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Résumé 

La détection de peau consiste à détecter les pixels correspondant à une peau humaine dans une image 

couleur. Les visages constituent une catégorie de stimulus importante par la richesse des informations 

qu’ils véhiculent car avant de reconnaître n’importe quelle personne il est indispensable de localiser et 

reconnaître son visage. La plupart des applications liées à la sécurité et à la biométrie reposent sur la 

détection de régions de peau telles que la détection de visages, le filtrage d'objets 3D pour adultes et la 

reconnaissance de gestes. En outre, la détection de la saillance des mailles 3D est une phase de 

prétraitement importante pour de nombreuses applications de vision par ordinateur. La segmentation 

d'objets 3D basée sur des régions saillantes a été largement utilisée dans de nombreuses applications de 

vision par ordinateur telles que la correspondance de formes 3D, les alignements d'objets, le lissage de 

nuages de points 3D, la recherche des images sur le web, l’indexation des images par le contenu, la 

segmentation de la vidéo et la détection et la reconnaissance de visages. La détection de peau est une 

tâche très difficile pour différentes raisons liées en général à la variabilité de la forme et la couleur à 

détecter (teintes différentes d’une personne à une autre, orientation et tailles quelconques, conditions 

d’éclairage) et surtout pour les images issues du web capturées sous différentes conditions de lumière. Il 

existe plusieurs approches connues pour la détection de peau : les approches basées sur la géométrie et 

l’extraction de traits caractéristiques, les approches basées sur le mouvement (la soustraction de l’arrière-

plan (SAP), différence entre deux images consécutives, calcul du flot optique) et les approches basées 

sur la couleur. Dans cette thèse, nous proposons des méthodes d'optimisation numérique pour la détection 

de régions de couleurs de peaux et de régions saillantes sur des maillages 3D et des nuages de points 3D 

en utilisant un graphe pondéré. En se basant sur ces méthodes, nous proposons des approches de détection 

de visage 3D à l'aide de la programmation linéaire et de fouille de données (Data Mining). En outre, nous 

avons adapté nos méthodes proposées pour résoudre le problème de la simplification des nuages de points 

3D et de la correspondance des objets 3D. En plus, nous montrons la robustesse et l’efficacité de nos 

méthodes proposées à travers de différents résultats expérimentaux réalisés. Enfin, nous montrons la 

stabilité et la robustesse de nos méthodes par rapport au bruit. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 

Skin detection involves detecting pixels corresponding to human skin in a color image. The faces 

constitute a category of stimulus important by the wealth of information that they convey because before 

recognizing any person it is essential to locate and recognize his face. Most security and biometrics 

applications rely on the detection of skin regions such as face detection, 3D adult object filtering, and 

gesture recognition. In addition, saliency detection of 3D mesh is an important pretreatment phase for 

many computer vision applications. 3D segmentation based on salient regions has been widely used in 

many computer vision applications such as 3D shape matching, object alignments, 3D point-point 

smoothing, searching images on the web, image indexing by content, video segmentation and face 

detection and recognition. The detection of skin is a very difficult task for various reasons generally 

related to the variability of the shape and the color to be detected (different hues from one person to 

another, orientation and different sizes, lighting conditions) and especially for images from the web 

captured under different light conditions. There are several known approaches to skin detection: 

approaches based on geometry and feature extraction, motion-based approaches (background subtraction 

(SAP), difference between two consecutive images, optical flow calculation) and color-based 

approaches. In this thesis, we propose numerical optimization methods for the detection of skins color 

and salient regions on 3D meshes and 3D point clouds using a weighted graph. Based on these methods, 

we provide 3D face detection approaches using Linear Programming and Data Mining. In addition, we 

adapted our proposed methods to solve the problem of simplifying 3D point clouds and matching 3D 

objects. In addition, we show the robustness and efficiency of our proposed methods through different 

experimental results. Finally, we show the stability and robustness of our methods with respect to noise. 
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Introduction générale 

a convergence entre l'informatique, Internet et l'audiovisuel conduit de plus en plus à des 

informations visuelles. Progressivement, beaucoup d’applications produisent, utilisent et partagent 

des données visuelles, incluant des images, vidéos et objets 3D. L'augmentation significative des 

informations visuelles sur Internet et dans les organisations s'est accompagnée d'une prise de 

connaissance de l'importance de développer des ressources informatiques pour traiter ces informations. 

Ce traitement signifie de filtrer, de modéliser, de classer, de rechercher et d’indexer cette quantité massive 

de données visuelles. Il est donc impératif de pouvoir classer ces données en fonction de leurs thèmes ou 

de leurs contenus. Cette classification permettra de faire une sélection ou un contrôle d'accès selon la 

sémantique et selon le type de ces données. 

Dans ce contexte, la détection de régions de peau dans les données visuelles tels que les images, vidéo et 

objets 3D est importante dans la mesure où il est indispensable avant d’envisager des analyses et des 

traitements de niveau supérieur. Autrement dit, la plupart des applications liées à la sécurité et à la 

biométrie reposent sur la détection de régions de peau telles que détection de visage, filtrage d'objets 3D 

pour adultes et reconnaissance de gestes. 

D’autre part, la détection des visages devient un domaine de recherche important pour les applications 

de vision par ordinateur telles que la reconnaissance et la vérification humaines, l'analyse des émotions 

pour les tâches multimédias et le suivi visuel. De nos jours, le développement de systèmes biométriques 

est devenu un défi important pour les chercheurs. Les empreintes digitales et les techniques d'iris sont 

les plus utilisées, mais la reconnaissance faciale semble être la meilleure approche surtout dans les 

aéroports et les zones critiques. 

La plupart des approches de détection de visage pour les images 2D présentent de nombreux 

inconvénients tels que les variations d'éclairage, la pose et les expressions faciales. En outre, les données 

visuelles ne sont pas homogènes. Et comme la plupart de ces données peuvent être convertie en graphes 

pondérés. Par conséquence, pour rendre le processus de détection de visages applicable sur la plupart de 

données visuelles et moins sensible aux conditions d'éclairage et au point de vue, il est indispensable 

d'utiliser des méthodes qui fonctionne sur les nuages de points colorés 3D représentés par de graphe 

pondéré. 

Dans un contexte différent, la détection de la saillance sur les images ou bien maillages 3D a connu un 

progrès significatif. Les régions saillantes sont des zones particulières, qui sont distinguées des zones 

adjacentes sur une surface. Nombreuses des méthodes de détection de saillance ont été proposées pour 

2D images. Cependant, les technologies d'acquisition de données 3D ont connu des développements 

significatifs, qui ont conduit à l'acquisition de grandes quantités de données sous la forme de maillages 

3D et nuage des points 3D. 

La détection de la saillance des maillages 3D est une phase de prétraitement importante pour de 

nombreuses applications de vision par ordinateur. La segmentation d'objets 3D basés sur des régions 

saillantes a été largement utilisée dans de nombreuses applications de vision par ordinateur telles que la 

correspondance de formes, les alignements d'objets, le lissage de nuages de points 3D et la segmentation 

et reconnaissance du visage. Parmi ces applications, on peut citer également la simplification du maillage 

3D qui vise à maintenir une qualité mieux perçue en simplifiant les régions à faibles degrés de saillance. 

L 
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Dans cette thèse, nous introduisons des méthodes numériques pour la détection de régions de peau et la 

détection de régions saillantes sur des images, maillages 3D et nuage de points 3D avec quelques 

applications directes. 

Outre l’introduction et la conclusion, ce travail est organisé en 6 chapitres comme suit : 

Le contexte et la motivation de notre travail, ainsi que la description de quelques travaux de recherche 

déjà réalisés et en relation à notre travail, sont présentés dans le chapitre 1. 

Le deuxième chapitre est composé de deux parties : la première présente les différents concepts du Fouille 

de données, où on a décrit les différentes étapes d’un processus d’extraction de connaissances à partir 

des données. Tandis que la deuxième est consacrée, quant à elle, à la description de différents types de 

graphes avec leur construction et de différentes mesures de similarité. 

Dans le troisième chapitre, nous proposons un modèle de détection de couleurs de peau dans de nuages 

de points colorés et nous décrivons la méthode de détection développée. Ensuite, nous étendons cette 

méthode pour résoudre le problème de la détection de visage 3D. Pour ce faire, nous construisons un 

graphe pondéré à partir des nuages de points 3D colorés initiaux. Puis, nous présentons un algorithme de 

programmation linéaire (LP) utilisant un modèle prédictif basé sur une approche d'exploration de données 

afin de classifier et d'étiqueter les sommets de graphes en tant que régions de peau et de non-peau. De 

plus, nous appliquons des règles de raffinement sur les régions de peau pour confirmer la présence d'un 

visage. 

Le quatrième chapitre, est consacré à la présentation d’une méthode de détections des régions de saillance 

basée sur les notions de graphes pondérés comportant deux approches différentes. En outre, nous 

montrons l’efficacité de nos approches à partir d’une étude comparative avec "Ground truth maps" et 

avec d’autres travaux déjà réalisés et en relation avec notre problème étudié. A la fin de ce chapitre, nous 

présentons différents résultats numériques expérimentaux pour confirmer la robustesse et l’efficacité de 

notre méthode proposée. 

Le cinquième chapitre est réservé à la présentation de plusieurs applications basées sur les approches 

détaillées dans le quatrième chapitre. Parmi ces applications, on peut citer la segmentation d’objets 3D, 

la simplification du nuage de points 3D et la correspondance entre objets 3D. 

Dans le sixième chapitre, nous présentons en détail une méthode hybride de détection de visages dans de 

nuages de points 3D en utilisant les approches présentées dans les troisième et quatrième chapitres.  

Enfin, la dernière partie comporte une conclusion générale sur notre travail réalisé dans la thèse, quelques 

réflexions et des perspectives de nos travaux futurs. 
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General Introduction 

he convergence between informatics, Internet and audiovisual sectors leads more and more to visual 

information. Gradually, many applications produce, use and share visual data, including images, 

videos and 3D objects. The significant increase in visual information on the Internet and in organizations 

has been accompanied by an awareness of the importance of developing computing resources to process 

this information. This treatment means to filter, model, classify, search and index this massive amount 

of visual data. It is therefore imperative to be able to classify this data according to their themes or their 

contents. This classification will make it possible to do a selection or an access control according to the 

semantics and according to the type of these data. 

In this context, the detection of skin regions in visual data such as images, video and 3D objects is 

important as it is essential before considering higher level analyzes and treatments. In other words, most 

security and biometrics applications rely on the detection of skin regions such as face detection, 3D object 

filtering for adults and gesture recognition. 

On the other hand, face detection is becoming an important area of research for computer vision 

applications such as human recognition and verification, emotion analysis for multimedia tasks and 

visual tracking. Nowadays, the development of biometric systems has become a major challenge for 

researchers. Fingerprints and iris techniques are the most used, but facial recognition seems to be the best 

approach especially in airports and critical areas. 

Most face detection approaches for 2D images have many disadvantages such as lighting variations, 

exposure, and facial expressions. In addition, the visual data is not homogeneous. Moreover, since most 

of this data can be converted into weighted graphs. Therefore, to make the face detection process 

applicable to most visual data and less sensitive to lighting conditions and point of view, it is essential to 

use methods that work on the 3D colored point clouds represented by weighted graph. 

In another context, the detection of saliency on images or 3D meshes has made significant progress. The 

salient regions are particular areas, which are distinguished from adjacent areas on a surface. Numerous 

methods of saliency detection have been proposed for 2D images. However, 3D data acquisition 

technologies have experienced significant developments, which have led to the acquisition of large 

amounts of data in the form of 3D meshes and 3D point cloud. 

Saliency detection on 3D mesh is an important pretreatment phase for many computer vision 

applications. The segmentation of 3D objects based on salient regions has been widely used in many 

computer vision applications such as shape matching, object alignments, 3D point cloud smoothing, and 

face segmentation and recognition. Among these applications, one can also mention the simplification 

of the 3D mesh, which aims to maintain a better-perceived quality by simplifying the regions with low 

degrees of saliency. 

In this thesis, we introduce numerical methods for skin regions detection and salient regions detection 

on images, 3D meshes and 3D point clouds with some applications. 

In addition to the introduction and conclusion, this work is organized into six chapters as follows: 

The context and motivation of our work, as well as the description of some related works, are presented 

in chapter 1. 

T 
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The second chapter is composed of two parts: the first presents the different concepts of Data mining, 

where we described the different stages of a knowledge extraction process from the data. While the 

second one describes different types of graphs with the construction and different similarity measures. 

In the third chapter, we propose a skin color detection model in colored point clouds and we describe the 

developed detection method. Then we extend this method to solve the problem of 3D face detection. To 

do this, we construct a weighted graph from the initial colored 3D point clouds. Then, we present a linear 

programming algorithm (LP) using a predictive model based on a data mining approach to classify and 

label the vertices of graph as skin and non-skin regions. In addition, we apply refinement rules on skin 

regions to confirm the presence of a face. 

The fourth chapter presents a salient region detection method based on the concepts of weighted graphs 

with two different approaches. In addition, we show the effectiveness of our approaches from a 

comparative study with "Ground truth maps" and with other works already done and related to our studied 

problem. At the end of this chapter, we present various experimental results to show the robustness and 

efficiency of our proposed method. 

The fifth chapter is dedicated to the presentation of several applications based on the approaches detailed 

in the fourth chapter. These applications include the segmentation of 3D objects, the simplification of 

the 3D point cloud and the matching between 3D objects. 

In the sixth chapter, we present in detail a hybrid method of face detection in 3D point clouds using the 

approaches presented in the third and fourth chapters. 

Finally, the last one presents a general conclusion of this thesis work and perspectives of our future work. 
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In this thesis, we are interested in image and 3D objects processing using numerical optimization 

methods. More specifically, we are working on two themes, which are the detection of skin regions and 

salient regions on 3D meshes and 3D point clouds. Moreover, we present many applications related to 

these two topics. In this chapter, we discuss some approaches related to our work by focusing on their 

disadvantages.  These similar works include skin region segmentation, face detection, salient regions 

detections, 3D point clouds simplifications, 3D objects matching, and recognition. Finally, we finish this 

chapter by specifying the context and motivations, which pushed us to carry out this work. 
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1.1. Literature review 

1.1.1. Skin region segmentation and face detection 

In this subsection, we review some existing approaches for face detection and recognition based 

on skin region detection or geometry features. 

 

 

Moudani et al. [5] presented a method based on data mining techniques for 2D face detection. They have 

demonstrated the robustness of the method by showing some experimental results and comparing them 

to other related works. In this work, we propose a generalized approach to deal with 3D colored point 

clouds. 

 

Regarding skin detection, in [6], Joenes and Rehg used a method for skin detection based on Statistical 

Color Models in 2D images. Their method achieved a correct detection rate of 80%. 

 
FIGURE 1.1 - Framework of skin-color based face detection proposed by [7] 

 

Bin Ghazali et al. [7] proposed a method for 2D images face detection under varying illumination 

conditions. This method considers the color image and the color balance model to convert the RGB color 

space into the YCgCr color space. Then, they proposed to detect faces by merging the Gaussian skin-

color model, template matching, and face verification technique. 

 

Colombo et al. [8] proposed a method for 3D face detection that identifies the subject’s eyes and the 

nose, and then classifies the regions of the eyes and noses. Nonetheless, the authors mentioned that this 

technique is highly sensitive to noises and to the presence of holes surrounding the regions of the nose 

and eyes. 
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FIGURE 1.2 - Detailed diagram of the face detection method proposed by [8] 

Mian et al. [9] proposed to localize the 3D face by detecting the nose tip, and then the segmentation can 

be made by cropping the sphere centered by the detected nose tip. They mentioned that their approach is 

strongly limited to the dataset used, as every input 3D object is inferred to contain only one face. 

Furthermore, the radius of the cropping sphere has a fixed value over the entire dataset and therefore the 

segmentation cannot handle scale changes. Niese et al. [10] proposed a method for 3D face detection 

based on color-driven clustering of the 3D points derived from stereo. They used a variant of the Iterative 

Closest Point algorithm to match the 3D mesh with the post-processed face cluster. Then, they used the 

correspondence to derive the face pose. Finally, pose and model information are used for the synthesis 

of the face normalization. Some methods [11, 12] divided the view sphere into a number of sectors and 

collected templates for each view. Given a new candidate object, the face detection is obtained using the 

template matching approach. 

 

Kheirkhah et al. [13] presented an approach using Adaboost-based face detection based on skin-color 

information. Adaboost is a known approach in machine learning to create a highly accurate prediction 

rules by combining many relatively weak and inaccurate rules. They proposed to extract the regions first, 

which have more potential to be faces in the image using image illumination correction, skin tone 

extraction, skin region segmentation, and connected component separation. Then they apply some rules 

to eliminate non-face regions. Finally, they used the Adaboost-based face detection system as an 

improved appearance- based approach.  
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Lin et al. [14] proposed a human face detection method based on skin color and neural networks 

technique. First, they proposed to construct a so-called skin map by searching for the candidates’ regions. 

Then, they applied some morphological operations to detect the locations of pair eyes in the candidates’ 

regions. Finally, they affirm a presence of a face using a 3-layer back-propagation neural network to 

verify the face candidates’ regions. Wang et al. [15] proposed a hierarchical face detection method using 

the template-matching and two dimensional PCA algorithms [79]. Their method consists in using two 

different classifiers. The first classifier filtrates the non-face regions using the template- matching 

algorithm, and then the second one uses the 2DPCA algorithm to detect faces. 

 

 
 FIGURE 1.3- The framework for Hybrid Face Detection System proposed by [13] 

Recently, Huang et al. [16] proposed to use a support vector machine model with skin and non-skin 

colors to detect skin points in 3D facial point clouds. Then, they have used an approach based on the k-

nearest neighbor (k-NN) method to fill holes on the obtained skin point clouds. Finally, they proposed to 

use a threshold to determine whether a point is on the face surface.  

1.1.2. Salient regions detection 

In this subsection, we discuss some existing approaches for salient regions detection. Visual 

saliency is known as an important research field in computer vision history. It is used to locate the 

position of regions, which attract our attention in a 3D surface or a 2D image. Many saliency detection 

models have been proposed. Most of mesh saliency detection methods extend 2D saliency methods by 

computing the 3D surface saliency in its 2D projection or treat the 3D surface directly. These methods 

can be classified into two categories: point saliency detection and regions saliency detection.  
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FIGURE 1.4- Synopsis of the mono-scale saliency proposed by [20] 

Inspired from 2D mesh saliency methods, Lee et al. [17] introduced the idea of mesh saliency as a 

measure of regional importance for graphics meshes.  They proposed to define the saliency in a scale-

dependent manner using a center-surround operator on Gaussian-weighted mean curvatures. They used 

a nonlinear weighting scheme to promote few distinctive maps with high peaks. The main disadvantage 

of this method is that the Gaussian-weighted difference of different scales can produce the same values 

of saliency for two opposite and symmetric vertices due to the absolute difference. Song et al. [18] 

estimate the salience in the spectral domain by analyzing deviations and characteristics of the log-

Laplacian spectrum. To compute the saliency map, they transformed back the spectral residual in spectral 

domain to the special domain.  Spectral analysis is known as an efficient approach for image saliency 

detection. 

 

Some saliency detection algorithms compute the 3D mesh saliency by projecting the set of 3D mesh node 

in a 2D plan.  Wu et al.  [19] proposed a method to detect saliency on 3D meshes using the local contrast 

and global rarity. They calculated square map of the height projections to describe the local shape 

surrounding a vertex. Then, local and global saliencies are combined together for each vertex to define 

the final visual saliency at different scales.   A. Nouri et al. in [20] have proposed a method to detect 

saliency on 3D meshes using a multi-scale approach. They defined a local surface descriptor using a 

patch with an adaptive size. Subsequently, the adaptive patch is divided into cells where each cell 

contains the absolute value of the sum of projections heights. Then, they defined a single-scale saliency 

for each vertex using the similarity between adaptive patches and the local curvature. Finally, they 

proposed to compute the multi-scale saliency as the average of single-scale saliencies weighted by their 

entropies.  Leifman et al. proposed in [21] to detect saliency using a diffusion process. They built for 

each vertex a 2D histogram of spin images, and then they measured the dissimilarity between these 

histograms by discretizing the diffusion using a Gaussian pyramid. Then they used a single scale 

computation to evaluate the distinctness of vertices and a multiple scale computation to decrease the 

importance of 3D textures. Finally, they selected 20% of vertices with highest distinctness value as focus 

points. It is true that close regions to focus points have more attention than other regions, but other salient 

regions where the distinctness of all vertices is less than 20% is missed. The multi-scale operation used 

in this method may not reduce all the noise effects. 

     

Some earlier methods compute the 3D mesh saliency by treating the surface directly. In [22], Tao et al. 

proposed a method to detect 3D salient regions based on manifold ranking in a descriptor space. Firstly, 

they segmented the mesh into patches and computed a descriptor for each patch based on Zernike 

coefficients. Then, they estimated the local distinctness of each patch by a center-surround operator. 
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Patches with small named background and those with high local distinctness are named foreground 

patches. Furthermore, the saliency of all the patches is computed based on their relevance to the given 

queries via manifold ranking using a self-adaption graph in the descriptor space of patches.  Finally, they 

achieve a smooth vertex saliency map by propagating the patch saliency. This method is high robust 

against noises, but the authors mentioned that it does not incorporate any high-level priors. Zhao. et al 

[23, 24] proposed to performed a filtering phase to remove high frequencies from the mesh and compute 

similarities between vertices. Then, they transformed the mesh into a multi-scale volumetric data. The 

scale of volumetric data is set by the user, thus the patch is located within the voxel.  The dissimilarity 

map is then computed using the dissimilarity measure between two patches associated to two sub-voxels. 

Finally, the saliency of a single patch is calculated from the average of saliency maps with different 

scales. The mesh enhancement phase leads to locate meaningful region completely, while the 

disadvantage of this method is the computational time complexity due to the volumetric data construction 

and the intensive computation of all patches comparison. Recently, Zhao et al. [25] suggested to detect 

interest points by measuring the saliency degree of vertices.  They implemented the Retinex theory [26] 

to improve local details of the surface and estimate its invariant properties. Finally, they segmented the 

3D surface to regions, and then they proposed to estimate the saliency degree of vertices using the spatial 

distance between the obtained regions. Liu et al [27] proposed to detect the saliency on a 3D mesh using 

absorbing Markov chain. They have segmented the mesh into patches in order to select some background 

patches by computing feature variance within the segments. Furthermore, they computed the absorbed 

time of each node using absorbing Markov chain with the background patches as absorbing nodes, which 

give a saliency measure. Then, they generated a refined saliency measure using the similar approach but 

with foreground nodes extracted from the saliency map. Finally, they applied a Laplacian-based 

smoothing procedure to propagate the patch saliency to vertices. 

 

 

 

 
FIGURE 1.5- Some results of related work compared with Ground truth 

 

[20] 
[22] 

[18] 
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1.1.3. 3D point cloud and mesh simplification 

In this subsection, we review available approaches for 3D point cloud and mesh simplification 

by mention their defects.  

 

FIGURE 1.6- 3D point cloud simplification 

Lee and al. [28] introduced a simplification method based on the part geometry information and normal 

values of points using 3D grids. Pauly et al. [29] presented and studied different approaches for surface 

simplification of 3D objects from unstructured point clouds. In [30, 31], Moaning and Dodgson used the 

idea of progressive intrinsic farthest point sampling of a surface in point clouds. They presented a uniform 

simplification algorithm coarse-to-fine with user-controlled density guarantee.  

In order to find the weight of 3D models features, lee et al. [32] suggested a novel simplification method 

by adopting the Discrete Shape Operator.  

Based on the feature extraction, Peng et al. [33] proposed a new simplification algorithm for unstructured 

point clouds described by its unit normal vectors. 

In [34], Song et al. proposed a global clustering simplification method for point cloud. It consists of 

finding a subset of the original input data set according to a specified data reduction ratio.  Then, they 

obtained a global optimal result by minimizing the geometric deviation between the input point sets and 

the simplified ones. The drawback of this method is that the approximated point-to-surface distances may 

no longer get accurate values, and it is hugely time-consuming when the number of points is much 

reduced. 

In [35], Miao et al. proposed a curvature-aware adaptive re-sampling method to simplify point clouds 

based on an adaptive mean-shift clustering pattern. The usage of adaptive mean-shift clustering was to 

generate a simplification result non-uniformly distributed. However, it is difficult to incorporate the 

simplified geometric error in their approach and the simplification rate is low.  

Lastly, in [36], Shi et al. presented a new method for simplification “cluster subdivision” based on k-

means clustering approach according to two factors: user-defined space interval and normal vector 

tolerance. Thus, this method is very sensitive to the user-defined parameters. 
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FIGURE 1.7- General procedure of reverse engineering and inspection [36] 

1.1.4. Matching and object recognition 

In this subsection, we present existing approaches for 3D objects matching and recognition.  

 

FIGURE 1.8- Matching planar shapes (a) and 3D shapes (b) 

The matching between planar shapes can be solved using dynamic programming where the 

complete search over the initial correspondence leads to cubic runtime in the number of sample points 

[37]. In contrast, the concepts of Dijkstra’s algorithm and dynamic programs were not extended to 3D 

dimension where the solution is a minimal closed surface in a space of higher dimension. Thus, the most 

of existing approaches for 3D object matching usually rely on local optimization technics. In this scope, 

our approach tries to find a relational maximum sub-graph matching between featured regions 

representing the 3D objects. Authors in [38] proposed a method for computing a geometrical matching 

between two 3D shapes by mapping tiny surface patches while preserving the geometric structures 

instead of matching points to points. They considered matching as diffeomorphisms between the objects’ 

surfaces, which can be represented as closed and continuous surfaces in the product space of the two 

shapes. This leads to a minimal problem with discrete formulation that describes the search space with 

linear constraints. Authors in [39] proposed the paradigm of the Gromov–Hausdorff framework to 

compute the correspondence that minimizes the geodesic distortion. In [40], authors proposed an 

approach for calculating correspondences in a coarse-to-fine strategy similarly as of optical flow 

approaches. Other approaches of shape matching rely on technics such as conformal [41] or Riemannian 

[42] geometries. All these methods minimize a nonconvex energy using a local optimization technique. 

(a) (b) 
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Thus, the solution quality depends deeply on a suitable initialization and a coarse-to-fine strategy well 

designed. Moreover, the solution do not come with any guarantee of optimality. 

Recently, Zeng and coworkers [43] proposed a method for computing the shape matching by formulating 

it as a graph-matching problem then applying the QPBO algorithm [44]. The major disadvantages of this 

approach are the very high computational complexity and lacks of a continuous counterpart, as it just 

matches discrete points rather than surface patches.  

1.2. Context and motivations 

In this manuscript, we decide to work on two themes Skin color and Saliency regions detection 

due to their important applications in computer vision.  

Skin and face detection is a trivial task for a human brain but a very complex one for computers. There 

are many difficulties encountered to implement such approaches as: 

 Skin color: Human beings have different skin colors, hence the difference in the pixel value of 

each person's skin. 

 Illumination conditions: In any detection action, light is an important factor and it is the most 

difficult problem to solve. Hence the need for image preprocessing such as normalization and 

histogram equalization to minimize illumination and illumination effects. 

 Face position: A face can be located in different positions in an image, 3D objects or 3D point 

clouds; in this case, the computer must be able to detect the face whatever its position. 

 Face size: The size of faces is different from one image to another or from one person to another 

hence the difficulty of implementing an algorithm that detects faces without having consequences 

of this factor. There is also the size of the components of the face such as the nose, the eyes, the 

mouth or something else varying from one person to another which implies a larger number of 

parameters when performing the detection. 

 Absence of some facial components: These are whiskers, beards, glasses that must be taken into 

consideration when implementing the algorithm. 

 Occultation: A face that can appear half-in-picture or sometimes partially obscured by an object 

forces us to define the conditions of acceptance of the face by the system. For example, it can be 

assumed that the face must appear entirely for it to be admitted. 

  Rotation: Faces are not always facing the camera. Some faces have an inclination with a certain 

degree, which affects the detection system hence the need to establish conditions to define a 

candidate face for acceptance. 

 Image or 3D objects complexity: The detection can be on very complex images with several 

people in the same image, faces hidden or half hidden by objects with possibly complex 

backgrounds, which increases the difficulty of detection. 

Concerning salient regions detection and its applications, the difficulties faced are: 

 Noise problem 

 The computational time complexity 

 Invariant surface patch descriptor 
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 Scale varying 

In addition, due to disadvantages of related works presented in the previous section, our objective in this 

thesis is to propose accurate and robust methods that deal with any data represented by weighted graph 

such as 3D colored point clouds, 3D meshes and 2D images.  

1.3. Conclusion 

In this chapter, we have discussed several related works by mention their defects. Successively, 

we showed the motivations and context of our work. In the next chapter, we will briefly introduce Data 

mining and Graph as we used these approaches in this thesis. 
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In this chapter, we present the process of knowledge discovery (KDD) by describing Data mining 

and its associated steps. The different types of classification are presented while being limited to describe 

the technique of decision tree with its different variants. Furthermore, all notations and works presented 

in this thesis are based on the concept of weighted graph. Therefore, we introduce in this chapter the 

different definitions, notations and concepts inherent to these graphs.
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2.1. Data mining and Knowledge Discovery 

2.1.1. Introduction  

The progress of Information Technology has generated massive data in various areas. These data 

can be stored in data warehouses, distributed databases or on the Internet. The research in databases and 

information technology fields has given rise to an approach to store and process this precious data for 

further decision making.  

Data mining is the core concept of the knowledge extraction process (FIGURE 2.1.) that allows accessing 

and analyzing data.  In other words, Data mining is the art of extracting knowledge from data.  It is not 

limited to processing structured digitalized; it offers the tools to approach the corpus in natural language 

(text mining), images (image mining), sound (sound mining) or videos and more generally the 

multimedia mining.   

 

FIGURE 2.1 - Knowledge Discovery process [1,2] 

2.1.2. Data mining process 

In general, a knowledge discovery process consists of an iterative sequence of several steps. In 

order to transform the data to knowledge, we have to go back and forth between the steps to improve and 

enrich the knowledge produced.  

 Data cleaning: it is a phase in which noisy, missing, or irrelevant data are removed from the 

collection. 

 Data integration: at this step, multiple heterogeneous data sources may be combined in a 

common source. 

 Data selection: where data relevant to the analysis task are retrieved from the database, where 

data are transformed or consolidated into forms appropriate for mining by performing summary 

or aggregation operations, mining, which is an essential process where intelligent methods are 

applied in order to extract data patterns. 

 Data transformation: or data consolidation, it is a stage in which the selected data is transformed 

into forms suitable for the mining process. 
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 Data mining: it is the essential step in which clever methods are applied to extract patterns 

potentially useful. 

 Pattern evaluation: which is to identify the truly interesting patterns representing knowledge 

based on some measures. 

 Knowledge presentation: where visualization and knowledge representation techniques are used 

to present mined knowledge to the user. This essential step uses visualization techniques to help 

users understand and interpret the data mining results. 

Some of these steps can be combined together, such as, data cleaning and data integration can be executed 

together as a pre-processing phase to generate a data warehouse. In addition, data selection and data 

transformation can be combined where the consolidation of the data is the result of the selection. 

2.1.3. Classification 

Several techniques of data mining have been developed and used for knowledge discovery from 

databases. Among these techniques, we can cite: 

 Association, 

 Classification,  

 Clustering, 

 Prediction, 

 ... 

In this manuscript, we are interesting to classification and some related techniques.  

Automatic classification consists of grouping various objects (individuals) into subsets of objects 

(classes). There are two types of classifications: 

 Supervised: classes are known a-priori; they usually have an associated semantics. 

 Unsupervised clustering: classes are based on the structure of objects, the semantics associated 

with classes is more difficult to determine. 

In both cases, we need to define the notion of distance between two classes: the aggregation criterion. 

2.1.3.1. Supervised classification 

Let D= {d1, d2, ..., di , ..., dm} a set of documents each of them is represented respectively by a 

description 𝑑1⃗⃗ ⃗⃗ , 𝑑2⃗⃗ ⃗⃗ , ..., 𝑑𝑖⃗⃗  ⃗, ...,  𝑑𝑚⃗⃗⃗⃗⃗⃗  and C= {C1, C2, ..., Ck,, ..., Cc} a set of classes, the supervised 

classification assumes two known functions. The first matches any individual di with a class Ck. It is 

defined by means of (di, Ck) given as examples to the system. The second matches any individual di with 

his description 𝑑𝑖⃗⃗ ⃗⃗  . The supervised classification then consists in determining a classification procedure: 

𝐶𝑓:𝑑𝑖⃗⃗  ⃗ → 𝐶𝑘 

where from the description of the element determines its class with the lowest error rate. The performance 

of the classification depends in particular on the effectiveness of the description. Moreover, if one wants 

to obtain a system of learning, the procedure of classification must make it possible to classify efficiently 

any new example (predictive power). 

(2.1) 
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2.1.3.2. Unsupervised classification 

Unsupervised classification is used when there are documents that are unclassified. At the end of 

the unsupervised classification process, the documents must belong to one of the classes generated by 

the classification. There are two categories of unsupervised classifications: hierarchical and non-

hierarchical. 

In the hierarchical classification (CH), the created subsets are nested hierarchically in each other. We 

distinguish the descending (or divisive) CH which starts from the set of all the individuals and splits them 

into a certain number of subsets, each subset then being broken up into a certain number of subsets, and 

so on. Moreover, the ascending (or agglomerative) CH that starts with single individuals that are grouped 

into subsets, which are in turn grouped, and so on. To determine which classes we are going to merge, 

we use the aggregation criterion. 

In the non-hierarchical classification, individuals are not hierarchically structured. If each individual is 

only part of a subset, we speak of partition. If each individual can belong to several groups, with the 

probability 𝑃𝑖 to belong to group i, then we speak of recovery. 

2.1.3.3. Aggregation criterion 

The aggregation criterion makes it possible to compare classes two by two to select the most 

similar classes according to a certain criterion. The classic criteria are the nearest neighbor, the 

maximum diameter, the average distance and the distance between the centers of gravity. 

2.1.3.4. Evaluation of a classification system 

In this subsection, we present a method for evaluating supervised classification, and standard 

techniques for measuring and comparing unsupervised classification systems. 

 Test corpus (supervised case) 

To test the quality of a supervised classification procedure, the classified elements are randomly 

separated between a reference bases (R) and a test base (T). Then, the classification procedure 𝐶𝑓 is 

determined from the examples of the reference base. Then, we use 𝐶𝑓to find the class of elements of the 

test database. Finally, the error of the classification procedure is considered. 

To estimate the error rate TE of a classification procedure 𝐶𝑓, a simple method is to calculate the number 

of badly classified elements on the number of elements to classify: 

𝑇𝐸(𝐶𝑓) =  
1

𝑐𝑎𝑟𝑑(𝑇)
 ∑ (𝐶𝑓(𝑑𝑡)⃗⃗⃗⃗⃗⃗  ≠  𝐶𝑑𝑡

𝑐𝑎𝑟𝑑(𝑇)
𝑡=1 )  

where  𝐶𝑑𝑡 is the original class of  𝑑𝑡. 

In the case of simple classifications, we may have to calculate the error resulting from a purely random 

classification  𝐶𝑎 to compare it with the error made by our procedure  𝐶𝑓 in order to check the 

performance of our system. 

 

(2.2) 
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Let 𝑃𝑘 the frequency (or a priori probability) of the k class in the test database, we call 𝑇𝐸𝑎 error of the 

random system:  

𝑇𝐸𝑎 = 1 − ∑(𝑃𝑘)
2 = 1 − ∑(

𝑐𝑎𝑟𝑑(𝐶𝑘|𝑇)

𝑐𝑎𝑟𝑑(𝑇)
)2

𝑐

𝑘=1

𝑐

𝑘=1

 

where c is the number of classes and card (𝐶𝑘 | T) is the number of elements of T that are in the 𝐶𝑘 class. 

The apparent error TE (𝐶𝑓) is dependent on the sample under consideration. However, the larger the 

number of elements in the sample, the more the measured error tends to the real error of 𝐶𝑓. 

 Unsupervised case 

In the case of unsupervised, classification can be assessed against some of these characteristics. One 

distinguishes on the one hand, numerical characteristics: the number of classes obtained, the number of 

elements per class, the average number of elements per class, the standard deviation of the classes 

obtained, and on the other hand, the semantic features. For example, if a document is associated with a 

set of keywords, the semantics associated with a class may consist of the most common words in the 

class. 

To evaluate the homogeneity of the number of images per class, we can use the variance:  

𝑉 =  𝜎2 = 
1

𝑐
∑(𝑐𝑎𝑟𝑑(𝐶𝑘) − 𝑚𝑜𝑦)

2

𝑐

𝑘=1

 

where 𝑚𝑜𝑦 =
1

𝑐
 ∑ 𝑐𝑎𝑟𝑑(𝐶𝑘)

𝑐
𝑘=1  is the average number of elements per class and c is the number of 

classes obtained. The standard deviation 𝜎 = √𝑉expresses the dispersion in the same unit as the average. 

2.1.3.5. Classification techniques 

Among the classification techniques, in this manuscript, we will be required to use 

classification by decision tree.  

2.1.3.6. Classification by decision tree 

A decision tree is a graphical representation of a classification procedure. The internal nodes of 

the tree are tests on the fields or attributes, the leaves are the classes. Each leaf represents a prediction of 

a solution to the related problem. The buildings of decision tree classifier do not need any domain 

knowledge or parameter setting and therefore is suitable for exploratory knowledge discovery. High 

dimensional data can be handled by decision tree. When the tests are binary, the left son corresponds to 

a positive test response and the right son to a negative answer.  

An example of a decision tree is shown in (FIGURE 2.2): 

 

(2.3) 

(2.4) 
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FIGURE 2.2 - Example of a decision tree; MS is the average balances of the current account, other accounts is a binary 

field that is yes if the customer has other accounts, class Y indicates a prior favorable for the allocation of a loan 

Decision trees offer several benefits in data mining: 

• Easy to track when compacted and understandable 

• Able to hold a variety of input data: numeric, nominal, and textual 

• Work with datasets that may have missing values or errors 

• High predictive performance for a relatively small computational effort 

• Offered in many data mining packages over a variety of platforms 

• Useful for various tasks, such as regression, classification, feature selection and 

clustering.  
 

 Learning decision tree 

With an input of a sample of m classified records (x⃗  , c (x⃗ )), a learning algorithm must output a decision 

tree. Most algorithms proceed in a descending way that is, they choose the root of the tree (usually a test) 

and then, recursively, choose the label of the leaves. To simplify the presentation, we limit ourselves, in 

this section, to problems where the attributes are discrete and the number of classes equal to 2. The 

generic algorithm can be written: 

Decision Tree Learning Algorithm 

Input : a sample S of m classified records (𝑥 , c(𝑥 )) 

initialization : empty tree; current node: root; current sample: S 

repeat 

decide if the current node is terminal 

if the current node is terminal then 

label the current node with a leaf 

else 

select a test and create the subtree 

End if 

current node: a node not yet studied 

current sample: sample reaching the current node 

until production of a decision tree 

prune the decision tree obtained 

output : pruned decision tree 
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 CART 

CART was defined in the 1980s [3]. Since then, it has been integrated with many data mining 

environments in many variations. We give here its main peculiarities. Originally, the algorithm only 

considered binary tests. The function that measures the degree of mixing (and therefore the gain) is the 

Gini function (the broadcast versions offer other choices). For pruning, an upward progression of the 

constructed tree is carried out. To decide if a sub-tree can be pruned, the actual estimated error of the 

current tree is compared with the pruned tree. The estimate of the actual error is measured on a test set 

or by cross validation. 

 C5 

C5 is the most recent version of an ID3 algorithm developed by R. Quinlan [4]. The algorithm can take 

into account attributes of any arity. The function that measures the degree of mixing (and thus the gain) 

is the entropy function. This function tends to favor attributes with a large number of values. To avoid 

this bias, an information gain function is also available. Pruning is done with the learning set by a 

pessimistic assessment of the error. Although this technique may seem inappropriate, it gives good results 

in practice. 

2.1.4. Confusion matrix 

The confusion matrix presents in the form of a contingency table comparing the assignment class 

(in column) with the class of origin (in line) of the individuals composing the sample. We have two types 

of information: 

• The number of times the model was wrong 

• The type of error when ranking 

Figure 2 presents a confusion matrix for a model of 2 classes A and B. 

In general, the performance of a model is assessed through a confusion matrix, which compares the actual 

situation and the situation predicted by the model in order to estimate the error rate. 

TABLE 2.1 - Confusion matrix for 2 classes A and B 

 PREDICTED CLASS 

ACTUAL CLASS A B 

A 𝑛𝐴.𝐴 𝑛𝐴.𝐵 

B 𝑛𝐵.𝐴 𝑛𝐵.𝐵 

 

In this matrix, 𝑛𝐴.𝐵 represents the number of cases of class A assigned to class B and 𝑛𝐵.𝐴represents the 

number of cases of class B assigned to class A, while 𝑛𝐴.𝐴 and 𝑛𝐵.𝐵 represent the correct number of 

classification. 

From this confusion matrix, we can identify three types of indicators: 

The global error rate in resubstituting: This error rate is calculated on the learning sample Ωa, it is 

generally optimistic, i.e. lower than the theoretical error rate, which represents the probability that we 

are wrong if we apply the classifier over the entire population, which is impossible. In order to overcome 

this bias of optimism, which is very difficult to estimate, it is generally proposed to subdivide the two-
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part samples, a learning database Ωa and a test database Ωt. These two bases include different records. 

From experience, the learning base will resume from 70% to 80% of the recordings, the test base 

consisting of the remaining 20 to 30. The learning base is then used to build the model and the test base 

is used to check the stability of the model. In this case, we calculate the error rate called global error rate 

in validation. For the matrix above the overall error rate is calculated as follows:  

 

휀𝑔𝑙𝑜𝑏𝑎𝑙 = 1 − 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 

휀𝑔𝑙𝑜𝑏𝑎𝑙 = 1 −
𝑛𝐴.𝐴 + 𝑛𝐵.𝐵
𝑐𝑎𝑟𝑑(𝑀)

 

where card (M) is the total number of individuals.  

The error rate a priori: it is the probability that an individual belonging to the class k is not assigned to 

the class k. For our example and for class A, the error rate a priori is given by the following equation: 

휀𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 =
∑ 𝑛𝐴.𝑘𝑘≠𝐴

∑ 𝑛𝐴.𝑘𝑘
 

with k represents the different classes, in our case A or B.  

The error rate a posteriori: it is the probability that an individual assigned to the class k actually belongs 

to the class k. for our example and for class A, the error rate a posteriori is: 

휀𝐚 𝐩𝐨𝐬𝐭𝐞𝐫𝐢𝐨𝐫𝐢 =
∑ 𝑛𝑘.𝐴𝑘≠𝐴

∑ 𝑛𝑘,𝐴𝑘
 

The overall error rate allows us to know how a classifier will act on all the data; however, it does not 

allow us to distinguish what is the level of success for each class. This is why the error rate a priori has 

been calculated. It is in fact to calculate the success rate relative to each class. This is the complement of 

the classic recall rate criterion used most often in information retrieval systems (IRS). The error rate a 

posteriori allows us to focus on the credibility of a classification, such as, for example, know the certainty 

that an individual rated A is of this class A. It is therefore the complement of the classic rate precision as 

used in SRIs. 

The evaluation of partial performances makes it possible to determine on which errors the classifier is 

less efficient, to compare several classifiers, to make them cooperate by using on the categories that they 

predict better. 

2.1.5. Cross validation 

Cross-validation proposes to divide the sample base into "s" equal parts, with learning on the (s-

1) parts of the database, and test on the remaining part. Then, there is a permutation of the tested 

databases, and thus a confusion table is created by averaging the "s" tests performed. It is therefore a 

repetition of the "learning-validation" pair, but ensuring that there is no overlap between the validation 

samples. 

 

(2.7) 

(2.8) 

(2.5) 

(2.6) 
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2.1.6. Bootstrap 

The idea is to use the sample of the observations to allow a finer statistical inference. A number 

of samples, referred to as the bootstrap sample, are obtained by random sampling of observations from 

the initial sample. On each of the bootstrap samples, the different parameters of the model are estimated. 

A sequence of parameters is therefore obtained. Under certain conditions of regularity, the theory shows 

that the distribution of the sequence of parameters obtained converges towards the real distribution of 

the parameter. 

The bootstrap has now become established in the statistical field as a very practical technique of 

statistical inference. It requires, indeed, "few" assumptions and is relatively easy to program, they are, 

in fact, only random draws. However, the big disadvantage lies in the large computational capabilities 

that the application of these techniques requires; in addition, it is often recommended to conduct at least 

a hundred repetitions to hope to have good reliability. 

 

2.1.7. Data mining software: THE WEKA WORKBENCH 

The objective of WEKA software is to offer a comprehensive collection of learning machine 

algorithms and data preprocessing tools to researchers and practitioners alike. It can be used to try out 

and compare different methods on new data sets. Its modular, extensible architecture allows 

sophisticated data mining processes to be built up from the wide collection of base learning algorithms 

and tools provided. Extending the toolkit is easy thanks to a simple API, plugin mechanisms and 

facilities that automate the integration of new learning algorithms with WEKA’s graphical user 

interfaces. The workbench includes algorithms for classification, regression, clustering, association rule 

mining and attribute selection [48]. 

2.2. Graphs 

2.2.1. Definitions and Notations 

A graph G = (V, E, w) consists of a finite set V of vertices (or nodes) and a set E of weighted 

edges and a weight function, denoted w.  

 Definition of vertex 

In general, a vertex u ∈ V is an abstraction of an element of the data structure represented by the 

graph. It may be a pixel, a network or mesh point or even an entry into a database. The relationship 

between the data structure and the set of vertices is given by: 

𝑉 ⊆  Ω ⊂  ℝ𝑚, 

where Ω denotes the discrete domain of the data structure. 

 Definition of edge 

An edge connects two vertices u and v (u, v) of a graph, describes an interaction between the elements 

represented by these vertices. Two connected vertices are called adjacent and denoted as u~v. The 

set E of the edges of G is a subset of V × V and is defined by:  
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𝐸 = {(u, v)  ∈ 𝑉 × 𝑉 | u~v and u ≠ v} 

The property of symmetry implies that if (u, v) ∈ E, then (v, u) ∈ E. By definition, a vertex cannot be 

connected to itself.  

 Vertex neighbors 

The neighborhood set of a vertex u, denoted 𝒩(u) is the set of vertices adjacent to u and defined by: 

𝒩(𝑢) = {𝑣 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸} 

      In the case of a complete graph, we have 𝒩(u) = V – {u}, ∀ 𝑢 ∈ 𝑉. 

 Weight function 

The weight function w: V × V → [0, 1], associates with each pair of vertices (u, v) ∈ V × V a similarity 

value representing the amount of interaction between the vertices u and v. By definition, the function 

is symmetric and ∀ (u, v) ∈ V × V, we have the relation w (u, v) = w (v, u). In the following of this 

manuscript, we will use the condensed notation wuv to denote the weight w (u, v). By convention, 

the weight function checks for the following properties: 

wuv = {

∈ [0,1]      ∀ (𝑢, 𝑣) ∈ 𝐸
= 0          ∀  (𝑢, 𝑣) ∉ 𝐸 

wvu        (𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐).
 

 

 Vertex degree 

The degree of a vertex, denoted 𝛿(𝑢), denotes the number of adjacent vertices with u. The degree 

𝛿: 𝑉 →  ℕ defined as:  

𝛿(𝑢) = 𝐶𝑎𝑟𝑑(𝒩(𝑢)). 

The weighted degree of a vertex, denoted 𝛿𝑤 (u), represents the total quantity interaction of a 

vertex with its adjacent vertices. The weighted degree 𝛿𝑤: 𝑉 →  ℝ+ is defined by:  

𝛿𝑤(𝑢) =  ∑ 𝑤𝑢𝑣𝑣 ∈ 𝒩(𝑢) . 

In the case where the graph is unweighted (i.e. the weight function is always 1 on the edges), we 

have  

𝛿(𝑢) =  𝛿𝑤(𝑢), ∀𝑢. 

The normalized degree of a vertex, denoted 𝛿𝑁(𝑢), represents the interaction overall of a peak of 

the graph, or average interaction. The normalized degree  𝛿𝑁: 𝑉 →  ℝ+ is defined by: 

 

 𝛿𝑁(𝑢) =  
𝛿𝑤(𝑢)

𝛿(𝑢)
. 

 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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 Terminology 

 In a simple graph, two different vertices are connected with single edge only. 

 Multigraphs may have multiple edges connecting the same two vertices. When m different 

edges connect the vertices u and v, we say that (u, v) is an edge of multiplicity m. 

 An edge that connects a vertex to itself is called a loop. 

 A pseudo graph may include loops, as well as multiple edges connecting the same pair of 

vertices. 

 

2.2.2. Graphs types 

There are many types of graphs: 

 Undirected graphs 

 Directed graphs 

 Complete graphs 

 A cycle 

 … 

Two vertices u, v in an undirected graph G are called adjacent (or neighbors) in G if there is an edge e 

between u and v. For all v, w ∈ V: (v, w) ∈  E ⇔ (w, v) ∈ E. In contrast, each edge in direct graph is an 

ordered pair of vertices. The directed edge (u, v) is said to start at u and end at v. Then u is the initial 

vertex of this edge and is adjacent to v and v is the terminal (or end) vertex of this edge and is adjacent 

from u. The initial and terminal vertices of a loop are the same. 

A complete graph on n vertices, denoted by 𝐾𝑛, is the simple graph that contains exactly one edge 

between each pair of distinct vertices. 

 

FIGURE 2.3 - Complete graph 

A cycle Cn for n ≥ 3 consists of n vertices 𝑣1, 𝑣2 ⋯, 𝑣𝑛 and edges ( 𝑣1, 𝑣2), ( 𝑣2, 𝑣3), ⋯, ( 𝑣𝑛−1, 𝑣𝑛), 

( 𝑣𝑛, 𝑣1). 

 

FIGURE 2.4 – Cycle graph 
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Note. In this manuscript, we consider simple undirected graphs only (without multiple edges and 

without loops), weighted [45] and whose edges are all symmetrical. 

2.2.3. Sub graph 

A subgraph of a graph G = (V, E, w) is a graph (K, F, w), where K ⊂ V and F ⊂ E. A subgraph H 

of G is a proper subgraph of G if H ≠ G. The subgraph induced by a subset K of the vertex set V is the 

graph (K, F, w); where the edge set F contains an edge in E if and only if both endpoints are in K. 

 

FIGURE 2.5 – Sub graph 

2.2.4. Graphs construction 

In this subsection, we present the different types of graphs constructions used in this manuscript. 

The construction of these graphs is crucial to obtain a good treatment data to be represented and strongly 

depends on the nature of these data, whether or not organized and whether or not they have a 

representation natural in the form of a graph. 

2.2.4.1. Metric and Similarity 

In this paragraph, we consider a domain Ω ⊂  ℝ𝑚, and a characteristic function (or function of 

attributes) ℱ: Ω ⟶ ℝ𝑒 , which associates a characteristic vector to each element of Ω. There are different 

choices for defining the characteristic function, these choices being generally dependent on the 

application. Among the most common characteristic functions we can cite those associating with each 

point of  Ω his coordinates on Ω, as well as those which depend on an initial function ℱ0: Ω ⟶ ℝ𝑒  

defining the data. 

The metric is an essential notion in the construction of a graph, whether for the establishment of all edges 

(especially in the case of unorganized domains), or for the definition of the function of weight. A metric 

is an application μ: Ω ×  Ω ⟶ ℝ+, which has each pair of points u and v (u, v ∈ V) associates a distance. 

The most common metric is the Euclidean distance given by: 
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μ2(𝑢, 𝑣) =  √∑(ℱ𝑖(𝑢) − ℱ𝑖(𝑣))2
𝑐

𝑖=1

 

The choice of the metric used depends strongly on the type of domain and applications considered, there 

is no general rule [46]. 

2.2.4.2. Similarity measurement 

Beyond the metric, it is necessary to define the notion of similarity, which is the basis of any 

weight function. This measure reflects affinities between the elements of the initial domain and, more 

precisely, a metric, allows placing all the similarities of the domain on the same scale. Just like the metric, 

this measure depends on the application considered and the data type. There is no general rule for 

determining the most sensible similarity measure for an application but we will see later in this 

manuscript than for particular cases certain measures. 

 In general, a similarity measure is an application g: Ω ×  Ω ⟶ [0, 1] which assigns each pair of elements 

u, v ∈  Ω  a similarity index. The closer this index is to 1, the more similar the elements are. 

Therefore, a function weight 𝑤:𝑉 × 𝑉 ⟶ [0, 1] is redefined as following: 

𝑤(𝑢, 𝑣) =  {
𝑔(𝑢, 𝑣)    (𝑢, 𝑣) ∈ 𝐸

0              (𝑢, 𝑣) ∉ 𝐸
 

We will now present the different graph structures associated with different types of domains. The 

construction of these structures also depends on a metric and a weight function. 

2.2.4.3. Unorganized domains 

Let us first consider the most general case, corresponding to the domains having no organization 

(or at least no sufficient organization to directly induce a graph structure). 

Let Ω ⊂  ℝ𝑚 an unorganized discrete domain, and G = (V, E, w), a graph representing the domain Ω. 

By definition, each vertex of the graph represents an element of Ω. 

 Graph of k nearest neighbors  

Let 𝑘 ∈  ℕ and μ be a metric for the discrete domain. The graph of k nearest neighbors (k-NN) is a 

weighted graph whose each vertex is connected to its k closest neighbors, according to the metric μ. The 

set of k plus close neighbors of a vertex u is noted 𝒦(𝑢). By nature, the neighborhood relations of a k-

NN graph are not symmetrical. In order to preserve the property of symmetry of the edges, we will use 

in this manuscript a symmetrical (or reciprocal) version of the graph k-NN. In this version, the E set of 

edges is defined by:  

𝐸 =  {(𝑢, 𝑣)| 𝑢 ∈  𝒦(𝑣) 𝑜𝑟 𝑣 ∈ 𝒦(𝑢)} 

This construction ensures that each vertex of the graph is connected to at least k other vertices. In return, 

a vertex can have to N - 1 neighbors (where N is the total number of vertices). 

(2.16) 

(2.17) 

(2.18) 
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Note. There is no general rule for determining the number k of neighbors. This choice is strongly 

dependent on the application considered. 

 𝜺-neighborhood graph 

The " 휀 -neighborhood " graph is a weighted graph whose set of edges is defined by a threshold on a 

metric μ. A vertex v belongs to neighborhood of a vertex u if the distance between u and v is below the 

threshold 휀.  

On the other hand, if one places oneself in the space of the function characteristic ℱ, on which is defined 

the metric μ, the 휀 -neighborhood of a vertex u, denoted 𝒩 (𝑢), consists of all the vertices whose image 

by ℱ belongs to the ball of radius 휀 and centered in ℱ(𝑢). The 휀 -neighborhood of a vertex u is then 

𝒩 (𝑢) = {𝑣|𝜇(u, v) < 휀} 

 

 

FIGURE 2.6 - Graph construction on an unorganized domain. ((a) complete graph, there is an edge connecting each pair of 

vertices. (b) A graph of the k nearest neighbors, where each vertex is connected to two vertices that are closest to it (here in 

the sense of color). (c) A ε -neighborhood graph, where each vertex is connected to the set of vertices whose distance (here 

in the sense of the color) does not exceed a value ε 

and the set of edges is defined by:  

𝐸 = {(u, v) | v ∈ 𝒩 (𝑢)} 

For a more complete review of neighborhood graphs, the interested reader can refer to [47]. 

 Delaunay graph 

The Delaunay graph is a weighted graph whose set of edges is defined by a circumscribed spheres from 

a given 3D surface point 𝑃𝑖  such that no surface point is inside these spheres. Then, the set of points 

located on the circumscribed spheres borders 𝑃𝑗 will be defined as the set of 𝑃𝑖 neighbours. These border 

points are the set of vertices located on the corners of all triangles (faces) sharing  𝑃𝑖  ′𝑠 Neighbours as 

shown in (FIGURE 2.5).  

(2.19) 

(2.20) 
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FIGURE 2.7. Delaunay graph construction 

2.2.4.4. Organized domains 

In this section, we consider the case of domains naturally organized, and therefore possessing at 

least one intrinsic graph structure. 

 Cases of images and other discrete signals 

A discreet signal can be seen as a function  𝑓: ℤ𝑞  ⟶ ℝ𝑐,  where q = 1, 2 or 3, respectively corresponding 

to a 1D signal, an image (2D), or a volume image (3D). 

Whatever the size of the signal, the set of vertices V is defined as a subset of the signal definition domain. 

Therefore, each vertex represents a sample of the signal and we have 𝑉 ⊂  ℤ𝑞. 

The neighborhood set of a vertex, from a discrete signal, is usually defined according to a distance 

measurement on the spatial coordinates associated with each vertex. The most usual distance and 

corresponding to the intrinsic structure of the space of integers is the distance from Manhattan (norm ℒ1), 

where each vertex u is connected to the set of vertices adjacent to u on the different dimensions of the 

signal. Other constructions also highlight the distance of Chebyshev (norm ℒ∞), for a wider 

neighborhood. 

Considering an image, and imposing a construction of 휀 -neighborhood with 휀 = 1, we find the standard 

tessellations to train the 2D grids representing the images.  

 In the case of Euclidean distance μ2, only the 4 adjacent vertices are added to the 

neighborhood and the graph is a so-called 4-connectivity graph. 

 In the case of a Chebyshev distance μ1, the 4 vertices on the diagonals are also added 

to the neighborhood and the graph is a graph said of 8-connexity. 

These two standard constructions are illustrated in (FIGURE 2.8). 

Note. A discrete signal can also be considered as an unorganized domain. In this case, the intrinsic 

structure of the data is not taken into account and the graph is constructed in the same way as for an 

unorganized domain. The graph can also be constructed by combining both approaches and using 
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the edges generated by both types of constructions (considering an organized field, then 

unorganized). 

 

FIGURE 2.8- Construction of graphs on an image. (a) A regular grid pixels with superimposed vertices. (b) Construction of 

a graph of 1-neighborhood with a  ℒ2 standard. (c) Construction of a 1-neighborhood graph with a  ℒ1 standard 

In the case of simple images, the weight function is usually based on a comparison between the intensity 

(or the color vector) of the pixels. Therefore, the characteristic function ℱ is simply defined such that ℱ 

= f. 

 Case of 3D meshes 

A 3D mesh (commonly called a mesh) is a discrete surface representation of a 3D object. It is composed 

of a set of points contained in ℝ3, these points being connected to each other by edges for to form faces 

(approximating the surface of the object). In the case of a mesh triangular, the faces are triangles whose 

each vertex corresponds to a point of the mesh. 

In this case, the construction of the graph is implicit and is generally limited to consider the mesh as a 

graph and to keep the vertices and edges.  

This type of construction is valid for any type of mesh, whether triangular or not, and whatever the size 

of the space containing it. It is shown in (FIGURE 2.9). 

(a)    (b) 

FIGURE 2.9 - Construction of a graph from a 3D mesh. (a) The 3D textured mesh. (b) The graph induced by this mesh 
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2.3. Conclusion 

In this chapter, we presented some definition of knowledge discovery (KDD) and Data mining. 

Moreover, the different types of classification are presented and especially the decision tree approach 

with its different variations. Furthermore, we introduced in this chapter the different definitions, notations 

and concepts inherent to weighted graphs. In the next chapters, we will present our proposed methods 

based on the general concepts detailed in the current chapter.  
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 Most of applications related to security and biometric rely on skin region detection such as face 

detection, adult 3D Objects filtering, and gesture recognition. In this chapter, we propose a robust method 

for skin detection on 3D colored point clouds. Then, we extend this method to solve the problem of 3D 

face detection. To do so, we construct a weighted graph from initial colored 3D point clouds. Then, we 

present a linear programming algorithm (LP) using a predictive model based on a data mining approach 

in order to classify and label graph vertices as skin and non-skin regions. Moreover, we apply some 

refinement rules on skin regions to confirm the presence of a face. Furthermore, we demonstrate the 

robustness of our method by showing and analyzing some experimental results. Finally, we show that 

our method deals with many data that can be represented by a weighted graph such as 2D images and 3D 

models.
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3.1. Introduction 

Nowadays, owing to the fast growing of digital field and informational data, 3D object 

processing, including skin and face detection, became an essential pre-processing phase for many 

applications such as human – machine interaction, gesture recognition, human identification, and 

robotics. 

In this chapter, we propose to extend the skin detection method from 2D images to 3D colored point 

clouds using weighted graphs representation. In addition, defining operators on graphs leads to generalize 

the face detection method to any data that can be represented by a weighted graph. The first step in our 

approach consists of modelling the 3D surface using a weighted graph, and a predictive model based on 

a data mining approach is constructed. This model leads to define a statistical function that classifies 

graph vertices into skin and non-skin vertices. Then, the graph is segmented into regions using linear 

programming algorithm where each region 

is defined as a set of vertices of similar 

class. All skin regions are considered as 

candidate face regions and the presence of 

a face is confirmed by applying refinement 

steps such as face size. Our method is 

illustrated in the following flowchart 

(FIGURE 3.1). 

The main goal of this chapter is to present 

an accurate method for skin region and 

face detection on 3D colored point clouds 

using weighted graphs representation. This 

model aims to extend skin models 

proposed for 2D images to any data that 

can be represented by a graph and 

accordingly with different types of visual 

data such as video and 3D objects. 

3.2. Skin detection method 

In this subsection, we detail the 

different phases of construction of our skin 

model, relying on data mining techniques 

and image analysis. The method uses data 

mining techniques to produce the 

prediction rules based on the RGB color 

spaces.  

In order to elaborate the skin model, we 

proceeded in three steps: 

 The first step is dedicated to the 

construction of our dataset, as well as 

the preparation of data for the learning 

phase. 

 

FIGURE 3.1- Flowchart of our method 
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 The second step is to find a prediction model associated with a representation space able to 

discriminate skin pixels from non-skin pixels. This representation space can be one of the classic 

color spaces; the chosen color space is the RGB color space. The tools of data mining then allow us 

to retain the appropriate decision rules. 

 

  The last step is to define a statistical function based on the previous decision rules to be used later 

on in the phase of graph segmentation. 

 

The following flowchart illustrates the prediction rules generation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

3.2.1. Learning dataset construction 

The construction of the learning dataset is an important element in the process of extracting 

knowledge from the data. For our problem of classification of pixels in pixels (vertices in case of Graph) 

of skin or not, the quality of the dataset can be judged on the following factors (The size of the database 

and the variety in the contents of images), which must be representative for the different sexes, races, 

and lighting conditions. Therefore, we used the existing images dataset “Helen dataset” [49] (FIGURE 

3.3) that contains images with different lighting conditions, races, and sexes. This work led to a learning 

dataset consisting of 50,000 pixels of different classes (skin and non-skin).  

Building tools 

 Building the learning dataset is not a simple task. Moreover, since the size of the database must be large, 

it is difficult to build it manually. Hence, the need for such software that helps us build this database. 

Data collection and preparation for 

data mining process 

Calculates the pixel value according 

to RGB axis 

Data-mining techniques 

Prediction rules 

Data 

FIGURE 3.2 - Flowchart of prediction rules generation 
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FIGURE 3.3 - Extract from “Helen dataset” 

For this reason, we developed a system that allows us to perform this task as shown in the following 

figure: 

 

 

 

 

 

 

Learning data file   

Building learning data file using our system occurs throw two phases in order to generate prediction 

rules: 

 Using the developed system to save pixels colors in a database (TABLE 3.1), 

 Creating Weka data file (.arff). 

FIGURE 3.4 - Learning dataset creator 
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TABLE 3.1 - Information extraction from pixels database: the rows in the table correspond to the representative pixels, 

while the columns correspond to the representation axes of the RGB (maximal values 255 255 255) space and the class 

(skin or no skin) 

R G B Class 

𝑋1
𝑟 𝑋1

𝑔
 𝑋1

𝑏 𝑋1
𝐶  

. 

. 
….. …. …. 

𝑋𝑘
𝑟 𝑋𝑘

𝑔
 𝑋𝑘

𝑏 𝑋𝑘
𝐶  

. 

. 
….. ….. ….. 

. 

. 
….. ….. ….. 

𝑋𝑁
𝑟  𝑋𝑁

𝑔
 𝑋𝑁

𝑏 𝑋𝑁
𝐶  

 

 

As shown in the previous chapter, Weka [48] is a set of tools for manipulating and analyzing data files, 

implementing most artificial intelligence and machine learning algorithms, including decision trees and 

neural networks. The Weka file contains information in the following form: 

 
@relation data 

@attribute R real 

@attribute G real 

@attribute B real 

@attribute Skin {TRUE FALSE}  
@data 

 

206,159,149,TRUE 

203,159,148,TRUE 

202,159,150,TRUE 

204,161,152,TRUE 

205,163,151,TRUE 

204,164,154,TRUE 

204,164,154,FALSE 

……… 

 

3.2.2. Prediction rules generation  

The Weka program will then use this file (FIGURE 3.5) in order to generate the prediction rules. 

The decisions rules can be written in the form of the following rules: 

If (Condition 1, 1 and Condition 1, 2 and Condition 1, 3) => Skin=FALSE  

……………… 

If (Condition k, 1 and Condition k, 2 and Condition k, 3) => Skin =FALSE  

……………… 

If (Condition N, 1 and Condition N, 2 and Condition N, 3) => Skin =FALSE  

Else => Skin=TRUE 

FIGURE 3.5- The Weka software 
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where  

  Condition i,1 written as (R >… ou R <…), 

Condition i,2 written as (G >… ou G <…), 

Condition i,1 written as (B >… ou B <…). 

 
∀ 𝑖 = 1. . 𝑛 (n is the number of conditions where the color of given pixel is interpreted as non-skin). 

In order to find the best prediction model, we tested several techniques based on the J48 [50] decision 

tree for classification rules and JRip induction graphs [50] using Weka 3.6.0 and we obtain the 

following results: 

 
TABLE 3.2 - Testing results of J48 and JRip 

Algorithm Cross validation  Confusion Matrix 

Decision tree J48 Correctly Classified Instances      48177        96.1857 % 

Incorrectly Classified Instances     1910           3.8143 % 

Kappa statistic                          0.8698 

Mean absolute error                      0.0535 

Root mean squared error                  0.1849 

Relative absolute error                 18.1438 % 

Root relative squared error             48.1385 % 

Total Number of Instances             50087 

  a          b   <-- classified as 

 4651  101 |    a = TRUE 

  120  922 |    b = FALSE 

Associations rules JRip Correctly Classified Instances      47978        95.7887 % 

Incorrectly Classified Instances    2109           4.2113 % 

Kappa statistic1                          0.8563 

Mean absolute error                      0.0642 

Root mean squared error                  0.1956 

Relative absolute error                 21.7589 % 

Root relative squared error             50.9324 % 

Total Number of Instances             50087 

  a        b   <-- classified as 

 4639  113 |    a = TRUE 

  131  911 |    b = FALSE 

 

The resulting prediction rules based on RGB component of the learning data file lead to a definition 

of function called lambda λ: [0…255] × [0…255] × [0…255]   {0, 1} as following: 

 

λ(𝑣𝑟 , 𝑣𝑔, 𝑣𝑏) =  {
1    𝑖𝑓 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 (𝑣𝑟 , 𝑣𝑔, 𝑣𝑏) ℎ𝑎𝑠 𝑎 𝑠𝑘𝑖𝑛 𝑐𝑜𝑙𝑜𝑟 

0                                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 

                                                           
1Kappa statistic measures the agreement of prediction with the true class  

(3.1) 
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where 𝑣𝑟 , 𝑣𝑔, 𝑣𝑏 are the red, green and blue color components of a vertex v.  This function takes as 

input the color components of a vertex and verifies whether this vertex has a skin or non-skin color 

based on the generated prediction rules.  

3.3. Skin Region Segmentation 

3.3.1. Notations and definitions 

As we mentioned above, our method deals with any data that can be represented by a weighted 

graph such as 2D images, 3D point clouds, and 3D meshes. We present a review of some basic definitions 

and operators defined on weighted graphs. 

Once the prediction rules are defined, we model the surface in order to treat it. Consider the general 

situation where a point cloud can be viewed as a weighted graph. An undirected weighted graph G = (V, 

E, 𝑊) consists of a finite set of vertices v, a finite set of edges E ⊂ 𝑉 × 𝑉, and a set of weight functions 𝑊.    

Let (u, v) be the edge that connects two vertices u and v. The set of adjacent vertices 𝑁(𝑢) of a vertex u 

shown in (FIGURE 3.6) is constructed using the k-nearest neighbor algorithm and defined as 𝑁(𝑢) = {v 

/ d (u, v) <= k}, where d(u, v) represents the three-dimensional Euclidean space distance between two 

vertices (𝑢, 𝑣) and defined as: 

𝑑(𝑢, 𝑣) = √(𝑢1 − 𝑣1)2 + (𝑢2 − 𝑣2)2 + (𝑢3 − 𝑣3)2,  

 

FIGURE 3.6 - Vertices neighbors’ construction 

The weight function 𝜔: V × V  [0, 1] that represents a homogeneity measure between a vertex and its 

neighbors is defined as:  

 

            
∇(𝑁(𝑢))

𝐶𝑎𝑟𝑑 (𝑁(𝑢))
      If λ(𝑢𝑟 , 𝑢𝑔, 𝑢𝑏) = 0 ∨ λ(𝑣𝑟 , 𝑣𝑔, 𝑣𝑏) = 0 

              1                     If λ(𝑢𝑟 , 𝑢𝑔, 𝑢𝑏) = 1 ∧ λ(𝑣𝑟 , 𝑣𝑔, 𝑣𝑏) = 1, 

where 𝛻(𝑆) represents the cardinality of a skin vertices from a set S and defined as: 

𝛻(𝑆) = 𝐶𝑎𝑟𝑑{𝑢 ∈ 𝑆 𝑠𝑢𝑐ℎ 𝑎𝑠 𝜆(𝑢𝑟 , 𝑢𝑔, 𝑢𝑏) = 1}.        

 

 

𝜔(𝑢, 𝑣) =     (3.3) 

(3.2) 

(3.4) 
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Our method consists of classifying graph vertices into skin regions (𝐹(𝐺)) and non-skin regions 

(𝐵(𝐺))  using the generated predictive rules where  

o 𝐹(𝐺) = { 𝑣 ∈ G such as λ (𝑣𝑟 , 𝑣𝑔, 𝑣𝑏) =1}                          

o 𝐵(𝐺) = { 𝑣 ∈ G  such as λ (𝑣𝑟 , 𝑣𝑔, 𝑣𝑏) = 0}                      

FIGURE 3.7 presents the graph vertices classification:  Images (a and c) show the original 3D point 

clouds, images (b and d) present the detected skin regions where the black regions represent non-skin 

vertices. 

 

 

 

 

 

 

 

 

 

 

Vertices labelling once we classify the graph vertices as skin and non-skin, we define a set of regions 

by adopting a linear programming model that groups the set of vertices of the same class in regions by 

minimizing a cost function. Let us start with the combinatorial problem of labelling the graph vertices 

where we search to assign the same label to adjacent vertices belonging to the same class using the 

minimal number of labels. 

We propose to formulate the vertex-labelling process as an integer linear problem ILP. To do so, we 

consider a set of vertices V = { 𝑣1. . 𝑣𝑛} and a set of n labels where the initial state of the problem considers 

that each vertex has its specific label.  

We introduce two binary variables 𝑦𝑘  𝑎𝑛𝑑 𝑥𝑖𝑘, 𝑘 = 1. . 𝑛. The first variable indicates whether a label k is 

used ( 𝑦𝑘 = 1 ) or not ( 𝑦𝑘 = 0), and the second one indicates if a given vertex vi has received the label k.  

The model with all variables is established as following: 

Min ∑ 𝒚𝒌
𝒏
𝒌=𝟏   

 
Subject to: 

(1)  ∑ 𝒙𝒊𝒌  = 𝟏𝒏
𝒌=𝟏    ∀ i=1,…,n 

(2)  𝒙𝒊𝒌 - 𝒚𝒌 ≤ 𝟎     ∀  𝐢, 𝒌=1,…,n 

(3)   𝒙𝒊𝒌 – 𝒙𝒋𝒌 ≤ 𝟎   ∀ 𝒌 = 𝟏,… , 𝒏; ∀( 𝑣𝑖 ,  𝑣𝑗 ) ∈ 𝑬;   𝑣𝑖 ,𝑣𝑗 ∈ 𝑭(𝑮)  ∨  𝑩(𝑮),      

(4)  𝒙𝒊𝒌 ∈ {𝟎, 𝟏}; 𝒚𝒌 ∈ {𝟎, 𝟏} 

a b c d 

FIGURE 3.7 - Vertices classification 

(3.5) 

(3.6) 
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The constraints (4) and (5) ensure that 𝑥𝑖𝑘 and 𝑦𝑘 are binary variables. The constraints (1)-(3) guarantee 

(in this order) that each vertex is labelled; vertex 𝑣𝑖  receives the label k only if this label is used, and any 

two adjacent vertices have different label if they belong to different classes. The optimal solution of such 

problem is a graph where each group of connected vertices belonging to the same class receives the same 

label. 

 

We present a heuristic algorithm to solve the ILP problem. The idea of such algorithm is to start from an 

empty solution and construct a solution iteratively using expansion criteria that allows one to take a 

choice at each iteration subject to our problem constraints.  The expansion criteria is controlled by the 

score function Score( 𝑣𝑖, 𝑣𝑗) defined as:  

𝑆𝑐𝑜𝑟𝑒( 𝑣𝑖,  𝑣𝑗) = {
1                               𝑖𝑓  𝑣𝑗 ∈  𝐶(𝑣𝑖)

 0                                       otherwise,
           

where C(𝑣𝑖) is a set of vertices that combines the color properties and the similarity measure between 

vertices and defined as: 

𝐶(𝑣𝑖) = { 𝑣𝑗 ∈ 𝑁(𝑣𝑖)  ˄ 𝑣𝑗 ∈  𝐹(𝐺)/ω (𝑣𝑖, 𝑣𝑗)  ≤  α},   

where α ∈ [0.5. .1] based on experimental results observations. We introduced this set of vertices to 

handle the case where some vertices are interpreted as non-skin region due to lighting conditions and 

presence of small objects like hair, beauty marks, and moles as shown in (FIGURE 3.8). 

                    

FIGURE 3.8 - Influence of color information and similarity measure on vertices labelling process 

The heuristic function to maximize is defined as: 

𝐻 (𝑣) =  ∑𝑆𝑐𝑜𝑟𝑒(𝑣, 𝑢)

𝑢

 

ALGORITHM 3.1 describes the label propagation algorithm starting from 𝑣𝑖. This algorithm is 

illustrated in (FIGURE 3.9). 

ALGORITHM 3.1:  LabelConnectedSimilar 

//This algorithm makes call to this procedure for each non selected vertex. 

Procedure Propagation 

Input 
Vertex start 

Integer K, NB_Label_Used /* NB_Label_Used = NB of vertices as initial value*/ 

Output: 

Connected vertices have the same Label L 

 

Let "[L1]" an empty list of vertices 

Let "[L2]" an empty list of vertices 

(3.7) 

(3.8) 

(3.9) 
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If (notSelected (start)) then 

Add start to "[L1]" 

End if 

While (true) 

Begin 

If ("[L1]" is Ø) then 

Quit Procedure 

End if 

 

For each (Vertex  𝑣𝑖  in "[L1]") 

Begin 

Set  𝑣𝑖  as Selected 

Assign k to  𝑣𝑖  
End if 

For each (Vertex v in "[L1]") 

Begin 

For each (Vertex n in N (𝑣𝑖)) 
Begin 

If (not Selected ( 𝑣𝑗)) then 

 

                                If (Score( 𝑣𝑖  𝑣𝑗)=1) then 

Add  𝑣𝑗  to "[L2]" 

Remove duplicate ("[L2]") 

NB_Label_Used = NB_Label_Used-1 

                               End if 

End if 

End for 

End for 

 

Clear ("[L1]") 

Replace "[L1]" by "[L2]" 

              Clear ("[L2]") 

End While 

 

End Procedure 
 

  
Iteration 1: L1 = {11} Iteration 2: L1 = {11, 7, 9, 17, 16} 
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Iteration 3: L1 = {11, 7, 9, 17, 16, 12, 15, 20, 19, 18, 10, 

8, 2, 3} 

Iteration 4: L1 = {11, 7, 9, 17, 16, 12, 15, 20, 19, 18, 10, 8, 2, 3, 

1, 4, 5, 6, 13, 14, 21, 23} 

 
 

Iteration 5: L1 = {11, 7, 9, 17, 16, 12, 15, 20, 19, 18, 10, 

8, 2, 3, 1, 4, 5, 6, 13, 14, 21, 23, 22, 24} 

Iteration 6: L1= {11, 7, 9, 17, 16, 12, 15, 20, 19, 18, 10, 8, 2, 3, 

1, 4, 5, 6, 13, 14, 21, 23, 22, 24, 25, 26} 

 

 

 

 

 

ALGORITHM 3.1 results a graph where each set of vertices with the same properties has the same label. 

Finally, we traverse all graph vertices to assign a color for each label, and then we create a segment from 

each set of vertices having the same label as shown in the (FIGURE 3.10).  

 

FIGURE 3.9 - Illustration of labelling process 
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FIGURE 3.10 shows the set of segments produced by applying our method on 3D point cloud.  image 

(a) shows the original point cloud, image (b) presents labelled graph where each group of connected 

vertices has a different color and image (c, d) shows the segments 

3.4. Face detection  

Once the graph vertices are labelled and segmented into skin and non-skin regions, we affirm 

whether a skin region has the face properties based on the most important characteristics of a human face 

such as eyes, nose, and mouth. We define these characteristics as a set of non-skin vertices surrounded 

by a set of skin vertices as shown in (FIGURE 3.11). To do so, we refine the list of faces candidates using 

some proposed refinement rules. These rules can be classified into three categories: refinement based on 

the number of non-skin regions contained in candidate region, refinement based on the size and ratios 

and refinement based on distances between face parts. 

If the constructed graph is totally connected, the computational time complexity of face detection 

algorithm is O (N2), where N is the number of nodes in the graph. 

3.4.1. Refinement based on number of non-skin regions 

A skin region must contain a determined number of non-skin regions in order to be considered as 

a face. Therefore, candidate face regions are defined using the following conditions: 

 For each face region R, ∃ At least three non-skin regions B1, B2 and B3 such as 𝐵1 ⊏ 𝑅,𝐵2 ⊏

𝑅,𝐵3 ⊏ 𝑅 and the number maximum of non-skin regions in R should be less than or equal of 

[NBFormsMax].  

 

Gaps 

FIGURE 3.11 - Skin region-containing gaps 

 

FIGURE 3.10 - Segmentation process 

B1 

B2 

B3 
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ALGORITHM 3.2 presents the procedure of defining the set of non-skin regions in a given candidate 

region. 

Algorithm 2.2: GapLocator 

 

Procedure Check_Boundary 

Input: 

Non-Skin Region Sb  

Output: 

Label of Skin region Container 

 

Let "[L]" an empty list of vertices 

Let "[Rv]" a list of vertices = {v} / v ∈ 𝑆𝑏  and 𝛻(𝑁(𝑣)) = 0 

While (Card (Rv) ≠ ∇ (Rv) or Card (Rv) increased) 

Begin 

For each (Vertex x in "[RV]") 

If (𝑥 ∈ 𝑩(𝑮)) then 

                                 Add 𝑁(𝑥) to "[L]" 

                if "[L]" ≠ Ø replaces x with the vertices of "[L]" 

End if 

    End for 

End While 

If (Card (Rv) = ∇ (Rv)) Return Label of any element 

Else return -1 

 

End procedure 

 

This algorithm traverses all gaps and specifies for each one the corresponding skin 

region. 

3.4.2. Refinement based on size  

The size of the human face has specific characteristics where there is a proportional relation 

between its height and width. This proportional relation obeys the golden ratio of human faces (FIGURE 

3.13), which is approximately 1.6 [51]. Meanwhile, the candidate regions that are smaller than the 

minimum size are eliminated. In order to determine the size of a given candidate region, we define the 

minimum oriented bounding box of candidate region vertices as shown in (FIGURE 3.12). Once, the box 

width, height, and depth are determined, the following rules should be verified: 

 

1. 𝐺𝑅 − 𝑡ℎ ≤
𝐻𝐵

𝑊𝐵
 ≤ 𝐺𝑅 + 𝑡ℎ, 

2. HB >= hmin  and WB >= wmin , 

 

where HB is the height of bounding box, WB is the width and 𝑡ℎ is a parameter controlled by the user in 

order to increase the range of the face ratio and defined as an error margin.  
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FIGURE 3.12 - Minimum bounding box of candidate region 

3.4.3. Refinement based on the distance between face parts 

For each face region R, ∃ At least three non-skin regions B1, B2 and B3 such as 𝐵1 ⊏ 𝑅,𝐵2 ⊏

𝑅,𝐵3 ⊏ 𝑅 such as: 

 d(𝜃(𝐵1), 𝜃(𝐵2) −  d(𝜃(𝐵2), 𝜃(𝐵3)  ≤  휀 , 

 d(𝜃(𝐵1), 𝜃(𝐵2) −  d(𝜃(𝐵1), 𝜃(𝐵3)  ≤  휀 ,  

 The sum of ratios  
𝜑(𝐵1)

𝜑(𝑅)
 ,
𝜑(𝐵2)

𝜑(𝑅)
 𝑎𝑛𝑑 

𝜑(𝐵3)

𝜑(𝑅)
∈ [0.05 , 0.2], 

 where 𝜑(𝑅) represents the area of the region R, 𝜃(𝑅) is the gravity center of the region R, and 휀 is a 

distance threshold. FIGURE 3.14 shows the selection of face characteristic based on the distance between 

non-skin regions. Note that the values of interval [0.05 , 0.2] are chosen based on the observations done 

in our experiments.  

 

 

   

   

 

 

 

 

 

 

FIGURE 3.13 - Human face golden ratio 

 

FIGURE 3.14 - Distance between face parts 
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3.5. Experimental results 

In our experiments, we used a sample of 145 colored objects and 250 colored images from 

existing datasets such as “Helen” dataset [49], “Faces in the Wild” dataset [52], “Caltech” dataset [53] 

and others. The selected objects and images containing faces of different skin color, ages, expressions, 

and positions. In order to evaluate our method, we show visual and statistical results for both 3D point 

clouds, meshes and 2D images. 

3.5.1. 3D point clouds and 3D meshes 

In this section, we show the efficiency and robustness of our proposed method by applying it on 

many colored 3D point clouds models and 3D meshes. We will show and discuss the influence of 

different parameters on our approach such as minimal face size (hmin, wmin) presented in section 3.4.2, K-

NN threshold k, the parameter NBFormsMax existing in section 3.4.1, the parameter th defined in section 

3.4.2, and the distance threshold 휀 presented in section 3.4.3. 

FIGURE 3.15 presents the results of our skin detection model with a colored point cloud with the 

following parameters values (k=0.01363, hmin=5, wmin=8, NBFormsMax =6, th =0.5, 휀 = 0.6). Images (a, 

c and e) show the original 3D point clouds, images (b, d and f) present the detected skin regions where 

the black regions are not skin. 

             

 

                                             

             

 

 

 

 

 

FIGURE 3.16 presents the influence of the neighboring distance k (K-NN threshold) on 3D point clouds. 

Images (a) shows the original 3D point clouds. Image (b) shows skin regions containing gaps by using 

same parameters presented in (FIGURE 3.15). Image (c) presents the influence of k with the value 1.  

One can see that the number of gaps decreases when we increase the neighboring distance due to 

neighbors’ information. 

 

 

 

 

a b c d e f 

FIGURE 3.15 - Skin detection on 3D colored point clouds 
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FIGURE 3.17 presents the results of our face detection method applied on a colored 3D point cloud. 

Images (a, c, e, g, l and n) show the original 3D point cloud, images (b, d, f, h, m, o and p) present the 

detected faces using our method with the following parameters (k=0.01363, hmin=5, wmin=8, 

NBFormsMax =6, th =0.5, 휀 = 0.6).  The fuchsia areas on the 3D point clouds object represent the 

detected faces. We can visually confirm the face detection. Images (L, m) demonstrate the efficiency of 

our method with different skin color.  The image (p) presents an additional face detected, which is a 

failure case. This failure case is due to the characteristics of human face that are verified in this skin 

region. 

                                                

                                                  

a b 

c d 

a b c 

FIGURE 3.16 - Influence of vertices neighbors on labelling process 
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FIGURE 3.17 - Detected face on 3D colored point clouds 
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FIGURE 3.18 presents the result of our face detection method applied on a 3D colored point clouds with 

multi faces and expressions. We can visually confirm the detection of all faces in these point clouds. 

 

         

 

FIGURE 3.19 presents the result of our face detection method applied on a noisy 3D colored point clouds. 

One can see that our method produces good results with noisy surfaces. 

            

 

FIGURE 3.18 - Detected Faces with different expressions 

FIGURE 3.19 - Detected face on a noisy 3D colored point cloud 
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After presenting a sample of visual results of our proposed method on 3D meshes and 3D point clouds, 

the (TABLE 3.3) shows some statistical results of our experiments in term of detection accuracy. 

TABLE 3.3 - Results obtained from 3D point clouds and 3D meshes 

Objects count 145 

Number of all faces 385 

Number of truly detected faces 341 

False positive rate (FPR) 8.8% 

False negative rate (FNR) 3.63% 

Accuracy 87.57% 

 

The accuracy of our proposed method is measured as following: 

Accuracy = 100-(FPR + FNR),  

where 

𝐹𝑃𝑅 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑑𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑐𝑒𝑠
 × 100

𝐹𝑁𝑅 = 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑠𝑒𝑑 𝑓𝑎𝑐𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑎𝑙𝑙 𝑓𝑎𝑐𝑒𝑠
 × 100  

 

In our experiments, we noticed that the variation in the parameters NBFormsMax and th can affect the 

accuracy of our system. The following charts shows the influence of these parameters on detection 

accuracy observed on 50 objects of our dataset. 

 

 

 

 

 

  

 

Furthermore, when the value of parameters (hmin, wmin) increase, the number of missed faces relatively 

increases. In contrast, when the value of parameter 휀 increases, the number of false alarms relatively 

increases. 

 

 

 

 

 

 

FIGURE 3.20 - Influence of parameters NBFormsMax and th on accuracy 

(3.10) 

(3.11) 

(3.12) 
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3.5.2.  2D images 

As mention above, our method can deal with any type of data that can be represented by a 

weighted graph such as 2D colored images and 3D colored point clouds. The figures below show the 

result of applying our method on 2D colored images. Note that a rectangle is drawn around the detected 

face region as shown in (FIGURE 3.21).     

FIGURE 3.21 presents the results of our face detection method applied on 2D images with the following 

parameters values (k=1, hmin=5, wmin=8, NBFormsMax =6, th =0.5, 휀 = 0.6). Images (a1, b1, c1, d1 and 

e1) show the original 2D images, images (a2, b2, c2, d2 and e2) present the detected skin regions and 

images (a3, b3, c3, d3 and e3) present the detected faces by our method. The image (b3) presents a face 

detection in an image with a complicated background but image (d3) shows a failure case where an 

additional face is detected due to the color of this region that is interpreted as skin color and verify all 

face rules.    

 

            

 

                  

 

 

 

b3 

c1 c2 

a1 a2 a3 

c3 

b2 b1 
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FIGURE 3.22 presents the results of our face detection method on an image containing many faces for a 

person with different expressions. Image (a) shows the original image and Image (b) presents the 

accuracy of our method where all faces are detected. 

 

        

Finally, a numerical summary of our experiments shown in the (TABLE 3.4). 

 

TABLE 3.4 - Results obtained from 2D image 

Images count 250 

Number of all faces 304 

Number of truly detected faces 278 

False positive rate (FPR) 7.01% 

False negative rate (FNR) 1.97% 

Accuracy 91.02% 

 

d1 d2 d3 

a b 

e1 
e2 e3 

FIGURE 3.21 - Detected faces on colored 2D images 

FIGURE 3.22 - Detected Faces from an image with different expressions 
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3.6. Comparison with the state-of-the-art 

In this section, we compare our method with some related works. Firstly, note that our method 

deals with 3D colored point clouds, 3D meshes and 2D images based on skin color. In contrast, most of 

the methods described in the state-of-the-art section deal with 2D images or 3D meshes that lie on 

geometry features.  As another evaluation of our work, we compare the accuracy of our method to some 

methods described in the literature. The (FIGURE 3.23) shows the numerical data:  

 

 

 

In addition to the statistical evaluation, we choose some visual examples of failure case presented by 

some related works and we apply our method on the same images. FIGURE 3.24 presents a comparison 

of the skin detection with [54].  One can see that the result of our method is better than the method 

proposed in [54] as shown in the (FIGURE 3.24). As shown in image (a) a non-skin color is interpreted 

as skin color. In contrast, it is detected correctly by our method as shown in image (b). 

 

 

a 

FIGURE 3.23 - Accuracy comparison with other methods 
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FIGURE 3.24 - Result obtained by [54] (a) and our method (b) 

3.7. Conclusion  

 

In this chapter, we have presented a new approach for skin and face detection on 3D colored point 

clouds using the weighted graph representation. To illustrate the robustness of our approach, we showed 

that our proposed method could be used to solve two signal-processing problems. The first one is related 

to the vertices classification based on the skin information. The second one is the face detection problem. 

We showed also that our method can deal with any data that can be represented by weighted graphs such 

as 2D images, 3D surfaces, and 3D point clouds. We presented then a comparison with some other related 

face detection works to prove the efficiency of our method. In the next chapter, we will present a new 

method for salient regions detection. The skin color detection and saliency detection will be used together 

in the last chapter in order to enhance the face detection process presented in in this chapter. 
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 Visual saliency is defined by the perceptual information that makes possible to detect specific 

areas that attract the human visual attention. In this chapter, we present two approaches for salient regions 

detection on 3D meshes using weighted graphs representation. In the first approach, we propose a novel 

3D surface descriptor based on a local homogeneity measure. Then, we define the similarity measure 

between vertices using normal deviation similarities, a 2D projection height map, and the mean curvature. 

The saliency of a vertex is then evaluated as its degree measure based on the local patch descriptor and 

a height map. In the second one, we propose a novel 3D invariant surface descriptor based on Zernike 

coefficients to compute the shape saliency map. Then, a multi-scale saliency is calculated in order to 

improve the quality of the measured saliency and deal with noise. Furthermore, we show the robustness 

of our proposed methods through different experimental results. Finally, we present the stability and 

robustness of our methods with respect to noise.  
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4.1. Introduction 

Salient regions are particular zones, which are distinguished from adjacent areas on a surface. 

Several saliency detection methods have been proposed for 2D images. However, 3D data acquisition 

technologies have known significant developments, which led to the acquisition of large amounts of data 

in the form of 3D meshes and point clouds.  

Mesh saliency detection is an important pre-processing phase for many computer vision applications [55, 

56, 57]. The segmentation of 3D objects based on salient regions detection has been widely used in many 

computer vision applications such as shape matching [55], objects alignments, 3D point clouds 

smoothing, and segmentation and recognition of face [56]. Among these applications, we can cite also 

the adaptive mesh simplification [57] that aims to maintain a better-perceived quality by simplifying 

regions with low saliency degrees.  

The detection of saliency on 3D meshes has known a significant progress.  Most of existing methods 

compute the saliency using the multi-scale computation [57] where they compute the saliency at multiple 

scale in order to use all of them to produce a robust saliency measurement and center-surround operators 

as explained in [55]. The challenge of these methods is to deal with noise. In [58], authors proposed to 

detect saliency using the local contrast and global rarity, which is robust against noise.  They calculated 

square map of the height projections to describe the local shape surrounding a vertex. Then, local and 

global saliencies are combined together for each vertex to define the final visual saliency at different 

scales. However, the robustness of this method highly depends on parameter to obtain good results.  [55] 

considered the regions as salient where the curvature of the vertex or patch is different from its neighbors. 

The curvature computation used in this method is sensitive to noise.  

To handle the noise problem, we propose simple and efficient methods to detect salient regions on a 3D 

mesh using a weighted graph representation.  The Surface roughness variation can be used as a metric 

for detecting salient region [59] where a vertex is considered as salient if it can be strongly differentiated 

from its neighbors.  

Starting from this point, in the first approach, we propose to build a robust and rotational invariant surface 

patch descriptor based on the surface fluctuation information and a 2D height map to calculate the 

saliency degree at a given vertex.  The combination of these two factors (deviation factor and height 

map) will enhance the saliency computation because it gives more information about the dissimilarity 

between vertices. To do so, we create a patch for each vertex according to its tangent plane. This patch 

is created by projecting vertices onto a 2D plane defined by the associated vectors. This projection leads 

to calculate a height map of the mesh vertices. To ensure that the saliency at a given vertex is calculated 

in term of all possible neighbor’s information, we propose to compute a patch saliency in order to 

calculate the saliency degree at a given vertex.  Finally, the saliency degree of a given vertex is computed 

from the patch saliency based on the entropies of the target vertex patch and patches associated to the 

neighborhood, and from a term containing the deviation factor, the height projections and the curvature.  

This procedure will help to assign comparable saliency values to geometrically similar vertices.  

The novelty of our first method depends on the key points that follow. Firstly, a Delaunay graph based 

is constructed from the initial data, which guarantee a robust neighbouring modelling. A novel height 

map is generated by projecting the set of neighbours of a target vertex on a 2D plane. We define an 

efficient local patch descriptor that combines a height map with deviation factors representing the angles 

between the normal vectors of the vertices. We define also a new similarity measure between vertices 

according to the deviation factor and the projection height.  Then, we compute a patch saliency according 

to its patches neighbouring based on the entropy measurement. According to this saliency with the 

similarity measure, we define the saliency degree at a given vertex. This computation will ensure that a 

vertex saliency degree on a given vertex depends on its neighbours and its patch neighbours. Finally, we 
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define and compute a non-local saliency measure by recursively increasing the number vertices 

neighbours.  The following flowchart in (FIGURE 4.1) illustrates our method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, the novelty of the second method depends on the key points that follow. Firstly, a 

Delaunay graph based is constructed from the initial data, which guarantee a robust neighboring 

modelling. A novel 3D invariant surface descriptor based on Zernike coefficients is constructed. The 
Zernike polynomials are a set of functions that are orthogonal over the unit circle. They are 

useful for describing the shape of an aberrated wavefront in the pupil of an optical system. Several 

different normalization and numbering schemes for these polynomials are in common use [80]. In order 

to define this local patch descriptor for a given vertex 𝑣𝑖, we construct a rectangle of n cells centered at 

𝑣𝑖 of fixed length. Afterward, a height map is constructed by projecting  𝑣𝑖  neighbors onto a 2D plan. 

Next, each cell of the patch is filled with the absolute value of the sum of the projections heights and 

zero if no projections occurs in it. Subsequently, the height map is converted into image. Hereafter, we 

compute the Zernike coefficients for the resulting image.  Consequently, a vertex 𝑣𝑖 is described by a list 

of Zernike coefficients. 

FIGURE 4.1 - Saliency computation steps – first approach 
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Neighboring Vertices projection of a target vertex onto an 

orthogonal 2D plane to the tangent plane. 

 

 

 

Filling patch cells with the average of the vertices deviation 

factor. 

 Graph construction. 

 Normal estimation for vertices. 

 

Computation of vertices patches saliency. 

Visual Saliency  
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Deviation factor computation for graph vertices.  

Calculation of the vertices saliency degree. 

 

3D Mesh 

Computation of vertices projection height.  

 

Local patch descriptor construction. 
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FIGURE 4.2 - Saliency computation steps – second approach 

 

As we define the saliency computation on graph, our approaches can deal with any data that can be 

represented by a graph such as images, 3D point clouds, and 3D meshes. 

4.2. Saliency method 

4.2.1. Surface modeling and normal estimation 

The first step in our approaches consists of modeling the 3D mesh surface.  To do so, we consider 

the situation where a mesh can be viewed as a weighted graph G = (V, E, W) where V is a finite set of 

vertices, E represents a finite set of edges E ⊂ 𝑉𝑋𝑉, and W a weight function that represents the similarity 

measure between vertices.  

In order to construct the set of neighbors 𝐷𝑛(𝑣𝑖) of a given vertex 𝑣𝑖, we propose to use the concept of 

Delaunay triangulation [60]. A Delaunay triangulation for a set S of discrete points in a plane is a 

triangulation DT(S) such that no point in S is inside the circumcircle of any triangle in DT(S). Thus, 

working with the 3D mesh, we define circumscribed spheres from a given 3D surface point 𝑃𝑖 such that 

no surface point is inside these spheres. Then, the set of points located on the circumscribed spheres 

borders 𝑃𝑗  will be defined as the set of 𝑃𝑖 neighbors. In other words, we define the list of 𝑃𝑖 neighbors as 

the set of vertices located on the corners of all triangles (faces) sharing  

 𝑃𝑖’s  Neighbors as shown in (Figure 4.3). Thus, the set of neighbors 𝐷𝑛(𝑣𝑖) of a graph vertex 𝑣𝑖  that 

represents a mesh point 𝑃𝑖 is defined as all vertices 𝑣𝑗  representing 𝑃𝑗.   

 

Let (𝑣𝑖,𝑣𝑗) be the edge that connects two vertices 𝑣𝑖 and 𝑣𝑗 .  Each vertex 𝑣𝑖  is represented by its 3D 

coordinates 𝑣𝑖  = (xi, yi, zi)T, its normal vector N(𝑣𝑖), and the directional vectors x(𝑣𝑖) and y(𝑣𝑖) that 

correspond to the 2D tangent plan estimated at 𝑣𝑖. 

The normal 𝑁(𝑣𝑖) of a vertex 𝑣𝑖   and the 2-directional vectors following the x- and y-axes are computed 

as the as the eigenvalues of the covariance matrix 𝐶𝑜𝑣(𝑣𝑖). To do so, we compute the gravity center and 

the associated covariance matrix at 𝑣𝑖. 

 The gravity center is defined as: 

St
ep

 1
 

3D Mesh 

Computation of vertices projection height.  

 Graph construction. 

 Normal estimation for 

vertices. 

St
ep

 2
 

Convert Height map to image then compute Zernike 

coefficients for this image.  

Calculation of the vertices multi- scale saliency degree. 

Filling patch cells with the sum of the projections heights 

Neighboring Vertices projection of a target vertex onto a 2D 

plane defined by the associated vectors (x and y) and pass 

by 𝑣𝑖. 
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  ῠi = 𝟏

𝐶𝑎𝑟𝑑(𝐷𝑛(𝑣𝑖)))
∑ 𝑣𝑗𝒋∈𝐷𝑛(𝑣𝑖)                  

 Then, we define the covariance matrix at a vertex 𝑣𝑖  as: 

𝐶𝑜𝑣(𝑣𝑖)= ∑ (𝑣𝑗 − ῠ𝑖)(𝑣𝑗 − ῠ𝑖)𝑗∈𝐷𝑛(𝑣𝑖)
T ∈ ℝ3x3                  

Moreover, 𝐶0(𝑣𝑖) and 𝐶1(𝑣𝑖) that estimate receptively the minor and major principal directions are 

computed using the covariance matrix. 

 

FIGURE 4.3 - Illustration of the vertex neighboring construction 

 

4.2.2. Saliency first approach  

After modeling the 3D surface and estimating the normal, the next step is to compute the deviation 

factor. Afterward, a local patch descriptor is constructed for each vertex. Successively, a height map is 

created. Finally, by computing the weight of edges, we can calculate the local saliency and the non-local 

saliency by changing the number of neighbors’ recursively. 

4.2.2.1. Deviation factor 

Consider the 3D mesh surface modeled as a weighted graph. In order to compute the saliency at 

a vertex 𝑣𝑖, we propose to calculate the deviation factor between two vertices 𝑣𝑖  and 𝑣𝑗  that measures the 

fluctuation of the surface. Then, we construct patches by projecting the vertices onto a 2D plan and we 

fill the patches cells by the deviation factors values.  

In order to measure the deviation factor 𝐷𝐹(𝑣𝑖,𝑣𝑗), we compute the angle between the vertices normal 

vectors using the following formula: 

α (𝑣𝑖, 𝑣𝑗) = 𝑎𝑟𝑐𝑜𝑠 ( 
(𝑁(𝑣𝑖).𝑁(𝑣𝑗))

√(∑ 𝑁(𝑣𝑖)(𝑘)∗𝑁(𝑣𝑖)(𝑘)) ∗ ∑ 𝑁(𝑣𝑗)(𝑚)∗𝑁(𝑣𝑗)(𝑚)
3
𝑚=1

𝟑
𝒌=𝟏

)              

Then, we define the deviation factor between 𝑣𝑖 and 𝑣𝑗 as following: 

(4.1) 

(4.2) 

(4.3) 
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 𝐷𝐹(𝑣𝑖,𝑣𝑗) = 
∝(𝑣𝑖,   𝑣𝑗)

360
 × 100 ,      

 

In the case where the deviation factor value is between two vertices is almost zero, we consider that 

these vertices are located on the same plane.  

4.2.2.2. Local patch descriptor  

Once we calculate the deviation factors between vertices, we build the patches that describe the 

local surface of vertices. These patches are constructed by projecting the given vertex neighbors onto an 

oriented 2D plan from principal directions. Thus, we present in this sub-section the patch construction 

process. Then, we compute the saliency degree at a vertex in term of these patches. 

To define a patch for a given vertex 𝑣𝑖, we construct a square grid centered at 𝑣𝑖 according to its tangent 

plane. The patch length 𝐿(𝑣𝑖) is then defined as [61]: 

𝐿(𝑣𝑖) =
𝒎𝒂𝒙

 𝑣𝑗 ∈𝑫𝒏(𝑣𝑖)
 (||𝑣𝑗  − 𝑣𝑖 ||𝟐

𝟐),  

where ||. ||𝟐
𝟐 represents the Euclidean norm.  

Then, the set of vertices are projected onto a 2D plan defined by the associated vectors (x and y) as shown 

in (FIGURE 4.4). As a result, we obtain a list of vertices 𝑣𝑖
′
 for each projected vertex 𝑣𝑖

 
  and defined as: 

       𝑣𝑖
′
  = [(𝑣𝑗-𝑣𝑖).x(𝑣𝑖), (𝑣𝑗-𝑣𝑖).y(𝑣𝑖)]

T, 

Thus, the patch at a vertex 

𝑣𝑖
′ is represented by a 

rectangle of n cells where 

the side length of each cell 

is 𝐿(𝑣𝑖
′ )/𝑛, with n a 

constant that depends on 

applications. 

To enhance the saliency 

degree measurement, we 

propose to calculate the 

saliency at a vertex 

depending on a projection 

height He(𝑣𝑖) and its 

deviation factor. The 

projection height of 𝑣𝑖
  is 

defined as: 

FIGURE 4.4 - Illustration of the patch construction and vertices projection. c0(v) and 

c1(v) are the principal directions at v. L is the patch length 

 

(4.4) 

(4.5) 

(4.6) 
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 𝐻𝑒(𝑣𝑖) = ||𝑣𝑖  − 𝑣𝑖
′ ||𝟐

𝟐,  

 

4.2.2.3. Saliency computation 

Once the patches are defined and filled, we compute the saliency degree at a vertex 𝑣𝑖. To do so, 

we compute the patch saliency 𝑃𝑎𝑡𝑐ℎ_𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦(𝑣𝑖)  using a similarity measure between the local patch 

descriptor 𝑃(𝑣𝑖) and the patches associated to 𝑣𝑖’s neighbors. Then, we calculate the saliency degree at 

𝑣𝑖 based on the 𝑃𝑎𝑡𝑐ℎ_𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦(𝑣𝑖)  and the weight functions of  𝑣𝑖 and its neighbors.  

Thus, we define the weight function ω: V × V  [0, 1] that represents the homogeneity measure between 

 𝑣𝑖  and its neighbors as:  

𝜔(𝑣𝑖, 𝑣𝑗) =𝒆
−
𝐾(𝑣𝑗)∗𝐷𝐹(𝑣𝑗,𝑣𝑖)∗(||𝐻𝑒(𝑣𝑗)−𝐻𝑒(𝑣𝑖)||)

𝜎(𝑣𝑖)∗𝜎(𝑣𝑗)  ,  

where 𝐾(𝑣𝑗) represents the mean curvature [62] at 𝑣𝑗 , the mean curvature of a surface describes locally 

the curvature of an embedded surface in some ambient space such as Euclidean space , and 𝜎(𝑣𝑖) is the 

scale parameter and  calculated as: 

𝜎(𝑣𝑖) =
𝒎𝒂𝒙

 𝑣𝑘 ∈𝑫𝒏(𝑣𝑖)
 (||𝑣𝑘  − 𝑣𝑖 ||𝟐

 ) ,  

The saliency degree at 𝑣𝑖  is computed based on the saliency of its patch 𝑃(𝑣𝒊). This saliency is calculated 

based on the entropy of 𝑃(𝑣𝒊). Thus, we propose to compute the probability 𝑃𝑟𝑏(𝑣𝑖) of a patch 𝑃(𝑣𝒊)  
as: 

𝑃𝑟𝑏(𝑣𝑖)= 
𝐶𝑥
𝑖

| 𝑉 |
 ,  

where 𝐶𝑥
𝑖  is the number of vertices of 𝑃(𝑣𝑖)  with a deviation factor (the value of its corresponding patch 

cell) greater than x (x is a constant that depends on applications) and | V | is the number of vertices 

belonging to 𝑃(𝑣𝑖)  as shown in (FIGURE 4.5). 

 

 

 

 

 

 

 

 

 

FIGURE 4.5 - Patch vertices. 

(4.7) 

(4.8) 

(4.9) 

(4.10) 
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The entropy of 𝑃(𝑣𝑖)  that measures the dissimilarity between 𝑣𝑖 and the set of vertices that belongs to 

𝑃(𝑣𝑖)  is calculated as following: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑣𝑖) =   −𝑃𝑟𝑏(𝑣𝑖) × log2 𝑃𝑟𝑏(𝑣𝑖),  

Then, The saliency of 𝑃(𝑣𝑖)  is computed as: 

Patch_Saliency (𝑣𝑖) =  
∑ 𝐴𝑏𝑠( 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑣𝑗)  −  𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑣𝑖)) × 𝐿(𝑣𝑗) 𝒋 ∈|𝑉|

∑  𝐿(𝒗𝒋)𝒋 ∈|𝑉|
 ,    

where 𝐿(𝑣𝑗) represents the Euclidian distance between the neighboring vertex 𝑣𝑗  and its 2D projection 

on the tangent plane at the vertex 𝑣𝑗 . 

Finally, we define the visual saliency at 𝑣𝑖 as: 

Saliency-degree (𝑣𝑖) = 
∑  𝑃𝑎𝑡𝑐ℎ_𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦(𝑣𝑗)  ×  𝑤 (𝑣𝑖,𝑣𝑗)𝒋 ∈|𝑽|

|𝑉|
  

The saliency degree is bounded between [0, 1] where the degree 1 means that 𝑣𝑖 is similar to its neighbors 

and 0 means the opposite. 

Since the saliency measure at a vertex 𝑣𝑖 is calculated in term of the patch saliency that contains 𝑣𝑖 , this 

will ensure that all neighbors information of 𝑣𝑖 are taken into consideration and will lead to a consistent 

saliency measure. 

4.2.2.4. Non-local Saliency computation 

In order to improve the quality of the measured saliency, we compute the saliency with a non-

local graph where the neighboring function is calculated based on a multi-level Delaunay triangulation.  

Thus, to construct a non-local graph, we increase the number of neighbors of vertices. To do so, we 

recursively add to the list of 𝑣𝑖  neighbors in 𝐷𝑛(𝑣𝑖) according to a level k that represents the neighbors 

of a vertex 𝑣𝑗 ∈  𝐷𝑛(𝑣𝑖) .  This nonlocal measure will ensure that the saliency at a vertex is computed 

using a larger number of neighbor’s information resulting a consistent saliency measure. The term 

nonlocal means the non-locality of data defined on Euclidean domains (as images). This term is used to 

refer to the continuous case [63] where each element can interact with other elements in the domain (and 

not only adjacent ones). Thus, a graph constructed with two Delaunay levels will consider all gray 

vertices in the (FIGURE 4.5) as 𝑣𝑖′𝑠 neighbors.  

Therefore, we can observe in (FIGURE 4.6) that a graph constructed with a small number of k Delaunay 

neighbor’s leads to highlight large regions as silent, while a higher level will detect finest details.  

According to the ground truth map, we see that the non-local saliency detect finest regions better than 

the local one. 

(4.11) 

(4.12) 

(4.13) 



Chapter 4 – Efficient 3D mesh salient regions detection 

- 65 - 
 

 

           

FIGURE 4.6 - Local and Non-local saliency. From left to right: ground truth map [64], saliency map with a local 

graph (level=1), non-local saliency map with a nonlocal graph (level=5) 

4.2.3. Saliency second approach  

In order to compute the saliency degree of vertices, we should first model the 3D surface and 

estimate the normal. Next, an invariant 2D descriptor is constructed for each vertex. Successively, a 

height map is created and the Zernike coefficients are computed based on this height map and the 

associated patch. Finally, by computing the weight of edges, we can calculate the single-scale saliency 

and the multi-scale saliency by changing the number of neighbors. 

4.2.3.1. Invariant patch descriptor  

Our main goal is to build patches that describe the local surface of vertices resulting in an 

approach of matching invariant under scaling, translation, rotation, and affine transformations. To do so, 

we construct these patches as following: 

 First, to define a patch for a given vertex 𝑣𝑖, we construct a rectangle of n cells centered at 𝑣𝑖where 

the side length of each cell is 𝐿(𝑣𝑖) /𝑛, with n is a constant that depends on application and 𝐿(𝑣𝑖) 

is computed according to the bounding box of 𝑣𝑖 neighbors using the formula (4.5). 

 Afterward, a height map is constructed by projecting  𝑣𝑖  neighbors onto a 2D plan defined by the 

associated vectors (x and y) and pass by 𝑣𝑖. As a result, we obtain a list of vertices 𝑣𝑗
′
 for each 

projected vertex 𝑣𝑗
 
  by using the formula (4.6). 

 In order to define the position of cells (in x- and y-axis) corresponding to the projected vertex  𝑣𝑗
′
 

of 𝑣𝑗 ∈ 𝐷𝑛(𝑣𝑖), we use the following equation: 

 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑑(𝑣𝑗
′) = ⌊

𝑣𝑗
′𝑑

𝐿(𝑣𝑖 )
𝑛

⌋  

 

where ⌊ ⌋ is the rounded integer and d represents the x or y coordinates. 

(4.14) 

Delaunay level =1 Delaunay level =2 
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At this stage, each cell of the patch is filled with the absolute value of the sum of the projections 

heights and zero if no projections occurs in it. The projection height of 𝑣𝑖
  is calculated using the 

formula (4.7). 

Finally, the height map is converted into image where the value of each cell correspond to the 

intensity. Hence, the Zernike coefficients of which yield a rotationally invariant representation, 

we compute these coefficients for the resulting image.  Consequently, a vertex 𝑣𝑖 is described by 

a list of Zernike coefficients.  

The Zernike polynomials constitute an orthogonal basis for functions defined on the unit disk. 

Each Zernike polynomial,𝑉𝑝
𝑞

 are defined over the domain 𝐷 = {(𝑝, 𝑞)|𝑝 ∈ ℤ, 𝑞 ∈ ℤ≥0, |𝑞| ≤

𝑝, |𝑝 − 𝑞| ∈ ℤ𝑒𝑣𝑒𝑛} and has an associated order p and repetition q as following:  

𝑉𝑝
𝑞(𝜌, 𝜃) =  𝑅𝑝

𝑞(𝜌)𝑒𝑖𝑞𝜃 

where 𝑅𝑝
𝑞
 is the radial polynomial defined as:  

𝑅𝑝
𝑞(𝜌) = ∑

(−1)
𝑝−𝑘
2
𝑝 + 𝑞
2

!

𝑝 − 𝑘
2

!
𝑘 − 𝑞
2

!
𝑘 + 𝑞
2

!
𝜌𝑘

𝑝

  |𝑝−𝑞|𝑒𝑣𝑒𝑛
𝑘=|𝑞|

 

In order to get the Zernike coefficients of a function 𝑓(𝑥, 𝑦), we apply:  

𝑧𝑝
𝑞(𝑓) =

𝑝 + 1

𝜋
∬ (𝑉𝑝

𝑞
) (𝑥, 𝑦)𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

 

𝑥2+𝑦2≤1

 

where (𝑉𝑝
𝑞
) represents the complex conjugate of 𝑉𝑝

𝑞
. 

The Zernike polynomials form a basis upon which an image 𝑓 can be projected. The Zernike 

moments of the image is the result of this projection, the magnitudes of which are invariant to 

rotation. In practice, each of the Zernike basis functions is denoted as a set of discrete samples on 

a  𝑘 × 𝑘 grid. Thus, the projection of an image 𝑓 onto the Zernike basis function 𝑉𝑝
𝑞
 is defined 

as:  

𝑧𝑝
𝑞(𝑓) =

𝑝 + 1

𝜋
∑ (𝑉𝑝

𝑞
) [𝑥, 𝑦]𝑓(𝑥, 𝑦)

(𝑥,𝑦)∈𝑆

 

where S is the region centered at [𝐶𝑥, 𝐶𝑦] =  [
𝑘

2
,
𝑘

2
] and defined as :  

 

𝑆 = {[𝑥, 𝑦]√(𝑥 − 𝑐)2 + (𝑦 − 𝑐)2  ≤  
𝑘

2
} 

 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 
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4.2.3.2. Single-scale saliency  

Once the patches are defined and the Zernike coefficients are computed, we compute the saliency 

degree at a vertex 𝑣𝑖. To do so, we compute the weight of edges connecting 𝑣𝑖  with its neighbors and the 

angles between normal of 𝑣𝑖 and its neighbor’s normal.  

Given two Zernike coefficient 𝐶1 and 𝐶2. We define the distance 𝑑𝑖𝑡 between 𝐶1 and 𝐶2 , similar to 

Euclidian distance, as following:  

𝑑𝑖𝑡(𝐶1, 𝐶2) =  √(𝑟𝑒𝑎𝑙(𝐶2) − 𝑟𝑒𝑎𝑙(𝐶1))
2 + (𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦(𝐶2) − 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦(𝐶1))

2  

Let 𝐷𝑧(𝑣𝑖, 𝑣𝑗) be the distance between the two sets of Zernike coefficients describing the vertices 

𝑣𝑖  and 𝑣𝑗   and defined as:  

𝐷𝑧(𝑣𝑖, 𝑣𝑗) =  
∑ 𝑑𝑖𝑡(𝑍𝑘𝑛
𝑘=1 (𝑣

𝑖
), 𝑍𝑘(𝑣𝑗))

𝑛
 

where 𝑍𝑘(𝑣𝑗) is the 𝐾𝑖𝑒𝑚 Zernike coefficient. 

Thus, we define the weight function ω: 𝑉 × 𝑉  [0, 1] that represents the homogeneity measure between 

 𝑣𝑖  and its neighbors as:  

    𝜔(𝑣𝑖, 𝑣𝑗) =𝒆
−
𝐷𝑧(𝑣𝑖,𝑣𝑗)

𝜎(𝑣𝑖)∗𝜎(𝑣𝑗)  

where 𝜎(𝑣𝑖) is the scale parameter and  calculated using the formula (4.9).  

Finally, we define the single-scale saliency at 𝑣𝑖 as:  

Single-Scale-Saliency (𝑣𝑖) = 
∑  𝛼(𝑣𝑖,𝑣𝑗)  ×  𝑤 (𝑣𝑖, 𝑣𝑗)𝒋 ∈|𝑽|

|𝑉|
 

where 𝛼(𝑣𝑖 , 𝑣𝑗) is the angle between normal of vertices 𝑣𝑖  and 𝑣𝑗 . 

Since the saliency measure at a vertex 𝑣𝑖  is calculated in term of Zernike coefficients describing 𝑣𝑖 and 

the Zernike coefficients describing its neighbors and angles between normal, this will ensure that all 

neighbors information of 𝑣𝑖 are taken into consideration and will lead to a consistent saliency measure. 

4.2.3.3.  Multi scale saliency  

In order to improve the quality of the measured saliency and cope with noise, we compute the 

saliency at different scales.  To do so, we vary the Delaunay neighboring level to increase the number of 

vertex neighbors. We consider four different level 2, 4, 6 and 8. Then, we calculate the single-scale 

saliency map for each considered level. Before merging the obtained saliency maps, we calculate the 

Pearson Correlation Coefficient that measures the strength and direction of the relationship between the 

saliencies on each map. 

 

(4.20) 

(4.21) 

(4.22) 

(4.23) 
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To do so, at a given scale k, we compute for a given vertex 𝑣𝑖 the saliency value and the average of 

saliency degrees of its neighbors. Afterwards, the Pearson Correlation coefficient [81] known as a 

measure of the linear correlation between two variables is computed as following:  

𝑟 =
∑ (𝑆𝑘(𝑣𝑖) − 𝑆𝑘(𝑣𝑖))(𝐴𝑆𝑘(𝑣𝑖) − 𝐴𝑆𝑘(𝑣𝑖))
4
𝑘=1

√∑ (𝑆𝑘(𝑣𝑖) − 𝑆𝑘(𝑣𝑖))2
4
𝑘=1

√∑ (𝐴𝑆𝑘(𝑣𝑖) − 𝐴𝑆𝑘(𝑣𝑖))2
4
𝑘=1

 

 

where 𝑆𝑘(𝑣𝑖) is the Single Scale Saliency of 𝑣𝑖  at scale k and 𝐴𝑆𝑘(𝑣𝑖) is the average Single Scale Saliency 

of 𝑣𝑖 neighbors. 

By weighting the saliency of each node by the Correlation Coefficient, we can obtain a robust multi-

scale saliency map that considers the disparity of the saliency at each scale. It is computed as follows:  

  𝑀𝑢𝑙𝑡𝑖 − 𝑆𝑐𝑎𝑙𝑒 − 𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦(𝑣𝑖) = 𝒓 ∗ 𝑆𝑖𝑛𝑔𝑙𝑒 − 𝑆𝑐𝑎𝑙𝑒 − 𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦 (𝑣𝑖)     

4.3. Experimental results 

In this section, we evaluate the performance of our methods by applying them on 3D meshes, 3D 

point clouds, and noisy 3D meshes. We show firstly the robustness of our approaches through a 

comparison with the saliency truth map. Then, We will show and discuss the influence of different 

parameters on our approach such as graph Delaunay-level k, the variable x in equation 3.9 that defines 

the deviation factor threshold in patches entropy calculation, and the number of patch cells n.  

4.3.1. Comparison with the ground truth 

To evaluate the performance of our method, we compare our results on several meshes from the 

SHREC 2007 with their ground truth saliency. This ground truth was obtained from Chen et al.’s user 

study [64] by asking users to select points that other users can select them. They applied then a regression 

analysis to construct an analytical model to predict which 3D point is salient. FIGURE 4.7 and 4.8 

presents our results compared with ground truth maps. One can see that our results corresponds to the 

ground-truth saliency where we detect the most salient regions. 

                                                          

                                                            

(4.24) 

(4.25) 
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Single-scale saliency Multi-scale saliency 

FIGURE 4.7 – Saliency first approach maps with ground truth maps 

FIGURE 4.8. Saliency second approach map. From left to right: original 3D mesh, ground truth map, saliency map. 

Finally, (a) is the color map  
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4.3.2. Influence of different parameters 

In (FIGURE 4.9), we present the results on some 3D meshes. Images (a1, b1 and c1) show the 

original 3D meshes, images (a2, b2 and c2) present the detected salient regions with 𝑘=1, n=9 and x=9. 

Images (a3, b3 and c3) display the salient regions detected using our method with 𝑘=1, n=9 and x=12, 

Images (a4, b4 and c4) display the salient regions detected using our method with 𝑘=1, n=9 and x=15. 

Image (a0) shows the color map. 

We notice that the number of salient regions increases when we decrease the deviation factor threshold. 

Practically, the similarity among the vertices relatively increases when the deviation factor threshold 

increases. We can observe clearly the influence of the deviation factor threshold in figures (b3, b4) and 

(c3, c4). 

 

 

                                                           

                                 

                                                                 

 

b2 
b1 

b3 

a0 

a1 a2 

FIGURE 4.9 - Deviation factor threshold Influence 

a3 

c1 c2 c3 

a4 

b4 

c4 
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FIGURE 4.10 presents the result of our approach by construction a local graph (k=1) and a non-local 

graph with two values of k (4 and 8). These results show that the number of salient regions decrease when 

we apply the non-local saliency. The images (a1, b1 and c1) shows the original 3D meshes.  Images (a2 

and b2) show the results obtained by using a local saliency (k=1).  In contrast, images (a3 and b3) show 

the results obtained by using non-local saliency (k=4) and images (a4 and b4) with (k=8). We notice that 

the number of salient regions with a local graph is greater than the number of regions detected with a 

non-local graph.  Furthermore, we can notice that the variation in parameter n has a similar effects as k 

due to the larger number of neighbors’ information. Image (c2) shows the results obtained by using (k=2, 

n=9), (c3) shows the results obtained by using (k=2, n=12) and (c4) shows the results obtained by using 

(k=2, n=15).  

 

                                                                           

                        

          

 

 

 

a2 a1 

b1 

a3 

b2 b3 

c2 c3 c1 

FIGURE 4.10 - Saliency map with a Local and non-local saliency computation 

a4 

b4 

c4 
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FIGURE 4.11 presents the results by applying our proposed method on 3D point clouds with and without 

noise. We construct a Delaunay graph using the concept of Delaunay triangulation from the given point 

clouds. Images (a1 and a3) show the original 3D point clouds, images (a2 and a4) present the detected 

salient regions with 𝑘=1, n=9 and x=9. 

          

                  

                 

 

 

The image b1 shows the lion 3D point cloud, image c1 shows the noisy lion 3D point cloud. Results 

obtained in (b2 and c2)  demanstrate that our method detects the same salient regions and deals with noise. 

 

 

 

c1 

b2 b1 

a1 

 

a2 

 

a3 

 

a4 

 

FIGURE 4.11 - Results of our method on 3D point clouds 

c2 
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4.4. Comparison with the state-of-the-art methods 

In this section, we compare our method (first approach) with some previous related works. We 

show in (FIGURE 4.12) a failure case obtained by the method proposed in [20] and the result of our 

proposed method, which is a failure case also, but better than the result obtained by [20].  

It shows also a comparison of our method with some other methods. We can conclude visually that the 

best results are obtained by the method proposed in [20] and our method. Note that in (b3) most of flat 

surfaces are considered as salient regions especially in legs. 

           
 

     

FIGURE 4.12 - Image (a1) shows the ground truth spider 3D mesh, image (a2) shows the saliency detected by the method 

proposed in [20] (Multi-scale approach with adaptive patch size). Image (a3) shows saliency detected using our method (𝑘=1 

and x=9). Image (b1) shows the original 3D mesh (14,227vertices), image (b2) shows saliency detected with our method (𝑘=1 

and x=8), image (b3) shows the saliency detected in [20], image (b4) shows the saliency in [65] (detecting regions of interest 

of surfaces using Fast affine template matching) and image (b5) shows the saliency detected in [66](Saliency detection 

based on conditional Random Field (CRF) framework)) 

FIGURE 4.13 shows a comparison of the detected saliency on the 3D mesh Dinosaur with some related 

works. As shown above, our method considers out-standing vertices in a flat surface as salient points and 

also those found on salient regions (fluctuations on surfaces naturally attract the attention of the human 

observation). Our result shown in (a2) is similar to the result of the method proposed in [20] (a5) but our 

method detects in addition all sharp regions in the two legs of the Dinosaur mesh. The result presented 

in [23] (a3) considers the ribs of the 3D Dinosaur model as non-salient regions although the existence of 

fluctuations and sharpness in this region. In addition, the approach proposed in [23] (a3) detects the flat 

b1 b2 b3 

 

b4 

 

b5 

 

a1 

 

a2 

 

a3 
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surface in the head as salient regions. In contrast, the method proposed in [66] (a4) considers the most of 

object as salient regions even if those areas are flat.  

 

           

 

 

FIGURE 4.13 - Comparison with the state-of-the-art: image (a1) shows original 3D mesh dinosaur (21,777vertices), 

image (a2) shows saliency detected with our method (𝐿𝑒𝑣𝑒𝑙=1 and DF=9), image (a3) shows the saliency detected 

in [65], image (a4) shows the saliency detected in [66] and image (a5) shows the saliency detected in [20] 

 

FIGURES 4.14 and 4.15 present another comparison with [18, 20] according to the saliency map. We 

can observe that our method (𝑘=4, n=12 and x=9) are more consistent with ground-truth maps.  

 

a4 

a5 

a1 a2 

a3 



Chapter 4 – Efficient 3D mesh salient regions detection 

- 75 - 
 

 

 

  
 

 

 
 

 
 

 

 

 
 

 

FIGURE 4.14 - Comparisons of our saliency map (second row) with Multi-scale mesh saliency [20] (third row) 

and ground truth [64] (first row) 
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FIGURE 4.15 - Comparisons of our results (second row) with spectral mesh saliency [18] (the third row) and ground 

truth [64] (first row) 

4.5. Comparison between the proposed approaches 

By comparing the results produces by the two approaches with the ground truth maps, we can 

notice that the two approaches are similar and competent.  However, the second approach presents better 

results than the first one when dealing with 3D matching application, which is discussed in the next 

chapter.  

4.6. Conclusion 

In this chapter, we have presented two novel approaches to detect salient regions on 3D meshes. 

In first approach, a local patch has been created for each vertex where its cells are filled with deviation 

factors. The patch is then used as a local descriptor for the 3D meshes surface vertices. Furthermore, a 

similarity measure between patches descriptor and a height map have been calculated and in order to 

compute the similarity degree of vertices saliency measure. In the second approach, a novel 3D invariant 

surface descriptor has been created for each vertex based on Zernike coefficients. Furthermore, a single-

scale-saliency degree is calculated , then, a multi-scale saliency map is computed in order to improve the 
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quality of the measured saliency and cope with noise. Finally, we showed the robustness and the 

efficiency of our approach by showing that our approach detects most of visual salient regions in a 3D 

mesh surface. Finally, we showed that our approach could detect salient regions on any data that can be 

represented by a weighted graph such as point cloud. 

In the next chapter, we will present multiple applications based on our saliency methods in order to 

demonstrate the efficiency of our approaches.  
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Many 3D processing applications can benefit from salient regions detection on 3D objects or 

point clouds. In this chapter, we present multiple applications based on salient regions detection. First, a 

3D objects segmentation is proposed, followed by feature points detection. Starting from these two 

applications, we present also two others, which are the 3D point clouds simplification, and the 3D objects 

matching.   
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5.1. 3D objects segmentation 

The segmentation of 3D objects based on salient regions detection has been widely used in many 

applications of computer vision field such as shape matching, objects alignments, 3D point clouds 

simplifications, etc. 

We propose to extend our methods proposed in the previous chapter to mesh region segmentation. To 

segment salient regions, we propose two algorithms. First algorithm is a custom version of Hill Climbing 

algorithm [67]. This algorithm uses the dilation morphological operator as defined in (EQUATION 5.4) 

to propagate throw weighted graph vertices and define regions (vertices), which are similar in term of 

saliency features. The second is a heuristic algorithm that solve a linear programming model for a graph-

clustering problem. This problem derived from graph coloring problem.  

5.1.1. Multi Search Hill Climbing – Algorithm 

 The main idea of this algorithm is to move to a list of vertices that maximizes better the solution 

 𝐻𝑚(𝑣𝑖) at each step rather than moving to one vertex.  𝐻𝑚(𝑣𝑖) is a function that measures the 

homogeneity between 𝑣𝑖 and its neighbors . This algorithm is faster than the regular Hill Climbing 

algorithm since multi selection are performed at each level. Furthermore, it avoids the local maxima 

solution because more than one solution can be found in the same iteration. 

Let 𝐹(𝑣𝑖,𝑣𝑗):  𝑉 × 𝑉 → {0,1} be a function defined as: 

𝐹 
 (𝑣𝑖, 𝑣𝑗) = {1 𝑖𝑓 |𝑆𝐿

(𝑣𝑖) − 𝑆𝐿( 𝑣𝑗)| ≤ 𝜎

0                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

 ,  

where 𝑆𝐿(𝑣𝑖) is the saliency degree of vertex 𝑣𝑖 and 𝜎 is a parameter defining the point clouds density.  

The homogeneity function 𝐻𝑚(𝑣𝑖) :  𝑉 → ℕ can be defined as follows: 

 𝐻𝑚(𝑣𝑖) =∑ 𝐹(𝑣𝑖 , 𝑣𝑗)𝑣𝑖~𝑣𝑗 ,      

Let HG a structuring element defined as following: 

 𝐻𝐺𝑣 = {𝑣𝑗  ∈  𝐷𝑛(𝑣𝑖)/𝐹(𝑣𝑖, 𝑣𝑗) = 1},  

A dilation from a vertex 𝑣𝑖  to 𝑣𝑗  on a graph G using the structuring element HG is given by the 

following set of operations: 

G ⊕ HG = {(𝑣𝑖  +  𝑣𝑗)| 𝑣𝑖 ∈ G, 𝑣𝑗  ∈ HG},  

The multi search Hill Climbing algorithm steps can be summarized as follows: 

 Pick a random vertex 𝑣𝑖 from the weighted graph. 

 Choose the list of neighbors 𝑣𝑗  from 𝐷𝑛(𝑣𝑖) that maximizes better the function 𝐻𝑚(𝑣𝑖). 

 Apply the dilation operator on 𝑣𝑖. 

 Repeat step 2 and 3 for each element 𝑣𝑗  in 𝐷𝑛(𝑣𝑖) until it becomes empty. 

The following figure illustrates this algorithm. 

(5.1) 

(5.2) 

(5.3) 

(5.4) 
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5.1.2. Heuristic algorithm 

 In order to classify the graph vertices into groups of vertices similar in term of saliency degree, 

we adopt a linear programming model that groups the set of vertices belonging to the same class by 

minimizing a cost function. Let us start with the combinatorial problem of labelling the graph vertices 

where we search to assign the same label to adjacent vertices belonging to the same class using the 

minimal number of labels. 

We propose to formulate the vertex-labelling process as an integer linear problem ILP. To do so, we 

consider a set of vertices V = { 𝑣1. . 𝑣𝑛} and a set of n labels where the initial state of the problem considers 

that each vertex has its specific label.  

FIGURE 5.1 - Multi Search Hill Climbing – Algorithm 

Iteration #0 Iteration #1 

Iteration #2   Iteration #3 

Iteration #4 
Iteration #5 
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We introduce two binary variables 𝑦𝑘  𝑎𝑛𝑑 𝑥𝑖𝑘, 𝑘 = 1. . 𝑛. The first variable indicates whether a label k is 

used ( 𝑦𝑘 = 1 ) or not ( 𝑦𝑘 = 0), and the second one indicates if a given vertex 𝑣𝑖 has received the label k.  

The model with all variables is established as following: 

 

 

Min ∑ 𝒚𝒌
𝒏
𝒌=𝟏   

 
Subject to: 

 

 

(1)  ∑ 𝒙𝒊𝒌  = 𝟏𝒏
𝒌=𝟏    ∀ i=1,…,n 

(2)  𝒙𝒊𝒌 - 𝒚𝒌 ≤ 𝟎     ∀  𝐢, 𝒌=1,…,n 

(3)   𝒙𝒊𝒌 – 𝒙𝒋𝒌 ≤ 𝟎   ∀ 𝒌 = 𝟏,… , 𝒏; ∀( 𝑣𝑖 ,  𝑣𝑗 ) ∈ 𝑬;   𝑭( 𝑣𝑖 ,  𝑣𝑗 ) = 𝟏,      

(4)  𝒙𝒊𝒌 ∈ {𝟎, 𝟏}; 𝒚𝒌 ∈ {𝟎, 𝟏} 

 

 

The constraints (4) and (5) ensure that 𝑥𝑖𝑘 and 𝑦𝑘 are binary variables. The constraints (1)-(3) guarantee 

(in this order) that each vertex is labelled; vertex 𝑣𝑖  receives the label k only if this label is used, and any 

two adjacent vertices have different label if they belong to different classes. The optimal solution of such 

problem is a graph where each group of connected vertices belonging to the same class receives the same 

label. 

 

We present a heuristic algorithm to solve the ILP problem. This algorithm is similar to that presented in 

(CHAPTER 3: ALGORITM 3.1) where the score function Score ( 𝑣𝑖, 𝑣𝑗) is defined as:  

𝑆𝑐𝑜𝑟𝑒( 𝑣𝑖,  𝑣𝑗) = {
0                               𝑖𝑓  𝑣𝑗 ∈  𝐶(𝑣𝑖)

1                                       otherwise,
    

where 𝐶(𝑣𝑖) is the set of vertices belonging to 𝐷𝑛(𝑣𝑖)  and similar to 𝑣𝑖 in term of saliency.  

𝐶(𝑣𝑖) = {𝑣𝑗  ∈  𝐷𝑛(𝑣𝑖) such as 𝐹 
 (𝑣𝑖, 𝑣𝑗) = 1} 

 

5.1.3. Experimental results 

In (FIGURE 5.2), we present the result using the proposed segmentation method based on the 

vertices saliency degree. Each group of similar connected vertices has a specific color and form a 

separated segment. From left to right, the first column is the original 3D object, the second column is the 

saliency map and the last column is the segmented object. 

(5.5) 

(5.6) 
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5.2. Feature points  

When we segment the 3D surface according to saliency degree of vertices, the tiny segments 

detected will form the features regions that describe the geometry of the surface and used later to identify 

the feature points. 

5.2.1. Feature regions detection 

In this subsection, we present a method to detect feature regions followed by detecting feature 

points on a 3D point cloud using the saliency degree of vertices. Firstly, we segment the 3D point cloud 

according to saliency degree of vertices. Then, we define the set of interest points (Feature points) 𝐼𝑝 in 

each segmented region. The segmentation process is accomplished using one of the two algorithms 

proposed in the previous section. 

FIGURE 5.2 - 3D mesh segmentation based on saliency degree 



Chapter 5 – 3D mesh salient regions detection: Applications 

- 84 - 
 

FIGURE 5.3 summarizes the regions segmentation process: 

 

 

                   

FIGURE 5.3 - Feature regions 

5.2.2. Feature points detection 

In this subsection, we describe the process of defining the set of feature points in each feature 

region. Note that an interest point can be located inside a feature region or on its boundaries as shown 

in (FIGURE 5.8). 

 

FIGURE 5.4 - Illustration of distribution of interest points 

The boundary point set of a feature region is defined as its Concave Hull presented in (FIGURE 5.5). 
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FIGURE 5.5 - Illustration of feature region boundary 

The set of interest points are defined amongst the set of boundary points as the extremities of collinear 

point’s sets. The following figure illustrates the detection of boundary feature points. 

 

 

 

FIGURE 5.6 - Boundary feature points 

 

The set of collinear points is defined in the form of triplet points. Therefore 𝑃1 (𝑥1, 𝑦1, 𝑧1), 𝑃2 (𝑥2, 𝑦2, 

𝑧2), and 𝑃3 (𝑥3, 𝑦3, 𝑧3) are collinear if, the area A of the triangle composed by P1, P2 and P3 equals to 

zero. Let a, b and c be the sides of this triangle and defined as:  

 

Convex Hull Concave Hull 

Point 1 and Point 3 are 

feature points 
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The area of the triangle s is calculated using Heron's formula: 

 

,    

 

where s represents the half of triangle perimeter. 

The set of interior points in each feature region are weighted by their saliency degree. Thus, we can 

classify these points as High salient or Low salient points. This classification is made according to a local 

mean saliency measure (LMS) and a global mean saliency measure (GMS) as following: 

LMS(r) = 
∑ 𝑆𝐿(𝑣𝑖)
 
𝑣𝑖 ∈ 𝒓 

|𝒓|
, 

GMS = 
∑ 𝑆𝐿(𝑣𝑖)
 
𝑣𝑖∈𝑮 

|𝑮|
,                              

where r represents the set of points in each feature region, and |𝐺| the number of graph vertices. 

To check whether a point is an interest point, we define the function  𝐼𝑇𝑃 
 (𝑣𝑖, 𝑟) as: 

𝐼𝑇𝑃 
 (𝑣𝑖, 𝑟) =  {

𝟏   𝒊𝒇 (GMS−∝)  ≤  𝑺𝑳(𝑣𝑖) 𝒐𝒓 (LMS(𝐫)−∝)  ≤  𝑆𝐿(𝑣𝑖)
0                                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

where ∝ is a threshold parameter.  

Finally, the interest points located into feature regions and on boundaries can be considered as feature 

points.  

 

5.3. 3D point cloud simplification  

5.3.1.  Introduction 

3D content has an important role in many domains such as computer vision, architectural and 

industrial design, scientific visualization, animation films, and medical imaging. However, the 

performance of 3D scanning devices [68] has been enhanced year by year and modern scanners 

generate complicated and dense point clouds.  This leads to a large data redundancy, which must be 

removed in order to limit the computing resources needed to analyze and represent the form. Thus, the 

objective of the simplification process is to eliminate duplicated and redundant points that does not 

affect the characteristics of the initial form [69]. Consequently, feature points that represent the 

geometry such as sharp features and boundaries are maintained. 

The methods of point clouds simplification can be classified into three categories: clustering methods, 

methods coarse-to-fine, and iterative methods. 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 
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The first category (clustering methods) covers the algorithms which aim at subdividing the input point 

clouds into several surface patches (group of points), based on a certain criterion, then to replace every 

patch by its representative point (the centroid for example). In this context, Pauly et al. [29] proposed 

two different strategies, inspired by the methods of mesh simplification [70, 71], for the construction of 

patches. The first is incremental and uses an algorithm of regions growth. The second is hierarchical, and 

bases itself on a binary partition of the space. The number, as well as the size of patches, are controlled 

by means of the curvature. The authors mention that the methods of clustering are fast and effective 

regarding resource memory, but leads to point clouds presenting an important quadratic error. 

The approaches of type coarse-to-fine extract randomly a set of points from the original points cloud then 

call on to a 3D Voronoï diagram in order to define implicitly a distance function. This last function is 

then used to refine the cloud until the error tolerated by the user is reached. Moenning and Dodgson [31] 

proposed an algorithm based on this principle. 

The iterative methods correspond to the algorithms where the objective is to reduce in an iterative way 

the number of points of the original point clouds by using a decimation operator as the one proposed in 

[72]. 

In this section, we propose a new simplification method based on the saliency measure of point cloud 

vertices, due to the high saliency having sharp points and boundaries. Our method detect feature regions 

that represents the characteristic of the surface then removes the points having a low saliency degree 

from those regions.   

5.3.2. Contributions 

In this method, the point cloud is 

represented by a weighted graph, and the 

saliency degree of vertices is calculated. 

Then, the graph is segmented into feature 

regions that maintain the characteristics of 

the surface shape where each region is a set 

of similar vertices in term of saliency degree. 

Secondly, we define the set of feature points 

using the algorithm proposed in the previous 

section. Finally, we maintain the feature 

points and remove non-featured points. Our 

method is illustrated in (FIGURE 5.7). 

5.3.3. Simplification process 

The simplification process consists to 

define the set of interest points 𝐼𝑝 in each 

segmented region that will represent finally 

the set of points to conserve in the simplified 

data. Finally, the resulting simplified 3D 

point cloud is composed by all feature points 

classified as high saliency point. FIGURE 5.7 - Flowchart of our method 
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 In some cases where the set of interior points is classified as low saliency points, the fact that produce 

gaps in the simplified 3D point cloud. To handle this case, we propose to simplify this set according to 

the following rules and illustrated in (FIGURE 5.8). 

 Compute the gravity center GCS of region high salient points, 

 Compute the midpoint of segment connecting each boundary interest point with the gravity 

center GCS, 

 Maintain the nearest low salient point of each midpoint. 

 

 

FIGURE 5.8 - Region gaps treatment 

5.3.4. Experimental results 

In this section, we show the efficiency and robustness of our proposed method on many colored 

3D point clouds models and 3D meshes. In these experimental results, we present and discuss the 

influence of different parameters on our approach such as graph Delaunay-level k, the variable x in 

(EQUATION 4.10) that defines the deviation factor threshold in patches entropy calculation, threshold 

parameter ∝ in (EQUATION 5.1) and the number of patch cells n in (SECTION 4.2.2.2). 

 In (FIGURE 5.9), we present the results of our simplification method applied on a point clouds. Images 

(a1, a2, a3, a4 and a5) show the original 3D point clouds, images (b1, b2, b3, b4 and b5) show the simplified 

point clouds with the following parameters values (n=8, x=9 and ∝= 0). Images (c1, c2, c3, c4 and c5) 

show the simplified point clouds with (n=8, x=9 and ∝= 30). Images (d1, d2, d3, d4 and d5) show the 

simplified point clouds with (n=8, x=9 and ∝= 50). 

 

 

 a1

1 

b1 c1 d1 
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FIGURE 5.9 - Contribution of the factor ∝ 
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In order to evaluate the quality of the simplified model generated by our method, we propose to measure 

the geometric error as the maximum error between the initial 𝑴 and the simplified 𝑴′ model, i.e. the 

hausdorff distance. 

∆𝒎𝒂𝒙(𝑴,𝑴′) = max
𝑞 ∈ 𝑀

𝑑(𝑞,𝑀′) 

and the geometric average error: 

∆𝒂𝒗𝒈(𝑴,𝑴
′) =

1

||𝑀||
∑ 𝑑(𝑞,𝑀′)

 

𝑞 ∈ 𝑀
  

TABLE 5.1 – Geometric error measurement 

Model Number of original 

points 

Number of simplified 3D 

points  

Geometric error 

∝= 𝟎 ∝= 𝟑𝟎 ∝= 𝟓𝟎 ∆𝒎𝒂𝒙 ∆𝒂𝒗𝒈 

Bunny 35947 30134 27316 16476 0.005151 0.000265 

Laurana 27861 18819 17492 16241 0.003313 0.000014 

chicken_high 135142 120415 118812 100616 0.050000 0.012888 

Dragon 437645 387412 185620 33960 0.044323 0.021243 

Lucy 262909 242308 212032 106007 0.064213 0.014888 

FIGURE 5.10 presents the influence of the deviation factor threshold x on the result. Image a shows the 

original 3D point cloud.  Image b, c, d, and e present the simplified point clouds with (n=8, x=0 and ∝=
0), (𝑛 = 8, 𝑥 = 5 and ∝= 0) 𝑎𝑛𝑑 (𝑛 = 8, 𝑥 = 9 and ∝= 0). One can see that the sharp curves and 

boundaries of regions that define the characteristics of shape surface are preserved although a minimum 

value of deviation factor threshold is used (b, x=0).   

 

FIGURE 5.10 - Contribution of deviation factor threshold 

TABLE 5.2 – Contribution of deviation factor threshold 

Model Number of original points Number of 3D simplified points 

𝒙 = 𝟎 𝒙 = 𝟓 𝒙 = 𝟗 𝒙 = 𝟏𝟑 

Laurana 27861 9764 19636 22894 22929 

      

                   

a b c d e 

(5.12) 

(5.13) 
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5.3.5.  Evaluation 

In addition to the geometric average error measurement proposed in the previous section to 

evaluate the simplification quality, we compare our method with some related works in order to show its 

performance. First, note that our method has many advantages compared to some related work where the 

user can control the simplification rate. Furthermore, there are some cases where the simplification rate 

is very high [73] and some of sharp region points that conserve the characteristics of the surface shape 

will be removed resulting holes in the simplified 3D point clouds. In contrast, our method preserve the 

characteristics of the surface shape with a minimal configuration (x =0, ∝= 0 ) due to the technique we 

use where we maintain internal and boundary feature points. Figure 5.11 shows the simplification results 

proposed by [74] where the authors mention that their proposed method works only with models whose 

shape is symmetrical or spherical and may produces holes in others. In contrast, figure 5.9 and 5.10 

shows that our method produce better results with models of different shapes (symmetric and no 

symmetric). 

  

FIGURE 5.11 - Simplification results proposed by [74] show holes in the simplified point clouds 

The table that follows shows a comparison of some results from [73, 74] and our method. 

TABLE 5.3 – Comparison with some related works 

Model 
#Original 

points 
Article 

#Points of simplified 

model (related work) 

#Points of 

simplified model 

(our method)  

Screen shot in 

corresponding 

article 

bunny 280 792 [35]              16 729  16476  Not available 

Dragon 437,645 [74] 34,861 33960 Fig. 5.11 

 

Finally, by comparing the geometric error on simplification results (Bunny model) between [35] and our 

method (Table 5.1, first row), we can notice that our method is better. 
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FIGURE 5.12 presents a comparison between out method and the method proposed in [74] on the 

dragon 3D point cloud. 

 

FIGURE 5.12 - Dragon model: (a) our method, (b) method in [74] 

5.4. 3D models matching 

3D objects matching is a fundamental research problem in computer vision, with applications 

in computer graphics, medical imaging, molecular biology, and many other fields. 

In this section, we describe our proposed approaches for 3D models matching using our saliency 

detection methods.   

5.4.1. Template matching approach 

The novelty of this method depends on the key points that follow. Firstly, we construct a features 

map from the given 3D model of n vertices with a size m =  ⌈√𝑛⌉. The features map cells are filled with 

the saliency degree of vertices. Then, we apply the template matching method [75] between different 3D 

models features maps. We mention that using the saliency degree and the template matching algorithm, 

we can detect some parts of the object. The tables (TABLE 5.4 and TABLE 5.5) shows some experimental 

results. 

TABLE 5.4 - Detecting parts of the object 

  Object 1 Features Map Object 2 Features Map 

S
im

ila
r
ity

 %
 

≤
 

P
a

r
t o

f 

M
a

tch
, o

r 

N
o

 m
a

tch
 

 
 

 

 

9
0%

 


 

 

9
0

%
 

  

a 

b 



Chapter 5 – 3D mesh salient regions detection: Applications 

- 93 - 
 

 
 

 
 

9
0

%
 


 

  

9
0

%
 

 

 

TABLE 5.5 - Results of different 3D models matching 
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5.4.2. Linear approach 

In this section, we describe our proposed approach. We firstly compute feature regions 

(SECTION 5.1) then we compute the maximum matching between these regions. In order to define 

feature regions that represent the 3D Object surface, we compute a multiscale saliency map that describes 

the saliency degree of each vertex. This map is computed using multi-scale feature extraction based on 

rotationally invariant descriptor. Hence, the 3D object can be represented by a weighted graph, it is 
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sufficient to find a relational maximum subgraph matching of graphs representing the 3D objects. In this 

phase, we model the sub-graph isomorphism as a combinatorial optimization problem and we propose a 

heuristic algorithm to solve it. 

5.4.2.1. 3D Object matching 

In this section, we present the matching process as a combinational optimization problem using 

the relational maximum subgraph-matching notion and simulated annealing algorithm.  The latter is 

defined based on the maximum graph isomorphism consisting of finding the maximum isomorphic pair 

of subgraphs where one is a part of the other. So, the matching problem can be seen as finding the largest 

common part between two shapes. We will present the graph isomorphism problem, and then we present 

the subgraph isomorphism to finally define the relational subgraph isomorphism.   

The matching problem of two objects is formulated as the minimization of a cost function and a pruning 

criterion so that the objects can be mapped into a relational graph representation. Let 𝐺𝐴 = (𝑉𝐴,𝐸𝐴) and 𝐺𝐵 

= (𝑉𝐵,𝐸𝐵) be two simple graphs with N vertices each and A and B the associated adjacency matrices. 

Our goal is to find a bi-continued one-to-one correspondence, Π between the set of graphs vertices, which 

minimizes the distance between these graphs. The classical graph-distance can be defined as:  

𝐽(Π) =  ∑∑(𝐸𝐴(𝑣𝑘, 𝑣𝑙) − 𝐸𝐵(Π(𝑣𝑘), Π(𝑣𝑙)))
2

𝑁

𝑙=1

𝑁

𝑘=1

 

 

The graph matching problem can be derived from equation (5.14) using the Euclidean matrix norm as  

 

𝐽(𝑃) =  ‖𝐴 − PB𝑃𝑡‖2 ,  
 

where P is a permutation matrix and its coefficient is defined as :  

𝑃𝑘𝑖 = {
1 𝑖𝑓 Π(𝑉𝑘) =  𝑉𝑖

′

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

The graph isomorphism is reduced to the problem of finding the permutation matrix that minimizes 

(EQUATION 5.15). 

 

To model the subgraph isomorphism problem, equation (5.15) can be rewritten as:  

𝐽(𝑃) =  ‖𝐴‖2 − 2𝐴. PB𝑃𝑡+‖PB𝑃𝑡‖2 =  

∑ ∑ ∑ ∑ 𝑝𝑘𝑖𝑏𝑖𝑗𝑝𝑙𝑗
𝑀
𝑗=1

𝑀
𝑖=1

𝑁
𝑙=1

𝑁
𝑘=1 − 2∑ ∑ ∑ ∑ 𝑎𝑘𝑙𝑝𝑘𝑖𝑏𝑖𝑗𝑝𝑙𝑗

𝑀
𝑗=1

𝑀
𝑖=1

𝑁
𝑙=1

𝑁
𝑘=1  , 

 

where N and M are the number of nodes of graph A and B respectively. As the coefficient of p can be 

rewritten using kronecker symbol, the cost function can be simplified as:  

𝐸 =   ∑∑(1 − 2𝑎𝑘𝑙)𝑏Π(𝑘)Π(𝑙)

𝑁

𝑙=1

𝑁

𝑘=1

 

 

Finally, the relational subgraph isomorphism criteria is expressed as:  

 

(5.14) 

 

(5.15) 

 

(5.16) 

 

(5.17) 

 

(5.18) 
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𝐸 =   ∑  𝑤𝑠𝐸
𝑠𝑆

𝑠=1 ,   
 

where  𝑤𝑠 is the weight a for each relationship s, 𝐸𝑠 is defined by an equation as (EQUATION 5.18). 

 

The pruning criteria is computed as:   

 

𝐷𝑘 =  ∑( ∑ (𝑊𝐴
𝑠
 
(𝑉𝑘, 𝑉𝑙) −𝑊𝐵

𝑠
 
(Π(𝑉𝑘), Π(𝑉𝑙)))

2

𝑁

𝑙≠𝑘,𝑙=1

)

𝑆

𝑠=1

 

 

To apply the simulated annealing algorithm, we define states, state transition, the random generation of 

state transitions, and its associated energy changing. 
 

 
FIGURE 5.13 - An isomorphism and a slate transition to a new isomorphism 

Given two graphs  𝐺𝐴  and  𝐺𝐵  where A is smaller than B, the matching problem between these two 

graphs is formulated as finding a subgraph of  𝐺𝐵 isomorphic to  𝐺𝐴  that minimizes the criterion of 

(EQUATION 5.19). To formulate the simulated annealing algorithm using the graph matching property, 

a state is considered as an isomorphism and the possible states space is the possible isomorphism set. Let 

Π be an isomorphism that maps 𝐺𝐴 to a subgraph of 𝐺𝐵 . The mapping 𝜙 is defined as:  

  

{
𝜙(𝑣𝐵) = 𝑣𝐴    𝑖𝑓Π(𝑣𝐴 ) = 𝑣𝐵  

𝜙(𝑣𝐵) = 𝑣𝑣𝑖𝑟𝑡    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

This mapping is considered from  𝐺𝐵 to  𝐺𝐴 𝑈𝑣virt  where 𝑣virt is a node virtually added to  𝐺𝐴 and not 

connected to the nodes of  𝐺𝐴 .   
 

A state transition is created by varying the correspondents of two vertices within a mapping to obtain a 

new one. The random state changing is generate as following: 

 

1. Select a random vertex 𝑣𝐴  in  𝐺𝐴  𝑤𝑖𝑡ℎ  Π(𝑣𝐴 ) = 𝑣𝐵  its correspondent in  𝐺𝐵 . 
2. Select a random vertex 𝑣𝐵

′  of  𝐺𝐵 different than 𝑣𝐵
′ . 

3. Swap 𝜙(𝑣𝐵) and 𝜙(𝑣𝐵
′ ) in  𝐺𝐴 𝑈𝑣virt.  

(5.19) 

 

(5.20) 

 

(5.21) 
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The energy changing associated with the state transition is defined after some algebra as: 

 

∆𝐸 =   2∑  𝑤𝑠 ∑ (𝑏𝑖Π(𝑚)
𝑠 − 𝑏jΠ(𝑚)

𝑠 )(𝑎𝑘𝑚
𝑠 − 𝑎𝑙𝑚

𝑠 )𝑁
𝑚=1,𝑚≠𝑘,𝑙

𝑆
𝑠=1  

 

5.4.2.2. Experimental results 

In this subsection, we have tested and evaluated our proposed approach using several 3D objects 

taken from the dataset “MeshsegBenchmark” [76] which contains about 400 model, covering a wide 

variety of 3D objects and conditions. The effectiveness of our approach is shown in the terms of 

distinctiveness, robustness and invariance. 

In (FIGURE 5.14) we show the matchings calculated for objects of different articulations. Although the 

shapes is deformed due to the movement of arms and legs, the proposed approach produce a correct 

matchings. 

As shown in the second row, one can see easily that the saliency maps for all shapes are approximatively 

similar. 

 
 

 

 
 

FIGURE 5.14 - Matching articulated shapes. The correspondences are imagined both by connecting lines and by showing 

saliency map 

 

 

The figures (FIGURE 5.15 and FIGURE 5.16) demonstrate that our method is invariant to rotation, 

translation, and scaling. In (FIGURE 5.15), each image from the images (a, b, c, d and e) shows a matching 

between two articulated shapes. 

 
 

(5.22) 
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a b c d e 

 
   

 

 
FIGURE 5.15 - Matching between articulated shapes 

 

In (FIGURE 5.16), we show the matching results between “Gorilla” models under different 

transformations, with holes and simplification. Moreover, the second row shows that these 

transformations applied on the 3D Gorilla model, does not change significantly the saliency maps. 

 

 

 

a b c d e f g 

  
 

    

  
   

  

FIGURE 5.16 - Matching between Gorilla mesh with many transformation. The transformations are (from left to right): (b) 

holes, (c) scale, (d) noise, (e) flip x, (f) rotate and (g) simplified 

 

a b 

 

 

 

 
FIGURE 5.17 - Matching Detectiong parts of 3D shapes 

In (FIGURE 5.17), we show that our method can detect some parts of the object. In addition, we can 

observe that the saliency map of parts found in the saliency map of the whole object. 
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5.4.2.3.  Search experiments 

In this subsection, we present a new dynamic comparisons of 3D objects based on a multi-scale 

saliency map of the object. Consequently, a dynamic indexing of 3D objects allow searching for objects 

based on 3D object request. 

Lastly, we performed an experiment to search for two objects from among 100 mesh models taken from 

[76]. In this case, the Saliency map for each of the 100 meshes were constructed in advance. In 

conducting the search, we select one model from the 100 models, then the similarities between it and the 

other models are calculated, and the models are shown if the resulting similarity is greater than 75%. The 

(TABLE 5.6) shows example results of the experiment.  

 

TABLE 5.6: Retrieval results using the [76] Shape Benchmark. The query 3D objects are shown in the second row. The 

retrieved objects and missed objects are shown in row 4 

 

Query 

  

Retrieved models 
Missed 

models 
Retrieved models 

Missed 

models 

 

 
 

 

 

 

 

 

 

 



Chapter 5 – 3D mesh salient regions detection: Applications 

- 99 - 
 

5.4.2.4.  Quantitative evaluation 

In order to show the exact position of our method against the methods presented in the literature, 

we should find a quantitative evaluation of our method. In addition to presenting a sample of visual 

results, that shows the advantages of our proposed approach, the Table 2 shows numerical results in term 

of accuracy.   

In this chapter, we measure the accuracy as following: 

Accuracy = 100-(FPR + FNR),                        

where 

𝐹𝑃𝑅 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
 × 100  

𝐹𝑁𝑅 = 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑠𝑒𝑑 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑎𝑙𝑙 𝑚𝑜𝑑𝑒𝑙𝑠
 × 100  

 

In our experiments, we select 50 mesh models taken from [76] to be used as query 3D object. Then the 

accuracy of our method is considered as the average of values of accuracy measured in each query.  

 

TABLE 5.7: Quantitative evaluation of our proposed method in term of accuracy 

3D models count 400 

False positive rate (FPR) 5.29 

False negative rate (FNR) 4.73 

Accuracy 89.98 

 

In contrast, each method of the methods presented in the literature is evaluated differently. Nonetheless, 

it shows that our proposed algorithm can compete with state-of-art matching and recognition algorithms 

in terms of accuracy.  

5.4.2.5.  Others applications 

The 3D object recognition problem can be seen as a 3D matching problem. In the (SECTION 

5.4.2.2), we showed that our method could detect parts of the object. Moreover, we presented a 

framework for searching 3D objects by query shapes. 

In this context, we propose a Face recognition application, which was realized in two stages: 

 First, we build a data bank of 3D faces regions where each face is a cut from human 3D model. 

Afterward, we assign for each face region a unique ID. 

 Finally, by querying the dataset of faces using 3D human object as query shape, the system gives 

the ID of face that contains. Consequently, the face is recognized.    

 

(5.24) 

 

(5.23) 

 

(5.25) 
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5.4.2.6. Comparison between the proposed approaches  

In the previous chapter, we have presented two approaches for salient regions detections on 3D 

surface.  Based on these approaches, two methods for 3D objects matching are released. Each of these 

methods is rely on a saliency approach. 

During our experiments, we have noticed that the second method of 3D objects matching achieves good 

results with articulated objects comparing with first method. This superiority is due to the invariant 

descriptor used by the corresponding saliency approach. 

5.5. Conclusion 

In this chapter, we have presented several applications based on our saliency methods. 

Furthermore, we show the robustness of our proposed applications through different experimental results. 

Finally, we present the stability and robustness of our methods with respect to noise, scaling, translation, 

rotation, etc. In the next chapter, we will present a method for 3D face detection, which is an application 

based on our saliency and skin region detection methods. 
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Face detection has an essential role in many applications. In this chapter, we propose an efficient 

and robust method for face detection on a 3D point cloud represented by a weighted graph, which is 

another application based on our methods of skin color and saliency detection. This method is based on 

a data mining predictive model as proposed before. Then, the saliency degree of vertices is computed to 

identify the possible candidate face features. Finally, the matching between non-skin regions representing 

eyes, mouth and eyebrows and salient regions is done by detecting collisions between polytopes, 

representing these two regions. This matching process, lead to double face detection, one based on color 

and second based on geometry. This method extracts faces from situations where pose variation and 

change of expressions can be found. The robustness is showed through different experimental results. 

Moreover, we study the stability of our method according to noise. Furthermore, we show that our 

method deals with 2D images.
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6.1. Introduction 

Face detection becomes an important research field for computer vision applications such as 

human recognition and verification, analyzing emotions for multimedia tasks, and visual tracking. 

Nowadays, the development of biometric systems has become an important challenge for researchers. 

Fingerprints and iris techniques are the mostly used, but the face recognition seems to be the best 

approach especially in airports and critical zones. 

Most of face detection approaches for 2D images present many drawbacks such as illumination 

variations, pose and facial expressions. In chapter 2, we have presented an efficient method for skin 

region detection on 3D point clouds. Then, a definition of human face based on skin color is proposed. 

The results produced by this method are good in term of detection rate. However, some skin regions are 

interpreted as human face and in fact are not. This false positive detection is occurred because the rules 

of human face are verified sometimes in other real faces regions. To deal with this problem and minimize 

the false positive detections we should add other rules based on geometrical features beside the skin color 

information. In this context, this chapter presents an accurate method for face detection on 3D colored 

point clouds due to their less sensitivity to lighting conditions, viewpoint and to the less false positive 

detection rate. 

In order to define the geometrical features of a human face, we have benefit from the application of 

salient region segmentation proposed in the previous chapter. Furthermore, some parts of the human face 

can be seen as salient regions. Thus, we can define a human face as a skin region containing some salient 

regions. Consequently, this method confirm the presence of a face by double detections, one based on 

definition of human face based on skin color and second based on definition lies on salient regions. 

Our main contribution in this work is to propose a new method to extract 3D face parts from a colored 

point cloud represented by a weighted graph. The face parts are seen as gaps (non-skin regions) and 

salient regions. 

Our method steps can be summarized as follows: 

 Modelling the 3D colored point clouds surface by an undirected weight graph. 

 Estimating vertices normal. 

 Identifying the skin vertices. 

 Using a custom version of Hill Climbing algorithm to segment the graph vertices into skin, non-

skin and salient regions. 

 

 Detecting and locating gaps (non-skin regions) in skin regions. 

 Defining the candidate human face region using skin and gap regions. 

 Finding salient regions in each candidate skin region. 

 Using the collision between polytopes representing gaps and salient regions, we confirm the face 

detection. 
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The following flowchart in (FIGURE 6.1) illustrates our method. 

 

FIGURE 6.1 - Flowchart of our method 

Finally, in this method, we convert the 3D colored point cloud into a weighted graph, and then we detect 

faces using the skin and saliency features of vertices. This proposed method deals with any data that can 

be represented by a weighted graph such as 3D point clouds, 3D meshes and 2D images. 
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6.2. Surface modelling and normal estimation 

In this section, we adopt the same approach proposed in (CHAPTER 4) for modeling the 3D 

surface with a main difference concerning the edges weigh. 

Let us consider the general situation where a point cloud can be viewed as an undirected weighted graph 

𝐺𝑑(V, E, 𝑊𝑑) where V represents a finite set of vertices and E ⊂ 𝑉 × 𝑉 a finite set of edges. Each edge 

(𝑣𝑖,𝑣𝑗) ∈ E that connects two vertices 𝑣𝑖 and 𝑣𝑗  has a set of weights  𝑊𝑑   that contains two weight 

functions, 𝑊𝑐 the weight associated to color information and  𝑊𝑔 the weight associated to compute 

saliency.  

The set of neighbors 𝐷𝑛(𝑣𝑖) of a given vertex 𝑣𝑖 is defined using the concept of Delaunay triangulation. 

Then, we compute the normal vector 𝑁(𝑣𝑖) and the 2-directional vectors for each vertex 𝑣𝑖 following the 

x- and y- axes using the Eigen-values of the covariance matrix. 

6.3. Proposed method 

Our method consists of detecting a human face using skin and geometry information. In this 

section, we present firstly some useful notations to generate face candidate regions. Then, we show the 

saliency degree calculation of vertices in the extracted candidate regions. Finally, we present the method 

of matching candidate regions based on colors and saliency measure. 

6.3.1. Notations and definitions 

We begin this subsection by a brief review of some notations and definitions involved in this 

section. 

Let 𝐸𝑞(𝑣𝑖 , 𝑣𝑗):  𝑉 × 𝑉 → {0,1} be a function that can be defined as following: 

𝐸𝑞(𝑣𝑖, 𝑣𝑗) = {
1 𝑖𝑓 𝑣𝑖  𝑎𝑛𝑑 𝑣𝑗  𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑠𝑘𝑖𝑛

  0                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 

We define a function 𝐻𝑚(𝑣𝑖) : V → ℕ that measures the homogeneity between 𝑣𝑖 and its neighbors as 

following: 

𝐻𝑚(𝑣𝑖)  = ∑ 𝐸𝑞(𝑣𝑖, 𝑣𝑗)𝒗𝒊~𝒗𝒋 , 

 

6.3.2. Candidate face region 

The first phase in our method consists of defining a set of face region candidates based on skin 

information. To do so, we adopt the same approach detailed in (SECTION 3.4). 

6.3.3. Saliency detection 

Once we define the set of face candidate regions, we calculate the saliency degree of vertices 

(CHAPTER 4) in these regions to confirm the presence of a human face.   

 

 

(6.1) 

(6.2) 
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6.3.4. Skin and saliency regions segmentation 

In this subsection, we introduce a new version of “Multi Search Hill Climbing – 

Algorithm” presented in the previous chapter. The main key feature of this version is the 

double segmentation of the graph based on color and geometric characteristics of vertices. In 

this context, during the segmentation process, a vertex will have two label holders, a label for 

the segmentation based on skin colors and a second label for the segmentation based on the 

saliency measure. The first step in our method consists of assigning the same label in the first 

and second label holder to each group of connected vertices that belongs to the class 

𝐹(𝐺𝑑) and the similar vertices in terms of saliency. This step can be performed using a 

custom version of Hill Climbing algorithm. This algorithm uses a dilation morphological 

operator to propagate through weighted graph vertices and label homogenous regions in 

terms of skin and saliency similarities, respectively. Then, the algorithm traverses all graph 

vertices and creates a segment from each set of vertices having the same label. As a result, 

this algorithm produces two lists of segments (list of skin segments and list of salient 

segments) where a vertex can belong to skin and salient segment at the same time. 

Multi Search Hill Climbing (Version 2) – Algorithm 

Let C 
′(𝑣𝑖) be a set of neighboring vertices of a vertex  𝑣𝑖 and similar to  𝑣𝑖 in term of saliency. We define 

a vertices labeling function  𝐸 𝑞
′ (𝑣𝑖, 𝑣𝑗):  𝑉 × 𝑉 → {0,1} as following: 

𝐸 𝑞
′ (𝑣𝑖, 𝑣𝑗) = {

1      𝑖𝑓 𝑣𝑖  𝑎𝑛𝑑 𝑣𝑗  𝑎𝑟𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑖𝑛 𝑡𝑒𝑟𝑚 𝑜𝑓 𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦

0                                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 

 

 

We define a function 𝐻𝑚
′ (𝑣𝑖) : V → ℕ that measures the homogeneity between 𝑣𝑖 and its neighbors as 

following: 

𝐻𝑚
′ (𝑣𝑖)  = ∑ 𝐸𝑞

′ (𝑣𝑖, 𝑣𝑗)𝒗𝒊~𝒗𝒋   

The custom version of Hill Climbing algorithm steps are listed as following: 

 Pick a random vertex 𝑣𝑖 in the weighted graph. 

 Consider all the neighbors 𝐷𝑛(𝑣𝑖) of the current vertex 𝑣𝑖. 

o Choose the set of neighbors C (𝑣𝑖)
2 from 𝐷𝑛(𝑣𝑖) that maximize the function 𝐻𝑚(𝑣𝑖). 

o Apply the dilation operator from v to all vertices in C (𝑣𝑖). 

o Choose the set of neighbors 𝐶 
′(𝑣𝑖) from 𝐷𝑛(𝑣𝑖) that maximize the function 𝐻𝑚

′  (𝑣𝑖). 

o Apply the dilation operator from 𝑣𝑖 to all vertices in 𝐶 
′(𝑣𝑖). 

 Repeat 2 for each element in C (𝑣𝑖) and 𝐶 
′(v) until C (𝑣𝑖) and 𝐶 

′(𝑣𝑖) are empty. 

                                                           
2 For more details, see (CHAPTER 3 - SECTION 3.3)  

(6.3) 

(6.4) 
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FIGURE 6.2 illustrates the behavior of the precedent algorithm. 

 

 

FIGURE 6.2 - Illustration of Multi Search Hill Climbing algorithm step 

6.3.5. Face detection method 

In this subsection, we describe the process of matching candidate regions based on 

colors and saliency measure. 

The definition of candidate face regions is based on gaps features (non-skin regions) located in skin 

regions. Therefore, each non-skin and salient region can be considered as a convex polytope, because it 

contains a finite number of vertices, it is bounded and closed [77]. In (FIGURE 6.3), we present some 

examples of polytopes. The face detection process consists of checking whether there is a matching 

between the gap regions defining the face candidate regions and those of salient regions. The matching 

process is done by detecting collisions between polytopes representing these regions (gaps and salient 

regions). 

 

FIGURE 6.3 - Examples of polytopes 

Let R be a region in 𝐺𝑑 (Set of connected vertices), and Co(R) ⊂ ℝn where 𝑛 ∈  ℕ the set of polytope 

corners corresponding to R. According to Minkowski Theorem of [78], a bounded and closed convex 

polytope K ⊂ ℝn is the convex hull of its external points or corners.  
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Let S be the Co(R) of a region R. The convex hull of S is the set defined as: 

Conv(S) = {∑ 𝛼𝑖 𝑥𝑖
|𝑆|
𝑖=1 |(∀𝑖: 𝛼𝑖 ≥ 0) ⋀∑ 𝛼𝑖 

|𝑆|
𝑖=1 = 1},                   

Let V and W denote Co(X) and Co(Y) of the two regions X and Y respectively. 

The Minkowski sum and the Minkowski difference of V and W are defined as following: 

V+W = {v + w | v ∈ V, w ∈ W},                                       

V−W = {v − w | v ∈ V, w ∈ W},                                     

In (FIGURE 6.4), we show a graphical example of the Minkowski sum of two sets in 2-dimensional real 

space. 

 

 

FIGURE 6.4 - Examples of Minkowski sum of two sets in two-dimensional real space 

Let 𝐷𝑠(𝑆1,𝑆2) be the function that represents the distance between two non-empty sets 𝑆1 and 𝑆2 which 

can be defined as following: 

𝐷𝑠(𝑆1,𝑆2)  = 𝑖𝑛𝑓{𝑑(𝑥, 𝑦) | 𝑥 ∈ 𝑆1,   𝑦 ∈ 𝑆2},                  

where d is a metric defined on ℝ𝑛
 and inf is the infimum. 

To detect the collision between two polytopes U and V, we compute the distance between the convex 

hulls of both two polytopes. Thus, two polytopes U and V are collide if: 

𝐷𝑠(Conv(Co(U)), Conv(Co(V))) = 0 ,                                            

where 0 ∈ ℝn.                  

As we mentioned before, both sets U and V can be represented by their convex hulls Conv(Co(U)) and 

Conv(Co(V)) of their corners, respectively. Therefore, formula (6.8) can be rewritten as 

                   𝐷𝑠(Conv(Co(U)), Conv(Co(V))) = 0    

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 
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⟺  0 ∈  (𝐶𝑜𝑛𝑣(𝐶𝑜(𝑈)) −  𝐶𝑜𝑛𝑣(𝐶𝑜(𝑉)))   

⟺  0 ∈  (𝐶𝑜𝑛𝑣(𝐶𝑜(𝑈)) +  𝐶𝑜𝑛𝑣(−𝐶𝑜(𝑉)))   

To find a representation of 0 ∈ ℝn created from the sum of two convex combinations of the same point 

where one combination composed of points in Co(U) and the other one of points in − Co(V), we propose 

to use a linear system that can be written as following: 

Âx = 0 
𝑥 ≥ 0, ∑ 𝑥𝑖 = 1, ∑ 𝑥𝑖 = 1

|Co(𝑈)+|Co(𝑉)|
𝑖=|𝐶0(𝑈)|+1

|Co(𝑈)|
𝑖=1 , 

 

with two additional constraints: 

an+1 x=1, an+2 x=1, 

 

where Â  ∈ ℝ𝑛×(|𝐶0(𝑈)|+|𝐶0(𝑉)|)  that contains the elements of 𝐶0(𝑈) and –𝐶0(𝑉), and 

𝑎𝑛+1,𝑖 = {
1                             ∀ 1 ≤ 𝑖 ≤ |𝐶0(𝑈)|

0 ∀ (|𝐶𝑜(𝑈)| + 1) ≤ 𝑖 ≤ (|𝐶0(𝑈)| + |𝐶0(𝑉)|)
 

𝑎𝑛+2,𝑖 = {
0                             ∀ 1 ≤ 𝑖 ≤ |𝐶0(𝑈)|

1 ∀ (|𝐶𝑜(𝑈)| + 1) ≤ 𝑖 ≤ (|𝐶0(𝑈)| + |𝐶0(𝑉)|)
 

Finally, the linear system can be solved using the standard method of simplex and can be rewritten as: 

 

  𝑀𝑖𝑛 𝑓𝐴(𝑥) =  𝑒
𝑇(b−Ax) 

      Subject to: 

 Ax ≤ b 

 X ≥ 0 

where A ∈  ℝ k x m, k=n+2, m= (|𝐶0(𝑈))|+| 𝐶0(𝑉))|), e=

{
 
 

 
 
1
1.
.
.
1
1}
 
 

 
 

∈ ℝk, b=

{
 
 

 
 
0..
.
0
1
1}
 
 

 
 

∈ ℝk, k, m ∈ ℕ,  

Note that if the above linear program has a valid solution then the two polytopes U and V are collide. 

In order to check the presence of collision between two polytopes U and V ⊂ ℝn ,, we present the 

following algorithm: 
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ALGORITHM 6.1:  Check collision 

 U, V: Polytopes 

 Get the list of two polytopes corners. 

 Check If Card (𝐶𝑜(𝑈)) = 0 or Card (𝐶𝑜(𝑉)) = 0 then there is no collision. 

 Check if Card (𝐶𝑜(𝑈)) = Card (𝐶𝑜(𝑉)) = 1 and the two points are equals then the two 

polytopes are colliding. 

 Check if Card (𝐶𝑜(𝑈)) > 1 or Card (𝐶𝑜(𝑉)) > 1  

 Solve the linear program come from formula (26). 

 If the obtained minimal value is zero value then the two polytopes are colliding. 

End 

6.4. Experimental results 

6.4.1. 3D point clouds and 3D meshes 

In this section, we show the efficiency and robustness of our method by applying it on 3D meshes, 

and 3D point clouds. In our experiments, we used a sample of 140 colored objects containing faces of 

different color of skin, ages and positions.  We will show and discuss the influence of different parameters 

on our approach such as graph Delaunay-level k, the variable x in (EQUATION 4.10) that defines the 

deviation factor threshold in patches entropy calculation, and the number of patch cells in (SECTION 

4.2.2.2). 

In (FIGURE 6.5), we present the results of our face detection method applied on a colored point clouds. 

Images (a, e and k) show the original 3D point clouds, images (b, f and l) present the face regions 

candidates where the gaps defining the face are circled in red. Images (c, g and m) show the salient 

regions detected in the candidate face, using our method with the following parameters values (k=1, m=9 

and x=12). Images (d, h and n) display the detected faces by our method. The fuchsia areas on the 3D 

point clouds object represent the detected faces. We can visually confirm the face detection in these point 

clouds. 

 

                   

 

a b c d 
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FIGURE 6.5 - Results of applying our proposed model for face detection on some 3D colored point clouds 

In (FIGURE 6.6), images (a and c) present the original 3D colored point cloud. Images (b and d) shows the 

results obtained by applying first phase of our method (identifying the candidates regions). As shown 

below, two candidates regions are identified in the same object. The gaps defining the face are circled in 

red. 
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k 
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n 
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m 
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FIGURE 6.6 - Two candidates regions are identified by applying first phase of our proposed method 

 

 

FIGURE 6.7 - Two candidates regions detected by first phase and a single face recognized after applying second phase 

In (FIGURE 6.7), we show the result of applying the second phase of our method on the 3D point clouds 

presented in the previous paragraph (FIGURE 6.6). Image (a) displays the salient regions. The salient 

regions that collide with the gaps defining the candidates regions are circled in red. Note that there are 

salient regions located at the border of the second candidate region far than the gaps. Consequently, this 

candidate region is ignored.  

FIGURE 6.8 presents the results of our method with a deviation factor x = 9.   

 

 
 

FIGURE 6.8 - Influence of parameter deviation factor threshold x: image a shows the salient regions detected with 

x=12 and image b shows the salient regions detected with x=9 

d 

a 
b 

c 

a b 
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As shown in (FIGURE 6.8), we notice that the number of salient regions increases when we decrease the 

deviation factor threshold. Practically, the similarity among the vertices relatively increases when the 

deviation factor threshold increases. This increasing in the number of salient regions lead to interpret the 

region candidate in the (FIGURE 6.6) (d) as human face where salient regions are detected near the gaps 

and collide with them.  

Furthermore, we notice that the number of salient regions with a local graph is greater than the number 

of regions detected with a non-local graph due to the larger number of neighbors information. 

FIGURE 6.9 shows the result of applying our method on 3D colored point clouds and meshes containing 

multi faces. Images (a, c) show the original point clouds and images (b, d) show the results where the 

region colored with fuchsia are the detected faces. Image (e) shows the original 3D mesh and image (f) 

shows the detected faces. 

 

 

            

        

 

FIGURE 6.9 - Using our method with 3D point clouds and meshes containing multi faces 

 

FIGURE 6.10 presents the result of applying our method on the 3D mesh without color. We can observe 

that the detected salient regions are located approximately in place of gaps that define the candidate face 

region. Thus, we can conclude that our method consists of two phases one detect a face and second affirm 

the detection. 

a 

d 

b 

c 

e 
f 
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FIGURE 6.10 - Using our method with 3D mesh not colored 

In addition to the visual results presented above, and in order to evaluate better the proposed method, the 

(TABLE 6.1) shows some numerical results: 

TABLE 6.1 - Results obtained from 3D point cloud 

 Current method Method of Chapter 3 

Objects count 145 145 

Number of all faces 385 385 

Number of truly detected faces 366 341 

False positive rate (FPR) 3.88% 8.8% 

False negative rate (FNR) 5% 3.63% 

Accuracy 91.12% 87.57% 

 

The accuracy of our proposed method is measured using (EQUATION 3.10):  

 

As mentioned recently in this section, the variation in the parameters x and k can affect the number of 

salient regions detected.  Consequently, the error rate (𝐹𝑃𝑅) is affected as shown in (FIGURE 6.11).  

 

  
FIGURE 6.11 - Influence of x and k on face detection process 

6.4.2. 2D images 

As mentioned before, our method can be applied on any data that can be represented by a graph 

such as 2D colored images and 3D point clouds. To deal with 2D images, we construct a K-NN graph, 

and then we construct the patch at a vertex 𝑣𝑖  as a rectangle of m cells with a cell length 𝐿(𝑣𝑖)/𝑚. We 
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assign to each patch at 𝑣𝑖  the average of gradient of each vertex 𝑣𝑗  according to 𝑣𝑖. The weight 

function 𝜔𝑔 is calculated as 

𝜔𝑔(𝑣𝑖 , 𝑣𝑗) = 𝑒
− 
|𝐴(𝑣𝑗)−𝐴(𝑣𝑖)|

𝝈(𝑣𝑖)∗𝝈(𝑣𝑗) , 

 

The figures below show some results of applying our method on some 2D colored images. Note that a 

rectangle is drawn around the detected face region as shown in (FIGURE 6.12).     

     

FIGURE 6.12 - Using our method with 2D image 

 

         

FIGURE 6.13 - Using our method with 2D colored image containing multi faces 

In the (FIGURE 6.13), all faces are detected using our method. The (FIGURE 6.14) presents a face 

detection from a picture with a complicated background. 

(6.9) 
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FIGURE 6.14 - Using our method with 2D colored image containing face and has a complex background 

The (FIGURE 6.15) demonstrates the efficiency of our method with images of different skin color.  

        

     Figure 6.15 - Using our method with 2D colored image containing face of black skin 

  

FIGURE 6.16 - Result using our method applied on a colored image containing horizontal face 
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The (FIGURE 6.16) demonstrate that our method detect faces in multi directions.  

Finally, our experiments made on a sample of 200 images with different lighting conditions, races, and 

sexes chosen from “Helen” dataset, “Faces in the Wild” Dataset “ image dataset and others 

according to the following parameters values (k=1, m=9 and x=12) in addition to the following settings: 

  [NBFormsMin=3, NBFormsMax=20]: Interval of number of non-skin regions in the face region.  

 [YShMin=0, YShMax=4]: Differences between the ordinates of two eyes. 

 [MinDistance=5]: Minimum distance between eyes. 

The (TABLE 6.2) shows the statistical data: 

TABLE 6.2 - Results obtained from 2D images 

 Current method Method of Chapter 3 

Images count 200 250 

Number of all faces 297 304 

Number of really detected faces 279 278 

False positive rate (FPR) 2.5% 7.01% 

False negative rate (FNR) 4.04% 1.97% 

Accuracy 93.46% 91.02% 

6.5. Comparison with the state-of-the-art 

In this section, we compare our method with some related works. First, note that our method deals 

with 3D colored meshes and 2D images. Most of the methods described in the literature deal with 2D 

images or 3D meshes that lie on geometry features. 

As another evaluation of our work, we compare the accuracy of our method to some methods described 

in the literature. The (TABLE 6.3) shows the statistical data:  

 
TABLE 6.3 - Comparison of our method and others in terms of accuracy, FPR and FNR 

 

 

 

In addition to the statistical comparison, a visual example of failure case presented by [7] and successfully 

detected by our method shown in the (FIGURE 6.17): 

Our method [7] [8] [37] [16]

Accuracy 93.46 90.83 82 83 79.2

FPR 2.5 4.62 0 4.33 13.86

FNR 4.04 4.55 18 12.67 6.94

93.46 90.83
82 83 79.2

2.5 4.62
0

4.33
13.86

4.04 4.55

18
12.67

6.94

0
10
20
30
40
50
60
70
80
90

100

Accuracy FPR FNR



Chapter 6 – 3D Face detection based on geometrical and skin color features 

- 117 - 
 

  

        

FIGURE 6.17 - Image (a) shows a screen shot from experimental result of [7], image (b) shows the result of applying 

our method on the same screen shot 

The result obtained by [7] presents a failure case where a hand is interpreted as a face as shown in image 

(a). The author of [7] indicates in his experimental results that a false alarms and misses still exist and 

this is an example. In contrast, by applying our method on the same image, all faces are detected correctly 

as shown in image (b). All other results presented in experimental result of [7] are also detected correctly 

by our method. Finally, [7] deals only with 2D colored images. 

The method presented in [8] deals with 3D faces, the authors mentioned that this technique is highly 

sensitive to noises and to the presence of holes surrounding the regions of nose and eyes. In contrast, our 

technique deals with noisy 3D colored point clouds as shown in (FIGURE 6.18). 

 

 

FIGURE 6.18 - Face detection from a noisy 3D colored point cloud 
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The approaches presented in ([9], [10]) localize faces, rather than detecting them. In [9], the presented 

approach is strongly limited to the dataset used where every input 3D object must contain only one face. 

Otherwise, our method deals with 3D colored point clouds, meshes and 2D images based on skin color 

containing single or multiple faces of different sizes and locations. 

6.6. Conclusion 

In this chapter, we have presented a novel method to detect 3D facial regions from colored point 

clouds and 2D images. This method was divided into two phases. Firstly, the candidates faces regions 

based on skin features are detected, then the salient features are computed in each detected regions to 

affirm the presence of human face. We also presented a simple and efficient algorithm derived from the 

Hill Climbing algorithm using a morphological dilation operator to label skin and salient regions. We 

have showed the robustness of our proposed method through some experimental results. Then, we 

compared our method with various state-of-arts methods. 
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General conclusion 

In this work, we present a new approach for the detection of skin color on 3D colored mesh based on 

data mining techniques and linear programming using the weighted graph representation. Then, this 

method has been extended to detect human faces. To illustrate the robustness of our approach, we have 

shown that our method could solve two signal-processing problems. The first is related to the 

classification of vertices based on the information of the skin color and the second is related to the 

problem of face detection. We have also shown that our method can handle all the data that can be 

represented by weighted graphs such as 2D images, 3D surfaces and 3D point clouds. 

On the other hand, we have also presented a new method for detecting the salient regions on 3D meshes. 

A local patch descriptor has been created for each vertex where the patch cell is filled with the average 

of the deviation factor of each vertex based on neighboring sums (average of the vertex deviation factors 

projected on the same location associated with the cell). The patch is then used as a local descriptor for 

the surface vertices of the 3D meshes. In addition, a similarity measure between the patch descriptors 

and a height map is calculated and to calculate the degree of similarity of the saliency degree of vertex. 

Finally, we have presented the robustness and efficiency of our approach by showing that our approach 

detects most of the visual salient regions in a 3D mesh surface. In addition, we have shown that our 

approach can detect salient regions on any data that can be represented by a weighted graph such as the 

3D point cloud. We also presented the effectiveness of our method by presenting several applications. 

Among these applications, we cite the following applications: 

 In order to improve the face detection process presented by the first approach, we proposed a new 

method to detect 3D facial regions from colored point clouds and 2D images. This method has 

been divided into two phases. Firstly, the face candidate regions were defined based on the 

characteristics of the skin, and then salient features are calculated in each detected region to affirm 

the presence of human face. We also presented a simple and efficient algorithm derived from the 

Hill Climbing algorithm using a morphological dilation operator to label the salient regions of 

the skin. We have proved the robustness of our proposed method through some experimental 

results on the failures cases of the first approach. Then we compared our method with different 

related methods. 

 In addition, we presented a new approach for 3D point clouds simplification. The idea behind our 

approach is to detect the characteristic regions that describe the surface of the shape using the 

measure of saliency degree. The vertex saliency was calculated using a measure of similarity 

between the local patches. In order to detect feature regions, we presented an efficient algorithm 

based on the connected components labeling algorithm according to the degree of saliency of the 

vertices. Then we detected feature points in these regions. Note that the user can control the 

degree of simplification by a thresholding parameter where the simplification rate increases with 

the value of this parameter. Finally, we have shown the efficiency of our method through some 

experimental results. 

 Finally, we presented a new approach to detect the matching between two 3D shapes. A new 3D 

invariant surface descriptor has been created for each vertex based on Zernike coefficients. In 

addition, a degree of saliency is calculated to detect the feature regions. Then, a multi-scale 

saliency map is calculated to improve the quality of the measured saliency and to cope with noise. 

In addition, we presented a linear algorithm to segment the 3D surface into feature regions based 

on the degree of salience, which are used in the matching process rather than mapping points to 

points. Finally, the matching process is modeled as a subgraph isomorphism problem and we 
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presented a heuristic algorithm to solve it. In addition, we showed the robustness of our proposed 

method through different experimental results. Finally, we present the stability and robustness of 

our method with respect to noise, scale, translation, rotation, etc. 

Different parts of our work have been published in specialized international journals. 

International journals 

List of published articles: 

1. “Efficient Image Classification using Data Mining”, International Journal of Combinatorial 

Optimization Problems and Informatics, Vol. 2, No. 1, Jan-April, 2011, pp. 27-44. ISSN: 2007-

1558. 

 

2. “3D face detection based on salient features extraction and skin color detection using data 

mining”. The Imaging Science Journal 65 (7), 2017, pp. 393-408. 

https://doi.org/10.1080/13682199.2017.1358528 

 

3. “Efficient 3D point clouds classification for face detection using linear programming and data 

mining”. The Imaging Science Journal 66 (1), 2018, pp. 23-37. 

https://doi.org/10.1080/13682199.2017.1376772 

 

4. “Efficient 3D mesh salient region detection using local homogeneity measure”. IET Image 

Processing,  

http://dx.doi.org/10.1049/iet-ipr.2017.0598 

5. “An Efficient Simplification Method for Point Cloud Based on Salient Regions Detection”. 

RAIRO - Operations Research. 

https://doi.org/10.1051/ro/2018082 

Conferences: 

6. “An Invariant Multi-scale saliency detection for 3D mesh”, IEEE international conference 

applied and theoretical computing and communication technology (iCATccT-2018), (06-08 

September 2018). 

List of submitted articles: 

 

7. “3D Object Matching Using Invariant Descriptors and Linear Programming”. Applied 

Mathematics and Computation. 

 

https://doi.org/10.1080/13682199.2017.1358528
https://doi.org/10.1080/13682199.2017.1376772
http://dx.doi.org/10.1049/iet-ipr.2017.0598
https://doi.org/10.1051/ro/2018082
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In future works, we propose as a perspective: 

• Some methods based on our methods presented in this work. Among these applications, we can 

mention: 

 Classification of 3D objects: The idea behind this is to classify 3D objects as human or not, for 

example. To do this, a database of 3D human parts is constructed such as arms and legs of 

different sizes. Thus, each matching between a 3D object and parts of the data set makes it 

possible to classify the object as a human. 

 Colorization of digitized 3D point clouds: The historians, the archaeologists and the curators 

are interested to protect the oeuvres of art and to want to put them at the disposal of a public so 

wide as possible in the form of the colored 3D objects. In this context, we propose as perspective 

an application of coloring digitized point clouds from 3D scanner based on our method of saliency 

detection. 
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Conclusion général 

Dans ce travail, nous présentons une nouvelle approche pour la détection de la couleur de la peau sur des 

nuages de points colorés en 3D en se basant sur les techniques de fouilles de donnés et la programmation 

linéaire et en utilisant la représentation graphique pondérée. Ensuite, cette méthode a été étendue pour 

détecter les visages humains. Pour illustrer la robustesse de notre approche, nous avons montré que la 

méthode que nous proposons pourrait être utilisée pour résoudre deux problèmes de traitement du signal. 

Le premier est lié à la classification des sommets basée sur les informations de la couleur de la peau et 

le deuxième est lié au problème de détection de visage. Nous avons également montré que notre méthode 

peut traiter toutes les données qui peuvent être représentées par des graphiques pondérés tels que des 

images 2D, des surfaces 3D et des nuages de points 3D. 

D’autre part, nous avons présenté aussi une nouvelle méthode pour détecter les régions saillantes sur des 

maillages 3D. Un descripteur de patch local a été créé pour chaque sommet où la cellule de patch est 

remplie avec la moyenne du facteur de déviation de chaque sommet en fonction de sommes voisines 

(moyenne des facteurs de déviation de sommets projetés sur le même emplacement associé à la cellule). 

Le patch est ensuite utilisé comme un descripteur local pour les sommets de surface des maillages 3D. 

De plus, une mesure de similarité entre les descripteurs de patches et une carte de hauteur a été calculée 

et afin de calculer le degré de similarité du degré de saillance des sommets. Enfin, nous avons affirmé la 

robustesse et l'efficacité de notre approche en montrant que notre approche détecte la plupart des régions 

saillantes visuelles dans une surface de maillage 3D. En outre, nous avons montré que notre approche 

peut détecter des régions saillantes sur n'importe quelle donnée pouvant être représentée par un graphe 

pondéré tel que le nuage de points 3D. Nous avons également présenté l'efficacité de notre méthode en 

présentant plusieurs applications. Parmi ces applications, nous citons les applications suivantes : 

 Afin d’améliorer le processus de détection de visages présenté par la première approche, nous 

avons proposé une nouvelle méthode pour détecter les régions faciales 3D à partir de nuages de 

points colorés et d'images 2D. Cette méthode a été divisée en deux phases. Tout d'abord, les 

régions candidats visage ont été définies en fonction des caractéristiques de la peau, puis les 

caractéristiques saillantes sont calculées dans chaque région détectée pour affirmer la présence 

de visage humain. Nous avons également présenté un algorithme simple et efficace dérivé de 

l'algorithme Hill Climbing utilisant un opérateur de dilatation morphologique pour labéliser les 

régions saillantes de la peau. Nous avons prouvé la robustesse de notre méthode proposée à 

travers quelques résultats expérimentaux sur les cas d’échecs de la première approche. Ensuite, 

nous avons comparé notre méthode avec différentes méthodes d'état de l'art. 

 

 En plus, nous avons présenté une nouvelle approche pour la simplification des nuages de points 

3D. L'idée derrière notre approche est de détecter les régions caractéristiques qui décrivent la 

surface de la forme en utilisant la mesure du degré de saillance. La saillance entre sommets a été 

calculée en utilisant une mesure de similarité entre les patches locaux. Afin de détecter les régions 

caractéristiques, nous avons présenté un algorithme efficace basé sur l'étiquetage des composants 

connectés selon le degré de saillance des sommets. Ensuite, nous avons détecté des points 

caractéristiques dans ces régions. Notez que l'utilisateur peut contrôler le degré de simplification 

par un paramètre de résolution où le taux de simplification augmente avec la valeur de ce 

paramètre. Enfin, nous avons montré l'efficacité de notre méthode à travers quelques résultats 

expérimentaux.  
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 Finalement, nous avons présenté une nouvelle approche pour calculer la correspondance entre 

deux modèles 3D. Un nouveau descripteur de surface invariant 3D a été créé pour chaque sommet 

en fonction des coefficients de Zernike. De plus, un degré de saillance est calculé afin de détecter 

les régions caractéristiques. Ensuite, une carte de saillance multi-échelle est calculée afin 

d'améliorer la qualité de la saillance mesurée et de faire face au bruit. En outre, nous avons 

présenté un algorithme linéaire afin de segmenter la surface 3D en régions d'entités en fonction 

du degré de saillance, qui sont utilisées dans le processus d'appariement plutôt que de mapper des 

points aux points. Enfin, le processus d'appariement est modélisé comme un problème 

d'isomorphisme de sous-graphe et nous avons présenté un algorithme heuristique pour le 

résoudre. En outre, nous montrons la robustesse de notre méthode proposée à travers différents 

résultats expérimentaux. Enfin, nous présentons la stabilité et la robustesse de notre méthode par 

rapport au bruit, à l'échelle, à la translation, à la rotation, etc. 

 

Différentes parties de notre travail ont été publiées dans des journaux internationaux spécialisées. 

Journaux internationaux 

Liste des articles publiés : 

1. “Efficient Image Classification using Data Mining”, International Journal of Combinatorial 

Optimization Problems and Informatics, Vol. 2, No. 1, Jan-April, 2011, pp. 27-44. ISSN: 2007-

1558. 

 

2. “3D face detection based on salient features extraction and skin color detection using data 

mining”. The Imaging Science Journal 65 (7), 2017, pp. 393-408. 

https://doi.org/10.1080/13682199.2017.1358528 

 

3. “Efficient 3D point clouds classification for face detection using linear programming and data 

mining”. The Imaging Science Journal 66 (1), 2018, pp. 23-37. 

https://doi.org/10.1080/13682199.2017.1376772 

 

4. “Efficient 3D mesh salient region detection using local homogeneity measure”. IET Image 

Processing,  

http://dx.doi.org/10.1049/iet-ipr.2017.0598 

5. “An Efficient Simplification Method for Point Cloud Based on Salient Regions Detection”. 

RAIRO - Operations Research. 

https://doi.org/10.1051/ro/2018082 

 

https://doi.org/10.1080/13682199.2017.1358528
https://doi.org/10.1080/13682199.2017.1376772
http://dx.doi.org/10.1049/iet-ipr.2017.0598
https://doi.org/10.1051/ro/2018082
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Conferences: 

6. “An Invariant Multi-scale saliency detection for 3D mesh”, IEEE international conference 

applied and theoretical computing and communication technology (iCATccT-2018), (06-08 

September 2018). 

Liste des articles soumis : 

7. “3D Object Matching Using Invariant Descriptors and Linear Programming”. Applied 

Mathematics and Computation. 

 

 

Dans les prochains travaux, nous proposons comme perspective : 

 Quelques méthodes basées sur nos méthodes présentées dans ce travail. Parmi ces applications, 

on peut citer : 

 Classification des objets 3D : L'idée derrière cela est de classer les objets 3D comme 

humains ou non par exemple. Pour faire cela, une base de données de pièces 3D humaines 

est construite tels que des bras et des jambes de différentes tailles. Ainsi, chaque 

correspondance entre un objet 3D et des parties de l'ensemble de données permet de 

classer l'objet comme être humain. 

 Colorisation des nuages de points 3D numérisés : Les historiens, les archéologues et 

les conservateurs de musée s'intéressent à préserver les œuvres d'art et vouloir les mettre 

à la disposition d'un public aussi large que possible sous forme des objets 3D colorés. 

Dans ce cadre, nous propose comme perspective une application de coloriage de nuages 

de points numérisés à partir de Scanner 3D basée sur nos méthodes de détection de régions 

de saillances. 
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