop in the average cross-sections can therefore be attributed to slight movement of the
MOT between images, with a narrower peak seen for the negative detuning. The temperature of
this ensemble, determined by measuring the width of the expanding cloud 5, 10 and 15 ms after
the fields were turned off, is approximately 200 µK in all directions.

Without the spatial dark spot, figure 3(b)(i) looks very similar to figure 3(a)(i). However,
the front-on image in figure 3(b)(ii) shows that the maximum OD drops to 800 with
5 ⇥ 109 atoms. Figure 3(c) shows the 2D MOT created without turning on the axial coils. This
ensemble is much longer in the z direction than the initial cloud (in fact so long that our imaging
beam was not large enough to capture it all), but also contains only a quarter of the atoms. This
meant that the peak OD dropped to about the same as that without the dark spot. The temperature
in the x and y directions for the 2D MOT was approximately 100 µK but, as there is no trapping
in the z direction, the temperature here was much larger.

Figure 3(iv) shows the ensemble without ramping up the 2D MOT magnetic field at the
end of the run. This leads to a less-compressed cloud in all three dimensions, though mainly
in the x–y plane, and therefore a much lower OD of approximately 500. Though there is less
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Figure 3. MOT characterization images. (a) Side-on and (b) front-on images of
the atomic ensemble for various MOT parameters taken at 500 µs after fields
turned off: (i) all optimization protocols described in text; (ii) no dark spot;
(iii) no axial gradient; (iv) no magnetic field compression; and (v) same as (i) but
3 ms after fields turned off. Colour bars on (a) traces show OD scales, � values
show the standard deviation of Gaussian fits to ensemble.

magnetic field compression, the temperature of this cloud is the same as the original cloud in the
x–y plane, with T = 200 µK. However, in the z direction the cloud barely expands over 15 ms.

Finally, figure 3(v) shows the cloud from figure 3(i) expanded for 3 ms as opposed to
500 µs. The temperature of this cloud will be the same as the initial cloud and, due to the
expansion, the peak OD has fallen to 400, though the atom number is still around 4 ⇥ 109.

3. Gradient echo memory (GEM)

3.1. GEM introduction

As its name suggests, the key to GEM is a linear frequency gradient ⌘ placed along an ensemble
of two-level absorbers, as illustrated in figure 4. This makes GEM a frequency encoding
memory, with information being stored as its spatial Fourier transform along the memory. The
details of the scheme are covered in depth in previous papers [11, 18, 42–44].
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Figure 4. GEM scheme. (a) Storage: a pulse enters an ensemble of atoms with
levels |1i and |2i at time 0 where the memory bandwidth B = ⌘l. The gradient
⌘ is created by a pair of coils with currents I2 > I1. (b) Retrieval: at time ts

the gradient is switched, with I
0
1 = I2 and I

0
2 = I1 and at time 2ts the echo exits

the memory. (c) Averaged and demodulated Raman absorption lines showing
broadening due to (i) input gradient and (ii) output gradient.

The bandwidth of the system is given by B = ⌘l, where l is the length of the memory. When
using alkali atoms, GEM is implemented using a ground state coherence, in our case between
the F = 1 and 2 hyperfine states. These are coupled using a strong off-resonant coupling beam,
as shown in figure 1, to make an ensemble of quasi-two-level atoms. The storage efficiency is
determined by the off-resonance broadened Raman line to be

✏s = 1 � exp
✓

�2⇡
ODres

B0
�2

c

12

◆
, (3)

where �c is the Rabi frequency of the coupling field and B0 is the bandwidth normalized by
the excited-state decay rate � . To recall the light the gradient is reversed, with ⌘ ! �⌘. This
causes a time reversal of the initial absorption process and the emission of a photon echo from
the memory in the forward direction at time 2ts, where ts is the time between pulse arrival
and gradient reversal. The monotonicity of the gradient ensures that no light is re-absorbed as
it leaves the memory and, as the process is symmetric, the recall efficiency is the same as the
storage efficiency, giving a maximum total memory efficiency of ✏t = ✏2

s . This does not take into
account any decoherence that may go on inside the memory. The detuned Raman absorption
nature of GEM (i.e. ODRam / (�2

c/1
2)ODres/B, where �c/1 ⌧ 1) means it requires a much

higher OD than a transmissive memory like EIT. Measurements of the broadened Raman line
are shown in figure 4(c) for both the storage and recall gradients. These measurements show that
our writing gradient has a bandwidth of around 50 kHz and the recall gradient has a bandwidth
of around 100 kHz.

3.2. GEM using cold atoms

In our experiment the probe, coupling and local oscillator (LO) fields are all derived from the
same laser. The laser can either be locked to the D1 F = 2 ! F

0 = 2 transition, using saturated
absorption spectroscopy, or placed near this transition, with the frequency being stabilized with
a reference cavity. The probe and LO fields are shifted by 6.8 GHz to be resonant with the D1
F = 1 ! F

0 = 2 transition using a fibre-coupled electro-optic modulator. All three fields pass
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Figure 5. Probe Diffraction. CCD traces of probe transmission through MOT for
(a) �40 MHz and (b) + 40 MHz. Colour bar shows log absorption scale.

through separate acousto-optic modulators to allow for fine frequency adjustment, as well as
gating and pulsing. The experimental set-up for the cold atom GEM experiment is shown in
figure 1(b).

The reversible frequency gradients for GEM were created using two coils with a radius
of 75 mm placed 70 mm apart around the centre of the MOT. These coils were driven with
between 2 and 4 A. We also required that the gradient be switched quickly compared to the
storage time and with minimal cross-coupling and oscillation after switching. Using a home-
built actively stabilized metal oxide semiconductor field effect transistor (MOSFET) based
switch we achieved switching in 1.5 µs to within 1% of the desired current.

The probe beam was focused into the MOT to access the highest ODs available in the
atom cloud. Using lens L2 we formed a waist of 50 µm in the atom cloud. Using a CCD we
investigated the probe beam transmission through the MOT as a function of detuning from
the F

0 = 2 excited state. Two of these traces are shown in figure 5. We observe that the high
density of the atom cloud causes lensing of the probe beam, which changes as a function of
frequency. These CCD traces, combined with additional data from measurements made using
an avalanche photodiode and weak probe pulses, indicate a resonant probe OD of around 300
on the D1 F = 1 ! F

0 = 2 transition.
To combine the probe and coupling fields we used a non-polarizing 50:50 beam-splitter

(BS1 in figure 1). Unlike the probe, we want the coupling field to have a large diameter, to cover
the entire ensemble with minimal variation in intensity. We use L1 to make a telescope with L2
(the focusing lens for the probe) to have a collimated coupling field with a waist of 1.25 mm.
The reason we use a BS rather than a PBS is that it allows us to vary the probe and coupling
polarizations, to which GEM is very sensitive [18]. After the MOT we filter the coupling field
from the probe using lens L3 and a rectangular pinhole, with dimensions of 100 ⇥ 200 µm2.
This removes over 99% of the coupling field and has a probe transmission efficiency of 90%.
The mode selective heterodyne detection then sees no trace of the coupling field.

For the highest efficiency memory we used the MOT shown in figure 3(a) with a 480 ms
load time. After this time the fields are ramped down for 20 ms, as described in section 2.2, and
then all MOT fields are turned off. At this point the input gradient is turned on with the two
GEM coils. After 500 µs, allowing eddy currents generated by the MOT coils to switch off, the
coupling field is turned on and then the probe is pulsed into the ensemble. Though the MOT
cannot fill completely in the 480 ms load time, by continually running the above sequence and
having only a millisecond between turning off the MOT and turning it back on again, the atom
number in the MOT saturates after only five cycles of the experiment.
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Figure 6. GEM with cold atoms. (a) High efficiency demodulated and squared
heterodyne data: (i) input pulse (blue), and (ii) echo (red) at 80 ± 2% total
efficiency. Points correspond to digitally demodulated data, averaged over
10 (17) traces for input (echo) and squared, error from standard deviation. Lines
correspond to Gaussian fit. Dashed line indicates magnetic field switching at
t = 0. (b) Log–log plot of memory efficiency as a function of storage time for
(i) MOT shown in figure 3(a) (blue), (ii) MOT shown in figure 3(e) (green) and
(iii) MOT shown in figure 3(c) (red).

We found a Gaussian pulse with a full-width-half-maximum of 10 µs to be optimal for
storage. Longer pulses were affected by MOT decay, while shorter pulses required higher
bandwidths that reduced the Raman absorption efficiency (see equation (3)). For this pulse
length, a one-photon detuning of �250 MHz and approximately 350 µW in the coupling field
(corresponding to a Rabi frequency of 2 MHz), we were able to demonstrate storage with
80 ± 2% total efficiency. This was measured by squaring the modulated pulse, finding the pulse
shape and integrating and averaging over 10 input and 17 output pulses, the error coming from
the standard deviation of these traces. This is shown in figure 6(a), with the data being digitally
demodulated in phase, averaged and then squared to produce the intensity plot. As heterodyne
detection is mode sensitive, care was taken to optimize the visibility for the input pulse, so that
any change in the mode during storage would lead to a reduction in the measured efficiency.

To compare our memory to theoretical expectations, we need to know about the decay
of the information stored in the memory and the OD. To investigate the decay we delayed the
gradient switching time to store the pulse for longer periods inside the memory, while turning off
the coupling field during the storage window. For the MOT used to obtain the 80% efficiency
above we found an exponential decay with a time constant of 117 µs. The OD can be found
directly from the storage data where we observed 2% leakage of the probe field during the write
phase. Assuming symmetric read and write operations, the total efficiency of 20 µs storage can
be estimated as 0.98 ⇥ 0.98 ⇥ e�20/117 = 81%. We know from measurements of the broadened
Raman lines (figure 4(c)) that the write and read stages are not perfectly symmetric, however the
observed efficiency is still compatible with these measured bandwidths. We can also crosscheck
this result using equation (3). Taking the resonant OD of 150 (as only half the atoms reside in
the m F state used for the memory), the measured bandwidth of the read and write Raman lines
and the decay time, we again estimate 81% total efficiency for our memory.
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To investigate the source of the memory decoherence we also measured the decay of the
stored light for two other MOT configurations. Firstly, we added a longer waiting period after
switching off the MOT: 3 ms (figure 3(v)) instead of 500 µs. This avoids any residual magnetic
fields caused by eddy currents and resulted in an exponential time constant of 195 µs, though
with a lower initial efficiency due to lower initial OD. As the temperature of clouds (i) and
(v) are the same, this indicates that temperature is not limiting the coherence time. This is also
apparent from the exponential form of the decay: if it were temperature-limited we would expect
a Gaussian decay due to the thermal expansion discussed in section 2.

We also investigated the decay using a cloud without the axial coils (figure 3(c)). The initial
efficiency was again lower than with the initial MOT, due to the lower OD and size of the cloud,
and the time constant was 133 µs. This indicates the axial diffusion is not the limiting factor for
the initial MOT decay, as the initial MOT had a much lower temperature in the z direction. The
investigation of decoherence in this system is the subject of ongoing work.

4. Discussion

While 80% total efficiency is, to the best of our knowledge, the highest efficiency so far reported
for cold atomic ensembles, we have numerous paths for further improvement on this result. As
with all atomic memory experiments, OD is a necessary condition for high efficiency. In our
case, even with the large OD we have achieved, it is still the primary limit to our experiment. One
limiting factor on OD is that, when pumped into the F = 1 state, approximately half the atoms
end up in the m F = 1 state used for the memory and half in the m F = 0. If we implemented
an optical pumping scheme similar to the one in [45] we anticipate an increase in the OD by a
factor of two.

The storage time can also be improved by removing sources of decoherence. One potential
factor behind the decoherence could be inhomogeneous background magnetic fields, partly due
to eddy currents created by the switch off of the MOT coils. Improving this situation may require
improvements to switching electronics and physical redesign of the coil configuration. Atomic
diffusion will clearly also play a role, so further reductions in temperature will be advantageous.
One more extreme measure would be to transfer atoms into an optical lattice. The increase
in coherence time afforded by such a measure must, however, be balanced against the likely
decrease in atom number and thus storage efficiency.

Even without further improvement, our memory provides an excellent high-OD platform
for numerous other proof-of-principle experiments. We have proposed previously that the
magnetic field gradient could be replaced with an optical (ac Stark) gradient [46]. Combining
this with spatial light modulators and Pockels cells would give switching down to nanoseconds
and fine control over the gradient and therefore allow for precision manipulation of the stored
information, as discussed in [32, 47]. Another interesting possibility is to investigate cross-phase
modulation [48], where the high OD, small interaction volume and long storage times are highly
advantageous.

5. Conclusions

In this paper we have developed a cold atomic ensemble with 4 ⇥ 109 atoms and a peak OD
of 1000 on the D2 F = 2 ! F

0 = 3 transition, specifically with quantum memory applications
in mind. We used this ultra-high OD system to demonstrate the GEM scheme on the D1 line
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with a total efficiency of up to 80 ± 2% for pulses with a full-width-half-maximum of 10 µs,
still limited primarily by the OD. The decoherence of the system was found to be exponential,
with a time constant of 117–195 µs depending on the MOT parameters used, representing an
improvement of a factor of 2–4 over the warm GEM experiment.
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Introduction

A large part of my work at NIST-JQI has been devoted to the study and use of
noise properties of entangled beams generated using four-wave-mixing in warm
atomic vapor. It is not possible to describe here all these experiments but I will
highlight two results that are valuable in relation to the other works presented
in this manuscript.

We have seen in the previous chapter that GEM has the ability to store mul-
tiple spatial modes in the transverse direction. In the first experiment that I
describe in this chapter, we used the multimode properties of to quantum noise
[48] to be able to identify an object with a higher precision than would normally
be achieved with a typical laser.

The second result I will comment concerns the study of the opposite process
of a quantum memory: advancing quantum information [32]. We shown that
under certain conditions, an atomic vapor can exhibit an anomalous dispersion
and give rise to a group velocity larger than c. In the context of quantum
communication, these results can be shocking as it is clear that no signal can
travel faster than light [49]. However, we demonstrated the role of quantum
noise to erase all information while velocity becomes larger than c.

3.1 Imaging with the noise of light

Imagine that you have an object (an intensity or a phase mask) that you want
to image but you are also limited in the number of photons you can send onto
this object. We propose two techniques (one classical using thermal noise and
one quantum using quantum correlations) and compare the uncertainty in shape
estimation between both. To simplify the comparison we restricted the shape
estimation to a 1D problem.
The resource needed for this experiment is a pair of squeezed vacuum beams
generated using four-wave-mixing in a atomic vapor. These beams are too weak
to be measured directly with an amplified photodiode and need to be homo-
dyned with local oscillators to be detected. Taken independently both beams
(also known as probe and conjugate) exhibit an excess noise compared to a
coherent state. They are indeed thermal states. However, when the intensity
di↵erence or the phase sum is analyzed, we observed a noise below the shot
noise indicating quantum correlations.
The parameter we are trying to estimate is the angle of a bow-tie mask (1D
problem) placed on the conjugate path. To do so the local oscillator (LO) is
designed with a bow-tie shape of same size and same center as the mask, using
a spatial light modulator. However the orientation of the mask is unknown.

The classical technique consists in overlapping the bow-tie shaped LO with
the conjugate beam (after the mask) and measure the detected noise. The LO is
then rotated and when the noise is maximized, the search is finished and the LO
angle is an estimation of the mask angle. Indeed the fraction of the conjugate
beam which passes through the mask contains spatial modes with extra-thermal
noise compared to vacuum. In the limiting case of zero overlap between the LO
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and the mask, the LO will just beat with vacuum and detect shot noise because
no light coming from the conjugate beams interfere with it.

The quantum technique makes use of the second part of the entangled pair
(the probe beam), which surprisingly does not have to interact directly with the
mask. For this measurement, we simply added a second LO with the same angle
to beat with the probe beam and then measured the quadrature that minimized
the detected noise. This time, the search is terminated when the quadrature
noise is minimal. In the paper Imaging using the quantum noise properties of
light, we have demonstrated that the precision in the estimation of the mask
angle is enhanced by a factor 6 with the quantum technique compared to the
classical one, even though the second beam does not interact directly with the
mask.

The second experiment described in this paper is a direct application of this
principle to the field of pattern recognition. We start by defining a pattern set
(the alphabet letters). We are able to imprint this set on the local oscillator
with a spatial light modulator as shown in figure 3.1. An unknown mask from
the set is placed in the path of the conjugate beam and we compare the two
techniques to see if pattern recognition is enhanced using quantum correlations.

On the presented results (mask of the letter Z) by taking into account the
uncertainty on the noise measurements it is not possible to conclude on the
pattern in the classical case because more than one pattern noise measurement
lie within one standard deviation. On the quantum case however, the letter Z
is identified with more than 7 standard deviation certainty.

Figure 3.1: Example of probe and conjugate LO shape created using a spatial
light modulator. The intense dot in the middle is the (filtered) pump beam.
Each letter is an independent image and they are collated for presentation.
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1. Introduction

The use of quantum correlated resources to enhance sensing and measurement has been an
active field of research in recent years [1]. Multi-spatial-mode quantum states of light have
become available [2–5] and have allowed for the development of imaging techniques that can
surpass classical limits on resolution [6–8] or enhance signal-to-noise [9–11]. Here we present a
technique that exploits the noise properties of multi-spatial-mode vacuum-squeezed twin beams
to detect the shape of an object being probed by one of the beams. While we are able to estimate
the shape of the object by monitoring only the fluctuations of the beam that probes it, we
obtain an enhancement in this estimation sensitivity under certain conditions by exploiting the
quantum correlations between the twin beams.
It is possible to estimate the shape of a binary (hard-apertured) intensity mask by probing

it with a light field and performing a homodyne detection of the light that passes through it.
The local oscillator (LO) spatially selects which portions of the probing field are detected, so
the homodyne detection effectively acts as an imaging device [12,13]. By optimizing the shape
of the LO to maximize the mode matching with the probing field after the mask (the LO-mask
overlap), the object’s shape can be inferred. If the mask is probed with a state of light consisting
of a small number of photons, determining the mean value of the field becomes difficult due to
unavoidable quantum noise. We can, however, use the same homodyne technique to measure
the noise of the field rather than its mean value in order to extract information about the object’s
shape. Homodyne detection provides the additional advantage of allowing the discrimination
of a signal against a background at other wavelengths.
A coherent state would not be a suitable choice to probe the mask since it is a displaced

vacuum state. Its noise properties would thus remain unchanged regardless of how the probe
field is altered or attenuated by the mask [14]. On the other hand, a state whose quadrature
fluctuations are not at the shot noise limit (SNL) can provide information about the shape
of the mask. For example, if a thermal state is used, the mask’s shape can be estimated by
manipulating the shape of the LO to optimize the geometric overlap between the field that
passes through the mask and the LO to maximize the detected level of excess noise relative to
the SNL. Since thermal states are classically obtainable, we will refer to such a single-beam
method as a classical noise imaging technique.
In many situations a reference beam is used to eliminate correlated sources of noise and
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to improve the signal-to-noise ratio for a given measurement [15, 16]. We extend this idea to
noise imaging by exploiting the quantum correlations between vacuum-squeezed twin beams
to improve the estimation of the shape of the mask over the classical noise imaging technique
described above. We refer to this two-beam technique as a quantum noise imaging technique.
In this paper, we use twin beams generated by four-wave mixing (4WM) to directly compare
these two techniques and find that the quantum technique provides an enhanced sensitivity to
changes in the LO-mask overlap and thus a greater confidence in estimating the shape of the
mask.

2. Four-wave mixing and squeezed light detection

To generate the light states needed for this experiment, we have used 4WM in a double-Λ
configuration [17] in a hot 85Rb vapor (Fig. 1(a)-(b)). The 4WM process converts two photons
from a single pump beam into a pair of photons emitted into twin fields referred to as the
probe and conjugate. These twin beams exhibit strong amplitude correlations such that the
amplitude difference noise is below the SNL [18]. Taken individually, these fields are thermal
states exhibiting uniformly distributed excess noise.
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Fig. 1. (a) Four-wave mixing in 85Rb. Probe and conjugate fields are coupled over a range
of angles ∆φ and selected for measurement via homodyne detection at φ . (b) Double-Λ
scheme in 85Rb. (c) Experimental set-up. Probe and conjugate local oscillators are shaped
into bow ties and are rotated with respect to the mask. Resultant homodyne signals are
subtracted. The black dotted circles joined by the arrow indicate coherence areas, localized
regions of correlations between the probe and conjugate. LO denotes the local oscillator
and SV the squeezed vacuum light.

Quantum correlations between the probe and the conjugate can be measured by perform-
ing a balanced homodyne detection of each field and subtracting the homodyne signals for
appropriately chosen phases of the LOs. The noise of a single mode’s generalized quadrature
X̂θ = 1p

2 (â
†eiθ + âe�iθ ) = X̂ cosθ +Ŷ sinθ is measured by choosing the LO phase θ . We sub-

tract the noise of the probe and conjugate generalized quadratures to obtain the noise of the
joint quadrature X̂Jθ = X̂ p

θp � X̂cθc . Given probe and conjugate LO phases respectively denoted by
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θp and θc, X̂Jθ is squeezed under the condition that θp+θc = π . We therefore only need to con-
trol the phase of one of the LOs (using a PZT-mounted mirror) to detect the level of squeezing
between the probe and conjugate.
To implement the 4WM process, a linearly polarized intense pump beam (300 mW) is fo-

cused down to a 1
e2 diameter of 1.2 mm inside a 1.25 cm long

85Rb cell heated to 110�C. The
probe and conjugate frequencies are unseeded, so the resulting probe and conjugate fields are
generated from spontaneous emission. The frequency of the pump beam is detuned 800 MHz
to the blue of the |52S1/2,F = 2i ! |52P1/2,F = 3i transition at 795 nm. After separating
the pump beam from the probe and conjugate beams with a polarizing beam splitter, each beam
is sent to a balanced homodyne detector using a pair of matched photodiodes with quantum
efficiencies of approximately 95%. The total optical path losses from the 4WM process to the
homodyne detection are approximately 4%.

3. Experimental procedure

To characterize each technique’s sensitivity we reduced the LO search to a one-dimensional
problem by choosing our mask to be in the shape of a bow tie that can be oriented at an arbi-
trary angle around its center of symmetry (Fig. 1(c)). The position of the center of symmetry
was fixed, and the only free parameter to be estimated was the mask’s angular orientation. We
generated probe and conjugate LOs with congruent bow tie shapes but rotated at an arbitrary
common angle relative to the mask. The estimated parameter is the overlap between the conju-
gate after the mask and its LO, which is a function of the angle. We then recorded the resultant
quadrature noise powers with a spectrum analyzer as a function of the overlap for the classical
and quantum noise imaging techniques. In order to reliably measure the amount of squeezing
in the quantum case, the phases of the LOs were quantum noise locked [19] such that the twin
beam quadrature noise difference was always minimized for each overlap value.
An important feature of the correlated fields generated by our 4WM set-up is that they are

multi-spatial-mode [20], which can in general provide greater flexibility in obtaining an en-
hancement with these states [14]. Quantum correlations between the probe and conjugate are
localized to pairwise correlated regions within the beams referred to as coherence areas [21,22]
(Fig. 1(c)). In order to measure and compare only correlated coherence areas we symmetri-
cally generate LOs for the probe and conjugate by shaping the probe beam using a spatial light
modulator (SLM) to shape the spatial profile of a coherent state at the probe frequency. We
then use this beam to seed a second 4WM process (Fig. 2). This technique [23] ensures that
only the spatial modes supported by the process will be present in the LOs and that any mode
distortions due to Kerr lensing [20] will be accounted for as the beams propagate to the far
field. Additionally, the use of a second 4WM process guarantees that the spatial profiles of the
probe and conjugate LOs are manipulated synchronously so that only correlated regions of the
probe and conjugate fields are detected as the shapes of the LOs are manipulated. Without any
mask present, we align the LOs to the twin fields in order to maximize the squeezing. The
mask is then inserted into the conjugate field, and we begin the search for the mask’s shape by
manipulating the transverse profile of the LOs.
We calibrated the LO-mask overlap by splitting the seed beam used to generate the LOs

and sending it to seed the 4WM process formerly used to generate the vacuum-squeezed twin
beams, so that bright twin beams are obtained in their place. These bright twin beams can
then be interfered with their LOs in order to optimize mode matching and ensure proper initial
alignment for the homodyne detection. As we rotated the angular orientation of the bow tie
shapes on the SLM, we observed that the homodyne mode-matching efficiencies between the
bright beams and their LOs stayed near 97% for both the probe and conjugate. We then inserted
the mask into the bright seeded conjugate beam and directly detected the fraction of transmitted
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power as the angle of the bow tie was changed using the SLM. This procedure allowed us to
factor any non-uniformity in the beam’s intensity profile into the evaluation of the overlap at
any LO orientation.
The noise generated by the homodyne difference signal was detected at 750 kHz using a

spectrum analyzer in zero-span mode with a resolution bandwidth of 30 kHz, a video band-
width of 100 Hz, and a sweep time of 1 s. The detected noise was digitized into 460 points, and
the average noise power of these 460 points was taken to be a single quadrature noise measure-
ment. To characterize each measurement’s statistical uncertainty, we divided each trace into 46
segments consisting of 10 points each. We adopted this procedure after verifying that cluster-
ing the data into 10 point segments maintained statistical independence among tthese segments.
The average value of each segment was tabulated, and the standard deviation of these 46 values
was calculated to characterize the measurement’s statistical uncertainty. Finally, 10 series of
measurements were taken at 15 different local oscillator bow tie angles for both the quantum
and classical noise imaging techniques. This data is presented for the classical and quantum
techniques in Fig. 3(a). Since each series of measurements was separated by approximately 20
minutes, the data in Fig. 3(a) indicates an experimental stability over several hours.

far field

spatial light 

pump

polarizingRb

= 0f

beamsplitter

modulator

polarizing
beamsplitter

Fig. 2. A spatial light modulator writes a diffraction grating with a region of constant phase
in the desired transverse shape of the local oscillator. A coherent state is scattered from
the diffraction grating and an f-f optical system and telescope focus the Fourier transform
of the pattern into a Rb cell where 4WM occurs, generating two local oscillators at the
appropriate frequencies and desired shape in the far field.

We first consider the quantum noise imaging technique (blue triangles in Fig. 3). If the con-
jugate LO does not spatially overlap with the conjugate field that passes through the mask its
measured fluctuations will be near the SNL. On the other hand, since the probe field passes un-
obstructed to its homodyne detector, its homodyne detection will produce excess noise. There-
fore the homodyne difference signal will yield a net excess noise relative to the twin beam SNL.
As the overlap between the conjugate and its LO increases, however, the quantum correlations
between the twin beams are recovered. Assuming that the noise properties are identical for all
the coherence areas, the search for the mask’s shape is complete when the amount of squeezing
is maximized for the largest LO area possible.
The classical noise imaging technique is implemented by simply blocking the probe beam

(red squares in Fig. 3). The only difference is that the conjugate beam, taken alone, is a thermal
state with excess noise. In this case, the search for the shape of the mask consists of maximizing
the excess noise by manipulating the LO.
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4. Results

We wish to quantify the relative sensitivity between the quantum and classical noise imaging
techniques in detecting changes in the LO-mask overlap for different overlaps. To do this we
introduce the relative uncertainty in the overlap estimation ∆Oest :

∆Oest =
∆N
| ∂N

∂O |
. (1)

∆N represents the measured standard deviation of a given noise power N and ∂N
∂O is the slope

of the noise power as a function of the overlap. In other words, ∆N quantifies the “noise on the
noise,” which incorporates both sources of statistical uncertainty and technical noise. ∂N

∂O is set
by both the spatial mode composition of the light illuminating the mask as well as the mask’s
shape [14]. To estimate ∂N

∂O , we computed a linear fit to the noise data at overlaps greater than
0.8 and extrapolated to an overlap of unity. We then included this extrapolated point in a 3rd
order polynomial fit and plotted the result in Fig. 3(a). Fig. 3(a) confirms that for overlaps near
unity the excess noise and squeezing are maximized for the classical and quantum techniques,
respectively.
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Fig. 3. (a) Mean quadrature noise power N for the conjugate’s excess noise (red squares)
and twin beam difference signal (blue triangles) as a function of overlap between the mask
and the conjugate LO. Standard deviations of the mean are on the order of the marker size
and not illustrated. Third order polynomial fits to the data are included. (b) Comparison of
the uncertainty in the estimated LO-mask overlap for the classical and quantum techniques,
on a log scale, as a function of the overlap for the single and twin beam measurements.

In Fig. 3(b), we present curves comparing ∆Oest for the classical and quantum schemes.
As Fig. 3(b) suggests, the quantum noise imaging technique provides a higher sensitivity to
changes in the overlap than the classical technique. Although the comparable magnitudes of
| ∂N

∂O | indicated in Fig. 3(a) might suggest that the quantum and classical cases should exhibit
comparable values for ∆Oest , the difference between the curves in Fig. 3(b) can be explained
by the variation of ∆N with overlap. Specifically, the value of ∆N is expected to scale with the
noise power N. For a given overlap the magnitudes of |∂N

∂O | are similar for each technique, but
the smaller value of ∆N for the quantum technique will yield a smaller value of ∆Oest .
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Since the objective of these techniques is to estimate the shape of the mask, we wish to oper-
ate in the regime where the overlap is close to unity. For overlaps of 0.9 and above, the quantum
case provides an enhancement over the classical case by a factor of 6.3 ± 0.4, corresponding
to enhancement in the estimation of the angle by a factor of 3.8 for small angles. The enhance-
ment factor of 6.3 was calculated by averaging ∆Oest for overlaps above 0.9 in Fig. 3(b) for
the quantum and classical techniques. The angular enhancement factor of 3.8 was obtained by
separately calibrating the measured LO-mask overlap as a function of the angle between the LO
bow tie and the mask. The indicated uncertainties here and in the figures represent one standard
deviation, combined statistical and systematic uncertainties.
We have verified that the classical technique is limited by fluctuations of the conjugate field.

On the other hand, we are able to observe excess technical noise introduced by the quantum
noise lock used for the measurement of the squeezed noise power for the quantum technique.
This leads to a degradation in sensitivity when estimating the angle of the mask. Since this
technical noise is not present on the excess noise measurements of the classical technique it
decreases the enhancement provided by quantum noise imaging technique over the classical
technique. Accordingly, even larger enhancements should be possible. The advantage that can
be obtained with the quantum technique over the single-beam classical technique is dependent
on the amount of squeezing present [14]. Losses after the twin beam source will erode this
advantage depending on how they are distributed between the probe and conjugate. In partic-
ular, unbalanced losses between the beams would alter the sensitivity and could eliminate any
advantage.

5. “Alphabet gun” test

While we have shown that the quantum noise imaging technique can improve the sensitivity
in determining the maximum LO-mask overlap, we also show that this technique can be used
with a simple search algorithm to recognize a mask among a given set of choices. We place
a mask cut into the shape of the letter Z into the path of the conjugate field and then shape
the probe and conjugate LOs with the SLM to form the various letters of the Latin alphabet
(Fig. 4(a)). All letters are positioned such that their glyph widths exactly overlap (Fig. 5). Each
letter essentially functions as a guess for the shape of the mask. With no mask inserted into the
path of the conjugate beam, each choice of LO letter yields slightly different levels of detected
single beam excess noise and twin beam squeezing due to the spatial mode structure of the twin
beams. These noise levels serve as baselines for comparison when the mask is inserted. We then
look at the deviation from these baselines upon insertion of the mask:

Di =
Ni
masked

Ni
baseline

. (2)

Di denotes the deviation in the noise power for LO letter i, Ni
masked is the noise power recorded

by the homodyne detection with the mask present, and Nibaseline signifies the unmasked baseline
noise power.
For the classical technique, the presence of the mask leads to varying degrees of reduc-

tion in the measured excess noise (Fig. 4(b)). For the quantum technique, the mask causes the
measured quadrature-difference noise to increase and, for most choices of LO letter, for the
squeezing to be lost. In fact, only the correct choice of the LO letter (Z) continued to yield any
squeezing. It should be noted that the letter I in the chosen font did not produce a strong enough
LO to elevate the single beam shot noise significantly above the electronic noise floor, so it is
not included in Fig. 4(b)-(c).
Although both the classical and quantum estimation techniques correctly suggest that the

letter Z is the best choice of LO, the quantum technique provides a higher degree of confidence.
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Fig. 4. (a) Probe and conjugate LOs are generated in the shape of each letter of the alpha-
bet and used in a balanced homodyne detection. The conjugate field illuminates the mask
whose shape is to be estimated. (b) Deviation from initial excess noise for the classical
noise imaging technique upon insertion of the mask versus choice of letter for the local
oscillator. (c) Deviation from initial squeezing level for the quantum noise imaging tech-
nique upon insertion of the mask. The baseline of squeezing between the twin beams for
the LO letter Z is -2.2 dB, measured without the mask. With the mask inserted, only the
mask shaped as the letter Z maintains any squeezing. The gray regions in (b)-(c) represent
the value of Di and its associated uncertainty for the correct LO choice, Z. The letter “I” in
the chosen font did not produce a bright enough local oscillator to elevate the quadrature
noise power above the electronic noise floor of our detectors.

Fig. 5. Local oscillators used for the alphabet gun test (Media 1).
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Uncertainties in the deviation incorporate contributions from both the baseline and masked
noise measurements. These uncertainties are plotted along with their associated changes in
squeezing and excess noise in Fig. 4. For the quantum case (Fig. 4(c)), the correct choice of LO
is separated from the next closest choice (the letter T) by over 7 standard deviations. For the
classical case, however, the quadrature noises for the letters T and Z lie within their respective
uncertainties.

6. Conclusion

In conclusion, we have demonstrated the ability to estimate the shape of a binary intensity mask
using homodyne detection of the noise of vacuum-squeezed twin beams used to illuminate the
object. In the classical and quantum techniques described, the mask is exposed to exactly the
same state of light, which contains too few photons for direct detection of the amplitude quadra-
ture and too many photons for current photon counters. These techniques might therefore prove
useful for imaging applications where a minimal exposure to light is critical (e.g. when dealing
with low optical damage thresholds or when it is desirable that the detection go unnoticed). A
promising application is related to imaging of biological samples under controlled conditions
where squeezing could be maintained and the exposure of the sample minimized [24].
The classical noise imaging technique exploits the fact that, taken individually, each of the

twin beams behaves like a thermal state of a light characterized by uniform excess quadrature
noise. Although the excess noise properties of a single beam can be used, we have demonstrated
that the quantum correlations of the twin beams offer an enhancement in sensitivity for the
regime of high LO-mask overlap. As explained in [14], these correlations must be quantum
for an enhancement to be possible. Additionally, we showed that a mask can be recognized
among a given alphabet of choices with increased confidence using the quantum noise imaging
technique. As one can notice in the associated video, the resolution with which we generate
the LOs is limited. The constraint on the resolution is the limited pump power available for the
4WM process, which places a practical upper bound on the pump’s available transverse size.
Increasing the pump’s transverse size at a given intensity would increase the resolution of the
LOs [11] and should improve our ability to estimate the shape of the mask.
Finally, we note that one could in principle identify a phase mask separate from, or in addition

to, an intensity mask with a similar technique. The search for a phase mask would require a scan
over the LO phase in only the beam that passes through the mask. Such a search would not be
possible, however, using the “classical technique” since for a thermal beam all phases have the
same noise level.
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3.2 How quantum noise a↵ects the propagation
of information.

We have already discussed various approaches to delay light and quantum in-
formation carried by entanglement. Although entanglement cannot be used to
signal superluminally [50], it is thought to be an essential resource in quantum
information science [51, 52]. It is then of fundamental interest to study what
happens to entanglement when part of an entangled system propagates through
a fast light medium. Much work has been done to understand fast-light phenom-
ena associated with anomalous dispersion, which gave rise to group velocities
that are greater than the speed of light in vacuum, as described in chapter 1
[53]. For classical pulses propagating without the presence of noise, it has been
well established theoretically that the ”pulse front” propagates through a linear,
causal medium at the speed of light in vacuum [54]. It is often argued that this
part of the pulse carries the entirety of the pulse’s classical information con-
tent since the remainder of the signal can in principle be inferred by measuring
the pulse height and its derivatives, just after the point of non-analyticity has
passed [55, 56]. Experimentally, in the inevitable presence of quantum noise,
pulse fronts may not convey the full story of what is readily observed in the
laboratory.
In the paper Quantum mutual information of an entangled state propagating
through a fast-light medium, we discuss in details the detrimental role of quan-
tum noise. Instead of using a pulse with a given shape, in this work we encode
the information in correlated quantum noise, and therefore the definition of a
”pulse front” becomes impossible. The fluctuations of the probe and conjugate
electric fields are not externally imposed, and they present no obvious pulse
fronts or non-analytic features to point to as defining the signal velocity. As
such, classically-rooted approaches to defining the signal or information content
of the individual modes are not readily applicable to this system. To quantify
the quantity of information usable in the entangled beams we use the criteria of
inseparability (Fig. 3.2 for details). As a reminder, note that an inseparability
lower than 2 guarantees the presence of entanglement.

The entangled beams are generated using four-wave-mixing in a hot atomic
vapor, and one of the two beams then propagates through a tunable fast-light
medium (with group velocity larger than c). This fast light medium can be
tuned to slow-light by changing the experimental parameters and this allows for
direct comparison. Due to the Kramers-Kronig relation, a group velocity larger
than c, is systematically associated with gain or loss through the medium. The
main point of our study is to understand the role of this gain or loss on the
quantum information encoded in our beams.

The first step consists in measuring the arrival time of the cross-correlation
maximum (or minimum) when the conjugate beam propagates in vacuum (ac-
tually in air) and compare it to the case of propagation in a fast-light medium.
This approach is analogous to the classical technique of measuring the arrival
time of a light pulse maximum. After accumulating enough statistics, we have
observed an advancement of the normalized correlation peak by 3.7 ns ± 0.1 ns.
Compared to the 300 ns of correlation time, this corresponds to a un-ambiguous
relative advancement of more than 1%.
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Figure 3.2: Determination of inseparability I using a spectrum analyzer. Part
a) corresponds to the reference case while b) corresponds to data taken with fast
light. The minimum noise power of the homodyne di↵erence signal corresponds
to squeezing of the X̂ quadrature di↵erence (i.e. hX̂2

�i) while the minimum

noise power of the homodyne sum gives the squeezing of phase sum hŶ 2
+i. With

the fast-light cell inserted into the path of the conjugate, we were able to see
I < 2. The figure shows how the inseparability can be calculated (from the
data obtained from the spectrum analyzers) by adding together the values of
the appropriate minima and averaging. Adapted from [26]

However this advancement is coming with a reduction of the quadrature
squeezing from �3 dB below the shot noise in the case of free-space to �2.3 dB in
the case of fast-light media (Fig. 3.2). Obviously this reduction is not observed
when comparing the cross-correlation maximum or normalized. Therefore, in a
second set of measurements, we report the inseparability as function of time.
Similarly we see an advancement of the inseparability peak in the case of the
fast-light medium. This was expected as the inseparability is computed from
normalized cross-correlation maximum and minimum (see figure 3.2 for details).

More insights can be found in the behaviour of the leading edge of insepara-
bility. Indeed, the inseparability can be used to define the mutual information
(using the covariance matrix) and therefore, a larger value of inseparability
means more mutual information shared between the two sides of the entangled
pair. If at some moment in time, the inseparability has a larger value than later
it means that the amount of information is larger. What we observe in the ex-
periment is that the noise added by the fast light medium, consistently reduces
the value of inseparability of the leading edge in order that it never outperforms
the case of free-space. In the opposite case of slow light, we also have shown
clear evidence of delaying not only the maximum of inseparability but also the
trailing edge.

It is interesting to contrast this asymmetry in the fast- and slow-light be-
haviour of the mutual information with the results of previous experiments
studying the velocity of classical information propagating through dispersive
media. In refs [55] and [57], new information associated with a ’non-analytic’
point in the field was found to propagate at c in the presence of slow- and
fast-light media alike.
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It is widely accepted that information cannot travel faster than
c, the speed of light in vacuum1–3. Here, we investigate the
behaviour of quantum correlations and information in the pres-
ence of dispersion. To do so we send one half of an entangled
state of light through a gain-assisted slow- or fast-light
medium and detect the transmitted quantum correlations and
quantum mutual information4–6. We show that quantum corre-
lations can be advanced by a small fraction of the correlation
time, even in the presence of noise added by phase-insensitive
gain. Additionally, although the peak of the quantum mutual
information between the modes can be advanced, we find that
the degradation of the mutual information due to added noise
appears to prevent an advancement of the leading edge. In con-
trast, we demonstrate a significant delay of both the leading and
trailing edges of the mutual information in a slow-light system.

Many experiments have demonstrated the ability to manipulate
the group velocities of optical pulses moving through atomic
vapours7–11. For classical pulses propagating without the presence
of noise, it has been well established theoretically12,13 that the
initial turn-on point of a pulse (the ‘pulse front’) propagates
through a linear causal medium at the speed of light in vacuum.
It is often argued14 that this signal carries the entirety of the
pulse’s classical information content, because the remainder of the
pulse can in principle be inferred from the pulse height and its
derivatives just after the point of non-analyticity has passed.

Experimentally, particularly in the inevitable presence of
quantum noise, pulse fronts may not convey the full story of what
is readily observed in the laboratory. It is thus interesting to consider
other operational definitions of a signal that apply to particular
systems. For example, Stenner and colleagues15 studied the propa-
gation of classical information encoded in bright, actively shaped
optical pulses travelling through a fast-light medium. These exper-
iments revealed that the operational information velocity is actually
slowed to speeds less than c. Although noise may have affected the
experimental results, these experiments were not conducted in a
regime where quantum noise necessarily played a crucial role.
Meanwhile, adopting a definition of signal velocity based on observ-
ing a given signal-to-noise ratio, Kuzmich and colleagues showed
how quantum noise associated with gain-assisted fast light would
be expected to limit the early detection of smooth, narrowband
pulses consisting of only a few photons16.

Here, we adopt an alternative definition of a signal, choosing it to
be the random, but strongly correlated quantum fluctuations of two
spatially separated parts of a bipartite entangled state. The entangled
state in this experiment was generated via four-wave mixing (4WM)
in a warm vapour of 85Rb (ref. 17), which converts two photons

from a strong pump beam into ‘twin’ photons emitted into spatially
separated modes referred to as the probe and the conjugate (Fig. 1a).
Although entanglement cannot be used to signal superluminally18,
it is thought to be an essential resource in quantum information
science5,6. Accordingly, the prospect of storing19 or delaying20

entanglement has attracted significant interest.
The fluctuations of the probe and conjugate fields are not

externally imposed and they present no obvious pulse fronts or
non-analytic features to point to as defining the signal velocity. As
such, classically rooted approaches to defining the signal or infor-
mation content of the individual modes are not readily applicable
to this system. Despite the randomness of these fluctuations, infor-
mation is shared between the modes. We take the quantum mutual
information as our information measure, which removes the ambi-
guity of defining the arrival time of such information in the presence
of noise, quantum or otherwise. The quantum mutual information
for bipartite Gaussian states is readily accessible via optical homo-
dyne measurements5,6 and naturally provides a consistent descrip-
tion of information in this system.

We studied how the dispersion associated with phase-insensitive
gain3 affects these correlations by inserting a second vapour cell into
the path of the conjugate and driving a second 4WM process with a
separate pump (Fig. 1b). We show that when one mode of the two-
mode state passes through this fast-light medium, the peak of the
quantum mutual information between the modes is advanced, but
the arrival of the leading edge is not. We also show that—in
contrast—the leading and trailing edges of the mutual information
are both delayed when one of the modes propagates through a
gain-assisted slow-light medium.

The real and imaginary parts of the nonlinear susceptibility x (3)

that govern the response of the second 4WM process to the conju-
gate can be described by a set of equations similar to the Kramers–
Kronig relations applicable to linear dielectric media21. Using these
relations as a guide (Fig. 1c), we changed the detuning of the pump
beam used to drive the second 4WM process so that the conjugate
frequency overlapped with the region of anomalous dispersion.

By performing separate balanced homodyne detections of the
probe and conjugate modes, we measured the fluctuations of the
in-phase X̂

( )
and out-of-phase Ŷ

( )
amplitudes of the electromag-

netic field in each beam, which are referred to as the field quadra-
tures. Taken individually, the probe and conjugate beams exhibit
quadrature fluctuations that exceed the shot-noise limit. Taken
together, however, these fluctuations display strong correlations
beyond the limits achievable classically. To characterize the strength
of the correlations, it is helpful to introduce the joint quadrature
operators X̂− = (X̂p − X̂c)/

##
2

√
and Ŷ + = (Ŷp + Ŷc)/

##
2

√
, where
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subscripts p and c denote the probe and conjugate fields, respect-
ively. For the appropriate choice of local oscillator phases17, the fluc-
tuations of one of the joint quadratures (kD X̂

2
−l or kD Ŷ

2
+ l) fall

below the shot-noise limit (are ‘squeezed’).
We verified the presence of entanglement by calculating a related

quantity, the inseparability I :

I ; kD X̂
2
−lm + kD Ŷ

2
+ lm (1)

Here kD X̂
2
−lm is the minimum value of the difference signal,

kD Ŷ
2
+ lm is the minimum value of the sum, and each term is normal-

ized to the shot-noise limit. An inseparability of I , 2 is a

necessary and sufficient condition to conclude that any bipartite
Gaussian state is entangled22.

Studies of bright beam propagation through fast-light media23

have investigated the trade-off between the magnitude of the
advancement and the amount of added noise24,25 as a function of
detuning. Here, we choose a detuning of the second pump that pro-
duces a readily detectable advancement of the conjugate fluctuations
without significantly deteriorating the inseparability. By operating
in a regime of low gain (G ≈1.1), we maintained an inseparability
of I = 1.2 under fast-light conditions, confirming the persistence
of entanglement between the probe and conjugate after the conju-
gate passes through the fast-light medium (Fig. 2a,b).
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independently tunable with respect to pump 1 (Supplementary Section 1). The phase of the local oscillators (LOs) is scanned using piezo-electric transducers
(PZTs) to verify the presence of entanglement. The sum and difference signals of the homodyne detections are recorded on a pair of spectrum analysers
(SAs) to detect quantum correlations. An oscilloscope is triggered to detect time traces of the individual homodyne detectors given a predetermined
threshold of squeezing heralded by the SAs. c, Measured gain profile (black solid line) of the second 4WM process as a function of the detuning of pump 2
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We confirm that the fluctuations of the continuous-wave (c.w.)
conjugate are advanced through the fast-light cell by computing
the normalized cross-correlation function (see Methods and
Supplementary Section 3.1) of the detected probe and conjugate
quadratures for both the reference and fast-light cases (Fig. 2c–e).
After averaging 200 time traces, we conclude that the peak of the
cross-correlation function is shifted forward in time by 3.7+
0.1 ns, corresponding to a fractional advance of $1% relative to
the cross-correlation width ($300 ns). Here, the uncertainty is esti-
mated by taking the standard deviation of the mean for the cross-
correlation peak advancements over all the experiments.

Although useful to clearly see an advancement of the corre-
lations, the normalized cross-correlation function of the field
quadratures does not capture how the noise added through phase-
insensitive gain affects the entanglement. We therefore plot the inse-
parability I as a function of the relative delay (Fig. 3a). The delay is
implemented in software in exactly the same manner as when calcu-
lating the cross-correlation function. Although the minimum value
of I is advanced in time for the fast-light case, its degradation acts,
within experimental uncertainty, to prevent the leading edge from
advancing forward in time. Figure 3b presents a sampling of the
delay-dependent squeezing measurements used to calculate the

inseparability, which indicates an advance in the maximum squeez-
ing of 3.7+0.1 ns (Fig. 3c).

In our experiment there is no imposed ‘signal’ as such. However,
the fluctuations on one beam carry information about the fluctu-
ations on the other. We capture this by calculating the quantum
mutual information between the two beams (Fig. 4), working
from the same basic data as used to calculate the delay-dependent
inseparability. The mutual information I(r) is defined in terms of
the von Neumann entropy SV(r)¼2Tr(rlog r) according to

I(r) = SV (r1) + SV (r2)− SV (r) (2)

where r denotes the full state density matrix and {r1,r2} denote the
reduced density matrices of the subsystems. The mutual infor-
mation quantifies the total (classical plus quantum) correlations
between the probe and conjugate26. In good agreement with the
squeezing and cross-correlation measurements, we observe an
advancement of 3.7+0.1 ns of the peak of the delay-dependent
mutual information, paired with a degradation due to uncorrelated
noise added by the fast-light cell (Supplementary Section 5).
This degradation appears to prevent us from observing an
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advance of the leading edge of the fast-light mutual information
(red curve in Fig. 4).

We then tuned the temperature and the pump detuning of the
second 4WM process to delay the propagation of the probe, as in
ref. 20. We slowed the probe to the greatest extent possible while
limiting the degradation of the inseparability to the same level as
in the fast-light case. The behaviour of the mutual information
after a slow-light delay is plotted alongside the reference and fast-
light cases in Fig. 4 (green trace). We are able to observe significant
delays of the leading and trailing edges of the mutual information
when compared to the reference case.

It is interesting to contrast this asymmetry in the fast- and slow-
light behaviour of the mutual information with the results of
previous experiments studying the velocity of classical information
propagating through dispersive media. In refs 15 and 27, new infor-
mation associated with a ‘non-analytic’ point in the field was found
to propagate at c in the presence of slow- and fast-light media alike.
This behaviour can be understood to be a consequence of the field’s
frequency components that lie outside the relevant bandwidth
where the medium exhibits steep dispersion.

Our results highlight the role played by both the detection and
information encoding methods in such experiments. In the present
experiments the signal beam is not pulsed, so there is no externally
imposed non-analytic point. The individual probe and conjugate
beams are noisy c.w. squeezed-vacuum beams, carrying information
that is correlated and common to the two beams. Our experiments
clearly show that the arrival time of the mutual information contained
within the detection bandwidth is affected by the fast- and slow-light
media. Although the normalized correlation function, the peak of the
inseparability and the peak of the mutual information can all be
advanced, our results suggest that the leading edge of the mutual infor-
mation cannot be advanced beyond the reference situation. Further
work will be required to determine if this is a fundamental limit in
this measurement context. The experiment clearly shows that the
mutual information can be delayed. We speculate that a combination
of distortion effects and quantum noise added by phase-insensitive
gain act to limit the advance of the mutual information differently
from the delay. We hope that these experimental observations stimu-
late a sharpening of our understanding of the role of quantum noise in
limiting the transport of information.

Methods
Data acquisition and frequency filtering. The local oscillator phases were allowed
to drift and the oscilloscope was triggered to record time traces of each individual
homodyne detection when the phases were appropriate to observe the squeezing in
either joint quadrature (Supplementary Section 2). The traces were Fourier-
transformed for analysis, and all analysis was confined to power spectral densities
within a bandwidth of 100 kHz–2 MHz. This corresponds to the frequency
bandwidth where we were able to show entanglement (I , 2) without the
presence of dispersion.

Calculating the correlation measures. We evaluated the inseparability over the
same 100 kHz–2 MHz bandwidth for all reference, fast- and slow-light experiments.
To calculate the mutual information, we made use of the fact that any bipartite
Gaussian state can be completely characterized by the variances and covariances of
the field quadratures28,29. These variances and covariances were evaluated using the
same bandwidth used to compute the inseparability. Finally, we evaluated the cross-
correlation functions after filtering the probe and conjugate homodyne time traces
with a 100 kHz–2 MHz band-pass filter (Supplementary Section 3.1).
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4.1 What is a fluid of light ?

We know, since Einstein, that vacuum photons are well described as mass-
less non-interacting particles, behaving as an ideal gas. In this chapter we
discuss experiments where photons acquire a sizeable e↵ective mass and tunable
interactions mediated by a coupling with matter, forming a fluid of light. This
approach relies on a description of these hybrid photons in terms of quasi-particle
of light generically known as polariton [6].

4.1.1 Hydrodynamic formulation of the non-linear Schrödinger
equation

The non-linear Schrödinger equation is used to describe a large variety of phe-
nomena. This equation can be written in a mathematical form, with t and r2

dimensionless:

i
@A

@t
=

✓
�1

2
r2 + g|A|2

◆
A. (4.1)

A is an arbitrary quantity and g is the non-linear coupling coe�cient.

In this manuscript, we will use this equation (with some modifications) to
study the time evolution of excitons polaritons in a microcavity (see 4.2) and
the spatial evolution of an electric field propagating in a non-linear medium (see
4.5). In chapter 5, we will also discuss its relevance in slow light and quantum
memory experiments.

In the context of fluid of light, it is useful to use the hydrodynamic formu-
lation of the non-linear Schrödinger equation [58, 59, 60]. To show that this
approach is very general, I will do this derivation in the case of the Gross-
Pitaevskii equation which describes the dynamics of an atomic Bose-Einstein
condensate [61]. The Gross-Pitaevskii equation is a time dependant non-linear
Schrödinger equation including a potential term:

ih̄
@ (r, t)

@t
=

✓
� h̄

2

2m
r2 + V (r) + g| (r, t)|2

◆
 (r, t), (4.2)

where  (r, t) is the condensate wave-function, V (r) is an external potential and
g is the non-linear coupling coe�cient, which is real. As usual the term | (r, t)|2
gives the local density of the condensate. To find an hydrodynamic formulation,
we need to extract a quantity analogue to a local velocity. This can be done
combining the time evolution of  and  ⇤ such as we find

@| |2

@t
+ r ·


h̄

2mi
( ⇤r �  r ⇤)

�
= 0. (4.3)

We can note that we would have obtained the same equation in the absence
of external potential V (r) and in the absence of the non-linear term g| (r, t)|2
as both these terms are real. Indeed this derivation has first been made by
Madelung for the usual (linear) Schrödinger equation [62, 63].

We note ⇢ = | (r, t)|2 the local density. We can see that Eq. 4.3 has the
form of a continuity equation for ⇢, and may be written as:

@⇢

@t
+ r · (⇢v) = 0, (4.4)
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where we have introduced a quantity v analogue to a velocity:

v =
h̄

2mi

 
⇤r �  r ⇤

| (r, t)|2 . (4.5)

It is possible to obtain a simpler expression for the velocity by applying the
Madelung transformation to  (r, t) and using the real part of the wavefunctionp
⇢ and its phase �:

 (r, t) =
p
⇢(r, t)ei�(r,t). (4.6)

This allows to write the velocity as:

v =
h̄

m
r�. (4.7)

For example, this derivation can be done in a similar way for the time-
evolution of an electromagnetic field in a cavity filled by a �

(3) non-linear
medium [64, 65, 66, 67, 68]. The equation is slightly modified (due to cav-
ity losses [67]) but the main idea remains: the light intensity corresponds to the
fluid density, the spatial gradient of its phase to the fluid velocity and the col-
lective behaviour originates from the e↵ective photon-photon interactions due
to the non–linearity of the medium inside the cavity.

Historically, the first connection made between superfluid hydrodynamics
and non-linear optics dates back to the 80’s. Back then, P. Coullet et al. related
optical phase singularities to quantized vortices in superfluid [69]. A seminal
attempt to experimental investigation of superfluid behaviour in a system based
on non-linear medium in a macroscopic cavity [70] has been followed by a series
of theoretical articles by R. Chiao on superfluidity of light in an atomic medium
within a Fabry–Perot cavity [71]. Surprisingly, no experiments were reported
thereafter, possibly because large non-linearities and high-Q cavities were hardly
available at the time. In parallel, non-linear resonator filled with dye has been
investigated and have allowed for the observation of photon BEC [72].

4.2 General overview of exciton-polaritons in a
semiconductor microcavity

Modern research on quantum fluids of light has shifted to exciton-polaritons
in micro-cavities. These semiconductor nanostructures, thanks to the progress
in nano–fabrication, o↵er unprecedented control of light-matter interaction. In
these systems, photons entering a Fabry–Perot cavity strongly couple to exci-
tonic dipolar transitions through quantum wells located at the cavity electric-
field maxima. This leads to the creation of massive interacting bosonic quasi-
particles known as exciton-polaritons.

Where does the photon e↵ective mass comes from ?

From the confinement inside a Fabry-Perot cavity.

If you take an optical cavity of length L and a refractive index nc, then
the resonance condition leads to p�p = 2ncL, with p a positive integer and �p
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the wavelength associated to the mode p. The dispersion relation of light with
wavevector k is:

Ec(k) =
h̄c

nc
|k| =

h̄c

nc

q
k2
x + k2

y + k2
z . (4.8)

If we assume the cavity to be along the z direction, the quantification of the
modes inside the cavity leads to:

kz = p
⇡

ncL
. (4.9)

We restrict ourselves to small angle of incidence ✓ on the cavity plane and
therefore kz = |k| cos(✓) � kx, ky. We note the in-plane wavevector k? =q

k2
x + k2

y. We obtain the general dispersion relation for a cavity:

h̄!c ' h̄ckz

nc
+

h̄
2
k
2
?

2m⇤ , (4.10)

with the definition of an e↵ective mass m
⇤ = nch̄kzc. In typical cavities we

have m
⇤ ⇠ 5.10�7

me, with me the electron mass. In this work, we will use
microcavities made of GaAs and of length 2�. The cavity finesse is F = 3000.

Where does the interactions comes from ?

From the quantum wells excitons embedded within the microcavity.

A quantum well in a semiconductor consist on thin layer (nano-scale) of
small band gap semiconductor, sandwiched between two other semiconductor
with wider band gap. In our case, we are talking about an InGaAs layer em-
bedded in GaAs. The material discontinuity in the growth direction leads to a
confinement of the electronic excitations inside the well region and a discretiza-
tion of their states inside the well. In semiconductor, the absorption of a photon
of adequate wavelength can promote an electron of the valence band (below the
Fermi energy) to the conduction band (above the Fermi energy). This will leave
an empty spot in the valence band that can be treated as a quasi-particle of
positive charge called hole. Both excitations having opposite electronic charge
can bound via Coulombian interaction. The energy of the electron-hole pair
being reduced, they form a pseudo-particle named exciton. The exciton is then
analogue to the 1s orbital of the hydrogen atom, with a positive charge of large
mass (the hole) and a negative charge of light mass (the electron) bounded
by the Coulombian interaction. For Wannier-Mott exciton, the exciton size is
larger than the typical crystal inter-atomic distance.

Excitons can be approximated as bosonic quasi-particles interacting medi-
ated hard-core interaction [73]. Defining a creation operator b̂q, for an exciton
with wavevector q. The interaction hamiltonian is then written as:

ĤXX =
1

2

X

k,k0,q

VXX b̂
†
k+qb̂

†
k0�qb̂kb̂k0 . (4.11)

This expression describes a scattering process with destruction of 2 excitons at
wavevectors k and k0 and the creation of 2 excitons at wavevectors k + q and
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k0 � q. We assume the interaction potential VXX to be constant with q because
we are interested at small wavevectors compared to the inverse of the exciton
length scale.

I have briefly described the cavity part which gives an e↵ective mass to
the photons and the quantum well which will provide the interactions. In the
next paragraph, I bring together (strongly) these elements and I introduce the
concept of exciton-polaritons.

Exciton-polaritons

The physics of coupling between these two systems is a fantastic example for
undergraduate quantum mechanics class. One starts with two bosonic particles
associated with the creation operators â

†
k and b̂

†
k for cavity photons and exci-

tons respectively. These particles have their own eigen-energies Ec = h̄!c for
the cavity photons and EX = h̄!X for the excitons. The hamiltonian of the
uncoupled system is clearly diagonal. One adds a coherent coupling energy h̄⌦R

between them and the system is not diagonal anymore. After a simple 2-by-2
matrix diagonalization, one obtains the two new eigen-states and eigen-energies,
named upper and lower polaritons1.

We will briefly derive this. In the photon-exciton basis we can write the
hamiltonian Ĥ as:

Ĥ =


Ec h̄⌦R

h̄⌦R EX

�
. (4.12)

Diagonalization of this hamiltonian gives rise to two new bosonic particles
associated with their creation operators p̂

†
k and û

†
k for the lower and upper

polaritons respectively. As bosonic particles, these operators follow the usual
commutation relations. The new eigen-energies are :

!UP (k) =
!C(k) + !X(k)

2
+

1

2

q
[!C(k) � !X(k)]2 + 4⌦2

R, (4.13)

!LP (k) =
!C(k) + !X(k)

2
� 1

2

q
[!C(k) � !X(k)]2 + 4⌦2

R.

!LP and !UP are associated to the lower and upper polaritons respectively. The
eigen-energy is then the mean of the exciton energy and photon energy, with a
correction that is the root mean square of the coupling Rabi frequency ⌦R and
half of the cavity-exciton detuning � = !C(k) � !X(k).
The polariton eigen-states can be written using the Hopfield coe�cients [75]:

⇢
p̂k = Xkb̂k + Ckâk

ûk = Xkâk � Ckb̂k
(4.14)

1
Obviously, for this simple treatment we have neglected the exciton-exciton interactions

described in the previous section. For a more detailed description please refer to [74]
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with

Xk =
1r

1 +
h

⌦R
!LP (k)�!C(k)

i2 (4.15)

Ck =
�1r

1 +
h
!LP (k)�!C(k)

⌦R

i2 .

To give an intuition of the behaviour of these pseudo particles we have plotted
in Figure 4.1 the dispersion relation for the upper and lower polaritons for
di↵erent detunings � = !X(k) � !C(k). This situation is similar to what we
realize experimentally [76]. The exciton mass is much larger than the cavity
photon e↵ective mass and therefore the dispersion of exciton is almost flat on
this scale. To tune the detuning � we can only control the cavity energy. To
do so, the cavity is slightly wedged in one direction, providing a large choice of
cavity-exciton detunings by pumping at di↵erent positions in the sample. From
this figure we can understand intuitively the e↵ect of detuning. For positive
detuning (Fig. 4.1-a), the lower polariton branch becomes more excitonic at
k = 0 and therefore this enhances the polariton-polariton interactions. On the
opposite side, for negative detuning (Fig. 4.1-c), the lower polariton branch
becomes more photonic. This can be used to reduce the e↵ective mass and to
get more light outside of the system. An important characteristic of this system
is that we are only concern on the 2D evolution that in the transverse (cavity)
plane.

Strong coupling condition

In the previous paragraph, I have explained what are exciton-polaritons. How-
ever, I have skipped one important discussion about strong coupling. Indeed,
exciton and photon have a finite lifetime in this system. Photon lifetime ⌧C can
be obtained from the quality factor Q of the cavity as:

⌧C =
Q

!C
. (4.16)

For the GaAs cavities we have used in this manuscript, the typical value of ⌧C
is 20 ps and quality factor are in the order of 104.
Exciton lifetime is far less under control and depends mainly of surface irregu-
larities inside the wells. These two quantities give rise to a broadening of the
energy by a width h̄ times the inverse of the lifetime. Typical broadening for a
GaAs cavity is h̄�C ⇠ 50 µeV.

On the other hand the Rabi frequency can be estimated from the oscillator
strength of the exciton f , the size of the cavity L and the exciton mass M :

⌦r =

s
fe2

2n2
cLM"0

. (4.17)

However this expression assumes a perfect overlap of the exciton and the photon
wavefunctions. Quantum wells must be placed carefully in the anti-nodes of the
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Figure 4.1: Dispersion of upper and lower polaritons. Yellow dashed is the bare
exciton dispersion and blue dashed is the bare cavity dispersion. The relative
photonic fraction is given in the colorbar. Exciton energy: Ex = 1500 meV,
Coupling frequency: ⌦R = 10 meV, a) Blue detuned cavity Ec = 1515 meV
(Marignan), b) Cavity on-resonance Ec = 1500 meV, Red detuned cavity Ec =
1485 meV.
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electromagnetic field in order to optimize the coupling. It is common to increase
the Rabi frequency by adding more wells as it scales with the square root of the
number of wells (because the e↵ective oscillator strength scales as the number
of wells).

We can now give an graphical understanding of the strong coupling. The
strong coupling condition is achieved when the Rabi frequency is large enough
so that polariton states can be distinguished form the uncoupled exciton and
photon states. This condition directly depends on the exciton and cavity photon
linewidth and can be written:

⌦R > �C ,�X . (4.18)

If this condition is not satisfied, there is no need to talk about polariton states.

4.2.1 Driven-dissipative Gross-Pitaevskii equation

Remarkably, the time evolution of the exciton-polaritons wave-function follows
dynamics similar to the Gross-Pitaevksii equation 4.2 describing the evolution of
a dilute atomic Bose-Einstein condensate or a monochromatic light propagating
in a �(3) non-linear media as presented in section 4.1.1. However, for exciton-
polaritons, it includes additional non-equilibrium features, streaming from their
intrinsic driven-dissipative nature. The evolution equation for the lower
polaritons reads [77]:

ih̄
@ (r, t)

@t
=

✓
� h̄

2

2m⇤r2
? + V (r) � i

h̄�LP

2
+ g| (r, t)|2

◆
 (r, t) + P (r, t),

(4.19)
with m

⇤ the e↵ective mass of lower polaritons.
On one side, due to the finite reflectively of the cavity’s mirrors, photons

have a finite lifetime such that eventfully, they exit the cavity. This, which can
be seen as a drawback, has proved to be essential as it allows for the detec-
tion and measurement of polaritons (via their photonic component). This leads
to a dissipation term in the equation proportional to the polariton linewidth:
h̄�LP . On the other hand, if photons exit the cavity (after 20 ps typically), new
particles must be added (continuously) to the system to maintain a constant
number of particles. This is done by pumping the cavity with an external field
and leads to a driving term P (r, t) in the equation. Finally, we should restrict
the evolution to the plane of the cavity and therefore the 3D spatial derivative
is changed to 2D r?.

An important feature of polariton physics is therefore that it is out of equi-
librium, as particles constantly leave the system. However, with the seminal
observation of exciton-polaritons BEC [78, 79] and the demonstration of
superfluidity through resonant Rayleigh scattering [80, 81], this system has
become a realistic tool for quantum hydrodynamics. It is worthy to notice that
the possibility to observe such fluid of light is allowed by the conjunction of
relatively strong �

(3) non-linearity and a very low e↵ective mass. The latter
is essential as it provides for a very fast dynamics to form the fluid in a time
scale smaller than the dissipation. This allows for the formation of long-range
correlations for example.
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4.3 Superfluidity

To conclude this short introduction to light hydrodynamics, I will cover the
concept of superfluidity and apply it to light. Superfluidity is the property
of a fluid to flow without viscosity below a certain temperature. It has been
discovered in Helium 4 cooled at 2 K by Kapitza [82], Allen and Misener [83] in
1937, about 60 years before the first observation of an atomic BEC [84].

However, in 1938 London highlights that superfluid transition temperature
and BEC temperature for an ideal gas at the same density are similar and he
proposes a link between the two phenomena [85]. Unfortunately, this explana-
tion is not relevant for liquid Helium 4, due to the strong interactions which
break the ideal gas model.

In 1941, Landau introduced a novel model based on two fluids: one classical
and one condensed which was much more accurate to describe the physics of
liquid Helium [86, 87]. He also proposed various criteria to define superfludity.
These criteria are still used today to assess superfluidity and to measure the
condensed fraction.

Rotating fluid

These criteria are based on a conceptually simple experiment. A fluid (pre-
sumably a superfluid) is placed in a bucket and the bucket is rotated. For a
superfluid, under the critical velocity, the fluid does not move with the bucket.
Above the critical velocity, quantized vortices appear in the fluid. This e↵ect
has been observed for the first time by Hess and Fairbank in 1967 [88]. I dis-
cuss this criteria in more details in the section 4.4, as we have used a similar
technique to store quantized vortices in a polariton superfluid.

Persisting current

Another approach is to put in rotation a classical fluid and then cool it down
below the critical point. If now, one removes the rotating mechanism, a super-
fluid will rotate for a virtually infinite time. This e↵ect has been observed in
1964 in liquid Helium [89] and in 2007 in a BEC with interactions [90]. We
can note an interesting proposal to observe a similar mechanism in photon fluid
proposed in Ref. [91].

Landau criteria for superfluidity

To derive these criteria we consider a uniform Bose gas with interaction (a uni-
form quantum fluid) in its ground state. Imagine that we move at velocity v a
solid obstacle through the fluid.

We want to know at which critical velocity vc, it starts to become possible
to create an elementary excitation in the fluid. It is more convenient to work in
the reference frame of the obstacle, as the obstacle exerts a time-independent
potential to the fluid in this frame. Let us recall the standard Galilean transfor-
mations to write the energy E(v) in the frame moving at velocity v as function
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of the energy E and p the momentum of the fluid in one frame of reference:

E(v) = E � p · v +
1

2
Mv2

, (4.20)

where M is the total mass of the system.

If we apply it to our case, we can write the energy of the ground state as:

E(v) = E0 +
1

2
Mv2

, (4.21)

where E0 is the ground state energy in the frame where the fluid is at rest, and
p = 0. We note ✏p the energy cost to add a single excitation of momentum p to
the system. In the original frame the energy of the state with a single excitation
is:

Eex = E0 + ✏p, (4.22)

and therefore in the moving frame:

Eex(v) = E0 + ✏p � p · v +
1

2
Mv2

. (4.23)

We can now make the di↵erence between Eq. 4.23 and Eq. 4.21 to obtain the
energy to create an excitation in the moving frame. Thus at a velocity

v =
✏p

p
, (4.24)

it becomes possible for the obstacle to create an excitation with momentum
parallel to v and at higher velocities, the excitation momentum will have an
angle to v. We can conclude with the Landau critical velocity vc defined as the
minimum velocity at which it is possible to create excitation:

vc = min

✓
✏p

p

◆
. (4.25)

Below the critical velocity there is no mechanism to create elementary excita-
tions and the liquid will exhibit superfluidity. We can note that for a parabolic
dispersion of the elementary excitations ✏(p) / p

2, the critical velocity is 0. On
the other hand, a linear dispersion ✏(p) / p will allow for superfluidity.

Suppression of Rayleigh scattering

An important experiment, done in the LKB group before I joined, has demon-
strated superfluidity of polaritons using the setup described in the section 4.2.
A polariton flow is sent towards a defect and depending on velocity and density
of the fluid, elementary excitations are created or not [81]. This experiment
is really the foundation of most of the work done in polariton hydrodynamics
afterwards and I will review it briefly.

A microcavity is pumped at a small angle by a resonant laser field. The
light enters the cavity and hybridizes with excitons to create polaritons with a
momentum equal to the projection of the incident laser wavevector in the cavity
plane. Some defects can be found in microcavities due to scratches or imperfect
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growth, which can be used to study the scattering behaviour of polaritons and
probe the superfluidity. In Fig. 4.2 a) we see the polariton fluid hitting the
defect and creating fringes upstream the defect. This situation is at low driving
intensity, which is equivalent to a low density of polaritons inside the cavity.
In this regime the non-linear interaction can be neglected. Two interpretations
can be given to these fringes:

• We can think as opticians and interpret this pattern as an interference
pattern between incoming photons and photons scattered by the defect.
The fringe distance will change when varying the projection of the incident
laser wavevector in the cavity plane. This can be verified experimentally.

• The second interpretation comes from the hydrodynamic language. When
a normal fluid propagates and hits a defect, characteristic waves appear
upstream of the defect similar to water hitting a bridge pile.

In Fig. 4.2 b), we show the k-space (the emission angle of the cavity). The
black spot at kx = 0 et ky = �0.3µm�1 is the pumping laser. We can observe
a redistribution of the impulsion around a ring at constant k which is Rayleigh
scattering on the defect.

To switch to the superfluid regime, we do not have to cool down the fluid as
in liquid Helium experiments, but we increase the density. This regime is shown
in Fig. 4.2 c) and d). The disappearance of interference fringes is understood
intuitively with the hydrodynamic interpretation because the fluid of light, now
flows without viscosity. Correspondingly, the Rayleigh scattering vanishes.

The optics interpretation is more obscure as it is a cancellation of the di↵rac-
tion on the defect due the non-linear e↵ects. We see here for the first time, why
the hydrodynamic interpretation is useful to analyze and study optical phenom-
ena that are di�cult to predict with the non-linear optics usual toolbox. I will
follow this approach in various experiments presented in this chapter.

Finally we can break superfluidity by increasing the velocity above the crit-
ical speed vc. This experiment is reported in Fig. 4.3 c) and d). We will see in
the next section that the dispersion elementary excitations in a polariton fluid
is linear at low wavevector, and this allows to define a speed of sound cs which is
the critical velocity. In this case, we observe an analogue of the Cerenkov e↵ect.
Indeed the excitations created in the fluid have a speed greater than the sound
velocity in the medium, and we can observe the characteristic cone upstream of
the defect.
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Figure 4.2: Comparison between a normal fluid (at low density a. and b.) and
a superfluid (at high density c. and d.). The flow speed v is downwards in
real space images a) and c). Interference fringes in a) are due to scattering on
the defect. They vanish for higher intensity due to superfluid flow. In k-space
images, the Rayleigh scattering is clearly visible in b) and absent in d) due to
superfluidity. For the superfluid case v < vc. Adapted from [81]

.
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Figure 4.3: Comparison between a normal fluid (at low density a. and b. ) and
a superfluid (at high density c. and d.) above the critical speed. The flow speed
v is downwards in real space images. For c) v > vc. We can observe the break
of superfluidity with the apparition of a Cerenkov cone at the defect position in
c). The angle of the cone gives the critical velocity (which is the speed of sound
in this case). In k-space images, the Rayleigh scattering is clearly visible in b).
For the Cerenkov case d) polaritons are scattered at impulsion larger than the
kin as expected by the Landau theory. Adapted from [81].
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4.4 Injection of angular momentum in polariton
superfluids

A rich variety of photon hydrodynamical e↵ects have been observed, from the
unperturbed superfluid stream flowing around a defect [81], to the appearance
of a Cerenkov cone in a supersonic flow [81] presented in the previous section.
Other works from the LKB group have focused on the formation of topological
excitations such as quantized vortices and dark solitons [76, 92]. In this section I
give the details about recent experiments done at LKB, where we have achieved
the controlled injection of orbital angular momentum in a polariton superfluid
using two di↵erent techniques.

We have discussed in paragraph 4.3 a method proposed by Landau to probe
superfluidity using a rotating bucket. We have revisited this idea by forcing
the rotation of a polariton fluid and study the apparition of quantized vortices.
Quantized vortices are topological excitations characterized by the vanishing of
the field density at a given point (the vortex core) and the quantized winding
of the field phase from 0 to 2⇡ around it.

Injection of angular momentum using a Laguerre-Gauss pump

The first method we have studied was to pump the microcavity with a Laguerre-
Gauss mode of increasing charge. We have reported the formation of a ring-
shaped array of same sign vortices [93]. As previously discussed in the linear
regime, an interference pattern is visible. This pattern has a spiral shape and
contains phase defects are visible. In the nonlinear (superfluid) regime, the
interference disappears and up to eight vortices appear, minimizing the energy
while conserving the quantized angular momentum (see figure 4.4).

Figure 4.4: Nucleation of same sign vortices. Experimental real space images of
the polariton field in the nonlinear regime. a) Polariton density and b) phase
pattern. Figure from Ref. [93]
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Injection of angular momentum using a 4 tilted pumps

The second experiment studies the propagation of 4 superfluids created with
the same pump field at 4 di↵erent positions arranged in a square, all with an
inward flow. The pump is chosen to be resonant to allow for a fine tuning of
the polariton density without generating excitonic reservoir and, consequently,
a precise control of the non-linearities in the system.

If we send these fluids toward the center we simply observe the merging of
the 4 converging fluids. However, if we tilt the in-plane flow as presented in
the figure 1 of PRL 116, 116402 (see below), we can inject an orbital angular
momentum in the system and we see the apparition of quantized vortices. We
can evaluate the injected orbital angular momentum per photon L in unit of h̄

as:
L

h̄
= R|k| sin�, (4.26)

with R is the pump distance to the square center, k is the in-plane pump
wavevector (choose identical for the 4 pumps) and � is the tilt angle between
the pump in-plane direction and the square center.

The separation between the pumps is small enough to ensure the four polari-
ton populations can meet, resulting in significant density at the square center.
However to ensure that in the central region polaritons are free to evolve, we
have cut the beam Gaussian tails to reduce direct illumination.

We use two di↵erent techniques for detection: the direct density measure-
ment and a phase measurement. The polariton phase is measured with an
o↵-axis interferometry setup: a beam splitter divides the real space image into
two parts, one of which is expanded to generate a flat phase reference beam,
used to make an o↵-axis interference pattern. With this method, the vortex
position on the image is independent of the phase of the reference beam. The
actual phase map is then numerically reconstructed with a phase retrieval algo-
rithm.

What is striking in this experiment is that even though the orbital angular
momentum injected is a continuous quantity, the number of topological defects
remains a quantized quantity. We have verified that the number of injected vor-
tices (up to 5) matches a simple model including only the tilt angle (see figure
4 of PRL 116, 116402).

In conclusion we have observed the injection of angular momentum and the
storage of topological charges in a non-equilibrium superfluid of light.

These results are presented in the paper attached below [76]. Injection
of Orbital Angular Momentum and Storage of Quantized Vortices
in Polariton Superfluids. T. Boulier, E. Cancellieri, N. D. Sangouard, Q.
Glorieux, A. V. Kavokin, D. M. Whittaker, E. Giacobino, and A. Bramati.
Phys. Rev. Lett. 116, 116402 (2016).

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.116402
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.116402
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.116402
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.116402
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We report the experimental investigation and theoretical modeling of a rotating polariton superfluid
relying on an innovative method for the injection of angular momentum. This novel, multipump injection
method uses four coherent lasers arranged in a square, resonantly creating four polariton populations
propagating inwards. The control available over the direction of propagation of the superflows allows
injecting a controllable nonquantized amount of optical angular momentum. When the density at the center
is low enough to neglect polariton-polariton interactions, optical singularities, associated with an
interference pattern, are visible in the phase. In the superfluid regime resulting from the strong nonlinear
polariton-polariton interaction, the interference pattern disappears and only vortices with the same sign are
persisting in the system. Remarkably, the number of vortices inside the superfluid region can be controlled
by controlling the angular momentum injected by the pumps.
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Introduction.—In planar semiconductor microcavities,
the strong coupling between light (photons) and matter
(excitons) [1] gives rise to exciton-polaritons, with specific
properties such as a low effective mass, inherited from their
photonic component, and strong nonlinear interactions
due to their excitonic part. These quasiparticles offer a
great opportunity to revisit in solid-state materials the
interaction between light and matter, first explored in
atomic physics. Polaritonic systems are easily controllable
by optical techniques and, due to their finite lifetimes, are
ideal systems for studying out-of-equilibrium phenomena
[2,3]. In analogy with the atomic case [4,5], the superfluid
behavior of polariton quantum fluids has been theoretically
predicted [6] and experimentally confirmed [7–9].
Quantized vortices are topological excitations character-

ized by the vanishing of the field density at a given point (the
vortex core) and the quantized winding of the field phase
from 0 to 2π around it. Together with solitons, they have
been extensively studied and observed in nonlinear optical
systems [10], superconductors [11], superfluid 4He [12], and
more recently in cold atoms [13–15]. Even though vortices
have already been theoretically proposed [16] and exper-
imentally observed [17–21] in polariton fluids, more detailed
studies of vortices and vortex arrays are still needed in order
to achieve a better understanding of polariton superfluidity
and vortex dynamics, as well as to achieve the implementa-
tion of quantum technologies [22–24].
Polariton systems have been shown to reveal a large

variety of effects with the formation of stable vortices [20,25]

and half-vortices [26,27], as well as the formation of
single vortex-antivortex (V-AV) pairs [17,18,28], and spin
vortices [29]. The formation of lattices of vortices and of
V-AV pairs has been theoretically predicted for cavity
polaritons [30–32] and observed in the case of patterns
induced by metallic deposition on the surface of the cavity
[33]. Such lattices are also observable when the interplay
between the excitation shape and the underlying disorder
pins the vortices, allowing their detection in time-
integrated experiments [21].
In the present work, we use four laser beams arranged in a

square to resonantly inject polaritons going towards the
center of the square. By slightly tilting the pumping direction
of the laser beams, the four convergent polariton populations
can be made to propagate with a small angle with the
direction to the center (see Fig. 1), therefore injecting a
controlled angular momentum into the polariton fluid. At the
same time, the resonant pumping configuration allows a
fine-tuning of the polariton density without generating an
excitonic reservoir, and, consequently, a precise control of
the nonlinearities in the system, in contrast with the case of
out-of-resonant schemes [25,34,35].
With this setup, we demonstrate a new technique for the

injection of topological charges in polariton superfluids, a
problem of major relevance in driven-dissipative open
systems strongly coupled to the environment. Moreover,
our study indicates that, in the steady-state regime, the
angular momentum continuously injected by the pumps
compensates the loss of angular momentum by the system.
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Experiment.—The sample is a 2λ − GaAs planar micro-
cavity containing three In0.05Ga0.95As quantum wells. The
finesse is about 3000, which amounts to a polariton line-
width smaller than 0.1 meV and a Rabi spliting
ΩR¼5.1meV. A wedge between the two cavity Bragg
mirrors allows controlling the photon-exciton energy detun-
ing at normal incidence δ, by choosing the appropriate
region on the cavity. All measurements presented here were
done in a region where the natural cavity disorder is
minimum. This region has a slightly positive detuning
(δ ¼ þ0.5 meV), which provides a good balance between
strong interactions and long propagation distance. The
lower-polariton resonance at jkj ¼ 0 and δ ¼ 0 is at
837 nm. The cavity is pumped resonantly with a single
mode cw Ti:sapphire laser, frequency locked to an optical
cavity.
The laser is spatially filtered by a 50 μm pinhole so that

the Gaussian tail is cut to minimize pump overlap. Three
beam splitters divide the laser into four beams of equal
intensities, as shown in Fig. 1. The four arms are sent along
similar trajectories by dielectric mirrors. Each laser beam is
then focused on the sample with a single condenser lens.
The pumps are circularly polarized by a quarter-wave plate
before hitting the sample. In this way we obtain only one
kind of polariton population and avoid any effect due to
spin-dependent interactions [36]. For each pump, the real
space positions and the angle of incidence can be controlled
independently.
The four resonant pumps are spatially arranged on the

sample to form a square and are described by FðrÞ ¼P
4
j¼1 FjðrÞ exp ð−ikj · rÞ, where the FjðrÞ are the four

spatial profiles. Their position in k space is chosen so that
polaritons from each pump propagate towards the square
center. The four in-plane wave vectors are chosen with the

same norm jkjj ¼ jkj, meaning that all four pumps hit the
sample with the same angle of incidence θ. For a fixed θ,
we tilt the in-plane direction of propagation by an angle φ
relative to the direction of the center (see Fig. 1). This
allows sending onto the cavity a continuous orbital angular
momentum (OAM) per photon [37,38], in unit of ℏ that can
be evaluated as

L
ℏ
¼ 1

N

ZZ
dxdyF%ðrÞL̂zFðrÞ ¼ Rjkj sinφ; ð1Þ

where L̂z ¼ ℏ½xð∂=∂yÞ − yð∂=∂xÞ' is the z component of
the angular momentum, R is the pump distance to the square
center, and N ¼ ∬ drF%ðrÞFðrÞ is the normalization con-
stant. Equation (1) has been derived considering a perfectly
symmetric system and nonoverlapping pumps with circular
profiles inducedby the pinhole.As shown in theSupplemental
Material [39], in the steady-state regime, the average angular
momentum per photon injected by the pumps is equal to the
average angular momentum per polariton inside the cavity.
Note that since the spatial independence of the injected fields
lifts the constraint of the phase circulation quantization, a
noninteger (i.e., real-valued) OAM can be injected, which is
impossible for a single Laguerre-Gauss field.
The separation between the pumps is small enough so

that the four polariton populations can meet, resulting in a
significant density at the square center. Cutting the beam
Gaussian tails results in negligible direct illumination in the
central region of the square. This ensures that in the central
region polaritons are free to evolve. If both θ and φ are
nonzero, the four polariton populations meet in the system
center and an angular momentum is injected.
An objective collects the sample emission and the time-

averaged detection is made simultaneously through direct
imaging with CCD cameras in real space and momentum
space. The energy is measured with a spectrometer. We
only collect circularly polarized light, therefore filtering out
any spin-flip effect. The polariton phase is measured with
an off-axis interferometry setup: a beam splitter divides the
real space image into two parts, one of which is expanded
to generate a flat phase reference beam, used to make an
off-axis interference pattern. With this method, the vortex
position on the image is independent of the phase of the
reference beam [40]. The actual phase map is then numeri-
cally reconstructed with a phase retrieval algorithm.
Numerical method.—To describe the configuration under

study, we numerically solve the driven-dissipative scalar
Gross-Pitaevskii equation. The field variable ψ ≡ ψðrÞ ¼
hψ̂ðrÞi is the mean value of the real-space polariton field
operator ψ̂ðrÞ. This equation describes the mean field for
bidimensional interacting particles with a pump and a
decay term as

iℏ
∂ψ
∂t¼

!
−
ℏ2∇2

2m% −
iℏγ
2

þ gjψ j2
"
ψ þ ℏγFðrÞeiΔt; ð2Þ

wherem% is the polariton effective mass equal to 9.7 × 10−5

the electron mass, γ is the decay rate deduced from the

FIG. 1. Schematic representation of the four pumps arriving on
the sample. The laser beam is focused on a pinhole before being
divided into four equal beams. They are focused on the sample
(a ¼ 12 μm waist) so that they form four polariton fluids
propagating towards each other. θ is the incidence angle, giving
the norm of the polariton wave vector k. The in-plane polariton
propagation direction is set by the azimuthal angle φ. The blue
dashed lines show the direction to the center (φ ¼ 0) while the
red arrows show the polariton direction of propagation for θ ≠ 0.
R is the distance of the pumps to the center [R ¼ 25ð3Þ μm].
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polariton lifetime (here, 1=γ ¼ 12 ps), g ¼ 5 μeVμm2 is
the polariton-polariton interaction, and Δ ¼ ωl − ωLPðjkjÞ
is the energy detuning between the pump laser frequency
(ωl) and the lower polariton branch at jkj, here 0.3 meV.
This detuning allows us to compensate for the shift of the
lower polariton branch appearing at higher intensities and
to have high densities in the superfluid regime. Direct
comparison with the experiment is performed by extracting
the steady-state density jψ j2 and phase argðψÞ. In these
conditions, the simulations give a nonturbulent steady-state
regime. Therefore, the resulting density and phase maps
shown in Fig. 2 are equivalent to time-averaged maps, as in
the experiment.
Results.—To highlight the role of polariton-polariton

interactions, we study the system as a function of the
polariton density. We identify two different regimes: a
linear regime at low polariton density, where interactions
can be neglected, and a nonlinear regime at high density,
where polaritons have a superfluid behavior [8,41,42].
Moreover, in the superfluid state we observe the vanishing
of the interference visible in the linear regime when two or
more fluids meet [43]. This phenomenon was predicted and
observed to be accompanied by the annihilation of all
vortex-antivortex pairs [44,45].
For low densities, as shown in Fig. 2, a square interference

pattern is visible. This is the behavior expected for non-
interacting polaritons, which are similar to cavity photons.
Moreover, phase singularities of both signs are visible. It is
important to note that, in the linear regime, no healing length
can be defined in the density. Therefore, the hydrodynamic
definition of a vortex core cannot be applied. In this regime,
we observe an unequal number of singularities of opposite

signs. The difference between the number of vortices and
antivortices (N ≡ Nþ − N−) is equal to the integer part of
the angular momentum L expected from Eq. (1). This shows
that our technique allows the injection of topological charges
by means of OAM. These observations are in agreement
with the fact that the sample disorder only generates V-AV
pairs [16,18,20,32]. Figure 2 gives an example of a low
density regime for φ ¼ 21° and φ ¼ 26° for a fixed incident
angle θ ¼ 3.5° (jkj ¼ 0.45 μm−1), corresponding to L ¼
4.0ð5Þ and L ¼ 4.9ð6Þ, respectively (uncertainty based on
the error in the evaluation of R). Equation (2) provides
qualitatively correct predictions in the linear regime. A
difference in the number of V-AV pairs between experiment
and simulation can be ascribed to imperfections of the
sample, which at low density play an important role. In this
regime the system reaches a steady state with vortices
lying in fixed positions. This is confirmed by the simula-
tions, as said before, and by high values of visibility (not
shown here) all over the pumped region, apart from the
vortex cores.
By increasing the density to the point where, in the

central region, the polariton fluid reaches the superfluid
regime (see Fig. 3), the interference pattern disappears and
all V-AV pairs annihilate, showing the interaction-driven
nature of this phenomenon [43,44]. The nonzero angular
momentum injected by the pumps results in the presence of
elementary vortices of the same sign remaining in the
superfluid. Their size is of the order of the healing length
(about 2 μm) that can be unambiguously defined [7,8,43].
Up to five vortices were observed without any antivortex.
Figure 3 shows the experimental results for φ ¼ 5.5°
[L ¼ 1.1ð1Þ], φ ¼ 10° [L ¼ 2.0ð2Þ], and φ ¼ 21°

FIG. 2. Experimental (top) and theoretical (bottom) density and phase maps for θ ¼ 3.5°, φ ¼ 21° [L ¼ 4.0ð5Þ], and φ ¼ 26°
[L ¼ 4.9ð6Þ] in the low density regime. An interference pattern is visible together with phase singularities of both signs. Since the injected
angular momentum is not zero, the number of (þ) singularities (red circles) is different from the number of (−) singularities (green circles).
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[L ¼ 4.0ð5Þ], for a fixed θ ¼ 3.5° giving jkj ¼ 0.45 μm−1.
As expected, the number of vortices increases with φ.
A comparison between the observed number of vortices

N in the superfluid regime and the value of L computed
from the classical approach Eq. (1) is presented in Fig. 4(a).
The agreement is good within the uncertainty on φ and R,
showing the validity of our approach that allows the
storage of quantized vortices by injecting orbital angular
momentum. The vortex position is observed to depend
strongly on each pump phase, which suggests that the
vortex lattice shape is related to the geometry of the
polariton superflow. This, together with the presence of
disorder in the sample, can explain the discrepancies in the
vortex position in the model and in the experiment. In the
numerical simulations, the pumps phase and position are
set slightly different in order to reproduce the asymmetry of
the experimental case.
Finally, in the high density case, it is interesting to look at

the Mach number map, which is defined as the ratio
between the local velocity of the fluid and the local speed
of sound (proportional to the square root of the polariton
density). Figure 4(b) shows the Mach number map for
L ¼ 4.0ð5Þ corresponding to the bottom panels of Fig. 3.
As expected from the absence of interference pattern, the
fluid is subsonic (M < 1), which means that it is in the

superfluid regime [7,8]. Note, however, that polaritons
within each vortex are strongly supersonic. Indeed, at the
vortex core, the Mach number is expected to diverge, and
experimental values up to M ¼ 100 are obtained.

FIG. 3. Experimental (left) and theoretical (right) density and phase maps for L ¼ 1.1ð1Þ, 2.0(2), 4.0(5) (from top to bottom) at high
density. The vortex number N is equal to the integer part of L. The vortices are visible as black dots in the density, each associated with a
phase singularity. On average, jkj ¼ 0.45 μm−1 and (from top to bottom) φ ¼ 5.5°, 10°, 21°.

(a) (b)

FIG. 4. (a) Plot of the observed number of vortices N (red
circles) and of the continuous angular momentum L from Eq. (1)
(blue line) as a function of the azimuthal angle φ. (b) Exper-
imental map of the Mach number for the case of L ¼ 4.0ð5Þ. The
black zones signify areas outside of the superfluid, where the
polariton density is too low to define a Mach number. In the blue
zone, the fluid is subsonic. However, polaritons within each
vortex are strongly supersonic. Note that the Mach number scale
is limited between 0 and 2, while at the vortex core the Mach
number diverges and experimental values up to 100 are obtained.
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Conclusion.—We designed a scheme that allows the
injection of a controlled angular momentum in a bidimen-
sional polariton superfluid. The scheme makes use of four
coherent polariton populations. While in the linear regime
interferences appear and phase singularities of opposite
charges are clearly visible, the vanishing of all possible
pairs happens at sufficiently high density, and only same sign
vortices survive as expected for a coherent superfluid. We
therefore observed the injection of angular momentum and
the storage of topological charges in a nonequilibrium
superfluid of light. Together with the recent result obtained
in Ref. [43], this is an interesting achievement in polariton
physics. Up to now, only vortex-antivortex pairs [17,18,20,
21,34], single vortex [9,46], and vortices with high L
confined by an excitonic reservoir [25] have been observed.
Ourmethodallowsustoveryefficiently imprint largevaluesof
orbital angularmomentumandobserve several vorticeswith a
topological charge of 1. With a large number of vortices, this
result opens theway to the studyof vortex-vortex interactions,
vortex lattices, and their collective modes [47,48]. The
technique presented in this Letter, coupled with the use of a
time-resolved setup, could also lead to interesting new studies
in the physics of vortices in a turbulent regime [18].
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4.5 Fluid of light in the propagating geometry

As we have seen in the previous section, fluids of light allow to revisit quantum
gases experiments with the advantage of the precise control in state prepara-
tion and detection of optical systems. So far I have presented results about
cavity-based platforms which have intrinsic losses and therefore are restricted
to driven-dissipative dynamics. In 2016, I have started a new thematic in the
LKB group to overcome this limitation with a di↵erent way of doing quantum
simulation with light, by removing the need for a Fabry-Perot cavity. This ap-
proach brings complementary results to the exciton-polaritons experiments and
gives the possibility for our group to compare driven-dissipative and conserva-
tive dynamics with fluids of light. Similarly to exciton-polaritons, it relies on
the formal mapping between the dynamics of the problem we wish to simulate
and the quantum system we will use to do it.

The system we propose to use is light propagating through a warm atomic
vapor and I show that this system can be theoretically described by a non-
linear Schrödinger equation similar to Eq. 4.2. To validate experimentally this
approach, I present recent results about the dispersion relation of elementary
excitations in this system and show that they follow a Bogoliubov spectrum
similar to atomic BEC or photon BEC[72] experiments.

4.5.1 Bogoliubov dispersion relation

Before going in the details of our system, I review briefly the physics of elemen-
tary excitations in the Gross-Pitaevskii equation (Eq. 4.2). More specifically, I
derive the Bogoliubov dispersion relation for a uniform Bose gas in the absence
of external potential.

We start by writing the quantum state as a mean field plus a small pertur-
bation to linearize the Gross-Pitaevskii equation:

 (r, t) = [ 0(r, t) + � (r, t)]. (4.27)

Here  0(r, t) is the condensate wavefunction in the unperturbed state. It can
then be written:

 0 =
p

n(r)e�iµt/h̄
, (4.28)

where n(r is the equilibrium density of particles and µ is the chemical potential.
For a uniform system n(r is independent of r and µ is given by µ = | 0|2g = ng.
For � (r, t), we are interested in solution of the form:

� (r, t) =
⇥
u(r)e�i!t � v

⇤(r)ei!t
⇤
e�iµt/h̄

. (4.29)

with ! a real quantity. Inserting this ansatz in the linearized Gross-Pitaevskii
equation we obtain two coupled equations for u(r) and v(r) known as the Bo-
goliubov equations:


� h̄

2

2m
r2 + gn � h̄!

�
u(r) � gn v(r) = 0 (4.30)


� h̄

2

2m
r2 + gn + h̄!

�
v(r) � gn u(r) = 0
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Figure 4.5: Dispersion relation for massive particles (dashed green), for sound
waves (dashed red) and for Eq. 4.33 (black). cs = 1 and ✏(q) in h̄ unit.

Because of the translational invariance in a uniform Bose gas we can take u(r)
et v(r) to be of the form of plane waves:

u(r) = uqe
iqr and v(r) = vqe

iqr
. (4.31)

By injecting these expressions in Eq. 4.30 we obtain two equations that are
consistent only if the determinant of the coe�cients vanishes. Finally we obtain:

(h̄!)2 =


h̄
2
q
2

2m
+ gn

�2
� (gn)2 (4.32)

We take the positive energy solutions and we obtain the Bogoliubov dispersion
relation:

✏(q) = h̄!(q) =
p
"0(q) ·

p
"0(q) + 2gn. (4.33)

Here we have introduced the notation "0(q) = h̄2q2

2m for the energy of the free-
particle without interaction.

We can see from this expression that the Bogoliubov dispersion di↵ers from
the massive particle parabolic dispersion only at small q when 2gn  "0(q). In
the limit 2gn/"0(q) � 1, we can approximate Eq. 4.33 by

✏(q) = h̄

r
gn

m
q. (4.34)

In this limit, the spectrum become linear (sound-like) and we can define a speed
of sound cs that scales with the square root of the density:

cs =

r
gn

m
. (4.35)

If we use the Landau criteria for superfluidity (Eq. 4.25), we can see that this

dispersion allows for a minimum of the quantity ✏(q)
q which is precisely equal to

cs.
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4.5.2 Non-linear propagation in a �(3) medium

In the absence of sources, the propagation of light in a medium of refractive
index n is given by the Helmholtz equation:

r2
E � n

2

c2

@
2
E

@t2
= 0, (4.36)

where E is the electric field amplitude and c is the speed of light in vacuum.
To take into account the propagation in a non-linear medium of we need to a
non-linear polarization term PNL in the form:

r2
E � n

2

c2

@
2
E

@t2
=

1

"0c
2

@
2
PNL

@t2
. (4.37)

n is the linear part of the refractive index.
For a �(3) non-linear medium we have PNL = "0�

(3)
E

3. We assume the electric
field to be monochromatic (at frequency !0) and to propagate along z. We
introduce k0, the wavenumber of E, and we decompose the envelope E0 from
the oscillating part:

E(x, y, z, t) = E0(x, y, z)ei(k0z�!0t). (4.38)

We can inject this expression of E into Eq. 4.37 to get

r2
?E0 +

@
2
E0

@z2
+ 2ik0

@E0

@z
�
✓

k
2
0 � n

2!
2
0

c2

◆
E0 = ��(3)|E0|2

!
2
0

c2
E0, (4.39)

where r2
? is the Laplacian in the transverse (x, y) plane. We then take into

account that E0 is slowly varying along z, known as the paraxial approximation,
to eliminate the second derivative of E0 along z. We can rewrite Eq. 4.39 with
this simplification:

r2
?E0 + 2ik0

@E0

@z
�
✓

k
2
0 � n

2!
2
0

c2

◆
E0 + �

(3)|E0|2
!
2
0

c2
E0 = 0. (4.40)

We can decompose the linear part of the refractive index as n = n0 +�n(r) with
a mean index plus a local perturbation (supposed weak). As k0 = n0!0/c, we
can rewrite Eq. 4.40 as:

i
@E0

@z
= � 1

2k0
r2

?E0 � �nk0

n0
E0 � k0�

(3)

2n
2
0

|E0|2E0. (4.41)

This equation is analogue to the Gross-Pitaevskii equation (Eq. 4.2). We will
therefore be able to use the same formalism, and in particular we can expect a
Bogoliubov dispersion relation for the small perturbation on the electric field.
We introduce the light intensity I and the non-linear index n2. We have:

n2 =
3�(3)

2n
2
0"0c

and I = |E0|2n0"0c/2. (4.42)

This allows to write an important quantity experimentally: the non-linear con-
tribution to the index of refraction: �n = n2I.
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To precise the analogy with the Gross-Pitaevskii equation (GPE), I have
rewritten Eq. 4.2 and compared it to Eq. 4.40.

ih̄
@ (r, t)

@t
=

✓
� h̄

2

2m
r2 + V (r) + g | (r, t)|2

◆
 (r, t)

i
@E0(r?, z)

@z
=

✓
� 1

2k0
r2

? � �n(r?)k0
n0

� k0�
(3)

2n
2
0

|E0|2
◆

E0(r?, z).

The first remark is that the left term in GPE is a time derivative as it is a
spatial derivative along the propagation direction for Eq. 4.40. The dynamics
in Eq. 4.40 is then 2D in the transverse plane written r? = (x, y). Each slice at
a given z is equivalent to a time-snapshot in the GPE. More precisely we can
fix the initial state by designing a given field at the input of the medium z = 0
and measure the evolution after an e↵ective time by imaging the intensity and
phase at the output of the medium z = L.

We can now propose a mapping of the di↵erent quantity to directly write
the expected Bogoliubov dispersion for small perturbation in Eq. 4.40.

GPE $ Non-linear Optics

 (r, t) $ E0(r?, z)

m/h̄ $ k0

V (r)/h̄ $ ��n(r?)k0/n0

g/h̄ $ �k0�
(3)

2n
2
0

We also need to translate the frequency ! and the wavenumber q of the Bogoli-
ubov excitations. As time is mapped to z, ! is mapped to a spatial frequency
in the propagation direction. It is denoted ⌦B to avoid confusion. We have:

q $ k?

!(q) $ ⌦B(k?)

We can now rewrite the Bogoliubov dispersion in the Non-linear Optics analogy:

✏(k?) = ⌦B(k?) =

s
k?

2

2k0
·

s
k?

2

2k0
� k0�

(3)

n
2
0

|E0|2. (4.43)

Similarly to Bose gases, we can define two limits depending on the value of the
wavevector k? compared to the inverse of the healing length ⇠ defined as:

⇠ = � 1

k0

s
2n

2
0

�(3)|E0|2
. (4.44)

For k? � 1/⇠, we have a parabolic dispersion. For k? ⌧ 1/⇠ we observe a
sonic dispersion with a speed of sound cs defined as:

cs =

s

��(3)|E0|2
2n

2
0

. (4.45)
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Measure of the Bogoliubov dispersion

So far, I have shown theoretically that we can consider the propagation in a
�
(3) analogue to the dynamic of a Bose gas in 2D 2. We have recently pushed

forward this e↵ort with the experimental verification of this proposal. Using
the vocabulary of Bose gases, in this context, o↵ers modern perspectives on
non–linear and quantum optics experiments.

To date, experimental implementations are still in their infancy with ex-
periments in photo–refractive crystals [95, 96, 97], and thermo-optic non–linear
medium [98]. In a non-local �(3) thermo-optic medium (methanol), the Bo-
goliubov dispersion of a fluid of light has been studied [98] and indication of
superfluid behaviour has been observed [99]. Similarly, an iodine solution has
been used to create an event horizon in light fluid acoustic black hole analogue
[100]. Even though these results highlight the potential of the quantum fluid
interpretation, the non-locality of these media (thermo-optic non-linearity is
a↵ected by heat di↵usion) is detrimental for simulating system with local in-
teractions. By using warm atomic vapors as �(3) medium we have access to
tunable and local interactions. Interestingly, a few works on the elimination
of di↵raction in a slow light atomic medium [101, 102], are using similar ideas
without explicitly connecting to fluid of light.

In our implementation, we use the following protocol:

• We create a uniform background fluid with a pump laser propagating in
a near resonance atomic vapor.

• We add a small perturbation by interfering a localize probe beam at the
same frequency at an angle with respect to the background wavevector.

• We study the propagation of this perturbation by measuring the distance
propagated in the transverse plane by these narrow wavepackets at the
end of the medium.

• From this measurement of the group velocity, we simply integrate with
respect to the wavevector and obtain the dispersion relation.

We have obtained a dispersion fitting a Bogoliubov spectrum confirming the
theoretical prediction. For more details the results are presented in the article
attached. I just add two comments (please read the paper first): one to provide
an intuitive explanation of this surprising e↵ect and the second to connect this
e↵ect to four-wave-mixing.

Anomalous refraction In our experiment [1] the refraction law is indeed
strongly modified compared to the linear case of Snell law (See figure 4.6). It is
well known that imaging inside a non-linear medium is not a recommended task
for this reason. What I want to show here, is that the quantum fluid language
provide an intuitive vision of this phenomenon. For small angles (k? < ⇠),
the probe beam light emerges always at the same place in the output plan
independently of the angle. This is strange because changing the incident angle

2
A fully quantum theoretical framework for fluids of light in the same configuration has

been recently proposed [94].
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should normally change the refracted angle. This invariance is understood in
the fluid context as a simple consequence of the constant group velocity or
similarly of the linear dispersion. Moreover, the probe position in the output
plane depends on the pump intensity. Again, if one thinks in terms of fluids, it
modifies the speed of sound and therefore the position in the output plane.

For larger angle (k? � ⇠), we found again a more usual behaviour with the
position of the beam at the output directly linked to the incident angle. We
are in the limit of parabolic dispersion, which means that the group velocity is
proportional to k? and therefore the position in the output plane (z = L) is
k?L. We can switch back to a simple geometric explanation as long as we stay
in the paraxial approximation. Coming with this explanation using only the
non-linear optics phenomenon is not possible, especially the means to estimate
the angle where the two regimes changes (⇠). This is one of the strength of
fluid of light language: to be able to bring new tools to explain non-linear and
quantum optics experiment.

Four-wave-mixing This experiment is ”nothing else than” degenerate four-
wave-mixing. One takes two photons from the pump and transfers one to the
probe and one to the conjugate. However, we need to be careful when using
this vocabulary. What the fluid of light language taught us, is that inside the
medium we should not talk about probe and conjugate but more precisely about
two Bogoliubov modes uq and vq propagating at +q and �q (using the notation
of 4.31). The most striking case is when k? = 0. In this situation of colinear
four-wave-mixing, probe and conjugate are at k? = 0, however we still have
two Bogoliubov modes at +q and �q inside the medium as demonstrated by
imaging the output (see figure 4.6).

Probe and conjugate, as commonly use in four-wave-mixing, are actually far
field denomination only. What I present in the figure 4.6, is the incident probe
beam, which splits in pairs of mode at +q and �q inside the medium forming a
ring. After the medium, all these modes will combine and contribute to create
a probe and a conjugate at +k? and �k? in the far field. There is no reason,
in general, for k? and q to be the same. When, we inject at mode at k? 6= 0,
we break the symmetry between for the ring of Bogoliubov modes. In the far
field we observed a di↵erence in intensity between probe and conjugate which
is known in non-linear optics as phase matching. We note that if the probe and
pump have di↵erent frequency the phase matching condition would not be at
k? = 0 anymore as in chapter 3.

An important prediction from the Bose gases physics is that the creation of
Bogoliubov modes results from a quench: a sudden (non-adiabatic) change of
one parameter of the system. Here, the interactions appears suddenly at the
medium input. What this prediction tells us is that four-wave-mixing should
not occur if we were able to ramp adiabatically the interactions. This interesting
(and surprising) prediction remains to be verified experimentally.
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Non-linear medium

Non-linear medium

Non-linear medium
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Figure 4.6: I represent here three limit cases for the propagation of a weak probe
in a non-linear medium. On the first line I draw the case k? = 0. We can see
that even for k? = 0, the Bogoliubov excitations (in dashed lines inside the
medium) propagate at a finite speed cs. If we increase the incident angle (k?)
while staying in the limit k? < 1/⇠ the ring in the output plane does not change
as the Bogoliubov modes always propagate at cs (shown on the second line).
If we break this condition k? � 1/⇠, Bogoliubov excitations behave like free
particles and therefore an increasing k? results in an increasing diameter of the
ring (shown on the bottom line) At the output of the medium two modes are
emitted to the far field at k? and �k?. These modes are usually called probe
and conjugate in the language of four-wave-mixing. Due to phase matching
condition, increasing k? lead to a reduction of the power in the �k? mode.
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Quantum fluids of light are a photonic counterpart to atomic Bose gases and are attracting increasing
interest for probing many-body physics quantum phenomena such as superfluidity. Two different
configurations are commonly used: the confined geometry where a nonlinear material is fixed inside
an optical cavity and the propagating geometry where the propagation direction plays the role of an
effective time for the system. The observation of the dispersion relation for elementary excitations in a
photon fluid has proved to be a difficult task in both configurations with few experimental realizations.
Here, we propose and implement a general method for measuring the excitations spectrum in a fluid of
light, based on a group velocity measurement. We observe a Bogoliubov-like dispersion with a speed of
sound scaling as the square root of the fluid density. This Letter demonstrates that a nonlinear system based
on an atomic vapor pumped near resonance is a versatile and highly tunable platform to study quantum
fluids of light.

DOI: 10.1103/PhysRevLett.121.183604

Superfluidity is one of the most striking manifestations
of quantum many-body physics. Initially observed in liquid
helium [1,2], the realization of atomic Bose-Einstein
condensates (BECs) has allowed detailed investigations
of this macroscopic quantum phenomenon, exploiting the
precise control over the system parameters. Recently,
another kind of quantum fluid made of interacting photons
in a nonlinear cavity has brought new perspectives to the
study of superfluidity in driven-dissipative systems, with
many fascinating developments [3] such as the observation
of polariton BECs [4,5] and the demonstration of exciton-
polariton superfluidity [6,7]. A different photon fluid
configuration, initially proposed by Frisch et al. 20 years
ago [8], but long ignored experimentally, relies on the
propagation of a intense laser beam through some nonlinear
medium. In this 2Dþ 1 geometry (two transverse spatial
dimensions and one propagation dimension analogous to
an effective time), the negative third-order Kerr nonlinear-
ity is interpreted as a photon-photon repulsive interaction.
Few theoretical works addressing mostly hydrodynamic
effects using this geometry have been recently proposed
[9,10] and investigated in photorefractive crystals [11],
thermo-optic media [12,13], and hot atomic vapors [14].
The theoretical framework used to describe quantum

fluids of light relies on the analogy with weakly interacting
Bose gases and was originally derived by Bogoliubov
[15,16]. A fundamental property of the Bogoliubov
dispersion relation is the linear dependence in the excitation
wave vector at long wavelengths (soundlike) and the
quadratic dependence at short wavelengths (free particle-
like). Although this dispersion has been well characterized
in atomic BEC experiments [17–20], a direct measurement
of this dispersion in a fluid of light remains elusive [12,21].

In this Letter, we propose a general method to experimen-
tally access the dispersion of elementary density excitations
of a photon fluid. We show that the dynamics of these
excitations is governed by a Bogoliubov-like dispersion
and that our experimental platform, based on light propa-
gation in hot atomic vapor, is promising to study hydro-
dynamics effects emerging in fluid of light systems. Our
experiment settles the question originally asked by Chiao
two decades ago [22]: can one observe soundlike excita-
tions and superfluidity of light?
Even if photons in free space are essentially noninter-

acting particles, engineering an effective photon-photon
interaction is possible by exploiting an optical nonlinear
process. In our experiment, the third-order Kerr nonlinear-
ity is induced by the propagation of a near-resonant laser
field inside a hot Rubidium atomic vapor. The sign and the
strength of the interactions can be finely tuned by adjusting
the laser detuning with respect to the atomic resonance. The
vapor temperature, controlling the atomic density, provides
an additional control over the strength of the interactions.
This system has been extensively studied in the context of
quantum and nonlinear optics [23], but the quantum fluid of
light framework gives a better and more complete under-
standing about the physical phenomena discussed in this
Letter. This framework is derived from the nonlinear
Schrödinger equation (NLSE), describing the propagation
along the z direction of a monochromatic linearly polarized
laser field Eðr⊥; zÞ in a nonlinear medium, under the
paraxial approximation
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where k0 ¼ 2π=λ0 is the laser wave vector (λ0 stands for the
laser wavelength in vacuum), and ∇⊥ is the gradient with
respect to the transverse spatial coordinate r⊥ ¼ ðx; yÞ.
When the linear absorption coefficient α is negligible and
the nonlinear refractive index Δn ¼ n2jEj2 ¼ 2

ϵ0c
n2I ¼ ñ2I

(I represents the laser field intensity) is negative, the NLSE
is mathematically analogous to the Gross-Pitaevski equa-
tion, describing the dynamics with respect to an effective
time t¼zn0=c (c stands for the speed of light in vacuum) of
a 2D fluid with repulsive interactions. Using the Madelung
transformation Eðr⊥; zÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðr⊥; zÞ

p
exp ½iΦðr⊥; zÞ&, one

obtains a coupled system of hydrodynamic equations for
the electric field density ρ and phase Φ,
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where v ¼ ðc=k0Þ∇⊥Φ. In this formulation, the laser beam
is described as a fluid of density ρ flowing with velocity v
in the transverse plane. The dynamics of the density
fluctuations on top of the photon fluid is governed by
the Bogoliubov dispersion relation. For small amplitude
modulations moving on a uniform background fluid at rest,
the set of hydrodynamic equations can be linearized
assuming ρ ¼ ρ0ðzÞ þ δρðr⊥; zÞ and v ¼ δvðr⊥; zÞ. For a
plane wave density fluctuation mode δρ of wave vector k⊥,
the associated response frequency ΩB will follow the
dispersion relation below,

ΩBðk⊥Þ ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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When the wavelength Λ ¼ 2π=jk⊥j of the modulation is
longer than the healing length ξ ¼ ðλ=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1=ðjΔnjÞ&

p
, the

dispersion relation becomes linear and the modulations
propagate as sound waves. This regime is characterized by
the sound velocity cs ¼ c

ffiffiffiffiffiffiffiffiffi
jΔnj

p
, which only depends on

the nonlinear index of refraction Δn. Conversely, when
Λ ≫ ξ, the dispersion relation becomes quadratic, which is
similar to the free propagating particle one.
Observing the soundlike regime of the Bogoliubov

dispersion relation has been proposed in [9] and was first
attempted in [12] for propagating geometries. The approach
used in [12] relies on the measurement of the phase velocity
difference between plane wave density modulations propa-
gating at a given transverse wave vector k⊥ ¼ 2π=Λ on top
of a high and a low density photon fluid. The photon fluid
is obtained by sending a wide laser beam through a self-
defocusing nonlinear medium; the fluid density is then
given by the light intensity. The plane wave density
modulation is produced by interfering this first beam with

a wide and weak probe field, propagating with a small
angle with respect to the optical axis. In this configuration,
however, a conjugate wave propagating in the opposite
transverse direction (−k⊥) is spontaneously generated at
the linear-nonlinear interface [24]. Probe and conjugate
interfere, which strongly alters the phase shift measurement
used to determine the dispersion relation. Moreover, the
large nonlinearity needed to observe the sonic dispersion
makes extracting the dispersion relation from this meas-
urement rely on a complex numerical inversion [25]. On the
contrary, we present a direct and intuitive method to extract
the dispersion relation for arbitrary modulation wave-
lengths. Our approach is based on the measurement of
the group velocity of a small amplitude Gaussian wave
packet traveling on top of the photon fluid with the
transverse wave vector k⊥. This wave packet is designed
by interfering a wide and intense beam forming the fluid (at
k⊥ ¼ 0) with a Gaussian probe at k⊥ ¼ k0 sin θex, as
depicted in Fig. 1. At the entrance of the nonlinear medium,
the effective photon-photon interaction constant undergoes
a sudden jump along the optical axis. Two counterpropa-
gating wave packets are spontaneously created from the
initial perturbation and evolve over the effective time t
through the nonlinear medium, with a transverse group
velocity ' vg. The separation between these two modula-
tions at a given propagation distance z (i.e., at given time t),

FIG. 1. Experimental setup: polarized beam splitter (PBS) and
half wave plate (HWP). θ is the angle between the probe (orange
beam) and the optical axis defined by the pump (red beam). The
probe interferes with the pump and slightly modulates its
intensity. (Blue inset) Integrated intensity profile at the input
of the medium (z ¼ 0). The wavelength Λ of the density
modulation is given by 2π=k⊥, where k⊥ ¼ k0 sin θ. (Orange
inset) Integrated intensity profile at the output of the medium
(z ¼ L). The distance D between the two wave packets gives
access to the group velocity of the elementary excitations in the
transverse plane. The output plane is imaged on a CMOS camera.
(Inset, top left) Background-subtracted image obtained for
θ≈0 rad and associated integrated envelope profile (blue:
original; red dotted: high frequency filtered).
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is a direct measurement of the group velocity. In the output
plane (z ¼ L), this distance is given byDðk⊥Þ ¼ 2Lvgðk⊥Þ.
The dispersion relation ΩBðk⊥Þ is reconstructed by scan-
ning the modulation wave vector (tuning the angle θ
between pump and probe) and integrating the group
velocity vg: ΩBðk⊥Þ ¼

R k⊥
0 vgðqÞdq.

In order to illustrate our method, we solve numerically
the NLSE [Eq. (1)] to get the evolution of the transverse
electric field (pumpþ probe). We use the second-order
split step Fourier method, for one transverse spatial
dimension (1Dþ 1 geometry) to take advantage of sym-
metries in the flat fluid density situation (infinitely wide
background beam). The probe waist is located in the
entrance plane at z ¼ 0; its width ωp

x is the same as the
one used in the experiment. For all the density plots in
Fig. 2, the uniform background intensity has been sub-
tracted. The evolution of the two counterpropagative
modulations generated at the entrance of the nonlinear

medium is shown in Fig. 2(a) for zero initial transverse
speed and presents a soundlike behavior (no spreading of
the wave packet). Figure 2(b) is obtained for high trans-
verse initial speed modulation, which behaves like a free
particle. Notice that, for small incident angle, correspond-
ing to zero initial transverse speed, both modulations
acquire a nonzero opposite transverse speed. This nonlinear
refraction law, counterintuitive from the refraction perspec-
tive, comes from the linear nature of the dispersion for
k⊥ ≪ 2π=ξ [24]. The envelope of the intensity profile in the
output plane is presented as a function of the probe wave
vector in Fig. 2(c), on top of the experimental results in
Fig. 2(d). The black dotted line represents the theoretical
group velocity vg, obtained by taking the derivative of
Eq. (4). The distance between the two wave packets is
constant for k⊥ ≲ 2π=ξ (linear dispersion; constant vg) and
linearly increase for larger k⊥ (quadratic dispersion;
vg ∝k⊥). The spreading of the wave packet due to the
quadratic dispersion for k⊥ ≳ 2π=ξ can also be clearly
observed in Fig. 2(c). Conversely, all k space components
that lie on the linear part of the dispersion relation
propagate at the same transverse speed and the wave
packets do not spread for k⊥ < 2π=ξ.
The experimental setup is shown in Fig. 1. A continuous-

wave Ti:Sapphire laser beam is split into a low power probe
and a high power pump. The pump is focused in the center
of the nonlinear medium with two cylindrical lenses to
create an elliptical beam with a width along x of ω0

x ≈
3.2 mm and a width along y of ω0

y ≈300 μm. The pump
intensity in the central region can thus be considered as
spatially uniform along x. The Rayleigh length z0R;y asso-
ciated with ω0

y is 37 cm, which is about 5 times the length of
the nonlinear medium. We can therefore consider the pump
beam as being collimated. The probe is directly focused with
a cylindrical lens on the entrance of the nonlinear medium in
order to get a flat initial phase profile. This beam is elliptically
elongated along the y direction. We set the major axis width
ωp
y to 1700 μm and ωp

x to 180 ' 10 μm in order to properly
separate the Gaussian wave packets in the output plane and
conserve the probe collimation along its propagation in the
nonlinear medium (zpR;x ≈13 cm).We fix the probe intensity
at its waist to 1% of the pump intensity. This pump-probe
cross configuration enables us to both get closer to the 1D
case and to increase the integration range along y. The angle θ
between pumpandprobe in the ðxzÞ plane canbe finely tuned
with a piezoactuated mirror mount.
Both beams propagate through a L ¼ 7.5 cm long cell,

filled with an isotopically pure 85Rb vapor. The cell is
heated up to 150 °C. Adjusting the temperature allows us to
control the atomic density and therefore the strength of the
optical nonlinearity. In our case, this optical nonlinearity is
obtained by tuning the laser frequency close to the 85Rb D2

resonance line, composed of two hyperfine ground states
(F¼ 2, 3) and four hyperfine excited states (F0 ¼ 1–4).
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FIG. 2. (a) Simulation of the propagation of a weak intensity
modulation through a nonlinear medium, with zero transverse
speed (θ ¼ 0 rad). The modulation generates two counterpropa-
gating Bogoliubov modes at the medium interface that get
amplified until they separate from each other. The wave packet
is not spreading along propagation due to the nondispersive
regime (soundlike behavior). (b) Same as (a), for an incident
probe at θ ¼ 5 × 10−3 rad (high transverse speed). Interference
fringes appear and the wave packet spreads. (c) Simulation of the
intensity profile envelope in the output plane for different probe
wave vector. (Dashed black lines) Group velocity given by
Eq. (4). (d) Experimental data. The upper wave packet amplitude
decreases with k⊥, as the efficiency of the degenerate four-wave
mixing processes depends on the phase matching conditions,
which is optimal for k⊥ ¼ 0. The parameters in (a)–(c) are those
used experimentally for (d): λ0 ¼ 780 nm, Δn ¼ 1.3 × 10−5, and
ωp
x ¼ 180 μm (α ¼ 0 in numerical simulations).
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Since the laser is highly red detuned from the F¼ 3 → F0

transitions (Δ ¼ −6 GHz), the Doppler broadening can be
neglected and the negative nonlinear susceptibility is one
of a two-level system with an excited state of decay rate
Γ ¼ 6.06 MHz. At this temperature and detuning, the
transmission coefficient of the laser beams through the
cell is above 70%, which allows one to neglect multiple
scattering of light. In comparison to [12], we can consider
that the nonlinear interactions are local, as long as the
length scale of the ballistic transport of excited atoms stays
much shorter than the healing length, which is the case at
that temperature.
The output plane of the cell is imaged on a camera. A

microscope objective can be flipped on the beam path to
image the far field (i.e., k space) and measure the probe
transverse wave vector k⊥ ¼ k0 sin θ. The relative phase
between pump and probe is scanned over 2π. Forty back-
ground-subtracted images are taken during the phase scan,
integrated over 100 pixels around ðOxÞ and averaged in
absolute values. Averaged images before integration are
shown in the inset of Fig. 1(b). The distance D between the
counterpropagating wave packets is estimated by perform-
ing a two-Gaussian fit for small k⊥, i.e., when the conjugate
beam is visible. For large k⊥, the conjugate is not
sufficiently amplified and D is measured from the distance

between the input and output positions of the probe beam. In
order to fully characterize our system, the third-order Kerr
susceptibility n2 is calibrated independently by measuring
the self-phase accumulated by a Gaussian beam propagating
through the cell [26,27]. With the detuning and temperature
reported earlier, we found ñ2 ¼ 3.1 ' 0.2 × 10−11 m2=W.
The experimental group velocity and dispersion relation

as a function of the probe transverse wave vector are shown
in Fig. 3. The pump power was set to 175 mW, leading to a
nonlinear refractive index Δn of 3.9 × 10−6. Two different
regimes can be identified in Fig. 3(a). The group velocity
clearly goes toward a nonzero value when k⊥ → 0, break-
ing the linear trend characteristic of the standard free-
particle dispersion. The theoretical model plotted in Fig. 3
is obtained with no free fitting parameters. The offset at
large k⊥ between the model and the experimental data
results from constructive interferences between the two
nonfully separated wave packets, as can be seen by the
experimental data of Fig. 2(d) around k⊥ ∼1.5 × 104 m−1

(the envelope intensity significantly increases in between
them, leading to a systematic underestimation of the distance
D by the two-Gaussian fit). After propagation in the cell, the
counterpropagating wave packets have respectively accu-
mulated the phase ' ΩBðk⊥ÞL. Constructive interferences
occur when ΩBðk⊥ÞL ¼ nπ (n is a positive integer), i.e., for
k⊥ ∼1.8 × 104 m−1 when n ¼ 1. This value gives the
position of the end of the plateaulike regime at low k⊥.
Another constructive interference should occur for k⊥ ¼ 0
(when n ¼ 0), but as both envelopes have the same ampli-
tude in that case, the twopeaks are still disentangled (see inset
of Fig. 1).
More importantly, the dispersion relation of Fig. 3(b)

guarantees that, in our experiment, a fluid of light can fulfill

(a)

(b)

FIG. 3. (a) Group velocity as a function of k⊥. The circles
represent the experimental data obtained for P ¼ 175 mW. The
theoretical model is plotted in black (no free parameter—see text
for details). The dashed lines figure the asymptotic behaviors:
constant group velocity at small k⊥ and linear increase at large
k⊥. (b) Dispersion relation obtained after integration of the group
velocity. Linear (blue) and parabolic (red) dispersion curves are
plotted as a reference.
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FIG. 4. Speed of sound cs as a function of the pump intensity.
Because of the 2Dþ 1 geometry, the speed of sound has the
dimension of an angle. Data are plotted in blue dots. The light
intensity corresponds to the fluid density; therefore, a scaling as a
square root is expected as plotted in black solid. No free
parameters are needed, as the nonlinearity has been measured
independently. Uncertainty area in light blue is extracted from
this independent measurement.
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the Landau criterion for superfluidity. Indeed, this criteria
defines a critical transverse speed vc ¼ mink⊥ ½ΩB=k⊥& for
the photon fluid, below which the emission of soundlike
excitations is not possible anymore. In our case, vc¼cs>0
and one could observe frictionless flow of light around a
defect if its transverse velocity v (measured in the defect
frame) was lower than cs. Nevertheless, our system does
not undergo a phase transition with the sudden appearance
of a long-range order, as it is initially provided by the laser
spatial coherence. To investigate the sonic regime, we set
the probe wave vector to zero and record the sound velocity
as function of the background fluid density (the pump
intensity I). The experimental data are shown in Fig. 4
(blue circles). We observe that the speed of sound scales
with the square root of the fluid density (black solid) as
expected. It is worth mentioning that, once again, the Kerr
susceptibility measured independently sets the only param-
eter of the theoretical model.
In conclusion, we have reported two important exper-

imental results: First, we measured the dispersion relation
for small amplitude density fluctuations, which shows a
linear trend at low wave vector, characteristic of a super-
fluid. We have then assessed the associated sound velocity
for different fluid of light densities and obtained a scaling
law analogous to the hydrodynamic prediction. This settles
the question initially raised by Chiao about the possibility
to observe a superfluid dispersion in a photon fluid. These
results open a wide range of possible experiments in
hydrodynamics with light using a novel versatile platform
based on hot atomic vapors.

The authors want to thank Daniele Faccio for stimulating
discussions at the early stage of the project, Iacopo
Carusotto, Pierre-Elie Larré, and Giovanni Lerario for
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Chapter 5

Outlooks and future
projects

In this work we have travelled through several implementations of light-matter
interaction experiments from the generation of squeezed light in four-wave-
mixing to the storage of light in an atomic vapor. The future projects I want to
develop are along the line of combining quantum optics and quantum memory
with the concept of fluids of light. Indeed,the experimental realizations of fluid
of light presented in this manuscript are based on the Bogoliubov mean-field
theory. An important leap forward in this field will consist in bridging the
gap with quantum optics type measurements such as intensity noise, homodyne
detection or entanglement. In this chapter I give a (partial) overview of the
essential ideas we will explore in the coming years.

5.1 Fluid of light in the propagating geometry

5.1.1 Shockwaves dynamics in 1D and 2D
Collaboration with N. Pavlo↵ and A. Kamchatnov

Before exploring the quantum world with fluids of light, some highly interesting
experiments are still to be conducted in the classical regime. One of them is
focused on the generation of shockwaves in a fluid of light. Shockwaves appear
when the Bogoliubov approximation of a small perturbation propagating in a
fluid breaks down. Pioneering work about shockwaves in optics has been done
by the Fleischer’s group in photo-refractive crystal. Recently, we have started a
collaboration with the group of Nicolas Pavlo↵ in LPTMS to explore this field
in detail and to understand the role of the geometry (1D and 2D) in shockwaves
propagation.
The setup is identical to the setup used for Bogoliubov dispersion in chapter
4, however in this case, the magnitude of the perturbation is as large as the
mean density. We have studied the dynamic of the shock propagation for 3
characteristic points of the shockwave (see Fig. 5.1):

• Point 1: the beginning of the linear slope

• Point 2: the maximum

• Point 3: the first minimum of the shockwave oscillations

111



112 CHAPTER 5. OUTLOOKS AND FUTURE PROJECTS

2

3

Point 1

Point 2

Point 3

In
te

ns
ity

a)

b)

c)

d)

N
or

m
al

iz
ed

 In
te

ns
ity

Figure 5.1: Preliminary results on shockwaves. a) 2D shock profile. Intensity
is normalized to 0 far away from the shock. The negative value in the center
is characteristic of 2D shockwaves. b) 1D configuration for various intensity. c)
Scaling of points 1,2 and 3 as function of power. d) Typical intensity image.

The work in progress we are conducting with Nicolas Pavlo↵ is to find theoret-
ically a universal exponent for the propagation velocity of each of these three
points and to verify it experimentally. It is understood that these exponents
should vary strongly depending on the dimensionality of the system. Our im-
plementation is intrinsically 2D (in the transverse plane) however, we can also
explore 1D physics by making the system much longer in one direction (virtually
infinite) and therefore invariant along this dimension.

A major di↵erence between 1D and 2D for shockwaves consists in the pre-
diction of the density in the center after the shock front has passed. In 1D
the density of the fluid (here the intensity of light) should go back to average
fluid density immediately after the shock front has passed, while for 2D (and
3D) the density should remain lower than the average density. This e↵ect is
well known in fluid dynamics and has an immediate consequence when for ex-
ample an explosion occurs inside a building. Indeed, when shockwaves due to
the explosion reach a window, glass breaks and falls inside the building and not
outside, a consequence of the lower density inside following the shock front. We
have reproduced this e↵ect with light and observed a reduction of the density
after the shock in 2D and no reduction in 1D as seen in figure 5.1a.



5.1. FLUID OF LIGHT IN THE PROPAGATING GEOMETRY 113

5.1.2 Superfluid flow around a defect
Collaboration with C. Michel and M. Bellec

0 5 10 15 20 25 30 35 40
z (m)

10-3

10-2

10-1

100

I th
(r=

0,
z)

 (a
.u

.)

On-axis intensity for different transmission coefficients

t = 1%
t = 2.5%
t = 10%

Figure 5.2: On axis intensity of a Bessel beam shaped to have an exponential
increase along the propagation. Various attenuation coe�cients are used. The
dashed lines are the fits with linear slopes in log-scale. The region where the
intensity is designed to follow an exponential increase is shown in white.

We have recently observed the Bogoliubov dispersion for light propagating
into an atomic medium. The linear part of this dispersion is, following Landau
criteria, an indication of possible superfluid flow. The smoking gun of superflu-
idity is the observation of Rayleigh scattering cancellation when the fluid hits a
defect as seen in figure 4.2 for a polariton fluid. To settle our platform, based on
light propagating through atomic vapor, as a realistic alternative to the study
of superfluidity, we need to perform a similar experiment [103].

The defect here should be a refractive index change around the mean value
as described in Eq. 4.41. As we want the defect to be constant in (e↵ective)
time, one needs to make it constant in the (real) space along the propagation
direction. Local modifications of the refractive index can be created optically by
designing spatially dependant optical pumping. Experimentally, this requires
an external defect beam, tuned near resonance, which propagates with constant
shape and amplitude through the atomic medium. This seems a di�cult task,
but works in progress in my group have shown this to be achievable. Two steps
have to be considered.

The first step is the design of a non-di↵racting beam. Bessel beams can
be created using an optical axicon or with more control using a spatial light
modulator. A distance of 10 cm for a beam size of 50 µm is achievable at
800 nm, to be compared to a Rayleigh length of 9 mm for a Gaussian beam of
the same size.



114 CHAPTER 5. OUTLOOKS AND FUTURE PROJECTS

The second stage is the control of the amplitude along the propagation di-
rection to compensate the absorption by the atomic medium, which will be large
as the defect beam is set near resonance for maximal e�ciency. The intensity of
the beam follows a Beer law along the medium, so we must design a beam with
an exponentially rising intensity inside the first maxima of the Bessel function.
This is done using the SLM and an approach similar to [104]. I present in figure
5.2 the preliminary results of this technique.

In the near future, we will study the e↵ect of scattering on this optically
designed defect in an experiment similar to [103, 81]. A strong asset of our
system is that the defect can be of any arbitrary shape, size and depth by simple
optical control. This opens the way, for example, to the study of propagation
in a disorder media in the presence of interactions, by sending a non-di↵racting
speckle pattern as defect.

5.1.3 Optomechanical signature of superfluidity
Collaboration with P.E. Larré and I. Carusotto

Figure 5.3: Kayaking in a normal fluid. Kayaking in a superfluid would be a
tricky task as the paddle will not help the boat to move as it will not feel any
drag force.

An exciting prospect of the experiments described in the previous section is
to replace the optically induced defect by a real object and observe the optome-
chanical signature of superfluidity. Let us start by the analogy with a matter
fluid. Imagine a flexible tree branch touching a river as highlighted in green in
figure 5.3. When flowing water hits the branch, it moves it in the flow direction
by applying a drag force on it. But with a superfluid the drag force vanishes and
the branch comes back to its initial position. We want to produce an analogous
experiment with light.

A defect can be created by any dielectric object with a refractive index
di↵erent from the medium. We propose to use a tapered optical nanofiber in
glass as a defect. The setup consists in the introduction of a nanofiber inside a
rubidium vapor cell, along the cell direction. Sending near resonant light in the
cell with a small angle with respect to the nanofiber will slightly move it thanks
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to the radiation pressure (or the drag force in the hydrodynamics language).
By increasing the light intensity (while staying below superfluidity threshold)
one can increase the radiation pressure and in consequence the displacement
of the nanofiber should be larger. However, when the light becomes superfluid
the drag force no longer exists and the nanofiber should come back to its initial
position as in absence of light. This e↵ect has been predicted in Ref. [105]. The
interpretation in non-linear optics language is more convoluted as it means that
radiation pressure is cancelled by non-linearities above a certain threshold. Once
again the hydrodynamic language provides us with an intuitive interpretation
of a novel phenomena that is virtually impossible to predict using non-linear
optics intuition.

In the implementation I propose here, we have a crucial tool to achieve this
challenging experiment: we know how to precisely monitor the displacement
of a nanofiber with a resolution below 2 nm. To do so, we use the fact that
a nanoparticle deposited on a nanofiber scatters light inside the guided mode
of the fiber. By placing a nanofiber within a standing wave (in the transverse
plane), and monitoring the intensity of the scattered light, we can monitor fiber
displacement with a resolution of 2 nm, well below di↵raction limit.

For us, the next experimental step is to combine the nanofiber and the non-
linear medium into one experiment and probe the optomechanical signature of
superfluidity.
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Figure 5.4: Optomechanical signature of superfluidity. a) Proposed implemen-
tation. b) Displacement measurement setup. The standing wave (green laser)
is scattered inside the guided mode of the fiber by a nanoparticle. c) Pressure
force as function of intensity. At the threshold of superfluidity the pressure force
becomes zero and the frag force vanishes. Insets are numerical simulations of
normal fluid and superfluids regimes. Adapted from [105]
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5.1.4 Analogue gravity
Collaboration with D. Faccio

A vast topic that fluids of light can help to investigate is analogue gravity,
i.e. how to mimic gravitational e↵ects in a non-linear optics experiment. The
underlying idea behind hydrodynamical model for gravity has been introduced
by Unruh. In 1981, he showed that sound waves in an accelerated flowing
medium mimic the space-time geometry of a black hole [106]. As a consequence
it is possible to look at quantum e↵ects in the vicinity of the horizon and for
example study the analogue of Hawking radiation, in a non-linear quantum
system.

We can get an intuition about this e↵ect using once again the analogy with
water. Let us imagine a river flowing towards a few meters waterfall with a
faster and faster flow speed. A fish swimming in the river (with a maximum
velocity) will be irrevocably sent through the waterfall if he crosses the point
where water flow speed becomes larger than its maximum velocity. This point
is analogous to a black hole horizon (for fish). It is also true for (density) waves
propagating on the river at the speed of sound. The black hole becomes a dumb
hole (for sound waves instead of light).

Another familiar implementation is the hydraulic jump which appears in a
sink. When water flows from the tap (at a given flow rate) and hits the bottom
of the sink a circular region with laminar flow appears in the center and after
an hydraulic jump one can observe turbulent flow. Because the flow rate is
constant, water velocity is much faster in the center than at larger radius. In
consequence, no waves can penetrate inside the central region because, there, the
sound speed is slower than the water velocity. A region of space where no wave
can enter is the time reversal opposite of a black hole also known as a white hole.

In optics, a similar idea can be implemented using the Madelung transfor-
mations. The density of the fluid is analogous to the intensity and therefore the
speed of sound scales with the square root of the intensity. A sudden change
in intensity in the transverse plane is then suitable to create the analogue of a
black hole horizon [107]. Interesting theoretical proposals [108] investigate this
configuration to observe the optical analogue of the Hawking radiation, and a
potential implementation in our platform can be envisioned.

Another striking e↵ect is known as the Zel’dovich e↵ect i.e. the amplification
of radiation scattering o↵ rotating absorbing surfaces. The first demonstration
of this e↵ect dates back to 1971 when Zel’dovich showed that electromagnetic
waves can be amplified when reflected on a rotating conducting object [109].
This e↵ect has been extended to cosmology by Misner who showed, in 1972, that
this reflection can also occur near rotating Kerr black holes [110]. Observation
of this type of super-radiance in hydrodynamics has also been possible and is
known as over-reflection e↵ect [111]. Surprisingly, no experiment in optics have
studied this e↵ect so far. Our platform can be suitable for the observation of
this e↵ect in the optical domain. Indeed, analogue of rotating black holes can be
created by injecting a fluid with an orbital angular momentum using a Laguerre-
Gauss beam. The general topic of analogue gravity (and even analogue physics)
is a good match with our approach which aims to find novel e↵ects in non-linear
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and quantum optics through the perspective of other physical phenomena.

5.1.5 Disorder and interactions
Collaboration with N. Cherroret

Quantum fluids of light are characterized by long-range coherence. This not
only favors superfluid behaviors but also localization phenomena in disordered
potentials. In our platform, we can shape the spatial distribution n1(x, y, z) of
the linear refractive index (i.e. the external potential) by applying a control field
with the intensity profile modeled with a spatial light modulator. In particular,
a disorder potential can be generated by illuminating the atomic medium with a
random speckle intensity pattern. We plan to investigate the interplay between
localization features, which correspond to freezing the motion in the disordered
landscape, and perfect transmission, corresponding to a super-flow regime. In
particular, the competition between localization and superfluid transport is en-
visaged as a novel route for guiding light in a disordered non-linear environment.

At zero temperature, a 1D phase diagram can be calculated in the presence
of interactions as shown schematically in Figure 5.5. While the non–interacting
regime can exhibit an Anderson localization, slightly repulsive interactions be-
tween the photons tend, on the contrary, to suppress this e↵ect. A transition
in favor of superfluidity should then occur, although the critical threshold for
light superfluidity is expected to be substantially a↵ected by the disorder. I
propose to study the phase transitions marked with black arrows in Figure 5.5,
at the quantum level in 1D and 2D. This comes along the lines of the complex
but very exciting problem of many-body localization (MBL) which extends the
concept of localization beyond the mean field approximation. Our system ben-
efits of crucial assets to study this e↵ect: a full quantum description is available
[112], temperature, kinetic energy and interactions are tunable, disorder can be
increased adiabatically and the dynamics of thermalization can be studied at
various times and various spatial scales.
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Figure 5.5: Phase diagram of a 1D system at T=0 in presence of disorder and
interactions. We propose to study the phase transitions marked with the black
arrows.
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5.2 Quantum simulation with photons

I have tried in this manuscript to describe the tools which make the connection
between quantum optics and quantum simulation with light. Before concluding,
I want to explain how quantum memories or four-wave-mixing configurations
can be used in the context of quantum simulation. Ultra-cold atoms in optical
lattices are the current gold-standard to simulate Hamiltonian (conservative)
dynamics. Let me briefly discuss why photonics quantum simulators are an
exciting direction to explore !

5.2.1 From ultracold atoms to quantum fluids of light

The design of an analog quantum simulator relies on three steps [113]. First,
we should prepare an input state relevant for the physical problem of interest
(either a well defined quantum state or an equilibrium state at non-zero tem-
perature). Next, we need to realize the proper mapping of the Hamiltonian
to be simulated, including both the single-particle physics (external potential,
e↵ective mass) and the interaction between the constituents. Finally, measure-
ments are performed on the output state to extract information on the simulated
dynamics with the highest-possible precision. The cold-atoms community has
achieved tremendous progresses in the recent years on these three tasks. We
will briefly review how they are implemented on ultra-cold atoms and optical
platforms.

Initial state preparation Preparing a state for quantum simulation
implies to control the density distribution in the position or the momentum
space, the energy or the temperature. Because ultracold atoms are prepared
in a trap, it is somehow complicated to control precisely the local density for
example. For light-based platforms, state preparation is more straightforward
as it relies on optics. Cavity-setups are e↵ective 2D systems in the transverse
direction, and therefore, the density distribution in the position space is set by
imaging a given intensity pattern onto a defined plane of the system (typically
the cavity plane). Momentum distribution relies on the angular distribution of
the photons and can then be tuned in the Fourier plane. Shifting away from
zero, the mean of this momentum distribution injects a kinetic energy in the
system and induces an e↵ective flow in the transverse plane. On the other hand,
the momentum distribution variance (the spread in momentum) defines an ef-
fective temperature of the photon fluid. For a variance of 1/l

2
?, we can write the

gaussian distribution of momentum exp[�k
2
l
2
?] and compare it to the thermo-

dynamics expression exp[� h̄2k2

2m /
kBT
4⇡ ] to identify T / 1/l

2
?. For quantum fluids

of light, thermalization occurs through the non-linear interaction mediated by
the coupling with matter. An interesting feature of these setups is the possibil-
ity to isolate a subregion of the entire fluid by imaging it and therefore study
the thermalization locally which is impossible with cold atoms.

Engineering the simulated Hamiltonians. An example of the Hamil-
tonian design with ultracold atoms is the simulation of condensed-matter sys-
tems of electrons moving on an array of atom cores. This configuration can
be mapped to interacting ultra-cold atoms in an optical lattice. The interac-
tions between atoms are tuned with the use of Feshbach resonances and the
energy landscape at the single-particle level is controlled with an optical lattice,
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created using the interference pattern of far-detuned overlapping laser beams,
thanks to the dipole force. This precise control allows to simulate a quantum
phase transition from a superfluid to a Mott insulator when the on-site inter-
action energy becomes much larger than the hoping energy due to tunneling
between neighboring sites. For quantum fluids of light, the same level of con-
trol can be reached. The e↵ective photon-photon interaction is mediated by
the non-linearity �(3) of the medium and the potential landscape is created by
auxiliary laser beams. Another example in the control of the Hamiltonian for an
atomic quantum fluid is the development of artificial gauge fields, opening the
way to the simulation of synthetic magnetic fields for neutral atoms, quantum
Hall e↵ect and topological phases. Similarly, fluids of light can also implement
artificial gauge fields and synthetic magnetism [114, 115] by using for example
photon orbital angular momentum [116].

Detection of the final state On the detection side, quantum optics
techniques o↵er genuine advantages when working with a photonics platform
compared to quantum simulations with ultra-cold gases. Typical ultra-cold
atoms experiments use time-of-flight images after releasing the atoms from the
trapping potential to provide insight into the momentum distribution and co-
herence properties [113]. Only recently, the trapped density distribution of a
quantum gas has become available to experimentalists, at the cost of a complex
in situ imaging setup called a quantum gas microscope [117]. With quantum
fluids of light, detection turns out to be a much easier task, consisting in mea-
suring the light exiting the system. Similar to state preparation, we can access
the momentum distribution by imaging the Fourier plane and the density distri-
bution by imaging the real plane. Moreover, coherence properties are available
through interferometric techniques (g(1) and g

(2) measurements) which are parts
of the standard quantum optics toolbox. This ease of preparation and detection
is actually one of the main benefits of quantum fluids of light and one attractive
aspect of photonic quantum simulation in respect to quantum simulation with
ultra-cold atoms.

5.2.2 Double-⇤ configuration

The goal is to refine the EIT configuration to allow for more complex equations
to be simulated. By adding a forth level and a second coupling beam it is
possible to do so. I will not go into the details of the derivation, the interested
reader can use [118], but I will just mention the main result that we are planning
to implement in our setup.

With two coupling beams (the EIT beam is noted ⌦c and the second coupling
beam ⌦s) the evolution equation for the probe Rabi frequency ⌦p is:

�i
@

@z
⌦p =


1

2
r2

? + V (r) � G(r)|⌦p|2
�
⌦p, (5.1)

with the potentiel given by

V (r) = � |⌦s|2

2�(|⌦c|2 + |⌦s|2)
, (5.2)

and the non-linear coupling term:

G(r) = � |⌦s|2

2�(|⌦c|2 + |⌦s|2)2
. (5.3)
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Figure 5.6: a) Schematic representation of the dynamical Casimir e↵ect in a
non-linear medium. Pairs of quantum correlated phonons (or intensity modu-
lation) are generated at the input of the cell by the non-linearity quench. They
propagate in the transverse direction at cs the speed of sound and can be de-
tected by homodyne detection at the output plane. b) Expected correlations in
the momentum space and position space. Adapted from [112]

 is a constant given by  = Nµ
2
/("0h̄�). Obviously this two coe�cients are

coupled, but this opens the way to control of potential and non-linearity with
much more degrees of liberty that what we currently achieve with two-level
atoms.

5.2.3 Quantum optics

Going quantum is certainly a fundamental landmark in the field of photonics
quantum simulators. Because light in warm atomic vapor is a well controlled
system which has already proved to be an excellent source of quantum correlated
beams (see chapter 3 for example) I anticipate that it could be the first system
to lay the groundwork for achieving valuable results .

One step in this direction could be done by investigating the dynamical
Casimir e↵ect [112]. In the same experimental configuration as in section 4.5,
but without the probe beam to seed an excited Bogoliubov mode, we have an
interesting test-bed for quantum simulation. Indeed, because of the quench of
the interaction at the entrance of the medium, quantum correlated pairs of Bo-
goliubov modes are generated even in the absence of the probe beam analogous
to the dynamical Casimir e↵ect. This is the same di↵erence as between bright
squeezing and squeeze vacuum as discussed in chapter 3. The main challenge is
now to find a technique to measure the correlations presented in figure 5.6.

This experiment is basically a four-wave-mixing setup with a detection scheme
in the plane of the cell output and not in the far field. Homodyne detection
seems to be the suitable tool, however this means going to non-zero frequency
to be realistic. The step that remains to be done is therefore to include fre-
quency dependance inside the evolution equation and see how the analogy with
the non-linear Schrödinger equation holds.
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Figure 5.7: A nice picture of a rubidium cell to conclude...



122 CHAPTER 5. OUTLOOKS AND FUTURE PROJECTS

5.3 Nano-optics

An important part of my work since I joined the LKB in 2013 has been dedi-
cated to the development of a novel experimental apparatus for nano-optics. In
writing this manuscript, I want to show the possible links that still remain to be
tied between quantum optics and quantum memory on one hand and fluids of
light and quantum simulation with light in the other. Therefore nanooptics ex-
periments did not fit well in this e↵ort. However, the interested reader can learn
more about these works in the following references [119, 120, 121, 122, 123]:

• Polarization Control of Linear Dipole Radiation Using an Optical Nanofiber.
M. Joos, C. Ding, V. Loo, G. Blanquer, E. Giacobino, A. Bramati, V.
Krachmalnico↵, Q Glorieux.
Phys. Rev. Applied, 9, 064035 (2018).

• CdSe/CdS dot–in–rods nanocrystals fast blinking dynamics.
M. Manceau, S. Vezzoli, Q Glorieux, E. Giacobino L. Carbone, M. De
Vittorio J-P. Hermier, A. Bramati.
ChemPhysChem, Accepted. (2018).

• Localised excitation of a single photon source by a nanowaveguide.
W. Geng, M. Manceau, N, Rahbany, V. Sallet, M. De Vittorio, L. Carbone,
Q. Glorieux, A. Bramati, C. Couteau.
Scientific Reports 6, 19721 (2016).

• Exciton Fine Structure of CdSe/CdS Nanocrystals Determined by Polar-
ization Microscopy at Room Temperature.
S. Vezzoli, M. Manceau, G. Leménager, Q. Glorieux, E. Giacobino, L.
Carbone, M. De Vittorio, A. Bramati.
ACS Nano 9, 7992 (2015).

• E↵ect of charging on CdSe/CdS dot-in-rods single-photon emission.
M. Manceau, S. Vezzoli, Q. Glorieux, F. Pisanello, E. Giacobino, L.
Carbone, M. De Vittorio, A. Bramati.
Phys. Rev. B 90, 035311 (2014).

https://doi.org/10.1103/PhysRevApplied.9.064035
https://doi.org/10.1103/PhysRevApplied.9.064035
https://doi.org/10.1002/cphc.201800694
https://doi.org/10.1002/cphc.201800694
http://www.nature.com/articles/srep19721
http://www.nature.com/articles/srep19721
http://pubs.acs.org/doi/abs/10.1021/acsnano.5b01354
http://pubs.acs.org/doi/abs/10.1021/acsnano.5b01354
http://pubs.acs.org/doi/abs/10.1021/acsnano.5b01354
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.035311
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.035311
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tation, Université Paris-Diderot-Paris VII, 2011.

[78] H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensa-
tion of semiconductor microcavity exciton polaritons,” Science, vol. 298,
no. 5591, pp. 199–202, 2002.

[79] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. Keel-
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