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Abstract

With the ever increasing growth of data and information, extracting the right knowl-
edge has become a real challenge. Further, the advanced applications demand for
the analysis of complex and interrelated data which cannot be adequately described
using a propositional representation. The graph representation is of great interest for
the knowledge extraction community, since graphs are versatile data structures and
are one of the most general forms of data representation. Among several classes of
graphs, multigraphs have been captivating the attention in the recent times, thanks
to their inherent property of succinctly representing the entities by allowing the rich
and complex relations among them.

The focus of this thesis is streamlined into two themes of knowledge extraction;
one being knowledge retrieval, where the focus is on the subgraph query matching
aspects in multigraphs, and the other being knowledge discovery, where the focus is
on the problem of frequent pattern mining in multigraphs.

This thesis makes three main contributions in the field of query matching and
data mining. The first contribution deals with querying subgraphs in multigraphs
that yields isomorphic matches, and this problem finds potential applications in
the domains of remote sensing, social networks, bioinformatics, and chemical infor-
matics. The second contribution, which focusses on knowledge graphs, deals with
querying subgraphs in RDF multigraphs that yields homomorphic matches. In both
the contributions, efficient indexing structures are introduced that capture the mul-
tiedge information. The proposed query matching processes have been carefully
optimized for improved time performance and the proposed heuristics assure robust
performance. The third contribution is in the field of data mining, where an effi-
cient frequent pattern mining algorithm for multigraphs is proposed. We observe
that multigraphs pose challenges while exploring the search space, and hence novel
optimization techniques and heuristic search methods are introduced to swiftly tra-
verse the search space.

For each proposed approach, extensive experimental analysis is performed by
comparing with the existing state-of-the-art approaches in order to validate the
performance and correctness of the proposed approaches. In the end, a case study
analysis is performed on a remote sensing dataset, where the dataset is modelled as a
multigraph, and the mining and query matching processes are employed to discover
some useful knowledge.
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Résumé

Avec des volumes de données et d’informations de plus en plus importants, des
données de plus en plus complexes et fortement inter-reliées, l’extraction de con-
naissances reste un véritable défi. Les graphes offrent actuellement un support de
représentation efficace pour représenter ces données. Parmi les approches existantes,
les multi-graphes ont montré que leur pouvoir d’expression était particulièrement
adapté pour manipuler des données complexes possédant de nombreux types de
relations entre elles.

Cette thèse aborde deux aspects principaux liés aux multigraphes : la recherche
de sous graphes et la fouille de sous graphes fréquents dans des multigraphes.

Elle propose trois propositions dans le domaines du requêtage et de la fouille
de données. La première contribution s’inscrit dans la recherche de sous graphes
et concerne l’isomorphisme de sous graphes dans des multigraphes. Cette ap-
proche peut, par exemple, être appliquée dans de nombreux domaines d’applications
comme l’analyse d’images satellites ou de réseaux sociaux. Dans la seconde, nous
nous intéressons aux graphes de connaissances et abordons la problématique de
l’homorphisme de graphes dans des multigraphes RDF. Dans les deux contributions,
nous proposons de nouvelles techniques d’indexations pour représenter efficacement
les informations contenues dans les multigraphes. La recherche des sous graphes
tire avantage de ces nouveaux index et différentes heuristiques et optimisations sont
également proposées pour garantir de bonnes performances lors de l’exécution des
requêtes. La seconde contribution s’inscrit dans le domaine de la fouille de données
et nous proposons un algorithme efficace pour extraire les multigraphes fréquents.
Etant donné l’espace de recherche à considérer, la recherche de motifs fréquents
dans des graphes est un problème difficile en fouille de données. Pour parcourir effi-
cacement l’espace de recherche encore plus volumineux pour les multigraphes, nous
proposons de nouvelles techniques et méthodes pour le traverser efficacement notam-
ment en éliminant des candidats où détectant à l’avance les motifs non fréquents.

Pour chacune de ces propositions de nombreuses expérimentations sont réalisées
pour valider à la fois leurs performances et exactitudes en les comparant avec les
approches existantes. Finalement, nous proposons une étude de cas sur des jeux
de données issues d’images satellites modélisées sous la forme de multigraphe et
montrons que l’application de nos propositions permet de mettre en évidence de
nouvelles connaissances utiles.

iii



iv



Acknowledgements

First and foremost I would like to thank my supervisor Prof. Pascal Poncelet and
co-supervisor Dr. Dino Ienco for providing me an opportunity to accomplish this
doctoral research with them. It is their immense support and belief in me that has
made this thesis possible.

Working on my PhD has been a research odyssey with several crests and troughs,
hoping to see the light at the end of the tunnel. "We are almost seeing the light,
Vijay", Dino used to say, whenever we were about to finish a particular task. When-
ever I got stuck in the details of a problem and lost orientation, Pascal provided
me with the right direction unveiling the otherwise concealed general problem. The
board room discussions with Pascal and Dino yielded timely insights, whenever I
was mired in the details of a problem. Both Pascal and Dino have been proactive
in supporting my work throughout the PhD.

I am grateful to have been part of the vibrant Advanse team in LIRMM, where
I have met some wonderful people. The valuable suggestions I received from my
colleagues has shaped me in many ways. The discussions and debates that I have
had with them will hardly ever fade away as much as the humorous moments that
we shared.

I am also thankful to the many people from LIRMM whom I befriended during
my PhD; I really spent many memorable moments with them that I will cherish for
a long time. I am also thankful to the people and colleagues from MTD lab, where
I worked sometimes.

I would like to thank all the people responsible for the administrative aspects
of my PhD at LIRMM, MTD and University of Montpellier. In particular, I am
thankful to Mr. Nicolas Serrurier and Ms. Guylaine Martinoty who have helped
immensely for all the bureaucracy that I had to confront. I also express my gratitude
for the NUMEV1 project, which has allowed me to pursue this research with the
much needed support in the form of generous funding, and facilitating me to attend
various conferences as well as several summer/winter schools.

I also feel privileged to have made many friends outside the lab, and am thankful
to them for being with me through thick and thin. Many of my friends who live in
different places of the world have been so supportive of me all this time, and I thank
them for believing in me. I am delighted to be still in contact with them.

1Labex NUMEV (NUMEV, ANR-10-LABX-20).

v



vi

Last but not least, I am extremely indebted to my family who, although are
living far away in India, have held me close all this time. My father, in particular,
has been very excited about my PhD studies. Being a professor of Philosophy, his
keen interest in the field of computer science paved the way for many interesting
discussions over the course of my PhD. I owe it to my father, for any philosophical
tone in the thesis. My mother, on the other hand, is a wonderful human. I never felt
being far away from her for she always embraced me through all the situations that
I had to confront here. Our frequent talks were warm enough to keep me going. My
brother and his wife have been a lovely couple, to whom I owe a lot for keeping me
sane throughout my PhD. Many a time we discussed about work and many other
times, we discussed about life. I feel elated to have a brother, who is such a dear
friend that I can share everything with him.

I am also thankful to all the people who have been part of this journey, directly
or indirectly, at various times.

Vijay Ingalalli
Montpellier, February 2017



Contents

Abstract i

Acknowledgements iv

List of Figures ix

List of Tables xii

Context 1

1 Introduction 3
1.1 Principles of Knowledge Extraction . . . . . . . . . . . . . . . . . . . 3

1.1.1 Knowledge Retrieval . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Knowledge Discovery . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Managing and Mining Graph Data . . . . . . . . . . . . . . . . . . . 7
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Foundations 15
2.1 Graphs, Multigraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Graph Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Graph Databases, Indexes . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 On Querying Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Graph Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Basics of FSM . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.2 FSM Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 23

vii



viii CONTENTS

I Query Matching in Multigraphs 27

Overview Part I 28

3 Subgraph Query Matching in Multigraphs 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 An Overview of SuMGra . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.1 Offline Index Construction . . . . . . . . . . . . . . . . . . . . 38
3.6 Subgraph Query Processing . . . . . . . . . . . . . . . . . . . . . . . 41

3.6.1 Query Vertex Ordering . . . . . . . . . . . . . . . . . . . . . . 42
3.6.2 Select Candidates for Initial Query Vertex . . . . . . . . . . . 43
3.6.3 Subgraph Searching . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7.1 Description of Datasets . . . . . . . . . . . . . . . . . . . . . . 47
3.7.2 Performance of SuMGra . . . . . . . . . . . . . . . . . . . . 50

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Querying RDF Data 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Background and Preliminaries . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 RDF Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.2 SPARQL Query . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.3 SPARQL Querying by Adopting Multigraph Homomorphism . 67

4.4 AMBER: A SPARQL Querying Engine . . . . . . . . . . . . . . . . . 68
4.5 Index Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.1 Attribute Index . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.2 Vertex Signature Index . . . . . . . . . . . . . . . . . . . . . . 70
4.5.3 Vertex Neighbourhood Index . . . . . . . . . . . . . . . . . . . 72

4.6 Query Matching Procedure . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6.1 Vertex Level Processing . . . . . . . . . . . . . . . . . . . . . 75
4.6.2 Processing Satellite Vertices . . . . . . . . . . . . . . . . . . . 76
4.6.3 Arbitrary Query Processing . . . . . . . . . . . . . . . . . . . 78

4.7 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 82
4.7.2 Workload Generation . . . . . . . . . . . . . . . . . . . . . . . 82
4.7.3 Comparison with RDF Engines . . . . . . . . . . . . . . . . . 83

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Conclusions Part I 90



CONTENTS ix

II Mining Multigraphs 93

Overview Part II 94

5 Frequent Pattern Mining in Multigraphs 97
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3 Preliminaries and problem definition . . . . . . . . . . . . . . . . . . 99
5.4 MuGraM: A frequent pattern mining algorithm . . . . . . . . . . . . 101

5.4.1 Multi-edge representation and pattern enumeration . . . . . . 101
5.4.2 Overview of MuGraM . . . . . . . . . . . . . . . . . . . . . . 102
5.4.3 Search space spanned by DFS traversal . . . . . . . . . . . . . 103
5.4.4 Discovering frequent patterns . . . . . . . . . . . . . . . . . . 104
5.4.5 Pattern extension . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4.6 Support computation for multigraphs . . . . . . . . . . . . . . 107

5.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.5.1 Quantitative analysis: Time performance evaluation . . . . . . 114
5.5.2 Qualitative analysis . . . . . . . . . . . . . . . . . . . . . . . . 118

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Conclusions Part II 122

Case Study 124

6 Knowledge Extraction for Remote Sensing Data 127

Summary 131

7 Summary and Future Directions 133
Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Bibliography 139



x CONTENTS



List of Figures

1.1 Process of knowledge discovery in databases (KDD) . . . . . . . . . . 6
1.2 An instance of a multigraph . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 A sample example of subgraph embeddings . . . . . . . . . . . . . . . 35
3.2 Equivalent representation of multigraph . . . . . . . . . . . . . . . . . 36
3.3 Neighbourhood Index for a data vertex . . . . . . . . . . . . . . . . . 42
3.4 Characteristics of datasets . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Time for querying DBLP dataset . . . . . . . . . . . . . . . . . . . . 52
3.6 Time for querying BIOGRID dataset . . . . . . . . . . . . . . . . . . 53
3.7 Time for querying FLICKR dataset . . . . . . . . . . . . . . . . . . . 54
3.8 Time for querying YOUTUBE dataset . . . . . . . . . . . . . . . . . 55
3.9 Time for querying DBPEDIA dataset . . . . . . . . . . . . . . . . . . 55
3.10 Time for querying DBLP dataset by varying synopses fields . . . . . 56
3.11 Time for querying Synthetic dataset . . . . . . . . . . . . . . . . . . . 57

4.1 RDF data in both n-triple and multigraph reprentation . . . . . . . . 63
4.2 SPARQL query in both n-triple and multigraph reprentation . . . . . 66
4.3 The AMbER Framework . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Neighbourhood index structure . . . . . . . . . . . . . . . . . . . . . 72
4.5 Query decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6 A star structure in a multigraph . . . . . . . . . . . . . . . . . . . . . 76
4.7 Star-shaped query evaluation for DBPEDIA dataset . . . . . . . . . . 84
4.8 Complex-shaped query evaluation for DBPEDIA dataset . . . . . . . 85
4.9 Star-shaped query evaluation for YAGO dataset . . . . . . . . . . . . 86
4.10 Complex-shaped query evaluation for YAGO dataset . . . . . . . . . 86
4.11 Star-shaped query evaluation for LUBM100 dataset . . . . . . . . . . 87
4.12 Complex-shaped query evaluation for LUBM100 dataset . . . . . . . 87

5.1 Multigraph patterns of a data multigraph . . . . . . . . . . . . . . . . 98
5.2 Embeddings of a pattern . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3 Search space for a set of frequent seeds . . . . . . . . . . . . . . . . . 103
5.4 Various possible extensions of a pattern and automorphic grouping . 106
5.5 Time performance of Amazon and DBLP datasets . . . . . . . . . . . 116
5.6 Time performance of Citeseer and Microsoft datasets . . . . . . . . . 117

xi



xii LIST OF FIGURES

5.7 Time performance Vs. # of outputted patterns for DBLP dataset . . 118
5.8 Few interesting patterns for AUCS dataset . . . . . . . . . . . . . . . 119
5.9 Few interesting patterns for ATN dataset . . . . . . . . . . . . . . . . 119
5.10 Few interesting patterns for MRM dataset . . . . . . . . . . . . . . . 120

6.1 A satellite image of Basse Plaine de l’Aude (BPA) . . . . . . . . . . . 128
6.2 Two frequent patterns for the BPA dataset . . . . . . . . . . . . . . . 129
6.3 Embeddings of the frequent patterns in the original BPA image . . . 130
6.4 Zoomed original image to study the validity of the extracted knowledge130



List of Tables

1.1 A comparison of Data, Information and Knowledge Retrieval . . . . . 5

3.1 Vertex signatures for the data graph . . . . . . . . . . . . . . . . . . 38
3.2 Synopses for the data vertices . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Statistics of datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Execution time and memory usage for index construction . . . . . . . 51

4.1 Dictionary look-up table . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Vertex signatures and the corresponding synopses . . . . . . . . . . . 70
4.3 Statistics of RDF Datasets . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 Index construction time . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 Properties of the graph datasets . . . . . . . . . . . . . . . . . . . . . 115

xiii



xiv LIST OF TABLES



Context

Where is the Life we have lost in living?

Where is the Wisdom we have lost in knowledge?

Where is the Knowledge we have lost in information?

— T.S. Eliot, The Rock, 1934.
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Chapter

1

Introduction

In this chapter we briefly introduce the concepts of knowledge retrieval
and discovery. We then discuss about managing graph data along with the
mining operations and the importance of exploring multigraphs - a generic
class of graphs. Finally, we discuss the contributions and organization of
the thesis.1

1.1 Principles of Knowledge Extraction

Knowledge Extraction deals with discovering knowledge from either structured (re-
lational databases), semi-structured (graphs, trees, XML) or unstructured (text,
documents, images) sources of data. The discovered knowledge needs to be in a
machine-readable and machine-interpretable format and must represent knowledge
in a manner that unambiguously defines its meaning, and facilitates inferencing [Un-
behauen et al., 2012].

At the outset, it is essential to understand the subtleties in the meaning of data,
information and knowledge, as described in [Bellinger et al., 2004]. Data is a set of
values of certain variables that could be both qualitative or quantitative. Data that
is collected from various domains is often raw, and unprocessed, and might not have
meaning in itself. Information is the data that is processed to be useful, and has
been given meaning by a way of relational connection, and can provide answers to
questions. A trivial example is relational database or a graph database. Knowledge

1This work has been funded by Labex NUMEV (NUMEV, ANR-10-LABX-20)
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4 CHAPTER 1. INTRODUCTION

is an understanding of the information, which is acquired through experience or
discovery, such that its intent can be put to use.

Since the notion of knowledge extraction is very generic, this thesis focuses on
two widely studied thematics of the process of knowledge extraction: (i) knowledge
retrieval, a field of retrieving a specific knowledge from the data, where the data often
might be organized as a database; (ii) knowledge discovery, a field where knowledge
is discovered from the data, hitherto unknown.

1.1.1 Knowledge Retrieval

Knowledge Retrieval (KR) systems are advanced systems capable of retrieving knowl-
edge, rather than mere information - as observed in the information retrieval (IR)
systems. In IR systems, once information is retrieved, one has to go through the
laborious work of finding meaning or knowledge from the retrieved information.
The goal of knowledge retrieval systems is to reduce the burden of those processes
by improved search and representation. KR systems focus at the knowledge level,
and thus, we need to examine how to extract, represent, and use the knowledge in
data and information [Bellinger et al., 2004]. While information retrieval systems
organize the data and documents by indexing, knowledge retrieval systems organize
information by indicating connections between elements in those documents. Fur-
ther, knowledge retrieval systems provide knowledge to users in a structured way,
since they focus on semantics and better organization of information. Such KR sys-
tems will be used by advanced and expert users to tackle the challenging problem
of knowledge seeking [Yao et al., 2007].

Growth and evolution of the Web has opened a plethora of opportunities, mak-
ing knowledge retrieval systems a necessity for supporting the future generations of
the Web. Over the time, other domains such as - remote sensing, bioinformatics,
chemistry, have also become domains of interest for knowledge retrieval systems.
Many research works have been proposed [Kamel and Quintana, 1990, Martin and
Eklund, 2000, Yao, 2002], that cover diverse aspects and provide us insights into
further development of knowledge retrieval.

Since the task of retrieving knowledge not only involves gathering the avail-
able information but also enriching it with other information to gain knowledge,
the process is rather challenging. In Table 1.1, the salient features of knowledge
retrieval are compared with the data and information retrieval. As we observe, from
retrieval model perspective, knowledge retrieval systems focus on the semantics and
knowledge organization. Further, knowledge retrieval systems organize knowledge
by allowing connections among knowledge structures, whereas, information retrieval
systems organize the data by indexing. Knowledge retrieval is also based on partial
match (approximate matching) and best match (exact matching).
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←→ Data Information Knowledge
Retrieval Retrieval Retrieval

Match Boolean partial match, partial match,
match best match best match

Inference deductive in-
ference

inductive inference deductive/inductive infer-
ence, associative reasoning

Model deterministic statistical and semantic model +
model probabilistic model inference model

Query artificial lan-
guage

natural language knowledge structure + nat-
ural language

Organization table, index table, index knowledge unit and knowl-
edge structure

Representation number, rule natural language, concept graph, semantic
markup language network, ontology

Storage database document collections knowledge base
Retrieved Results data set sections or documents a set of knowledge unit

Table 1.1: A Comparison of Data, Information, and Knowledge Retrieval2

In this thesis, we focus on the querying aspects of knowledge retrieval, and
in particular, exact matching of the queries in the case of semi-structured data of
graphs. In Section 1.2, we discuss about an interesting and generic class of graphs
called multigraphs, which are the focus of this thesis.

1.1.2 Knowledge Discovery

The traditional approach for turning low-level data into high-level knowledge re-
lies on thorough manual analysis performed by specialised data analysts. Modern
techniques allow an analyst to easily use the huge amounts of data available to test
formulated hypothesis. However, to discover novel, interesting knowledge from the
available data, the number of possible questions to be formulated and evaluated
might simply exceed the capability of a human analyst. The process of analysing
millions of data records is a tedious task and demands for techniques to automate
the process of evaluating the data in a formal and yet efficient way.

This kind of data overload is the key motivation behind the process of knowledge
discovery in databases. Knowledge Discovery in Databases (KDD) is the non-trivial
process of identifying valid, novel, potentially useful, and ultimately understandable
patterns in data [Fayyad et al., 1996].

According to the definition, KDD is a process and therefore comprises many
steps. This multi-step process involving data preparation, data selection, data clean-

2Adapted from [Yao et al., 2007]
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Data

- -   - -
- -   - -
- -   - -

Target 
Data

Preprocessed 
Data

Transformed
 Data

Patterns

Knowledge

TransformationPreprocessingSelection Data Mining Interpretation/
Evaluation

Figure 1.1: Process of knowledge discovery in databases (KDD)3

ing, data mining, incorporation of appropriate prior knowledge, and proper interpre-
tation is generally understood as interactive and iterative, as depicted in Figure 1.1.
The process is supposed to be non-trivial, involving some form of search or inference
to discover patterns.

While all the steps in the process of KDD are of paramount importance to
achieve the ultimate goal of knowledge discovery, we focus on the step of data mining,
which can be considered as the core stage of KDD process.

Data Mining

Data mining is a crucial step in the knowledge discovery process. It applies algo-
rithms that extract patterns from preprocessed data that are subsequently inter-
preted to gain insight and knowledge about the data, and ideally about the under-
lying process as well. In [Fayyad et al., 1996], data mining is described as a process,
consisting of the application of data analysis and pattern discovery algorithms that
yield a particular set of patterns over the data. More specifically, a data mining
algorithm comprises three components: (i) model representation, (ii) model evalua-
tion, and (iii) search. We will now elaborate on the three components and specify
the representations and methods studied in this thesis respectively.

Model Representation. Model representation, in general, is concerned with the
language employed to describe patterns. If the representation chosen is too limited,
no amount of training time or further training examples will lead to an accurate
model for the data. However, more powerful representations bear the danger of
overfitting the training data, leading to limited prediction accuracy on unseen data.
The adequate choice of a representation language has to be considered carefully, as

3Adapted from [Fayyad et al., 1996]
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it is important that the analyst fully understands the assumptions inherent to the
representation method employed.

This thesis is mainly concerned with graph structured data employed to model
various domains of real world data. While graphs are a very powerful concept, they
come at a cost, owing to the computational complexity of operations on graphs
such as subgraph isomorphism, which is essential for pattern mining and is NP-
complete [Garey and Johnson, 1979].

Model Evaluation. In general terms, a model evaluation criterion is a quantitative
statement of how well a specific model meets the goals of the KDD process. Pre-
dictive models, for instance, are often judged by the empirical prediction accuracy
on some test data set. Descriptive models can be evaluated along the dimensions of
predictive accuracy, novelty, utility, and understandability of the fitted model. In
this thesis, in the context of pattern discovery, the frequency of a pattern is a funda-
mental measure. Combined with a threshold, this measure yields a criterion, known
as minimum frequency, often used to extract rare and thus potentially unknown –
but hopefully genuine – patterns from data.

Pattern Search. Once the representation language and evaluation criteria are
fixed, the data mining problem resorts to a pure optimisation or constraint satisfac-
tion task: find (all) the pattern(s) from the selected representation which optimise
(or satisfy) the evaluation criteria on the given data set. The motivation to study
the problem of frequent pattern mining emanates from the challenge of extracting
association rules from retail data, known as market basket analysis, which are de-
rived from frequent patterns. In the course of this thesis, we employ Depth First
Search (DFS) strategies, combined with several optimization techniques, in order to
search the patterns.

In the following section, we discuss on graph data structures, that are the focus
our knowledge extraction process.

1.2 Managing and Mining Graph Data

The concepts of knowledge retrieval and knowledge discovery readily find their rel-
evance for graph data, in the form of graph data management and graph mining.
Informally, a graph can be conceived as a data structure, where a set of nodes are
interconnected by a set of relations. Mining and management of graph data has
become more important than ever, owing to a wide range of applications in the
domains of remote sensing, social networks, computational biology, chemical data
analysis, and communication networking. Traditional data management approaches
such as indexing, querying and data mining algorithms such as clustering, classifi-
cation, frequent pattern mining have now been extended to the graph scenario.
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Managing Graph Data: Since graphs form a complex and expressive data type,
we need methods for representing graphs in databases, manipulating and querying
them. In this thesis, we explore the design of indexing structures for graph data,
and employ efficient structures to retrieve the relevant information. When it comes
to querying graph databases, a plenty of specialized querying procedures exist such
as, query matching, keyword search and reachability queries, that can be exploited
depending on the type of knowledge one is interested in retrieving [Aggarwal et al.,
2010].

In this work, we focus on the query matching aspect in graph databases, which
itself is achieved by introducing efficient indexing and retrieval structures.

Mining Graph Data: In the recent years, the need for mining structured data has
increased and as we have already learnt, graphs have been deemed to be a promising
structured data. Much like the other data structures - text data, sequential data, the
mining problems have been designed for graphs as well. Many graph data mining
techniques exist, which include pattern mining, clustering and classification [Yan
and Han, 2003, Kudo et al., 2004, Rattigan et al., 2007, Yan et al., 2008]. However,
owing to the structural nature of the data, these mining techniques are met with
challenges that are not faced in the domains of other data structures. This indeed
comes at a cost, owing to the greater expressive power of structured data like graphs.

In this work, we streamline our focus on discovering graph patterns. Of the
various graph patterns, frequent patterns are the basic types of patterns that can
be discovered in graph databases [Han et al., 2011]. These frequent patterns are
further useful in discriminating different groups of graphs, classifying and clustering
graphs, building graph indices, and facilitating similarity search in graph databases.

Scope of the Thesis: Mining and managing graph data has grown to become a
multi-faceted domain, since the challenges offered by the data from various fields
result in different kinds of graphs. For example, chemical data graphs are relatively
small but only a few labels on different nodes may be repeated many times in a single
molecule (graph) [Aggarwal et al., 2010]. In many large scale domains [Kumar et al.,
2000, Raghavan and Garcia-Molina, 2003] such as the Web, computer networks, and
social networks, the distinct node labels (e.g., users, URLs) are huge, which leads
to difficulty in characterizing such graphs succinctly. The massive size of computer
network graphs is a considerable challenge for mining algorithms. With the rise of
multiple platforms of social networks, the graphs may be dynamic and time evolving,
where the structure of the graph may change rapidly over time, and the temporal
aspects could be worth considering.

Owing to extremely diverse graph domains, several algorithms have been de-
signed in order to manage and mine such graph data. For example, the algorithms
which are designed for the web or social networks need to be constructed for graphs
with very large size, but with distinct node labels. On the other hand, the algo-
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A simple graph A multigraph

Figure 1.2: An instance of a simple graph and a multigraph

rithms which are designed for chemical data need to take into account repetitions
in node labels. Similarly many graphs may have additional information associated
with nodes and edges. Such variations make different applications much more chal-
lenging. However, in the past decade, several approaches have been proposed that
are able to manage and mine graph data that encompass several graph domains [Ku-
ramochi and Karypis, 2004, Wu et al., 2013, Berlingerio et al., 2013, Hsieh et al.,
2014] and there still remains a lot of potential work to be achieved in this direction.

In this thesis, our objective is to propose efficient querying and mining ap-
proaches that are applicable to various graph domains alike. In this direction, we
focus on a generic class of graphs called multigraphs, which has been gaining promi-
nence lately [Godehardt, 2013, Boden et al., 2012]. Multigraphs are a rich class
of graph data structures, that allow different types of relations between a pair of
nodes [Bonchi et al., 2014]. In Figure 1.2, an instance of a multigraph is depicted,
where multiple relations between a pair of nodes can exist; in contrast, a simple
graph has exactly one relation. Many real world datasets can be modelled as a
network with a set of nodes interconnected with each other with multiple relations.
Various domains are abound with multigraphs: social networks spanning over the
same set of people, but with different life aspects (e.g., social relationships such as
Facebook, Twitter, LinkedIn, etc.); protein-protein interaction multigraphs created
by considering the pairs of proteins that have direct interaction/physical association
or they are co-localised [Zhang, 2009]; gene multigraphs, where genes are connected
by considering the different pathway interactions belonging to different pathways;
RDF knowledge graph where the same subject/object node pair is connected by
different predicates [Libkin et al., 2013].

Since multigraphs, unlike simple graphs, allow more than one relation between
a pair of nodes, we can represent real world data more succinctly, which in turn
helps in performing various operations in an effective manner. For example, a re-
cent work in the field of bioinformatics ([Li and Li, 2012]) creates multigraphs by
merging heterogeneous genomic and phenotype data, in order to identify the disease
genes. Many such applications can be catalysed if the community of graph data
management can devote for a systematic development of multigraph querying and
mining.
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To sum up, in this thesis, we focus on the querying aspects of knowledge re-
trieval and frequent pattern mining aspects of knowledge discovery, in the context of
multigraph data. In the following section, we briefly discuss about our contributions
in this direction.

1.3 Contributions

The overall objective of this thesis is to efficiently retrieve and discover knowledge
from multigraphs. In the recent past, modelling the real world data as graph data
structures has yielded more insights as to discover and retrieve knowledge that is rich
with structures. Further, the graph data is getting structurally much more richer
over the time, thereby prompting to model such graph data in a succinct manner,
which is possible with multigraph modelling. Thus, in this thesis, we specifically
work on multigraph datasets.

In this thesis, we answer the following research questions:

Q1 Why is it essential to introduce a novel subgraph query matching approach for
multigraphs? And what are the challenges?

Q2 Is it possible to make multigraph based querying more time efficient and ro-
bust, when compared with relational database approaches?

Q3 Is it necessary to introduce a novel multigraph mining approach? If so, what
is the computational feasibility of such mining approaches?

At the outset we assure that the contributions of this thesis are optimistic in
answering the above mentioned research questions.

The contributions of this thesis about question Q1 w.r.t. the importance and
challenges of subgraph querying in multigraphs are the following:

• We propose an algorithm SuMGra (Subgraph Matching for MultiGraphs)
that performs subgraph query matching for multigraphs and outperforms the
existing approaches. The existing approaches either can not be trivially ap-
plied for multigraphs or only a few approaches can be extended for multigraphs.

• To exploit the multigraph properties, we propose indexing structures that
leverage the multiedge information for speeding up the query matching process.

• A backtracking procedure is introduced to work on multigraphs, that employs
several pruning strategies and optimization techniques.
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The contributions of this thesis towards question Q2 are the following:

• We propose a model to represent the RDF data and SPARQL queries as multi-
graphs, where SPARQL4 is a W3C standard language to query RDF data.

• We propose an RDF querying engine called AMbER (Attributed Multigraph
Based Engine for RDF querying) that works on RDF multigraph and takes
multigraph format of the SPARQL query, to retrieve the SPARQL solutions.
The multigraph query engine AMbER is a graph based query engine, that
competes very successfully w.r.t. the conventional relational approaches.

• At the core of the proposed AMbER lie a few graph theoretical ideas that
are dependent on the structural properties of the queries themselves, which
we exploit to offer competitive performance.

The contribution of this thesis towards question Q3 on multigraph mining are
the following:

• We propose an efficient multigraph mining algorithm MuGraM (Frequent
MultiGraph Miner) that discovers frequent multigraph patterns. The ex-
isting approaches either do not discover multigraph patterns or the set of
discovered frequent patterns are often incomplete.

• An efficient way of computing the frequency measure of a pattern is proposed.
Several observations are made that help us to quickly decide if a pattern is
frequent or not.

• Several optimization and pruning strategies are discussed that significantly
reduce the search space exploration to discover frequent patterns.

At the end of the thesis, we dedicate a chapter (Chapter 6) to perform a case
study analysis of the application of our thesis contributions for remote sensing data.
This analysis discovers interesting and useful patterns and helps us to analyse the
significance of such patterns.

1.4 Organization of Thesis

In Chapter 2, we discuss about the foundations of the thesis in the context of
multigraphs, and querying and mining multigraphs. The rest of the thesis is struc-
tured upon the earlier published work. Unless otherwise stated, the work reported

4https://www.w3.org/TR/rdf-sparql-query/
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throughout this thesis, was done primarily by the author in co-ordination with his
supervisors.

The contribution of this thesis can be broadly organised into two themes, which
are presented as two different parts. Part I is dedicated to the querying aspects
in multigraphs, where we focus on subgraph query matching. The task of query
matching is itself a sub-field of graph data management which in turn is coherent
with the theme of knowledge retrieval. Part II is dedicated to the mining aspects in
multigraphs, where we focus on frequent pattern mining. Frequent pattern mining
adheres to the theme of knowledge discovery.

Part I of the thesis focuses on the subgraph query matching problem in multigraphs.

Part I

Chapter 3 proposes a subgraph query matching algorithm for multigraphs. This
chapter introduces novel index structures that leverage the multigraph properties
and enable optimized exploration of search space to discover query matches. Then
a query matching process is proposed, which follows the backtracking principle to
explore search space. Several experiments are conducted to validate the time per-
formance of proposed SuMGra when compared with the existing approaches. This
chapter is composed of the following research contributions that are already pub-
lished.

• Vijay Ingalalli, Dino Ienco, and Pascal Poncelet. SuMGra: Querying Multi-
graphs via Efficient Indexing. In Proceedings of 27th International Conference
on Database and Expert Systems Applications (DEXA 2016), Porto, Portugal,
September 2016, pp. 387-401.

• Vijay Ingalalli, Dino Ienco, and Pascal Poncelet. Leveraging efficient indexing
schema to support multigraph query answering. In: Ingénierie des Systèmes
d’Information (ISI), Volume 21, Issue 3, 2016, pp. 53-74.

• Vijay Ingalalli, Dino Ienco, and Pascal Poncelet. On Querying Large Graphs
with Multiple Relationships. In La conférence sur la Gestion de Données -
Principes, Technologies et Applications (BDA 2015), 12 pages, October 2015,
Île de Porquerolles, France.

Chapter 4 makes contributions in the field of querying RDF data. Models to
represent the RDF data and the SPARQL queries as multigraphs are introduced.
On the RDF multigraph, indexing structures are built, which takes inspiration from
the previous chapter. However, there are several distinctions for index structures
owing to the vertex labelled and directed multigraphs, which is a realistic modelling
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of an RDF data. A multigraph modelling of a SPARQL query is used to to per-
form homomorphic matching, which yields SPARQL solutions. Several optimizing
procedures are introduced that help in speedy retrieval of homomorphic solutions.
Rigorous experiments are conducted to validate both the time performance and ro-
bustness of the proposed RDF querying engine AMbER, with the state-of-the-art
approaches. This chapter is composed of the following published work.

• Vijay Ingalalli, Dino Ienco, Pascal Poncelet, and Serena Villata. Querying
RDF Data Using A Multigraph-based Approach. In Proceedings of 19th Inter-
national Conference on Extending Database Technology (EDBT 2016), Bor-
deaux, France, March 2016, pp. 245-256.

Part II of the thesis focuses on the frequent pattern mining problem in multigraphs.

Part II

Chapter 5 explores the field of frequent subgraph mining (FSM) in multigraphs.
Limitations of the existing FSM approaches are elucidated, and the contributions
for FSM in multigraphs are illustrated. Several competing approaches and their
methodologies are briefly discussed. Optimized exploration of complex search space,
which is borne out of the multigraph property of the graphs are explored. Several
novel ideas to compute support measure of a pattern are introduced; further, sev-
eral pruning strategies to speed up the computational performance of the proposed
multigraph mining algorithm MuGraM are also explored. Both quantitative (time
performance) analysis and qualitative (interesting pattern discovery) analysis on
several real world datasets are performed, that portrays the competitiveness of the
proposed MuGraM. This chapter is composed of the following work.

• Vijay Ingalalli, Dino Ienco, and Pascal Poncelet. Mining Frequent Subgraph
Patterns in Multigraphs. Submitted.

Chapter 6, makes a case study analysis of the entire thesis work, both in terms
of knowledge retrieval and knowledge discovery. The case study is for the applica-
tion of remote sensing dataset, where the remote sensing images are modelled as
multigraphs by following the image segmentation procedure. In the beginning, the
proposed multigraph mining algorithm MuGraM is applied to discover a set of fre-
quent patterns, for a user defined frequency value. Then for a few selected patterns,
the query matching algorithm SuMGra is invoked to trace the location of patterns
in the image to draw some interesting conclusions.

Chapter 7 summarises the overall contribution of the thesis and lays ideas for
the potential future extension of the proposed works in this thesis.
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Chapter

2

Foundations

In this chapter we introduce the basics of graphs and multigraphs, and
then establish the theoretical concepts used for query matching. We then
make a quick tour on graph databases and indexes, and finally introduce
the basic principles of graph data mining in the context of the thesis.

2.1 Graphs, Multigraphs

A graph is a mathematical structure employed to model pairwise relations be-
tween objects, where the objects are termed as vertices and the relations are called
edges [West et al., 2001]. Thus, a graph structure amounts to a set of objects where
some pairs of objects are in some sense “related”. Simple graphs are one of the ver-
satile forms of graphs that have labels on both vertices and edges, formally defined
as follows.

Definition 2.1 (Graph). Given a vertex label alphabet ΣV and an edge label alphabet
ΣE, we define a directed/undirected labelled graph g as an ordered four-tuple
g = (V,E, LV , LE), where:

• V denotes a finite set of nodes

• E ⊆ V × V denotes a set of edges

• LV : V → ΣV denotes a node labelling function

• LE : E → ΣE denotes an edge labelling function

In undirected graphs, E is a set of unordered pair of vertices called edges; in
directed graphs, E is a set of ordered pair of vertices called directed edges. Simple

15
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graphs usually do not have loops. The set V can be regarded as a set of n vertex
identifiers and is often represented as V = {v1, v2, . . . , vn}; the set of edges E rep-
resents the structure of the graph. That is, a vertex vi ∈ V is connected to a node
vj ∈ V by an edge e = (vi, vj) if (vi, vj) ∈ E. The labelling functions LV and LE can
be used to integrate information about vertices and edges into graphs by assigning
attributes from LV and LE to nodes and edges, respectively.

Definition 2.2 (Subgraph). A graph g1 = (V 1, E1, L1
V , L

1
E) is a subgraph of g2 =

(V 2, E2, L2
V , L

2
E) if V 1 ⊆ V 2 and E1 ⊆ E2 and ∀v ∈ V 1, L1

V (v) = L2
V (v) and

∀e ∈ E1, L1
E(e) = L2

E(e).

The notion of subgraph is important for subgraph matching and subgraph min-
ing approaches. Further, a graph g2 is called a supergraph of g1 if g1 is a subgraph
of g2.

We now introduce a generic class of graphs called multigraphs, that allow mul-
tiple edges between a pair of vertices, formally defined below.

Definition 2.3 (Multigraph). Given a set of edge types T , a vertex label alphabet
ΣV and an edge label alphabet ΣE, we define a multigraph G as an ordered five-tuple
G = (V,E, µ, LV , LE), where:

• V denotes a finite set of nodes

• E ⊆ V × V denotes a set of edges

• µ : E → 2T denotes a multiedge mapping function

• LV : V → ΣV denotes a node labelling function

• LE : E → ΣE denotes an edge labelling function

Since a multigraph can have multiple edges between a pair of vertices, we denote
a set of edge types T , that distinctly represents these multiple edges; further, all
possible multiedges for a given edge set T are represented as a power set 2T , whose
elements are a multiset of edge types. Thus, µ is a multiedge mapping function that
assigns a multiset of edge types from the power set 2T to an edge (vi, vj) ∈ E. The
labelling functions LV and LE can be used to integrate information about vertices
and edges into multigraphs.

The multigraph that we define here is in its most generic form. This multigraph
can take a set of labels on both vertices as well as on multiedges. However, in reality,
the simpler variants of multigraphs are needed; for example, multigraphs without
edge labels or vertex labels, directed or undirected. Thus, depending on the kind
of dataset we deal with, in the following thesis (Chapter 3, 4, 5) we introduce the
variants of Definition 2.3. A graph G1 is a sub-multigraph of G2 if all the conditions
in Definition 2.2 are met.
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2.2 Graph Matching

In graph matching, the objective is to determine whether or not the labels on ver-
texes/ edges and structure, or part of the structure, of two graphs are identical. A
graph matching can be achieved in both exact and approximate ways [Bunke, 2000].
In exact graph matching, an isomorphic mapping exists between the structures that
have to be matched. However, in approximate graph matching, either the isomor-
phism does not exist or there is no need to find an isomorphic matching, and hence
there are no matching vertices of a graph with the vertices of the other graph, but
a best possible matching has to be discovered.

In this thesis, we focus only on the exact graph matching problem. Previous
works show that it is easy to determine equality of patterns in case of feature vectors
or strings, whereas the same computation is much more complex for graphs [Cook
and Holder, 2006, Chakrabarti and Faloutsos, 2012]. Because the nodes and edges
of a graph cannot be ordered in general, unlike the components of a feature vector
or the symbols of a string, the problem of graph equality, is computationally very
demanding. As already discussed in the previous chapter, several notions of exact
graph matching exist: (i) Graph isomorphism (ii) Graph homomorphism.

Definition 2.4 (Graph Isomorphism). If we consider a graph g1 = (V 1, E1, L1
V , L

1
E)

and a graph g2 = (V 2, E2, L2
V , L

2
E), then a graph isomorphism between g1 and g2 is

a bijective function ψ : V 1 → V 2 that satisfies the following conditions:

• L1
V (u) = L2

V (ψ(u)) ∀u ∈ V 1

• ∀ (u, v) ∈ E1, ∃ (ψ(u), ψ(v)) ∈ E2 : L1
E((u, v)) = L2

E((ψ(u), ψ(v)))

• ∀ (u, v) ∈ E2, ∃ (ψ−1(u), ψ−1(v)) ∈ E1 : L1
E((u, v)) = L2

E((ψ−1(u), ψ−1(v)))

Given two graphs g1 and g2, the problem of graph isomorphism is to check if
there exists an isomorphism between the two graphs; as per Definition 2.4, isomor-
phic graphs are identical in terms of labels and structure. The definition of graph
isomorphism is trivial to extend for multigraphs, since a multiedge between a pair
of vertices can be mapped to a labelled edge, which is conceptually a simple graph
as introduced in Definition 2.1.

The problem of graph isomorphism occupies an important position in the world
of complexity analysis, since it is one of the few problems that is not known to be in
either P or NP-complete [Fortin, 1996]. Although recently there has been a significant
milestone in proposing a new quasi-polynomial time algorithm [Babai et al., 2016],
many practical approaches exist that solve the problem in near polynomial time for
most of the real world graphs structures [McKay et al., 1981, McKay and Piperno,
2014]. In this thesis, we confront the problem of graph isomorphism in Chapter 5,
while performing the task of graph mining.
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Closely related to graph isomorphism is the problem of detecting the presence
of a smaller graph in a larger graph. If graph isomorphism is regarded as a formal
notion of graph equality, subgraph isomorphism can be seen as subgraph equal-
ity [Cook and Holder, 2006].

Definition 2.5 (Subgraph Isomorphism). A graph g1 = (V 1, E1, L1
V , L

1
E) is subgraph-

isomorphic to a graph g2 = (V 2, E2, L2
V , L

2
E) if and only if there exists a subgraph s

of g2 that is isomorphic to g1.

An injective function ψ : V 1 → V 2 is called a subgraph isomorphism or a
subgraph embedding from g1 to g2 if ψ is a graph isomorphism between g1 and s,
that satisfies the following conditions:

• (u, v) ∈ E1 =⇒ (ψ(u), ψ(v)) ∈ E2

• L1
V (u) = L2

V (ψ(u))

• L1
E((u, v)) = L2

E((ψ(u), ψ(v)))

The problem of subgraph isomorphism plays a key role when dealing with exact
subgraph matching problems. However, the fact that the problem of subgraph
isomorphism is known to be NP-complete [Garey and Johnson, 1979] has inspired
many works [Ullmann, 1976, Cordella et al., 2004, Kim et al., 2011, Lee et al., 2012,
Han et al., 2013, Ren and Wang, 2015] to propose subgraph matching approaches
that employ efficient search heuristics. The notion of subgraph isomorphism for
multigraphs can be defined in the same spirit of Definition 2.5; depending on the
variant of multigraph that we employ in the thesis, we introduce the definitions in
the corresponding chapter (Chapter 3, 5).

Another graph matching concept is graph homomorphism. If isomorphism on
two graphs was a structure preserving mapping, the homomorphism mapping pre-
serves connectedness between two graphs.

Definition 2.6 (Graph Homomorphism). A graph homomorphism from a graph
g1 = (V 1, E1, L1

V , L
1
E) to graph g2 = (V 2, E2, L2

V , L
2
E) is a mapping φ : V 1 → V 2 so

that:

• L1
V (u) = L2

V (φ(u)) ∀u ∈ V 1

• ∀ (u, v) ∈ E1, ∃ (φ(u), φ(v)) ∈ E2 : L1
E((u, v)) = L2

E((φ(u), φ(v)))

It is to be noted that if the graph homomorphism φ : g1 → g2 is a bijection
whose inverse function is also a homomorphism, then φ is a graph isomorphism.

Definition 2.7 (Subgraph Homomorphism). A graph g1 = (V 1, E1, L1
V , L

1
E) is

subgraph-homomorphic to a graph g2 = (V 2, E2, L2
V , L

2
E) if and only if there exists a

subgraph s of g2 that is homomorphic to g1.



2.3. GRAPH DATABASES, INDEXES 19

The notion of subgraph homomorphism for multigraphs will be introduced in
Chapter 4, where we also consider directed multigraphs. The idea of employing
graph homomorphism for graph matching is an active area [Baget, 2005, Fan et al.,
2010] in order to address several real world applications.

2.3 Graph Databases, Indexes

In this section we discuss about the graph representation of real world data, and
efficient ways to retrieve information from such graph representations. In this thesis,
we consider graphs as data structures used for structured representation of the real
world data. Thus, depending on the application and the nature of dataset itself,
graph data structures can be broadly categorised into the following two domains.

Transactional graph database. A transactional graph database is represented
as a finite set D = {g1, g2, . . . , gn} of n graph structures, where each graph gi rep-
resents a transaction in the scope of a dataset. For example, a chemical compound
dataset [Yan and Han, 2002], can be conceived as a transactional graph database,
where the structure of each chemical compound is represented as a graph g. Trans-
actional graphs have been explored by the graph management community for more
than a decade, and numerous works have been proposed both for querying [Shasha
et al., 2002, Cheng et al., 2007, Shang et al., 2008] and mining [Inokuchi et al.,
2000, Kuramochi and Karypis, 2001, Yan and Han, 2002] transactional graphs.

Single large graph database. A single large graph database is composed of one
large connected graph, where vertices and edges represent the entities and the rela-
tions among them for the entire dataset. For example, a social network or the World
Wide Web can be conceived as single large graphs [Boden et al., 2012, Zou et al.,
2014b]. Instances of datasets that have to be represented as single large graphs have
been proliferating in the past few years, thereby propelling the graph management
community to manage such graph databases. With the emergence of single large
graphs in the recent past, several works have been proposed for both querying [Kim
et al., 2011, Zhao and Han, 2010, Han et al., 2013] and mining [Kuramochi and
Karypis, 2005, Thomas et al., 2010, Elseidy et al., 2014] in single large graphs.

In this thesis, we solely focus on single large graph databases, where a graph is
allowed to handle multiedges, and hence a single large multigraph database.

Graph Indexes

In the context of databases, an index is a data structure that improves the speed of
data retrieval operations on a database at the cost of storage space, which is required
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to maintain the index data structure [Yan et al., 2004]. The notion of index is thus
applicable to graph databases as well. The challenge associated with graph indexes
is to identify the intrinsic characteristics of the graph data and represent it in a data
structure for the efficient retrieval of information from the data. Further, the index
structures have to be stable w.r.t database updates, so as to achieve incremental
index maintenance.

Several indexing approaches have been proposed for managing graph data, in
particular for querying graph data. In [Yan et al., 2004], frequent substructures
are used to propose index structures; in [Yan et al., 2005a] the authors propose
an indexing model based on discriminative frequent structures; in [Wang et al.,
2012], a two-level inverted index is proposed to speed up graph similarity search.
In this thesis, we propose indexing structures (Chapter 3, 4) by summarising the
characteristics of the multiedges, and exploring the multigraph properties.

2.4 On Querying Graphs

Graph querying refers to the task of querying subgraph patterns in a given graph
database. In this thesis, we focus on the subgraph query matching problem, where
we are interested in finding the embeddings of a subgraph query in a graph database.
In Chapter 3 and 4, we propose efficient approaches for two variants of subgraph
query matching, namely isomorphic match and homomorphic match, respectively.
During subgraph query matching, one discovers the embeddings of a subgraph query
by traversing the search space. The search space is typically traversed using the
backtracking search.

Backtracking Search

A backtracking search is a recursive function where at each stage, the match that
we have found so far is extended until the entire query is matched. Consider an
instance where we are interested in determining if a query q is subgraph isomorphic
to a graph database g. Now let us assume that we have already determined that
a partial query subgraph q1 is isomorphic to a subgraph g1 of the database graph
g. We then try to add a vertex to the partial query subgraph g1 such that the new
subgraph, say q2, is isomorphic to another subgraph g2 of database graph g. At
some point we may hit a dead end, since there might be no vertices that can be
added to extend the isomorphic subgraphs. We then backtrack to previous smaller
matching subgraphs, and try to extend with a different vertex choice. The process
ends by either finding a complete match of the subgraph query q in the database
graph g and returning true, or by exhausting all possibilities and returning false.
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Algorithm 2.1: Backtracking(q, g, mq, mg)

1 if mq.size 6= q.size then
2 u := ChooseNextVertex(q,mq)
3 M := FindAllMatches(u, q, g,mg)
4 for each matched vertex m ∈M do
5 Expand: mq = mq ∪ u; mg = mg ∪m
6 Backtracking(q, g, mq, mg) /* Make a recursive call */
7 Contract: mq = mq \ u

8 else
9 Output: mg /* Matched embedding */

A typical backtracking algorithm (an exhaustive approach) to check if a query
q is subgraph isomorphic to g is depicted in the Backtracking procedure (Algo-
rithm 2.1). The procedure takes a query subgraph q, a data graph g, a partially
matched query mq and a partially matched graph mg as inputs, and outputs the
completely matched graph mg, if a match is found. Initially, a query vertex u ∈ q
is chosen and the corresponding set M of matched vertices are discovered. Then for
each matched vertex m ∈M , the partially matched query mq is extended with the
vertex u and the partially matched graph mg is extended with the vertex m. Then
the backtracking approach Backtracking is called recursively until the entire
query q is matched. If the entire query q is matched, then corresponding matched
graph mg is outputted; else the backtracking terminates after the exhaustive search.

The problem with the exhaustive backtracking search is that, for a database
with n vertices, there are n! possible vertex mappings, and hence we need to prune
the search space. In Chapter 3 and 4, we propose several search space pruning
techniques that makes the backtracking approach very efficient.

2.5 Graph Data Mining

Part II of the thesis is dedicated to graph data mining. The objective of graph
data mining is to discover interesting patterns/substructures in graphs. One of the
fundamental fields of graph data mining is frequent pattern mining that searches for
recurring relationships in a given graph data set. Finding such frequent patterns
plays an essential role in mining associations, correlations, and many other inter-
esting relationships among data [Aggarwal and Han, 2014]. The notion of mining
frequent patterns can be traced back to mining frequent itemsets where association
rules are explored [Agrawal et al., 1993, Agrawal et al., 1994]. For example, a set of
items, such as milk and bread, that appear frequently together in a transaction data
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set is a frequent itemset. The concept of frequent pattern has later on been extended
for mining frequent subsequences [Zaki, 2001] and substructures [Kenji et al., 2004].
A substructure is relatively complex when compared to itemsets or subsequences; a
substructure could a tree [Han et al., 2004] or a graph [Yan and Han, 2002].

This work is dedicated to graph substructures and we are interested in frequent
subgraph mining (FSM) in the context of multigraphs.

2.5.1 Basics of FSM

Since a lot of contributions have been made in the field of FSM for transactional
database settings, we first introduce the concept of frequent subgraph in transac-
tional graph data. In literature, the frequency of a graph pattern is referred to as
support.

Definition 2.8 (Support). We define the support of a subgraph pattern p as the
percentage (or number) of graphs in D where p is a subgraph.

Thus, given a labelled graph dataset D = {g1, g2, . . . , gn}, a subgraph pattern
p is frequent only if the support is no less than a minimum support threshold δ.

For single large graphs, it is difficult to find an appropriate support defini-
tion since multiple embeddings of a subgraph may have overlaps [Kuramochi and
Karypis, 2005]. If arbitrary overlaps between non-identical embeddings are al-
lowed, the resulting support does not satisfy the anti-monotonicity property (Defi-
nition 2.9), which is essential for most frequent pattern mining algorithms. There-
fore, many works have proposed ideas on various support measures that are anti-
monotonic [Kuramochi and Karypis, 2005, Fiedler and Borgelt, 2007, Bringmann
and Nijssen, 2008].

Definition 2.9 (Anti-Monotone). A constraint f is called anti-monotone iff, for a
given graph g, f(g) =⇒ f(g′), for every subgraph g′ of g.

In [Kuramochi and Karypis, 2005], the notion of simple overlap is introduced,
which is formally defined as follows.

Definition 2.10 (Simple Overlap). Given a pattern p = (V,E), a simple overlap of
occurrences θ1 and θ2 of the pattern p exists if θ1(E) ∩ θ2(E) 6= ∅.

When all possible occurrences {θ1, θ2, . . . } of a pattern p in a graph g are com-
puted, an overlap graph is constructed where each occurrence θi corresponds to a
node and there is an edge between the nodes of θi and θj if they overlap.

In [Fiedler and Borgelt, 2007], the authors suggest a definition that relies on
the non-existence of equivalent ancestor embeddings in order to guarantee that the
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resulting support is anti-monotone. The basic idea of this measure is that some
of the simple overlaps (Definition 2.10) can be disregarded without harming the
anti-monotonicity of the support measure. The harmful overlap is defined below.

Definition 2.11 (Harmful Overlap). Given a pattern p = (V,E), a harmful overlap
of occurrences θ and θ′ of pattern p exists if ∃ v ∈ V : θ(v), θ′(v) ∈ θ(V ) ∩ θ′(V ).

In both simple overlap and harmful overlap based support measures, the support
of p is defined as the size of the maximum independent set (MIS) of the overlap-
graph. In [Fiedler and Borgelt, 2007], the MIS-support measure has been proved to
be anti-monotone.

In [Bringmann and Nijssen, 2008], the authors examined the above two mea-
sures and identified the expensive operation of solving the MIS problem, and pro-
posed a new computationally efficient support measure called minimum node image
support (MNI), defined below.

Definition 2.12 (Minimum Node Image Support). Given a pattern p with a set
of vertices V and a graph g, let ψ = {ψ1, ψ2, . . . , ψk} be a set of k isomorphic
embeddings of p in g. Then the minimum node image (MNI) support ∆ is defined
as ∆(p) = minu∈V |{ψi(u) : i = 1→ k}|.

The MNI measure is based on the number of unique nodes in the graph g
to which a node of the pattern p is mapped. By taking the vertex in p which is
mapped to the least number of unique vertices in g, the anti-monotonicity of ∆ can
be guaranteed. For the definition of support, several computational benefits could be
identified: (i) instead of O(n2) potential overlaps, where n is the possibly exponential
number of occurrences, the method only needs to maintain a set of vertices for every
node in the pattern, which can be done in O(n); (ii) the method does not need to
deal with an NP complete MIS problem; and (iii) it is not necessary to compute
all embeddings, since it is sufficient to determine for every pair of u ∈ V (p) and
v ∈ V (g) if there is one occurrence in which ψ(u) = v.

Since MNI support measure is computationally less expensive, and many recent
works have used this measure [Elseidy et al., 2014], in this thesis we use the MNI
measure by extending Definition 2.12 for multigraphs, to be discussed in Chapter 5.
Further, in this thesis, support and frequency are used almost interchangeably.

2.5.2 FSM Approaches

Two basic approaches exist for the problem of FSM: the apriori-based approach and
the pattern-growth approach.

Apriori-based approach. The apriori-based approach is a breadth-first search
(BFS) approach, where frequent subgraphs are searched starting with small sized
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subgraphs. At each iteration, the size of newly discovered frequent subgraphs is
increased by one. These new subgraphs are generated by joining two similar but
slightly different frequent subgraphs that were discovered already. The task of join-
ing, also called candidate generation step, is the most expensive step in apriori-based
approaches, since there are many ways to join two subgraphs. The frequency of the
newly formed graphs is then checked. Several apriori-based algorithms for FSM
exist [Inokuchi et al., 2000, Kuramochi and Karypis, 2001].

Algorithm 2.2: FSM-Apriori
1 Input: A graph database g, minimum support threshold δ
2 Output: A set of frequent patterns P

3 Collect: Frequent vertices of g in Pk, where k = 1
4 Call: GraphApriori(g, δ, Pk)

5 Procedure: GraphApriori(g, δ, Pk)
6 while Pk 6= ∅ do
7 Initialize: Pk+1 ← ∅
8 for each frequent pi ∈Pk do
9 for each frequent pj ∈Pk do

10 for each size (k+1) pattern p formed by the merge of pi and pj do
11 if p is frequent in g and p /∈Pk+1 then
12 Insert: p into Pk+1

13 if Pk+1 6= ∅ then
14 GraphApriori(g, δ, Pk+1)

15 return

The framework of apriori-based approach is outlined in Algorithm 2.2. The
approach takes a graph g and a minimum support threshold δ as input, and out-
puts a set of all frequent patterns P. In the beginning, all the frequent single
elements (vertices) are fetched and the procedure GraphApriori is invoked. The
GraphApriori procedure, returns all the frequent patterns of level k + 1. The
patterns of size k + 1 are generated by joining two size k patterns - pi ∈ Pk and
pj ∈Pk; then for each size k + 1 patterns, if we discover that p is frequent, we add
it to Pk+1, and the process is repeated until all the patterns are verified. If there
are any new frequent patters of size k + 1, GraphApriori is invoked to explore
patterns of next size; else, the algorithm returns.

Pattern-growth approach. The pattern-growth approach is more flexible
regarding its search method, as it can use breadth-first search as well as depth-
first search (DFS), the latter of which consumes less memory. Recall that, the
apriori-based approach has to use the breadth-first search (BFS) strategy because
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of its level-wise candidate generation. In order to determine whether a size-(k + 1)
subgraph is frequent, it must check all of its corresponding size-k subgraphs to obtain
an upper bound of its frequency. Thus, before mining any size-(k + 1) subgraph,
the apriori-like approach usually has to complete the mining of size-k subgraphs.
Therefore, BFS is necessary in the apriori-based approach.

The pattern-growth approach extends a frequent subgraph directly by adding
a new edge in every possible position, and hence does not perform expensive join
operations. A potential problem with the edge extension is that the same graph
can be discovered multiple times. Thus, many approaches have proposed efficient
ways of doing away with the repeated discovery of the same pattern. For example,
gSpan algorithm helps avoiding the discovery of duplicates by introducing a right-
most extension technique, where the only extensions take place on the right-most
path [Yan and Han, 2002]. The other prominent pattern-growth approaches include:
FREQT in [Kenji et al., 2004], FFSM in [Huan et al., 2003], SPIN in [Huan et al.,
2004], vSiGram in [Kuramochi and Karypis, 2005] and GraMi in [Elseidy et al., 2014].

Algorithm 2.3: FSM-PatternGrowth
1 Input: A graph database g, minimum support threshold δ
2 Output: A set of frequent patterns P

3 Initialize: P ← ∅
4 Fetch: p a frequent size 1 pattern
5 Call: PatternGrowth(p, g, δ, P)

6 Procedure: PatternGrowth(p, g, δ, P)
7 if p ∈P then
8 return

9 else
10 Insert: p in P

11 Find: all the edges e such that p can be extended to p ◦ e
12 for each frequent p ◦ e do
13 PatternGrowth(p ◦ e, g, δ, P)

14 return

The framework of pattern-growth approach is outlined in Algorithm 2.3. The
approach takes a graph g and a minimum support threshold δ as input, and outputs
a set of all frequent patterns P. In the beginning, a frequent size-1 pattern p is
fetched, which is a seed pattern for the further pattern extension. Whenever the
PatternGrowth procedure - a recursion procedure - is invoked, the pattern p
of size k is checked if it has already been discovered to be frequent; if not, then,
we extend p by all possible edges, and check if they are frequent. Thus, the Pat-
ternGrowth recursion procedure extends a pattern p, only if it is frequent; else
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it continues extending other patterns until no pattern can be extended further, and
the algorithm terminates.

In Part II of this thesis, we adopt the pattern growth approach, since this ap-
proach is more suited for single large graphs, as attested by [Kuramochi and Karypis,
2005]. Further, we contribute to the field of FSM by proposing a novel pattern-
growth approach that can seamlessly handle multigraphs.



Part I

Query Matching in Multigraphs
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Overview Part I

This part of the thesis focuses on the query matching aspects of the field of graph
data management. To be more specific, in this part we are concerned about the
problem of subgraph query matching. The problem demands that given a graph
database and a subgraph query, one has to find all the instances of the subgraph
query in the graph database; in other words, one needs to find all the possible
matches for the subgraph that may exist in the graph database. However, this
subgraph matching itself can be done in several ways. Thus, the two chapters in
this part are dedicated to the two different ways of subgraph query matching that
we perform. When we delve into each of these two works, they might appear to be
different from each other, although the underlying theme of query matching enfolds
them together.

In Chapter 3, we address the subgraph matching problem by discovering iso-
morphic matches. Graph isomorphism is a structure preserving map between two
graphs, where inverse mapping must be strictly maintained. Two graphs are isomor-
phic to each other, if there exists a bijective mapping between the vertices, edges and
the labels on them; thus two isomorphic graphs share a common structure. Thus, in
this work, the core problem is to discover and enumerate all subgraphs of the graph
database that are isomorphic to the query subgraph.

Querying subgraphs for isomorphic matches has a plenty of applications in
retrieving interesting knowledge from social networks, protein-protein interaction
networks. For example, by employing isomorphic matches, in a social network, we
can discover the various instances of a query that exist in different geographical
location; or in a protein-protein interaction network, a biologist would find all the
protein structures that physically interact with each other and are partially located
in a particular area.

In Chapter 4, we address the subgraph matching problem by discovering homo-
morphic matches. Homomorphism is also a structure preserving map between two
structures, much like isomorphism; however, the inverse mapping is not a strict ne-
cessity. Two graphs are homomorphic if they are isomorphic to each other, without
the injective constraint on the vertices.
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Querying homomorphic matches has potential applications in the domains of
knowledge graphs. In particular, Resource Description Framework (RDF) data is
readily represented as multigraphs, where the subject/object node pair is connected
by different predicates [Libkin et al., 2013]. Thus, the RDF knowledge graph can be
queried by enumerating homomorphic matches. Employing homomorphic matching
on RDF knowledge graphs is another way of handling SPARQL querying on RDF
data, where SPARQL1 is a standard language for querying RDF data.

1http://www.w3.org/TR/sparql11-overview/



Chapter

3
Subgraph Query Matching in
Multigraphs

In this chapter, we introduce the problem of subgraph query matching in
single large multigraphs, and propose a novel algorithm SuMGra to re-
trieve all the matched embeddings. SuMGra is composed of novel indexing
schema for multiedges, which will help to efficiently retrieve the vertices
of the multigraph that match the query vertices. Then we perform query
matching by following backtracking procedure, to output the entire set of
embeddings for the given query. We then perform extensive experiments
to highlight the time efficiency as well as the scalability of the proposed
approach.

3.1 Introduction

Subgraph query matching is one of the major challenges faced in the field of graph
data management [Lee et al., 2012], where the challenge is to enumerate all the
embeddings of a query subgraph in a graph database. The underlying complexity
of subgraph query matching problem is due to the decision problem of subgraph
isomorphism, which is NP-complete [Garey and Johnson, 1979]. Due to the inherent
complexity of the problem, several approaches have been proposed to efficiently
traverse the search space by employing a good query matching order and intelligent
pruning rules, and thus, different families of subgraph matching algorithms exist.

A plenty of approaches exist that address the subgraph query problem; however,
either they consider only simple graphs [Han et al., 2013, Lee et al., 2012] or graphs
with some additional information associated with vertices (attributes) [Yang et al.,
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2011]. Since our focus is on multigraphs, and multigraphs are more generic than
the aforementioned graphs, we are addressing a more generic problem of subgraph
query matching.

In this chapter, we introduce a novel approach called SuMGra (Subgraph
Matching for MultiGraphs) that addresses the challenge of finding the embeddings
of a subgraph query in a multigraph. SuMGra involves two main phases: (i) an
offline phase where two separate indexes are constructed that are later used during
subgraph query matching procedure; (ii) an online phase, where a subgraph search
strategy exploits the indexing schema previously built to enumerate all the available
embeddings of the query in the multigraph. The indexing schema exploits the rich
structure supplied by the multigraph, and it utilizes the information associated with
the edge types, in order to facilitate the retrieval of data vertices.

3.2 Related Work

As our work addresses the exact subgraph query processing, we will explore the
related works that appear in the same hue and we present them under the theme
that is paramount in defining them.

Feature based indexing approaches follow the filtering and verification frame-
work. During filtering, some graph patterns are chosen as indexing features to
minimize the number of candidate graphs. Then the verification step checks for the
subgraph isomorphism using the selected candidates. GraphGrep [Shasha et al., 2002]
considers the length of the path within a threshold, as the indexing feature. Owing
to the weak pruning power of GraphGrep, the concept of ‘discriminative ratio’ to se-
lect the set of features was introduced in gIndex [Cheng et al., 2007]. Tree+∆ [Zhao
et al., 2007] uses discriminative subtrees as indexing features that are more efficient
than frequent subgraphs. In another approach called FG-Index [Cheng et al., 2007],
both frequent subgraphs and edges are used as indexing features. An alternative
approach of swift-index [Shang et al., 2008] has been proposed that uses tree features
that maintains a prefix-tree structure.

Backtracking algorithms find embeddings by growing the partial solutions. In
the beginning, they obtain a potential set of candidate vertices for every vertex
in the query graph. Then a recursive subroutine called SubgraphSearch is in-
voked to find all the possible embeddings of the query graph in the data graph.
Ullmann [Ullmann, 1976] proposed the first algorithm under this framework. During
SubgraphSearch, Ullmann adopts a very simple pruning rule (condition on the
degree of the vertex) and follows the input order of the query vertices to choose the
next vertex. On the other hand, VF2 [Cordella et al., 2004] chooses the next vertex
that is connected to the already matched data vertex. It also employs very efficient
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pruning rules that reduces the search space to find the embeddings. QuickSI [Shang
et al., 2008] builds a minimum spanning tree to find the next query vertex, by
assigning weights to the edges of the query graph, depending on the frequency of
occurrence of query vertex in the data graph. GADDI [Zhang et al., 2009] pro-
poses a novel graph indexing method called neighbouring discriminating substruc-
ture (NDS), and claims to have high pruning capabilities. Unlike many indexing
approaches mentioned before that only index subgraph structures, which might re-
sult in huge amount of index substructures, NDS technique allows the indexing
to grow in proportion with the number of neighbouring vertices in the database.
GraphQL [He and Singh, 2008] and sPath [Zhao and Han, 2010] follow neighbour-
hood signature based pruning (in a much similar way) to choose the initial set of
candidates (the aforementioned approaches simply choose vertices with matching
labels), even before calling the SubgraphSearch. GraphQL additionally employs
the pruning technique called pseudo subgraph isomorphism that recursively checks
if adjacent subtree of a query vertex is subgraph isomorphic to the corresponding
feasible data vertex. [Lin and Bei, 2014] exploits neighbourhood tree based approach
to index the large graphs. This work introduces the concept of Neighbourhood Trees
(NTree), that records the neighbourhood relationships of each vertex in the large
graph to filter the non-potential vertices.

All these approaches are able to manage graph with a single label on the vertex
while no discussions and no experiments are supplied to deal with graph containing
edge information.

Although index based approaches focus on transactional database graphs, some
backtracking algorithms address the large single graphs. Also, in [Lee et al., 2012]
we see that all the backtracking algorithms have been employed to test their per-
formance for both database and single graphs. A much recent work TurboISO [Han
et al., 2013], not quite falling into any of the above themes, proposes a novel concept
of candidate region exploration to address matching order problem during subgraph
isomorphism search, and a novel query processing strategy called combine and per-
mute that avoids useless enumerations between query and data vertices. To address
the issue of selecting query vertices for combination, they propose a novel concept
of neighbourhood equivalent class (NEC) defined for a query graph, which is a set
of vertices that are equivalent to any vertex chosen.

A very recent work [Ren and Wang, 2015] extends the ideas proposed in [Han
et al., 2013] defining equivalent classes at query and database level exploiting ver-
tex relationships. Once the data vertices are grouped into equivalence classes, an
hypergraph is built and the query search is performed on the hypergraph structure
instead of the original data graph. The hypergraph can be seen as a summary (or
index structure) to speed up the retrieval step.

Both [Han et al., 2013] and [Ren and Wang, 2015] exploit equivalent classes in
order to speed up the graph isomorphism task. While the first approach exploits
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only vertex relationships on they query graph, the second and most recent work
exploits vertex relationships on both query and data graph.

Although the contribution of backtracking algorithms and TurboISO have been
significant, they have not been explicitly developed for multigraphs and hence a
novel approach is required. Unfortunately both approaches do not discuss possible
extension to graphs containing edge information. Adapting these two methods to
multigraph is not straightforward since, the different types of relationships between
vertices can exponentially increase the number of equivalent classes (for both query
and data graph) thereby drastically reducing the efficiency of the strategies.

A recent work [Bonnici et al., 2013] proposes an approach called RI that employs
light pruning rules in order to avoid visiting useless candidates. The goal of this
algorithm is to maintain a balance between the size of the generated search space
and the time needed to visit it. This approach is a unique approach that is able to
directly manage graph with multiple edges between vertices. And since this is the
only approach that directly manages multigraphs, we chose it as a competitor; our
experiments validate that SuMGra outperforms RI.

3.3 Problem Definition

In this chapter, we address the problem of subgraph query matching in single large
multigraphs with undirected edges and unlabelled vertices. We now introduce the
variant of the multigraph definition (as introduced in Definition 2.3), restricted to
unlabelled, undirected multigraphs.

Definition 3.1. Unlabelled, Undirected Multigraph. An unlabelled undirected multi-
graph G is a tuple of four elements (V,E, LE, T ) where V is the set of vertices and T
is the set of edge types, E ⊆ V ×V is the set of undirected edges and LE : V ×V → 2T

is a labelling function that assigns the subset of edge types to each edge it belongs to.

In order to address the problem of subgraph query matching, one has to solve the
problem of subgraph isomorphism. Since the notion of sub-multigraph isomorphism
will facilitate to introduce the problem of subgraph query matching in multigraphs,
we formally define the problem of sub-multigraph isomorphism. The following def-
inition is a variant of the subgraph isomorphism (as introduced in Definition 2.5),
relevant to the unlabelled undirected multigraphs.

Definition 3.2. Subgraph isomorphism for multigraphs. Given a query multigraph
Q = (V q, Eq, Lq

E, T
q) and a data multigraph G = (V,E, LE, T ), the subgraph iso-

morphism from Q to G is an injective function ψ : V q → V such that:

∀(um, un) ∈ Eq, ∃ (ψ(um), ψ(un)) ∈ E and Lq
E(um, un) ⊆ LE(ψ(um), ψ(un)).
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Having formally introduced the notion of multigraphs and the notion of sub-
graph isomorphism, we now define the problem of subgraph query matching in
multigraphs.

Problem 3.1. Sub-multigraph query matching. Given a query multigraph Q and a
data multigraph G, the sub-multigraph query matching problem is to enumerate all
the embeddings of Q in G, so that each embedding is isomorphic to the query Q.
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Figure 3.1: A sample example to portray the embeddings of a query in graph

The intuition of the problem can be conveyed with the following example. Con-
sider the Figure 3.1, where the data multigraph G is depicted in Figure 3.1a, with a
set of edge types {E1, E2, E3}, and unlabelled vertices, whose identifiers are denoted
by vi. Now consider the sub-multigraph query Q, as depicted in Figure 3.1b, again
with unlabelled vertices, whose identifiers are denoted by ui. Then the Problem 3.1
demands us to enumerate all possible embeddings of Q in G, which are enumerated
as:

M1 := {[u1, v4], [u2, v5], [u3, v3], [u4, v1]}

M2 := {[u1, v4], [u2, v3], [u3, v5], [u4, v6]}

In the above embeddings, a pair of elements represent that a query vertex ui
is matched with a data vertex vi in such a way that, the isomorphic mapping is
retained. Thus both M1 and M2 are isomorphic to the query multigraph Q.

In Figure 3.2, we propose an equivalent representation of the data multigraph
as well as the query subgraph that are depicted in Figure 3.1. This equivalent
representation will be used throughout the chapter for illustration purposes.
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3.4 An Overview of SuMGra

In this section, we sketch the generic framework of the proposed algorithm SuMGra.
The entire approach can be divided into two parts: (i) an indexing schema for
the multigraph G that exploits edge types and the vertex neighbourhood structure
(Section 3.5) (ii) a subgraph search algorithm, that integrates recent advances in
the graph data management field, to enumerate the embeddings of the subgraph
(Section 3.6).
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Figure 3.2: Representation of data multigraph, and the query multigraph

The overall idea of SuMGra is depicted in Algorithm 3.1. Initially, we order
the set of query vertices U using a heuristic proposed in Section 3.6.1. With an
ordered set of query vertices U o, we use the indexing schema to find a list of possible
candidate matches only for the initial query vertex uinit by calling SelectCand
(Line 5), as described in Section 3.6.2. Then, for each possible candidate of the initial
query vertex, we call the recursive subroutine SubgraphSearch, that performs the
subgraph isomorphism test.

The SubgraphSearch procedure (Section 3.6.3), finds the embeddings start-
ing with the possible matches for the initial query vertex uinit (Lines 7-11). Since uinit
has |Cuinit

| possible matches, SubgraphSearch iterates through |Cuinit
| solution

trees in a depth first manner until an embedding is found. That is, Subgraph-
Search is recursively called to find the matchings that correspond to all ordered
query vertices U o. The partial embedding is stored in M = [Mq,Mg] - a pair that
contains the already matched query vertices Mq and the already matched data ver-
tices Mg. Once the partial embedding grows to become a complete embedding, the
repository of embeddings R is updated.
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Algorithm 3.1: SuMGra
1 Input: subgraph Q, graph G, indexes S, N
2 Output: R: all the embeddings of Q in G
3 U o = OrderQueryVertices(Q, G)
4 uinit = U o

1 /* Fetch initial query vertex */
5 Cuinit

= SelectCand(uinit, S)
6 R = ∅ /* Embeddings of Q in G */
7 for each vinit ∈ Cuinit

do
8 Mq = uinit; /* Matched initial query vertex */
9 Mg = vinit; /* Matched possible data vertex */

10 M = [Mq,Mg] /* Partial matching of Q in G */
11 Update: R := SubgraphsSearch(R,M,N , Q,G, U o)

12 return R

3.5 Indexing

In this section, we propose the indexing structures that are built on the graph G that
are used during the subgraph querying procedure. The primary goal of indexing is
to make the query processing time efficient.

Indexing includes (i) an offline construction phase to obtain useful features f
from the graph to build indexes (ii) an online querying phase, where indexes are
exploited to enumerate the possible candidate vertices for the corresponding query
vertices.

For a lucid understanding of our indexing schema, we introduce a few defini-
tions.

Definition 3.3. Vertex signature. For a vertex v, the vertex signature σ(v) is
multiset containing all the multiedges that are incident on v, where any multiedge
between v and a neighbouring vertex v′ is represented by a set that corresponds to
edge types. Formally,

σ(v) =
⋃

v′∈N(v)

LE(v, v′)

where N(v) is the set of neighbourhood vertices of v, and ∪ is the union operator
for multiset.

For instance, in Figure 3.2a, σ(v6) = {{E1, E3}, {E1}}. The vertex signature
is an intermediary representation that is exploited by our indexing schema. All the
vertex signatures of the vertices of the graph in Figure 3.2 are depicted in Table 3.1.
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vi σ(v)
v1 {{E1, E3}}
v2 {{E2, E3, E1}, {E1}}
v3 {{E2, E3, E1}, {E1, E3}, {E1, E2}, {E1}}
v4 {{E1, E2}, {E1, E2}}
v5 {{E1, E3}, {E1, E3}, {E1, E2}, {E1}}
v6 {{E1, E3}, {E1}}
v7 {{E1, E3}}

Table 3.1: Vertex signatures for the graph in Figure 3.2a

3.5.1 Offline Index Construction

The goal of constructing indexing structures is to find the possible candidate set for
the set of query vertices u, thereby reducing the search space for the Subgraph-
Search procedure, making SuMGra time efficient.

Definition 3.4. Candidate set. For a query vertex u, the candidate set C(u) is
defined as C(u) = {v ∈ G|σ(u) ⊆• σ(v)}, where ⊆• is a subset operation on a multiset
of a set σ(·); i.e., σ(u) ⊆• σ(v) iff each set Su ∈ σ(u) has a unique superset Sv ∈ σ(v).

In this light, we propose two indexing structures that are built offline: (i) given
the vertex signature of all the vertices of graph g, we construct a single vertex
signature index S by exploring a set of features f of the signature σ(v) (ii) we build
a vertex neighbourhood index N for every vertex in the graph G.

The index S is used to choose the possible candidates for the initial query vertex
during the SelectCand procedure, and the index N is used to choose the possible
candidates for the rest of the query vertices during SubgraphSearch procedure.

Vertex Signature Index S

This index is constructed to enumerate the possible candidate set only for the initial
query vertex. Since we cannot exploit any structural information for the initial query
vertex, S captures the edge type information from the data vertices, so that the non
suitable candidates can be pruned away.

We construct the index S by organizing the information supplied by the vertex
signature of the graph; i.e., observing the vertex signature of data vertices, we intend
to extract some interesting features. Referring to Table 3.1, the vertex signature
of v6, σ(v6) = {{E1, E3}, {E1}} has two sets of edge types in it and hence v6 is
eligible to be matched with query vertices that have at most two sets of items
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Data vertex Synopses
v f1 f2 f3 f4 f5 f6
v1 1 2 2 1 3 2
v2 2 3 4 1 3 3
v3 4 3 8 1 3 3
v4 2 2 4 1 2 2
v5 4 3 7 1 3 2
v6 2 2 3 1 3 2
v7 1 2 2 1 3 2

Table 3.2: Synopses for all the data vertices in Figure 3.2a

in their signature. Also, σ(v2) = {{E2, E3, E1}, {E1}} has the edge type set of
maximum size 3 and hence a query vertex must have the edge type set of size
at most 3. More such features (e.g., the number of unique edge types, the total
number of occurrences of edge types, etc.) can be proposed to filter out irrelevant
candidate vertices. In particular, for each vertex v, we propose to extract a set
of characteristics summarizing useful features of the neighbourhood of a vertex.
Those features constitute a synopses representation (surrogate) of the original vertex
signature.

In this light, we propose six |f | = 6 useful features that will be illustrated with
the help of the vertex signature σ(v3) = {{E2, E3, E1}, {E1, E3}, {E1, E2}, {E1}}:

f1 Cardinality of vertex signature, (f1(v3) = 4)

f2 The number of unique edge types in the vertex signature, (f2(v3) = 3)

f3 The number of all occurrences of the edge types (repetition allowed), (f3(v3) =
8)

f4 Minimum index value of the edge type alphabet (position of the sequenced
alphabet), (f4(v3) = 1)

f5 Maximum index value of the edge type alphabet (position of the sequenced
alphabet), (f5(v3) = 3)

f6 Maximum cardinality of the vertex sub-signature, (f6(v3) = 3)

In Table 3.2 we list the synopses for each data vertex shown in Figure 3.2, for a
clear understanding.

By exploiting the aforementioned features, we build the synopses to represent
the vertices in an efficient manner that will help us to select the eligible candidates
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during query processing. To support and explain the choice of synopses features, we
conduct few experiments, which will be discussed in detail in Section 3.7.2.

With the synopses representation of every data vertex, we want to represent
the synopses with an efficient data structure. Since each vertex is represented by
a synopses of several fields, a data structure that helps in efficiently performing
range search for multiple elements would be an ideal choice. For this reason, we
build an |f |-dimensional R-tree, whose vertices are the synopses having |f | fields,
where a synopses is nothing but the surrogate representation of the vertices of the
multigraph.

The general idea of using an R-tree structure is as follows: A synopses F =
{f1, . . . , f|f |} of a data vertex spans an axes-parallel rectangle in an f -dimensional
space, where the maximum co-ordinates of the rectangle are the values of the syn-
opses fields (f1, . . . , f|f |), and the minimum co-ordinates are the origin of the rect-
angle (filled with zero values). For example, a data vertex represented by the syn-
opses with two features Fv = (2, 3) spans a rectangle in a 2-dimensional space in
the interval range ([0, 2], [0, 3]). Now if we consider synopses of two query ver-
tices, Fu1 = (1, 3) and Fu2 = (1, 4), we observe that the rectangle spanned by
Fu1 is wholly contained in the rectangle spanned by Fv but Fu2 is not wholly con-
tained in Fv. Formally, the possible candidates for vertex u can be written as
P(u) = {v|∀i∈[1,...,f ]Fu(i) ≤ Fv(i)}, where the constraints are met for all the |f |-
dimensions. Since we apply the same inequality constraint to all the fields, we need
to pre-process few synopses fields; e.g., the field f4 contains the minimum value of
the index, and hence we negate f4 so that the rectangular containment problem still
holds good. Thus, we keep on inserting the synopses representations of each data
vertex v into the R-tree and build the index S, where each synopses is treated as an
|f |-dimensional node of the R-tree.

Vertex Neighbourhood Index N

The aim of this indexing structure is to find the possible candidates for the rest of
the query vertices.

Since the previous indexing schema enables us to select the possible candidate
set C(u) for the initial query vertex, we propose an index structure to obtain the
possible candidate set for the subsequent query vertices. The index N will help us to
find the possible candidate set for a query vertex u during the SubgraphSearch
procedure by maintaining the structural connectivity with the previously matched
candidate vertices, thereby retaining the structural property of the subgraph s for
the possible embeddings in the graph.

The index N comprises of neighbourhood trees built for each of the data ver-
tex v. To understand the index structure, let us consider the data vertex v3 from
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Figure 3.2, shown separately in Figure 3.3a. For this vertex v3, we collect all the
neighbourhood information (vertices and multiedges), and represent this informa-
tion by a tree structure. Thus, the tree representation of a vertex v contains the
neighbourhood vertices and their corresponding multiedges, as shown in Figure 3.3b,
where the nodes of the tree structure are represented by the edge types.

In order to construct an efficient tree structure, we take inspiration from [Ter-
rovitis et al., 2006] to propose the structure - Ordered Trie with Inverted List (OTIL).
Consider a data vertex vi, with a set of n neighbourhood vertices N(vi). Now, for
every pair (vi, N

j(vi)), where j ∈ {1, . . . , n}, there exists a multiedge (set of edge
types) {E1, . . . , Ed}, which is inserted into the OTIL structure. Each multiedge is
ordered (with the increasing edge types), before inserting into OTIL structure, and
the order is universally maintained for both query and data vertices. Further, for
every edge type Ei that is inserted into the OTIL, we maintain an inverted list that
contains all the neighbourhood vertices N(vi), that have the edge type Ei incident
on them. For example, as shown in Figure 3.3b, the edge E2 will contain the list
{v2, v4}, since E2 forms an edge between v3 and both v2 and v4.

To construct the OTIL index as shown in Figure 3.3b, we insert each ordered
multiedge that is incident on v at the root of the trie structure. To make index
querying more time efficient, the OTIL nodes with identical edge type (e.g., E3) are
internally connected and thus form a linked list of data vertices. For example, if we
want to query the index in Figure 3.3b with a vertex having edges {E1, E3}, we do
not need to traverse the entire OTIL. Instead, we perform a pre-ordered search, and
as soon as we find the first set of matches, which is {V2}, we will be redirected to
the OTIL node, where we can fetch the matched vertices much faster (in this case
{V1}), thereby outputting the set of matches as {V2, V1}.

To sum up, both the vertex signature index S and vertex neighbourhood index
N are constructed offline and hence we can afford to invest time on building the
index structure. Once constructed, both these indexes will be used for subgraph
query processing for any type of subgraph over the indexed multigraph data.

3.6 Subgraph Query Processing

In order to find the embeddings of a subgraph, we not only need to find the valid
candidates for each query vertex, but also retain the structure of the subgraph to
be matched.
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Figure 3.3: Building Neighbourhood Index for data vertex v3

3.6.1 Query Vertex Ordering

Before performing query processing, we order the set of query vertices U into an
ordered set of query vertices U o. It is argued that an effective ordering of the query
vertices improves the efficiency of subgraph querying [Lee et al., 2012]. In order to
achieve this, we propose a heuristic that employs two scoring functions.

The first scoring function relies on the number of multiedges of a query vertex.
For each query vertex ui, the number of multiedges incident on it is assigned as a
score; i.e., r1(ui) =

∑m
j=1 |σ(uji )|, where ui has m multiedges, |σ(uji )| captures the

number of edge types in the jth multiedge. Query vertices are ordered in descending
order considering the scoring function r1, and thus uinit = argmax(r1(ui)). For
example, in Figure 3.1b, vertex u3 has the maximum number of edges incident on
it, which is 4, and hence is chosen as an initial vertex. We use the ranking function
r1 to determine the initial vertex in the ordering; for subsequent vertices, we use the
following ranking function r2.

The second scoring function depends on the structure of the subgraph. We
maintain an ordered set of query vertices U o and keep adding the next eligible query
vertex. In the beginning, only the initial query vertex uinit is in U o. The set of next
eligible query vertices U o

nbr are the vertices that are in the 1-neighbourhood of U o.
For each of the next eligible query vertex un ∈ U o

nbr, we assign a score depending
on a second scoring function defined as r2(un) = |{U o ∩ adj(un)}|. It considers the
number of the adjacent vertices of un that are present in the already ordered query
vertices U o. The ranking function r2 is used to order the vertices that are in the
1-neighbourhood of the already ordered partial set of vertices U o.

Then, among the set of next eligible query vertices U o
nbr for the already ordered

U o, we give first priority to function r2 and the second priority to function r1. Thus,
in case of any tie ups, w.r.t. r2, the score of r1 will be considered. When both r1
and r2 leave us in a tie up situation, we resolve by random selection.
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3.6.2 Select Candidates for Initial Query Vertex

For the initial query vertex uinit, we exploit the index structure S to retrieve the
set of possible candidate data vertices, thereby pruning the unwanted candidates for
the reduction of search space.

Theorem 3.1. Querying the vertex signature index S constructed with synopses,
guarantees to output at least the entire set of valid candidate vertices.

Proof. Consider the field f1 in the synopses that represents the cardinality of the ver-
tex signature. Let σ(u) be the signature of the query vertex u and {σ(v1), . . . , σ(vn)}
be the set of signatures on the data vertices. By using f1 we need to show that
C(u) has at least all the valid candidates. Since we are looking for a superset of
query vertex signature, and we are checking the condition f1(u) ≤ f1(vi), where
vi ∈ {v1, . . . , vn}, vi is pruned if it does not match the inequality criterion, since it
can never be an eligible candidate. We can extend this analogy to all the synopses
fields, since they all can be applied disjunctively.

During the SelectCand procedure (Algorithm 3.1, Line 4), we retrieve at
least all the valid candidate vertices from the data graph by exploiting the vertex
signature index S. However, since querying S would not prune away all the unwanted
vertices (w.r.t. edge type equality) for uinit, the corresponding partial embeddings
would be discarded during the SubgraphSearch procedure. For instance, to find
candidate vertices for uinit = u3, we build the synopses for u3 and find the matchable
vertices in g using the index S. As we can recall, synopses representation of each
data vertex spans a rectangle in the d-dimensional space. Thus, it remains to check,
if the rectangle spanned by u3 is contained in any of rectangles spanned by the
synopses of the data vertices, with the help of R-tree built on data vertices, results
in the set {v3, v5}.

Once we obtain the candidate vertices for uinit, we order the candidate data
vertices in the decreasing order of the synopses fields, with decreasing priorities
from f1 to f6. Thus, if v1, . . . , vc compose the ordered set of candidate vertices,
the rectangles spanned by the synopses F (v1), will be of maximum size and that of
F (vc) will be of minimum size.

3.6.3 Subgraph Searching

The SubgraphSearch recursive procedure is described in Algorithm 3.2. Once
an initial query vertex uinit and its possible data vertex vinit ∈ Cuinit

, that could be
a potential match, is chosen from the set of select candidates, we have the partial
solution pair M = [Mq,Mg] of the subgraph query pattern we want to grow. If vinit
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Algorithm 3.2: SubgraphSearch(R,M,N , Q,G, U o)
1 Fetch unxt ∈ U o /* Fetch query vertex to be matched */
2 MC = FindJoinable(Mq,Mg,N , unxt) /* Matchable candidate vertices
*/

3 if |MC | 6= ∅ then
4 for each vnxt ∈MC do
5 Mq.push(unxt);
6 Mg.push(vnxt);
7 M = [Mq,Mg] /* Partial matching grows */
8 SubgraphSearch(R,M,N , Q,G, U o)
9 if (|M | == |U o|) then

10 R = R ∪M /* Embedding found */

11 Mq.pop; /* Remove unxt */
12 Mg.pop; /* Remove vnxt */

13 return R

is a right match for uinit, and we succeed in finding the subsequent valid matches
for U o, we will obtain an embedding; else, the recursion would revert back and move
on to next possible data vertex to look for the embeddings.

In the beginning of SubgraphSearch procedure, we fetch the next query
vertex unxt from the set of ordered query vertices U o, that is to be matched (Line 1).
Then FindJoinable procedure finds all the valid data vertices that can be matched
with the next query vertex unxt (Line 2). The main task of subgraph matching is
done by the FindJoinable procedure, depicted in Algorithm 3.3. Once all the valid
matches for unxt are obtained, we update the solution pairM = [Mq,Mg] (Line 5-7).
Then we recursively call SubgraphSearch procedure until all the vertices in U o

have been matched (Line 8). If we succeed in finding matches for the entire set of
query vertices U o, then we update the repository of embeddings (Line 9-10); else,
we keep on looking for matches recursively in the search space, until there are no
possible candidates to be matched for unxt (Line 3).

The FindJoinable procedure guarantees the structural connectivity of the
embeddings that are outputted. Referring to Figure 3.1, let us assume that the
already matched query vertices Mq = {u2, u3} and the corresponding matched data
verticesMg = {v3, v5}, and the next query vertex to be matched unxt = u1. Initially,
in the FindJoinable procedure, for the next query vertex unxt, we collect all the
neighbourhood vertices that have been already matched, and store them in Aq;
formally, Aq := Mq ∩ adj(unxt) and also collect the corresponding matched data
vertices Ag (Line 1-2). For instance, for the next query vertex u1, Aq = {u2, u3} and
correspondingly, Ag = {v3, v5}.
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Algorithm 3.3: FindJoinable(Mq,Mg,N , unxt)
1 Aq := Mq ∩ adj(unxt) /* Matched query neighbours */
2 Ag := {v|v ∈Mg} /* Corresponding matched data neighbours */
3 Intialize: M temp

C = 0,MC = 0

4 M temp
C = ∩|Aq |

i=1 NeighIndexQuery(N , Ai
g, (A

i
q, unxt))

5 for each vc ∈M temp
C do

6 if σ(vc) ⊇ σ(unxt) then
7 add vc to MC /* A valid matchable vertex */

8 return MC

Theorem 3.2. The algorithm FindJoinable guarantees to retain the structure of
the embeddings.

Proof. Consider a query s of size |u|. For n = 1, let us assume the first matching
M1

d corresponds to the initial query vertex M1
q . Now, Aq and Ad contain all the

adjacent vertices of the previously matched vertices M1
q and M1

d respectively, thus
maintaining the connectivity with the partially matched solution M . Hence for
n > 1, by induction, the structure of entire embedding (that corresponds to the
subgraph) is retained.

Now we exploit the neighbourhood index N in order to find the valid matches
for the next query vertex unxt. With the help of vertex N , we find the possible
candidate vertices M temp

C for each of the matched query neighbours Ai
q and the

corresponding matched data neighbour Ai
g.

To perform querying on the index structure N , we fetch the multiedge that
connects the next matchable query vertex unxt and the ith previously matched query
vertex Ai

q. We now take the multiedge (Ai
q, unxt) and query the index structure

N of the correspondingly matched data vertex Ai
g (Line 4). For instance, with

Ai
q = u2, and unxt = u1 we have a multiedge {E1, E2}. As we can recall, each data

vertex vj has its neighbourhood index structure N (vj), represented by an OTIL
structure. The elements that are added to OTIL are nothing but the multiedges
that are incident on the vertex vj, and hence the nodes in the tree are nothing
but the edge types. Further, each of these edge types (nodes) maintain a list of
neighbourhood (adjacent) data vertices of vj that contain the particular edge type
as depicted in Figure 3.3b. Now, when we look up for the multiedge (Ai

q, unxt), which
is nothing but a set of edge types, in the OTIL structure N (Ai

g), two possibilities
exist. (1) The multiedge (Ai

q, unxt) has no matches in N (Ai
g) and hence, there are no

matchable data vertices for the next query vertex unxt. (2) The multiedge (Ai
q, unxt)

has matches in N (Ai
g) and hence, NeighIndexQuery returns a set of possible

candidate verticesM temp
C . The set of verticesM temp

C , present in the OTIL structure as
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a linked list, are the possible data vertices since, these are the neighbourhood vertices
of the already matched data vertex Ai

g, and hence the structure is maintained. For
instance, multiedge {E1, E2} has a set of matched vertices {v2, v4} as we can observe
in Figure 3.3a.

Further, we check if the next possible data vertices are maintaining the struc-
tural connectivity with all the matched data neighbours Ag, that correspond to
matched query vertices Aq, and hence we collect only those possible candidate ver-
tices M temp

C , that are common to all the matched data neighbours with the help
of intersection operation ∩. Thus we repeat the process for all the matched query
vertices Aq and the corresponding matched data vertices Ag to ensure structural
connectivity (Line 4). For instance, with A1

q = u2 and corresponding A1
g = v3,

we have MC
temp1 = {v2, v4}; with A2

q = u3 and corresponding A2
g = v5, we have

MC
temp2 = {v4}, since the multiedge between (Ai

q, unxt) is {E2}. Thus, the common
vertex v4 is the one that maintains the structural connectivity, and hence belongs
to the set of matchable candidate vertices M temp

C = v4.

The set of matchable candidates M temp
C are the valid candidates for unxt both

in terms of edge type matching and the structural connectivity with the already
matched partial solution. However, at this point, we propose a strategy that pre-
dicts whether the further growth of the partial matching is possible, w.r.t. to the
neighbourhood of already matched data vertices, thereby pruning the search space.
We can do this by checking the condition whether the vertex signature σ(unxt) is
contained in the vertex signature of v ∈ M temp

C (Line 11-13). This is possible since,
the vertex signature σ contains the multiedge information about the unmatched
query vertices that are in the neighbourhood of already matched data vertices. For
instance, v4 can be qualified as MC since σ(v4) ⊇ σ(u1). That is, considering the
fact that we have found a match for u1, which is v4, and that the next possible query
vertex is u4, the superset containment check will assure us the connectivity (in terms
of edge types) with the next possible query vertex u4. Suppose a possible candidate
data vertex fails this superset containment test, it means that, the data vertex will
be discarded by FindJoinable procedure in the next iteration, and we are avoiding
this useless step in advance, thereby making the search more time efficient.

In order to efficiently address the superset containment problem between the
vertex signatures σ(vc) and σ(unxt), we model this task as a maximum matching
problem on a bipartite graph [Hopcroft and Karp, 1973]. Basically, we build a
bipartite graph whose vertices are the sub-signatures of σ(vc) and σ(unxt); and an
edge exists between a pair of vertices only if the corresponding sub-signatures do not
belong to the same signature, and the ith sub-signature of vc is a superset of jth sub-
signature of unxt. This construction ensures to obtain at the end a bipartite graph.
Once the bipartite graph is built we run a maximum matching algorithm to find
a maximum match between the two signatures. If the size of the maximum match
found is equal to the size of σ(unxt), the superset operation returns true otherwise
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σ(unxt) is not contained in the signature σ(vc). To solve the maximum matching
problem on the bipartite graph, we employ the Hopcroft-Karp [Hopcroft and Karp,
1973] algorithm.

3.7 Experimental Evaluation

In this section, we evaluate the performance of SuMGra on real and synthetic
multigraphs and compare it with a state of the art method that is able to manage
edge labels. We consider five real world multigraphs that have very different charac-
teristics in terms of size (vertices, edges, edge types) and density. All the experiments
were run on a server, with 64-bit Intel 6 processors @ 2.60GHz, and 250GB RAM,
running on a Linux OS - Ubuntu. Our methods have been implemented using C++.

3.7.1 Description of Datasets

To validate the correctness, efficiency and versatility of SuMGra, we consider five
real world datasets that span over biological and social network data. Further,
to test the scalability of our approach, we consider a synthetic data set. All the
multigraphs considered in this work are undirected and they do not contain any
attribute on the vertices. Table 3.3 offers a quick description of all the characteristics
of the benchmarks.

(a) # vertices and vertex neighbourhood size (b) Number of edge types for all the datasets

Figure 3.4: Characteristics of multigraph datasets

Real Datasets

For our analysis, we consider five real world data sets: DBLP data set is built by
following the procedure adopted in [Boden et al., 2012]. In this graph, the vertices
correspond to different authors and the edge types represent the 50 conferences
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in Computer Science having the highest number of publications. Two authors are
connected over an edge type if they co-authored at least one paper together in that
conference.

BIOGRID dataset [Bonchi et al., 2014] is a protein-protein interactions network,
where vertices represent proteins and the edges represent interactions between the
proteins. The data set has seven distinct edge types which correspond to the 7
different types of interactions between a pair of proteins.

FLICKR1 dataset has been crawled from Flickr, which is an image and video
hosting website, web services suite, and an online community. In this data set,
the users are represented by vertices, and the blogger’s friends are represented using
edges (since edge network is the friendship network among the bloggers). In addition,
the data set represents the friendship network based on the group memberships (195
in number), which we represent as edge types. Thus multiple edges exist between
two users if they have common multiple memberships.

YOUTUBE dataset [Tang et al., 2012] treats users as the vertices and the
various connections among them as multiedges. The edge information includes the
contacts, mutual-contact, co-subscription network, co-subscribed network: two users
are connected if they are both subscribed by the same user and favorite network (two
users are connected if they share favourite videos).

DBPEDIA2 is a knowledge base built by the Semantic Web Community to
structure information coming from Wikipedia. The RDF format employed to store
such knowledge base can naturally be modeled as a multigraph where vertices are
subjects and objects of the RDF triplets and edges represent the predicate between
them. Since our framework manages undirected multigraphs, we do not consider
edge direction between vertices.

Dataset Vertices Edges Dim Density Adeg Adim

DBLP 83 901 141 471 50 4.0e-5 1.7 1.126
BIOGRID 38 936 310 664 7 4.1e-4 8.0 1.103
FLICKR 80 513 5 899 882 195 1.8e-3 73.3 1.046
YOUTUBE 15 088 19 923 067 5 1.8e-1 1320 1.321
DBPEDIA 4 495 642 14 721 395 676 1.4e-6 3.2 1.063
SYNTH 500 000 25 000 000 20 2.0e-4 50 1.15

Table 3.3: Statistics of datasets

To support the analysis of the results, for all the real graphs, we provide the
vertex neighbourhood distribution as depicted in Figure 3.4, where the distribution

1http://socialcomputing.asu.edu/pages/datasets
2http://dbpedia.org/
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of the number of vertices with the increasing size of vertex neighbourhood is plotted
on a logarithmic scale.

Referring to Figure 3.4 and Table 3.3, we make few observations on the data
sets. The YOUTUBE data set has a flat spectrum of vertex distribution due to its
high density of 1.8e-1, and is mostly concentrated in the region of larger neighbour-
hood size, given its high average degree Adeg = 1320. FLICKR, BIOGRID, DBLP
and DBPEDIA datasets are less dense and hence exhibit a more common power law
distribution. Also, as the Adeg values reduce from FLICKR to BIOGRID to DBPE-
DIA and finally to DBLP, the distribution shifts towards the smaller neighbourhood
size. The sparsest multigraph we consider is DBPEDIA that has a density of 1.4e-6
while it exhibits a very high number of edge types and is the biggest real multigraph,
in terms of vertices, with more than 4M vertices.

Synthetic Dataset

As previously done in [He and Singh, 2008], we generate a synthetic graph employing
the Erdos Renyi (ER) random model, which is a classical random graph generator
model. The synthetic graph contains 500 000 vertices. For each vertex, we set the
average degree to 50. The resulting synthetic multigraph has 25 million multiedges.
We name this multigraph as SYNTH.

Description of Query Subgraphs

To test the behavior of our approach, we generate random queries and clique queries
at random, as done by standard subgraph querying methods [He and Singh, 2008,
Shang et al., 2008]. The size of the generated queries for random queries vary from 3
to 11 in steps of 2, while for clique queries, we vary the size from 3 to 9. The size of a
subgraph is the number of vertices in the subgraph. Since it is hard to inject cliques
into the synthetic graphs [Lin and Bei, 2014], we generate only random queries. For
the DBPEDIA dataset, we are not able to generate enough multigraph clique queries
due its high sparsity.

All the generated queries contain one (or more) edge with at least two edge
types. In order to generate queries that can have at least one embedding, we sample
them from the corresponding multigraph.

For each dataset and query size we obtain 1 000 samples. Following the method-
ology previously proposed for random query matching algorithms [Han et al., 2013,
Lin and Bei, 2014], we report the average time values considering the first 1 000 em-
beddings for each query. It should be noted that the queries returning no answers
were not counted in the statistics (the same statistical strategy has been used by
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[Zhao and Han, 2010, He and Singh, 2008, Lin and Bei, 2014]).

Baseline Approaches

We compare the performance of SuMGra w.r.t. the RI approach recently proposed
in [Bonnici et al., 2013]. The RI method is a subgraph isomorphism algorithm that
employs light pruning rules in order to avoid visiting useless candidates. The goal
of this algorithm is to maintain a balance between the size of the generated search
space and the time needed to visit it. It is composed of two main steps, the first one
is devoted to find a static order of the query vertices using a set of three heuristics
that consider the structure of the subgraph. The second step is the subgraph search
procedure that makes use of pruning rules to traverse the search space and find
embeddings that match the query. The implementation is obtained from the original
authors.

In order to evaluate the effectiveness of our indexing schema we introduce a
variant of our proposal, which we call SuMGra-No-SC. This approach constitutes
a baseline w.r.t. our proposal. Practically, it does not consider constructing the
vertex signature index S, and hence does not select any candidates for the initial
query vertex uinit. Thus, it initializes the candidate set of the initial vertex C(uinit)
with the whole set of data vertices. This baseline can help us to have a more clear
picture about the impact of the S index over the performance of our submultigraph
isomorphism algorithm.

3.7.2 Performance of SuMGra

In Section 3.5, we gave emphasis on constructing the vertex signature index S to
store vertex signatures with the help of synopses representation, and the neighbour-
hood vertex signature N to organize vertex neighbourhood by exploiting the set of
edge types. We recall that SuMGra constructs both S and N offline. While index
S is explored during the query processing, to retrieve valid candidates for the initial
query vertex uinit, the index N is used to retrieve neighbourhood vertices in the
subgraph search routine.

Table 3.4 reports the index construction time of SuMGra for each of the
employed dataset.

All the benchmarks show reasonable time performance and it is strictly related
to the size and density of the considered multigraph. As we can observe, construction
of the index N takes more time when compared to the construction of S for all
the datasets except DBLP. The behaviour is evident for the bigger datasets like
FLICKR, YOUTUBE, DBPEDIA and SYNTH, owing to either huge number of
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edges, or vertices or both. Considering DBLP and BIOGRID, we can note that
the difference in time construction is strictly related to the size in terms of vertices
and edges of the two benchmarks. DBLP has a large number of vertices when
compared to BIOGRID, which influences the construction time of the S index while
the construction time of the N index reflects the difference in terms of edge size
between the two data sets.

Among all the datasets, DBPEDIA is the most expensive dataset to construct
both S and N , since it has huge number of vertices and relatively more edges.

In Table 3.4, we also give an overall picture of the memory consumption of
our proposed algorithm. We capture the memory usage during the runtime when
we build our indexing structures. As we can observe, the cost of storing the index
structures increases with increasing density of graphs, as well as with the increasing
number of vertices and edges. Among all data sets, YOUTUBE is the most expensive
in terms of space consumption.

To conclude, we highlight that the offline step is fast enough since, in the worst
case, for DBPEDIA, we need a bit more than two minutes to index 4 million vertices
and 14 million edges, with a reasonable memory consumption.

Data set Index S Index N Index S +N
Time (seconds) Time (seconds) Size (Mega bytes)

DBLP 1.15 0.37 161
BIOGRID 0.45 0.50 266
FLICKR 1.55 8.89 448
YOUTUBE 1.55 41.81 862
DBPEDIA 64.51 66.59 552
SYNTH 9.15 38.70 438

Table 3.4: Execution time and memory usage for offline index construction

Query Processing Time

Figures 3.5-3.11 summarise the time performance of SuMGra. All the times we
report are in milliseconds; the Y-axis (logarithmic in scale) represents the query
matching time, which includes query processing time, query ordering time, time re-
quired to select the candidate vertices for the initial query vertex and the subgraph
matching time; the X-axis represents the increasing query sizes. Except for DB-
PEDIA and SYNTH datasets (due to unavailability of clique queries), we produce
plots for both random subgraph and clique queries.

We also analyse the time performance of SuMGra by varying the number of
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Figure 3.5: Query Time on DBLP for (a) Random subgraphs with d=2 (b) Random
subgraphs with d=4 (c) Cliques with d=2 (d) Cliques with d=4

edge types in the subgraph. We perform experiments for query multigraphs with
two different edge types: d = 2 and d = 4: a query with d = 2 has at least one edge
that exists in at least 2 edge types. The same analogy applies to queries with d = 4.
We use both setting to generate random subgraph and clique queries.

For DBLP dataset, we observe in Figure 3.5 that SuMGra performs the best
in all the situations, it outperforms the other approaches by a huge margin thanks
to the rigorous pruning of candidate vertices for initial query vertex. However,
SuMGra-No-SC approach and RI give a tough competition to each other. Since
DBLP is a relatively small and yet sparse dataset, the only indexing N used by
SuMGra-No-SC seems to cause a little bit of overhead even when compared to RI.

Figure 3.6 for BIOGRID and Figure 3.7 for FLICKR show similar behaviour
for both random subgraph and clique queries. For these 2 datasets, both SuM-
Gra and SuMGra-No-SC outperform RI. For many query instances, especially
for FLICKR, SuMGra-No-SC obtains better performance than RI while SuMGra
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Figure 3.6: Query Time on BIOGRID for (a) Random subgraphs with d=2 (b)
Random subgraphs with d=4 (c) Cliques with d=2 (d) Cliques with d=4

still outperforms both competitors.

For YOUTUBE dataset (Figure 3.8), again SuMGra is the clear winner. How-
ever, in this case, RI is better than SuMGra-NO-SC, for random queries, although
SuMGra-NO-SC is better than RI for cliques. This could be the case because,
cliques exploit the neighbourhood structure to the maximum extent and thanks to
the vertex neighbourhood indexing scheme N , they both can outperform RI. Since
random subgraph queries do not exploit much of the neighbourhood information,
and due to the very high density of the data graph, SuMGra-NO-SC has a poor
performance.

Moving to DBPEDIA dataset in Figure 3.9, we observe a significant deviation
between RI and SuMGra, with SuMGra winning by a huge margin. Even for
SYNTH dataset (Figure 3.11), SuMGra and SuMGra-No-Sc, outperform RI.

To conclude, we note that SuMGra outperforms the considered base line ap-
proaches, for a variety of different real datasets as well as synthetic dataset. Its
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Figure 3.7: Query Time on FLICKR for (a) Random subgraphs with d=2 (b) Ran-
dom subgraphs with d=4 (c) Cliques with d=2 (d) Cliques with d=4

performance is reported as best for small datasets - DBLP and BIOGRID, for multi-
graphs having many edge types - FLICKR, DBPEDIA, high density - YOUTUBE,
high sparsity - DBPEDIA and synthetic dataset SYNTH. Thus, we highlight that
SuMGra is robust in terms of time performance considering both subgraph and
clique queries, with varying edge types.

Assessing the Set of Synopses Features

In this section we assess the quality of the features composing the synopses repre-
sentation for our indexing schema. To this end, we vary the features we consider
to build the synopses representation to understand if some of the features can be
redundant and/or do not improve the final performance. Since visualizing the com-
bination of the whole set of features will be hard, we limit this experiment to a
subset of combinations. Hence, we choose to vary the size of the feature set from
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Figure 3.8: Query Time on YOUTUBE for (a) Random subgraphs with d=2 (b)
Random subgraphs with d=4 (c) Cliques with d=2 (d) Cliques with d=4
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Figure 3.9: Query Time on DBPEDIA for: (a) d=2 (b) d=4

one to six, by considering the order defined in Section 3.5.1. Using all the six features
results in the proposed approach SuMGra. We denote the different configuration
with the number of features it contains; for instance |f | = 3| means that it considers
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only three features to build synopses and in particular it employs the feature set
{f1, f2, f3}. We also compare these six tests with the SuMGra-No-SC approach,
where no synopses is used and hence no candidates are selected for the initial query
vertex. For the sake of representation, we report only plots for two datasets: DBLP
for subpgraph queries with d = 4 and YOUTUBE with subgraph queries with d = 2.
We select those datasets as they represent cases in which our indexing schema reach
the best gain in time efficiency.

Results are reported in Figure 3.10. We can note that, considering the entire set
of features drastically improves the time performance, when compared to a subset
of these six features. This behaviour can be highlighted for the subgraphs of almost
all size. This experiment provides evidence about the usefulness of considering the
entire feature set to build synopsis. The different features are not redundant and
they are all helpful in pruning the useless data vertices.
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Figure 3.10: Query time with varying synopses fields for: (a) DBLP dataset with
d=4 (b) YOUTUBE dataset with d=2

Scalability of SuMGra

To verify the scalability of SuMGra, we conduct experiments on the synthetic graph
previously introduced. SYNTH has 500 000 vertices, 25 000 000 edges that span over
20 edge types. In Figure 3.11, we report the time required to output the first 1 000
embeddings of subgraphs with d=2 and d=4, for random subgraphs. Although we
can already observe the best time performance of SuMGra among the dense and
huge real datasets - YOUTUBE, DBPEDIA, we conduct test on synthetic datasets
as well, by injecting huge number of multiedges. Again, we can observe that, also
on this huge graph, SuMGra is able to find the embeddings much faster than its
competitors, thus underlining the scalability and the robustness of the proposed
approach.
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Figure 3.11: Query Time on Synthetic for: (a) d=2 (b) d=4

3.8 Summary

In this chapter, the primary goal has been to propose an efficient subgraph query
matching algorithm for undirected multigraphs. In this direction, we proposed an
efficient approach called SuMGra. Since multigraphs are rich with multiedge in-
formation, we proposed several indexing schema that leverage the rich structure
available in the multigraph. One of the proposed indexing structures - vertex sig-
nature index - considers several graph theoretical properties and are collectively
represented as synopses, which is further organized as an R-Tree structure. An-
other index structure called vertex neighbourhood index stores the neighbourhood
multiedge information of each vertex in the data multigraph.

These index structures are then exploited by a subgraph search procedure that
works on multigraphs. The subgraph search procedure follows the backtracking
schema, by carefully allowing an optimized order on the query vertices. The vertex
signature index plays a vital role in pruning the search space to look for subgraph
query matches. The experimental section highlights the efficiency, versatility and
scalability of our approach over different real datasets. The comparison with a
state of the art approach holds a convincing argument that it is indeed necessary to
propose efficient approaches to manage multigraphs. This work has a considerable
follow up work, where one can extend SuMGra for labelled multigraphs. Extending
the work to labelled vertices is pretty straightforward. We can simply maintain a
prefix tree of vertex labels, where a label maintains an inverted list of vertices to
which the label belongs to. Such labelled multigraphs, for instance, find prominent
applications in the field of e-commerce networks where a multigraph generated by
the product ratings in an e-commerce network can have a user-product pair (vertices)
that can share several relations (multiedges) and each relation itself can be labelled.
One instantiation could be a user is connected to a product with a relation of user
rating (an edge type), and the user rating itself would range from values 1 to 5.
Another relation of timestamps, when a user bought the product, can also have
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several labels on the relation of time stamp. In such scenarios, it is necessary to
generalize the existing SuMGra approach.



Chapter

4

Querying RDF Data

In this chapter, we address the problem of subgraph query matching in
the context of RDF data. We introduce a framework to model RDF data
as RDF graph and propose a novel RDF querying engine - AMbER, that
is specifically designed to optimize the computation of matching solutions
for complex queries. We conduct extensive experiments to compare our
proposed AMbER with the existing state-of-the-art RDF querying systems.

4.1 Introduction

In the previous chapter we discussed about querying the isomorphic matches in
multigraphs of various domains. As already discussed in the introduction (Chap-
ter 1), apart from isomorphic matches, a variety of query matching operations are
possible; one such operations is retrieving homomorphic matches. Homomorphic
matches can be used to query a vast amount of data that has been emerging lately,
called RDF data.

Resource Description Framework (RDF) is a standard for the conceptual de-
scription of knowledge. The RDF data is cherished and exploited by various domains
such as life sciences, Semantic Web, social network, etc. Further, its integration at
Web-scale compels RDF management engines to deal with complex queries in terms
of both size and structure. Popular examples are provided by Google, that exploits
the so called knowledge graph to enhance its search results with semantic informa-
tion gathered from a wide variety of sources, or by Facebook, that implements the
so called entity graph to empower its search engine and provide further informa-

59
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tion extracted, for instance by Wikipedia. Another example is supplied by recent
question-answering systems [Cabrio et al., 2012, Zou et al., 2014a] that automatically
translate natural language questions in SPARQL queries and successively retrieve
answers by considering the available information in the different Linked Open Data
sources. In all these examples, complex queries (in terms of size and structure) are
generated to ensure the retrieval of all the required information. Since the use of
large knowledge bases that are commonly stored as RDF triplets is becoming a com-
mon way to ameliorate a wide range of applications, efficient querying of RDF data
sources using SPARQL1 (query language conceived to query RDF data) is becoming
crucial for modern information retrieval systems.

All these different scenarios pose new challenges to the RDF query engines for
two vital reasons: firstly, the automatically generated queries cannot be bounded by
their structural complexity and size (e.g., the DBPEDIA SPARQL Benchmark [Morsey
et al., 2011] contains some queries having more than 50 triplets [Aluç et al., 2014]);
secondly, the queries generated by retrieval systems (or by any other applications)
need to be efficiently answered in a reasonable amount of time. Modern RDF data
management, such as x-RDF-3X [Neumann and Weikum, 2010] and Virtuoso [Er-
ling, 2012], are designed to address the scalability of SPARQL queries but they still
have problems to answer big and structurally complex SPARQL queries [Aluç et al.,
2014].

In the Semantic Web context, question-answering systems (e.g., [Cabrio et al.,
2012, Zou et al., 2014a]) over Linked Open Data (LOD) experience the same issues,
given ∼31 billion triples contained in this collection of data sets [Aluç et al., 2014]
and the complexity of the SPARQL queries that need to involve several properties.

In this chapter we address the following research questions.

Q1 Can we efficiently model the RDF data as a multigraph and perform SPARQL
querying?

Q2 How can we make a graph database (multigraph model of RDF data) approach
outperform the existing relational database approaches?

Q3 What graph theoretical concepts have to be incorporated in order to perform
SPARQL equivalent querying?

To answer Q1, in this chapter, we introduce AMbER (Attributed Multigraph
Based Engine for RDF querying), which is a graph-based RDF querying engine.
RDF data is represented as a multigraph where subjects/objects constitute vertices
and multiple edges (predicates) can appear between the same pair of vertices.

1http://www.w3.org/TR/sparql11-overview/

http://www.w3.org/TR/sparql11-overview/
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The second question Q2 is partially answered by the approach presented in the
previous chapter where we have proved that an offline stage, that involves construct-
ing indexes is followed by query matching process. In the case of RDF data, we apply
the same philosophy but consider the specificity of the RDF data. Thus, the second
question Q2 is answered rather in two stages: (i) an offline stage where the RDF
data is transformed into multigraph with dedicated indexes curated to leverage the
muligraph properties; (ii) an online stage where we exploit the topological properties
of a query to optimize the performance of query matching. To answer query Q3,
we also model SPARQL queries as multigraphs, and the query answering task can
be reduced to the problem of enumerating homomorphic matches of a query multi-
graph in an RDF multigraph. Other graph theoretical concepts like neighbourhood
structure of vertices, vertex degrees are also explored.

4.2 Related Work

The proliferation of semantic web technologies has influenced the popularity of RDF
as a standard to represent and share knowledge bases. In order to efficiently an-
swer SPARQL queries, many stores and API inspired by relational model were pro-
posed [Erling, 2012, Broekstra et al., 2002, Neumann and Weikum, 2010, Carroll
et al., 2004]. x-RDF-3X [Neumann and Weikum, 2010], inspired by modern RDBMS,
represent RDF triples as a big three-attribute table. The RDF query processing is
boosted using an exhaustive indexing schema coupled with statistics over the data.
Also Virtuoso [Erling, 2012] heavily exploits RDBMS mechanism in order to answer
SPARQL queries. Virtuoso is a column-store based systems that employs sorted
multi-column column-wise compressed projections. Also these systems build table
indexing using standard B-trees. Jena [Carroll et al., 2004] supplies API for manip-
ulating RDF graphs. Jena exploits multiple-property tables that permit multiple
views of graphs and vertices which can be used simultaneously.

Recently, the database community has started to investigate RDF stores based
on graph data management techniques [Das et al., 2014, Zou et al., 2014b, Shang
et al., 2008]. The work in [Das et al., 2014] addresses the problem of supporting
property graphs as RDF, since majority of the graph databases are based on prop-
erty graph model. The authors introduce a property graph to RDF transformation
scheme and propose three models to address the challenge of representing the key/-
value properties of property graph edges in RDF. gStore [Zou et al., 2014b] applies
graph pattern matching techniques using filter-and-refinement strategy to answer
SPARQL queries. It employs an indexing schema, named VS∗-tree, to concisely
represent the RDF graph. Once the index is built, it is used to find promising
subgraphs that match the query. Finally, exact subgraphs are enumerated in the
refinement step. TurboHom++ [Shang et al., 2008] is an adaptation of a state of the
art subgraph isomorphism algorithm (TurboISO [Han et al., 2013]) to the problem of



62 CHAPTER 4. QUERYING RDF DATA

SPARQL queries. Exploiting the standard graph isomorphism problem, the authors
relax the injectivity constraint to handle the graph homomorphism, which is the
RDF pattern matching semantics.

Unlike our approach, TurboHom++ does not index the RDF graph, while gStore
concisely represents RDF data through VS∗-tree. Another difference between AM-
bER and the other graph stores is that our approach explicitly manages the multi-
graph induced by the SPARQL queries while no clear discussion is supplied for the
other tools.

4.3 Background and Preliminaries

In this section we provide basic definitions on the interplay between RDF and its
multigraph representation. Later, we explain how the task of answering SPARQL
queries can be reduced to multigraph homomorphism problem.

4.3.1 RDF Data

As per the W3C2 standards, RDF data is represented as a set of triples <S,P,O>,
as shown in Figure 4.1a, where each triple <s, p, o> consists of three components:
a subject, a predicate and an object. Further, each component of the RDF triple can
be of any two forms; an IRI (Internationalized Resource Identifier) or a literal. For
brevity, an IRI is usually written along with a prefix (e.g., <http://dbpedia.org/
resource/isPartOf> is written as ‘x:isPartOf’), whereas a literal is always written
with double quotes (e.g., "90000"). While a subject s and a predicate p are always
an IRI, an object o is either an IRI or a literal.

RDF data can also be represented as a directed graph where, given a triple
<s, p, o>, the subject s and the object o can be treated as vertices and the predicate
p forms a directed edge from s to o, as depicted in Figure 4.1b. Further, to underline
the difference between an IRI and a literal, we use standard rectangles and arc for
the former while we use beveled corner and edge (no arrows) for the latter.

Data Multigraph Representation

Motivated by the graph representation of RDF data (Figure 4.1b), we take a step
further by transforming it to a data multigraph G, as shown in Figure 4.1c.

Let us consider an RDF triple <s, p, o> from the RDF tripleset <S,P,O>.

2http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

<http://dbpedia.org/resource/isPartOf>
<http://dbpedia.org/resource/isPartOf>
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
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Prefixes: x= http://dbpedia.org/resource/ ;  y=http://dbpedia.org/ontology/

Subject  Predicate Object

x:London y:isPartOf x:England

x:England y:hasCapital x:London

x:Christophar_Nolan y:wasBornIn x:London

x:Christophar_Nolan y:LivedIn x:England

x:Christophar_Nolan y:isPartOf x:Dark_Knight_Trilogy

x:London y:hasStadium x:WembleyStadium

x:WembleyStadium y:hasCapacityOf “90000”

x:Amy_Winehouse y:wasBornIn x:London

x:Amy_Winehouse y:diedIn x:London

x:Amy_Winehouse y:wasPartOf x:Music_Band

x:Music_Band y:hasName “MCA_Band”

x:Music_Band y:FoundedIn “1994”

x:Music_Band y:wasFormedIn X:London

x:Amy_Winehouse y:livedIn x:United States

x:Amy_Winehouse y:wasMarriedTo x:Blake Fielder-Civil

x:Blake Fielder-Civil y:livedIn x:United States

(a) RDF tripleset
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(b) Graph representation of RDF data
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(c) Equivalent multigraph G

Figure 4.1: (a) RDF data in n-triple format; (b) graph representation; (c) and the
attributed multigraph G
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Now to transform the RDF tripleset into data multigraph G, we set four protocols:
(i) we always treat the subject s as a vertex; (ii) a predicate p is always treated
as an edge; (iii) we treat the object o as a vertex only if it is an IRI (e.g., vertex
v2 corresponds to object ‘x:London’); (iv) when the object is a literal, we combine
the object o and the corresponding predicate p to form a tuple <p, o> and assign it
as an attribute to the subject s (e.g., <‘y:hasCapacityOf’, "90000"> is assigned to
vertex v4). Every vertex is assigned a null value {-} in the attribute set. However,
to realize this in the realms of graph management techniques, we maintain three
different dictionaries, whose elements are a pair of ‘key’ and ‘value’, and a mapping
function that links them. The three dictionaries depicted in Table 4.1 are: a ver-
tex dictionary (Table 4.1a), an edge-type dictionary (Table 4.1b) and an attribute
dictionary (Table 4.1c). In all the three dictionaries, an RDF entity represented
by a ‘key’ is mapped to a corresponding ‘value’, which can be a vertex/edge/at-
tribute identifier. Thus by using the mapping functions - Mv, Me, and Ma for
vertex, edge-type and attribute mapping respectively, we obtain a directed, vertex
attributed data multigraph G (Figure 4.1c). We now introduce the variant of the
multigraph definition (as introduced in Definition 2.3), restricted to vertex labelled,
directed multigraphs.

Definition 4.1. Directed, Vertex Attributed Multigraph. A directed, vertex at-
tributed multigraph G is defined as a 4-tuple (V,E, LV , LE) where V is a set of
vertices, E ⊆ V × V is a set of directed edges with (v, v′) 6= (v′, v), LV is a labelling
function that assigns a subset of vertex attributes A to the set of vertices V , and LE

is a labelling function that assigns a subset of edge-types T to the edge set E.

To summarise, an RDF tripleset is transformed into a data multigraph G, whose
elements are obtained by using the mapping functions as already discussed. Thus,
the set of vertices V = {v0, . . . , vm} is the set of mapped subject/object IRI, and the
labelling function LV assigns a set of vertex attributes A = {-, a0, . . . , an} (mapped
tuple of predicate and object-literal) to the vertex set V . The set of directed edges
E is a set of pair of vertices (v, v′) that are linked by a predicate, and the labelling
function LE assigns the set of edge types T = {t0, . . . , tp} (mapped predicates) to
these set of edges. The edge set E maintains the topological structure of the RDF
data. Further, mapping of object-literals and the corresponding predicates as a set
of vertex attributes, results in a compact representation of the multigraph. For
example (in Figure 4.1c), all the object-literals and the corresponding predicates are
reduced to a set of vertex attributes.

4.3.2 SPARQL Query

A SPARQL query usually contains a set of triple patterns, much like RDF triples,
except that any of the subject, predicate and object may be a variable, whose
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bindings are to be found in the RDF data3. In the current work, we address the
SPARQL queries with ‘SELECT/WHERE’ clause of the SPARQL language4, that
constitutes the most important operation of any RDF query engines. The SELECT
clause identifies the variables to appear in the query results while the WHERE clause
provides triple patterns to match against the RDF data. It is out of the scope of
this work to consider operators like FILTER, UNION and GROUP BY or manage RDF
update. Such operations, as of now, are left for future extensions.

In the current work, we address the SPARQL queries that have subject/object
as unknown variables, and the predicate as a known entity, where the predicate is
always instantiated as an IRI, as seen in Figure 4.2a..

Query Multigraph Representation

In any valid SPARQL query (as in Figure 4.2a), every triplet has at least one un-
known variable ?X, whose bindings are to be found in the RDF data. It should
now be easy to observe that a SPARQL query can be represented in the form of a
graph as in Figure 4.2b, which in turn is transformed into query multigraph Q (as
in Figure 4.2c).

In the query multigraph representation, each unknown variable ?Xi is mapped
to a vertex ui that forms the vertex set U component of the query multigraph Q
(e.g., ?X6 is mapped to u6). Since a predicate is always instantiated as an IRI, we
use the edge-type dictionary in Table 4.1b, to map the predicate to an edge-type
identifier ti ∈ T (e.g., ‘isMarriedTo’ is mapped as t8). When an object oi is a literal,
we use the attribute dictionary (Table 4.1c), to find the attribute identifier ai for
the predicate-object tuple <pi, oi> (e.g., {a0} forms the attribute for vertex u4).
Further, when a subject or an object is an IRI, which is a not a variable, we use
the vertex dictionary (Table 4.1a), to map it to an IRI -vertex uirii (e.g., ‘x:United-
States’ is mapped to uiri0 ) and maintain a set of IRI vertices R. Since this vertex is
not a variable and hence not a real vertex of the query, we portray it differently by
a shaded square shaped vertex. When a query vertex ui does not have any vertex
attributes associated with it (e.g., u0, u1, u2, u3, u6), a null attribute {-} is assigned
to it. On the other hand, an IRI -vertex uirii ∈ R does not have any attributes.
Thus, a SPARQL query is transformed into a query multigraph Q.

In this work, we always use the notation V for the set of vertices of G, and U
for the set of vertices of Q. Consequently, a data vertex v ∈ V , and a query vertex
u ∈ U . Also, an incoming edge to a vertex is positive (default), and an outgoing

3http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
4http://www.w3.org/TR/sparql11-overview/

http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/sparql11-overview/
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SELECT  ?X0 ?X1  ?X2  ?X3  ?X4  ?X5  ?X6  WHERE  { 
?X0 y:livedIn ?X1 .
?X1 y:isPartOf ?X2 . 
?X2 y:hasCapital ?X1 . 
?X1 y:hasStadium ?X4 .
?X3 y:wasBornIn ?X1 .
?X3 y:diedIn ?X1 .
?X3 y:isMarriedTo ?X6 .
?X3 y:wasPartOf ?X5 .
?X5 y:wasFormedIn ?X1 .
?X4 y:hasCapacity “90000” .
?X5 y:hasName “MCA_Band” .
?X5 y:foundedIn “1934” . 
?X3 y:livedIn x:United States . }

(a) SPARQL Query
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(b) Graph representation of SPARQL
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(c) Equivalent Multigraph Q

Figure 4.2: (a) SPARQL query representation; (b) graph representation (c) at-
tributed multigraph Q
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s/o Mv(s/o)
x:Music_Band v0

x:Amy_Winehouse v1
x:London v2
x:England v3

x:WembleyStadium v4
x:United States v5

x:Blake Fielder-Civil v6
x:Christopher-Nolan v7
x:Dark-Knight-Trilogy v8

(a) Vertex Dictionary

p Me(p)
y:isPartOf t0
y:hasCapital t1
y:hasStadium t2

y:livedIn t3
y:diedIn t4

y:wasBornIn t5
y:wasFormedIn t6
y:wasPartOf t7

y:wasMarriedTo t8

(b) Edge-type Dictionary

<p, o> Ma(<p, o>)
<y:hasCapacityOf, 90000"> a0
<y:wasFoundedIn, "1994"> a1
<y:hasName, "MCA_Band"> a2

(c) Attribute Dictionary

Table 4.1: Dictionary look-up tables for vertices, edge-types and vertex attributes

edge from a vertex is labelled negative (‘-’).

4.3.3 SPARQL Querying by Adopting Multigraph Homomor-
phism

As we recall, the problem of SPARQL querying is addressed by finding the solutions
to the unknown variables ?X, that can be bound with the RDF data entities, so
that the relations (predicates) provided in the SPARQL query are respected. In this
work, to harness the transformed data multigraph G and the query multigraph Q,
we reduce the problem of SPARQL querying to a sub-multigraph homomorphism
problem. The RDF data is transformed into data multigraph G and the SPARQL
query is transformed into query multigraph Q. Let us recall that finding SPARQL
answers in the RDF data is equivalent to finding all the sub-multigraphs of Q in
G that are homomorphic. We now formally introduce homomorphism for a ver-
tex attributed, directed multigraph, which is a variant of the generic definition of
homomorphism as introduced in Definition 2.7.

Definition 4.2. Sub-multigraph Homomorphism. Given a query multigraph Q =
(U,EQ, LU , L

Q
E) and a data multigraph G = (V,E, LV , LE), the sub-multigraph ho-

momorphism from Q to G is a surjective function ψ : U → V such that:
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1. ∀u ∈ U,LU(u) ⊆ LV (ψ(u))

2. ∀(um, un) ∈ EQ, ∃ (ψ(um), ψ(un)) ∈ E, where (um, un) is a directed edge, and
LQ
E(um, un) ⊆ LE(ψ(um), ψ(un)).

Thus, by finding all the sub-multigraphs in G that are homomorphic to Q,
we enumerate all possible homomorphic embeddings of Q in G. These embeddings
contain the solution for each of the query vertex that is an unknown variable. Thus,
by using the inverse mapping functionM−1

v (vi) (introduced in table 4.1), we find the
bindings for the SPARQL query. The decision problem of subgraph homomorphism
is NP-complete. This standard subgraph homomorphism problem can be seen as a
particular case of sub-multigraph homomorphism, where both the labelling functions
LE and LQ

E always return the same subset of edge-types for all the edges in both
Q and G. Thus the problem of sub-multigraph homomorphism is at least as hard
as subgraph homomorphism. Further, the subgraph homomorphism problem is a
generic scenario of subgraph isomorphism problem where, the injectivity constraints
are slackened [Shang et al., 2008].

4.4 AMBER: A SPARQL Querying Engine

We now present an overview of AMbER (Attributed Mulitgraph Based Engine for
RDF querying) that contains two different stages: (i) an offline stage during which,
RDF data is transformed into multigraph G and then a set of index structures I is
constructed that captures the necessary information contained in G; (ii) an online
stage during which, a SPARQL query is transformed into a multigraph Q, and then
by exploiting the subgraph matching techniques along with the already built index
structures I, the homomorphic matches of Q in G are obtained. The AMbER
framework is depicted in Figure 4.3.

AMBER
Algo

Transform into
multigraph G

Transform into
multigraph Q

Construct
Data Indexes (I)

Data 
Indexes (I)

OFFLINE ONLINE

SPARQL
Query

RDF
Data

SPARQL
Solutions

Figure 4.3: The AMbER Framework

Given a multigraph representation Q of a SPARQL query, AMbER decomposes
the query vertices U into a set of core vertices Uc and satellite vertices Us. Intuitively,
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a vertex u ∈ U is a core vertex, if the degree of the vertex is more than one; on
the other hand, a vertex u with degree one is a satellite vertex. For example, in
Figure 4.2c, Uc = {u1, u3, u5} and Us = {u0, u2, u4, u6}. Once decomposed, we run
the sub-multigraph matching procedure on the query structure spanned only by the
core vertices. However, during the procedure, we also process the satellite vertices (if
available) that are connected to a core vertex that is being processed. For example,
while processing the core vertex u1, we also process the set of satellite vertices
{u0, u2, u4} connected to it; whereas, the core vertex u5 has no satellite vertices
to be processed. In this way, as the matching proceeds, the entire structure of the
query mulitgraph Q is processed to find the homomorphic embeddings in G. The set
of indexing structures I are extensively used during the process of sub-multigraph
matching. The homomorphic embeddings are finally translated back to the RDF
entities using the inverse mapping functionM−1

v as discussed in Section 4.3.

4.5 Index Construction

In Section 3.5 of the previous chapter, we proposed indexing structures for unla-
belled, undirected multigraphs. In this section, we propose indexing structures that
can manage labelled and directed multigraphs; although some of the proposed in-
dexing structures in this section are in the same spirit of previous chapter, we do
elaborate them, since it enables us to understand the subtleties. The primary goal
of indexing is to make the SPARQL querying time efficient.

Given a data multigraph G, we build the following three different indices: (i)
an inverted list A for storing the set of data vertex for each attribute in ai ∈ A
(ii) a trie index structure S to store features of all the data vertices V (iii) a set of
trie index structures N to store the neighbourhood information of each data vertex
v ∈ V . For brevity of representation, we ensemble all the three index structures into
I := {A,S,N}.

During the query matching procedure (the online step), we access these indexing
structures to obtain the candidate solutions for a query vertex u. Formally, for a
query vertex u, the candidate solutions are a set of data vertices Cu = {v|v ∈ V }
obtained by accessing A or S or N , denoted as CAu , CSu and CNu respectively.

4.5.1 Attribute Index

The set of vertex attributes is given by A = {a0, . . . , an} (Section 4.3), where a data
vertex v ∈ V might have a subset of A assigned to it. We now build the vertex
attribute index A by creating an inverted list where a particular attribute ai has
the list of all the data vertices in which it appears.
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Data Signature Synopses
vertex v σv f+1 f+2 f+3 f+4 f−1 f−2 f−3 f−4

v0 {{−t6}, {t7}} 1 1 -7 7 1 1 -6 6
v1 {{−t3}, {−t7}, {−t8}, {−t4,−t5}} 0 0 0 0 2 5 -3 8
v2 {{−t0}, {t1}, {−t2}, {t5}, {t6}, {t4, t5}} 2 4 -1 6 1 2 0 2
v3 {{t0}, {t3}, {−t1}} 1 2 0 3 1 1 -1 1
v4 {{t2}} 1 1 -2 2 0 0 0 0
v5 {{t3}, {t3}} 1 1 -3 3 0 0 0 0
v6 {{t8}, {−t3}} 1 1 -8 8 1 1 -3 3
v7 {{−t0}, {−t3}, {−t5}} 0 0 0 0 1 3 0 5
v8 {{t0}} 1 1 0 0 0 0 0 0

Table 4.2: Vertex signatures and the corresponding synopses for the vertices in the
data multigraph G (Figure 4.1c)

Given a query vertex u with a set of vertex attributes u.A ⊆ A, for each
attribute ai ∈ u.A, we access the index structure A to fetch a set of data vertices
that have ai. Then we find a common set of data vertices that have the entire
attribute set u.A. For example, considering the query vertex u5 (Figure 4.2c), it has
an attribute set {a1, a2}. The candidate solutions for u5 are obtained by finding all
the common data vertices, in A, between a1 and a2, resulting in CAu5

= {v0}.

4.5.2 Vertex Signature Index

The index S captures the edge type information from the data vertices. For a
lucid understanding of this indexing schema we formally introduce the notion of
vertex signature in directed multigraphs, that is defined for a vertex v ∈ V , which
encapsulates the edge information associated with it.

Definition 4.3. Vertex signature for directed multigraphs. For a vertex v ∈ V ,
the vertex signature σv is a multiset containing all the directed multi-edges that are
incident on v, where a multi-edge between v and a neighbouring vertex v′ is repre-
sented by a set that corresponds to the edge types. Formally, σv =

⋃
v′∈N(v) LE(v, v′)

where N(v) is the set of neighbourhood vertices of v, and ∪ is the union operator
for multiset.

The index S is constructed by tailoring the information supplied by the vertex
signature of each vertex in G. To extract some interesting features, let us observe the
vertex signature σv2 as supplied in Table 4.2. To begin with, we can represent the
vertex signature σv2 separately for the incoming and outgoing multi-edges as σ+

v2
=

{{t1}, {t5}, {t6}, {t4, t5}} and σ−v2 = {{−t0}{−t2}} respectively. Now we observe
that σ+

v2
has four distinct multi-edges and σ−v2 has two distinct multi-edges. Now, let
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us think that we want to find the candidate solutions for a query vertex u. The data
vertex v2 can be a match for u only if the signature of u has at most four incoming
(‘+’) edges and at most two outgoing (‘-’) edges; else v2 can not be a match for u.
Thus, more such features (e.g., maximum cardinality of a set in the vertex signature)
can be proposed to filter out irrelevant candidate vertices. Thus, for each vertex
v, we propose to extract a set of features by exploiting the corresponding vertex
signature. These features constitute a synopses, which is a surrogate representation
that approximately captures the vertex signature information.

The synopsis of a vertex v contains a set of features F , whose values are com-
puted from the vertex signature σv. In this background, we propose four distinct
features: f1 - the maximum cardinality of a set in the vertex signature; f2 - the
number of unique dimensions in the vertex signature; f3 - the minimum index value
of the edge type; f4 - the maximum index value of the edge type. For f3 and f4,
the index values of edge type are nothing but the position of the sequenced alpha-
bet. These four basic features are replicated separately for outgoing (negative) and
incoming (positive) edges, as seen in Table 4.2. Thus for the vertex v2, we obtain
f+
1 = 2, f+

2 = 4, f+
3 = −1 and f+

4 = 7 for the incoming edge set and f−1 = 1, f−2 = 2,
f−3 = 0 and f−4 = 2 for the outgoing edge set. Synopses for the entire vertex set V
for the data multigraph G are depicted in Table 4.2.

It is to be noted that the number of synopses fields in this chapter are 4 (8,
after considering separately for directed graphs); however, in the previous chapter,
we had 6 synopses fields. This is because, in this chapter, we are focusing on the
homomorphic matches, and in the previous chapter, our focus was on isomorphic
matches. And we have learnt that homomorphism is less constrained when compared
to isomorphism. Thus, for a query, the number of homomorphic matches are always
at least as much as the isomorphic matches.

Further, as we have seen in the previous chapter that R-tree was a very efficient
structure; here also we use the R-tree data structure to store the entire synopses.
This R-tree constitutes the vertex signature index S. A synopsis with |F | fields
forms a leaf in the R-tree. When a set of possible candidate solutions are to be
obtained for a query vertex u, we create a vertex signature σu in order to compute
the synopsis, and then obtain the possible solutions from the R-tree structure.

Formally, the candidate solutions for a vertex u can be written as CSu =
{v|∀i∈[1,...,|F |]f±i (u) ≤ f±i (v)}, where the constraints are met for all the |F |-dimensions.
Since we apply the same inequality constraint to all the fields, we negate the fields
that refer to the minimal index value of the edge type (f+

3 and f−3 ) so that the rect-
angular containment problem still holds good. Further to respect the rectangular
containment, we populate the synopses fields with ‘0’ values, in case, the signature
does not have either positive or negative edges in it, as observed in Table 4.2 for v1,
v3, v4, v5 and v7.
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For example, if we want to compute the possible candidates for a query vertex
u0 in Figure 4.2c, whose signature is σu0 = {−t5}, we compute the synopsis which
is [0 0 0 0 1 1 5 5]. Now we look for all those vertices that subsume this synopsis in
the R-tree, whose elements are depicted in Table 4.2, which gives us the candidate
solutions CSu0

= {v1, v7}, thus pruning the rest of the vertices.

The S index helps to prune the vertices that do not respect the edge type
constraints. This is crucial since this pruning is performed for the initial query
vertex, and hence many candidates are cast away, thereby avoiding unnecessary
recursion during the matching procedure. For example, for the initial query vertex
u0, whose candidate solutions are {v1, v7}, the recursion branch is run only on these
two starting vertices instead of the entire vertex set V .

4.5.3 Vertex Neighbourhood Index

The vertex neighbourhood index N captures the topological structure of the data
multigraph G. The index N comprises of 1-neighbourhood trees built for each data
vertex v ∈ V . Since G is a directed multigraph, and each vertex v ∈ V can have both
the incoming and outgoing edges, we construct two separate index structures N+

and N− for incoming and outgoing edges respectively, that constitute the structure
N .

To understand the index structure, let us consider the data vertex v2 from Fig-
ure 4.1c, shown separately in Figure 4.4a. For this vertex v2, we collect all the
neighbourhood information (vertices and multi-edges), and represent this informa-
tion by a tree structure, built separately for incoming (‘+’) and outgoing (‘-’) edges.
Thus, the tree representation of a vertex v contains the neighbourhood vertices and
the corresponding multi-edges, as shown in Figure 4.4b, where the vertices of the
tree structure are represented by the edge types.
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Figure 4.4: Building Neighbourhood Index for data vertex v2
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In order to construct an efficient tree structure, we again consider the OTIL
(Ordered Trie with Inverted List) structure, proposed in the previous chapter. To
construct the OTIL index as shown in Figure 4.4b, we insert each ordered multi-edge
that is incident on v at the root of the trie. Consider a data vertex vi, with a set of
n neighbourhood vertices N(vi). Now, for every pair of incoming edge (vi, N

j(vi)),
where j ∈ {1, . . . , n}, there exists a multi-edge {ti, . . . , tj}, which is inserted into
the OTIL structure N+. Similarly for every pair of outgoing edge (N j(vi), vi),
there exists a multi-edge {tm, . . . , tn}, which is inserted into the OTIL structure N−
maintaining two OTIL structures that constitute N . Each multi-edge is ordered
(w.r.t. increasing edge type indexes), before inserting into the respective OTIL
structure, and the order is universally maintained for all data vertices. Further, for
every edge type ti, we maintain a list that contains all the neighbourhood vertices
N+(vi)/N−(vi), that have the edge type ti incident on them.

To understand the utility of N , let us consider an illustrative example. Consid-
ering the query multigraph Q in Figure 4.2c, let us assume that we want to find the
matches for the query vertices u1 and u0 in order. Thus, for the initial vertex u1,
let us say, we have found the set of candidate solutions which is {v2}. Now, to find
the candidate solutions for the next query vertex u0, it is important to maintain the
structure spanned by the query vertices, and this is where the indexing structure
N is accessed. Thus to retain the structure of the query multigraph (in this case,
the structure between u1 and u0), we have to find the data vertices that are in the
neighbourhood of already matched vertex v2 (a match for vertex u1), that has the
same structure (edge types) between u1 and u0 in the query graph. Thus to fetch
all the data vertices that have the edge type t5, which is directed towards v2 and
hence ‘+’, we access the neighbourhood index trie N+ for vertex v2, as shown in
Figure 4.4. This gives us a set of candidate solutions CNu0

= {v1, v7}. It is easy
to observe that, by maintaining two separate indexing structures N+ and N−, for
both incoming and outgoing edges, we can reduce the time to fetch the candidate
solutions.

Thus, in a generic scenario, given an already matched data vertex v, the edge
direction ‘+’ or ‘-’, and the set of edge types T ′ ⊆ T , the index N will find a set of
neighbourhood data vertices {v′|(v′, v) ∈ E ∧T ′ ⊆ LE(v′, v)} if the edge direction is
‘+’ (incoming), while N returns {v′|(v, v′) ∈ E∧T ′ ⊆ LE(v, v′)} if the edge direction
is ‘-’ (outgoing).

4.6 Query Matching Procedure

In order to follow the working of the proposed query matching procedure, we for-
malize the notion of core and satellite vertices. Given a query graph Q, we de-
compose the set of query vertices U into a set of core vertices Uc and a set of
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Figure 4.5: Decomposing the query multigraph into core and satellite vertices

satellite vertices Us. Formally, when the degree of the query graph ∆(Q) > 1,
Uc = {u|u ∈ U ∧ deg(u) > 1}; however, when ∆(Q) = 1, i.e, when the query
graph is either a vertex or a multiedge, we choose one query vertex at random as
a core vertex, and hence |Uc| = 1. The remaining vertices are classified as satel-
lite vertices, whose degree is always 1. Formally, Us = {U \ Uc}, where for every
u ∈ Us, deg(u) = 1. The decomposition for the query multigraph Q is depicted
in Figure 4.5, where the satellite vertices are separated (vertices under the shaded
region in Figure 4.5a), in order to obtain the query graph that is spanned only by
the core vertices (Figure 4.5b).

The proposed AMbER-Algo (Algorithm 4.3) performs recursive sub-multigraph
matching procedure only on the query structure spanned by Uc as seen in Figure 4.5b.
Since the entire set of satellite vertices Us is connected to the query structure spanned
by the core vertices, AMbER-Algo processes the satellite vertices while performing
sub-multigraph matching on the set of core vertices. Thus during the recursion, if
the current core vertex has satellite vertices connected to it, the algorithm retrieves
directly a list of possible matching for such satellite vertices and it includes them in
the current partial solution. Each time the algorithm executes a recursion branch
with a solution, the solution not only contains a data vertex match vc for each query
vertex belonging to Uc, but also a set of matched data vertices Vs for each query
vertex belonging to Us. Each time a solution is found, we can generate not only one,
but a set of embeddings through the Cartesian product of the matched elements in
the solution.

Since finding SPARQL solutions is equivalent to finding homomorphic embed-
dings of the query multigraph, the homomorphic matching allows different query
vertices to be matched with the same data vertices. Recall that there is no injec-
tivity constraint in sub-multigraph homomorphism as opposed to sub-multigraph
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isomorphism [Shang et al., 2008]. Thus during the recursive matching procedure,
we do not have to check if the potential data vertex has already been matched
with previously matched query vertices. This is an advantage when we are process-
ing satellite vertices: we can find matches for each satellite vertex independently
without the necessity to check for a repeated data vertex.

Before getting into the details of the AMbER-Algo, we first explain how a set
of candidate solutions is obtained when there is information associated only with
the vertices. Then we explain how a set of candidate solutions is obtained when we
encounter the satellite vertices.

4.6.1 Vertex Level Processing

To understand the generic query processing, it is necessary to understand the match-
ing process at vertex level. Whenever a query vertex u ∈ U is being processed, we
need to check if u has a set of attributes A associated with it or any IRI s are
connected to it (recall Section 4.3.2).

Algorithm 4.1: ProcessVertex(u,Q,A,N )
1 if u.A 6= ∅ then
2 CA

u = QueryAttIndex(A, u.A)
3 if u.R 6= ∅ then
4 CI

u =
⋂

uiri
i ∈u.R

( QueryNeighIndex(N , LQ
E(u, uirii ), uirii ) )

5 CandAttu = CA
u ∩ CI

u /* Find common candidates */
6 return CandAttu

To process an arbitrary query vertex, we propose a procedure ProcessVer-
tex, depicted in Algorithm 4.1. This algorithm is invoked only when a vertex u
has at least, either a set of vertex attributes or any IRI associated with it. The
ProcessVertex procedure returns a set of data vertices CandAttu, which are
matchable with u; in case CandAttu is empty, then the query vertex u has no
matches in V .

As seen in Lines 1-2, when a query vertex u has a set of vertex attributes
i.e., u.A 6= ∅, we obtain the candidate solutions CA

u by invoking QueryAttIndex
procedure, that accesses the index A as explained in Section 4.5.1. For example, the
query vertex u5 with vertex attributes {a1, a2}, can only be matched with the data
vertex v0; thus CA

u5
= {v0}.

When a query vertex u has IRI s associated with it, i.e., u.R 6= ∅ (Lines 3-4), we
find the candidate solutions CI

u by invoking the QueryNeighIndex procedure. As
we recall from Section 4.3.2, a vertex u is connected to an IRI vertex uirii through
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a multi-edge LQ
E(u, uirii ). An IRI vertex uirii always has only one data vertex v,

that can match. Thus, the candidate solutions CI
u are obtained by invoking the

QueryNeighIndex procedure, that fetches all the neighbourhood vertices of v that
respect the multi-edge LQ

E(u, uirii ). The procedure is invoked until all the IRI vertices
u.R are processed (Line 4). Considering the example in Figure 4.2c, u3 is connected
to an IRI -vertex uiri0 , which has a unique data vertex match v5, through the multi-
edge {−t3}. Using the neighbourhood index N , we look for the neighbourhood
vertices of v5, that have the multi-edge {−t3}, which gives us the candidate solutions
CI

u3
= {v1}.

Finally in Line 5, the merge operator ∩ returns a set of common candidates
CandAttu, only if u.A 6= ∅ and u.R 6= ∅. Otherwise, CA

u or CI
u are returned as

CandAttu.

4.6.2 Processing Satellite Vertices

In this section, we provide insights on processing a set of satellite vertices Usat ⊆ Us

that are connected to a core vertex uc ∈ Uc. This scenario results in a structure
that appears frequently in SPARQL queries called star structure [Gubichev and
Neumann, 2014, Huang et al., 2011].

A typical star structure depicted in Figure 4.6, has a core vertex uc = u1, and
a set of satellite vertices Usat = {u0, u2, u4} connected to the core vertex. For each
candidate solution of the core vertex u1, we process u0, u2, u4 independently of each
other, since there is no structural connectivity (edges) among them, although they
are only structurally connected to the core vertex u1.

Theorem 4.1. For a given star structure in a query graph, each satellite vertex can
be independently processed if a candidate solution is provided for the core vertex uc.

Proof. Consider a core vertex uc that is connected to a set of satellite vertices Usat =
{u0, . . . , us}, through a set of edge-types T ′ = {t0, . . . , ts}. Let us assume vc is a
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candidate solution for the core vertex uc, and we want to find candidate solutions
for ui ∈ Usat and uj ∈ Usat, where i 6= j. Now, the candidate solutions for ui
and uj can be obtained by fetching the neighbourhoods of already matched vertex
vc that respect the edge-type ti ∈ T ′ and tj ∈ T ′ respectively. Since two satellite
vertices ui and uj are never connected to each other, the candidate solutions of ui
are independent of that of uj. This analogy applies to all the satellite vertices.

Algorithm 4.2: MatchSatVertices(A,N , Q, Usat, vc)

1 Set: Msat = ∅, where Msat = {[us, Vs]}|Usat|
s=1

2 for all us ∈ Usat do
3 Candus = QueryNeighIndex(N , LQ

E(uc, us), vc)
4 Candus = Candus ∩ ProcessVertex(us, Q,A,N )
5 if Candus 6= ∅ then
6 Msat = Msat ∪ (us, Candus) /* Satellite solutions */

7 else
8 return Msat := 0 /* No solutions possible */

9 return Msat /* Matches for satellite vertices */

Given a core vertex uc, we initially find a set of candidate solutions Canduc ,
by using the index S. Then, for each candidate solution vc ∈ Canduc , the set of
solutions for all the satellite vertices Usat that are connected to uc are returned
by the MatchSatVertices procedure, described in Algorithm 4.2. The set of
solution tuple Msat defined in Line 1, stores the candidate solutions for the entire
set of satellite vertices Usat. Formally, Msat = {[us, Vs]}|Usat|

s=1 , where us ∈ Usat and Vs
is a set of candidate solutions for us. In order to obtain candidate solutions for us,
we query the neighbourhood index N (Line 3); the QueryNeighIndex function
obtains all the neighbourhood vertices of already matched vc, that also considers
the multi-edge in the query multigraph LQ

E(uc, us). As every query vertex us ∈ Usat

is processed, the solution set Msat that contains candidate solutions grows until all
the satellite vertices have been processed (Lines 2-8).

In Line 4, the set of candidate solutions Candus are refined by invoking Algo-
rithm 4.1 (VertexProcessing). After the refinement, if there are finite candidate
solutions, we update the solutionMsat; else, we terminate the procedure as there can
be no matches for a given matched vertex vc. The MatchSatVertices procedure
performs two tasks: firstly, it checks if the candidate vertex vc ∈ Candus is a valid
matchable vertex and secondly, it obtains the solutions for all the satellite vertices.



78 CHAPTER 4. QUERYING RDF DATA

4.6.3 Arbitrary Query Processing

Algorithm 4.3 shows the generic procedure we develop to process arbitrary queries.

Recall that for an arbitrary query Q, we define two different types of vertexes:
a set of core vertices Uc and a set of satellite vertices Us. The QueryDecompose
procedure in Line 1 of Algorithm 4.3, performs this decomposition by splitting the
query vertices U into Uc and Us, as observed in Figure 4.5.

To process arbitrary query multigraphs, we perform recursive sub-mulitgraph
matching procedure on the set of core vertices Uc ⊆ U ; during the recursion, satellite
vertexes connected to a specific core vertex are processed too. Since the recursion
is performed on the set of core vertices, we propose a few heuristics for ordering the
query vertices.

Ordering of the query vertices forms one of the vital steps for subgraph matching
algorithms [Shang et al., 2008]. In any subgraph matching algorithm, the embed-
dings of a query subgraph are obtained by exploring the solution space spanned
by the data graph. But since the solution space itself can grow exponentially in
size, we are compelled to use intelligent strategies to traverse the solution space. In
order to achieve this, we propose a heuristic procedure VertexOrdering (Line 2,
Algorithm 4.3) that employs two ranking functions.

The first ranking function r1 relies on the number of satellite vertices connected
to the core vertex, and the query vertices are ordered with the decreasing rank value.
Formally, r1(u) = |Usat|, where Usat = {us|us ∈ Us ∧ (u, us) ∈ E(Q)}. A vertex
with more satellite vertices connected to it, is rich in structure and hence it would
probably yield fewer candidate solutions to be processed under recursion. Thus, in
Figure 4.5, u1 is chosen as an initial vertex. The second ranking function r2 relies
on the number of incident edges on a query vertex. Formally, r2(u) =

∑m
j=1 |σ(u)j|,

where u has m multiedges and |σ(u)j| captures the number of edge types in the
jth multiedge. Again, U ord

c contains the ordered vertices with the decreasing rank
value r2. Further, when there are no satellite vertices in the query Q, this ranking
function gets the priority. Despite the usage of any ranking function, the query
vertices in U ord

c , when accessed in sequence, should be structurally connected to the
previous set of vertices. If two vertices tie up with the same rank, the rank with
lesser priority determines which vertex wins. Thus, for the example in Figure 4.5,
the set of ordered core vertices is U ord

c = {u1, u3, u5}.

The first vertex in the set U ord
c is chosen as the initial vertex uinit (Line 3), and

subsequent query vertices are chosen in sequence. The candidate solutions for the
initial query vertex CandInit are returned by QuerySynIndex procedure (Line
4), that are constrained by the structural properties (neighbourhood structure) of
uinit. By querying the index S for initial query vertex uinit, we obtain the candidate
solutions CandInit ∈ V that match the structure (multiedge types) associated with
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Algorithm 4.3: AMbER-Algo (I, Q)
1 QueryDecompose: Split U into Uc and Us

2 U ord
c = VertexOrdering(Q,Uc)

3 uinit = u|u ∈ U ord
c

4 CandInit = QuerySynIndex(uinit, S)
5 CandInit = CandInit ∩ ProcessVertex(uinit, Q,A,N )
6 Fetch: U sat

init = {u|u ∈ Us ∧ (uinit, u) ∈ E(Q)}
7 Set: Emb = ∅
8 for vinit ∈ CandInit do
9 Set: M = ∅,Ms = ∅,Mc = ∅

10 if U sat
init 6= ∅ then

11 Msat = MatchSatVertices(A,N , Q, U sat
init, vinit)

12 if Msat 6= ∅ then
13 for [us, Vs] ∈Msat do
14 Update: Ms = Ms ∪ [us, Vs]

15 Update: Mc = Mc ∪ [uinit, vinit]
16 Emb = Emb ∪ HomomorphicMatch(M, I, Q, U ord

c )

17 else
18 Update: Mc = Mc ∪ (uinit, vinit)
19 Emb = Emb ∪ HomomorphicMatch(M, I, Q, U ord

c )

20 return Emb /* Homomorphic embeddings of query multigraph */

uinit. Although some candidates in CandInit may be invalid, all valid candidates
are present in CandInit. Further, ProcessVertex procedure is invoked to obtain
the candidate solutions according to vertex attributes and IRI information, and
then only the common candidates are retained.

Before getting into the algorithmic details, we explain how the solutions are
handled and how we process each query vertex. We define M as a set of tuples,
whose ith tuple is represented as Mi = [mc,Ms], where mc is a solution pair for a
core vertex, and Ms is a set of solution pairs for the set of satellite vertices that are
connected to the core vertex. Formally mc = (uc, vc), where uc is the core vertex
and vc is the corresponding matched vertex; Ms is a set of solution pairs, whose
jth element is a solution pair (us, Vs), where us is a satellite vertex and Vs is a
set of matched vertices. In addition, we maintain a set Mc whose elements are the
solution pairs for all the core vertices. Thus during each recursion branch, the size of
M grows until it reaches the query size |U |; once |M | = |U |, homomorphic matches
are obtained.

For all the candidate solutions of initial vertex CandInit, we perform recursion
to obtain homomorphic embeddings (lines 8-19). Before getting into recursion, for
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each initial match vinit ∈ CandInit, if it has satellite vertices connected to it, we
invoke the MatchSatVertices procedure (Lines 10-11). This step not only finds
solution matches for satellite vertices, if there are, but also checks if vinit is a valid
candidate vertex. If the returned solution set Msat is empty, then vinit is not a valid
candidate and hence we continue with the next vinit ∈ CandInit; else, we update
the set of solution pairs Ms for satellite vertices and the solution pair Mc for the
core vertex (Lines 12-15) and invoke HomomorphicMatch procedure (Lines 17).
On the other hand, if there are no satellite vertices connected to uinit, we update
the core vertex solution setMc and invoke HomomorphicMatch procedure (Lines
18-19).

Algorithm 4.4: HomomorphicMatch(M, I, Q, U ord
c )

1 if |M | = |U | then
2 return GenEmb(M)

3 Emb = ∅
4 Fetch: unxt = u|u ∈ U ord

c

5 Nq = {uc|uc ∈Mc} ∩ adj(unxt)
6 Ng = {vc|vc ∈Mc ∧ (uc, vc) ∈Mc}, where uc ∈ Nq

7 Candunxt =
⋂|Nq |

n=1(QueryNeighIndex(N , LQ
E(un, unxt), vn))

8 Candunxt = Candunxt∩ ProcessVertex(unxt, Q,A,N )
9 for each vnxt ∈ Candunxt do

10 Fetch: U sat
nxt = {u|u ∈ Vs ∧ (unxt, u) ∈ E(Q)}

11 if U sat
nxt 6= ∅ then

12 Msat = MatchSatVertices(A,N , Q, U sat
nxt, vnxt)

13 if Msat 6= ∅ then
14 for every [us, V s] ∈Msat do
15 Update: Ms = Ms ∪ [us, V s]

16 Update: Mc = Mc ∪ (unxt, vnxt)
17 Emb = Emb ∪ HomomorphicMatch(M, I, Q, U ord

c )

18 else
19 Update: Mc = Mc ∪ (unxt, vnxt)
20 Emb = Emb ∪ HomomorphicMatch(M, I, Q, U ord

c )

21 return Emb

In the HomomorphicMatch procedure (Algorithm 4.4), we fetch the next
query vertex from the set of ordered core vertices U ord

c (Line 4). Then we collect the
neighbourhood vertices of already matched core query vertices and the corresponding
matched data vertices (Lines 5-6). As we recall, the set Mc maintains the solution
pairmc = (uc, vc) of each matched core query vertex. The set Nq collects the already
matched core vertices uc ∈ Mc that are also in the neighbourhood of unxt, whose



4.7. EXPERIMENTAL EVALUATION 81

matches have to be found. Further, Ng contains the corresponding matched query
vertices vc ∈ Mc. As the recursion proceeds, we find those matchable data vertices
of unxt that are in the neighbourhood of all the matched vertices v ∈ Ng, so that the
query structure is maintained. In Line 7, for each un ∈ Nq and the corresponding
vn ∈ Ng, we query the neighbourhood index N , to obtain the candidate solutions
Candunxt , that are in the neighbourhood of already matched data vertex vn and have
the multiedge LQ

E(un, unxt), obtained from the query multigraph Q. Finally (line 7),
the set of candidates solutions that are common for every un ∈ Nq are retained in
Candunxt .

Further, the candidate solutions are refined with the help of ProcessVertex
procedure (Line 8). Now, for each of the valid candidate solution vnxt ∈ Candunxt , we
recursively call the HomomorphicMatch procedure. When the next query vertex
unxt has no satellite vertices attached to it, we update the core vertex solution set
Mc and call the recursion procedure (Lines 19-20). But when unxt has satellite
vertices attached to it, we obtain the candidate matches for all the satellite vertices
by invoking the MatchSatVertices procedure (Lines 11-12); if there are matches,
we update both the satellite vertex solution Ms and the core vertex solution Mc,
and invoke the recursion procedure (Line 17).

Once all the query vertices have been matched for the current recursion step, the
solution setM contains the solutions for both core and satellite vertices. Thus when
all the query vertices have been matched, we invoke the GenEmb function (Line
2) which returns the set of embeddings, that are updated in Emb. The GenEmb
function treats the solution vertex vc of each core vertex as a singleton and performs
Cartesian product among all the core vertex singletons and satellite vertex sets.
Formally, Embpart = {v1c}× · · · × {v

|Uc|
c }× V 1

s × · · · × V
|Us|
c . Thus, the partial set of

embeddings Embpart is added to the final result Emb.

4.7 Experimental Evaluation

In this section, we perform extensive experiments on the three real RDF datasets.
We evaluate the time performance and the robustness of AMbER w.r.t. state-of-
the-art competitors by varying the size, and the structure of the SPARQL queries.
Experiments are carried out on a 64-bit Intel Core i7-4900MQ @ 2.80GHz, with
32GB memory, running Linux OS - Ubuntu 14.04 LTS. AMbER is implemented in
C++.
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4.7.1 Experimental Setup

We compare AMbER with the four standard RDF engines: Virtuoso-7.1 [Erling,
2012], x-RDF-3X [Neumann and Weikum, 2010], Apache Jena [Carroll et al., 2004]
and gStore [Zou et al., 2014b]. For all the competitors we employ the source
code available on the web site or obtained by the authors. Another recent work
TurboHOM++ [Shang et al., 2008] has been excluded since it is not publicly avail-
able.

For the experimental analysis we use three RDF datasets - DBPEDIA, YAGO
and LUBM. DBPEDIA constitutes the most important knowledge base for the Se-
mantic Web community. Most of the data available in this dataset comes from the
Wikipedia Infobox. YAGO is a real world dataset built from factual information
coming fromWikipedia andWordNet semantic network. LUBM provides a standard
RDF benchmark to test the overall behaviour of engines. Using the data generator
we create LUBM100 where the number represents the scaling factor.

Dataset # Triples # Vertices # Edges # Edge types

DBPEDIA 33 071 359 4 983 349 14 992 982 676
YAGO 35 543 536 3 160 832 10 683 425 44
LUBM100 13 824 437 2 179 780 8 952 366 13

Table 4.3: Statistics of RDF Datasets

The data characteristics are summarized in Table 4.3. We observe that the
datasets have different characteristics in terms of number of vertices, number of
edges, and number of distinct predicates. For instance, DBPEDIA has more diversity
in terms of predicates (∼700) while LUBM100 contains only 13 different predicates.

The time required to build the multigraph database as well as to construct the
indexes are reported in Table 4.4. We can note that the database building time
and the corresponding size are proportional to the number of triples. Regarding the
indexing structures, we can underline that both building time and size are propor-
tional to the number of edges. For instance, DBPEDIA has the biggest number of
edges (∼15M) and, consequently, AMbER employs more time and space to build
and store its data structure.

4.7.2 Workload Generation

In order to test the scalability and the robustness of the different RDF engines,
we generate the query workloads considering a similar setting as in [Gubichev and
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Dataset Database Index I
Building Time Size Building Time Size

DBPEDIA 307 1300 45.18 1573
YAGO 379 2400 29.1 1322
LUBM100 67 497 18.4 1057

Table 4.4: Execution time (in seconds) and memory usage (in Mbytes) for offline
index construction

Neumann, 2014, Aluç et al., 2014, Han et al., 2013]. We generate the query workload
from the respective RDF datasets, which are available as RDF tripleset. In specific,
we generate two types of query sets: a star-shaped and a complex-shaped query set;
further, both query sets are generated for varying sizes (say k) ranging from 10 to
50 triplets, in steps of 10.

To generate star-shaped or complex-shaped queries of size k, we pick an initial-
entity at random from the RDF data. Now to generate star queries, we check if
the initial-entity is present in at least k triples in the entire benchmark, to verify if
the initial-entity has k neighbours. If so, we choose those k triples at random; thus
the initial entity forms the central vertex of the star structure and the rest of the
entities form the remaining star structure, connected by the respective predicates.
To generate complex-shaped queries of size k, we navigate in the neighbourhood of
the initial-entity through the predicate links until we reach size k. In both query
types, we inject some object literals as well as constant IRI s; rest of the IRI s
(subjects or objects) are treated as variables. However, this strategy could choose
some very unselective queries [Gubichev and Neumann, 2014]. In order to address
this issue, we set a maximum time constraint of 60 seconds for each query. If the
query is not answered in time, it is not considered for the final average (similar
procedure is usually employed for graph query matching [Han et al., 2013] and RDF
workload evaluation [Aluç et al., 2014]). We report the average query time and,
also, the percentage of unanswered queries (considering the given time constraint)
to study the robustness of the approaches.

4.7.3 Comparison with RDF Engines

In this section we discuss the results obtained by the different RDF engines. For
each combination of query type and benchmark we report two plots by varying
the query size: the average time and the corresponding percentage of unanswered
queries for the given time constraint. We remind that the average time per approach
is computed only on the set of queries that were answered.
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(a) Time performance (b) % Unanswered queries

Figure 4.7: Evaluation of (a) time performance and (b) robustness, for Star-Shaped
queries on DBPEDIA.

The experimental results for DBPEDIA are depicted in Figure 4.7 and Figure
4.8. The time performance (averaged over 200 queries) for Star-Shaped queries
(Figure 4.7a), affirm that AMbER clearly outperforms all the competitors. Further
the robustness of each approach, evaluated in terms of percentage of unanswered
queries within the stipulated time, is shown in Figure 4.7b. For the given time
constraint, x-RDF-3X and Jena are unable to output results for size 20 and 30
onwards respectively. Although Virtuoso and gStore output results until query size
50, their time performance is still poor. However, as the query size increases, the
percentage of unanswered queries for both Virtuoso and gStore keeps on increasing
from ∼0% to 65% and ∼45% to 95% respectively. On the other hand AMbER
answers >98% of the queries, even for queries of size 50, establishing its robustness.

Analysing the results for Complex-Shaped queries (Figure 4.8), we underline
that AMbER still outperforms all the competitors for all sizes. In Figure 4.8a,
we observe that x-RDF-3X and Jena are the slowest engines; Virtuoso and gStore
perform better than them but nowhere close to AMbER. We further observe that
x-RDF-3X and Jena are the least robust as they don’t output results for size 30
onwards (Figure 4.8b); on the other hand AMbER is the most robust engine as it
answers >85% of the queries even for size 50. The percentage of unanswered queries
for Virtuoso and gStore increase from 0% to ∼80% and 25% to ∼70% respectively,
as we increase the size from 10 to 50.

The results for YAGO are reported in Figure 4.9 and Figure 4.10. For the Star-
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(a) Time performance (b) % Unanswered queries

Figure 4.8: Evaluation of (a) time performance and (b) robustness, for Complex-
Shaped queries on DBPEDIA.

Shaped queries (Figure 4.9), we observe that AMbER outperforms all the other
competitors for any size. Further, the time performance of AMbER is 1-2 order of
magnitude better than its nearest competitor Virtuoso (Figure 4.9a), and the per-
formance remains stable even with increasing query size (Figure 4.9b). x-RDF-3X,
Jena are not able to output results for size 20 onwards. As observed for DBPEDIA,
Virtuoso seems to become less robust with the increasing query size. For size 20-
40, time performance of gStore seems better than Virtuoso; the reason seems to be
the fewer queries that are being considered. Conversely, AMbER is able to supply
answers most of the time (>98%).

Coming to the results for Complex-Shaped queries (Figure 4.10), we observe
that AMbER is still the best in time performance; Virtuoso and gStore are the
closest competitors. Only for size 10 and 20, Virtuoso seems robust than AMbER.
Jena, x-RDF-3X do not answer queries for size 20 onwards, as seen in Figure 4.10b.

The results for LUBM100 are reported in Figure 4.11 and Figure 4.12. For
the Star-Shaped queries (Figure 4.11), AMbER always outperforms all the other
competitors for any size (Figure 4.11a). Further, the time performance of AMbER
is 2-3 orders of magnitude better than its closest competitor Virtuoso. Similar to the
YAGO experiments, x-RDF-3X, Jena are not able to manage queries from size 20
onwards; the same trend is observed for gStore too. Further, Virtuoso always looses
its robustness as the query size increases. On the other hand, AMbER answers
queries for all sizes.
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(a) Time performance (b) % Unanswered queries

Figure 4.9: Evaluation of (a) time performance and (b) robustness, for Star-Shaped
queries on YAGO.

(a) Time performance (b) % Unanswered queries

Figure 4.10: Evaluation of (a) time performance and (b) robustness, for Complex-
Shaped queries on YAGO.
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(a) Time performance (b) % Unanswered queries

Figure 4.11: Evaluation of (a) time performance and (b) robustness, for Star-Shaped
queries on LUBM100.

(a) Time performance (b) % Unanswered queries

Figure 4.12: Evaluation of (a) time performance and (b) robustness, for Complex-
Shaped queries on LUBM100.
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Considering the results for Complex-Shaped queries (Figure 4.12), we underline
that AMbER has better time performance as seen in Figure 4.12a. x-RDF-3X,
Jena and gStore did not supply answer for size 30 onwards (Figure 4.12b). Further,
Virtuoso seems to be a tough competitor for AMbER in terms of robustness for
size 10 and 20. However, for size 30 onwards AMbER is more robust.

To summarise, we observe that Virtuoso is enough robust for Complex-Shaped
smaller queries (10-20), but fails for bigger (>20) queries. x-RDF-3X fails for queries
with size bigger than 10. Jena has reasonable behavior until size 20, but fails to
deliver from size 30 onwards. gStore has a reasonable behavior for size 10, but
its robustness deteriorates from size 20 onwards. To summarize, AMbER clearly
outperforms, in terms of time and robustness, the state-of-the-art RDF engines on
the evaluated datasets and query configuration. Our proposal also scales up better
than all the competitors as the size of the queries increases.

4.8 Summary

In this chapter, a multigraph based engine AMbER has been proposed in order to
answer complex SPARQL queries over RDF data. The multigraph representation
has bestowed us with two advantages: on one hand, it enables us to construct effi-
cient indexing structures, that ameliorate the time performance of AMbER; on the
other hand, the graph representation itself motivates us to exploit the valuable work
done until now in the graph data management field. Thus, AMbER meticulously
exploits the indexing structures to address the problem of sub-multigraph homomor-
phism, which in turn yields the solutions for SPARQL queries. The proposed engine
AMbER has been extensively tested on three well established RDF datasets. As
a result, AMbER stands out w.r.t. the state-of-the-art RDF management systems
considering both the robustness regarding the percentage of answered queries and
the time performance.

As already discussed in the beginning of the chapter, we have addressed the
SPARQL queries with ‘SELECT/WHERE’ clause of the SPARQL language, that
constitutes the most important operation in any RDF query engines. However, as an
extension of this work, we can consider operators like FILTER, UNION and GROUP BY,
thereby making AMbER a much more generic RDF querying platform. Another
significant extension could be to mange the updating of RDF data. Since RDF
data forms the basis of knowledge graphs, over the time, the RDF repositories are
updated, with some information being removed and some being added.

Another potential extension of AMbER is to handle property paths. Property
Paths give a more succinct way to write parts of basic graph patterns and also extend
matching of triple pattern to arbitrary length paths. Since the initial SPARQL
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language for querying RDF provided only limited navigational functionalities, the
new version of SPARQL 1.15 includes the feature of property paths. However, since
it has plenty of lapses w.r.t the performance, as reported in [Arenas et al., 2012], it is
compelling to improve the performance of SPARQL querying systems to efficiently
answer property path queries.

5https://www.w3.org/TR/sparql11-property-paths/
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Conclusions Part I

In this part, we focused on efficient computation of subgraph query matches in sin-
gle large multigraphs. In Chapter 3, we proposed an efficient subgraph matching
algorithm - SuMGra, that works on undirected multigraphs. This work has po-
tential applications in many domains where the data can be modelled as undirected
multigraphs, and one is interested in finding the matches that are isomorphic to the
query. Thus, the problem of subgraph isomorphism was at the crux of this work.
The proposed indexing structures followed by an efficient backtracking procedure
helped in efficient enumeration of subgraph matches.

In Chapter 4, we focused on a particular kind of graphs called knowledge graphs,
which are represented as directed multigraphs. In particular, we focused on RDF
graphs, where the most prevalent form of SPARQL querying requires to discover
homomorphic matchings of the embeddings. The crux of this work was not only the
problem of subgraph homomorphism, but also managing complex and big queries
on large RDF graphs. The proposed approach AMbER, incorporated the index
structures from the previous chapter, but was modified according to the problem re-
quirements. AMbER further incorporated efficient query decomposition techniques
to answer the SPARQL queries.

Although, to our knowledge, we have proposed efficient subgraph querying ap-
proaches for multigraphs, there still remains a plenty of areas to be explored. Fo-
cussing on the indexing part, recall that the proposed set of synopses features vary
for both isomorphic matching (6 features) and homomorphic matching (4 features).
This seems reasonable, since isomorphism is a stronger constraint matching than
homomorphism and hence we can afford to have more features. We also recall that
these synopses features capture the structural property of the data multigraph only
at the vertex granularity. And it is here, where we see an opportunity to capture
information which is based on substructure granularity. For example, consider a
triangle substructure; we could add another synopsis feature that could identify if
a data vertex is part of any triangle substructure; this could help in refining the
candidates, when the subgraph query itself has a triangle substructure. Many such
incremental improvements can be proposed to be part of the synopses features.
Further, we observe that using offline index structures in both isomorphic and ho-
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momorphic matching, has been proven to be an effective way of approaching the
problems of query matching.

One of the major advantages of representing the real world data as graphs and
performing query matching on them is that the graph based approaches can natu-
rally be incorporated to perform parallel processing and even distributed computing.
Since we follow backtracking approach using DFS search to explore the search space
for potential query matches, one can distribute the DFS search process starting from
several initial roots. Thus, in combination with the proposed exploration of search
space in an efficient manner, distributed approach can be adopted in a seamless
manner to address massive multigraphs.
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Overview Part II

This part of the thesis focuses on the mining aspects of knowledge discovery. In par-
ticular, we are interested in discovering frequent subgraph patterns in multigraphs.
Given a multigraph data and a user defined threshold value of a frequency measure,
the problem of frequent pattern mining is to discover all the patterns that exist in
the data multigraphs, that obey the frequency threshold value.

Mining frequent subgraphs or patterns has been one of the most researched
topics among the fields of graph data mining [Han et al., 2011, Aggarwal and Han,
2014]. Discovering interesting knowledge in graphs is crucial, since much of the data
from various fields (social networks, remote sensing, biochemistry, bioinformatics,
etc.) can be represented as graph data. Further, graph mining has become a power-
ful tool to discover patterns that exist in the data, thanks to the structural property
of the graph data.

Frequent pattern mining in multigraphs is motivated by the fact that the ex-
isting approaches are not appropriate to handle multigraph data, and hence this
contribution fills the void. In Chapter 5, we introduce a novel algorithm for fre-
quent pattern mining in multigraphs. The proposed algorithm not only incorporates
an efficient computation of support of a pattern - that helps to quickly decide if a
pattern is frequent or not, but also introduces several optimized traversal of search
space.
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Chapter

5
Frequent Pattern Mining in
Multigraphs

In this chapter we address the problem of frequent pattern mining in multi-
graphs. We introduce the concept of support measure that is paramount in
deciding if a pattern is frequent or not. We propose a novel algorithm Mu-
GraM to discover the frequent patterns by optimized search space explo-
ration and numerous pruning techniques. We then perform both qualitative
and quantitative analyses on a set of real world datasets.

5.1 Introduction

Discovering patterns that occur frequently in a graph database is the problem of Fre-
quent Subgraph Mining (FSM). We recall that many FSM approaches have been pro-
posed to address graph data that exist in different forms [Inokuchi et al., 2003, Jiang
et al., 2013]. Further, several works have been proposed that efficiently discover fre-
quent subgraphs in single large graphs [Kuramochi and Karypis, 2005, Elseidy et al.,
2014]. In this chapter we propose a novel FSM approach for multigraphs.

This work is motivated by the fact that the existing FSM approaches cannot be
applied to multigraph data. That is, whenever multiple relations (multiedges) exist
between a pair of nodes, in order to use the existing FSM approaches one has to
map the multiple relations (multiedge) to a unique value (distinct edge label) and
then perform FSM, which however, does not yield desirable results, thereby making
the existing approaches rather incomplete. For example, Figure 5.1 depicts a typical
scenario when we attempt to perform FSM on a multigraph. The data multigraph in
Figure 5.1a is an extract of the real world AUCS dataset [Kim and Lee, 2015] that has
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(a) A sample data multigraph
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(b) A set of frequent multigraph patterns

Figure 5.1: (a) A data multigraph and (b) a set of multigraph patterns with fre-
quency δ = 2

five different relations (edge types) namely, lunch, facebook, coauthor, leisure, work,
defined among a set of university employees (nodes). If we perform FSM on this
dataset by setting a frequency threshold equals to 2, the existing FSM approaches
output no patterns, since they treat a set of relations between a pair of nodes as
a unique identifier, rather than treating it as a set of multiple relations. And thus,
they are unable to discover those frequent patterns that are spanned from a subset
of the relations, as depicted in Figure 5.1b. The objective of this work is to fill the
gap in the field of FSM by proposing an approach that is able to extract frequent
patterns from multigraph data considering patterns that can span over a subset of
multigraph relations.

In this chapter we propose an exact algorithm called MuGraM (Frequent
MultiGraph Miner) that enumerates all frequent subgraph patterns in a single
large multigraph.

5.2 Related Work

A plenty of literature exists for Frequent Subgraph Mining (FSM) for both trans-
actional graph databases and single graph databases. For the transactional graph
database setting, the work of Inokuchi et al. [Inokuchi et al., 2000] shapes the foun-
dation for many later works. This work proposes an approach called AGM to effi-
ciently mine the association rules among the frequently appearing substructures in
a given graph data set, by treating a transaction as an adjacency matrix. Among
the many later works, few notable works are FSG by Kuramochi and Karypis [Ku-
ramochi and Karypis, 2001] that models the problem of finding frequent graphs as
a subgraph discovery problem and gSpan by Yan and Han [Yan and Han, 2002],
that discovers frequent substructures without candidate generation. Other related
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works include significant pattern mining Leap [Yan et al., 2008], maximal frequent
subgraph mining Margin [Thomas et al., 2010].

Works on single large graph databases can be traced back to Subdue [Holder
et al., 1994], that uses minimum description length principle to discover substruc-
tures that compress the database, and which was again improved upon later [Gon-
zalez et al., 2000]. The work of Kuramochi and Karypis [Kuramochi and Karypis,
2005] propose two approaches of vSiGraM and hSiGraM that are depth first ap-
proach and breadth first approach respectively. The underlying principle followed
is to grow only frequent patterns starting from the smallest sized frequent patterns.
The frequency of a subgraph is computed by addressing the problem of subgraph
isomorphism. Since the problem of subgraph isomorphism is NP-complete, they
propose efficient ways of computing support by storing exact location of each fre-
quent subgraph, which results in speed to memory trade off. In this work, they
also introduce the notion of canonical representation to check if two patterns are
isomorphic or not, in order to avoid any redundant pattern generation.

One of the most recent FSM approaches for single large graphs is GraMi, wherein
they model the problem of frequency evaluation, that requires a costly subgraph iso-
morphic matching operation, as a constraint satisfaction problem, thereby avoiding
the enumeration of all the embeddings, which was deemed expensive in Kuramochi
et al. [Kuramochi and Karypis, 2005]. In addition they also propose an approxi-
mate version of the algorithm. The latest work in FSM is DistGraph, proposed by
Talukder and Zaki [Talukder and Zaki, 2016], which is a distributed approach to
address FSM in single large graph settings.

5.3 Preliminaries and problem definition

In this chapter we address the problem of mining single large multigraphs with
undirected edges and unlabelled vertices, which will now on be simply referred to
as multigraphs. We recall the definition of such a multigraph G as a four-tuple
(V,E, LE, T ), where V is a set of vertices, T is a set of edge types, E ⊆ V × V is a
set of undirected edges, and LE : V × V → 2T is a labelling function that assigns a
subset of edge types to each edge E it belongs to. With the labelling function LE,
the edge E becomes a multiedge, and thus G is a multigraph.

One of the major problems during the Frequent Subgraph Mining (FSM) process
is to check if a subgraph exists in a given data graph or not, which is the subgraph
isomorphism problem. For the ease of readability, we recall the definition of subgraph
isomorphism for undirected multigraphs (from Chapter 2).
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Figure 5.2: Embeddings of pattern P1 (rest of the data graph is in dotted lines)

Definition 5.1. Subgraph isomorphism for multigraphs. Given a multigraph pattern
P = (V p, Ep, Lp

E, T
p) and a multigraph G = (V,E, LE, T ), the subgraph isomorphism

from P to G is an injective function ψ : V p → V such that,

∀(um, un) ∈ Ep, ∃ (ψ(um), ψ(un)) ∈ E and Lp
E(um, un) ⊆ LE(ψ(um), ψ(un)).

If a pattern P , which itself a multigraph, exists in a single large graph G, then P
is subgraph isomorphic to G. Further, if P is subgraph isomorphic to G, then there
exists a set of embeddings of P in the multigraph G. The problem of enumerating
all the embeddings of P in G is a classic problem of subgraph matching [Lee et al.,
2012], reintroduced later in the chapter. From now on, a sub-multigraph pattern P
will be simply referred to as a pattern.

The embeddings of a pattern P in a given multigraph G play a crucial role
for the task of graph mining. To evaluate the frequency of a subgraph, one needs
to check if the number of isomorphic embeddings of a pattern in a given graph is
atleast δ. Owing to the computational feasibility, we consider MNI support measure
(Definition 2.12), in order to perform FSM in multigraphs.

For an intuitive understanding of the MNI support measure, consider the ex-
ample in Figure 5.1. To measure the MNI support for the pattern P1, we enumerate
the embeddings of the pattern P1, as depicted in Figure 5.2. As we observe, every
vertex of pattern P1 has a unique image in the data graph and 2 distinct embeddings
imply that for each pattern vertex, the node image is 2. Thus the MNI support is
∆(P1) = 2, since the minimum of the image size of all the nodes is 2.

With all this necessary background, we arrive at the problem that we are inter-
ested in tackling. Mining multigraphs to discover frequent sub-multigraphs is the
problem of frequent sub-multigraph pattern mining, formally defined as:

Problem 5.1. Frequent sub-multigraph pattern mining. Given a multigraph G,
and a support threshold δ, discover the entire set of patterns P in G, such that
∆(P) ≥ δ.
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In the following section, we propose an efficient graph mining algorithm Mu-
GraM, that seamlessly extracts frequent multigraph patterns from a single large
multigraph.

5.4 MuGraM: A frequent pattern mining algorithm

The objective of this work is to address the problem of exact frequent sub-multigraph
mining (Problem 5.1) by efficiently discovering all the frequent sub-multigraph pat-
terns that exist in a given single large multigraph G. In the following sections we
provide a generic overview of frequent pattern mining algorithms and then look into
the challenges faced by addressing multigraphs. We then propose a frequent sub-
graph mining approach MuGraM, and discuss several optimization techniques to
improve its performance.

Our approach towards mining multigraphs follows a similar framework of al-
ready existing mining approaches for single large graph settings, as described in [Ku-
ramochi and Karypis, 2005, Elseidy et al., 2014]. A generic framework of mining
single large graphs involves the following steps: (i) enumerate the frequent edges
(frequent patterns of size s = 1) (ii) extend each frequent pattern by successively
adding the frequent edges recursively (iii) avoid repeated pattern generation (iv)
compute the support of the newly generated patterns to decide if the pattern is
frequent or not. Before getting into the details, we introduce some concepts to
understand the operations of mining multigraphs.

5.4.1 Multi-edge representation and pattern enumeration

Since in a multigraph, the basic pattern is a multiedge, one might compute the MNI
support of each multiedge E in a given multigraph G, to discover the frequent mul-
tiedges. However, this set of frequent multiedges is rather incomplete. To perform
exact mining, it is necessary to enumerate the subsets of the multiedges, and then
compute their support to decided if they are frequent or not; such frequent subsets
of the multiedges are what we refer to as a set of frequent seeds P1.

Definition 5.2. Frequent seeds. A set of frequent seeds P1 is a union of each
frequent subset f of all the distinct multiedges E. Given a multigraph G with n
distinct multiedges, a set of frequent seeds is represented as:
P1 = ∪ni=1{f ⊆ Ei : ∆(f) ≥ δ}.

For example, consider a multigraph G with two distinct multiedges E1 =
{e1, e2, e3} and E2 = {e2, e3, e4}, that occur exactly once. If one is interested in
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finding patterns with support threshold δ ≥ 2, then without enumerating the sub-
sets of multiedges, we would have no frequent patterns, which is incorrect. By
enumerating the subsets of multiedges, we discover three frequent patterns, each of
size s = 1, which have multiedges {e2}, {e3} and {e2, e3} respectively. Thus, the set
of frequent seeds for G is represented as P1 = {{e2}, {e3}, {e2, e3}}.

5.4.2 Overview of MuGraM

The proposed algorithm MuGraM is summarised in Algorithm 5.1. The algorithm
takes a multigraph G and the support threshold measure δ as the inputs. MuGraM
outputs a set of patterns P that satisfy the minimum frequency threshold δ w.r.t.
MNI support measure. As a first step, we enumerate all the frequent seeds, which
are nothing but frequent patterns of size-1 P1, as shown in line 4. To enumerate the
frequent seeds, we firstly collect the existing multiedges in G along with the subsets
of multiedges. Then we compute the number of occurrences of each multiedge and
quickly verify if they appear at least δ times, with respect to the MNI measure.
Thus, the set of frequent seeds is represented as P1 = {f1, . . . , fn}.

Algorithm 5.1: MuGraM
1 Input: A multigraph G, support threshold δ
2 Output: All frequent patterns P in G
3 Initialize: P = ∅, S = ∅, NP = ∅, ne = 1
4 Enumerate: All frequent seeds (multiedges) P1

5 Ordering: Maintain a partial order (P1,�), where � is a relation on
frequency value

6 for every f ∈P1 do
7 EP = {fe ∈P1 : ∀f ∈ PC, fe � f}
8 S .push(f) /* Stack of f for DFS mining */
9 P= P ∪ FindFreqPatterns(EP , ne, δ, S , NP , G)

10 return P

Since an efficient way of exploring the search space for single large graphs is
to traverse in a DFS manner, as endorsed in [Kuramochi and Karypis, 2005], we
follow the Depth First Search (DFS) traversal of the search space. MuGraM then
discovers frequent patterns by recursively extending the frequent size-1 patterns P1,
by traversing the search space in a DFS manner (lines 6-9). Further, we propose
to order the set of frequent seeds P1 with the increasing order of their frequency
of occurrence. Thus, we define the partial order (P1,�), where � is a relation on
the frequency of occurrence of the elements of P1. Since we generate new patterns
by extending the frequent patterns, the ordering of the frequent with the increasing
order of their frequency helps in deciding the infrequent patterns much sooner.
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Figure 5.3: Search space for a set of frequent seeds P1 = {f1, f2}

The procedure FindFreqPatterns discovers the frequent patterns in a DFS
manner, as depicted in Algorithm 5.2. A stack data structure S manages the nodes
of the DFS tree traversal, which is initialized in line 8. Thus for each frequent
multiedge f ∈P1, we invoke the procedure FindFreqPatterns (Algorithm 5.2)
to find the subsequent frequent patterns of size s > 1 (line 9). All discovered frequent
patterns are collected in P. Before getting into the details of FindFreqPatterns
procedure, we discuss about the search space spanned by MuGraM, which will in
turn help in understanding the FindFreqPatterns procedure.

5.4.3 Search space spanned by DFS traversal

The search space of MuGraM starts with a set of frequent seeds P1 = {f1, . . . , fn},
where fi is a frequent seed (multiedge). In order to discover patterns of size s > 1,
we extend each frequent seed fi with the set of frequent seeds P1. For example,
if we have a set of frequent seeds P1 = {f1, f2}, in order to discover all the fre-
quent patterns, one needs to explore the entire search space (generated by pattern
extension) as shown in Figure 5.3a. In Figure 5.3a, each node in the search tree for
size s > 1 represents a set of child patterns of size s+ 1 generated by extending its
parent of size s. The search space grows from one level s to the next s+1 only if the
patterns at the sth level are frequent. This exploration follows the antimonotonic
property of the support measure; i.e., if a pattern P of size s is not-frequent, then
any pattern that is an extension of P can not be frequent. For example, the node
f1-f2-f1 is generated by extending the pattern f1-f2, only if at least one pattern in
f1-f2 is frequent.

In simple terms, each frequent seed f ∈ P1 is extended with the entire set of
frequent seeds P1, where repeated extension are allowed; thus f1-f1 is a valid ex-
tension. However, we propose that it is possible to reduce the search space traversal
by making an interesting observation.
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Theorem 5.1. Given a partially ordered set (P1,�), where � is a relation on the
set of frequent seeds P1, it is sufficient to extend a frequent seed f ∈ P1 with the
set of extendible seeds {fe ∈P1 : fe � f}.

Proof. Since the extension of frequent seeds generates pattern children of size s = 2,
it would be sufficient to prove that at level s = 2, we would generate all possible
patterns. And due to the antimonotonicity of the support measure, all possible
frequent patterns would be discovered for s > 2. Now, given a multigraph G with
no vertex labels and a set of n frequent seeds P1, ordered by a relation �, pattern
extension generates a set of patterns of size s = 2, P2 = ∪ki=1{(fi ./ fj) : fi, fj ∈
P1, j = 1 → k}, where ./ is a join operation on two patterns so that all possible
structures are enumerated. For level s = 2, we observe that any two patterns,
P1 = (fi ./ fj) and P2 = (fj ./ fi) with i 6= j are pairwise isomorphic, and hence
redundant. Thus, given a relation �, it would be sufficient to retain a pattern
P = (fi ./ fj) w.r.t. the order fi � fj.

As a consequence of Theorem 5.1, we do not need to extend each frequent seed
with all possible frequent seeds P1; this reduces the traversal search space, and
therefore avoid many redundant mining operations. As depicted in Algorithm 5.1,
line 7, every frequent seed f is extended only by a set of extendible frequent seeds
EP . Intuitively, if we observe Figure 5.3a, two patterns (shaded) f1-f2 and f2-f1
are pairwise isomorphic and hence we can only retain one pattern f1-f2, by follow-
ing the relation �. Thus, the pattern f2-f1 can be safely discarded; further the
search space extending from f2-f1 can be discarded thanks to antimonotonic prop-
erty of the support measure, resulting in a much compact search space as depicted
in Figure 5.3b.

5.4.4 Discovering frequent patterns

Frequent patterns are discovered in a recursive manner, which follows DFS traversal
of search space as depicted in Algorithm 5.2. Since the stack structure S stores the
frequent patterns for the entire search space, we perform DFS exploration until the
stack S is emptied. When the stack S becomes empty in line 3, we have visited
all possible patterns that are an extension of f ∈P1, which itself is repeated until
all elements have been extended as observed in Algorithm 5.1, line 6.

As we traverse the search space in a DFS manner (lines 3-14), we keep on
extending the initial frequent seed f ∈P1. A pattern P to be extended is fetched
from the stack S (line 4) and the corresponding multiedge Pe which is used for
extending P (line 5), is chosen from the set of extendible edges EP . The set of
extendible edges EP is nothing but the frequent patterns P1 of size s = 1. When a
pattern P of size s is extended, a set of new patterns PN of size s+ 1 are generated.
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Algorithm 5.2: FindFreqPatterns(EP , ne, δ, S , NP , G)
1 if ne > EP .size() then
2 return /* All edges extended */

3 while S is not empty do
4 P := S .pop() /* The pattern to be extended */
5 Pe := EP .ne /* The multiedge used for extension */
6 PN := ExtendPattern(P , Pe, C ) /* New patterns */
7 PF := ComputeSupport(PN , G) /* New frequent patterns */
8 if PF 6= ∅ then
9 S .push(PF) /* Stack grows with new FSGs */

10 P = P ∪ PF
11 else
12 ne := ne+ 1
13 FindFreqPatterns(EP , ne, δ, S , NP , G)

14 Reset: ne = 1

The ExtendPattern procedure performs this extension as shown in line 6. For
this set of new patterns PN , the ComputeSupport (line 7) procedure computes
the support value and checks if there are any frequent patterns, which results in a
set of frequent patterns PF = {P ∈ PN : ∆(P ) ≥ δ}; thus PF ⊆ PN . The new
frequent patterns in PF are added to the stack S , for further pattern extension
and added to the repository of frequent patterns P (lines 8 - 10 ). However, if
PF has no frequent patterns, we choose to extend the pattern P , with the next
multiedge by incrementing the pointer to choose the next multiedge ne (line 12),
and the FindFreqPatterns procedure is called recursively. Once all the frequent
seeds f ∈ EP have been used for extension, i.e., when ne > EP .size() (lines 1 - 2),
the recursive call is returned. The entire recursive procedure is repeated until the
stack S is empty, thereby traversing the entire search space that spans from the
initial frequent pattern P ∈P.

5.4.5 Pattern extension

In Algorithm 5.3, we extend a pattern P with an extendable multiedge Pe, resulting
in a set of new patterns PN . A pattern P of size s can be extended into several
patterns of size s + 1, by attaching a multiedge Pe. However, depending on the
structure of pattern P , we can attach Pe in two ways: 1. by introducing an additional
vertex 2. without introducing any additional vertex. For example, in Figure 5.4a,
we can only extend the pattern P by introducing a node; whereas in Figure 5.4b we
need to extend the pattern P by introducing a node as well as without any extra
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Figure 5.4: Various possible extensions of a pattern and automorphic grouping

node (the new nodes used for extension are shaded, while the dotted lines indicate
all possible edge extensions). In Algorithm 5.3, the extension is done for every vertex
of the pattern (lines 3 - 4), where the addition of an edge is done through P.add(Pe)
operation.

Optimization techniques during pattern extension

We now propose a few optimization techniques that we employ during the pattern
extension procedure ExtendPattern.

Automorphic extension: While extending a pattern P with an extra node
by an extendible edge Pe, instead of choosing each vertex v ∈ V p, it is sufficient to
choose a set of vertices for extension that belong to distinct automorphic groups of
V p [Kuramochi and Karypis, 2005]. This in turn reduces the overhead caused by
computing the canonical representation for the extended new patterns Pnew, that is
deemed redundant. For example, in Fig 5.4c, we are interested in extending a pattern
P that has a multiset of multiedges {f1, f2, f2} with an extendible frequent seed f3,
using an extra node. The set of automorphic groups for the given pattern P can
be computed as {{u1, u3}, {u2}}. Since u1 and u3 belong to the same automorphic
group, it is sufficient to consider any of them; thus we can either use {u1, u2} or
{u3, u2} as the set of vertices for extending with Pe. Thus, Va consists a set of
vertices belonging to the distinct automorphic group as shown in Algorithm 5.3,
line 2. The procedure ExtendPattern returns a set of new patterns P and the
corresponding canonical representations C .

Canonical verification: One of the vital problems that is often faced in
FSM approaches is the repeated generation of patterns. When we are traversing
the search space by extending the frequent patterns, it is highly likely that the
same pattern was already generated. Such repeated generations can be avoided by
checking if the new pattern is isomorphic to the already generated patterns. One
of the efficient ways to perform this task is to assign each pattern with a canonical
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representation and store it in a repository called canonical repository. Whenever a
new pattern is generated, we check it against the canonical repository; if there is
a match in canonical representations, then the new pattern was already generated;
else, the repository is updated with the canonical representation of the new pattern.
This approach is proposed in [Kuramochi and Karypis, 2005], which we extend for
multigraphs.

Canonical verification: Each time a new pattern is generated by an edge
extension, we generate canonical representation of Pnew (line 5) and check if it has
already been generated (lines 7-8). Thus, if the newly generated patterns is pairwise
non-isomorphic to already generated patterns, we update the set of new patterns PN
and the corresponding canonical repository C ; otherwise, we continue to generate
the next new pattern (lines 7).

Thus, each time a new pattern is generated by an edge extension, we generate
canonical representation of Pnew (line 5) and check if it has already been generated
(lines 7-8). Thus, if the newly generated patterns is pairwise isomorphic to any
of the already generated patterns, we continue to generate the next new pattern
(lines 7), since the new pattern has already been generated before; else, we update
the corresponding canonical repository C (line 11).

Detecting infrequent patterns: When we traverse the search space in a
DFS manner, we collect a set of infrequent patterns NP as we traverse a path,
to be discussed later in Algorithm 5.4. Whenever a new pattern is generated we
check if the new pattern Pnew is a supergraph of any of the infrequent patterns in
NP , as depicted in lines 8-9. This avoids the expensive support computation, as we
are able to quickly detect that the new pattern can not be frequent, thanks to the
antimonotonicty property of the support measure.

Once it is confirmed that the newly generated pattern Pnew is not infrequent
and never generated before, we update the set of new patterns P (line 12). Once the
pattern P has been extended in all possible ways, the procedure ExtendPattern
returns the set of newly generated patterns P and the updated canonical repository
C .

5.4.6 Support computation for multigraphs

Computing the support of a pattern is one of the most crucial aspects of any graph
mining algorithm, as one has to address the NP-complete problem of subgraph
isomorphism. This becomes even harder when we are dealing with multigraphs,
as we have to tackle the more generic version of the problem of sub-multigraph
isomorphism [Ingalalli et al., 2016]. Thus, in this section, we propose an algorithm
for efficient support computation by addressing three vital questions: (i) How to
efficiently enumerate the isomorphic embeddings of a multigraph pattern, in order
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Algorithm 5.3: ExtendPattern(P , Pe, C , NP)
1 Initialize: P := ∅
2 Va = ComputeAutoGroup(P ) /* Generate new patterns that are
distinct */

3 for every {v ∈ Va} and {[vi, vj] ∈ V p : i 6= j ∧ i, j ≤ |V p|} do
4 Pnew = P.add(Pe) /* Node and edge extension */
5 Generate: C .Pnew := CanRep(Pnew)
6 if C .Pnew is contained in C then
7 continue; /* Skip to next pattern */

8 if HasInfrequentChild(Pnew, NP) then
9 continue; /* Skip to next pattern */

10 InheritInvalid(Pnew, P)
11 C := C ∪ C .Pnew

12 P := P ∪ {Pnew}
13 return C , P

to compute the support of a pattern? (ii) Assuming that a pattern is frequent, how
fast we can find a set of embeddings of a pattern such that MNI support threshold
is reached quickly? (iii) How quickly can we decide if a pattern is not frequent? We
will address these three issues respectively in the following sections.

5.4.6.1 Sub-multigraph matching

In this section, we address the first question of enumerating the isomorphic embed-
dings for a given multigraph pattern by formulating the problem of sub-mulitgraph
matching, formally defined as follows.

Problem 5.2. Given a pattern P , and a multigraph G, discover the entire set of
embeddings E = {e1, . . . , el} such that every ei ∈ E is a sub-multigraph of G and ei
is isomorphic to P .

The sub-multigraph matching problem involves a much basic problem of solving
sub-multigraph isomorphism as described in Definition 5.1. To address the problem
of sub-multigraph matching, we take inspiration from Chapter 3, where a subgraph
matching approach called SuMGra is proposed that is curated for multigraphs.
We recall that SuMGra incorporates efficient indexing structures that leverage
multiedge information, which is eventually used during the backtracking procedure
to enumerate the isomorphic matches.

However, in this work, since we focus on checking if a pattern P appears in G
at least δ times w.r.t. the MNI measure, we do not need to exhaustively compute all
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the embeddings. Instead, we only need to carefully span the search space in order
to count the isomorphic embeddings of a pattern until the support threshold value
is reached; however, this counting can not be merely incremental, but has to comply
with the MNI support measure. Thus, in the following sections, we propose the
optimization techniques required to reach the support threshold value as quickly as
possible, by respecting the MNI measure constraints.

5.4.6.2 Optimised support computation

In this section, we discuss about the second question posed to enumerate a set of
embeddings of a multigraph pattern such that MNI support threshold is reached
quickly. This question is tackled by optimizing the problem of sub-multigraph
matching to compute the MNI support measure. To achieve efficient computa-
tion of MNI support value, we modify the backtracking approach of sub-multigraph
matching [Ingalalli et al., 2016].

For the ease of readability, in this section, we refer to the vertex set of pattern P
as V p = {u1, u2, . . . , un}, and the corresponding vertex set of a matched embedding
e ∈ E as V e = {v1, v2, . . . , vn}. Now consider a pattern P for which we want compute
the support; in order to reach the support threshold value of δ, we must enumerate
at least δ isomorphic embeddings of the pattern P . In the best case scenario, δ
number of embeddings would be enough to reach the MNI threshold value of δ;
however, to achieve this, the δ isomorphic embeddings should be non-overlapping
(two embeddings e1 and e2 are overlapping, if they share at least one vertex) enough
as to achieve MNI measure count. This, however, poses a challenge for any subgraph
matching approach to enumerate such embeddings in an efficient manner.

To address this issue, we propose a heuristic search procedure that enumerates
the isomorphic embeddings that overlap in a least possible manner. In this direction
we introduce the concept of what we refer to as the problem of bin filling, formally
defined as follows.

Problem 5.3. Bin filling. Consider a set of n bins B = {b1, . . . , bn}, where |bi| = δ
is the capacity of each bin, and a set of l embeddings M = {m1, . . . ,ml}, where each
embedding mk ∈ M is represented by a vertex set V e = {v1, . . . , vn}. Further, an
embedding mk is placed in the bin B in such a way that each vertex vi ∈ V e occupies
a position bi ∈ B. The problem of bin filling is to fill all the bins in B placing
the vertex set of least possible set of embeddings m ∈M , where any two embeddings
could be overlapping.

To understand bin filling, let us consider an example where a pattern P has
n = 3 vertices, and the support threshold value is δ = 2. In this case, we will have
to fill a set of n = 3 bins B, each with a capacity of δ = 2. Further, let us assume that
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we have three embeddings each with a vertex set V e
1 = {v1, v2, v3}, V e

2 = {v1, v4, v5}
and V e

3 = {v2, v4, v5} respectively. Now, if we somehow choose V e
1 and V e

3 , we would
fill the bin B with only 2 embeddings; any other order would require 3 embeddings
to fill the bin. Further, more importantly, we do not want to enumerate the entire
set of embeddings and then fill the bin B; instead, we are interested in filling the
bin B, as soon as an embedding is discovered. Thus, the challenge in designing the
heuristic involves the discovery of the isomorphic embeddings in such a way that
they are overlapping to the least.

Let us now focus on the backtracking approach of sub-multigraph matching
problem SuMGra [Ingalalli et al., 2016] that discovers a set of embeddings by
traversing the subgraph search space in a DFS manner. One of the basic steps
in a sub-multigraph matching procedure is to maintain an ordering on the vertex
set V p of the subgraph pattern P ; subsequently an isomorphic set of vertices V m

of an embedding m ∈ M are enumerated in that order. Let us assume a linearly
order set (V p, <), where the relation < is defined on the set of pattern vertices
V p = {u1, . . . , un}; with this linear order, the corresponding embeddings of pattern
P are enumerated, where u1 is matched first and un is the last vertex to be matched.
Since we follow backtracking approach, the distinct matched vertices for un are
replenished faster than the distinct matches for u1; thus if we allow the embeddings
discovered through backtracking approach to fill the bins, we observe a skewed filling
of the bins, since bin bn is filled much faster than bin b1. We observe that this is an
inefficient way to fill the bins in order to compute threshold and hence propose the
heuristic search procedure ComputeSupport (Algorithm 5.4).

In Algorithm 5.4, we speed up the filling of the bins, by making the bin filling
distribution more symmetric. For a pattern P with |V p| = n vertices, we compute
n distinct vertex order permutations σ = {σ1, . . . , σn}, where a permutation σi rep-
resents a vertex ordering with ui as its initial vertex (line 3). Thus, by considering
every permutation σi ∈ σ, we would have each vertex u ∈ V p as the initial ver-
tex for the backtracking procedure. Before applying the backtracking procedure,
the potential matches for each vertex u ∈ V p are enumerated using the FindInit-
Candidates procedure (line 4) as proposed in [Ingalalli et al., 2016]; we call these
matches as the initial candidate set Cand. Then we initialize the set of bins B for
every vertex u ∈ V p (line 5).

We now follow the backtracking approach to discover isomorphic embeddings by
following a set of vertex orderings σ (lines 7-15). For each pattern vertex permutation
σi, the FillPatternBins procedure (Algorithm 5.5) is invoked, in order to collect
the embeddings of pattern P , thereby filling the set of bins B. If the entire set of
bins B have been filled with δ vertices in them, then the MNI support has been
reached and hence we collect the frequent pattern P and return to the previous
procedure to fetch the subsequent pattern (line 14-15).

In Algorithm 5.5, we propose the FillPatternBins procedure that rapidly fills



5.4. MUGRAM: A FREQUENT PATTERN MINING ALGORITHM 111

Algorithm 5.4: ComputeSupport(NPC, NP , δ, G)
1 Initialize: FPC = ∅ /* A set of frequent patterns */
2 for each P ∈ NPC do
3 σ := ComputePerm(V p) /* Permutation ordering of vertices in

P: V p */
4 Cand := FindInitCandidates(V p, P , G)
5 Initialize: B := {bi = ∅ : i = 1→ |V p|} /* Bins for each vertex in

P */
6 Set: P.frequent = False;
7 for each permutation k ∈ σ do
8 Fetch: im = InvalidMatches(P , uk)
9 Cand(σk) := {Cand(σk) \ im \ bi : i = k}

10 if |Cand(σk)| < δ then
11 break; /* The pattern in infrequent */

12 if FillPatternBins(P , σk, Cand(σk), G, B) then
13 P.frequent = True;
14 FPC = FPC ∪ P /* Pattern P is frequent */
15 break; /* Skip to next pattern */

16 if P.frequent = False then
17 NP = NP ∪ P /* Pattern P is not frequent */

18 return FPC

the set of bins B. For every matched initial vertex v ∈ Cand(σk), we recursively find
an isomorphic match (lines 7-8). Whenever a match is found, i.e., when |Emb| =
|V p|, we fill the bin B with the solutions; and when the bin is filled, we terminate
the procedure as the pattern P is frequent (lines 9-12). One prime factor where the
proposed FillPatternBins procedure differs from a backtracking procedure to
discover isomorphic embeddings is that every time an embedding is found, instead
of backtracking to enumerate the next embedding, we terminate the backtracking
process and restart the matching procedure for the next vertex v ∈ Cand(σk),
ensures symmetric distribution of bin filling.

Theorem 5.2. Considering a pattern with n vertices and the corresponding set of
vertex permutations σ that has n distinct orderings, where each ordered vertex set
begins with a distinct pattern vertex ui, it is sufficient to terminate the backtracking
procedure once an embedding is discovered in a particular DFS traverse; i.e., by
restarting the backtracking procedure for each vertex permutation σi ∈ σ, we will
enumerate all the embeddings of the pattern.

Proof. For a given linearly ordered vertex set V p, < of a pattern P with n vertices,
the backtracking procedure traverses the entire search space by recursively perform-
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ing DFS search for the patter vertex matches. To achieve this, a single vertex set
ordering, say σi is sufficient to span the entire search space, since each pattern vertex
is recursively allowed to find the corresponding isomorphic match. Now, if we allow
the backtracking to be performed for a permutation of vertex set ordering σ of size
n, where each vertex order permutation σi has ui as its initial vertex in the ordering,
we can then terminate the backtracking process for that DFS search path once an
embedding is found. Th rest of the embeddings that could be existing in this DFS
path will be discovered by following another vertex order permutation σj.

Algorithm 5.5: FillPatternBins(P , σk, Cand(σk), G, B)
1 PotentialMatchesSize: PM := |Cand(σk)|+ |bk|
2 for each v ∈ Cand(σk) do
3 if PM < δ then
4 P.frequent = false; /* Pattern P is infrequent */
5 return false;

6 Emb = {v} /* A match for initial vertex u1 */
7 for each pattern vertex u ∈ {σk \ u1} do
8 Emb = Emb ∪ RecursiveMatching(u, P , G)

9 if |Emb| = |V p| then
10 B = B ∪ Emb /* Add a new embedding to the bin */
11 if {|bi| ≥ δ : i = 1→ |V p|} then
12 return true; /* Pattern P is frequent */

13 else
14 AssignInvalidMatches(P.uk, v)
15 Decrement PM = PM − 1

16 return false;

However, even after the RecursiveMatching procedure, no embedding is
discovered, i.e., |Emb| < |V p|, it implies that for the initial pattern vertex uk, the
initial vertex match v ∈ Cand(σk), is not a valid match since, there exists no em-
bedding in G with the initial match v. Thus, the vertex v can be considered as an
invalid match for the pattern vertex P.uk and hence the AssignInvalidMatches
procedure assigns vertex match v as an invalid match for the pattern vertex P.uk
(line 14). Once all the initial matches have been checked for the embeddings using
the RecursiveMatching procedure, the algorithm returns back to Compute-
Support to fetch the next vertex order permutation, since the bin is still partially
filled.

As a consequence of Theorem 5.2, we can rapidly fill the bins in a more sym-
metric manner, which in turn helps us to decide if a pattern P is frequent. In the
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following section, we discuss on the various optimizations that we adopt in comput-
ing the support.

5.4.6.3 Optimization techniques during support computation

In this section, we address the third question that was raised in the beginning
as to how quickly can we decide if a pattern is not frequent? Since the search
space of mining frequent patterns grows huge, especially in the case of multigraphs,
the number of infrequent patterns collected over the number of frequent patterns
discovered also increases. Thus, we spend more time on infrequent patterns to
confirm their infrequency than to decide a pattern is frequent. While in the previous
section, the problem of bin filling promoted the idea of quickly deciding if a pattern
is frequent, also to some extent helps in deciding if a pattern in infrequent. We now
discuss few details on optimization strategies, which have been proposed as a part
of Algorithms 5.4, 5.5, that help us to predict that a pattern is infrequent, without
spanning the entire search space to decide so.

Managing infrequent patterns Recalling Algorithm 5.4, whenever we find
a pattern P to be infrequent, we add it to the repository of infrequent patterns NP

(line 16-17). This repository is maintained as a hierarchical collection of infrequent
pattern structures w.r.t. their sizes. Whenever a new pattern is generated during
the pattern extension procedure ExtendPattern (Algorithm 5.3), we fetch all the
infrequent patterns that are smaller than the new pattern, and check if any of them
is subgraph isomorphic to the new pattern; if so, then the new generated pattern
can not be frequent due to anti-monotonicity principle.

Managing invalid matches of pattern vertices As we just discussed on
leveraging the information of infrequent patterns for early prediction of further in-
frequent patterns, we now focus on how can we leverage crucial information from
frequent patterns and use them to decide the infrequency of subsequent patterns.
When we observe the procedure FillPatternBins (Algorithm 5.5), we initially
have a set of potential candidate matches Cand.σk(u0) for the initial vertex u0 of a
pattern P . The initial vertex u0 is fetched from a permutation of vertex order σk.
The RecursiveMatching procedure on line 8, manages to find the matches to the
rest of the vertices σk\u0 of pattern P , using backtracking approach, which yields an
isomorphic solution of the pattern P . However, if RecursiveMatching procedure
can not find an isomorphic matching, then the potential match v ∈ Cand.σk(u0) for
the initial vertex u0 is indeed an invalid match, since no embedding exists in the
entire search space. Thus, we can safely assign v as an invalid match for the initial
vertex u0 of pattern P . Note that we can assign the invalid matches only for the
initial vertex u0 since the search space exploration for an embedding begins from
that vertex.
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However, thanks to the antimonotonicity property, we can push the invalid
matches of a pattern at level s to a pattern of level s + 1, if the pattern at level
s + 1 is an extension of pattern at level s. And since we traverse the search space
in DFS manner, we cumulatively collect the invalid matches as we go down the
search space. Thus, whenever a new pattern is created during the pattern extension
procedure FindFreqPatterns as depicted in Algorithm 5.2, we pass on the invalid
matches as depicted by the InheritInvalid in line 14. Thus when a new pattern
Pnew is evaluated for its support measure by Algorithm 5.4, it already contains
a set of invalid matches for all of its vertices V p. This information is exploited
to refine the candidate matches in Algorithm 5.4, line 9. Thus is the candidate
matches for the initial vertex u0 ∈ σk are pruned by the operation: Cand(σk) :=
{Cand.σk(u0)\InvalidMatches(σk(u0))}, thereby reducing the number of candidate
matches. This significantly reduces the computational overhead on the backtracking
procedure RecursiveMatching in Algorithm 5.5 (line 8). Further, the reduction
in the size of potential matches Cand also helps us in deciding if a pattern can
reach the support threshold; i.e., if for a given permutation ordering σk, the size of
the potential matches is less than the support threshold Cand.σk < δ, then there
is no need to compute the support since, the pattern cannot have δ embeddings.
This optimization is exploited in Algorithm 5.4, lines 10-11, and in Algorithm 5.5,
lines 3-5.

5.5 Experimental Evaluation

In this section, we evaluate the time performance as well as perform qualitative anal-
ysis of the proposed MuGraM for mining multigraphs. The quantitative analysis
is done w.r.t. the time performance, by comparing the performance of MuGraM
with the current state-of-the-art approach GraMi. Further, the qualitative analy-
sis is done on select datasets of real-world, to realize the importance of multigraph
mining.

All the experiments were carried out on a server, with 64-bit Intel 6 processors @
2.60GHz, and 250GB RAM, running on a Linux OS - Ubuntu 14.04 LTS. MuGraM
is implemented in C++.

5.5.1 Quantitative analysis: Time performance evaluation

In this section, we compare the performance of MuGraM with a recent state of the
art approach GraMi [Elseidy et al., 2014]. Although GraMi can not be employed
to work on multigraphs, it can be employed to work on edge labelled graphs that
have exactly one label per edge.
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In order to evaluate the time performance of MuGraM, we use a variety of real
world datasets, ranging in different sizes and densities. Table 5.1 lists the datasets
and their properties that we use for the time performance of MuGraM and compare
it with the recent state-of-the-art approach GraMi.

Dataset # Vertices # Edges # Edge types Density

DBLP-Mappedgraph 83 901 141 471 910 Medium
Citeseer 3 312 4 732 27 Medium
Microsoft 100 000 1 080 298 240 Dense
Amazon 334 863 925 872 1 Medium

Table 5.1: Properties of the graph datasets

DBLP-Mappedgraph is built from the original DBLP-Multigraph dataset by
mapping the multiedges in the original dataset to a set of distinct values. The origi-
nal dataset DBLP-Multigraph is built by following the procedure adopted in [Boden
et al., 2012], where the vertices correspond to different authors and each edge type
represents one of the top 50 Computer Science conferences. Two authors are con-
nected by an edge type if they co-authored at least one paper together in that
conference. Thus, in the original dataset, a pair of authors can be co-authors for
more than one conference and hence can share more than one edge type. For ex-
ample, the original dataset can have a multiedge with three edge types {e1, e3, e8}.
Since the existing approaches can discover patterns with only one edge type, we use
the mapped dataset, so that we can compare MuGraM with GraMi.

CiteSeer dataset is a graph created with ‘publications’ as nodes and ‘citations’
between a pair of publications as edges. Each node has a single label representing the
field of Computer Science. The distinct edge types (27) are the similarity measures
between the corresponding pair of publications, which vary in the range 0 to 100,
where a smaller value implies stronger similarity. Microsoft dataset models the
Microsoft co-authorship information and consists of an undirected graph, where
unlabelled nodes represent the authors and edges represent collaboration between
two authors. The different edge types correspond to the number of co-authored
papers (240). Both the CiteSeer and Microsoft datasets are provided by the authors
of GraMi [Elseidy et al., 2014].

Amazon1 dataset was created by crawling Amazon website. It is based on the
‘Customers Who Bought This Item Also Bought’ feature of the Amazon website.
If a product p is frequently co-purchased with product p′, then graph contains an
undirected edge from p to p′. This dataset contains only unlabelled edges and has
been chosen to evaluate the performance of MuGraM when dealing with simple

1http://snap.stanford.edu/data/com-Amazon.html
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(a) Amazon dataset (b) DBLP dataset

Figure 5.5: Time performance of Amazon and DBLP datasets

graphs.

All the experiments have been conducted for varying values of support measure
threshold δ, depending on the dataset. Further, for each support threshold value,
a maximum execution time of 1 day was allotted in order to discover the frequent
patterns; we report the time taken in seconds (on a logarithmic scale) to discover
patterns only after the respective algorithms terminate their execution, where 1 day
is the maximum time allowed.

The time performance for Amazon dataset is depicted in Figure 5.5a, where we
vary the support value from 300k to 296k. As we observe, although Amazon is a
simple graph with only one edge type (not a multigraph), MuGraM outperforms
GraMi by ∼10 orders of magnitude. Further, for support values from 297k, GraMi
fails to terminate within 1 day of maximum execution time allotted, while GraMi
successfully discovers frequent patterns. Results for DBLP-Mappedgraph dataset are
depicted in Figure 5.5b. We recall that although DBLP-Mappedgraph dataset has 50
edge types, it has 910 distinct multiedges, which we map to unique identifiers in order
to run both MuGraM and GraMi. For DBLP-Mappedgraph, we vary the support
values from 3.5k to 2.7k and output the time in seconds. From Figure 5.5b we
observe that MuGraM outperforms GraMi with almost 1-2 orders of magnitude.

For the Citeseer dataset, from Figure 5.6a we observe that the time performance
of MuGraM is 2-3 orders of magnitude better than GraMi for higher support
values, although for relatively lower support value of 100, we outperform GraMi
by ∼1 order of magnitude. For the Microsoft dataset, both MuGraM and GraMi
are able to terminate within the permissible time of 1 day for the entire support
range of 41k to 36k. For higher support values, MuGraM is ∼1 order of magnitude
better than GraMi, while the performance gap slightly shrinks for the lower support
values.
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(a) Citeseer Dataset (b) Microsoft Dataset

Figure 5.6: Time performance of Citeseer and Microsoft datasets

We perform an additional quantitative analysis in order to test the potentiality
of the proposed MuGraM algorithm. We perform this test by employing Mu-
GraM for a real multigraph data. We recall that the original DBLP-Multigraph
dataset is inherently a multigraph, and we have mapped the distinct multiedges to
unique identifiers in order to compare the time performance as already discussed in
Figure 5.5b. We are now interested in comparing the performance of MuGraM
on the original multigraph - DBLP-Multigraph and the mapped graph - DBLP-
Mappedgraph. Figure 5.7 depicts the behaviour of multigraph and mapped graph
performances; in Figure 5.7a, we compare the number of patterns discovered for
the two versions of the same DBLP dataset, and we observe that we are able to
discover patterns for DBLP-Multigraph that were not by using DBLP-Mappedgraph.
It is to be noted that the patterns from mapped graph are a subset of the patterns
from its multigraph, and thus we infer that mining multigraphs has the advantage
of discovering the frequent patterns which are otherwise not discovered by mapping
them. Thus, our experiments demonstrate the importance of the multigraph min-
ing approach MuGraM over the existing state-of-the-art- approaches. Further, we
also evaluate the time performance of MuGraM when employed to mine multi-
graphs. In Figure 5.7b, we observe that DBLP-Multigraph needs some amount of
additional time to discover multigraph patterns which did not exist in the case of
DBLP-Mappedgraph. However, it is important to note that this additional time
grows only linearly for multigraphs when compared to the corresponding mapped-
graphs, although multigraphs pose a tougher challenge in terms of search space than
the corresponding mapped-graphs.
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(a) No. of patterns outputted (b) Time performance

Figure 5.7: Comparison of time performance and # of outputted patterns for DBLP
dataset

5.5.2 Qualitative analysis

We conduct qualitative analysis for the following datasets, for which we employ Mu-
GraM to discover the below mentioned patterns. It is important to learn that these
patterns are frequent patterns and hence they reveal the majoritarian behaviour of
a set of users/entities (nodes).

AUCS: The AUCS dataset [Kim and Lee, 2015] is a multi-layered dataset,
where each layer represents the relationships among 61 employees of a University
department in five different aspects of (i) coworking, (ii) having lunch together,
(iii) friends on facebook, (iv) spending leisure time (v) have coauthorship. We
model this dataset as a multigraph with 61 nodes and a set of edge types T :=
{lunch, facebook, coauthor, leisure, work}. In the original dataset there are 620
edges, where each edge belongs to one of the above mentioned five layers; we map
all the edge types T that belong to different layers of a pair of nodes (say, vi and vj)
into a multiedge (e.g., Ei := {facebook, leisure}) which results in 353 multiedges.

For AUCS dataset, we extract multigraph patterns by setting MNI support
threshold δ = 30, and report few interesting patterns as depicted in Figure 5.8.
Since the dataset has very few coauthors, for δ = 30, we do not find any patterns
that have the edge type coauthor. Pattern P1 depicts a frequent behaviour, where
we observe that the employees who lunch together also work together. Also, by the
relation of transitivity, we can conclude that every employer in the pattern work at
the same place. Since the employee a only works with b and c and does not share
any other relations, all the three employees a, b and c seem not to know each other.
On the other hand, b and e as well as c and f seem to be close to each other as they
not only lunch together, but also spend leisure time after work. However, b and d
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Figure 5.8: Few interesting patterns of size s = 4 and s = 5 for AUCS dataset

seem to have a limited acquaintance, as they only lunch together, apart from being
co-workers.

Pattern P2 depicts a frequent behaviour where two employees (a and b) seem to
be good friends as they share leisure time, although do not lunch together. Further,
a shares lunchtime with c and d, who are not co-workers implying that c and d
do not work in the same place, which further helps us to understand as to why b
does not lunch with a. Interestingly, both c and d who share lunchtime with a on
separate occasions, are friends on facebook. In pattern P3, the relation between a
and d is interesting to observe, as although they share the workplace and are friends
on facebook, they never have any other relations, which helps us deduce that they
are not very close friends. Further, a prefers to lunch with non-coworkers b and c,
whereas c and e share many relations and hence are good friends.

ATN: The ATN [Cardillo et al., 2012] dataset is an Air Transportation Network
data that describes airline companies operating in Europe during the year 2011. The
dataset is represented as a multi-layered graph, where the nodes and edges represent
airport locations and routes, respectively, and each layer corresponds to a different
airline company. In the original dataset, there are 417 nodes, 3 588 edges and 37
layers. We map this data into a multigraph dataset, with 417 nodes and 2 953
multiedges.
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Figure 5.9: Few interesting patterns of size s = 3 for ATN dataset
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For ATN dataset, we extract multigraph patterns by setting MNI support
threshold δ = 15, and report a select few interesting patterns as depicted in Fig-
ure 5.9. Pattern P1 depicts a frequent behaviour of three airports a, b and c inter-
connected by Scandinavian airlines, where a and c are additionally connected by
Norwegian airlines. Since these three airports are strongly connected by forming
a clique, we can deduce that such pattern could be revealing a common behavior
where the three airports could belong to bigger cities (with more passenger traffic),
and hence more likely to be capital cities. And since the carriers are Scandinavian
and Norwegian, the three cities probably belong to Scandinavian countries.

Pattern P2 depicts a frequent situation in which four airports (a,b,c and d) are
involved. Airport a appears to be a major airport hub form where many links exist
(from a to b, c and d). With this pattern being frequent, we can deduce that a major
airport (a) often offers connectivity to airports with relatively lesser air traffic (b, c,
d). In this particular pattern, since all the airlines belong to Germany, a could be
the busiest airport in Germany.

MRM: The MRM [Kim and Lee, 2015] dataset is provided by MIT Media Lab.
It represents human interactions using mobile phones. The dataset is a multi-layered
graph where the nodes represent users and the edges represent the way they interact
with each other. The dataset has four different layers that represent different ways
of communication namely, phone calls, friendship claims, bluetooth proximity scans,
and text message exchanges. We map the original dataset to a multigraph with 94
nodes and 3 079 multiedges.
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Figure 5.10: Few interesting patterns of size s = 4 and s = 5 for MRM dataset

For MRM dataset, we extract multigraph patterns by setting MNI support
threshold δ = 30, and report a select few interesting patterns as depicted in Fig-
ure 5.10. In In Figure 5.10, pattern P1 depicts a frequent behaviour involving six
users (nodes), where one user is pivotal (here a) to the interaction pattern. Al-
though the user a has a direct interaction with b and c through phone calls and text
messages, a is in proximity with d and e, who together form a 2-degree interaction.
Further, e usually performs phone calls with f , indicating that friendship interaction
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occur as small communities (two in the depicted patterns: i) a, b, c and ii) e, f),
that are in turn loosely connected. Pattern P2 portrays a situation, where four users
are interconnected; in such frequent structure two users (here c and d) interact very
closely, since they claim the friendship along with phone calls and text messages ; the
other two users (here a and b) interact with phone calls and text messages. These
two small groups often have a bluetooth proximity, indicating that they hangout
around same places (in particular a, b and c) but they are isolated in term of direct
communications (phone calls, friendship claims and text message).

5.6 Summary

In this chapter, we proposed a generic multigraph mining algorithm called Mu-
GraM that can discover frequent patterns in multigraphs. We then discussed the
challenges offered by multigraphs, in terms of search space complexity as well as the
complexity due to subgraph isomorphism and proposed optimized solutions to tackle
them. We performed experimental analyses (both quantitative and qualitative) on
various datasets and compared the performance of MuGraM with the existing
state-of-the-art approach GraMi. On one hand, the qualitative analysis exhibits
the power of MuGraM in discovering interesting multigraph patterns, which can
not be discovered by any existing graph mining algorithms; on the other hand, our
quantitative analysis shows that MuGraM outperforms the prevalent graph mining
approaches, even when handling simple graphs.
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Conclusions Part II

Frequent subgraph mining (FSM) is one of the most prevalent problems in the field
of data mining, and certainly so, under the gamut of knowledge discovery. In this
part we learnt the importance of FSM problem in the context of multigraphs, and
the importance of frequent patterns thus discovered in multigraph data.

In Chapter 5, we understood the core principles of the proposed algorithm Mu-
GraM, that discovers the exact frequent subgraph patterns in multigraphs, given a
user defined frequency threshold value. We incorporated a support measure called
Minimum Node Image (MNI), which is recognized for its linear time complexity. We
proposed a backtracking procedure that amalgamates support measure evaluation
and DFS search space exploration, in order to determine if a pattern is frequent.
Qualitative analysis of the experiments revealed that MuGraM is able to discover
patterns in multigraphs, that the existing FSM approaches are not able to discover.
When tested on simple graphs, in terms of time performance, MuGraM outper-
formed the existing approaches.

Although we believe that the proposed approach MuGraM has filled the void
in the graph data mining community by addressing the problem of FSM for more
generic class of graphs, we do observe a plenty of potential extensions. The current
version of MuGraM is a standalone system algorithm, and we intend to extend the
work for distributed systems, thereby enabling MuGraM to be employed for mas-
sive multigraphs. In this work, we consider multigraphs without any vertex labels;
for the sake of completeness of the approach, we can perform a trivial extension of
MuGraM to consider vertex labelled multigraphs. In this work, although we con-
sider a computationally lighter support measure of MNI, there are a plenty of other
support measures such as Maximum Independent Set measure, Overlap Hypergraph
measure [Wang et al., 2013], that could be considered under MuGraM. Although
these support measures are computationally expensive, they could discover more
interesting patterns.
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Case Study
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Chapter

6
Knowledge Extraction for
Remote Sensing Data

In this chapter, we perform a case study analysis on a remote sensing data
that harnesses the contributions of this thesis in terms of both knowledge
discovery and retrieval.

We perform a case study analysis of the works proposed in this thesis for the
application of remote sensing data. In Figure 6.1a, we observe a remote sensing
image taken with a pixel resolution of 30 meters, over the ‘Basse Plaine de l’Aude’
(BPA) or ‘Lower Aude Valley’, in France on 7th of May 2009. This region is cov-
ered with a plenty of natural areas like river, forest, lakes, etc., along with semi-
natural/cultivated areas like vineyards. In the image, the greener areas represent
the natural vegetation, darker areas represent the water bodies like lakes and rivers
and silver/whitish areas represent the semi-natural areas like vineyards.

The ‘Basse Plaine de l’Aude’ (BPA) dataset has four different relations namely
{NDV I,NDWI, V SDI,Brightness}: the Normalized Difference Vegetation Index
(NDVI ) is a vegetation indicator; the Normalized Difference Water Index (NDWI )
is an indicator on plant water content; the visible and shortwave infrared drought
index (VSDI ) is a drought indicator; and the Brightness relation is an indicator of
soil reflectance, where Brightness is calculated as a weighted sum of all the bands
and is defined in the direction of principal variation in soil reflectance.

This BPA satellite image undergoes segmentation operation that results in an
image as observed in Figure 6.1b. The segmented image can then be readily modelled
as a graph by mapping each segmented object as a vertex and the relations between
any two objects is represented as a multiedge. Since the relations in BPA dataset
have continuous values, each relation is allocated with a discrete interval; and two
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(a) Satellite image (b) Satellite image after segmentation

Figure 6.1: A satellite image of Basse Plaine de l’Aude (BPA) or Lower Aude Valley,
France’, and the same image after segmentation

objects share an edge if they share the same discreet interval value. Finally, when
two vertices (objects) share more than one edge (relation), the such a scenario is
represented as the vertices having a multiedge, and the entire graph can then be
termed as a multigraph.

Discovering frequent patterns

In order to discover interesting patterns on the multigraph data of the remote sens-
ing data BPA, we run the proposed multigraph mining algorithm MuGraM to
discover a set of frequent patterns. These patterns are the frequent patterns that
occur at least 150 times in the given BPA dataset. The frequency threshold was
chosen arbitrarily in order to discover frequent patterns. For case study analysis,
we consider two frequent patterns as depicted in Figure 6.2.

In order to retrieve useful knowledge from the muligraph data of the remote
sensing data BPA, we now run the proposed subgraph pattern matching algorithm
SuMGra that unearths all the embeddings of the earlier discovered pattern, in our
case for P1 and P2. The pattern P1 has 2 232 instances in the original BPA image
and the pattern P2 has 1 704 instances in the original BPA image. The images with
corresponding embeddings for both pattern P1 and P2 are depicted in Figure 6.3.

In Figure 6.2, we observe that pattern P1 has lesser information (and hence
lesser constraints) when compared to P2 and hence P1 is more generic in covering
the zone of the satellite image when compared to P2 as evident in Figure 6.3, where
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Figure 6.2: Two frequent patterns for the BPA dataset that occur at least 150 times

the locations of embeddings are marked in light green color.

Pattern P2 is more specific for naturally occurring zones like forests, lakes and
rivers (green and dark colours in Figure 6.1a), and the pattern does not cover the
semi-natural regions like vineyards (silver coloured in Figure 6.1a).

In Figure 6.4 we observe a zoomed part of the original image and the corre-
sponding coverage of the embeddings of pattern P2. Referring to Figure 6.4b, we
observe that while the embeddings have been correctly located (green coloured on
the lower right section of the image), the segmentation itself that was done as a
preprocessing, is not accurate. This is because, by comparing Figure 6.4b with the
original image Figure 6.1a, we observe that the two rightmost objects in Figure 6.4b
are segmented, although they should be the same, as observed in Figure 6.4a.

Possible extensions

In the field of environmental sciences, simulation models are an important way to
study systems inaccessible to scientific experimental and observational methods, and
also an essential complement to those more conventional approaches. Our pattern
mining framework can be employed to support spatial simulation analysis. In partic-
ular, the extracted patterns can be supplied as input for a spatial simulation model
with the objective of guiding the simulation process. The frequent patterns not only
represent some kind of spatial constraints, but also introduce knowledge about the
interactions that appear between the involved spatial entities. For example, one
could be interested in simulating the agricultural landscape in order to understand
the interactions between the various fields.

In the above discussions, all the tasks were operated in an unsupervised manner.
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(a) Embeddings of pattern P1 in BPA image (b) Embeddings of pattern P2 in BPA image

Figure 6.3: The images showing the embeddings of the frequent patterns in the
original BPA image

(a) Zoomed part of the original imaged (b) Zoomed image to visualize embeddings

Figure 6.4: Zooming the original image to study the validity of the extracted knowl-
edge

If we have ground truths available for the remote sensing image, then we can perform
supervised classification on original image and then, we could look for interesting
patterns in a particular class. For example, if we are interested in knowing interesting
patterns that could exist in only the vegetation zone, then we would be able to
restrict our search only to that extent, thereby yielding more specific and practical
knowledge.
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Chapter

7

Summary and Future Directions

Thesis Summary

This thesis makes contributions in the field of knowledge retrieval and discovery by
addressing the problems of subgraph query matching and frequent subgraph mining
respectively. These problems have been addressed for data from various domains,
that can be represented as graphs. Graphs - a class of semi-structured data - have
garnered the attention for several decades now, owing to their inherent property
of modelling complex relations among the entities in a succinct manner, and yet
retaining the structural properties of the data.

As already discussed in the introduction, extracting knowledge has evolved to
become a necessity ever since there has been an unprecedented growth in the amount
of data collected, and the information retrieved. Although the field of knowledge
extraction is determined to automate the process of discovering knowledge, several
challenges are encountered. Pattern enumeration and mining plays almost an in-
termediate role in this regard, by capturing the instances of patterns or discovering
the patterns hitherto unknown, that exist in the vast information. However, on
one hand, the pattern enumeration and mining approaches have to be time efficient
owing to the huge amount of information to be processed, on the other hand, the
discovered patterns have to be interesting enough to be deemed as knowledge. Thus,
discovering such interesting patterns is indeed a challenge in the field of frequent
subgraph pattern mining.
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The contributions in this thesis have been in the direction of efficient retrieval
of patterns and mining frequent patterns in multigraphs. These contributions fill
the gap in the graph analytics community, by addressing these problems in the case
of multigraphs, which are a generic class of graphs.

In Part I of the thesis, we focused on the querying aspects of multigraphs. In
the beginning we learnt the challenges posed by the multiedges in the multigraphs,
and proposed efficient indexing structures to capture the vital information in the
multigraph dataset, which are ultimately utilised by the subgraph query matching
procedures. The proposed algorithm SuMGra in Chapter 3 is one such novel ap-
proach, that retrieves isomorphic matches for a given query subgraph in undirected
multigraphs. The subgraph matching procedure is in particular, a backtracking ap-
proach, that explores the search space in a DFS manner; however, in doing so, it
is important to begin the exploration form a vertex (a point in search space) which
guarantees to discover the matches, which is partially achieved by the ordering of
the query vertices. In this direction, we proposed heuristics for ordering the query
vertices. Further, we proposed a backtracking procedure that is coupled with the
proposed indexing structures, to quickly discover the matched embeddings for the
subgraph query.

The proposed subgraph isomorphic matching algorithm SuMGra has many
potential applications in the fields of bioinformatics, social network and many others.
In [Bonnici et al., 2013], the subgraph matching approach is applied to biochemical
data, where the authors enumerate the subgraphs matches of patterns to get insight
into evolutionary mechanisms, as these patterns could be repeated in the same
network or in different networks. Similarly, a subgraph matching tool for biological
graphs has been proposed in [Tian et al., 2007], as they are convinced that graphs
provide a powerful primitive for modelling biological data.

After addressing the problem of querying isomorphic matches in undirected
multigraphs, in Chapter 4, we moved to the problem of querying homomorphic
matches in directed multigraphs. This problem has potential applications in the
domain of Linked Data - a method of publishing structured data so that it can be
interlinked and become more useful through semantic queries. This has an advantage
of enabling data from different sources to be connected and queried [Bizer et al.,
2009]. For such Linked Data, open standards exists, where the data is stored in the
form of RDF triples and queried using SPARQL language. The field of relational
databases has made a plenty of contributions for efficiently performing SPARQL
query operations on an RDF data [Erling, 2012, Carroll et al., 2004, Neumann and
Weikum, 2010]. Since very few graph database approaches exist, even though RDF
data is inherently a graph structure, in this thesis, we discuss on our proposed
approach - AMbER, that performs SPARQL querying on RDF data as a graph
database approach.
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In AMbER, we firstly model an RDF data as a multigraph, since RDF data is
rich with multiple relations between a pair of entities, which allows for a succinct rep-
resentation. We employ the index structures that were proposed for SuMGra, but
we modify them in accordance with homomorphic constraint. Since the SPARQL
queries can grow bigger in size, and also become more complex in terms of structure,
we proposed an efficient query decomposition approach, that leverages the proposed
index structures for a faster traversal of search space. Our experimental results
proved that the proposed AMbER is not only faster when compared with the ex-
isting approaches, including the relational database approaches, but also robust in
answering SPARQL queries.

In Part II of the thesis, the focus was on mining frequent subgraphs (FSM)
in multigraphs. The main motivation for this part of work has been the inefficacy
of the existing FSM approaches in discovering patterns in multigraphs. We learnt
that the existing approaches are unable to discover the patterns that are spanned
by various combinations of subsets of the multiedges. Furthermore, we realized that
the sheer extension of the existing approaches for multigraphs is non-trivial, and
hence the problem had to be tackled with a different approach, which led to the
emergence of the proposed approach MuGraM.

In MuGraM, we outlined the generic algorithm in the beginning, followed by
more detailed description and analysis. Since in a multigraph, the pattern growth
expands exponentially due to multiedges, we proposed a possible reduction of search
space, thereby improving the time performance for multigraphs. Further, we coupled
the evaluation of MNI support measure with the pattern matching procedure, that is
necessary to compute the number of embeddings of a pattern. This greatly helped
to quickly decide if a pattern is frequent or not; we formulated this problem as
bin filling problem, where the vertices of patterns are represented as a set of bins,
and the task is to fill each bin with a set of vertex matches, so that all the bins
are filled with distinct matched vertices. Several other optimization approaches
were also incorporated to boost the performance of the proposed MuGraM. In the
experiments we observe that MuGraM not only discovers patterns in multigraphs,
but also outperforms the existing FSM approaches, when tested on simple graphs.

In Chapter 6, we performed a case study analysis on a remote sensing data,
which is modelled as a multigraph. In this case study, we analysed the application
of the proposed frequent pattern mining algorithm MuGraM and the subgraph
pattern matching algorithm SuMGra to the remote sensing data. This case study
analyses sheds some light on the utilitarian aspects of the contributions made in this
thesis. Modelling the remote sensing data as multigraphs, and the application of the
proposed approaches in this thesis on the multigraph data yielded useful knowledge
that the experts approve of. Having made useful contributions and having put them
in a nutshell, we now discuss on a few future directions, that this thesis makes
conceivable in an optimistic manner.
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Future Directions

Although in this thesis, contributions have been made in the field of subgraph query-
ing and frequent pattern mining, many potential future works are possible. Even
though we have discussed about the possible extensions of the corresponding work at
the end of Part I and II, we now discuss on the future directions in a much broader
sense.

In this thesis, we have considered static multigraphs for both querying and
mining operations. With the ever increasing amount of data, it has become essential
to perform these tasks on time evolving or dynamic multigraphs, since much of the
real world data like, social network data, RDF data, and remote sensing data are
constantly updated over time. We have learnt that multigraphs capture the real
world data in a succinct manner; more so, dynamic multigraphs capture the real
time data in a continuous manner, and hence the potential extension of the proposed
works is necessary to address dynamic multigraphs.

Analysis and behaviour of time evolving graphs has been studied by [Leskovec
et al., 2005]; these insights would be helpful in the process of knowledge extraction
too. Further, several subgraph mining approaches already exist [Tong et al., 2008,
Bogdanov et al., 2011], that are able to manage dynamic graphs. As we have already
worked on multigraphs, we believe that it is relatively easier, though non trivial, to
extend the current work for multigraphs; this can be achieved by modelling the
time evolving graphs as multigraphs, where we can consider the time stamps as a
set of multiedges. However, the challenge remains w.r.t. the applications; in some
domains, say social network, the timestamps could be of longer intervals, thus having
fewer multiedges, and in other domains, say a telecommunication network, a plenty
of time stamps can be recorded within a short interval. Thus, a structured approach
is needed in order to address several domains of time evolving graphs.

Another future extension could be in the direction of approximate subgraph
matching. Since exact matching is too expensive to be computed, there are sev-
eral domains as in bioinformatics [Tian et al., 2007], which are interested in enu-
merating the similar subgraph structures rather than discover only exact subgraph
matches. Many works have been proposed to perform such similarity matches [Yan
et al., 2005b], but in case of simple graphs. Thus, performing approximate subgraph
querying for multigraphs in order to obtain similar subgraphs is a potential future
work.

In the field of multigraph mining, several follow up works are possible. While
dealing with Frequent Subgraph Mining (FSM), the amount of patterns generated
poses a challenge. Although in this thesis, we have justified the approaches for
mining frequent patterns in multigraphs, we are also convinced that several other
mining approaches, described below, lead to potential future works.
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Maximal and Closed frequent subgraph mining. Since the problem with the
FSM approach is the huge number of patterns discovered, restricting the number of
frequent patterns by evoking some constraints would make the discovered patterns
more interesting. A closed FSM outputs a smaller set of frequent patterns [Yan
and Han, 2003, Wang et al., 2006] and a maximal FSM outputs much fewer pat-
terns [Thomas et al., 2010]. Maximal patterns are indeed discovered during an FSM
procedure; however they are located deep down in the search space, at the end of
the search path. Owing to a huge search space for multigraphs, it will be a challenge
to find maximal patterns in multigraphs. For closed pattern mining, the research is
already making progress towards multigraphs; the most recent work being addressed
for edge labelled graphs [Karabadji et al., 2016].

Top-k frequent subgraph mining. Although FSM is one of the most widely
explored mining approaches, it suffers from lack of scalability even for relatively
larger input graphs, which is simply due to the inherent intractability of the FSM
task as it is defined. Even in the proposed graph mining approach MuGraM, we
have witnessed how the subgraph space grows exponentially with the size of input
graph, despite all the pruning techniques. To overcome the exhaustive exploration
of subgraph search space, many alternative paradigms have been proposed, which
are not complete and hence approximate. One such approach is FS-3 [Saha and
Al Hasan, 2015], which is a Fixed Size Subgraph Sampler, that proposes a sampling
based method for mining top-k frequent subgraphs. Although this work is a recent
contribution, it is meant for transactional graph databases. We can take inspiration
from such works, and propose novel approaches to discover top-k frequent subgraphs
for single large multigraphs.

Statistically significant pattern mining. In this approach, patterns with low
p-values are discovered, that occur at low frequencies. For some applications, it
is not enough just to find the frequent patterns as they may not provide the best
characterization of the dataset. However, significant patterns have the potential to
unearth properties where the data deviates from the expected behaviour. Works
already exist in this direction; for transactional graph databases, GraphSig has been
proposed by [Ranu and Singh, 2009] and for single graph setting, [Arora et al.,
2014] and [Lee et al., 2016] propose approaches when vertex attributes exist. Since
no attempt has been made to address mining statistically significant patterns in
multigraphs, we behold it as an open problem. Multigraphs in particular would
be a curious case, since we can observe if the patterns spanned by the subsets of
multiedges can be statistically significant.

The field of spectral graph theory, where the properties of a graph are studied
w.r.t. the eigenvalues and eigenvectors of the Laplacian matrix of the associated
graph, would be interesting to explore for managing multigraphs. Further, concepts
already exist for matrix methods in pattern mining approaches as introduced in [El-
dén, 2007]. This would give an impetus for tensor modelling of multigraphs, thereby
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leading to another systematic study of multigraphs. In this direction, although few
works already exists for clustering in multigraphs [Dong et al., 2012], a plenty of
work has to be done. Thus, a systematic modelling of generic graphs for knowledge
extraction can be accomplished in the near future.
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